WorldWideScience

Sample records for ahmtp1 zinc transporters

  1. Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae

    OpenAIRE

    MacDiarmid, Colin W; Gaither, L.Alex; Eide, David

    2000-01-01

    All cells regulate their intracellular zinc levels. In yeast, zinc uptake is mediated by Zrt1p and Zrt2p, which belong to the ZIP family of metal transporters. Under zinc limitation, ZRT1 and ZRT2 transcription is induced by the Zap1p transcriptional activator. We describe here a new component of zinc homeostasis, vacuolar zinc storage, that is also regulated by Zap1p. Zinc-replete cells accumulate zinc in the vacuole via the Zrc1p and Cot1p transporters. Our results indicate that another zin...

  2. Protection against zinc toxicity by metallothionein and zinc transporter 1

    OpenAIRE

    Palmiter, Richard D.

    2004-01-01

    Cells protect themselves from zinc toxicity by inducing proteins such as metallothionein (MT) that bind it tightly, by sequestering it in organelles, or by exporting it. In this study, the interplay between zinc binding by MT and its efflux by zinc transporter 1 (ZnT1) was examined genetically. Inactivation of the Znt1 gene in baby hamster kidney (BHK) cells that do not express their Mt genes results in a zinc-sensitive phenotype and a high level of “free” zinc. Restoration of Mt gene express...

  3. [Improvement in zinc nutrition due to zinc transporter-targeting strategy].

    Science.gov (United States)

    Kambe, Taiho

    2016-07-01

    Adequate intake of zinc from the daily diet is indispensable to maintain health. However, the dietary zinc content often fails to fulfill the recommended daily intake, leading to zinc deficiency and also increases the risk of developing chronic diseases, particularly in elderly individuals. Therefore, increased attention is required to overcome zinc deficiency and it is important to improve zinc nutrition in daily life. In the small intestine, the zinc transporter, ZIP4, functions as a component that is essential for zinc absorption. In this manuscript, we present a brief overview regarding zinc deficiency. Moreover, we review a novel strategy, called "ZIP4-targeting", which has the potential to enable efficient zinc absorption from the diet. ZIP4-targeting strategy is possibly a major step in preventing zinc deficiency and improving human health. PMID:27455817

  4. Effect of Phosphate on Zinc Transport in Lou Soil

    Institute of Scientific and Technical Information of China (English)

    LUJIALONG; DONGLINGIAO; 等

    1998-01-01

    A study on the transport characteristics of zinc in lou soil with phosphate at different concentrations was carried out by the method of step input.The effects of phosphate and temperature on zinc transport were studied through analysing the diffusion-dipsersion coefficients(D) and the retardation factor(R) obtained by the program CXTFIT.The results showed that D decreased and R increased with increasig concentration of phosphate so that iv was difficult for zinc to break through the soil column,and zinc stopped to break through the column at high temperature.One order equation,double constant equation and the Elovich equation were all suitable for the escription of zinc dynamics.Effects of phosphate and temperature on zinc transport were further confirmed by the analysis on pseudo-thermodynamic parameters of zinc transport.

  5. Zinc dyshomeostasis during polymicrobial sepsis in mice involves zinc transporter Zip14 and can be overcome by zinc supplementation.

    Science.gov (United States)

    Wessels, Inga; Cousins, Robert J

    2015-11-01

    Integrity of the immune system is particularly dependent on the availability of zinc. Recent data suggest that zinc is involved in the development of sepsis, a life-threatening systemic inflammation with high death rates, but with limited therapeutic options. Altered cell zinc transport mechanisms could contribute to the inflammatory effects of sepsis. Zip14, a zinc importer induced by proinflammatory stimuli, could influence zinc metabolism during sepsis and serve as a target for therapy. Using cecal ligation-and-puncture (CLP) to model polymicrobial sepsis, we narrowed the function of ZIP14 to regulation of zinc homeostasis in hepatocytes, while hepatic leukocytes were mostly responsible for driving inflammation, as shown by higher expression of IL-1β, TNFα, S100A8, and matrix metalloproteinase-8. Using Zip14 knockout (KO) mice as a novel approach, we found that ablation of Zip14 produced a delay in development of leukocytosis, prevented zinc accumulation in the liver, altered the kinetics of hypozincemia, and drastically increased serum IL-6, TNFα, and IL-10 concentrations following CLP. Hence, this model revealed that the zinc transporter ZIP14 is a component of the pathway for zinc redistribution that contributes to zinc dyshomeostasis during polymicrobial sepsis. In contrast, using the identical CLP model, we found that supplemental dietary zinc reduced the severity of sepsis, as shown by amelioration of cytokines, calprotectins, and blood bacterial loads. We conclude that the zinc transporter ZIP14 influences aspects of the pathophysiology of nonlethal polymicrobial murine sepsis induced by CLP through zinc delivery. The results are promising for the use of zinc and its transporters as targets for future sepsis therapy.

  6. Analysis of reaction and transport processes in zinc air batteries

    CERN Document Server

    Schröder, Daniel

    2016-01-01

    This book contains a novel combination of experimental and model-based investigations, elucidating the complex processes inside zinc air batteries. The work presented helps to answer which battery composition and which air-composition should be adjusted to maintain stable and efficient charge/discharge cycling. In detail, electrochemical investigations and X-ray transmission tomography are applied on button cell zinc air batteries and in-house set-ups. Moreover, model-based investigations of the battery anode and the impact of relative humidity, active operation, carbon dioxide and oxygen on zinc air battery operation are presented. The techniques used in this work complement each other well and yield an unprecedented understanding of zinc air batteries. The methods applied are adaptable and can potentially be applied to gain further understanding of other metal air batteries. Contents Introduction on Zinc Air Batteries Characterizing Reaction and Transport Processes Identifying Factors for Long-Term Stable O...

  7. Abundance of zinc ions in synaptic terminals of mocha mutant mice: zinc transporter 3 immunohistochemistry and zinc sulphide autometallography.

    Science.gov (United States)

    Stoltenberg, Meredin; Nejsum, Lene N; Larsen, Agnete; Danscher, Gorm

    2004-02-01

    The mocha mouse is an autosomal recessive pigment mutant on mouse chromosome 10 caused by a deletion in the gene for the delta subunit of the adaptor-like complex AP-3. Based on zinc transporter 3 (ZnT3) immunohistochemistry, zinc TSQ fluorescence and a modified Timm method, previous studies found a lack of histochemically-detectable zinc and a substantial reduction in the ZnT3 immunoreactivity. It has, therefore, been suggested that the mocha mouse could serve as a model for studies of the significance of zinc ions in zinc-enriched (ZEN) neurons. We have chosen the mocha-zinc-model in a study of the significance of ZEN neurons in hypoxia-caused damage in mouse brain. In order to establish that the model was either void of zinc ions or had a significantly decreased level of zinc ions in their ZEN terminals, we repeated the studies that had lead to the above assumption, the only methodology difference being that we used the zinc specific Neo-Timm method instead of the Timm method applied in the original study. We found that, although the ZnS autometallography (AMG) technique revealed a reduction in staining intensity as compared to the littermate controls, there were still plenty of zinc ions in the ZEN terminals, in particular visible in telencephalic structures like neocortex and hippocampus. At ultrastructural levels the zinc ions were found in a pool of vesicles of the ZEN terminals as in the control animals, but additionally zinc ions could be traced in ZEN neuronal somata in the neocortex and hippocampus. The mossy fibres in the hippocampus of mocha mice also bind with TSQ, though less than in the controls. We found ZnS AMG grains in ZEN neuronal somata, which were also immunoreactive for ZnT3. Our study confirmed the decreased ZnT3 immunoreactivity in ZEN terminals of the mocha mouse found in the original study. Based on these findings, we suggest that the mocha mouse may not be an ideal model for studies of the histochemically-detectable zinc ion pool of the

  8. Dosage Effect of Zinc Glycine Chelate on Zinc Metabolism and Gene Expression of Zinc Transporter in Intestinal Segments on Rat.

    Science.gov (United States)

    Huang, Danping; Hu, Qiaoling; Fang, Shenglin; Feng, Jie

    2016-06-01

    Zinc plays an essential role in various fundamental biological processes. The focus of this research was to investigate the dosage effect of zinc glycine chelate (Zn-Gly) on zinc metabolism and the gene expression of zinc transporters in intestinal segments. A total of 30 4-week-old SD rats were randomized into five treatment groups. The basal diets for each group were supplemented with gradient levels of Zn (0, 30, 60, 90, and 180 mg/kg) from Zn-Gly. After 1-week experiment, the results showed that serum and hepatic zinc concentration were elevated linearly with supplemental Zn levels from 0 to 180 mg Zn/kg. Serum Cu-Zn SOD activities resulted in a significant (P < 0.01) quadratic response and reached the peak when fed 60 mg Zn/kg. There were linear responses to the addition of Zn-Gly from 0 to 180 mg Zn/kg on Cu-Zn SOD and AKP activities in the liver. In the duodenum, MT1 mRNA was upregulated with the increasing dietary Zn-Gly levels and reached the peak of 180 mg Zn/kg (P < 0.05). Zip4 mRNA expression was downregulated with the increasing zinc levels (P < 0.05) in both duodenum and jejunum. In the jejunum, Zip5 mRNA expression in 60 mg Zn/kg was higher compared with other groups (P < 0.05). ZnT1 mRNA in duodenum was numerically increased with the rising levels of zinc content and was significantly higher (P < 0.05) with 180 mg Zn/kg. In the duodenum, adding 60 or 90 mg Zn/kg increased PepT1 expression, but in the jejunum, 60 mg Zn/kg did not differ from 0 added Zn. In summary, there is a dose-dependent effect of dietary Zn-Gly on serum and hepatic zinc levels and the activities of Cu-Zn SOD and AKP on rats. Dietary Zn-Gly has a certain effect on MT1, Zip4, Zip5, and ZnT1 expression, which expressed differently in intestinal segments with different levels of Zn-Gly load. Besides, Zn-Gly also could regulate PepT1 expression in intestinal segments.

  9. Zinc Transporter 3 Is Involved in Learned Fear and Extinction, but Not in Innate Fear

    Science.gov (United States)

    Martel, Guillaume; Hevi, Charles; Friebely, Olivia; Baybutt, Trevor; Shumyatsky, Gleb P.

    2010-01-01

    Synaptically released Zn[superscript 2+] is a potential modulator of neurotransmission and synaptic plasticity in fear-conditioning pathways. Zinc transporter 3 (ZnT3) knock-out (KO) mice are well suited to test the role of zinc in learned fear, because ZnT3 is colocalized with synaptic zinc, responsible for its transport to synaptic vesicles,…

  10. Zinc

    Science.gov (United States)

    ... Consumer Datos en español Health Professional Other Resources Zinc Fact Sheet for Consumers What is zinc and what does it do? Zinc is a ... find out more about zinc? Disclaimer How much zinc do I need? The amount of zinc you ...

  11. Zinc transporter expression profiles in the rat prostate following alterations in dietary zinc

    OpenAIRE

    Song, Yang; Elias, Valerie; Wong, Carmen P.; Scrimgeour, Angus G.; Ho, Emily

    2009-01-01

    Zinc plays important roles in numerous cellular activities and physiological functions. Intracellular zinc levels are strictly maintained by zinc homeostatic mechanisms. Zinc concentrations in the prostate are the highest of all soft tissues and could be important for prostate health. However, the mechanisms by which the prostate maintains high zinc levels are still unclear. In addition, the response of the prostate to alterations in dietary zinc is unknown. The current study explored cellula...

  12. Zinc transporter expression in zebrafish (Danio rerio) during development☆

    OpenAIRE

    Ho, Emily; Dukovcic, Stephanie; Hobson, Brad; Wong, Carmen P.; Miller, Galen; Hardin, Karin; TRABER, MARET G.; Tanguay, Robert L.

    2011-01-01

    Zinc is a micronutrient important in several biological processes including growth and development. We have limited knowledge on the impact of maternal zinc deficiency on zinc and zinc regulatory mechanisms in the developing embryo due to a lack of in vivo experimental models that allow us to directly study the effects of maternal zinc on embryonic development following implantation. To overcome this barrier, we have proposed to use zebrafish as a model organism to study the impact of zinc du...

  13. Bioinformatics Analysis of Zinc Transporter from Baoding Alfalfa

    Institute of Scientific and Technical Information of China (English)

    Haibo WANG; Junyun GUO

    2012-01-01

    [Objective] This study aimed to perform the bioinformatics analysis of Zinc transporter (ZnT) from Baoding Alfalfa. [Method] Based on the amino acid sequence, the physical and chemical properties, hydrophilicity/hydrophobicity, secondary structure of ZnT from Baoding alfalfa were predicted by a series of bioinformatics software. And the transmembrane domains were predicted by using different online tools. [Result] ZnT is a hydrophobic protein containing 408 amino acids with the theoretical pl of 5.94, and it has 7 potential transmembrane hydrophobic regions. In the sec- ondary structure, co-helix (Hh) accounted for 48.04%, extended strand (Ee) for 9.56%, random coil (Cc) for 42.40%, which was accored with the characteristic of transmembrane protein. [Conclusion] mZnT is a member of CDF family, responsible for transporting Zn^2+ out of the cell membrane to reduce the concentration and toxicity of Zn^2+.

  14. Fishy business: effect of omega-3 fatty acids on zinc transporters and free zinc availability in human neuronal cells.

    Science.gov (United States)

    De Mel, Damitha; Suphioglu, Cenk

    2014-08-15

    Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer's disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s) for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration.

  15. Fishy Business: Effect of Omega-3 Fatty Acids on Zinc Transporters and Free Zinc Availability in Human Neuronal Cells

    Directory of Open Access Journals (Sweden)

    Damitha De Mel

    2014-08-01

    Full Text Available Omega-3 (ω-3 fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA. The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA, docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA. Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer’s disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration.

  16. Boron and Zinc Transport Through Intact Columns of Calcareous Soils

    Institute of Scientific and Technical Information of China (English)

    M. MAHMOOD-UL-HASSAN; M. S. AKHTAR; G. NABI

    2008-01-01

    Leaching of boron (B) and zinc (Zn) can be significant in some pedomorphic conditions, which can cause contamination of shallow groundwater and economic losses. Boron and Zn adsorption and transport was studied using 8.4 cm diameter ×28 cm long intact columns from two calcareous soil series with differing clay contents and vadose zone structures:Lyallpur soil series, clay loam (fine-silty, mixed, hyperthermic Ustalfic Haplargid), and Sultanpur soil series, sandy loam (coarse-silty, mixed, hyperthermic Ustollic Camborthid). The adsorption isotherms were developed by equilibrating soil with 0.01 mol L-1 CaCl2 aqueous solution containing varying amounts of B and Zn and were fitted to the Langmuir equation. The B and Zn breakthrough curves were fitted to the two-domain convective-dispersive equation. At the end of the leaching experiment, 0.11 L 10 g L-1 blue dye solution was also applied to each column to mark the flow paths.The Lyallpur soil columns had a slightly greater adsorption partition coefficient both for B and Zn than the Sultanpur soil columns. In the Lyallpur soil columns, B arrival was immediate but the peak concentration ratio (the concentration in solution at equilibrium/concentration applied) was lower than that in the Sultanpur soil columns. The breakthrough of B in the Sultanpur soil columns occurred after about 10 cm of cumulative drainage in both the columns; the rise in effluent concentration was fast and the peak concentration ratio was almost 1. Zinc leaching through the soil columns was very limited as only one column from the Lyallpur soil series showed Zn breakthrough in the effluent where the peak concentration ratio was only 0.05. This study demonstrates the effect of soil structure on B transport and has implications for the nutrient management in field soils.

  17. The Zinc Transporter Zip5 (Slc39a5) Regulates Intestinal Zinc Excretion and Protects the Pancreas against Zinc Toxicity

    OpenAIRE

    Jim Geiser; Robert C De Lisle; Andrews, Glen K.

    2013-01-01

    BACKGROUND: ZIP5 localizes to the baso-lateral membranes of intestinal enterocytes and pancreatic acinar cells and is internalized and degraded coordinately in these cell-types during periods of dietary zinc deficiency. These cell-types are thought to control zinc excretion from the body. The baso-lateral localization and zinc-regulation of ZIP5 in these cells are unique among the 14 members of the Slc39a family and suggest that ZIP5 plays a role in zinc excretion. METHODS/PRINCIPAL FINDINGS:...

  18. Zinc

    Science.gov (United States)

    ... women when used in the recommended daily amounts (RDA). However, zinc is POSSIBLY UNSAFE when used in ... older infants, children, and adults, Recommended Dietary Allowance (RDA) quantities of zinc have been established: infants and ...

  19. Dual Zinc Transporter Systems in Vibrio cholerae Promote Competitive Advantages over Gut Microbiome.

    Science.gov (United States)

    Sheng, Ying; Fan, Fenxia; Jensen, Owen; Zhong, Zengtao; Kan, Biao; Wang, Hui; Zhu, Jun

    2015-10-01

    Zinc is an essential trace metal required for numerous cellular processes in all forms of life. In order to maintain zinc homeostasis, bacteria have developed several transport systems to regulate its uptake. In this study, we investigated zinc transport systems in the enteric pathogen Vibrio cholerae, the causative agent of cholera. Bioinformatic analysis predicts that two gene clusters, VC2081 to VC2083 (annotated as zinc utilization genes znuABC) and VC2551 to VC2555 (annotated as zinc-regulated genes zrgABCDE), are regulated by the putative zinc uptake regulator Zur. Using promoter reporter and biochemical assays, we confirmed that Zur represses znuABC and zrgABCDE promoters in a Zn(2+)-dependent manner. Under Zn(2+)-limiting conditions, we found that mutations in either the znuABC or zrgABCDE gene cluster affect bacterial growth, with znuABC mutants displaying a more severe growth defect, suggesting that both ZnuABC and ZrgABCDE are involved in Zn(2+) uptake and that ZnuABC plays the predominant role. Furthermore, we reveal that ZnuABC and ZrgABCDE are important for V. cholerae colonization in both infant and adult mouse models, particularly in the presence of other intestinal microbiota. Collectively, our studies indicate that these two zinc transporter systems play vital roles in maintaining zinc homeostasis during V. cholerae growth and pathogenesis.

  20. Effects of age and zinc supplementation on transport properties in the jejunum of piglets.

    Science.gov (United States)

    Gefeller, E M; Martens, H; Aschenbach, J R; Klingspor, S; Twardziok, S; Wrede, P; Pieper, R; Lodemann, U

    2015-06-01

    Zinc is effective in the prevention and treatment of post-weaning diarrhoea and in promoting piglet growth. Its effects on the absorption of nutrients and the secretory capacity of the intestinal epithelium are controversial. We investigated the effects of age, dietary pharmacological zinc supplementation and acute zinc exposure in vitro on small-intestinal transport properties of weaned piglets. We further examined whether the effect of zinc on secretory responses depended on the pathway by which chloride secretion is activated. A total of 96 piglets were weaned at 26 days of age and allocated to diets containing three different levels of zinc oxide (50, 150 and 2500 ppm). At the age of 32, 39, 46 and 53 days, piglets were killed, and isolated epithelia from the mid-jejunum were used for intestinal transport studies in conventional Ussing chambers, with 23 μm ZnSO4 being added to the serosal side for testing acute effects. Absorptive transport was stimulated by mucosal addition of d-glucose or l-glutamine. Secretion was activated by serosal addition of prostaglandin E2 , carbachol or by mucosal application of Escherichia coli heat-stable enterotoxin (Stp ). Jejunal transport properties showed significant age-dependent alterations (p < 0.03). Both absorptive and secretory responses were highest in the youngest piglets (32 d). The dietary zinc supplementation had no significant influence on jejunal absorptive and secretory responses. However, the pre-treatment of epithelia with ZnSO4 in vitro led to a small but significant decrease in both absorptive and secretory capacities (p < 0.05), with an exception for carbachol (p = 0.07). The results showed that, in piglets, chronic supplementation with zinc did not sustainably influence the jejunal transport properties in the post-weaning phase. Because transport properties are influenced by the addition of zinc in vitro, we suggest that possible epithelial effects of zinc depend on the acute presence of this ion. PMID

  1. Transport of Zinc Oxide Nanoparticles in a Simulated Gastric Environment

    Science.gov (United States)

    Mayfield, Ryan T.

    Recent years have seen a growing interest in the use of many types of nano sized materials in the consumer sector. Potential uses include encapsulation of nutrients, providing antimicrobial activity, altering texture, or changing bioavailability of nutrients. Engineered nanoparticles (ENP) possess properties that are different than larger particles made of the same constituents. Properties such as solubility, aggregation state, and toxicity can all be changed as a function of size. The gastric environment is an important area for study of engineered nanoparticles because of the varied physical, chemical, and enzymatic processes that are prevalent there. These all have the potential to alter those properties of ENP that make them different from their bulk counterparts. The Human Gastric Simulator (HGS) is an advanced in vitro model that can be used to study many facets of digestion. The HGS consists of a plastic lining that acts as the stomach cavity with two sets of U-shaped arms on belts that provide the physical forces needed to replicate peristalsis. Altering the position of the arms or changing the speed of the motor which powers them allows one to tightly hone and replicate varied digestive conditions. Gastric juice, consisting of salts, enzymes, and acid levels which replicate physiological conditions, is introduced to the cavity at a controllable rate. The release of digested food from the lumen of simulated stomach is controlled by a peristaltic pump. The goal of the HGS is to accurately and repeatedly simulate human digestion. This study focused on introducing foods spiked with zinc oxide ENP and bulk zinc oxide into the HGS and then monitoring how the concentration of each changed at two locations in the HGS over a two hour period. The two locations chosen were the highest point in the lumen of the stomach, which represented the fundus, and a point just beyond the equivalent of the pylorus, which represented the antrum of the stomach. These points were

  2. The ZIP family zinc transporters support the virulence of Cryptococcus neoformans.

    Science.gov (United States)

    Do, Eunsoo; Hu, Guanggan; Caza, Mélissa; Kronstad, James W; Jung, Won Hee

    2016-08-01

    Zinc is an essential element in living organisms and a cofactor for various metalloproteins. To disseminate and survive, a pathogenic microbe must obtain zinc from the host, which is an environment with extremely limited zinc availability. In this study, we investigated the roles of the ZIP family zinc transporters Zip1 and Zip2 in the human pathogenic fungus Cryptococcus neoformans Zip1 and Zip2 are homologous to Zrt1 and Zrt2 of the model fungus, Saccharomyces cerevisiae, respectively. We found that the expression of ZIP1 was regulated by the zinc concentration in the environment. Furthermore, the mutant lacking ZIP1 displayed a severe growth defect under zinc-limited conditions, while the mutant lacking ZIP2 displayed normal growth. Inductively coupled plasma-atomic emission spectroscopy analysis showed that the absence of Zip1 expression significantly reduced total cellular zinc levels relative to that in the wild type, while overexpression of Zip1 was associated with increased cellular zinc levels. These findings suggested that Zip1 plays roles in zinc uptake in C. neoformans We also constructed a Zip1-FLAG fusion protein and found, by immunofluorescence, not only that the protein was localized to the periphery implying it is a membrane transporter, but also that the protein was N-glycosylated. Furthermore, the mutant lacking ZIP1 showed attenuated virulence in a murine inhalation model of cryptococcosis and reduced survival within murine macrophages. Overall, our data suggest that Zip1 plays essential roles in zinc transport and the virulence of C. neoformans. PMID:27118799

  3. Fast proton transport in zinc phosphorous glass composites

    International Nuclear Information System (INIS)

    Highlights: → Proton conduction in various TiO2-ZnO-P2O5 systems at intermediate temperatures. → P2O5-excess non-stoichiometric Ti1-xZnxP2O7 shows high conductivity (>10-3 S cm-1). → ZnO-P2O5 glass formed on the surface of TiP2O7 also shows the high conductivity. → Fast proton transport at the interface between the ZnO-P2O5 glass and TiP2O7. → A model with fast interfacial transport explains the conductivity characteristics. - Abstract: The proton conducting behavior of various TiO2-ZnO-P2O5 systems such as zinc-doped titanium pyrophosphate (Ti1-xZnxP2O7), phosphorous oxide-excess non-stoichiometric Ti1-xZnxP2O7 and composites of ZnO-P2O5 glass in a TiP2O7 powder matrix was examined at intermediate temperatures between 100 deg. C and 250 deg. C under dry and humid conditions. The electrical conductivity of Ti1-xZnxP2O7 was relatively low (-5 S cm-1) while that of phosphorous oxide-excess Ti1-xZnxP2O7 was high (>10-3 S cm-1). In the latter case, the ZnO-P2O5 glass layer that formed on the surface of the TiP2O7 core may contribute to its high conductivity. To elucidate it further, we prepared ZnO-P2O5 glass-TiP2O7 powder composites and investigated their characteristics on proton transport. The results suggested that a ZnO-P2O5-derived hydrogel formed on the surface of TiP2O7 in the humid atmosphere which led to its high conductivity. We also found that the volume ratio of the TiP2O7 particles in the composite influenced the conductivity, i.e., the maximum value of conductivity was observed at certain volume ratio of TiP2O7. This conductivity enhancement is hypothesized to be related with the formation of a highly proton-conducting interfacial layer between the ZnO-P2O5-derived hydrogel and TiP2O7. Based on the idea, a physicochemical model is applied to describe the characteristics on proton transport. Such glass hydrogel-polycrystalline composite can provide the strategy for the fabrication of fast ion conducting materials working at the intermediate

  4. Zinc transporter ZIP14 functions in hepatic zinc, iron and glucose homeostasis during the innate immune response (endotoxemia.

    Directory of Open Access Journals (Sweden)

    Tolunay Beker Aydemir

    Full Text Available ZIP14 (slc39A14 is a zinc transporter induced in response to pro-inflammatory stimuli. ZIP14 induction accompanies the reduction in serum zinc (hypozincemia of acute inflammation. ZIP14 can transport Zn(2+ and non-transferrin-bound Fe(2+ in vitro. Using a Zip14(-/- mouse model we demonstrated that ZIP14 was essential for control of phosphatase PTP1B activity and phosphorylation of c-Met during liver regeneration. In the current studies, a global screening of ZIP transporter gene expression in response to LPS-induced endotoxemia was conducted. Following LPS, Zip14 was the most highly up-regulated Zip transcript in liver, but also in white adipose tissue and muscle. Using ZIP14(-/- mice we show that ZIP14 contributes to zinc absorption from the gastrointestinal tract directly or indirectly as zinc absorption was decreased in the KOs. In contrast, Zip14(-/- mice absorbed more iron. The Zip14 KO mice did not exhibit hypozincemia following LPS, but do have hypoferremia. Livers of Zip14-/- mice had increased transcript abundance for hepcidin, divalent metal transporter-1, ferritin and transferrin receptor-1 and greater accumulation of iron. The Zip14(-/- phenotype included greater body fat, hypoglycemia and higher insulin levels, as well as increased liver glucose and greater phosphorylation of the insulin receptor and increased GLUT2, SREBP-1c and FASN expression. The Zip14 KO mice exhibited decreased circulating IL-6 with increased hepatic SOCS-3 following LPS, suggesting SOCS-3 inhibited insulin signaling which produced the hypoglycemia in this genotype. The results are consistent with ZIP14 ablation yielding abnormal labile zinc pools which lead to increased SOCS-3 production through G-coupled receptor activation and increased cAMP production as well as signaled by increased pSTAT3 via the IL-6 receptor, which inhibits IRS 1/2 phosphorylation. Our data show the role of ZIP14 in the hepatocyte is multi-functional since zinc and iron trafficking are

  5. Electrical transport behavior of nonstoichiometric magnesium-zinc ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Ghatak, S. [Department of Physics, National Institute of Technology, Deemed University, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal (India); Sinha, M. [Department of Physics, University of Burdwan, Golapbag, Burdwan 713104, West Bengal (India); Meikap, A.K., E-mail: meikapnitd@yahoo.com [Department of Physics, National Institute of Technology, Deemed University, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal (India); Pradhan, S.K. [Department of Physics, University of Burdwan, Golapbag, Burdwan 713104, West Bengal (India)

    2010-08-15

    This paper presents the direct current conductivity, alternate current conductivity and dielectric properties of nonstoichiometric magnesium-zinc ferrite below room temperature. The frequency exponent (s) of conductivity shows an anomalous temperature dependency. The magnitude of the temperature exponent (n) of dielectric permittivity strongly depends on frequency and its value decreases with increasing frequency. The grain boundary contribution is dominating over the grain contribution in conduction process and the temperature dependence of resistance due to grain and grain boundary contribution exhibits two activation regions. The ferrite shows positive alternating current magnetoconductivity. The solid state processing technique was used for the preparation of nanocrystalline ferrite powder from oxides of magnesium, zinc and iron. The X-ray diffraction methods were used in determining the structure and composition of obtained ferrite, while multimeter, impedance analyzer, liquid nitrogen cryostat and electromagnet were used in the study of conducting and dielectric properties of ferrite.

  6. The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD

    Science.gov (United States)

    Calmettes, Charles; Ing, Christopher; Buckwalter, Carolyn M.; El Bakkouri, Majida; Chieh-Lin Lai, Christine; Pogoutse, Anastassia; Gray-Owen, Scott D.; Pomès, Régis; Moraes, Trevor F.

    2015-08-01

    Invading bacteria from the Neisseriaceae, Acinetobacteriaceae, Bordetellaceae and Moraxellaceae families express the conserved outer-membrane zinc transporter zinc-uptake component D (ZnuD) to overcome nutritional restriction imposed by the host organism during infection. Here we demonstrate that ZnuD is required for efficient systemic infections by the causative agent of bacterial meningitis, Neisseria meningitidis, in a mouse model. We also combine X-ray crystallography and molecular dynamics simulations to gain insight into the mechanism of zinc recognition and transport across the bacterial outer-membrane by ZnuD. Because ZnuD is also considered a promising vaccine candidate against N. meningitidis, we use several ZnuD structural intermediates to map potential antigenic epitopes, and propose a mechanism by which ZnuD can maintain high sequence conservation yet avoid immune recognition by altering the conformation of surface-exposed loops.

  7. Zinc-bearing zeolite clinoptilolite improves tissue zinc accumulation in laying hens by enhancing zinc transporter gene mRNA abundance.

    Science.gov (United States)

    Li, Linfeng; Li, Ping; Chen, Yueping; Wen, Chao; Zhuang, Su; Zhou, Yanmin

    2015-08-01

    A study was conducted to investigate effects of zinc-bearing zeolite clinoptilolite (ZnCP), as an alternative for zinc sulfate (ZnSO4), on laying performance, tissue Zn accumulation and Zn transporter genes expression in laying hens. Hy-Line Brown laying hens were allocated to three treatments, each of which had six replicates with 15 hens per replicate, receiving basal diet supplemented with ZnSO4 (control, 80 mg Zn/kg diet), 0.23% ZnCP (40.25 mg Zn/kg diet) and 0.46% ZnCP (80.50 mg Zn/kg diet) for 8 weeks, respectively. Compared with control, hens fed diet containing 0.23% ZnCP had similar Zn content in measured tissues (P > 0.05). A higher ZnCP inclusion (0.46%) enhanced Zn accumulation in liver (P < 0.05) and pancreas (P < 0.05). In addition, ZnCP inclusion increased blood iron (Fe) content (P < 0.05). ZnCP supplementation enhanced jejunal metallothionein-4 (MT-4) messenger RNA (mRNA) abundance (P < 0.05). ZnCP inclusion at a higher level (0.46%) increased mRNA expression of MT-4 in pancreas (P < 0.05) and zinc transporter-1 (ZnT-1) in jejunum (P < 0.05). The highest ZnT-2 mRNA abundance in jejunum was found in hens fed 0.23% ZnCP inclusion diet (P < 0.05). The results indicated that ZnCP reached a higher bioavailability as compared with ZnSO4 as evidenced by enhanced tissue Zn accumulation and Zn transporter genes expression.

  8. Zinc Transporters, Mechanisms of Action and Therapeutic Utility: Implications for Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Stephen A. Myers

    2012-01-01

    Full Text Available Zinc is an essential trace element that plays a vital role in maintaining many biological processes and cellular homeostasis. Dysfunctional zinc signaling is associated with a number of chronic disease states including cancer, cardiovascular disease, Alzheimer’s disease, and diabetes. Cellular homeostasis requires mechanisms that tightly control the uptake, storage, and distribution of zinc. This is achieved through the coordinated actions of zinc transporters and metallothioneins. Evidence on the role of these proteins in type 2 diabetes mellitus (T2DM is now emerging. Zinc plays a key role in the synthesis, secretion and action of insulin in both physiological and pathophysiological states. Moreover, recent studies highlight zinc’s dynamic role as a “cellular second messenger” in the control of insulin signaling and glucose homeostasis. This suggests that zinc plays an unidentified role as a novel second messenger that augments insulin activity. This previously unexplored concept would raise a whole new area of research into the pathophysiology of insulin resistance and introduce a new class of drug target with utility for diabetes pharmacotherapy.

  9. The effect of dissolved zinc on the transport of corrosion products in PWRs

    International Nuclear Information System (INIS)

    This report describes an experimental program designed to evaluate the effects of dissolved zinc in the μg/kg-1 range in PWR coolant on activity transport. The program consisted of two phases. The first measured corrosion product releases from Inconel-600 with and without zinc in the coolant, and monitored the corresponding growth of oxide films. The second measured the pick-up of Co-60 by type 304 stainless steel and Inconel-600 with and without zinc in the coolant, and again monitored the corresponding growth of oxide films. Zinc in the range 10--40 μg/kg-1 lowered Co-60 pick-up by both materials by factors of 8--10, and generally led to thinner oxide films. A result showing that zinc led to a thicker film on Inconel, and a result that it had no significant effect on corrosion release from Inconel, were deemed to be anomalous. The mechanisms by which Co-60 pick-up was reduced by zinc were the inhibition of the growth of oxide films and the reduced incorporation of cobalt within the growing oxide. The latter dominated on stainless steel, and both were important on Inconel. A mathematical model of activation by Co-60 was adapted to the conditions of the experiment, and fitted to the data for stainless steel. Good fits to the data were obtained when logarithmic kinetics for film growth were assumed. 18 refs., 31 figs., 10 tabs

  10. Functional characterisation of three zinc transporters in Thlaspi caerulescens

    NARCIS (Netherlands)

    Talukdar, S.

    2007-01-01

    Heavy metal hyperaccumulation in plants is a poorly understood phenomenon. Transmembrane metal transporters are assumed to play a key role in this process. In the research described in this thesis, genes encoding Zn transporters of Thlaspicaerulescens

  11. Expression of the Znt1 zinc transporter from the metal hyperaccumulator noccaea caerulescens confers enhanced zinc and cadmium tolerance and accumulation to arabidopsis thaliana

    NARCIS (Netherlands)

    Lin, Ya Fen; Hassan, Zeshan; Talukdar, S.; Schat, Henk; Aarts, Mark G.M.

    2016-01-01

    Prompt regulation of transition metal transporters is crucial for plant zinc homeostasis. NcZNT1 is one of such transporters, found in the metal hyperaccumulator Brassicaceae species Noccaea caerulescens. It is orthologous to AtZIP4 from Arabidopsis thaliana, an important actor in Zn homeostasis.

  12. Prion infection in cells is abolished by a mutated manganese transporter but shows no relation to zinc.

    Science.gov (United States)

    Pass, Rachel; Frudd, Karen; Barnett, James P; Blindauer, Claudia A; Brown, David R

    2015-09-01

    The cellular prion protein has been identified as a metalloprotein that binds copper. There have been some suggestions that prion protein also influences zinc and manganese homeostasis. In this study we used a series of cell lines to study the levels of zinc and manganese under different conditions. We overexpressed either the prion protein or known transporters for zinc and manganese to determine relations between the prion protein and both manganese and zinc homeostasis. Our observations supported neither a link between the prion protein and zinc metabolism nor any effect of altered zinc levels on prion protein expression or cellular infection with prions. In contrast we found that a gain of function mutant of a manganese transporter caused reduction of manganese levels in prion infected cells, loss of observable PrP(Sc) in cells and resistance to prion infection. These studies strengthen the link between manganese and prion disease.

  13. A novel member of a zinc transporter family is defective in acrodermatitis enteropathica.

    Science.gov (United States)

    Wang, Kun; Zhou, Bing; Kuo, Yien-Ming; Zemansky, Jason; Gitschier, Jane

    2002-07-01

    The rare inherited condition acrodermatitis enteropathica (AE) results from a defect in the absorption of dietary zinc. Recently, we used homozygosity mapping in consanguineous Middle Eastern kindreds to localize the AE gene to an approximately 3.5-cM region on 8q24. In this article, we identify a gene, SLC39A4, located in the candidate region and, in patients with AE, document mutations that likely lead to the disease. The gene encodes a histidine-rich protein, which we refer to as "hZIP4," which is a member of a large family of transmembrane proteins, some of which are known to serve as zinc-uptake proteins. We show that Slc39A4 is abundantly expressed in mouse enterocytes and that the protein resides in the apical membrane of these cells. These findings suggest that the hZIP4 transporter is responsible for intestinal absorption of zinc.

  14. Zinc transporter 7 deficiency affects lipid synthesis in adipocytes by inhibiting insulin-dependent Akt activity and glucose uptake

    Science.gov (United States)

    Mice deficient for zinc transporter 7 (Znt7) are mildly zinc deficient, accompanied with low body weight gain and body fat accumulation. To investigate the underlying mechanism of Znt7 deficiency in body adiposity, we investigated fatty acid composition and insulin sensitivity in visceral (epididyma...

  15. Structural insights of ZIP4 extracellular domain critical for optimal zinc transport

    Science.gov (United States)

    Zhang, Tuo; Sui, Dexin; Hu, Jian

    2016-06-01

    The ZIP zinc transporter family is responsible for zinc uptake from the extracellular milieu or intracellular vesicles. The LIV-1 subfamily, containing nine out of the 14 human ZIP proteins, is featured with a large extracellular domain (ECD). The critical role of the ECD is manifested by disease-causing mutations on ZIP4, a representative LIV-1 protein. Here we report the first crystal structure of a mammalian ZIP4-ECD, which reveals two structurally independent subdomains and an unprecedented dimer centred at the signature PAL motif. Structure-guided mutagenesis, cell-based zinc uptake assays and mapping of the disease-causing mutations indicate that the two subdomains play pivotal but distinct roles and that the bridging region connecting them is particularly important for ZIP4 function. These findings lead to working hypotheses on how ZIP4-ECD exerts critical functions in zinc transport. The conserved dimeric architecture in ZIP4-ECD is also demonstrated to be a common structural feature among the LIV-1 proteins.

  16. Severe Zinc Depletion of Escherichia coli: ROLES FOR HIGH AFFINITY ZINC BINDING BY ZinT, ZINC TRANSPORT AND ZINC-INDEPENDENT PROTEINS*

    OpenAIRE

    Graham, A.I.; Hunt, S; Stokes, S.L.; Bramall, N.; Bunch, J.; Cox, A G; McLeod, C.W.; Poole, R K

    2009-01-01

    Zinc ions play indispensable roles in biological chemistry. However, bacteria have an impressive ability to acquire Zn2+ from the environment, making it exceptionally difficult to achieve Zn2+ deficiency, and so a comprehensive understanding of the importance of Zn2+ has not been attained. Reduction of the Zn2+ content of Escherichia coli growth medium to 60 nM or less is reported here for the first time, without recourse to chelators of poor specificity. Cells grown in Zn2+-deficient medium ...

  17. Mutational analysis of the high-affinity zinc binding site validates a refined human dopamine transporter homology model.

    Directory of Open Access Journals (Sweden)

    Thomas Stockner

    Full Text Available The high-resolution crystal structure of the leucine transporter (LeuT is frequently used as a template for homology models of the dopamine transporter (DAT. Although similar in structure, DAT differs considerably from LeuT in a number of ways: (i when compared to LeuT, DAT has very long intracellular amino and carboxyl termini; (ii LeuT and DAT share a rather low overall sequence identity (22% and (iii the extracellular loop 2 (EL2 of DAT is substantially longer than that of LeuT. Extracellular zinc binds to DAT and restricts the transporter's movement through the conformational cycle, thereby resulting in a decrease in substrate uptake. Residue H293 in EL2 praticipates in zinc binding and must be modelled correctly to allow for a full understanding of its effects. We exploited the high-affinity zinc binding site endogenously present in DAT to create a model of the complete transmemberane domain of DAT. The zinc binding site provided a DAT-specific molecular ruler for calibration of the model. Our DAT model places EL2 at the transporter lipid interface in the vicinity of the zinc binding site. Based on the model, D206 was predicted to represent a fourth co-ordinating residue, in addition to the three previously described zinc binding residues H193, H375 and E396. This prediction was confirmed by mutagenesis: substitution of D206 by lysine and cysteine affected the inhibitory potency of zinc and the maximum inhibition exerted by zinc, respectively. Conversely, the structural changes observed in the model allowed for rationalizing the zinc-dependent regulation of DAT: upon binding, zinc stabilizes the outward-facing state, because its first coordination shell can only be completed in this conformation. Thus, the model provides a validated solution to the long extracellular loop and may be useful to address other aspects of the transport cycle.

  18. The ZupT transporter plays an important role in zinc homeostasis and contributes to Salmonella enterica virulence

    Science.gov (United States)

    Cerasi, Mauro; Liu, Janet Z.; Ammendola, Serena; Poe, Adam J.; Petrarca, Patrizia; Pesciaroli, Michele; Pasquali, Paolo; Raffatellu, Manuela; Battistoni, Andrea

    2014-01-01

    Zinc is an essential metal for cellular homeostasis and function in both eukaryotes and prokaryotes. To acquire this essential nutrient, bacteria employ transporters characterized by different affinity for the metal. Several studies have investigated the role of the high affinity transporter ZnuABC in the bacterial response to zinc shortage, showing that this transporter has a key role in adapting bacteria to zinc starvation. In contrast, the role of the low affinity zinc importer ZupT has been the object of limited investigations. Here we show that a Salmonella strain lacking ZupT is impaired in its ability to grow in metal devoid environments and that a znuABC zupT strain exhibits a severe growth defect in zinc devoid media, is hypersensitive to oxidative stress and contains reduced level of intracellular free zinc. Moreover, we show that ZupT plays a role also in the ability of S. Typhimurim to colonize the host tissues. During systemic infections, the single zupT mutant strain was attenuated only in Nramp1+/+ mice, but competition experiments between znuABC and znuABC zupT mutants revealed that ZupT contributes to metal uptake in vivo independently from the presence a functional Nramp1 transporter. Altogether, the here reported results show that ZupT plays an important role in Salmonella zinc homeostasis, being involved in metal import both in vitro and in infected animals. PMID:24430377

  19. Charge transport in dye-sensibilized porous zinc oxide films; Ladungstransport in farbstoffsensibilisierten poroesen Zinkoxidfilmen

    Energy Technology Data Exchange (ETDEWEB)

    Reemts, J.

    2006-05-18

    During the last decades, zinc oxide has attracted a lot of attention as an important material in various electrical, chemical, and optical applications. In the present work results are discussed gained from investigations of highly porous electrochemically deposited zinc oxide, which is a promising electrode material both in the area of solar energy conversion and sensor technology. The films were prepared by adding detergents during the electrodeposition process. The detergents have a structure-directing influence during the film deposition and, therefore, on the morphology of the films. The obtained electrodes can easily be sensitized for light or different chemicals by a simple adsorption of different molecules. In the present work I discuss the fundamental charge transport properties of electrochemically deposited zinc oxide films. Temperature-dependent measurements of the current-voltage characteristics are carried out and the spectral response of the photoconductivity is investigated. In order to understand the charge transport properties of this highly porous material, it is necessary to get a deeper insight in the electrode morphology. Therefore, different optical and scanning probe microscopy methods are used to characterize the inner structure of the electrodes. The electrical conductivity of the zinc oxide films can be seen as a thermally activated process, which can be explained by electronic transitions from the valence band of the zinc oxide to two shallow impurity levels. The current-voltage characteristic unveils a nonlinear behavior which can be explained by a space-charge-limited current model with traps distributed in energy. Upon excitation with different wavelengths, the conductivity of the zinc oxide increases already under sub-band gap illumination due to widely distributed trap states within the band gap. The transients of the photoconductivity follow a stretched exponential law with time scales in the range of several hours, either if the

  20. AztD, a Periplasmic Zinc Metallochaperone to an ATP-binding Cassette (ABC) Transporter System in Paracoccus denitrificans.

    Science.gov (United States)

    Handali, Melody; Roychowdhury, Hridindu; Neupane, Durga P; Yukl, Erik T

    2015-12-11

    Bacterial ATP-binding cassette (ABC) transporters of transition metals are essential for acquisition of necessary elements from the environment. A large number of Gram-negative bacteria, including human pathogens, have a fourth conserved gene of unknown function adjacent to the canonical permease, ATPase, and solute-binding protein (SBP) genes of the AztABC zinc transporter system. To assess the function of this putative accessory factor (AztD) from Paracoccus denitrificans, we have analyzed its transcriptional regulation, metal binding properties, and interaction with the SBP (AztC). Transcription of the aztD gene is significantly up-regulated under conditions of zinc starvation. Recombinantly expressed AztD purifies with slightly substoichiometric zinc from the periplasm of Escherichia coli and is capable of binding up to three zinc ions with high affinity. Size exclusion chromatography and a simple intrinsic fluorescence assay were used to determine that AztD as isolated is able to transfer bound zinc nearly quantitatively to apo-AztC. Transfer occurs through a direct, associative mechanism that prevents loss of metal to the solvent. These results indicate that AztD is a zinc chaperone to AztC and likely functions to maintain zinc homeostasis through interaction with the AztABC system. This work extends our understanding of periplasmic zinc trafficking and the function of chaperones in this process.

  1. Overexpression of the transporters AtZIP1 and AtMTP1 in cassava changes zinc accumulation and partitioning.

    Science.gov (United States)

    Gaitán-Solís, Eliana; Taylor, Nigel J; Siritunga, Dimuth; Stevens, William; Schachtman, Daniel P

    2015-01-01

    Zinc deficiency in humans is a serious problem worldwide with an estimated one third of populations at risk for insufficient zinc in diet, which leads to impairment of cognitive abilities and immune system function. The goal of this research was to increase the bioavailable zinc in the edible portion of cassava roots to improve the overall zinc nutrition of populations that rely on cassava as a dietary staple. To increase zinc concentrations, two Arabidopsis thaliana genes coding for ZIP1 and MTP1 were overexpressed with a tuber-specific or constitutive promoter. Eighteen transgenic events from four constructs, out of a total of 73 events generated, showed significantly higher zinc concentrations in the edible portion of the storage root compared to the non-transgenic controls. The zinc content in the transgenic lines ranged from 4 to 73 mg/kg dry weight (DW) as compared to the non-transgenic control which contained 8 mg/kg. Striking changes in whole plant phenotype such as smaller plant size and chlorotic leaves were observed in transgenic lines that over accumulated zinc. In a confined field trial five transgenic events grown for 12 months showed a range of zinc concentrations from 18 to 217 mg/kg DW. Although the overexpression of zinc transporters was successful in increasing the zinc concentrations in 25% of the transgenic lines generated, it also resulted in a decrease in plant and tuber size and overall yield due to what appears to be zinc deficiency in the aerial parts of the plant.

  2. Overexpression of the transporters AtZIP1 and AtMTP1 in cassava changes zinc accumulation and partitioning

    Directory of Open Access Journals (Sweden)

    Eliana eGaitan-Solis

    2015-07-01

    Full Text Available Zinc deficiency in humans is a serious problem worldwide with an estimated one third of populations at risk for insufficient zinc in diet which leads to impairment of cognitive abilities and immune system function. The goal of this research was to increase the bioavailable zinc in the edible portion of cassava roots to improve the overall zinc nutrition of populations that rely on cassava as a dietary staple. To increase zinc concentrations, two A. thaliana genes coding for ZIP1 and MTP1 were overexpressed with a tuber-specific or constitutive promoter. Eighteen transgenic events from four constructs, out of a total of 73 events generated, showed significantly higher zinc concentrations in the edible portion of the storage root compared to the non-transgenic controls. The zinc content in the transgenic lines ranged from 4 - 73 mg/Kg Dry Weight (DW as compared to the non-transgenic control which contained 8 mg/Kg. Striking changes in whole plant phenotype such as smaller plant size and chlorotic leaves were observed in transgenic lines that over accumulated zinc. In a confined field trial five transgenic events grown for 12 months showed a range of zinc concentrations from 18 – 217 mg/Kg DW. Although the overexpression of zinc transporters was successful in increasing the zinc concentrations in 25% of the transgenic lines generated, it also resulted in a decrease in plant and tuber size and overall yield due to what appears to be zinc deficiency in the aerial parts of the plant.

  3. Interaction of Sp1 zinc finger with transport factor in the nuclear localization of transcription factor Sp1

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Tatsuo [Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78 Sho-machi, Tokushima 770-8505 (Japan); Kitamura, Haruka; Uwatoko, Chisana; Azumano, Makiko [Department of Molecular Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Doshisha Women' s University, Kodo, Kyotanabe City, Kyoto 610-0395 (Japan); Itoh, Kohji, E-mail: kitoh@ph.tokushima-u.ac.jp [Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78 Sho-machi, Tokushima 770-8505 (Japan); Kuwahara, Jun, E-mail: jkuwahar@dwc.doshisha.ac.jp [Department of Molecular Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Doshisha Women' s University, Kodo, Kyotanabe City, Kyoto 610-0395 (Japan)

    2010-12-10

    Research highlights: {yields} Sp1 zinc fingers themselves interact with importin {alpha}. {yields} Sp1 zinc finger domains play an essential role as a nuclear localization signal. {yields} Sp1 can be transported into the nucleus in an importin-dependent manner. -- Abstract: Transcription factor Sp1 is localized in the nucleus and regulates the expression of many cellular genes, but the nuclear transport mechanism of Sp1 is not well understood. In this study, we revealed that GST-fused Sp1 protein bound to endogenous importin {alpha} in HeLa cells via the Sp1 zinc finger domains, which comprise the DNA binding domain of Sp1. It was found that the Sp1 zinc finger domains directly interacted with a wide range of importin {alpha} including the armadillo (arm) repeat domain and the C-terminal acidic domain. Furthermore, it turned out that all three zinc fingers of Sp1 are essential for binding to importin {alpha}. Taken together, these results suggest that the Sp1 zinc finger domains play an essential role as a NLS and Sp1 can be transported into the nucleus in an importin-dependent manner even though it possesses no classical NLSs.

  4. Molecular and genetic features of zinc transporters in physiology and pathogenesis.

    Science.gov (United States)

    Fukada, Toshiyuki; Kambe, Taiho

    2011-07-01

    Zinc (Zn) is a vital element. It plays indispensable roles in multifarious cellular processes, affecting the expression and activity of a variety of molecules, including transcription factors, enzymes, adapters, channels, growth factors, and their receptors. A disturbance in Zn homeostasis due to Zn deficiency or an excess of Zn absorption can therefore impair the cellular machinery and exert various influences on physiological programs, such as systemic growth, morphogenetic processes, and immune responses, as well as neuro-sensory and endocrine functions. Thus, Zn imbalance becomes pathogenic in humans. Zn homeostasis is controlled by the coordinated actions of Zn transporters, which are responsible for Zn influx and efflux, and intricately regulate the intracellular and extracellular Zn concentration and distribution. In this review, we describe crucial roles of Zn transporters in biological phenomena, focusing in particular on how Zn transporters contribute to cellular events at the molecular, biochemical, and genetic level, with recent progress uncovering the roles of Zn transporters in physiology and pathogenesis. PMID:21566827

  5. Current and Future Clinical Applications of Zinc Transporter-8 in Type 1 Diabetes Mellitus

    Institute of Scientific and Technical Information of China (English)

    Bo Yi; Gan Huang; Zhi-Guang Zhou

    2015-01-01

    Objective:To evaluate the utility of zinc transporter-8 (ZnT8) in the improvement of type 1 diabetes mellitus (T1DM) diagnosis and prediction,and to explore whether ZnT8 is a potential therapeutic target in T l DM.Data Sources:A search was conducted within the medical database PubMed for relevant articles published from 2001 to 2015.The search terms are as follows:"ZnT8," "type 1 diabetes," "latent autoimmune diabetes in adults," "type 2 diabetes," "islet autoantibodies," "zinc supplement," "T cells," "β cell," "immune therapy." We also searched the reference lists of selected articles.Study Selection:English-language original articles and critical reviews concerning ZnT8 and the clinical applications of islet autoantibodies in diabetes were reviewed.Results:The basic function of ZnT8 is maintaining intracellular zinc homeostasis,which modulates the process of insulin biosynthesis,storage,and secretion.Autoantibodies against ZnT8 (ZnT8A) and ZnT8-specific T cells are the reliable biomarkers for the identification,stratification,and characterization ofTl DM.Additionally,the results from the animal models and clinical trials have shown that ZnT8 is a diabetogenic antigen,suggesting the possibility of ZnT8-specific immunotherapy as an alternative for T1DM therapy.Conclusions:ZnT8 is a novel islet autoantigen with a widely potential for clinical applications in T1DM.However,before the large-scale clinical applications,there are still many problems to be solved.

  6. ZIP8 zinc transporter: indispensable role for both multiple-organ organogenesis and hematopoiesis in utero.

    Directory of Open Access Journals (Sweden)

    Marina Gálvez-Peralta

    Full Text Available Previously this laboratory characterized Slc39a8-encoded ZIP8 as a Zn(2+/(HCO(3(-(2 symporter; yet, the overall physiological importance of ZIP8 at the whole-organism level remains unclear. Herein we describe the phenotype of the hypomorphic Slc39a8(neo/neo mouse which has retained the neomycin-resistance gene in intron 3, hence causing significantly decreased ZIP8 mRNA and protein levels in embryo, fetus, placenta, yolk sac, and several tissues of neonates. The Slc39a8(neo allele is associated with diminished zinc and iron uptake in mouse fetal fibroblast and liver-derived cultures; consequently, Slc39a8(neo/neo newborns exhibit diminished zinc and iron levels in several tissues. Slc39a8(neo/neo homozygotes from gestational day(GD-11.5 onward are pale, growth-stunted, and die between GD18.5 and 48 h postnatally. Defects include: severely hypoplastic spleen; hypoplasia of liver, kidney, lung, and lower limbs. Histologically, Slc39a8(neo/neo neonates show decreased numbers of hematopoietic islands in yolk sac and liver. Low hemoglobin, hematocrit, red cell count, serum iron, and total iron-binding capacity confirmed severe anemia. Flow cytometry of fetal liver cells revealed the erythroid series strikingly affected in the hypomorph. Zinc-dependent 5-aminolevulinic acid dehydratase, required for heme synthesis, was not different between Slc39a8(+/+ and Slc39a8(neo/neo offspring. To demonstrate further that the mouse phenotype is due to ZIP8 deficiency, we bred Slc39a8(+/neo with BAC-transgenic BTZIP8-3 line (carrying three extra copies of the Slc39a8 allele; this cross generated viable Slc39a8(neo/neo_BTZIP8-3(+/+ pups showing none of the above-mentioned congenital defects-proving Slc39a8(neo/neo causes the described phenotype. Our study demonstrates that ZIP8-mediated zinc transport plays an unappreciated critical role during in utero and neonatal growth, organ morphogenesis, and hematopoiesis.

  7. A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer

    NARCIS (Netherlands)

    Bruyn, P. de; Moet, D.J.D.; Blom, P.W.M.

    2010-01-01

    Inverted polymer:fullerene solar cells with ZnO and MoO3 transport layers are demonstrated. ZnO films are prepared through spin casting of a zinc acetylacetonate hydrate solution, followed by low temperature annealing under ambient conditions. The performance of solar cells with an inverted structur

  8. A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer

    NARCIS (Netherlands)

    de Bruyn, P.; Moet, D. J. D.; Blom, P. W. M.

    2010-01-01

    Inverted polymer: fullerene solar cells with ZnO and MoO(3) transport layers are demonstrated. ZnO films are prepared through spin casting of a zinc acetylacetonate hydrate solution, followed by low temperature annealing under ambient conditions. The performance of solar cells with an inverted struc

  9. Inhibitory zinc-enriched terminals in mouse spinal cord

    DEFF Research Database (Denmark)

    Danscher, G; Jo, S M; Varea, E;

    2001-01-01

    The ultrastructural localization of zinc transporter-3, glutamate decarboxylase and zinc ions in zinc-enriched terminals in the mouse spinal cord was studied by zinc transporter-3 and glutamate decarboxylase immunohistochemistry and zinc selenium autometallography, respectively.The distribution...

  10. The role of zinc ions in reverse transport mediated by monoamine transporters

    DEFF Research Database (Denmark)

    Scholze, Petra; Nørregaard, Lene; Singer, Ernst A;

    2002-01-01

    The human dopamine transporter (hDAT) contains an endogenous high affinity Zn2+ binding site with three coordinating residues on its extracellular face (His193, His375, and Glu396). Upon binding to this site, Zn2+ causes inhibition of [3H]1-methyl-4-phenylpyridinium ([3H]MPP+) uptake. We...... investigated the effect of Zn2+ on outward transport by superfusing hDAT-expressing HEK-293 cells preloaded with [3H]MPP+. Although Zn2+ inhibited uptake, Zn2+ facilitated [3H]MPP+ release induced by amphetamine, MPP+, or K+-induced depolarization specifically at hDAT but not at the human serotonin...... and the norepinephrine transporter (hNET). Mutation of the Zn2+ coordinating residue His(193) to Lys (the corresponding residue in hNET) eliminated the effect of Zn2+ on efflux. Conversely, the reciprocal mutation (K189H) conferred Zn2+ sensitivity to hNET. The intracellular [3H]MPP+ concentration was varied to generate...

  11. Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression.

    Science.gov (United States)

    Li, Min; Zhang, Yuqing; Liu, Zijuan; Bharadwaj, Uddalak; Wang, Hao; Wang, Xinwen; Zhang, Sheng; Liuzzi, Juan P; Chang, Shou-Mei; Cousins, Robert J; Fisher, William E; Brunicardi, F Charles; Logsdon, Craig D; Chen, Changyi; Yao, Qizhi

    2007-11-20

    Zinc is an essential trace element and catalytic/structural component used by many metalloenzymes and transcription factors. Recent studies indicate a possible correlation of zinc levels with the cancer risk; however, the exact role of zinc and zinc transporters in cancer progression is unknown. We have observed that a zinc transporter, ZIP4 (SLC39A4), was substantially overexpressed in 16 of 17 (94%) clinical pancreatic adenocarcinoma specimens compared with the surrounding normal tissues, and ZIP4 mRNA expression was significantly higher in human pancreatic cancer cells than human pancreatic ductal epithelium (HPDE) cells. This indicates that aberrant ZIP4 up-regulation may contribute to the pancreatic cancer pathogenesis and progression. We studied the effects of ZIP4 overexpression in pancreatic cancer cell proliferation in vitro and pancreatic cancer progression in vivo. We found that forced expression of ZIP4 increased intracellular zinc levels, increased cell proliferation by 2-fold in vitro, and significantly increased tumor volume by 13-fold in the nude mice model with s.c. xenograft compared with the control cells. In the orthotopic nude mice model, overexpression of ZIP4 not only increased the primary tumor weight (7.2-fold), it also increased the peritoneal dissemination and ascites incidence. Moreover, increased cell proliferation and higher zinc content were also observed in the tumor tissues that overexpressed ZIP4. These data reveal an important outcome of aberrant ZIP4 expression in contributing to pancreatic cancer pathogenesis and progression. It may suggest a therapeutic strategy whereby ZIP4 is targeted to control pancreatic cancer growth. PMID:18003899

  12. Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression.

    Science.gov (United States)

    Li, Min; Zhang, Yuqing; Liu, Zijuan; Bharadwaj, Uddalak; Wang, Hao; Wang, Xinwen; Zhang, Sheng; Liuzzi, Juan P; Chang, Shou-Mei; Cousins, Robert J; Fisher, William E; Brunicardi, F Charles; Logsdon, Craig D; Chen, Changyi; Yao, Qizhi

    2007-11-20

    Zinc is an essential trace element and catalytic/structural component used by many metalloenzymes and transcription factors. Recent studies indicate a possible correlation of zinc levels with the cancer risk; however, the exact role of zinc and zinc transporters in cancer progression is unknown. We have observed that a zinc transporter, ZIP4 (SLC39A4), was substantially overexpressed in 16 of 17 (94%) clinical pancreatic adenocarcinoma specimens compared with the surrounding normal tissues, and ZIP4 mRNA expression was significantly higher in human pancreatic cancer cells than human pancreatic ductal epithelium (HPDE) cells. This indicates that aberrant ZIP4 up-regulation may contribute to the pancreatic cancer pathogenesis and progression. We studied the effects of ZIP4 overexpression in pancreatic cancer cell proliferation in vitro and pancreatic cancer progression in vivo. We found that forced expression of ZIP4 increased intracellular zinc levels, increased cell proliferation by 2-fold in vitro, and significantly increased tumor volume by 13-fold in the nude mice model with s.c. xenograft compared with the control cells. In the orthotopic nude mice model, overexpression of ZIP4 not only increased the primary tumor weight (7.2-fold), it also increased the peritoneal dissemination and ascites incidence. Moreover, increased cell proliferation and higher zinc content were also observed in the tumor tissues that overexpressed ZIP4. These data reveal an important outcome of aberrant ZIP4 expression in contributing to pancreatic cancer pathogenesis and progression. It may suggest a therapeutic strategy whereby ZIP4 is targeted to control pancreatic cancer growth.

  13. Transport and detoxification of cadmium, copper and zinc in the Cd/Zn hyperaccumulator plant Thlaspi caerulescens

    OpenAIRE

    Leitenmaier, Barbara

    2010-01-01

    SummaryIn this thesis, various aspects on heavy metal accumulation by the hyperaccumulator plant Thlaspi caerulescens have been investigated. T. caerulescens belongs to the family of Brassicaceae and hyperaccumulates zinc. Its ecotype Ganges, originating from Southern France, additionally takes up cadmium actively. It is known from previous studies that hyperaccumulators have highly overexpressed metal transporters and that most of them store the metal in the vacuole of large epidermal cells....

  14. Amorphous indium-gallium-zinc-oxide as electron transport layer in organic photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Arora, H. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Phelma–Grenoble INP, 3 Parvis Louis Néel, 38016 Grenoble Cedex 01 (France); Malinowski, P. E., E-mail: pawel.malinowski@imec.be; Chasin, A.; Cheyns, D.; Steudel, S.; Schols, S. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Heremans, P. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); ESAT, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium)

    2015-04-06

    Amorphous indium-gallium-zinc-oxide (a-IGZO) is demonstrated as an electron transport layer (ETL) in a high-performance organic photodetector (OPD). Dark current in the range of 10 nA/cm{sup 2} at a bias voltage of −2 V and a high photoresponse in the visible spectrum were obtained in inverted OPDs with poly(3-hexylthiophene) and phenyl-C{sub 61}-butyric acid methyl ester active layer. The best results were obtained for the optimum a-IGZO thickness of 7.5 nm with specific detectivity of 3 × 10{sup 12} Jones at the wavelength of 550 nm. The performance of the best OPD devices using a-IGZO was shown to be comparable to state-of-the-art devices based on TiO{sub x} as ETL, with higher rectification achieved in reverse bias. Yield and reproducibility were also enhanced with a-IGZO, facilitating fabrication of large area OPDs. Furthermore, easier integration with IGZO-based readout backplanes can be envisioned, where the channel material can be used as photodiode buffer layer after additional treatment.

  15. Carrier Transport at Metal/Amorphous Hafnium-Indium-Zinc Oxide Interfaces.

    Science.gov (United States)

    Kim, Seoungjun; Gil, Youngun; Choi, Youngran; Kim, Kyoung-Kook; Yun, Hyung Joong; Son, Byoungchul; Choi, Chel-Jong; Kim, Hyunsoo

    2015-10-14

    In this paper, the carrier transport mechanism at the metal/amorphous hafnium-indium-zinc oxide (a-HIZO) interface was investigated. The contact properties were found to be predominantly affected by the degree of interfacial reaction between the metals and a-HIZO; that is, a higher tendency to form metal oxide phases leads to excellent Ohmic contact via tunneling, which is associated with the generated donor-like oxygen vacancies. In this case, the Schottky-Mott theory is not applicable. Meanwhile, metals that do not form interfacial metal oxide, such as Pd, follow the Schottky-Mott theory, which results in rectifying Schottky behavior. The Schottky characteristics of the Pd contact to a-HIZO can be explained in terms of the barrier inhomogeneity model, which yields a mean barrier height of 1.40 eV and a standard deviation of 0.14 eV. The work function of a-HIZO could therefore be estimated as 3.7 eV, which is in good agreement with the ultraviolet photoelectron spectroscopy (3.68 eV). Our findings will be useful for establishing a strategy to form Ohmic or Schottky contacts to a-HIZO films, which will be essential for fabricating reliable high-performance electronic devices. PMID:26411354

  16. Lack of association of polymorphic variants of genes encoding zinc transporters with the risk of orofacial cleft-affected pregnancies.

    Directory of Open Access Journals (Sweden)

    Margarita Lianeri

    2011-04-01

    Full Text Available Maternal zinc deficiency seems to be a risk factor for orofacial clefts in offspring. This study was undertaken to investigate the involvement of polymorphic variants of genes for zinc transporters in the susceptibility of clefting. PCRRFLP analysis was used to analyze single nucleotide polymorphisms of SLC30A1 (rs7526700, rs2278651, rs611386, SLC30A4 (rs2453531, rs8029246, SLC30A5 (rs351444, rs164393, rs6886492, SLC39A1 (rs10127484, rs11264736, and SLC39A3 (rs759071, rs4806874, rs10415622 in mothers of children with non-syndromic cleft lip with or without cleft palate (CL/P and control mothers. The allele, genotype, and haplotype distribution was found to be similar among case and control mothers. Also, the gene-by-gene interaction analysis conducted using the Multifactor Dimensionality Reduction approach revealed no significant interactive genetic effect on having a child with a cleft. In conclusion, our results demonstrated that the analyzed polymorphic variants of genes for zinc transporters are not implicated in abnormal palatogenesis in the investigated group of women from the Polish population.

  17. Lack of association of polymorphic variants of genes encoding zinc transporters with the risk of orofacial cleft-affected pregnancies

    Directory of Open Access Journals (Sweden)

    Margarita Lianeri

    2010-04-01

    Full Text Available Maternal zinc deficiency seems to be a risk factor for orofacial clefts in offspring. This study was undertaken toinvestigate the involvement of polymorphic variants of genes for zinc transporters in the susceptibility of clefting. PCRRFLPanalysis was used to analyze single nucleotide polymorphisms of SLC30A1 (rs7526700, rs2278651, rs611386,SLC30A4 (rs2453531, rs8029246, SLC30A5 (rs351444, rs164393, rs6886492, SLC39A1 (rs10127484, rs11264736, andSLC39A3 (rs759071, rs4806874, rs10415622 in mothers of children with non-syndromic cleft lip with or without cleftpalate (CL/P and control mothers. The allele, genotype, and haplotype distribution was found to be similar among case andcontrol mothers. Also, the gene-by-gene interaction analysis conducted using the Multifactor Dimensionality Reductionapproach revealed no significant interactive genetic effect on having a child with a cleft. In conclusion, our results demonstratedthat the analyzed polymorphic variants of genes for zinc transporters are not implicated in abnormal palatogenesisin the investigated group of women from the Polish population.

  18. Pseudomonas aeruginosa capability to recruit zinc under conditions of limited metal availability is affected by inactivation of the ZnuABC transporter

    Science.gov (United States)

    D'Orazio, Melania; Mastropasqua, Maria Chiara; Cerasi, Mauro; Pacello, Francesca; Consalvo, Ada; Chirullo, Barbara; Mortensen, Brittany; Skaar, Eric P.; Ciavardelli, Domenico; Pasquali, Paolo; Battistoni, Andrea

    2015-01-01

    The ability of a large number of bacterial pathogens to multiply in the infected host and cause disease is dependent on their ability to express high affinity zinc importers. In many bacteria ZnuABC, a transporter of the ABC family, plays a central role in the process of zinc uptake in zinc poor environments, including the tissues of the infected host. To initiate an investigation into the relevance of the zinc uptake apparatus for Pseudomonas aeruginosa pathogenicity, we have generated a znuA mutant in the PA14 strain. We have found that this mutant strain displays a limited growth defect in zinc depleted media. The znuA mutant strain is more sensitive than the wild type strain to calprotectin-mediated growth inhibition, but both the strains are highly resistant to this zinc sequestering antimicrobial protein. Moreover, intracellular zinc content is not evidently affected by inactivation of the ZnuABC transporter. These findings suggest that P. aeruginosa is equipped with redundant mechanisms for the acquisition of zinc that might favor P. aeruginosa colonization of environments containing low levels of this metal. Nonetheless, deletion of znuA affects alginate production, reduces the activity of extracellular zinc-containing proteases, including LasA, LasB and Protease IV, and decreases the ability of P. aeruginosa to disseminate during systemic infections. These results indicate that efficient zinc acquisition is critical for the expression of various virulence features typical of P. aeruginosa and that ZnuABC also plays an important role in zinc homeostasis in this microorganism. PMID:25751674

  19. Role of Heavy Metal Pumps in Transport of Zinc from Soil to Seeds of Plants

    DEFF Research Database (Denmark)

    Olsen, Lene Irene

    . In Arabidopsis roots, the heavy metal ATPases AtHMA2 and AtHMA4 are localized to the pericycle cells and are important for the export of zinc, in order for zinc to enter the xylem and get to the shoot. I have identified a new novel role for AtHMA2 and AtHMA4 in the developing seed. The Arabidopsis seed consists......Plants take up zinc from the soil into the roots, from where it then travels in the xylem to the shoot and from here in the phloem to the developing seeds. During this journey zinc has to cross a number of apoplastic barriers, where export from one symplast is needed before import into another...

  20. Expression of the ZNT1 Zinc Transporter from the Metal Hyperaccumulator Noccaea caerulescens Confers Enhanced Zinc and Cadmium Tolerance and Accumulation to Arabidopsis thaliana.

    Science.gov (United States)

    Lin, Ya-Fen; Hassan, Zeshan; Talukdar, Sangita; Schat, Henk; Aarts, Mark G M

    2016-01-01

    Prompt regulation of transition metal transporters is crucial for plant zinc homeostasis. NcZNT1 is one of such transporters, found in the metal hyperaccumulator Brassicaceae species Noccaea caerulescens. It is orthologous to AtZIP4 from Arabidopsis thaliana, an important actor in Zn homeostasis. We examined if the NcZNT1 function contributes to the metal hyperaccumulation of N. caerulescens. NcZNT1 was found to be a plasma-membrane located metal transporter. Constitutive overexpression of NcZNT1 in A. thaliana conferred enhanced tolerance to exposure to excess Zn and Cd supply, as well as increased accumulation of Zn and Cd and induction of the Fe deficiency response, when compared to non-transformed wild-type plants. Promoters of both genes were induced by Zn deficiency in roots and shoots of A. thaliana. In A. thaliana, the AtZIP4 and NcZNT1 promoters were mainly active in cortex, endodermis and pericycle cells under Zn deficient conditions. In N. caerulescens, the promoters were active in the same tissues, though the activity of the NcZNT1 promoter was higher and not limited to Zn deficient conditions. Common cis elements were identified in both promoters by 5' deletion analysis. These correspond to the previously determined Zinc Deficiency Responsive Elements found in A. thaliana to interact with two redundantly acting transcription factors, bZIP19 and bZIP23, controlling the Zn deficiency response. In conclusion, these results suggest that NcZNT1 is an important factor in contributing to Zn and Cd hyperaccumulation in N. caerulescens. Differences in cis- and trans-regulators are likely to account for the differences in expression between A. thaliana and N. caerulescens. The high, constitutive NcZNT1 expression in the stele of N. caerulescens roots implicates its involvement in long distance root-to-shoot metal transport by maintaining a Zn/Cd influx into cells responsible for xylem loading. PMID:26930473

  1. Expression of the ZNT1 Zinc Transporter from the Metal Hyperaccumulator Noccaea caerulescens Confers Enhanced Zinc and Cadmium Tolerance and Accumulation to Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ya-Fen Lin

    Full Text Available Prompt regulation of transition metal transporters is crucial for plant zinc homeostasis. NcZNT1 is one of such transporters, found in the metal hyperaccumulator Brassicaceae species Noccaea caerulescens. It is orthologous to AtZIP4 from Arabidopsis thaliana, an important actor in Zn homeostasis. We examined if the NcZNT1 function contributes to the metal hyperaccumulation of N. caerulescens. NcZNT1 was found to be a plasma-membrane located metal transporter. Constitutive overexpression of NcZNT1 in A. thaliana conferred enhanced tolerance to exposure to excess Zn and Cd supply, as well as increased accumulation of Zn and Cd and induction of the Fe deficiency response, when compared to non-transformed wild-type plants. Promoters of both genes were induced by Zn deficiency in roots and shoots of A. thaliana. In A. thaliana, the AtZIP4 and NcZNT1 promoters were mainly active in cortex, endodermis and pericycle cells under Zn deficient conditions. In N. caerulescens, the promoters were active in the same tissues, though the activity of the NcZNT1 promoter was higher and not limited to Zn deficient conditions. Common cis elements were identified in both promoters by 5' deletion analysis. These correspond to the previously determined Zinc Deficiency Responsive Elements found in A. thaliana to interact with two redundantly acting transcription factors, bZIP19 and bZIP23, controlling the Zn deficiency response. In conclusion, these results suggest that NcZNT1 is an important factor in contributing to Zn and Cd hyperaccumulation in N. caerulescens. Differences in cis- and trans-regulators are likely to account for the differences in expression between A. thaliana and N. caerulescens. The high, constitutive NcZNT1 expression in the stele of N. caerulescens roots implicates its involvement in long distance root-to-shoot metal transport by maintaining a Zn/Cd influx into cells responsible for xylem loading.

  2. Two iron-regulated transporter (IRT) genes showed differential expression in poplar trees under iron or zinc deficiency.

    Science.gov (United States)

    Huang, Danqiong; Dai, Wenhao

    2015-08-15

    Two iron-regulated transporter (IRT) genes were cloned from the iron chlorosis resistant (PtG) and susceptible (PtY) Populus tremula 'Erecta' lines. Nucleotide sequence analysis showed no significant difference between PtG and PtY. The predicted proteins contain a conserved ZIP domain with 8 transmembrane (TM) regions. A ZIP signature sequence was found in the fourth TM domain. Phylogenetic analysis revealed that PtIRT1 was clustered with tomato and tobacco IRT genes that are highly responsible to iron deficiency. The PtIRT3 gene was clustered with the AtIRT3 gene that was related to zinc and iron transport in plants. Tissue specific expression indicated that PtIRT1 only expressed in the root, while PtIRT3 constitutively expressed in all tested tissues. Under iron deficiency, the expression of PtIRT1 was dramatically increased and a significantly higher transcript level was detected in PtG than in PtY. Iron deficiency also enhanced the expression of PtIRT3 in PtG. On the other hand, zinc deficiency down-regulated the expression of PtIRT1 and PtIRT3 in both PtG and PtY. Zinc accumulated significantly under iron-deficient conditions, whereas the zinc deficiency showed no significant effect on iron accumulation. A yeast complementation test revealed that the PtIRT1 and PtIRT3 genes could restore the iron uptake ability under the iron uptake-deficiency condition. The results will help understand the mechanisms of iron deficiency response in poplar trees and other woody species.

  3. Influence of prostaglandins E/sub 2/ and F/sub 2. cap alpha. / on the zinc transport across rat mid-intestine in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Song, M.K.; Adham, N.F.; Lee, D.B.N.; Carmack, C.R.

    1986-03-05

    Effects of physiological (5.0 ..mu..M) and pharmacological (50 ..mu..M) doses of prostaglandins (PG) E/sub 2/ and F/sub 2..cap alpha../ on the zinc transport rate across rat jejunum mounted on a Ussing Chamber were determined. Zinc transport rate from mucosal to serosal direction was 4.82 +/- 0.81 n moles/hr/cm/sup 2/ whereas the opposite direction was 18.71 +/- 0.96 n moles/hr/cm/sup 2/. When 5.0 ..mu..M or 50 ..mu..M PGE/sub 2/ or PGF/sub 2..cap alpha../ were added into Ringers-Krebs bicarbonate solution containing 3 mM L-histidine and 0.5 mM /sup 65/Zn Cl/sub 2/ to the mucosal side of mucosa, no significant difference in /sup 65/Zn transport rate was observed compared to controls. However, 5.0 ..mu..M PGF/sub 2..cap alpha../ and 50 ..mu..M PGE/sub 2/ significantly inhibited zinc transport from mucosal to serosal direction. When PGs were added to the opposite side of mucosa, only 5.0 ..mu..M PGs significantly inhibited zinc transport from serosal to mucosal direction. Results suggest that PGs act on the inhibition of zinc transport across the basolateral membrane of columnar absorbing cells and that 50 ..mu..M PGE/sub 2/ was the most powerful inhibitor.

  4. Intestinal zinc transport: influence of streptozotocin-induced diabetes, insulin and arachidonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Song, M.K.; Mooradian, A.D.

    1988-01-01

    The influence of arachidonic acid (AA) on the zinc flux rates of jejunal segments, isolated from streptozotocin-induced diabetic rats injected with saline or with insulin, was investigated using an Ussing chamber technique. Although the zinc flux rates from mucose-to-serosa (J/sub ms/) of normal rats were inhibited by addition of 5 ..mu..M AA to the jejunal segment bathing medium, AA had no effect on the J/sub ms/ of diabetic rats either with or without insulin treatment. Induction of diabetes also significantly reduces J/sub ms/, but 3 day insulin treatment did not reverse this effect. Addition of AA to the serosal side did not significantly alter the zinc flux rate from serosa-to-mucosa (J/sub sm/) in either control, diabetic or diabetic rats treated with insulin. The net zinc absorption rate (J/sub net/) of jejunal segments was decreased in diabetic rats compared to controls, but normalization of blood glucose with 3 day insulin treatment did not increase J/sub net/. Addition of AA was associated with a tendency to increase zinc uptake capacity. This change reached statistical significance in insulin treated diabetic rats. Short-circuit current (I/sub sc/) for diabetic rats was increased compared to controls but addition of AA to the mucosal side bathing medium decreased I/sub sc/ in all groups. 32 references, 3 figures, 1 table.

  5. Zinc transporter ZIP10 forms a heteromer with ZIP6 which regulates embryonic development and cell migration.

    Science.gov (United States)

    Taylor, Kathryn M; Muraina, Issa A; Brethour, Dylan; Schmitt-Ulms, Gerold; Nimmanon, Thirayost; Ziliotto, Silvia; Kille, Peter; Hogstrand, Christer

    2016-08-15

    There is growing evidence that zinc and its transporters are involved in cell migration during development and in cancer. In the present study, we show that zinc transporter ZIP10 (SLC39A10) stimulates cell motility and proliferation, both in mammalian cells and in the zebrafish embryo. This is associated with inactivation of GSK (glycogen synthase kinase)-3α and -3β and down-regulation of E-cadherin (CDH1). Morpholino-mediated knockdown of zip10 causes delayed epiboly and deformities of the head, eye, heart and tail. Furthermore, zip10 deficiency results in overexpression of cdh1, zip6 and stat3, the latter gene product driving transcription of both zip6 and zip10 The non-redundant requirement of Zip6 and Zip10 for epithelial to mesenchymal transition (EMT) is consistent with our finding that they exist as a heteromer. We postulate that a subset of ZIPs carrying prion protein (PrP)-like ectodomains, including ZIP6 and ZIP10, are integral to cellular pathways and plasticity programmes, such as EMT.

  6. Zinc transporter ZIP10 forms a heteromer with ZIP6 which regulates embryonic development and cell migration

    Science.gov (United States)

    Taylor, Kathryn M.; Muraina, Issa A.; Brethour, Dylan; Schmitt-Ulms, Gerold; Nimmanon, Thirayost; Ziliotto, Silvia; Kille, Peter; Hogstrand, Christer

    2016-01-01

    There is growing evidence that zinc and its transporters are involved in cell migration during development and in cancer. In the present study, we show that zinc transporter ZIP10 (SLC39A10) stimulates cell motility and proliferation, both in mammalian cells and in the zebrafish embryo. This is associated with inactivation of GSK (glycogen synthase kinase)-3α and -3β and down-regulation of E-cadherin (CDH1). Morpholino-mediated knockdown of zip10 causes delayed epiboly and deformities of the head, eye, heart and tail. Furthermore, zip10 deficiency results in overexpression of cdh1, zip6 and stat3, the latter gene product driving transcription of both zip6 and zip10. The non-redundant requirement of Zip6 and Zip10 for epithelial to mesenchymal transition (EMT) is consistent with our finding that they exist as a heteromer. We postulate that a subset of ZIPs carrying prion protein (PrP)-like ectodomains, including ZIP6 and ZIP10, are integral to cellular pathways and plasticity programmes, such as EMT. PMID:27274087

  7. Impact of particle shape on electron transport and lifetime in zinc oxide nanorod-based dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Roger Chang

    2016-01-01

    Full Text Available Owing to its high electron mobility, zinc oxide represents a promising alternative to titanium dioxide as the working electrode material in dye-sensitized solar cells (DSCs. When zinc oxide is grown into 1-D nanowire arrays and incorporated into the working electrode of DSCs, enhanced electron dynamics and even a decoupling of electron transport (τd and electron lifetime (τn have been observed. In this work, DSCs with working electrodes composed of solution-grown, unarrayed ZnO nanorods are investigated. In order to determine whether such devices give rise to similar decoupling, intensity modulated photocurrent and photovoltage spectroscopies are used to measure τd and τn, while varying the illumination intensity. In addition, ZnO nanorod-based DSCs are compared with ZnO nanoparticle-based DSCs and nanomaterial shape is shown to affect electron dynamics. Nanorod-based DSCs exhibit shorter electron transport times, longer electron lifetimes, and a higher τn/τd ratio than nanoparticle-based DSCs.

  8. Studies on the role of heavy-metal transporting P-type ATPase family genes on zinc (Zn) transport and accumulation in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Bagavathiannan, M.V. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Plant Science; Broadley, M.R.; Donnelly, S.J.; Smith, R.J.; Mills, V. [Nottingham Univ., Loughborough, Leicestershire (United Kingdom). School of Biosciences, Plant Sciences Division

    2006-07-01

    Although zinc (Zn) is an essential plant mineral nutrient for normal crop growth, excess amounts can cause environmental contamination problems. Higher amounts of Zn are added into soils every year through effluents from tanning industries and other sources such as sewage treatment plants, metal inputs from rivers and the atmosphere. Studies have shown that specific metal tolerances exist at the cellular level in plants, indicating that specific adaptations to metal ions occur in cells as well as in the whole plant. This paper described the mechanisms that plants develop in order to tolerate heavy metals and showed that transporter genes play a key role in uptake and sequestration of heavy metals in plant systems. Since metal ion transporting genes are also involved in transport and homeostasis of heavy metals in plants, this study examined the role of the metal ion transporting gene family members in Zn transport and tolerance in plant systems. Among the metal ion transporting gene families, P-type ATPase gene family members are considered to be efficient in metal transport in the model plant Arabidopsis thaliana. They form a diverse superfamily of transporters which carry a range of essential and potentially toxic metals across cellular membranes. Genetic-screening experiments were performed in which 3 SALK lines with known disruption in the target gene were studied physiologically and at the molecular level to determine their role in heavy-metal transportation and accumulation. The study showed that one of the family lines may have altered Zn tolerance and uptake characteristics. Ongoing research continues to examine the characteristics of this line. 27 refs., 1 tab., 8 figs.

  9. Vitamin D3 transactivates the zinc and manganese transporter SLC30A10 via the Vitamin D receptor.

    Science.gov (United States)

    Claro da Silva, Tatiana; Hiller, Christian; Gai, Zhibo; Kullak-Ublick, Gerd A

    2016-10-01

    Vitamin D3 regulates genes critical for human health and its deficiency is associated with an increased risk for osteoporosis, cancer, diabetes, multiple sclerosis, hypertension, inflammatory and immunological diseases. To study the impact of vitamin D3 on genes relevant for the transport and metabolism of nutrients and drugs, we employed next-generation sequencing (NGS) and analyzed global gene expression of the human-derived Caco-2 cell line treated with 500nM vitamin D3. Genes involved in neuropeptide signaling, inflammation, cell adhesion and morphogenesis were differentially expressed. Notably, genes implicated in zinc, manganese and iron homeostasis were largely increased by vitamin D3 treatment. An ∼10-fold increase in ceruloplasmin and ∼4-fold increase in haptoglobin gene expression suggested a possible association between vitamin D and iron homeostasis. SLC30A10, the gene encoding the zinc and manganese transporter ZnT10, was the chiefly affected transporter, with ∼15-fold increase in expression. SLC30A10 is critical for zinc and manganese homeostasis and mutations in this gene, resulting in impaired ZnT10 function or expression, cause manganese intoxication, with Parkinson-like symptoms. Our NGS results were validated by real-time PCR in Caco-2 cells, as well as in duodenal biopsies taken from healthy human subjects treated with 0.5μg vitamin D3 daily for 10 days. In addition to increasing gene expression of SLC30A10 and the positive control TRPV6, vitamin D3 also increased ZnT10 protein expression, as indicated by Western blot and cytofluorescence. In silico identification of potential vitamin D responsive elements (VDREs) in the 5'-flanking region of the SLC30A10 promoter and dual-luciferase reporter assay showed enhanced promoter activity in the presence of vitamin D receptor (VDR) and retinoid X receptor (RXR) constructs, as well as vitamin D3, but not when one of these factors was absent. Electrophoretic mobility shift assay (EMSA) and

  10. Extreme population differences in the human zinc transporter ZIP4 (SLC39A4 are explained by positive selection in Sub-Saharan Africa.

    Directory of Open Access Journals (Sweden)

    Johannes Engelken

    2014-02-01

    Full Text Available Extreme differences in allele frequency between West Africans and Eurasians were observed for a leucine-to-valine substitution (Leu372Val in the human intestinal zinc uptake transporter, ZIP4, yet no further evidence was found for a selective sweep around the ZIP4 gene (SLC39A4. By interrogating allele frequencies in more than 100 diverse human populations and resequencing Neanderthal DNA, we confirmed the ancestral state of this locus and found a strong geographical gradient for the derived allele (Val372, with near fixation in West Africa. In extensive coalescent simulations, we show that the extreme differences in allele frequency, yet absence of a classical sweep signature, can be explained by the effect of a local recombination hotspot, together with directional selection favoring the Val372 allele in Sub-Saharan Africans. The possible functional effect of the Leu372Val substitution, together with two pathological mutations at the same codon (Leu372Pro and Leu372Arg that cause acrodermatitis enteropathica (a disease phenotype characterized by extreme zinc deficiency, was investigated by transient overexpression of human ZIP4 protein in HeLa cells. Both acrodermatitis mutations cause absence of the ZIP4 transporter cell surface expression and nearly absent zinc uptake, while the Val372 variant displayed significantly reduced surface protein expression, reduced basal levels of intracellular zinc, and reduced zinc uptake in comparison with the Leu372 variant. We speculate that reduced zinc uptake by the ZIP4-derived Val372 isoform may act by starving certain pathogens of zinc, and hence may have been advantageous in Sub-Saharan Africa. Moreover, these functional results may indicate differences in zinc homeostasis among modern human populations with possible relevance for disease risk.

  11. The Zinc Concentration in the Diet and the Length of the Feeding Period Affect the Methylation Status of the ZIP4 Zinc Transporter Gene in Piglets

    OpenAIRE

    Diana Karweina; Susanne Kreuzer-Redmer; Uwe Müller; Tobias Franken; Robert Pieper; Udo Baron; Sven Olek; Jürgen Zentek; Gudrun A Brockmann

    2015-01-01

    High doses of zinc oxide are commonly used in weaned pig diets to improve performance and health. Recent reports show that this may also lead to an imbalanced zinc homeostasis in the animal. For a better understanding of the regulatory mechanisms of different zinc intakes, we performed a feeding experiment to assess potential epigenetic regulation of the ZIP4 gene expression via DNA methylation in the small intestine of piglets. Fifty-four piglets were fed diets with 57 (LZn), 164 (NZn) or 2,...

  12. The Zinc Concentration in the Diet and the Length of the Feeding Period Affect the Methylation Status of the ZIP4 Zinc Transporter Gene in Piglets.

    Science.gov (United States)

    Karweina, Diana; Kreuzer-Redmer, Susanne; Müller, Uwe; Franken, Tobias; Pieper, Robert; Baron, Udo; Olek, Sven; Zentek, Jürgen; Brockmann, Gudrun A

    2015-01-01

    High doses of zinc oxide are commonly used in weaned pig diets to improve performance and health. Recent reports show that this may also lead to an imbalanced zinc homeostasis in the animal. For a better understanding of the regulatory mechanisms of different zinc intakes, we performed a feeding experiment to assess potential epigenetic regulation of the ZIP4 gene expression via DNA methylation in the small intestine of piglets. Fifty-four piglets were fed diets with 57 (LZn), 164 (NZn) or 2,425 (HZn) mg Zn/kg feed for one or four weeks. The ZIP4 expression data provided significant evidence for counter-regulation of zinc absorption with higher dietary zinc concentrations. The CpG +735 in the second exon had a 56% higher methylation in the HZn group compared to the others after one week of feeding (8.0·10-4 < p < 0.035); the methylation of this CpG was strongly negatively associated with the expression of the long ZIP4 transcripts (p < 0.007). In the LZn and NZn diets, the expression of the long ZIP4 transcripts were lower after four vs. one week of feeding (2.9·10-4 < p < 0.017). The strongest switch leading to high DNA methylation in nearly all analysed regions was dependent on feeding duration or age in all diet groups (3.7·10-10 < p < 0.099). The data suggest that DNA methylation serves as a fine-tuning mechanism of ZIP4 gene regulation to maintain zinc homeostasis. Methylation of the ZIP4 gene may play a minor role in the response to very high dietary zinc concentration, but may affect binding of alternate zinc-responsive transcription factors. PMID:26599865

  13. The Zinc Concentration in the Diet and the Length of the Feeding Period Affect the Methylation Status of the ZIP4 Zinc Transporter Gene in Piglets.

    Directory of Open Access Journals (Sweden)

    Diana Karweina

    Full Text Available High doses of zinc oxide are commonly used in weaned pig diets to improve performance and health. Recent reports show that this may also lead to an imbalanced zinc homeostasis in the animal. For a better understanding of the regulatory mechanisms of different zinc intakes, we performed a feeding experiment to assess potential epigenetic regulation of the ZIP4 gene expression via DNA methylation in the small intestine of piglets. Fifty-four piglets were fed diets with 57 (LZn, 164 (NZn or 2,425 (HZn mg Zn/kg feed for one or four weeks. The ZIP4 expression data provided significant evidence for counter-regulation of zinc absorption with higher dietary zinc concentrations. The CpG +735 in the second exon had a 56% higher methylation in the HZn group compared to the others after one week of feeding (8.0·10-4 < p < 0.035; the methylation of this CpG was strongly negatively associated with the expression of the long ZIP4 transcripts (p < 0.007. In the LZn and NZn diets, the expression of the long ZIP4 transcripts were lower after four vs. one week of feeding (2.9·10-4 < p < 0.017. The strongest switch leading to high DNA methylation in nearly all analysed regions was dependent on feeding duration or age in all diet groups (3.7·10-10 < p < 0.099. The data suggest that DNA methylation serves as a fine-tuning mechanism of ZIP4 gene regulation to maintain zinc homeostasis. Methylation of the ZIP4 gene may play a minor role in the response to very high dietary zinc concentration, but may affect binding of alternate zinc-responsive transcription factors.

  14. Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population)

    OpenAIRE

    Küpper, Hendrik; Kochian, Leon V.

    2010-01-01

    - We investigated changes in mineral nutrient uptake and cellular expression levels for metal transporter genes in the cadmium (Cd)/zinc (Zn) hyperaccumulator, Thlaspi caerulescens during whole plant and leaf ontogenesis under different long-term treatments with Zn and Cd.- Quantitative mRNA in situ hybridization (QISH) revealed that transporter gene expression changes not only dependent on metal nutrition/toxicity, but even more so during plant and leaf development. The main mRNA abundances ...

  15. Zinc bioavailability and homeostasis1234

    OpenAIRE

    Hambidge, K Michael; Miller, Leland V; Westcott, Jamie E; Sheng, Xiaoyang; Krebs, Nancy F.

    2010-01-01

    Zinc has earned recognition recently as a micronutrient of outstanding and diverse biological, clinical, and global public health importance. Regulation of absorption by zinc transporters in the enterocyte, together with saturation kinetics of the absorption process into and across the enterocyte, are the principal means by which whole-body zinc homeostasis is maintained. Several physiologic factors, most notably the quantity of zinc ingested, determine the quantity of zinc absorbed and the e...

  16. Down-regulation of zinc transporter 8 (SLC30A8) in pancreatic beta-cells promotes cell survival.

    Science.gov (United States)

    The pancreatic islet contains high levels of zinc in granular vesicles of ß-cells where insulin is matured, crystallized, and stored before secretion. Zinc is an essential co-factor for insulin crystallization forming dense cores in secretory granules. In insulin-containing secretory granules, zinc ...

  17. Different role of zinc transporter 8 between type 1 diabetes mellitus and type 2 diabetes mellitus

    OpenAIRE

    Yi, Bo; Huang, Gan; Zhou, Zhiguang

    2016-01-01

    Abstract Diabetes can be simply classified into type 1 diabetes mellitus and type 2 diabetes mellitus. Zinc transporter 8 (ZnT8), a novel islet autoantigen, is specifically expressed in insulin‐containing secretory granules of β‐cells. Genetic studies show that the genotypes of SLC30A8 can determine either protective or diabetogenic response depending on environmental and lifestyle factors. The ZnT8 protein expression, as well as zinc content in β‐cells, was decreased in diabetic mice. Thus, ...

  18. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Comprehensive progress report, October 1, 1975--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R. H.

    1978-10-01

    Investigations were undertaken to elucidate the mode of transepithelial transport of potentially toxic metal ions across the gastrointestinal tract, with primary attention given to cadmium, zinc, and arsenic. In addition, the toxic effects of cadmium on the metabolism of vitamin D and calcium have been investigated in some detail. Several approaches have been taken, including studies on the localization of heavy metals in the intestinal mucosa, the effects of cadmium on various parameters of calcium metabolism, the modes of intestinal absorption of cadmium, arsenate, and zinc, and the interactions of heavy metals with each other and with calcium, phosphorus, and vitamin D. Details of these experiments are attached in the Comprehensive Progress Report.

  19. Low-cost cadmium zinc telluride radiation detectors based on electron-transport-only designs

    International Nuclear Information System (INIS)

    The goal of this project was to utilize a novel device design to build a compact, high resolution, room temperature operated semiconductor gamma ray sensor. This sensor was constructed from a cadmium zinc telluride (CZT) crystal. It was able to both detect total radiation intensity and perform spectroscopy on the detected radiation. CZT detectors produced today have excellent electron charge carrier collection, but suffer from poor hole collection. For conventional gamma-ray spectrometers, both the electrons and holes must be collected with high efficiency to preserve energy resolution. The requirement to collect the hole carriers, which have relatively low lifetimes, limits the efficiency and performance of existing experimental devices. By implementing novel device designs such that the devices rely only on the electron signal for energy information, the sensitivity of the sensors for detecting radiation can be increased substantially. In this report the authors describe a project to develop a new type of electron-only CZT detector. They report on their successful efforts to design, implement and test these new radiation detectors. In addition to the design and construction of the sensors the authors also report, in considerable detail, on the electrical characteristics of the CZT crystals used to make their detectors

  20. Low-cost cadmium zinc telluride radiation detectors based on electron-transport-only designs

    Energy Technology Data Exchange (ETDEWEB)

    B. A. Brunett; J. C. Lund; J. M. Van Scyoc; N. R. Hilton; E. Y. Lee; R. B. James

    1999-01-01

    The goal of this project was to utilize a novel device design to build a compact, high resolution, room temperature operated semiconductor gamma ray sensor. This sensor was constructed from a cadmium zinc telluride (CZT) crystal. It was able to both detect total radiation intensity and perform spectroscopy on the detected radiation. CZT detectors produced today have excellent electron charge carrier collection, but suffer from poor hole collection. For conventional gamma-ray spectrometers, both the electrons and holes must be collected with high efficiency to preserve energy resolution. The requirement to collect the hole carriers, which have relatively low lifetimes, limits the efficiency and performance of existing experimental devices. By implementing novel device designs such that the devices rely only on the electron signal for energy information, the sensitivity of the sensors for detecting radiation can be increased substantially. In this report the authors describe a project to develop a new type of electron-only CZT detector. They report on their successful efforts to design, implement and test these new radiation detectors. In addition to the design and construction of the sensors the authors also report, in considerable detail, on the electrical characteristics of the CZT crystals used to make their detectors.

  1. Comparative genomic analysis of slc39a12/ZIP12: insight into a zinc transporter required for vertebrate nervous system development.

    Directory of Open Access Journals (Sweden)

    Winyoo Chowanadisai

    Full Text Available The zinc transporter ZIP12, which is encoded by the gene slc39a12, has previously been shown to be important for neuronal differentiation in mouse Neuro-2a neuroblastoma cells and primary mouse neurons and necessary for neurulation during Xenopus tropicalis embryogenesis. However, relatively little is known about the biochemical properties, cellular regulation, or the physiological role of this gene. The hypothesis that ZIP12 is a zinc transporter important for nervous system function and development guided a comparative genetics approach to uncover the presence of ZIP12 in various genomes and identify conserved sequences and expression patterns associated with ZIP12. Ortholog detection of slc39a12 was conducted with reciprocal BLAST hits with the amino acid sequence of human ZIP12 in comparison to the human paralog ZIP4 and conserved local synteny between genomes. ZIP12 is present in the genomes of almost all vertebrates examined, from humans and other mammals to most teleost fish. However, ZIP12 appears to be absent from the zebrafish genome. The discrimination of ZIP12 compared to ZIP4 was unsuccessful or inconclusive in other invertebrate chordates and deuterostomes. Splice variation, due to the inclusion or exclusion of a conserved exon, is present in humans, rats, and cows and likely has biological significance. ZIP12 also possesses many putative di-leucine and tyrosine motifs often associated with intracellular trafficking, which may control cellular zinc uptake activity through the localization of ZIP12 within the cell. These findings highlight multiple aspects of ZIP12 at the biochemical, cellular, and physiological levels with likely biological significance. ZIP12 appears to have conserved function as a zinc uptake transporter in vertebrate nervous system development. Consequently, the role of ZIP12 may be an important link to reported congenital malformations in numerous animal models and humans that are caused by zinc deficiency.

  2. Comparative genomic analysis of slc39a12/ZIP12: insight into a zinc transporter required for vertebrate nervous system development.

    Science.gov (United States)

    Chowanadisai, Winyoo

    2014-01-01

    The zinc transporter ZIP12, which is encoded by the gene slc39a12, has previously been shown to be important for neuronal differentiation in mouse Neuro-2a neuroblastoma cells and primary mouse neurons and necessary for neurulation during Xenopus tropicalis embryogenesis. However, relatively little is known about the biochemical properties, cellular regulation, or the physiological role of this gene. The hypothesis that ZIP12 is a zinc transporter important for nervous system function and development guided a comparative genetics approach to uncover the presence of ZIP12 in various genomes and identify conserved sequences and expression patterns associated with ZIP12. Ortholog detection of slc39a12 was conducted with reciprocal BLAST hits with the amino acid sequence of human ZIP12 in comparison to the human paralog ZIP4 and conserved local synteny between genomes. ZIP12 is present in the genomes of almost all vertebrates examined, from humans and other mammals to most teleost fish. However, ZIP12 appears to be absent from the zebrafish genome. The discrimination of ZIP12 compared to ZIP4 was unsuccessful or inconclusive in other invertebrate chordates and deuterostomes. Splice variation, due to the inclusion or exclusion of a conserved exon, is present in humans, rats, and cows and likely has biological significance. ZIP12 also possesses many putative di-leucine and tyrosine motifs often associated with intracellular trafficking, which may control cellular zinc uptake activity through the localization of ZIP12 within the cell. These findings highlight multiple aspects of ZIP12 at the biochemical, cellular, and physiological levels with likely biological significance. ZIP12 appears to have conserved function as a zinc uptake transporter in vertebrate nervous system development. Consequently, the role of ZIP12 may be an important link to reported congenital malformations in numerous animal models and humans that are caused by zinc deficiency.

  3. A New Metal Binding Domain Involved in Cadmium, Cobalt and Zinc Transport

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Aaron T. [Northwestern Univ., Evanston, IL (United States); Barupala, Dulmini [Wayne State Univ., Detroit, MI (United States); Stemmler, Timothy L. [Wayne State Univ., Detroit, MI (United States); Rosenzweig, Amy C. [Northwestern Univ., Evanston, IL (United States)

    2015-07-20

    In the P1B-ATPases, which couple cation transport across membranes to ATP hydrolysis, are central to metal homeostasis in all organisms. An important feature of P1B-ATPases is the presence of soluble metal binding domains (MBDs) that regulate transport activity. Only one type of MBD has been characterized extensively, but bioinformatics analyses indicate that a diversity of MBDs may exist in nature. Here we report the biochemical, structural and functional characterization of a new MBD from the Cupriavidus metallidurans P1B-4-ATPase CzcP (CzcP MBD). The CzcP MBD binds two Cd2+, Co2+ or Zn2+ ions in distinct and unique sites and adopts an unexpected fold consisting of two fused ferredoxin-like domains. Both in vitro and in vivo activity assays using full-length CzcP, truncated CzcP and several variants indicate a regulatory role for the MBD and distinct functions for the two metal binding sites. Moreover, these findings elucidate a previously unknown MBD and suggest new regulatory mechanisms for metal transport by P1B-ATPases.

  4. Phosphate/Zinc Interaction Analysis in Two Lettuce Varieties Reveals Contrasting Effects on Biomass, Photosynthesis, and Dynamics of Pi Transport

    Directory of Open Access Journals (Sweden)

    Nadia Bouain

    2014-01-01

    Full Text Available Inorganic phosphate (Pi and Zinc (Zn are essential nutrients for normal plant growth. Interaction between these elements has been observed in many crop plants. Despite its agronomic importance, the biological significance and genetic basis of this interaction remain largely unknown. Here we examined the Pi/Zn interaction in two lettuce (Lactuca sativa varieties, namely, “Paris Island Cos” and “Kordaat.” The effects of variation in Pi and Zn supply were assessed on biomass and photosynthesis for each variety. Paris Island Cos displayed better growth and photosynthesis compared to Kordaat under all the conditions tested. Correlation analysis was performed to determine the interconnectivity between Pi and Zn intracellular contents in both varieties. Paris Island Cos showed a strong negative correlation between the accumulation levels of Pi and Zn in shoots and roots. However, no relation was observed for Kordaat. The increase of Zn concentration in the medium causes a decrease in dynamics of Pi transport in Paris Island Cos, but not in Kordaat plants. Taken together, results revealed a contrasting behavior between the two lettuce varieties in terms of the coregulation of Pi and Zn homeostasis and provided evidence in favor of a genetic basis for the interconnection of these two elements.

  5. Obesity and age-related alterations in the gene expression of zinc-transporter proteins in the human brain

    DEFF Research Database (Denmark)

    Olesen, R H; Hyde, T M; Kleinman, J E;

    2016-01-01

    The incidence of Alzheimer's disease (AD) is increasing. Major risk factors for AD are advancing age and diabetes. Lately, obesity has been associated with an increased risk of dementia. Obese and diabetic individuals are prone to decreased circulating levels of zinc, reducing the amount of zinc...... participate in intracellular zinc homeostasis. Altered expression of zinc-regulatory proteins has been described in AD patients. Using microarray data from human frontal cortex (BrainCloud), this study investigates expression of the SCLA30A (ZNT) and SCLA39A (ZIP) families of genes in a Caucasian and African...... expression similar to what is seen in the early stages of AD. Increasing BMI also correlated with reduced expression of ZNT6. In conclusion, we found that the expression of genes that regulate intracellular zinc homeostasis in the human frontal cortex is altered with increasing age and affected by increasing...

  6. Comparative study of electron transport mechanisms in epitaxial and polycrystalline zinc nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiang; Yamaguchi, Yuuki; Ninomiya, Yoshihiko; Yamada, Naoomi, E-mail: n-yamada@isc.chubu.ac.jp [Department of Applied Chemistry, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487–8501 (Japan)

    2016-01-14

    Zn{sub 3}N{sub 2} has been reported to have high electron mobility even in polycrystalline films. The high mobility in polycrystalline films is a striking feature as compared with group-III nitrides. However, the origins of the high mobility have not been elucidated to date. In this paper, we discuss the reason for high mobility in Zn{sub 3}N{sub 2}. We grew epitaxial and polycrystalline films of Zn{sub 3}N{sub 2}. Electron effective mass (m*) was determined optically and found to decrease with a decrease in electron density. Using a nonparabolic conduction band model, the m* at the bottom of the conduction band was derived to be (0.08 ± 0.03)m{sub 0} (m{sub 0} denotes the free electron mass), which is comparable to that in InN. Optically determined intra-grain mobility (μ{sub opt}) in the polycrystalline films was higher than 110 cm{sup 2} V{sup −1} s{sup −1}, resulting from the small m*. The Hall mobility (μ{sub H}) in the polycrystalline films was significantly smaller than μ{sub opt}, indicating that electron transport is impeded by scattering at the grain boundaries. Nevertheless, μ{sub H} higher than 70 cm{sup 2} V{sup −1} s{sup −1} was achievable owing to the beneficial effect of the high μ{sub opt}. As for the epitaxial films, we revealed that electron transport is hardly affected by grain boundary scattering and is governed solely by ionized impurity scattering. The findings in this study suggest that Zn{sub 3}N{sub 2} is a high-mobility semiconductor with small effective mass.

  7. Apical Localization of Zinc Transporter ZnT4 in Human Airway Epithelial Cells and Its Loss in a Murine Model of Allergic Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Chiara Murgia

    2011-10-01

    Full Text Available The apical cytoplasm of airway epithelium (AE contains abundant labile zinc (Zn ions that are involved in the protection of AE from oxidants and inhaled noxious substances. A major question is how dietary Zn traffics to this compartment. In rat airways, in vivo selenite autometallographic (Se-AMG-electron microscopy revealed labile Zn-selenium nanocrystals in structures resembling secretory vesicles in the apical cytoplasm. This observation was consistent with the starry-sky Zinquin fluorescence staining of labile Zn ions confined to the same region. The vesicular Zn transporter ZnT4 was likewise prominent in both the apical and basal parts of the epithelium both in rodent and human AE, although the apical pools were more obvious. Expression of ZnT4 mRNA was unaffected by changes in the extracellular Zn concentration. However, levels increased 3-fold during growth of cells in air liquid interface cultures and decreased sharply in the presence of retinoic acid. When comparing nasal versus bronchial human AE cells, there were significant positive correlations between levels of ZnT4 from the same subject, suggesting that nasal brushings may allow monitoring of airway Zn transporter expression. Finally, there were marked losses of both basally-located ZnT4 protein and labile Zn in the bronchial epithelium of mice with allergic airway inflammation. This study is the first to describe co-localization of zinc vesicles with the specific zinc transporter ZnT4 in airway epithelium and loss of ZnT4 protein in inflamed airways. Direct evidence that ZnT4 regulates Zn levels in the epithelium still needs to be provided. We speculate that ZnT4 is an important regulator of zinc ion accumulation in secretory apical vesicles and that the loss of labile Zn and ZnT4 in airway inflammation contributes to AE vulnerability in diseases such as asthma.

  8. Response to zinc deficiency of two rice lines with contrasting tolerance is determined by root growth maintenance and organic acid exudation rates, and not by zinc-transporter activity.

    Science.gov (United States)

    Widodo, Basuki; Broadley, Martin R; Rose, Terry; Frei, Michael; Pariasca-Tanaka, Juan; Yoshihashi, Tadashi; Thomson, Michael; Hammond, John P; Aprile, Alessio; Close, Timothy J; Ismail, Abdelbagi M; Wissuwa, Matthias

    2010-04-01

    *Zinc (Zn)-deficient soils constrain rice (Oryza sativa) production and cause Zn malnutrition. The identification of Zn-deficiency-tolerant rice lines indicates that breeding might overcome these constraints. Here, we seek to identify processes underlying Zn-deficiency tolerance in rice at the physiological and transcriptional levels. *A Zn-deficiency-tolerant line RIL46 acquires Zn more efficiently and produces more biomass than its nontolerant maternal line (IR74) at low [Zn](ext) under field conditions. We tested if this was the result of increased expression of Zn(2+) transporters; increased root exudation of deoxymugineic acid (DMA) or low-molecular-weight organic acids (LMWOAs); and/or increased root production. Experiments were performed in field and controlled environment conditions. *There was little genotypic variation in transcript abundance of Zn-responsive root Zn(2+)-transporters between the RIL46 and IR74. However, root exudation of DMA and LMWOA was greater in RIL46, coinciding with increased root expression of putative ligand-efflux genes. Adventitious root production was maintained in RIL46 at low [Zn](ext), correlating with altered expression of root-specific auxin-responsive genes. *Zinc-deficiency tolerance in RIL46 is most likely the result of maintenance of root growth, increased efflux of Zn ligands, and increased uptake of Zn-ligand complexes at low [Zn](ext); these traits are potential breeding targets. PMID:20100202

  9. 成骨细胞跨膜转运锌特性及其机制的初步研究%Primary study of transmembrane transport of zinc and its mechanism in osteoblast

    Institute of Scientific and Technical Information of China (English)

    岑小波; 王瑞淑; 王莉; 王航

    2001-01-01

    AIM To study the kinetic character of zinc transport and its influencing factors in osteoblasts, and scientific evidence is expected to provide to clarify the role of zinc on bone development. METHODS 65Zn tracing method was used to evaluate kinetic character of zinc transport. RESULTS Increase of extracellular zinc level could enhance the influx of zinc, but when the osteoblast became zinc deficiency the influx of zinc decreased. The histidine, Na+、K+-ATPase enzyme inhibitor had no effect on zinc transport into the cell, but Ca2+ channel blocker could enhance the influx of zinc. CONCLUSION The excellular level of zinc could influence zinc transport into osteoblasts, and Ca2+ channel could interact with Zn2+ transport.%目的研究锌在成骨细胞跨膜转运的动力学特点及影响因素,为阐明锌在骨发育中的作用提供科学依据。方法采用65Zn同位素示踪法研究锌在成骨细胞跨膜转运的动力学特点;分别研究组氨酸、Na+、K+泵抑制剂、Ca2+离子通道阻滞剂对成骨细胞锌转运的影响。结果细胞外锌浓度增加可以促进锌转运入胞内,但锌缺乏使锌胞内转运减少;组氨酸、Na+、K+泵抑制剂对锌转运无影响;Ca2+离子通道阻滞剂促进锌内流。结论成骨细胞外环境锌水平可以影响成骨细胞锌转运及胞内锌水平,Ca2+离子通道与Zn2+通道可能相互影响。

  10. The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Fukada

    Full Text Available BACKGROUND: Zinc (Zn is an essential trace element and it is abundant in connective tissues, however biological roles of Zn and its transporters in those tissues and cells remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that mice deficient in Zn transporter Slc39a13/Zip13 show changes in bone, teeth and connective tissue reminiscent of the clinical spectrum of human Ehlers-Danlos syndrome (EDS. The Slc39a13 knockout (Slc39a13-KO mice show defects in the maturation of osteoblasts, chondrocytes, odontoblasts, and fibroblasts. In the corresponding tissues and cells, impairment in bone morphogenic protein (BMP and TGF-beta signaling were observed. Homozygosity for a SLC39A13 loss of function mutation was detected in sibs affected by a unique variant of EDS that recapitulates the phenotype observed in Slc39a13-KO mice. CONCLUSIONS/SIGNIFICANCE: Hence, our results reveal a crucial role of SLC39A13/ZIP13 in connective tissue development at least in part due to its involvement in the BMP/TGF-beta signaling pathways. The Slc39a13-KO mouse represents a novel animal model linking zinc metabolism, BMP/TGF-beta signaling and connective tissue dysfunction.

  11. Effects of zinc supplementation and zinc chelation on in vitro β-cell function in INS-1E cells

    DEFF Research Database (Denmark)

    Nygaard, Sanne Bjørn; Larsen, Agnete; Knuhtsen, Astrid;

    2014-01-01

    BACKGROUND: Zinc is essential for the activities of pancreatic β-cells, especially insulin storage and secretion. Insulin secretion leads to co-release of zinc which contributes to the paracrine communication in the pancreatic islets. Zinc-transporting proteins (zinc-regulated transporter, iron......-regulated transporter-like proteins [ZIPs] and zinc transporters [ZnTs]) and metal-buffering proteins (metallothioneins, MTs) tightly regulate intracellular zinc homeostasis. The present study investigated how modulation of cellular zinc availability affects β-cell function using INS-1E cells. RESULTS: Using INS-1E...... cells, we found that zinc supplementation and zinc chelation had significant effects on insulin content and insulin secretion. Supplemental zinc within the physiological concentration range induced insulin secretion. Insulin content was reduced by zinc chelation with N,N,N',N-tektrakis(2-pyridylmethyl...

  12. Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population).

    Science.gov (United States)

    Küpper, Hendrik; Kochian, Leon V

    2010-01-01

    We investigated changes in mineral nutrient uptake and cellular expression levels for metal transporter genes in the cadmium (Cd)/zinc (Zn) hyperaccumulator, Thlaspi caerulescens during whole plant and leaf ontogenesis under different long-term treatments with Zn and Cd. Quantitative mRNA in situ hybridization (QISH) revealed that transporter gene expression changes not only dependent on metal nutrition/toxicity, but even more so during plant and leaf development. The main mRNA abundances found were: ZNT1, mature leaves of young plants; ZNT5, young leaves of young plants; MTP1 (= ZTP1 = ZAT), young leaves of both young and mature plants. Surprisingly different cellular expression patterns were found for ZNT1 and ZNT5, both belonging to the ZIP family of transition metal transporters: ZNT1, photosynthetic mesophyll and bundle sheath cells; ZNT5, nonphotosynthetic epidermal metal storage cells and bundle sheath cells. Thus, ZNT1 may function in micronutrient nutrition while ZNT5 may be involved in metal storage associated with hyperaccumulation. Cadmium inhibited the uptake of Zn, iron (Fe) and manganese (Mn), probably by competing for transporters or by interfering with the regulation of transporter gene expression. Cadmium-induced changes in cellular expression for ZNT1, ZNT5 and MTP1 could also be part of plant acclimatization to Cd toxicity. Defence against Cd toxicity involved enhanced uptake of magnesium (Mg), calcium (Ca) and sulphur (S). PMID:19843304

  13. Zinc transporter 3 (ZnT3) gene deletion reduces spinal cord white matter damage and motor deficits in a murine MOG-induced multiple sclerosis model.

    Science.gov (United States)

    Choi, Bo Young; Kim, In Yeol; Kim, Jin Hee; Kho, A Ra; Lee, Song Hee; Lee, Bo Eun; Sohn, Min; Koh, Jae-Young; Suh, Sang Won

    2016-10-01

    The present study aimed to evaluate the role of zinc transporter 3 (ZnT3) on multiple sclerosis (MS) pathogenesis. Experimental autoimmune encephalomyelitis (EAE), a disease model of multiple sclerosis, was induced by immunization with myelin oligodendrocyte glycoprotein (MOG35-55) in female mice. Three weeks after the initial immunization, demyelination, immune cell infiltration and blood brain barrier (BBB) disruption in the spinal cord were analyzed. Clinical signs of EAE first appeared on day 11 and reached a peak level on day 19 after the initial immunization. ZnT3 gene deletion profoundly reduced the daily clinical score of EAE. The ZnT3 gene deletion-mediated inhibition of the clinical course of EAE was accompanied by suppression of inflammation and demyelination in the spinal cord. The motor deficit accompanying neuropathological changes associated with EAE were mild in ZnT3 gene deletion mice. This reduction in motor deficit was accompanied by coincident reductions in demyelination and infiltration of encephalitogenic immune cells including CD4+ T cells, CD8+ T cells, CD20+ B cells and F4/80+ microglia in the spinal cord. These results demonstrate that ZnT3 gene deletion inhibits the clinical features and neuropathological changes associated with EAE. ZnT3 gene deletion also remarkably inhibited formation of EAE-associated aberrant synaptic zinc patches, matrix metalloproteinases-9 (MMP-9) activation and BBB disruption. Therefore, amelioration of EAE-induced clinical and neuropathological changes by ZnT3 gene deletion suggests that vesicular zinc may be involved in several steps of MS pathogenesis. PMID:27370228

  14. Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza sativa L.) during Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification.

    Science.gov (United States)

    Yoneyama, Tadakatsu; Ishikawa, Satoru; Fujimaki, Shu

    2015-01-01

    Zinc (Zn) and iron (Fe) are essential but are sometimes deficient in humans, while cadmium (Cd) is toxic if it accumulates in the liver and kidneys at high levels. All three are contained in the grains of rice, a staple cereal. Zn and Fe concentrations in rice grains harvested under different levels of soil/hydroponic metals are known to change only within a small range, while Cd concentrations show greater changes. To clarify the mechanisms underlying such different metal contents, we synthesized information on the routes of metal transport and accumulation in rice plants by examining metal speciation, metal transporters, and the xylem-to-phloem transport system. At grain-filling, Zn and Cd ascending in xylem sap are transferred to the phloem by the xylem-to-phloem transport system operating at stem nodes. Grain Fe is largely derived from the leaves by remobilization. Zn and Fe concentrations in phloem-sap and grains are regulated within a small range, while Cd concentrations vary depending on xylem supply. Transgenic techniques to increase concentrations of the metal chelators (nicotianamine, 2'-deoxymugineic acid) are useful in increasing grain Zn and Fe concentrations. The elimination of OsNRAMP5 Cd-uptake transporter and the enhancement of root cell vacuolar Cd sequestration reduce uptake and root-to-shoot transport, respectively, resulting in a reduction of grain Cd accumulation. PMID:26287170

  15. Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza sativa L. during Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification

    Directory of Open Access Journals (Sweden)

    Tadakatsu Yoneyama

    2015-08-01

    Full Text Available Zinc (Zn and iron (Fe are essential but are sometimes deficient in humans, while cadmium (Cd is toxic if it accumulates in the liver and kidneys at high levels. All three are contained in the grains of rice, a staple cereal. Zn and Fe concentrations in rice grains harvested under different levels of soil/hydroponic metals are known to change only within a small range, while Cd concentrations show greater changes. To clarify the mechanisms underlying such different metal contents, we synthesized information on the routes of metal transport and accumulation in rice plants by examining metal speciation, metal transporters, and the xylem-to-phloem transport system. At grain-filling, Zn and Cd ascending in xylem sap are transferred to the phloem by the xylem-to-phloem transport system operating at stem nodes. Grain Fe is largely derived from the leaves by remobilization. Zn and Fe concentrations in phloem-sap and grains are regulated within a small range, while Cd concentrations vary depending on xylem supply. Transgenic techniques to increase concentrations of the metal chelators (nicotianamine, 2′-deoxymugineic acid are useful in increasing grain Zn and Fe concentrations. The elimination of OsNRAMP5 Cd-uptake transporter and the enhancement of root cell vacuolar Cd sequestration reduce uptake and root-to-shoot transport, respectively, resulting in a reduction of grain Cd accumulation.

  16. Zinc biofortification of cereals

    DEFF Research Database (Denmark)

    Palmgren, Michael; Clemens, Stephan; Williams, Lorraine E.;

    2008-01-01

    The goal of biofortification is to develop plants that have an increased content of bioavailable nutrients in their edible parts. Cereals serve as the main staple food for a large proportion of the world population but have the shortcoming, from a nutrition perspective, of being low in zinc...... and other essential nutrients. Major bottlenecks in plant biofortification appear to be the root-shoot barrier and - in cereals - the process of grain filling. New findings demonstrate that the root-shoot distribution of zinc is controlled mainly by heavy metal transporting P1B-ATPases and the metal...... tolerance protein (MTP) family. A greater understanding of zinc transport is important to improve crop quality and also to help alleviate accumulation of any toxic metals....

  17. Study of transport properties of copper/zinc-oxide-nanorods-based Schottky diode fabricated on textile fabric

    Science.gov (United States)

    Khan, Azam; Hussain, Mushtaque; Abbasi, Mazhar Ali; Hussain Ibupoto, Zafar; Nur, Omer; Willander, Magnus

    2013-12-01

    In this work, a copper/zinc-oxide (ZnO)-nanorods-based Schottky diode was fabricated on the textile fabric substrate. ZnO nanorods were grown on a silver-coated textile fabric substrate by using the hydrothermal route. Scanning electron microscopy and x-ray diffraction techniques were used for the structural study. The electrical characterization of copper/ZnO-nanorods-based Schottky diodes was investigated by using a semiconductor parameter analyzer and an impedance spectrometer. The current density-voltage (J-V) and capacitance-voltage (C-V) measurements were used to estimate the electrical parameters. The threshold voltage (Vth), ideality factor (η), barrier height (ϕb), reverse saturation current density (Js), carrier concentration (ND) and built-in potential (Vbi) were determined by using experimental data and (simulated) curve fitting. This study describes the possible fabrication of electronic and optoelectronic devices on textile fabric substrate with an acceptable performance.

  18. Different role of zinc transporter 8 between type 1 diabetes mellitus and type 2 diabetes mellitus.

    Science.gov (United States)

    Yi, Bo; Huang, Gan; Zhou, Zhiguang

    2016-07-01

    Diabetes can be simply classified into type 1 diabetes mellitus and type 2 diabetes mellitus. Zinc transporter 8 (ZnT8), a novel islet autoantigen, is specifically expressed in insulin-containing secretory granules of β-cells. Genetic studies show that the genotypes of SLC30A8 can determine either protective or diabetogenic response depending on environmental and lifestyle factors. The ZnT8 protein expression, as well as zinc content in β-cells, was decreased in diabetic mice. Thus, ZnT8 might participate in insulin biosynthesis and release, and subsequently involved deteriorated β-cell function through direct or indirect mechanisms in type 1 diabetes mellitus and type 2 diabetes mellitus. From a clinical feature standpoint, the prevalence of ZnT8A is gradiently increased in type 2 diabetes mellitus, latent autoimmune diabetes in adults and type 1 diabetes mellitus. The frequency and epitopes of ZnT8-specific T cells and cytokine release by ZnT8-specific T cells are also different in diabetic patients and healthy controls. Additionally, the response to ZnT8 administration is also different in type 1 diabetes mellitus and type 2 diabetes mellitus. In the present review, we summarize the literature about clinical aspects of ZnT8 in the pathogenesis of diabetes, and suggest that ZnT8 might play a different role between type 1 diabetes mellitus and type 2 diabetes mellitus.

  19. The Role of Transition Metal Transporters for Iron, Zinc, Manganese, and Copper in the Pathogenesis of Yersinia pestis

    Science.gov (United States)

    Perry, Robert D.; Bobrov, Alexander G.; Fetherston, Jacqueline D.

    2015-01-01

    Yersinia pestis, the causative agent of bubonic, septicemic and pneumonic plague, encodes a multitude of Fe transport systems. Some of these are defective due to frameshift or IS element insertions, while others are functional in vitro but have no established role in causing infections. Indeed only 3 Fe transporters (Ybt, Yfe and Feo) have been shown to be important in at least one form of plague. The yersiniabactin (Ybt) system is essential in the early dermal/lymphatic stages of bubonic plague, irrelevant in the septicemic stage, and critical in pneumonic plague. Two Mn transporters have been characterized (Yfe and MntH). These two systems play a role in bubonic plague but the double yfe mntH mutant is fully virulent in a mouse model of pneumonic plague. The same in vivo phenotype occurs with a mutant lacking two (Yfe and Feo) of four ferrous transporters. A role for the Ybt siderophore in Zn acquisition has been revealed. Ybt-dependent Zn acquisition uses a transport system completely independent of the Fe-Ybt uptake system. Together Ybt components and ZnuABC play a critical role in Zn acquisition in vivo. Single mutants in either system retain high virulence in a mouse model of septicemic plague while the double mutant is completely avirulent. PMID:25891079

  20. Sorption reactions in groundwater: various aspects to modelling the transport behaviour of zinc; Sorptionsreaktionen im Grundwasser: Unterschiedliche Aspekte bei der Modellierung des Transportverhaltens von Zink

    Energy Technology Data Exchange (ETDEWEB)

    Hadeler, A.

    1999-08-01

    The dispersal of trace substance in groundwater may be limited by dissolution and precipitation and, of particular interest in this paper, by sorption and desorption processes. These surface-active processes, which have a decisive influence on groundwater quality, depend on the concomitant geochemical conditions prevailing in the water, the constituents of the aquifer and on the surface properties of the solids. Taking the geochemical conditions prevailing naturally in brown coal mining areas as a point of departure this study was aimed at examining the influence of acidification processes on the transport behaviour inorganic pollutants for the example of zinc. For this purpose oxic column trials were carried out on sandy aquifer material. The data were supplemented by a detailed characterisation of the solid surfaces and modelled on the basis of a transport-reaction model as well as mechanistically with due regard to surface complexing. [German] Die Ausbreitung von Spurenstoffen im Grundwasser wird ausser durch Loesungs- und Faellungsprozesse vor allem durch Sorptions- bzw. Desorptionsvorgaenge limitiert. Diese fuer die Grundwasserqualitaet entscheidenden oberflaechenaktiven Prozesse sind von den variablen geochemischen Randbedingungen im Wasser, vom Stoffbestand des Aquifers und von den Oberflaecheneigenschaften der Feststoffe abhaengig. In Anlehnung an die natuerlichen im Bereich von Braunkohle-Abbaugebieten herrschenden geochemischen Bedingungen wurde der Einfluss von Versauerungsprozessen auf das Transportverhalten von anorganischen Schadstoffen, am Beispiel von Zink, auf der Basis von oxischen Saeulenversuchen an sandigem Aquifermaterial untersucht. Die Daten wurden durch eine detaillierte Charakterisierung der Feststoff-Oberflaechen ergaenzt und sowohl mit Hilfe eines Transport-Reaktionsmodells als auch mechanistisch unter Einbeziehung der Oberflaechenkomplexierung modelliert. (orig.)

  1. Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis

    Science.gov (United States)

    Tamayo, Elisabeth; Gómez-Gallego, Tamara; Azcón-Aguilar, Concepción; Ferrol, Nuria

    2014-01-01

    Arbuscular mycorrhizal fungi (AMF), belonging to the Glomeromycota, are soil microorganisms that establish mutualistic symbioses with the majority of higher plants. The efficient uptake of low mobility mineral nutrients by the fungal symbiont and their further transfer to the plant is a major feature of this symbiosis. Besides improving plant mineral nutrition, AMF can alleviate heavy metal toxicity to their host plants and are able to tolerate high metal concentrations in the soil. Nevertheless, we are far from understanding the key molecular determinants of metal homeostasis in these organisms. To get some insights into these mechanisms, a genome-wide analysis of Cu, Fe and Zn transporters was undertaken, making use of the recently published whole genome of the AMF Rhizophagus irregularis. This in silico analysis allowed identification of 30 open reading frames in the R. irregularis genome, which potentially encode metal transporters. Phylogenetic comparisons with the genomes of a set of reference fungi showed an expansion of some metal transporter families. Analysis of the published transcriptomic profiles of R. irregularis revealed that a set of genes were up-regulated in mycorrhizal roots compared to germinated spores and extraradical mycelium, which suggests that metals are important for plant colonization. PMID:25352857

  2. Transcriptional Regulation, Metal Binding Properties and Structure of Pden1597, an Unusual Zinc Transport Protein from Paracoccus denitrificans.

    Science.gov (United States)

    Handali, Melody; Neupane, Durga P; Roychowdhury, Hridindu; Yukl, Erik T

    2015-05-01

    ATP-binding cassette (ABC) transporters of the cluster 9 family are ubiquitous among bacteria and essential for acquiring Zn(2+) and Mn(2+) from the environment or, in the case of pathogens, from the host. These rely on a substrate-binding protein (SBP) to coordinate the relevant metal with high affinity and specificity and subsequently release it to a membrane permease for translocation into the cytoplasm. Although a number of cluster 9 SBP structures have been determined, the structural attributes conferring Zn(2+) or Mn(2+) specificity remain ambiguous. Here we describe the gene expression profile, in vitro metal binding properties, and crystal structure of a new cluster 9 SBP from Paracoccus denitrificans we have called AztC. Although all of our results strongly indicate Zn(2+) over Mn(2+) specificity, the Zn(2+) ion is coordinated by a conserved Asp residue only observed to date as a metal ligand in Mn(2+)-specific SBPs. The unusual sequence properties of this protein are shared among close homologues, including members from the human pathogens Klebsiella pneumonia and Enterobacter aerogenes, and would seem to suggest a subclass of Zn(2+)-specific transporters among the cluster 9 family. In any case, the unusual coordination environment of AztC expands the already considerable range of those available to Zn(2+)-specific SBPs and highlights the presence of a His-rich loop as the most reliable indicator of Zn(2+) specificity. PMID:25787075

  3. Zinc transporter 8 (ZnT8 expression is reduced by ischemic insults: a potential therapeutic target to prevent ischemic retinopathy.

    Directory of Open Access Journals (Sweden)

    Michael Deniro

    Full Text Available The zinc (Zn(++ transporter ZnT8 plays a crucial role in zinc homeostasis. It's been reported that an acute decrease in ZnT8 levels impairs β cell function and Zn(++ homeostasis, which contribute to the pathophysiology of diabetes mellitus (DM. Although ZnT8 expression has been detected in the retinal pigment epithelium (RPE, its expression profile in the retina has yet to be determined. Furthermore, the link between diabetes and ischemic retinopathy is well documented; nevertheless, the molecular mechanism(s of such link has yet to be defined. Our aims were to; investigate the expression profile of ZnT8 in the retina; address the influence of ischemia on such expression; and evaluate the influence of YC-1; (3-(50-hydroxymethyl-20-furyl-1-benzyl indazole, a hypoxia inducible factor-1 (HIF-1 inhibitor, on the status of ZnT8 expression. We used real-time RT-PCR, immunohistochemistry, and Western blot in the mouse model of oxygen-induced retinopathy (OIR and Müller cells to evaluate the effects of ischemia/hypoxia and YC-1 on ZnT8 expression. Our data indicate that ZnT8 was strongly expressed in the outer nuclear layer (ONL, outer plexiform layer (OPL, ganglion cell layer (GCL, and nerve fiber layer (NFL, whereas the photoreceptor layer (PRL, inner nuclear layer (INL and inner plexiform layer (IPL showed moderate ZnT8 immunoreactivity. Furthermore, we demonstrate that retinal ischemic insult induces a significant downregulation of ZnT8 at the message and protein levels, YC-1 rescues the injured retina by restoring the ZnT8 to its basal homeostatic levels in the neovascular retinas. Our data indicate that ischemic retinopathy maybe mediated by aberrant Zn(++ homeostasis caused by ZnT8 downregulation, whereas YC-1 plays a neuroprotective role against ischemic insult. Therefore, targeting ZnT8 provides a therapeutic strategy to combat neovascular eye diseases.

  4. The Cation Diffusion Facilitator Gene cdf-2 Mediates Zinc Metabolism in Caenorhabditis elegans

    OpenAIRE

    Davis, Diana E.; Roh, Hyun Cheol; Deshmukh, Krupa; Bruinsma, Janelle J.; Schneider, Daniel L.; Guthrie, James; Robertson, J. David; Kornfeld, Kerry

    2009-01-01

    Zinc is essential for many cellular processes. To use Caenorhabditis elegans to study zinc metabolism, we developed culture conditions allowing full control of dietary zinc and methods to measure zinc content of animals. Dietary zinc dramatically affected growth and zinc content; wild-type worms survived from 7 μm to 1.3 mm dietary zinc, and zinc content varied 27-fold. We investigated cdf-2, which encodes a predicted zinc transporter in the cation diffusion facilitator family. cdf-2 mRNA lev...

  5. Gene expression of the zinc transporter ZIP14 (SLC39a14) is affected by weight loss and metabolic status and associates with PPARγ in human adipose tissue and 3T3-L1 pre-adipocytes

    DEFF Research Database (Denmark)

    Juul, Trine Maxel; Smidt, Kamille; Larsen, Agnete;

    2015-01-01

    BACKGROUND: The expansion and function of adipose tissue are important during the development of insulin resistance and inflammation in obesity. Zinc dyshomeostasis is common in obese individuals. In the liver, zinc influx transporter ZIP14, affects proliferation and glucose metabolism but the role...... of ZIP14 in adipose tissue is still unknown. This study investigates ZIP14 gene expression in human adipose tissue before and after weight loss as well as the regulation of ZIP14 during early adipogenesis. METHODS: Fourteen obese individuals were investigated before and after a 10 week weight loss...... intervention and compared to 14 non-obese controls. Gene expressions of ZIP14 and peroxisome proliferator-activated receptor γ (PPARγ) were measured in subcutaneous adipose tissue and correlated with metabolic and inflammatory markers. Further, we investigated gene expression of ZIP14 and PPARγ during early...

  6. Overview of Inherited Zinc Deficiency in Infants and Children.

    Science.gov (United States)

    Kambe, Taiho; Fukue, Kazuhisa; Ishida, Riko; Miyazaki, Shiho

    2015-01-01

    Zinc nutrition is of special practical importance in infants and children. Poor zinc absorption causes zinc deficiency, which leads to a broad range of consequences such as alopecia, diarrhea, skin lesions, taste disorders, loss of appetite, impaired immune function and neuropsychiatric changes and growth retardation, thus potentially threatening life in infants and children. In addition to dietary zinc deficiency, inherited zinc deficiency, which rarely occurs, is found during the infant stage and early childhood. Recent molecular genetic studies have identified responsible genes for two inherited zinc deficiency disorders, acrodermatitis enteropathica (AE) and transient neonatal zinc deficiency (TNZD), clarifying the pathological mechanisms. Both of these zinc deficiencies are caused by mutations of zinc transporters, although the mechanisms are completely different. AE is an autosomal recessive disorder caused by mutations of the ZIP4 gene, consequently resulting in defective absorption of zinc in the small intestine. In contrast, TNZD is a disorder caused by mutations of the ZnT2 gene, which results in low zinc breast milk in the mother, consequently causing zinc deficiency in the breast-fed infant. In both cases, zinc deficiency symptoms are ameliorated by a daily oral zinc supplementation for the patients. Zinc is definitely one of the key factors for the healthy growth of infants and children, and thus zinc nutrition should receive much attention. PMID:26598882

  7. Zinc'ing down RNA polymerase I

    OpenAIRE

    Chanfreau, Guillaume F.

    2013-01-01

    Most RNA polymerases contain zinc, yet the precise function of zinc and its influence of polymerases stability are unknown. A recent study provides evidence that zinc levels control the stability of RNA polymerase I in vivo and that the enzyme might serve as a zinc reservoir for other proteins.

  8. Zinc Addition and its Challenge in Chinese NPP

    International Nuclear Information System (INIS)

    For primary water stress corrosion cracking mitigation and plant dose rates reduction, soluble zinc acetate will be added to reactor coolant in some new Chinese nuclear power plants in the next several years. In the nuclear power plant with zinc addition to reactor coolant, the effects of zinc on fuel cladding corrosion, fuel with sub-cooled nucleate boiling and corrosion product transport must be taken into account, and zinc implementation risk must be assessed. In order to deal with the challenge caused by zinc addition, some research, such as effect of zinc concentration on primary water stress corrosion cracking in reactor coolant system materials and analysis of corrosion product ion in reactor coolant, are being performed in China. Additionally, a zinc implementation risk assessment procedure will be developed for nuclear power plants. In the paper, the background and benefit/challenge of zinc addition are briefly described, and the work in hand for zinc addition is also summarized. (author)

  9. Symptomatic zinc deficiency in experimental zinc deprivation.

    OpenAIRE

    Taylor, C M; Goode, H F; Aggett, P J; Bremner, I; Walker, B E; Kelleher, J.

    1992-01-01

    An evaluation of indices of poor zinc status was undertaken in five male subjects in whom dietary zinc intake was reduced from 85 mumol d-1 in an initial phase of the study to 14 mumol d-1. One of the subjects developed features consistent with zinc deficiency after receiving the low zinc diet for 12 days. These features included retroauricular acneform macullo-papular lesions on the face, neck, and shoulders and reductions in plasma zinc, red blood cell zinc, neutrophil zinc and plasma alkal...

  10. Three-dimensional structure of β-cell-specific zinc transporter, ZnT-8, predicted from the type 2 diabetes-associated gene variant SLC30A8 R325W

    Directory of Open Access Journals (Sweden)

    Weijers Rob NM

    2010-06-01

    Full Text Available Abstract Background We examined the effects of the R325W mutation on the three-dimensional (3D structure of the β-cell-specific Zn2+ (zinc transporter ZnT-8. Methods A model of the C-terminal domain of the human ZnT-8 protein was generated by homology modeling based on the known crystal structure of the Escherichia coli (E. coli zinc transporter YiiP at 3.8 Å resolution. Results The homodimer ZnT-8 protein structure exists as a Y-shaped architecture with Arg325 located at the ultimate bottom of this motif at approximately 13.5 Å from the transmembrane domain juncture. The C-terminal domain sequences of the human ZnT-8 protein and the E. coli zinc transporter YiiP share 12.3% identical and 39.5% homologous residues resulting in an overall homology of 51.8%. Validation statistics of the homology model showed a reasonable quality of the model. The C-terminal domain exhibited an αββαβ fold with Arg325 as the penultimate N-terminal residue of the α2-helix. The side chains of both Arg325 and Trp325 point away from the interface with the other monomer, whereas the ε-NH3+ group of Arg325 is predicted to form an ionic interaction with the β-COO- group of Asp326 as well as Asp295. An amino acid alignment of the β2-α2 C-terminal loop domain revealed a variety of neutral amino acids at position 325 of different ZnT-8 proteins. Conclusions Our validated homology models predict that both Arg325 and Trp325, amino acids with a helix-forming behavior, and penultimate N-terminal residues in the α2-helix of the C-terminal domain, are shielded by the planar surface of the three cytoplasmic β-strands and hence unable to affect the sensing capacity of the C-terminal domain. Moreover, the amino acid residue at position 325 is too far removed from the docking and transporter parts of ZnT-8 to affect their local protein conformations. These data indicate that the inherited R325W abnormality in SLC30A8 may be tolerated and results in adequate zinc transfer

  11. Iron and zinc complexation in wild-type and ferritin-expressing wheat grain: implications for mineral transport into developing grain

    DEFF Research Database (Denmark)

    Neal, Andrew L; Geraki, Kalotina; Borg, Søren;

    2013-01-01

    We have used synchrotron-based X-ray fluorescence and absorption techniques to establish both metal distribution and complexation in mature wheat grains. In planta, extended X-ray absorption fine structure (EXAFS) spectroscopy reveals iron phytate and zinc phytate structures in aleurone cells...... and in modified aleurone cells in the transfer region of the grain: iron is coordinated octahedrally by six oxygen atoms and fewer than two phosphorous atoms. Zinc is coordinated tetrahedrally by four oxygen atoms and approximately 1.5 phosphorus atoms in an asymmetric coordination shell. We also present evidence...

  12. Improved electron transport layer

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention provides: a method of preparing a coating ink for forming a zinc oxide electron transport layer, comprising mixing zinc acetate and a wetting agent in water or methanol; a coating ink comprising zinc acetate and a wetting agent in aqueous solution or methanolic solution; a...... method of preparing a zinc oxide electron transporting layer, which method comprises: i) coating a substrate with the coating ink of the present invention to form a film; ii) drying the film; and iii) heating the dry film to convert the zinc acetate substantially to ZnO; a method of preparing an organic...... photovoltaic device or an organic LED having a zinc oxide electron transport layer, the method comprising, in this order: a) providing a substrate bearing a first electrode layer; b) forming an electron transport layer according to the following method: i) coating a coating ink comprising an ink according to...

  13. Properties of Zip4 accumulation during zinc deficiency and its usefulness to evaluate zinc status: a study of the effects of zinc deficiency during lactation.

    Science.gov (United States)

    Hashimoto, Ayako; Nakagawa, Miki; Tsujimura, Natsuki; Miyazaki, Shiho; Kizu, Kumiko; Goto, Tomoko; Komatsu, Yusuke; Matsunaga, Ayu; Shirakawa, Hitoshi; Narita, Hiroshi; Kambe, Taiho; Komai, Michio

    2016-03-01

    Systemic and cellular zinc homeostasis is elaborately controlled by ZIP and ZnT zinc transporters. Therefore, detailed characterization of their expression properties is of importance. Of these transporter proteins, Zip4 functions as the primarily important transporter to control systemic zinc homeostasis because of its indispensable function of zinc absorption in the small intestine. In this study, we closely investigated Zip4 protein accumulation in the rat small intestine in response to zinc status using an anti-Zip4 monoclonal antibody that we generated and contrasted this with the zinc-responsive activity of the membrane-bound alkaline phosphatase (ALP). We found that Zip4 accumulation is more rapid in response to zinc deficiency than previously thought. Accumulation increased in the jejunum as early as 1 day following a zinc-deficient diet. In the small intestine, Zip4 protein expression was higher in the jejunum than in the duodenum and was accompanied by reduction of ALP activity, suggesting that the jejunum can become zinc deficient more easily. Furthermore, by monitoring Zip4 accumulation levels and ALP activity in the duodenum and jejunum, we reasserted that zinc deficiency during lactation may transiently alter plasma glucose levels in the offspring in a sex-specific manner, without affecting homeostatic control of zinc metabolism. This confirms that zinc nutrition during lactation is extremely important for the health of the offspring. These results reveal that rapid Zip4 accumulation provides a significant conceptual advance in understanding the molecular basis of systemic zinc homeostatic control, and that properties of Zip4 protein accumulation are useful to evaluate zinc status closely. PMID:26702153

  14. Properties of Zip4 accumulation during zinc deficiency and its usefulness to evaluate zinc status: a study of the effects of zinc deficiency during lactation.

    Science.gov (United States)

    Hashimoto, Ayako; Nakagawa, Miki; Tsujimura, Natsuki; Miyazaki, Shiho; Kizu, Kumiko; Goto, Tomoko; Komatsu, Yusuke; Matsunaga, Ayu; Shirakawa, Hitoshi; Narita, Hiroshi; Kambe, Taiho; Komai, Michio

    2016-03-01

    Systemic and cellular zinc homeostasis is elaborately controlled by ZIP and ZnT zinc transporters. Therefore, detailed characterization of their expression properties is of importance. Of these transporter proteins, Zip4 functions as the primarily important transporter to control systemic zinc homeostasis because of its indispensable function of zinc absorption in the small intestine. In this study, we closely investigated Zip4 protein accumulation in the rat small intestine in response to zinc status using an anti-Zip4 monoclonal antibody that we generated and contrasted this with the zinc-responsive activity of the membrane-bound alkaline phosphatase (ALP). We found that Zip4 accumulation is more rapid in response to zinc deficiency than previously thought. Accumulation increased in the jejunum as early as 1 day following a zinc-deficient diet. In the small intestine, Zip4 protein expression was higher in the jejunum than in the duodenum and was accompanied by reduction of ALP activity, suggesting that the jejunum can become zinc deficient more easily. Furthermore, by monitoring Zip4 accumulation levels and ALP activity in the duodenum and jejunum, we reasserted that zinc deficiency during lactation may transiently alter plasma glucose levels in the offspring in a sex-specific manner, without affecting homeostatic control of zinc metabolism. This confirms that zinc nutrition during lactation is extremely important for the health of the offspring. These results reveal that rapid Zip4 accumulation provides a significant conceptual advance in understanding the molecular basis of systemic zinc homeostatic control, and that properties of Zip4 protein accumulation are useful to evaluate zinc status closely.

  15. 锌转运体8在胰岛功能和血糖稳态中的作用%The Role of Zinc Transporter 8 in Islet Function and Glucose Homeostasis

    Institute of Scientific and Technical Information of China (English)

    钱莉

    2011-01-01

    ZnT8( SLC30A8 )is a newly discovered islet-specific zinc transporter that controls zinc efflux into the extracellular matrix and intracellular vesicles to reduce the concentration of zinc in the cytoplasm.The polymorphism of the SLC30A8 gene is associated with susceptibility to type 2 diabetes. ZnT8 deletion decreased fasting and glucose - stimulated insulin secretion, however the blood glucose levels were not significantly changed in mice. In summary, SLC30A8 gene deletion is accompanied by a modest impairment in insulin secretion without major alterations in glucose metabolism.%锌转运体8(ZnT8)是新近发现的特异性高表达于胰岛的锌转运体,主要功能是参与锌在细胞内的区室化以及锌的外排,从而降低胞质内锌的浓度.同时,SLC30A8多态性影响2型糖尿病的易患性,与2型糖尿病的发病机制有关.虽然ZnT8全身剔除的小鼠空腹及葡萄糖刺激后胰岛素均减少,但血糖浓度无明显改变,表明了ZnT8的缺乏影响胰岛功能,而对全身血糖代谢的影响比较局限.

  16. Integrated criteria document Zinc

    NARCIS (Netherlands)

    Cleven RFMJ; Janus JA; Annema JA; Slooff W

    1993-01-01

    This report contains information on zinc and zinc compounds concerning standards, emissions, exposure levels and effect levels. It includes a risk evaluation and presents proposals for maximum permissible concentrations of zinc in the environment. This study indicates that the concentration of zinc

  17. Zinc glycine chelate absorption characteristics in Sprague Dawley rat.

    Science.gov (United States)

    Yue, M; Fang, S L; Zhuo, Z; Li, D D; Feng, J

    2015-06-01

    This study was conducted to investigate absorption characteristics of zinc glycine chelate (Zn-Gly) by evaluating tissues zinc status and the expression of zinc transporters in rats. A total of 24 male rats were randomly allocated to three treatments and administered either saline or 35 mg Zn/kg body weight from zinc sulphate (ZnSO4 ) or Zn-Gly by feeding tube separately. Four rats per group were slaughtered and tissues were collected at 2 and 6 h after gavage respectively. Our data showed that Zn-Gly did more effectively in increasing (p < 0.05) serum zinc levels, and the activities of serum and liver alkaline phosphatase (ALP) and liver Cu/Zn superoxide dismutase (Cu/Zn SOD) at 2 and 6 h. By 2 h after the zinc load, the mRNA and protein abundance of intestinal metallothionein1 (MT1) and zinc transporter SLC30A1 (ZnT1) were higher (p < 0.05), and zinc transporter SLC39A4 (Zip4) lower (p < 0.05) in ZnSO4 compared to other groups. Zinc transporter SLC39A5 (Zip5) mRNA expression was not zinc responsive, but Zip5 protein abundance was remarkably (p < 0.05) increased in ZnSO4 2 h later. Overall, our results indicated that in short-term periods, Zn-Gly was more effective in improving body zinc status than ZnSO4 , and ZnSO4 did more efficiently on the regulation of zinc transporters in small intestine.

  18. Progression in the study of zinc transporter LIV-1 and neoplasms%锌转运体LIV-1与肿瘤相关性的研究进展

    Institute of Scientific and Technical Information of China (English)

    申荣喜; 杨甲梅

    2011-01-01

    LIV-1 is a member of LZT subfamily of zinc transporters ZIP family. LIV-1 protein containing eight ( transmembrane, TM) domains is predicted to locate in plasma membranes. LIV-1 has increased incidence of histidine-rich repeats on extracellular loop between TM2 and TM3 and the extracellular N terminus. One unique feature is the presence of a motif( HEXPHEXG)in TM5 that fits the consensus sequence for the zinc-binding site of matrix metalloprotenses. LIV-1 can transport Zn2+ into cells and be regulated by many factors such as Zn2 + ,oestrogen, epidermal growth factor and so on. Because of its involving into epithelial-mesenchymal transition(EMT), LIV-1 has tight relations with development and progression of cancer,such as breast cancer,pancreatic cancer and prostate cancer.%LIV-1是锌转运体ZIP家族中LZT亚族的成员之一.LIV-1蛋白主要定位于细胞膜,富含组氨酸残基,由8个跨膜(TM)区域组成,位于胞外的TM2、TM3间的袢环及N末端富含组氨酸残基;TM5含有特征性的HEXPHEXGD片段,与金属蛋白酶中金属离子结合位点的共有序列十分相似.锌转运体LIV-1可以将Zn2+主动转运入细胞内,其表达受Zn2+、雌激素、表皮生长因子等调节,参与上皮-间质细胞转化(EMT),与乳腺癌、胰腺癌、前列腺癌等多种肿瘤的发生发展密切相关.

  19. Zinc: the neglected nutrient.

    Science.gov (United States)

    Shambaugh, G E

    1989-03-01

    Zinc was first recognized as essential for animals at the University of Illinois School of Agriculture in 1916, when it was found that zinc-deficient baby pigs were runty, developed dermatitis on their legs, and were sterile. Zinc deficiency was first recognized in man by Dr. Ananda Prasad of Detroit 26 years ago when he measured serum and hair zinc levels in young male Egyptian dwarfs who had failed to mature and were small in stature. By simply adding zinc to their regular diet, they grew in height and became sexually mature. It is now recognized that dwarfism in males is frequent around the Mediterranean, where wheat is the staple of life and has been grown for 4,000 years on the same soil, thereby resulting in the depletion of zinc. Professor Robert Henkin first suggested that zinc deficiency might cause hearing-nerve impairment. Assay of the soft tissues of the cochlea and vestibule revealed a zinc level higher than that of any other part of the body. Previously, the eye was considered to have the highest level of zinc of any organ. To diagnose zinc deficiency clinically, we use serum zinc assays made at the Mayo Clinic Trace Element Laboratory. With zinc supplementation in patients who are marginally zinc deficient, there has been improvement in tinnitus and sensorineural hearing loss in about one-third of elderly adults. We believe zinc deficiency is one causation of presbycusis; by recognizing and correcting it, a progressive hearing loss can be arrested. PMID:2786676

  20. Zinc: the neglected nutrient.

    Science.gov (United States)

    Shambaugh, G E

    1989-03-01

    Zinc was first recognized as essential for animals at the University of Illinois School of Agriculture in 1916, when it was found that zinc-deficient baby pigs were runty, developed dermatitis on their legs, and were sterile. Zinc deficiency was first recognized in man by Dr. Ananda Prasad of Detroit 26 years ago when he measured serum and hair zinc levels in young male Egyptian dwarfs who had failed to mature and were small in stature. By simply adding zinc to their regular diet, they grew in height and became sexually mature. It is now recognized that dwarfism in males is frequent around the Mediterranean, where wheat is the staple of life and has been grown for 4,000 years on the same soil, thereby resulting in the depletion of zinc. Professor Robert Henkin first suggested that zinc deficiency might cause hearing-nerve impairment. Assay of the soft tissues of the cochlea and vestibule revealed a zinc level higher than that of any other part of the body. Previously, the eye was considered to have the highest level of zinc of any organ. To diagnose zinc deficiency clinically, we use serum zinc assays made at the Mayo Clinic Trace Element Laboratory. With zinc supplementation in patients who are marginally zinc deficient, there has been improvement in tinnitus and sensorineural hearing loss in about one-third of elderly adults. We believe zinc deficiency is one causation of presbycusis; by recognizing and correcting it, a progressive hearing loss can be arrested.

  1. Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza sativa L.) during Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification

    OpenAIRE

    Tadakatsu Yoneyama; Satoru Ishikawa; Shu Fujimaki

    2015-01-01

    Zinc (Zn) and iron (Fe) are essential but are sometimes deficient in humans, while cadmium (Cd) is toxic if it accumulates in the liver and kidneys at high levels. All three are contained in the grains of rice, a staple cereal. Zn and Fe concentrations in rice grains harvested under different levels of soil/hydroponic metals are known to change only within a small range, while Cd concentrations show greater changes. To clarify the mechanisms underlying such different metal contents, we synt...

  2. Is zinc a neuromodulator?

    Science.gov (United States)

    Kay, Alan R; Tóth, Katalin

    2008-01-01

    The vesicles of certain glutamatergic terminals in the mammalian forebrain are replete with ionic zinc. It is believed that during synaptic transmission zinc is released, binds to receptors on the pre- or postsynaptic membranes, and hence acts as a neuromodulator. Although exogenous zinc modulates a wide variety of channels, whether synaptic zinc transits across the synaptic cleft and alters the response of channels has been difficult to establish. We will review the evidence for zinc as a neuromodulator and propose diagnostic criteria for establishing whether it is indeed one. Moreover, we will delineate alternative ways in which zinc might act at synapses.

  3. Bacitracin zinc overdose

    Science.gov (United States)

    Bacitracin zinc is a medicine that is used on cuts and other skin wounds to help prevent infection. Bacitracin ... medicine that kills germs. Small amounts of bacitracin zinc are dissolved in petroleum jelly to create antibiotic ...

  4. Zinc oxide overdose

    Science.gov (United States)

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  5. Zinc Fortification Decreases ZIP1 Gene Expression of Some Adolescent Females with Appropriate Plasma Zinc Levels

    Directory of Open Access Journals (Sweden)

    Rosa O. Méndez

    2014-06-01

    Full Text Available Zinc homeostasis is achieved after intake variation by changes in the expression levels of zinc transporters. The aim of this study was to evaluate dietary intake (by 24-h recall, absorption, plasma zinc (by absorption spectrophotometry and the expression levels (by quantitative PCR, of the transporters ZIP1 (zinc importer and ZnT1 (zinc exporter in peripheral white blood cells from 24 adolescent girls before and after drinking zinc-fortified milk for 27 day. Zinc intake increased (p < 0.001 from 10.5 ± 3.9 mg/day to 17.6 ± 4.4 mg/day, and its estimated absorption from 3.1 ± 1.2 to 5.3 ± 1.3 mg/day. Mean plasma zinc concentration remained unchanged (p > 0.05 near 150 µg/dL, but increased by 31 µg/dL (p < 0.05 for 6/24 adolescents (group A and decreased by 25 µg/dL (p < 0.05 for other 6/24 adolescents (group B. Expression of ZIP1 in blood leukocytes was reduced 1.4-fold (p < 0.006 in group A, while for the expression of ZnT1 there was no difference after intervention (p = 0.39. An increase of dietary zinc after 27-days consumption of fortified-milk did not increase (p > 0.05 the plasma level of adolescent girls but for 6/24 participants from group A in spite of the formerly appropriation, which cellular zinc uptake decreased as assessed by reduction of the expression of ZIP1.

  6. Zinc and gastrointestinal disease

    Institute of Scientific and Technical Information of China (English)

    Sonja; Skrovanek; Katherine; DiGuilio; Robert; Bailey; William; Huntington; Ryan; Urbas; Barani; Mayilvaganan; Giancarlo; Mercogliano; James; M; Mullin

    2014-01-01

    This review is a current summary of the role that both zinc deficiency and zinc supplementation can play in the etiology and therapy of a wide range of gastrointestinal diseases. The recent literature describing zinc action on gastrointestinal epithelial tight junctions and epithelial barrier function is described. Zinc enhancement of gastrointestinal epithelial barrier function may figure prominently in its potential therapeutic action in several gastrointestinal diseases.

  7. Reversing Sports-Related Iron and Zinc Deficiencies.

    Science.gov (United States)

    Loosli, Alvin R.

    1993-01-01

    Many active athletes do not consume enough zinc or iron, which are important for oxygen activation, electron transport, and injury healing. Subclinical deficiencies may impair performance and impair healing times. People who exercise regularly need counseling about the importance of adequate dietary intake of iron and zinc. (SM)

  8. ZINC ABSORPTION BY INFANTS

    Science.gov (United States)

    Zinc is a vital mineral in human nutrition, and rare cases of overt zinc deficiency are well described in term and preterm infants. A variety of methods have been developed to assess zinc absorption, retention, and balance in humans, either using mass (metabolic) balance or stable isotope-based METH...

  9. Serum zinc levels in gestational diabetes

    Directory of Open Access Journals (Sweden)

    Rahimi Sharbaf F

    2008-12-01

    Full Text Available "nBackground: Maternal zinc deficiency during pregnancy has been related to adverse pregnancy outcomes. Most studies in which pregnant women have been supplemented with zinc to examine its effects on the outcome of the pregnancy have been carried out in industrialized countries and the results have been inconclusive. It has been shown that women with gestational diabetes (GDM have lower serum zinc levels than healthy pregnant women, and higher rates of macrosomia. Zinc is required for normal glucose metabolism, and strengthens the insulin-induced transportation of glucose into cells by its effect on the insulin signaling pathway. The purpose of this study was to assess the serum zinc levels of GDM patients and evaluate the effect of zinc supplementation. "nMethods: In the first stage of this prospective controlled study, we enrolled 70 women who were 24-28 weeks pregnant at the Prenatal Care Center of Mirza Kochak Khan Hospital, Tehran, Iran. The serum zinc level of each subject was determined. In the second stage, among these 70 subjects, the diabetics receiving insulin were divided into two groups, only one of which received a zinc supplement and the other group was the control group. Birth weight of neonates and insulin dosages were recorded. "nResults: The mean serum zinc level in the GDM group was lower than that of the control group (94.83 vs. 103.49mg/dl, respectively and the mean birth weight of neonates from the GDM women who received the zinc supplement was lower than that of the control group (3849g vs. 4136g. The rate of macrosomia was lower in the zinc supplemented group (20% vs. 53%. The mean of increase of insulin after receiving the zinc supplement was lower (8.4u vs. 13.53. "nConclusion: Maternal insulin resistance is associated with the accumulation of maternal fat tissue during early stages of pregnancy and greater fetoplacental nutrient availability in later stages, when 70% of fetal growth occurs, resulting in macrosomia. In

  10. Transport and retention of zinc oxide nanoparticles in porous media: Effects of natural organic matter versus natural organic ligands at circumneutral pH

    Science.gov (United States)

    The potential toxicity of nanoparticles (NPs) has received considerable attention, but there is little knowledge relating to the fate and transport of engineered ZnO NPs in the environment. Column experiments were performed at pH 7.3–7.6 to generate effluent concentrations and re...

  11. Effects of physical exercise on the developmental expression of hippocampal zinc transporter 1 and glutamate receptor subunit 2, and on cognitive function in a rat model of recurrent neonatal seizure

    Institute of Scientific and Technical Information of China (English)

    Hong Ni; Yuwu Jiang; Weiming Jiang; Zhedong Wang; Xiru Wu

    2009-01-01

    BACKGROUND: Developmental seizures are pathologically characterized by regenerative sprouting of hippocampal mossy fibers rich in Zn2+. Zn2+ metabolism in the mossy fiber pathway, and Zn2+ accumulation in presynaptic membrane vesicles, are dependent on zinc transporter 1 (ZnT1) and glutamate receptor subunit 2 (GluR2). OBJECTIVE: To investigate the effects of long-term recurrent neonatal seizure, in the presence and absence of physical exercise, on the developmental expression of hippocampal zinc transporter 1 (ZnT1) and GluR2, and on cognitive function in rats. DESIGN, TIME AND SETTING: Based on behavioral examination and molecular biological research, a randomized, controlled animal experiment was performed at the Department of Neurobiology, Medical College of Soochow University, between January 2007 and April 2008. MATERIALS: Twenty-one 6-day-old Sprague Dawley rats of either gender were employed in this study. ZnT1 mRNA in situ hybridization kit was provided by Tianjin Haoyang Biological Manufacture Co.,Ltd., China. Rabbit anti-GluR2 was purchased from Santa Cruz Biotech, Inc, USA. METHODS: Rats were randomly divided into a recurrent seizure group (n = 11) and a control group (n = 10). In the recurrent seizure group, 30-minute seizure was induced by flurothyl gas inhalation for a total of 6 consecutive days. Rats from the control group underwent experimental procedures similar to the recurrent seizure group, with the exception of flurothyl gas inhalation. Thirty minutes of treadmill exercise was performed daily by all rats at postnatal days 51-56.MAIN OUTCOME MEASURES: At postnatal day 82, rat hippocampal tissue was harvested for analysis of hippocampal ZnT1 and GluR2 expression by in situ hybridization and immunohistochemistry, respectively. Rat learning and memory capabilities were examined using the Y-maze test. RESULTS: In the recurrent seizure group, the gray scale value of ZnT1 in situ hybridization positive neurons in the hippocampal CA3 region was

  12. [Zinc and gastrointestinal disorders].

    Science.gov (United States)

    Higashimura, Yasuki; Takagi, Tomohisa; Naito, Yuji

    2016-07-01

    Zinc, an essential trace element, affects immune responses, skin metabolism, hormone composition, and some sensory function, so that the deficiency presents various symptoms such as immunodeficiency and taste obstacle. Further, the zinc deficiency also considers as a risk of various diseases. Recent reports demonstrated that -20% of the Japanese population was marginally zinc deficiency, and over 25% of the global population is at high risk of zinc deficiency. In gastrointestinal disorders, zinc plays an important role in the healing of mucosal and epithelial damage. In fact, polaprezinc, a chelate compound of zinc and L-carnosine, has been used for the treatment of gastric ulcer and gastritis. We describe here the therapeutic effect of zinc on gastrointestinal disorders. PMID:27455800

  13. Many rivers to cross: the journey of zinc from soil to seed.

    Science.gov (United States)

    Olsen, Lene I; Palmgren, Michael G

    2014-01-01

    An important goal of micronutrient biofortification is to enhance the amount of bioavailable zinc in the edible seed of cereals and more specifically in the endosperm. The picture is starting to emerge for how zinc is translocated from the soil through the mother plant to the developing seed. On this journey, zinc is transported from symplast to symplast via multiple apoplastic spaces. During each step, zinc is imported into a symplast before it is exported again. Cellular import and export of zinc requires passage through biological membranes, which makes membrane-bound transporters of zinc especially interesting as potential transport bottlenecks. Inside the cell, zinc can be imported into or exported out of organelles by other transporters. The function of several membrane proteins involved in the transport of zinc across the tonoplast, chloroplast or plasma membranes are currently known. These include members of the ZIP (ZRT-IRT-like Protein), and MTP (Metal Tolerance Protein) and heavy metal ATPase (HMA) families. An important player in the transport process is the ligand nicotianamine that binds zinc to increase its solubility in living cells and in this way buffers the intracellular zinc concentration. PMID:24575104

  14. Many rivers to cross: the journey of zinc from soil to seed

    Directory of Open Access Journals (Sweden)

    Lene Irene Olsen

    2014-02-01

    Full Text Available An important goal of micronutrient biofortification is to enhance the amount of bioavailable zinc in the edible seed of cereals and more specifically in the endosperm. The picture is starting to emerge for how zinc is translocated from the soil through the mother plant to the developing seed. On this journey, zinc is transported from symplast to symplast via multiple apoplastic spaces. During each step, zinc is imported into a symplast before it is exported again. Cellular import and export of zinc requires passage through biological membranes, which makes membrane-bound transporters of zinc especially interesting as potential transport bottlenecks. Inside the cell, zinc can be imported into or exported out of organelles by other transporters. The function of several membrane proteins involved in the transport of zinc across the tonoplast, chloroplast or plasma membranes are currently known. These include members of the ZIP (ZRT-IRT-like Protein, and MTP (Metal Tolerance Protein and Heavy Metal ATPase (HMA families. An important player in the transport process is the ligand nicotianamine that binds zinc to increase its solubility in living cells and in this way buffers the intracellular zinc concentration.

  15. Improved zinc electrode and rechargeable zinc-air battery

    Science.gov (United States)

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  16. Effects of zinc ex vivo on taurine uptake in goldfish retinal cells

    OpenAIRE

    Nusetti, Sonia; Urbina, Mary; Lima, Lucimey

    2010-01-01

    Background Taurine and zinc exert neurotrophic effects in the central nervous system. Current studies demonstrate that Na+/Cl- dependent neurotransmitter transporters, similar to that of taurine, are modulated by micromolar concentrations of zinc. This study examined the effect of zinc sulfate ex vivo on [3H]taurine transport in goldfish retina. Methods Isolated cells were incubated in Ringer with zinc (0.1–100 µM). Taurine transport was done with 50 nM [3H]taurine or by isotopic dilution wit...

  17. Effects of Bicarbonate and High pH Conditions on Zinc and Other Nutrients Absorption in Rice

    Institute of Scientific and Technical Information of China (English)

    LU Zhong-xian; MENG Fan-hua; S. VILLAREAL; WEI You-zhang; YU Xiao-ping; YANG Xiao-e; K. L. HEONG; LIN Jian-jun; HU Cui; LIU Jian-xiang

    2004-01-01

    Zinc deficiency was widely observed in calcareous soil where bicarbonate and high pH were always related with low zinc availability. In a hydroponic experiment, one zinc-efficient rice (IR36) and one zinc-inefficient rice (IR26) genotypes were employed to investigate the effects of bicarbonate and high pH conditions on absorption, transport of zinc and other nutrients (P, K, Ca, Mg,Fe, Cu, Mn) in rice. As compared with the control, high pH inhibited absorption, translocation and accumulation of zinc and other nutrients in both rice genotypes. Bicarbonate had minor effect on zinc-efficient rice genotype (IR36) whereas it could decrease zinc and other nutrient absorption in zinc-inefficient rice genotype (IR26). These results implied that increasing rice tolerance to bicarbonate is one of the most important strategies to improve rice adaptation for zinc-deficit calcareous soil.

  18. Deletion of the zupT gene for a zinc importer influences zinc pools in Cupriavidus metallidurans CH34.

    Science.gov (United States)

    Herzberg, M; Bauer, L; Nies, D H

    2014-03-01

    Cupriavidus metallidurans strain CH34 accomplishes a high level of transition metal resistance by a combination of rather unspecific transition metal import and controlled efflux of surplus metals. Using the plasmid-free mutant strain AE104 that possesses only a limited number of metal efflux systems, cellular metal pools were identified as counterparts of these transport reactions. At low zinc concentrations strain AE104 took up Zn(II) until the zinc content reached an optimum level of 70,000 Zn(II) per cell in the exponential phase of growth, whereas a ΔzupT mutant lacking the zinc importer ZupT contained only 20,000 Zn(II)/cell, possibly the minimum zinc content. Mutant and parent cells accumulated up to 125,000 Zn(II) per cell at high (100 μM) external zinc concentrations (optimum zinc content). When the mutant strain Δe4, which has all the known genes for zinc efflux systems deleted, was cultivated in the presence of zinc concentrations close to its upper tolerance level (10 μM), these cells contained 250,000 Zn(II) per cell, probably the maximum zinc content. Instead of zinc, 120,000 cobalt or cadmium ions could also fill-up parts of this zinc pool, showing that it is in fact an undefined pool of divalent transition metal cations bound with low substrate specificity. Even when the cells contained sufficient numbers of total zinc, the zinc importer ZupT was required for important cellular processes, indicating the presence of a pool of tightly bound zinc ions, which depends on ZupT for efficient replenishment. The absence of ZupT led to the formation of inclusion bodies, perturbed oxidative stress resistance and decreased efficiency in the synthesis of the zinc-dependent subunit RpoC of the RNA polymerase, leading to RpoC accumulation. Moreover, when a czc allele for a zinc-exporting transenvelope efflux system CzcCBA was constitutively expressed in a ΔzupT mutant, this led to the disappearance of the CzcA protein and the central subunit of the protein

  19. Chelators for investigating zinc metalloneurochemistry.

    Science.gov (United States)

    Radford, Robert J; Lippard, Stephen J

    2013-04-01

    The physiology and pathology of mobile zinc signaling has become an important topic in metalloneurochemistry. To study the action of mobile zinc effectively, specialized tools are required that probe the temporal and positional changes of zinc ions within live tissue and cells. In the present article we describe the design and implementation of selective zinc chelators as antagonists to interrogate the function of mobile zinc, with an emphasis on the pools of vesicular zinc in the terminals of hippocampal mossy fiber buttons.

  20. Zinc deficiency and eating disorders.

    Science.gov (United States)

    Humphries, L; Vivian, B; Stuart, M; McClain, C J

    1989-12-01

    Decreased food intake, a cyclic pattern of eating, and weight loss are major manifestations of zinc deficiency. In this study, zinc status was evaluated in 62 patients with bulimia and 24 patients with anorexia nervosa. Forty percent of patients with bulimia and 54% of those with anorexia nervosa had biochemical evidence of zinc deficiency. The authors suggest that for a variety of reasons, such as lower dietary intake of zinc, impaired zinc absorption, vomiting, diarrhea, and binging on low-zinc foods, patients with eating disorders may develop zinc deficiency. This acquired zinc deficiency could then add to the chronicity of altered eating behavior in those patients. PMID:2600063

  1. Computational Analysis of the Optical and Charge Transport Properties of Ultrasonic Spray Pyrolysis-Grown Zinc Oxide/Graphene Hybrid Structures.

    Science.gov (United States)

    Ali, Amgad Ahmed; Hashim, Abdul Manaf

    2016-12-01

    We demonstrate a systematic computational analysis of the measured optical and charge transport properties of the spray pyrolysis-grown ZnO nanostructures, i.e. nanosphere clusters (NSCs), nanorods (NRs) and nanowires (NWs) for the first time. The calculated absorbance spectra based on the time-dependent density functional theory (TD-DFT) shows very close similarity with the measured behaviours under UV light. The atomic models and energy level diagrams for the grown nanostructures were developed and discussed to explain the structural defects and band gap. The induced stresses in the lattices of ZnO NSCs that formed during the pyrolysis process seem to cause the narrowing of the gap between the energy levels. ZnO NWs and NRs show homogeneous distribution of the LUMO and HOMO orbitals all over the entire heterostructure. Such distribution contributes to the reduction of the band gap down to 2.8 eV, which has been confirmed to be in a good agreement with the experimental results. ZnO NWs and NRs exhibited better emission behaviours under the UV excitation as compared to ZnO NSCs and thin film as their visible range emissions are strongly quenched. Based on the electrochemical impedance measurement, the electrical models and electrostatic potential maps were developed to calculate the electron lifetime and to explain the mobility or diffusion behaviours in the grown nanostructure, respectively. PMID:27173675

  2. Effect of seaweed-derived laminarin and fucoidan and zinc oxide on gut morphology, nutrient transporters, nutrient digestibility, growth performance and selected microbial populations in weaned pigs.

    Science.gov (United States)

    Heim, G; Walsh, A M; Sweeney, T; Doyle, D N; O'Shea, C J; Ryan, M T; O'Doherty, J V

    2014-05-01

    In the present study, two experiments were conducted to (1) evaluate the effect of laminarin and/or fucoidan on ileal morphology, nutrient transporter gene expression and coefficient of total tract apparent digestibility (CTTAD) of nutrients and (2) determine whether laminarin inclusion could be used as an alternative to ZnO supplementation in weaned pig diets. Expt 1 was designed as a 2 × 2 factorial arrangement, comprising four dietary treatments (n 7 replicates, weaning age 24 d, live weight 6·9 kg). The dietary treatments were as follows: (1) basal diet; (2) basal diet+300 ppm laminarin; (3) basal diet+240 ppm fucoidan; (4) basal diet+300 ppm laminarin and 240 ppm fucoidan. There was an interaction between laminarin and fucoidan on the CTTAD of gross energy (GE) (Ppost-weaning). The laminarin diet increased average daily gain and gain:feed ratio compared with the basal diet during days 0-32 post-weaning (Ppost-weaning. PMID:24502994

  3. Computational Analysis of the Optical and Charge Transport Properties of Ultrasonic Spray Pyrolysis-Grown Zinc Oxide/Graphene Hybrid Structures

    Science.gov (United States)

    Ali, Amgad Ahmed; Hashim, Abdul Manaf

    2016-05-01

    We demonstrate a systematic computational analysis of the measured optical and charge transport properties of the spray pyrolysis-grown ZnO nanostructures, i.e. nanosphere clusters (NSCs), nanorods (NRs) and nanowires (NWs) for the first time. The calculated absorbance spectra based on the time-dependent density functional theory (TD-DFT) shows very close similarity with the measured behaviours under UV light. The atomic models and energy level diagrams for the grown nanostructures were developed and discussed to explain the structural defects and band gap. The induced stresses in the lattices of ZnO NSCs that formed during the pyrolysis process seem to cause the narrowing of the gap between the energy levels. ZnO NWs and NRs show homogeneous distribution of the LUMO and HOMO orbitals all over the entire heterostructure. Such distribution contributes to the reduction of the band gap down to 2.8 eV, which has been confirmed to be in a good agreement with the experimental results. ZnO NWs and NRs exhibited better emission behaviours under the UV excitation as compared to ZnO NSCs and thin film as their visible range emissions are strongly quenched. Based on the electrochemical impedance measurement, the electrical models and electrostatic potential maps were developed to calculate the electron lifetime and to explain the mobility or diffusion behaviours in the grown nanostructure, respectively.

  4. Clioquinol synergistically augments rescue by zinc supplementation in a mouse model of acrodermatitis enteropathica.

    Directory of Open Access Journals (Sweden)

    Jim Geiser

    Full Text Available BACKGROUND: Zinc deficiency due to poor nutrition or genetic mutations in zinc transporters is a global health problem and approaches to providing effective dietary zinc supplementation while avoiding potential toxic side effects are needed. METHODS/PRINCIPAL FINDINGS: Conditional knockout of the intestinal zinc transporter Zip4 (Slc39a4 in mice creates a model of the lethal human genetic disease acrodermatitis enteropathica (AE. This knockout leads to acute zinc deficiency resulting in rapid weight loss, disrupted intestine integrity and eventually lethality, and therefore provides a model system in which to examine novel approaches to zinc supplementation. We examined the efficacy of dietary clioquinol (CQ, a well characterized zinc chelator/ionophore, in rescuing the Zip4 (intest KO phenotype. By 8 days after initiation of the knockout neither dietary CQ nor zinc supplementation in the drinking water was found to be effective at improving this phenotype. In contrast, dietary CQ in conjunction with zinc supplementation was highly effective. Dietary CQ with zinc supplementation rapidly restored intestine stem cell division and differentiation of secretory and the absorptive cells. These changes were accompanied by rapid growth and dramatically increased longevity in the majority of mice, as well as the apparent restoration of the homeostasis of several essential metals in the liver. CONCLUSIONS: These studies suggest that oral CQ (or other 8-hydroxyquinolines coupled with zinc supplementation could provide a facile approach toward treating zinc deficiency in humans by stimulating stem cell proliferation and differentiation of intestinal epithelial cells.

  5. Analysis of zinc borates

    International Nuclear Information System (INIS)

    Methods for analyzing zinc borates: B2O3 determination in the presence of zinc ions and determination of zinc in the presence of borates are developed. Distributing effect of zinc in alcalometrical determination of B2O3 is removed using either its binding cationite KU-2 in H-form in hydrochloric acid medium or using complexone 3 masking. In the first case the results are underestimated, in the second one - are overestimated. When analyzing Zn the complexonometrical titration with sodium teraborate is carried out. Borate ions don't affect the accuracy of determination. Zinc borate samples of 0.1-0.15 g in dimesion are recommended according to the method suggested

  6. Cadmium zinc telluride spectral modeling

    International Nuclear Information System (INIS)

    Cadmium zinc telluride (CZT) detectors are the highest resolution room temperature gamma-ray detectors available for isotopic analysis. As with germanium detectors, accurate isotopic analysis using spectra requires peak deconvolution. The CZT peak shapes are asymmetric, with a long low energy tail. The asymmetry is a result of the physics of the electron/hole transport in the semiconductor. An accurate model of the physics of the electron/hole transport through an electric field will allow the parameterization of the peak shapes as a function of energy. In turn this leads to the ability to perform accurate spectral deconvolution and therefore accurate isotopic analysis. The model and the peak-shape parameterization as a function of energy will be presented

  7. Evidence that Human Prostate Cancer is a ZIP1-Deficient Malignancy that could be Effectively Treated with a Zinc Ionophore (Clioquinol) Approach

    OpenAIRE

    Costello, Leslie C; Franklin, Renty B; Zou, Jing; Naslund, Michael J

    2015-01-01

    Despite decades of research, no efficacious chemotherapy exists for the treatment of prostate cancer. Malignant prostate zinc levels are markedly decreased in all cases of prostate cancer compared to normal/benign prostate. ZIP1 zinc transporter down regulation decreases zinc to prevent its cytotoxic effects. Thus, prostate cancer is a “ZIP1-deficient” malignancy. A zinc ionophore (e.g. Clioquinol) treatment to increase malignant zinc levels is a plausible treatment of prostate cancer. Howeve...

  8. Interfacial chemistry of zinc anodes for reinforced concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Covino, B.S. Jr.; Bullard, S.J.; Cramer, S.D.; Holcomb, G.R. [Dept. of Energy, Albany, OR (United States). Albany Research Center; McGill, G.E.; Cryer, C.B. [Oregon Dept. of Transportation, Salem, OR (United States); Stoneman, A. [International Lead Zinc Research Organization, Research Triangle Park, NC (United States); Carter, R.R. [California Dept. of Transportation, Sacramento, CA (United States)

    1997-12-01

    Thermally-sprayed zinc anodes are used in both galvanic and impressed current cathodic protection systems for reinforced concrete structures. The Albany Research Center, in collaboration with the Oregon Department of Transportation, has been studying the effect of electrochemical aging on the bond strength of zinc anodes for bridge cathodic protection systems. Changes in anode bond strength and other anode properties can be explained by the chemistry of the zinc-concrete interface. The chemistry of the zinc-concrete interface in laboratory electrochemical aging studies is compared with that of several bridges with thermal-sprayed zinc anodes and which have been in service for 5 to 10 years using both galvanic and impressed current cathodic protection systems. The bridges are the Cape Creek Bridge on the Oregon coast and the East Camino Undercrossing near Placerville, CA. Also reported are interfacial chemistry results for galvanized steel rebar from the 48 year old Longbird Bridge in Bermuda.

  9. HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply

    DEFF Research Database (Denmark)

    Tiong, Jingwen; Mcdonald, Glenn K.; Genc, Yusuf;

    2014-01-01

    Summary: High expression of zinc (Zn)-regulated, iron-regulated transporter-like protein (ZIP) genes increases root Zn uptake in dicots, leading to high accumulation of Zn in shoots. However, none of the ZIP genes tested previously in monocots could enhance shoot Zn accumulation. In this report...

  10. Zinc sulphate in rheumatoid arthritis

    OpenAIRE

    Mattingly, P. C.; Mowat, A G

    1982-01-01

    To assess the antirheumatic activity of zinc sulphate, 27 patients with active rheumatoid arthritis took part in a 6-month, randomised, double-blind, between-group trial of oral zinc sulphate versus placebo. Twelve patients on zinc and 9 on placebo completed the trial, but no significant antirheumatic activity of zinc sulphate was demonstrated.

  11. Zinc metabolism in thyroid disease.

    OpenAIRE

    Nishi, Y.; Kawate, R.; Usui, T

    1980-01-01

    This study was designed to evaluate the zinc metabolism in adults of both sexes with thyroid disease. Plasma and erythrocyte zinc concentration and urinary zinc excretion were investigated. The mean concentration of plasma zinc in hypothyroid patients and in euthyroid patients, previously either hyperthyroid or hypothyroid, was lower than that of control subjects, whereas no statistically significant differences were observed in plasma zinc values between hyperthyroid patients and control sub...

  12. Mother-plant-mediated pumping of zinc into the developing seed.

    Science.gov (United States)

    Olsen, Lene Irene; Hansen, Thomas H; Larue, Camille; Østerberg, Jeppe Thulin; Hoffmann, Robert D; Liesche, Johannes; Krämer, Ute; Surblé, Suzy; Cadarsi, Stéphanie; Samson, Vallerie Ann; Grolimund, Daniel; Husted, Søren; Palmgren, Michael

    2016-01-01

    Insufficient intake of zinc and iron from a cereal-based diet is one of the causes of 'hidden hunger' (micronutrient deficiency), which affects some two billion people(1,2). Identifying a limiting factor in the molecular mechanism of zinc loading into seeds is an important step towards determining the genetic basis for variation of grain micronutrient content and developing breeding strategies to improve this trait(3). Nutrients are translocated to developing seeds at a rate that is regulated by transport processes in source leaves, in the phloem vascular pathway, and at seed sinks. Nutrients are released from a symplasmic maternal seed domain into the seed apoplasm surrounding the endosperm and embryo by poorly understood membrane transport processes(4-6). Plants are unique among eukaryotes in having specific P1B-ATPase pumps for the cellular export of zinc(7). In Arabidopsis, we show that two zinc transporting P1B-ATPases actively export zinc from the mother plant to the filial tissues. Mutant plants that lack both zinc pumps accumulate zinc in the seed coat and consequently have vastly reduced amounts of zinc inside the seed. Blockage of zinc transport was observed at both high and low external zinc supplies. The phenotype was determined by the mother plant and is thus due to a lack of zinc pump activity in the seed coat and not in the filial tissues. The finding that P1B-ATPases are one of the limiting factors controlling the amount of zinc inside a seed is an important step towards combating nutritional zinc deficiency worldwide.

  13. Local and systemic effects of targeted zinc redistribution in Drosophila neuronal and gastrointestinal tissues.

    Science.gov (United States)

    Richards, Christopher D; Burke, Richard

    2015-12-01

    While the effects of systemic zinc ion deficiency and toxicity on animal health are well documented, the impacts of localized, tissue-specific disturbances in zinc homeostasis are less well understood. Previously we have identified zinc dyshomeostasis scenarios caused by the targeted manipulation of zinc transport genes in the Drosophila eye. Over expression of the uptake transporter dZIP42C.1 (dZIP1) combined with knockdown of the efflux transporter dZNT63C (dZNT1) causes a zinc toxicity phenotype, as does over expression of dZIP71B or dZNT86D. However, all three genotypes result in different morphologies, responses to dietary zinc, and genetic interactions with the remaining zinc transport genes, indicating that each causes a different redistribution of zinc within affected cells. dZNT86D (eGFP) over expression generates a completely different phenotype, interpreted as a Golgi zinc deficiency. Here we assess the effect of each of these transgenes when targeted to a range of Drosophila tissues. We find that dZIP71B is a particularly potent zinc uptake gene, causing early developmental lethality when targeted to multiple different tissue types. dZNT86D over expression (Golgi-only zinc toxicity) is less deleterious, but causes highly penetrant adult cuticle, sensory bristle and wing expansion defects. The dZIP42C.1 over expression, dZNT63C knockdown combination causes only moderate adult cuticle defects and sensitivity to dietary zinc when expressed in the midgut. The Golgi-only zinc deficiency caused by dZNT86D (eGFP) expression results in mild cuticle defects, highly penetrant wing expansion defects and developmental lethality when targeted to the central nervous system and, uniquely, the fat bodies.

  14. The role of zinc in the pathogenesis and treatment of central nervous system (CNS) diseases. Implications of zinc homeostasis for proper CNS function.

    Science.gov (United States)

    Tyszka-Czochara, Małgorzata; Grzywacz, Agata; Gdula-Argasińska, Joanna; Librowski, Tadeusz; Wiliński, Bogdan; Opoka, Włodzimierz

    2014-01-01

    Zinc, the essential trace element, is known to play multiple biological functions in human organism. This metal is a component of many structural as well as regulatory and catalytic proteins. The precise regulation of zinc homeostasis is essential for central nervous system and for the whole organism. Zinc plays a significant role in the brain development and in the proper brain function at every stage of life. This article is a review of knowledge about the role of zinc in central nervous system (CNS) function. The influence of this biometal on etiopathogenesis, prevention and treatment of selected brain diseases and disorders was discussed. Zinc imbalance can result not only from insufficient dietary intake, but also from impaired activity of zinc transport proteins and zinc dependent regulation of metabolic pathways. It is known that some neurodegenerative processes are connected with zinc dyshomeostasis and it may influence the state of Alzheimer's disease, depression and ageing-connected loss of cognitive function. The exact role of zinc and zinc-binding proteins in CNS pathogenesis processes is being under intensive investigation. The appropriate zinc supplementation in brain diseases may help in the prevention as well as in the proper treatment of several brain dysfunctions.

  15. Zinc in diet

    Science.gov (United States)

    Symptoms of zinc deficiency include: Frequent infections Hypogonadism in males Loss of hair Poor appetite Problems with the sense of taste Problems with the sense of smell Skin sores Slow growth Trouble seeing ...

  16. Zinc electrode and rechargeable zinc-air battery

    Science.gov (United States)

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  17. Application of Polymeric Nanoparticles for CNS Targeted Zinc Delivery In Vivo.

    Science.gov (United States)

    Chhabra, Resham; Ruozi, Barbara; Vilella, Antonietta; Belletti, Daniela; Mangus, Katharina; Pfaender, Stefanie; Sarowar, Tasnuva; Boeckers, Tobias Maria; Zoli, Michele; Forni, Flavio; Vandelli, Maria Angela; Tosi, Giovanni; Grabrucker, Andreas Martin

    2015-01-01

    A dyshomeostasis of zinc ions has been reported for many psychiatric and neurodegenerative disorders including schizophrenia, attention deficit hyperactivity disorder, depression, autism, Parkinson's and Alzheimer's disease. Furthermore, alterations in zinc-levels have been associated with seizures and traumatic brain injury. Thus, altering zinclevels within the brain is emerging as a new target for the prevention and treatment of psychiatric and neurological diseases. However, given the restriction of zinc uptake into the brain by the blood-brain barrier, methods for controlled regulation and manipulation of zinc concentrations within the brain are rare. Here, we performed in vivo studies investigating the possibility of brain targeted zinc delivery using zinc-loaded nanoparticles which are able to cross the blood-brain barrier. After injecting these nanoparticles, we analyzed the regional and time-dependent distribution of zinc and nanoparticles within the brain. Moreover, we evaluated whether the presence of zinc-loaded nanoparticles alters the expression of zinc sensitive genes and proteins such as metallothioneins and zinc transporters and quantified possible toxic effects. Our results show that zinc loaded g7 nanoparticles offer a promising approach as a novel non - invasive method to selectively enrich zinc in the brain within a small amount of time.

  18. Zinc Oxide Nanostructured Biosensor for Glucose Detection

    Institute of Scientific and Technical Information of China (English)

    X. W.Sun; J.X. Wang; A. Wei

    2008-01-01

    Zinc oxide (ZnO) nanocombs were fabricated by vapor phase transport, and nanorods and hierarchical nanodisk structures by aqueous thermal decomposition. Glucose biosensors were constructed using these ZnO nanostructures as supporting materials for glucose oxidase (GOx) loading. These ZnO glucose biosensors showed a high sensitivity for glucose detection and high affinity of GOx to glucose as well as the low detection limit. The results demonstrate that ZnO nanostructures have potential applications in biosensors.

  19. Control of zinc transfer between thionein, metallothionein, and zinc proteins

    OpenAIRE

    Jacob, Claus; Maret, Wolfgang; Vallee, Bert L.

    1998-01-01

    Metallothionein (MT), despite its high metal binding constant (KZn = 3.2 × 1013 M−1 at pH 7.4), can transfer zinc to the apoforms of zinc enzymes that have inherently lower stability constants. To gain insight into this paradox, we have studied zinc transfer between zinc enzymes and MT. Zinc can be transferred in both directions—i.e., from the enzymes to thionein (the apoform of MT) and from MT to the apoenzymes. Agents that mediate or enhance zinc transfer have be...

  20. A role for dZIP89B in Drosophila dietary zinc uptake reveals additional complexity in the zinc absorption process.

    Science.gov (United States)

    Richards, Christopher D; Warr, Coral G; Burke, Richard

    2015-12-01

    Dietary zinc is the principal source of zinc in eukaryotes, with its uptake and distribution controlled by a complex network of numerous membrane-spanning transport proteins. Dietary absorption is achieved by members of the SLC39A (ZIP) gene family, which encode proteins that are generally responsible for the movement of zinc into the cytosol. ZIP4 is thought to be the primary mammalian zinc uptake gene in the small intestine, with mutations in this gene causing the zinc deficiency disease Acrodermatitis enteropathica. In Drosophila, dual knockdown of the major dietary zinc uptake genes dZIP42C.1 (dZIP1) and dZIP42C.2 (dZIP2) results in a severe sensitivity to zinc-deficient media. However, the symptoms associated with ZIP4 loss can be reversed by zinc supplementation and dZIP42C.1 and 2 knockdown has minimal effect under normal dietary conditions, suggesting that additional pathways for zinc absorption exist in both mammals and flies. This study provides evidence that dZIP89B is an ideal candidate for this role in Drosophila, encoding a low-affinity zinc uptake transporter active in the posterior midgut. Flies lacking dZIP89B, while viable and apparently healthy, show indications of low midgut zinc levels, including reduced metallothionein B expression and compensatory up-regulation of dZIP42C.1 and 2. Furthermore dZIP89B mutants display a dramatic resistance to toxic dietary zinc levels which is abrogated by midgut-specific restoration of dZIP89B activity. We postulate that dZIP89B works in concert with the closely related dZIP42C.1 and 2 to ensure optimal zinc absorption under a range of dietary conditions.

  1. Treatment of zinc deficiency without zinc fortification

    Institute of Scientific and Technical Information of China (English)

    Donald OBERLEAS; Barbara F. HARLAND

    2008-01-01

    Zinc (Zn) deficiency in animals became of interest until the 1950s. In this paper, progresses in researches on physi-ology of Zn deficiency in animals, phytate effect on bioavailability of Zn, and role of phytase in healing Zn deficiency of animals were reviewed. Several studies demonstrated that Zn is recycled via the pancreas; the problem of Zn deficiency was controlled by Zn homeostasis. The endogenous secretion of Zn is considered as an important factor influencing Zn deficiency, and the critical molar ratio is 10. Phytate (inositol hexaphosphate) constituted up to 90% of the organically bound phosphorus in seeds. Great improvement has been made in recent years on isolating and measuring phytate, and its structure is clear. Phytate is considered to reduce Zn bioavailability in animal. Phytase is the enzyme that hydrolyzes phytate and is present in yeast, rye bran, wheat bran, barley, triticale, and many bacteria and fungi. Zinc nutrition and bioavailability can be enhanced by addition of phytase to animal feeds. Therefore, using phytase as supplements, the most prevalent Zn deficiency in animals may be effectively corrected without the mining and smelting of several tons of zinc daily needed to correct this deficiency by fortification worldwide.

  2. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    OpenAIRE

    Veldkamp, T; Diepen, van, F.N.J.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR Livestock Research to determine the bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens. A precise estimate of the bioavailability of zinc sources is required both for fulf...

  3. Trace elements in human physiology and pathology: zinc and metallothioneins.

    Science.gov (United States)

    Tapiero, Haim; Tew, Kenneth D

    2003-11-01

    Zinc is one of the most abundant nutritionally essential elements in the human body. It is found in all body tissues with 85% of the whole body zinc in muscle and bone, 11% in the skin and the liver and the remaining in all the other tissues. In multicellular organisms, virtually all zinc is intracellular, 30-40% is located in the nucleus, 50% in the cytoplasm, organelles and specialized vesicles (for digestive enzymes or hormone storage) and the remainder in the cell membrane. Zinc intake ranges from 107 to 231 micromol/d depending on the source, and human zinc requirement is estimated at 15 mg/d. Zinc has been shown to be essential to the structure and function of a large number of macromolecules and for over 300 enzymic reactions. It has both catalytic and structural roles in enzymes, while in zinc finger motifs, it provides a scaffold that organizes protein sub-domains for the interaction with either DNA or other proteins. It is critical for the function of a number of metalloproteins, inducing members of oxido-reductase, hydrolase ligase, lyase family and has co-activating functions with copper in superoxide dismutase or phospholipase C. The zinc ion (Zn(++)) does not participate in redox reactions, which makes it a stable ion in a biological medium whose potential is in constant flux. Zinc ions are hydrophilic and do not cross cell membranes by passive diffusion. In general, transport has been described as having both saturable and non-saturable components, depending on the Zn(II) concentrations involved. Zinc ions exist primarily in the form of complexes with proteins and nucleic acids and participate in all aspects of intermediary metabolism, transmission and regulation of the expression of genetic information, storage, synthesis and action of peptide hormones and structural maintenance of chromatin and biomembranes. PMID:14652165

  4. Zinc and its deficiency diseases.

    Science.gov (United States)

    Evans, G W

    1986-01-01

    The pervasive role of zinc in the metabolic function of the body results from its function as a cofactor of a multitude of enzymes. Zinc is found in every tissue in the body, and because zinc metalloenzymes are found in every known class of enzymes, the metal has a function in every conceivable type of biochemical pathway. Symptoms resulting from zinc deficiency are as diverse as the enzymes with which the metal is associated. If chronic, severe, and untreated, zinc deficiency can be fatal. Less drastic symptoms include infections, hypogonadism, weight loss, emotional disturbance, dermatitis, alopecia, impaired taste acuity, night blindness, poor appetite, delayed wound healing, and elevated blood ammonia levels. Many symptoms of zinc deficiency result from poor diet consumption, but often the most severe symptoms result from other factors including excessive alcohol use, liver diseases, malabsorption syndromes, renal disease, enteral or parenteral alimentation, administration of sulfhydryl-containing drugs, and sickle cell disease. The most severe symptoms of zinc deficiency occur in young children affected with the autosomal-recessive trait, acrodermatitis enteropathica. This disease results in decreased synthesis of picolinic acid which causes an impaired ability to utilize zinc from common food. Because simple laboratory analyses are often not reliable in determining zinc nutriture of a patient, those symptoms caused by suspected zinc deficiency are best verified by the oral administration of zinc dipicolinate. This zinc compound is efficacious and safe and would provide an accurate means of identifying symptoms that do result from zinc deficiency. PMID:3514057

  5. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains.

    OpenAIRE

    Vallee, B L; Coleman, J E; Auld, D S

    1991-01-01

    We now recognize three distinct motifs of DNA-binding zinc proteins: (i) zinc fingers, (ii) zinc clusters, and (iii) zinc twists. Until very recently, x-ray crystallographic or NMR three-dimensional structure analyses of DNA-binding zinc proteins have not been available to serve as standards of reference for the zinc binding sites of these families of proteins. Those of the DNA-binding domains of the fungal transcription factor GAL4 and the rat glucocorticoid receptor are the first to have be...

  6. Zinc sulphate attenuates chloride secretion in human colonic mucosae in vitro.

    Science.gov (United States)

    Medani, Mekki; Bzik, Victoria A; Rogers, Ailin; Collins, Danielle; Kennelly, Rory; Winter, Des C; Brayden, David J; Baird, Alan W

    2012-12-01

    Zinc's usefulness in the treatment of diarrhoea is well established as an addition to oral rehydration. Mechanisms of action of zinc have been explored in intestinal epithelia from rodents and in cell lines. The aim was to examine how zinc alters ion transport and signal transduction in human colon in vitro. Voltage clamped colonic sheets obtained at the time of surgical resection were used to quantify ion transport responses to established secretagogues. Nystatin permeabilisation was used to study basolaterally-sited ion channels. Direct actions of zinc were determined using preparations of colonic crypts isolated from human mucosal sheets. Electrophysiological measurements revealed zinc to be an inhibitor of electrogenic ion transport stimulated by forskolin, PGE(2), histamine and carbachol in isolated human colonic epithelium. Basolateral addition of zinc sulphate had no direct effect on the epithelium. To further outline the mechanism of action, levels of secondary intracellular messengers (3', 5'-cyclic adenosine monophosphate; cAMP) were determined in isolated colonic crypts, and were found to be reduced by zinc sulphate. Finally, indirect evidence from nystatin-permeabilised mucosae further suggested that zinc inhibits basolateral K(+) channels, which are critical for transepithelial Cl(-) secretion linked to water flux. Anti-secretory, and therefore anti-diarrhoeal, actions of exogenous zinc are due, at least in part, to direct basolateral epithelial K(+) channel inhibition. PMID:23022335

  7. Soybean extracts increase cell surface ZIP4 abundance and cellular zinc levels: a potential novel strategy to enhance zinc absorption by ZIP4 targeting.

    Science.gov (United States)

    Hashimoto, Ayako; Ohkura, Katsuma; Takahashi, Masakazu; Kizu, Kumiko; Narita, Hiroshi; Enomoto, Shuichi; Miyamae, Yusaku; Masuda, Seiji; Nagao, Masaya; Irie, Kazuhiro; Ohigashi, Hajime; Andrews, Glen K; Kambe, Taiho

    2015-12-01

    Dietary zinc deficiency puts human health at risk, so we explored strategies for enhancing zinc absorption. In the small intestine, the zinc transporter ZIP4 functions as an essential component of zinc absorption. Overexpression of ZIP4 protein increases zinc uptake and thereby cellular zinc levels, suggesting that food components with the ability to increase ZIP4 could potentially enhance zinc absorption via the intestine. In the present study, we used mouse Hepa cells, which regulate mouse Zip4 (mZip4) in a manner indistinguishable from that in intestinal enterocytes, to screen for suitable food components that can increase the abundance of ZIP4. Using this ZIP4-targeting strategy, two such soybean extracts were identified that were specifically able to decrease mZip4 endocytosis in response to zinc. These soybean extracts also effectively increased the abundance of apically localized mZip4 in transfected polarized Caco2 and Madin-Darby canine kidney cells and, moreover, two apically localized mZip4 acrodermatitis enteropathica mutants. Soybean components were purified from one extract and soyasaponin Bb was identified as an active component that increased both mZip4 protein abundance and zinc levels in Hepa cells. Finally, we confirmed that soyasaponin Bb is capable of enhancing cell surface endogenous human ZIP4 in human cells. Our results suggest that ZIP4 targeting may represent a new strategy to improve zinc absorption in humans.

  8. Clinical manifestations of zinc deficiency.

    Science.gov (United States)

    Prasad, A S

    1985-01-01

    The essentiality of zinc for humans was recognized in the early 1960s. The causes of zinc deficiency include malnutrition, alcoholism, malabsorption, extensive burns, chronic debilitating disorders, chronic renal diseases, following uses of certain drugs such as penicillamine for Wilson's disease and diuretics in some cases, and genetic disorders such as acrodermatitis enteropathica and sickle cell disease. In pregnancy and during periods of growth the requirement of zinc is increased. The clinical manifestations in severe cases of zinc deficiency include bullous-pustular dermatitis, alopecia, diarrhea, emotional disorder, weight loss, intercurrent infections, hypogonadism in males; it is fatal if unrecognized and untreated. A moderate deficiency of zinc is characterized by growth retardation and delayed puberty in adolescents, hypogonadism in males, rough skin, poor appetite, mental lethargy, delayed wound healing, taste abnormalities, and abnormal dark adaptation. In mild cases of zinc deficiency in human subjects, we have observed oligospermia, slight weight loss, and hyperammonemia. Zinc is a growth factor. Its deficiency adversely affects growth in many animal species and humans. Inasmuch as zinc is needed for protein and DNA synthesis and for cell division, it is believed that the growth effect of zinc is related to its effect on protein synthesis. Whether or not zinc is required for the metabolism of somatomedin needs to be investigated in the future. Testicular functions are affected adversely as a result of zinc deficiency in both humans and experimental animals. This effect of zinc is at the end organ level; the hypothalamic-pituitary axis is intact in zinc-deficient subjects. Inasmuch as zinc is intimately involved in cell division, its deficiency may adversely affect testicular size and thus affect its functions. Zinc is required for the functions of several enzymes and whether or not it has an enzymatic role in steroidogenesis is not known at present

  9. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    NARCIS (Netherlands)

    Veldkamp, T.; Diepen, van J.T.M.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR Live

  10. Zinc Phosphide Poisoning

    Directory of Open Access Journals (Sweden)

    Erdal Doğan

    2014-01-01

    Full Text Available Zinc phosphide has been used widely as a rodenticide. Upon ingestion, it gets converted to phosphine gas in the body, which is subsequently absorbed into the bloodstream through the stomach and the intestines and gets captured by the liver and the lungs. Phosphine gas produces various metabolic and nonmetabolic toxic effects. Clinical symptoms are circulatory collapse, hypotension, shock symptoms, myocarditis, pericarditis, acute pulmonary edema, and congestive heart failure. In this case presentation, we aim to present the intensive care process and treatment resistance of a patient who ingested zinc phosphide for suicide purposes.

  11. Environmental risk limits for zinc

    NARCIS (Netherlands)

    Bodar CWM; SEC

    2007-01-01

    Environmental Riks Limits (ERLs) were derived for zinc. ERLs serve as advisory values to set environmental quality standards in the Netherlands. The ERLs for zinc closely follow the outcomes of earlier discussions on zinc within the Water Framework Directive and EC Regulation 793/93. The ERLs ref

  12. Environmental risk limits for zinc

    NARCIS (Netherlands)

    Bodar CWM; SEC

    2007-01-01

    Environmental Riks Limits (ERLs) were derived for zinc. ERLs serve as advisory values to set environmental quality standards in the Netherlands. The ERLs for zinc closely follow the outcomes of earlier discussions on zinc within the Water Framework Directive and EC Regulation 793/93. The ERLs refer

  13. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  14. Studies on nanocrystalline zinc coating

    Indian Academy of Sciences (India)

    H B Muralidhara; Y Arthoba Naik

    2008-08-01

    Nano zinc coatings were deposited on mild steel by electrodeposition. The effect of additive on the morphology of crystal size on zinc deposit surface and corrosion properties were investigated. Corrosion tests were performed for dull zinc deposits and bright zinc deposits in aqueous NaCl solution (3.5 wt.%) using electrochemical measurements. The results showed that addition of additive in the deposition process of zinc significantly increased the corrosion resistance. The surface morphology of the zinc deposits was studied by scanning electron microscopy (SEM). The preferred orientation and average size of the zinc electrodeposited particles were obtained by X-ray diffraction analysis. The particles size was also characterized by TEM analysis.

  15. Interaction Between Yeasts and Zinc

    Science.gov (United States)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  16. Does the oral zinc tolerance test measure zinc absorption

    Energy Technology Data Exchange (ETDEWEB)

    Valberg, L.S.; Flanagan, P.R.; Brennan, J.; Chamberlain, M.J.

    1985-01-01

    Increases in plasma zinc concentration were compared with radiozinc absorption after oral test doses. Ten healthy, fasting subjects were each given 385 mumol zinc chloride (25 mg Zn) labelled with 0.5 muCi /sup 65/ZnCl/sub 2/ and a non-absorbed marker, /sup 51/CrCl/sub 3/, dissolved in 100 ml of water; another 10 persons were given 354 mumol zinc chloride and 125 g of minced turkey containing 31 mumol zinc also labelled with /sup 65/Zn and /sup 51/Cr. Measurements were made of plasma zinc concentration at hourly intervals for 5 hours, radiozinc absorption by stool counting of unabsorbed radioactivity 12-36 hours later, and radiozinc retention by whole body counting at 7 days. The mean percentage of radiozinc absorbed and retained in the body from the two test meals was found to be identical (42%). In contrast the increased area under the plasma zinc curve up to 5 hours after the turkey meal, 28 +/- 9 mumol/L (mean +/- SD) was significantly less than that for zinc chloride alone, 47 +/- 15 mumol/L, p less than 0.005. Despite this difference, a good correlation was found between the area under the plasma zinc curve and /sup 65/Zn absorption in individual subjects after each meal. The discrepancy between the results of zinc absorption derived from the plasma zinc curve and /sup 65/Zn absorption for the liquid and solid test meals was most likely explained by binding of zinc to food and delayed gastric emptying of the solid meal. With a test meal of turkey meat at least this dampened the plasma appearance of zinc but did not affect its overall absorption.

  17. Pinacol Coupling Reactions Catalyzed by Active Zinc

    Institute of Scientific and Technical Information of China (English)

    Hui ZHAO; Wei DENG; Qing Xiang GUO

    2005-01-01

    Pinacol coupling reactions catalyzed by active zinc revealed high activity and extensive suitability. The efficiency of the reaction was improved apparently owing to decreasing reductive potential of zinc. In addition, the results indicated that the zinc activity has a direct relation to the coupling reactivity compared to untreated zinc or other general active zinc.

  18. 21 CFR 73.1991 - Zinc oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc... indirect process whereby zinc metal isolated from the zinc-containing ore is vaporized and then...

  19. DNA extraction by zinc.

    OpenAIRE

    Kejnovský, E; Kypr, J

    1997-01-01

    A fast, very simple and efficient method of DNA extraction is described which takes advantage of DNA sedimentation induced by millimolar concentrations of ZnCl2. The zinc-induced sedimentation is furthermore strongly promoted by submillimolar phosphate anion concentrations. Within 90% of DNA irrespective of whether a plasmid DNA or short oligonucleotides are the extracted material. The method works with plasmid DNA and oligonucleotide concentrations as low as 100 ng/ml and 10 microg/ml, respe...

  20. DMPD: Zinc in human health: effect of zinc on immune cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18385818 Zinc in human health: effect of zinc on immune cells. Prasad AS. Mol Med. ...2008 May-Jun;14(5-6):353-7. (.png) (.svg) (.html) (.csml) Show Zinc in human health: effect of zinc on immun...e cells. PubmedID 18385818 Title Zinc in human health: effect of zinc on immune cells. Authors Prasad AS. Pu

  1. Transport of trace metals in the Magela Creek system, Northern Territory. I. Concentrations and loads of iron, manganese, cadmium, copper, lead and zinc during flood periods in the 1978-1979 wet season

    International Nuclear Information System (INIS)

    In order that realistic effluent standards may be established for the Ranger uranium operations at Jabiru, Northern Territory, it is necessary that there be a clear and detailed knowledge of the pre-mining levels of trace metals and their behaviour within the Magela Creek system. During the wet season, floodwaters were sampled for conductivity, suspended solids and the trace metals, iron, manganese, cadmium, copper, lead and zinc. All concentrations were found to be very low, as were the denudation rates for the trace metals and suspended materials

  2. Antioxidant role of zinc in diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    Kyria Jayanne Clímaco Cruz; Ana Raquel Soares de Oliveira; Dilina do Nascimento Marreiro

    2015-01-01

    Chronic hyperglycemia statue noticed in diabetes mellitus favors the manifestation of oxidative stress by increasing the production of reactive oxygen species and/or by reducing the antioxidant defense system activity. Zinc plays an important role in antioxidant defense in type 2 diabetic patients by notably acting as a cofactor of the superoxide dismutase enzyme, by modulating the glutathione metabolism and metallothionein expression, by competing with iron and copper in the cell membrane and by inhibiting nicotinamide adenine dinucleotidephosphate-oxidase enzyme. Zinc also improves theoxidative stress in these patients by reducing chronichyperglycemia. It indeed promotes phosphorylation ofinsulin receptors by enhancing transport of glucose intocells. However, several studies reveal changes in zincmetabolism in individuals with type 2 diabetes mellitusand controversies remain regarding the effect of zincsupplementation in the improvement of oxidative stressin these patients. Faced with the serious challengeof the metabolic disorders related to oxidative stressin diabetes along with the importance of antioxidantnutrients in the control of this disease, new studies maycontribute to improve our understanding of the roleplayed by zinc against oxidative stress and its connectionwith type 2 diabetes mellitus prognosis. This could serveas a prelude to the development of prevention strategiesand treatment of disorders associated with this chronicdisease.

  3. Depleted zinc: Properties, application, production

    International Nuclear Information System (INIS)

    The addition of ZnO, depleted in the Zn-64 isotope, to the water of boiling water nuclear reactors lessens the accumulation of Co-60 on the reactor interior surfaces, reduces radioactive wastes and increases the reactor service-life because of the inhibitory action of zinc on inter-granular stress corrosion cracking. To the same effect depleted zinc in the form of acetate dihydrate is used in pressurized water reactors. Gas centrifuge isotope separation method is applied for production of depleted zinc on the industrial scale. More than 20 years of depleted zinc application history demonstrates its benefits for reduction of NPP personnel radiation exposure and combating construction materials corrosion.

  4. Depleted zinc: Properties, application, production.

    Science.gov (United States)

    Borisevich, V D; Pavlov, A V; Okhotina, I A

    2009-01-01

    The addition of ZnO, depleted in the Zn-64 isotope, to the water of boiling water nuclear reactors lessens the accumulation of Co-60 on the reactor interior surfaces, reduces radioactive wastes and increases the reactor service-life because of the inhibitory action of zinc on inter-granular stress corrosion cracking. To the same effect depleted zinc in the form of acetate dihydrate is used in pressurized water reactors. Gas centrifuge isotope separation method is applied for production of depleted zinc on the industrial scale. More than 20 years of depleted zinc application history demonstrates its benefits for reduction of NPP personnel radiation exposure and combating construction materials corrosion.

  5. Chloroquine is a zinc ionophore.

    Directory of Open Access Journals (Sweden)

    Jing Xue

    Full Text Available Chloroquine is an established antimalarial agent that has been recently tested in clinical trials for its anticancer activity. The favorable effect of chloroquine appears to be due to its ability to sensitize cancerous cells to chemotherapy, radiation therapy, and induce apoptosis. The present study investigated the interaction of zinc ions with chloroquine in a human ovarian cancer cell line (A2780. Chloroquine enhanced zinc uptake by A2780 cells in a concentration-dependent manner, as assayed using a fluorescent zinc probe. This enhancement was attenuated by TPEN, a high affinity metal-binding compound, indicating the specificity of the zinc uptake. Furthermore, addition of copper or iron ions had no effect on chloroquine-induced zinc uptake. Fluorescent microscopic examination of intracellular zinc distribution demonstrated that free zinc ions are more concentrated in the lysosomes after addition of chloroquine, which is consistent with previous reports showing that chloroquine inhibits lysosome function. The combination of chloroquine with zinc enhanced chloroquine's cytotoxicity and induced apoptosis in A2780 cells. Thus chloroquine is a zinc ionophore, a property that may contribute to chloroquine's anticancer activity.

  6. Zinc In CCl4 Toxicity

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To investigate the protective effect of zinc in CCl4-induced hepatotoxicity. Methods Rats were treated with zinc acetate for four days. The zinc doses were 5 mg Zn/kg and 10 mg Zn/kg body weight respectively. Two groups of the zinc acetate-treated rats were later challenged with a single dose of CCl4 (1.5 mL/kg body weight). Results Compared to control animals, the plasma of rats treated with CCl4 showed hyperbilirubinaemia, hypoglycaemia, hypercreatinaemia and hypoproteinaemia. When the animals were however supplemented with zinc in form of zinc acetate before being dosed with CCl4, the 5 mg Zn/kg body weight of zinc acetate reversed the hypoproteinaemia induced by CCl4, whereas the 10mg Zn/kg body weight of zinc acetate reversed the hypoglycaemia, hyperbilimbinaemia and hypercreatinaemia induced by CCl4. Conclusion The 10mug Zn/kg body weight of zinc acetate is more consistent in protecting against CCl4 hepatotoxicity. The possible mechanisms of protection are highlighted.

  7. Formation of Indium-Doped Zinc Oxide Thin Films Using Ultrasonic Spray Pyrolysis: The Importance of the Water Content in the Aerosol Solution and the Substrate Temperature for Enhancing Electrical Transport

    Directory of Open Access Journals (Sweden)

    Arturo Maldonado

    2012-03-01

    Full Text Available Indium doped zinc oxide [ZnO:In] thin films have been deposited at 430°C on soda-lime glass substrates by the chemical spray technique, starting from zinc acetate and indium acetate. Pulverization of the solution was done by ultrasonic excitation. The variations in the electrical, structural, optical, and morphological characteristics of ZnO:In thin films, as a function of both the water content in the starting solution and the substrate temperature, were studied. The electrical resistivity of ZnO:In thin films is not significantly affected with the increase in the water content, up to 200 mL/L; further increase in water content causes an increase in the resistivity of the films. All films show a polycrystalline character, fitting well with the hexagonal ZnO wurtzite-type structure. No preferential growth in samples deposited with the lowest water content was observed, whereas an increase in water content gave rise to a (002 growth. The surface morphology of the films shows a consistency with structure results, as non-geometrical shaped round grains were observed in the case of films deposited with the lowest water content, whereas hexagonal slices, with a wide size distribution were observed in the other cases. In addition, films deposited with the highest water content show a narrow size distribution.

  8. Reduced leucocyte zinc in liver disease.

    OpenAIRE

    Keeling, P W; Jones, R.B.; Hilton, P J; Thompson, R P

    1980-01-01

    The zinc content of peripheral blood leucocytes has been measured in normal controls and in three groups of patients with liver disease. A significant reduction in leucocyte zinc, but not erythrocyte zinc, was observed in patients with primary biliary cirrhosis, alcoholic cirrhosis, and active chronic hepatitis. It is suggested that the nucleated tissues of some patients with liver disease are therefore zinc deficient, and that leucocyte zinc may prove of value in the assessment of the zinc s...

  9. Uptake and partitioning of zinc in Lemnaceae.

    Science.gov (United States)

    Lahive, Elma; O'Callaghan, Michael J A; Jansen, Marcel A K; O'Halloran, John

    2011-11-01

    Macrophytes provide food and shelter for aquatic invertebrates and fish, while also acting as reservoirs for nutrients and trace elements. Zinc accumulation has been reported for various Lemnaceae species. However, comparative accumulation across species and the link between zinc accumulation and toxicity are poorly understood. Morphological distribution and cellular storage, in either bound or soluble form, are important for zinc tolerance. This study shows differences in the uptake and accumulation of zinc by three duckweed species. Landoltia punctata and Lemna minor generally accumulated more zinc than Lemna gibba. L. minor, but not L. gibba or L. punctata, accumulated greater concentrations of zinc in roots compared to fronds when exposed to high levels of zinc. The proportion of zinc stored in the bound form relative to the soluble-form was higher in L. minor. L. punctata accumulated greater concentrations of zinc in fronds compared to roots and increased the proportion of zinc it stored in the soluble form, when exposed to high zinc levels. L. gibba is the only species that significantly accumulated zinc at low concentrations, and was zinc-sensitive. Overall, internal zinc concentrations showed no consistent correlation with toxic effect. We conclude that relationships between zinc toxicity and uptake and accumulation are species specific reflecting, among others, zinc distribution and storage. Differences in zinc distribution and storage are also likely to have implications for zinc bioavailability and trophic mobility. PMID:21755349

  10. A simple liposome assay for the screening of zinc ionophore activity of polyphenols.

    Science.gov (United States)

    Clergeaud, Gael; Dabbagh-Bazarbachi, Husam; Ortiz, Mayreli; Fernández-Larrea, Juan B; O'Sullivan, Ciara K

    2016-04-15

    An efficient liposomal system for screening the zinc ionophore activity of a selected library consisting of the most relevant dietary polyphenols is presented. The zinc ionophore activity was demonstrated by exploring the use of zinc-specific fluorophore FluoZin-3 loaded liposomes as simple membrane tools that mimic the cell membrane. The zinc ionophore activity was demonstrated as the capacity of polyphenols to transport zinc cations across the liposome membrane and increase the zinc-specific fluorescence of the encapsulated fluorophore FluoZin-3. In addition, the zinc chelation strength of the polyphenols was also tested in a competition assay based on the fluorescence quenching of zinc-dependent fluorescence emitted by zinc-FluoZin-3 complex. Finally, the correlation between the chelation capacity and ionophore activity is demonstrated, thus underlining the sequestering or ionophoric activity that the phenolic compounds can display, thus, providing better knowledge of the importance of the structural conformation versus their biological activity. Furthermore, the assays developed can be used as tools for rapid, high-throughput screening of families of polyphenols towards different biometals. PMID:26617034

  11. A simple liposome assay for the screening of zinc ionophore activity of polyphenols.

    Science.gov (United States)

    Clergeaud, Gael; Dabbagh-Bazarbachi, Husam; Ortiz, Mayreli; Fernández-Larrea, Juan B; O'Sullivan, Ciara K

    2016-04-15

    An efficient liposomal system for screening the zinc ionophore activity of a selected library consisting of the most relevant dietary polyphenols is presented. The zinc ionophore activity was demonstrated by exploring the use of zinc-specific fluorophore FluoZin-3 loaded liposomes as simple membrane tools that mimic the cell membrane. The zinc ionophore activity was demonstrated as the capacity of polyphenols to transport zinc cations across the liposome membrane and increase the zinc-specific fluorescence of the encapsulated fluorophore FluoZin-3. In addition, the zinc chelation strength of the polyphenols was also tested in a competition assay based on the fluorescence quenching of zinc-dependent fluorescence emitted by zinc-FluoZin-3 complex. Finally, the correlation between the chelation capacity and ionophore activity is demonstrated, thus underlining the sequestering or ionophoric activity that the phenolic compounds can display, thus, providing better knowledge of the importance of the structural conformation versus their biological activity. Furthermore, the assays developed can be used as tools for rapid, high-throughput screening of families of polyphenols towards different biometals.

  12. The effect of zinc addition on PWR corrosion product deposition on zircaloy-4

    International Nuclear Information System (INIS)

    During the period 1995 to 2001 a programme of loop irradiation tests have been performed to confirm the effectiveness of zinc additions on PWR circuit chemistry and corrosion. The programme included two loop irradiation experiments, and subsequent PIE; the experiments were a baseline test (no added zinc) and a test with added zinc (10 ppb). This paper addresses the findings regarding corrosion product deposition and activation on irradiated Zircaloy-4 surfaces. The findings are relevant to overall corrosion of the reactor primary circuit, the use of zinc as a corrosion inhibitor, and activation and transport of corrosion products. The irradiation experience provides information on the equilibration of the loop chemistry, with deliberate injection of zinc. The PIE used novel and innovative techniques (described below) to obtain samples of the oxide from the irradiated Zircaloy. The results of the PIE, under normal chemistry and zinc chemistry, indicate the effect of zinc on the deposition and activation of corrosion products on Zircaloy. It was found that corrosion product deposition on Zircaloy is enhanced by the addition of zinc (but corrosion product deposition on other materials was reduced in the presence of zinc). Chemical analysis and radioisotope gamma counting results are presented, to interpret the findings. A computer model has also been used to simulate the corrosion product deposition and activation, to assist in the interpretation of the results. (authors)

  13. Zinc Oxide Nanophotonics

    Science.gov (United States)

    Choi, Sumin; Aharonovich, Igor

    2015-12-01

    The emerging field of nanophotonics initiated a dedicated study of single photon sources and optical resonators in new class of materials. One such material is zinc oxide (ZnO) that has been long considered only for classical light-emitting applications. However, it recently showed promise for quantum photonics technologies. In this review, we highlight the recent advances in studying single emitters in ZnO, engineering of optical cavities and practical nanophotonics devices including nanolasers and electrically triggered devices. We finalize with an outlook at this promising area, as well as provide perspectives and open questions in solid state nanophotonics employing ZnO.

  14. Nanostructures of zinc oxide

    Directory of Open Access Journals (Sweden)

    Zhong Lin Wang

    2004-06-01

    Full Text Available Zinc oxide (ZnO is a unique material that exhibits semiconducting, piezoelectric, and pyroelectric multiple properties. Using a solid-vapor phase thermal sublimation technique, nanocombs, nanorings, nanohelixes/nanosprings, nanobows, nanobelts, nanowires, and nanocages of ZnO have been synthesized under specific growth conditions. These unique nanostructures unambiguously demonstrate that ZnO is probably the richest family of nanostructures among all materials, both in structures and properties. The nanostructures could have novel applications in optoelectronics, sensors, transducers, and biomedical science because it is bio-safe.

  15. Danxia Zinc Smelter started construction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>Zinc smelting project of Danxia Smelting Plant has a total investment of about RMB 4 billion, which is designed by Changsha Engineering & Research Institute of Nonferrous Metallurgy and planned to be implemented in three stages. The first stage 100,000 tons of electrolytic zinc improvement work is planned to be completed by the end of 2008. The second and third stages

  16. Zinc Oxide Nanoparticles for Revolutionizing Agriculture: Synthesis and Applications

    Directory of Open Access Journals (Sweden)

    Sidra Sabir

    2014-01-01

    Full Text Available Nanotechnology is the most innovative field of 21st century. Extensive research is going on for commercializing nanoproducts throughout the world. Due to their unique properties, nanoparticles have gained considerable importance compared to bulk counterparts. Among other metal nanoparticles, zinc oxide nanoparticles are very much important due to their utilization in gas sensors, biosensors, cosmetics, drug-delivery systems, and so forth. Zinc oxide nanoparticles (ZnO NPs also have remarkable optical, physical, and antimicrobial properties and therefore have great potential to enhance agriculture. As far as method of formation is concerned, ZnO NPs can be synthesized by several chemical methods such as precipitation method, vapor transport method, and hydrothermal process. The biogenic synthesis of ZnO NPs by using different plant extracts is also common nowadays. This green synthesis is quite safe and ecofriendly compared to chemical synthesis. This paper elaborates the synthesis, properties, and applications of zinc oxide nanoparticles.

  17. Zinc presence in invasive ductal carcinoma of the breast and its correlation with oestrogen receptor status

    Science.gov (United States)

    Farquharson, M. J.; Al-Ebraheem, A.; Geraki, K.; Leek, R.; Jubb, A.; Harris, A. L.

    2009-07-01

    Zinc is known to play an important role in many cellular processes, and the levels of zinc are controlled by specific transporters from the ZIP (SLC39A) influx transporter group and the ZnT (SLC30A) efflux transporter group. The distribution of zinc was measured in 59 samples of invasive ductal carcinoma of breast using synchrotron radiation micro probe x-ray fluorescence facilities. The samples were formalin fixed paraffin embedded tissue micro arrays (TMAs) enabling a high throughput of samples and allowing us to correlate the distribution of trace metals with tumour cell distribution and, for the first time, important biological variables. The samples were divided into two classes, 34 oestrogen receptor positive (ER+ve) and 25 oestrogen receptor negative (ER-ve) based on quantitative immunohistochemistry assessment. The overall levels of zinc (i.e. in tumour and surrounding tissue) in the ER+ve samples were on average 60% higher than those in the ER-ve samples. The zinc levels were higher in the ER+ve tumour areas compared to the ER-ve tumour areas with the mean levels in the ER+ve samples being approximately 80% higher than the mean ER-ve levels. However, the non-tumour tissue regions of the samples contained on average the same levels of zinc in both types of breast cancers. The relative levels of zinc in tumour areas of the tissue were compared with levels in areas of non-tumour surrounding tissue. There was a significant increase in zinc in the tumour regions of the ER+ve samples compared to the surrounding regions (P tissue zinc level in the same sample, a significant difference between the ER+ve and ER-ve samples was found (P < 0.01).

  18. Zinc and cadmium monosalicylates

    Energy Technology Data Exchange (ETDEWEB)

    Kharitonov, Yu.Ya.; Tujebakhova, Z.K. (Moskovskij Khimiko-Tekhnologicheskij Inst. (USSR))

    1984-06-01

    Zinc and cadmium monosalicylates of the composition MSal, where M-Zn or Cd, Sal - twice deprotonated residue of salicylic acid O-HOC/sub 6/H/sub 4/COOH (H/sub 2/Sal), are singled out and characterized. When studying thermograms, thermogravigrams, IR absorption spectra, roentgenograms of cadmium salicylate compounds (Cd(OC/sub 6/H/sub 4/COO) and products of their thermal transformations, the processes of thermal decomposition of the compounds have been characterized. The process of cadmium monosalicylate decomposition takes place in one stage. Complete loss of salicylate acido group occurs in the range of 320-460 deg. At this decomposition stage cadmium oxide is formed. A supposition is made that cadmium complex has tetrahedral configuration, at that, each salicylate group plays the role of tetradentate-bridge ligand. The compound evidently has a polymer structure.

  19. Zinc Oxide Nanoparticle Photodetector

    Directory of Open Access Journals (Sweden)

    Sheng-Po Chang

    2012-01-01

    Full Text Available A zinc oxide (ZnO nanoparticle photodetector was fabricated using a simple method. Under a 5 V applied bias, its dark current and photocurrent were 1.98×10-8 and 9.42×10-7 A, respectively. In other words, a photocurrent-to-dark-current contrast ratio of 48 was obtained. Under incident light at a wavelength of 375 nm and a 5 V applied bias, the detector’s measured responsivity was 3.75 A/W. The transient time constants measured during the turn-ON and turn-OFF states were τON=204 s and τOFF=486 s, respectively.

  20. Occurrence and fate of corrosion-induced zinc in runoff water from external structures.

    Science.gov (United States)

    Bertling, Sofia; Odnevall Wallinder, Inger; Leygraf, Christofer; Berggren Kleja, Dan

    2006-08-31

    This paper comprises data from an extensive cross-disciplinary research project aiming to elucidate the environmental fate of corrosion-induced zinc release from external structures. It includes an exposure assessment that provide long-term runoff rates, concentrations and chemical speciation of zinc, from 14 zinc-based materials exposed during 5 years in Stockholm, Sweden, and an effect assessment including bioavailability and ecotoxicity measurements, both at the immediate release situation and after soil interaction. Runoff rates of total zinc ranged from 0.07 to 2.5 g Znm-2 yr-1 with zinc primarily released as the free ion for all materials investigated. The average effect concentration, causing a 50% growth reduction after 72 h to the green algae Raphidocelis subcapitata, was at the immediate release situation 69 microg ZnL-1. Upon interaction of runoff water with soil, which simulated 18 to 34 years of exposure, the total zinc concentration was significantly reduced, from milligram per litre to microgram per litre levels. Simultaneously, the most bioavailable fraction of zinc in runoff, the hydrated zinc(II)-ion, decreased from more than 95% to about 30%. The major fraction, 98-99%, of the introduced total zinc concentration in the runoff water was retained within the soil. As long as the soil retention capacity was not reached, this resulted in zinc concentrations in the percolate water transported through the soil layer, close to background values and below growth inhibition concentrations for the green algae investigated. Zinc retained in soil was to a large extent (85-99.9%) extractable with EDTA, and available for plant uptake after 5 to 7 months of ageing. PMID:16504250

  1. Zinc finger proteins in cancer progression

    OpenAIRE

    Jen, Jayu; Wang, Yi-Ching

    2016-01-01

    Zinc finger proteins are the largest transcription factor family in human genome. The diverse combinations and functions of zinc finger motifs make zinc finger proteins versatile in biological processes, including development, differentiation, metabolism and autophagy. Over the last few decades, increasing evidence reveals the potential roles of zinc finger proteins in cancer progression. However, the underlying mechanisms of zinc finger proteins in cancer progression vary in different cancer...

  2. Sorbitol dehydrogenase is a zinc enzyme.

    OpenAIRE

    Jeffery, J; Chesters, J; C. Mills; P.J. Sadler; Jörnvall, H

    1984-01-01

    Evidence is given that tetrameric sorbitol dehydrogenase from sheep liver contains one zinc atom per subunit, most probably located at the active site, and no other specifically bound zinc or iron atom. In alcohol dehydrogenases that are structurally related to sorbitol dehydrogenase, more than one zinc atom per subunit can complicate investigations of zinc atom function. Therefore, sorbitol dehydrogenase will be particularly valuable for defining the precise roles of zinc in alcohol and poly...

  3. Maternal Zinc Intakes and Homeostatic Adjustments during Pregnancy and Lactation

    OpenAIRE

    Janet C. King; Carmen Marino Donangelo

    2012-01-01

    Zinc plays critical roles during embryogenesis, fetal growth, and milk secretion, which increase the zinc need for pregnancy and lactation. Increased needs can be met by increasing the dietary zinc intake, along with making homeostatic adjustments in zinc utilization. Potential homeostatic adjustments include changes in circulating zinc, increased zinc absorption, decreased zinc losses, and changes in whole body zinc kinetics. Although severe zinc deficiency during pregnancy has devastating e...

  4. A plasma membrane zinc transporter from ¤Medicago truncatula¤ is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization

    DEFF Research Database (Denmark)

    Burleigh, S.H.; Kristensen, B.K.; Bechmann, I.E.

    2003-01-01

    of yeast implying that the protein encoded by this gene can transport Zn across the yeast's plasma membrane. The product of a MtZIP2-GFP fusion construct introduced into onion cells by particle bombardment likewise localized to the plasma membrane. The MtZIP2 gene was expressed in roots and stems......Here we present a Zn transporter cDNA named MtZIP2 from the model legume Medicago truncatula. MtZIP2 encodes a putative 37 kDa protein with 8-membrane spanning domains and has moderate amino acid identity with the Arabidopsis thaliana Zn transporter AtZIP2p. MtZIP2 complemented a Zn-uptake mutant...

  5. Depletion of vesicular zinc in dorsal horn of spinal cord causes increased neuropathic pain in mice

    DEFF Research Database (Denmark)

    Jo, Seung; Danscher, Gorm; Schrøder, Henrik;

    2008-01-01

    neuropathic pain we applied Chung's rodent pain model on BALB/c mice, and traced zinc transporter 3 (ZnT3) proteins and zinc ions with immunohistochemistry and autometallography (AMG), respectively. Under anesthesia the left fifth lumbar spinal nerve was ligated in male mice in order to produced neuropathic...... pain. The animals were then sacrificed 5 days later. The ZnT3 immunoreactivity was found to have decreased significantly in dorsal horn of fourth, fifth, and sixth lumbar segments. In parallel with the depressed ZnT3 immunoreactivity the amount of vesicular zinc decreased perceptibly in superficial...

  6. Trace element status and zinc homeostasis differ in breast and formula-fed piglets

    Science.gov (United States)

    Miousse, Isabelle R; Mason, Andrew Z; Sharma, Neha; Blackburn, Michael L; Badger, Thomas M

    2015-01-01

    Differences in trace element composition and bioavailability between breast milk and infant formulas may affect metal homeostasis in neonates. However, there is a paucity of controlled studies in this area. Here, piglets were fed soy infant formula (soy), cow’s milk formula (milk), or were allowed to suckle from the sow from PND2 to PND21. Serum iron concentrations were higher in formula-fed compared to breastfed piglets (P supplementation, allows strong causal inference that significant differences in serum zinc after cow’s milk formula compared to soy formula consumption result in compensatory changes in expression of zinc transporters, binding proteins, and zinc-regulated genes. PMID:25179632

  7. Modulation of neuronal signal transduction and memory formation by synaptic zinc

    Directory of Open Access Journals (Sweden)

    Carlos eSindreu

    2011-11-01

    Full Text Available The physiological role of synaptic zinc has remained largely enigmatic since its initial detection in hippocampal mossy fibers over fifty years ago. The past few years have witnessed a number of studies highlighting the ability of zinc ions to regulate ion channels and intracellular signaling pathways implicated in neuroplasticity, and others that shed some light on the elusive role of synaptic zinc in learning and memory. Recent behavioral studies using knock out mice for the synapse-specific zinc transporter ZnT-3 indicate that vesicular zinc is required for the formation of memories dependent on the hippocampus and the amygdala, two brain centers that are prominently innervated by zinc-rich fibers. A common theme emerging from this research is the activity-dependent regulation of the Erk1/2 mitogen-activated-protein kinase pathway by synaptic zinc through diverse mechanisms in neurons. Here we discuss current knowledge on how synaptic zinc may play a role in cognition through its impact on neuronal signaling.

  8. The Refuelable Zinc-air Battery: Alternative Techniques for Zinc and Electrolyte Regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J F; Krueger, R

    2006-01-19

    An investigation was conducted into alternative techniques for zinc and electrolyte regeneration and reuse in the refuelable zinc/air battery that was developed by LLNL and previously tested on a moving electric bus using cut wire. Mossy zinc was electrodeposited onto a bipolar array of inclined Ni plates with an energy consumption of 1.8 kWh/kg. Using a H{sub 2}-depolarized anode, zinc was deposited at 0.6 V (0.8 kA/m{sup 2}); the open circuit voltage was 0.45 V. Three types of fuel pellets were tested and compared with results for 0.75 mm cut wire: spheres produced in a spouted bed (UCB); coarse powder produced by gas-atomization (Noranda); and irregular pellets produced by chopping 1-mm plates of compacted zinc fines (Eagle-Picher, Inc.). All three types transported within the cell. The coarse powder fed continuously from hopper to cell, as did the compacted pellets (< 0.83 mm). Large particles (> 0.83 mm; Eagle-Picher and UCB) failed to feed from hopper into cell, being held up in the 2.5 mm wide channel connecting hopper to cell. Increasing channel width to {approx}3.5 mm should allow all three types to be used. Energy losses were determined for shorting of cells during refueling. The shorting currents between adjacent hoppers through zinc particle bridges were determined using both coarse powder and chopped compressed zinc plates. A physical model was developed allowing scaling our results for electrode polarization and bed resistance Shorting was found to consume < 0.02% of the capacity of the cell and to dissipate {approx}0.2 W/cell of heat. Corrosion rates were determined for cut wire in contact with current collector materials and battery-produced ZnO-saturated electrolyte. The rates were 1.7% of cell capacity per month at ambient temperatures; and 0.08% of capacity for 12 hours at 57 C. The total energy conversion efficiency for zinc recovery using the hydrogen was estimated at 34% (natural gas to battery terminals)--comparable to fuel cells. Producing

  9. Evaluation and comparison of zinc absorption level from 2-Alkyle 3-Hydroxy pyranon-zinc complexes and zinc sulfate in rat in vivo

    OpenAIRE

    Badii Akbar; Nekouei Niloufar; Mostafavi Abolfazl; Saghaei Lofollah; Khodarahmi Qadam Ali; Valadian Soheyla

    2013-01-01

    Background: Although zinc sulfate has been used to improve disorders originated from zinc deficiency, its low compliance is due to gastrointestinal complications; therefore, other zinc compounds have been suggested as replacers for zinc deficient people. The objective of this study was to evaluate and compare the absorption of ethyl and methyl zinc-maltol with that of zinc sulfate to substitute zinc sulfate with those complexes. Materials and Methods: After five weeks of being fed by zinc...

  10. Zinc toxicology following particulate inhalation.

    Science.gov (United States)

    Cooper, Ross G

    2008-04-01

    The current mini-review describes the toxic effects of zinc inhalation principally in the workplace and associated complications with breathing and respiration. The International Classification of Functioning, Disability and Health Criteria were used to specifically select articles. Most of the commercial production of zinc involves the galvanizing of iron and the manufacture of brass. The recommended daily allowance for adults is 15 mg zinc/day. Metal fume fever associated with inhalation of fumes of ZnO is characterized by fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste and salivation. ZnCl(2) inhalation results in edema in the alveolar surface and the protein therein the lavage fluid is elevated. Particular pathological changes associated with zinc intoxication include: pale mucous membranes; jaundice; numerous Heinz bodies; and marked anemia. Adequate ambient air monitors for permissible exposure limits, excellent ventilation and extraction systems, and approved respirators are all important in providing adequate protection. PMID:20040991

  11. Zinc toxicology following particulate inhalation

    Directory of Open Access Journals (Sweden)

    Cooper Ross

    2008-01-01

    Full Text Available The current mini-review describes the toxic effects of zinc inhalation principally in the workplace and associated complications with breathing and respiration. The International Classification of Functioning, Disability and Health Criteria were used to specifically select articles. Most of the commercial production of zinc involves the galvanizing of iron and the manufacture of brass. The recommended daily allowance for adults is 15 mg zinc/day. Metal fume fever associated with inhalation of fumes of ZnO is characterized by fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste and salivation. ZnCl 2 inhalation results in edema in the alveolar surface and the protein therein the lavage fluid is elevated. Particular pathological changes associated with zinc intoxication include: pale mucous membranes; jaundice; numerous Heinz bodies; and marked anemia. Adequate ambient air monitors for permissible exposure limits, excellent ventilation and extraction systems, and approved respirators are all important in providing adequate protection.

  12. Chloroquine Is a Zinc Ionophore

    OpenAIRE

    Jing Xue; Amanda Moyer; Bing Peng; Jinchang Wu; Hannafon, Bethany N.; Wei-Qun Ding

    2014-01-01

    Chloroquine is an established antimalarial agent that has been recently tested in clinical trials for its anticancer activity. The favorable effect of chloroquine appears to be due to its ability to sensitize cancerous cells to chemotherapy, radiation therapy, and induce apoptosis. The present study investigated the interaction of zinc ions with chloroquine in a human ovarian cancer cell line (A2780). Chloroquine enhanced zinc uptake by A2780 cells in a concentration-dependent manner, as assa...

  13. Biokompatibilitas Semen Zinc Oxide Eugenol

    OpenAIRE

    Trisna Wahyudi

    2008-01-01

    Bahan kedokteran gigi hams memenuhi syarat biokompatibilitas yang dapat diterima tubuh atau dengan kata lain tidak membahayakan dalam penggunaannya. Idealnya bahan yang diletakkan dalam rongga mulut tidak membahayakan jaringan pulpa dan jaringan lunak rongga mulut, tidak mengandung bahan toksik yang mampu berdifusi dan dapat diabsorpsi ke dalam sistem sirkulasi tubuh yang akhirya menyebabkan reaksi toksik yang sistemik. Semen zinc oxide eugenol dengan kandungan utamanya zinc oxide dan e...

  14. Zinc and Copper Homeostasis in Head and Neck Cancer: Review and Meta-Analysis.

    Science.gov (United States)

    Ressnerova, Alzbeta; Raudenska, Martina; Holubova, Monika; Svobodova, Marketa; Polanska, Hana; Babula, Petr; Masarik, Michal; Gumulec, Jaromir

    2016-01-01

    Metals are known for playing essential roles in human physiology. Copper and zinc are trace elements closely dependent on one another and are involved in cell proliferation, growth, gene expression, apoptosis and other processes. Their homeostasis is crucial and tightly controlled by a resourceful system of transporters and transport proteins which deliver copper and zinc ions to their target sites. Abnormal zinc and copper homeostasis can be seen in a number of malignancies and also in head and neck cancer. Imbalance in this homeostasis is observed as an elevation or decrease of copper and zinc ions in serum or tissue levels in patients with cancer. In head and neck cancer these altered levels stand out from those of other malignancies which makes them an object of interest and therefore zinc and copper ions might be a good target for further research of head and neck cancer development and progression. This review aims to summarize the physiological roles of copper and zinc, its binding and transport mechanisms, and based on those, its role in head and neck cancer. To provide stronger evidence, dysregulation of levels is analysed by a meta-analytical approach.

  15. Analyzing free zinc(II) ion concentrations in cell biology with fluorescent chelating molecules.

    Science.gov (United States)

    Maret, Wolfgang

    2015-02-01

    Essential metal ions are tightly controlled in biological systems. An understanding of metal metabolism and homeostasis is being developed from quantitative information of the sizes, concentrations, and dynamics of cellular and subcellular metal ion pools. In the case of human zinc metabolism, minimally 24 proteins of two zinc transporter families and a dozen metallothioneins participate in cellular uptake, extrusion, and re-distribution among cellular compartments. Significantly, zinc(ii) ions are now considered signaling ions in intra- and intercellular communication. Such functions require transients of free zinc ions. It is experimentally quite challenging to distinguish zinc that is protein-bound from zinc that is not bound to proteins. Measurement of total zinc is relatively straightforward with analytical techniques such as atomic absorption/emission spectroscopy or inductively coupled plasma mass spectrometry. Total zinc concentrations of human cells are 200-300 μM. In contrast, the pool of non-protein bound zinc is mostly examined with fluorescence microscopy/spectroscopy. There are two widely applied fluorescence approaches, one employing low molecular weight chelating agents ("probes") and the other metal-binding proteins ("sensors"). The protein sensors, such as the CALWY, Zap/ZifCY, and carbonic anhydrase-based sensors, can be genetically encoded and have certain advantages in terms of controlling intracellular concentration, localization, and calibration. When employed correctly, both probes and sensors can establish qualitative differences in free zinc ion concentrations. However, when quantitative information is sought, the assumptions underlying the applications of probes and sensors must be carefully examined and even then measured pools of free zinc ions remain methodologically defined. A consensus is building that the steady-state free zinc ion concentrations in the cytosol are in the picomolar range but there is no consensus on their

  16. Clinical zinc deficiency as early presentation of Wilson disease.

    Science.gov (United States)

    Van Biervliet, Stephanie; Küry, Sébastien; De Bruyne, Ruth; Vanakker, Olivier M; Schmitt, Sébastien; Vande Velde, Saskia; Blouin, Eric; Bézieau, Stéphane

    2015-04-01

    Wilson disease is a rare autosomal recessive disorder of the copper metabolism caused by homozygous or compound heterozygous mutations in the ATP-ase Cu(2+) transporting polypeptide (ATP7B) gene. The copper accumulation in different organs leads to the suspicion of Wilson disease. We describe a child with clinical zinc deficiency as presenting symptom of Wilson disease, which was confirmed by 2 mutations within the ATP7B gene and an increased copper excretion.

  17. Solar thermal production of zinc: Program strategy

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeld, A.; Weidenkaff, A.; Moeller, S.; Palumbo, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The solar thermal production of zinc is considered for the conversion of solar energy into storable and transportable chemical fuels. The ultimate objective is to develop a technically and economically viable technology that can produce solar zinc. The program strategy for achieving such a goal involves research on two paths: a direct path via the solar thermal splitting of ZnO in the absence of fossil fuels, and an indirect path via the solar carbothermal/CH{sub 4}-thermal reduction of Zn O, with fossil fuels (coke or natural gas) as chemical reducing agents. Both paths make use of concentrated solar energy for high-temperature process heat. The direct path brings us to the complete substitution of fossil fuels with solar fuels for a sustainable energy supply system. The indirect path creates a link between today`s fossil-fuel-based technology and tomorrow`s solar chemical technology and builds bridges between present and future energy economies. (author) 1 fig., 15 refs.

  18. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Progress report, January 1, 1979-December 31, 1979. [Ca; Pb; cockerels

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R H

    1979-01-01

    The mechanism of lead transport is presented, and especially the particular similarities or dissimilarities between lead and calcium in this process. The absorption of these metals was determined cockerels, raised on a commercial diet or on a specified diet, using in vivo ligated loop procedure. The dose administered into the loop contained 0.5 ..mu..Ci /sup 203/Pb (and/or 0.1 ..mu..Ci /sup 47/Ca), and 0.01 mM lead acetate (and/or mM CaCl/sub 2/) in 0.5 ml 0.15 M NaCl,pH 6.5. It was shown that lead is rapidly taken up by the mucosal tissue, and slowly transferred into the body, whereas less calcium is retained by the tissue and the transfer of calcium is many times as effective as that for lead. They appear to respond in a similar manner to a low calcium intake and vitamin D treatment. Increasing luminal stable lead concentration significantly reduced the percentage of radiolead significantly reduced the percentage of radiolead absorbed, but did not affect the absorption of calcium. Also, vitamin D enhanced the transfer of plasma /sup 47/Ca into the lumen but did not affect the transfer of plasma /sup 203/Pb. Intravenous administration of 1,25(OH)/sub 2/CC to rachitic chicks enhanced calcium and lead absorption, but the maximal absorption of these metals occurred at slightly different times after administering this metabolite, indicating that two different transport systems may be involved. It was concluded that lead is transported across the epithelial wall by a passive diffusion and this process is affected by vitamin D in a similar manner as this vitamin affects the diffusional component of calcium transport.

  19. Zinc Absorption by Young Adults from Supplemental Zinc Citrate Is Comparable with That from Zinc Gluconate and Higher than from Zinc Oxide 1 2 3

    OpenAIRE

    Wegmüller, Rita; Tay, Fabian; Zeder, Christophe; Brnić, Marica; Hurrell, Richard F

    2013-01-01

    The water-soluble zinc salts gluconate, sulfate, and acetate are commonly used as supplements in tablet or syrup form to prevent zinc deficiency and to treat diarrhea in children in combination with oral rehydration. Zinc citrate is an alternative compound with high zinc content, slightly soluble in water, which has better sensory properties in syrups but no absorption data in humans. We used the double-isotope tracer method with 67Zn and 70Zn to measure zinc absorption from zinc citrate give...

  20. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Progress report, January 1, 1979-December 31, 1979. [3-week-old cockerels

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R H

    1979-01-01

    The purpose of the present studies was to elucidate the mechanism of lead transport, and especially the particular similarities or dissimilarities between lead and calcium in this process. The absorption of these metals was determined in 3-week old White Leghorn cockerels, raised on a commercial diet or on a specified diet, using in vivo ligated loop procedure. The dose administered into the loop contained 0.5 ..mu..Ci /sup 203/Pb (and/or 0.1 ..mu..Ci /sup 47/Ca), and 0.01 mM lead acetate (and/or 1 mM CaCl/sub 2/) in 0.5 ml 0.15 M NaCl,pH 6.5. It was shown that lead is rapidly taken up by the mucosal tissue, and slowly transferred into the body, whereas less calcium is retained by the tissue and the transfer of calcium is many times as effective as that for lead. They appear to respond in a similar manner to a low calcium intake and vitamin D treatment. Certain differences were, however, observed in the absorption process. Increasing luminal stable lead concentration from 0.01 to 1.00 mM Pb, significantly reduced the percentage of radiolead absorbed, but did not affect the absorption of calcium. Also, vitamin D enhanced the transfer of plasma /sup 47/Ca into the lumen but did not affect the transfer of plasma /sup 203/Pb. Intravenous administration of 1,25(OH)/sub 2/CC to rachitic chicks enhanced calcium and lead absorption, but the maximal absorption of these metals occurred at slightly different times after administering this metabolite, and the effect on calcium outlasted that on lead, indicating that two different transport systems may be involved. It was concluded that lead is transported across the epithelial wall by a passive diffusion and this process is affected by vitamin D in a similar manner as this vitamin affects the diffusional component of calcium transport.

  1. High dose zinc supplementation induces hippocampal zinc deficiency and memory impairment with inhibition of BDNF signaling.

    Directory of Open Access Journals (Sweden)

    Yang Yang

    Full Text Available Zinc ions highly concentrate in hippocampus and play a key role in modulating spatial learning and memory. At a time when dietary fortification and supplementation of zinc have increased the zinc consuming level especially in the youth, the toxicity of zinc overdose on brain function was underestimated. In the present study, weaning ICR mice were given water supplemented with 15 ppm Zn (low dose, 60 ppm Zn (high dose or normal lab water for 3 months, the behavior and brain zinc homeostasis were tested. Mice fed high dose of zinc showed hippocampus-dependent memory impairment. Unexpectedly, zinc deficiency, but not zinc overload was observed in hippocampus, especially in the mossy fiber-CA3 pyramid synapse. The expression levels of learning and memory related receptors and synaptic proteins such as NMDA-NR2A, NR2B, AMPA-GluR1, PSD-93 and PSD-95 were significantly decreased in hippocampus, with significant loss of dendritic spines. In keeping with these findings, high dose intake of zinc resulted in decreased hippocampal BDNF level and TrkB neurotrophic signaling. At last, increasing the brain zinc level directly by brain zinc injection induced BDNF expression, which was reversed by zinc chelating in vivo. These results indicate that zinc plays an important role in hippocampus-dependent learning and memory and BDNF expression, high dose supplementation of zinc induces specific zinc deficiency in hippocampus, which further impair learning and memory due to decreased availability of synaptic zinc and BDNF deficit.

  2. Zinc Plating Industry Drives Zinc Consumption by Power Grids, Railways and Highways

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>On the afternoon of June 30, at the Chengdu Lead and Zinc Summit, more than 150 partici-pants voted for the product they felt drives zinc consumption the most. 48% went for zinc plat-ing products, 16% voted for zinc oxide,

  3. Transcriptomic profiling of Arabidopsis gene expression in response to varying micronutrient zinc supply

    Directory of Open Access Journals (Sweden)

    Herlânder Azevedo

    2016-03-01

    Full Text Available Deficiency of the micronutrient zinc is a widespread condition in agricultural soils, causing a negative impact on crop quality and yield. Nevertheless, there is an insufficient knowledge on the regulatory and molecular mechanisms underlying the plant response to inadequate zinc nutrition [1]. This information should contribute to the development of plant-based solutions with improved nutrient-use-efficiency traits in crops. Previously, the transcription factors bZIP19 and bZIP23 were identified as essential regulators of the response to zinc deficiency in Arabidopsis thaliana [2]. A microarray experiment comparing gene expression between roots of wild-type and the mutant bzip19 bzip23, exposed to zinc deficiency, led to the identification of differentially expressed genes related with zinc homeostasis, namely its transport and plant internal translocation [2]. Here, we provide the detailed methodology, bioinformatics analysis and quality controls related to the microarray gene expression profiling published by Assunção and co-workers [2]. Most significantly, the present dataset comprises new experimental variables, including analysis of shoot tissue, and zinc sufficiency and excess supply. Thus, it expands from 8 to 42 microarrays hybridizations, which have been deposited at the Gene Expression Omnibus (GEO under the accession number GSE77286. Overall, it provides a resource for research on the molecular basis and regulatory events of the plant response to zinc supply, emphasizing the importance of Arabidopsis bZIP19 and bZIP23 transcription factors.

  4. Glia and zinc in ageing and Alzheimer’s disease: A mechanism for cognitive decline?

    Directory of Open Access Journals (Sweden)

    Sara eHancock

    2014-06-01

    Full Text Available Normal ageing is characterised by cognitive decline across a range of neurological functions, which are further impaired in Alzheimer’s disease (AD. Recently, alterations in zinc concentrations, particularly at the synapse, have emerged as a potential mechanism underlying the cognitive changes that occur in both ageing and AD. Zinc is now accepted as a potent neuromodulator, affecting a variety of signalling pathways at the synapse that are critical to normal cognition. While the focus has principally been on the neuron: zinc interaction, there is a growing literature suggesting that glia may also play a modulatory role in maintaining both zinc ion homeostasis and the normal function of the synapse. Indeed, zinc transporters have been demonstrated in glial cells where zinc has also been shown to have a role in signalling. Furthermore, there is increasing evidence that the pathogenesis of AD critically involves glial cells (such as astrocytes, which have been reported to contribute to amyloid-beta neurotoxicity. This review discusses the current evidence supporting a complex interplay of glia, zinc dyshomeostasis and synaptic function in ageing and AD.

  5. Zinc, aging, and immunosenescence: an overview

    Directory of Open Access Journals (Sweden)

    Ángel Julio Romero Cabrera

    2015-02-01

    Full Text Available Zinc plays an essential role in many biochemical pathways and participates in several cell functions, including the immune response. This review describes the role of zinc in human health, aging, and immunosenescence. Zinc deficiency is frequent in the elderly and leads to changes similar to those that occur in oxidative inflammatory aging (oxi-inflamm-aging and immunosenescence. The possible benefits of zinc supplementation to enhance immune function are discussed.

  6. Zinc: an essential but elusive nutrient123

    OpenAIRE

    Janet C. King

    2011-01-01

    Zinc is essential for multiple aspects of metabolism. Physiologic signs of zinc depletion are linked with diverse biochemical functions rather than with a specific function, which makes it difficult to identify biomarkers of zinc nutrition. Nutrients, such as zinc, that are required for general metabolism are called type 2 nutrients. Protein and magnesium are examples of other type 2 nutrients. Type 1 nutrients are required for one or more specific functions: examples include iron, vitamin A,...

  7. Zinc metalloproteins as medicinal targets.

    Science.gov (United States)

    Anzellotti, A I; Farrell, N P

    2008-08-01

    Zinc bioinorganic chemistry has emphasized the role of the metal ion on the structure and function of the protein. There is, more recently, an increasing appreciation of the role of zinc proteins in a variety of human diseases. This critical review, aimed at both bioinorganic and medicinal chemists, shows how apparently widely-diverging diseases share the common mechanistic approaches of targeting the essential function of the metal ion to inhibit activity. Protein structure and function is briefly summarized in the context of its clinical relevance. The status of current and potential inhibitors is discussed along with the prospects for future developments (162 references).

  8. Zinc supplementation in children with cystic fibrosis

    Science.gov (United States)

    Cystic fibrosis (CF) leads to malabsorption of macro- and micronutrients. Symptomatic zinc deficiency has been reported in CF but little is known about zinc homeostasis in children with CF. Zinc supplementation (Zn suppl) is increasingly common in children with CF but it is not without theoretcial r...

  9. Acquired Zinc Deficiency in an Adult Female

    OpenAIRE

    Mohanan Saritha; Divya Gupta; Laxmisha Chandrashekar; Devinder M Thappa; Nachiappa G Rajesh

    2012-01-01

    Acrodermatitis enteropathica is an autosomal recessive inherited disorder of zinc absorption. Acquired cases are reported occasionally in patients with eating disorders or Crohn′s disease. We report a 24-year-old housewife with acquired isolated severe zinc deficiency with no other comorbidities to highlight the rare occurrence of isolated nutritional zinc deficiency in an otherwise normal patient.

  10. 21 CFR 182.8991 - Zinc oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc oxide. 182.8991 Section 182.8991 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is generally recognized as safe when used...

  11. 21 CFR 73.2991 - Zinc oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Zinc oxide. 73.2991 Section 73.2991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2991 Zinc oxide. (a) Identity and specifications. The color additive zinc oxide shall conform in identity and specifications to the requirements of §...

  12. 21 CFR 582.5991 - Zinc oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc oxide. 582.5991 Section 582.5991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is...

  13. Prevalence of Zinc Deficiency by “ Zinc Taste Test” in Pre School Children in Yazd.

    OpenAIRE

    Gh Maleki; A Mosavi; R Fallah; Z Eslami; M Sadr-Bafghi; F Mirnaseri; S Akhavan Karbasi; M Golestan

    2004-01-01

    Introduction: Zinc deficiency is a health problem in many communities, especially among children because of growth spurt. Zinc deficiency can cause;growth limitation, delay in sexuel maturity, behavior disorders and abnormalities of immune system,susceptibility to respiratory and gasterointestinal infections and impairment of taste and smell perception. Material and Method: One of the methods of assessment the zinc defeciency is “ Zinc taste test” using zinc sulfate solution 0.1% , this test ...

  14. Zinc ions in the endocrine andexocrine pancreas of zinc deficient rats

    OpenAIRE

    Søndergaard, L.G.; M Stoltenberg; Doering, P.; Flyvbjerg, A.; Rungby, J

    2006-01-01

    Objective: Zinc deficiency is a problem world-wide. Zinc and insulin are intimately related, and a reduced zinc intake may affect glucose metabolism. The present study investigates how subclinical zinc deficiency in rats affects glucose metabolism and zinc distribution in the pancreas. Methods: Glucose metabolism was evaluated by blood-glucose, serum insulin, homeostasis model assessment (HOMA), and intraperitoneal glucose tolerance tests. Immersion zincsulphid...

  15. Zinc oxide nanorods

    Science.gov (United States)

    Chik, Hope Wuming

    Non-lithographic, bottom-up techniques have been developed to advance the state of the art and contribute to the development of new material structures, fabrication methods, devices, and applications using the Zinc Oxide material system as a demonstration vehicle. The novel low temperature catalytic vapour-liquid-solid growth process developed is technologically simple, inexpensive, and a robust fabrication technique offering complete control over the physical dimensions of the nanorod such as its diameter and length, and over the positioning of the nanorods for site-selective growth. By controlling the distribution of the Au catalysts with the use of a self-organized anodized aluminum oxide nanopore membrane as a template, we have been able to synthesize highly ordered, hexagonally packed, array of ZnO nanorods spanning a large area. These nanorods are single crystal, hexagonally shaped, indicative of the wurtzite structure, and are vertically aligned to the substrate. By pre-patterning the template, arbitrary nanorod patterns can be formed. We have also demonstrated the assembly of the nanorods into functional devices using controlled methods that are less resource intensive, easily scalable, and adaptable to other material systems, without resorting to the manipulation of each individual nanostructures. Examples of these devices include the random network device that exploits the common attributes of the nanorods, and those formed using an external field to control the nanorod orientation. Two and three terminal device measurements show that the as-grown nanorods are n-type doped, and that by controlling the external optical excitation and its test environment, the photoconductivity can be altered dramatically. Self assemble techniques such as the spontaneous formation of nanodendrites into complex networks of interconnects were studied. Controlled formation of interconnects achieved by controlling the placement of the catalyst is demonstrated by growing the

  16. Serum thymulin in human zinc deficiency.

    OpenAIRE

    Prasad, A S; Meftah, S; J. Abdallah; Kaplan, J.; Brewer, G J; Bach, J F; Dardenne, M

    1988-01-01

    The activity of thymulin (a thymic hormone) is dependent on the presence of zinc in the molecule. We assayed serum thymulin activity in three models of mildly zinc-deficient (ZD) human subjects before and after zinc supplementation: (a) two human volunteers in whom a specific and mild zinc deficiency was induced by dietary means; (b) six mildly ZD adult sickle cell anemia (SCA) subjects; and (c) six mildly ZD adult non-SCA subjects. Their plasma zinc levels were normal and they showed no over...

  17. The structure of bright zinc coatings

    Directory of Open Access Journals (Sweden)

    MIODRAG STOJANOVIC

    2000-11-01

    Full Text Available The structures of bright zinc coatings obtained from acid sulfate solutions in the presence of dextrin/salicyl aldehyde mixture were examined. It was shown by the STM technique that the surfaces of bright zinc coatings are covered by hexagonal zinc crystals, the tops of planes of which are flat and mutually parallel and which exhibit smoothness on the atomic level. X-Ray diffraction (XRD analysis of the bright zinc coatings showed that the zinc crystallites are oriented in the (110 plane only.

  18. Molybdate based passivation of zinc

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Bech-Nielsen, Gregers; Møller, Per

    1997-01-01

    In order to reduce corrosion rates, zinc plated parts are usually chromated. Recently chromates have caused increasingly environmental concern, for both allergic effects among workers touching chro-mated parts and toxic effects on fish, plants and bacteria. A molybdate based alternative has been...

  19. Zinc Therapy in Dermatology: A Review

    Directory of Open Access Journals (Sweden)

    Mrinal Gupta

    2014-01-01

    Full Text Available Zinc, both in elemental or in its salt forms, has been used as a therapeutic modality for centuries. Topical preparations like zinc oxide, calamine, or zinc pyrithione have been in use as photoprotecting, soothing agents or as active ingredient of antidandruff shampoos. Its use has expanded manifold over the years for a number of dermatological conditions including infections (leishmaniasis, warts, inflammatory dermatoses (acne vulgaris, rosacea, pigmentary disorders (melasma, and neoplasias (basal cell carcinoma. Although the role of oral zinc is well-established in human zinc deficiency syndromes including acrodermatitis enteropathica, it is only in recent years that importance of zinc as a micronutrient essential for infant growth and development has been recognized. The paper reviews various dermatological uses of zinc.

  20. Zinc-The key to preventing corrosion

    Science.gov (United States)

    Kropschot, S.J.; Doebrich, Jeff L.

    2011-01-01

    Centuries before it was identified as an element, zinc was used to make brass (an alloy of zinc and copper) and for medicinal purposes. Metallic zinc and zinc oxide were produced in India sometime between the 11th and 14th centuries and in China in the 17th century, although the discovery of pure metallic zinc is credited to the German chemist Andreas Marggraf, who isolated the element in 1746. Refined zinc metal is bluish-white when freshly cast; it is hard and brittle at most temperatures and has relatively low melting and boiling points. Zinc alloys readily with other metals and is chemically active. On exposure to air, it develops a thin gray oxide film (patina), which inhibits deeper oxidation (corrosion) of the metal. The metal's resistance to corrosion is an important characteristic in its use.

  1. Separation of Zinc from High Iron-Bearing Zinc Calcines by Reductive Roasting and Leaching

    Science.gov (United States)

    Peng, Bing; Peng, Ning; Min, Xiao-Bo; Liu, Hui; Li, Yanchun; Chen, Dong; Xue, Ke

    2015-09-01

    This paper focuses on the selective leaching of zinc from high iron-bearing zinc calcines. The FactSage 6.2 program was used for the thermodynamic analysis of the selective reduction and leaching, and the samples reduced by carbon and carbon monoxide were subjected to acid leaching for the separation of zinc from iron. It is shown that the generation of ferrous oxide should be avoided by modifying V CO ( P CO/( P CO + )) in the roasting process prior to the selective leaching of zinc. Gaseous roasting-leaching has a higher efficiency in the separation of zinc from iron than carbothermic reduction-leaching. The conversion of the zinc ferrite in high iron-bearing zinc calcines to zinc oxide and magnetite has been demonstrated by x-ray diffraction (XRD) and magnetic hysteresis loop characterization. This gaseous roast-leach process is technically feasible to separate zinc from iron without an iron precipitation process.

  2. Recovery of zinc from low-grade zinc oxide ores by solvent extraction

    Institute of Scientific and Technical Information of China (English)

    覃文庆; 蓝卓越; 黎维中

    2003-01-01

    The recovery of zinc from low-grade zinc oxide ores with solvent extraction-electrowinning technique was investigated by using D2EHPA as extractant and 260# kerosene as diluent. The results show that it is possible to selectively leach zinc from the ores by heap leaching. The zinc concentration of leach solution in the first leaching cycle is 32.57 g/L, and in the sixteenth cycle the zinc concentration is 8.27g/L after solvent extraction. The leaching solution is subjected to solvent extraction, scrubbing and selective stripping for enrichment of zinc and removal of impurities. The pregnant zinc sulfate solution produced from the stripping cycle is suitable for zinc electrowinning.Extra-pure zinc metal was obtained in the electrowinning test under conventional conditions.

  3. Association between Maternal Zinc Status, Dietary Zinc Intake and Pregnancy Complications: A Systematic Review

    Science.gov (United States)

    Wilson, Rebecca L.; Grieger, Jessica A.; Bianco-Miotto, Tina; Roberts, Claire T.

    2016-01-01

    Adequate zinc stores in the body are extremely important during periods of accelerated growth. However, zinc deficiency is common in developing countries and low maternal circulating zinc concentrations have previously been associated with pregnancy complications. We reviewed current literature assessing circulating zinc and dietary zinc intake during pregnancy and the associations with preeclampsia (PE); spontaneous preterm birth (sPTB); low birthweight (LBW); and gestational diabetes (GDM). Searches of MEDLINE; CINAHL and Scopus databases identified 639 articles and 64 studies were reviewed. In 10 out of 16 studies a difference was reported with respect to circulating zinc between women who gave birth to a LBW infant (≤2500 g) and those who gave birth to an infant of adequate weight (>2500 g), particularly in populations where inadequate zinc intake is prevalent. In 16 of our 33 studies an association was found between hypertensive disorders of pregnancy and circulating zinc; particularly in women with severe PE (blood pressure ≥160/110 mmHg). No association between maternal zinc status and sPTB or GDM was seen; however; direct comparisons between the studies was difficult. Furthermore; only a small number of studies were based on women from populations where there is a high risk of zinc deficiency. Therefore; the link between maternal zinc status and pregnancy success in these populations cannot be established. Future studies should focus on those vulnerable to zinc deficiency and include dietary zinc intake as a measure of zinc status. PMID:27754451

  4. Zinc presence in invasive ductal carcinoma of the breast and its correlation with oestrogen receptor status

    Energy Technology Data Exchange (ETDEWEB)

    Farquharson, M J [Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main St W Hamilton, Ontario, L8S 4L8 (Canada); Al-Ebraheem, A [Department of Radiography, City Community and Health Sciences, City University, London, EC1V 0HB (United Kingdom); Geraki, K [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxon, OX11 0DE (United Kingdom); Leek, R; Jubb, A; Harris, A L [Cancer Research UK, Oxford Cancer Centre, Molecular Oncology Laboratories, University of Oxford, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, 0X3 9DS (United Kingdom)], E-mail: farquhm@mcmaster.ca

    2009-07-07

    Zinc is known to play an important role in many cellular processes, and the levels of zinc are controlled by specific transporters from the ZIP (SLC39A) influx transporter group and the ZnT (SLC30A) efflux transporter group. The distribution of zinc was measured in 59 samples of invasive ductal carcinoma of breast using synchrotron radiation micro probe x-ray fluorescence facilities. The samples were formalin fixed paraffin embedded tissue micro arrays (TMAs) enabling a high throughput of samples and allowing us to correlate the distribution of trace metals with tumour cell distribution and, for the first time, important biological variables. The samples were divided into two classes, 34 oestrogen receptor positive (ER+ve) and 25 oestrogen receptor negative (ER-ve) based on quantitative immunohistochemistry assessment. The overall levels of zinc (i.e. in tumour and surrounding tissue) in the ER+ve samples were on average 60% higher than those in the ER-ve samples. The zinc levels were higher in the ER+ve tumour areas compared to the ER-ve tumour areas with the mean levels in the ER+ve samples being approximately 80% higher than the mean ER-ve levels. However, the non-tumour tissue regions of the samples contained on average the same levels of zinc in both types of breast cancers. The relative levels of zinc in tumour areas of the tissue were compared with levels in areas of non-tumour surrounding tissue. There was a significant increase in zinc in the tumour regions of the ER+ve samples compared to the surrounding regions (P < 0.001) and a non-significant increase in the ER-ve samples. When comparing the increase in zinc in the tumour regions expressed as a percentage of the surrounding non-tumour tissue zinc level in the same sample, a significant difference between the ER+ve and ER-ve samples was found (P < 0.01)

  5. Desulfurization Sorbents for Transport-Bed Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Raghubir P.; Turk, Brian S.; Vierheilig, Albert A.

    1997-07-01

    This project extends the prior work on the development of fluidizable zinc titanate particles using a spray-drying technique to impart high reactivity and attrition resistance. The specific objectives are: (1) To develop highly reactive and attrition-resistant zinc titanate sorbents in 40- to 150-{micro}m particle size range for transport reactor applications; (2) To transfer sorbent production technology to private sector; and (3) To provide technical support to Sierra Pacific Clean Coal Technology Demonstration plant and FETC's Hot-Gas Desulfurization Process Development Unit (PDU), both employing a transport reactor system.

  6. The ZntA-like NpunR4017 plays a key role in maintaining homeostatic levels of zinc in Nostoc punctiforme.

    Science.gov (United States)

    Hudek, L; Bräu, L; Michalczyk, A A; Neilan, B A; Meeks, J C; Ackland, M L

    2015-12-01

    Analysis of cellular response to zinc exposure provides insights into how organisms maintain homeostatic levels of zinc that are essential, while avoiding potentially toxic cytosolic levels. Using the cyanobacterium Nostoc punctiforme as a model, qRT-PCR analyses established a profile of the changes in relative mRNA levels of the ZntA-like zinc efflux transporter NpunR4017 in response to extracellular zinc. In cells treated with 18 μM of zinc for 1 h, NpunR4017 mRNA levels increased by up to 1300 % above basal levels. The accumulation and retention of radiolabelled (65)Zn by NpunR4107-deficient and overexpressing strains were compared to wild-type levels. Disruption of NpunR4017 resulted in a significant increase in zinc accumulation up to 24 % greater than the wild type, while cells overexpressing NpunR4107 accumulated 22 % less than the wild type. Accumulation of (65)Zn in ZntA(-) Escherichia coli overexpressing NpunR4017 was reduced by up to 21 %, indicating the capacity for NpunR4017 to compensate for the loss of ZntA. These findings establish the newly identified NpunR4017 as a zinc efflux transporter and a key transporter for maintaining zinc homeostasis in N. punctiforme.

  7. Zinc and propolis reduces cytotoxicity and proliferation in skin fibroblast cell culture: total polyphenol content and antioxidant capacity of propolis.

    Science.gov (United States)

    Tyszka-Czochara, Małgorzata; Paśko, Paweł; Reczyński, Witold; Szlósarczyk, Marek; Bystrowska, Beata; Opoka, Włodzimierz

    2014-07-01

    It has been demonstrated that zinc exerts its beneficial influence on skin fibroblasts. Propolis, a complex mixture of plant-derived and bees' products, was reported to stimulate cicatrization processes in skin and prevent infections. The aim of this study was to find out how zinc and propolis influence human skin fibroblasts in cell culture and to compare the effect of individual compounds to the effect of a mixture of zinc and propolis. In this study, zinc, as zinc aspartate, at a concentration of 16 μM, increased human fibroblasts proliferation in cell culture, whereas propolis at a concentration of 0.01% (w/v) revealed antiproliferative and cytotoxic action followed by mild cell necrosis. In culture, zinc was effectively transported into fibroblasts, and propolis inhibited the amount of zinc incorporated into the cells. An addition of propolis to the medium caused a decrease in the Zn(II) amount incorporated into fibroblasts. The obtained results also indicate an appreciable antioxidant property of propolis and revealed its potential as a supplement when applied at doses lower than 0.01% (w/v). In conclusion, the present study showed that zinc had a protective effect on human cultured fibroblasts' viability, although propolis revealed its antiproliferative action and caused mild necrosis.

  8. Dynamic transcriptomic profiles of zebrafish gills in response to zinc supplementation

    Directory of Open Access Journals (Sweden)

    Cunningham Phil

    2010-10-01

    Full Text Available Abstract Background Dietary zinc supplementation may help to promote growth, boost the immune system, protect against diabetes, and aid recovery from diarrhoea. We exploited the zebrafish (Danio rerio gill as a unique vertebrate ion transporting epithelium model to study the time-dependent regulatory networks of gene-expression leading to homeostatic control during zinc supplementation. This organ forms a conduit for zinc uptake whilst exhibiting conservation of zinc trafficking components. Results Fish were maintained with either zinc supplemented water (4.0 μM and diet (2023 mg zinc kg-1 or water and diet containing Zn2+ at 0.25 μM and 233 mg zinc kg-1, respectively. Gill tissues were harvested at five time points (8 hours to 14 days and transcriptome changes analysed in quintuplicate using a 16 K microarray with results anchored to gill Zn2+ influx and whole body nutrient composition (protein, carbohydrate, lipid, elements. The number of regulated genes increased up to day 7 but declined as the fish acclimated. In total 525 genes were regulated (having a fold-change more than 1.8 fold change and an adjusted P-value less than 0.1 which is controlling a 10% False discovery rate, FDR by zinc supplementation, but little overlap was observed between genes regulated at successive time-points. Many genes displayed cyclic expression, typical for homeostatic control mechanisms. Annotation enrichment analysis revealed strong overrepresentation of "transcription factors", with specific association evident with "steroid hormone receptors". A suite of genes linked to "development" were also statistically overrepresented. More specifically, early regulation of genes was linked to a few key transcription factors (e.g. Mtf1, Jun, Stat1, Ppara, Gata3 and was followed by hedgehog and bone morphogenic protein signalling. Conclusions The results suggest that zinc supplementation reactivated developmental pathways in the gill and stimulated stem cell

  9. Zinc and Manduca sexta hemocyte functions

    Directory of Open Access Journals (Sweden)

    Elizabeth Willott

    2002-03-01

    Full Text Available Two metalloproteases have recently been linked to the immune response in Lepidoptera. In addition, zinc is highly important in many mammalian immune-related functions. Because of these, we investigated the effect of zinc and two zinc-protease inhibitors on Manduca sexta hemocyte behavior in vitro. Plasmatocytes were significantly more elongated in Grace's medium supplemented with 100 µm zinc chloride than in the absence of zinc. To test whether zinc-dependent proteases were responsible for the increased length seen in the presence of zinc, we tested two zinc-protease inhibitors, phosphoramidon and bestatin. Each resulted in decreased plasmatocyte length compared to the control, but the distributions of lengths differed with each inhibitor. Each inhibitor also affected plasmatocyte network formation in vitro. This work suggests (1 that at least two different zinc proteases are involved in the cellular defense response of M. sexta, and (2 that zinc should be included in media used for in vitro studies of the immune response.

  10. The Current Trend of China’s Zinc Consumption

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> According to estimations of zinc consumptionby China’s major zinc consumption industries,the growth rate of China’s actual zinc con-sumption in the period 1998-2002 was 10.2percent.Of China’s total zinc consumption inyear 2002,galvanizing zinc made 36 percent,

  11. MiniZinc with Strings

    OpenAIRE

    Amadini, Roberto; Flener, Pierre; Pearson, Justin; Scott, Joseph D.; Stuckey, Peter J.; Tack, Guido

    2016-01-01

    Strings are extensively used in modern programming languages and constraints over strings of unknown length occur in a wide range of real-world applications such as software analysis and verification, testing, model checking, and web security. Nevertheless, practically no CP solver natively supports string constraints. We introduce string variables and a suitable set of string constraints as builtin features of the MiniZinc modelling language. Furthermore, we define an interpreter for convert...

  12. BWR radiation buildup control with ionic zinc

    International Nuclear Information System (INIS)

    In 1983 a hypothesis was disclosed which suggested that the presence of ionic zinc in the reactor water of the BWR could reduce radiation buildup. This hypothesis was developed from correlations of plant data, and subsequently, from laboratory experiments which demonstrated clearly that ionic zinc inhibits the corrosion of stainless steel. The benefits of zinc addition have been measured at the Vallecitos Nuclear Center under and EPRI/GE project. Experimentation and analyses have been performed to evaluate the impact of intentional zinc addition on the IGSCC characteristics of primary system materials and on the performance of the nuclear fuel. It has been concluded that no negative effects are expected. The author conclude that the intentional addition of ionic zinc to the BWR reactor water at a concentration of approximately 10 ppb will provide major benefits in controlling the Co-60 buildup on primary system stainless steel surfaces. The intentional addition of zinc is now a qualified technique for use in BWRs

  13. Lifetime estimates for sterilizable silver-zinc battery separators

    Science.gov (United States)

    Cuddihy, E. F.; Walmsley, D. E.; Moacanin, J.

    1972-01-01

    The lifetime of separator membranes currently employed in the electrolyte environment of silver-zinc batteries was estimated at 3 to 5 years. The separator membranes are crosslinked polyethylene film containing grafted poly (potassium acrylate)(PKA), the latter being the hydrophilic agent which promotes electrolyte ion transport. The lifetime was estimated by monitoring the rate of loss of PKA from the separators, caused by chemical attack of the electrolyte, and relating this loss rate to a known relationship between battery performance and PKA concentration in the separators.

  14. Consequence of irrigation with arsenic and zinc contaminated water on accumulation of zinc in radishes plant

    Directory of Open Access Journals (Sweden)

    Hossein Banejad

    2014-10-01

    Conclusion: It was found that zinc concentration in radish roots, tubers, and leafs is correlated with the concentration of zinc in water. Moreover, there was a competition between the absorption of zinc and arsenic in plants. With increasing arsenic in irrigation water, transition of Zn was reduced to aerial part.

  15. The large intracellular loop of hZIP4 is an intrinsically disordered zinc binding domain†

    Science.gov (United States)

    Bafaro, Elizabeth M.; Antala, Sagar; Nguyen, Tuong-Vi; Dzul, Stephen P.; Doyon, Brian; Stemmler, Timothy L.; Dempski, Robert E.

    2015-01-01

    The human (h) ZIP4 transporter is a plasma membrane protein which functions to increase the cytosolic concentration of zinc. hZIP4 transports zinc into intestinal cells and therefore has a central role in the absorption of dietary zinc. hZIP4 has eight transmembrane domains and encodes a large intracellular loop between transmembrane domains III and IV, M3M4. Previously, it has been postulated that this domain regulates hZIP4 levels in the plasma membrane in a zinc-dependent manner. The objective of this research was to examine the zinc binding properties of the large intracellular loop of hZIP4. Therefore, we have recombineantly expressed and purified M3M4 and showed that this domain binds two zinc ions. Using a combination of site-directed mutagenesis, metal binding affinity assays, and X-ray absorption spectroscopy, we demonstrated that the two Zn2+ ions bind sequentially, with the first Zn2+ binding to a CysHis3 site with a nanomolar binding affinity, and the second Zn2+ binding to a His4 site with a weaker affinity. Circular dichroism spectroscopy revealed that the M3M4 domain is intrinsically disordered, with only a small structural change induced upon Zn2+ coordination. Our data supports a model in which the intracellular M3M4 domain senses high cytosolic Zn2+ concentrations and regulates the plasma membrane levels of the hZIP4 transporter in response to Zn2+ binding. PMID:25882556

  16. Zinc oxide varistor; Sanka aen barisuta

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, H.

    2000-01-01

    Characteristics of zinc oxide varistors, applications to electronic equipment protection and to power arrester are explained. Zinc oxide varistors were invented in Japan, which function by ceramics boundary phenomena and are applied to various fields from power plants to houses. Zinc oxide varistors protect electronic equipment from malfunctions and destructions by surge voltage, accordingly have spread rapidly. Protection performance of the power arresters has been improved by development of zinc oxide varistors for electric power, and power arresters came to be used to protect electric lines all over the world. (NEDO)

  17. Evolution of zinc morphology during continuous electrodeposition

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The morphology evolution of zinc continuous electrodeposits with nano-sized crystals on the ferrite substrate has been studied by in-situ scanning tunnel spectroscopy (STM). It is found that the morphology of zinc electrodeposits varies from initial granules with a size of about 30 nm to layered platelets with increasing deposition time. Meanwhile, the crystal structure of the zinc electrodeposits is identified to be hexagonal η-phase by X-ray diffraction. The orientation relationship between zinc crystals and the substrate surface can be interpreted in terms of the misfit and the atomic correspondence of the interphase boundary between the η-phase deposits and α-Fe substrate.

  18. Zinc absorption in inflammatory bowel disease

    Energy Technology Data Exchange (ETDEWEB)

    Valberg, L.S.; Flanagan, P.R.; Kertesz, A.; Bondy, D.C.

    1986-07-01

    Zinc absorption was measured in 29 patients with inflammatory bowel disease and a wide spectrum of disease activity to determine its relationship to disease activity, general nutritional state, and zinc status. Patients with severe disease requiring either supplementary oral or parenteral nutrition were excluded. The mean 65ZnCl2 absorption, in the patients, determined using a 65Zn and 51Cr stool-counting test, 45 +/- 17% (SD), was significantly lower than the values, 54 +/- 16%, in 30 healthy controls, P less than 0.05. Low 65ZnCl2 absorption was related to undernutrition, but not to disease activity in the absence of undernutrition or to zinc status estimated by leukocyte zinc measurements. Mean plasma zinc or leukocyte zinc concentrations in patients did not differ significantly from controls, and only two patients with moderate disease had leukocyte zinc values below the 5th percentile of normal. In another group of nine patients with inflammatory bowel disease of mild-to-moderate severity and minimal nutritional impairment, 65Zn absorption from an extrinsically labeled turkey test meal was 31 +/- 10% compared to 33 +/- 7% in 17 healthy controls, P greater than 0.1. Thus, impairment in 65ZnCl2 absorption in the patients selected for this study was only evident in undernourished persons with moderate or severe disease activity, but biochemical evidence of zinc deficiency was uncommon, and clinical features of zinc depletion were not encountered.

  19. [Zinc in patients with anorexia nervosa].

    Science.gov (United States)

    Røijen, S B; Worsaae, U; Zlotnik, G

    1991-03-01

    In a multicenter study, the relation between zinc status and anorexia nervosa was studied in 18 patients (15 females and 3 males in the age range of 11 to 25 years). Analysis of plasma zinc (by atomic absorption), plasma albumin (by electro-immuno diffusion method) and sense of taste (comparing quinine, zinc sulfate and water solutions), showed no significant abnormalities. Thus, the investigation does not support the hypothesis, that zinc status plays a significant role in the symptomatology of anorexia nervosa. PMID:2008719

  20. Nucleation and growth in alkaline zinc electrodeposition An Experimental and Theoretical study

    Science.gov (United States)

    Desai, Divyaraj

    The current work seeks to investigate the nucleation and growth of zinc electrodeposition in alkaline electrolyte, which is of commercial interest to alkaline zinc batteries for energy storage. The morphology of zinc growth places a severe limitation on the typical cycle life of such batteries. The formation of mossy zinc leads to a progressive deterioration of battery performance while zinc dendrites are responsible for sudden catastrophic battery failure. The problems are identified as the nucleation-controlled formation of mossy zinc and the transport-limited formation of dendritic zinc. Consequently, this thesis work seeks to investigate and accurately simulate the conditions under which such morphologies are formed. The nucleation and early-stage growth of Zn electrodeposits is studied on carbon-coated TEM grids. At low overpotentials, the morphology develops by aggregation at two distinct length scales: ~5 nm diameter monocrystalline nanoclusters form ~50nm diameter polycrystalline aggregates, and second, the aggregates form a branched network. Epitaxial (0002) growth above a critical overpotential leads to the formation of hexagonal single-crystals. A kinetic model is provided using the rate equations of vapor solidification to simulate the evolution of the different morphologies. On solving these equations, we show that aggregation is attributed to cluster impingement and cluster diffusion while single-crystal formation is attributed to direct attachment. The formation of dendritic zinc is investigated using in-operando transmission X-ray microscopy which is a unique technique for imaging metal electrodeposits. The nucleation density of zinc nuclei is lowered using polyaniline films to cover the active nucleation sites. The effect of overpotential is investigated and the morphology shows beautiful in-operando formation of symmetric zinc crystals. A linear perturbation model was developed to predict the growth and formation of these crystals to first

  1. Histidine Protects Against Zinc and Nickel Toxicity in Caenorhabditis elegans

    OpenAIRE

    Murphy, John T; Bruinsma, Janelle J.; Schneider, Daniel L.; Sara Collier; James Guthrie; Asif Chinwalla; J David Robertson; Elaine R Mardis; Kerry Kornfeld

    2011-01-01

    Author Summary Zinc is an essential nutrient that is critical for human health. However, excess zinc can cause toxicity, indicating that regulatory mechanisms are necessary to maintain homeostasis. The analysis of mechanisms that promote zinc homeostasis can elucidate fundamental regulatory processes and suggest new approaches for treating disorders of zinc metabolism. To discover genes that modulate zinc tolerance, we screened for C. elegans mutants that were resistant to zinc toxicity. Here...

  2. Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleuthero-embryos: Importance of zinc ions

    NARCIS (Netherlands)

    Brun, N.R.; Lenz, M.; Wehrli, B.; Fent, K.

    2014-01-01

    The increasing use of zinc oxide nanoparticles (nZnO) and their associated environmental occurrence make it necessary to assess their potential effects on aquatic organisms. Upon water contact, nZnO dissolve partially to zinc (Zn(II)). To date it is not yet completely understood, whether effects of

  3. Solubilization and Transformation of Insoluble Zinc Compounds by Fungi Isolated from a Zinc Mine

    Directory of Open Access Journals (Sweden)

    Thanawat Sutjaritvorakul

    2013-07-01

    Full Text Available Fungi were isolated from zinc-containing rocks and mining soil. They were screened for the ability to solubilize and transform three insoluble zinc compounds: ZnO, Zn3(PO4, and ZnCO3. Fungi were plated on potato dextrose agar (PDA medium which was supplemented with 0.5% (w/v of insoluble zinc compounds. Of the strains tested, four fungal isolates showed the highest efficiency for solubilizing all the insoluble zinc compounds, producing clearing zone diameters > 40 mm. These were identified as a Phomopsis spp., Aspergillus sp.1, Aspergillus sp.2, and Aspergillus niger. Zinc oxide was the most easily solubilized compound and it was found that 87%, 52%, and 61% of the tested fungi (23 isolates were able to solubilize zinc oxide, zinc phosphate, and zinc carbonate, respectively. Precipitation of zinc-containing crystals was observed in zinc oxide-containing agar medium underneath colonies of Aspergillus sp.1, and these were identified as zinc oxalate. It is suggested that these kinds of fungi have the potential application in bioremediation practices for heavy metal contaminated soils.

  4. The Potential for Zinc Stable Isotope Techniques and Modelling to Determine Optimal Zinc Supplementation

    Directory of Open Access Journals (Sweden)

    Cuong D. Tran

    2015-05-01

    Full Text Available It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease.

  5. Clinical Aspects of Trace Elements: Zinc in Human Nutrition - Assessment of Zinc Status

    Directory of Open Access Journals (Sweden)

    Michelle M Pluhator

    1996-01-01

    Full Text Available Because the limiting and vulnerable zinc pool has not been identified, it becomes a challenge to determine which of the many zinc pools is most susceptible to deficiency. As a consequence, defining and assessing zinc status in the individual patient is a somewhat uncertain process. Laboratory analysis of zinc status is difficult because no single biochemical criterion can reliably reflect zinc body stores. Many indexes have been examined in the hopes of discovering a method for the assessment of zinc nutriture. None of the methods currently used can be wholeheartedly recommended because they are fraught with problems that affect their use and interpretation. However, these methods remain in use for clinical and research purposes, though their benefits and drawbacks must always be acknowledged. Until an acceptable method of analysis is discovered, clinicians must rely for confirmation of zinc deficiency on a process of supplementing with zinc and observing the patient’s response. The main indexes (plasma/serum, erythrocyte, leukocyte, neutrophil, urine, hair and salivary zinc levels, taste acuity and oral zinc tolerance tests, and measurement of metallothionein levels are reviewed. Measurement of plasma or erythrocyte metallothionein levels shows promise as a future tool for the accurate determination of zinc status.

  6. Effect of consuming zinc-fortified bread on serum zinc and iron status of zinc-deficient women: A double blind, randomized clinical trial

    OpenAIRE

    Akbar Badii; Niloufar Nekouei; Mohammad Fazilati; Mohammad Shahedi; Sajad Badiei

    2012-01-01

    After iron deficiency, zinc deficiency is the major micronutrient deficiency in developing countries, and staple food fortification is an effective strategy to prevent and improve it among at-risk-populations. No action has been taken to reduce zinc deficiency via flour fortification so far in Iran, and little is known about the influence of zinc fortification of flour on serum zinc and the iron status, and also about the optimum and effective amount of zinc compound that is used in food fort...

  7. 21 CFR 558.78 - Bacitracin zinc.

    Science.gov (United States)

    2010-04-01

    ... citations affecting § 558.78, see the List of CFR Sections Affected, which appears in the Finding Aids... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Bacitracin zinc. 558.78 Section 558.78 Food and... in Animal Feeds § 558.78 Bacitracin zinc. (a) Specifications. Type A medicated articles...

  8. Optical and morphological characteristics of zinc selenide-zinc sulfide solid solution crystals

    Science.gov (United States)

    Singh, N. B.; Su, Ching-Hua; Arnold, Bradley; Choa, Fow-Sen

    2016-10-01

    Experiments were performed to study the effect of point defects on the optical and morphological characteristics of zinc selenide-zinc sulfide ZnSe-ZnS (ZnSexS(1-x)) solid solution crystals grown under terrestrial (1-g) condition. We used the composition ZnSe0.91S0.09 and ZnSe0.73S0.27 for the detailed studies. Crystals of 8 mm and 12 mm diameter were grown using physical vapor transport methods. These crystals did not exhibit gross defects such as voids, bubbles or precipitates. The photoluminescence spectra indicated strong red emission for the 610-630-nm wavelength region in both crystals. This emission could be explained on the basis of high energy irradiation of Zn selenide. For the ZnSe0.73S0.27 crystal, absorption starts at a lower wavelength range (300 nm) when compared to the ZnSe0.91S0.09 crystal presumably due to the much higher bandgap of ZnS than that of ZnSe. Sharp peaks at 451 and 455 nm were observed for both samples corresponding to the band edge transitions, followed by a strong peak at 632 nm. These results were consistent with the observations based on Raman spectroscopy studies. Under 532-nm laser illumination both transverse optical (TO) and longitudinal optical (LO) phonon peaks appeared at Raman shifts of 220 and 280 Δcm-1, respectively. These peaks are similar to those observed for pure ZnSe Raman spectra for which TO and LO occur at 200 and 250 Δcm-1 for the x-axis (first order) polarization.

  9. Malnutrition and a rash: think zinc.

    Science.gov (United States)

    Roberts, C M L; Martin-Clavijo, A; Winston, A P; Dharmagunawardena, B; Gach, J E

    2007-11-01

    Endemic zinc deficiency is recognised to be a common and serious problem in developing countries. However, it may be seen in routine practice in the UK, and can be easily overlooked. Malnutrition from any cause in conjunction with an undiagnosed cutaneous problem should alert the clinician to the diagnosis. Investigations may be unreliable, and if in doubt, a therapeutic trial of zinc supplementation is indicated. We present three cases of malnourished patients, in whom zinc deficiency was diagnosed after the development of cutaneous features. The malnutrition resulted from alcoholism in two cases and anorexia nervosa in the third. The heterogeneity of underlying causes of zinc deficiency is discussed, along with its effects, treatment and zinc homeostasis. PMID:17953634

  10. AMPA receptor inhibition by synaptically released zinc.

    Science.gov (United States)

    Kalappa, Bopanna I; Anderson, Charles T; Goldberg, Jacob M; Lippard, Stephen J; Tzounopoulos, Thanos

    2015-12-22

    The vast amount of fast excitatory neurotransmission in the mammalian central nervous system is mediated by AMPA-subtype glutamate receptors (AMPARs). As a result, AMPAR-mediated synaptic transmission is implicated in nearly all aspects of brain development, function, and plasticity. Despite the central role of AMPARs in neurobiology, the fine-tuning of synaptic AMPA responses by endogenous modulators remains poorly understood. Here we provide evidence that endogenous zinc, released by single presynaptic action potentials, inhibits synaptic AMPA currents in the dorsal cochlear nucleus (DCN) and hippocampus. Exposure to loud sound reduces presynaptic zinc levels in the DCN and abolishes zinc inhibition, implicating zinc in experience-dependent AMPAR synaptic plasticity. Our results establish zinc as an activity-dependent, endogenous modulator of AMPARs that tunes fast excitatory neurotransmission and plasticity in glutamatergic synapses.

  11. Role of zinc in pediatric diarrhea

    Directory of Open Access Journals (Sweden)

    Chaitali Bajait

    2011-01-01

    Full Text Available Zinc supplementation is a critical new intervention for treating diarrheal episodes in children. Recent studies suggest that administration of zinc along with new low osmolarity oral rehydration solutions / salts (ORS, can reduce the duration and severity of diarrheal episodes for up to three months. The World Health Organization (WHO and UNICEF recommend daily 20 mg zinc supplements for 10 - 14 days for children with acute diarrhea, and 10 mg per day for infants under six months old, to curtail the severity of the episode and prevent further occurrences in the ensuing -two to three months, thereby decreasing the morbidity considerably. This article reviews the available evidence on the efficacy and safety of zinc supplementation in pediatric diarrhea and convincingly concludes that zinc supplementation has a beneficial impact on the disease outcome.

  12. Primary chemistry response to initial zinc injection

    International Nuclear Information System (INIS)

    As of June 2009, fifty-seven pressurized water reactor (PWR) units were adding zinc to their primary coolant systems. This represents about 22% of the world's PWR units. Zinc injection is used in at least six different countries and in essentially all major Nuclear Steam Supply System (NSSS) designs. Plant-specific strategies for injection of zinc are now tailored with respect to concentrations, injection location, injection timing, and monitoring protocols. At least 14 additional plants are expected to begin zinc injection within the next two years and many more plants are investigating options for injecting zinc. A principal concern regarding the plant response to initial injection is that dissolved zinc will interact with ex-core oxide films in a manner that causes a release of nickel to the primary coolant system. It is possible that nickel released by this mechanism could deposit in the core and challenge fuel performance. In this work primary system chemistry data (principally nickel concentrations and radiocobalt activities) were evaluated for the cycles in which zinc was first injected. Assessments included comparisons of concentrations and activities before and after zinc injection as well as comparison of these periods to similar times in previous cycles. The mass of nickel released during shutdown, an imperfect indicator of the mass deposited on the fuel during the cycle, was also assessed. While the analyses presented in this work are not a complete analysis of plant response to zinc injection (for example, direct observations of surface film modification were not included) they represent a significant addition to the understanding of the way in which zinc interacts with the PWR primary system. (author)

  13. Zinc abundances of planetary nebulae

    CERN Document Server

    Smith, Christina L; Dinerstein, Harriet L

    2014-01-01

    Zinc is a useful surrogate element for measuring Fe/H as, unlike iron, it is not depleted in the gas phase media. Zn/H and O/Zn ratios have been derived using the [Zn IV] emission line at 3.625um for a sample of nine Galactic planetary nebulae, seven of which are based upon new observations using the VLT. Based on photoionization models, O/O++ is the most reliable ionisation correction factor for zinc that can readily be determined from optical emission lines, with an estimated accuracy of 10% or better for all targets in our sample. The majority of the sample is found to be sub-solar in [Zn/H]. [O/Zn] in half of the sample is found to be consistent with Solar within uncertainties, whereas the remaining half are enhanced in [O/Zn]. [Zn/H] and [O/Zn] as functions of Galactocentric distance have been investigated and there is little evidence to support a trend in either case.

  14. Thermodynamic Modeling of Zinc Speciation in Electric Arc Furnace Dust

    Science.gov (United States)

    Pickles, Chris A.

    2011-04-01

    The remelting of automobile scrap, containing galvanized steel, in an electric arc furnace (EAF) results in the generation of a dust, which contains considerable amounts of zinc and other metals. Typically, the amount of zinc is of significant commercial value, but the recovery of this metal can be hindered by the varied speciation of zinc. The majority of the zinc exists as zincite (ZnO) and zinc ferrite (ZnFe2O4) or ferritic spinels ((Zn x Mn y Fe1-x-y )Fe2O4), but other zinccontaining species such as zinc chloride, zinc hydroxide chlorides, hydrated zinc sulphates and zinc silicates have also been identified. There is a scarcity of research literature on the thermodynamic aspects of the formation of these zinc-containing species, in particular, the minor zinc-containing species. Therefore, in this study, the equilibrium module of HSC Chemistry® 6.1 was utilized to calculate the types and the amounts of the zinc-containing species. The variables studied were: the gas composition, the temperature and the dust composition. At high temperatures, zincite forms via the reaction of zinc vapour with oxygen gas and the zinc-manganese ferrites form as a result of the reaction of iron-manganese particles with zinc vapour and oxygen. At intermediate temperatures, zinc sulphates are produced through the reaction of zinc oxide and sulphur dioxide gas. As room temperature is approached, zinc chlorides and fluorides form by the reaction of zinc oxide with hydrogen chloride and hydrogen fluoride gases, respectively. Zinc silicate likely forms via the high temperature reaction of zinc vapour and oxygen with silica. In the presence of excess water and as room temperature is approached, the zinc sulphates, chlorides and fluorides can become hydrated.

  15. Dynamic transcriptomic profiles of zebrafish gills in response to zinc depletion

    Directory of Open Access Journals (Sweden)

    Cunningham Phil

    2010-10-01

    Full Text Available Abstract Background Zinc deficiency is detrimental to organisms, highlighting its role as an essential micronutrient contributing to numerous biological processes. To investigate the underlying molecular events invoked by zinc depletion we performed a temporal analysis of transcriptome changes observed within the zebrafish gill. This tissue represents a model system for studying ion absorption across polarised epithelial cells as it provides a major pathway for fish to acquire zinc directly from water whilst sharing a conserved zinc transporting system with mammals. Results Zebrafish were treated with either zinc-depleted (water = 2.61 μg L-1; diet = 26 mg kg-1 or zinc-adequate (water = 16.3 μg L-1; diet = 233 mg kg-1 conditions for two weeks. Gill samples were collected at five time points and transcriptome changes analysed in quintuplicate using a 16K oligonucleotide array. Of the genes represented the expression of a total of 333 transcripts showed differential regulation by zinc depletion (having a fold-change greater than 1.8 and an adjusted P-value less than 0.1, controlling for a 10% False Discovery Rate. Down-regulation was dominant at most time points and distinct sets of genes were regulated at different stages. Annotation enrichment analysis revealed that 'Developmental Process' was the most significantly overrepresented Biological Process GO term (P = 0.0006, involving 26% of all regulated genes. There was also significant bias for annotations relating to development, cell cycle, cell differentiation, gene regulation, butanoate metabolism, lysine degradation, protein tyrosin phosphatases, nucleobase, nucleoside and nucleotide metabolism, and cellular metabolic processes. Within these groupings genes associated with diabetes, bone/cartilage development, and ionocyte proliferation were especially notable. Network analysis of the temporal expression profile indicated that transcription factors foxl1, wt1, nr5a1, nr6a1, and especially

  16. The Effect of Compost on Release and Transport of Heavy Metals (Zn, Cu) in Soil

    OpenAIRE

    HOODAJI, M.; NEDAEI NIA, M.; S. A.A. Moosavi

    2015-01-01

    Abstract. The present study is aimed to examine the effect of consuming compost on transportation of copper and zinc in soil. There were four compost treatments and heavy metals (zinc and copper) and two control treatments (one compost soil and other compost-free soil) as a completely random design. The runoff every time was taken and determined the concentrations of copper and zinc, EC and pH. The results show that the concentration of zinc and copper during 12 times of leaching showed signi...

  17. Studies of micromorphology and current efficiency of zinc electrodeposited from flowing chloride electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mc Vay, L.; Muller, R.H.; Tobias, C.W.

    1986-05-01

    Results of a study of the micromorphology and current efficiency of zinc electrodeposited from flowing, acidic chloride solutions are reported. The effects of six variables were examined: flow rate, current density, zinc and hydrogen ion concentration, concentrations of nickel, iron and cadmium impurity ions, and the nature of the substrate. The development of micromorphology was studied in-situ by means of videomicrography and ex-situ by means of scanning electron microscopy. This investigation focused on the formation of grooved deposits, which are found under a wide range of deposition conditions. The major conclusions of this study are: the most important variable determining whether grooved deposits form is the interfacial concentration; large protrusions orient themselves parallel to the flow direction with the orientation starting upstream and progressing downstream; large protrusions become ridges due to growth of the highest current density portions of the electrode under mass transport control. The current efficiency was measured using EDTA titration and weight measurements. The fraction of the current taken by zinc deposition increased with zinc concentration, ranging up to 100%, and decreased with pH. The efficiency of zinc deposition was affected by the flow rate and the substrate employed. Impurities lowered the current efficiency.

  18. 21 CFR 172.399 - Zinc methionine sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc methionine sulfate. 172.399 Section 172.399... CONSUMPTION Special Dietary and Nutritional Additives § 172.399 Zinc methionine sulfate. Zinc methionine...-methionine in purified water. (b) The additive meets the following specifications: Zinc content—19 to...

  19. Zinc-enriched boutons in rat spinal cord

    DEFF Research Database (Denmark)

    Schrøder, H D; Danscher, G; Jo, S M;

    2000-01-01

    The rat spinal cord reveals a complex pattern of zinc-enriched (ZEN) boutons. As a result of in vivo exposure to selenide ions, nanosized clusters of zinc selenide are created in places where zinc ions are present, including the zinc-containing synaptic vesicles of ZEN boutons. The clusters can...

  20. Oral zinc supplementation in anorexia nervosa.

    Science.gov (United States)

    Safai-Kutti, S

    1990-01-01

    There is evidence to suggest that zinc (Zn) deficiency may be involved in the pathogenesis of anorexia nervosa (AN). In an open study of 20 females, aged 14-26 years, afflicted with AN the effect of oral zinc supplementation was investigated. In each case the diagnosis of AN was based on the criteria of DSM-III-R. After a careful history, complete physical examination and laboratory screening the subjects were started on 45-90 mg of Zn2+, as zinc sulfate, (SolvezinkR, Tika, Sweden) per day. During a follow-up period of 8-56 months 17 patients increased their body weight by more than 15%. The maximum gradual weight gain of 57% was encountered in one patient after 24 months of zinc therapy. The most rapid weight gain was recorded in a patient who increased her body weight by 24% over a period of 3 months. After the institution of zinc, weight loss was not registered in any of our patients. In 13 subjects the menstruation returned 1-17 months after the initiation of zinc therapy. None of our patients developed bulimia. The design of an ongoing multicenter placebo-controlled clinical trial of zinc supplementation to patients with AN is described. PMID:2291418

  1. The role of zinc in liver cirrhosis.

    Science.gov (United States)

    Grüngreiff, Kurt; Reinhold, Dirk; Wedemeyer, Heiner

    2016-01-01

    Zinc is an essential trace element playing fundamental roles in cellular metabolism. It acts mostly by binding a wide range of proteins, thus affecting a broad spectrum of biological processes, which include cell division, growth and differentiation. Zinc is critical to a large number of structural proteins, enzymatic processes, and transcription factors. Zinc deficiency can result in a spectrum of clinical manifestations, such as poor of appetite, loss of body hair, altered taste and smell, testicular atrophy, cerebral and immune dysfunction, and diminished drug elimination capacity. These are common symptoms in patients with chronic liver diseases, especially liver cirrhosis. The liver is the main organ responsible for the zinc metabolism which can be affected by liver diseases. On the other hand, zinc deficiency may alter hepatocyte functions and also immune responses in inflammatory liver diseases. Liver cirrhosis represents the most advanced stage of chronic liver diseases and is the common outcome of chronic liver injury. It is associated with energy malnutrition, with numerous metabolic disorders, such as hypoalbuminemia, with imbalance between branched-chain amino acids and aromatic amino acids, and with reduced zinc serum concentrations. All these processes can influence the clinical outcome of patients, such ascites, hepatic encephalopathy and hepatocellular carcinoma. In the present review, we summarize the emerging evidence on the pitoval role of zinc in the pathogenesis of liver cirrhosis. PMID:26626635

  2. Revisiting zinc passivation in alkaline solutions

    International Nuclear Information System (INIS)

    Highlights: • Zinc passive films were characterised by electrochemical tests coupled with cross sectional FIB-SEM. • Passive layers at pH > 12 comprised of an outer precipitated layer and inner compact oxide. • The electrolyte pH influences the nature/stability of the outer precipitated layer and this impacts the passive state on zinc. • The precipitated layers on zinc at pH 12 support cathode reactions and catalyse oxide growth. -- Abstract: Passive films nominally consist of an inner compact oxide and the outer precipitated layer. In the case of zinc (Zn), the outer layer is mainly precipitated ZnO/Zn(OH)2. Electrolyte pH controls the stability of the outer precipitated layer. In a pH 13 solution, formation of soluble Zn(OH)3− and Zn(OH)42− phases render the precipitated layer unstable increasing zinc corrosion, whereas at pH 12, the precipitated layer (ZnO/Zn(OH)2) is more stable making it an effective anodic barrier upon zinc. These precipitated oxides formed at pH 12 support cathodic reactions on their surface which in turn catalyse further oxide growth by a cathodically driven process. Focused ion beam-scanning electron microscopy (FIB-SEM) was used to support some of the electrochemical assertions, revealing the form and morphology of the passive layers that grow upon zinc exposed to alkaline solutions

  3. ZINC MITIGATION INTERIM REPORT - THERMODYNAMIC STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P.

    2010-12-17

    An experimental program was initiated in order to develop and validate conditions that will effectively trap Zn vapors that are released during extraction. The proposed work is broken down into three tasks. The first task is to determine the effectiveness of various pore sizes of filter elements. The second task is to determine the effect of filter temperature on zinc vapor deposition. The final task is to determine whether the zinc vapors can be chemically bound. The approach for chemically binding the zinc vapors has two subtasks, the first is a review of literature and thermodynamic calculations and the second is an experimental approach using the best candidates. This report details the results of the thermodynamic calculations to determine feasibility of chemically binding the zinc vapors within the furnace module, specifically the lithium trap (1). A review of phase diagrams, literature, and thermodynamic calculations was conducted to determine if there are suitable materials to capture zinc vapor within the lithium trap of the extraction basket. While numerous elements exist that form compounds with zinc, many of these also form compounds with hydrogen or the water that is present in the TPBARs. This relatively comprehensive review of available data indicates that elemental cobalt and copper and molybdenum trioxide (MoO3) may have the requisite properties to capture zinc and yet not be adversely affected by the extraction gases and should be considered for testing.

  4. Non-Chromate Passivation of Zinc

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Bech-Nielsen, G.

    1993-01-01

    After extensive research and development a method for passivation of electroplated zinc has been optimised to provide the best corrosion resistance. This optimisation has lead to two different treatments both based on mo-lybdate and phosphate (from this point forward referred to as MolyPhos). The......After extensive research and development a method for passivation of electroplated zinc has been optimised to provide the best corrosion resistance. This optimisation has lead to two different treatments both based on mo-lybdate and phosphate (from this point forward referred to as Moly......Phos). The treatments are within the same concentration region, and they have a mutual pat-ent pending. Although some tests still need to be conducted, the following aspects are clear at the present time: The general appearance of the passivated zinc surface is very similar to a standard yellow chromate treatment....... There is no known environmental or health risk involved using the treatments mentioned above. All components used in the baths are non toxic compared to Cr(VI). Alloy coatings such as zinc/nickel, zinc/cobalt, zinc/tin and all types of pure zinc coating (from cyanide, acidic or alkaline baths) have been treated...

  5. Implication of zinc excess on soil health.

    Science.gov (United States)

    Wyszkowska, Jadwiga; Boros-Lajszner, Edyta; Borowik, Agata; Baćmaga, Małgorzata; Kucharski, Jan; Tomkiel, Monika

    2016-01-01

    This study was undertaken to evaluate zinc's influence on the resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease. The experiment was conducted in a greenhouse of the University of Warmia and Mazury (UWM) in Olsztyn, Poland. Plastic pots were filled with 3 kg of sandy loam with pHKCl - 7.0 each. The experimental variables were: zinc applied to soil at six doses: 100, 300, 600, 1,200, 2,400 and 4,800 mg of Zn(2+) kg(-1) in the form of ZnCl2 (zinc chloride), and species of plant: oat (Avena sativa L.) cv. Chwat and white mustard (Sinapis alba) cv. Rota. Soil without the addition of zinc served as the control. During the growing season, soil samples were subjected to microbiological analyses on experimental days 25 and 50 to determine the abundance of organotrophic bacteria, actinomyces and fungi, and the activity of dehydrogenases, catalase and urease, which provided a basis for determining the soil resistance index (RS). The physicochemical properties of soil were determined after harvest. The results of this study indicate that excessive concentrations of zinc have an adverse impact on microbial growth and the activity of soil enzymes. The resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease decreased with an increase in the degree of soil contamination with zinc. Dehydrogenases were most sensitive and urease was least sensitive to soil contamination with zinc. Zinc also exerted an adverse influence on the physicochemical properties of soil and plant development. The growth of oat and white mustard plants was almost completely inhibited in response to the highest zinc doses of 2,400 and 4,800 mg Zn(2+) kg(-1).

  6. Transcriptional Response of Escherichia coli to External Zinc

    OpenAIRE

    Yamamoto, Kaneyoshi; Ishihama, Akira

    2005-01-01

    Transcriptional response of Escherichia coli to extracellular zinc was studied using DNA microarray and S1 mapping assays. Addition of external zinc induced the expression of zinc exporter ZntA and inhibited the expression of zinc importer ZnuC. In the continuous presence of zinc, ZnuC repression took place at lower zinc concentrations than ZntA induction. The microarray assay indicated that the addition of excess external zinc induces the expression of many genes that are organized in the re...

  7. Transient partial growth hormone deficiency due to zinc deficiency.

    Science.gov (United States)

    Nishi, Y; Hatano, S; Aihara, K; Fujie, A; Kihara, M

    1989-04-01

    We present here a 13-year-old boy with partial growth hormone deficiency due to chronic mild zinc deficiency. When zinc administration was started, his growth rate, growth hormone levels, and plasma zinc concentrations increased significantly. His poor dietary intake resulted in chronic mild zinc deficiency, which in turn could be the cause of a further loss of appetite and growth retardation. There was also a possibility of renal zinc wasting which may have contributed to zinc deficiency. Zinc deficiency should be carefully ruled out in patients with growth retardation. PMID:2708733

  8. Decomposition of zinc ferrite from waste streams of steelmaking

    OpenAIRE

    Tauriainen, M. (Miia)

    2015-01-01

    The goal of this study was to compare different methods to decompose the zinc ferrite from the waste streams of steel making. The samples were acquired from SSAB Raahe blast furnace and converter flue gas scrubbers and Outokumpu Tornio Works bag filters EAF1, EAF3, AOD and CRK. Sludges and dusts contain significant amounts of zinc in form of zinc oxide and zinc ferrite. Zinc ferrite is highly stable compound which makes recovery of the zinc difficult. The zinc could be recovered and recycled ...

  9. Public health assessment for Sandoval Zinc Company, Sandoval, Marion County, Illinois, Region 5: CERCLIS number ILD053980454. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1999-06-10

    The Sandoval Zinc site occupies about 13 acres southeast of Sandoval in Marion County, Illinois. It is an abandoned primary and secondary zinc smelter that was next to a coal mining operation. Smelting waste may have been transported off the site and used as fill in Sandoval and other nearby communities. Airborne emissions occurred during regular operations and accidental fires. Surface water runoff transported wastes from the site into adjacent ditches, creeks, ponds, and farm properties. Overall, the Sandoval Zinc site poses no apparent public health hazard to most of the population in Sandoval. The site may be a public health hazard to preschool children with excessive hand-to-mouth activity exposed to residential surface soils with high levels of lead. However, blood sample results from children in a day care near the site did not show elevated levels of lead.

  10. Preparation of zinc oxide particles by using layered basic zinc acetate as a precursor

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lanqin, E-mail: lanqin_tang@ycit.edu.cn [College of Chemical and Biological Engineering, Yancheng Institute of Technology, 9 Yingbin Avenue, Yancheng 224051 (China); College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Ding, Xuefeng; Zhao, Xu; Wang, Zichen; Zhou, Bing [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A simple aqueous solution process has been applied to prepare zinc oxide particles. Black-Right-Pointing-Pointer This novel method exempts traditional calcinations. Black-Right-Pointing-Pointer Various zinc oxide particles are obtained. - Abstract: TEA and NaOH are applied to transform layered basic zinc acetate into zinc oxide particles by a simple aqueous solution process (<100 Degree-Sign C). Zinc oxide with different morphologies, including dumbbells, earthnuts, ellipsoids and hexagonal pillars, are obtained by carefully controlling the amounts of sodium hydroxide, triethanolamine, and reaction temperature. Field emission scanning electron microscope images, X-ray powder diffraction patterns, X-ray photoelectron spectroscopy spectra and room-temperature photoluminescence spectra are used to characterize final products. Furthermore, a possible growth mechanism is discussed in this paper. This easy procedure for zinc oxide fabrication offers the possibility of a generalized approach to the production of metal oxide with tunable morphology.

  11. Clinical Aspects of Trace Elements: Zinc in Human Nutrition – Zinc Deficiency and Toxicity

    Directory of Open Access Journals (Sweden)

    Michelle M Pluhator

    1996-01-01

    Full Text Available Available evidence suggests that trace elements, such as zinc, once thought to have no nutritional relevance, are possibly deficient in large sections of the human population. Conditioned deficiencies have been reported to result from malabsorption syndromes, acrodermatitis enteropathica, alcoholism, gastrointestinal disease, thermal injury, chronic diseases (eg, diabetes, sickle cell anemia, and in total parenteral nutrition therapy. Awareness that patients with these problems are at risk has led health professionals to focus increasingly on the importance of zinc therapy in the prevention and treatment of deficiency. More recently zinc toxicity and its role in human nutrition and well-being have come under investigation. Reports have focused on the role of zinc toxicity in causes of copper deficiency, changes in the immune system and alterations in blood lipids. As the numerous challenges presented by the study of zinc in human nutrition are met, more appropriate recommendations for dietary and therapeutic zinc intake are being made.

  12. Zinc Deficiency in Humans and its Amelioration

    OpenAIRE

    Yashbir Singh Shivay

    2015-01-01

    Zinc (Zn) deficiency in humans has recently received considerable attention. Global mortality in children under 5 years of age in 2004 due to Zn deficiency was estimated at 4,53,207 as against 6,66,771 for vitamin A deficiency; 20,854 for iron deficiency and 3,619 for iodine deficiency. In humans 2800-3000 proteins contain Zn prosthetic group and Zn is an integral component of zinc finger prints that regulate DNA transcription. Zinc is a Type-2 nutrient, which means that its concentration in ...

  13. BIOLEACHING OF ZINC: ECO FRIENDLY MINING

    OpenAIRE

    Rashmi Mishra

    2016-01-01

    The research work presented in this paper is on a Biomining The estimated annual demand for zinc in India is approximately 2.41 lakh tones; against this, the present installed capacity in the country for zinc ingots is 1.49 lakh tonnes only. There is, thus still a wide gap in the demand and supply of this metal in the country. Leaching zinc from the waste and low grade ore is required to meet the demand, but is not being explored because of the expensive measures and pollution hazards. Biolea...

  14. Effect of Prenatal Zinc Supplementation on Birthweight

    OpenAIRE

    Saaka, Mahama; Oosthuizen, Jacques; Beatty, Shelley

    2009-01-01

    Although iron and zinc deficiencies are known to occur together and also appear to be high in Ghana, a few supplementation studies addressed this concurrently in pregnancy. In a double-blind, randomized controlled trial, 600 pregnant women in Ghana were randomly assigned to receive either a combined supplement of 40 mg of zinc as zinc gluconate and 40 mg of iron as ferrous sulphate or 40 mg of elemental iron as ferrous sulphate. Overall, there was no detectable difference in the mean birthwei...

  15. Spectrophotometric determination of zinc in impure solutions

    International Nuclear Information System (INIS)

    A dithizone colorimetric method is described for determining zinc concentrations of 0.001 to 5 g/l in aqueous solutions from Rio Tinto Mines, containing copper, iron and other impurities. Citrate, cyanide and bis-2hydroxyethyl)-dithiocarbamate are added to the aqueous sample of masking several metals, and zinc is extracted at pH 5 with a solution of dithizone in carbon tetrachloride. Excess of dithizone is removed with sodium sulphide, and optical density of zinc dithionate in organic solution is measured at 5.35 nm. Calibration curves obey Beer's law up to 0.5 micro Zn/ml. (Author) 5 refs

  16. An MSC2 Promoter-lacZ Fusion Gene Reveals Zinc-Responsive Changes in Sites of Transcription Initiation That Occur across the Yeast Genome

    Science.gov (United States)

    Wu, Yi-Hsuan; Taggart, Janet; Song, Pamela Xiyao; MacDiarmid, Colin; Eide, David J.

    2016-01-01

    The Msc2 and Zrg17 proteins of Saccharomyces cerevisiae form a complex to transport zinc into the endoplasmic reticulum. ZRG17 is transcriptionally induced in zinc-limited cells by the Zap1 transcription factor. In this report, we show that MSC2 mRNA also increases (~1.5 fold) in zinc-limited cells. The MSC2 gene has two in-frame ATG codons at its 5’ end, ATG1 and ATG2; ATG2 is the predicted initiation codon. When the MSC2 promoter was fused at ATG2 to the lacZ gene, we found that unlike the chromosomal gene this reporter showed a 4-fold decrease in lacZ mRNA in zinc-limited cells. Surprisingly, β-galactosidase activity generated by this fusion gene increased ~7 fold during zinc deficiency suggesting the influence of post-transcriptional factors. Transcription of MSC2ATG2-lacZ was found to start upstream of ATG1 in zinc-replete cells. In zinc-limited cells, transcription initiation shifted to sites just upstream of ATG2. From the results of mutational and polysome profile analyses, we propose the following explanation for these effects. In zinc-replete cells, MSC2ATG2-lacZ mRNA with long 5’ UTRs fold into secondary structures that inhibit translation. In zinc-limited cells, transcripts with shorter unstructured 5’ UTRs are generated that are more efficiently translated. Surprisingly, chromosomal MSC2 did not show start site shifts in response to zinc status and only shorter 5’ UTRs were observed. However, the shifts that occur in the MSC2ATG2-lacZ construct led us to identify significant transcription start site changes affecting the expression of ~3% of all genes. Therefore, zinc status can profoundly alter transcription initiation across the yeast genome. PMID:27657924

  17. Distribution of zinc in vineyard areas treated with zinc containing phytopharmaceuticals:

    OpenAIRE

    Kerin, Danimir; Weingerl, Vesna

    2000-01-01

    Zinc concentration in vineyard soil is, in general, increased markedly by the long term application of zinc containing fungicides. The most significant source of Zn are nowadays dithiocarbamate based fungicides, e.g. Antracol. The concentration of total zinc and EDTA and ammonium lactate (AL) extractable Zn in soils are evaluated together with the concentration of Zn in different inorganic fertilizers and in fungicides. the results of the study indicate in the observed vineyard areas a long t...

  18. Zinc in growth and development and spectrum of human zinc deficiency.

    Science.gov (United States)

    Prasad, A S

    1988-10-01

    Growth retardation is seen in experimental animals as a result of severe dietary restriction of several essential trace elements. However, in humans, the effect of zinc deficiency is most pronounced. Growth failure and hypogonadism in males, related to a deficiency of zinc, have been recognized in many developing countries. A mild deficiency of zinc, affecting growth and development in children and adolescents, has been reported from developed countries as well. Zinc deficiency in humans may manifest as severe, moderate, or mild. The manifestations of severe zinc deficiency include bullous pustular dermatitis, alopecia, diarrhea, emotional disorder, weight loss, intercurrent infections due to cell-mediated immune dysfunctions, hypogonadism in males, neurosensory disorders, and problems with healing of ulcers. This condition can be fatal. A moderate level of zinc deficiency has been reported in a variety of conditions. Clinical manifestations include growth retardation and male hypogonadism in adolescence, rough skin, poor appetite, mental lethargy, delayed wound healing, cell-mediated immune dysfunctions, and abnormal neurosensory changes. A mild level of zinc deficiency may manifest with decreased serum testosterone level and oligospermia in males, decreased lean body mass, hyper-ammonemia, neurosensory changes, anergy, decreased serum thymulin activity, and decreased IL-2 activity. Although the clinical aspects of severe and moderate levels of zinc deficiency are well known, the recognition of mild levels of zinc deficiency has been difficult. Currently plasmas zinc appears to be the most widely used parameter for assessment of human zinc status, and it is known to be decreased in cases of severe and moderate deficiency of zinc.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3053862

  19. Zinc supplementation reduced DNA breaks in Ethiopian women

    OpenAIRE

    Joray, Maya L.; Yu, Tian-Wei; Ho, Emily; Clarke, Stephen L.; Stanga, Zeno; Gebreegziabher, Tafere; Hambidge, K. Michael; Stoecker, Barbara J

    2014-01-01

    Assessment of zinc status remains a challenge largely because serum/plasma zinc may not accurately reflect an individual’s zinc status. The comet assay, a sensitive method capable of detecting intracellular DNA strand breaks, may serve as a functional biomarker of zinc status. We hypothesized that effects of zinc supplementation on intracellular DNA damage could be assessed from samples collected in field studies in Ethiopia using the comet assay. Forty women, from villages where reported con...

  20. Dietary Zinc and Prostate Cancer in the TRAMP Mouse Model

    OpenAIRE

    Prasad, Ananda S; Mukhtar, Hasan; Beck, Frances W.J.; Adhami, Vaqar M.; Siddiqui, Imtiaz A.; Din, Maria; Hafeez, Bilal B.; KUCUK, Omer

    2010-01-01

    Circumstantial evidence indicates that zinc may have an important role in the prostate. Total zinc levels in the prostate are 10 times higher than in other soft tissues. Zinc concentrations in prostate epithethial cancer cells are decreased significantly. Zinc supplementation for prevention and treatment of prostate cancer in humans has yielded controversial results. No studies have been reported in animal models to show the effect of zinc supplementation on prevention of prostate cancer, thu...

  1. Comparison of effect of zinc-enriched pod of Phaseolus vulgaris and inner rice husk composts with zinc sulphate and zinc 14% chelate on zinc availability in maize plant in a calcareous soil

    OpenAIRE

    Rasouli, Mrs. Shabnam; Azizi, Prof. Pirouz; Forghani, Dr. Akbar; Asghar Zade, Dr. Ahmad

    2008-01-01

    Mixtures of Zn salts and organic matter have been used successfully in controlling zinc deficiency in various crops. The aim of the present study was to optimize the effectiveness, on zinc availability in maize, of natural organic substances by enriching them with zinc sulfate. For this purpose pod of Phaseolus vulgaris and inner rice husk, as abundant organic wastes in the north of Iran, were incubated with increasing quantities of zinc sulphate. The effect of these zinc-enriched composts, z...

  2. Intracellular zinc distribution in mitochondria, ER and the Golgi apparatus

    OpenAIRE

    Lu, Qiping; Haragopal, Hariprakash; Slepchenko, Kira G.; Stork, Christian; Li, Yang V

    2016-01-01

    Zinc (Zn2+) is required for numerous cellular functions. As such, the homeostasis and distribution of intracellular zinc can influence cellular metabolism and signaling. However, the exact distribution of free zinc within live cells remains elusive. Previously we showed the release of zinc from thapsigargin/IP3-sensitive endoplasmic reticulum (ER) storage in cortical neurons. In the present study, we investigated if other cellular organelles also contain free chelatable zinc and function as o...

  3. Suppressing the dendritic growth of zinc in an ionic liquid containing cationic and anionic zinc complexes for battery applications.

    Science.gov (United States)

    Liu, Zhen; Pulletikurthi, Giridhar; Lahiri, Abhishek; Cui, Tong; Endres, Frank

    2016-05-10

    Metallic zinc is a promising negative electrode for high energy rechargeable batteries due to its abundance, low-cost and non-toxic nature. However, the formation of dendritic zinc and low Columbic efficiency in aqueous alkaline solutions during charge/discharge processes remain a great challenge. Here we demonstrate that the dendritic growth of zinc can be effectively suppressed in an ionic liquid electrolyte containing highly concentrated cationic and anionic zinc complexes obtained by dissolving zinc oxide and zinc trifluoromethylsulfonate in a protic ionic liquid, 1-ethylimidazolium trifluoromethylsulfonate. The presence of both cationic and anionic zinc complexes alters the interfacial structure at the electrode/electrolyte interface and influences the nucleation and growth of zinc, leading to compact, homogeneous and dendrite-free zinc coatings. This study also provides insights into the development of highly concentrated metal salts in ionic liquids as electrolytes to deposit dendrite-free zinc as an anode material for energy storage applications. PMID:27080261

  4. Associations between Dietary Iron and Zinc Intakes, and between Biochemical Iron and Zinc Status in Women

    Directory of Open Access Journals (Sweden)

    Karen Lim

    2015-04-01

    Full Text Available Iron and zinc are found in similar foods and absorption of both may be affected by food compounds, thus biochemical iron and zinc status may be related. This cross-sectional study aimed to: (1 describe dietary intakes and biochemical status of iron and zinc; (2 investigate associations between dietary iron and zinc intakes; and (3 investigate associations between biochemical iron and zinc status in a sample of premenopausal women aged 18–50 years who were recruited in Melbourne and Sydney, Australia. Usual dietary intakes were assessed using a 154-item food frequency questionnaire (n = 379. Iron status was assessed using serum ferritin and hemoglobin, zinc status using serum zinc (standardized to 08:00 collection, and presence of infection/inflammation using C-reactive protein (n = 326. Associations were explored using multiple regression and logistic regression. Mean (SD iron and zinc intakes were 10.5 (3.5 mg/day and 9.3 (3.8 mg/day, respectively. Median (interquartile range serum ferritin was 22 (12–38 μg/L and mean serum zinc concentrations (SD were 12.6 (1.7 μmol/L in fasting samples and 11.8 (2.0 μmol/L in nonfasting samples. For each 1 mg/day increase in dietary iron intake, zinc intake increased by 0.4 mg/day. Each 1 μmol/L increase in serum zinc corresponded to a 6% increase in serum ferritin, however women with low serum zinc concentration (AM fasting < 10.7 μmol/L; AM nonfasting < 10.1 μmol/L were not at increased risk of depleted iron stores (serum ferritin <15 μg/L; p = 0.340. Positive associations were observed between dietary iron and zinc intakes, and between iron and zinc status, however interpreting serum ferritin concentrations was not a useful proxy for estimating the likelihood of low serum zinc concentrations and women with depleted iron stores were not at increased risk of impaired zinc status in this cohort.

  5. Saccharomyces cerevisiae Vacuole in Zinc Storage and Intracellular Zinc Distribution▿ ‡

    OpenAIRE

    Simm, Claudia; Lahner, Brett; Salt, David; LeFurgey, Ann; Ingram, Peter; Yandell, Brian; Eide, David J.

    2007-01-01

    Previous studies of the yeast Saccharomyces cerevisiae indicated that the vacuole is a major site of zinc storage in the cell. However, these studies did not address the absolute level of zinc that was stored in the vacuole nor did they examine the abundances of stored zinc in other compartments of the cell. In this report, we describe an analysis of the cellular distribution of zinc by use of both an organellar fractionation method and an electron probe X-ray microanalysis. With these method...

  6. Zinc and its importance for human health: An integrative review.

    Science.gov (United States)

    Roohani, Nazanin; Hurrell, Richard; Kelishadi, Roya; Schulin, Rainer

    2013-02-01

    Since its first discovery in an Iranian male in 1961, zinc deficiency in humans is now known to be an important malnutrition problem world-wide. It is more prevalent in areas of high cereal and low animal food consumption. The diet may not necessarily be low in zinc, but its bio-availability plays a major role in its absorption. Phytic acid is the main known inhibitor of zinc. Compared to adults, infants, children, adolescents, pregnant, and lactating women have increased requirements for zinc and thus, are at increased risk of zinc depletion. Zinc deficiency during growth periods results in growth failure. Epidermal, gastrointestinal, central nervous, immune, skeletal, and reproductive systems are the organs most affected clinically by zinc deficiency. Clinical diagnosis of marginal Zn deficiency in humans remains problematic. So far, blood plasma/serum zinc concentration, dietary intake, and stunting prevalence are the best known indicators of zinc deficiency. Four main intervention strategies for combating zinc deficiency include dietary modification/diversification, supplementation, fortification, and bio-fortification. The choice of each method depends on the availability of resources, technical feasibility, target group, and social acceptance. In this paper, we provide a review on zinc biochemical and physiological functions, metabolism including, absorption, excretion, and homeostasis, zinc bio-availability (inhibitors and enhancers), human requirement, groups at high-risk, consequences and causes of zinc deficiency, evaluation of zinc status, and prevention strategies of zinc deficiency.

  7. Zinc and its importance for human health: An integrative review

    Directory of Open Access Journals (Sweden)

    Nazanin Roohani

    2013-01-01

    Full Text Available Since its first discovery in an Iranian male in 1961, zinc deficiency in humans is now known to be an important malnutrition problem world-wide. It is more prevalent in areas of high cereal and low animal food consumption. The diet may not necessarily be low in zinc, but its bio-availability plays a major role in its absorption. Phytic acid is the main known inhibitor of zinc. Compared to adults, infants, children, adolescents, pregnant, and lactating women have increased requirements for zinc and thus, are at increased risk of zinc depletion. Zinc deficiency during growth periods results in growth failure. Epidermal, gastrointestinal, central nervous, immune, skeletal, and reproductive systems are the organs most affected clinically by zinc deficiency. Clinical diagnosis of marginal Zn deficiency in humans remains problematic. So far, blood plasma/serum zinc concentration, dietary intake, and stunting prevalence are the best known indicators of zinc deficiency. Four main intervention strategies for combating zinc deficiency include dietary modification/diversification, supplementation, fortification, and bio-fortification. The choice of each method depends on the availability of resources, technical feasibility, target group, and social acceptance. In this paper, we provide a review on zinc biochemical and physiological functions, metabolism including, absorption, excretion, and homeostasis, zinc bio-availability (inhibitors and enhancers, human requirement, groups at high-risk, consequences and causes of zinc deficiency, evaluation of zinc status, and prevention strategies of zinc deficiency.

  8. Sorption of zinc on human teeth

    International Nuclear Information System (INIS)

    Zinc containing dental amalgams are sometimes used as fillings by dentists. The freshly mixed mass of the amalgam alloy and liquid mercury packed or condensed into a prepared tooth cavity. Zinc has been included in amalgams alloys up to 2% as an aid in manufacturing by helping to produce clean sound castings of the ingots. Although such restorations have a relatively long service life, they are subject to corrosion and galvanic action, thus releasing metallic products into the oral environment. The aim of this paper is to investigate the uptake (sorption) of Zinc ionic species on human teeth using the radioactive tracer technique. For this purpose the isotope Zn-65 produced from pile-irradiation of zinc metal was used. The various liquids studied were drinking water (tap water), tea, coffee, red tea and chicken soup. Sorption was studied through immersion of a single human tooth (extracted) in each of these liquids

  9. Zinc-induced protection against cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Early, J.L.; Schnell, R.C.

    1978-02-01

    Pretreatment of male rats with cadmium acetate potentiates the duration of hexobarbital hypnosis and inhibits the rate of hepatic microsomal drug metabolism. Pretreatment of rats with zinc acetate protects against these alterations in drug action elicited by cadmium.

  10. Sealed Cylindrical Silver/Zinc Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — RBC Technologies has significanly improved the cycle life and wet life of silver/zinc battery technology through novel separator and anode formulations. This...

  11. Determination of activable isotopic tracers of zinc by neutron activation analysis for study of bioavailability of zinc

    International Nuclear Information System (INIS)

    A procedure of pre-irradiation concentration of zinc in fecal samples using anion exchanger was developed for the study of the bioavailability of zinc by neutron activation analysis. The mass ratios between 70Zn and 68Zn, or 64Zn and their contents between natural zinc and enriched zinc are used to calculate the bioavailability of zinc when the abundance of the isotope 70Zn is not high enough. (author) 9 refs.; 1 fig.; 2 tabs

  12. A dual role for zinc fingers in both DNA binding and zinc sensing by the Zap1 transcriptional activator

    OpenAIRE

    Bird, Amanda J.; Zhao, Hui; Luo, Huan; Jensen, Laran T.; Srinivasan, Chandra; Evans-Galea, Marguerite; Winge, Dennis R.; Eide, David J.

    2000-01-01

    The Zap1 transcriptional activator of Saccharomyces cerevisiae controls zinc homeostasis. Zap1 induces target gene expression in zinc-limited cells and is repressed by high zinc. One such target gene is ZAP1 itself. In this report, we examine how zinc regulates Zap1 function. First, we show that transcriptional autoregulation of Zap1 is a minor component of zinc responsiveness; most regulation of Zap1 activity occurs post-translationally. Secondly, nuclear localization of Zap1 does not change...

  13. Effectiveness of zinc fortified drinking water on zinc intake, status and morbidity of rural Kenyan pre-school children

    OpenAIRE

    Kujinga-Chopera, P.

    2016-01-01

    Background: Zinc deficiency is considered a significant public health problem in preschool children in Africa together with infections such as diarrhea, which further deplete the body of zinc. Young children are more vulnerable to zinc deficiency due to increased requirements and frequent infections. Zinc fortified water is one way of improving zinc intake and reducing diarrheal infections in such vulnerable groups. Vestergaard Frandsen has developed a point-of-use device capable of purifying...

  14. Chronic treatment with zinc and antidepressants induces enhancement of presynaptic/extracellular zinc concentration in the rat prefrontal cortex

    OpenAIRE

    Sowa-Kućma, Magdalena; Kowalska, Magdalena; Szlósarczyk, Marek; Gołembiowska, Krystyna; Opoka, Włodzimierz; Baś, Bogusław; Pilc, Andrzej; Nowak, Gabriel

    2010-01-01

    Zinc exhibits antidepressant-like activity in preclinical tests/models. Moreover, zinc homeostasis is implicated in the pathophysiology of affective disorders. The aim of the present study was to examine the effect of chronic zinc, citalopram and imipramine intraperitoneal administration on the presynaptic and extracellular zinc concentration in the rat prefrontal cortex and hippocampus. We used two methods: zinc–selenium histochemistry (which images the pool of presynaptic-vesicle zinc) and ...

  15. Zinc involvement in opioid addiction and analgesia – should zinc supplementation be recommended for opioid-treated persons?

    OpenAIRE

    Ciubotariu, Diana; Ghiciuc, Cristina Mihaela; Lupușoru, Cătălina Elena

    2015-01-01

    Introduction Zinc chelators were shown to facilitate some opioid-withdrawal signs in animals. Zinc deficiency, which affects more than 15 % the world’s population, is also common among opioid consumers and opioid-treated animals exhibit misbalances of zinc distribution. Aim The present study focuses on how zinc ions interfere with opioid dependence/addiction and analgesia, trying to preliminary discuss if zinc supplementation in opioid-users should be recommended in order to reduce the risk o...

  16. Roles of Zinc-responsive transcription factor Csr1 in filamentous growth of the pathogenic Yeast Candida albicans.

    Science.gov (United States)

    Kim, Min-Jeong; Kil, Minkwang; Jung, Jong-Hwan; Kim, Jinmi

    2008-02-01

    In the fungal pathogen Candida albicans, the yeast-to-hyphal transition occurs in response to a broad range of environmental stimuli and is considered to be a major virulence factor. To address whether the zinc homeostasis affects the growth or pathogenicity of C. albicans, we functionally characterized the zinc-finger protein Csr1 during filamentation. The deduced amino acid sequence of Csr1 showed a 49% similarity to the zinc-specific transcription factor, Zap1 of Saccharomyces cerevisiae. Sequential disruptions of CSR1 were carried out in diploid C. albicans. The csr1/csr1 mutant strain showed severe growth defects under zinc-limited growth conditions and the filamentation defect under hyphainducing media. The colony morphology and the germ-tube formation were significantly affected by the csr1 mutation. The expression of the hyphae-specific gene HWP1 was also impaired in csr1/csr1 cells. The C. albicans homologs of ZRT1 and ZRT2, which are zinc-transporter genes in S. cerevisiae, were isolated. High-copy number plasmids of these genes suppressed the filamentation defect of the csr1/csr1 mutant strain. We propose that the filamentation phenotype of C. albicans is closely associated with the zinc homeostasis in the cells and that Csr1 plays a critical role in this regulation. PMID:18309267

  17. Csr1/Zap1 Maintains Zinc Homeostasis and Influences Virulence in Candida dubliniensis but Is Not Coupled to Morphogenesis.

    Science.gov (United States)

    Böttcher, Bettina; Palige, Katja; Jacobsen, Ilse D; Hube, Bernhard; Brunke, Sascha

    2015-07-01

    The supply and intracellular homeostasis of trace metals are essential for every living organism. Therefore, the struggle for micronutrients between a pathogen and its host is an important determinant in the infection process. In this work, we focus on the acquisition of zinc by Candida dubliniensis, an emerging pathogen closely related to Candida albicans. We show that the transcription factor Csr1 is essential for C. dubliniensis to regulate zinc uptake mechanisms under zinc limitation: it governs the expression of the zinc transporter genes ZRT1, ZRT2, and ZRT3 and of the zincophore gene PRA1. Exclusively, artificial overexpression of ZRT2 partially rescued the growth defect of a csr1Δ/Δ mutant in a zinc-restricted environment. Importantly, we found that, in contrast to what is seen in C. albicans, Csr1 (also called Zap1) is not a major regulator of dimorphism in C. dubliniensis. However, although a csr1Δ/Δ strain showed normal germ tube formation, we detected a clear attenuation in virulence using an embryonated chicken egg infection model. We conclude that, unlike in C. albicans, Csr1 seems to be a virulence factor of C. dubliniensis that is not coupled to filamentation but is strongly linked to zinc acquisition during pathogenesis. PMID:26002718

  18. Aspergillus fumigatus survival in alkaline and extreme zinc-limiting environments relies on the induction of a zinc homeostasis system encoded by the zrfC and aspf2 genes.

    Science.gov (United States)

    Amich, Jorge; Vicentefranqueira, Rocío; Leal, Fernando; Calera, José Antonio

    2010-03-01

    Aspergillus fumigatus has three zinc transporter-encoding genes whose expression is regulated by both pH and the environmental concentration of zinc. We have previously reported that the zrfA and zrfB genes of A. fumigatus are transcribed at higher levels and are required for fungal growth under acidic zinc-limiting conditions whereas they are dispensable for growth in neutral or alkaline zinc-limiting media. Here we report that the transporter of the zinc uptake system that functions in A. fumigatus growing in neutral or alkaline environments is encoded by zrfC. The transcription of zrfC occurs divergently with respect to the adjacent aspf2 gene, which encodes an immunodominant antigen secreted by A. fumigatus. The two genes-zrfC and aspf2-are required to different extents for fungal growth in alkaline and extreme zinc-limiting media. Indeed, these environmental conditions induce the simultaneous transcription of both genes mediated by the transcriptional regulators ZafA and PacC. ZafA upregulates the expression of zrfC and aspf2 under zinc-limiting conditions regardless of the ambient pH, whereas PacC represses the expression of these genes under acidic growth conditions. Interestingly, the mode of action of PacC for zrfC-aspf2 transcription contrasts with the more widely accepted model for PacC function, according to which under alkaline growth conditions PacC would activate the transcription of alkaline-expressed genes but would repress the transcription of acid-expressed genes. In sum, this report provides a good framework for investigating several important aspects of the biology of species of Aspergillus, including the repression of alkaline genes by PacC at acidic pH and the interrelationship that must exist between tissue pH, metal availability in the host tissue, and fungal virulence. PMID:20038606

  19. An autopsy case of zinc chloride poisoning.

    Science.gov (United States)

    Kondo, Takeshi; Takahashi, Motonori; Watanabe, Seiya; Ebina, Masatomo; Mizu, Daisuke; Ariyoshi, Koichi; Asano, Migiwa; Nagasaki, Yasushi; Ueno, Yasuhiro

    2016-07-01

    Ingestion of large amounts of zinc chloride causes corrosive gastroenteritis with vomiting, abdominal pain, and diarrhea. Some individuals experience shock after ingesting large amounts of zinc chloride, resulting in fatality. Here, we present the results of an administrative autopsy performed on a 70-year-old man who ingested zinc chloride solution and died. After drinking the solution, he developed vomiting, abdominal pain, and diarrhea, and called for an ambulance. Except for tachycardia, his vital signs were stable at presentation. However, he developed hypotension and severe metabolic acidosis and died. The patient's blood zinc concentration on arrival was high at 3030μg/dL. Liver cirrhosis with cloudy yellow ascites was observed, however, there were no clear findings of gastrointestinal perforation. The gastric mucosa was gray-brown, with sclerosis present in all gastric wall layers. Zinc staining was strongly positive in all layers. There was almost no postmortem degeneration of the gastric mucosal epithelium, and hypercontracture of the smooth muscle layer was observed. Measurement of the zinc concentration in the organs revealed the highest concentration in the gastric mucosa, followed by the pancreas and spleen. Clinically, corrosive gastroenteritis was the cause of death. However, although autopsy revealed solidification in the esophagus and gastric mucosa, there were no findings in the small or large intestine. Therefore, metabolic acidosis resulting from organ damage was the direct cause of death. PMID:27497327

  20. Zinc, cadmium and lead resistance mechanisms in bacteria and their contribution to biosensing

    OpenAIRE

    Hynninen, Anu

    2010-01-01

    In bacteria resistance to heavy metals is mainly achieved through active efflux, but also sequestration with proteins or as insoluble compounds is used. Although numerous studies have dealt with zinc, cadmium and lead resistance mechanisms in bacteria, it has still remained unclear how different transporters are integrated into an effective homeostasis/resistance network and whether specific mechanisms for lead sequestration exist. Furthermore, since metals are toxic not only to bacteria but ...

  1. Tandem Quadruplication of HMA4 in the Zinc (Zn) and Cadmium (Cd) Hyperaccumulator Noccaea caerulescens

    OpenAIRE

    Seosamh Ó Lochlainn; Helen C Bowen; Fray, Rupert G.; Hammond, John P.; King, Graham J.; White, Philip J.; Graham, Neil S; Martin R Broadley

    2011-01-01

    Zinc (Zn) and cadmium (Cd) hyperaccumulation may have evolved twice in the Brassicaceae, in Arabidopsis halleri and in the Noccaea genus. Tandem gene duplication and deregulated expression of the Zn transporter, HMA4, has previously been linked to Zn/Cd hyperaccumulation in A. halleri. Here, we tested the hypothesis that tandem duplication and deregulation of HMA4 expression also occurs in Noccaea. A Noccaea caerulescens genomic library was generated, containing 36,864 fosmid pCC1FOS™ clones ...

  2. Zinc in Specialized Secretory Tissues: Roles in the Pancreas, Prostate, and Mammary Gland12

    OpenAIRE

    Kelleher, Shannon L.; McCormick, Nicholas H.; Velasquez, Vanessa; Lopez, Veronica

    2011-01-01

    Zinc (Zn) is an essential micronutrient required for over 300 different cellular processes, including DNA and protein synthesis, enzyme activity, and intracellular signaling. Cellular Zn homeostasis necessitates the compartmentalization of Zn into intracellular organelles, which is tightly regulated through the integration of Zn transporting mechanisms. The pancreas, prostate, and mammary gland are secretory tissues that have unusual Zn requirements and thus must tightly regulate Zn metabolis...

  3. Transport policy

    OpenAIRE

    1980-01-01

    Transport is a fundamental component of all modern economies. Transport Policy presents a wide ranging collection of previously published articles which aim to provide the reader with an understanding of the main elements of transport policy.

  4. Zinc as an appetite stimulator - the possible role of zinc in the progression of diseases such as cachexia and sarcopenia.

    Science.gov (United States)

    Suzuki, Hajime; Asakawa, Akihiro; Li, Jiang B; Tsai, Minglun; Amitani, Haruka; Ohinata, Kousaku; Komai, Michio; Inui, Akio

    2011-09-01

    Zinc is required by humans and animals for many physiological functions, such as growth, immune function, and reproduction. Zinc deficiency induces a number of physiological problems, including anorexia, growth retardation, dermatitis, taste disorder, and hypogonadism. Although it is clear that zinc deficiency produces specific and profound anorexia in experimental animals, the connection between zinc deficiency and anorexia is less certain. We were the first to show that orally, but not intraperitoneally, administered zinc rapidly stimulates food intake through orexigenic peptides coupled to the afferent vagus nerve using rats during early-stage zinc deficiency without decreased zinc concentrations in plasma and tissues. We confirmed that a zinc-sufficient diet containing zinc chloride acutely stimulated food intake after short-term zinc deprivation. We also found that orally administered zinc sulfate increased the expression of NPY and orexin mRNA after administration. Using vagotomized rats, we tested whether the increase in food intake after oral administration of zinc was mediated by the vagus nerve. In sham-operated rats, the oral administration of zinc stimulated food intake, whereas zinc and saline administrations did not exhibit differing effects in vagotomized rats. We conclude that zinc stimulates food intake in short-term zinc-deficient rats through the afferent vagus nerve with subsequent effects on hypothalamic peptides associated with food intake regulation. In this review, we describe recent research investigating the roles of zinc as an appetite stimulator in food intake regulation, along with research about hypothalamus, ghrelin, leptin and zinc receptor, and clinical application about anorexia nervosa, cachexia and sarcopenia. The article also presents some promising patents on zinc. PMID:21846317

  5. Radiation Transport

    Energy Technology Data Exchange (ETDEWEB)

    Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  6. Serum and semen zinc levels in normozoospermic and oligozoospermic men

    Energy Technology Data Exchange (ETDEWEB)

    Madding, C.I.; Jacob, M.; Ramsay, V.P.; Sokol, R.Z.

    1986-01-01

    We studied 11 unselected men who presented to a Reproductive Endocrinology Clinic with histories of infertility and low sperm counts. Reproductive hormones and semen und serum zinc levels were measured. All men had semen analyses performed on at least three separate occasions. A similar set of laboratory evaluations were performed on 11 other men who had normal semen analyses and no history of infertility. No abnormalities of reproductive hormones were found in either group. Mean serum zinc levels were significantly lower in the infertile men. Mean semen zinc levels were not significantly different. There was no correlation between serum and semen zinc levels in either group. A significant correlation was found between sperm count and semen zinc in the volunteers with normal counts, but not in the oligozoospermic men. The results obtained in this study suggest that lowered serum zinc is more common than formerly appreciated in unselected patients with infertility. The high level of zinc found in semen is due primarily to the secretions of the prostate gland and reflects prostatic stores. Serum zinc is thought to be a reasonable indicator of zinc status. The lack of correlation between serum zinc and semen zinc found in our study suggests that mild zinc deficiency may lower serum zinc while the larger prostatic zinc stores remain unaffected.

  7. Zinc deficiency among a healthy population in Baghdad, Iraq

    International Nuclear Information System (INIS)

    To determine the prevalence of zinc deficiency and the current zinc status among a sample selected from the healthy population in Baghdad, Iraq. We carried out a community-based study in Baghdad City, Iraq from November through June 2002. We selected a sample of 2090 healthy subjects (aged 1 month to 85 years). We used a pre-tested questionnaire, designed to obtain information on gender, birth dates, height, weight, residence, habitual food consumption patterns, and social status. We performed laboratory assessment of serum zinc level, dietary assessment of food frequency and usual zinc intake. We considered subjects with serum zinc concentration of /-7.7 to 12.3 umol/l mild to moderately zinc deficient. The prevalence of zinc deficiency among the studied sample was 2.7%. We found mild to moderate zinc deficiency among 55.7% of the study sample. Dietary zinc intake assessment showed that 74.8% of the studied sample consumed less than the recommended intake, and in 62.3%, the intakes were deficient and grossly deficient. Mean daily zinc ranged from 5.2 mg in children to 8.5 mg in adults. We observed a high prevalence of mild to moderate zinc deficiency, with inadequate dietary zinc intake among a considerable proportion of the studied sample. Zinc supplementation may be an effective public health intervention means to improve the zinc status of the population. (author)

  8. Signal Amplification of Bioassay Using Zinc Nanomaterials

    Science.gov (United States)

    Cowles, Chad L.

    An emerging trend in the analytical detection sciences is the employment of nanomaterials for bioassay signal transduction to identify analytes critical to public health. These nanomaterials have been specifically investigated for applications which require identification of trace levels of cells, proteins, or other molecules that can have broad ranging impacts to human health in fields such as clinical diagnostics, environmental monitoring, food and drink control, and the prevention of bioterrorism. Oftentimes these nanoparticle-based signal transduction or amplification approaches offer distinct advantages over conventional methods such as increased sensitivity, rapidity, or stability. The biological application of nanoparticles however, does suffer from drawbacks that have limited more widespread adoption of these techniques. Some of these drawbacks are, high cost and toxicity, arduous synthesis methods, functionalization and bioconjugation challenges, and laboratory disposal and environmental hazard issues, all of which have impeded the progression of this technology in some way or another. This work aims at developing novel techniques that offer solutions to a number of these hurdles through the development of new nanoparticle-based signal transduction approaches and the description of a previously undescribed nanomaterial. Zinc-based nanomaterials offer the opportunity to overcome some of the limitations that are encountered when other nanomaterials are employed for bioassay signal transduction. On the other hand, the biological application of zinc nanomaterials has been difficult because in general their fluorescence is in the blue range and the reported quantum yields are usually too low for highly sensitive applications. The advantages of using zinc nanomaterials for biological applications, such as reduced toxicity, simple synthesis, low cost, and straightforward functionalization strategies contribute to the research interest in their application as

  9. Treatment of Wilson's disease with zinc. I. Oral zinc therapy regimens.

    Science.gov (United States)

    Hill, G M; Brewer, G J; Prasad, A S; Hydrick, C R; Hartmann, D E

    1987-01-01

    The standard therapy for preventing copper accumulation in Wilson's disease, D-penicillamine, has been a life-saving drug, but it has many side effects and some patients are completely intolerant. We have been using oral zinc as another approach to the therapy for Wilson's disease, with copper balance studies as the key initial assessment of the adequacy of a given dose or regimen of zinc therapy. We earlier reported that an intensive regimen of zinc (zinc taken every 4 hr) was effective in controlling copper balance. We have now shown with balance studies that a simplified zinc therapy regimen of 50 mg zinc taken 3 times per day is effective in controlling copper balance. Preliminary work presented here with other simplified regimens also indicate their effectiveness. These studies increase the data base, in terms of copper balance, for zinc therapy of Wilson's disease, and expand the dose range and regimens of zinc which have been shown to control copper balance. PMID:3570163

  10. Effect of zinc from zinc sulfate on trace mineral concentrations of milk in Varamini ewes

    NARCIS (Netherlands)

    Zali, A.; Ganjkhanlou, M.

    2009-01-01

    This study was conducted to evaluate the effect of feeding supplemental zinc (zinc sulfate) in different levels (15, 30, or 45 mg/kg) on trace mineral concentrations in milk of ewes. Thirty lactating Varaminni ewes were assigned to three experimental groups according to their live body weights, milk

  11. Microwave Synthesis of Zinc Hydroxy Sulfate Nanoplates and Zinc Oxide Nanorods in the Classroom

    Science.gov (United States)

    Dziedzic, Rafal M.; Gillian-Daniel, Anne Lynn; Peterson, Greta M.; Martínez-Herna´ndez, Kermin J.

    2014-01-01

    In this hands-on, inquiry-based lab, high school and undergraduate students learn about nanotechnology by synthesizing their own nanoparticles in a single class period. This simple synthesis of zinc oxide nanorods and zinc hydroxy sulfate nanoplates can be done in 15 min using a household microwave oven. Reagent concentration, reaction…

  12. Mapping the functional yeast ABC transporter interactome.

    Science.gov (United States)

    Snider, Jamie; Hanif, Asad; Lee, Mid Eum; Jin, Ke; Yu, Analyn R; Graham, Chris; Chuk, Matthew; Damjanovic, Dunja; Wierzbicka, Marta; Tang, Priscilla; Balderes, Dina; Wong, Victoria; Jessulat, Matthew; Darowski, Katelyn D; San Luis, Bryan-Joseph; Shevelev, Igor; Sturley, Stephen L; Boone, Charles; Greenblatt, Jack F; Zhang, Zhaolei; Paumi, Christian M; Babu, Mohan; Park, Hay-Oak; Michaelis, Susan; Stagljar, Igor

    2013-09-01

    ATP-binding cassette (ABC) transporters are a ubiquitous class of integral membrane proteins of immense clinical interest because of their strong association with human disease and pharmacology. To improve our understanding of these proteins, we used membrane yeast two-hybrid technology to map the protein interactome of all of the nonmitochondrial ABC transporters in the model organism Saccharomyces cerevisiae and combined this data with previously reported yeast ABC transporter interactions in the BioGRID database to generate a comprehensive, integrated 'interactome'. We show that ABC transporters physically associate with proteins involved in an unexpectedly diverse range of functions. We specifically examine the importance of the physical interactions of ABC transporters in both the regulation of one another and in the modulation of proteins involved in zinc homeostasis. The interaction network presented here will be a powerful resource for increasing our fundamental understanding of the cellular role and regulation of ABC transporters. PMID:23831759

  13. Growth of zinc oxide nanostructures

    Indian Academy of Sciences (India)

    K Sreenivas; Sanjeev Kumar; Jaya Choudhury; Vinay Gupta

    2005-11-01

    Zinc oxide (ZnO) nanowhiskers have been prepared using a multilayer ZnO(50 nm)/Zn(20 nm)/ZnO(2 m) structure on a polished stainless steel (SS) substrate by high rate magnetron sputtering. The formation of uniformly distributed ZnO nanowhiskers with about 20 nm dia. and 2 to 5 m length was observed after a post-deposition annealing of the prepared structure at 300–400 ° C. An array of highly -axis oriented ZnO columns (70–300 nm in dia. and up to 10 m long) were grown on Si substrates by pulsed laser deposition (PLD) at a high pressure (1 Torr), and Raman studies showed the activation of surface phonon modes. The nanosized powder (15–20 nm) and nanoparticle ZnO films on glass substrate were also prepared by a chemical route. Nanowhiskers showed enhanced UV light detection characteristics, and the chemically prepared ZnO nanoparticle films exhibited good sensing properties for alcohol.

  14. A new zinc binding fold underlines the versatility of zinc binding modules in protein evolution.

    Science.gov (United States)

    Sharpe, Belinda K; Matthews, Jacqueline M; Kwan, Ann H Y; Newton, Anthea; Gell, David A; Crossley, Merlin; Mackay, Joel P

    2002-05-01

    Many different zinc binding modules have been identified. Their abundance and variety suggests that the formation of zinc binding folds might be relatively common. We have determined the structure of CH1(1), a 27-residue peptide derived from the first cysteine/histidine-rich region (CH1) of CREB binding protein (CBP). This peptide forms a highly ordered zinc-dependent fold that is distinct from known folds. The structure differs from a subsequently determined structure of a larger region from the CH3 region of CBP, and the CH1(1) fold probably represents a nonphysiologically active form. Despite this, the fold is thermostable and tolerant to both multiple alanine mutations and changes in the zinc-ligand spacing. Our data support the idea that zinc binding domains may arise frequently. Additionally, such structures may prove useful as scaffolds for protein design, given their stability and robustness.

  15. Selective Acidic Leaching of Spent Zinc-Carbon Batteries Followed by Zinc Electrowinning

    Science.gov (United States)

    Shalchian, Hossein; Rafsanjani-Abbasi, Ali; Vahdati-Khaki, Jalil; Babakhani, Abolfazl

    2015-02-01

    In this work, a selective acidic leaching procedure was employed for recycling zinc from spent zinc-carbon batteries. Leaching experiments were carried out in order to maximize zinc recovery and minimize manganese recovery in diluted sulfuric acid media. Response surface methodology and analysis of variance were employed for experimental design, data analysis, and leaching optimization. The experimental design has 28 experiments that include 24 main runs and four replicate in center point. The optimal conditions obtained from the selective acidic leaching experiments, were sulfuric acid concentration of 1 pct v/v, leaching temperature of 343 K (70 °C), pulp density of 8 pct w/v, and stirring speed of 300 rpm. The results show that the zinc and manganese recoveries after staged selective leaching are about 92 and 15 pct, respectively. Finally, metallic zinc with purity of 99.9 pct and electrolytic manganese dioxide were obtained by electrowinning.

  16. Durability of doped zinc oxide/silver/doped zinc oxide low emissivity coatings in humid environment

    Energy Technology Data Exchange (ETDEWEB)

    Ando, E. [Research Center, Asahi Glass Co., Ltd., 1150 Hazawa-cho, Kanagawa-ku, Yokohama 221-8755 (Japan)], E-mail: eiichi-ando@agc.co.jp; Miyazaki, M. [Research Center, Asahi Glass Co., Ltd., 1150 Hazawa-cho, Kanagawa-ku, Yokohama 221-8755 (Japan)

    2008-05-30

    The relationship between internal stress of doped zinc oxide films and durability of doped zinc oxide/silver/doped zinc oxide low emissivity (low-e) coatings in humid environment was investigated. Aluminum, titanium, tin, chromium, silicon, gallium, magnesium, boron, barium, and calcium were chosen as a doping element in sputtering targets. Ratios of dopant/zinc in the oxide targets were 4/96-5/95 at.%. Films were formed by radio frequency sputtering. Doping of barium and calcium to the zinc oxide film led to a large increase in the internal stress. Doping of the other elements resulted in decreasing the internal stress. It was concluded that durability of the low-e coatings in humid environment closely correlated with the internal stress of the oxide layers.

  17. Selective removal of iron contaminations from zinc-chloride melts by cementation with zinc

    Science.gov (United States)

    Devilee, R. A.; van Sandwijk, A.; Reuter, M. A.

    1999-08-01

    An investigation into the cementation of iron chloride from a zinc-chloride melt at 400 °C has been carried out with zinc powder. The variables studied include preparation of the chloride melt and the amount of zinc added. The effect of lead, copper, and cadmium on cementation of iron has also been investigated. According to the results, it is possible to reduce the iron concentration in zinc-chloride melts to 20 ppm with a small excess of zinc. The preparation of the melt proved to be very important. Insufficient purification of the melt with respect to oxides, hydroxides, and water resulted in a low reaction rate and high residual iron concentration.

  18. Zinc enrichment of whole potato tuber by vacuum impregnation

    OpenAIRE

    Erihemu; Hironaka, Kazunori; Koaze, Hiroshi; Oda, Yuji; SHIMADA, Kenichiro

    2013-01-01

    Zinc is a nutritionally essential truce element, and thus zinc deficiency (ZD) severely affects human health. More than 25% of the world’s population is at risk of ZD. This study was initiated to examine the use of the vacuum impregnation (VI) technique for enriching zinc content of whole potatoes; the effect of vacuum time, restoration time, steam-cooking and storage at 4 °C on the zinc content of VI whole potatoes was evaluated. Whole potato tubers were immersed in a 9 g/100 g zinc (zinc gl...

  19. Zinc Regulation of Aminopeptidase B Involved in Neuropeptide Production

    OpenAIRE

    Hwang, Shin-Rong; Hook, Vivian

    2008-01-01

    Aminopeptidase B (AP-B) is a metallopeptidase that removes basic residues from the N-termini of neuropeptide substrates in secretory vesicles. This study assessed zinc regulation of AP-B activity, since secretory vesicles contain endogenous zinc. AP-B was inhibited by zinc at concentrations typically present in secretory vesicles. Zinc effects were dependent on concentration, incubation time, and the molar ratio of zinc to enzyme. AP-B activity was recovered upon removal of zinc. AP-B with zi...

  20. Atomistic mechanisms governing structural stability change of zinc antimony thermoelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaolong [Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710054 (China); Lin, Jianping, E-mail: jaredlin@163.com [School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China); Qiao, Guanjun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Zhao, E-mail: zwangzhao@gmail.com [Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710054 (China); State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-01-05

    The structural stability of thermoelectric materials is a subject of growing importance for their energy harvesting applications. Here, we study the microscopic mechanisms governing the structural stability change of zinc antimony at its working temperature, using molecular dynamics combined with experimental measurements of the electrical and thermal conductivity. Our results show that the temperature-dependence of the thermal and electrical transport coefficients is strongly correlated with a structural transition. This is found to be associated with a relaxation process, in which a group of Zn atoms migrates between interstitial sites. This atom migration gradually leads to a stabilizing structural transition of the entire crystal framework, and then results in a more stable crystal structure of β–Zn{sub 4}Sb{sub 3} at high temperature.

  1. Preparation, structural and electrical properties of zinc oxide grown on silicon nanoporous pillar array

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Polycrystalline thick film of zinc oxide (ZnO) is grown on a unique silicon substrate with a hierarchical structure,silicon nanoporous pillar array (Si-NPA), by using a vapour phase transport method. It is found that as-grown ZnO film is composed of closely packed ZnO crystallites with an average size of ~10 μm. The film resistivity of ZnO/Siheterostructure is measured. Theoretical analysis shows that the carrier transport across ZnO/Si-NPA heterojunction is dominated by two mechanisms, i.e. a thermionic process at high voltages and a quantum tunnelling process at low voltages.

  2. Photoelectrochemical cell using dye sensitized zinc oxide nanowires grown on carbon fibers

    Science.gov (United States)

    Unalan, Husnu Emrah; Wei, Di; Suzuki, Kenichi; Dalal, Sharvari; Hiralal, Pritesh; Matsumoto, Hidetoshi; Imaizumi, Shinji; Minagawa, Mie; Tanioka, Akihiko; Flewitt, Andrew J.; Milne, William I.; Amaratunga, Gehan A. J.

    2008-09-01

    Zinc oxide (ZnO) nanowires (NWs) grown on carbon fibers using a vapor transport and condensation approach are used as the cathode of a photoelectrochemical cell. The carbon fibers were obtained by electrospray deposition and take the form of a flexible carbon fabric. The ZnO NW on carbon fiber anode is combined with a "black dye" photoabsorber, an electrolyte, and a platinum (Pt) counterelectrode to complete the cell. The results show that ZnO NW and carbon fibers can be used for photoinduced charge separation/charge transport and current collection, respectively, in a photoelectrochemical cell.

  3. Water soluble {2-[3-(diethylamino)phenoxy]ethoxy} substituted zinc(II) phthalocyanine photosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Çakır, Dilek [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Göl, Cem [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze, 41400, Kocaeli (Turkey); Çakır, Volkan [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Durmuş, Mahmut [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze, 41400, Kocaeli (Turkey); Bıyıklıoğlu, Zekeriya, E-mail: zekeriya_61@yahoo.com [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Kantekin, Halit [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2015-03-15

    The new peripherally and non-peripherally tetra-{2-[3-(diethylamino)phenoxy] ethoxy} substituted zinc phthalocyanines (2a and 3a) were synthesized by cyclotetramerization of phthalonitrile derivatives (2 and 3). 2-[3-(diethylamino)phenoxy] ethoxy group was chosen as substituent because the quaternization of the diethylamino functionality on the structure of this group produced water soluble zinc phthalocyanines (2b and 3b). The water solubility is very important for many different applications such as photosensitizers in the photodynamic therapy of cancer because the water soluble photosensitizers can be injected directly to the body and they can transport to cancer cells through blood stream. The new compounds were characterized by using elemental analysis, UV–vis, IR, {sup 1}H NMR, {sup 13}C NMR and mass spectroscopies. The photophysical and photochemical properties of these novel photosensitizer compounds were examined in DMSO (both non-ionic and ionic complexes) and in PBS (for ionic complexes) solutions. The investigation of these properties is very important for the usage of the compounds as photosensitizers for PDT because determination of these properties is the first stage of potential of the compounds as photosensitizers. The bovine serum albumin (BSA) and DNA binding behaviour of the studied water soluble zinc (II) phthalocyanines were also investigated in PBS solutions for the determination of biological activity of these compounds. - Highlights: • Synthesis of water soluble zinc phthalocyanines. • Photophysical and photochemical properties for phthalocyanines. • Photodynamic therapy studies.

  4. Identification of the zinc-oxygen divacancy in ZnO crystals

    Science.gov (United States)

    Holston, M. S.; Golden, E. M.; Kananen, B. E.; McClory, J. W.; Giles, N. C.; Halliburton, L. E.

    2016-04-01

    An electron paramagnetic resonance (EPR) spectrum in neutron-irradiated ZnO crystals is assigned to the zinc-oxygen divacancy. These divacancies are observed in the bulk of both hydrothermally grown and seeded-chemical-vapor-transport-grown crystals after irradiations with fast neutrons. Neutral nonparamagnetic complexes consisting of adjacent zinc and oxygen vacancies are formed during the irradiation. Subsequent illumination below ˜150 K with 442 nm laser light converts these ( VZn 2 - - VO2 + )0 defects to their EPR-active state ( VZn - - VO2 + )+ as electrons are transferred to donors. The resulting photoinduced S = 1/2 spectrum of the divacancy is holelike and has a well-resolved angular dependence from which a complete g matrix is obtained. Principal values of the g matrix are 2.00796, 2.00480, and 2.00244. The unpaired spin resides primarily on one of the three remaining oxygen ions immediately adjacent to the zinc vacancy, thus making the electronic structure of the ( VZn - - VO2 + )+ ground state similar to the isolated singly ionized axial zinc vacancy. The neutral ( VZn 2 - - VO2 + )0 divacancies dissociate when the ZnO crystals are heated above 250 °C. After heating above this temperature, the divacancy EPR signal cannot be regenerated at low temperature with light.

  5. Zinc Leaching from Tire Crumb Rubber

    Science.gov (United States)

    Rhodes, E. P.; Ren, J.; Mays, D. C.

    2010-12-01

    Recent estimates indicate that more than 2 billion scrap tires are currently stockpiled in the United States and approximately 280 million more tires are added annually. Various engineering applications utilize recycled tires in the form of shredded tire crumb rubber. However, the use of tire crumb rubber may have negative environmental impacts, especially when the rubber comes into contact with water. A review of the literature indicates that leaching of zinc from tire crumb rubber is the most significant water quality concern associated with using this material. Zinc is generally used in tire manufacturing, representing approximately 1.3% of the final product by mass. This study will report results from the U.S. Environmental Protection Agency’s (EPA’s) Synthetic Precipitation Leaching Procedure, batch leaching tests, and column leaching tests performed to quantify the process by which zinc leaches from tire crumb rubber into water. Results are interpreted with a first-order kinetic attachment/detachment model, implemented with the U.S. Agricultural Research Service software HYDRUS-1D, in order to determine the circumstances when zinc leaching from tire crumb rubber would be expected to comply with the applicable discharge limits. One potential application for recycled tires is replacing sand with tire crumb rubber in granular media filters used for stormwater pollution control. For this to be a viable application, the total zinc in the stormwater discharge must be below the EPA’s benchmark value of 0.117 mg/L.

  6. The immune system and the impact of zinc during aging

    Directory of Open Access Journals (Sweden)

    Haase Hajo

    2009-06-01

    Full Text Available Abstract The trace element zinc is essential for the immune system, and zinc deficiency affects multiple aspects of innate and adaptive immunity. There are remarkable parallels in the immunological changes during aging and zinc deficiency, including a reduction in the activity of the thymus and thymic hormones, a shift of the T helper cell balance toward T helper type 2 cells, decreased response to vaccination, and impaired functions of innate immune cells. Many studies confirm a decline of zinc levels with age. Most of these studies do not classify the majority of elderly as zinc deficient, but even marginal zinc deprivation can affect immune function. Consequently, oral zinc supplementation demonstrates the potential to improve immunity and efficiently downregulates chronic inflammatory responses in the elderly. These data indicate that a wide prevalence of marginal zinc deficiency in elderly people may contribute to immunosenescence.

  7. Fabrications of zinc-releasing biocement combining zinc calcium phosphate to calcium phosphate cement.

    Science.gov (United States)

    Horiuchi, Shinya; Hiasa, Masahiro; Yasue, Akihiro; Sekine, Kazumitsu; Hamada, Kenichi; Asaoka, Kenzo; Tanaka, Eiji

    2014-01-01

    Recently, zinc-releasing bioceramics have been the focus of much attention owing to their bone-forming ability. Thus, some types of zinc-containing calcium phosphate (e.g., zinc-doped tricalcium phosphate and zinc-substituted hydroxyapatite) are examined and their osteoblastic cell responses determined. In this investigation, we studied the effects of zinc calcium phosphate (ZCP) derived from zinc phosphate incorporated into calcium phosphate cement (CPC) in terms of its setting reaction and MC3T3-E1 osteoblast-like cell responses. Compositional analysis by powder X-ray diffraction analysis revealed that HAP crystals were precipitated in the CPC containing 10 or 30wt% ZCP after successfully hardening. However, the crystal growth observed by scanning electron microscopy was delayed in the presence of additional ZCP. These findings indicate that the additional zinc inhibits crystal growth and the conversion of CPC to the HAP crystals. The proliferation of the cells and alkaline phosphatase (ALP) activity were enhanced when 10wt% ZCP was added to CPC. Taken together, ZCP added CPC at an appropriate fraction has a potent promotional effect on bone substitute biomaterials. PMID:24090874

  8. Nutritional assessment methods for zinc supplementation in prepubertal non-zinc-deficient children

    Directory of Open Access Journals (Sweden)

    Márcia Marília Gomes Dantas Lopes

    2015-10-01

    Full Text Available Background: Zinc is an essential nutrient that is required for numerous metabolic functions, and zinc deficiency results in growth retardation, cell-mediated immune dysfunction, and cognitive impairment. Objective: This study evaluated nutritional assessment methods for zinc supplementation in prepubertal non-zinc-deficient children. Design: We performed a randomised, controlled, triple-blind study. The children were divided into a control group (10% sorbitol, n=31 and an experimental group (10 mg Zn/day, n=31 for 3 months. Anthropometric and dietary assessments as well as bioelectrical measurements were performed in all children. Results: Our study showed (1 an increased body mass index for age and an increased phase angle in the experimental group; (2 a positive correlation between nutritional assessment parameters in both groups; (3 increased soft tissue, and mainly fat-free mass, in the body composition of the experimental group, as determined using bioelectrical impedance vector analysis; (4 increased consumption of all nutrients, including zinc, in the experimental group; and (5 an increased serum zinc concentration in both groups (p<0.0001. Conclusions: Given that a reference for body composition analysis does not exist for intervention studies, longitudinal studies are needed to investigate vector migration during zinc supplementation. These results reinforce the importance of employing multiple techniques to assess the nutritional status of populations.

  9. Zinc Extraction from Zinc Plants Residue Using Selective Alkaline Leaching and Electrowinning

    Science.gov (United States)

    Ashtari, Pedram; Pourghahramani, Parviz

    2015-10-01

    Annually, a great amount of zinc plants residue is produced in Iran. One of them is hot filter cake (known as HFC) which can be used as a secondary resource of zinc, cobalt and manganese. Unfortunately, despite its heavy metal content, the HFC is not treated. For the first time, zinc was selectively leached from HFC employing alkaline leaching. Secondly, leaching was optimized to achieve maximum recovery using this method. Effects of factors like NaOH concentration (C = 3, 5, 7 and 9 M), temperature (T = 50, 70, 90 and 105 °C), solid/liquid ratio (weight/volume, S/L = 1/10 and 1/5 W/V) and stirring speed (R = 500 and 800 rpm) were studied on HFC leaching. L16 orthogonal array (OA, two factors in four levels and two factors in two levels) was applied to determine the optimum condition and the most significant factor affecting the overall zinc extraction. As a result, maximum zinc extraction was 83.4 %. Afterwards, a rough test was conducted for zinc electrowinning from alkaline solution according to the common condition available in literature by which pure zinc powder (99.96 %) was successfully obtained.

  10. Selective extraction of zinc from sulfate leach solution of zinc ore

    Institute of Scientific and Technical Information of China (English)

    覃文庆; 蓝卓越; 黎维中; 邱冠周

    2003-01-01

    Selective extraction of zinc from sulfate leach solution of zinc ore was studied.D2EHPA dissolved in260# kerosene was used as extractant.The pH-extraction isotherms show the extraction order of D2EHPA for metals is Fe3+>Zn2+>Ca2+>Al3+>Mn2+>Cu2+>Cd2+>Co2+>Ni2+>Mg2+(pH0.5).This confirms that Fe3+ ispreferentially extracted before the extraction of zinc.Extraction experiments were carried out with varying the extractant content,equilibration time,aqueous pH and phase ratio,and the solvent extraction of zinc with sodium saltof D2EHPA were also investigated.Some impurity co-extracted into the zinc loaded organic phase was efficiently removed by scrub,and the Fe3+ was hardly stripped from organic phase by sulfuric acid,hence zinc was separatedfrom Fe3+ by selective stripping.A pregnant zinc sulfate solution with low contaminants was obtained by selectivesolvent extraction.

  11. Zinc distribution and speciation within rocket plants (Eruca vesicaria L. Cavalieri) grown on a polluted soil amended with compost as determined by XRF microtomography and micro-XANES.

    Science.gov (United States)

    Terzano, Roberto; Al Chami, Ziad; Vekemans, Bart; Janssens, Koen; Miano, Teodoro; Ruggiero, Pacifico

    2008-05-14

    Zinc distribution and speciation within different organs (root, petiole, and leaf) of the edible plant Eruca vesicaria L. Cavalieri were determined using synchrotron microbeam X-ray techniques (XRF microtomography and mu-XANES) for plants grown in polluted soil with or without compost amendment. Data on soil derived from different extraction procedures and using mu-XANES analyses on rhizospheric soil indicated that compost amendment did not significantly influence the Zn speciation and availability in soil. However, major differences were observed within the plants. Plants grown in the presence of compost were able to partly block zinc immediately outside the root endodermis in the form of zinc-phytate, while a smaller Zn fraction was allowed to xylem transport as zinc-citrate. In the leaves, zinc was largely excluded from leaf cells, and about approximately 50% was in the form of phosphate precipitates, and the other 50% was complexed by cysteine and histidine residues. The reported data provide new information concerning the mechanisms of zinc tolerance in E. vesicaria L. Cavalieri, a very common edible plant in Mediterranean regions, and on the role of compost in influencing the molecular strategies involved in zinc uptake and detoxification.

  12. Book review: Current perspectives on zinc deposits

    Science.gov (United States)

    Kelley, Karen D.

    2016-01-01

    This book, published in 2015 by the Irish Association for Economic Geology (IAEG), is a compilation of papers and abstracts written by selected authors who attended the ZINC 2010 Conference in Cork, Ireland. Unlike most books produced each decade by the IAEG, which are focused primarily on achievements of the Irish and European mineral sectors, this book has a global perspective of a single commodity—zinc. As stated in the Preface, the theme of the conference and book was quite relevant for the IAEG because Ireland has the highest concentration of zinc per square kilometer on the planet. The book contains 7 full papers and 5 extended abstracts by keynote speakers, followed by 17 extended abstracts by other presenters, plus an Appendix (reprint) of a previously published paper.

  13. Effect of zinc on Entamoeba histolytica pathogenicity.

    Science.gov (United States)

    Vega Robledo, G B; Carrero, J C; Ortiz-Ortiz, L

    1999-06-01

    The present study analyzes the effects of zinc on Entamoeba histolytica activity and on its pathogenicity. Metal activity was evaluated in vitro with regard to the parasite's viability, replication, and adhesion to epithelial cells and in vivo with regard to its pathogenicity. The results obtained in vitro show that zinc at 1.0 mM concentration does not affect amebic viability; however, it does decrease amebic replication and adhesion (P vivo studies performed on a model of experimental liver abscess in the hamster indicate that the intraperitoneal administration of a single dose of zinc at 48 h after the intrahepatic inoculation of amebic trophozoites significantly inhibits (P vivo as manifested by inhibition of amebic pathogenicity.

  14. Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites.

    Science.gov (United States)

    Zahid, Henna; Miah, Layeque; Lau, Andy M; Brochard, Lea; Hati, Debolina; Bui, Tam T T; Drake, Alex F; Gor, Jayesh; Perkins, Stephen J; McDermott, Lindsay C

    2016-01-01

    Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigated. Analytical ultracentrifugation (AUC) and CD showed that zinc, but not other divalent metals, causes ZAG to oligomerize in solution. Thus ZAG dimers and trimers were observed in the presence of 1 and 2 mM zinc. Molecular modelling of X-ray scattering curves and sedimentation coefficients indicated a progressive stacking of ZAG monomers, suggesting that the ZAG groove may be occluded in these. Using fluorescence-detected sedimentation velocity, these ZAG-zinc oligomers were again observed in the presence of the fluorescent boron dipyrromethene fatty acid C16-BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-hexadecanoic acid). Fluorescence spectroscopy confirmed that ZAG binds C16-BODIPY. ZAG binding to C16-BODIPY, but not to DAUDA, was reduced by increased zinc concentrations. We conclude that the lipid-binding groove in ZAG contains at least two distinct fatty acid-binding sites for DAUDA and C16-BODIPY, similar to the multiple lipid binding seen in the structurally related immune protein CD1c. In addition, because high concentrations of zinc occur in the pancreas, the perturbation of these multiple lipid-binding sites by zinc may be significant in Type 2 diabetes where dysregulation of ZAG and zinc homoeostasis occurs.

  15. Study on indium leaching from mechanically activated hard zinc residue

    OpenAIRE

    Yao J.H.; Li X.H.; Li Y.W.

    2011-01-01

    In this study, changes in physicochemical properties and leachability of indium from mechanically activated hard zinc residue by planetary mill were investigated. The results showed that mechanical activation increased specific surface area, reaction activity of hard zinc residue, and decreased its particle size, which had a positive effect on indium extraction from hard zinc residue in hydrochloric acid solution. Kinetics of indium leaching from unmilled and activated hard zinc residue...

  16. Zinc supplementation, production and quality of coffee beans

    OpenAIRE

    Herminia Emilia Prieto Martinez; Yonara Poltronieri; Adriana Farah; Daniel Perrone

    2013-01-01

    Besides its importance in the coffee tree nutrition, there is almost no information relating zinc nutrition and bean quality. This work evaluated the effect of zinc on the coffee yield and bean quality. The experiment was conducted with Coffea arabica L. in "Zona da Mata" region, Minas Gerais, Brazil. Twelve plots were established at random with 4 competitive plants each. Treatments included plants supplemented with zinc (eight plots) and control without zinc supplementation (four plots). Pla...

  17. Laser droplet welding of zinc coated steel sheets

    OpenAIRE

    Jerič, Anže; Grabec, Igor; Govekar, Edvard

    2015-01-01

    The weldability of zinc coated steel sheets is often compromised by weld seam defects caused by rapid zinc vaporisation and burned-off zinc. Owing to this, welded seams usually remain unprotected from corrosion and are accompanied by undesirable porosity. In this paper, the laser droplet generation process and its application to laser droplet welding of zinc coated steel sheets are described. The influences of laser droplet generation and welding process control parameters on the properties o...

  18. Zinc concentration and survival in rats infected with Salmonella typhimurium.

    OpenAIRE

    Tocco-Bradley, R; Kluger, M J

    1984-01-01

    Percent survival was measured in male rats injected intravenously with live Salmonella typhimurium when plasma and tissue zinc levels were manipulated. Alzet pumps implanted intraperitoneally infused zinc gluconate or sodium gluconate (controls) from the onset of infection to 72 h postinfection. Plasma and tissue zinc levels were manipulated by infusing (i) 180 micrograms of Zn per h to achieve supranormal plasma and tissue zinc concentrations, (ii) 120 micrograms of Zn per h to prevent the i...

  19. Deficiencia de zinc y sus implicaciones funcionales

    Directory of Open Access Journals (Sweden)

    ROSADO JORGE L

    1998-01-01

    Full Text Available El presente trabajo tiene por objeto revisar los aspectos teóricos y los estudios realizados en México que sugieren la existencia de la deficiencia moderada de zinc en niños de población rural, así como algunas de las consecuencias de dicha deficiencia en la salud. El zinc es un nutrimento indispensable para el organismo de los humanos y juega un papel importante en una serie de procesos metabólicos: participa en el sitio catalítico de varios sistemas enzimáticos; participa como ion estructural en membranas biológicas, y guarda una estrecha relación con la síntesis de proteínas, entre otras cosas. Es por esto que la deficiencia de zinc está asociada con consecuencias importantes en la salud y la funcionalidad de los individuos, especialmente durante las primeras etapas de la vida. De relevancia para México es la existencia de una deficiencia moderada de zinc en los niños y las consecuencias que ésta pueda tener en la salud de los mismos. Los estudios realizados sugieren que la deficiencia moderada de zinc se presenta asociada con la ingestión de dietas basadas en alimentos de origen vegetal, las cuales contienen cantidades importantes de inhibidores de la absorción de zinc. Este tipo de dietas se consume habitualmente en las zonas rurales y en la población marginal de las ciudades en el país. Entre las consecuencias más importantes de esta deficiencia se encontró un aumento en la presencia de enfermedades infecciosas, especialmente de diarrea, y posibles alteraciones en el desarrollo de la capacidad cognoscitiva.

  20. Historical variations in the isotopic composition of atmospheric zinc deposition from a zinc smelter

    OpenAIRE

    Sonke, J. E.; Sivry, Y.; Viers, J.; Freydier, R.; Dejonghe, L; André, L.; Aggarwal, J. K.; Fontan, F.; Dupré, Bernard (collab.)

    2008-01-01

    In order to test the usefulness of stable zinc isotopes as an atmospheric source tracer, we analyzed the zinc isotopic composition of two sediment cores, taken at 1 km distance of the former zinc smelter in Lommel, Belgium. The peat bog lake sediments accumulate mainly atmospheric particles, have high organic matter contents (12-60 wt.%), are anoxic and highly contaminated with heavy metals (up to 4.7 wt.% Zn, and 1.1 wt.% Pb) with a sulfide mineralogical control on mobility. Down core variat...

  1. Zinc Biofortification of Rice in China: A Simulation of Zinc Intake with Different Dietary Patterns

    OpenAIRE

    Zumin Shi; Rita Wegmueller; Jinkou Zhao; Kok, Frans J.; Minghao Zhou; Baojun Yuan; Xiaoqun Pan; Yue Dai; Alida Melse-Boonstra; Yu Qin

    2012-01-01

    A cross-sectional survey of 2819 adults aged 20 years and above was undertaken in 2002 in Jiangsu Province. Zinc intake was assessed using a consecutive 3-day 24-h dietary recall method. Insufficient and excess intake was determined according to the Chinese Dietary Recommended Intakes. Four distinct dietary patterns were identified namely “traditional”, “macho”, “sweet tooth”, and “healthy”. Intake of zinc from biofortified rice was simulated at an intermediate zinc concentration (2.7 mg/100 ...

  2. Zinc Biofortification of Rice in China: A stimulation of zinc intake with different dietary patterns

    OpenAIRE

    Qin, Y.; Boonstra, A.; B. Yuan; Pan, X; Dai, Yue

    2012-01-01

    A cross-sectional survey of 2819 adults aged 20 years and above was undertaken in 2002 in Jiangsu Province. Zinc intake was assessed using a consecutive 3-day 24-h dietary recall method. Insufficient and excess intake was determined according to the Chinese Dietary Recommended Intakes. Four distinct dietary patterns were identified namely “traditional”, “macho”, “sweet tooth”, and “healthy”. Intake of zinc from biofortified rice was simulated at an intermediate zinc concentration (2.7 mg/100 ...

  3. Determination of zinc contents in vegetables

    International Nuclear Information System (INIS)

    Zinc content of three groups of vegetables (roots and tuber, leaves and fruits) collected from local markets was determined and are reported here. The determination was made by Atomic Absorption Spectrophotometer. The results obtained show that the zinc content of different vegetables ranged from 6.26-36.80 ppm, 8.80-70-70 ppm and 7.20-35.10 ppm for roots and tubers, fruits of vegetables respectively on dry weight basis. Generally, the values obtained in majority are not above, the maximum permissible limits. (author)

  4. Luminescence investigation of zinc molybdate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vasil' ev, Andrey [Skobeltsyn Institute of Nuclear Physics, M. V. Lomonosov Moscow State University (Russian Federation); Kamenskikh, Irina; Kolobanov, Vitaly; Savon, Alexander [Synchrotron Radiation Laboratory, Physics Faculty, Moscow State University (Russian Federation); Mikhailin, Vitaly [Skobeltsyn Institute of Nuclear Physics, M. V. Lomonosov Moscow State University (Russian Federation); Synchrotron Radiation Laboratory, Physics Faculty, Moscow State University (Russian Federation); Ivleva, Ludmila; Voronina, Irina; Berezovskaya, Ludmila [A. M. Prokhorov General Physics Institute of RAS, Moscow (Russian Federation); Spassky, Dmitry

    2009-07-15

    Zinc molybdate is considered as an alternative to the sheelite-type molybdate crystals for cryogenic scintillating bolometers. We report the results of the first investigation of the luminescent properties of bulk ZnMoO{sub 4} single crystals grown by Czochralski method. The temperature dependence of the luminescence intensity under different excitation energies was studied, optical characteristics of zinc molybdate are presented. The potential of ZnMoO{sub 4} single crystal as a scintillating material at low temperature is demonstrated. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Zinc oxide interdigitated electrode for biosensor application

    Science.gov (United States)

    Sin L., L.; Arshad, M. K. Md.; Fathil, M. F. M.; Adzhri, R.; M. Nuzaihan M., N.; Ruslinda, A. R.; Gopinath, Subash C. B.; Hashim, U.

    2016-07-01

    In biosensors, zinc oxide (ZnO) thin film plays a crucial role in term of stability, sensitivity, biocompatibility and low cost. Interdigitated electrode (IDE) design is one of the device architecture in biosensor for label free, stability and sensitivity. In this paper, we discuss the fabrication of zinc oxide deposited on the IDE as a transducer for sensing of biomolecule. The formation of APTES had increase the performance of the surface functionalization..Furthermore we extend the discuss on the surface functionalization process which is utilized for probe attachment onto the surface of biosensor through surface immobilization process, thus enables the sensing of biomolecules for biosensor application.

  6. The importance of zinc on osteoporotic bones

    Energy Technology Data Exchange (ETDEWEB)

    Lima, I.; Lopes, R.T. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mail: ricardo@lin.ufrj.br; inaya@lin.ufrj.br; Anjos, M.J. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica]. E-mail: marcelin@lin.ufrj.br; Farias, M.L.F. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Hospital Universitario. Servico de Endocrinologia]. E-mail: fleiuss@hucff.ufrj.br; Rosenthal, D. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Biofisica Carlos Chagas Filho. Lab. de Fisiologia Endocrina]. E-mail: doris@biof.ufrj.br

    2007-07-01

    Zinc is an essential element that can be found in bones, such as calcium and phosphorus. It seems to have effects on growth, bone turnover and mineralization making its relationship with bones still opening. The goal of this study is, by XRF analysis, characterized bone samples, with and without pathology, in the trabecular region. For that purpose, it was used an XRF beam line at the Synchrotron Light National Laboratory (Campinas, Brazil). The results show that the profile of the zinc distribution and its concentration on femoral heads are strongly related to the associated pathology. (author)

  7. Efficacy of highly bioavailable zinc from fortified water

    NARCIS (Netherlands)

    Galetti, Valeria; Kujinga, Prosper; Mitchikpè, C.E.S.; Zeder, Christophe; Tay, Fabian; Tossou, Félicien; Hounhouigan, Joseph D.; Zimmermann, Michael B.; Moretti, Diego

    2015-01-01

    Background: Zinc deficiency and contaminated water are major contributors to diarrhea in developing countries. Food fortification with zinc has not shown clear benefits, possibly because of low zinc absorption from inhibitory food matrices. We used a novel pointof-use water ultrafiltration device

  8. Crosstalk between Zinc Status and Giardia Infection: A New Approach

    Directory of Open Access Journals (Sweden)

    Humberto Astiazarán-García

    2015-06-01

    Full Text Available Zinc supplementation has been shown to reduce the incidence and prevalence of diarrhea; however, its anti-diarrheal effect remains only partially understood. There is now growing evidence that zinc can have pathogen-specific protective effects. Giardiasis is a common yet neglected cause of acute-chronic diarrheal illness worldwide which causes disturbances in zinc metabolism of infected children, representing a risk factor for zinc deficiency. How zinc metabolism is compromised by Giardia is not well understood; zinc status could be altered by intestinal malabsorption, organ redistribution or host-pathogen competition. The potential metal-binding properties of Giardia suggest unusual ways that the parasite may interact with its host. Zinc supplementation was recently found to reduce the rate of diarrhea caused by Giardia in children and to upregulate humoral immune response in Giardia-infected mice; in vitro and in vivo, zinc-salts enhanced the activity of bacitracin in a zinc-dose-dependent way, and this was not due to zinc toxicity. These findings reflect biological effect of zinc that may impact significantly public health in endemic areas of infection. In this paper, we shall explore one direction of this complex interaction, discussing recent information regarding zinc status and its possible contribution to the outcome of the encounter between the host and Giardia.

  9. Hemimorphite Ores: A Review of Processing Technologies for Zinc Extraction

    Science.gov (United States)

    Chen, Ailiang; Li, Mengchun; Qian, Zhen; Ma, Yutian; Che, Jianyong; Ma, Yalin

    2016-10-01

    With the gradual depletion of zinc sulfide ores, exploration of zinc oxide ores is becoming more and more important. Hemimorphite is a major zinc oxide ore, attracting much attention in the field of zinc metallurgy although it is not the major zinc mineral. This paper presents a critical review of the treatment for extraction of zinc with emphasis on flotation, pyrometallurgical and hydrometallurgical methods based on the properties of hemimorphite. The three-dimensional framework structure of hemimorphite with complex linkage of its structural units lead to difficult desilicification before extracting zinc in the many metallurgical technologies. It is found that the flotation method is generally effective in enriching zinc minerals from hemimorphite ores into a high-grade concentrate for recovery of zinc. Pure zinc can be produced from hemimorphite or/and willemite with a reducing reagent, like methane or carbon. Leaching reagents, such as acid and alkali, can break the complex structure of hemimorphite to release zinc in the leached solution without generation of silica gel in the hydrometallurgical process. For optimal zinc extraction, combing flotation with pyrometallurgical or hydrometallurgical methods may be required.

  10. Reinvestigation of growth of 'L-valine zinc sulphate' crystal.

    Science.gov (United States)

    Srinivasan, Bikshandarkoil R; Jyai, Rita N

    2014-01-01

    A reinvestigation of the growth of l-valine zinc sulphate crystal is reported. The slow evaporation of an aqueous solution containing l-valine and zinc sulphate heptahydrate results in the fractional crystallization of l-valine and not the organic inorganic hybrid nonlinear optical l-valine zinc sulphate crystal, as reported by Puhal Raj and Ramachandra Raja (2012).

  11. Zinc oxide's hierarchical nanostructure and its photocatalytic properties

    DEFF Research Database (Denmark)

    Kanjwal, Muzafar Ahmed; Sheikh, Faheem A.; Barakat, Nasser A. M.;

    2012-01-01

    In this study, a new hierarchical nanostructure that consists of zinc oxide (ZnO) was produced by the electrospinning process followed by a hydrothermal technique. First, electrospinning of a colloidal solution that consisted of zinc nanoparticles, zinc acetate dihydrate and poly(vinyl alcohol...

  12. Serum zinc and pneumonia in nursing home elderly

    Science.gov (United States)

    Zinc plays an important role in immune function. The association between serum zinc and pneumonia in the elderly has not been studied. The study aim is to determine if serum zinc concentrations in nursing home elderly are associated with incidence and duration of pneumonia, total and duration of ant...

  13. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; van Dorsselaer, Alain; Rabilloud, Thierry

    2014-05-01

    Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate

  14. Fractionation of stable zinc isotopes in the field-grown zinc hyperaccumulator Noccaea caerulescens and the zinc-tolerant plant Silene vulgaris.

    Science.gov (United States)

    Tang, Ye-Tao; Cloquet, Christophe; Sterckeman, Thibault; Echevarria, Guillaume; Carignan, Jean; Qiu, Rong-Liang; Morel, Jean-Louis

    2012-09-18

    Stable Zn isotope signatures offer a potential tool for tracing Zn uptake and transfer mechanisms within plant-soil systems. Zinc isotopic compositions were determined in the Zn hyperaccumulator Noccaea caerulescens collected at a Zn-contaminated site (Viviez), a serpentine site (Vosges), and a noncontaminated site (Sainte Eulalie) in France. Meanwhile, a Zn-tolerant plant ( Silene vulgaris ) was also collected at Viviez for comparison. While δ(66)Zn was substantially differentiated among N. caerulescens from the three localities, they all exhibited an enrichment in heavy Zn isotopes of 0.40-0.72‰ from soil to root, followed by a depletion in heavy Zn from root to shoot (-0.10 to -0.50‰). The enrichment of heavy Zn in roots is ascribed to the transport systems responsible for Zn absorption into root symplast and root-to-shoot translocation, while the depletion in heavy Zn in shoots is likely to be mediated by a diffusive process and an efficient translocation driven by energy-required transporters (e.g., NcHMA4). The mass balance yielded a bulk Zn isotopic composition between plant and soil (Δ(66)Zn(plant-soil)) of -0.01‰ to 0.63‰ in N. caerulescens , indicative of high- and/or low-affinity transport systems operating in the three ecotypes. In S. vulgaris , however, there was no significant isotope fractionation between whole plant and rhizosphere soil and between root and shoot, suggesting that this species appears to have a particular Zn homeostasis. We confirm that quantifying stable Zn isotopes is useful for understanding Zn accumulation mechanisms in plants. PMID:22891730

  15. Neurotransmitter transporters

    DEFF Research Database (Denmark)

    Gether, Ulrik; Andersen, Peter H; Larsson, Orla M;

    2006-01-01

    The concentration of neurotransmitters in the extracellular space is tightly controlled by distinct classes of membrane transport proteins. This review focuses on the molecular function of two major classes of neurotransmitter transporter that are present in the cell membrane of neurons and....../or glial cells: the solute carrier (SLC)1 transporter family, which includes the transporters that mediate the Na(+)-dependent uptake of glutamate, and the SLC6 transporter family, which includes the transporters that mediate the Na(+)-dependent uptake of dopamine, 5-HT, norepinephrine, glycine and GABA....... Recent research has provided substantial insight into the structure and function of these transporters. In particular, the recent crystallizations of bacterial homologs are of the utmost importance, enabling the first reliable structural models of the mammalian neurotransmitter transporters...

  16. Zinc Blotting Assay for Detection of Zinc-Binding Prolamin in Barley (Hordeum vulgare) Grain

    DEFF Research Database (Denmark)

    Uddin, Mohammad Nasir; Langkilde, Ane; Vincze, Éva

    2014-01-01

    In plants, zinc is commonly found bound to proteins. In barley (Hordeum vulgare), major storage proteins are alcohol-soluble prolamins known as hordeins, and some of them have the potential to bind or store zinc. 65Zn overlay and blotting techniques have been widely used for detecting zinc...

  17. Effectiveness of zinc fortified drinking water on zinc intake, status and morbidity of rural Kenyan pre-school children

    NARCIS (Netherlands)

    Kujinga-Chopera, P.

    2016-01-01

    Background: Zinc deficiency is considered a significant public health problem in preschool children in Africa together with infections such as diarrhea, which further deplete the body of zinc. Young children are more vulnerable to zinc deficiency due to increased requirements and fr

  18. Construction and application of a zinc-specific biosensor for assessing the immobilization and bioavailability of zinc in different soils

    International Nuclear Information System (INIS)

    The inducibility and specificity of different czcRS operons in Pseudomonas putida X4 were studied by lacZ gene fusions. The data of β-glycosidase activity confirmed that the czcR3 promoter responded quantitatively to zinc. A zinc-specific biosensor, P. putida X4 (pczcR3GFP), was constructed by fusing a promoterless enhanced green fluorescent protein (egfp) gene with the czcR3 promoter in the chromosome of P. putida X4. In water extracts of four different soils amended with zinc, the reporter strain detected about 90% of the zinc content of the samples. Both the bioavailability assessment and the sequential extraction analysis demonstrated that the immobilization of zinc was highly dependent on the physico-chemical properties of soils. The results also showed that the lability of zinc decreased over time. It is concluded that the biosensor constitutes an alternative system for the convenient evaluation of zinc toxicity in the environment. - Highlights: ► A zinc-specific bacterial biosensor was developed. ► Four spiked soils were used to test the application of this biosensor. ► The bioavailable zinc in soil-water extracts decreased due to aging. ► The immobilization and speciation of zinc were highly dependent on the soil type. - The immobilization and bioavailability of zinc in soil were investigated as a function of soil type and aging by a newly constructed zinc-specific biosensor coupled with chemical analysis.

  19. The Limiting Phenomena at the Anode of the Electrowinning of Zinc from Zinc Chloride in a Molten Chloride Electrolyte

    NARCIS (Netherlands)

    Lans, S.C.

    2004-01-01

    The objective of this research is to investigate the possibilities and technological viability for the electrowinning of zinc from zinc chloride. This research contributes to development of an alternative process, because it provides: ⢠A clear understanding and overview of the present zinc industr

  20. Thermodynamics and kinetics of extracting zinc from zinc oxide ore by the ammonium sulfate roasting method

    Science.gov (United States)

    Sun, Yi; Shen, Xiao-yi; Zhai, Yu-chun

    2015-05-01

    Thermodynamic analyses and kinetic studies were performed on zinc oxide ore treatment by (NH4)2SO4 roasting technology. The results show that it is theoretically feasible to realize a roasting reaction between the zinc oxide ore and (NH4)2SO4 in a temperature range of 573-723 K. The effects of reaction temperature and particle size on the extraction rate of zinc were also examined. It is found that a surface chemical reaction is the rate-controlling step in roasting kinetics. The calculated activation energy of this process is about 45.57 kJ/mol, and the kinetic model can be expressed as follows: 1 - (1 - α)1/3 = 30.85 exp(-45.57/ RT)· t. An extraction ratio of zinc as high as 92% could be achieved under the optimum conditions.

  1. Electrochemical assessing corrosion inhibiting effects of zinc aluminum polyphosphate (ZAPP) as a modified zinc phosphate pigment

    Energy Technology Data Exchange (ETDEWEB)

    Naderi, R. [Polymer Engineering Department, AmirKabir University of Technology, P.O. Box 15875-413, Tehran (Iran, Islamic Republic of); Attar, M.M. [Polymer Engineering Department, AmirKabir University of Technology, P.O. Box 15875-413, Tehran (Iran, Islamic Republic of)], E-mail: attar@cic.aut.ac.ir

    2008-07-20

    Undesirable anti-corrosion performance of zinc phosphate pigment, the classical chromate replacement, has led researchers to take modification into account. Polyphosphate-based anti-corrosion pigments as a result of modification of zinc orthophosphate have been found to function much more efficiently. This study aimed to evaluate performance of steel samples immersed in 3.5% NaCl aqueous solution-containing zinc aluminum polyphosphate (ZAPP) pigment extract compared to those involving conventional zinc phosphate (ZP) pigment extract and also no pigment (blank) using electrochemical tests such as electrochemical impedance spectroscopy (EIS) and linear polarization (LP) as well as surface analysis. Impedance spectra and polarization curves revealed two different trends, showing the superiority of ZAPP pigment. Based on the results of scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), presence of a precipitated layer on the surface was confirmed when steel sample was immersed into the solution-containing ZAPP.

  2. Influence of concentration of zinc ions on electrocrystallization process of zinc

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhao

    2005-01-01

    Cyclic voltammetry, chronoamperometry and scanning electron microscopy were employed to study the influence of Zn2+ ion concentration in electrolyte solutions on zinc electroplating process. The results show that, at high overpotentials, the nucleation of zinc is instantaneous, and nuclear density increases with the overpotentials increasing. While at low overpotentials, the zinc may be preferentially electrodeposited on surface inhomogeneities such as emergence points of edge, screw dislocations, atomic disorder, kink sites, or monoatomic steps, and no distinguished nucleation current can be observed. The major dissolution peak in cyclic voltammogram drifts positively due to the change of the rate-determining step of zinc electroplating processes from diffusion to the electrochemical reaction with the increase of Zn2+ ion concentration.

  3. Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN.

    Directory of Open Access Journals (Sweden)

    Jonathan E Foley

    Full Text Available BACKGROUND: Customized zinc finger nucleases (ZFNs form the basis of a broadly applicable tool for highly efficient genome modification. ZFNs are artificial restriction endonucleases consisting of a non-specific nuclease domain fused to a zinc finger array which can be engineered to recognize specific DNA sequences of interest. Recent proof-of-principle experiments have shown that targeted knockout mutations can be efficiently generated in endogenous zebrafish genes via non-homologous end-joining-mediated repair of ZFN-induced DNA double-stranded breaks. The Zinc Finger Consortium, a group of academic laboratories committed to the development of engineered zinc finger technology, recently described the first rapid, highly effective, and publicly available method for engineering zinc finger arrays. The Consortium has previously used this new method (known as OPEN for Oligomerized Pool ENgineering to generate high quality ZFN pairs that function in human and plant cells. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that OPEN can also be used to generate ZFNs that function efficiently in zebrafish. Using OPEN, we successfully engineered ZFN pairs for five endogenous zebrafish genes: tfr2, dopamine transporter, telomerase, hif1aa, and gridlock. Each of these ZFN pairs induces targeted insertions and deletions with high efficiency at its endogenous gene target in somatic zebrafish cells. In addition, these mutations are transmitted through the germline with sufficiently high frequency such that only a small number of fish need to be screened to identify founders. Finally, in silico analysis demonstrates that one or more potential OPEN ZFN sites can be found within the first three coding exons of more than 25,000 different endogenous zebrafish gene transcripts. CONCLUSIONS AND SIGNIFICANCE: In summary, our study nearly triples the total number of endogenous zebrafish genes successfully modified using ZFNs (from three to eight and suggests that OPEN

  4. School Transportation.

    Science.gov (United States)

    Executive Educator, 1990

    1990-01-01

    This special section on student transportation offers a case study of a school system that recycles buses for safety drills; articles on fuel-saving strategies, the pros and cons of contracting for transportation services or operating a publicly owned bus fleet, and advice on full cost accounting for transportation costs; and a transportation…

  5. Transport processes of the legume symbiosome membrane

    Directory of Open Access Journals (Sweden)

    Victoria C Clarke

    2014-12-01

    Full Text Available The symbiosome membrane (SM is a physical barrier between the host plant and nitrogen-fixing bacteria in the legume-rhizobium symbiosis, and represents a regulated interface for the movement of solutes between the symbionts that is under plant control. The primary nutrient exchange across the SM is the transport of a carbon energy source from plant to bacteroid in exchange for fixed nitrogen. At a biochemical level two channels have been implicated in movement of fixed nitrogen across the SM and a uniporter that transports monovalent dicarboxylate ions has been characterized that would transport fixed carbon. The aquaporin NOD26 may provide a channel for ammonia, but the genes encoding the other transporters have not been identified. Transport of several other solutes, including calcium and potassium, have been demonstrated in isolated symbiosomes, and genes encoding transport systems for the movement of iron, nitrate, sulfate and zinc in nodules have been identified. However, definitively matching transport activities with these genes has proved difficult and many further transport processes are expected on the SM to facilitate the movement of nutrients between the symbionts. Recently, work detailing the SM proteome in soybean has been completed, contributing significantly to the database of known SM proteins. This represents a valuable resource for the identification of transporter protein candidates, some of which may correspond to transport processes previously described, or to novel transport systems in the symbiosis. Putative transporters identified from the proteome include homologues of transporters of sulfate, calcium, peptides and various metal ions. Here we review current knowledge of transport processes of the SM and discuss the requirements for additional transport routes of other nutrients exchanged in the symbiosis, with a focus on transport systems identified through the soybean SM proteome.

  6. The role of zinc in gastrointestinal and liver disease.

    Science.gov (United States)

    Prasad, A S

    1983-09-01

    Zinc is essential for many metabolic and enzymatic functions in man. Deficiency of zinc in man has now been recognized to occur not only as a result of nutritional factors, but also in various disease states, including malabsorption syndromes, acrodermatitis enteropathica, Crohn's disease, alcoholism and cirrhosis of the liver. The deficiency state in human subjects exists as a spectrum extending from mild to severe degree. The clinical manifestations of mild zinc deficiency include oligospermia, weight loss and hyperammonaemia. Moderate zinc deficiency is characterized clinically by growth retardation, hypogonadism in males, skin changes, poor appetite, mental lethargy, delayed wound healing, taste abnormalities and abnormal dark adaptation. In severe zinc deficiency states, bullous-pustular dermatitis, alopecia, diarrhoea, emotional disorders, weight loss, intercurrent infections, hypogonadism in males and, if unrecognized, death have been observed. Zinc is needed for the functions of over 100 enzymes. It is essential for DNA, RNA and protein synthesis and, as such, is important for cell division. Zinc is an inducer of mRNA of metallothionein, a protein which may have an important role in the regulation of intestinal zinc absorption. Zinc has a specific effect on testes in animals and man. Recent reports indicate that in human subjects thymopoietin may be zinc dependent and in animal studies somatomedin may be affected adversely due to dietary zinc restriction. Zinc plays an important role in the protection of cell membrane integrity and may be protective against free radical injury. Zinc is known to compete with cadmium, lead, copper, iron and calcium for similar binding sites. In the future, a potential use of zinc may be to alleviate toxic effects of cadmium and lead in human subjects. Recent evidence suggests that thymic-dependent lymphocytes (T cells are zinc dependent. T-helper and suppressor cells, T-effector cells and T-natural killer cells appear to be

  7. CHANGES OF ZINC CONTAMINATION IN HIPPOCAMPUS CELLS OF ADRENALECTOMIZED RATS

    Directory of Open Access Journals (Sweden)

    Bondaruyk О.А.

    2013-09-01

    Full Text Available Adrenalectomy causes the decline of zinc maintenance in the neurons of hippocampus and B cells of pancreas that has been observed in experiments on rats. The loss of zinc of these cells has been partly compensated by the injection of adrenalin and prednizolon to the adrenalectomized animals. The increase of zinc maintenance in these cells has been caused by the sharp-stress process due to the simultaneous physical activity and immobilization. The given data prove the participation of adrenal glands in the mechanism of zinc exchanges regulation in central (hippocampus and peripheral (cells B of pancreas zinc-containing organs of animals.

  8. West Mining Expanding Into Lead Zinc Smelting Industry

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>West Mining,China’s 2nd largest lead zinc miner(only next to Yunnan Jinding Zinc with an annual lead and zinc output of approx. 180,000 tons in metal content),has been put- ting efforts on the control of resources for years.Additionally,it has recently increased its investment on smelting business by holding shares of Bayanzhuoer Zijin for more zinc smelting asset.West Mining has just com- pleted the construction of its 60,000-ton zinc

  9. Zinc absorption study using an enriched stable isotope (70Zn)

    International Nuclear Information System (INIS)

    A weaning food from fermented soybean was prepared for increasing the bioavailability of zinc. The zinc absorption was compared with that of a weaning food from non-fermented soybean and normal staple food. A stable isotope tracer technique (70Zn) and neutron activation were used for determining the absorption of zinc. Nine children aged 7 to 18 months were tested. Zinc bioavailability of weaning food from fermented soybean is higher than that of normal weaning food. The weight increment and zinc nutrition of children having weaning food from fermented soybean are improved by this diet. 5 tabs

  10. Zinc fate in animal husbandry systems.

    Science.gov (United States)

    Romeo, A; Vacchina, V; Legros, S; Doelsch, E

    2014-11-01

    Zinc (Zn) is considered in animal production systems as both an essential nutrient and a possible pollutant. While it is generally supplemented at low levels in animal diets, with less than 200 mg kg(-1) in complete feeds, it is under scrutiny due to potential accumulation in the environment. This explains why international regulations limit maximum supplementation levels in animal feeds in a stricter way. This article gives an overview of the current knowledge on the fate of zinc in animal production systems, from animal diets to animal wastes. Some analytical methods can be used for the quantification and qualification of Zn chemical forms: X-ray crystallography, electrospray tandem mass spectrometry, separation techniques, hyphenated techniques… Analysis of chelated forms issued from complex matrices, like hydrolysed proteins, remains difficult, and the speciation of Zn in diluted carriers (premix and feed) is a challenge. Our understanding of Zn absorption has made progress with recent research on ZnT/Zip families and metallothioneins. However, fine-tuned approaches towards the nutritional and metabolic interactions for Zn supplementation in farm conditions still require further studies. The speciation of zinc in pig manure and poultry litter has been a priority as monogastric animals are usually raised under intensive conditions and fed with high quantities of trace minerals, leading to high animal density and elevated quantities of zinc from animal wastes.

  11. Biosorption of zinc ion: a deep comprehension

    Science.gov (United States)

    Mishra, Vishal

    2014-12-01

    Massive industrialization and urbanization of civilization during the last few decades have made a thrust in heavy metal pollution in various water bodies. In past, various kinds of conventional metal ion remediation technologies, such as cementation, osmosis, reverse osmosis, ultrafiltration, etc., have been practised. However, most of these technologies are quite expensive, and lead to the generation of secondary chemical sludge. However, biosorption of heavy metal ions is significantly inexpensive and an eco-friendly technology. Among the series of heavy metals, zinc has gained the significant interest due to its toxicity and easy availability in water bodies. Biosorption of zinc in liquid phase by living, nonliving, conventional and non-conventional biosorbents has been practised extensively in the past. This literature review focuses on the recent trends practised in the field of biosorption of zinc from liquid phase. The present work provides deep insight into various aspects of biosorption of zinc by different mechanisms of biosorption, bioaccumulation, isotherm, kinetic and mechanistic modeling. An exhaustive comparison among different sorts of biomasses has also been given in the present work to enlist all the milestones of biosorption.

  12. Zinc finger structure-function in Ikaros

    Institute of Scientific and Technical Information of China (English)

    Marvin; A; Payne

    2011-01-01

    The zinc finger motif was used as a vehicle for the initial discovery of Ikaros in the context of T-cell differentiation and has been central to all subsequent analyses of Ikaros function.The Ikaros gene is alternately spliced to produce several isoforms that confer diversity of function and consequently have complicated analysis of the function of Ikaros in vivo.Key features of Ikaros in vivo function are associated with six C2H2 zinc fingers;four of which are alternately incorporated in the production of the various Ikaros isoforms.Although no complete structures are available for the Ikaros protein or any of its family members,considerable evidence has accumulated about the structure of zinc fingers and the role that this structure plays in the functions of the Ikaros family of proteins.This review summarizes the structural aspects of Ikaros zinc fingers,individually,and in tandem to provide a structural context for Ikaros function and to provide a structural basis to inform the design of future experiments with Ikaros and its family members.

  13. Magnesium removal in the electrolytic zinc industry

    NARCIS (Netherlands)

    Booster, J.L.

    2003-01-01

    Electrolytic zinc plants need to take measures to control the magnesium content in their process liquors, because the natural magnesium bleed does not balance the input from concentrates. Presently used methods are environmentally unfriendly (due to the production of large amounts of waste gypsum) o

  14. Synthesis and characterization of nanocrystalline zinc ferrite

    DEFF Research Database (Denmark)

    Jiang, J.S.; Yang, X.L.; Gao, L.;

    1999-01-01

    Nanocrystalline zinc ferrite powders with a partially inverted spinel structure were synthesized by high-energy ball milling in a closed container at ambient temperature from a mixture of alpha-Fe2O3 and ZnO crystalline powders in equimolar ratio. From low-temperature and in-field Mossbauer...

  15. Critical overpotential for zinc dendrite formation

    Energy Technology Data Exchange (ETDEWEB)

    Popov, K.I.; Pavlovic, M.G.; Spasojevic, M.D.; Nakic, V.M.

    1979-07-01

    The critical overpotential for zinc dendrite growth is determined as 173 mV by the method described by Popov et al. This procedure can be applied successfully to metal deposition processes when there is a large codeposition of hydrogen. 4 figures.

  16. Zinc in soybeans. Chemical nature and bioavilability

    International Nuclear Information System (INIS)

    Soybeans were grown hydroponically and intrinsically labeled with 65Zn through root absorption, stem injection and foliar application. Stem injection resulted in the greatest accumulation of 65Zn. Regardless of the labeling technique, approximately 40-45% of the seed 65Zn was associated with the subcellular organelles. The pattern of 65Zn incorporation into soybeans did not change appreciably as a result of the labelling technique. The major portion of the soluble 65Zn was either free or associated with very low molecular weight proteins, peptides, or their complexes with phytic acid rather than the major proteins of soybeans. Zinc in soybeans is ionically bound to proteins, peptides and phytic acid. Autoclaving did not affect the chemical association of zinc with soy proteins. Solubility of protein, zinc and phytic acid was studied over the pH range of 3.5-12.0. Bioavailability of zinc to rats from soybeans was lower than from casein and rats adapted to a casein basal diet absorbed more 65Zn from both casein and soy than rats adapted to a soy basal diet

  17. Calcium And Zinc Deficiency In Preeclamptic Women

    Directory of Open Access Journals (Sweden)

    Sultana Ferdousi

    2011-12-01

    Full Text Available Background: Pre-eclampsia is the most common medical complication of pregnancy associated withincreased maternal and infant mortality and morbidity. Reduced serum calcium and zinc levels arefound associated with elevated blood pressure in preeclampsia. Objective: To observe serum calciumand zinc levels in preeclamptic women. Methods: This cross sectional study was carried out in theDepartment of Physiology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka betweenJuly 2009 to June 2010. In this study, 60 pregnant women of preeclampsia, aged 18-39 years withgestational period more than 20th weeks were included as the study (group B. For comparison ageand gestational period matched 30 normotensive pregnant women control (group A were also studied.All the subjects were selected from Obstetric and Gynae In and Out patient Department of BSMMUand Dhaka Medical College Hospital. Serum calcium was measured by Colorimetric method and serumzinc was measured by Spectrophotometric method. Data were analysed by independent sample t testand Pearson’s correlation coefficient test. Results: Mean serum calcium and zinc levels weresignificantly (p<0.001 lower in study group than those of control group. Again, serum calcium andzinc showed significant negative correlation with SBP and DBP in preeclamptic women. Conclusion:This study concludes that serum calcium and zinc deficiency may be one of the risk factor ofpreeclampsia. Therefore, early detection and supplementation to treat this deficiency may reduce theincidence of preeclampsia.

  18. Zinc-rich clays in supergene non-sulfide zinc deposits

    Science.gov (United States)

    Choulet, F.; Buatier, M.; Barbanson, L.; Guégan, R.; Ennaciri, A.

    2016-04-01

    The nature and the origin of zinc clays are poorly understood. With the example of the Bou Arhous Zn-Pb ore deposit in the Moroccan High Atlas, this study presents new data for the mineralogical and chemical characterization of barren and zinc clays associated with non-sulfide zinc ores. In the field, white to ocher granular clays are associated with willemite (Zn2SiO4), while red clays fill karst-related cavities cutting across the non-sulfide ore bodies. Red clays (kaolinite, chlorite, illite, and smectite) present evidence of stratification that reflects internal sedimentation processes during the karst evolution. White clays contain 7-Å clay mineral/smectite irregular interstratified minerals with less than 20 % of smectite layers. Willemite is partially dissolved and is surrounded by authigenic zinc clay minerals. Together with XRD results, WDS analyses on newly formed clay aggregates suggest that this interstratified mineral is composed of fraipontite and sauconite. CEC measurements support that zinc is only located within the octahedral sheets. These new results support the following process: (i) dissolution of willemite, leading to release of Si and Zn, (ii) interaction between Zn-Si-rich solutions and residual-detrital clays, and (iii) dissolution of kaolinite and formation of interstratified zinc clay minerals that grew over detrital micas.

  19. Effects of zinc on static and dynamic mechanical properties of copper-zinc alloy

    Institute of Scientific and Technical Information of China (English)

    马志超; 赵宏伟; 鲁帅; 程虹丙

    2015-01-01

    The effects of adding alloy element zinc on the static and dynamic mechanical properties of copper-zinc alloy were investigated. Tensile and low cycle fatigue behaviors of the C11000 copper and H63 copper-zinc alloy were obtained by using a miniature tester that combined the functions of in situ tensile and fatigue testing. A piezoelectric actuator was adopted as the actuator for the fatigue testing, and the feasibility of the fatigue actuator was verified by the transient harmonic response analysis based on static tensile preload and dynamic sinusoidal load. The experimental results show that the yield strength and tensile strength of the C11000 copper are improved after adding 37% (mass fraction) zinc, and H63 copper-zinc alloy presents more obvious cyclic hardening behavior and more consumed irreversible plastic work during each stress cycle compared with C11000 copper for the same strain controlled cycling. Additionally, based on the Manson-Coffin theory, the strain-life equations of the two materials were also obtained. C11000 copper and H63 copper-zinc alloy show transition life of 16832 and 1788 cycles, respectively.

  20. Effect of modifying agents on the hydrophobicity and yield of zinc borate synthesized by zinc oxide

    Science.gov (United States)

    Acarali, Nil Baran; Bardakci, Melek; Tugrul, Nurcan; Derun, Emek Moroydor; Piskin, Sabriye

    2013-06-01

    The aim of this study was to synthesize zinc borate using zinc oxide, reference boric acid, and reference zinc borate (reference ZB) as the seed, and to investigate the effects of modifying agents and reaction parameters on the hydrophobicity and yield, respectively. The reaction parameters include reaction time (1-5 h), reactant ratio (H3BO3/ZnO by mass: 2-5), seed ratio (seed crystal/(H3BO3+ZnO) by mass: 0-2wt%), reaction temperature (50-120°C), cooling temperature (10-80°C), and stirring rate (400-700 r/min); the modifying agents involve propylene glycol (PG, 0-6wt%), kerosene (1wt%-6wt%), and oleic acid (OA, 1wt%-6wt%) with solvents (isopropyl alcohol (IPA), ethanol, and methanol). The results of reaction yield obtained from either magnetically or mechanically stirred systems were compared. Zinc borate produced was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and contact angle tests to identify the hydrophobicity. In conclusion, zinc borate is synthesized successfully under the optimized reaction conditions, and the different modifying agents with various solvents affect the hydrophobicity of zinc borate.

  1. Zinc finger peptide based optic sensor for detection of zinc ions.

    Science.gov (United States)

    Verma, Neelam; Kaur, Gagandeep

    2016-12-15

    In the present work, polyacrylamide gel has been used as a matrix for the immobilization of zinc finger peptide and fluorescent dye acrydine orange on the micro well plate to fabricate the fluorescence based biosensor for the detection of zinc ions in milk samples. The fluorescent dye moves in the hydrophobic groove formed after folding of the peptide in the presence of zinc ions. Under optimized conditions, linear range was observed between 0.001µg/l to 10µg/l of Zinc ions, with a lowest detection limit of 0.001µg/l and response time of 5min. Presented biosensor has shown 20% decrease in fluorescent intensity values after 5 regenerations and stable for more than one month, stored at 4°C. Interference study with other metal ions like lead, cadmium and copper showed a negligible change in fluorescence intensity in comparison to zinc ions. Developed bio sensing system was found to be novel, quick, reliable, miniaturized, stable, reproducible and repeatable and specific for zinc ion, which has been applied to various milk samples. PMID:27424265

  2. Zinc finger peptide based optic sensor for detection of zinc ions.

    Science.gov (United States)

    Verma, Neelam; Kaur, Gagandeep

    2016-12-15

    In the present work, polyacrylamide gel has been used as a matrix for the immobilization of zinc finger peptide and fluorescent dye acrydine orange on the micro well plate to fabricate the fluorescence based biosensor for the detection of zinc ions in milk samples. The fluorescent dye moves in the hydrophobic groove formed after folding of the peptide in the presence of zinc ions. Under optimized conditions, linear range was observed between 0.001µg/l to 10µg/l of Zinc ions, with a lowest detection limit of 0.001µg/l and response time of 5min. Presented biosensor has shown 20% decrease in fluorescent intensity values after 5 regenerations and stable for more than one month, stored at 4°C. Interference study with other metal ions like lead, cadmium and copper showed a negligible change in fluorescence intensity in comparison to zinc ions. Developed bio sensing system was found to be novel, quick, reliable, miniaturized, stable, reproducible and repeatable and specific for zinc ion, which has been applied to various milk samples.

  3. Environmental exposure of road borders to zinc

    International Nuclear Information System (INIS)

    The emissions of zinc along roads originating from tyre wear, corrosion of safety fence and other traffic-related sources have been quantified and validated by measured long-term loads in road run-off and airborne solids (drift) for 29 published case studies. The distribution pattern over the road border at various distances from the edge of the paved surface is assessed on the basis of 38 published case studies with measured concentrations in soil. For the impact assessment, the road border is differentiated into a zone that is part of the 'technosphere' and the 'target zone' beyond that technosphere that can be considered as part of the receiving environment. The 'technosphere' of the road includes the central reservation, the hard and the soft shoulder or, if one or both shoulders are not present, the so-called obstacle 'free zone' that is defined by road engineers. Pollution within the technosphere may require appropriate management of solid disposal and isolation from groundwater to prevent further distribution of pollutants to the environment. In the target zone along regional roads, the zinc load is about 4 mg/m2 year and this is of the same order of magnitude as that of atmospheric deposition in areas beyond the influence of roads (background). In the target zone along highways, the zinc load is increased in comparison to the background deposition. The average load of about 38 mg/m2 year is similar to that in fertilised agricultural land. Because most of the emitted zinc stays in the technosphere, the total amount entering this target zone along highways is limited. From the 140 tons of zinc per year that is released from tyre wear in The Netherlands, 64 tons is emitted in the urban area, 6.5 tons reaches to the target zones of all roads and only 1.1 tons of zinc will enter the target zone along highways. This amount will be further decreased by the application of porous asphalt in the near future. The emission from safety fence corrosion does not enter the

  4. Prediction of DNA-binding specificity in zinc finger proteins

    Indian Academy of Sciences (India)

    Sumedha Roy; Shayoni Dutta; Kanika Khanna; Shruti Singla; Durai Sundar

    2012-07-01

    Zinc finger proteins interact via their individual fingers to three base pair subsites on the target DNA. The four key residue positions −1, 2, 3 and 6 on the alpha-helix of the zinc fingers have hydrogen bond interactions with the DNA. Mutating these key residues enables generation of a plethora of combinatorial possibilities that can bind to any DNA stretch of interest. Exploiting the binding specificity and affinity of the interaction between the zinc fingers and the respective DNA can help to generate engineered zinc fingers for therapeutic purposes involving genome targeting. Exploring the structure–function relationships of the existing zinc finger–DNA complexes can aid in predicting the probable zinc fingers that could bind to any target DNA. Computational tools ease the prediction of such engineered zinc fingers by effectively utilizing information from the available experimental data. A study of literature reveals many approaches for predicting DNA-binding specificity in zinc finger proteins. However, an alternative approach that looks into the physico-chemical properties of these complexes would do away with the difficulties of designing unbiased zinc fingers with the desired affinity and specificity. We present a physico-chemical approach that exploits the relative strengths of hydrogen bonding between the target DNA and all combinatorially possible zinc fingers to select the most optimum zinc finger protein candidate.

  5. The Essential Toxin: Impact of Zinc on Human Health

    Directory of Open Access Journals (Sweden)

    Laura M. Plum

    2010-03-01

    Full Text Available Compared to several other metal ions with similar chemical properties, zinc is relatively harmless. Only exposure to high doses has toxic effects, making acute zinc intoxication a rare event. In addition to acute intoxication, long-term, high-dose zinc supplementation interferes with the uptake of copper. Hence, many of its toxic effects are in fact due to copper deficiency. While systemic homeostasis and efficient regulatory mechanisms on the cellular level generally prevent the uptake of cytotoxic doses of exogenous zinc, endogenous zinc plays a significant role in cytotoxic events in single cells. Here, zinc influences apoptosis by acting on several molecular regulators of programmed cell death, including caspases and proteins from the Bcl and Bax families. One organ where zinc is prominently involved in cell death is the brain, and cytotoxicity in consequence of ischemia or trauma involves the accumulation of free zinc. Rather than being a toxic metal ion, zinc is an essential trace element. Whereas intoxication by excessive exposure is rare, zinc deficiency is widespread and has a detrimental impact on growth, neuronal development, and immunity, and in severe cases its consequences are lethal. Zinc deficiency caused by malnutrition and foods with low bioavailability, aging, certain diseases, or deregulated homeostasis is a far more common risk to human health than intoxication.

  6. Anorexia nervosa responding to zinc supplementation: a case report.

    Science.gov (United States)

    Yamaguchi, H; Arita, Y; Hara, Y; Kimura, T; Nawata, H

    1992-08-01

    An emaciated 16-year-old female with anorexia nervosa was hospitalized for treatment of vomiting, epigastralgia and diarrhea. The finding of a taste disorder, low serum alkaline phosphatase activity and relatively low serum zinc level strongly suggested a zinc deficiency. Zinc was initially administered intravenously (40 mumol/day) for 7 days, then orally (15 mg elemental zinc/day) for about 60 days. Her digestive symptoms disappeared after the second day of intravenous treatment and she began to gain weight. She rapidly regained her normal weight after one month of receiving the oral zinc supplementation. Both exocrine pancreatic function and intestinal absorption were improved by the prolonged oral administration of zinc. In such cases zinc supplementation may be a therapeutic option in addition to psychologic and other approaches to management. PMID:1526438

  7. Preparation and Purification of Zinc Sulphinate Reagents for Organic Synthesis

    Science.gov (United States)

    O’Hara, Fionn; Baxter, Ryan D.; O’Brien, Alexander G.; Collins, Michael R.; Dixon, Janice A.; Fujiwara, Yuta; Ishihara, Yoshihiro; Baran, Phil S.

    2014-01-01

    SUMMARY The present protocol details the synthesis of zinc bis(alkanesulphinate)s that can be used as general reagents for the formation of radical species. The zinc sulphinates described herein have been generated from the corresponding sulphonyl chlorides by treatment with zinc dust. The products may be used crude, or a simple purification procedure may be performed to minimize incorporation of water and zinc chloride. Elemental analysis has been conducted in order to confirm the purity of the zinc sulphinate reagents; reactions with caffeine have also been carried out to verify the reactivity of each batch that has been synthesized. Although the synthesis of the zinc sulphinate salts generally proceeds within 3 h, workup can take up to 24 h and purification can take up to 3 h. Following the steps in this protocol would enable the user to generate a small toolkit of zinc sulphinate reagents over the course of one week. PMID:23640168

  8. Accelerating degradation rate of pure iron by zinc ion implantation.

    Science.gov (United States)

    Huang, Tao; Zheng, Yufeng; Han, Yong

    2016-12-01

    Pure iron has been considered as a promising candidate for biodegradable implant applications. However, a faster degradation rate of pure iron is needed to meet the clinical requirement. In this work, metal vapor vacuum arc technology was adopted to implant zinc ions into the surface of pure iron. Results showed that the implantation depth of zinc ions was about 60 nm. The degradation rate of pure iron was found to be accelerated after zinc ion implantation. The cytotoxicity tests revealed that the implanted zinc ions brought a slight increase on cytotoxicity of the tested cells. In terms of hemocompatibility, the hemolysis of zinc ion implanted pure iron was lower than 2%. However, zinc ions might induce more adhered and activated platelets on the surface of pure iron. Overall, zinc ion implantation can be a feasible way to accelerate the degradation rate of pure iron for biodegradable applications. PMID:27482462

  9. Zinc(II) mediated imine-enamine tautomerization as a new chemosensory protocol

    Science.gov (United States)

    Basa, Premnath

    Zinc (II) and copper (II) are prime transition cations that are not only abundant in free state in the human body but also in bound form. They play a key role in enzymes, electron transport, and oxygen transport systems. Recently, these cations have gained interest because of their implications in Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders. Although numerous fluorescent chemosensors are currently available, less is known about their homeostasis or their etiological role in serious neurological disorders. Therefore, the current research is dedicated to developing novel chemosensors with excellent photophysical and photochemical properties and investigating their potential application for real-life problems. The dynamic nature of imines has been well utilized for the selective detection of zinc by blocking the E/Z isomerization process. However, other mechanistic pathways are available for imines; analyte-induced imine hydrolysis and metal-triggered tautomerization approaches are proving to be attractive sensory protocols. The current project is focused on understanding the basic principles that dictate Zn(II)-triggered tautomerization as a new "OFF-ON" type chemosensor. Synthesis of target compounds was achieved and confirmed through elemental analysis, 1H NMR and 13C NMR, ESI-MS, FTIR, and single-crystal XRD techniques. Zinc sensitivity and selectivity in the presence of 16 other transition, alkali, and alkaline earth cations was monitored by means of various spectroscopic and spectrometric techniques (fluorescence, UV-Vis absorbance, NMR and ESI-MS). The environmental parameters (solvents, pH) of zinc-induced fluorescence were also investigated and details will be discussed. A second project that describes Cu(II)-catalyzed imine hydrolysis via colorimetric and fluorescence change was also investigated.

  10. Sustainable Transportation

    DEFF Research Database (Denmark)

    Hall, Ralph P.; Gudmundsson, Henrik; Marsden, Greg;

    2014-01-01

    The transportation system is the backbone of economic and social progress and the means by which humans access goods and services and connect with one another. Yet, as the scale of transportation activities has grown worldwide, so too have the negative environmental, social, and economic impacts...... that relate to the construction and maintenance of transportation infrastructure and the operation or use of the different transportation modes. The concept of sustainable transportation emerged in response to these concerns as part of the broader notion of sustainable development. Given the transportation...... sector’s significant contribution to global challenges such as climate change, it is often said that sustainable development cannot be achieved without sustainable transportation....

  11. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens

    NARCIS (Netherlands)

    Gonçalves Leite de Assunção, A.; Da Costa Martins, P.; Folter, de S.; Vooijs, R.; Aarts, M.G.M.

    2001-01-01

    Heavy metal hyperaccumulation in plants is an intriguing and poorly understood phenomenon. Transmembrane metal transporters are assumed to play a key role in this process. We describe the cloning and isolation of three zinc transporter cDNAs from the Zn hyperaccumulator Thlaspi caerulescens. The ZTP

  12. Effects fo Zinc Chemistry on Phytoextraction in Thlaspi caerulescens - Vermiculite System

    OpenAIRE

    Qian, Xu Dong; Eguchi, Toshihiko; Yoshida, Satoshi

    2005-01-01

    Zinc phytoextration capability of the hyperaccumulator is usually limited by zinc content in the soil. To investigate the effects of different zinc fractions (water-soluble, exchangeble, and non-exchangeble) on phytoextration of Thlaspi caerulescens from medium of vermculite, pot experiments were performed for various zinc application treatments (0~2000 mg kg[-1]). Relationships between zinc quantity accumulated in the plants and zinc content in the medium were investigated. Zinc content accu...

  13. Interaction of zinc and vitamin A in rats receiving a regional diet of Manaus, Amazonas, Brazil. Effect of supplementation with vitamin A, zinc and zinc and vitamin A.

    Science.gov (United States)

    Yuyama, L K; Cozzolino, S M

    1996-09-01

    The interaction of zinc and vitamin A in rats receiving a regional diet of Manaus, supplemented with vitamin A, zinc and zinc and vitamin A was studied. The regional diet was elaborated according to data of Shrimpton and Giugliano (6), for families receiving less than two minimum salaries. The biological test to study the interaction was based on the depletion of zinc and vitamin A in rats in the period of lactation, and a period of repletion where supplements of zinc (0.82 mg%) and vitamin A (94.2 micrograms %) were given, either separately or together, according to the recommendations of the Committee on Laboratory Animal Diets (7). From the results, it was concluded that there was an interaction of these nutrients in terms of mobilization of hepatic vitamin A. Although the regional diet of Manaus did not meet the zinc RDA, the amount present was enough to utilize the available vitamin A. Although the amount of zinc present in the diet, as determined by parameters of bioavilability, such as growth, concentration in organs and zinc-dependent enzymes, was adequately used by the animals, probably due to promoting factors in the diet. The Manaus regional diet needs to be supplemented with vitamin A in order to maintain the hepatic reserves, and with zinc, to maintain the normal levels of vitamin A in plasma. PMID:9429624

  14. Dietary intake of Zinc, serum levels of Zinc and risk of gastric cancer: A review of studies

    Science.gov (United States)

    Khayyatzadeh, Sayyed Saeid; Maghsoudi, Zahra; Foroughi, Mahdi; Askari, Gholamreza; Ghiasvand, Reza

    2015-01-01

    Gastric cancer (GC) is considered as most fourth common cancer in the world. Findings from animal, experimental and epidemiologic studies indicate that diet plays an important role in the etiology of stomach cancer. Among dietary factors, Zinc status has received great attention in recent years. The purpose of the present study was to review the association of serum levels of Zinc, dietary intake of Zinc and GC risk. A complete search was performed about the association of Zinc status and risk of GC was in databases electronic through such as ISI web of science, PubMed, Scopus, IrMedx and SID. Our results of current review suggest that dietary intake of Zinc and serum levels of Zinc are lower in GC patient. In other word, high serum levels of Zinc may be protective in GC risk. However, it seems further studies in particular epidemiological studies with large scale setting are required to reach a definite conclusion. PMID:26261820

  15. Fast and low temperature growth of electron transport layers for efficient perovskite solar cells

    OpenAIRE

    Zhang, Jie; Juárez Pérez, Emilio José; Mora Seró, Iván; Viana, Bruno; Pauporté, Thierry

    2015-01-01

    We describe a fast, simple and low temperature electrochemical technique for the preparation of zinc oxide layers on rigid and flexible substrates. The layers, prepared from a zinc nitrate precursor, are of high structural and optical quality. They have been optimized to be applied as efficient electron transport layers in CH3NH3PbI3-sensitized perovskite solar cells (PSCs). We show that an electrodeposition time of only two minutes and a low processing temperature are sufficient ...

  16. Effect of zinc supplementation on body mass index and serum levels of zinc and leptin in pediatric hemodialysis patients

    Directory of Open Access Journals (Sweden)

    El-Shazly AN

    2015-12-01

    Full Text Available Ahmed Nabih El-Shazly,1 Soha Abd El-Hady Ibrahim,1 Ghada Mohamed El-Mashad,2 Jehan H Sabry,3 Nashwa Said Sherbini11Department of Pediatrics, Faculty of Medicine, Benha University, Banha, 2Department of Pediatrics, Faculty of Medicine, Menoufia University, Shibin Al Kawm, 3Department of Clinical and Chemical Pathology, Faculty of Medicine, Benha University, Banha, Egypt Introduction: Zinc is an essential trace element for human nutrition, and its deficiency is associated with anorexia, poor food efficiency, growth retardation, and impaired neurological and immune systems. The zinc-deficiency rate is particularly high in many disease states, such as with end-stage renal disease patients undertaking hemodialysis. The aim of this study was to determine the effect of zinc supplementation on body mass index (BMI and serum levels of zinc and leptin in pediatric hemodialysis patients. Patients and methods: This was a prospective clinical trial study in which 60 hemodialysis patients were randomly divided into two groups: group I received 50–100 mg zinc sulfate (equivalent to 11–22 mg elemental zinc according to age, sex, and nutritional status of the child; and group II received placebo (cornstarch twice daily for 90 days. Anthropometric measurements were taken, and serum zinc and leptin levels were determined by colorimetric test with 5-Br-3'-phosphoadenosine-5'-phosphosulfate and enzyme-linked immunosorbent assay, respectively, at days 0 and 90 of the study. Results: Zinc supplementation resulted in a significant increase in mean serum zinc level and BMI. Serum leptin decreased significantly after supplementation in children under hemodialysis. A significant negative correlation was observed between serum zinc and leptin levels as a result of zinc supplementation. Conclusion: There was an increase in serum zinc level and BMI and decreased serum leptin after zinc supplementation in children under hemodialysis. Keywords: serum zinc, serum leptin

  17. Clinical, endocrinologic, and biochemical effects of zinc deficiency.

    Science.gov (United States)

    Prasad, A S

    1985-01-01

    The requirement of zinc for humans was recognized in the early 1960s. The causes of zinc deficiency include malnutrition, alcoholism, malabsorption, extensive burns, chronic debilitating disorders, and chronic renal diseases; use of certain drugs such as penicillamine and, in some cases, diuretics; and genetic disorders such as acrodermatitis enteropathica and sickle cell disease. The requirement of zinc is increased in pregnancy and during growth. The clinical manifestations of severe zinc deficiency include bullous-pustular dermatitis, alopecia, diarrhea, emotional disorder, weight loss, intercurrent infections, and hypogonadism in males; zinc deficiency can be fatal if unrecognized and untreated. A moderate deficiency of zinc is characterized by growth retardation and delayed puberty in adolescents, hypogonadism in males, rough skin, poor appetite, mental lethargy, delayed wound healing, taste abnormalities, and abnormal dark adaptation. In mild cases of zinc deficiency in human subjects, we have observed oligospermia, slight weight loss, and hyperammonemia. Zinc is a growth factor. As a result of its deficiency, growth is affected adversely in many animal species and humans, probably because zinc is needed for protein and DNA synthesis and cell division. The effects of zinc and growth hormone on growth appear to be independent of each other in experimental animals. Whether zinc is required for the metabolism of somatomedin needs further investigation. Thyroid and adrenal functions do not appear to change as a result of zinc deficiency. Glucocorticoids may have an effect on zinc metabolism, although the clinical relevance of this effect is not known at present. In contrast, testicular function is affected adversely as a result of zinc deficiency in both humans and experimental animals. The effect appears to be a direct one since the hypothalamic-pituitary axis is intact, and may relate to the reduction in testicular size as a result of the need for zinc in cell

  18. Investigation of zinc biosorption by brewer's yeast cells

    Directory of Open Access Journals (Sweden)

    Dodić Siniša N.

    2005-01-01

    Full Text Available The highest amount of zinc (= 90% is bound after 3 hrs of contact at low initial (total concentrations of zinc in suspension of yeast, 10-100 mg/l at 10-30°C. The equilibrium between bound and free zinc ions is established after 6 hrs of contact time, independently on the total zinc concentration in yeast milk. No bigger changes of content of zinc bound to brewer's yeast cells was determined at temperatures 10°C and 30°C. 40% of bound zinc in the equilibrium state is bound during the first 15 min of contact of zinc ions and brewer's yeast cells at all initial (total zinc concentrations in suspension of yeast both at 10°C and 30°C. The "KEKAM" equation can be used for the description of kinetics of zinc biosorption by waste brewer's yeast cells, for the ranges of zinc concentration 10-100 mg/l at 30°C (mean correlation coefficient 0,96 and 60,0-100 mg/l at 10°C (mean correlation coefficient 0,95.

  19. Sediment Transport

    DEFF Research Database (Denmark)

    Liu, Zhou

    Flow and sediment transport are important in relation to several engineering topics, e.g. erosion around structures, backfilling of dredged channels and nearshore morphological change. The purpose of the present book is to describe both the basic hydrodynamics and the basic sediment transport...... mechanics. Chapter 1 deals with fundamentals in fluid mechanics with emphasis on bed shear stress by currents, while chapter 3 discusses wave boundary layer theory. They are both written with a view to sediment transport. Sediment transport in rivers, cross-shore and longshore are dealt with in chapters 2...

  20. Lichens of abandoned zinc-lead mines

    Directory of Open Access Journals (Sweden)

    Urszula Bielczyk

    2013-12-01

    Full Text Available A list of lichens from areas of zinc-lead ores in Southern Poland and a review of the characteristic lichen biota of these sites is provided. In spite of the devastated and heavy metal contaminated environment, a highly diverse epigeic and epilithic lichen biota was found, including species characteristic of various anthropogenic habitats, particularly zinc and lead enriched substrates (Diploschistes muscorum, Steinia geophana, Sarcosagium campestre, Vezdaea aestivalis and V. leprosa. Also, the high-mountain species Leucocarpia biatorella, as well as very rare in Europe Thelocarpon imperceptum, and several species categorized as very rare, endangered and protected in Poland were recorded. Crustose lichens are the most abundant; among fruticose forms Cladonia spp. predominate and Stereocaulon incrustatum is common.

  1. Synthesis of monoclinic zinc diphosphide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mowles, T.A.

    1978-05-01

    Monoclinic zinc diphosphide is a cheap, plentiful, direct-gap semiconductor with an optimum transition energy for solar absorption. Single crystals were grown from the vapor to be evaluated as a new photovoltaic material. Monoclinic and tetragonal crystal formed within evacuated quartz ampules that were charged with zinc and excess phosphorous and heated in a temperature gradient to give phosphorous pressures from 0.07 to 8.5 atmospheres. The monoclinic form melts incongruently near 990/sup 0/C. The tetragonal form is metastable; its growth is enhanced by impurities but retarded by high phosphorous pressures. The mechanism of the synthesis indicates that a tightly-controlled vapor deposition is possible and that high-quality thin films should form at temperatures from 950 to 990/sup 0/C at pressures below 10 atmospheres. By a modification of the technique, sesquizinc phosphide single crystals were grown for comparison.

  2. Iron and Zinc Exploitation during Bacterial Pathogenesis

    Science.gov (United States)

    Ma, Li; Terwilliger, Austen; Maresso, Anthony W.

    2016-01-01

    Ancient bacteria originated from metal-rich environments. Billions of years of evolution directed these tiny single cell creatures to exploit the versatile properties of metals in catalyzing chemical reactions and biological responses. The result is an entire metallome of proteins that use metal co-factors to facilitate key cellular process that range from the production of energy to the replication of DNA. Two key metals in this regard are iron and zinc, both abundant on Earth but not readily accessible in a human host. Instead, pathogenic bacteria must employ clever ways to acquire these metals. In this review we describe the many elegant ways these bacteria mine, regulate, and craft the use of two key metals (iron and zinc) to build a virulence arsenal that challenges even the most sophisticated immune response. PMID:26497057

  3. Zinc flexes its muscle: Correcting a novel analysis of calcium for zinc interference uncovers a method to measure zinc.

    Science.gov (United States)

    Qian, Cheng; Colvin, Robert A

    2016-01-01

    The divalent cation chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), often used to buffer physiological changes in cytosolic Ca(2+), also binds Zn(2+) with high affinity. In a recently published method (Lamboley et al. 2015. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201411250), the absorbance shift of BAPTA at 292 nm was successfully used to determine the total calcium concentrations of various skeletal muscle tissues. In the present study, we show that endogenous Zn(2+) in rat skeletal muscle tissue can be unknowingly measured as "Ca(2+)," unless appropriate measures are taken to eliminate Zn(2+) interference. We analyzed two rat skeletal muscle tissues, soleus and plantaris, for total calcium and zinc using either inductively coupled plasma mass spectrometry (ICP-MS) or the BAPTA method described above. ICP-MS analysis showed that total zinc contents in soleus and plantaris were large enough to affect the determination of total calcium by the BAPTA method (calcium = 1.72 ± 0.31 and 1.96 ± 0.14, and zinc = 0.528 ± 0.04 and 0.192 ± 0.01; mean ± standard error of the mean [SEM]; n = 5; mmole/kg, respectively). We next analyzed total calcium using BAPTA but included the Zn(2+)-specific chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) that buffers Zn(2+) without affecting Ca(2+)/BAPTA binding. We found that estimated concentrations of total calcium ([CaT]WM) in soleus and plantaris were reduced after TPEN addition ([CaT]WM = 3.71 ± 0.62 and 3.57 ± 0.64 without TPEN and 3.39 ± 0.64 and 3.42 ± 0.62 with TPEN; mean ± SEM; n = 3; mmole/kg, respectively). Thus, we show that a straightforward correction can be applied to the BAPTA method to improve the accuracy of the determination of total calcium that should be applicable to most any tissue studied. In addition, we show that using TPEN in combination with the BAPTA method allows one to make reasonable estimates of total zinc concentration that are in agreement

  4. Atmospheric Emissions and Depositions of Cadmium, Lead, and Zinc in Europe During the Period 1955-1987

    OpenAIRE

    Olendrzynski, K.; Anderberg, S.; Bartnicki, J.; PACYNA J.; Stigliani, W.M.

    1995-01-01

    This paper presents a preliminary estimate of atmospheric emissions of cadmium, lead and zinc in Europe during the period 1955-1987. The emission data are used as input to the IIASA's atmospheric transport model, TRACE m a c e toxic Air concentrations in Europe), to compute cumulative deposition loads of heavy metals onto European soils during the investigated time period. To the authors' knowledge, this is the first attempt of this kind in the open literature. The computed with the TRACE mod...

  5. Zinc accumulation and utilization by wine yeasts

    OpenAIRE

    Walker, Graeme

    2009-01-01

    Raffaele De Nicola1,3, Nichola Hall2,3, Tatiana Bollag3, Georgios Thermogiannis3, Graeme M Walker31DSM Nutritional Products, Dept. NRD/CX, Basel, Switzerland; 2Vinquiry, Inc. Windsor, CA, USA; 3School of Contemporary Sciences, University of Abertay Dundee, Dundee, UK Abstract: The present study has focused on the accumulation of zinc by wine yeast strains of Saccharomyces cerevisiae during fermentation of both grape juice and chemically defined medium with different carbohydrates and...

  6. Electrodeposition of Zinc from Chloride Solution

    OpenAIRE

    NAIK, Yanjerappa Arthoba; VENKATESHA, Thimmappa Venkatarangaiah

    2002-01-01

    The electroplating of zinc is carried out in the presence of 3,4,5-Trimethoxy benzaldehyde from a chloride bath. The bath constituents are optimized through Hull cell experiments. Operating parameters such as pH, temperature, and current density are also optimized. The current efficiency and throwing power are measured at different current densities. Polarization study is carried out under galvanostatic conditions. Corrosion resistance test indicated good protection of steel by the ...

  7. Genome Engineering With Zinc-Finger Nucleases

    OpenAIRE

    Carroll, Dana

    2011-01-01

    Zinc-finger nucleases (ZFNs) are targetable DNA cleavage reagents that have been adopted as gene-targeting tools. ZFN-induced double-strand breaks are subject to cellular DNA repair processes that lead to both targeted mutagenesis and targeted gene replacement at remarkably high frequencies. This article briefly reviews the history of ZFN development and summarizes applications that have been made to genome editing in many different organisms and situations. Considerable progress has been mad...

  8. Organic Zinc as Feed Additive for Ruminants

    OpenAIRE

    Suprijati

    2013-01-01

    Zinc is an essential micro mineral required by ruminants and is a component of over 300 enzymes which play important role in the metabolisms of carbohydrates, proteins and fats. Recently, the chemical and biotechnology processes have been developed for synthesizing organic Zn. Organic Zn is the product of a chelating process of dissolved Zn anorganic salts with amino acids or hydrolyzed protein. The utilization of organic Zn as feed additive in ruminants diets tends to increase, due to the ab...

  9. Zinc Status of Vegetarians during Pregnancy: A Systematic Review of Observational Studies and Meta-Analysis of Zinc Intake

    Directory of Open Access Journals (Sweden)

    Meika Foster

    2015-06-01

    Full Text Available Pregnant women are vulnerable to a low zinc status due to the additional zinc demands associated with pregnancy and foetal development. The present systematic review explores the relationship between habitual vegetarian diets and dietary zinc intake/status during pregnancy. The association between vegetarian diets and functional pregnancy outcome also is considered. A literature search was conducted of MEDLINE; PubMed; Embase; the Cochrane Library; Web of Science; and Scopus electronic databases up to September 2014. Six English-language observational studies qualified for inclusion in the systematic review. A meta-analysis was conducted that compared the dietary zinc intake of pregnant vegetarian and non-vegetarian (NV groups; the zinc intake of vegetarians was found to be lower than that of NV (−1.38 ± 0.35 mg/day; p < 0.001; and the exclusion of low meat eaters from the analysis revealed a greater difference (−1.53 ± 0.44 mg/day; p = 0.001. Neither vegetarian nor NV groups met the recommended dietary allowance (RDA for zinc. In a qualitative synthesis; no differences were found between groups in serum/plasma zinc or in functional outcomes associated with pregnancy. In conclusion; pregnant vegetarian women have lower zinc intakes than NV control populations and both groups consume lower than recommended amounts. Further information is needed to determine whether physiologic adaptations in zinc metabolism are sufficient to meet maternal and foetal requirements during pregnancy on a low zinc diet.

  10. Clinical, endocrinological and biochemical effects of zinc deficiency.

    Science.gov (United States)

    Prasad, A S

    1985-08-01

    The essentiality of zinc for humans was recognized in the early 1960s. The causes of zinc deficiency include malnutrition, alcoholism, malabsorption, extensive burns, chronic debilitating disorders, chronic renal disease, certain diuretics, the use of chelating agents such as penicillamine for Wilson's disease, and genetic disorders such as acrodermatitis enteropathica and sickle cell disease. The requirement of zinc is increased in pregnancy and during the growing age period. The clinical manifestations in severe cases of zinc deficiency included bullous-pustular dermatitis, alopecia, diarrhoea, emotional disorder, weight loss, intercurrent infections, hypogonadism in males and it is fatal if untreated. A moderate deficiency of zinc is characterized by growth retardation and delayed puberty in adolescents, hypogonadism in males, rough skin, poor appetite, mental lethargy, delayed wound healing, taste abnormalities and abnormal dark adaptation. In mild cases of zinc deficiency in human subjects, we have observed oligospermia, slight weight loss and hyperammonaemia. Zinc is a growth factor. As a result of its deficiency, growth is affected adversely in many animal species and in man. Inasmuch as zinc is needed for protein and DNA synthesis and cell division, it is believed that the growth effect of zinc is related to its effect on protein synthesis. Testicular functions are affected adversely as a result of zinc deficiency in both humans and experimental animals. This effect of zinc is at the end organ level and the hypothalamic--pituitary axis is intact in zinc-deficient subjects. Inasmuch as zinc is intimately involved in a cell division, its deficiency may adversely affect testicular size and thus its function. In mice, the incidence of degenerate oocytes, and hypohaploidy and hyperhaploidy in metaphase II oocytes were increased due to zinc deficiency. Zinc at physiological concentrations reduced prolactin secretion from the pituitary in vitro and it has been

  11. Induction of Nickel Accumulation in Response to Zinc Deficiency in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Sho Nishida

    2015-04-01

    Full Text Available Excessive accumulation of nickel (Ni can be toxic to plants. In Arabidopsis thaliana, the Fe2+ transporter, iron (Fe-regulated transporter1 (IRT1, mediates Fe uptake and also implicates in Ni2+ uptake at roots; however, the underlying mechanism of Ni2+ uptake and accumulation remains unelucidated. In the present study, we found that zinc (Zn deficient conditions resulted in increased accumulation of Ni in plants, particularly in roots, in A. thaliana. In order to elucidate the underlying mechanisms of Ni uptake correlating zinc condition, we traced 63Ni isotope in response to Zn and found that (i Zn deficiency induces short-term Ni2+ absorption and (ii Zn2+ inhibits Ni2+ uptake, suggesting competitive uptake between Ni and Zn. Furthermore, the Zrt/Irt-like protein 3 (ZIP3-defective mutant with an elevated Zn-deficient response exhibited higher Ni accumulation than the wild type, further supporting that the response to Zn deficiency induces Ni accumulation. Previously, expression profile study demonstrated that IRT1 expression is not inducible by Zn deficiency. In the present study, we found increased Ni accumulation in IRT1-null mutant under Zn deficiency in agar culture. These suggest that Zn deficiency induces Ni accumulation in an IRT1-independen manner. The present study revealed that Ni accumulation is inducible in response to Zn deficiency, which may be attributable to a Zn uptake transporter induced by Zn deficiency.

  12. Zinc ion coordination as a modulating factor of the ZnuA histidine-rich loop flexibility: A molecular modeling and fluorescence spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Castelli, Silvia [Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Stella, Lorenzo [Department of Chemical Sciences and Technologies, University of Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Neuromed, IRCCS, Pozzilli 86077 (Italy); Petrarca, Patrizia [Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Battistoni, Andrea [Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), Viale delle Medaglie D' Oro 305, 00136 Rome (Italy); Desideri, Alessandro [Department of Biology, University of Rome Tor Vergata and CIBB, Center of Biostatistics and Bioinformatics, Via della Ricerca Scientifica, 00133 Rome (Italy); Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), Viale delle Medaglie D' Oro 305, 00136 Rome (Italy); Falconi, Mattia, E-mail: falconi@uniroma2.it [Department of Biology, University of Rome Tor Vergata and CIBB, Center of Biostatistics and Bioinformatics, Via della Ricerca Scientifica, 00133 Rome (Italy); Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), Viale delle Medaglie D' Oro 305, 00136 Rome (Italy)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer Fluorescence data indicate that the His-loop of ZnuA interacts with Zn{sup +2} ions. Black-Right-Pointing-Pointer The ZnuA structural model proposed validates these spectroscopic findings. Black-Right-Pointing-Pointer It is proposed that a zinc loaded His-loop may facilitate the ZnuA-ZnuB recognition. -- Abstract: ZnuA is the soluble component of the high-affinity ZnuABC zinc transporter belonging to the ATP-binding cassette-type periplasmic Zn-binding proteins. The zinc transporter ZnuABC is composed by three proteins: ZnuB, the membrane permease, ZnuC, the ATPase component and ZnuA, the soluble periplasmic metal-binding protein which captures Zn and delivers it to ZnuB. The ZnuA protein contains a charged flexible loop, rich in histidines and acidic residues, showing significant species-specific differences. Various studies have established that this loop contributes to the formation of a secondary zinc binding site, which has been proposed to be important in the acquisition of periplasmic Zn for its delivery to ZnuB or for regulation of zinc uptake. Due to its high mobility the structure of the histidine-rich loop has never been solved by X-ray diffraction studies. In this paper, through a combined use of molecular modeling, mutagenesis and fluorescence spectroscopy, we confirm the presence of two zinc binding sites characterized by different affinities for the metal ion and show that the flexibility of the loop is modulated by the binding of the zinc ions to the protein. The data obtained by fluorescence spectroscopy have then be used to validate a 3D model including the unsolved histidine-rich loop.

  13. Castor bean response to zinc fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Lucia Helena Garofalo; Cunha, Tassio Henrique Cavalcanti da Silva; Lima, Vinicius Mota; Cabral, Paulo Cesar Pinto; Barros Junior, Genival; Lacerda, Rogerio Dantas de [Universidade Federal de Campina Grande (UAEAg/UFCG), PB (Brazil). Unidade Academica de Engenharia Agricola

    2008-07-01

    Zinc is a trace element and it is absolutely essential for the normal healthy growth of plants. This element plays a part of several enzyme systems and other metabolic functions in the plants. Castor beans (Ricinus communis L.) crop is raising attention as an alternative crop for oil and biodiesel production. Despite the mineral fertilization is an important factor for increasing castor beans yield, few researches has been made on this issue, mainly on the use of zinc. In order to evaluate the effects of zinc on growth of this plant an experiment was carried out in a greenhouse, in Campina Grande, Paraiba State, Brazil, from July to December 2007. The substrate for the pot plants was a 6 mm-sieved surface soil (Neossolo Quartzarenico). The experimental design was a completely randomized with three replications. The treatments were composed of five levels of Zn (0; 2; 4; 6 and 8 mg dm{sup -3}), which were applied at the time of planting. One plant of castor bean, cultivar BRS 188 - Paraguacu, was grown per pot after thinning and was irrigated whenever necessary. Data on plant height, number and length of leaves and stem diameter were measured at 21, 34, 77 and 103 days after planting. Under conditions that the experiment was carried out the results showed that the Zn levels used, did not affect the castor bean plants growth. (author)

  14. Maritime Transport

    OpenAIRE

    Veenstra, A.W.

    2002-01-01

    This important volume brings together an authoritative selection of the leading papers on the subject of maritime transport. With a new introductory essay by the editors, the collection provides a thorough examination of the topics associated with this area, including maritime economics, transport law and policy.

  15. Chemical treatment of zinc surface and its corrosion inhibition studies

    Indian Academy of Sciences (India)

    S K Rajappa; T V Venkatesha; B M Praveen

    2008-02-01

    The surface treatment of zinc and its corrosion inhibition was studied using a product (BTSC) formed in the reaction between benzaldehyde and thiosemicarbozide. The corrosion behaviour of chemically treated zinc surface was investigated in aqueous chloride–sulphate medium using galvanostatic polarization technique. Zinc samples treated in BTSC solution exhibited good corrosion resistance. The measured electrochemical data indicated a basic modification of the cathode reaction during corrosion of treated zinc. The corrosion protection may be explained on the basis of adsorption and formation of BTSC film on zinc surface. The film was binding strongly to the metal surface through nitrogen and sulphur atoms of the product. The formation of film on the zinc surface was established by surface analysis techniques such as scanning electron microscopy (SEM–EDS) and Fourier transform infrared spectroscopy (FTIR).

  16. Zinc self-diffusion, electrical properties, and defect structure of undoped, single crystal zinc oxide

    International Nuclear Information System (INIS)

    Zinc self-diffusion was measured in single crystal zinc oxide using nonradioactive 70Zn as the tracer isotope and secondary ion mass spectrometry for data collection. Crystal mass was closely monitored to measure ZnO evaporation. Diffusion coefficients were isotropic with an activation energy of 372 kJ/mol. Zinc self-diffusion is most likely controlled by a vacancy mechanism. Electrical property measurements exhibit a plateau in conductivity at intermediate pO2 with an increase in reducing atmospheres. An analysis of the defect structure is presented that indicates that oxygen vacancies are probably the intrinsic ionic defects responsible for n-type conductivity in reducing atmospheres. (c) 2000 American Institute of Physics

  17. Deficiencia de zinc y sus implicaciones funcionales Zinc deficiency and its functional implications

    Directory of Open Access Journals (Sweden)

    JORGE L ROSADO

    1998-03-01

    Full Text Available El presente trabajo tiene por objeto revisar los aspectos teóricos y los estudios realizados en México que sugieren la existencia de la deficiencia moderada de zinc en niños de población rural, así como algunas de las consecuencias de dicha deficiencia en la salud. El zinc es un nutrimento indispensable para el organismo de los humanos y juega un papel importante en una serie de procesos metabólicos: participa en el sitio catalítico de varios sistemas enzimáticos; participa como ion estructural en membranas biológicas, y guarda una estrecha relación con la síntesis de proteínas, entre otras cosas. Es por esto que la deficiencia de zinc está asociada con consecuencias importantes en la salud y la funcionalidad de los individuos, especialmente durante las primeras etapas de la vida. De relevancia para México es la existencia de una deficiencia moderada de zinc en los niños y las consecuencias que ésta pueda tener en la salud de los mismos. Los estudios realizados sugieren que la deficiencia moderada de zinc se presenta asociada con la ingestión de dietas basadas en alimentos de origen vegetal, las cuales contienen cantidades importantes de inhibidores de la absorción de zinc. Este tipo de dietas se consume habitualmente en las zonas rurales y en la población marginal de las ciudades en el país. Entre las consecuencias más importantes de esta deficiencia se encontró un aumento en la presencia de enfermedades infecciosas, especialmente de diarrea, y posibles alteraciones en el desarrollo de la capacidad cognoscitiva.The purpose of this article is to review theoretical aspects and research performed in Mexico suggesting the existence of marginal zinc deficiency in rural children and its consequences on health. Zinc is an indispensable nutrient for humans since it plays an important role in several metabolic pathways: it participates in the catalytic site of several enzymes, as a structural ion of biological membranes and is

  18. Impact of residual elements on zinc quality in the production of zinc oxide

    Directory of Open Access Journals (Sweden)

    N. Luptáková

    2016-07-01

    Full Text Available The paper is focused on zinc oxide manufacturing process. The present work deals with the character and morphology of the input material for the production of ZnO by the indirect pyrometallurgical process. Undesirable phases in the feedstock can be identified through profound recognition of the source material and the nature of its microstructure. If these compounds diffuse into the lining during thermal processes, they become the cause of stress in metallurgical ceramics. The emergence of these chemical reactions may subsequently affect the entire metallurgical zinc smelting process. The results obtained by analysis are used to minimize waste - zinc slag and to eliminate the conditions which enable the formation of the undesired product, thereby increasing the productivity of the ZnO production.

  19. Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders

    International Nuclear Information System (INIS)

    The cation site occupancy of a mechanically activated nanocrystalline zinc ferrite powder was determined as (Zn0.552+Fe0.183+)tet[Zr0.452+Fe1.823+]octO4 through analysis of extended x-ray absorption fine structure measurements, showing a large redistribution of cations between sites compared to normal zinc ferrite samples. The overpopulation of cations in the octahedral sites was attributed to the ascendance in importance of the ionic radii over the crystal energy and bonding coordination in determining which interstitial sites are occupied in this structurally disordered powder. Slight changes are observed in the local atomic environment about the zinc cations, but not the iron cations, with respect to the spinel structure. The presence of Fe3+ on both sites is consistent with the measured room temperature magnetic properties. (c) 2000 American Institute of Physics

  20. Functionalized manganese-doped zinc sulfide quantum dot-based fluorescent probe for zinc ion

    International Nuclear Information System (INIS)

    We report on a simple strategy for the determination of zinc ion by using surface-modified quantum dots. The probe consists of manganese-doped quantum dots made from zinc sulfide and capped N-acetyl-L-cysteine. The particles exhibit bright yellow-orange emission with a peak at 598 nm which can be attributed to the 4T1→6A1 transition of Mn(II). This bright fluorescence is effectively quenched by modifying the sulfur anion which suppresses the radiative recombination process. The emission of the probe can then be restored by adding Zn(II) which causes the formation of a ZnS passivation layer around the QDs. The fluorescence enhancement caused is linear in the 1. 25 to 30 μM zinc concentration range, and the limit of detection is 0. 67 μM. (author)

  1. Contrasting the grain boundary-affected performance of zinc and indium oxide transparent conductors

    International Nuclear Information System (INIS)

    Zinc oxide-based transparent conductors have long been advanced for their potential as low-cost, earth-abundant replacements for the indium oxide-based materials that currently dominate in practical applications. However, this potential has yet to be realized because of the difficulties in producing zinc oxide thin films with the necessary high levels of electrical conductivity and environmental stability that are readily achieved using indium oxide. To better understand the fundamental reasons for this, polycrystalline zinc and indium oxide thin films were prepared across a range of deposition temperatures using the technique of spray pyrolysis. Electrical transport measurements of these samples both as a function of temperature and UV irradiation were correlated with film morphology to illustrate that the different grain boundary behaviour of these two materials is one of the key reasons for their divergent performance. This is a critical challenge that must be addressed before any substantial increase in the adoption of ZnO-based transparent conductors can take place. (paper)

  2. Contrasting the grain boundary-affected performance of zinc and indium oxide transparent conductors.

    Science.gov (United States)

    Vai, A T; Rashidi, N; Fang, Y; Kuznetsov, V L; Edwards, P P

    2016-06-01

    Zinc oxide-based transparent conductors have long been advanced for their potential as low-cost, earth-abundant replacements for the indium oxide-based materials that currently dominate in practical applications. However, this potential has yet to be realized because of the difficulties in producing zinc oxide thin films with the necessary high levels of electrical conductivity and environmental stability that are readily achieved using indium oxide. To better understand the fundamental reasons for this, polycrystalline zinc and indium oxide thin films were prepared across a range of deposition temperatures using the technique of spray pyrolysis. Electrical transport measurements of these samples both as a function of temperature and UV irradiation were correlated with film morphology to illustrate that the different grain boundary behaviour of these two materials is one of the key reasons for their divergent performance. This is a critical challenge that must be addressed before any substantial increase in the adoption of ZnO-based transparent conductors can take place. PMID:26952740

  3. Contrasting the grain boundary-affected performance of zinc and indium oxide transparent conductors

    Science.gov (United States)

    Vai, A. T.; Rashidi, N.; Fang, Y.; Kuznetsov, V. L.; Edwards, P. P.

    2016-06-01

    Zinc oxide-based transparent conductors have long been advanced for their potential as low-cost, earth-abundant replacements for the indium oxide-based materials that currently dominate in practical applications. However, this potential has yet to be realized because of the difficulties in producing zinc oxide thin films with the necessary high levels of electrical conductivity and environmental stability that are readily achieved using indium oxide. To better understand the fundamental reasons for this, polycrystalline zinc and indium oxide thin films were prepared across a range of deposition temperatures using the technique of spray pyrolysis. Electrical transport measurements of these samples both as a function of temperature and UV irradiation were correlated with film morphology to illustrate that the different grain boundary behaviour of these two materials is one of the key reasons for their divergent performance. This is a critical challenge that must be addressed before any substantial increase in the adoption of ZnO-based transparent conductors can take place.

  4. Role of Zinc in Plant Nutrition- A Review

    OpenAIRE

    Hafeez, B.; Khanif, Y. M.; Saleem, M.

    2013-01-01

    Zinc is plant micronutrient which is involved in many physiological functions its inadequate supply will reduce crop yields. Zinc deficiency is the most wide spread micronutrient deficiency problem, almost all crops and calcareous, sandy soils, peat soils, and soils with high phosphorus and silicon are expected to be deficient. Zinc deficiencies can affect plant by stunting its growth, decreasing number of tillers, chlorosis and smaller leaves, increasing crop maturity period, spikelet steril...

  5. Classification of mononuclear zinc metal sites in protein structures

    OpenAIRE

    Karlin, Samuel; Zhu, Zhan-Yang

    1997-01-01

    Our study of the extended metal environment, particularly of the second shell, focuses in this paper on zinc sites. Key findings include: (i) The second shell of mononuclear zinc centers is generally more polar than hydrophobic and prominently features charged residues engaged in an abundance of hydrogen bonding with histidine ligands. Histidine–acidic or histidine–tyrosine clusters commonly overlap the environment of zinc ions. (ii) Histidine tautomeric metal bonding patterns in ligating zin...

  6. Effects of Zinc Chelators on Aflatoxin Production in Aspergillus parasiticus

    Science.gov (United States)

    Wee, Josephine; Day, Devin M.; Linz, John E.

    2016-01-01

    Zinc concentrations strongly influence aflatoxin accumulation in laboratory media and in food and feed crops. The presence of zinc stimulates aflatoxin production, and the absence of zinc impedes toxin production. Initial studies that suggested a link between zinc and aflatoxin biosynthesis were presented in the 1970s. In the present study, we utilized two zinc chelators, N,N,N′,N′-tetrakis (2-pyridylmethyl) ethane-1,2-diamine (TPEN) and 2,3-dimercapto-1-propanesulfonic acid (DMPS) to explore the effect of zinc limitation on aflatoxin synthesis in Aspergillus parasiticus. TPEN but not DMPS decreased aflatoxin biosynthesis up to six-fold depending on whether A. parasiticus was grown on rich or minimal medium. Although we observed significant inhibition of aflatoxin production by TPEN, no detectable changes were observed in expression levels of the aflatoxin pathway gene ver-1 and the zinc binuclear cluster transcription factor, AflR. Treatment of growing A. parasiticus solid culture with a fluorescent zinc probe demonstrated an increase in intracellular zinc levels assessed by increases in fluorescent intensity of cultures treated with TPEN compared to controls. These data suggest that TPEN binds to cytoplasmic zinc therefore limiting fungal access to zinc. To investigate the efficacy of TPEN on food and feed crops, we found that TPEN effectively decreases aflatoxin accumulation on peanut medium but not in a sunflower seeds-derived medium. From an application perspective, these data provide the basis for biological differences that exist in the efficacy of different zinc chelators in various food and feed crops frequently contaminated by aflatoxin. PMID:27271668

  7. Extraction of Zinc from Industrial Waste by a Penicillium sp

    OpenAIRE

    Schinner, Franz; Burgstaller, Wolfgang

    1989-01-01

    Zinc was extracted from a filter residue of a copper works (58.6% zinc) by a Penicillium sp. isolated from a metal-containing location. By isotachophoresis citric acid was identified as the leaching agent. Citrate was only formed when the leaching substrate was present. This production of citrate was different in several ways from that achieved by Aspergillus niger: glucose was utilized before fructose; the initial concentration of zinc was 50 to 500 times higher than usual in citrate ferment...

  8. Alkaline Leaching of Low Zinc Content Iron-Bearing Sludges

    OpenAIRE

    Gargul K.; Jarosz P.; Małecki S.

    2016-01-01

    Various types of waste materials containing zinc (e.g. dusts and sludges from gas dedusting process) are obtained in steel industry. The contents of Zn in these materials may vary considerably. Even a low concentration of zinc in recirculated products precludes their recycling in ferrous metallurgy aggregates. Long storage of this type of material can lead to contamination of soil and water by zinc compounds which can be leached out by acid rain, for example. This paper focuses on research in...

  9. HUBUNGAN ANTARA ZINC SERUM DENGAN STATUS GIZI LANSIA

    Directory of Open Access Journals (Sweden)

    Fitrah Emawati

    2012-11-01

    Full Text Available RELATIONSHIP BETWEEN ZINC SERUM AND NUTRITIONAL STATUS OF ELDERLY PEOPLE.Background: The findings of study that 30% in Bogor and 27% in Jakarta of elderly people were undernourished. Malnutrition may occur due to infection and low food intake. Among elderly people, one of the factors that causes low food intake is affected by impairment of taste sensory and teeth function. The impairment of taste sensory is influenced by zinc status in the body.Objective: To collect food consumption pattem data of zinc rich foods, zinc concentration in serum and to analyze association of zinc concentration and nutritional status.Methods: Research design was cross sectional, and conducted in two sub districts in Bogor city. The respondents were women in 60-75 years of age, no suffering from illnesses and chronically disease. The total respondent was 90 people, and divided into three groups of 30 peoples. Data gathered included respondent identity, physical examination, anthropometry, blood biochemical and zinc dietary consumption.Results: Zinc dietary consumption adequacy of underweight group was only 30% of recommended dietary allowance, while for normal and overweight groups were 40% of dietary allowance. Zinc serum concentration of underweight group (82 ug/dl was not significantly different with normal group (85 ug/dl, however differed significantly (p<0.05 with overweight group (95 ug/dl. Underweight group suffered 40% zinc deficiency, 27% for normal and only 7% for overweight group.Conclusions: Zinc deficiency was more prevalent in underweight group than that of normal and overweight group. [Panel Gizi Makan 2002,25: 26-33.Keywords: zinc serum concentration, zinc dietary consumption, underweight

  10. Jiangxi Copper Marching into Lead-zinc Industry

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>On November 13,Jiangxi Copper officially signed transfer agreement on the share rights of lead-zinc mines with Jiangxi Provincial Geol- ogy & Mineral Resources Bureau,marking the beginning of full-strategic cooperation between the two parties for the common exploitation of lead-zinc industry in the province. The Jiangxi Province is rich in lead-zinc re- sources,but most of them are in scattered lay-

  11. Runoff rates and ecotoxicity of zinc induced by atmospheric corrosion.

    Science.gov (United States)

    Karlén, C; Wallinde, I O; Heijerick, D; Leygraf, C; Janssen, C R

    2001-09-28

    Initiated by regulatory restrictions on the use of zinc for various building and construction applications, together with a lack of knowledge related to the release of zinc induced by atmospheric corrosion, a major interdisciplinary research project was implemented to generate data to be used in future risk assessment. Runoff rates from a large number of commercially available zinc-based materials have been determined on panels inclined 45 degrees from the horizon, facing south, during a 1-year atmospheric exposure in an urban environment in Sweden. Possible environmental effects of runoff water immediately after leaving the surface of the various materials have been evaluated during two different sampling periods of varying season and zinc concentration, using the standard growth inhibition test with algae. Raphidocelis subcapitata (formerly Selenastrum capricornutum). Zinc-specific biosensors with the bacterial strain of Alcaligenes eutrophus, and computer modeling using the water-ligand model MINTEQA2 and the humic aquatic model WHAM, have been used to assess the bioavailability and chemical speciation of zinc in the runoff water. An excellent consistency between the different methods was observed. The results show considerably lower runoff rates of zinc (0.07-3.5 g m(-2) year(-1)) than previously being used for regulatory restrictions, and the concentration of zinc to be predominantly responsible for the observed toxicity of the runoff water towards the green algae. The majority of the released zinc quantity was found to be present as free hydrated zinc ions and, hence, bioavailable. The data do not consider changes in bioavailability and chemical speciation or dilution effects during entry into the environment, and should therefore only be used as an initial assessment of the potential environmental effect of zinc runoff from building applications. This interdisciplinary approach has the potential for studies on the environmental fate of zinc in soil or

  12. Chemical and biological rhizosphere interactions in low zinc soils

    OpenAIRE

    Duffner, A.

    2014-01-01

    Abstract of the PhD thesis entitled “Chemical and biological rhizosphere interactions in low zinc soils” by Andreas Duffner Soil provides ecosystem services critical for life. The availability of micronutrients, such as zinc (Zn), in soils is an essential factor for normal healthy growth and reproduction of plants. Zinc deficiency is, however, a global problem in crop production due to low Zn bioavailability in soils to plants. The bioavailable Zn fraction in soils is controlled ...

  13. Structural and spectroscopic characterization of two new blue luminescent pyridylbenzimidazole zinc(II) complexes.

    Science.gov (United States)

    DeStefano, Matthew R; Geiger, David K

    2016-06-01

    Luminescent metal complexes are used in photooptical devices. Zinc(II) complexes are of interest because of the ability to tune their color, their high thermal stability and their favorable carrier transport character. In particular, some zinc(II) complexes with aryl diimine and/or heterocyclic ligands have been shown to emit brightly in the blue region of the spectrum. Zinc(II) complexes bearing derivatized imidazoles have been explored for possible optoelectronic applications. The structures of two zinc(II) complexes of 5,6-dimethyl-2-(pyridin-2-yl)-1-[(pyridin-2-yl)methyl]-1H-benzimidazole (L), namely dichlorido(dimethylformamide-κO){5,6-dimethyl-2-(pyridin-2-yl-κN)-1-[(pyridin-2-yl)methyl]-1H-benzimidazole-κN(3)}zinc(II) dimethylformamide monosolvate, [ZnCl2(C20H18N4)(C3H7NO)]·C3H7NO, (I), and bis(acetato-κ(2)O,O'){5,6-dimethyl-2-(pyridin-2-yl-κN)-1-[(pyridin-2-yl)methyl]-1H-benzimidazole-κN(3)}zinc(II) ethanol monosolvate, [Zn(C2H3O2)2(C20H18N4)]·C2H5OH, (II), are reported. Complex (I) crystallized as a dimethylformamide solvate and exhibits a distorted trigonal bipyramidal coordination geometry. The coordination sphere consists of a bidentate L ligand spanning axial to equatorial sites, two chloride ligands in equatorial sites, and an O-bound dimethylformamide ligand in the remaining axial site. The other complex, (II), crystallized as an ethanol solvate. The Zn(II) atom has a distorted trigonal prismatic coordination geometry, with two bidentate acetate ligands occupying two edges and a bidentate L ligand occupying the third edge of the prism. Complexes (I) and (II) emit in the blue region of the spectrum. The results of density functional theory (DFT) calculations suggest that the luminescence of L results from π*←π transitions and that the luminescence of the complexes results from interligand charge-transfer transitions. The orientation of the 2-(pyridin-2-yl) substituent with respect to the benzimidazole system was found to have an impact on

  14. Evaluation of atmospheric corrosion on electroplated zinc and zinc nickel coatings by Electrical Resistance (ER) Monitoring

    DEFF Research Database (Denmark)

    Møller, Per

    2013-01-01

    ER (Electrical Resistance) probes provide a measurement of metal loss, measured at any time when a metal is exposed to the real environment. The precise electrical resistance monitoring system can evaluate the corrosion to the level of nanometers, if the conductivity is compensated for temperature...... and magnetic fields. With this technique very important information about the durability of a new conversion coatings for aluminum, zinc and zinc alloys exposed to unknown atmospheric conditions can be gathered. This is expected to have a major impact on a number of industrial segments, such as test cars...

  15. Horizontal gene transfer of zinc and non-zinc forms of bacterial ribosomal protein S4

    OpenAIRE

    Luthey-Schulten Zaida; Roberts Elijah; Chen Ke

    2009-01-01

    Abstract Background The universal ribosomal protein S4 is essential for the initiation of small subunit ribosomal assembly and translational accuracy. Being part of the information processing machinery of the cell, the gene for S4 is generally thought of as being inherited vertically and has been used in concatenated gene phylogenies. Here we report the evolution of ribosomal protein S4 in relation to a broad sharing of zinc/non-zinc forms of the gene and study the scope of horizontal gene tr...

  16. Dietary polyphenols display zinc ionophore activity and modulate zinc signaling in hepatocarcinoma cells

    OpenAIRE

    Dabbagh Bazarbachi, Husam

    2015-01-01

    El zinc és el metall de transició més abundant després del ferro a totes les cèl·lules, i un micronutrient essencial, presentant diverses funcions en sistemes biològics. D'altra banda, els polifenols de la dieta són micronutrients bioactius que mostren nombrosos beneficis per a la salut, com ara activitat antitumoral i neuroprotectora. Anteriors treballs del nostre grup d'investigació han demostrat que els polifenols interaccionen amb cations de zinc i tenen la capacitat de modular l'expressi...

  17. Plasma Zinc But Not the Exchangeable Zinc Pool Size Differs Between Young and Older Korean Women

    OpenAIRE

    KIM, JIHYE; Paik, Hee Young; Joung, Hyojee; Woodhouse, Leslie R.; Janet C. King

    2010-01-01

    This study was done to determine the effect of age on zinc metabolism and status among healthy Korean women. Measures of zinc metabolism and status were measured in eight young women (22–24 years) and seven elderly women (66–75 years) consuming a typical Korean diet. Oral and intravenous tracers highly enriched in 67Zn and 70Zn were administered simultaneously. Multiple plasma, 24-h urines, and fecal samples were collected after isotope administration. In the young women, additional plasma we...

  18. Programmed Transport and Release of Cells by Self-Propelled Micromotors.

    Science.gov (United States)

    Yoshizumi, Yoshitaka; Okubo, Kyohei; Yokokawa, Masatoshi; Suzuki, Hiroaki

    2016-09-20

    Autonomous transport and release of bacterial cells by self-propelled micromotors were achieved. The motors consisted of zinc and platinum hemispheres formed on polystyrene beads and moved as a result of simultaneous redox reactions occurring on both metal ends. The highly negative redox potential of zinc enabled the selection of a wide variety of organic redox compounds as fuels, such as methanol and p-benzoquinone. The movement of motors was observed in solutions of fuels. To realize autonomous capture, transport, and release of cargo, a self-assembled monolayer (SAM) was formed on the platinum part of the motor. This SAM could be desorbed by coupling the reaction with the dissolution of zinc, which could also be controlled by adjusting the concentration of Zn(2+) ions. Escherichia coli (E. coli) cells were captured by the motor (due to hydrophobic interactions), transported, and released following SAM desorption at the mixed potential. PMID:27571037

  19. A Zinc injection test at Hamaoka Unit-1

    International Nuclear Information System (INIS)

    A Zinc injection test was carried out from 1997 to 1999 during the 16th and l7th operating cycles of Hamaoka Unit-1, the first nuclear power plant of Chubu Electric Power Co., Inc., to suppress the dose rate at the primary loop recirculation and keep the radiation exposure low. Zinc ion obtained by dissolution of Depleted Zinc Oxide (DZO) was injected into the feedwater. During the test, we confirmed the decrease of the radionuclide concentration in the reactor water and the dose rate of the piping surface. From these results, we concluded that Zinc injection is effective for the dose rate suppression in the primary loop recirculation piping. (author)

  20. Copper and zinc concentrations in serum of healthy Greek adults

    Energy Technology Data Exchange (ETDEWEB)

    Kouremenou-Dona, Eleni [A' Hospital of IKA, Athens (Greece); Dona, Artemis [Department of Forensic Medicine and Toxicology, Medical School, University of Athens, M. Asias 75, Goudi, 11527 Athens (Greece)]. E-mail: artedona@med.uoa.gr; Papoutsis, John [Department of Forensic Medicine and Toxicology, Medical School, University of Athens, M. Asias 75, Goudi, 11527 Athens (Greece); Spiliopoulou, Chara [Department of Forensic Medicine and Toxicology, Medical School, University of Athens, M. Asias 75, Goudi, 11527 Athens (Greece)

    2006-04-15

    Serum copper and zinc concentrations of 506 (414 males and 92 females) apparently healthy Greek blood donors aged 18-60 years old were determined by flame atomic absorption spectrometry. The mean copper and zinc concentrations were 115.46 {+-} 23.56 {mu}g/dl and 77.11 {+-} 17.67 {mu}g/dl, respectively. The mean value for copper and zinc in females was higher than in males, although the difference for zinc was smaller than the one observed for copper. When the subjects were divided into various age groups there appeared to be some increase in copper concentration as a function of age, whereas zinc concentration did not change. There were no significant variations in serum copper and zinc concentrations due to place of residence, occupation and socioeconomic status. This study is the first one evaluating the serum status of copper and zinc in healthy Greeks and it has shown that they are at the highest concentration range for copper and the lowest for zinc compared to literature data on copper and zinc levels for various countries.

  1. Benefits and drawbacks of zinc in glass ionomer bone cements

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, Delia S; Hill, Robert G [Unit of Dental Physical Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Gentleman, Eileen; Stevens, Molly M [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Farrar, David F, E-mail: d.brauer@qmul.ac.uk [Smith and Nephew Research Centre, York Science Park, Heslington YO10 5DF (United Kingdom)

    2011-08-15

    Glass polyalkenoate (ionomer) cements (GPCs) based on poly(acrylic acid) and fluoro-alumino-silicate glasses are successfully used in a variety of orthopaedic and dental applications; however, they release small amounts of aluminium, which is a neurotoxin and inhibits bone mineralization in vivo. Therefore there has been significant interest in developing aluminium-free glasses containing zinc for forming GPCs because zinc can play a similar structural role in the glass, allowing for glass degradation and subsequent cement setting, and is reported to have beneficial effects on bone formation. We created zinc-containing GPCs and characterized their mechanical properties and biocompatibility. Zinc-containing cements showed adhesion to bone close to 1 MPa, which was significantly greater than that of zinc-free cements (<0.05 MPa) and other currently approved biological adhesives. However, zinc-containing cements produced significantly lower metabolic activity in mouse osteoblasts exposed to cell culture medium conditioned with the cements than controls. Results show that although low levels of zinc may be beneficial to cells, zinc concentrations of 400 {mu}M Zn{sup 2+} or more resulted in cell death. In summary, we demonstrate that while zinc-containing GPCs possess excellent mechanical properties, they fail basic biocompatibility tests, produce an acute cytotoxic response in vitro, which may preclude their use in vivo.

  2. [The role of zinc in chronic kidney disease].

    Science.gov (United States)

    Fukushima, Tatsuo

    2016-07-01

    Renal anemia is one of the most important complication as a cause of cardiovascular event in patients with chronic kidney disease (CKD). The status of renal anemia has been ameliorated by using recombinant human erythropoietin (EPO), however, the EPO resistant anemia is sometimes seen in high stage CKD patients. Heavy metal deficiency including zinc deficiency is one of the cause of EPO resistant anemia. Recently, it is reported that zinc deficiency is seen in patients with CKD. In this article, we describe zinc deficiency in patients with CKD. The ability that zinc supplementation improves their anemia in CKD patients is also described. PMID:27455803

  3. Intensification of zinc dissolution process in sulphuric acid

    Directory of Open Access Journals (Sweden)

    Stanojević D.

    2005-01-01

    Full Text Available Many high purity salts are produced by dissolving pure metal in non-oxidizing mineral acids. If hydrogen overpotential on the given metal is high, then the rate of overall process is defined by reaction of hydrogen ion reduction. This study investigated the possibility of accelerated dissolving of metal zinc in sulphuric acid by introducing copper cathode on which evolving hydrogen is much easier than on zinc. It was found out that the acceleration of zinc dissolving is possible and, at constant surface of copper cathode depends on the quality of electrical contact between copper electrode and zinc.

  4. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins.

    Science.gov (United States)

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel's ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  5. Influence of Cortisol on zinc metabolism in morbidly obese women

    Directory of Open Access Journals (Sweden)

    Luana Mota Martins

    2014-01-01

    Full Text Available Introduction: The accumulation of visceral fat affects the metabolism of hormones and some nutrients, but these mechanisms remain unclear. Objective: To assess the influence of cortisol on the metabolism of zinc in morbidly obese women. Method: Cross-sectional, case-control study involving 80 women aged between 20 and 59 years. The participants were divided into two groups: experimental (morbidly obese, n = 40 and control (normal weight, n = 40. Zinc concentrations were determined by atomic absorption spectroscopy and serum and urinary cortisol by chemiluminescence method. Results: Zinc intake was significantly different between groups. Mean plasma zinc was lower in obese compared to control group. Mean values for erythrocyte zinc were 44.52 ± 7.84 μg/gHb and 40.17 ± 6.71 μg/gHb for obese and control groups, respectively. Urinary excretion of this mineral was higher in obese compared to control subjects (p 0.05. The correlation analysis between cortisol and zinc was not significant (p > 0.05. Conclusions: Obese patients have hypozincemia and high erythrocyte zinc levels. The correlation between zinc parameters and cortisol concentration showed no influence of this hormone on zinc metabolism.

  6. Cadmium and zinc relationships in kidney cortex, liver, and pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Elinder, C.G.; Piscator, M.; Linnman, L.

    1977-06-01

    Zinc and cadmium have been determined in kidney cortex, liver, and pancreas from 292 subjects autopsied in Stockholm, Sweden. In the liver and pancreas zinc was found to have a normal frequency distribution, average 45.3 ..mu..g/g and 26.9 ..mu..g/g wet wt, respectively. The concentrations of zinc in these two organs were constant regardless of age at death. Zinc was shown to accumulate with age in the kidney cortex in a way similar to cadmium, and had a log-normal distribution. The calculation of the regression line between individual cadmium concentrations below 60 ..mu..g/g and zinc concentrations gave a slope constant of 0.61 (Y/sub Zn/ = 0.61 X/sub Cd/ + 24.4), which corresponds to a nearly equimolar increase of zinc. The concentrations of ''physiological zinc,'' i.e., total zinc minus the zinc related to cadmium, were normally distributed (anti x = 24.6 ..mu..g Zn/g) and did not change with age. Furthermore, data on dry weight/wet weight ratios and ash weight/dry weight ratios in relation to age are presented.

  7. Effects of zinc supplementation on sexual behavior of male rats

    OpenAIRE

    DMAB Dissanayake; P S Wijesinghe; Ratnasooriya, W. D.; Wimalasena, S

    2009-01-01

    Context: Effects of zinc on male sexual competence are poorly understood. Aim: To study the effects of different doses of zinc on the sexual competence of males using a rat model. Materials and Methods: Three subsets (eight in each subset) of sexually experienced adult male rats were supplemented with three different oral doses of zinc sulphate (a daily dose of 1 mg, 5 mg and 10 mg respectively) for two weeks. A subset of eight animals without zinc supplementation was used as the control gr...

  8. Behavior of arsenic in hydrometallurgical zinc production and environmental impact

    OpenAIRE

    Peltekov A.B.; Boyanov B.S.; Markova T.S.

    2014-01-01

    The presence of arsenic in zinc sulphide concentrates is particularly harmful, because it creates problems in zinc electrolysis. The main source of arsenic in non-ferrous metallurgy is arsenopyrite (FeAsS). In oxidative roasting of zinc concentrates, FeAsS oxidizes to arsenic oxides (As2O3, As2O5). In this connection a natural FeAsS was examined, and also the distribution of arsenic in the products of the roasting process, the cycle of sulphuric acid obtaining and the leaching of zinc calcine...

  9. Differences in zinc status between patients with osteoarthritis and osteoporosis

    DEFF Research Database (Denmark)

    Ovesen, Janne; Møller-Madsen, Bjarne; Nielsen, Poul Torben;

    2009-01-01

    Zinc has been suggested to play an important role in the development of osteoporosis, whereas the influence of zinc on osteoarthritis has attracted much less attention. The aim of the study was to investigate and compare the zinc status and bone turnover, density, and biomechanical properties...... of osteoarthritic and osteoporotic patients. The study comprised 40 women who underwent hip replacement due to osteoarthritis or osteoporosis. Serum and urine zinc content, and bone resorption markers and serum bone formation markers were determined. The unaffected hip and the exarticulated affected femoral head...... that osteoporosis and osteoarthritis rarely occur in the same individual....

  10. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    Directory of Open Access Journals (Sweden)

    Francisco Andrés Peralta

    2016-07-01

    Full Text Available Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators.

  11. Behavioral impairments in animal models for zinc deficiency

    Directory of Open Access Journals (Sweden)

    Simone eHagmeyer

    2015-01-01

    Full Text Available Apart from teratogenic and pathological effects of zinc deficiency such as the occurrence of skin lesions, anorexia, growth retardation, depressed wound healing, altered immune function, impaired night vision, and alterations in taste and smell acuity, characteristic behavioral changes in animal models and human patients suffering from zinc deficiency have been observed. Given that it is estimated that about 17% of the worldwide population are at risk for zinc deficiency and that zinc deficiency is associated with a variety of brain disorders and disease states in humans, it is of major interest to investigate, how these behavioral changes will affect the individual and a putative course of a disease. Thus, here, we provide a state of the art overview about the behavioral phenotypes observed in various models of zinc deficiency, among them environmentally produced zinc deficient animals as well as animal models based on a genetic alteration of a particular zinc homeostasis gene. Finally, we compare the behavioral phenotypes to the human condition of mild to severe zinc deficiency and provide a model, how zinc deficiency that is associated with many neurodegenerative and neuropsychological disorders might modify the disease pathologies.

  12. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    Science.gov (United States)

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  13. Zinc Modulates Nanosilver-Induced Toxicity in Primary Neuronal Cultures.

    Science.gov (United States)

    Ziemińska, Elżbieta; Strużyńska, Lidia

    2016-02-01

    Silver nanoparticles (NAg) have recently become one of the most commonly used nanomaterials. Since the ability of nanosilver to enter the brain has been confirmed, there has been a need to investigate mechanisms of its neurotoxicity. We previously showed that primary neuronal cultures treated with nanosilver undergo destabilization of calcium homeostasis via a mechanism involving glutamatergic NMDA receptors. Considering the fact that zinc interacts with these receptors, the aim of the present study was to examine the role of zinc in mechanisms of neuronal cell death in primary cultures. In cells treated with nanosilver, we noted an imbalance between extracellular and intracellular zinc levels. Thus, the influence of zinc deficiency and supplementation on nanosilver-evoked cytotoxicity was investigated by treatment with TPEN (a chelator of zinc ions), or ZnCl(2), respectively. Elimination of zinc leads to complete death of nanosilver-treated CGCs. In contrast, supplementation with ZnCl(2) increases viability of CGCs in a dose-dependent manner. Addition of zinc provided protection against the extra/intracellular calcium imbalance in a manner similar to MK-801, an antagonist of NMDA receptors. Zinc chelation by TPEN decreases the mitochondrial potential and dramatically increases the rate of production of reactive oxygen species. Our results indicate that zinc supplementation positively influences nanosilver-evoked changes in CGCs. This is presumed to be due to an inhibitory effect on NMDA-sensitive calcium channels.

  14. Height, zinc and soil-transmitted helminth infections in schoolchildren

    DEFF Research Database (Denmark)

    de Gier, Brechje; Mpabanzi, Liliane; Vereecken, Kim;

    2015-01-01

    on height, STH infection and zinc concentration in either plasma (Cambodia) or hair (Cuba). We analyzed whether STH and/or zinc were associated with height for age z-scores and whether STH and zinc were associated. In Cuba, STH prevalence was 8.4%; these were mainly Ascaris lumbricoides and Trichuris...... trichiura infections. In Cambodia, STH prevalence was 16.8%, mostly caused by hookworm. In Cuban children, STH infection had a strong association with height for age (aB-0.438, p = 0.001), while hair zinc was significantly associated with height for age only in STH uninfected children. In Cambodian children...

  15. Effect of Zinc Toxicity on Lymphoid Organs in Chickens

    Institute of Scientific and Technical Information of China (English)

    CUI Heng-min; ZHAO Cui-yan; LI De-bing; PENG Xi; DENG Jun-liang

    2004-01-01

    The experiment was conducted with the objective of studies on effects of zinc toxicity on lymphoid organs by the methods of experimental pathology and flow cytometry (FCM). 200one-day-old Avian broilers were divided into four groups randomly, and fed on diets as follows: controls (Zn 100mg kg-1)and zinc toxic (Zn 1 500mg kg-1, zinc toxic group Ⅰ; Zn 2 000 mg kg-1, zinc toxic group Ⅱ; Zn 2 500 mg kg-1, zinc toxic group Ⅲ) for seven weeks. The weight and growth index of the thymus, spleen and bursa of Fabricius were reduced in both zinc toxic group Ⅱ and zinc toxic group Ⅲ when compared with those of control group. The G0/G1 phase of the cell cycles of the lymphoid organs was higher, and S, G2+M phases lower in zinc toxic groups Ⅱ and Ⅲ than in control group. Lymphocytes were depleted and degenerate in the lymphoid organs. The reticular cells of the bursa of Fabricius proliferated and the reticular cells of the thymus were also degenerate and necrotic,particularly in zinc toxic groups Ⅱ and Ⅲ. The results demonstrated that more than 1 500 mg kg-1 impaired the progression of lymphocytes from the G0/G1 phase to S phase obviously, inhibited the development of lymphoid organs and caused marked pathological changes in the lymphoid organs. Potential mechanisms underlying these observations are also discussed.

  16. Photocatalysis application of zinc oxide fibers obtained by electrospinning

    International Nuclear Information System (INIS)

    Using the electrospinning technique, composite fibers of polyvinylbutyral and zinc nitrate were obtained. After a heat treatment at 600 deg C, nanostructured zinc oxide fibers were obtained. The fibers were characterized using X ray diffraction. The photocatalytic activity of the nanostructured fibers was determined using the photodegradation of a methyl orange solution. The increase in the heat treatment temperature decreases the photoactivity of the zinc oxide. The heat treatment, the phases and the surface area, affect the physical, chemical and photocatalytic activity of the zinc oxide. (author)

  17. Impact of high dietary zinc on zinc accumulation, enzyme activity and proteomic profiles in the pancreas of piglets.

    Science.gov (United States)

    Pieper, R; Martin, L; Schunter, N; Villodre Tudela, C; Weise, C; Klopfleisch, R; Zentek, J; Einspanier, R; Bondzio, A

    2015-04-01

    The exocrine pancreas plays an important role in zinc homeostasis. Feeding very high (2000-3000mgzinc/kg diet) levels of zinc oxide to piglets for short periods is a common practice in the swine industry to improve performance and prevent diseases. The impact on pancreatic function and possible side effects during long-term feeding of high dietary zinc levels are still poorly understood. A total of 54 weaned piglets were either fed with low (57mg/kg, LZn), normal (164mg/kg, NZn) or high (2425mg/kg, HZn) zinc concentration in the diets. After 4 weeks of feeding, ten piglets per treatment were euthanized and pancreas samples were taken. Tissue zinc concentration and metallothionein abundance was greater with HZn compared with NZn and LZn (Ppancreas tissue was higher with HZn diets compared with the other treatments (Ppancreas of young pigs. The data provide new insights into pancreatic function under outbalanced zinc homeostasis.

  18. Effect of zinc supplementation on serum zinc concentration and T cell proliferation in nursing home elderly:A randomized double-blind placebo-controlled trial

    Science.gov (United States)

    Background: Zinc is essential for the regulation of immune response. T cell function declines with age. Zinc supplementation has the potential to improve serum zinc concentrations and immunity of nursing home elderly with low serum zinc concentration. Objective: We aimed to determine the effect of ...

  19. Identification of the human zinc transcriptional regulatory element (ZTRE): a palindromic protein-binding DNA sequence responsible for zinc-induced transcriptional repression

    NARCIS (Netherlands)

    Coneyworth, L.J.; Jackson, K.A.; Tyson, J.; Bosomworth, H.J.; Hagen, E.A.E. van der; Hann, G.M.; Ogo, O.A.; Swann, D.C.; Mathers, J.C.; Valentine, R.A.; Ford, D.

    2012-01-01

    Many genes with crucial roles in zinc homeostasis in mammals respond to fluctuating zinc supply through unknown mechanisms, and uncovering these mechanisms is essential to understanding the process at cellular and systemic levels. We detected zinc-dependent binding of a zinc-induced protein to a spe

  20. Ternary complex formation and competition quench fluorescence of ZnAF family zinc sensors.

    Science.gov (United States)

    Staszewska, Anna; Kurowska, Ewa; Bal, Wojciech

    2013-11-01

    Our current understanding of the intracellular thermodynamics and kinetics of Zn(ii) ions is largely based on the application of fluorescent sensor molecules, used to study and visualize the concentration, distribution and transport of Zn(ii) ions in real time. Such agents are designed for high selectivity for zinc in respect to other biological metal ions. However, the issue of their sensitivity to physiological levels of low molecular weight Zn(ii) ligands (LMWLs) has not been addressed. We followed the effects of eight such compounds on the fluorescence of ZnAF-1 and ZnAF-2F, two representatives of the ZnAF family of fluorescein-based zinc sensors containing the N,N-bis(2-pyridylmethyl)ethylenediamine chelating unit. Fluorescence titrations of equimolar Zn(ii)-ZnAF-1 and Zn(ii)-ZnAF-2F solutions with acetate, phosphate, citrate, glycine, glutamic acid, histidine, ATP and GSH demonstrated strong fluorescence quenching. These results are interpreted in terms of an interplay of the formation of the [ZnAF-Zn(ii)-LMWL] ternary complexes and the competition for Zn(ii) between ZnAF and LMWLs. UV-vis spectroscopic titrations revealed the existence of supramolecular interactions between the fluorescein moiety of ZnAF-1 and ATP and His, which, however, did not contribute to fluorescence quenching. Therefore, the obtained results show that the ZnAF sensors, other currently used zinc sensors containing the N,N-bis(2-pyridylmethyl)ethylenediamine unit, and, in general, all sensors that do not saturate the Zn(ii) coordination sphere may co-report cellular metabolites and Zn(ii) ions, leading to misrepresentations of the concentrations and fluxes of biological zinc. PMID:23939683

  1. The Limiting Phenomena at the Anode of the Electrowinning of Zinc from Zinc Chloride in a Molten Chloride Electrolyte

    OpenAIRE

    Lans, S.C.

    2004-01-01

    The objective of this research is to investigate the possibilities and technological viability for the electrowinning of zinc from zinc chloride. This research contributes to development of an alternative process, because it provides: ⢠A clear understanding and overview of the present zinc industry and future developments. ⢠A thorough literature investigation, leading to: o Understanding the reasons to abandon the proposed process route previously used (molten salt electrowinning in parti...

  2. Effect of short-term zinc supplementation on zinc and selenium tissue distribution and serum antioxidant enzymes

    Directory of Open Access Journals (Sweden)

    Andrey A. Skalny

    2015-09-01

    Full Text Available Background. A significant association between Zn and Se homeostasis exists. At the same time, data on the influence of zinc supplementation on selenium distribution in organs and tissues seem to be absent. Therefore, the primary objective of the current study is to investigate the infl uence of zinc asparaginate supplementation on zinc and selenium distribution and serum superoxide dismutase (SOD and glutathione peroxidase (GPx activity in Wistar rats. Material and methods. 36 rats were used in the experiment. The duration of the experiment was 7 and 14 days in the fi rst and second series, respectively. The rats in Group I were used as the control ones. Animals in Groups II and III daily obtained zinc asparaginate (ZnA in the doses of 5 and 15 mg/kg weight, respectively. Zinc and selenium content in liver, kidneys, heart, muscle, serum and hair was assessed using inductively coupled plasma mass spectrometry. Serum SOD and GPx activity was analysed spectrophotometrically using Randox kits. Results. Intragastric administration of zinc asparaginate signifi cantly increased liver, kidney, and serum zinc content without affecting skeletal and cardiac muscle levels. Zinc supplementation also stimulated selenium retention in the rats’ organs. Moreover, a significant positive correlation between zinc and selenium content was observed. Finally, zinc asparaginate treatment has been shown to modulate serum GPx but not SOD activity. Conclusion. The obtained data indicate that zinc-induced increase in GPx activity may be mediated through modulation of selenium status. However, future studies are required to estimate the exact mechanisms of zinc and selenium interplay.

  3. Bacillithiol is a major buffer of the labile zinc pool in Bacillus subtilis

    OpenAIRE

    Ma, Zhen; Chandrangsu, Pete; Helmann, Tyler C.; Romsang, Adisak; Gaballa, Ahmed; Helmann, John D.

    2014-01-01

    Intracellular zinc levels are tightly regulated since zinc is an essential cofactor for numerous enzymes, yet can be toxic when present in excess. The majority of intracellular zinc is tightly associated with proteins and is incorporated during synthesis from a poorly defined pool of kinetically labile zinc. In Bacillus subtilis, this labile pool is sensed by equilibration with the metalloregulator Zur, as an indication of zinc sufficiency, and by CzrA, as an indication of zinc excess. Here, ...

  4. Oral plasma zinc tolerance test in patients with protein energy malnutrition.

    OpenAIRE

    ATALAY, Y.; Arcasoy, A; Kürkçüoğlu, M

    1989-01-01

    Zinc absorption was measured in 37 children with malnutrition using the oral zinc tolerance test (22.5 mg elementary zinc) and the results compared with those of a group of healthy control subjects. The increase in plasma zinc was significantly lower in patients with marasmic kwashiorkor than in the control group. The zinc tolerance test was, however, normal in marasmic patients. We conclude that zinc deficiency occurs in some types of protein energy malnutrition, and that malabsorption may a...

  5. Etapas iniciales del zinc runoff en clima tropical Etapas iniciales del zinc runoff en clima tropical

    Directory of Open Access Journals (Sweden)

    Meraz, E.

    2007-04-01

    Full Text Available Frecuently used metals in building application are Zinc and hot dip galvanized steel. The zinc has a relativelly good atmospheric resitance, due to its oxidation in air and formation of protective layer. However, some of the zinc corrosion products can be dissolved by pluvial precipitations and water condensed on the metal surface. This process is called metal runof. In order to estimate el zinc runoff in humid tropical climate, since its firs stages, samples of pure zinc and hot dip galvanized steel have been exposed during 2 years in outdorr atmosphere (rural and urban. The data reveal high annual values of zinc runoff (8,20–12,40 ±0.30 g/m2año, being this process 80% of total mass loss of corroded zinc. The runoff and corrosion processes are more accelerated for zinc, than that of galvanized steel. The principal factors that control the runoff process are discussed.

    El zinc y acero galvanizado (hot dip se utilizan frecuentemente como materiales de construcción. El zinc tiene relativamente buena resistencia en la atmósfera debido a su oxidación en el aire, formando una capa protectora. Sin embargo, algunos productos de corrosión de zinc pueden ser disueltos por las lluvias y agua condensada sobre la superficie del metal. Este proceso es conocido como runoff del metal. Con el objetivo de estimar el proceso de runoff de zinc desde sus primeras etapas en clima tropical húmedo, muestras de zinc puro y acero galvanizado han sido expuestas en atmósfera abierta (rural y urbana durante 2 años. Los resultados revelan altos valores de runoff de zinc (8,20–12,40 ±0,30 g/m2año, siendo este, hasta 80 % de la masa total perdida por corrosión del zinc. El proceso runoff y de corrosión es más acelerado en el zinc, que en el acero galvanizado. Se discuten los principales factores que controlan el proceso runoff.

  6. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    Energy Technology Data Exchange (ETDEWEB)

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; Kong, Betty Y.; Gleber, Sophie C.; Vogt, Stefan; Chen, Si; Garwin, Seth A.; Bayer, Amanda R.; Dravid, Vinayak P.; Woodruff, Teresa K.; O' Halloran, Thomas V.

    2014-12-15

    Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes

  7. Effect of DHA and CoenzymeQ10 Against Aβ- and Zinc-Induced Mitochondrial Dysfunction in Human Neuronal Cells

    Directory of Open Access Journals (Sweden)

    Nadia Sadli

    2013-07-01

    Full Text Available Background: Beta-amyloid (Aβ protein is a key factor in the pathogenesis of Alzheimer's disease (AD and it has been reported that mitochondria is involved in the biochemical pathway by which Aβ can lead to neuronal dysfunction. Coenzyme Q10 (CoQ10 is an essential cofactor involved in the mitochondrial electron transport chain and has been suggested as a potential therapeutic agent in AD. Zinc toxicity also affects cellular energy production by decreasing oxygen consumption rate (OCR and ATP turnover in human neuronal cells, which can be restored by the neuroprotective effect of docosahexaenoic acid (DHA. Method: In the present study, using Seahorse XF-24 Metabolic Flux Analysis we investigated the effect of DHA and CoQ10 alone and in combination against Aβ- and zinc-mediated changes in the mitochondrial function of M17 neuroblastoma cell line. Results: Here, we observed that DHA is specifically neuroprotective against zinc-triggered mitochondrial dysfunction, but does not directly affect Aβ neurotoxicity. CoQ10 has shown to be protective against both Aβ- and zinc-induced alterations in mitochondrial function. Conclusion: Our results indicate that DHA and CoQ10 may be useful for the prevention, treatment and management of neurodegenerative diseases such as AD.

  8. Transport service

    CERN Multimedia

    C. Cerruti / FI

    2006-01-01

    A large number of pallet-crates (panières grillagées), which are used for transporting equipment and for removals, have been dispatched to various locations around the CERN site. We kindly request all users who may have such crates in their possession and no longer need them to make the necessary arrangements (EDH request to the Transport Group) to return them to Building 133, as we currently have no more in stock. Claude CERRUTI / FI-PI

  9. Zinc enrichment of whole potato tuber by vacuum impregnation.

    Science.gov (United States)

    Erihemu; Hironaka, Kazunori; Koaze, Hiroshi; Oda, Yuji; Shimada, Kenichiro

    2015-04-01

    Zinc is a nutritionally essential truce element, and thus zinc deficiency (ZD) severely affects human health. More than 25% of the world's population is at risk of ZD. This study was initiated to examine the use of the vacuum impregnation (VI) technique for enriching zinc content of whole potatoes; the effect of vacuum time, restoration time, steam-cooking and storage at 4 °C on the zinc content of VI whole potatoes was evaluated. Whole potato tubers were immersed in a 9 g/100 g zinc (zinc gluconate) solution. Vacuum pressure of 1,000 Pa was applied for 0-120 min, and atmospheric pressure restoration for 0-4 h. Experimental results showed that the zinc content of VI potatoes increased with vacuum and restoration time. Moreover, VI-cooked unpeeled or peeled potatoes had 63-94 times and 47-75 times higher zinc contents than un-VI-cooked unpeeled or peeled potatoes, respectively. The world daily potato consumption (86 g) of the VI-cooked unpeeled and peeled potatoes provided adult men with 130-148% and 100-135% of the recommended daily allowance (RDA) of zinc, respectively. Also, the daily potato consumption of the unpeeled and peeled potatoes supplied adult women with 178-203% and 137-185% of the RDA level, respectively. In addition, the VI potatoes had 40 times higher zinc contents through 30 days of storage at 4 °C, compared with un-VI-treated potatoes. This study indicated that VI treatment of whole potatoes was useful for enriching the zinc content. PMID:25829619

  10. Zinc deficiency is common in several psychiatric disorders.

    Directory of Open Access Journals (Sweden)

    Ole Grønli

    Full Text Available BACKGROUND: Mounting evidence suggests a link between low zinc levels and depression. There is, however, little knowledge about zinc levels in older persons with other psychiatric diagnoses. Therefore, we explore the zinc status of elderly patients suffering from a wide range of psychiatric disorders. METHODS: Clinical data and blood samples for zinc analyzes were collected from 100 psychogeriatric patients over 64 of age. Psychiatric and cognitive symptoms were assessed using the Montgomery and Aasberg Depression Rating Scale, the Cornell Scale for Depression in Dementia, the Mini-Mental State Examination, the Clockdrawing Test, clinical interviews and a review of medical records. In addition, a diagnostic interview was conducted using the Mini International Neuropsychiatric Interview instrument. The prevalence of zinc deficiency in patients with depression was compared with the prevalence in patients without depression, and the prevalence in a control group of 882 older persons sampled from a population study. RESULTS: There was a significant difference in zinc deficiency prevalence between the control group (14.4% and the patient group (41.0% (χ(2 = 44.81, df = 1, p<0.001. In a logistic model with relevant predictors, zinc deficiency was positively associated with gender and with serum albumin level. The prevalence of zinc deficiency in the patient group was significantly higher in patients without depression (i.e. with other diagnoses than in patients with depression as a main diagnosis or comorbid depression (χ(2 = 4.36, df = 1, p = 0.037. CONCLUSIONS: Zinc deficiency is quite common among psychogeriatric patients and appears to be even more prominent in patients suffering from other psychiatric disorders than depression. LIMITATIONS: This study does not provide a clear answer as to whether the observed differences represent a causal relationship between zinc deficiency and psychiatric symptoms. The blood sample collection time points

  11. ZntR-mediated transcription of zntA responds to nanomolar intracellular free zinc

    OpenAIRE

    Wang, DA; Hosteen, Olijahwon; Fierke, Carol A.

    2012-01-01

    In E. coli, ZitB and ZntA are important metal exporters that enhance cell viability under high environmental zinc. To understand their functions in maintaining zinc homeostasis, we applied a novel genetically-encoded fluorescent zinc sensor to monitor the intracellular free zinc changes in wild type, ΔzitB and ΔzntA E. coli cells upon sudden exposure to toxic levels of zinc (“zinc shock”). The intracellular readily exchangeable zinc concentration (or “free” zinc) increases transiently from pi...

  12. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xi; Zhou, Xixi [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Du, Libo [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenlan [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Yang [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hudson, Laurie G. [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Ke Jian, E-mail: kliu@salud.unm.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-01-15

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  13. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    International Nuclear Information System (INIS)

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  14. Tolerance to zinc deficiency in rice correlates with zinc uptake and translocation

    NARCIS (Netherlands)

    Gao, X.; Zou, C.Q.; Zee, van der S.E.A.T.M.; Hoffland, E.

    2005-01-01

    To study variation in zinc efficiency (ZE) among current Chinese rice genotypes, a pot experiment was conducted with 15 aerobic and 8 lowland rice genotypes. Aerobic rice is currently bred by crossing lowland with upland rice genotypes, for growth in an aerobic cultivation system, which is saving wa

  15. Corrosion Performance of Zinc and Zinc-cobalt Alloy Compositionally Modulated Multilayer (CMM) Coatings

    Institute of Scientific and Technical Information of China (English)

    FEI Jingyin; LIANG Guozheng; XIN Wenli; LIU Jianghong

    2006-01-01

    Varieties of zinc and Zn-Co alloy compositionally modulated multilayer (CMM) coatings were electrodeposited onto steel substrates using dual bath technique. The surface and cross-sectional morphologies of coated samples were examined using scanning electron microscopy ( SEM ). The existence of internal stress in ZnCo alloy deposits was corfirmed by the cross-sectional morphologies for the occurrence of micro-cracks in the thick Zn-Co alloy deposit alone. The corrosion performance was evaluated using neutral salt spray testing, corrosion potential measurement and anodic polarization methods. The experimental results show that the zinc and Zn- Co alloy CMM coatings were more corrosion-resistant than the monolithic coatings of zinc or Zn-Co alloy alone with a similar thickness. The analysis on the micrographic features of zinc and Zn- Co alloy CMM coatings, using field emission gun scanning electron microscopy (FEGSEM) after corrosion testing, explains the probable reasons why the Zn-Co/ Zn CMM coating system has a better protective performance.

  16. Zinc Electrode Morphology Evolution in High Energy Density Nickel-Zinc Batteries

    Directory of Open Access Journals (Sweden)

    Gizem Payer

    2016-01-01

    Full Text Available Prismatic Nickel-Zinc (NiZn batteries with energy densities higher than 100 Wh kg−1 were prepared using Zn electrodes with different initial morphologies. The effect of initial morphology of zinc electrode on battery capacity was investigated. Scanning electron microscopy (SEM and X-ray diffraction (XRD reveal that initial morphology of zinc electrode changes drastically after a few charge/discharge cycles regardless of initial ZnO powder used. ZnO electrodes prepared using ZnO powders synthesized from ZnCl2 and Zn(NO32 lead to average battery energy densities ranging between 92 Wh kg−1 and 109 Wh kg−1 while using conventional ZnO powder leads to a higher energy density, 118 Wh kg−1. Average discharge capacities of zinc electrodes vary between 270 and 345 mA g−1, much lower than reported values for nano ZnO powders in literature. Higher electrode surface area or higher electrode discharge capacity does not necessarily translate to higher battery energy density.

  17. Zinc Biofortification of Rice in China: A stimulation of zinc intake with different dietary patterns

    NARCIS (Netherlands)

    Qin, Y.; Boonstra, A.; Yuan, B.; Pan, X.; Dai, Yue

    2012-01-01

    A cross-sectional survey of 2819 adults aged 20 years and above was undertaken in 2002 in Jiangsu Province. Zinc intake was assessed using a consecutive 3-day 24-h dietary recall method. Insufficient and excess intake was determined according to the Chinese Dietary Recommended Intakes. Four distinct

  18. Sulfidation and reduction of zinc titanate and zinc oxide sorbents for injection in gasifier exit ducts

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, K. [Tufts Univ., Medford, MA (United States). Dept. of Chemical Engineering]|[Kawasaki Heavy Industries Ltd., Akashi, Hyogo (Japan). Technical Inst.; Krueger, C.; Flytzani-Stephanopoulos, M. [Tufts Univ., Medford, MA (United States). Dept. of Chemical Engineering; Jl, W.; Higgins, R.J.; Bishop, B.A.; Goldsmith, R.L. [CeraMem Corp., Waltham, MA (United States)

    1995-12-31

    The sulfidation reaction kinetics of fine particles of zinc titanate and zinc oxide with H{sub 2}S were studied in order to test the potential of the sorbent injection hot-gas desulfurization process. Fine sorbent particles with diameter between 0.3 and 60 {mu}m were sulfided with H{sub 2}S and/or reduced with H{sub 2} in a laminar flow reactor over the temperature range of 500-900{degrees}C. Sulfidation/reduction conversion was compared for different particle sizes and sorbents with various porosities and atomic ratios of Zn and Ti. In reduction of ZnO with H{sub 2} and without H{sub 2}S, significant amount of Zn was formed and vaporized, while the presence of H{sub 2}S suppressed elemental Zn formation. This suggests that H{sub 2}S may suppress the surface reduction of ZnO and/or gaseous Zn may react with H{sub 2}S homogeneously and form fine particles of ZnS. Formation and vaporization of elemental Zn from zinc titanate sorbents was slower than from zinc oxide with and without H{sub 2}S.

  19. Zinc Supplementation to Pregnant Rats with Adequate Zinc Nutriture Suppresses Immune Functions in their Offspring

    Science.gov (United States)

    Background: Pronounced zinc (Zn) deficiency during pregnancy is associated with thymic and splenic atrophy and immunosuppression. However, our knowledge about consequences of marginal Zn deficiency and Zn supplementation during pregnancy on immune function in the offspring is limited. Aim: To study ...

  20. Does increased zinc uptake enhance grain zinc mass concentration in rice?

    NARCIS (Netherlands)

    Jiang, W.; Struik, P.C.; Keulen, van H.; Zhao, M.; Jin, L.N.; Stomph, T.J.

    2008-01-01

    Rice (Oryza sativa) is the worlds' most important cereal and potentially an important source of zinc (Zn) for people who eat mainly rice. To improve Zn delivery by rice, plant Zn uptake and internal allocation need to be better understood. This study reports on within-plant allocation and potential