WorldWideScience

Sample records for agrostis grass species

  1. Characterization of nuclear microsatellite markers from Agrostis species

    Science.gov (United States)

    Agrostis stolonifera L. (creeping bentgrass) is a widely distributed, out-crossing, wind-pollinated, perennial grass that has been genetically engineered for a variety of traits including herbicide, disease and insect resistance. This allotetraploid species (A2A2A3A3 genomic comp...

  2. Root respiratory characteristics associated with plant adaptation to high soil temperature for geothermal and turf-type Agrostis species.

    Science.gov (United States)

    Rachmilevitch, Shimon; Lambers, Hans; Huang, Bingru

    2006-01-01

    Respiration is a major avenue of carbohydrates loss. The objective of the present study was to examine root respiratory characteristics associated with root tolerance to high soil temperature for two Agrostis species: thermal Agrostis scabra, a species adapted to high-temperature soils in geothermal areas in Yellowstone National Park, and two cultivars ('L-93' and 'Penncross') of a cool-season turfgrass species, A. stolonifera (creeping bentgrass), that differ in their heat sensitivity. Roots of thermal A. scabra and both creeping bentgrass cultivars were exposed to high (37 degrees C) or low soil temperature (20 degrees C). Total root respiration rate and specific respiratory costs for maintenance and ion uptake increased with increasing soil temperatures in both species. The increases in root respiratory rate and costs for maintenance and ion uptake were less pronounced for A. scabra than for both creeping bentgrass cultivars (e.g. respiration rate increased by 50% for A. scabra upon exposure to high temperature for 28 d, as compared with 99% and 107% in 'L-93' and 'Penncross', respectively). Roots of A. scabra exhibited higher tolerance to high soil temperature than creeping bentgrass, as manifested by smaller decreases in relative growth rate, cell membrane stability, maximum root length, and nitrate uptake under high soil temperature. The results suggest that acclimation of respiratory carbon metabolism plays an important role in root survival of Agrostis species under high soil temperatures, particularly for the thermal grass adaptation to chronically high soil temperatures. The ability of roots to tolerate high soil temperatures could be related to the capacity to control respiratory rates and increase respiratory efficiency by lowering maintenance and ion uptake costs.

  3. An evaluation of the use of individual grass species in retaining polluted soil and dust particulates in vegetated sustainable drainage devices.

    Science.gov (United States)

    Charlesworth, S M; Bennett, J; Waite, A

    2016-08-01

    A sustainable means of preventing polluted particulates carried in urban storm water entering rivers, groundwater and lakes is by employing vegetated sustainable drainage system (SUDS) devices, or best management practices to trap or biodegrade them. In the UK, a mixture of grass species is recommended for use in devices such as swales or filter strips. However, there is little evidence in support of the efficiency of the individual grasses or mixtures to deal with such contaminated material. A pot-based pollutant retention study was conducted using processed street dust from central Coventry, UK, as a simulated pollutant to be applied in different quantities to a variety of recommended grasses for vegetated SUDS devices. Analysis was conducted on compost cores, roots and shoots for heavy metals (Cd, Cu, Ni, Pb and Zn). Street dust mainly concentrated in the top compost layer for all grasses with only the finer material migrating down the profile. Analysis of roots indicated little accumulation, with ANOVA statistical tests indicating significant differences in heavy metal concentrations, with less in the compost and more in the shoots. Development of root systems on or near the surface possibly explains increased uptake of heavy metals by some species. Overall Agrostis canina and Poa pratensis showed the greatest accumulations compared to their controls although Agrostis capillaris syn.tenuis and Agrostis stolonifera also demonstrated accumulation potential. On ranking, Agrostis canina and Poa pratensis were highest overall. These rankings will assist in selecting the best grasses to address pollution of the urban environment by contaminated particulates.

  4. Physiological impacts of soil pollution and arsenic uptake in three plant species: Agrostis capillaris, Solanum nigrum and Vicia faba.

    Science.gov (United States)

    Austruy, A; Wanat, N; Moussard, C; Vernay, P; Joussein, E; Ledoigt, G; Hitmi, A

    2013-04-01

    In order to revegetate an industrial soil polluted by trace metals and metalloids (As, Pb, Cu, Cd, Sb), the impact of pollution on three plant species, Solanum nigrum and Agrostis capillaris, both native species in an industrial site, and Vicia faba, a plant model species, is studied. Following the study of soil pollution from the industrial wasteland of Auzon, it appears that the As is the principal pollutant. Particular attention is given to this metalloid, both in its content and its speciation in the soil that the level of its accumulation in plants. In V. faba and A. capillaris, the trace metals and metalloids inhibit the biomass production and involve a lipid peroxidation in the leaves. Furthermore, these pollutants cause a photosynthesis perturbation by stomatal limitations and a dysfunction of photosystem II. Whatever the plant, the As content is less than 0.1 percent of dry matter, the majority of As absorbed is stored in the roots which play the role of trap organ. In parallel, the culture of S. nigrum decreases significantly the exchangeable and weakly adsorbed fraction of As in rhizospheric soil. This study has highlighted the ability of tolerance to trace metals of S. nigrum and to a lesser extent A. capillaris. Our data indicate that V. faba is not tolerant to soil pollution and is not a metallophyte species.

  5. Long-term persistence of seeded grass species: an unwanted side effect of ecological restoration.

    Science.gov (United States)

    Rydgren, Knut; Auestad, Inger; Hamre, Liv Norunn; Hagen, Dagmar; Rosef, Line; Skjerdal, Gudrun

    2016-07-01

    Spoil heaps are the visible footprint of hydropower production, particularly in vulnerable alpine environments. Speeding up vegetation development by seeding commercial grass species has been a common restoration practice for the last 50 years, but we lack information on whether seeded species decline and allow native plant cover to develop. We visually estimated cover of native vascular plants and five seeded grass species (Agrostis capillaris, Festuca ovina, Festuca rubra, Schedonorus pratensis and Phleum pratense) on eight spoil heaps at different elevations (boreal-alpine zone) in western Norway. Spoil heap vegetation was censused twice (9-20 and 24-36 years after spoil heap construction); the undisturbed surrounding vegetation was also censused on the second occasion. Total cover on the spoil heaps showed some increase, but remained far below that in surrounding areas. Cover of seeded grass species in the surroundings was low (but not negligible), indicating suboptimal establishment ability. Seeded species usually covered less than 20 % of the spoil heaps, and only F. rubra, F. ovina and A. capillaris contributed substantially. Proportional cover indicated better initial establishment by seeded species, but their cover decreased between the censuses on all but the highest located spoil heap. The persistence of seeded grass species is problematic, and despite the decrease in proportional cover, they are likely to persist for decades on spoil heaps, posing a risk of invasion of surrounding areas. We therefore recommend replacing the practice of seeding with more appropriate restoration measures.

  6. EPICHLOE SPECIES: fungal symbionts of grasses.

    Science.gov (United States)

    Schardl, C L

    1996-01-01

    Epichloë species and their asexual descendants (Acremonium endophytes) are fungal symbionts of C3 grasses that span the symbiotic continuum from antagonism to mutualism depending on the relative importance, respectively, of horizontal transmission of sexual spores versus vertical clonal transmission in healthy grass seeds. At least seven sexual Epichloë species are identifiable by mating tests, and many asexual genotypes are interspecific hybrids. Benefits conferred by the symbionts on host plants include protection from biotic factors and abiotic stresses such as drought. Four classes of beneficial alkaloids are associated with the symbionts: ergot alkaloids, indolediterpenes (lolitrems), peramine, and saturated aminopyrrolizidines (lolines). These alkaloids protect host plants from insect and vertebrate herbivores, including livestock. Genetic engineering of the fungal symbionts as more suitable biological protectants for forage grasses requires identification of fungal genes for alkaloid biosynthesis, and DNA-mediated transformation of the fungi.

  7. Effect of individual grass species and grass species mixtures on soil quality as related to root biomass and grass yield

    NARCIS (Netherlands)

    Eekeren, van N.J.M.; Bos, M.; Wit, de J.; Keidel, H.; Bloem, J.

    2010-01-01

    For the purpose of feeding value, drought resistance and nitrogen utilization, other grasses (e.g. Festuca arundinacea and Dactylis glomerata) than the currently widely used perennial rye grass (Lolium perenne) are introduced in dairy farming, either as a monoculture or in a mixture. To study the ef

  8. The effect of glyphosate on the growth and competitive effect of perennial grass species in semi-natural grasslands.

    Science.gov (United States)

    Damgaard, Christian; Strandberg, Beate; Mathiassen, Solvejg K; Kudsk, Per

    2014-01-01

    Biodiversity within European semi-natural biotopes in agro-ecosystem is declining, and herbicide drift from neighbouring fields is considered as an important factor for the decline. The aim of the present study was to investigate whether the growth and competitive interactions in a model system of two perennial grass species, Festuca ovina and Agrostis capillaris, are affected by sub-lethal doses of glyphosate in field margins. In a glasshouse experiment with ample nitrogen, the interspecific competitive interactions were found to be significantly affected by glyphosate; the competitive effect of F. ovina on A. capillaris increased and the competitive effect of A. capillaris on F. ovina decreased with increasing doses of glyphosate. Furthermore, the importance of interspecific competition increased with the glyphosate dose. The results of the study of competitive interactions are in agreement with the observed plant community dynamics at the field site where F. ovina was found to be more dominant in plots treated with a relatively high dose of glyphosate. Importantly, the effects of glyphosate on the plant community dynamics critically depended on the effect of glyphosate on the plant competitive interactions. The study concludes that the current practice in the environmental risk assessment of non-target effects of herbicides, where single species are tested in the greenhouse, may be inadequate for assessing the effect of herbicides in semi-natural plant communities. The presented methods can be used for assessing the importance of competitive interactions for the sensitivity of non-target plants to herbicides in risk assessment.

  9. Comparative genome analysis between Agrostis stolonifera and members of the Pooideae subfamily, including Brachypodium distachyon.

    Directory of Open Access Journals (Sweden)

    Loreto Araneda

    Full Text Available Creeping bentgrass (Agrostis stolonifera, allotetraploid 2n = 4x = 28 is one of the major cool-season turfgrasses. It is widely used on golf courses due to its tolerance to low mowing and aggressive growth habit. In this study, we investigated genome relationships of creeping bentgrass relative to the Triticeae (a consensus map of Triticum aestivum, T. tauschii, Hordeum vulgare, and H. spontaneum, oat, rice, and ryegrass maps using a common set of 229 EST-RFLP markers. The genome comparisons based on the RFLP markers revealed large-scale chromosomal rearrangements on different numbers of linkage groups (LGs of creeping bentgrass relative to the Triticeae (3 LGs, oat (4 LGs, and rice (8 LGs. However, we detected no chromosomal rearrangement between creeping bentgrass and ryegrass, suggesting that these recently domesticated species might be closely related, despite their memberships to different Pooideae tribes. In addition, the genome of creeping bentgrass was compared with the complete genome sequence of Brachypodium distachyon in Pooideae subfamily using both sequences of the above-mentioned mapped EST-RFLP markers and sequences of 8,470 publicly available A. stolonifera ESTs (AgEST. We discovered large-scale chromosomal rearrangements on six LGs of creeping bentgrass relative to B. distachyon. Also, a total of 24 syntenic blocks based on 678 orthologus loci were identified between these two grass species. The EST orthologs can be utilized in further comparative mapping of Pooideae species. These results will be useful for genetic improvement of Agrostis species and will provide a better understanding of evolution within Pooideae species.

  10. Identification of heat stress-responsive genes in heat-adapted thermal Agrostis scabra by suppression subtractive hybridization.

    Science.gov (United States)

    Tian, Jiang; Belanger, Faith C; Huang, Bingru

    2009-04-01

    To gain insights into molecular mechanisms of grass tolerance to heat stress, we constructed a suppression subtractive cDNA library to identify heat-responsive genes for a C(3) grass species, thermal Agrostis scabra adapted to heat stress in geothermal areas in Yellowstone National Park. Plants were exposed to 20 degrees C (control) or 35 degrees C for 12d. The SSH analysis was performed with control samples as the driver and heat-stressed samples as the tester. Differentially expressed cDNA fragments were cloned to screen the heat up-regulated library. The SSH analysis identified 120 non-redundant putative heat-responsive cDNAs out of 1180 clones. Genes with homology to known proteins were categorized into six functional groups, with the largest group of genes involved in stress/defense, followed by the group of genes related to protein metabolism. Immunoblot analysis confirmed increases in transcripts of selected genes under heat stress. Transcripts of seven and eight genes were strongly enhanced or induced in shoots and roots, respectively, while two genes were only induced in roots under heat stress. The heat up-regulated genes in thermal A. scabra adapted to long-term heat stress are potential candidate genes for engineering stress-tolerant grasses and for revealing molecular mechanisms of grass adaptation to heat stress.

  11. Cercosporoid fungi (Mycosphaerellaceae) 3. Species on monocots (Poaceae, true grasses).

    Science.gov (United States)

    Braun, Uwe; Crous, Pedro W; Nakashima, Chiharu

    2015-06-01

    The third part of a series of monographic treatments of cercosporoid fungi (formerly Cercospora s. lat., Mycosphaerellaceae, Ascomycota) continues with a treatment of taxa on monocots (Liliopsida; Equisetopsida, Magnoliidae, Lilianae), covering asexual and holomorph species with mycosphaerella-like sexual morphs on true grasses (Poaceae), which were excluded from the second part. The species concerned are keyed out, alphabetically listed, described, illustrated and supplemented by references to previously published descriptions, illustrations, and exsiccatae. A key to the recognised genera and a discussion of taxonomically relevant characters was published in the first part of this series. Several species are lecto- or neotypified. The following taxonomic novelties are introduced: Cercospora barretoana comb. nov., C. cymbopogonicola nom. nov., Cladosporium elymi comb. nov., Passalora agrostidicola sp. nov., P. brachyelytri comb. nov., and P. dichanthii-annulati comb. nov.

  12. Functionally dissimilar neighbors accelerate litter decomposition in two grass species.

    Science.gov (United States)

    Barbe, Lou; Jung, Vincent; Prinzing, Andreas; Bittebiere, Anne-Kristel; Butenschoen, Olaf; Mony, Cendrine

    2017-02-16

    Plant litter decomposition is a key regulator of nutrient recycling. In a given environment, decomposition of litter from a focal species depends on its litter quality and on the efficiency of local decomposers. Both may be strongly modified by functional traits of neighboring species, but the consequences for decomposition of litter from the focal species remain unknown. We tested whether decomposition of a focal plant's litter is influenced by the functional-trait dissimilarity to the neighboring plants. We cultivated two grass species (Brachypodium pinnatum and Elytrigia repens) in experimental mesocosms with functionally similar and dissimilar neighborhoods, and reciprocally transplanted litter. For both species, litter quality increased in functionally dissimilar neighborhoods, partly as a result of changes in functional traits involved in plant-plant interactions. Furthermore, functional dissimilarity increased overall decomposer efficiency in one species, probably via complementarity effects. Our results suggest a novel mechanism of biodiversity effects on ecosystem functioning in grasslands: interspecific functional diversity within plant communities can enhance intraspecific contributions to litter decomposition. Thus, plant species might better perform in diverse communities by benefiting from higher remineralization rates of their own litter.

  13. Root lifespans of four grass species from habitats differing in nutrient availability

    NARCIS (Netherlands)

    Krift, van der T.A.J.; Berendse, F.

    2002-01-01

    1. In grass species that occur in pastures or hay meadows, life spans of roots determine much of the carbon and nutrient loss from the plant in addition to the amounts that are lost by mowing or grazing. We hypothesized that grass species from nutrient-poor habitats had longer root life spans and co

  14. Retrotranspositions in orthologous regions of closely related grass species

    Directory of Open Access Journals (Sweden)

    Swigoňová Zuzana

    2006-08-01

    Full Text Available Abstract Background Retrotransposons are commonly occurring eukaryotic transposable elements (TEs. Among these, long terminal repeat (LTR retrotransposons are the most abundant TEs and can comprise 50–90% of the genome in higher plants. By comparing the orthologous chromosomal regions of closely related species, the effects of TEs on the evolution of plant genomes can be studied in detail. Results Here, we compared the composition and organization of TEs within five orthologous chromosomal regions among three grass species: maize, sorghum, and rice. We identified a total of 132 full or fragmented LTR retrotransposons in these regions. As a percentage of the total cumulative sequence in each species, LTR retrotransposons occupy 45.1% of the maize, 21.1% of the rice, and 3.7% of the sorghum regions. The most common elements in the maize retrotransposon-rich regions are the copia-like retrotransposons with 39% and the gypsy-like retrotransposons with 37%. Using the contiguous sequence of the orthologous regions, we detected 108 retrotransposons with intact target duplication sites and both LTR termini. Here, we show that 74% of these elements inserted into their host genome less than 1 million years ago and that many retroelements expanded in size by the insertion of other sequences. These inserts were predominantly other retroelements, however, several of them were also fragmented genes. Unforeseen was the finding of intact genes embedded within LTR retrotransposons. Conclusion Although the abundance of retroelements between maize and rice is consistent with their different genome sizes of 2,364 and 389 Mb respectively, the content of retrotransposons in sorghum (790 Mb is surprisingly low. In all three species, retrotransposition is a very recent activity relative to their speciation. While it was known that genes re-insert into non-orthologous positions of plant genomes, they appear to re-insert also within retrotransposons, potentially

  15. Root characteristics of some grass species on the sea dikes in Viet Nam

    NARCIS (Netherlands)

    Trung, L.H.

    2012-01-01

    Between 2009 and 2011, some grass-covered sea dikes were tested with the Wave Overtopping Simulator in the north of Viet Nam. Slope specifications and grass species of sea and estuary dikes were quantitatively observed and investigated. This report is concerned with expressing main characteristics o

  16. DISTRIBUTION AND DIVERSITY OF FUSARIUM SPECIES ASSOCIATED WITH GRASSES IN TEN STATES THROUGHOUT PENINSULAR MALAYSIA

    Directory of Open Access Journals (Sweden)

    NUR AIN IZZATI, M.Z

    2009-01-01

    Full Text Available Fusarium is one of the important genera associated with grasses as saprophytes, endophytes and pathogens. A study was carried out on distribution and diversity of Fusarium species associated with two groups of grasses in 10 states throughout Peninsular Malaysia i.e. agricultural grasses (Oryza sativa and Saccharum officinarum and non-agricultural grasses (Axonopus compressus, Centhotheca lappacea, Chloris barbata, Crysopogon aciculatus, Cyanadon dactylon, Dactyloctenium aegyptium, Digitaria ciliaris, Echinochloa colona, Eleusine indica, Eragrostis amabilis, Eragrostis malayana, Eragrostis uniloides, Ischaemum magnum, Panicum brevifolium, Panicum millaneum, Panicum repens, Paspalum commersonii, Paspalum conjugatum, Paspalum orbiculare, Pennisetum purpureum, Sacciolepis indica, Sporobolus diander and Sporobolus indicus. A total of 474 isolates were single-spored and identified by morphological characteristics. F. semitectum was frequently isolated (23.6%, followed by F. sacchari and F. fujikuroi with 15.4% and 14.6%, respectively. The other nine species were F. solani (10.3%, F. proliferatum (8.9%, F. oxysporum (7.4%, F. subglutinans (6.5%, F. equiseti (5.5%, F. verticillioides (3.4%, F. compactum (2.5%, F. chlamydosporum (1.1% and F. longipes (0.8%. Based on the Shannon-Weiner Index, F. solani was the highest (H' = 2.62 isolated from grasses. Species of Fusarium from O. sativa were widely diverse with 11 species, followed by non-agricultural grasses with nine species and S. officinarum with only six species. This is the first report on diversity of Fusarium associated with grasses in Malaysia.

  17. Evaluating indigenous grass species as on-site sediment trapping measures, northwest Ethiopian highlands

    Science.gov (United States)

    Mekonnen, Mulatie; Keesstra, Saskia; Ritsema, Coen; Stroosnijder, Leo; Baartman, Jantiene

    2016-04-01

    Although many studies have been conducted to evaluate the sediment trapping efficacy (STE) of grass species as an on-site sediment trapping measure, still a lot of grass species are availab1e of which their STE is unknown. Lack of information on the STE of such grass species has a negative influence on their acceptance and practical application by the users. Therefore, this study was conducted at Debre Mewi watershed, northwestern Ethiopian highlands, to evaluate the STE of four locally dominant indigenous grass species (Desho, Senbelet, Akirma and Sebez) and one exotic species (Vetiver) using plot experiments. On average, the annual runoff produced was found to be 79; 64; 69; 71; 74; 75 l m-2, which resulted in 7; 1.7; 2.9; 3.6; 4.5 and 5.6 kg m-2 yr-1 of sediment yield on the Control, Desho, Vetiver, Senbelet, Akirma and Sebez plots, respectively. Desho had a trapping efficacy of 76 % because of its fast growth and lateral spreading nature. Vetiver and Senbelet reduced the transported sediment with 59 % and 49 % STE, respectively. Because of their slow growth nature, Akirma and Sebez showed low STEs, 36 % and 20 %, respectively. The grass species were found to be important sources of livestock feed in addition to trapping sediment and reducing soil loss. Desho, Senbelet, Akirma, Vetiver and Sebez provided 132, 106, 76, 69 and 51 t ha-1 yr-1 fresh biomass, respectively. The indigenous grass species provided a practical means to reduce sediment yield, therefore, it can be concluded that such indigenous grass species can be used as an on-site sediment trapping measure in the northwestern highlands of Ethiopia.

  18. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes

    Science.gov (United States)

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-01

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.

  19. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes

    Science.gov (United States)

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-01

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices. PMID:28102323

  20. Dichotomy in the NRT gene families of dicots and grass species.

    Directory of Open Access Journals (Sweden)

    Darren Plett

    Full Text Available A large proportion of the nitrate (NO(3(- acquired by plants from soil is actively transported via members of the NRT families of NO(3(- transporters. In Arabidopsis, the NRT1 family has eight functionally characterised members and predominantly comprises low-affinity transporters; the NRT2 family contains seven members which appear to be high-affinity transporters; and there are two NRT3 (NAR2 family members which are known to participate in high-affinity transport. A modified reciprocal best hit (RBH approach was used to identify putative orthologues of the Arabidopsis NRT genes in the four fully sequenced grass genomes (maize, rice, sorghum, Brachypodium. We also included the poplar genome in our analysis to establish whether differences between Arabidopsis and the grasses may be generally applicable to monocots and dicots. Our analysis reveals fundamental differences between Arabidopsis and the grass species in the gene number and family structure of all three families of NRT transporters. All grass species possessed additional NRT1.1 orthologues and appear to lack NRT1.6/NRT1.7 orthologues. There is significant separation in the NRT2 phylogenetic tree between NRT2 genes from dicots and grass species. This indicates that determination of function of NRT2 genes in grass species will not be possible in cereals based simply on sequence homology to functionally characterised Arabidopsis NRT2 genes and that proper functional analysis will be required. Arabidopsis has a unique NRT3.2 gene which may be a fusion of the NRT3.1 and NRT3.2 genes present in all other species examined here. This work provides a framework for future analysis of NO(3(- transporters and NO(3(- transport in grass crop species.

  1. Evolutionary Relationships between Rhynchosporium lolii sp. nov. and Other Rhynchosporium Species on Grasses

    Science.gov (United States)

    King, Kevin M.; West, Jonathan S.; Brunner, Patrick C.; Dyer, Paul S.; Fitt, Bruce D. L.

    2013-01-01

    The fungal genus Rhynchosporium (causative agent of leaf blotch) contains several host-specialised species, including R. commune (colonising barley and brome-grass), R. agropyri (couch-grass), R. secalis (rye and triticale) and the more distantly related R. orthosporum (cocksfoot). This study used molecular fingerprinting, multilocus DNA sequence data, conidial morphology, host range tests and scanning electron microscopy to investigate the relationship between Rhynchosporium species on ryegrasses, both economically important forage grasses and common wild grasses in many cereal growing areas, and other plant species. Two different types of Rhynchosporium were found on ryegrasses in the UK. Firstly, there were isolates of R. commune that were pathogenic to both barley and Italian ryegrass. Secondly, there were isolates of a new species, here named R. lolii, that were pathogenic only to ryegrass species. R. lolii was most closely related to R. orthosporum, but exhibited clear molecular, morphological and host range differences. The species was estimated to have diverged from R. orthosporum ca. 5735 years before the present. The colonisation strategy of all of the different Rhynchosporium species involved extensive hyphal growth in the sub-cuticular regions of the leaves. Finally, new species-specific PCR diagnostic tests were developed that could distinguish between these five closely related Rhynchosporium species. PMID:24146740

  2. Evolutionary relationships between Rhynchosporium lolii sp. nov. and other Rhynchosporium species on grasses.

    Directory of Open Access Journals (Sweden)

    Kevin M King

    Full Text Available The fungal genus Rhynchosporium (causative agent of leaf blotch contains several host-specialised species, including R. commune (colonising barley and brome-grass, R. agropyri (couch-grass, R. secalis (rye and triticale and the more distantly related R. orthosporum (cocksfoot. This study used molecular fingerprinting, multilocus DNA sequence data, conidial morphology, host range tests and scanning electron microscopy to investigate the relationship between Rhynchosporium species on ryegrasses, both economically important forage grasses and common wild grasses in many cereal growing areas, and other plant species. Two different types of Rhynchosporium were found on ryegrasses in the UK. Firstly, there were isolates of R. commune that were pathogenic to both barley and Italian ryegrass. Secondly, there were isolates of a new species, here named R. lolii, that were pathogenic only to ryegrass species. R. lolii was most closely related to R. orthosporum, but exhibited clear molecular, morphological and host range differences. The species was estimated to have diverged from R. orthosporum ca. 5735 years before the present. The colonisation strategy of all of the different Rhynchosporium species involved extensive hyphal growth in the sub-cuticular regions of the leaves. Finally, new species-specific PCR diagnostic tests were developed that could distinguish between these five closely related Rhynchosporium species.

  3. An Invasive Grass Species Alters Carbon Cycling in Hawaiian Dry Forest

    Science.gov (United States)

    Litton, C. M.; Sandquist, D. R.; Cordell, S.

    2004-12-01

    At lower elevations on the leeward side of the island of Hawaii, remnant native forests are heavily invaded by an introduced African bunchgrass, Pennisetum setaceum (fountain grass). Our research is designed to determine the consequences of this invasion for carbon (C) cycling in Hawaiian dry forests. We examined above- and belowground C pools and fluxes in 400 m2 replicated forest plots (n = 4) with fountain grass (grass plots) and in areas where fountain grass had been removed for ˜3 years (removal plots). C pools were estimated with direct sampling and allometric equations developed in situ for the dominant tree species. Aboveground net primary productivity (ANPP) was estimated as aboveground biomass increment plus litterfall minus loss from mortality (trees) and with clip plots (grass and herbaceous species); total belowground carbon allocation (TBCA) was estimated using a conservation of mass, C balance approach. Our results indicate that the invasion of a non-native grass in this ecosystem has considerable impacts on both C pools and fluxes. Aboveground, tree biomass did not differ between treatments (P = 0.57) but the presence of fountain grass led to a 7.5-fold increase in understory biomass in grass plots compared to removal plots (P < 0.01). Tree ANPP was significantly higher in removal plots for both foliage (0.10 and 0.06 kg C m-2 yr-1 for removal and grass plots, respectively; P = 0.02) and wood (0.13 and 0.05 kg C m-2 yr-1 for removal and grass plots, respectively; P < 0.01). However, grass ANPP was ˜35% greater than tree foliage productivity in grass plots. Despite this added foliar productivity, total ANPP (Tree + Grass ANPP) was significantly higher in removal plots (P = 0.04). Belowground, grass plots exhibited higher rates of soil-surface CO2 efflux (1.09 and 1.38 kg C m-2 yr-1 for removal and grass plots, respectively; P = 0.03 ). Likewise, TBCA was significantly higher in grass plots (1.21 kg C m-2 yr-1) than in removal plots (0.97 kg C m-2

  4. Ocena tolerancji wybranych gatunków traw i roślin motylkowatych na zasolenie środowiska [Salt tolerance of grasses and leguminous plants

    Directory of Open Access Journals (Sweden)

    Maria Zawadzka

    2015-06-01

    Full Text Available 11 species of grasses and 10 species of leguminous plants were tested for salt tolerance. The biotest of germination viability and capacity in soline water was performed. The results proved usefulness of using seeds as bioin-dicators and allowed to show the significant interspecific differences. The following species – Lolium perenne, L. multiflorum, Festuca pratensis, Arrhenetherum elatius, Trifolium resupinatum, T. incarnatum and Melilotus albus show high level of tolerance. The less tolerant species were: Festuca ovina, Agrostis alba, Trifolium repens, Lotus corniculatus, Medicago lupulina and Medicago sativa.

  5. The effect of water extracts from leaves of Festuca rubra, F. ovina and F. Arundinacea on the initial growth and development of other grass species

    Directory of Open Access Journals (Sweden)

    Halina Lipińska

    2013-07-01

    Full Text Available The allelopathic effect of plants is one of the least known factors determining the stability of lawn swards. Leaves are a rich source of allelopathic substances. Washed out by rain or dew drops, or released during biomass decomposition, these substances can impact plants. In practice, cut sward is often left on the lawn surface and can have an allelopathic effect on regrowing plants. The effect of released allelochemicals depends on many factors, including their concentration. Hence, in order to maintain the high functional properties of the lawn, information is needed on the critical concentrations of allelochemicals inhibiting plant growth and development. Laboratory research was thus undertaken (on Petri dishes to evaluate the effect of various water extracts of leaves of selected lawn grass cultivars. The following cultivars were the donors: 'Areta', 'Nimba', 'Olivia' (Festuca rubra; 'Espro', 'Pintor' (F. ovina,and 'Asterix' (F. arundinacea, while the acceptors were: 'Niwa' (Agrostis capillaris, 'Asterix' (Festuca arundinacea, 'Espro' (F. ovina, 'Areta' (F. rubra, 'Stadion' (Lolium perenne, and 'Bila' (Poa pratensis – the species frequently sown in lawns. In the control treatments, distilled water was applied to the substrate. The experiment revealed that the effect of water extracts of leaves varied depending on their concentration and donor variety as well as the sensitivity of the acceptor (the test plant. In comparison with the control treatments, the strongest negative impact was caused by the cultivars 'Olivia' (F. rubraand 'Pintor' (F. ovina, followed by 'Asterix' (F. arundinacea. Among the acceptors, the greatest sensitivity to the presence of allelochemicals was shown by A. capillaris, and the smallest by F. arundinacea. .

  6. Comparison of phytoremediation potential of three grass species in soil contaminated with cadmium

    Directory of Open Access Journals (Sweden)

    Gołda Sylwia

    2016-03-01

    Full Text Available The aim of the study was to compare the toleration of Poa pratensis, Lolium perenne and Festuca rubra to cadmium contamination as well as the phytoremediation potential of these three species of grass. The pot experiment was conducted in four replications in pots containing 2.0 kg of soil. The soil was contaminated with three doses of Cd – 30, 60 and 120 mg·kg−1. After two months, the aerial parts of plants were harvested. The roots were dug up, brushed off from the remaining soil and washed with water. The biomass was defined and the cadmium concentration was determined in aerial parts and roots. The phytoremediation potential of grasses was evaluated using biomass of grasses, bioaccumulation factor (BF and translocation factor (TF. All three tested species of grasses had TF 1. It indicates their suitability for phytostabilisation and makes them unsuitable for phytoextraction of Cd from the soil. Comparing the usefulness of the tested grasses for phytoremediation has shown that the phytostabilisation potential of P. pratensis was lower than that of L. perenne and F. rubra. P. pratensis was distinguished by higher TF, smaller root biomass and lower tolerance for Cd excess in the soil in comparison with the two other test grasses. At the same time, L. perenne was characterised by the smallest decrease in biomass and the largest Cd accumulation in roots at the lowest dose of Cd. It indicates good usefulness for phytostabilisation of soils characterised by a relatively small pollution by cadmium.

  7. Endophytic Epichloë species and their grass hosts: from evolution to applications.

    Science.gov (United States)

    Saikkonen, Kari; Young, Carolyn A; Helander, Marjo; Schardl, Christopher L

    2016-04-01

    The closely linked fitness of the Epichloë symbiont and the host grass is presumed to align the coevolution of the species towards specialization and mutually beneficial cooperation. Ecological observations demonstrating that Epichloë-grass symbioses can modulate grassland ecosystems via both above- and belowground ecosystem processes support this. In many cases the detected ecological importance of Epichloë species is directly or indirectly linked to defensive mutualism attributable to alkaloids of fungal-origin. Now, modern genetic and molecular techniques enable the precise studies on evolutionary origin of endophytic Epichloë species, their coevolution with host grasses and identification the genetic variation that explains phenotypic diversity in ecologically relevant characteristics of Epichloë-grass associations. Here we briefly review the most recent findings in these areas of research using the present knowledge of the genetic variation that explains the biosynthetic pathways driving the diversity of alkaloids produced by the endophyte. These findings underscore the importance of genetic interplay between the fungus and the host in shaping their coevolution and ecological role in both natural grass ecosystems, and in the agricultural arena.

  8. Alley cropping of legumes with grasses as forages : Effect of different grass species and row spacing of gliricidia on the growth and biomass production of forages

    Directory of Open Access Journals (Sweden)

    Siti Yuhaeni

    1998-12-01

    Full Text Available A study to evaluate the effect of different grass species and row spacing of gliricidia (Gliricidia sepium on the growth and biomass production of forages in an alley cropping system was conducted in two different agroclimatical zones i.e. Bogor, located at 500 m a .s .l . with an average annual rainfall of 3,112 nun/year and Sukabumi located at 900 m a .s .l . with an average annual rainfall of 1,402 mm/year . Both locations have low N, P, and K content and the soil is classified as acidic. The experimental design used was a split plot design with 3 replicates . The main plots were different grass species i.e. king grass (Pennisetum purpureum x P. typhoides and elephant grass (P. purpureum. The sub plots were the row spacing of gliricidia at 2, 3, 4, 6 m (1 hedgerows and 4 m (2 hedgerows. The results indicated that the growth and biomass production of grasses were significantly affected (P<0 .05 by the treatments in Bogor. The highest biomass productions was obtained from the 2 m row spacing which gave the highest dry matter production of grasses (1 .65 kg/hill and gliricidia (0 .086 kg/tree . In Sukabumi the growth and biomass production of grasses and gliricidia were also significantly affected by the treatments . The highest dry matter production was obtained with 2 m row spacing (dry matter of grasses and gliricidia were 1 .12 kg/hill and 0 .026 kg/tree, respectively . The result further indicated that biomass production of forages increased with the increase in gliricidia population. The alley cropping system wich is suitable for Bogor was the 2 m row spacing of gliricidia intercropped with either king or elephant grass and for Sukabumi 2 and 4 m (2 rows of gliricidia row spacing intercropped with king or elephant grass .

  9. A comparison of stable caesium uptake by six grass species of contrasting growth strategy.

    Science.gov (United States)

    Willey, N J; Martin, M H

    1997-01-01

    Six plant species in the family Gramineae were used to investigate the relationship between Cs uptake, nutrient regime and plant growth strategy sensu Grime (1979: Plant Growth Strategies and Vegetation Processes, John Wiley). The roots of 66 day old Elymus repens (L.) Gould., Bromus sterilis L., Agrostis stolonifera L., Anthoxanthum odoratum L., Festuca ovina L. and Nardus stricta L. plants grown in acid-washed sand at high and low nutrient levels were exposed to a 96 h pulse of stable Cs at 0.05 mM, 0.15 mM, 0.3 mM, 1.0 mM and 3.0 mM concentrations. Different nutrient regimes induced large differences in dry wt in E. repens, B. sterilis and A. stolonifera plants but only small differences in N. stricta and F. ovina plants. At high nutrient concentrations, A. stolonifera, A. odoratum, F. ovina and N. stricta shoots showed significantly greater increases in internal Cs concentration with rising external Cs concentrations than did E. repens and B. sterilis shoots. The relationship between increases in shoot and external Cs concentrations was statistically indistinguishable between species in plants grown at the low nutrient concentration. These patterns of Cs uptake ensured that with long-term high K concentrations the more competitive plants (E. repens and B. sterilis) accumulated higher concentrations of Cs from low external concentrations than did non-competitive plants or competitive plants grown at low nutrient levels. It is suggested that the relationship between plant growth strategy sensu Grime (1979) and Cs accumulation patterns may help to explain the different concentrations to which species accumulate radiocaesium from the soil.

  10. Transformer species in the flora of the Starobilsk grass-meadow steppe (Ukraine

    Directory of Open Access Journals (Sweden)

    Kucher Oksana O.

    2015-12-01

    Full Text Available The results of an investigation of alien species that change the character, condition, form or nature of ecosystems over large areas (transformer species in the flora of the Starobilsk grass-meadow steppe are presented. The check-list of alien plants includes over 386 species of vascular plants, of which 28 are invasive and 6 are transformer species. In this study, the data on the first records of alien species, their distribution history, ecology, occurrence in different plant communities and degree of naturalization were compiled. The distribution maps of transformer species are provided.

  11. A comparison of stable caesium uptake by six grass species of contrasting growth strategy

    Energy Technology Data Exchange (ETDEWEB)

    Willey, N.J. [University of the West of England, Bristol (United Kingdom). Faculty of Applied Sciences; Martin, M.H. [Bristol Univ. (United Kingdom). School of Biological Sciences

    1997-05-14

    Six plants in the family Gramineae were used to investigate the relationship between Cs uptake, nutrient regime and plant growth strategy sensu Grime (1979: Plant Growth Strategies and Vegetation Processes, John Wiley). The roots of 66 day old Elymus repens (L.) Gould., Bromus sterilis L., Agrostis stolonifera L., Anthoxanthum odoratum L., Festuca ovina L. and Nardus stricta L. plants grown in acid-washed sand at high and low nutrient levels were exposed to a 96 h pulse of stable Cs at 0.05 mM, 0.15 mM, 0.3 mM, 1.0 mM and 3.0 mM concentrations. Different nutrient regimes induced large differences in dry wt in E. repens, B. sterilis and A. stolonifera plants but only small differences in N. stricta and F. ovina plants. At high nutrient concentrations, A. stolonifera, A. odoratum, F. ovina and N. stricta shoots showed significantly greater increases in internal Cs concentration with rising external Cs concentrations than did E. repens and B. sterilis shoots. The relationship between increases in shoot and external Cs concentrations was statistically indistinguishable between species in plants grown at the low nutrient concentration. These patterns of Cs uptake ensured that with long-term high K concentrations the more competitive plants (E. repens and B. sterilis) accumulated higher concentrations of Cs from low external concentrations than did non-competitive plants or competitive plants grown at low nutrient levels. It is suggested that the relationship between plant growth strategy sensu Grime (1979) and Cs accumulation patterns may help to explain the different concentrations to which species accumulate radiocaesium from the soil. (author).

  12. Assessing veld condition in the Kruger National Park using key grass species

    Directory of Open Access Journals (Sweden)

    W.S.W. Trollope

    1989-10-01

    Full Text Available Veld condition refers to the condition of the vegetation in relation to some functional characteristic. In the Kruger National Park important functional characteristics are the potential of the veld to produce grass forage and fuel and to resist soil erosion. Consequently a simplified technique based on 18 key grass species was developed for assessing veld conditon and monitoring the effects of wild life management practices like veld burning, development of watering points and culling. The technique has been specifically developed for use by wildlife managers and has the ability to indicate the potential of the veld to support bulk grazing animals, to carry a fire and to resist soil erosion.

  13. A new orb-weaving spider from the Argentinean flooding pampas grasses: Aculepeira morenoae new species (Araneae, Araneidae).

    Science.gov (United States)

    Rubio, Gonzalo D; Izquierdo, Matías A; Piacentini, Luis N

    2013-02-14

    A new species of the orb-weaving spider genus Aculepeira Chamberling & Ivie 1942, A. morenoae new species, is described and illustrated based on male and female specimens from the Argentinean natural flooding pampas grasses.

  14. Cross species selection scans identify components of C4 photosynthesis in the grasses.

    Science.gov (United States)

    Huang, Pu; Studer, Anthony J; Schnable, James C; Kellogg, Elizabeth A; Brutnell, Thomas P

    2017-01-01

    C4 photosynthesis is perhaps one of the best examples of convergent adaptive evolution with over 25 independent origins in the grasses (Poaceae) alone. The availability of high quality grass genome sequences presents new opportunities to explore the mechanisms underlying this complex trait using evolutionary biology-based approaches. In this study, we performed genome-wide cross-species selection scans in C4 lineages to facilitate discovery of C4 genes. The study was enabled by the well conserved collinearity of grass genomes and the recently sequenced genome of a C3 panicoid grass, Dichanthelium oligosanthes This method, in contrast to previous studies, does not rely on any a priori knowledge of the genes that contribute to biochemical or anatomical innovations associated with C4 photosynthesis. We identified a list of 88 candidate genes that include both known and potentially novel components of the C4 pathway. This set includes the carbon shuttle enzymes pyruvate, phosphate dikinase, phosphoenolpyruvate carboxylase and NADP malic enzyme as well as several predicted transporter proteins that likely play an essential role in promoting the flux of metabolites between the bundle sheath and mesophyll cells. Importantly, this approach demonstrates the application of fundamental molecular evolution principles to dissect the genetic basis of a complex photosynthetic adaptation in plants. Furthermore, we demonstrate how the output of the selection scans can be combined with expression data to provide additional power to prioritize candidate gene lists and suggest novel opportunities for pathway engineering.

  15. Mineral Fertilization with UAN on Natural Grassland Festuca rubra L. with Agrostis capillaries L.

    Directory of Open Access Journals (Sweden)

    Ioan Rotar

    2016-11-01

    Full Text Available An important part of efficient livestock production is ensuring the sufficient grass for hay and pasture. However, low soil nutrient levels often limit forage production. With good fertilizer management and soil fertility, the productivity of many hay and pasture fields can be greatly improved. Through good fertilizer management, the productivity of many hay and pasture fields can be significantly improved by Ross H. McKenzie (2005. The aim of this paper was the effect of fertilization with liquid fertilizer (UAN the harvest of dry and floristic composition changing on natural grassland. The experiment whose results we present was placed in 2014 in the place in Baisoara Mountain village, Cluj County. Experience has been placed on the Festuca rubra and Agrostis capillaries - of grassland type. The natural grassland of Festuca rubra with Agrostis capillaries responded very well to mineral fertilizers with liquid fertilizer UAN. The floristic composition of natural grassland fertilized with liquid fertilizers based on nitrogen, it can be seen an increase the Gramineae families and an evidence downward trend from Fabaceae families.

  16. The effect of nitrogen and glyphosate on survival and colonisation of perennial grass species in an agro-ecosystem: does the relative importance of survival decrease with competitive ability?

    Science.gov (United States)

    Damgaard, Christian; Strandberg, Beate; Mathiassen, Solvejg K; Kudsk, Per

    2013-01-01

    The ecological success of a plant species is typically described by the observed change in plant abundance or cover, but in order to more fully understand the fundamental plant ecological processes, it is necessary to inspect the underlying processes of survival and colonization and how they are affected by environmental conditions. A general ecological hypothesis on the effect of environmental gradients on demographic parameters is proposed and tested. The hypothesis is that decreasing fitness or competitive ability along an environmental gradient is associated with an increasing importance of survival for regulating the abundance of the species. The tested hypothesis is related to both the stress gradient hypothesis and whether the importance of competition increases along productivity gradients. The combined effect of nitrogen and glyphosate on the survival and colonization probability of two perennial grass species, Festuca ovina and Agrostis capillaris, which are known to differ in their responses to both glyphosate and nitrogen treatments, is calculated using pin-point cover data in permanent frames. We found that the relative importance of survival increased with the level of glyphosate for the glyphosate sensitive A. capillaris and decreased for the glyphosate tolerant F. ovina. Likewise, increasing levels of nitrogen increased the importance of survival for the relative nitrophobic F. ovina. Consequently, the proposed hypothesis was corroborated in this specific study. The proposed method will enable predictions of the effects of agricultural practices on community dynamics in a relatively simple setup eliminating the need to quantify all the interaction among the species in the plant community. The method will be immediately useful for the regulation of non-cultivated buffer strips between agricultural fields and semi-natural and natural biotopes such as hedgerows and waterways.

  17. Invasive species in the flora of the Starobilsk grass-meadow steppe (Ukraine

    Directory of Open Access Journals (Sweden)

    Kucher Oksana O.

    2015-06-01

    Full Text Available The results of an investigation of the invasive species in the flora of the Starobilsk grass-meadow steppe are presented. Check-list of alien plant has over 386 species of vascular plants of which 28 species are invasive. We have identified 6 transformer species from the invasive plants. We aggregate data on the entry, distribution history, ecology, occurrence in different plant communities, degree of their naturalization and the habitats where they occur. The leading families of invasive species are: Asteraceae. The basis for this group is presented by origin from the North America and the Mediterranean. With respect to the time of immigration, most of them are kenophytes. By the method of introduction, ksenophytes are dominated; according to the degree of naturalization epoecophytes and agriophytes dominate in this group. With regard to the characteristics of life forms, half of invasive species are terophytes. The vast majority of plants are heliophytes and xeromesophytes. Most species are found in biotopes group I: Cultivated agricultural biotopes; least of all species found in biotopes group F: Biotopes dominated by chamephytes and nanophanerophytes. Only 3 species found in biotopes group F: Biotopes dominated by chamephytesand nanophanerophytes. The maps of distribution of 28 invasive species are provided. Most of the species marked dispersed in more than 30 squares.

  18. Allelopathic activity of some grass species on Phleum pratense seed germination subject to their density

    Directory of Open Access Journals (Sweden)

    Halina Lipińska

    2012-12-01

    Full Text Available Efficient utilization of allelopathy in the agricultural practice requires searching for some species and developmental stages when the allelopathic substances are generated in bioactive concentrations. That also requires the knowledge of allelopathy mechanisms and primarily its separation from the other aspects of plant activity, mainly from competition for environmental resources. This task, however, has remained vital in the studies on plant interference, being extremely difficult to perform under field conditions. Therefore, the studies were conducted in the laboratory. To determine the activity of an allelopathic agent of the selected grass species, the density dependent phytotoxicity model was employed. The model is based on the fact that an increase of acceptor plants density evokes a decrease of their response to the allelopathic compounds, whereas the negative effects of the competition become more intense. A higher rate of acceptor plants growth accompanying their density increase in the given object does not agree with the competition rules and thus, it may imply an allelopathic background of the observed changes. In the presented studies, the allelopathic properties of grasses - donors were evaluated by studying the effect of two densities of the emerging seeds and two- and four weeks aged seedlings of F. arundinacea, L. multiflorum, L. perenne and P. pratensis. The tested species - acceptor Ph. pratensis was sown in the density of 10 and 20 seeds in a pan. The results revealed that the germination of acceptor seeds was differentiated depending on their density in the pan, and on the species, density and the age of the donor. Inhibition of Ph. pratense seed germination in objects with a lover density may prove allelopathic effects of the studied donor grasses.

  19. Contribution of different grass species to plant-atmosphere ammonia exchange in intensively managed grassland

    Science.gov (United States)

    Mattsson, M.; Herrmann, B.; Jones, S.; Neftel, A.; Sutton, M. A.; Schjoerring, J. K.

    2009-01-01

    Species diversity in grasslands usually declines with increasing input of nitrogen from fertilizers or atmospheric deposition. Conversely, species diversity may also impact the build-up of soil and plant nitrogen pools. One important pool is NH3/NH4+ which also can be exchanged between plant leaves and the atmosphere. Limited information is available on how plant-atmosphere ammonia exchange is related to species diversity in grasslands. We have here investigated grass species abundance and different foliar nitrogen pools in 4-year-old intensively managed grassland. Apoplastic pH and NH4+ concentrations of the 8 most abundant species (Lolium perenne, Phleum pratense, Festuca pratensis, Lolium multiflorum, Poa pratensis, Dactylis glomerata, Holcus lanatus, Bromus mollis) were used to calculate stomatal NH3 compensation points. Apoplastic NH4+ concentrations differed considerably among the species, ranging from 13 to 117 μM, with highest values in Festuca pratensis. Also apoplastic pH values varied, from pH 6.0 in Phleum pratense to 6.9 in Dactylis glomerata. The observed differences in apoplastic NH4+ and pH resulted in a large span of predicted values for the stomatal NH3 compensation point which ranged between 0.20 and 6.57 nmol mol-1. Three species (Lolium perenne, Festuca pratensis and Dactylis glomerata) had sufficiently high NH3 compensation point and abundance to contribute to the bi-directional NH3 fluxes recorded over the whole field. The other 5 grass species had NH3 compensation points considerably below the atmospheric NH3 concentration and were thus not likely to contribute to NH3 emission but only to NH3 uptake from the atmosphere. Evaluated across species, leaf bulk-tissue NH4+ concentrations correlated well (r2=0.902) with stomatal NH3 compensation points calculated on the basis of the apoplastic bioassay. This suggests that leaf tissue NH4+ concentrations combined with data for the frequency distribution of the corresponding species can be used for

  20. How Do Grass Species, Season and Ensiling Influence Mycotoxin Content in Forage?

    Directory of Open Access Journals (Sweden)

    Adam Nawrath

    2013-11-01

    Full Text Available Mycotoxins are secondary metabolites produced by fungal species that have harmful effects on mammals. The aim of this study was to assess the content of mycotoxins in fresh-cut material of selected forage grass species both during and at the end of the growing season. We further assessed mycotoxin content in subsequently produced first-cutting silages with respect to the species used in this study: Lolium perenne (cv. Kentaur, Festulolium pabulare (cv. Felina, Festulolium braunii (cv. Perseus, and mixtures of these species with Festuca rubra (cv. Gondolin or Poa pratensis (Slezanka. The mycotoxins deoxynivalenol, zearalenone and T-2 toxin were mainly detected in the fresh-cut grass material, while fumonisin and aflatoxin contents were below the detection limits. July and October were the most risky periods for mycotoxins to occur. During the cold temperatures in November and December, the occurrence of mycotoxins in fresh-cut material declined. Although June was a period with low incidence of mycotoxins in green silage, contents of deoxynivalenol and zearalenone in silages from the first cutting exceeded by several times those determined in their biomass collected directly from the field. Moreover, we observed that use of preservatives or inoculants did not prevent mycotoxin production.

  1. How do grass species, season and ensiling influence mycotoxin content in forage?

    Science.gov (United States)

    Skladanka, Jiri; Adam, Vojtech; Dolezal, Petr; Nedelnik, Jan; Kizek, Rene; Linduskova, Hana; Mejia, Jhonny Edison Alba; Nawrath, Adam

    2013-11-12

    Mycotoxins are secondary metabolites produced by fungal species that have harmful effects on mammals. The aim of this study was to assess the content of mycotoxins in fresh-cut material of selected forage grass species both during and at the end of the growing season. We further assessed mycotoxin content in subsequently produced first-cutting silages with respect to the species used in this study: Lolium perenne (cv. Kentaur), Festulolium pabulare (cv. Felina), Festulolium braunii (cv. Perseus), and mixtures of these species with Festuca rubra (cv. Gondolin) or Poa pratensis (Slezanka). The mycotoxins deoxynivalenol, zearalenone and T-2 toxin were mainly detected in the fresh-cut grass material, while fumonisin and aflatoxin contents were below the detection limits. July and October were the most risky periods for mycotoxins to occur. During the cold temperatures in November and December, the occurrence of mycotoxins in fresh-cut material declined. Although June was a period with low incidence of mycotoxins in green silage, contents of deoxynivalenol and zearalenone in silages from the first cutting exceeded by several times those determined in their biomass collected directly from the field. Moreover, we observed that use of preservatives or inoculants did not prevent mycotoxin production.

  2. Progress in the remote sensing of C3 and C4 grass species aboveground biomass over time and space

    Science.gov (United States)

    Shoko, Cletah; Mutanga, Onisimo; Dube, Timothy

    2016-10-01

    The remote sensing of grass aboveground biomass (AGB) has gained considerable attention, with substantial research being conducted in the past decades. Of significant importance is their photosynthetic pathways (C3 and C4), which epitomizes a fundamental eco-physiological distinction of grasses functional types. With advances in technology and the availability of remotely sensed data at different spatial, spectral, radiometric and temporal resolutions, coupled with the need for detailed information on vegetation condition, the monitoring of C3 and C4 grasses AGB has received renewed attention, especially in the light of global climate change, biodiversity and, most importantly, food security. This paper provides a detailed survey on the progress of remote sensing application in determining C3 and C4 grass species AGB. Importantly, the importance of species functional type is highlighted in conjunction with the availability and applicability of different remote sensing datasets, with refined resolutions, which provide an opportunity to monitor C3 and C4 grasses AGB. While some progress has been made, this review has revealed the need for further remote sensing studies to model the seasonal (cyclical) variability, as well as long-term AGB changes in C3 and C4 grasses, in the face of climate change and food security. Moreover, the findings of this study have shown the significance of shifting towards the application of advanced statistical models, to further improve C3 and C4 grasses AGB estimation accuracy.

  3. Precious grasses : Alberta Research Council releases new native species for reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Jaremko, D.

    2006-03-15

    The Alberta Research Council has released 6 new varieties of native plant species suitable for reclamation in Alberta's Parkland region, which is characterized by sandy soils. The Parkland stretches for 37,000 kilometres and is the most densely populated of the province's 6 ecoregions. Because of farming, grazing, oil and gas development and recreation, only 5 per cent of the area remains undisturbed. It was anticipated that the native grasses will help disturbed sites eventually resemble their original state. Varieties included: Aspen Milk Vetch; Centennial Canada Wild Rye; Hillbilly Nodding Brome; Butte Rocky Mountain Fescue; Porter Indian Rice Grass; and Metisko Awned Wheatgrass. The varieties were evaluated for their ability to provide rapid cover and their ability to compete with invading weeds, as well as their ability to allow recruitment of other native species. Multi-environmental testing trials were established to evaluate the species' seed production potential. Seeds were tested for germination in species-specific growth chambers, grown in greenhouses and then taken to an agricultural setting where data on forage density; ground cover; vigour; and biomass were then recorded. The species have also been targeted to ensure that the oil and gas industry has better options for reclaiming disturbed sites. In addition to their ability to combat threats from invasive species, the native plant species have been investigated for their ability to remediate hydrocarbon and salt contaminants and sequester carbon dioxide. Details of Alberta's current reclamation criteria for wellsites and associated facilities were also presented. 4 figs.

  4. Wildfire, climate, and invasive grass interactions negatively impact an indicator species by reshaping sagebrush ecosystems

    OpenAIRE

    2016-01-01

    The Great Basin of western North America is larger than 75% of countries worldwide and is comprised mostly of a “sagebrush sea” threatened by a novel disturbance cycle of wildfire and annual grass invasion. The greater sage-grouse is a sagebrush-obligate species whose populations generally track declines in sagebrush, and is highly influential in shaping state and national land-use policy. Using three decades of sage-grouse population count, wildfire, and climate data within a modeling framew...

  5. Diallelic microsatellites developed for Agrostis stolonifera L. population analyses provide evidence for A. transcaspica Litv. as the source of the bentgrass A3 sub-genome

    Science.gov (United States)

    Little is known about the genetic connectivity between creeping bentgrass (Agrostis stolonifera L.) populations. A fundamental challenge to DNA fragment-based population structure analyses of allopolyploid species like creeping bentgrass (2n=4x=28, A2A2A3A3) is scoring individual...

  6. Name changes in Agrostis, Arundinella, Deyeuxia, Helictotrichon, Tripogon (Gramineae)

    NARCIS (Netherlands)

    Veldkamp, J.F.

    1996-01-01

    Buse’s (1854) treatment of Junghuhn’s Gramineae appeared before more parts of Steudel’s Synopsis (1853-1855) than was previously thought. Agrostis rigidula Steud. becomes. A. infirma Buse with 8 new varietal combinations. Arundinella fuscata Nees ex Buse previously regarded as a later homonym is inv

  7. GRASS SPECIES FROM C-4 CARBON FIXATION GROUP: POLISH EXPERIMENT WITH A NOVEL ENERGY AND FORAGE PURPOSES CROP

    Directory of Open Access Journals (Sweden)

    Włodzimierz Majtkowski

    2010-02-01

    Full Text Available Experiment was conducted during four years 2003-2006. Materials used were three genus grass species of C-4 photosynthesis: Andropogon gerardi Vitman, Panicum virgatum L. and Miscanthus sacchariflorus (Maxim. Hack. Plants were planted at spring 1998. Agrotechnical part of experiment was conducted in Botanical Garden of Plant Breeding Acclimatization Institute in Bydgoszcz and analytical part in Department of Animal Nutrition and Feed Management, Faculty of Animal Breeding and Biology of University of Technology and Life Science in Bydgoszcz. Forage from grass C-4 photosynthesis were material of good ensilage suitability. High structural carbohydrates (NDF, ADF contents in tested forage dry matter suggest ensilage at early phases of plant development. Above results suggest to possibility of usage of forage from grass C-4 carbon fixation group for animal feeding purposes. C-4 grass forage should be recognized as a supplementary source of green matter in periods of insufficient access to traditional silage sources.

  8. Diversity and aggregation patterns of plant species in a grass community

    Directory of Open Access Journals (Sweden)

    Ran Li

    2014-09-01

    Full Text Available Both composition and aggregation patterns of species in a community are the outcome of community self-organizing. In this paper we conducted analysis on species diversity and aggregation patterns of plant species in a grass community, Zhuhai, China. According to the sampling survey, in total of 47 plant species, belonging to 16 families, were found. Compositae had 10 species (21.3%, seconded by Gramineae (9 species, 19.1%, Leguminosae (6 species, 12.8%, Cyperaceae (4 species, 8.5%, and Malvaceae (3 species, 6.4%. The results revealed that the means of aggregation indices Iδ, I and m*/m were 21.71, 15.71 and 19.89 respectively and thus individuals of most of plant species strongly followed aggregative distribution. Iwao analysis indicated that both individuals of all species and clumps of all individuals of all species followed aggregative distribution. Taylor's power law indicated that individuals of all species followed aggregative distribution and aggregation intensity strengthened as the increase of mean density. We held that the strong aggregation intensity of a species has been resulted from the strong adaptation ability to the environment, the strong interspecific competition ability and the earlier establishment of the species. Fitting goodness of the mean, I, Iδ, m*/m with probability distributions demonstrated that the mean (density, I, Iδ, and m*/m over all species followed Weibull distribution rather than normal distribution. Lophatherum gracile, Paederia scandens (Lour. Merr., Eleusine indica, and Alternanthera philoxeroides (Mart. Griseb. were mostly aggregative, and Oxalis sp., Eleocharis plantagineiformis, Vernonia cinerea (L. Less., and Sapium sebiferum (L. Roxb, were mostly uniform in the spatial distribution. Importance values (IV showed that Cynodon dactylon was the most important species, seconded by Desmodium triflorum (L. DC., Cajanus scarabaeoides (L. Benth., Paspalum scrobiculatum L., and Rhynchelytrum repens. Oxalis

  9. Total centromere size and genome size are strongly correlated in ten grass species.

    Science.gov (United States)

    Zhang, Han; Dawe, R Kelly

    2012-05-01

    It has been known for decades that centromere size varies across species, but the factors involved in setting centromere boundaries are unknown. As a means to address this question, we estimated centromere sizes in ten species of the grass family including rice, maize, and wheat, which diverged 60~80 million years ago and vary by 40-fold in genome size. Measurements were made using a broadly reactive antibody to rice centromeric histone H3 (CENH3). In species-wide comparisons, we found a clear linear relationship between total centromere size and genome size. Species with large genomes and few chromosomes tend to have the largest centromeres (e.g., rye) while species with small genomes and many chromosomes have the smallest centromeres (e.g., rice). However, within a species, centromere size is surprisingly uniform. We present evidence from three oat-maize addition lines that support this claim, indicating that each of three maize centromeres propagated in oat are not measurably different from each other. In the context of previously published data, our results suggest that the apparent correlation between chromosome and centromere size is incidental to a larger trend that reflects genome size. Centromere size may be determined by a limiting component mechanism similar to that described for Caenorhabditis elegans centrosomes.

  10. Detection and Isolation of Epichloë Species, Fungal Endophytes of Grasses.

    Science.gov (United States)

    Florea, Simona; Schardl, Christopher L; Hollin, Walter

    2015-08-03

    Epichloë species (including former Neotyphodium species) are endophytic fungi that significantly affect fitness of cool-season grass hosts, potentially by increasing nutrient uptake and resistance to drought, parasitism and herbivory. Epichloë species are obligately biotrophic, living in the intercellular spaces of their plant hosts, and spreading systemically throughout host aerial tissues. The reproduction of Epichloë species is versatile; some strains have both sexual and asexual modes of reproduction, but others are restricted to one or the other mode. The reproduction mode determines the dissemination mechanism, and the asexual species most important to agriculture are strictly seed-borne, cause no signs or symptoms, and are undetectable except by specialized microscopic, molecular or antigenic procedures. These procedures can be used to identify endophytes in a variety of plant tissues. Similar protocols can be modified to detect less common symbionts, such as the penicillate "p-endophytes," when they occur by themselves or together with Epichloë species.

  11. Effects of sowing native herbaceous species on the post-fire recovery in a heathland

    Science.gov (United States)

    Fernández-Abascal, I.; Tárrega, R.; Luis-Calabuig, E.; Marcos, E.

    2003-07-01

    Erica australis heathlands in León province (NW Spain) have high resilience to disturbances and their post-fire recovery is very fast. The risk of soil erosion is high in the first few months after fire. The aim of this study is to investigate the effects on post-fire succession of sowing grass ( Agrostis capillaris and Festuca rubra) and legume ( Lotus corniculatus) seeds in a heathland burned by a summer wildfire, and to determine the most suitable native herbaceous species combination for protecting the soil in the first few phases of recovery. Fifteen permanent 4 m 2 plots are established in the burned area; four treatments and a control (unsown) are applied, each with three replicates. Three similar unburned plots are also considered (unburned control). Total cover is significantly higher in the sown plots in relation to the control in the first few months after sowing, but there are no differences after 18 months. Lotus corniculatus appears only in the first year and has no effect on the total cover. F. rubra appears earlier than Agrostis capillaris, but decreases significantly in cover after 18 months. Shrub species have the highest cover in the control plots and the lowest in the Agrostis plots. The correspondence analysis shows that the trend for vegetation in all plots reaches similar species composition by the time of final sampling. The last sampling of sown plots shows greater similarity to the control plots than the sampling of these plots within the first year. The fast initial growth of F. rubra, together with its decrease and subsequent low cover from the second year, make it more preferable than Agrostis capillaris for purposes of soil protection. However, additional research, both species- and site-specific, is necessary, as different responses due to different post-fire conditions and pre-fire species composition can have important implications on community dynamics.

  12. Effect of fire and grazing on invasive species in northern mixed grass prairie

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Invasive plants pose a threat to pristine and natural mixed grass prairie so managers seek to control them. On the basis of experience in the tall grass prairie,...

  13. Biomass and leaf-level gas exchange characteristics of three African savanna C4 grass species under optimum growth conditions

    NARCIS (Netherlands)

    Mantlana, K.B.; Veenendaal, E.M.; Arneth, A.; Grispen, V.; Bonyongo, C.M.; Heitkönig, I.M.A.; Lloyd, J.

    2009-01-01

    C4 savanna grass species, Digitaria eriantha, Eragrostis lehmanniana and Panicum repens, were grown under optimum growth conditions with the aim of characterizing their above- and below-ground biomass allocation and the response of their gas exchange to changes in light intensity, CO2 concentration

  14. N2-fixation and residual N effect of four legume species and four companion grass species

    DEFF Research Database (Denmark)

    Rasmussen, Jim; Søegaard, Karen; Pirhofer-Walzl, Karin;

    2012-01-01

    Inclusion of forage legumes in low-input forage mixtures improves herbage production and soil fertility through addition of nitrogen (N) from N2-fixation. The impact of different grass–legume mixtures on the N contribution of the forage mixture has rarely been investigated under comparable soil...... and climatic conditions. We conducted a field experiment on a sandy soil at two nitrogen levels with seven two-species forage mixtures: alfalfa, bird's-foot trefoil, red clover, or white clover in mixture with perennial ryegrass, and white clover in mixture with meadow fescue, timothy, or hybrid ryegrass. We...

  15. Ground flora, small mammal and bird species diversity in miscanthus (Miscanthusxgiganteus) and reed canary-grass (Phalaris arundinacea) fields

    Energy Technology Data Exchange (ETDEWEB)

    Semere, T.; Slater, F.M. [Cardiff University, School of Biosciences, Llysdinam Field Centre, Newbridge-on-Wye, Llandrindod Wells, Powys LD1 6NB (United Kingdom)

    2007-01-15

    Wildlife monitoring of two miscanthus and two reed canary-grass fields in Herefordshire, England was carried out in 2002, 2003 and 2004 to investigate the ecological impact of perennial biomass grass crops on ground flora, small mammals and birds. Quadrats were used to record percentage ground vegetation cover within and around the periphery of each crop. Small mammals were sampled by live trapping using Longworth traps. The common bird census technique was used to monitor populations of birds. Miscanthus fields were richer in weed vegetation than reed canary-grass or arable fields. Bird use of the biomass crop fields varied depending on species. There were considerably more open-ground bird species such as skylarks (Alauda arvensis), lapwings (Vanellus vanellus) and meadow pipits (Anthus pratensis) within miscanthus than within reed canary-grass fields. There was no particular crop-type preference by the small mammal species, but rather a preference for good ground cover and little land disturbance, which was provided by both biomass crops. Ground flora, small mammals and most of the bird species (except open-ground birds) were found more abundantly within field margins and boundaries than in crop fields indicating the importance of retaining field structure when planting biomass crops. The miscanthus work relates entirely to young crops, which may be representative of part of the national crop if large areas are cultivated for rhizomes. The findings from the current project indicate that perennial biomass grass crops can provide substantially improved habitat for many forms of native wildlife, due to the low intensity of the agricultural management system and the untreated headlands. (author)

  16. Translational Genomics for Bioenergy Production from Fuelstock Grasses: Maize as the Model Species

    Science.gov (United States)

    Meeting U.S. and world energy needs using biofuels rests on our ability to improve grasses that use the efficient C4 photosynthetic pathway in which carbon dioxide concentrating mechanisms sustain high biomass production, particularly when water is limiting. Today two C4 grasses yield substantial e...

  17. A fungal endophyte reinforces population adaptive differentiation in its host grass species.

    Science.gov (United States)

    Gibert, Anaïs; Volaire, Florence; Barre, Philippe; Hazard, Laurent

    2012-04-01

    Hereditary symbioses between fungal endophytes and grasses are relatively recent in the history of plant life. Given endophyte Neotyphodium lolii in the adaptive differentiation of its host species Lolium perenne. Endophyte frequency in 22 natural L. perenne populations was established across a water availability gradient. Adaptive differentiation among five populations, and between symbiotic (S) and nonsymbiotic (NS) plants, was examined in a glasshouse experiment under nonlimiting and limiting water conditions. Genetic differentiation was subsequently assessed among populations, and between S and NS individuals, using 14 simple sequence repeats (SSR). Symbiosis frequencies were positively correlated to water availability. Adaptive population differentiation occurred following a trade-off between biomass production under nonlimiting water conditions and survivorship under water stress. Endophytic symbiosis increased plant survival in xeric populations, and reinforced competitiveness in mesic populations. No genetic difference was detected between S and NS plants within populations. Therefore, we conclude that the endophyte relationship is responsible for these effects. Local adaptation of the host plant, appears to be supported by the fungal endophyte.

  18. Wildfire, climate, and invasive grass interactions negatively impact an indicator species by reshaping sagebrush ecosystems

    Science.gov (United States)

    Coates, Peter S.; Ricca, Mark; Prochazka, Brian; Brooks, Matthew L.; Doherty, Kevin E.; Kroger, Travis; Blomberg, Erik J.; Hagen, Christian A.; Casazza, Michael L.

    2016-01-01

    Iconic sagebrush ecosystems of the American West are threatened by larger and more frequent wildfires that can kill sagebrush and facilitate invasion by annual grasses, creating a cycle that alters sagebrush ecosystem recovery post disturbance. Thwarting this accelerated grass–fire cycle is at the forefront of current national conservation efforts, yet its impacts on wildlife populations inhabiting these ecosystems have not been quantified rigorously. Within a Bayesian framework, we modeled 30 y of wildfire and climatic effects on population rates of change of a sagebrush-obligate species, the greater sage-grouse, across the Great Basin of western North America. Importantly, our modeling also accounted for variation in sagebrush recovery time post fire as determined by underlying soil properties that influence ecosystem resilience to disturbance and resistance to invasion. Our results demonstrate that the cumulative loss of sagebrush to direct and indirect effects of wildfire has contributed strongly to declining sage-grouse populations over the past 30 y at large spatial scales. Moreover, long-lasting effects from wildfire nullified pulses of sage-grouse population growth that typically follow years of higher precipitation. If wildfire trends continue unabated, model projections indicate sage-grouse populations will be reduced to 43% of their current numbers over the next three decades. Our results provide a timely example of how altered fire regimes are disrupting recovery of sagebrush ecosystems and leading to substantial declines of a widespread indicator species. Accordingly, we present scenario-based stochastic projections to inform conservation actions that may help offset the adverse effects of wildfire on sage-grouse and other wildlife populations.

  19. Energy crop cultivations of reed canary grass - An inferior breeding habitat for the skylark, a characteristic farmland bird species

    Energy Technology Data Exchange (ETDEWEB)

    Vepsaelaeinen, Ville [Finnish Museum of Natural History, P.O. Box 17, University of Helsinki, FI-00014 Helsinki (Finland)

    2010-07-15

    Here, I present the first comparison of the abundance of farmland birds in energy grass fields and in cereal-dominated conventionally cultivated fields (CCFs). I demonstrate that in boreal farmland, skylark (Alauda arvensis) densities were significantly lower in reed canary grass (RCG) (Phalaris arundinacea) fields than in CCFs. I found that during the early breeding season RCG fields and CCFs are equally good habitats, but over the ensuing couple of weeks RCG rapidly grows too tall and dense for field-nesting species. Consequently, RCG is an inferior habitat for skylark for laying replacement clutches (after failure of first nesting) or for a second clutch after one successful nesting. The results imply that if RCG cultivation is to be expanded, the establishment of large monocultures should be avoided in farmland landscapes; otherwise the novel habitat may affect detrimentally the seriously depleted skylark population, and probably also other field-nesting bird species with similar breeding habitats. (author)

  20. Responses of two grass species to plant growth regulators, fertilizer N, chelated Fe, salinity and water stress

    OpenAIRE

    Nabati, Daryoosh A.

    1991-01-01

    A series of studies were initiated to investigate growth responses of Kentucky bluegrass (Poa praetensis L.) and creeping bentgrass (Agrostis palustris Huds.) to foliar applications of two plant growth regulators (PGR) and/or chelated Fe (Na Fe diethylene triamine pentaacetate). Environmental variables considered were N levels, soil moisture regimes, and saline irrigations The two materials investigated for PGR properties were a commercial product called Roots (a cold-water extract of seaw...

  1. Expression in grasses of multiple transgenes for degradation of munitions compounds on live-fire training ranges.

    Science.gov (United States)

    Zhang, Long; Routsong, Ryan; Nguyen, Quyen; Rylott, Elizabeth L; Bruce, Neil C; Strand, Stuart E

    2016-11-10

    The deposition of toxic munitions compounds, such as hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX), on soils around targets in live-fire training ranges is an important source of groundwater contamination. Plants take up RDX but do not significantly degrade it. Reported here is the transformation of two perennial grass species, switchgrass (Panicum virgatum) and creeping bentgrass (Agrostis stolonifera), with the genes for degradation of RDX. These species possess a number of agronomic traits making them well equipped for the uptake and removal of RDX from root zone leachates. Transformation vectors were constructed with xplA and xplB, which confer the ability to degrade RDX, and nfsI, which encodes a nitroreductase for the detoxification of the co-contaminating explosive 2, 4, 6-trinitrotoluene (TNT). The vectors were transformed into the grass species using Agrobacterium tumefaciens infection. All transformed grass lines showing high transgene expression levels removed significantly more RDX from hydroponic solutions and retained significantly less RDX in their leaf tissues than wild-type plants. Soil columns planted with the best-performing switchgrass line were able to prevent leaching of RDX through a 0.5-m root zone. These plants represent a promising plant biotechnology to sustainably remove RDX from training range soil, thus preventing contamination of groundwater.

  2. Sediment trapping with indigenous grass species showing differences in plant traits in northwest Ethiopia

    NARCIS (Netherlands)

    Mekonnen, Mulatie; Keesstra, Saskia D.; Ritsema, Coen J.; Stroosnijder, Leo; Baartman, Jantiene E.M.

    2016-01-01

    Soil loss from an 8% sloping Teff field in north-western Ethiopia is significant (~ 70 t ha− 1 yr− 1), and thus found to be an important source of sediment. Grass barriers showing sediment trapping efficacy (STE) are important measures in trapping sediment inside Teff fields

  3. Development and Testing of Cool-Season Grass Species, Varieties and Hybrids for Biomass Feedstock Production in Western North America

    Directory of Open Access Journals (Sweden)

    Steven R. Larson

    2017-01-01

    Full Text Available Breeding of native cool-season grasses has the potential to improve forage production and expand the range of bioenergy feedstocks throughout western North America. Basin wildrye (Leymus cinereus and creeping wildrye (Leymus triticoides rank among the tallest and most rhizomatous grasses of this region, respectively. The objectives of this study were to develop interspecific creeping wildrye (CWR × basin wildrye (BWR hybrids and evaluate their biomass yield relative to tetraploid ‘Trailhead’, octoploid ‘Magnar’ and interploidy-hybrid ‘Continental’ BWR cultivars in comparison with other perennial grasses across diverse single-harvest dryland range sites and a two-harvest irrigated production system. Two half-sib hybrid populations were produced by harvesting seed from the tetraploid self-incompatible Acc:641.T CWR genet, which was clonally propagated by rhizomes into isolated hybridization blocks with two tetraploid BWR pollen parents: Acc:636 and ‘Trailhead’. Full-sib hybrid seed was also produced from a controlled cross of tetraploid ‘Rio’ CWR and ‘Trailhead’ BWR plants. In space-planted range plots, the ‘Rio’ CWR × ‘Trailhead’ BWR and Acc:641.T CWR × Acc:636 BWR hybrids displayed high-parent heterosis with 75% and 36% yield advantages, respectively, but the Acc:641.T CWR × ‘Trailhead’ BWR hybrid yielded significantly less than its BWR high-parent in this evaluation. Half-sib CWR × BWR hybrids of Acc:636 and ‘Trailhead’ both yielded as good as or better than available BWR cultivars, with yields similar to switchgrass (Panicum virgatum, in the irrigated sward plots. These results elucidate opportunity to harness genetic variation among native grass species for the development of forage and bioenergy feedstocks in western North America.

  4. The weed species composition in a reed canary grass (Phalaris arundinacea L. plantation for energy purposes depending on its age

    Directory of Open Access Journals (Sweden)

    Tomasz R. Sekutowski

    2014-12-01

    Full Text Available The present experiment, carried out in nine production fields of reed canary grass (Phalaris arundinacea grown for energy purposes, evaluated the effect of plantation age on the occurrence and species composition of weeds. The selected plantations were divided into 3 groups that were conventionally called “young” (1–2 years old, “middle-aged” (3–5 years old, and “older” plantations (6–8 years old. Regardless of plantation age, altogether 43 species were found in the experimental fields. Moreover, 6 species were common for all the plantations and were found in them regardless of plantation age. The least species, only 18, were found on the “young” plantations, almost twice more on the “older” ones (30 species, whereas the largest spectrum of species was found in the “middle-aged” plantations (33 species. In the “young” plantations, annual weeds were the most common, with the highest constancy and coverage index found for Chenopodium album, Matricaria maritima ssp. inodora and Echinochloa crus-galli. The greatest variation in species was found in the “middle-aged” plantations. However, only 4 species achieved the highest constancy and coverage index: Matricaria maritima ssp. inodora, Cirsium arvense, Poa trivialis and Taraxacum officinale. Furthermore, perennial weeds were found to be dominant in the “older” plantations. Within this group, Poa trivialis, Taraxacum officinale, Urtica dioica, Plantago maior, and Cirsium arvense had the highest constancy and coverage index.

  5. LIFE-HISTORY VARIATION IN ECOLOGICALLY CONTRASTING POPULATIONS OF AGROSTIS-STOLONIFERA

    NARCIS (Netherlands)

    Kik, C.; van Andel, Jelte; Joenje, W.

    1990-01-01

    (1) Life-history variation among four ecologically contrasting populations of Agrostis stolonifera was examined using a reciprocal-transplant technique in natural habitats. (2) Survival, growth and flowering were mainly determined environmentally across transplant sites, although population effects

  6. Optimizing spectral resolutions for the classification of C3 and C4 grass species, using wavelengths of known absorption features

    Science.gov (United States)

    Adjorlolo, Clement; Cho, Moses A.; Mutanga, Onisimo; Ismail, Riyad

    2012-01-01

    Hyperspectral remote-sensing approaches are suitable for detection of the differences in 3-carbon (C3) and four carbon (C4) grass species phenology and composition. However, the application of hyperspectral sensors to vegetation has been hampered by high-dimensionality, spectral redundancy, and multicollinearity problems. In this experiment, resampling of hyperspectral data to wider wavelength intervals, around a few band-centers, sensitive to the biophysical and biochemical properties of C3 or C4 grass species is proposed. The approach accounts for an inherent property of vegetation spectral response: the asymmetrical nature of the inter-band correlations between a waveband and its shorter- and longer-wavelength neighbors. It involves constructing a curve of weighting threshold of correlation (Pearson's r) between a chosen band-center and its neighbors, as a function of wavelength. In addition, data were resampled to some multispectral sensors-ASTER, GeoEye-1, IKONOS, QuickBird, RapidEye, SPOT 5, and WorldView-2 satellites-for comparative purposes, with the proposed method. The resulting datasets were analyzed, using the random forest algorithm. The proposed resampling method achieved improved classification accuracy (κ=0.82), compared to the resampled multispectral datasets (κ=0.78, 0.65, 0.62, 0.59, 0.65, 0.62, 0.76, respectively). Overall, results from this study demonstrated that spectral resolutions for C3 and C4 grasses can be optimized and controlled for high dimensionality and multicollinearity problems, yet yielding high classification accuracies. The findings also provide a sound basis for programming wavebands for future sensors.

  7. The effects of seed ingestion by livestock, dung fertilization, trampling, grass competition and fire on seedling establishment of two woody plant species.

    Science.gov (United States)

    Tjelele, Julius; Ward, David; Dziba, Luthando

    2015-01-01

    The increasing rate of woody plant encroachment in grasslands or savannas remains a challenge to livestock farmers. The causes and control measures of woody plant encroachment are of common interest, especially where it negatively affects the objectives of an agricultural enterprise. The objectives of this study were to determine the effects of gut passage (goats, cattle), dung (nutrients), fire, grass competition and trampling on establishment of A. nilotica and D. cinerea seedlings. Germination trials were subjected to the following treatments: 1) seed passage through the gut of cattle and goats and unpassed/ untreated seeds (i.e. not ingested), 2) dung and control (no dung), 3) grass and control (mowed grass), 4) fire and control (no fire), 5) trampling and control (no trampling). The interaction of animal species, grass and fire had an effect on seedling recruitment (P effect on seedling recruitment than seeds retrieved from goats and planted with grass and no fire (2.98% ± 0.33). Significantly more D. cinerea and A. nilotica seeds germinated following seed ingestion by goats (3.59% ± 0.16) than cattle (1.93% ± 0.09) and control or untreated seeds (1.69% ± 0.11). Less dense grass cover, which resulted in reduced grass competition with tree seedlings for light, space and water, and improved seed scarification due to gut passage were vital for emergence and recruitment of Acacia seedlings. These results will contribute considerably to the understanding of the recruitment phase of woody plant encroachment.

  8. Forms of potassium and sodium in some species of grasses and herbage

    Directory of Open Access Journals (Sweden)

    Grzegorz Nowak

    2013-12-01

    Full Text Available The forms of occurence of potassium and sodium were studied in the grasses Dactylis glomerata L., Poa annua L., Festuca rubra L. and dendelion (Taraxacum officinale Web. treated with increasing mineral fertilizer doses, magnesium and microelements, under conditions of pot culture. The plants took up potassium in amounts greatly exceeding their requirement, and sodium in very small amounts. Mineral NPK doses increased in the tested plants both the content of potassium and sodium forms soluble in trichloroacetic and acetic acids and water. Magnesium and microelements had no major influence on the content of these potassium forms, but they increased the concentration of analogous forms of sodium in Taraxacum officinale and did not influence their accumulation in the grasses. Potassium and sodium compounds were completely extracted from the plants with trichloroacetic, whereas acetic acid extracted 88-95 percent of potassium and 66-74 percent of sodium. Distilled water extracted 70-77 and 28-33 percent of potassium and sodium, respectively.

  9. Grass and forb species for revegetation of mixed soil-lignite overburden in East Central Texas

    Energy Technology Data Exchange (ETDEWEB)

    Skousen, J.G.; Call, C.A. (West Virginia University, Morgantown, WV (USA). Division of Plant and Soil Sciences)

    Ten grasses and seven forbs were seeded into mixed soil-lignite overburden in the Post Oak Savannah region of Texas and monitored for establishment and growth over a 3-year period without fertilization. Buffelgrass (Cenchrus ciliaris), green sprangletop (Leptochloa dubia), switchgrass (Panicum virgatum), and kleingrass (P. coloratum) developed monotypic stands with sufficent density, aerial cover, and aboveground biomass to stabilize the mixed soil-lignite overburden surface by the end of the first growing season. Plant mortality eliminated buffelgrass and green sprangletop stands by the end of the third growing season. Indiangrass (Sorghastrum nutans) developed a satisfactory stand by the end of the third growing season, while Oldworld bluestem (Bothriochloa X Dicanthium), yellow bluestem (Bothriochloa ischaemum), and sideoats grama (Bouteloua curtipendula) established at a slower rate. Cover and biomass measurements from an adjacent, unfertilized stand of Coastal bermudagrass (Cynodon dactylon) were compared with those of seeded grasses throughout the study. Partidge pea (Cassia fasciculata) established rapidly and had the greatest cover and biomass of all seeded forbs by the end of the first growing season. Sericea lespedeza (Lespedeza cuneata), Illinois bundleflower (Desmanthus illinoensis), and western indigo (Indigofera miniata) developed adequate stands for surface stabilization by the end of the third growing season, while faseanil indigo (Indigofera suffruticosa), virgata lespedeza (Lespedeza virgata), and awnless bushsunflower (Simsia calva) showed slower establishment. 27 refs., 3 tabs.

  10. Classification of images of wheat, ryegrass and brome grass species at early growth stages using principal component analysis

    Directory of Open Access Journals (Sweden)

    Golzarian Mahmood R

    2011-09-01

    Full Text Available Abstract Wheat is one of the most important crops in Australia, and the identification of young plants is an important step towards developing an automated system for monitoring crop establishment and also for differentiating crop from weeds. In this paper, a framework to differentiate early narrow-leaf wheat from two common weeds from their digital images is developed. A combination of colour, texture and shape features is used. These features are reduced to three descriptors using Principal Component Analysis. The three components provide an effective and significant means for distinguishing the three grasses. Further analysis enables threshold levels to be set for the discrimination of the plant species. The PCA model was evaluated on an independent data set of plants and the results show accuracy of 88% and 85% in the differentiation of ryegrass and brome grass from wheat, respectively. The outcomes of this study can be integrated into new knowledge in developing computer vision systems used in automated weed management.

  11. Immunoglobulin E-binding reactivities of natural pollen grain extracts from selected grass species in the Philippines

    Science.gov (United States)

    Cabauatan, Clarissa R.

    2012-01-01

    Background Pollen grains have been reported to be present in the Philippine atmosphere but studies regarding their allergenicity are limited. Objective The present study aimed to profile the sensitization of allergic individuals to selected grass pollen species and to characterize the pollen proteins that may be responsible for this allergenic response. Methods The protein profile of the grass pollen extracts from Cynodon dactylon, Saccharum spontaneum, Sporobulus indicus, Chloris barbata, Oryza sativa, Imperata cylindrica, and Zea mays was analyzed by Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis. The specific-IgE profile of the allergic individuals and the allergenic potential of the pollen extracts were evaluated through Enzyme-linked Immunosorbent Assay and IgE immunoblotting. Results Sensitization of the allergic individuals to the pollen extracts was detected with I. cylindrica and O. sativa to be the most frequently recognized with more that 92% reactivity, whereas for C. dactylon and Z. mays, were found to have less than 25% reactivity. Conclusion Multiple IgE-binding proteins from S. indicus, S. spontaneum and C. barbata that were detected may be responsible for the allergic reactions among Filipino subjects. PMID:22701864

  12. Associations of Pseudomonas species and forage grasses enhance degradation of chlorinated benzoic acids in soil

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, S. D.

    1998-12-01

    Using chlorinated benzoic acid (CBA) as a model compound, this study attempted to show that microorganisms and plants can be used as bioremediation agents to clean up contaminated soil sites in a cost effective and environmentally friendly manner. CBA was used because it is present in soils contaminated with polychlorinated biphenyls (PCBs), or chlorinated pesticides. Sixteen forage grasses were screened in combination with 12 bacterial inoculants for their ability to promote the degradation of CBA in soil. Five associations of plants and bacteria were found to degrade CBA to a greater extent than plants without bacterial inoculants. Bacterial inoculants were shown to stimulate CBA degradation by altering the microbial community present on the root surface and thereby increasing the ability of this community to degrade CBA.

  13. Characterization of gene expression associated with drought avoidance and tolerance traits in a perennial grass species.

    Directory of Open Access Journals (Sweden)

    Peng Zhou

    Full Text Available To understand molecular mechanisms of perennial grass adaptation to drought stress, genes associated with drought avoidance or tolerance traits were identified and their expression patterns were characterized in C4 hybrid bermudagrass [Cynodon dactylon (L. Pers.×C. transvaalensis Burtt Davy, cv. Tifway] and common bermudagrass (C. dactylon, cv. C299. Plants of drought-tolerant 'Tifway' and drought-sensitive 'C299' were exposed to drought for 5 d (mild stress and 10 d (severe stress by withholding irrigation in a growth chamber. 'Tifway' maintained significantly lower electrolyte leakage and higher relative water content than 'C299' at both 5 and 10 d of drought stress. Four cDNA libraries via suppression subtractive hybridization analysis were constructed and identified 277 drought-responsive genes in the two genotypes at 5 and 10 d of drought stress, which were mainly classified into the functional categories of stress defense, metabolism, osmoregulation, membrane system, signal and regulator, structural protein, protein synthesis and degradation, and energy metabolism. Quantitative-PCR analysis confirmed the expression of 36 drought up-regulated genes that were more highly expressed in drought-tolerant 'Tifway' than drought-sensitive 'C299', including those for drought avoidance traits, such as cuticle wax formation (CER1 and sterol desaturase, for drought tolerance traits, such as dehydration-protective proteins (dehydrins, HVA-22-like protein and oxidative stress defense (superoxide dismutase, dehydroascorbate reductase, 2-Cys peroxiredoxins, and for stress signaling (EREBP-4 like protein and WRKY transcription factor. The results suggest that the expression of genes for stress signaling, cuticle wax accumulation, antioxidant defense, and dehydration-protective protein accumulation could be critically important for warm-season perennial grass adaptation to long-term drought stress.

  14. The effects of seed ingestion by livestock, dung fertilization, trampling, grass competition and fire on seedling establishment of two woody plant species.

    Directory of Open Access Journals (Sweden)

    Julius Tjelele

    Full Text Available The increasing rate of woody plant encroachment in grasslands or savannas remains a challenge to livestock farmers. The causes and control measures of woody plant encroachment are of common interest, especially where it negatively affects the objectives of an agricultural enterprise. The objectives of this study were to determine the effects of gut passage (goats, cattle, dung (nutrients, fire, grass competition and trampling on establishment of A. nilotica and D. cinerea seedlings. Germination trials were subjected to the following treatments: 1 seed passage through the gut of cattle and goats and unpassed/ untreated seeds (i.e. not ingested, 2 dung and control (no dung, 3 grass and control (mowed grass, 4 fire and control (no fire, 5 trampling and control (no trampling. The interaction of animal species, grass and fire had an effect on seedling recruitment (P < 0.0052. Seeds retrieved from goats and planted with no grass and with fire (6.81% ± 0.33 had a significant effect on seedling recruitment than seeds retrieved from goats and planted with grass and no fire (2.98% ± 0.33. Significantly more D. cinerea and A. nilotica seeds germinated following seed ingestion by goats (3.59% ± 0.16 than cattle (1.93% ± 0.09 and control or untreated seeds (1.69% ± 0.11. Less dense grass cover, which resulted in reduced grass competition with tree seedlings for light, space and water, and improved seed scarification due to gut passage were vital for emergence and recruitment of Acacia seedlings. These results will contribute considerably to the understanding of the recruitment phase of woody plant encroachment.

  15. Seasonal Changes in Leaf Tissue Rehydration of One Annual and Two Perennial Grass Forage Species Induced by Bioclimate

    Directory of Open Access Journals (Sweden)

    Eirini - Ia KAPSALI

    2015-12-01

    Full Text Available Bioclimate signifies the continuous interplay between plants and climate factors (primarily drought and has a direct impact on the water relations and the duration of the rehydration process in water stressed plants. To explore the association between bioclimate and water physiology of forage species in semi-arid Mediterranean grasslands, we determined the seasonal variation in leaf water potential, turgid weight and relative water content in wild growing Dactylis glomerata L., Bromus inermis Leyss (perennial and Bromus sterilis L. (annual during the growing season. The study was conducted at the farm of the Aristotle University of Thessaloniki. The results of the current study reveal that B. sterilis maintained high levels of water potential most probably by accelerating its biological cycle and decreasing water content because it fails to sustain turgidity. Dactylis glomerata and B. inermis presented even higher water contents than B. sterilis for the same water potential. Dactylis glomerata exhibited substantially higher water potential and content than B. inermis by keeping the rehydration duration stable. The extensive creeping rhizome seems to allow B. inermis to sustain high values of water potential and content possibly ensuring turgidity. Regardless of the grass species the duration of rehydration ranged from 2.5 to 3.5 hours throughout the growing season. Our findings demonstrate that (a D. glomerata and B. inermis are better adapted to Mediterranean semiarid conditions than B. sterilis and (b turgid weight in Mediterranean forage species can safely be determined after a rehydration period of 3.5 hours.

  16. Gibberellin-Stimulation of Rhizome Elongation and Differential GA-Responsive Proteomic Changes in Two Grass Species

    Science.gov (United States)

    Ma, Xiqing; Huang, Bingru

    2016-01-01

    Rapid and extensive rhizome development is a desirable trait for perennial grass growth and adaptation to environmental stresses. The objective of this study was to determine proteomic changes and associated metabolic pathways of gibberellin (GA) -regulation of rhizome elongation in two perennial grass species differing in rhizome development. Plants of a short-rhizome bunch-type tall fescue (TF; Festuca arundinacea; ‘BR’) and an extensive rhizomatous Kentucky bluegrass (KB; Poa pratensis; ‘Baron’) were treated with 10 μM GA3 in hydroponic culture in growth chambers. The average rhizome length in KB was significantly longer than that in TF regardless of GA3 treatment, and increased significantly with GA3 treatment, to a greater extent than that in TF. Comparative proteomic analysis using two-dimensional electrophoresis and mass spectrometry was performed to further investigate proteins and associated metabolic pathways imparting increased rhizome elongation by GA. A total of 37 and 38 differentially expressed proteins in response to GA3 treatment were identified in TF and KB plants, respectively, which were mainly involved in photosynthesis, energy and amino acid metabolism, protein synthesis, defense and cell development processes. Accelerated rhizome elongation in KB by GA could be mainly associated with the increased abundance of proteins involved in energy metabolism (glyceraldehyde-3-phosphate dehydrogenase, fructose-bisphosphate aldolase, and ATP synthase), amino acid metabolism (S-adenosylmethionine and adenosylhomocysteinase), protein synthesis (HSP90, elongation factor Tu and eukaryotic translation initiation factor 5A), cell-wall development (cell dividion cycle protein, alpha tubulin-2A and actin), and signal transduction (calreticulin). These proteins could be used as candidate proteins for further analysis of molecular mechanisms controlling rhizome growth. PMID:27446135

  17. Genotyping-by-Sequencing in a Species Complex of Australian Hummock Grasses (Triodia): Methodological Insights and Phylogenetic Resolution

    Science.gov (United States)

    Thiele, Kevin R.; Krauss, Siegfried L.; Barrett, Matthew D.

    2017-01-01

    Next-generation sequencing is becoming increasingly accessible to researchers asking biosystematic questions, but current best practice in both choosing a specific approach and effectively analysing the resulting data set is still being explored. We present a case study for the use of genotyping-by-sequencing (GBS) to resolve relationships in a species complex of Australian arid and semi-arid grasses (Triodia R.Br.), highlighting our solutions to methodological challenges in the use of GBS data. We merged overlapping paired-end reads then optimised locus assembly in the program PyRAD to generate GBS data sets for phylogenetic and distance-based analyses. In addition to traditional concatenation analyses in RAxML, we also demonstrate the novel use of summary species tree analyses (taking gene trees as input) with GBS loci. We found that while species tree analyses were relatively robust to variation in PyRAD assembly parameters, our RAxML analyses resulted in well-supported but conflicting topologies under different assembly settings. Despite this conflict, multiple clades in the complex were consistently supported as distinct across analyses. Our GBS data assembly and analyses improve the resolution of taxa and phylogenetic relationships in the Triodia basedowii complex compared to our previous study based on Sanger sequencing of nuclear (ITS/ETS) and chloroplast (rps16-trnK spacer) markers. The genomic results also partly support previous evidence for hybridization between species in the complex. Our methodological insights for analysing GBS data will assist researchers using similar data to resolve phylogenetic relationships within species complexes. PMID:28135342

  18. Genotyping-by-Sequencing in a Species Complex of Australian Hummock Grasses (Triodia): Methodological Insights and Phylogenetic Resolution.

    Science.gov (United States)

    Anderson, Benjamin M; Thiele, Kevin R; Krauss, Siegfried L; Barrett, Matthew D

    2017-01-01

    Next-generation sequencing is becoming increasingly accessible to researchers asking biosystematic questions, but current best practice in both choosing a specific approach and effectively analysing the resulting data set is still being explored. We present a case study for the use of genotyping-by-sequencing (GBS) to resolve relationships in a species complex of Australian arid and semi-arid grasses (Triodia R.Br.), highlighting our solutions to methodological challenges in the use of GBS data. We merged overlapping paired-end reads then optimised locus assembly in the program PyRAD to generate GBS data sets for phylogenetic and distance-based analyses. In addition to traditional concatenation analyses in RAxML, we also demonstrate the novel use of summary species tree analyses (taking gene trees as input) with GBS loci. We found that while species tree analyses were relatively robust to variation in PyRAD assembly parameters, our RAxML analyses resulted in well-supported but conflicting topologies under different assembly settings. Despite this conflict, multiple clades in the complex were consistently supported as distinct across analyses. Our GBS data assembly and analyses improve the resolution of taxa and phylogenetic relationships in the Triodia basedowii complex compared to our previous study based on Sanger sequencing of nuclear (ITS/ETS) and chloroplast (rps16-trnK spacer) markers. The genomic results also partly support previous evidence for hybridization between species in the complex. Our methodological insights for analysing GBS data will assist researchers using similar data to resolve phylogenetic relationships within species complexes.

  19. Fusarium dactylidis sp. nov., a novel nivalenol toxin-producing species sister to F. pseudograminearum isolated from orchard grass (Dactylis glomerata) in Oregon and New Zealand.

    Science.gov (United States)

    Aoki, Takayuki; Vaughan, Martha M; McCormick, Susan P; Busman, Mark; Ward, Todd J; Kelly, Amy; O'Donnell, Kerry; Johnston, Peter R; Geiser, David M

    2015-01-01

    The B trichothecene toxin-producing clade (B clade) of Fusarium includes the etiological agents of Fusarium head blight, crown rot of wheat and barley and stem and ear rot of maize. B clade isolates also have been recovered from several wild and cultivated grasses, including Dactylis glomerata (orchard grass or cock's foot), one of the world's most important forage grasses. Two isolates from the latter host are formally described here as F. dactylidis. Phenotypically F. dactylidis most closely resembles F. ussurianum from the Russian Far East. Both species produce symmetrical sporodochial conidia that are similar in size and curved toward both ends. However, conidia of F. ussurianum typically end in a narrow apical beak while the apical cell of F. dactylidis is acute. Fusarium dactylidis produced nivalenol mycotoxin in planta as well as low but detectable amounts of the estrogenic mycotoxin zearalenone in vitro. Results of a pathogenicity test revealed that F. dactylidis induced mild head blight on wheat.

  20. Drag coefficient and plant form response to wind speed in three plant species: Burning Bush (Euonymus alatus), Colorado Blue Spruce (Picea pungens glauca.), and Fountain Grass (Pennisetum setaceum)

    Science.gov (United States)

    Gillies, J. A.; Nickling, W. G.; King, J.

    2002-12-01

    Whole-plant drag coefficients (Cd) for three plant species: Burning Bush (Euonymus alatus), Colorado Blue Spruce (Picea pungens glauca.), and Fountain Grass (Pennisetum setaceum) in five different porosity configurations were developed from force versus wind speed data collected with a force balance in a recirculating wind tunnel. The average Cd for the Burning Bush, Colorado Spruce, and Fountain Grass in their untrimmed forms were 0.42 (±0.03), 0.39 (±0.04), and 0.34 (±0.06), respectively. Drag curves (Cd versus flow Reynolds number (Re) function) for the Burning Bush and Colorado Spruce were found to exhibit, for the lower porosity configurations, a rise to a maximum around flow Reynolds numbers (Re = ρuhh/ν) of 2 × 105. Fountain Grass Cd was shown to be dependent upon Re to values >5 × 105. The Burning Bush and Colorado Spruce plants reduced their drag, upon reaching their maxima, by decreasing their frontal area and increasing their porosity. Maximum Cd for these plants occurred at optical porosities of ˜0.20. The Fountain Grass reduced drag at high Re by decreasing frontal area and porosity. The mechanism of drag reduction in Fountain Grass was continual reconfiguration to a more aerodynamic form as evidenced by continual reduction of Cd with Re.

  1. Untangling a species complex of arid zone grasses (Triodia) reveals patterns congruent with co-occurring animals.

    Science.gov (United States)

    Anderson, Benjamin M; Barrett, Matthew D; Krauss, Siegfried L; Thiele, Kevin

    2016-08-01

    The vast Australian arid zone formed over the last 15million years, and gradual aridification as well as more extreme Pliocene and Pleistocene climate shifts have impacted the evolution of its biota. Understanding the evolutionary history of groups of organisms or regional biotas such as the Australian arid biota requires clear delimitation of the units of biodiversity (taxa). Here we integrate evidence from nuclear (ETS and ITS) and chloroplast (rps16-trnK spacer) regions and morphology to clarify taxonomic boundaries in a species complex of Australian hummock grasses (Triodia) to better understand the evolution of Australian arid zone plants and to evaluate congruence in distribution patterns with co-occurring organisms. We find evidence for multiple new taxa in the T. basedowii species complex, but also incongruence between data sets and indications of hybridization that complicate delimitation. We find that the T. basedowii complex has high lineage diversity and endemism in the biologically important Pilbara region of Western Australia, consistent with the region acting as a refugium. Taxa show strong geographic structure in the Pilbara, congruent with recent work on co-occurring animals and suggesting common evolutionary drivers across the biota. Our findings confirm recognition of the Pilbara as an important centre of biodiversity in the Australian arid zone, and provide a basis for future taxonomic revision of the T. basedowii complex and more detailed study of its evolutionary history and that of arid Australia.

  2. Flavor, glucosinolates, and isothiocyanates of nau (Cook's scurvy grass, Lepidium oleraceum) and other rare New Zealand Lepidium species.

    Science.gov (United States)

    Sansom, Catherine E; Jones, Veronika S; Joyce, Nigel I; Smallfield, Bruce M; Perry, Nigel B; van Klink, John W

    2015-02-18

    The traditionally consumed New Zealand native plant nau, Cook's scurvy grass, Lepidium oleraceum, has a pungent wasabi-like taste, with potential for development as a flavor ingredient. The main glucosinolate in this Brassicaceae was identified by LC-MS and NMR spectroscopy as 3-butenyl glucosinolate (gluconapin, 7-22 mg/g DM in leaves). The leaves were treated to mimic chewing, and the headspace was analyzed by solid-phase microextraction and GC-MS. This showed that 3-butenyl isothiocyanate, with a wasabi-like flavor, was produced by the endogenous myrosinase. Different postharvest treatments were used to create leaf powders as potential flavor products, which were tasted and analyzed for gluconapin and release of 3-butenyl isothiocyanate. A high drying temperature (75 °C) did not give major glucosinolate degradation, but did largely inactivate the myrosinase, resulting in no wasabi-like flavor release. Drying at 45 °C produced more pungent flavor than freeze-drying. Seven other Lepidium species endemic to New Zealand were also analyzed to determine their flavor potential and also whether glucosinolates were taxonomic markers. Six contained mostly gluconapin, but the critically endangered Lepidium banksii had a distinct composition including isopropyl glucosinolate, not detected in the other species.

  3. Hazardous impact and translocation of vanadium (V) species from soil to different vegetables and grasses grown in the vicinity of thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sumaira, E-mail: skhanzai@gmail.com [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kazi, Tasneem Gul, E-mail: tgkazi@yahoo.com [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kolachi, Nida Fatima, E-mail: nidafatima6@gmail.com [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Baig, Jameel Ahmed, E-mail: jab_mughal@yahoo.com [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Afridi, Hassan Imran, E-mail: hassanimranafridi@yahoo.com [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Shah, Abdul Qadir, E-mail: aqshah07@yahoo.com [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kumar, Sham; Shah, Faheem [Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)

    2011-06-15

    The distribution of vanadium (V) species in soil (test soil), vegetables and grasses, collected from the vicinity of a thermal power plant has been studied. For comparison purpose soil (control soil), same vegetable and grass samples were collected from agricultural land devoid of any industrial area. A simple and efficient ultrasonic assisted extraction method has been developed for the extraction of V{sup 5+} species from soil, vegetable and grass samples using Na{sub 2}CO{sub 3} in the range of 0.1-0.5 mol/L. For comparison purpose same sub samples were also extracted by conventional heating method. The total and V species were determined by electrothermal atomic absorption spectrometry using different modifiers. The validity of V{sup 5+} and V{sup 4+} determination had been confirmed by the spike recovery and total amount of V by the analysis of CRM 1570 (spinach leave) and sub samples of agricultural soil. The concentration of total V was found in the range of 90-215 and 11.4-42.3 {mu}g/g in test and control soil samples, respectively. The contents of V{sup 5+} and total V in vegetables and grasses grown around the thermal power plant were found in the range of 2.9-5.25 and 8.74-14.9 {mu}g/g, respectively, which were significantly higher than those values obtained from vegetables and fodders grown in non exposed agricultural site (P < 0.01). Statistical evaluations indicate that the sum of concentrations of V{sup 5+} and V{sup 4+} species was not significantly different from total concentration of V in same sub samples of vegetable, grass and soil of both origins, at 95% level of confidence.

  4. First report of dollar spot disease, caused by Sclerotinia homoeocarpa, of Agrostis stolonifera in Sweden

    Science.gov (United States)

    Dollar spot is a destructive and widespread disease affecting most grass species grown as turf, but until recently it has been absent from the Scandinavian countries of northern Europe. In the fall of 2014, disease symptoms consistent with dollar spot were observed on a golf course fairway in Sweden...

  5. The value of small habitat islands for the conservation of genetic variability in a steppe grass species

    Science.gov (United States)

    Wódkiewicz, Maciej; Dembicz, Iwona; Moysiyenko, Ivan I.

    2016-10-01

    The habitat loss and fragmentation due to agricultural land-conversion affected the steppe throughout its range. In Ukraine, 95% of steppe was destroyed in the last two centuries. Remaining populations are confined to few refuges, like nature reserves, loess ravines, and kurgans (small burial mounds), the latter being often subject to destruction by archeological excavations. Stipa capillata L. is a typical grass species of Eurasian steppes and extrazonal dry grasslands, that was previously used as a model species in studies on steppe ecology. The aim of our research was to assess genetic diversity of S. capillata populations within different types of steppe refuges (loess ravines, biosphere reserve, kurgan) and to evaluate the value of the latter group for the preservation of genetic diversity in the study species. We assessed genetic diversity of 266 individuals from 15 populations (nine from kurgans, three from loess ravines and three from Askania-Nova Biosphere Reserve) with eight Universal Rice Primers (URPs). Studied populations showed high intra-population variability (I: 0.262-0.419, PPB: 52.08-82.64%). Populations from kurgans showed higher genetic differentiation (ΦST = 0.247) than those from loess ravines (ΦST = 0.120) and the biosphere reserve (ΦST = 0.142). Although the diversity metrics were to a small extent lower for populations from kurgans than from larger refugia we conclude that all studied populations of the species still preserve high genetic variability and are valuable for protection. To what extent this pattern holds true under continuous fragmentation in the future must be carefully monitored.

  6. Morphoanatomical responses induced by excess iron in roots of two tolerant grass species.

    Science.gov (United States)

    de Araújo, Talita Oliveira; de Freitas-Silva, Larisse; Santana, Brenda Vila Nova; Kuki, Kacilda Naomi; Pereira, Eduardo Gusmão; Azevedo, Aristéa Alves; da Silva, Luzimar Campos

    2015-02-01

    We aimed to verify whether morphoanatomic alterations occur in response to excess iron, in roots of Setaria parviflora and Paspallum urvillei (Poaceae), and to localize the presence of the sites of iron accumulation. Plants were subjected to 0.009, 1, 2, 4, and 7 mM Fe-EDTA in nutrient solution. Both species presented iron contents in the roots above the critical toxicity level. The presence of iron plaque on roots of the two species was confirmed, and it may have reduced iron absorption by the plants. Roots from the two species showed typical visual symptoms of stress by excess iron: change in color and mucilaginous and flaccid appearance. Anatomical damage was observed in both species: aerenchyma disruption, alterations in endodermal cells, and irregular shape of both vessel and sieve tube elements. The metal was histolocalized in the cortex and in protoxylem and metaxylem cell walls in both species, which suggests a detoxification strategy for the excess iron. Phenolic compounds were not histolocalized in roots. Microscopic analyses were therefore effective in evaluating the real damage caused by excess iron.

  7. Competition between two grass species with and without grazing over a productivity gradient

    NARCIS (Netherlands)

    Kuijper, DPJ; Dubbeld, J; Bakker, JP

    2005-01-01

    Soil nutrient-level and herbivory are predicted to have opposing effects on the allocation pattern of the competitive dominant plant species. Lower stem and higher leaf allocation are favoured when plants are grazed, whereas a higher stem allocation is favoured at high nutrient levels. Grazing by ha

  8. Grass Lignocellulose

    Science.gov (United States)

    Akin, Danny E.

    Grass lignocelluloses are limited in bioconversion by aromatic constituents, which include both lignins and phenolic acids esters. Histochemistry, ultraviolet absorption microspectrophotometry, and response to microorganisms and specific enzymes have been used to determine the significance of aromatics toward recalcitrance. Coniferyl lignin appears to be the most effective limitation to biodegradation, existing in xylem cells of vascular tissues; cell walls with syringyl lignin, for example, leaf sclerenchyma, are less recalcitrant. Esterified phenolic acids, i.e., ferulic and p-coumaric acids, often constitute a major chemical limitation in nonlignified cell walls to biodegradation in grasses, especially warm-season species. Methods to improve biodegradability through modification of aromatics include: plant breeding, use of lignin-degrading white-rot fungi, and addition of esterases. Plant breeding for new cultivars has been especially effective for nutritionally improved forages, for example, bermudagrasses. In laboratory studies, selective white-rot fungi that lack cellulases delignified the lignocellulosic materials and improved fermentation of residual carbohydrates. Phenolic acid esterases released p-coumaric and ferulic acids for potential coproducts, improved the available sugars for fermentation, and improved biodegradation. The separation and removal of the aromatic components for coproducts, while enhancing the availability of sugars for bioconversion, could improve the economics of bioconversion.

  9. Transgenic tobacco plants overexpressing a grass PpEXP1 gene exhibit enhanced tolerance to heat stress.

    Directory of Open Access Journals (Sweden)

    Qian Xu

    Full Text Available Heat stress is a detrimental abiotic stress limiting the growth of many plant species and is associated with various cellular and physiological damages. Expansins are a family of proteins which are known to play roles in regulating cell wall elongation and expansion, as well as other growth and developmental processes. The in vitro roles of expansins regulating plant heat tolerance are not well understood. The objectives of this study were to isolate and clone an expansin gene in a perennial grass species (Poa pratensis and to determine whether over-expression of expansin may improve plant heat tolerance. Tobacco (Nicotiana tabacum was used as the model plant for gene transformation and an expansin gene PpEXP1 from Poa pratensis was cloned. Sequence analysis showed PpEXP1 belonged to α-expansins and was closely related to two expansin genes in other perennial grass species (Festuca pratensis and Agrostis stolonifera as well as Triticum aestivum, Oryza sativa, and Brachypodium distachyon. Transgenic tobacco plants over-expressing PpEXP1 were generated through Agrobacterium-mediated transformation. Under heat stress (42°C in growth chambers, transgenic tobacco plants over-expressing the PpEXP1 gene exhibited a less structural damage to cells, lower electrolyte leakage, lower levels of membrane lipid peroxidation, and lower content of hydrogen peroxide, as well as higher chlorophyll content, net photosynthetic rate, relative water content, activity of antioxidant enzyme, and seed germination rates, compared to the wild-type plants. These results demonstrated the positive roles of PpEXP1 in enhancing plant tolerance to heat stress and the possibility of using expansins for genetic modification of cool-season perennial grasses in the development of heat-tolerant germplasm and cultivars.

  10. Effect of species of cool-season annual grass interseeded into Bermudagrass sod on the performance of growing calves.

    Science.gov (United States)

    Beck, P A; Stewart, C B; Phillips, J M; Watkins, K B; Gunter, S A

    2007-02-01

    Two experiments were conducted to evaluate the effect of species of cool-season annual grass on the growth of stocker cattle over 3 yr. In Exp. 1, the small grains (SG) oat (O), rye (R), and wheat (W), or combinations of SG and annual ryegrass (RG), were interseeded into Bermudagrass sod in a completely randomized design with a 3 x 2 factorial arrangement of treatments. In Exp. 2, RG was planted alone or with O, R, triticale (T), or W in a completely randomized design. Pastures were planted in late October of each year, and seeding rates were 134.4 and 22.4 kg/ha for SG and RG, respectively. In Exp. 1, grazing was initiated on December 18. In Exp. 2, grazing was initiated on December 23 for SG pastures and January 21 or February 16 for RG pastures in yr 1 and on December 8 for all pastures in yr 2. Grazing was managed using the put-and-take method, in which additional calves were added as needed to maintain equal grazing pressure among pastures. In Exp. 1, no interactions (P > or = 0.28) were detected, so the main effects of SG species and RG addition are discussed. From December 18 to March 12, there were no differences in ADG (P > or = 0.17), whereas during the spring (from March 12 to May 7), addition of RG increased (P = 0.05) ADG. Using RG increased (P or = 0.44) in ADG, BW gain/hectare, or grazing-days/hectare. In conclusion, the choice of cool-season annual to establish is highly weather-dependent, but R and W are generally superior to other small grains, and RG is a necessary complement to SG when interseeding cool-season annuals into Bermudagrass sod.

  11. The Physical and Biochemical Alteration of the Platte River by Phragmites australis, an Invasive Species of Wetland Grass

    Science.gov (United States)

    Mohr, R. C.; Krueger, R.; Triplett, L.; Michal, T.; Kettenring, K. M.

    2014-12-01

    Invasive species can have a profound impact on the ecosystems to which they are introduced. Beginning in 2003, the Platte River, Nebraska, USA, was invaded by an aggressive species of wetland grass, Phragmites australis. The invasion by Phragmites, in combination with river flow reductions due to agricultural irrigation, has drastically altered the character and morphology of the river. Once a braided and largely unvegetated river, the Platte had become densely colonized with vegetation by 2010. We measured some physical and biochemical characteristics of Platte River sediments to infer how that vegetation has changed the system. Specifically, we measured particle size, which is an indicator of flow velocity, and biogenic silica (BSi), which is a critical source of silicon for some aquatic organisms. Sediment was collected from areas of the riverbed that are unvegetated, and from areas that are occupied by Phragmites or native vegetation. Particle size was measured using a laser diffractometer to determine how much fine particle deposition was occurring. Biogenic silica (BSi) concentrations were measured using timed NaOH digestions and inductively coupled plasma mass spectrometry (ICP-MS). Our results indicate that stands of Phragmites in the Platte River cause more deposition of finer silt-sized particles than other parts of the river that are unvegetated or are occupied by native vegetation. Also, Phragmites increased the sequestration of BSi in the river sediments. These changes to the Platte reverberate beyond the river itself; by sequestering silica in sediments, Phragmites could be diminishing the supply of silica to estuaries and coastal oceans. Hypothesizing that the silica content of the Platte's water had been reduced by the arrival of Phragmites, we measured dissolved (DSi) and biogenic silica (BSi) concentrations of Platte water using ICP-MS to compare to existing data from the 1990s.

  12. Contrasting nurse plants and nurse rocks: The spatial distribution of seedlings of two sub-Antarctic species

    Science.gov (United States)

    Haussmann, N. S.; McGeoch, M. A.; Boelhouwers, J. C.

    2010-05-01

    Positive plant interactions, such as those associated with nurse plants, have been suggested to dominate over negative interactions in environments with high abiotic stress. Here we demonstrate that the sub-Antarctic cushion plant species, Azorella selago (Apiaceae), positively affects the distribution of both its own seedlings and those of the perennial grass, Agrostis magellanica (Poaceae). As a result of the light weight and small size of seeds of both species, coupled with strong winds experienced in the study area, we consider it unlikely that these patterns are the result of very localized seed dispersal from the study cushions themselves. Instead, we suggest that both cushions and rocks act as seed traps, trapping seeds dispersed by wind, runoff and/or downslope sediment transport through frost creep. In addition, increased A. selago seedling numbers around cushions, but not around rocks, suggest that cushions provide a biological nurse effect, such as improving soil nutrient status or providing mychorrizae, to seedlings of their own kind.

  13. Competition between a Lawn-Forming Cynodon dactylon and a Tufted Grass Species Hyparrhenia hirta on a South-African Dystrophic Savanna

    Science.gov (United States)

    Zwerts, J. A.; Prins, H. H. T.; Bomhoff, D.; Verhagen, I.; Swart, J. M.; de Boer, W. F.

    2015-01-01

    South African savanna grasslands are often characterised by indigestible tufted grass species whereas lawn grasses are far more desirable in terms of herbivore sustenance. We aimed to investigate the role of nutrients and/or the disturbance (grazing, trampling) by herbivores on the formation of grazing lawns. We conducted a series of common garden experiments to test the effect of nutrients on interspecific competition between a typical lawn-forming grass species (Cynodon dactylon) and a species that is frequently found outside grazing lawns (Hyparrhenia hirta), and tested for the effect of herbivore disturbance in the form of trampling and clipping. We also performed a vegetation and herbivore survey to apply experimentally derived insights to field observations. Our results showed that interspecific competition was not affected by soil nutrient concentrations. C. dactylon did show much more resilience to disturbance than H. hirta, presumably due to the regenerative capacity of its rhizomes. Results from the field survey were in line with these findings, describing a correlation between herbivore pressure and C. dactylon abundance. We conclude that herbivore disturbance, and not soil nutrients, provide C. dactylon with a competitive advantage over H. hirta, due to vegetative regeneration from its rhizomes. This provides evidence for the importance of concentrated, high herbivore densities for the creation and maintenance of grazing lawns. PMID:26510157

  14. Competition between a Lawn-Forming Cynodon dactylon and a Tufted Grass Species Hyparrhenia hirta on a South-African Dystrophic Savanna.

    Directory of Open Access Journals (Sweden)

    J A Zwerts

    Full Text Available South African savanna grasslands are often characterised by indigestible tufted grass species whereas lawn grasses are far more desirable in terms of herbivore sustenance. We aimed to investigate the role of nutrients and/or the disturbance (grazing, trampling by herbivores on the formation of grazing lawns. We conducted a series of common garden experiments to test the effect of nutrients on interspecific competition between a typical lawn-forming grass species (Cynodon dactylon and a species that is frequently found outside grazing lawns (Hyparrhenia hirta, and tested for the effect of herbivore disturbance in the form of trampling and clipping. We also performed a vegetation and herbivore survey to apply experimentally derived insights to field observations. Our results showed that interspecific competition was not affected by soil nutrient concentrations. C. dactylon did show much more resilience to disturbance than H. hirta, presumably due to the regenerative capacity of its rhizomes. Results from the field survey were in line with these findings, describing a correlation between herbivore pressure and C. dactylon abundance. We conclude that herbivore disturbance, and not soil nutrients, provide C. dactylon with a competitive advantage over H. hirta, due to vegetative regeneration from its rhizomes. This provides evidence for the importance of concentrated, high herbivore densities for the creation and maintenance of grazing lawns.

  15. Experimental determination of vertical uprooting resistance for grass species used in flume experiments

    Science.gov (United States)

    Edmaier, K.; Crouzy, B.; Ennos, R.; Burlando, P.; Perona, P.

    2012-12-01

    Vegetation affects river morphodynamics by contributing to the stabilization of alluvial sediment via the root system. The survival and establishment of riparian pioneer vegetation on river bars and islands is determined by timescales of vegetation growth and flood interarrival times. Several laboratory experiments have investigated the role of vegetation in river morphodynamics but none of those has quantied the forces involved to produce uprooting of growing plants. Thus, parallel analyses on root resistance to uprooting are needed. In this work we investigate the uprooting resistance of young vegetation in laboratory experiments, where we vertically uprooted seedlings of Avena sativa and Medicago sativa. Uprooting force and work were related to the root structure (root length, number of roots, root tortuosity) and environmental conditions (grain size, saturation). We found the uprooting work of both species to follow a power law relation with the total root length which was found to be the main driving factor of the process. In addition, the number of roots was found to increase uprooting work. For similar total root length, the multi-root system of Avena sativa shows greater uprooting resistance in terms of work than the single-root system of Medicago sativa. Less sediment saturation produces higher uprooting forces and favors root breaking. Smaller sediment sizes lead to a higher uprooting resistance than bigger ones. Nevertheless, both saturation and grain size showed minor influence on the uprooting process compared to root characteristics. From measured uprooting forces of Avena sativa grown on sediment with a grain size distribution similar to that used in the flume experiments of Perona et al. (2012) we computed the ensemble probability of Avena sativa being uprooted by a particular drag force at certain growth stages, allowing us to compute a probability distribution of being uprooted in dependence of the root length and thus experimentally assess the

  16. Identification of some Malaysian grasses

    NARCIS (Netherlands)

    Henrard, J.Th.

    1935-01-01

    When BUSE gave an enumeration of the grasses collected by JUNGHUHN in Java and Sumatra, he mentioned under Paspalum a species, described by RETZIUS in the year 1781 as Paspalum hirsutum. BUSE identified a grass from Sumatra as being the species of RETZIUS, on account of the description, having certa

  17. A high-throughput Agrobacterium-mediated transformation system for the grass model species Brachypodium distachyon L.

    Science.gov (United States)

    Păcurar, Daniel Ioan; Thordal-Christensen, Hans; Nielsen, Klaus Kristian; Lenk, Ingo

    2008-10-01

    In the ongoing process of developing Brachypodium distachyon as a model plant for temperate cereals and forage grasses, we have developed a high-throughput Agrobacterium-mediated transformation system for a diploid accession. Embryogenic callus, derived from immature embryos of the accession BDR018, were transformed with Agrobacterium tumefaciens strain AGL1 carrying two T-DNA plasmids, pDM805 and pWBV-Ds-Ubi-bar-Ds. Transient and stable transformation efficiencies were optimised by varying the pre-cultivation period, which had a strong effect on stable transformation efficiency. On average 55% of 17-day-old calli co-inoculated with Agrobacterium regenerated stable transgenic plants. Stable transformation frequencies of up to 80%, which to our knowledge is the highest transformation efficiency reported in graminaceous species, were observed. In a study of 177 transgenic lines transformed with pDM805, all of the regenerated transgenic lines were resistant to BASTA, while the gusA gene was expressed in 88% of the transgenic lines. Southern blot analysis revealed that 35% of the tested plants had a single T-DNA integration. Segregation analysis performed on progenies of ten selected T(0) plants indicated simple Mendelian inheritance of the two transgenes. Furthermore, the presence of two selection marker genes, bar and hpt, on the T-DNA of pWBV-Ds-Ubi-bar-Ds allowed us to characterize the developed transformation protocol with respect to full-length integration rate. Even when not selected for, full-length integration occurred in 97% of the transformants when using bialaphos as selection agent.

  18. The effect of hydraulic lift on organic matter decomposition, soil nitrogen cycling, and nitrogen acquisition by a grass species.

    Science.gov (United States)

    Armas, Cristina; Kim, John H; Bleby, Timothy M; Jackson, Robert B

    2012-01-01

    Hydraulic lift (HL) is the passive movement of water through plant roots, driven by gradients in water potential. The greater soil-water availability resulting from HL may in principle lead to higher plant nutrient uptake, but the evidence for this hypothesis is not universally supported by current experiments. We grew a grass species common in North America in two-layer pots with three treatments: (1) the lower layer watered, the upper one unwatered (HL), (2) both layers watered (W), and (3) the lower layer watered, the upper one unwatered, but with continuous light 24 h a day to limit HL (no-HL). We inserted ingrowth cores filled with enriched-nitrogen organic matter ((15)N-OM) in the upper layer and tested whether decomposition, mineralization and uptake of (15)N were higher in plants performing HL than in plants without HL. Soils in the upper layer were significantly wetter in the HL treatment than in the no-HL treatment. Decomposition rates were similar in the W and HL treatments and lower in no-HL. On average, the concentration of NH(4)(+)-N in ingrowth cores was highest in the W treatment, and NO(3)(-)-N concentrations were highest in the no-HL treatment, with HL having intermediate values for both, suggesting differential mineralization of organic N among treatments. Aboveground biomass, leaf (15)N contents and the (15)N uptake in aboveground tissues were higher in W and HL than in no-HL, indicating higher nutrient uptake and improved N status of plants performing HL. However, there were no differences in total root nitrogen content or (15)N uptake by roots, indicating that HL affected plant allocation of acquired N to photosynthetic tissues. Our evidence for the role of HL in organic matter decomposition and nutrient cycling suggests that HL could have positive effects on plant nutrient dynamics and nutrient turnover.

  19. Neglected grass species of Southern Africa: Nutritive value of conserved Hyperthelia dissoluta harvested at different growth stages

    Directory of Open Access Journals (Sweden)

    Jacob Gusha

    2016-09-01

    Full Text Available Native species like Hyperthelia dissoluta have great potential in livestock production but not much has been done to improve their contribution to that sector.  This study examined 2 conservation methods (drying and ensiling and 3 different growth stages, namely: elongation stage (January, early flowering (February and late flowering stage (March of H. dissoluta in terms of nutritional composition and digestibility.  The method of conservation had a significant effect (P<0.05 on nutritive value, with silage having more P and CP than hay.  Stage of growth had an effect (P<0.05 on all nutritional properties of both hay and silage:  Phosphorus, Ca and CP concentrations and digestibility of hay and silage decreased with maturity, while NDF and ADF concentrations increased.  Silage pH value was significantly higher at elongation (5.2 and late flowering growth stages (5.7 than at early flowering (4.4.  Dry matter digestibility of the conserved material reached levels as high as 82% for silage made at the elongation stage with all values at least 60%.  We conclude that H. dissoluta can be conserved as both silage and hay to produce a good quality feed.  Harvesting at the early flowering stage would seem to provide a good compromise between quantity (not measured in this study and quality of harvested forage.  Further studies seem warranted to determine the acceptability and intake of the material by livestock, the advantages of adding fermentable carbohydrates during ensiling and DM yields in different areas and a range of seasonal conditions. Keywords: Air drying, hay, perennial native grasses, plastic bag silo, quality silage.DOI: 10.17138/TGFT(4179-184

  20. Characterization of SO/sub 2/ damage to field-, grassland- and forest-stands. [Agrostis stolonifera; Nardus stricta; Arrhenatherum elatius; Poa alpina; Silene cucubalus

    Energy Technology Data Exchange (ETDEWEB)

    Kutschera, L.

    1984-01-01

    The development of vegetation in an industrial area of South Kaernten (Austria) under the influence of SO/sub 2/ and heavy metals is described. Following a historical overview of the environmental impact of these ecotoxicants the author reports about comparative investigations on the effects of SO/sub 2/ on field- and forest stands. Although the concentration of heavy metals in the upper layers of the soil were high woodlands with herbplantpopulations could survive, but since 1951 the SO/sub 2/-immision destroyed completely several of these herbplantpopulations and reduced the growth of Quercus robur to a hight of 15-50 cm. In pasture lands the effects are characterized by increased occurrence of adapted species like Agrostis stolonifera and Nardus stricta and by a reduction of the root growth of Arrhenatherum elatius from the normal length in this area of ca. 130 cm to a length of 35 cm. Ecotypes of Agrostis stolonifera, Poa alpina and Silene cucubalus are further described in relation to their occurrence on the contaminated habitats of the area investigated. In some cases the damage on crops as barley and on grassland plants can be greater than on trees.

  1. THE EFFECT OF GROWTH REGULATOR ON STRUCTURAL AND NON-STRUCTURAL CARBOHYDRATES AND LIGNIN CONTENT IN SELECTED GRASS SPECIES AND CULTIVARS

    Directory of Open Access Journals (Sweden)

    Grażyna Anna Ciepiela

    2015-06-01

    Full Text Available The research was undertaken to determine the effect of the biostimulant Kelpak SL, derived from brown seaweed species Ecklonia maxima (kelp, on structural and non-structural carbohydrates, as well as lignin content in orchard grass and Braun’s festulolium. The experiment was a split-plot arrangement with three replicates. It was set up at the experimental facility of the University of Natural Sciences and Humanities, Siedlce, in late April 2009. The following factors were examined: an application of the plant growth regulator Kelpak SL applied at the rate of 2 dm3· ha-1 vs an untreated control (0 dm3· ha-1, pure sown grass species and cultivars grown in monoculture: Dactylis glomerata, cv. Amila and Tukan, as well as Festulolium braunii cv. Felopa and Agula. This study revealed that an application of Kelpak significantly reduced cellulose, hemicellulose and lignin contents of the grasses but significantly increased non-structural carbohydrates, regardless of the remaining factors. Non-structural carbohydrates were the highest in Kelpak-treated Festulolium braunii (on average, 232.7 g · kg-1.

  2. Comparative feedstock analysis in Setaria viridis L. as a model for C4 bioenergy grasses and Panicoid crop species

    Directory of Open Access Journals (Sweden)

    Carloalberto ePetti

    2013-06-01

    Full Text Available Second generation feedstocks for bioethanol will likely include a sizable proportion of perennial C4 grasses, principally in the Panicoideae clade. The Panicoideae contain agronomically important annual grasses including Zea mays L. (maize, Sorghum bicolor (L. Moench (sorghum, and Saccharum officinarum L. (sugar cane as well as promising second generation perennial feedstocks including Miscanthus x giganteus and Panicum virgatum L. (switchgrass. The underlying complexity of these polyploid grass genomes is a major limitation for their direct manipulation and thus driving a need for rapidly cycling comparative model. Setaria viridis (green millet is a rapid cycling C4 Panicoid grass with a relatively small and sequenced diploid genome and abundant seed production. Stable, transient and protoplast transformation technologies have also been developed for S. viridis making it a potentially excellent model for other C4 bioenergy grasses. Here, the lignocellulosic feedstock composition, cellulose biosynthesis inhibitor (CBI response and saccharification dynamics of S. viridis are compared with the annual s00orghum and maize and the perennial switchgrass bioenergy crops as a baseline study into the applicability for translational research. A genome-wide systematic investigation of the cellulose synthase-A (CesA genes was performed identifying eight candidate sequences. Two-developmental stages; a metabolically active young tissue and b metabolically plateaued (mature material are examined to compare biomass performance metrics.

  3. Optimization of delignification of two Pennisetum grass species by NaOH pretreatment using Taguchi and ANN statistical approach.

    Science.gov (United States)

    Mohaptra, Sonali; Dash, Preeti Krishna; Behera, Sudhanshu Shekar; Thatoi, Hrudayanath

    2016-01-01

    In the bioconversion of lignocelluloses for bioethanol, pretreatment seems to be the most important step which improves the elimination of the lignin and hemicelluloses content, exposing cellulose to further hydrolysis. The present study discusses the application of dynamic statistical techniques like the Taguchi method and artificial neural network (ANN) in the optimization of pretreatment of lignocellulosic biomasses such as Hybrid Napier grass (HNG) (Pennisetum purpureum) and Denanath grass (DG) (Pennisetum pedicellatum), using alkali sodium hydroxide. This study analysed and determined a parameter combination with a low number of experiments by using the Taguchi method in which both the substrates can be efficiently pretreated. The optimized parameters obtained from the L16 orthogonal array are soaking time (18 and 26 h), temperature (60°C and 55°C), and alkali concentration (1%) for HNG and DG, respectively. High performance liquid chromatography analysis of the optimized pretreated grass varieties confirmed the presence of glucan (47.94% and 46.50%), xylan (9.35% and 7.95%), arabinan (2.15% and 2.2%), and galactan/mannan (1.44% and 1.52%) for HNG and DG, respectively. Physicochemical characterization studies of native and alkali-pretreated grasses were carried out by scanning electron microscopy and Fourier transformation Infrared spectroscopy which revealed some morphological differences between the native and optimized pretreated samples. Model validation by ANN showed a good agreement between experimental results and the predicted responses.

  4. Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Gulf of Mexico). GRASS SHRIMP.

    Science.gov (United States)

    1985-03-01

    and the spermatozoa are released. Ova stages may enhance dispersal (Sandifer are fertilized externally as they are and Smith 1979). extruded, then...salinity, temperature and zinc pugio Holthuis. Am. Zool. 16:240. on larval development of the grass shrimp Palaemonetes pugio. 1. Knieb, R.T., and A.E

  5. Forage yield and nutritive value of Elephant grass, Italian ryegrass and spontaneous growing species mixed with forage peanut or red clover

    Directory of Open Access Journals (Sweden)

    Michelle Schalemberg Diehl

    2014-10-01

    Full Text Available The objective of this research was to evaluate of three grazing systems (GS with elephant grass (EG, Italian ryegrass (IR + spontaneous growing species (SGS; EG + IR + SGS + forage peanut (FP; and EG + IR + SGS + red clover (RC, during the winter and summer periods in rotational grazing with dairy cattle. Experimental design was completely randomized with three treatments, two replicates with repeated measures. Lactating Holstein cows receiving 1% BW-daily feed supplement with concentrate were used in the evaluation. Eight grazing cycles were performed during the experimental period. The values of pre forage mass and stocking rate were 2.52, 2.60 and 2.99 t ha-1 and 2.64, 2.77 and 3.14 animal unit ha-1, respectively for GS. Samples of forage were collected by hand-plucking technique to analyze the crude protein (CP, neutral detergent fiber (NDF, in situ dry matter digestibility (ISDMD, in situ organic matter digestibility (ISOMD of forage present between rows of elephant grass, in the rows of elephant grass and the legumes. Higher value of CP, ISOMD and lower of NDF were observed for the grazing systems mixed with legumes forage.

  6. Seasonal variations of cadmium and zinc in Arrhenatherum elatius, a perennial grass species from highly contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Deram, Annabelle [Institut Lillois d' Ingenierie de la Sante, Universite Droit et Sante de Lille, EA 2690, 42 rue Ambroise Pare, 59120 Loos (France)]. E-mail: aderam@ilis.univ-lille2.fr; Denayer, Franck-Olivier [Institut Lillois d' Ingenierie de la Sante, Universite Droit et Sante de Lille, EA 2690, 42 rue Ambroise Pare, 59120 Loos (France); Petit, Daniel [Laboratoire de Genetique et Evolution des Populations Vegetales, UPRESA-CNRS 8016, Bat SN2, Universite des Sciences et Techniques de Lille, 59655 Villeneuve d' Ascq, F59655 France (France); Van Haluwyn, Chantal [Faculte des Sciences Pharmaceutiques et Biologiques, Departement de Botanique, Universite Droit et Sante de Lille, EA 2690, B.P. 83, 59006 Lille Cedex (France)

    2006-03-15

    There is interest in studying bioaccumulation in plants because they form the base of the food chain as well as their potential use in phytoextraction. From this viewpoint, our study deals with the seasonal variation, from January to July, of Cd and Zn bioaccumulation in three metallicolous populations of Arrhenatherum elatius, a perennial grass with a high biomass production. In heavily polluted soils, while Zn bioaccumulation is weak, A. elatius accumulates more Cd than reported gramineous plants, with concentration of up to 100 {mu}g g{sup -1}. Our results also showed seasonal variations of bioaccumulation, underlying the necessity for in situ studies to specify the date of sampling and also the phenology of the collected plant sample. In our experimental conditions, accumulation is lower in June, leading us to the hypothesis of restriction in heavy metals translocation from roots to aerial parts during seed production. - Cd and Zn bioaccumulation varies seasonally in a perennial grass.

  7. Behavioral analysis of Microphallus turgidus cercariae in relation to microhabitat of two host grass shrimp species (Palaemonetes spp.).

    Science.gov (United States)

    O'Leary, Patricia A; Pung, Oscar J

    2017-01-24

    The behavior of Microphallus turgidus cercariae was examined and compared to microhabitat selection of the second intermediate hosts of the parasite, Palaemonetes spp. grass shrimp. Cercariae were tested for photokinetic and geotactic responses, and a behavioral ethogram was established for cercariae in control and grass shrimp-conditioned brackish water. Photokinesis trials were performed using a half-covered Petri dish, and geotaxis trials used a graduated cylinder. Both photokinesis and geotaxis trials were performed in lighted and unlighted conditions. In 9 of 10 photokinesis experiments, over half of the cercariae swam horizontally under the covered half of a Petri dish in both the lighted and the unlighted trials. However, movement of the cercariae to the covered half of the dish was highest (81.4%) when the parasites were exposed to light. In the geotaxis study, most cercariae were found in the bottom third of a graduated cylinder water column in both the lighted and unlighted trials. The most frequently observed activity of individual cercariae in a lighted Petri dish was swimming on the bottom of the dish. Activity patterns of the cercariae were not affected by shrimp-conditioned water. Movement of the cercariae away from light into dark, active swimming at or near the bottom of the water column, and a lack of response to host odors suggest that the cercariae utilize search patterns that place the parasite in the preferred microhabitat of the principle second intermediate host, the grass shrimp P. pugio.

  8. Prospects for Hybrid Breeding in Bioenergy Grasses

    DEFF Research Database (Denmark)

    Aguirre, Andrea Arias; Studer, Bruno; Frei, Ursula

    2012-01-01

    of different hybrid breeding schemes to optimally exploit heterosis for biomass yield in perennial ryegrass (Lolium perenne L.) and switchgrass (Panicum virgatum), two perennial model grass species for bioenergy production. Starting with a careful evaluation of current population and synthetic breeding methods...... and MS for the two bioenergy grass species, and discuss how molecular tools and synteny can be used to transfer relevant information for genes controlling these biological mechanisms across grass species...

  9. Grass pollen allergens globally: the contribution of subtropical grasses to burden of allergic respiratory diseases.

    Science.gov (United States)

    Davies, J M

    2014-06-01

    Grass pollens of the temperate (Pooideae) subfamily and subtropical subfamilies of grasses are major aeroallergen sources worldwide. The subtropical Chloridoideae (e.g. Cynodon dactylon; Bermuda grass) and Panicoideae (e.g. Paspalum notatum; Bahia grass) species are abundant in parts of Africa, India, Asia, Australia and the Americas, where a large and increasing proportion of the world's population abide. These grasses are phylogenetically and ecologically distinct from temperate grasses. With the advent of global warming, it is conceivable that the geographic distribution of subtropical grasses and the contribution of their pollen to the burden of allergic rhinitis and asthma will increase. This review aims to provide a comprehensive synthesis of the current global knowledge of (i) regional variation in allergic sensitivity to subtropical grass pollens, (ii) molecular allergenic components of subtropical grass pollens and (iii) allergic responses to subtropical grass pollen allergens in relevant populations. Patients from subtropical regions of the world show higher allergic sensitivity to grass pollens of Chloridoideae and Panicoideae grasses, than to temperate grass pollens. The group 1 allergens are amongst the allergen components of subtropical grass pollens, but the group 5 allergens, by which temperate grass pollen extracts are standardized for allergen content, appear to be absent from both subfamilies of subtropical grasses. Whilst there are shared allergenic components and antigenic determinants, there are additional clinically relevant subfamily-specific differences, at T- and B-cell levels, between pollen allergens of subtropical and temperate grasses. Differential immune recognition of subtropical grass pollens is likely to impact upon the efficacy of allergen immunotherapy of patients who are primarily sensitized to subtropical grass pollens. The literature reviewed herein highlights the clinical need to standardize allergen preparations for both

  10. Patogenicidade de Helminthosporium oryzae a algumas espécies de gramíneas Pathogenicity of Helminthosporium oryzae against some grass species

    Directory of Open Access Journals (Sweden)

    V.H. Artigiani Filho

    1995-04-01

    Full Text Available O fungo Helminthosporium oryzae é um patógeno do arroz. Devido a sua variabilidade patogênica, foi investigada a possibilidade deste fungo infectar outras gramíneas. Através de inoculação artificial, ficou demonstrada a capacidade deste patógeno provocar infecção em aveia, cana, centeio, sorgo, trigo, Brachiaria decumbens e Panicum maximum. Assim, estas espécies vegetais podem ser consideradas potenciais hospedeiros do fungo na natureza.Helminthosporium oryzae is a rice pathogen. Due to its variability in pathogenicity, the possibility of this fungus Infecting other grasses was investigated. The capacity of this pathogen was demonstrated to be able to infect oat, sugar-cane, rye, sorghum, wheat, Brachiaria decumbens and Panicum maximum through artificial inoculations. Therefore, those plant species can be considered potencial hosts for the fungus in nature.

  11. Multiple grass mixes as opposed to single grasses for allergen immunotherapy in allergic rhinitis.

    Science.gov (United States)

    Gangl, K; Niederberger, V; Valenta, R

    2013-11-01

    Grass pollen allergy affects approximately 40% of allergic patients. Subcutaneous allergen immunotherapy (SCIT) is the only allergen-specific and disease-modifying treatment available. Currently available therapeutic vaccines for the treatment of grass pollen allergy are based on natural grass pollen extracts which are either made from pollen of one cross-reactive grass species or from several related grass species. Clinical studies have shown that SCIT performed with timothy grass pollen extract is effective for the treatment of grass pollen allergy. Moreover, it has been demonstrated that recombinant timothy grass pollen allergens contain the majority of relevant epitopes and can be used for SCIT in clinical trials. However, recent in vitro studies have suggested that mixes consisting of allergen extracts from several related grass species may have advantages for SCIT over single allergen extracts. Here, we review current knowledge regarding the disease-relevant allergens in grass pollen allergy, available clinical studies comparing SCIT with allergen extracts from timothy grass or from mixes of several related grass species of the Pooideae subfamily, in vitro cross-reactivity studies performed with natural allergen extracts and recombinant allergens and SCIT studies performed with recombinant timothy grass pollen allergens. In vitro and clinical studies performed with natural allergen extracts reveal no relevant advantages of using multiple grass mixes as opposed to single grass pollen extracts. Several studies analysing the molecular composition of natural allergen extracts and the molecular profile of patients' immune responses after SCIT with allergen extracts indicate that the major limitation for the production of a high quality grass pollen vaccine resides in intrinsic features of natural allergen extracts which can only be overcome with recombinant allergen-based technologies.

  12. EVALUATING THE ROLE OF HABITAT QUALITY ON ESTABLISHMENT OF GM AGROSTIS STOLONIFERA IN NON-AGRONOMIC ENVIRONMENTS

    Science.gov (United States)

    The initial flowering of experimental fields of the GM wind-pollinated plant Agrostis stolonifera L. that expressed an engineered gene (CP4 EPSPS) for resistance to glyphosate herbicide in central Oregon in 2003 afforded researchers a unique opportunity to track gene flow ...

  13. Spectral resampling based on user-defined inter-band correlation filter: C3 and C4 grass species classification

    Science.gov (United States)

    Adjorlolo, Clement; Mutanga, Onisimo; Cho, Moses A.; Ismail, Riyad

    2013-04-01

    In this paper, a user-defined inter-band correlation filter function was used to resample hyperspectral data and thereby mitigate the problem of multicollinearity in classification analysis. The proposed resampling technique convolves the spectral dependence information between a chosen band-centre and its shorter and longer wavelength neighbours. Weighting threshold of inter-band correlation (WTC, Pearson's r) was calculated, whereby r = 1 at the band-centre. Various WTC (r = 0.99, r = 0.95 and r = 0.90) were assessed, and bands with coefficients beyond a chosen threshold were assigned r = 0. The resultant data were used in the random forest analysis to classify in situ C3 and C4 grass canopy reflectance. The respective WTC datasets yielded improved classification accuracies (kappa = 0.82, 0.79 and 0.76) with less correlated wavebands when compared to resampled Hyperion bands (kappa = 0.76). Overall, the results obtained from this study suggested that resampling of hyperspectral data should account for the spectral dependence information to improve overall classification accuracy as well as reducing the problem of multicollinearity.

  14. Effects of a copper-tolerant grass (Agrostis capillaris) on the ecosystem of a copper-contaminated arable soil

    NARCIS (Netherlands)

    Boon, GT; Bouwman, LA; Bloem, J; Romkens, PFAM

    1998-01-01

    To test how a dysfunctioning ecosystem of a severely metal-polluted soil responds to renewed plant growth, a pot experiment was conducted with soil from an experimental arable field with pH and copper gradients imposed 13 years ago. In this experiment, four pH/copper combinations from this field wer

  15. Effects of a copper tolerant grass (Agrostis capillaris) on the ecosystem of a copper-contaminated arable soil

    NARCIS (Netherlands)

    Boon, G.T.; Bouwman, L.A.; Bloem, J.; Römkens, P.F.A.M.

    1998-01-01

    To test how a dysfunctioning ecosystem of a severely metal-polluted soil responds to renewed plant growth, a pot experiment was conducted with soil from an experimental arable field with pH and copper gradients imposed 13 years ago. In this experimentfour pH/copper combinations from this field were

  16. Attacking invasive grasses

    Science.gov (United States)

    Keeley, Jon E.

    2015-01-01

    In grasslands fire may play a role in the plant invasion process, both by creating disturbances that potentially favour non-native invasions and as a possible tool for controlling alien invasions. Havill et al. (Applied Vegetation Science, 18, 2015, this issue) determine how native and non-native species respond to different fire regimes as a first step in understanding the potential control of invasive grasses.

  17. The importance of rare species: a trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies.

    Science.gov (United States)

    Jain, Meha; Flynn, Dan Fb; Prager, Case M; Hart, Georgia M; Devan, Caroline M; Ahrestani, Farshid S; Palmer, Matthew I; Bunker, Daniel E; Knops, Johannes Mh; Jouseau, Claire F; Naeem, Shahid

    2014-01-01

    The majority of species in ecosystems are rare, but the ecosystem consequences of losing rare species are poorly known. To understand how rare species may influence ecosystem functioning, this study quantifies the contribution of species based on their relative level of rarity to community functional diversity using a trait-based approach. Given that rarity can be defined in several different ways, we use four different definitions of rarity: abundance (mean and maximum), geographic range, and habitat specificity. We find that rarer species contribute to functional diversity when rarity is defined by maximum abundance, geographic range, and habitat specificity. However, rarer species are functionally redundant when rarity is defined by mean abundance. Furthermore, when using abundance-weighted analyses, we find that rare species typically contribute significantly less to functional diversity than common species due to their low abundances. These results suggest that rare species have the potential to play an important role in ecosystem functioning, either by offering novel contributions to functional diversity or via functional redundancy depending on how rare species are defined. Yet, these contributions are likely to be greatest if the abundance of rare species increases due to environmental change. We argue that given the paucity of data on rare species, understanding the contribution of rare species to community functional diversity is an important first step to understanding the potential role of rare species in ecosystem functioning.

  18. Grass species influence on plant N uptake - Determination of atmospheric N deposition to a semi-natural peat bog site using a 15N labelling approach

    Science.gov (United States)

    Hurkuck, Miriam; Brümmer, Christian; Spott, Oliver; Flessa, Heinz; Kutsch, Werner L.

    2014-05-01

    Large areas of natural peat bogs in Northwestern Germany have been converted to arable land and were subjected to draining and peat cutting in the past. The few protected peatland areas remaining are affected by high nitrogen (N) deposition. Our study site - a moderately drained raised bog - is surrounded by highly fertilized agricultural land and livestock production. In this study, we used a 15N pool dilution technique called 'Integrated Total Nitrogen Input' (ITNI) to quantify annual deposition of atmospheric N into biomonitoring pots over a two-year period. Since it considers direct N uptake by plants, it was expected to result in higher N input than conventional methods for determination of N deposition (e.g. micrometeorological approaches, bulk N samplers). Using Lolium multiflorum and Eriophorum vaginatum as monitor plants and low, medium and high levels of fertilization, we aimed to simulate increasing N deposition to planted pots and to allocate airborne N after its uptake by the soil-plant system in aboveground biomass, roots and soil. Increasing N fertilization was positively correlated with biomass production of Eriophorum vaginatum, whereas atmospheric plant N uptake decreased and highest airborne N input of 899.8 ± 67.4 µg N d-1 pot-1 was found for low N fertilization. In contrast, Lolium multiflorum showed a clear dependency of N supply on plant N uptake and was highest (688.7 ± 41.4 µg N d-1 pot-1) for highly fertilized vegetation pots. Our results suggest that grass species respond differently to increasing N input. While crop grasses such as Lolium multiflorum take up N according to N availability, species adopted to nutrient-limited conditions like Eriophorum vaginatum show N saturation effects with increasing N supply. Total airborne N input ranged from about 24 to 66 kg N ha-1 yr-1 dependent on the used indicator plant and the amount of added fertilizer. Parallel determination of atmospheric N deposition using a micrometeorological approach

  19. Four new species of the grass feeding leafhopper genus Nicolaus Lindberg (Hemiptera: Cicadellidae: Deltocephalinae) from the Indian subcontinent.

    Science.gov (United States)

    Viraktamath, C A; Webb, M D

    2014-01-01

    The leafhopper genus Nicolaus Lindberg is recorded from India and Pakistan for the first time. Four new species, N. abuensis sp. nov., N. bidentatus sp. nov., N. cornutus sp. nov. and N. serratus sp. nov. are described and illustrated. N. bihamatus Xing & Li, earlier known from China is recorded from India and Pakistan. A key to the species of Nicolaus from the study area is provided.

  20. The effect of exotic grass Urochloa decumbens (Stapf R.D.Webster (Poaceae in the reduction of species richness and change of floristic composition of natural regeneration in the Floresta Nacional de Carajás, Brazil

    Directory of Open Access Journals (Sweden)

    LEANDRO V. FERREIRA

    2016-01-01

    Full Text Available ABSTRACT The introduction of exotic species is considered as one of the major causes of biodiversity loss. The National Forest of Carajás is one of the largest mineral provinces in the world. Mining activities caused changes of the natural habitats, leaving degraded areas after the mineral exploitation. One of the mining areas within FLONA Carajás was used for the extraction of gold. In the process of exploitation, a huge depression was formed by the removal of soil which was mounded up nearby. To prevent soil erosion of these mounds, an exotic grass, Urochloa decumbens (Stapf R.D.Webster (Poaceae was planted. The objective of this study was to compare the impact of this non-native grass on species richness and species composition of the natural regeneration in the degraded areas. Four areas were compared, two with and two without presence of U. decumbens. In each area, twenty four 1m²/plots were established. Species richness of the regeneration areas and population sizes were significantly lower in the plots where the exotic grass was present. Our study shows that U. decumbens had a negative effect on species richness and population density, and its presence changed the species composition and distribution of life forms of the natural regeneration.

  1. Differential tolerance of Agrostis tenuis populations growing at two mine soils to Cu, Zn, and Pb

    Energy Technology Data Exchange (ETDEWEB)

    Karataglis, S.S.

    1980-01-01

    The Cu, Zn and Pb tolerance of Agrostis tenuis Sibth. populations found in the area of two mines in England as well as in uncontaminated areas were studied by determining the effect of these metals on the rooting of tillers. The populations proved tolerant to the particular metals present in high quantities in the soil of their original habitats as compared to the populations collected from uncontaminated soil. The populations of the Trelogan mine were tolerant only to Zn and not to Cu and Pb. On the contrary, the populations in the mine of Parys Mountain were highly tolerant to all these metals. A linear correlation in the index of tolerance between Zn and Pb in both mines was found suggesting the possibility of a physiological association of the tolerance mechanisms to these two elements.

  2. Breeding for Grass Seed Yield

    DEFF Research Database (Denmark)

    Boelt, Birte; Studer, Bruno

    2010-01-01

    Seed yield is a trait of major interest for many fodder and amenity grass species and has received increasing attention since seed multiplication is economically relevant for novel grass cultivars to compete in the commercial market. Although seed yield is a complex trait and affected...... by agricultural practices as well as environmental factors, traits related to seed production reveal considerable genetic variation, prerequisite for improvement by direct or indirect selection. This chapter first reports on the biological and physiological basics of the grass reproduction system, then highlights...... important aspects and components affecting the seed yield potential and the agronomic and environmental aspects affecting the utilization and realization of the seed yield potential. Finally, it discusses the potential of plant breeding to sustainably improve total seed yield in fodder and amenity grasses....

  3. Native Grasses as a Management Alternative on Vegetated Closure Caps

    Science.gov (United States)

    Kwit, Charles; Collins, Beverly

    2008-06-01

    Capped waste sites often are vegetated with commercial turf grasses to increase evapotranspiration and prevent erosion and possible exposure of the barrier. Fertilizer, frequent watering, and mowing may be required to establish the turf grass and prevent invasion by trees and shrubs. Oldfield vegetation of grasses and forbs is a possible sustainable alternative to turf grass communities. To determine if oldfield vegetation can establish on caps, we (1) compared establishment of a dominant oldfield grass and a commercial turf grass under different combinations of new closure cap management: spring or summer planting and presence or absence of amendments to alleviate drought (watering, mulch) or increase soil fertility (fertilizer, lime, a nitrogen-fixing legume); (2) surveyed existing caps to determine if oldfield species establish naturally; and (3) performed a greenhouse experiment to compare growth of two native grasses under low and amended (added water, soil nutrients) conditions. Both the commercial grass and oldfield species established under new cap conditions; fertilizer, water, and mulch improved vegetation establishment in spring or summer, but legumes decreased grass cover. In the greenhouse, both native grasses grew best with amendments; however, substantial stem and root length were obtained with no fertilizer and only once-weekly watering. Existing vegetated caps supported planted grasses and naturally established oldfield species. Overall, the results indicate native grasses can establish on new caps and oldfields can serve as a management model; further work is needed to determine the management strategy to maintain herbaceous vegetation and slow woody species invasion.

  4. Distribution of grasses along an altitudinal gradient in a Venezuelan paramo Distribución de gramíneas a lo largo de un gradiente altitudinal en un páramo de Venezuela

    Directory of Open Access Journals (Sweden)

    EDJULY J. MÁRQUEZ

    2004-12-01

    Full Text Available In Venezuelan paramos grasses, after Asteraceae, are the second family in numerical importance. We studied their distribution in an altitudinal gradient located in Venezuela, Sierra de La Culata, between 2,500 and 4,200 m of altitude. Twenty one 32 m parallel line transects every 50 m were placed along the gradient, perpendicular to the main slope. Each line was divided into contiguous 50 x 50 cm sampling units. Grass species occurrence inside each sample unit was considered to determine their frequency in each line or altitude. The peak and altitudinal amplitude was determined through the weighted averaging method. A total of 47 grass species were found along the gradient. Agrostis was the best-represented genus in the gradient. Considering the distribution ranges, we assume that there are different biotic and abiotic processes determining the distribution patterns. The species occurring at the highest altitudes were temperate elements, while those in the lowest areas were tropical and subtropical elements. Seven species in the gradient are endemic to the Venezuelan paramos. Grass distribution patterns in the paramo may be related to phytogeographical origin. In order to better understand the plant altitudinal distribution pattern is necessary to consider the plant responses to low temperatures, high incoming radiation, water stress and slope aspectEn los páramos de Venezuela las gramíneas son la segunda familia numéricamente más importante, después de las Asteraceae. Nosotros estudiamos su distribución en un gradiente altitudinal ubicado en Venezuela, Sierra de La Culata, entre 2.500 y 4.200 m de altitud. Para esto colocamos 21 transectas de 32 m de longitud a lo largo del gradiente, ubicados de manera perpendicular a la pendiente, cada 50 m en altitud. Cada transecta estaba dividida en unidades de muestreo contiguas de 50 x 50 cm. Para estimar la frecuencia de las especies en cada transecta o altitud, consideramos la ocurrencia de las

  5. Three Grasses New to Turkey

    OpenAIRE

    SCHOLZ, Hildemar

    2014-01-01

    Studies on herbarium material of grasses recently collected in Turkey revealed the existence of three taxa hitherto not reported from this country: Bromus tomentellus Boiss. subsp. nivalis (Bornm.) H. Scholz & Byfield, subsp. et stat. nov., Microstegium vimineum (Trin.) A. Camus as a probably introduced plant, and Poa asiae-minoris H. Scholz & Byfield, sp. nova, described here as a species new to science.

  6. Three Grasses New to Turkey

    OpenAIRE

    SCHOLZ, Hildemar

    2000-01-01

    Studies on herbarium material of grasses recently collected in Turkey revealed the existence of three taxa hitherto not reported from this country: Bromus tomentellus Boiss. subsp. nivalis (Bornm.) H. Scholz & Byfield, subsp. et stat. nov., Microstegium vimineum (Trin.) A. Camus as a probably introduced plant, and Poa asiae-minoris H. Scholz & Byfield, sp. nova, described here as a species new to science.

  7. Elevated carbon dioxide effects on nitrogen dynamics in grasses, with emphasis on rhizosphere processes

    Energy Technology Data Exchange (ETDEWEB)

    Gorissen, A.; Cotrufo, M.F.

    1999-12-01

    Three perennial grass species, perennial ryegrass (Lolium perenne L.), colonial bentgrass (Agrostis capillaris L.), and sheep fescue (Festuca ovina L.), were grown at two CO{sub 2} concentrations (350 and 700 {micro}L L{sup {minus}1}) and under two N regimes: one with a minor addition of 8 kg N ha{sup {minus}1} and one with an addition of {approximately}278 kg N ha{sup {minus}1}, both labeled with {sup 15}N. The effects of elevated CO{sub 2} on {sup 15}N and N uptake and dynamics in the plant-soil systems were determined after 32 and 55 d, with close attention to the rhizosphere. Total N uptake by the plants was not affected by elevated CO{sub 2}, compared with ambient CO{sub 2}, independent on N treatment and grass species. A clear decrease from 1.77 at ambient CO{sub 2} to 1.25 at elevated CO{sub 2} was observed in the shoot/root (S/R) ratio of N, resulting from a significant decrease of the N concentration in shoots, and an unchanged root N concentration. At 700 {micro}L L{sup {minus}1} CO{sub 2}, N concentration in the shoots decreased from 12.9 to 9.9 g kg{sup {minus}1}, even at the low N supply, whereas the slight decrease in root N concentration for plants grown at elevated CO{sub 2} was not significantly different. The relative increase of {sup 15}N found in the rhizosphere soil microbial biomass (SMB) and the rhizosphere soil residue under elevated CO{sub 2} was too small to affect plant growth, even in the low N treatment. The total amount of {sup 15}N recovered in the plants was not affected by the CO{sub 2} treatment. Although at the second harvest slightly more {sup 15}N was found in the plants than at the first harvest, probably due to turnover of the SMB, no interaction with CO{sub 2} was observed. This shows that the fertilizer {sup 15}N had not been immobilized to a larger extent or for a longer time by the SMB at elevated CO{sub 2} than under ambient CO{sub 2}, even independent of N level and grass species. No evidence was found that under

  8. Expression of a novel antimicrobial peptide Penaeidin4-1 in creeping bentgrass (Agrostis stolonifera L. enhances plant fungal disease resistance.

    Directory of Open Access Journals (Sweden)

    Man Zhou

    Full Text Available BACKGROUND: Turfgrass species are agriculturally and economically important perennial crops. Turfgrass species are highly susceptible to a wide range of fungal pathogens. Dollar spot and brown patch, two important diseases caused by fungal pathogens Sclerotinia homoecarpa and Rhizoctonia solani, respectively, are among the most severe turfgrass diseases. Currently, turf fungal disease control mainly relies on fungicide treatments, which raises many concerns for human health and the environment. Antimicrobial peptides found in various organisms play an important role in innate immune response. METHODOLOGY/PRINCIPAL FINDINGS: The antimicrobial peptide - Penaeidin4-1 (Pen4-1 from the shrimp, Litopenaeus setiferus has been reported to possess in vitro antifungal and antibacterial activities against various economically important fungal and bacterial pathogens. In this study, we have studied the feasibility of using this novel peptide for engineering enhanced disease resistance into creeping bentgrass plants (Agrostis stolonifera L., cv. Penn A-4. Two DNA constructs were prepared containing either the coding sequence of a single peptide, Pen4-1 or the DNA sequence coding for the transit signal peptide of the secreted tobacco AP24 protein translationally fused to the Pen4-1 coding sequence. A maize ubiquitin promoter was used in both constructs to drive gene expression. Transgenic turfgrass plants containing different DNA constructs were generated by Agrobacterium-mediated transformation and analyzed for transgene insertion and expression. In replicated in vitro and in vivo experiments under controlled environments, transgenic plants exhibited significantly enhanced resistance to dollar spot and brown patch, the two major fungal diseases in turfgrass. The targeting of Pen4-1 to endoplasmic reticulum by the transit peptide of AP24 protein did not significantly impact disease resistance in transgenic plants. CONCLUSION/SIGNIFICANCE: Our results

  9. Development of innovative technique that may be used as models for the increase of biomass production with grasses and other species

    Science.gov (United States)

    Burton, G. W.; Hanna, W. W.

    1981-09-01

    Techniques for biomass increase are discussed: irradiation breeding of sterile triploid turf bermuda grasses; irradiation breeding of sterile Coastcross-1, a forage grass hybrid to increase winter hardiness; heterosis resulting from crossing specific irradiation induced mutants with their normal inbred parent; use of mitomycin and streptomycin to create cytoplasmic male sterile mutants in pearl millet; biomass of napiergrass; evaluation of mutagen induced lignin mutants to maximize metabolizable energy in sorghum; interspecific crosses in Pennisetum; production of homozygous translocation tester stocks; use of radiation to induce and transfer reproductive behavior in plants; and genetics of radiation induced mutations.

  10. Native grasses for rehabilitating Hunter Valley minesites

    Energy Technology Data Exchange (ETDEWEB)

    Huxtable, C. [NSW Department of Land and Water Conservation, NSW (Australia)

    1998-04-01

    Introduced plant species, particularly grasses, have long been used to rehabilitate mined land in Australia. Interest in using native species spawned a research project in the Hunter Valley which has demonstrated the suitability of certain native species for rehabilitation and put forward guidelines to enhance the chance of their successful establishment. 4 photos., 1 tab.

  11. Subtropical grass pollen allergens are important for allergic respiratory diseases in subtropical regions

    Directory of Open Access Journals (Sweden)

    Davies Janet

    2012-03-01

    Full Text Available Abstract Background Grass pollen allergens are a major cause of allergic respiratory disease but traditionally prescribing practice for grass pollen allergen-specific immunotherapy has favoured pollen extracts of temperate grasses. Here we aim to compare allergy to subtropical and temperate grass pollens in patients with allergic rhinitis from a subtropical region of Australia. Methods Sensitization to pollen extracts of the subtropical Bahia grass (Paspalum notatum, Johnson grass (Sorghum halepense and Bermuda grass (Cynodon dactylon as well as the temperate Ryegrass (Lolium perenne were measured by skin prick in 233 subjects from Brisbane. Grass pollen-specific IgE reactivity was tested by ELISA and cross-inhibition ELISA. Results Patients with grass pollen allergy from a subtropical region showed higher skin prick diameters with subtropical Bahia grass and Bermuda grass pollens than with Johnson grass and Ryegrass pollens. IgE reactivity was higher with pollen of Bahia grass than Bermuda grass, Johnson grass and Ryegrass. Patients showed asymmetric cross-inhibition of IgE reactivity with subtropical grass pollens that was not blocked by temperate grass pollen allergens indicating the presence of species-specific IgE binding sites of subtropical grass pollen allergens that are not represented in temperate grass pollens. Conclusions Subtropical grass pollens are more important allergen sources than temperate grass pollens for patients from a subtropical region. Targeting allergen-specific immunotherapy to subtropical grass pollen allergens in patients with allergic rhinitis in subtropical regions could improve treatment efficacy thereby reducing the burden of allergic rhinitis and asthma.

  12. Resistance of closely-mown fine fescue and bentgrass species to snow mold pathogens

    Science.gov (United States)

    Creeping bentgrass (Agrostis stolonifera) is the primary species used on golf courses in temperate regions but requires prophylactic fungicide treatment to prevent snow mold diseases. We hypothesized that fine fescues (Festuca spp.) and colonial bentgrass (A. capillaris) have superior resistance to...

  13. Host preference and suitability of grasses for Oebalus pugnax

    Science.gov (United States)

    Awuni, GA; Gore, J; Cook, D; Bond, JA; Musser, FR; Adams, CA

    2014-01-01

    The rice stink bug, Oebalus pugnax (Fabricius) (Hemiptera: Pentatomidae: Carpocorini), though graminaceous, discriminates among its numerous host grass species. This could represent a feeding preference, it could be related to host suitability for growth and development. To clarify the role of host grass discrimination, two laboratory studies were conducted: (1) free-choice tests to evaluate preferences of O. pugnax among 11 wild host grass species found in three rice-producing counties of the central Mississippi Delta (MS, USA), and (2) no-choice tests to evaluate the impact of rice (Oryza sativa L.), junglerice [Echinochloa colona (L.) Link], and dallisgrass (Paspalum dilatatum Poir.) (all Poaceae), on the development of O. pugnax from second instar to adult. In the free-choice test, four experiments were conducted, each with four sets of host grass species and observed 1, 2, 4, 8, and 16 h after release in cages. Approximately 4 h was necessary for O. pugnax to settle on preferred host grasses. Oebalus pugnax showed a feeding preference for junglerice over all 10 other grass species. Bahiagrass, Paspalum notatum Flueggé, was the least preferred. The no-choice tests showed significant effect of host grass species on O. pugnax mean development time of nymphal survival to adults. Survival of nymphs was lower and mean development time was longer on dallisgrass compared to rice and junglerice. Knowledge of O. pugnax rate of growth and development on host grasses could be useful in the future development of rice integrated pest management strategies. PMID:25635144

  14. Pests in ornamental grasses

    Science.gov (United States)

    Ornamental perennial grasses are becoming increasingly popular in the landscape due to their beauty and ease of care. Although few pest problems are encountered in ornamental grasses, they are not immune to insects and disease. Two lined spittlebugs (Prosapia bicincta) can cause damage to ornament...

  15. Herbicidal Control of Grasses

    OpenAIRE

    Om Prakash; Srinivasan Ramanujam

    1980-01-01

    Necessity of the herbicidal application for controlling undesirable grasses, by the Defence Services, Military farms and Inter Service Organisations is highlighted. Control of grasses by herbicidal chemicals, registered under the Insecticides Act 1968 in this country, is reviewed apart from a mention of non-chemical methods.

  16. Maximum Simplified Dynamic Model of Grass Field Ecosystem With Two Variables

    Institute of Scientific and Technical Information of China (English)

    曾庆存; 卢佩生; 曾晓东

    1994-01-01

    Based on general consideration and analysis, a maximum simplified dynamic model of grass field ecosystem with a single species is developed. The model consists of two variables: grass biomass of grass field per unit area and soil wetness, and is suitable for describing their mutual interaction. Other factors such as physical-chemical characteristics of soil, precipitation, irrigation, sunlight, temperature and consumers, are taken into account as parameters in the dynamical system. Qualitative analysis of the model shows that grass biomass of a possible ecological regime is determined by the stable equilibrium state of the dynamical system. For the grass species interacting weakly with soil wetness the grass biomass continuously depends on the precipitation. While, for a species interacting strongly with soil wetness, grass biomass is abundant if precipitation is larger than some critical value; otherwise, it becomes a desertification regime with very little or even zero grass biomass. The model also sh

  17. An updated conspectus of grasses of Punjab (India

    Directory of Open Access Journals (Sweden)

    Amarjit Singh Soodan

    2013-01-01

    Full Text Available Poaceae is the fourth largest family of the flowering plants. It includes about 700-800 genera and 11000-13000 species distributed worldwide. The family has unmatched ecological and economic importance. With its origin in the early cretaceous and major diversification in the mid Cenozoic, the family at present covers nearly a fifth of land surface and occurs in nearly all the habitats of the world. With a sub tropical ecology and an agrarian economy of Punjab, grasses comprise the most significant group in the region. Despite an overwhelming significance, taxonomic studies in grasses have not received sufficient attention in the region. It is only in the work of Sharma and Khosla (1989 that grass species have been classified into subfamilies and tribes. However, after the establishment of the Grass Phylogeny Working Group (GPWG the world has witnessed a renaissance in grass systematics. But, India remains an ‘undercollected’ country as far as grass diversity is concerned. Our work on the exploration and systematics of the grass flora of the region is an effort to consolidate and update the information on the diversity of grasses of the studied area. The present studies have brought the cumulative species number to 192 including seven new reports. The species representation of subfamilies is: Aristidoideae (5 Arundinoideae (5 Bambusoideae (4, Centothecoideae (1, Chloridoideae (55 Erhartoideae (3, Panicoideae (98 and Pooideae (21.

  18. Evaluating grasses as a long-term energy resource

    Energy Technology Data Exchange (ETDEWEB)

    Christian, D.G.; Riche, A.B.

    2001-07-01

    The work reported here is part of an ongoing project that aims to evaluate the yields of three perennial rhizomatous grasses and determine their suitability as bio-energy crops. The work began in 1993, and the grasses have been monitored continuously since that time. This report covers the period 1999/2000, and includes: the performance of plots of the energy grasses Miscanthus grass, switchgrass and reed canary grass seven years after they were planted; assessment of the yield of 15 genotypes of Miscanthus planted in 1997; monitoring all the species throughout the growing period for the presence of pests, weeds and diseases; measurement of the amount of nitrate leached from below Miscanthus grass; investigating the occurrence of lodging in switchgrass. (Author)

  19. Barnyard grass-induced rice allelopathy and momilactone B.

    Science.gov (United States)

    Kato-Noguchi, Hisashi

    2011-07-01

    Here, we investigated chemical-mediated interaction between crop and weeds. Allelopathic activity of rice seedlings exhibited 5.3-6.3-fold increases when rice and barnyard grass seedlings were grown together, where there may be the competitive interference between rice and barnyard grass for nutrients. Barnyard grass is one of the most noxious weeds in rice cultivation. The momilactone B concentration in rice seedlings incubated with barnyard grass seedlings was 6.9-fold greater than that in rice seedlings incubated independently. Low nutrient growth conditions also increased allelopathic activity and momilactone B concentrations in rice seedlings. However, the increases in the low nutrient-induced allelopathic activity and momilactone B concentration were much lower than those in barnyard grass-induced allelopathic activity and momilactone B concentration. Root exudates of barnyard grass seedlings increased allelopathic activity and momilactone B concentration in rice seedlings at concentrations greater than 30 mg/L of the root exudates, and increasing the exudate concentration increased the activity and momilactone B concentration. Therefore, barnyard grass-induced allelopathic activity of rice seedlings may be caused not only by nutrient competition between two species, but also by components in barnyard grass root exudates. As momilactone B shows strong allelopathic activities, barnyard grass-induced allelopathic activity of rice may be due to the increased concentration of momilactone B in rice seedlings. The present research suggests that rice may respond to the presence of neighboring barnyard grass by sensing the components in barnyard grass root exudates and increasing allelopathic activity by production of elevated concentration of momilactone B. Thus, rice allelopathy may be one of the inducible defense mechanisms by chemical-mediated plant interaction between rice and barnyard grass, and the induced-allelopathy may provide a competitive advantage for

  20. Comparative genetics in the grasses

    OpenAIRE

    Gale, Michael D.; Devos, Katrien M.

    1998-01-01

    Genetic mapping of wheat, maize, and rice and other grass species with common DNA probes has revealed remarkable conservation of gene content and gene order over the 60 million years of radiation of Poaceae. The linear organization of genes in some nine different genomes differing in basic chromosome number from 5 to 12 and nuclear DNA amount from 400 to 6,000 Mb, can be described in terms of only 25 “rice linkage blocks.” The extent to which this intergenomic coli...

  1. Molecular aspects of flower development in grasses.

    Science.gov (United States)

    Ciaffi, Mario; Paolacci, Anna Rita; Tanzarella, Oronzo Antonio; Porceddu, Enrico

    2011-12-01

    The grass family (Poaceae) of the monocotyledons includes about 10,000 species and represents one of the most important taxa among angiosperms. Their flower morphology is remarkably different from those of other monocotyledons and higher eudicots. The peculiar floral structure of grasses is the floret, which contains carpels and stamens, like eudicots, but lacks petals and sepals. The reproductive organs are surrounded by two lodicules, which correspond to eudicot petals, and by a palea and lemma, whose correspondence to eudicot organs remains controversial. The molecular and genetic analysis of floral morphogenesis and organ specification, primarily performed in eudicot model species, led to the ABCDE model of flower development. Several genes required for floral development in grasses correspond to class A, B, C, D, and E genes of eudicots, but others appear to have unique and diversified functions. In this paper, we outline the present knowledge on the evolution and diversification of grass genes encoding MIKC-type MADS-box transcription factors, based on information derived from studies in rice, maize, and wheat. Moreover, we review recent advances in studying the genes involved in the control of flower development and the extent of structural and functional conservation of these genes between grasses and eudicots.

  2. Genome-wide transcriptional profiling and metabolic analysis uncover multiple molecular responses of the grass species Lolium perenne under low-intensity xenobiotic stress

    Directory of Open Access Journals (Sweden)

    Anne-Antonella eSerra

    2015-12-01

    Full Text Available Lolium perenne, which is a major component of pastures, lawns, and grass strips, can be exposed to xenobiotic stresses due to diffuse and residual contaminations of soil. L. perenne was recently shown to undergo metabolic adjustments in response to sub-toxic levels of xenobiotics. To gain insight in such chemical stress responses, a de novo transcriptome analysis was carried out on leaves from plants subjected at the root level to low levels of xenobiotics, glyphosate, tebuconazole, and a combination of the two, leading to no adverse physiological effect. Chemical treatments influenced significantly the relative proportions of functional categories and of transcripts related to carbohydrate processes, to signalling, to protein-kinase cascades, as Serine/Threonine-protein kinases, to transcriptional regulations, to responses to abiotic or biotic stimuli and to responses to phytohormones. Transcriptomics-based expressions of genes encoding different types of SNF1 (sucrose non-fermenting 1-related kinases involved in sugar and stress signalling or encoding key metabolic enzymes were in line with specific qRT-PCR analysis or with the important metabolic and regulatory changes revealed by metabolomic analysis. The effects of pesticide treatments on metabolites and gene expression strongly suggest that pesticides at low levels, as single molecule or as mixture, affect cell signalling and functioning even in the absence of major physiological impact. This global analysis of L. perenne therefore highlighted the interactions between molecular regulation of responses to xenobiotics, and also carbohydrate dynamics, energy dysfunction, phytohormones and calcium signalling.

  3. Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of bana grass and vetiver grass.

    Science.gov (United States)

    Zhang, Xingfeng; Gao, Bo; Xia, Hanping

    2014-08-01

    An experiment was conducted to evaluate the differential effects of Cd contamination on the growth, photosynthesis, mineral nutrition and Cd accumulation of bana grass (Pennisetum americanum × Pennisetum purpureum) and vetiver grass (Vetiveria zizanioides). Bana grass accumulated 48-453 and 25-208 mg kg(-1) in plant roots and shoots, respectively, at 15-100 mg kg(-1) soil Cd concentration, while vetiver grass accumulated 167-396 and 0.13-9.0 mg kg(-1). These results indicated that bana grass was a Cd accumulator while vetiver grass was a Cd excluder. The ratio of root to shoot biomass was significantly increased in vetiver grass, while it was unchanged in bana grass by Cd pollution. This suggests that excluders may allocate more energy to roots than shoots under Cd pollution compared to un-contaminated condition, while accumulators may allocate equal proportions of energy to roots and shoots. For bana grass, soil Cd pollution significantly decreased the concentration of Fe and Mn in roots as well as the translocation factors of Zn and K. For vetiver grass, soil Cd pollution significantly decreased the concentration of Fe in roots and had no influence on the translocation factors of Fe, Mn, Cu, Zn, Mg, K and Ca. Soil Cd pollution showed no significant effect on chlorophyll content and photosynthetic rates in either of the grasses. The water content and leaf transpiration rate were significantly increased by Cd pollution in bana grass, while they were unchanged in vetiver grass. The results indicated that the energy allocation and mineral nutrition characteristics may aid in screening suitable plant species for phytoremediation.

  4. The carbon fertilization effect over a century of anthropogenic CO2 emissions: higher intracellular CO2 and more drought resistance among invasive and native grass species contrasts with increased water use efficiency for woody plants in the US Southwest.

    Science.gov (United States)

    Drake, Brandon L; Hanson, David T; Lowrey, Timothy K; Sharp, Zachary D

    2017-02-01

    From 1890 to 2015, anthropogenic carbon dioxide emissions have increased atmospheric CO2 concentrations from 270 to 400 mol mol(-1) . The effect of increased carbon emissions on plant growth and reproduction has been the subject of study of free-air CO2 enrichment (FACE) experiments. These experiments have found (i) an increase in internal CO2 partial pressure (ci ) alongside acclimation of photosynthetic capacity, (ii) variable decreases in stomatal conductance, and (iii) that increases in yield do not increase commensurate with CO2 concentrations. Our data set, which includes a 115-year-long selection of grasses collected in New Mexico since 1892, is consistent with an increased ci as a response to historical CO2 increase in the atmosphere, with invasive species showing the largest increase. Comparison with Palmer Drought Sensitivity Index (PDSI) for New Mexico indicates a moderate correlation with Δ(13) C (r(2)  = 0.32, P CO2 in the event of reduced stomatal conductance in response to short-term water shortage. Comparison with C3 trees from arid environments (Pinus longaeva and Pinus edulis in the US Southwest) as well as from wetter environments (Bromus and Poa grasses in New Mexico) suggests differing responses based on environment; arid environments in New Mexico see increased intrinsic water use efficiency (WUE) in response to historic elevated CO2 while wetter environments see increased ci . This study suggests that (i) the observed increases in ci in FACE experiments are consistent with historical CO2 increases and (ii) the CO2 increase influences plant sensitivity to water shortage, through either increased WUE or ci in arid and wet environments, respectively.

  5. PHOTOSYNTHESIS AND YIELDS OF GRASSES GROWN IN SALINE CONDITION

    Directory of Open Access Journals (Sweden)

    E.D. Purbajanti

    2014-10-01

    Full Text Available The aim of this study was to know effects of saline condition to crop physiology, growth andforages yield. A factorial completed random design was used in this study. The first factor was type ofgrass, these were king grass (Pennisetum hybrid, napier grass (Pennisetum purpureum, panicum grass(Panicum maximum, setaria grass (Setaria sphacelata and star grass (Cynodon plectostachyus. Thesecond factor was salt solution (NaCl with concentration 0, 100, 200 and 300 mM. Parameters of thisexperiment were the percentage of chlorophyll, rate of photosynthesis, number of tiller, biomass and drymatter yield. Data were analyzed by analysis of variance and followed by Duncan’s multiple range testwhen there were significant effects of the treatment. Panicum grass had the highest chlorophyll content(1.85 mg/g of leaf. Photosynthesis rate of setaria grass was the lowest. The increasing of NaClconcentration up to 300 mM NaCl reduced chlorophyll content, rate of photosynthesis, tiller number,biomass yield and dry matter yield. Responses of leaf area, biomass and dry matter yield to salinitywere linear for king, napier, panicum and setaria grasses. In tar grass, the response of leaf area andbiomass ware linear, but those of dry matter yield was quadratic. The response of tiller number tosalinity was linear for all species.

  6. Systematic analysis of the falcate-spored graminicolous Colletotrichum and a description of six new species from warm-season grasses.

    Science.gov (United States)

    Crouch, Jo Anne; Clarke, Bruce B; White, James F; Hillman, Bradley I

    2009-01-01

    Species limits in the fungal genus Colletotrichum are traditionally distinguished by appressorial and/or conidial morphology or through host plant association, but both criteria are criticized for their inability to resolve distinct taxa. In previous research eight novel falcate-spored Colletotrichum species were identified from graminicolous hosts using multilocus molecular phylogenetic analysis. In the present work formal descriptions and illustrations are provided for six of the new taxa: C. hanaui sp. nov., C. nicholsonii sp. nov., C. paspali sp. nov., C. jacksonii sp. nov., C. miscanthi sp. nov. and C. axonopodi sp. nov.; and an emended description with epitypification is provided for C. eleusines. Comparison of hyphopodial appressoria and host association against phylogenetic species boundaries and evolutionary relationships in the graminicolous Colletotrichum group demonstrate that, while these characters can be useful in combination for the purpose of species diagnosis, erroneous identification is possible and species boundaries might be underestimated if these characters are used independently, as exemplified by the polyphyletic taxa C. falcatum. Appressoria have been subject to convergent evolution and were not predictive of phylogenetic relationships. Despite these limitations, the results of this work establish that in combination appressorial and host range characters could be used to generate informative dichotomous identification keys for Colletotrichum species groups when an underlying framework of evolutionary relationships, taxonomic criteria and nomenclature have been satisfactorily derived from molecular systematic treatments.

  7. Plasticity of nitrogen allocation in the leaves of the invasive wetland grass, Phalaris arundinacea and co-occurring Carex species determines the photosynthetic sensitivity to nitrogen availability.

    Science.gov (United States)

    Holaday, A Scott; Schwilk, Dylan W; Waring, Elizabeth F; Guvvala, Hasitha; Griffin, Chelsea M; Lewis, O Milo

    2015-04-01

    Phalaris arundinacea displaces the slower-growing, native sedge, Carex stricta, where nitrogen availability is high. Our aim was to address whether morphological and physiological traits associated with carbon gain for P. arundinacea and C. stricta responded to nitrogen supply differently and if the species exhibited different degrees of plasticity in these traits. The plants were grown in gravel and provided modified Hoagland's solution containing four nitrogen concentrations from 0.15 to 15 mM for 6 to 7 weeks. Supplied nitrogen affected the leaf nitrogen content to the same degree for both species. Increasing supplied nitrogen strongly increased CO2 assimilation (A), photosynthetic nitrogen use efficiency (PNUE), and respiration for P. arundinacea but had only a small effect on these parameters for C. stricta. Relative to growth at 15 mM nitrogen, growth at 0.15 mM for young leaves decreased carboxylation capacity and efficiency and the capacity for electron transport for P. arundinacea and a larger, stouter Carex species, Carex lacustris, by 53 to 70% but only 20 to 24% for C. stricta. Leaf nitrogen decreased approximately 50% for all species, but vacuolar nitrate did not decrease for P. arundinacea and C. stricta, suggesting that it does not serve as a nitrogen reserve for use during nitrogen deprivation in these species. After 4 months of nitrogen deprivation, P. arundinacea doubled A in 12 days after being supplied 15 mM nitrogen, whereas A for C. stricta increased only 22%. We propose that one factor linking P. arundinacea abundance to nitrogen availability involves this species' plastic response of carbon gain to nitrogen supply. C. stricta appears to be adapted to tolerate low nitrogen availability but cannot respond as rapidly and extensively as P. arundinacea when nitrogen supply is high.

  8. Impact of biochar and root-induced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus.

    Science.gov (United States)

    Houben, David; Sonnet, Philippe

    2015-11-01

    Rhizosphere interactions are deemed to play a key role in the success of phytoremediation technologies. Here, the effects of biochar and root-induced changes in the rhizosphere of Agrostis capillaris L. and Lupinus albus L. on metal (Cd, Pb and Zn) dynamics were investigated using a biotest on a 2mm soil layer and a sequential extraction procedure (Tessier's scheme). In the bulk soil, the application of 5% biochar significantly reduced the exchangeable pool of metals primarily due to a liming effect which subsequently promoted the metal shift into the carbonate-bound pool. However, metals were re-mobilized in the rhizosphere of both A. capillaris and L. albus due to root-induced acidification which counteracted the liming effect of biochar. As a result, the concentrations of metals in roots and shoots of both plants were not significantly reduced by the application of biochar. Although the study should be considered a worst-case scenario because experimental conditions induced the intensification of rhizosphere processes, the results highlight that changes in rhizosphere pH can impact the effectiveness of biochar to immobilize metals in soil. Biochar has thus a potential as amendment for reducing metal uptake by plants, provided the acidification of the rhizosphere is minimized.

  9. A new cryptic species of Diatraea (Lepidoptera: Crambidae: Crambinae) feeding on eastern gama grass and a novel host association with a braconid (Hymenoptera) in the United States

    Science.gov (United States)

    The genus Diatraea currently consists of seven species in the United States, including Diatraea crambidoides (Grote), an economic pest of corn. Larvae of D. crambidoides are also reported to feed on sorghum (Sorghum bicolor (L.) Moench.), Johnsongrass (Sorghum halepense (L.) Pers.), sugar cane (Sacc...

  10. Use of Grasses and Mixtures of Grasses for Energy Purposes

    OpenAIRE

    David Andert; Jan Frydrych; Ilona Gerndtová

    2012-01-01

    As levels of agricultural productivity increase, there is also an increase in land area not utilized for food production. This area can be used for growing energy crops, including grasses. When land is set aside for grassing, or when the potential of perennial grasses is not utilized due to reductions in cattle herds, there is also an increased amount of grass that can be utilized for energy purposes. Experiments were carried out on the principle of single-stage anaerobic digestion within the...

  11. Establishing native warm season grasses on Eastern Kentucky strip mines

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B. [Univ. of Kentucky, Lexington, KY (United States). Dept. of Forestry

    1998-12-31

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomass samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife habitat.

  12. GUI development for GRASS GIS

    Directory of Open Access Journals (Sweden)

    Martin Landa

    2007-12-01

    Full Text Available This article discusses GUI development for GRASS GIS. Sophisticated native GUI for GRASS is one of the key points (besides the new 2D/3D raster library, vector architecture improvements, etc. for the future development of GRASS. In 2006 the GRASS development team decided to start working on the new generation of GUI instead of improving the current GUI based on Tcl/Tk.

  13. Invasive warm-season grasses reduce mycorrhizal root colonization and biomass production of native prairie grasses.

    Science.gov (United States)

    Wilson, Gail W T; Hickman, Karen R; Williamson, Melinda M

    2012-07-01

    Soil organisms play important roles in regulating ecosystem-level processes and the association of arbuscular mycorrhizal (AM) fungi with a plant species can be a central force shaping plant species' ecology. Understanding how mycorrhizal associations are affected by plant invasions may be a critical aspect of the conservation and restoration of native ecosystems. We examined the competitive ability of old world bluestem, a non-native grass (Caucasian bluestem [Bothriochloa bladhii]), and the influence of B. bladhii competition on AM root colonization of native warm-season prairie grasses (Andropogon gerardii or Schizachyrium scoparium), using a substitutive design greenhouse competition experiment. Competition by the non-native resulted in significantly reduced biomass production and AM colonization of the native grasses. To assess plant-soil feedbacks of B. bladhii and Bothriochloa ischaemum, we conducted a second greenhouse study which examined soil alterations indirectly by assessing biomass production and AM colonization of native warm-season grasses planted into soil collected beneath Bothriochloa spp. This study was conducted using soil from four replicate prairie sites throughout Kansas and Oklahoma, USA. Our results indicate that a major mechanism in plant growth suppression following invasion by Bothriochloa spp. is the alteration in soil microbial communities. Plant growth was tightly correlated with AM root colonization demonstrating that mycorrhizae play an important role in the invasion of these systems by Bothriochloa spp. and indicating that the restoration of native AM fungal communities may be a fundamental consideration for the successful establishment of native grasses into invaded sites.

  14. A new species of Stenodiplosis (Diptera: Cecidomyiidae) on Spartina grasses (Poaceae) with notes on its biology and its parasitoid Tetrastichus bromi (Hymenoptera: Eulophidae).

    Science.gov (United States)

    López, J Manuel Perilla; Johnson, Paul J; Gagné, Raymond J; Boe, Arvid

    2015-12-09

    Stenodiplosis spartinae Gagné new species (Diptera: Cecidomyiidae) is described from eastern South Dakota and coastal North Carolina, and compared with other American congeners. The known host plants are Spartina alterniflora and S. pectinata. The larva is a seed predator of the ovule and immature caryopsis of the host plant. Adult activity is from the early emergence of the host inflorescence through anthesis. Oviposition occurs in the floret with eggs laid under the edges of the palea and lemma. The larva apparently overwinters in dehisced spikelets in the soil among rhizomes of S. pectinata, with pupation in late spring. Laboratory emergence and field activity of the adults suggest a potentialsecond or third generation developing on late emerging inflorescences. Larval feeding does not induce external color or shape changes in the spikelet. Apparently all three instars are ectoparasitized by Tetrastichus bromi Kostyukov (Hymenoptera: Eulophidae) that was probably introduced to North America in the late 1800's and is inculcated into parasitoid guilds of several Stenodiplosis species. Resource partitioning appears to occur between the gall midge and early instars of Aethes spartinana Barnes and McDunnough (Lepidoptera: Tortricidae) that feed on maturing caryopses. The feeding of this gall midge and the moth probably account for most of the reduced seed production in both natural and agronomic populations of S. pectinata.

  15. Convergent and contingent community responses to grass source and dominance during prairie restoration across a longitudinal gradient.

    Science.gov (United States)

    Klopf, Ryan P; Baer, Sara G; Gibson, David J

    2014-02-01

    Restoring prairie on formerly cultivated land begins by selecting propagule seed sources and the diversity of species to reintroduce. This study examined the effects of dominant grass propagule source (cultivar vs. non-cultivar) and sown propagule diversity (grass:forb sowing ratio) on plant community structure. Two field experiments were established in Kansas and Illinois consisting of identical split plot designs. Dominant grass source was assigned as the whole-plot factor, and sown dominance of grasses (five levels of seeded grass dominance) as the subplot factor. Species density, cover, and diversity were quantified for 5 years. The effect of dominant grass source on the cover of focal grasses, sown species, and volunteer species was contingent upon location, with variation between dominant grass sources observed exclusively in Kansas. Species density and diversity showed regionally convergent patterns in response to dominant grass source. Contrary to our hypotheses, total species density and diversity were not lower in the presence of grass cultivars, the grass source we had predicted would be more competitive. Sown grass dominance effects on the cover of the focal grass species were contingent upon location resulting from establishment corresponding better to the assigned treatments in Illinois. All other cover groups showed regionally convergent patterns, with lower cover of volunteers and higher cover of sown forbs, diversity, and species density in the lowest sown grass dominance treatment in both sites. Thus, decisions regarding the diversity of propagules to reintroduce had more consequence for plant community structure than cultivar or non-cultivar source of dominant grasses.

  16. Epichloë grass endophytes in sustainable agriculture.

    Science.gov (United States)

    Kauppinen, Miia; Saikkonen, Kari; Helander, Marjo; Pirttilä, Anna Maria; Wäli, Piippa R

    2016-01-01

    There is an urgent need to create new solutions for sustainable agricultural practices that circumvent the heavy use of fertilizers and pesticides and increase the resilience of agricultural systems to environmental change. Beneficial microbial symbionts of plants are expected to play an important role in integrated pest management schemes over the coming decades. Epichloë endophytes, symbiotic fungi of many grass species, can protect plants against several stressors, and could therefore help to increase the productivity of forage grasses and the hardiness of turf grasses while reducing the use of synthetic pesticides. Indeed, Epichloë endophytes have successfully been developed and commercialized for agricultural use in the USA, Australia and New Zealand. Many of the host grass species originate from Europe, which is a biodiversity hotspot for both grasses and endophytes. However, intentional use of endophyte-enhanced grasses in Europe is virtually non-existent. We suggest that the diversity of European Epichloë endophytes and their host grasses should be exploited for the development of sustainable agricultural, horticultural and landscaping practices, and potentially for bioremediation and bioenergy purposes, and for environmental improvement.

  17. The effects of energy grass plantations on biodiversity

    Energy Technology Data Exchange (ETDEWEB)

    Semere, T.; Slater, F.

    2005-07-01

    The ecological impact on local wildlife of biomass plantations of three different species of grasses has been monitored in the years 2002 to 2004 inclusive at farms in Herefordshire UK. Two of the grasses were not native to Britain. Wildlife monitored included ground flora, beetles, insects, birds, small mammals, butterflies, bees and hoverflies. The results provide a baseline of biodiversity data from biomass farms in England, although due to poor crop growth, the data from the switch-grass plantation was incomplete. The surveys were carried out by Cardiff University supported financially by the DTI.

  18. Afforestation of degraded grass land

    Energy Technology Data Exchange (ETDEWEB)

    Basappa, B.

    1983-01-01

    The suitability of 11 species was tested for planting on degraded land at Kogilemane in Belur Taluk, Karnataka. The soil was alkaline with no humus, litter or topsoil. The original vegetation was grass with the stemless palm Phoenix acaulis, still present at 600 plants per acre. Seedlings 4-6 months old and raised in polythene bags were planted in pits in July 1981; Bambusa vulgaris was planted as 8-month-old cuttings. No fertilizer was applied. The most successful species after the first season was Acacia auriculiformis. Satisfactory survival and growth were also obtained with Cassia siamea, Peltoforum ferruginum, Leucaena leucocephala (although this was later heavily damaged by wild rabbits) and Toona ciliata. The bamboo survived well but there was no culm formation during the experiment. In 1982 only 3 of the species were tested: A. auriculiformis, L. leucocephala (because of its fast growth rate) and Casuarina equisetifolia (which performed badly in 1981 but is suited to alkaline soils). All 3 species performed satisfactorily.

  19. BEHAVIOR ANALYSIS OF TREE LEGUME SPECIES INTRODUCED IN TROPICAL GRASS PASTURES ANÁLISE DO COMPORTAMENTO DE ESPÉCIES LEGUMINOSAS ARBÓREAS INTRODUZIDAS EM PASTAGENS DE GRAMÍNEAS TROPICAIS

    Directory of Open Access Journals (Sweden)

    Janaina Ribeiro Costa

    2007-09-01

    Full Text Available

    The objective of this study was to analyze the behavior of sixteen tree legume species introduced in tropical grass pastures, without seedling protection and in the presence of animals, in three municipalities of Rio de Janeiro State, Brazil. A multivariate factor analysis method was used with sixteen variables related to seven experimental units in the municipalities and ten variables related to leguminous species. The first rotative factor (F1, which explained the highest percentage of the observed variance (62.7%, showed that the Fazenda Santo Antônio experimental unit, in the Itatiaia municipality, presented the highest values for Ca+Mg, N, and Mg, and the lowest value for P (soil sample collected at the beginning of experimental period, while the opposite was observed for Sipa I unit, in the Seropédica municipality. The F1 factor also showed that the species Jurema branca (Mimosa artemisiana and Jurema preta (Mimosa tenuiflora presented the highest values for diameter growth rate of stem and crown, and the lowest percentage of pastured seedlings, while Leucena (Leucaena leucocephala showed the inverse behavior. Results indicate that M. artemisiana and M. tenuiflora present better potential for introduction in tropical grass pastures without seedling protection and without animal exclusion.

    KEY-WORDS: Tree seedling; factor analysis; communality, mimosa; Leucaena.

    O objetivo deste trabalho foi analisar o comportamento de dezesseis espécies leguminosas arbóreas introduzidas em pastagens de gramíneas tropicais, sem proteção das mudas e na presença de animais, em três municípios do estado do Rio de Janeiro. Para isso, utilizou-se a técnica multivariada da análise de fatores, considerando-se dezesseis variáveis relativas a sete unidades experimentais nos municípios e dez vari

  20. Final Report: The Rhizosphere Association of the Nitrogen Fixing Bacterial Species Azotobacter Paspali with the Tropical Grass Paspalum Notatum: Specificity of Colonization and Contribution to Plant Nutrition, July 1, 1995 - February 14, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Christina K.

    1997-02-14

    The nitrogen fixing bacterium azotobacter paspali was first isolated from the roots of the sub-tropical grass, palpium notatum, and added to the clenus in 1996, by Dr. J. Dobereiner (Brazil). It is mentioned that this root association bacteria shows remarkable signs of host-plant specificity to one eco-type of this grass. This specificity is rare in non-symbiotic plant microbe interactions so far identified.

  1. The Occurrence of Balansioid Endophytes in Georgia, Florida, and Southern Grasses

    Science.gov (United States)

    A collection of toxic fungal endophytes of grasses were detailed in terms of their morphology and taxonomy in detailed slides useful for identification of the little know species of Balansia or clavicipitalean fungi that are found on southern pasture and weed grass species. We have established as ...

  2. Early inflorescence development in the grasses (Poaceae).

    Science.gov (United States)

    Kellogg, Elizabeth A; Camara, Paulo E A S; Rudall, Paula J; Ladd, Philip; Malcomber, Simon T; Whipple, Clinton J; Doust, Andrew N

    2013-01-01

    The shoot apical meristem of grasses produces the primary branches of the inflorescence, controlling inflorescence architecture and hence seed production. Whereas leaves are produced in a distichous pattern, with the primordia separated from each other by an angle of 180°, inflorescence branches are produced in a spiral in most species. The morphology and developmental genetics of the shift in phyllotaxis have been studied extensively in maize and rice. However, in wheat, Brachypodium, and oats, all in the grass subfamily Pooideae, the change in phyllotaxis does not occur; primary inflorescence branches are produced distichously. It is unknown whether the distichous inflorescence originated at the base of Pooideae, or whether it appeared several times independently. In this study, we show that Brachyelytrum, the genus sister to all other Pooideae has spiral phyllotaxis in the inflorescence, but that in the remaining 3000+ species of Pooideae, the phyllotaxis is two-ranked. These two-ranked inflorescences are not perfectly symmetrical, and have a clear "front" and "back;" this developmental axis has never been described in the literature and it is unclear what establishes its polarity. Strictly distichous inflorescences appear somewhat later in the evolution of the subfamily. Two-ranked inflorescences also appear in a few grass outgroups and sporadically elsewhere in the family, but unlike in Pooideae do not generally correlate with a major radiation of species. After production of branches, the inflorescence meristem may be converted to a spikelet meristem or may simply abort; this developmental decision appears to be independent of the branching pattern.

  3. Chemical ecology mediated by fungal endophytes in grasses.

    Science.gov (United States)

    Saikkonen, Kari; Gundel, Pedro E; Helander, Marjo

    2013-07-01

    Defensive mutualism is widely accepted as providing the best framework for understanding how seed-transmitted, alkaloid producing fungal endophytes of grasses are maintained in many host populations. Here, we first briefly review current knowledge of bioactive alkaloids produced by systemic grass-endophytes. New findings suggest that chemotypic diversity of the endophyte-grass symbiotum is far more complex, involving multifaceted signaling and chemical cross-talk between endophyte and host cells (e.g., reactive oxygen species and antioxidants) or between plants, herbivores, and their natural enemies (e.g., volatile organic compounds, and salicylic acid and jasmonic acid pathways). Accumulating evidence also suggests that the tight relationship between the systemic endophyte and the host grass can lead to the loss of grass traits when the lost functions, such as plant defense to herbivores, are compensated for by an interactive endophytic fungal partner. Furthermore, chemotypic diversity of a symbiotum appears to depend on the endophyte and the host plant life histories, as well as on fungal and plant genotypes, abiotic and biotic environmental conditions, and their interactions. Thus, joint approaches of (bio)chemists, molecular biologists, plant physiologists, evolutionary biologists, and ecologists are urgently needed to fully understand the endophyte-grass symbiosis, its coevolutionary history, and ecological importance. We propose that endophyte-grass symbiosis provides an excellent model to study microbially mediated multirophic interactions from molecular mechanisms to ecology.

  4. Culturing and direct PCR suggest prevalent host generalism among diverse fungal endophytes of tropical forest grasses.

    Science.gov (United States)

    Higgins, K Lindsay; Coley, Phyllis D; Kursar, Thomas A; Arnold, A Elizabeth

    2011-01-01

    Most studies examining endophytic fungi associated with grasses (Poaceae) have focused on agronomically important species in managed ecosystems or on wild grasses in subtropical, temperate and boreal grasslands. However grasses first arose in tropical forests, where they remain a significant and diverse component of understory and forest-edge communities. To provide a broader context for understanding grass-endophyte associations we characterized fungal endophyte communities inhabiting foliage of 11 species of phylogenetically diverse C(3) grasses in the understory of a lowland tropical forest at Barro Colorado Island, Panama. Our sample included members of early-arising subfamilies of Poaceae that are endemic to forests, as well as more recently arising subfamilies that transitioned to open environments. Isolation on culture media and direct PCR and cloning revealed that these grasses harbor species-rich and phylogenetically diverse communities that lack the endophytic Clavicipitaceae known from diverse woodland and pasture grasses in the temperate zone. Both the incidence and diversity of endophytes was consistent among grass species regardless of subfamily, clade affiliation or ancestral habitat use. Genotype and phylogenetic analyses suggest that these endophytic fungi are predominantly host generalists, shared not only among distinctive lineages of Poaceae but also with non-grass plants at the same site.

  5. Advances in research on Epichloë endophytes in Chinese native grasses

    Directory of Open Access Journals (Sweden)

    Hui Song

    2016-09-01

    Full Text Available Epichloë fungal endophytes are broadly found in cool-season grasses. The symbiosis between these grasses and Epichloë may improve the abiotic and biotic resistance of the grass plant, but some Epichloë species produce alkaloids that are toxic for livestock. Therefore, it is important to understand the characteristics of the grass-Epichloë s symbiosis so that the beneficial aspects can be preserved and the toxic effects to livestock can be avoided. Since the 1990s, Chinese researchers have conducted a series of studies on grass-Epichloë symbiosis. In this review, we describe the current state of Epichloë endophyte research in Chinese native grasses. We found that more than 77 species of native grasses in China are associated with Epichloë endophytes. In addition, we review the effects of various Epichloë species on native grass responses to abiotic and biotic stress, phylogeny, and alkaloid production. We provide an overview of the study of Epichloë species on native grasses in China and directions for future research.

  6. Advances in Research on Epichloë endophytes in Chinese Native Grasses.

    Science.gov (United States)

    Song, Hui; Nan, Zhibiao; Song, Qiuyan; Xia, Chao; Li, Xiuzhang; Yao, Xiang; Xu, Wenbo; Kuang, Yu; Tian, Pei; Zhang, Qingping

    2016-01-01

    Epichloë fungal endophytes are broadly found in cool-season grasses. The symbiosis between these grasses and Epichloë may improve the abiotic and biotic resistance of the grass plant, but some Epichloë species produce alkaloids that are toxic for livestock. Therefore, it is important to understand the characteristics of the grass-Epichloë s symbiosis so that the beneficial aspects can be preserved and the toxic effects to livestock can be avoided. Since the 1990s, Chinese researchers have conducted a series of studies on grass-Epichloë symbiosis. In this review, we describe the current state of Epichloë endophyte research in Chinese native grasses. We found that more than 77 species of native grasses in China are associated with Epichloë endophytes. In addition, we review the effects of various Epichloë species on native grass responses to abiotic and biotic stress, phylogeny, and alkaloid production. We provide an overview of the study of Epichloë species on native grasses in China and directions for future research.

  7. Annual glyphosate treatments alter growth of unaffected bentgrass (Agrostis) weeds and plant community composition.

    Science.gov (United States)

    Ahrens, Collin W; Auer, Carol A

    2012-01-01

    Herbicide resistance is becoming more common in weed ecotypes and crop species including turfgrasses, but current gaps in knowledge limit predictive ecological risk assessments and risk management plans. This project examined the effect of annual glyphosate applications on the vegetative growth and reproductive potential of two weedy bentgrasses, creeping bentgrass (CB) and redtop (RT), where the glyphosate resistance (GR) trait was mimicked by covering the bentgrass plants during glyphosate application. Five field plots were studied in habitats commonly inhabited by weedy bentgrasses including an agricultural hayfield, natural meadow, and wasteland. Results showed that annual glyphosate treatment improved bentgrass survivorship, vegetative growth, and reproductive potential compared with bentgrass in unsprayed subplots. In the second year of growth, RT plants had an 86-fold increase in flower number in glyphosate-treated subplots versus controls, while CB plants had a 20-fold increase. At the end of the three year study, plant community composition had changed in glyphosate-treated subplots in hayfield and meadow plots compared to controls. Soils in subplots receiving glyphosate had higher nitrate concentrations than controls. This is the first study to mimic the GR trait in bentgrass plants with the goal of quantifying bentgrass response to glyphosate selection pressure and understanding the impacts on surrounding plant communities.

  8. Annual glyphosate treatments alter growth of unaffected bentgrass (Agrostis weeds and plant community composition.

    Directory of Open Access Journals (Sweden)

    Collin W Ahrens

    Full Text Available Herbicide resistance is becoming more common in weed ecotypes and crop species including turfgrasses, but current gaps in knowledge limit predictive ecological risk assessments and risk management plans. This project examined the effect of annual glyphosate applications on the vegetative growth and reproductive potential of two weedy bentgrasses, creeping bentgrass (CB and redtop (RT, where the glyphosate resistance (GR trait was mimicked by covering the bentgrass plants during glyphosate application. Five field plots were studied in habitats commonly inhabited by weedy bentgrasses including an agricultural hayfield, natural meadow, and wasteland. Results showed that annual glyphosate treatment improved bentgrass survivorship, vegetative growth, and reproductive potential compared with bentgrass in unsprayed subplots. In the second year of growth, RT plants had an 86-fold increase in flower number in glyphosate-treated subplots versus controls, while CB plants had a 20-fold increase. At the end of the three year study, plant community composition had changed in glyphosate-treated subplots in hayfield and meadow plots compared to controls. Soils in subplots receiving glyphosate had higher nitrate concentrations than controls. This is the first study to mimic the GR trait in bentgrass plants with the goal of quantifying bentgrass response to glyphosate selection pressure and understanding the impacts on surrounding plant communities.

  9. Specific immunotherapy for common grass pollen allergies: pertinence of a five grass pollen vaccine.

    Science.gov (United States)

    Moingeon, Philippe; Hrabina, Maud; Bergmann, Karl-Christian; Jaeger, Siegfried; Frati, Franco; Bordas, Véronique; Peltre, Gabriel

    2008-01-01

    Patients throughout Europe are concomitantly exposed to multiple pollens from distinct Pooideae species. Given the overlap in pollination calendars and similar grain morphology, it is not possible to identify which grass species are present in the environment from pollen counts. Furthermore, neither serum IgE reactivity nor skin prick testing allow the identification of which grass species are involved in patient sensitisation. Due to their high level of amino acid sequence homology (e.g., >90% for group 1, 55-80% for group 5), significant cross-immunogenicity is observed between allergens from Pooideae pollens. Nevertheless, pollen allergens also contain species-specific T or B cell epitopes, and substantial quantitative differences exist in allergen (e.g., groups 1 and 5) composition between pollens from distinct grass species. In this context, a mixture of pollens from common and well-characterised Pooideae such as Anthoxanthum odoratum, Dactylis glomerata, Lolium perenne, Phleum pratense and Poa pratensis is suitable for immunotherapy purposes because (1) it has been validated, both in terms of safety and efficacy, by established clinical practice; (2) it reflects natural exposure and sensitisation conditions; (3) it ensures a consistent and well-balanced composition of critical allergens, thus extending the repertoire of T and B cell epitopes present in the vaccine.

  10. Seasonal variation in diurnal atmospheric grass pollen concentration profiles

    DEFF Research Database (Denmark)

    Peel, Robert George; Ørby, Pia Viuf; Skjøth, Carsten Ambelas

    2014-01-01

    In this study, the diurnal atmospheric grass pollen concentration profile within the Danish city of Aarhus was shown to change in a systematic manner as the pollen season progressed. Although diurnal grass pollen profiles can differ greatly from day-to-day, it is common practice to establish...... the time of day when peak concentrations are most likely to occur using seasonally averaged diurnal profiles. Atmospheric pollen loads are highly dependent upon emissions, and different species of grass are known to flower and emit pollen at different times of the day and during different periods...... of the pollen season. Pollen concentrations are also influenced by meteorological factors - directly through those parameters that govern pollen dispersion and transport, and indirectly through the weather-driven flowering process. We found that three different profiles dominated the grass pollen season...

  11. Silicified structures affect leaf optical properties in grasses and sedge.

    Science.gov (United States)

    Klančnik, Katja; Vogel-Mikuš, Katarina; Gaberščik, Alenka

    2014-01-05

    Silicon (Si) is an important structural element that can accumulate at high concentrations in grasses and sedges, and therefore Si structures might affect the optical properties of the leaves. To better understand the role of Si in light/leaf interactions in species rich in Si, we examined the total Si and silica phytoliths, the biochemical and morphological leaf properties, and the reflectance and transmittance spectra in grasses (Phragmites australis, Phalaris arundinacea, Molinia caerulea, Deschampsia cespitosa) and sedge (Carex elata). We show that these grasses contain >1% phytoliths per dry mass, while the sedge contains only 0.4%. The data reveal the variable leaf structures of these species and significant differences in the amount of Si and phytoliths between developing and mature leaves within each species and between grasses and sedge, with little difference seen among the grass species. Redundancy analysis shows the significant roles of the different near-surface silicified leaf structures (e.g., prickle hairs, cuticle, epidermis), phytoliths and Si contents, which explain the majority of the reflectance and transmittance spectra variability. The amount of explained variance differs between mature and developing leaves. The transmittance spectra are also significantly affected by chlorophyll a content and calcium levels in the leaf tissue.

  12. Ornamental Landscape Grasses. Slide Script.

    Science.gov (United States)

    Still, Steven M.; Adams, Denise W.

    This slide script to accompany the slide series, Ornamental Landscape Grasses, contains photographs of the 167 slides and accompanying narrative text intended for use in the study and identification of commercially important ornamental grasses and grasslike plants. Narrative text is provided for slides of 62 different perennial and annual species…

  13. Meadow-grass gall midge

    DEFF Research Database (Denmark)

    Hansen, Lars Monrad

    The area with meadow-grass (Poa pratensis, L.) grown for seed production in Den-mark is a significant proportion of the entire seed production. The meadow-grass gall midge (Mayetiola schoberi, Barnes 1958) is of considerable economic importance since powerful attacks can reduce the yield...... drastically. It overwinters as larvae in a puparium, in the soil, and begins to hatch on average in late April, but the time is de-pending on the temperature. Emergence of the meadow-grass gall midge in spring takes place over a 2-3 week period. Beginning of emergence of the meadow-grass gall midge takes...... maximum. Therefore, the spraying frequency could be lowered signifi-cantly and in many cases lowered to only one insecticide application in meadow-grass every year....

  14. TILLING in forage grasses for gene discovery and breeding improvement.

    Science.gov (United States)

    Manzanares, Chloe; Yates, Steven; Ruckle, Michael; Nay, Michelle; Studer, Bruno

    2016-09-25

    Mutation breeding has a long-standing history and in some major crop species, many of the most important cultivars have their origin in germplasm generated by mutation induction. For almost two decades, methods for TILLING (Targeting Induced Local Lesions IN Genomes) have been established in model plant species such as Arabidopsis (Arabidopsis thaliana L.), enabling the functional analysis of genes. Recent advances in mutation detection by second generation sequencing technology have brought its utility to major crop species. However, it has remained difficult to apply similar approaches in forage and turf grasses, mainly due to their outbreeding nature maintained by an efficient self-incompatibility system. Starting with a description of the extent to which traditional mutagenesis methods have contributed to crop yield increase in the past, this review focuses on technological approaches to implement TILLING-based strategies for the improvement of forage grass breeding through forward and reverse genetics. We present first results from TILLING in allogamous forage grasses for traits such as stress tolerance and evaluate prospects for rapid implementation of beneficial alleles to forage grass breeding. In conclusion, large-scale induced mutation resources, used for forward genetic screens, constitute a valuable tool to increase the genetic diversity for breeding and can be generated with relatively small investments in forage grasses. Furthermore, large libraries of sequenced mutations can be readily established, providing enhanced opportunities to discover mutations in genes controlling traits of agricultural importance and to study gene functions by reverse genetics.

  15. Divergent evolutionary pattern of starch biosynthetic pathway genes in grasses and dicots.

    Science.gov (United States)

    Li, Chun; Li, Qi-Gang; Dunwell, Jim M; Zhang, Yuan-Ming

    2012-10-01

    Starch is the most widespread and abundant storage carbohydrate in crops and its production is critical to both crop yield and quality. In regard to the starch content in the seeds of crop plants, there is a distinct difference between grasses (Poaceae) and dicots. However, few studies have described the evolutionary pattern of genes in the starch biosynthetic pathway in these two groups of plants. In this study, therefore, an attempt was made to compare evolutionary rate, gene duplication, and selective pattern of the key genes involved in this pathway between the two groups, using five grasses and five dicots as materials. The results showed 1) distinct differences in patterns of gene duplication and loss between grasses and dicots; duplication in grasses mainly occurred before the divergence of grasses, whereas duplication mostly occurred in individual species within the dicots; there is less gene loss in grasses than in dicots, 2) a considerably higher evolutionary rate in grasses than in dicots in most gene families analyzed, and 3) evidence of a different selective pattern between grasses and dicots; positive selection may have occurred asymmetrically in grasses in some gene families, for example, ADP-glucose pyrophosphorylase small subunit. Therefore, we deduced that gene duplication contributes to, and a higher evolutionary rate is associated with, the higher starch content in grasses. In addition, two novel aspects of the evolution of the starch biosynthetic pathway were observed.

  16. Anti-Insect Properties of Grass Fungal Endophytes for Plant Resistance to Insects

    Science.gov (United States)

    Many temperate grass species host Epichloë and Neotyphodium endophytic fungi that produce alkaloids with anti-mammalian and anti-insect properties. Ergot and lolitrem alkaloid production by endophyte-infected (E+) grasses can have deleterious effects on grazing livestock, whereas insecticidal alkal...

  17. Preliminary study on three pathogens with potential biological control in Barnyard grass (Echinochloa crus galli)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ More than 10 species of pathogenic fungi were isolated from the naturally infected leaves of barnyard grass (Echinochloa crus-galli) in paddy. After preliminary bioassaying, it was found that the Alternaria alternata (Fr.) keissler(AA), Exserohilum monoceras (EM),and "99-10" were three potential agents for biological control of barnyard grass.

  18. A high loading overland flow system: Impacts on soil characteristics, grass constituents, yields and nutrient removal.

    Science.gov (United States)

    Wen, C G; Chen, T H; Hsu, F H; Lu, C H; Lin, J B; Chang, C H; Chang, S P; Lee, C S

    2007-04-01

    The objectives of this paper are to determine effects of different grass species and their harvests on pollutant removal, elucidate impacts on soil characteristics and grass constituents, observe grass yield and quantify nutrient uptake by vegetation in an overland flow system (OLFS). Polluted creek water was applied to eight channels in the OLFS, which were planted with Paragrass, Nilegrass, Cattail, and Vetiver, with each two channels being randomly planted with a given grass species. The grass in one channel was harvested while that in the other channel was not. At a high rate of 27.8 m d(-1) hydraulic loading, the removal efficiencies of conventional pollutants such as BOD, COD, suspended solids (SS), and total coliforms in wastewater are not affected by the type of the grasses species, but those of nitrogen and phosphorus are affected by different species. Overall average removal efficiencies of BOD, COD, SS, ammonia, total nitrogen, total phosphorus and total coliforms through the OLFS are 42%, 48%, 78%, 47%, 40%, 33% and 89%, respectively. The concentration of nitrate, however, increases due to nitrification. Soil characteristics in OLFS have been changed significantly; specific conductivity, organic matter, exchangeable magnesium, extractable copper and zinc in soils all increase with time while pHs decrease. During the winter season, there is a significant accumulation of nitrate in grass with the subsequent reduction during the active growing season (Spring). The contents of nitrate and phosphorus in grass tissue are higher than those of grass in general pastureland, probably due to nutrient luxury uptake by grass. The overall grass yield, growth rate and nutrient uptake are quantified and implication of such high rate OLFS discussed.

  19. Extending juvenility in grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kaeppler, Shawn; de Leon Gatti, Natalia; Foerster, Jillian

    2017-04-11

    The present invention relates to compositions and methods for modulating the juvenile to adult developmental growth transition in plants, such as grasses (e.g. maize). In particular, the invention provides methods for enhancing agronomic properties in plants by modulating expression of GRMZM2G362718, GRMZM2G096016, or homologs thereof. Modulation of expression of one or more additional genes which affect juvenile to adult developmental growth transition such as Glossy15 or Cg1, in conjunction with such modulation of expression is also contemplated. Nucleic acid constructs for down-regulation of GRMZM2G362718 and/or GRMZM2G096016 are also contemplated, as are transgenic plants and products produced there from, that demonstrate altered, such as extended juvenile growth, and display associated phenotypes such as enhanced yield, improved digestibility, and increased disease resistance. Plants described herein may be used, for example, as improved forage or feed crops or in biofuel production.

  20. WHEAT GRASS HEALTH BENEFITS

    Directory of Open Access Journals (Sweden)

    Akula Annapurna

    2013-10-01

    Full Text Available Nutraceutical is a food or food product that provides health and medical benefits, including the preventionand treatment of disease. Nutraceuticals are the products typically claim to prevent chronic diseases, improve health,delay the aging process, and increase life expectancy.Let us know something about one such nutraceutical.Wheatgrass is a commonly found herb in India contains enzymes like protease, cytrochrome, amylase, lipase,transhydrogenase and SOD (super oxide dismutase. Besides these enzymes, it also contains all the essential aminoacids especially alanine, asparatic acid, glutamic acid, arginine and serine, which are helpful in providing good amountof protein in body which builds and repair tissues. Wheatgrass contains chlorophyll and flavonoids in good amount.It also contains vitamins like vitamin A, vitamin C, and vitamin E and minerals like iron, calcium and magnesium.Chlorophyll has been shown to build red blood cells quickly,cures anemia, normalise blood pressure by dilating theblood vessels. Chlorophyll has been shown to produce an unfavourable environment for bacterial growth in the bodyand therefore effective in increasing the body's resistance to illness. Probably the most important benefit ofwheatgrass is, it is a cancer fighting agent. Many people strongly believe that the benefits of wheatgrass on cancerare real and that consuming wheat grass can help in the treatment and even in the prevention of cancer. Wheatgrassproduces an immunization effect against many dietary carcinogens..Additional benefits of wheatgrass are bettercomplexion and a healthy glow. The slowing of graying hair is also a benefit believed to come from wheatgrass. Wecan grow wheat grass in small cups, pots and trays very conveniently in our homes, so that we will have fresh juiceand powder with minimum cost.

  1. EGRADATION CHARACTERISTICS OF SOME SUDANESE GRASSES AND GAS PRODUCTION TECHNIQUES

    Directory of Open Access Journals (Sweden)

    A.O. Idris

    2012-05-01

    Full Text Available Eighteen plant species, three ingredients, and six diets were studied for their degradation characteristics, using gas production techniques. The palatable grasses were selected during the rainy season from the range land of Kordofan, Sudan. The ingredients were Roselle seeds, Sorghum grain and Groundnut cake. The samples were incubated for 4, 8, 12, 24, 48, 72 and 96 h, using rumen inoculum of three of the sheep used for the nylon bag. The results showed a large variation between the different plant species in the gas volume. The potential gas volume reflected the presence of anti-nutritional factors. Gas production from the ingredients indicated that sorghum grain recorded the highest gas production volume. The gas production at different time intervals showed increased degradability in the grasses, diets and the ingredients. Eragrostis tremula could be used as reference forage in evaluating the organic matter digestibility and energy density of grasses and Farsefia longisiliqua as a reference for crude protein.

  2. Urban Rights-of-Way as Reservoirs for Tall-Grass Prairie Plants and Butterflies

    Science.gov (United States)

    Leston, Lionel; Koper, Nicola

    2016-03-01

    Urban rights-of-way may be potential reservoirs of tall-grass prairie plants and butterflies. To determine if this is true, in 2007-2008, we conducted vegetation surveys of species richness and cover, and butterfly surveys of species richness and abundance, along 52 transmission lines and four remnant prairies in Winnipeg, Manitoba. We detected many prairie plants and butterflies within transmission lines. Some unmowed and infrequently managed transmission lines had native plant species richness and total percent cover of native plants comparable to that of similar-sized remnant tall-grass prairies in the region. Although we did not find significant differences in overall native butterfly numbers or species richness between rights-of-way and remnant prairies, we found lower numbers of some prairie butterflies along frequently mowed rights-of-way than within remnant tall-grass prairies. We also observed higher butterfly species richness along sites with more native plant species. By reducing mowing and spraying and reintroducing tall-grass prairie plants, urban rights-of-way could serve as extensive reservoirs for tall-grass prairie plants and butterflies in urban landscapes. Eventually, managing urban rights-of-way as reservoirs for tall-grass prairie plants and animals could contribute to the restoration of tall-grass prairie in the North American Midwest.

  3. Urban Rights-of-Way as Reservoirs for Tall-Grass Prairie Plants and Butterflies.

    Science.gov (United States)

    Leston, Lionel; Koper, Nicola

    2016-03-01

    Urban rights-of-way may be potential reservoirs of tall-grass prairie plants and butterflies. To determine if this is true, in 2007-2008, we conducted vegetation surveys of species richness and cover, and butterfly surveys of species richness and abundance, along 52 transmission lines and four remnant prairies in Winnipeg, Manitoba. We detected many prairie plants and butterflies within transmission lines. Some unmowed and infrequently managed transmission lines had native plant species richness and total percent cover of native plants comparable to that of similar-sized remnant tall-grass prairies in the region. Although we did not find significant differences in overall native butterfly numbers or species richness between rights-of-way and remnant prairies, we found lower numbers of some prairie butterflies along frequently mowed rights-of-way than within remnant tall-grass prairies. We also observed higher butterfly species richness along sites with more native plant species. By reducing mowing and spraying and reintroducing tall-grass prairie plants, urban rights-of-way could serve as extensive reservoirs for tall-grass prairie plants and butterflies in urban landscapes. Eventually, managing urban rights-of-way as reservoirs for tall-grass prairie plants and animals could contribute to the restoration of tall-grass prairie in the North American Midwest.

  4. Edge effect on carabid assemblages along forest-grass transects

    Directory of Open Access Journals (Sweden)

    T. Magura

    2001-02-01

    Full Text Available During 1997 and 1998, we have tested the edge-effect for carabids along oak-hornbeam forest-grass transects using pitfall traps in Hungary. Our hypothesis was that the diversity of carabids will be higher in the forest edge than in the forest interior. We also focused on the characteristic species of the habitats along the transects and the relationships between their distribution and the biotic and abiotic factors.

    Our results proved that there was a significant edge effect on the studied carabid communities: the Shannon diversity increased significantly along the transects from the forest towards the grass. The diversity of the carabids were significantly higher in the forest edge and in the grass than in the forest interior. The carabids of the forest, the forest edge and the grass are separated from each other by principal coordinates analysis and by indicator species analysis (IndVal, suggesting that each of the three habitats has a distinct species assemblages. There were 5 distinctive groups of carabids: 1 habitat generalists, 2 forest generalists, 3 species of the open area, 4 forest edge species, and 5 forest specialists. It was demonstrated by multiple regression analyses, that the relative air moisture, temperature of the ground, the cover of leaf litter, herbs, shrubs and canopy cover, abundance of the carabids’ preys are the most important factors determining the diversity and spatial pattern of carabids along the studied transects.

  5. Early inflorescence development in the grasses (Poaceae

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Kellogg

    2013-07-01

    Full Text Available The shoot apical meristem of grasses produces the primary branches of the inflorescence, controlling inflorescence architecture and hence seed production. Whereas leaves are produced in a distichous pattern, with the primordia separated from each other by an angle of 180o, inflorescence branches are produced in a spiral in most species. The morphology and developmental genetics of the shift in phyllotaxis have been studied extensively in maize and rice. However, in wheat, Brachypodium, and oats, all in the grass subfamily Pooideae, the change in phyllotaxis does not occur; primary inflorescence branches are produced distichously. It is unknown whether the distichous inflorescence originated at the base of Pooideae, or whether it appeared several times independently. In this study, we show that Brachyelytrum, the genus sister to all other Pooideae has spiral phyllotaxis in the inflorescence, but that in the remaining 3000+ species of Pooideae, the phyllotaxis is two-ranked. These two-ranked inflorescences are not perfectly symmetrical, and have a clear front and back; this developmental axis has never been described in the literature and it is unclear what establishes its polarity. Strictly distichous inflorescences appear somewhat later in the evolution of the subfamily. Two-ranked inflorescences also appear in a few grass outgroups and sporadically elsewhere in the family, but unlike in Pooideae do not generally correlate with a major radiation of species. After production of branches, the inflorescence meristem may be converted to a spikelet meristem or may simply abort; this developmental decision appears to be independent of the branching pattern.

  6. Study of Selection of Shrub and Grass Species for Protection of Slope Plants of Unconsolidated Deposits of Hydropower Station%水电站渣场松散堆积物边坡植物措施防治灌草种选择研究

    Institute of Scientific and Technical Information of China (English)

    王智慧; 王石贵

    2014-01-01

    The selection of plant species is key to plant protection measures of the slope land , and should be considered from the aspects of ecological adaptability ,integrated functionality ,resistance and so on .Taking the slag field with open cut and hole cut in Jin'anqiao Hydropower Station for an example , this article determines the appropriate shrubs and grasses through the analysis of vegetation and adaptability of shrubs and grasses .The results of shrub and grass seeds planting germination experiment show that the highest natural germination rate among the ten kinds of selected shrub and grass seeds in the test is tall fescue ,accounting for 80 .89% ,and except Pyracantha fortuneana ,the natural germination rate of the other nine shrubs are higher than 75% .As the hole cut has too much abandon stone ,the survival rate of the shrub and grass seeds is less than 30% ,and the hole cut should be covered with soil before taking the plant measures .The gerination rates of shrub and grass seeds in the open cut and spoil overburden are higher than 60% and there are five kinds of shrub and grass seeds which preserving rates of 56d seedlings are higher than 60% ,including Festuca rubra Linn ,T rifolium repens Linn .,Lolium perenne L .,Festuca elate Keng and Trifolium repens Linn .,and also ,after 6 months of planting ,they have good growing height . Therefore ,these five kinds of shrubs and grass can meet the requirements of slope protection .%指出了植物品种选择是工程边坡植物防护措施关键,应从生态适应性、功能综合性、抗逆性等方面考虑选择。以金安桥水电站同时具有明挖和洞挖弃渣的渣场为研究对象,通过植被分析及灌草种适应性分析确定了适宜灌草种。灌草种发芽播种实验结果表明:选择的10种参试灌草种自然发芽率最高的为高羊茅80.89%,除火棘外其余9种灌草种自然发芽率均大于75%;洞挖弃渣块石过多,灌草种保存率均低于30%

  7. Grass fungal endophytes and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Craven, Kelly

    2015-03-10

    The invention provides isolated fungal endophytes and synthetic combinations thereof with host grass plants. Methods for inoculating grass plant with the endophytes, for propagating the grass-endophyte combinations, and for producing feeds and biofuels from grass-endophyte combinations are also provided.

  8. Factors influencing seed germination in Cerrado grasses

    Directory of Open Access Journals (Sweden)

    Rosana Marta Kolb

    2016-03-01

    Full Text Available Few studies address the ecology of herbs of Cerrado grasslands, which are ecosystems where the long dry season, high temperatures, insolation, fire and invasive grasses greatly influencing germination and the establishment of plants. We assessed germination of 13 species of Poaceae from Cerrado grasslands under nursery conditions or in germination chambers, the latter with i recently collected seeds and seeds after six months storage, ii under constant and alternating temperatures, and iii in the presence and absence of light. Germinability, mean germination time (MGT and required light were quantified to elucidate factors involved in successful germination. Germinability was low for most grasses, probably because of low seed viability. For most species, germinability and MGT were not altered by seed storage. Germination percentages were higher at alternating temperatures and in the presence of light, factors that are more similar to natural environmental situations compared with constant temperature or the absence of light. Our findings indicate that alternating temperatures and light incidence are key factors for germination of species of Poaceae. The maintenance of these environmental factors, which are crucial for the conservation of Cerrado grasslands, depends on appropriate management interventions, such as fire management and the control of biological invasion.

  9. Grass and weed killer poisoning

    Science.gov (United States)

    ... medlineplus.gov/ency/article/002838.htm Grass and weed killer poisoning To use the sharing features on this page, please enable JavaScript. Many weed killers contain dangerous chemicals that are harmful if ...

  10. Ecophysiological responses of Chihuahuan desert grasses to fire.

    Science.gov (United States)

    To better understand the effects of fire in the Chihuahuan desert, gas exchange characteristics of two dominant grass species, Bouteloua eriopoda and Aristida purpurea, and soil nitrogen availability were studied in response to prescribed fire at the Jornada Experimental Range in southern New Mexico...

  11. POSSIBLE MECHANISMS OF THE EXCLUSION OF JOHNSON GRASS BY TALL GRASS PRAIRIES

    Directory of Open Access Journals (Sweden)

    Marilyn A. Semtner

    2012-12-01

    Full Text Available Historically, plant distribution typically has been studied with the purpose of learning why a species grows and survives where it does; but why a species does not survive in a particular habitat has rarely been studied, although it may be just as important. According to the US Department of Agriculture, Johnsongrass [Sorghum halepense (L. Pers.; formerly Johnson grass] is listed as an agricultural pest in most states south of the 42nd parallel. Control of Johnsongrass inagricultural fields involves various labor intensive cultural, mechanical, and chemical means. Release of a bio-control agent has not been suitable for intensively cropped areas. An agriculturally important weed and prominent member of early stage secondary succession, Johnsongrass is not present in later stages of prairie succession. Various environmental factors (biotic and abiotic that might be involved in restricting Johnsongrass survival were examined in this research. In two sites in Oklahoma, soil conditions were found to be more favorable for survival and growth of Johnsongrass in undisturbed prairie than in the disturbed areas in which Johnsongrass was found vigorously growing. However, even when its rhizomes were introduced into mature prairie, Johnsongrass did not thrive. In laboratory and field trials, presence of the living dominant prairie grasses or leachate from living or dead leaf blades seemed to influence growth and survival of Johnsongrass rhizomes. The prairie grasses, little bluestem [Schizachyrium scoparium (Michx. Nash] and Indian grass [Sorghastrum nutans (L. Nash], seem to play a similarallelopathic role in restricting the growth of Johnsongrass to outside of the prairies. Looking at this past study might lead to new methods for the future. (Semtner 2012

  12. Anaerobic co-digestion of sewage sludge with shredded grass from public green spaces.

    Science.gov (United States)

    Hidaka, Taira; Arai, Sayuri; Okamoto, Seiichiro; Uchida, Tsutomu

    2013-02-01

    Adding greenery from public spaces to the co-digestion process with sewage sludge was evaluated by shredding experiments and laboratory-scale batch and continuous mesophilic anaerobic fermentation experiments. The ratio of the shredded grass with 20mm or less in length by a commercially available shredder was 93%. The methane production was around 0.2NL/gVS-grass in the batch experiment. The continuous experiment fed with sewage sludge and shredded grass was stably operated for 81days. The average methane production was 0.09NL/gVS-grass when the TS ratio of the sewage sludge and the grass was 10:1. This value was smaller than those of other reports using grass silage, but the grass species in this study were not managed, and the collected grass was just shredded and not ensiled before feeding to the reactor for simple operation. The addition of grass to a digester can improve the carbon/nitrogen ratio, methane production and dewaterability.

  13. Climate change and the invasion of California by grasses

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Dangremond, Emily

    2012-01-01

    Over the next century, changes in the global climate are expected to have major consequences for plant communities, possibly including the exacerbation of species invasions. We evaluated this possibility in the grass flora of California, which is economically and ecologically important and heavily...... invaded. We used a novel, trait-based approach involving two components: identifying differences in trait composition between native and exotic components of the grass flora and evaluating contemporary trait–climate relationships across the state. The combination of trait–climate relationships and trait...

  14. Native grasses for reclaiming mine sites in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Darroch, B.A.; Woosaree, J.; James, B.T. [Alberta Environmental Centre, Vegreville, AB (Canada)

    1995-06-01

    A research project to select, test, and develop varieties of four native grass species for revegetating mine sites at high elevations in the Rocky Mountains and foothills is described. Multi-location trials show that lines of alpine bluegrass and slender wheatgrass perform much better than check varieties at mountain sites, and in some cases are better at lower elevations. Three varieties of these grasses have been developed for reclamation uses, and more will be released later. Several more years of research are needed to develop varieties of Rocky Mountain fescue and spike trisetum. 6 refs., 5 tabs.

  15. Growth and use of energy grasses as a fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    This summary outlines the main conclusions of the project which aims to provide information on the growth, yields, and combustion characteristics of Miscanthus, switchgrass, Spartina, rye, and reed canary grass. Details are given of the small-plot trials of the non-wood biomass fuels, the planting, pests and diseases, the falling over of crops, the time of harvest, moisture content, yields, combustion trials, fuel and ash characterisation, and costs/income. Tables are provided illustrating the cumulative yield, the costs of the different species of energy grasses, and the annual mean gross margins over 5, 10, 15, and 20 years.

  16. Additions to the grasses (Poaceae of Telangana from Kawal Tiger Reserve, Adilabad District, India

    Directory of Open Access Journals (Sweden)

    Alok Chorghe

    2015-07-01

    Full Text Available Three species of grasses viz., Dimeria orissae, Iseilema holei and Spodiopogon rhizophorus are being reported for the first time as new distributional records to Telangana from the Kawal Tiger Reserve. Detailed description and illustrations are provided here.

  17. Phylogenetic analyses reveal the shady history of C4 grasses.

    Science.gov (United States)

    Edwards, Erika J; Smith, Stephen A

    2010-02-09

    Grasslands cover more than 20% of the Earth's terrestrial surface, and their rise to dominance is one of the most dramatic events of biome evolution in Earth history. Grasses possess two main photosynthetic pathways: the C(3) pathway that is typical of most plants and a specialized C(4) pathway that minimizes photorespiration and thus increases photosynthetic performance in high-temperature and/or low-CO(2) environments. C(4) grasses dominate tropical and subtropical grasslands and savannas, and C(3) grasses dominate the world's cooler temperate grassland regions. This striking pattern has been attributed to C(4) physiology, with the implication that the evolution of the pathway enabled C(4) grasses to persist in warmer climates than their C(3) relatives. We combined geospatial and molecular sequence data from two public archives to produce a 1,230-taxon phylogeny of the grasses with accompanying climate data for all species, extracted from more than 1.1 million herbarium specimens. Here we show that grasses are ancestrally a warm-adapted clade and that C(4) evolution was not correlated with shifts between temperate and tropical biomes. Instead, 18 of 20 inferred C(4) origins were correlated with marked reductions in mean annual precipitation. These changes are consistent with a shift out of tropical forest environments and into tropical woodland/savanna systems. We conclude that C(4) evolution in grasses coincided largely with migration out of the understory and into open-canopy environments. Furthermore, we argue that the evolution of cold tolerance in certain C(3) lineages is an overlooked innovation that has profoundly influenced the patterning of grassland communities across the globe.

  18. Mycorrhizal fungi affect root stele tissue in grasses.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R. M.; Hetrick, B. A. D.; Wilson, G. W. T.; Environmental Research; Northern Iowa Univ.; Kansas State Univ.

    1997-01-01

    Although arbuscular mycorrhizal symbiosis was initially believed to have little or no impact on root morphology, we now recognize that subtle changes do occur and that these changes may be of considerable consequence to host growth and nutrition, as well as functional growth strategy. In examining the stele and root diameters of C3 and C4 grasses, C4 grasses were demonstrated to have a significantly larger proportion of their fibrous roots occupied by stele tissue than do C3 grasses. In fact, functional growth strategy (C3 versus C4) was observed to be a relatively good predictor of stele area. Mycorrhizal fungi also influenced the amount of stele tissue, but the effect was not the same for both C3 and C4 grasses. The stele area of all C4 grasses except for Sorghastrum nutans was greater in the presence of mycorrhizal colonization. Among the C3 grasses, only Bromus inermis showed a significant increase, although Elymus cinereus and Lolium perenne displayed significant decreases in response to arbuscular mycorrhizal colonization. Changes in the stele area of the plant species were closely related to their responsiveness to mycorrhizal symbiosis and might in part explain both beneficial and detrimental responses of plants to mycorrhizae. An increase in stele circumference induced by mycorrhizae would allow for greater uptake and passage of water and nutrients to the vascular cylinder, and growth depressions could be a direct outcome of reduced stele circumference. Thus, differences in stele circumference represent a possible mechanism for mycorrhizal impacts on host plants. These findings indicate that structural differences among grasses are related to different functional capabilities and further emphasize the need for better integration of comparative anatomy and morphology procedures in the study of mycorrhizal symbiosis.

  19. Complex interactions between a legume and two grasses in a subalpine meadow.

    Science.gov (United States)

    Marty, Charles; Pornon, André; Escaravage, Nathalie; Winterton, Peter; Lamaze, Thierry

    2009-10-01

    Interactions between plants are a complex combination of positive and negative interactions, with the net outcome depending on environmental contexts. The more frequent association of Trifolium alpinum (legume) with Festuca eskia than with Nardus stricta (grasses) in many Pyrenean subalpine meadows suggests a differential ability to use nitrogen (N) derived from N(2) fixation. In the field, we investigated the interactions between the legume and grasses and, in the glasshouse, the transfer of (15)N from the legume to the grasses. In one grass-Trifolium mixture, the legume had a strong positive effect on the biomass and N content of the grass as compared to pure grass stands. When both grasses grew together with the legume, only Festuca benefited from the presence of Trifolium but, surprisingly, the benefit decreased with increasing Trifolium abundance. Leaf labeling experiments with (15)N-NH(4)(+) revealed a higher transfer of (15)N from Trifolium to Festuca than to Nardus, suggesting a more direct N pathway between the two species. This more direct pathway could prevent Nardus from benefiting from the legume N in the three-species mixtures. Thus, the positive interactions between N-fixers and nonfixers appear to be largely species-specific and to depend strongly on the species in the plant assemblage.

  20. Positive effects of non-native grasses on the growth of a native annual in a southern california ecosystem.

    Science.gov (United States)

    Pec, Gregory J; Carlton, Gary C

    2014-01-01

    Fire disturbance is considered a major factor in the promotion of non-native plant species. Non-native grasses are adapted to fire and can alter environmental conditions and reduce resource availability in native coastal sage scrub and chaparral communities of southern California. In these communities persistence of non-native grasses following fire can inhibit establishment and growth of woody species. This may allow certain native herbaceous species to colonize and persist beneath gaps in the canopy. A field manipulative experiment with control, litter, and bare ground treatments was used to examine the impact of non-native grasses on growth and establishment of a native herbaceous species, Cryptantha muricata. C. muricata seedling survival, growth, and reproduction were greatest in the control treatment where non-native grasses were present. C. muricata plants growing in the presence of non-native grasses produced more than twice the number of flowers and more than twice the reproductive biomass of plants growing in the treatments where non-native grasses were removed. Total biomass and number of fruits were also greater in the plants growing in the presence of non-native grasses. Total biomass and reproductive biomass was also greater in late germinants than early germinants growing in the presence of non-native grasses. This study suggests a potential positive effect of non-native grasses on the performance of a particular native annual in a southern California ecosystem.

  1. Positive Effects of Non-Native Grasses on the Growth of a Native Annual in a Southern California Ecosystem

    Science.gov (United States)

    Pec, Gregory J.; Carlton, Gary C.

    2014-01-01

    Fire disturbance is considered a major factor in the promotion of non-native plant species. Non-native grasses are adapted to fire and can alter environmental conditions and reduce resource availability in native coastal sage scrub and chaparral communities of southern California. In these communities persistence of non-native grasses following fire can inhibit establishment and growth of woody species. This may allow certain native herbaceous species to colonize and persist beneath gaps in the canopy. A field manipulative experiment with control, litter, and bare ground treatments was used to examine the impact of non-native grasses on growth and establishment of a native herbaceous species, Cryptantha muricata. C. muricata seedling survival, growth, and reproduction were greatest in the control treatment where non-native grasses were present. C. muricata plants growing in the presence of non-native grasses produced more than twice the number of flowers and more than twice the reproductive biomass of plants growing in the treatments where non-native grasses were removed. Total biomass and number of fruits were also greater in the plants growing in the presence of non-native grasses. Total biomass and reproductive biomass was also greater in late germinants than early germinants growing in the presence of non-native grasses. This study suggests a potential positive effect of non-native grasses on the performance of a particular native annual in a southern California ecosystem. PMID:25379790

  2. Effects of climate and water balance across grasslands of varying C3 and C4 grass cover

    Science.gov (United States)

    Witwicki, Dana L.; Munson, Seth M.; Thoma, David P.

    2016-01-01

    Climate change in grassland ecosystems may lead to divergent shifts in the abundance and distribution of C3 and C4 grasses. Many studies relate mean climate conditions over relatively long time periods to plant cover, but there is still much uncertainty about how the balance of C3and C4 species will be affected by climate at a finer temporal scale than season (individual events to months). We monitored cover at five grassland sites with co-dominant C3 and C4 grass species or only dominant C3 grass species for 6 yr in national parks across the Colorado Plateau region to assess the influence of specific months of climate and water balance on changes in grass cover. C4 grass cover increased and decreased to a larger degree than C3 grass cover with extremely dry and wet consecutive years, but this response varied by ecological site. Climate and water balance explained 10–49% of the inter-annual variability of cover of C3 and C4 grasses at all sites. High precipitation in the spring and in previous year monsoon storms influenced changes in cover of C4 grasses, with measures of water balance in the same months explaining additional variability. C3 grasses in grasslands where they were dominant were influenced primarily by longer periods of climate, while C3 grasses in grasslands where they were co-dominant with C4 grasses were influenced little by climate anomalies at either short or long periods of time. Our results suggest that future changes in spring and summer climate and water balance are likely to affect cover of both C3 and C4 grasses, but cover of C4 grasses may be affected more strongly, and the degree of change will depend on soils and topography where they are growing and the timing of the growing season.

  3. Ensilage of tropical grasses mixed with legumes and molasses.

    Science.gov (United States)

    Tjandraatmadja, M; Norton, B W; Mac Rae, I C

    1994-01-01

    The effects of adding two legumes, Gliricidia sepium and Leucaena leucocephala, cv. Cunningham, and molasses on the fermentation characteristics of silages made from two tropical grasses (Pangola grass, Digitaria decumbens, and Setaria sphacelata cv. Kazungula) were investigated. Pangola grass silages contained significantly higher contents of water-soluble carbohydrates and lactic acid than did setaria silages after 100 days fermentation, but there were no significant differences between the two silages in populations of lactic acid bacteria and contents of total N and NH3-N. Addition of either species of legume had no significant effect on fermentation acids and NH3-N contents, and numbers of lactic acid bacteria. Addition of both legumes reduced NH3-N production in the silages by 59% after 5 days' fermentation. Numbers of lactic acid bacteria were not significantly affected by the different treatments. Enterococcus faecalis represented 60% of the lactic acid bacteria isolated from the treated herbages prior to ensiling. By 100 days of fermentation, only lactobacilli were isolated: 82% homo-fermenters and 18% hetero-fermenters. Lactobacillus mesenteroides subsp. dextranicum was found only in the silage supplemented with 33% (w/w) legume. It was concluded that the low quality of tropical grasses used as feeds for ruminants may be significantly improved by ensiling these grasses with small amounts of molasses and with high-protein tree leaves.

  4. Salt tolerance evolves more frequently in C4 grass lineages.

    Science.gov (United States)

    Bromham, L; Bennett, T H

    2014-03-01

    Salt tolerance has evolved many times in the grass family, and yet few cereal crops are salt tolerant. Why has it been so difficult to develop crops tolerant of saline soils when salt tolerance has evolved so frequently in nature? One possible explanation is that some grass lineages have traits that predispose them to developing salt tolerance and that without these background traits, salt tolerance is harder to achieve. One candidate background trait is photosynthetic pathway, which has also been remarkably labile in grasses. At least 22 independent origins of the C4 photosynthetic pathway have been suggested to occur within the grass family. It is possible that the evolution of C4 photosynthesis aids exploitation of saline environments, because it reduces transpiration, increases water-use efficiency and limits the uptake of toxic ions. But the observed link between the evolution of C4 photosynthesis and salt tolerance could simply be due to biases in phylogenetic distribution of halophytes or C4 species. Here, we use a phylogenetic analysis to investigate the association between photosynthetic pathway and salt tolerance in the grass family Poaceae. We find that salt tolerance is significantly more likely to occur in lineages with C4 photosynthesis than in C3 lineages. We discuss the possible links between C4 photosynthesis and salt tolerance and consider the limitations of inferring the direction of causality of this relationship.

  5. St. Augustine grass germplasm resistant to Blissus insularis (Hemiptera: Blissidae).

    Science.gov (United States)

    Youngs, Katharine M; Milla-Lewis, Susana R; Brandenburg, Rick L; Cardoza, Yasmin J

    2014-08-01

    St. Augustine grass (Stenotaphrum secundatum (Walter) Kuntze) is an economically important turfgrass in the southeastern United States. However, this turf species is prone to southern chinch bug, Blissus insularis Barber (Heteroptera: Blissidae) outbreaks. This insect is the most destructive pest of St. Augustine grass wherever this turf grass is grown. Host plant resistance has historically been an effective management tool for southern chinch bug. Since 1973, the 'Floratam' St. Augustine grass cultivar effectively controlled southern chinch bug in the southeast. However, southern chinch bug populations from Florida and Texas have now circumvented this resistance, through mechanisms still unknown. Therefore, identifying and deploying new cultivars with resistance to the southern chinch bug is imperative to combat this pest in an economically and environmentally sustainable manner. Currently, the number of cultivars with resistance against southern chinch bug is limited, and their efficacy, climatic adaptability, and aesthetic characters are variable. Hence, the main focus of this study is the identification of alternative sources of resistance to southern chinch bugs in previously uncharacterized St. Augustine grass plant introductions (PIs) and its closely related, crossbreeding species, Pembagrass (Stenotaphrum dimidiatum (L.) Brongniart). The PIs exhibited a wide range of responses to southern chinch bug feeding, as indicated by damage ratings. Damage ratings for seven PIs grouped with our resistant reference cultivars. Moreover, nine PIs exhibited antibiosis, based on poor development of southern chinch bug neonates, when compared with our susceptible reference cultivars. Altogether our study has produced strong support to indicate these materials are good candidates for future southern chinch bug resistance breeding in St. Augustine grass.

  6. Reversing land degradation through grasses: a systematic meta-analysis in the Indian tropics

    Science.gov (United States)

    Mandal, Debashis; Srivastava, Pankaj; Giri, Nishita; Kaushal, Rajesh; Cerda, Artemi; Meherul Alam, Nurnabi

    2017-02-01

    Although intensive agriculture is necessary to sustain the world's growing population, accelerated soil erosion contributes to a decrease in the environmental health of ecosystems at local, regional and global scales. Reversing the process of land degradation using vegetative measures is of utmost importance in such ecosystems. The present study critically analyzes the effect of grasses in reversing the process of land degradation using a systematic review. The collected information was segregated under three different land use and land management situations. Meta-analysis was applied to test the hypothesis that the use of grasses reduces runoff and soil erosion. The effect of grasses was deduced for grass strip and in combination with physical structures. Similarly, the effects of grasses were analyzed in degraded pasture lands. The overall result of the meta-analysis showed that infiltration capacity increased approximately 2-fold after planting grasses across the slopes in agricultural fields. Grazing land management through a cut-and-carry system increased conservation efficiencies by 42 and 63 % with respect to reduction in runoff and erosion, respectively. Considering the comprehensive performance index (CPI), it has been observed that hybrid Napier (Pennisetum purpureum) and sambuta (Saccharum munja) grass seem to posses the most desirable attributes as an effective grass barrier for the western Himalayas and Eastern Ghats, while natural grass (Dichanthium annulatum) and broom grass (Thysanolaena maxima) are found to be most promising grass species for the Konkan region of the Western Ghats and the northeastern Himalayan region, respectively. In addition to these benefits, it was also observed that soil carbon loss can be reduced by 83 % with the use of grasses. Overall, efficacy for erosion control of various grasses was more than 60 %; hence, their selection should be based on the production potential of these grasses under given edaphic and agro

  7. Tracking the evolution of a cold stress associated gene family in cold tolerant grasses

    DEFF Research Database (Denmark)

    Sandve, Simen R; Rudi, Heidi; Asp, Torben

    2008-01-01

    Background Grasses are adapted to a wide range of climatic conditions. Species of the subfamily Pooideae, which includes wheat, barley and important forage grasses, have evolved extreme frost tolerance. A class of ice binding proteins that inhibit ice re-crystallisation, specific to the Pooideae...... to the repeat motifs of the IRI-domain in cold tolerant grasses. Finally we show that the LRR-domain of carrot and grass IRI proteins both share homology to an Arabidopsis thaliana LRR-trans membrane protein kinase (LRR-TPK). Conclusion The diverse IRI-like genes identified in this study tell a tale...... of a complex evolutionary history including birth of an ice binding domain, a burst of gene duplication events after cold tolerant grasses radiated from rice, protein domain structure differentiation between paralogs, and sub- and/or neofunctionalisation of IRI-like proteins. From our sequence analysis we...

  8. Grass Roots War on Poverty

    OpenAIRE

    Amsden, Alice H

    2012-01-01

    Sub-Saharan Africa’s failure to slay the dragon of poverty is due to a logical flaw in its policies: the remedies to reduce poverty don’t address the causes. Poverty is caused by unemployment, owing to a scarcity of jobs that pay above bare subsistence, but grass-roots poverty alleviation measures are exclusively designed to make job-seekers more capable although no jobs are available. The ‘appropriate’ technologies of the grass roots movement that dominates anti-poverty policies are ...

  9. The perennial ryegrass GenomeZipper: targeted use of genome resources for comparative grass genomics.

    Science.gov (United States)

    Pfeifer, Matthias; Martis, Mihaela; Asp, Torben; Mayer, Klaus F X; Lübberstedt, Thomas; Byrne, Stephen; Frei, Ursula; Studer, Bruno

    2013-02-01

    Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species.

  10. The effect of compost treatments and a plant cover with Agrostis tenuis on the immobilization/mobilization of trace elements in a mine-contaminated soil.

    Science.gov (United States)

    Alvarenga, P; de Varennes, A; Cunha-Queda, A C

    2014-01-01

    A semi-field experiment was conducted to evaluate the use of mixed municipal solid waste compost (MMSWC) and green waste-derived compost (GWC) as immobilizing agents in aided-phytostabilization of a highly acidic soil contaminated with trace elements, with and without a plant cover of Agrostis tenuis. The compost application ratio was 50 Mg ha(-1), and GWC amended soil was additionally limed and supplemented with mineral fertilizers. Both treatments had an equivalent capacity to raise soil organic matter and pH, without a significant increase in soil salinity and in pseudo-total As, Cu, Pb, and Zn concentrations, allowing the establishment of a plant cover. Effective bioavailable Cu and Zn decreased as a consequence of both compost treatments, while effective bioavailable As increased by more than twice but remained as a small fraction of its pseudo-total content. Amended soil had higher soil enzymatic activities, especially in the presence of plants. Accumulation factors for As, Cu, Pb, and Zn by A. tenuis were low, and their concentrations in the plant were lower than the maximum tolerable levels for cattle. As a consequence, the use of A. tenuis can be recommended for assisted phytostabilization of this type of mine soil, in combination with one of the compost treatments evaluated.

  11. Genetic modification of wetland grasses for phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Czako, M.; Liang Dali; Marton, L. [Dept. of Biological Sciences, Univ. of South Carolina, Columbia, SC (United States); Feng Xianzhong; He Yuke [National Lab. of Plant Molecular Genetics, Shanghai Inst. of Plant Physiology, Chinese Academy of Sciences, Shanghai, SH (China)

    2005-04-01

    Wetland grasses and grass-like monocots are very important natural remediators of pollutants. Their genetic improvement is an important task because introduction of key transgenes can dramatically improve their remediation potential. Tissue culture is prerequisite for genetic manipulation, and methods are reported here for in vitro culture and micropropagation of a number of wetland plants of various ecological requirements such as salt marsh, brackish water, riverbanks, and various zones of lakes and ponds, and bogs. The monocots represent numerous genera in various families such as Poaceae, Cyperaceae, Juncaceae, and Typhaceae. The reported species are in various stages of micropropagation and Arundo donax is scaled for mass propagation for selecting elite lines for pytoremediation. Transfer of key genes for mercury phytoremediation into the salt marsh cordgrass (Spartina alterniflora) is also reported here. All but one transgenic lines contained both the organomercurial lyase (merB) and mercuric reductase (merA) sequences showing that co-introduction into Spartina of two genes from separate Agrobacterium strains is possible. (orig.)

  12. Grass Hosts Harbor More Diverse Isolates of Puccinia striiformis Than Cereal Crops.

    Science.gov (United States)

    Cheng, P; Chen, X M; See, D R

    2016-04-01

    Puccinia striiformis causes stripe rust on cereal crops and many grass species. However, it is not clear whether the stripe rust populations on grasses are able to infect cereal crops and how closely they are related to each other. In this study, 103 isolates collected from wheat, barley, triticale, rye, and grasses in the United States were characterized by virulence tests and simple sequence repeat (SSR) markers. Of 69 pathotypes identified, 41 were virulent on some differentials of wheat only, 10 were virulent on some differentials of barley only, and 18 were virulent on some differentials of both wheat and barley. These pathotypes were clustered into three groups: group one containing isolates from wheat, triticale, rye, and grasses; group two isolates were from barley and grasses; and group three isolates were from grasses and wheat. SSR markers identified 44 multilocus genotypes (MLGs) and clustered them into three major molecular groups (MG) with MLGs in MG3 further classified into three subgroups. Isolates from cereal crops were present in one or more of the major or subgroups, but not all, whereas grass isolates were present in all of the major and subgroups. The results indicate that grasses harbor more diverse isolates of P. striiformis than the cereals.

  13. Perrenial Grasses for Sustainable European Protein Production

    DEFF Research Database (Denmark)

    Jørgensen, Uffe; Lærke, Poul Erik

    2016-01-01

    production into grass production. Grasses and legumes have higher contents of protein with better quality (high lysine and methionine contents) than grain and seed crops. Thus, substituting imported soya bean protein with protein extracted from perennial grasses is an interesting option....

  14. Bioenergy production from roadside grass

    DEFF Research Database (Denmark)

    Meyer, Ane Katharina Paarup; Ehimen, Ehiazesebhor Augustine; Holm-Nielsen, Jens Bo

    2014-01-01

    This paper presents a study of the feasibility of utilising roadside vegetation for biogas production in Denmark. The potential biomass yield, methane yields, and the energy balances of using roadside grass for biogas production was investigated based on spatial analysis. The results show...

  15. Recuperação de larvas infectantes de Trichostrongylus colubriformis em três espécies de gramíneas contaminadas no verão Recovery of Trichostrongylus colubriformis infective larvae from three grass species contaminated in summer

    Directory of Open Access Journals (Sweden)

    Raquel A. da Rocha

    2008-12-01

    , Cynodon dactilon cv. Coast-cross, and Panicum maximum cv. Aruana, were used in the study, totaling two plots for each species. Each plot (32.4 m² was divided into 36 subplots (30 x 30 cm in order to allow six replicates per forage species and per herbage height in each week of material collection. Larval recovery was evaluated from middle summer to middle autumn under the effect of two forage paring heights: low, 5 cm, and high, 30 cm. The paring was carried out immediately before the fecal samples with T. colubriformis eggs, taken from sheep, were deposited on pasture in 05/Feb/2004. Feces and forage collection was performed one, two, four, eight, 12 and 16 weeks after feces deposition in the experimental plots. Forage grass height was measured in each subdivision immediately before the collections. The forage sample was cut, close to the soil, from an area delimited with a circle with a 10-cm radius. The feces were collected from the subplots. The number of infective larvae recovered from pasture was very small in compa6rison with the amount of larvae produced in cultures maintained in laboratory (maximum 6.7% on Aruana grass with 30 cm. L3 recovery rates from fecal samples were bigger when the feces were deposited on high grass (measuring 30 cm - P 0.05. Among the forage species, the Aruana grass was the one that, in general, harbored the biggest concentrations of infective T. colubriformis larvae.

  16. Interspecific associations and community structure: A local survey and analysis in a grass community

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2014-09-01

    Full Text Available Interspecific associations in the plant community may help to understand the self-organizing assembly and succession of the community. In present study, Pearson correlation, net correlation, Spearman rank correlation, and point correlation were used to detect the interspecific (inter-family associations of grass species (families using the sampling data collected in a grass community of Zhuhai, China. We found that most associations between grass species (families were positive associations. The competition/interference/niche separation between grass species (families was not significant. A lot of pairs of grass species and families with statistically significant interspecific (inter-family associations based on four correlation measures were discovered. Cluster trees for grass species/families were obtained by using cluster analysis. Relationship among positive/negative associations, interspecific relationship and community succession/stability/robustness was discussed. I held that species with significant positive or negative associations are generally keystone species in the community. Although both negative and positive associations occur in the community succession, the adaptation and selection will finally result in the successful coexistence of the species with significant positive associations in the climax community. As the advance of community succession, the significant positive associations increase and maximize in climax community, and the significant negative associations increase to a maximum and then decline into climax community. Dominance of significant positive associations in the climax community means the relative stablility and equilibrium of the community. No significant associations usually account for the majority of possible interspecific associations at each phase of community succession. They guarantee the robustness of community. They are candidates of keystone species. Lose of some existing keystone species might be

  17. UV induced visual cues in grasses

    Science.gov (United States)

    Baby, Sabulal; Johnson, Anil John; Govindan, Balaji; Lukose, Sujith; Gopakumar, Bhaskaran; Koshy, Konnath Chacko

    2013-01-01

    Grasses are traditionally considered as wind pollinated, however, field observations confirmed frequent insect visits to grass flowers, suggesting insect pollination. Fruit and seed predators inflict heavy losses to cereals and millets during their growth, maturation and storage. The actual factors guiding insects and predators to grass flowers, fruits and seeds are not clear. Here, we report attractive blue fluorescence emissions on grass floral parts such as glumes, lemma, palea, lodicules, staminal filaments, pollens and fruits in ultraviolet (UV) 366 nm, whereas the stigmatic portions were not blue, but red fluorescent. We characterized the blue fluorescent constituent in grass reproductive structures as ferulic acid (FA). Fluorescence spectra of blue-emitting grass floral, seed extracts and isolated FA on excitation at 366 nm showed their emissions at 420–460 nm. We propose these FA-based blue fluorescence emissions in grass reproductive structures as visual cues that attract pollinators, predators and even pests towards them. PMID:24061408

  18. Gene expression in grass ovaries infected with seed born fungal endophyte Neotyphodium occultans analyzed by a next-generation sequencing system

    Science.gov (United States)

    Fungal endophytes of the genus Neotyphodium form symbiotic associations with many grass species of the subfamily Pooideae, including some important forage and turf species such as Lolium grasses. The endophytes are maintained in host plant communities by seed transmission from maternal plants to off...

  19. Nitrogen transfer from forage legumes to grass in a systematic planting design. [Medicago sativa; Lotus corniculatus; Phalaris arundinacea

    Energy Technology Data Exchange (ETDEWEB)

    Brophy, L.S.; Heichel, G.H.; Russelle, M.P.

    Alfalfa (Medicago sativa L.) is the most important forage legume in the USA, but N transfer from this or other perennial forage species to companion grasses growing in a mixed sward is poorly understood. Furthermore, interplant distances and legume/grass ratios have seldom been controlled in studies of N transfer from legumes to non-legumes. The objectives of this field study were: (i) to determine the amount of N transferred from alfalfa and birdsfoot trefoil (Lotus carniculatus L.) to reed canarygrass (Phalaris arundinacea L.); (ii) to define conditions of distance and species ratio under which N transfer occurs; (iii) to compare the two legumes for N transfer; and (iv) to determine the effect of grass proximity on legume N/sub 2/ fixation. Legumes were interplanted with grass in single-species rows within km/sup 2/ plots on a Typic hapludoll soil labeled with /sup 15/N. Analysis of herbage showed significantly lower /sup 15/N concentration in grass near legumes than in grass grown alone, and significantly lower /sup 15/N concentration in legumes near grass than legumes in monoculture. Calculations using isotope dilution methods showed that grass derived a maximum of 68% of its N from alfalfa and 79% from trefoil. This N represented 13% of the N/sub 2/ fixed by trefoil and 17% of that fixed by alfalfa. The results indicated that N transfer occurred over a distance of 20 cm with maximum N transfer in areas of high legume/grass ratio. At third harvest, N derived from symbiosis was significantly higher (95% in alfalfa, 92% in trefoil) for legumes grown in mixture with grass than for legumes grown in monoculture (86% in alfalfa, 80% in trefoil). These results indicate that significant N transfer occurred, and that the amount of N transferred was dependent on interspecies distance and legume/grass ratio.

  20. Effects of grass forage species and long-term period of low quality forage diet feeding on growth performance, nutrient utilization and microbial nitrogen yield in growing wether lambs.

    Science.gov (United States)

    Kim, Da-Hye; Choi, Ki-Choon; Song, Sang-Houn; Ichinohe, Toshiyoshi

    2016-02-01

    Six growing lambs were used to evaluate the feeding value of two forage-based diets in a long-term feeding period by measuring body weight (BW) gain, digestibility, nitrogen (N) retention and microbial N (MBN) yield. The animals were fed imported low-quality timothy hay (TH) with concentrate diet (THD) or imported low-quality Italian ryegrass straw (IR) with concentrate diet (IRD) for 9 months. The forages were offered at 2% BW, and concentrate was fed at 40% of forage intake. The BW gain averaged 82.6 and 66.2 g/day for THD and IRD, respectively, without showing significant difference. Average forage intake (% BW) was significantly greater for IR than for TH, although it was not affected by feeding periods. The digestibility did not differ between diets or periods. The numerically greater (P = 0.06) ratio of retained N to absorbed N for IRD than that for THD was prominent. Neither diet nor period had significant effect on MBN supply and efficiency of MBN synthesis. The results suggest that the IR-based diet can be also used for long-term periods of feeding to growing ruminant animals as a grass hay-based diet without any detrimental effects on nutrient utilization and growth performance.

  1. THE PREVALENCE OF LERNAEID ECTOPARASITES IN GRASS CARP (CTENOPHARYNGODON IDELLA

    Directory of Open Access Journals (Sweden)

    Z. TASAWAR, S. ZAFAR, M. H. LASHARI AND C. S. HAYAT1

    2009-05-01

    Full Text Available The present study was conducted to investigate the prevalence of lernaeid ectoparasites in grass carp (Ctenopharyngodon idella. For this purpose, 597 fishes (Ctenopharyngodon idella were examined for lernaeid ectoparasites at a private fish farm located in Multan, Pakistan. Four species of the genus Lernaea i.e. L. cyprinacea, L. polymorpha, L. oryzophila, and L. lophiara were recorded. It was observed that L. polymorpha had the highest (P20 cm.

  2. Elevated CO₂ mitigates drought and temperature-induced oxidative stress differently in grasses and legumes.

    Science.gov (United States)

    AbdElgawad, Hamada; Farfan-Vignolo, Evelyn Roxana; de Vos, Dirk; Asard, Han

    2015-02-01

    Increasing atmospheric CO2 will affect plant growth, including mitigation of stress impact. Such effects vary considerably between species-groups. Grasses (Lolium perenne, Poa pratensis) and legumes (Medicago lupulina, Lotus corniculatus) were subjected to drought, elevated temperature and elevated CO2. Drought inhibited plant growth, photosynthesis and stomatal conductance, and induced osmolytes and antioxidants in all species. In contrast, oxidative damage was more strongly induced in the legumes than in the grasses. Warming generally exacerbated drought effects, whereas elevated CO2 reduced stress impact. In the grasses, photosynthesis and chlorophyll levels were more protected by CO2 than in the legumes. Oxidative stress parameters (lipid peroxidation, H2O2 levels), on the other hand, were generally more reduced in the legumes. This is consistent with changes in molecular antioxidants, which were reduced by elevated CO2 in the grasses, but not in the legumes. Antioxidant enzymes decreased similarly in both species-groups. The ascorbate-glutathione cycle was little affected by drought and CO2. Overall, elevated CO2 reduced drought effects in grasses and legumes, and this mitigation was stronger in the legumes. This is possibly explained by stronger reduction in H2O2 generation (photorespiration and NADPH oxidase), and a higher availability of molecular antioxidants. The grass/legume-specificity was supported by principal component analysis.

  3. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera).

    Science.gov (United States)

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2017-01-01

    Abscisic acid (ABA), salicylic acid (SA) and γ-aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5-oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress-defense secondary metabolism by GABA.

  4. A genomic approach to elucidating grass flower development

    Directory of Open Access Journals (Sweden)

    Dornelas Marcelo C.

    2001-01-01

    Full Text Available In sugarcane (Saccharum sp as with other species of grass, at a certain moment of its life cycle the vegetative meristem is converted into an inflorescence meristem which has at least two distinct inflorescence branching steps before the spikelet meristem terminates in the production of a flower (floret. In model dicotyledonous species such successive conversions of meristem identities and the concentric arrangement of floral organs in specific whorls have both been shown to be genetically controlled. Using data from the Sugarcane Expressed Sequence Tag (EST Project (SUCEST database, we have identified all sugarcane proteins and genes putatively involved in reproductive meristem and flower development. Sequence comparisons of known flower-related genes have uncovered conserved evolutionary pathways of flower development and flower pattern formation between dicotyledons and monocotyledons, such as some grass species. We have paid special attention to the analysis of the MADS-box multigene family of transcription factors that together with the APETALA2 (AP2 family are the key elements of the transcriptional networks controlling plant reproductive development. Considerations on the evolutionary developmental genetics of grass flowers and their relation to the ABC homeotic gene activity model of flower development are also presented.

  5. Effects of gravel mulch on emergency of galleta grass seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Winkel, V.K.; Medrano, J.C.; Stanley, C.; Walo, M.D.

    1993-02-01

    Gravel mulches show promise as effective material on the US Dept. of Energy Nevada Test Site for stabilizing erosive soils and aiding plant establishment by conserving soil water. A greenhouse study was implemented to determine the effects of gravel mulch on seedling emergence and soil water, and optimal depths of gravel for various native plant species. Greenhouse flats were sown with seeds of nine species of native grasses, forbs, and shrubs. The flats were then treated with a variety of mulch treatments including, no mulch, a 1-cm layer of soil over seeds, and 2 to 3-cm and 4 to 5-cm layers of 3 to 25-mm mixed gravel. Superimposed over these treatments were 3 irrigation treatments. Seedling density data was collected daily, and soil water was monitored daily with the gravimetric method. This study showed that under a variety of soil water conditions, a 2--3 cm gravel layer may aid emergence of galleta grass. Results from this study also demonstrated that a deeper layer of gravel (4--5 cm) prohibits emergence, probably because it acts as a physical barrier to the seedlings. Galleta grass emergence can be used as a model for how other species might respond to these seedbed and irrigation treatments, provided they have adequate germination and are exposed to similar environmental conditions.

  6. Występowanie głowni smugowej traw (Ustilago striiformis (Westend. Niessl na rajgrasie wyniosłym w Polsce [The occurrence of the stripe smut of grasses (Ustilago stritformis (Westend. Niessl on Arrhenatherum elatius in Poland

    Directory of Open Access Journals (Sweden)

    J. W. Tomala-Bednarek

    2015-06-01

    Full Text Available The stripe smut of grasses (Ustalago striiformis rarely occurs on Arrhenatherum elatius. It has been collected on this species of grass for the first time in Poland on July 1, 1959, by the author. It has been found that it occurs on tall oat grass from May until late fall. It attacks all aboveground parts of tall oat grass. Strongly smutted plants die off, while the slightly smutted ones may recover.

  7. SOD FORM OF PERENNIAL GRASSES

    OpenAIRE

    Belyuchenko I. S.

    2014-01-01

    The article considers the peculiarities of turf and sod, specificity of formation of kidneys for regeneration, types of shoots, vegetative mobility and specificity of growth in certain conditions, turf grasses are divided into loosely-and tightly-turf characterized, by specific features of environmental, biological characteristics; forming turf from generative rosettes, elongated and shortened vegetative, side ground shoots, differing specificity of morphological, biochemical and fitocoenotic...

  8. Soil phosphorus dynamics as affected by Congo grass and P fertilizer

    Directory of Open Access Journals (Sweden)

    Ciro Antonio Rosolem

    2014-08-01

    Full Text Available Some plant species can change soil phosphorus (P availability and this may be an important tool in managing tropical high fixing phosphorus soils. An experiment was conducted to evaluate phosphorus transformations in the soil and phosphatase activity during periods of Congo grass (Brachiaria ruziziensis, Germain et Evrard growth in two tropical soils receiving 20, 40, 80, 160 mg dm-3 of inorganic P. Plants were grown for 84 days in 8-L pots. Acid phosphatase activity, P in the microbial mass, soil organic and inorganic P and P accumulation by Congo grass were evaluated. Phosphorus fertilization increased soil P availability, Congo grass yields and P accumulation in the plant. On average, less labile P forms in the soil were not changed by Congo grass; however, the P in the soil extracted with HCl (P-Ca - non labil form decreased. This decrease may have resulted from the combination of the presence of grass and phosphatase capacity to dissolve less available P in the soil. Thus, soil exploration by Congo grass roots and the subsequent extraction of calcium phosphate may have increased the P concentration in the plant tissue. Despite the decrease in the P extracted from the soil with HCl resulting in increased labile P forms in the soil, the effect of Congo grass on the availability of P depends on the soil type.

  9. The effect of seaweed Ecklonia maxima extract and mineral nitrogen on fodder grass chemical composition.

    Science.gov (United States)

    Ciepiela, Grażyna Anna; Godlewska, Agnieszka; Jankowska, Jolanta

    2016-02-01

    The objective of this study was to determine the effect of the biostimulant Kelpak and different nitrogen rates on cellulose, hemicellulose and lignin contents as well as non-structural carbohydrates in orchard grass and Braun's festulolium. The experiment was a split-plot arrangement with three replicates. It was set up at the experimental facility of the University of Natural Sciences and Humanities, Siedlce, in late April 2009. The following factors were examined: biostimulant with the trade name Kelpak SL applied at 2 dm(3) ha(-1) and a control-no biostimulant; nitrogen application rates 50 and 150 kg ha(-1) and a control (0 kg ha(-1)); pure stands of grass species grown in monoculture--orchard grass (Dactylis glomerata), cv. Amila,-Braun's festulolium (Festulolium braunii), cv. Felopa. Kelpak significantly increased non-structural carbohydrates, and increasing nitrogen rates reduced the concentration of these components in plants. Increasing nitrogen rates significantly decreased cellulose, hemicellulose, lignin and non-structural carbohydrate contents. Compared with orchard grass, Braun's festulolium proved to be of a higher nutritional value due to lower cellulose, hemicellulose and lignin contents and more non-structural carbohydrates. The aforementioned contents in the grasses differed significantly depending on the cut. Most cellulose and non-structural carbohydrates were determined in second-cut grass whereas most hemicellulose and lignin in second-cut grass.

  10. A molecular identification system for grasses: a novel technology for forensic botany.

    Science.gov (United States)

    Ward, J; Peakall, R; Gilmore, S R; Robertson, J

    2005-09-10

    Our present inability to rapidly, accurately and cost-effectively identify trace botanical evidence remains the major impediment to the routine application of forensic botany. Grasses are amongst the most likely plant species encountered as forensic trace evidence and have the potential to provide links between crime scenes and individuals or other vital crime scene information. We are designing a molecular DNA-based identification system for grasses consisting of several PCR assays that, like a traditional morphological taxonomic key, provide criteria that progressively identify an unknown grass sample to a given taxonomic rank. In a prior study of DNA sequences across 20 phylogenetically representative grass species, we identified a series of potentially informative indels in the grass mitochondrial genome. In this study we designed and tested five PCR assays spanning these indels and assessed the feasibility of these assays to aid identification of unknown grass samples. We confirmed that for our control set of 20 samples, on which the design of the PCR assays was based, the five primer combinations produced the expected results. Using these PCR assays in a 'blind test', we were able to identify 25 unknown grass samples with some restrictions. Species belonging to genera represented in our control set were all correctly identified to genus with one exception. Similarly, genera belonging to tribes in the control set were correctly identified to the tribal level. Finally, for those samples for which neither the tribal or genus specific PCR assays were designed, we could confidently exclude these samples from belonging to certain tribes and genera. The results confirmed the utility of the PCR assays and the feasibility of developing a robust full-scale usable grass identification system for forensic purposes.

  11. A consensus linkage map of the grass carp (Ctenopharyngodon idella based on microsatellites and SNPs

    Directory of Open Access Journals (Sweden)

    Li Jiale

    2010-02-01

    Full Text Available Abstract Background Grass carp (Ctenopharyngodon idella belongs to the family Cyprinidae which includes more than 2000 fish species. It is one of the most important freshwater food fish species in world aquaculture. A linkage map is an essential framework for mapping traits of interest and is often the first step towards understanding genome evolution. The aim of this study is to construct a first generation genetic map of grass carp using microsatellites and SNPs to generate a new resource for mapping QTL for economically important traits and to conduct a comparative mapping analysis to shed new insights into the evolution of fish genomes. Results We constructed a first generation linkage map of grass carp with a mapping panel containing two F1 families including 192 progenies. Sixteen SNPs in genes and 263 microsatellite markers were mapped to twenty-four linkage groups (LGs. The number of LGs was corresponding to the haploid chromosome number of grass carp. The sex-specific map was 1149.4 and 888.8 cM long in females and males respectively whereas the sex-averaged map spanned 1176.1 cM. The average resolution of the map was 4.2 cM/locus. BLAST searches of sequences of mapped markers of grass carp against the whole genome sequence of zebrafish revealed substantial macrosynteny relationship and extensive colinearity of markers between grass carp and zebrafish. Conclusions The linkage map of grass carp presented here is the first linkage map of a food fish species based on co-dominant markers in the family Cyprinidae. This map provides a valuable resource for mapping phenotypic variations and serves as a reference to approach comparative genomics and understand the evolution of fish genomes and could be complementary to grass carp genome sequencing project.

  12. Overlap in nitrogen sources and redistribution of nitrogen between trees and grasses in a semi-arid savanna.

    Science.gov (United States)

    Priyadarshini, K V R; Prins, Herbert H T; de Bie, Steven; Heitkönig, Ignas M A; Woodborne, Stephan; Gort, Gerrit; Kirkman, Kevin; Fry, Brian; de Kroon, Hans

    2014-04-01

    A key question in savanna ecology is how trees and grasses coexist under N limitation. We used N stable isotopes and N content to study N source partitioning across seasons from trees and associated grasses in a semi-arid savanna. We also used (15)N tracer additions to investigate possible redistribution of N by trees to grasses. Foliar stable N isotope ratio (δ(15)N) values were consistent with trees and grasses using mycorrhiza-supplied N in all seasons except in the wet season when they switched to microbially fixed N. The dependence of trees and grasses on mineralized soil N seemed highly unlikely based on seasonal variation in mineralization rates in the Kruger Park region. Remarkably, foliar δ(15)N values were similar for all three tree species differing in the potential for N fixation through nodulation. The tracer experiment showed that N was redistributed by trees to understory grasses in all seasons. Our results suggest that the redistribution of N from trees to grasses and uptake of N was independent of water redistribution. Although there is overlap of N sources between trees and grasses, dependence on biological sources of N coupled with redistribution of subsoil N by trees may contribute to the coexistence of trees and grasses in semi-arid savannas.

  13. Septate endophyte colonization and host responses of grasses and forbs native to a tallgrass prairie.

    Science.gov (United States)

    Mandyam, Keerthi; Fox, Chad; Jumpponen, Ari

    2012-02-01

    Native tallgrass prairies support distinct dark septate endophyte (DSE) communities exemplified by Periconia macrospinosa and Microdochium sp. that were recently identified as common root symbionts in this system. Since these DSE fungi were repeatedly isolated from grasses and forbs, we aimed to test their abilities to colonize different hosts. One Microdochium and three Periconia strains were screened for colonization and growth responses using five native grasses and six forbs in an in vitro system. Previously published data for an additional grass (Andropogon gerardii) were included and reanalyzed. Presence of indicative inter- and intracellular structures (melanized hyphae, microsclerotia, and chlamydospores) demonstrated that all plant species were colonized by the DSE isolates albeit to varying degrees. Microscopic observations suggested that, compared to forbs, grasses were colonized to a greater degree in vitro. Host biomass responses varied among the host species. In broad comparisons, more grass species than forbs tended to respond positively to colonization, whereas more forb species tended to be non-responsive. Based on the suspected differences in the levels of colonization, we predicted that tallgrass prairie grasses would support greater DSE colonization than forbs in the field. A survey of field-collected roots from 15 native species supported this hypothesis. Our study supports the "broad host range" of DSE fungi, although the differences in the rates of colonization in the laboratory and in the field suggest a greater compatibility between grasses and DSE fungi. Furthermore, host responses to DSE range from mutualism to parasitism, suggesting a genotype-level interplay between the fungi and their hosts that determines the outcome of this symbiosis.

  14. Grass Cell Walls: A Story of Cross-Linking

    Science.gov (United States)

    Hatfield, Ronald D.; Rancour, David M.; Marita, Jane M.

    2017-01-01

    Cell wall matrices are complex composites mainly of polysaccharides, phenolics (monomers and polymers), and protein. We are beginning to understand the synthesis of these major wall components individually, but still have a poor understanding of how cell walls are assembled into complex matrices. Valuable insight has been gained by examining intact components to understand the individual elements that make up plant cell walls. Grasses are a prominent group within the plant kingdom, not only for their important roles in global agriculture, but also for the complexity of their cell walls. Ferulate incorporation into grass cell wall matrices (C3 and C4 types) leads to a cross-linked matrix that plays a prominent role in the structure and utilization of grass biomass compared to dicot species. Incorporation of p-coumarates as part of the lignin structure also adds to the complexity of grass cell walls. Feruoylation results in a wall with individual hemicellulosic polysaccharides (arabinoxylans) covalently linked to each other and to lignin. Evidence strongly suggests that ferulates not only cross-link arabinoxylans, but may be important factors in lignification of the cell wall. Therefore, the distribution of ferulates on arabinoxylans could provide a means of structuring regions of the matrix with the incorporation of lignin and have a significant impact upon localized cell wall organization. The role of other phenolics in cell wall formation such as p-coumarates (which can have concentrations higher than ferulates) remains unknown. It is possible that p-coumarates assist in the formation of lignin, especially syringyl rich lignin. The uniqueness of the grass cell wall compared to dicot sepcies may not be so much in the gross composition of the wall, but how the distinctive individual components are organized into a functional wall matrix. These features are discussed and working models are provided to illustrate how changing the organization of feruoylation and p

  15. The potential of C4 grasses for cellulosic biofuel production

    Directory of Open Access Journals (Sweden)

    Tim eWeijde

    2013-05-01

    Full Text Available With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potential of five C4 grasses as lignocellulose feedstock for biofuel production is discussed. These include three important field crops - maize, sugarcane and sorghum - and two undomesticated perennial energy grasses - miscanthus and switchgrass. Although all these grasses are high yielding, they produce different products. While miscanthus and switchgrass are exploited exclusively for lignocellulosic biomass, maize, sorghum and sugarcane are dual-purpose crops. It is unlikely that all the prerequisites for the sustainable and economic production of biomass for a global cellulosic biofuel industry will be fulfilled by a single crop. High and stable yields of lignocellulose are required in diverse environments worldwide, to sustain a year-round production of biofuel. A high resource use efficiency is indispensable to allow cultivation with minimal inputs of nutrients and water and the exploitation of marginal soils for biomass production. Finally, the lignocellulose composition of the feedstock should be optimized to allow its efficient conversion into biofuel and other by-products. Breeding for these objectives should encompass diverse crops, to meet the demands of local biorefineries and provide adaptability to different environments. Collectively, these C4 grasses are likely to play a central role in the supply of lignocellulose for the cellulosic ethanol industry. Moreover, as these species are evolutionary closely related, advances in each of these crops will expedite improvements in the other crops. This review aims to provide an overview of their potential, prospects and research needs as lignocellulose feedstocks for the commercial production of

  16. Study on the Reproductive Allocation of Four Kinds of Cluster-type Grass Ground Biomass in Changbai Mountain%长白山区4种丛型禾草地上生物量生殖分配研究

    Institute of Scientific and Technical Information of China (English)

    宋金枝; 李海燕; 夏广清; 孙忠林

    2011-01-01

    [Objective] The research aimed to study the reproductive allocation of four kinds of cluster-type grass ground biomass. [Method] The four kinds of cluster-type grass which were Poa pratensis, Elymus sibiricus, Agrostis clavata and Roeqneria kamojiowi in Changbai Mountain were the research objects. The proportions of vegetative shoot and reproductive shoot component biomass to total ground biomass in every population were counted. [ Result ] The allocation proportions of four kinds of cluster-type grass reproductive shoot biomass were higher and were basically above 85%. In the components of reproductive shoot, the reproductive allocation proportion of reproductive shoot stem biomass was greater (75% -90% ), which illustrated that the four kinds of cluster-type grass done the asexual reproduction by generating the new one from the stem base under the ground. [ Conclusion ] The general rule of ground total biomass reproductive allocation of cluster-type grass was initially revealed, which provided the theory basis for the plant reproductive ecology, the reasonable utilization and scientific management of lawn.%[目的]研究4种丛型禾草地上生物量的生殖分配.[方法]以长白山区的4种丛型禾草:草地早熟禾(Poa pratensis)、垂穗披碱草(Elymus sibiricus)、华北翦股颖(Agrostis clavata)和鹅观草(Roeqneria kamojiowi)为研究对象,计算各种群营养枝和生殖枝构件生物量占地上总生物量的百分比.[结果]4种丛型禾草生殖枝生物量的分配比例较高,基本都在85%以上.在生殖枝构件中,生殖枝茎杆生物量的生殖分配比例较大(75%-90%),说明这4种丛型禾草主要是以地面下茎基部分蘖出新个体进行无性生殖.[结论]初步揭示了丛型禾草地上总生物量生殖分配的一般规律,为植物生殖生态学以及草地的合理利用和科学管理提供理论依据.

  17. Symbiotic grasses: A review of basic biology of forage grass fungal endophytes

    Science.gov (United States)

    The fungal endophytes associated with grasses are the fundamental reason for the basic successes of several pasture grasses, notable tall fescues, and perennial ryegrass. Tall fescue and perennial ryegrass fungal endophytes, Neotyphodium coenophialum and N. lolii, respectively, and their relatives ...

  18. An approach to the taxonomy of the sea-grass genus Halodule Endl. (Potamogetonaceae)

    NARCIS (Netherlands)

    Hartog, den C.

    1964-01-01

    Sea-grasses are phanerogams which are completely adapted to life in marine waters. They are recruited exclusively from two families, the Potamogetonaceae (7 genera with ca. 35 species) and the Hydrocharitaceae (3 genera with 12 species), and form together an interesting ecological group. Consequentl

  19. Nutritive value and fermentation parameters of warm-season grass silage

    Science.gov (United States)

    The objective of this study was to investigate the nutritive value and fermentation characteristics of different species of warm-season grass silages treated with or without bacterial inoculants in the summer and fall. Nine forage species and cultivars, elephantgrass (Pennisetum purpureum Schumach),...

  20. Ecology, genetics, and biological control of invasive annual grasses in the Great Basin

    Science.gov (United States)

    Several annual grass species native to Eurasia, including cheatgrass (Bromus tectorum), red brome (B. rubens), and medusahead (Taeniatherum caput-medusae) have become invasive in the western USA. These invasive species degrade rangelands by compromising forage, outcompeting native flora, and exacerb...

  1. Possibilities for management of coastal foredunes with deteriorated stands of Amophila arenaria (marram grass)

    NARCIS (Netherlands)

    Van der Putten, W.H.; Peters, B.A.M.

    1995-01-01

    Ammophila arenaria (marram grass) is the most important plant species for sand stabilization in European coastal foredunes. Stand degeneration due to poor supply of wind-blown sand enhances the susceptibility for wind erosion when successional species do not become established. Replanted A. arenaria

  2. Molecular cloning of the MARCH family in grass carp (Ctenopharyngodon idellus) and their response to grass carp reovirus challenge.

    Science.gov (United States)

    Ou, Mi; Huang, Rong; Xiong, Lv; Luo, Lifei; Chen, Geng; Liao, Lanjie; Li, Yongming; He, Libo; Zhu, Zuoyan; Wang, Yaping

    2017-02-20

    Grass carp (Ctenopharyngodon idellus) is an economical aquaculture species in China, and the Grass Carp Reovirus (GCRV) that causes hemorrhagic disease seriously affects the grass carp cultivation industry. Substantial evidence indicates that there is an association between the membrane-associated RING-CH family of E3 ligase (MARCH) family and immune defense in mammals, while functional studies on non-mammalian MARCH proteins are limited. In order to know the characteristics of the MARCH genes in C. idellus, eight MARCH genes (MARCH1, 2, 5, 6, 7, 8, 9 and 11) were cloned and the open reading frames (ORF) were identified in grass carp. All MARCH proteins in grass carp contained an RING-CH domain, which is characteristic of the MARCH protein. The phylogenetic analysis revealed that different MARCH proteins gathered into their separate clusters. All eight members of the MARCH gene family were detected in all tissues sampled, but the relative expression level differed. In addition, the mRNA expression of all the MARCHs was regulated at different levels in the immune organs after a GCRV challenge, and they responded robustly in both the intestine and liver. The mRNA expression of MARCH8, MHC II, TfR, IL1RAP, EGR1, and DUSP1 in the intestine after GCRV infection was analyzed, and the results showed that MARCH8 could negatively regulate TfR, IL1RAP, EGR1, and DUSP1, which signaled via the MAPK or NF-κB-activation pathways that play vital roles in immunity. Our findings identified a novel gene family in C. idellus and provided novel evidence that MARCH genes are inducible and involved in the immune response. Moreover, MARCH8 might function to negatively regulate immune receptors in C. idellus. Therefore, the MARCH might play a vital role in regulating the immune response of C. idellus.

  3. Monoclonal antibodies to the major Lolium perenne (rye grass) pollen allergen Lol p I (Rye I).

    Science.gov (United States)

    Kahn, C R; Marsh, D G

    1986-12-01

    Thirteen monoclonal antibodies (MAbs) were produced against Lol p I (Rye I), the major Lolium perenne (rye grass) pollen allergen. Spleen cells from A/J and SJL mice immunized with highly purified Lol p I (Lol I) were allowed to fuse with cells from the non-secreting Sp2/0-Ag14 myeloma cell line. Each MAb was analyzed for antigenic specificity by radioimmunoassay (RIA) using 125I-Lol I. The epitope specificities of seven of the MAbs were examined by competitive binding against a labelled standard MAb for the Lol I antigen (Ag). The dissociation constant, Kd, of one MAb (No. 3.2) that was studied most extensively was determined by double Ab RIA to be 3.5 X 10(-6) L/M. This MAb recognized the related 27,000-30,000 Group I glycoproteins found in the pollens of nine other species of grass pollens tested, including weak binding to Bermuda grass Group I (Cyn d I), which by conventional analysis using polyclonal anti-Lol I serum shows no detectable binding. Monoclonal antibody No. 3.2 was coupled covalently to Sepharose 4B and used to prepare highly purified Lol I from a partially purified rye pollen extract. Finally, an RIA was developed which permitted the analysis of the Group I components in rye grass and nine other grass pollen species. The latter assay is likely to prove useful in the standardization of grass pollen extracts according to their Group I contents.

  4. First direct confirmation of grass carp spawning in a Great Lakes tributary

    Science.gov (United States)

    Embke, Holly S.; Kocovsky, Patrick M.; Richter, Catherine A.; Pritt, Jeremy J.; Christine M. Mayer,; Qian, Song

    2016-01-01

    Grass carp (Ctenopharyngodon idella), an invasive species of Asian carp, has been stocked for many decades in the United States for vegetation control. Adult individuals have been found in all of the Great Lakes except Lake Superior, but no self-sustaining populations have yet been identified in Great Lakes tributaries. In 2012, a commercial fisherman caught four juvenile diploid grass carp in the Sandusky River, a major tributary to Lake Erie. Otolith microchemistry and the capture location of these fish permitted the conclusion that they were most likely produced in the Sandusky River. Due to this finding, we sampled ichthyoplankton using paired bongo net tows and larval light traps during June–August of 2014 and 2015 to determine if grass carp are spawning in the Sandusky River. From the samples collected in 2015, we identified and staged eight eggs that were morphologically consistent with grass carp. Five eggs were confirmed as grass carp using quantitative Polymerase Chain Reaction for a grass carp-specific marker, while the remaining three were retained for future analysis. Our finding confirms that grass carp are naturally spawning in this Great Lakes tributary. All eggs were collected during high-flow events, either on the day of peak flow or 1–2 days following peak flow, supporting an earlier suggestion that high flow conditions favor grass carp spawning. The next principal goal is to identify the spawning and hatch location(s) for the Sandusky River. Predicting locations and conditions where grass carp spawning is most probable may aid targeted management efforts.

  5. Excreting and non-excreting grasses exhibit different salt resistance strategies

    Science.gov (United States)

    Moinuddin, Muhammad; Gulzar, Salman; Ahmed, Muhammad Zaheer; Gul, Bilquees; Koyro, Hans-Werner; Khan, Muhammad Ajmal

    2014-01-01

    The combination of traits that makes a plant successful under saline conditions varies with the type of plant and its interaction with the environmental conditions. Knowledge about the contribution of these traits towards salt resistance in grasses has great potential for improving the salt resistance of conventional crops. We attempted to identify differential adaptive response patterns of salt-excreting versus non-excreting grasses. More specifically, we studied the growth, osmotic, ionic and nutrient (carbon/nitrogen) relations of two salt-excreting (Aeluropus lagopoides and Sporobolus tremulus) and two non-excreting (Paspalum paspalodes and Paspalidium geminatum) perennial C4 grasses under non-saline and saline (0, 200 and 400 mM NaCl) conditions. Growth and relative growth rate decreased under saline conditions in the order P. geminatum > S. tremulus = A. lagopoides > P. paspalodes. The root-to-shoot biomass allocation was unaffected in salt-excreting grasses, increased in P. paspalodes but decreased in P. geminatum. Salt-excreting grasses had a higher shoot/root Na+ ratio than non-excreting grasses. K+, Ca2+ and Mg2+ homoeostasis remained undisturbed among test grasses possibly through improved ion selectivity with rising substrate salinity. Salt-excreting grasses increased leaf succulence, decreased ψs and xylem pressure potential, and accumulated proline and glycinebetaine with increasing salinity. Higher salt resistance of P. paspalodes could be attributed to lower Na+ uptake, higher nitrogen-use efficiency and higher water-use efficiency among the test species. However, P. geminatum was unable to cope with salt-induced physiological drought. More information is required to adequately document the differential strategies of salt resistance in salt-excreting and non-excreting grasses. PMID:24996428

  6. Protein contamination on Klason lignin contents in tropical grasses and legumes

    Directory of Open Access Journals (Sweden)

    Edenio Detmann

    2014-12-01

    Full Text Available The objective of this work was to evaluate the extent of protein contamination on Klason lignin (KL in tropical grasses and legumes, and to propose an equation to estimate the protein-free content of Klason lignin (KLp. Five grass (30 samples and 12 legume species (31 samples were evaluated. Legumes had higher KL contents. Protein contamination was significant in both grasses and legumes, but greater in legume samples. The model to predict KLp was based on KL and crude protein (CP contents, as follows: KLp = 0.8807KL - 0.0938KL x D - 0.00338CP (R2=0.935, in which D=0, for grasses, and D=1 for legumes.

  7. Effects of land use and physicochemical water quality on grass shrimp, Palaemonetes pugio, and its parasitic isopod, Probopyrus pandalicola, in South Carolina, USA tidal creeks

    OpenAIRE

    Key, Peter B.; West, J. Blaine; Paul L. Pennington; Daugomah, James W.; Fulton, Michael H.

    2011-01-01

    Grass shrimp, Palaemonetes pugio, are a common inhabitant of US East and Gulf coast salt marshes and are a food source for recreationally and economically important fish and crustacean species. Due to the relationship of grass shrimp with their ecosystem, any significant changes in grass shrimp population may have the potential to affect the estuarine system. Land use is a crucial concern in coastal areas where increasing development impacts the surrounding estuaries and salt marshes and has ...

  8. Leaf Length Variation in Perennial Forage Grasses

    Directory of Open Access Journals (Sweden)

    Philippe Barre

    2015-08-01

    Full Text Available Leaf length is a key factor in the economic value of different grass species and cultivars in forage production. It is also important for the survival of individual plants within a sward. The objective of this paper is to discuss the basis of within-species variation in leaf length. Selection for leaf length has been highly efficient, with moderate to high narrow sense heritability. Nevertheless, the genetic regulation of leaf length is complex because it involves many genes with small individual effects. This could explain the low stability of QTL found in different studies. Leaf length has a strong response to environmental conditions. However, when significant genotype × environment interactions have been identified, their effects have been smaller than the main effects. Recent modelling-based research suggests that many of the reported environmental effects on leaf length and genotype × environment interactions could be biased. Indeed, it has been shown that leaf length is an emergent property strongly affected by the architectural state of the plant during significant periods prior to leaf emergence. This approach could lead to improved understanding of the factors affecting leaf length, as well as better estimates of the main genetic effects.

  9. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses.

    Science.gov (United States)

    Clay, Keith; Schardl, Christopher

    2002-10-01

    Over the past 20 yr much has been learned about a unique symbiotic interaction between fungal endophytes and grasses. The fungi (Clavicipitaceae, Ascomycota) grow intercellularly and systemically in aboveground plant parts. Vertically transmitted asexual endophytes forming asymptomatic infections of cool-season grasses have been repeatedly derived from sexual species that abort host inflorescences. The phylogenetic distribution of seed-transmitted endophytes is strongly suggestive of cocladogenesis with their hosts. Molecular evidence indicates that many seed-transmitted endophytes are interspecific hybrids. Superinfection may result in hyphal fusion and parasexual recombination. Most endophytes produce one or more alkaloid classes that likely play some role in defending the host plant against pests. Hybridization may have led to the proliferation of alkaloid-production genes among asexual endophytes, favoring hybrids. The ergot alkaloid ergovaline, lolitrems, and lolines are produced by only a single sexual species, Epichloë festucae, but they are common in seed-transmitted endophytes, suggesting that E. festucae contributed genes for their synthesis. Asexual hybrids may also be favored by the counteracting of the accumulation of deleterious mutations (Muller's rachet). Endophyte infection can provide other benefits, such as enhanced drought tolerance, photosynthetic rate, and growth. Estimates of infection frequency have revealed variable levels of infection with especially high prevalence in the subfamily Pooideae. Longitudinal studies suggest that the prevalence of seed-transmitted endophytes can increase rapidly over time. In field experiments, infected tall fescue suppressed other grasses and forbs relative to uninfected fescue and supported lower consumer populations. Unlike other widespread plant/microbial symbioses based on the acquisition of mineral resources, grass/endophyte associations are based primarily on protection of the host from biotic and

  10. Foraminifera and the ecology of sea grass communities since the late Cretaceous

    Science.gov (United States)

    Hart, Malcolm; Smart, Christopher; Jagt, John

    2016-04-01

    Sea grasses are marine angiosperms (plants) that, in the late Cretaceous, migrated from the land into shallow-water marine environments. They represent a distinct, but fragile, marine habitat and sea grass meadows are often regarded as biodiversity hot-spots with a range of species (including fish, sea horses and cuttlefish) using them as nurseries for their young. Foraminifera are often found associated with sea grass meadows, with the associated taxa reflecting both the environment and palaeolatitude. In the tropics and sub-tropics, miliolid foraminifera dominate (e.g., Peneroplis spp.) as do large discoidal taxa such as Marginopora and Calcarina. In temperate to cool latitudes the assemblage changes to one dominated by smaller benthic taxa, including Elphidium spp. One taxon, Elphidium crispum, is geotropic and is often found - in the summer months - to crowd the fronds of the sea grass. In the Gulpen and Maastricht formations of the Maastricht area (The Netherlands and Belgium) sea grass fossils (both fronds and rhizomes) have been recorded in association with assemblages of both larger and smaller benthic foraminifera (Hart et al., 2016). Some of the large discoidal forms (e.g., Omphalocyclus and Orbitoides/Lepidorbitoides) and the distinctive Siderolites are associated with these sea grass fossils and are suggestive of the modern sea grass communities of sub-tropical areas. While earlier records were of relatively isolated sea grasses, in September/October 2015 surfaces with abundant sea grasses were found that are suggestive of complete 'meadows'. Preservation of some silicified rhizomes indicates that silicification must have been very rapid, before any degradation or compaction of the delicate tissues. The presence of sea grass fossils and their associated benthic foraminifera is indicative of a clear, shallow-water seaway, with a maximum depth of 15-20 m. The reported variations in sea level during the latest Cretaceous cannot, therefore, have been very

  11. Primary identification of nitrogen fixation bacteria isolated from rhizosphere of 4 species of grasses in Xilingol Grassland of Inner Mongolia%内蒙古锡林郭勒天然草原禾本科牧草根际18株固氮细菌的初步分类鉴定

    Institute of Scientific and Technical Information of China (English)

    郑红丽; 庞保平; 靳润岁; 樊明寿

    2011-01-01

    采用16SrDNA测序方法对从内蒙古锡林郭勒天然草原四种主要禾本科牧草根际分离获得的18个固氮菌株进行属水平的鉴定,结果表明:其中7株属于土壤杆菌属(Agrobacterium)、3株属于产碱菌属(Alcali-genes)、1株属于固氮菌属(Azotobacter)、1株属于芽孢杆菌属(Bacillus)、3株属于假单胞菌属(Pseudomonas)、2株属于鞘氨醇单胞菌属(Sphingomonas),1株经16SrDNA序列分析和Biolog试验尚未找到与之相匹配的菌株,可能是一个新种。%Eighteen strains of N Fixation bacteria were identified by using 16sDNA sequence analysis at species level,which were isolated from rhizosphere of 4 species of gramineous grasses in Xilingol Grassland of Inner Mongolia.The results showed that 7strains of them belong to Agrobacterium,and there were 3 strains in Alcaligenes,3 strains in Pseudomonas,2 strains in Sphingomonas,1 strain each in Azotobacter and stran in Bacillus.One strain of N fixation bacterium was not identified because there was not similiar16sDNA sequence in 16sDNA bank which could fit it.Futher biolog analysis for the strain suggested it might be new species which need to test by using whole DNA sequence.

  12. Complete Genome of Bacillus subtilis Myophage Grass

    OpenAIRE

    Miller, Stanton Y.; Colquhoun, Jennifer M.; Perl, Abbey L.; Chamakura, Karthik R.; Kuty Everett, Gabriel F.

    2013-01-01

    Bacillus subtilis is a ubiquitous Gram-positive model organism. Here, we describe the complete genome of B. subtilus myophage Grass. Aside from genes encoding core proteins pertinent to the life cycle of the phage, Grass has several interesting features, including an FtsK/SpoIIIE protein.

  13. A Walk in the "Tall, Tall Grass"

    Science.gov (United States)

    Kaatz, Kathryn

    2008-01-01

    This inquiry-based lesson was inspired by Denise Fleming's book entitled, "In the Tall, Tall Grass" (1991). The author used the book and a real study of prairie grasses to teach kindergartners how to make careful observations and record what they see. In addition, they learn how to "draw as scientists." Here the author describes her class's yearly…

  14. Effects of the Epichloë fungal endophyte symbiosis with Schedonorus pratensis on host grass invasiveness.

    Science.gov (United States)

    Shukla, Kruti; Hager, Heather A; Yurkonis, Kathryn A; Newman, Jonathan A

    2015-07-01

    Initial studies of grass-endophyte mutualisms using Schedonorus arundinaceus cultivar Kentucky-31 infected with the vertically transmitted endophyte Epichloë coenophiala found strong, positive endophyte effects on host-grass invasion success. However, more recent work using different cultivars of S. arundinaceus has cast doubt on the ubiquity of this effect, at least as it pertains to S. arundinaceus-E. coenophiala. We investigated the generality of previous work on vertically transmitted Epichloë-associated grass invasiveness by studying a pair of very closely related species: S. pratensis and E. uncinata. Seven cultivars of S. pratensis and two cultivars of S. arundinaceus that were developed with high- or low-endophyte infection rate were broadcast seeded into 2 × 2-m plots in a tilled, old-field grassland community in a completely randomized block design. Schedonorus abundance, endophyte infection rate, and co-occurring vegetation were sampled 3, 4, 5, and 6 years after establishment, and the aboveground invertebrate community was sampled in S. pratensis plots 3 and 4 years after establishment. Endophyte infection did not enable the host grass to achieve high abundance in the plant community. Contrary to expectations, high-endophyte S. pratensis increased plant richness relative to low-endophyte cultivars. However, as expected, high-endophyte S. pratensis marginally decreased invertebrate taxon richness. Endophyte effects on vegetation and invertebrate community composition were inconsistent among cultivars and were weaker than temporal effects. The effect of the grass-Epichloë symbiosis on diversity is not generalizable, but rather specific to species, cultivar, infection, and potentially site. Examining grass-endophyte systems using multiple cultivars and species replicated among sites will be important to determine the range of conditions in which endophyte associations benefit host grass performance and have subsequent effects on co

  15. Satellite Phenology Observations Inform Peak Season of Allergenic Grass Pollen Aerobiology across Two Continents

    Science.gov (United States)

    Huete, A. R.; Devadas, R.; Davies, J.

    2015-12-01

    Pollen exposure and prevalence of allergenic diseases have increased in many parts of the world during the last 30 years, with exposure to aeroallergen grass pollen expected to intensify with climate change, raising increased concerns for allergic diseases. The primary contributing factors to higher allergenic plant species presence are thought to be climate change, land conversion, and biotic mixing of species. Conventional methods for monitoring airborne pollen are hampered by a lack of sampling sites and heavily rely on meteorology with less attention to land cover updates and monitoring of key allergenic species phenology stages. Satellite remote sensing offers an alternative method to overcome the restrictive coverage afforded by in situ pollen networks by virtue of its synoptic coverage and repeatability of measurements that enable timely updates of land cover and land use information and monitoring landscape dynamics and interactions with human activity and climate. In this study, we assessed the potential of satellite observations of urban/peri-urban environments to directly inform landscape conditions conducive to pollen emissions. We found satellite measurements of grass cover phenological evolution to be highly correlated with in situ aerobiological grass pollen concentrations in five urban centres located across two hemispheres (Australia and France). Satellite greenness data from the Moderate Resolution Imaging Spectroradiometer (MODIS) were found to be strongly synchronous with grass pollen aerobiology in both temperate grass dominated sites (France and Melbourne), as well as in Sydney, where multiple pollen peaks coincided with the presence of subtropical grasses. Employing general additive models (GAM), the satellite phenology data provided strong predictive capabilities to inform airborne pollen levels and forecast periods of grass pollen emissions at all five sites. Satellite phenology offer promising opportunities of improving public health risk

  16. Ecological rehabilitation and phytoremediation with four grasses in oil shale mined land.

    Science.gov (United States)

    Xia, H P

    2004-01-01

    Vetiver grass (Vetiveria zizanioides), bahia grass (Paspalum notatum), St. Augustine grass (Stenotaphrum secundatum), and bana grass (Pennisetum glaucumxP. purpureum) were selected to rehabilitate the degraded ecosystem of an oil shale mined land of Maoming Petro-Chemical Company located in Southwest of Guangdong Province, China. Among them, vetiver had the highest survival rate, up to 99%, followed by bahia and St. Augustine, 96% and 91%, respectively, whereas bana had the lowest survival rate of 62%. The coverage and biomass of vetiver were also the highest after 6-month planting. Fertilizer application significantly increased biomass and tiller number of the four grasses, of which St. Augustine was promoted most, up to 70% for biomass, while vetiver was promoted least, only 27% for biomass. Two heavy metals, lead (Pb) and cadmium (Cd) tested in this trial had different concentrations in the oil shale residue, and also had different contents and distributions in the four grass species. Concentrations of Pb and Cd in the four grasses presented a disparity of only 1.6-3.8 times, but their uptake amounts to the two metals were apart up to 27.5-35.5 times, which was chiefly due to the significantly different biomasses among them. Fertilizer application could abate the ability of the four species to accumulate heavy metals, namely concentration of heavy metals in plants decreased as fertilizer was applied. The total amount of metals accumulated by each plant under the condition of fertilization did not decrease due to an increase of biomass. In summary, vetiver may be the best species used for vegetation rehabilitation in oil shale disposal piles.

  17. Socioeconomic Study of Grasses and Legumes in Baria and Godhra Forest Division, Gujarat

    Directory of Open Access Journals (Sweden)

    Dhara J. GANDHI

    2011-08-01

    Full Text Available Gujarat has rich traditional knowledge associated with biodiversity. The cultural diversity in the Indian society reflects close relationship between the existence of human life and nature including all other living creatures and non-living creatures. The present paper deals with the traditional knowledge of villagers in 10 villages nearby the grasslands in Panchmahal and Dahod districts of Gujarat, India, regarding the multipurpose use of grasses and associated legumes prevailing in these grasslands. A survey with the help of questionnaire was conducted to analyze the socioeconomic status. 69 grass species and 34 legumes could be identified growing in these grasslands of which 92 were used for livestocks. Among these grasses the most preferred grass species were Dichanthium annulatum and Sehima nervosum because of its high palatability. Three grasses and 8 legume species were used for food and medicine. The study emphasizes the use of plant wealth to human needs of the regions and assist in appraisal of various anthropogenic interventions accountable for loss of prevailing biodiversity of the region.

  18. Biomass Partitioning Following Defoliation of Annual and Perennial Mediterranean Grasses

    Directory of Open Access Journals (Sweden)

    No'am Seligman

    2002-01-01

    Full Text Available A two-year experiment was conducted in northeastern Israel to study the effects of various defoliation regimes on biomass partitioning between vegetative and reproductive structures in a perennial and an annual Mediterranean grass. Greater insight into the mechanisms regulating biomass partitioning after defoliation enables ecologists and rangeland managers to interpret and predict population and community dynamics in Mediterranean grasslands more efficiently. Two typical Mediterranean grasses, Triticum dicoccoides, an annual species, and Hordeum bulbosum, a perennial species, were grown in containers in the open. They were subjected to a series of defoliation treatments that comprised three clipping frequencies and three clipping heights in a full factorial combination. In addition, individuals of both species were sampled in the field, in paddocks that were grazed, and in a control exclosure that was closed to grazing during the growing season. The experiment was conducted over two growing seasons, one unusually dry and one unusually wet. The clipping treatments invariably caused a reduction in the amount of biomass partitioned to the reproductive organs, but had little effect on the vegetative components of the plants. Greater tillering following defoliation compensated, to a large degree, for the loss of photosynthetic biomass following defoliation. The effect of grazing on biomass partitioning was much lower than the effect of clipping. Under grazing, the investment in reproductive biomass was considerably higher than when the grasses were clipped. The results of this experiment help to elucidate the reasons for the persistence of these species and, especially, for the dominance of Hordeum bulbosum in many eastern Mediterranean grasslands.

  19. A comparative analysis of the evolution, expression, and cis-regulatory element of polygalacturonase genes in grasses and dicots.

    Science.gov (United States)

    Liang, Ying; Yu, Youjian; Cui, Jinlong; Lyu, Meiling; Xu, Liai; Cao, Jiashu

    2016-11-01

    Cell walls are a distinguishing characteristic of plants essential to their survival. The pectin content of primary cell walls in grasses and dicots is distinctly different. Polygalacturonases (PGs) can degrade pectins and participate in multiple developmental processes of plants. This study comprehensively compared the evolution, expression, and cis-regulatory element of PGs in grasses and dicots. A total of 577 PGs identified from five grasses and five dicots fell into seven clades. Evolutionary analysis demonstrated the distinct differences between grasses and dicots in patterns of gene duplication and loss, and evolutionary rates. Grasses generally contained much fewer clade C and F members than dicots. We found that this disparity was the result of less duplication and more gene losses in grasses. More duplications occurred in clades D and E, and expression analysis showed that most of clade E members were expressed ubiquitously at a high overall level and clade D members were closely related to male reproduction in both grasses and dicots, suggesting their biological functions were highly conserved across species. In addition to the general role in reproductive development, PGs of clades C and F specifically played roles in root development in dicots, shedding light on organ differentiation between the two groups of plants. A regulatory element analysis of clade C and F members implied that possible functions of PGs in specific biological responses contributed to their expansion and preservation. This work can improve the knowledge of PGs in plants generally and in grasses specifically and is beneficial to functional studies.

  20. Photosynthesis of C3, C3-C4, and C4 grasses at glacial CO2.

    Science.gov (United States)

    Pinto, Harshini; Sharwood, Robert E; Tissue, David T; Ghannoum, Oula

    2014-07-01

    Most physiology comparisons of C3 and C4 plants are made under current or elevated concentrations of atmospheric CO2 which do not reflect the low CO2 environment under which C4 photosynthesis has evolved. Accordingly, photosynthetic nitrogen (PNUE) and water (PWUE) use efficiency, and the activity of the photosynthetic carboxylases [Rubisco and phosphoenolpyruvate carboxylase (PEPC)] and decarboxylases [NADP-malic enzyme (NADP-ME) and phosphoenolpyruvate carboxykinase (PEP-CK)] were compared in eight C4 grasses with NAD-ME, PCK, and NADP-ME subtypes, one C3 grass, and one C3-C4 grass grown under ambient (400 μl l(-1)) and glacial (180 μl l(-1)) CO2. Glacial CO2 caused a smaller reduction of photosynthesis and a greater increase of stomatal conductance in C4 relative to C3 and C3-C4 species. Panicum bisulcatum (C3) acclimated to glacial [CO2] by doubling Rubisco activity, while Rubisco was unchanged in Panicum milioides (C3-C4), possibly due to its high leaf N and Rubisco contents. Glacial CO2 up-regulated Rubisco and PEPC activities in concert for several C4 grasses, while NADP-ME and PEP-CK activities were unchanged, reflecting the high control exerted by the carboxylases relative to the decarboxylases on the efficiency of C4 metabolism. Despite having larger stomatal conductance at glacial CO2, C4 species maintained greater PWUE and PNUE relative to C3-C4 and C3 species due to higher photosynthetic rates. Relative to other C4 subtypes, NAD-ME and PEP-CK grasses had the highest PWUE and PNUE, respectively; relative to C3, the C3-C4 grass had higher PWUE and similar PNUE at glacial CO2. Biomass accumulation was reduced by glacial CO2 in the C3 grass relative to the C3-C4 grass, while biomass was less reduced in NAD-ME grasses compared with NADP-ME and PCK grasses. Under glacial CO2, high resource use efficiency offers a key evolutionary advantage for the transition from C3 to C4 photosynthesis in water- and nutrient-limited environments.

  1. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, I. [Universiteit Utrecht (Netherlands). Copernicus Institute for Sustainable Development and Innovation, Department of Science, Technology and Society; Scurlock, J.M.O. [Oak Ridge National Laboratory, TN (United States). Environmental Sciences Division; Lindvall, E. [Svaloef Weibull AB, Umeae (Sweden); Christou, M. [Center for Renewable Energy Sources, Pikermi-Attikis (Greece)

    2003-10-01

    Perennial grasses display many beneficial attributes as energy crops, and there has been increasing interest in their use in the US and Europe since the mid-1980s. In the US, the Herbaceous Energy Crops Research Program (HECP), funded by the US Department of Energy (DOE), was established in 1984. After evaluating 35 potential herbaceous crops of which 18 were perennial grasses it was concluded that switchgrass (Panicum virgatum) was the native perennial grass which showed the greatest potential. In 1991, the DOE's Bioenergy Feedstock Development Program (BFDP), which evolved from the HECP, decided to focus research on a 'model' crop system and to concentrate research resources on switchgrass, in order to rapidly attain its maximal output as a biomass crop. In Europe, about 20 perennial grasses have been tested and four perennial rhizomatous grasses (PRG), namely miscanthus (Miscanthus spp.), reed canarygrass (Phalaris arundinacea) giant reed (Arundo donax) and switchgrass (Panicum virgatum) were chosen for more extensive research programs. Reed canary grass and giant reed are grasses with the C{sub 3} photosynthetic pathway, and are native to Europe. Miscanthus, which originated in Southeast Asia, and switchgrass, native to North America, are both C{sub 4} grasses. These four grasses differ in their ecological/climatic demands, their yield potentials, biomass characteristics and crop management requirements. Efficient production of bioenergy from such perennial grasses requires the choice of the most appropriate grass species for the given ecological/climatic conditions. In temperate and warm regions, C{sub 4} grasses outyield C{sub 3} grasses due to their more efficient photosynthetic pathway. However, the further north perennial grasses are planted, the more likely cool season grasses are to yield more than warm season grasses. Low winter temperatures and short vegetation periods are major limits to the growth of C{sub 4} grasses in northern Europe

  2. Congo grass grown in rotation with soybean affects phosphorus bound to soil carbon

    Directory of Open Access Journals (Sweden)

    Alexandre Merlin

    2014-06-01

    Full Text Available The phosphorus supply to crops in tropical soils is deficient due to its somewhat insoluble nature in soil, and addition of P fertilizers has been necessary to achieve high yields. The objective of this study was to examine the mechanisms through which a cover crop (Congo grass - Brachiaria ruziziensis in rotation with soybean can enhance soil and fertilizer P availability using long-term field trials and laboratory chemical fractionation approaches. The experimental field had been cropped to soybean in rotation with several species under no-till for six years. An application rate of no P or 240 kg ha-1 of P2O5 had been applied as triple superphosphate or as Arad rock phosphate. In April 2009, once more 0.0 or 80.0 kg ha-1 of P2O5 was applied to the same plots when Congo grass was planted. In November 2009, after Congo grass desiccation, soil samples were taken from the 0-5 and 5-10 cm depth layer and soil P was fractionated. Soil-available P increased to the depth of 10 cm through growing Congo grass when P fertilizers were applied. The C:P ratio was also increased by the cover crop. Congo grass cultivation increased P content in the soil humic fraction to the depth of 10 cm. Congo grass increases soil P availability by preventing fertilizer from being adsorbed and by increasing soil organic P.

  3. Ensilage characteristics of three tropical grasses as influenced by stage of growth and addition of molasses.

    Science.gov (United States)

    Tjandraatmadja, M; Norton, B W; Mac Rae, I C

    1994-01-01

    When molasses was added during ensilage of three tropical grasses [hamil grass (Panicum maximum cv. Hamil), pangola grass (Digitaria decumbens) and setaria (Setaria sphacelata cv. Kazungula)] the final pH, concentration of fermentation acids (except lactic acid) and NH3-N content were all similar after 100 days of incubation. Pangola grass silage had significantly higher lactic acid content (66 g/kg dry matter) than the other two. Adding either 4 or 8% (w/w) molasses reduced NH3-N, volatile fatty acid content and pH but increased lactic acid content in the final silages. Numbers of lactic acid bacteria remained approximately constant during the course of the fermentation, although large differences were noted in the species composition of the populations. At the time of ensiling, only Pediococcus spp. and Leuconostoc spp. were detected. By 5 days, the homo-fermentative population, notably Lactobacillus plantarum, dominated (43%) and remained dominant. Hetero-fermentative rods were only detected in the 100-day silage, where they represented 29% of the strains isolated. Homo-fermenters were more abundant in pangola (60%) and setaria (47%) silages than hamil (27%) silages. Homo-fermenter populations were lowest in the 12-week forage. Molasses additions increased homo-fermenter populations. Pangola grass gave the best quality silage but, since the water-soluble carbohydrate content in the grasses was insufficient to promote a strong lactic fermentation, the addition of 20 to 30 kg molasses/tonne should achieve satisfactory preservation.

  4. Simulation of biomass yield of regular and chilling tolerant Miscanthus cultivars and reed canary grass in different climates of Europe

    DEFF Research Database (Denmark)

    Kandel, Tanka Prasad; Hastings, Astley; Jørgensen, Uffe;

    2016-01-01

    Miscanthus and reed canary grass (RCG) are C4 and C3 perennial grasses which are popular in Europe as energy crops. Although Miscanthus is relatively chilling tolerant compared to other C4 species, its production in northern Europe is still constrained by cold temperature. A more chilling toleran...

  5. Does crotalaria (Crotalaria breviflora or pumpkin (Cucurbita moschata inter-row cultivation in restoration plantings control invasive grasses?

    Directory of Open Access Journals (Sweden)

    Ricardo Gomes César

    2013-08-01

    Full Text Available Alternative methods to control invasive fodder grasses are necessary to reduce the use of herbicides in forest restoration, which has been carried out primarily in riparian zones. We sought to investigate if inter-row cultivation of crotalaria (Crotalaria breviflora DC or pumpkin (Cucurbita moschata Duschene ex. Poir with native tree species is an efficient strategy to control invasive fodder grasses in restoration plantings. We tested five treatments in a randomized block design, namely (1 control of brachiaria grass (Urochloa decumbens (Stapf. Webster with glyphosate in the implementation and post-planting grass control of the reforestation, (2 and 3 glyphosate use in the implementation and inter-row sowing of crotalaria (2 or pumpkin (3, and control of brachiaria by mowing in the post-planting phase, (4 and 5 mowing in the implementation and inter-row sowing of crotalaria (4 or pumpkin (5, and control of brachiaria by mowing in the post-planting phase. Post-planting grass control was carried out four and nine months after tree seedling planting. Throughout 13 months, we evaluated the percentage of ground cover by brachiaria grass, pumpkin production, and native tree seedling mortality, height and crown cover. The exclusive use of glyphosate, without inter-row sowing of pumpkin or crotalaria showed the most favorable results for controlling brachiaria grass and, consequently, for tree seedling development. Hence, inter-row cultivation of green manure or short-lived crop species is not enough to control invasive grasses in restoration plantings, and complementary weeding is necessary to reduce the highly competitive potential of C4 grasses for supporting native species seedlings growth.

  6. A review on biomass production from C4 grasses: yield and quality for end-use.

    Science.gov (United States)

    Tubeileh, Ashraf; Rennie, Timothy J; Goss, Michael J

    2016-06-01

    With a dry biomass production exceeding 40Mgha(-1) in many environments, Miscanthus spp. is the most productive perennial C4 grass species thanks to five advantages over North American prairie tallgrasses. However, miscanthus has a slower nutrient remobilization system, resulting in higher nutrient concentrations at harvest. Perennial C4 grasses benefit from soil microbial associations, reducing their nutrient needs. For combustion purposes, grasses with low moisture content, high lignin and low nutrients are desired. For ethanol, preferred feedstock will have lower lignin, higher sugars, starch, or cellulose/hemicellulose depending on the conversion method. Species with high stem-to-leaf ratio provide better biofuel conversion efficiency and quality. Recently-developed transgenic switchgrass lines have much higher ethanol yields and lower transformation costs. Further selection and breeding are needed to optimize biomass quality and nutrient cycling.

  7. Climate change is projected to outpace rates of niche change in grasses.

    Science.gov (United States)

    Cang, F Alice; Wilson, Ashley A; Wiens, John J

    2016-09-01

    Climate change may soon threaten much of global biodiversity, especially if species cannot adapt to changing climatic conditions quickly enough. A critical question is how quickly climatic niches change, and if this speed is sufficient to prevent extinction as climates warm. Here, we address this question in the grass family (Poaceae). Grasses are fundamental to one of Earth's most widespread biomes (grasslands), and provide roughly half of all calories consumed by humans (including wheat, rice, corn and sorghum). We estimate rates of climatic niche change in 236 species and compare these with rates of projected climate change by 2070. Our results show that projected climate change is consistently faster than rates of niche change in grasses, typically by more than 5000-fold for temperature-related variables. Although these results do not show directly what will happen under global warming, they have troubling implications for a major biome and for human food resources.

  8. A grass molecular identification system for forensic botany: a critical evaluation of the strengths and limitations.

    Science.gov (United States)

    Ward, Jodie; Gilmore, Simon R; Robertson, James; Peakall, Rod

    2009-11-01

    Plant material is frequently encountered in criminal investigations but often overlooked as potential evidence. We designed a DNA-based molecular identification system for 100 Australian grasses that consisted of a series of polymerase chain reaction assays that enabled the progressive identification of grasses to different taxonomic levels. The identification system was based on DNA sequence variation at four chloroplast and two mitochondrial loci. Seventeen informative indels and 68 single-nucleotide polymorphisms were utilized as molecular markers for subfamily to species-level identification. To identify an unknown sample to subfamily level required a minimum of four markers or nine markers for species identification. The accuracy of the system was confirmed by blind tests. We have demonstrated "proof of concept" of a molecular identification system for trace botanical samples. Our evaluation suggests that the adoption of a system that combines this approach with DNA sequencing could assist the morphological identification of grasses found as forensic evidence.

  9. Evolution of Grasses and Grassland Ecosystems

    Science.gov (United States)

    Strömberg, Caroline A. E.

    2011-05-01

    The evolution and subsequent ecological expansion of grasses (Poaceae) since the Late Cretaceous have resulted in the establishment of one of Earth's dominant biomes, the temperate and tropical grasslands, at the expense of forests. In the past decades, several new approaches have been applied to the fossil record of grasses to elucidate the patterns and processes of this ecosystem transformation. The data indicate that the development of grassland ecosystems on most continents was a multistage process involving the Paleogene appearance of (C3 and C4) open-habitat grasses, the mid-late Cenozoic spread of C3 grass-dominated habitats, and, finally, the Late Neogene expansion of C4 grasses at tropical-subtropical latitudes. The evolution of herbivores adapted to grasslands did not necessarily coincide with the spread of open-habitat grasses. In addition, the timing of these evolutionary and ecological events varied between regions. Consequently, region-by-region investigations using both direct (plant fossils) and indirect (e.g., stable carbon isotopes, faunas) evidence are required for a full understanding of the tempo and mode of grass and grassland evolution.

  10. Alkaloid toxins in endophyte-infected grasses.

    Science.gov (United States)

    Powell, R G; Petroski, R J

    1992-01-01

    Grasses infected with clavicipitaceous fungi have been associated with a variety of diseases including classical ergotism in humans and animals, fescue foot and summer syndrome in cattle, and rye-grass staggers in sheep. During the last decade it has been recognized that many of these fungal infections are endophytic; a fungal endophyte is a fungus that grows entirely within the host plant. Inspection of field collections and herbarium specimens has revealed that such infections are widespread in grasses. The chemistry associated with these grass-fungal interactions has proved to be interesting and complex, as each grass-fungal pair results in a unique "fingerprint" of various alkaloids, of which some are highly toxic to herbivores. In many cases the presence of an endophyte appears to benefit the plant by increasing drought resistance, or by increasing resistance to attack by insects, thus improving the overall survivability of the grass. This review will focus on alkaloids that have been reported in endophyte-infected grasses.

  11. Selection of representative calibration sample sets for near-infrared reflectance spectroscopy to predict nitrogen concentration in grasses

    DEFF Research Database (Denmark)

    Shetty, Nisha; Rinnan, Åsmund; Gislum, René

    2012-01-01

    The effect of using representative calibration sets with fewer samples was explored and discussed. The data set consisted of near-infrared reflectance (NIR) spectra of grass samples. The grass samples were taken from different years covering a wide range of species and cultivars. Partial least...... squares regression (PLSR), a chemometric method, has been applied on NIR spectroscopy data for the determination of the nitrogen (N) concentration in these grass samples. The sample selection method based on NIR spectral data proposed by Puchwein and the CADEX (computer aided design of experiments...

  12. Field evaluation of seven grasses for use in the revegetation of lands disturbed by coal mining in Central Queensland

    Energy Technology Data Exchange (ETDEWEB)

    Harwood, M.R.; Hacker, J.B.; Mott, J.J. [University of Queensland, St. Lucia, Qld. (Australia). Centre for Mined Land Rehabilitation

    1999-07-01

    Pasture-based systems, dominated by the tussock forming Cenchrus cilliaris cv. Biloela (buffel grass) and the stoloniferous Chloris gayana cv. Pioneer (rhodes grass), are commonly used in the revegetation of lands disturbed by coal mining in the Bowen Basin of Central Queensland. Although able to establish quickly under favourable conditions, neither species has proven entirely suitable for use in this situation, particularly in providing effective ground cover for erosion control on the re-contoured post-mining landscape. The aim of this study was to evaluate a range of new pasture grasses, with the objective of identifying accessions better adapted to the climatic conditions of the areas requiring revegetation.

  13. Establishing native grasses in a big sagebrush-dominated site: an intermediate restoration step

    Science.gov (United States)

    Huber-Sannwald, Elisabeth; Pyke, David A.

    2005-01-01

    Many semiarid rangelands in the Great Basin, U.S.A., are shifting dominance to woody species as a consequence of land degradation including intense livestock grazing and fire suppression. Whereas past rehabilitation efforts in Big sagebrush (Artemisia tridentata) steppes removed the shrub and added introduced forage grasses to successfully shift communities from shrublands to grasslands, current consensus is that native species should be included in restoration projects and that retention of some woody plants is desirable. We examined the potential for interseeding grasses into dense shrub communities as a precursor to thinning shrubs and releasing grasses from shrub interference. We compared seedling establishment of the native grass, Bluebunch wheatgrass (Pseudoroegneria spicata), with that of the Eurasia grass, Crested wheatgrass (Agropyron desertorum), in dense Ar. tridentata stands. Shrubs may play an important role as nurse plants for seedling establishment (reduced solar radiation, 'island of fertility' effect) but result in highly contrasting light environments and root interference for seedlings. In experimental plots, we examined effects of Ar. tridentata shade levels (0, 40, 70, and 90% reduction of solar radiation) and initial root exclusion (present/absent) on the establishment and growth of P. spicata and Ag. desertorum seedlings. With this design we evaluated the interference effects of Ar. tridentata on the two grasses and identified the most beneficial microsites for grass restoration in Ar. tridentataa??dominated communities. We predicted seedling survival and growth to be greater under moderate shade (40% reduction) and limited root competition than under no or strong shade conditions (0 and 90%) and unrestricted root interactions. Fifty to 85% of the P. spicata and Ag. desertorum seedlings survived the dry summer months of 1995 and 1996 and the intervening winter. Neither shading nor root exclusion from Ar. tridentata affected final seedling

  14. Protective roles of grass carp Ctenopharyngodon idella Mx isoforms against grass carp reovirus.

    Directory of Open Access Journals (Sweden)

    Limin Peng

    Full Text Available BACKGROUND: Myxovirus resistance (Mx proteins are crucial effectors of the innate antiviral response against a wide range of viruses, mediated by the type I interferon (IFN-I signaling pathway. However, the antiviral activity of Mx proteins is diverse and complicated in different species. METHODOLOGY/PRINCIPAL FINDINGS: In the current study, two novel Mx genes (CiMx1 and CiMx3 were identified in grass carp (Ctenopharyngodon idella. CiMx1 and CiMx3 proteins exhibit high sequence identity (92.1%, and low identity with CiMx2 (49.2% and 49.5%, respectively from the GenBank database. The predicted three-dimensional (3D structures are distinct among the three isoforms. mRNA instability motifs also display significant differences in the three genes. The spatial and temporal expression profiles of three C. idella Mx genes and the IFN-I gene were investigated by real-time fluorescence quantitative RT-PCR (qRT-PCR following infection with grass carp reovirus (GCRV in vivo and in vitro. The results demonstrated that all the four genes were implicated in the anti-GCRV immune response, that mRNA expression of Mx genes might be independent of IFN-I, and that CIK cells are suitable for antiviral studies. By comparing expression patterns following GCRV challenge or poly(I:C treatment, it was observed that GCRV blocks mRNA expression of the four genes. To determine the functions of Mx genes, three CiMx cDNAs were cloned into expression vectors and utilized for transfection of CIK cells. The protection conferred by each recombinant CiMx protein against GCRV infection was evaluated. Antiviral activity against GCRV was demonstrated by reduced cytopathic effect, lower virus titer and lower levels of expressed viral transcripts. The transcription of IFN-I gene was also monitored. CONCLUSIONS/SIGNIFICANCE: The results indicate all three Mx genes can suppress replication of grass carp reovirus and over-expression of Mx genes mediate feedback inhibition of the IFN

  15. Intra-annual rainfall regime shifts competitive interactions between coastal sage scrub and invasive grasses.

    Science.gov (United States)

    Goldstein, Leah J; Suding, Katharine N

    2014-02-01

    Changes in rainfall distribution, generally predicted by many climate models, can affect resource dynamics and ecosystem function. While little studied, intra-annual rainfall distribution may have particularly strong effects on competitive interactions. Here, we test whether increased rainfall event size and decreased frequency within a growing season can influence competitive dynamics related to the invasion of exotic annual grasses in California coastal sage scrub (CSS). We hypothesized that larger rainfall events and decreased frequency will increase the competitive ability of native CSS species: a deeper root system will permit greater water use during dry periods between pulses and enhance their resource depletion effect on more shallow-rooted grasses. We planted grass and CSS seedlings in an additive competition design under three rainfall treatments: frequent small events, infrequent large events, and infrequent small events. The first two treatments had the same total rainfall but different frequency, while the second and third treatments had the same frequency but different total rainfall. Rainfall treatment altered the competitive interactions between CSS and grasses. In the first year, the competitive effect of annual grasses on shrub seedlings was strongest under the frequent small rainfall regime where they reduced deep soil moisture and light. In year two, the established shrubs began to exert strong competitive effects on grasses, and these effects were strongest under the infrequent small rainfall regime (low total rain) where they reduced shallow soil moisture and decreased grass stomatal conductance. Results suggest that reductions in both rainfall frequency and total rainfall may be important to competitive interactions, and can alter plant community composition and invasion when species have different rooting depths and different responses to soil moisture.

  16. Improving our understanding of environmental controls on the distribution of C3 and C4 grasses.

    Science.gov (United States)

    Pau, Stephanie; Edwards, Erika J; Still, Christopher J

    2013-01-01

    A number of studies have demonstrated the ecological sorting of C3 and C4 grasses along temperature and moisture gradients. However, previous studies of C3 and C4 grass biogeography have often inadvertently compared species in different and relatively unrelated lineages, which are associated with different environmental settings and distinct adaptive traits. Such confounded comparisons of C3 and C4 grasses may bias our understanding of ecological sorting imposed strictly by photosynthetic pathway. Here, we used MaxEnt species distribution modeling in combination with satellite data to understand the functional diversity of C3 and C4 grasses by comparing both large clades and closely related sister taxa. Similar to previous work, we found that C4 grasses showed a preference for regions with higher temperatures and lower precipitation compared with grasses using the C3 pathway. However, air temperature differences were smaller (2 °C vs. 4 °C) and precipitation and % tree cover differences were larger (1783 mm vs. 755 mm, 21.3% vs. 7.7%, respectively) when comparing C3 and C4 grasses within the same clade vs. comparing all C4 and all C3 grasses (i.e., ignoring phylogenetic structure). These results were due to important differences in the environmental preferences of C3 BEP and PACMAD clades (the two main grass clades). Winter precipitation was found to be more important for understanding the distribution and environmental niche of C3 PACMADs in comparison with both C3 BEPs and C4 taxa, for which temperature was much more important. Results comparing closely related C3 -C4 sister taxa supported the patterns derived from our modeling of the larger clade groupings. Our findings, which are novel in comparing the distribution and niches of clades, demonstrate that the evolutionary history of taxa is important for understanding the functional diversity of C3 and C4 grasses, and should have implications for how grasslands will respond to global change.

  17. Phylogenomics and Plastome Evolution of Tropical Forest Grasses (Leptaspis, Streptochaeta: Poaceae).

    Science.gov (United States)

    Burke, Sean V; Lin, Choun-Sea; Wysocki, William P; Clark, Lynn G; Duvall, Melvin R

    2016-01-01

    Studies of complete plastomes have proven informative for our understanding of the molecular evolution and phylogenomics of grasses. In this study, a plastome phylogenomic analysis sampled species from lineages of deeply diverging grasses including Streptochaeta spicata (Anomochlooideae), Leptaspis banksii, and L. zeylanica (both Pharoideae). Plastomes from next generation sequences for three species were assembled by de novo methods. The unambiguously aligned coding and non-coding sequences of the entire plastomes were aligned with those from 43 other grasses and the outgroup Joinvillea ascendens. Outgroup sampling of grasses has previously posed a challenge for plastome phylogenomic studies because of major rearrangements of the plastome. Here, over 81,000 bases of homologous sequence were aligned for phylogenomic and divergence estimation analyses. Rare genomic changes, including persistently long ψycf1 and ψycf2 loci, the loss of the rpoC1 intron, and a 21 base tandem repeat insert in the coding sequence for rps19 defined branch points in the grass phylogeny. Marked differences were seen in the topologies inferred from the complete plastome and two gene matrices, and mean maximum likelihood support values for the former were 10% higher. In the full plastome phylogenomic analyses, the two species of Anomochlooideae were monophyletic. Leptaspis and Pharus were found to be reciprocally monophyletic, with the estimated divergence of two Leptaspis species preceding those of Pharus by over 14 Ma, consistent with historical biogeography. Our estimates for deep divergences among grasses were older than previous such estimates, likely influenced by more complete taxonomic and molecular sampling and the use of recently available or previously unused fossil calibration points.

  18. Grasses and Grasslike Plants of Utah, A Field Guide

    OpenAIRE

    Pratt, Mindy

    2011-01-01

    This guide is meant to serve as a help in identifying many of the grasses and grass-like plants common to the rangelands, forests, and farmlands of Utah. It is not an exhaustive guide to the plants contained herein, nor is it a comprehensive summary of all the grasses and grass-like plants in Utah.

  19. Genome sequence analysis of the model grass Brachypodium distachyon: insights into grass genome evolution

    Energy Technology Data Exchange (ETDEWEB)

    Schulman, Al

    2009-08-09

    Three subfamilies of grasses, the Erhardtoideae (rice), the Panicoideae (maize, sorghum, sugar cane and millet), and the Pooideae (wheat, barley and cool season forage grasses) provide the basis of human nutrition and are poised to become major sources of renewable energy. Here we describe the complete genome sequence of the wild grass Brachypodium distachyon (Brachypodium), the first member of the Pooideae subfamily to be completely sequenced. Comparison of the Brachypodium, rice and sorghum genomes reveals a precise sequence- based history of genome evolution across a broad diversity of the grass family and identifies nested insertions of whole chromosomes into centromeric regions as a predominant mechanism driving chromosome evolution in the grasses. The relatively compact genome of Brachypodium is maintained by a balance of retroelement replication and loss. The complete genome sequence of Brachypodium, coupled to its exceptional promise as a model system for grass research, will support the development of new energy and food crops

  20. Distinguishing grass from ground using LiDAR: Techniques and applications

    Science.gov (United States)

    Pelletier, J. D.; Swetnam, T.; Papuga, S. A.; Nelson, K.; Brooks, P. D.; Harpold, A. A.; Chorover, J.

    2011-12-01

    Standard protocols exist for extracting bare-earth Digital Elevation Models (DEMs) from LiDAR point clouds that include trees and other large woody vegetation. Grasses and other herbaceous plants can also obscure the ground surface, yet methods for optimally distinguishing grass from ground to generate accurate LiDAR-based raster products for geomorphic and ecological applications are still under development. Developing such methods is important because LiDAR-based difference products (e.g. snow thickness) require accurate representations of the ground surface and because raster data for grass height and density have important applications in ecology. In this study, we developed and tested methods for constructing optimal bare-earth and grass height raster layers from LiDAR point clouds and compared the results to high-quality field-based measurements of grass height, density, and species type for nearly 1000 precisely geo-referenced locations collected during the acquisition of a >200 km^2 airborne LiDAR flight of the Valles Caldera National Preserve (New Mexico). In cases of partially bare ground (where the skewness of return heights above a plane fit to the lowest first returns is sufficiently large), a planar fit to the lowest first returns provides a good method of producing an accurate bare-earth DEM and the statistics of the first returns above that planar fit provide good estimates of the mean and variance of grass height. In areas of relatively thick grass cover, however, a fit to the lowest first returns yields a bare-earth DEM that may be a meter or more above the actual ground surface. Here we propose a method to solve this problem using field-measured correlations among the mean, variance, and skewness of grass heights. In this method, the variance and skewness of the differences between LiDAR first returns and a 10m^2 planar fit to the lowest first returns is used, together with field-based correlations of grass height statistics, to estimate the mean

  1. Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes.

    Science.gov (United States)

    Spatafora, J W; Sung, G-H; Sung, J-M; Hywel-Jones, N L; White, J F

    2007-04-01

    Grass-associated fungi (grass symbionts) in the family Clavicipitaceae (Ascomycota, Hypocreales) are species whose host range is restricted to the plant family Poaceae and rarely Cyperaceae. The best-characterized species include Claviceps purpurea (ergot of rye) and Neotyphodium coenophialum (endophyte of tall fescue). They have been the focus of considerable research due to their importance in agricultural and grassland ecosystems and the diversity of their bioactive secondary metabolites. Here we show through multigene phylogenetic analyses and ancestral character state reconstruction that the grass symbionts in Clavicipitaceae are a derived group that originated from an animal pathogen through a dynamic process of interkingdom host jumping. The closest relatives of the grass symbionts include the genera Hypocrella, a pathogen of scale insects and white flies, and Metarhizium, a generalist arthropod pathogen. These data do not support the monophyly of Clavicipitaceae, but place it as part of a larger clade that includes Hypocreaceae, a family that contains mainly parasites of other fungi. A minimum of 5-8 independent and unidirectional interkingdom host jumps has occurred among clavicipitaceous fungi, including 3-5 to fungi, 1-2 to animals, and 1 to plants. These findings provide a new evolutionary context for studying the biology of the grass symbionts, their role in plant ecology, and the evolution of host affiliation in fungal symbioses.

  2. 西藏林芝地区粗放管理下的匍茎翦股颖草坪质量分析初报%Analysis of Agrostis stolonifera turf quality under rough management in Lin Zhi of Tibetan

    Institute of Scientific and Technical Information of China (English)

    孙磊; 魏学红

    2007-01-01

    研究了西藏林芝地区使用匍茎翦股颖Agrostis stolonifera建立的校园草坪和人行道草坪的一些坪用特性,结果表明,从匍茎翦股颖的生长状况看,该种草坪草在成坪速度、盖度、色泽、质地、强度、密度等方面评价较低,在林芝地区现有的低资金投入和粗放管理水平下该种草坪草不适合作为校园和人行道草坪.

  3. Imaging spectroscopy for characterisation of grass swards

    NARCIS (Netherlands)

    Schut, A.G.T.

    2003-01-01

    Keywords: Imaging spectroscopy, imaging spectrometry, remote sensing, reflection, reflectance, grass sward, white clover, recognition, characterisation, ground cover, growth monitoring, stress detection, heterogeneity quantificationThe potential of imaging spectroscopy as a tool for characterisation

  4. Karl Konrad Grass jumalainimeste uurijana / Alar Laats

    Index Scriptorium Estoniae

    Laats, Alar

    2006-01-01

    Karl Konrad Grass oli 19. sajandil Dorpati keiserliku ülikooli usuteaduskonna Uue Testamendi õppejõud, kes tegeles hobi korras idakristluse (vene sektid) uurimisega. Tema peateoseks on uurimus "Die russischen Sekten". Ettekanne konverentsil 15.-16. aprill 2005. a.

  5. Pampas Grass - Orange Co. [ds351

    Data.gov (United States)

    California Department of Resources — This dataset provides the known distribution of pampas grass (Cortaderia selloana) in southern Orange County. The surveys were conducted from May to June, 2007 and...

  6. Grasses for energy production: hydrological guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.L.

    2003-07-01

    This report provides hydrological guidelines for growers, land and water resource managers, environmental groups and other parties interested in utilising grasses for energy production. The aim of the report is to help interested parties decide if a location is suitable for planting energy grasses by considering whether potential hydrological impacts will have an adverse effect on crop productivity and yield. The guidelines consider: the water use of energy grasses compared with other crops; the factors governing water use; the water requirements for a productive crop; and the likely impacts on the availability and quantity of water. The report points out that there are still gaps in our knowledge of the processes controlling the water use and growth of energy grasses and notes that, in some situations, there will be considerable uncertainty in predictions of water use and the magnitude of the associated hydrological impacts.

  7. The Perennial Ryegrass GenomeZipper – Targeted Use of Genome Resources for Comparative Grass Genomics

    DEFF Research Database (Denmark)

    Pfeiffer, Matthias; Martis, Mihaela; Asp, Torben;

    2013-01-01

    to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous...

  8. Use and breeding of forage grasses in the North Central USA

    Science.gov (United States)

    Forage grasses are used for conservation harvesting, usually hay or balage, and for grazing within the North Central region of the USA. Historically, smooth bromegrass, timothy, reed canarygrass, and orchardgrass have been important species and they still exist in many old hay fields. Tall fescue, m...

  9. Quantification of fructan concentration in grasses using NIR spectroscopy and PLSR

    DEFF Research Database (Denmark)

    Shetty, Nisha; Gislum, Rene

    2011-01-01

    Near-infrared reflectance (NIR) spectroscopy combined with chemometrics was used to quantify fructan concentration in samples from seven grass species. Savitzky-Golay first derivative with filter width 7 and polynomial order 2 with mean centering was applied as a spectral pre-treatment method...

  10. Minimum energy design using grassed spillways

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B. [FIE Aust, Melbourne (Australia)

    2004-09-01

    Small dams for rural communities in Australia often fail due to the Spillway or bywash, because it receives insufficient attention during the design, construction and maintenance processes. More thorough investigation and improved standards of design and construction are needed in order to resolve problems. This paper described some of the reasons for adopting grass spillways on farm dams. It compared grass and earth spillways and also discussed spillway design factors such as site conditions, peak flow estimation, and design spillway size. The factors affecting selection of spillway type and design include safety requirements, hydrological conditions, geological and site topographical conditions, and type of dam. Factors involved in grass selection in spillway design were also identified. These include climate, soils, land systems, and quality and duration of discharge, growth characteristics, hydraulic behaviour, and maintenance. It was concluded that additional research is needed regarding methods of establishing grass cover to inlets and outlet spillway. In particular, there is a need to evaluate the growth of grasses through plastic meshes and geotextiles, which could provide protection against erosion while the grass is becoming established. 10 refs., 4 tabs.

  11. Madagascar's grasses and grasslands: anthropogenic or natural?

    Science.gov (United States)

    Vorontsova, Maria S; Besnard, Guillaume; Forest, Félix; Malakasi, Panagiota; Moat, Justin; Clayton, W Derek; Ficinski, Paweł; Savva, George M; Nanjarisoa, Olinirina P; Razanatsoa, Jacqueline; Randriatsara, Fetra O; Kimeu, John M; Luke, W R Quentin; Kayombo, Canisius; Linder, H Peter

    2016-01-27

    Grasses, by their high productivity even under very low pCO2, their ability to survive repeated burning and to tolerate long dry seasons, have transformed the terrestrial biomes in the Neogene and Quaternary. The expansion of grasslands at the cost of biodiverse forest biomes in Madagascar is often postulated as a consequence of the Holocene settlement of the island by humans. However, we show that the Malagasy grass flora has many indications of being ancient with a long local evolutionary history, much predating the Holocene arrival of humans. First, the level of endemism in the Madagascar grass flora is well above the global average for large islands. Second, a survey of many of the more diverse areas indicates that there is a very high spatial and ecological turnover in the grass flora, indicating a high degree of niche specialization. We also find some evidence that there are both recently disturbed and natural stable grasslands: phylogenetic community assembly indicates that recently severely disturbed grasslands are phylogenetically clustered, whereas more undisturbed grasslands tend to be phylogenetically more evenly distributed. From this evidence, it is likely that grass communities existed in Madagascar long before human arrival and so were determined by climate, natural grazing and other natural factors. Humans introduced zebu cattle farming and increased fire frequency, and may have triggered an expansion of the grasslands. Grasses probably played the same role in the modification of the Malagasy environments as elsewhere in the tropics.

  12. Genetic compatibility determines endophyte-grass combinations.

    Directory of Open Access Journals (Sweden)

    Kari Saikkonen

    Full Text Available Even highly mutually beneficial microbial-plant interactions, such as mycorrhizal- and rhizobial-plant exchanges, involve selfishness, cheating and power-struggles between the partners, which depending on prevailing selective pressures, lead to a continuum of interactions from antagonistic to mutualistic. Using manipulated grass-endophyte combinations in a five year common garden experiment, we show that grass genotypes and genetic mismatches constrain genetic combinations between the vertically (via host seeds transmitted endophytes and the out-crossing host, thereby reducing infections in established grass populations. Infections were lost in both grass tillers and seedlings in F(1 and F(2 generations, respectively. Experimental plants were collected as seeds from two different environments, i.e., meadows and nearby riverbanks. Endophyte-related benefits to the host included an increased number of inflorescences, but only in meadow plants and not until the last growing season of the experiment. Our results illustrate the importance of genetic host specificity and trans-generational maternal effects on the genetic structure of a host population, which act as destabilizing forces in endophyte-grass symbioses. We propose that (1 genetic mismatches may act as a buffering mechanism against highly competitive endophyte-grass genotype combinations threatening the biodiversity of grassland communities and (2 these mismatches should be acknowledged, particularly in breeding programmes aimed at harnessing systemic and heritable endophytes to improve the agriculturally valuable characteristics of cultivars.

  13. Influência do intervalo entre cortes sobre a produção de biomassa de duas espécies de capim limão Influence of the interval between cuts on biomass yield of two lemon grass species

    Directory of Open Access Journals (Sweden)

    André May

    2008-09-01

    Full Text Available Foi estudada a influência do intervalo entre cortes na produção de massa seca da parte aérea de duas espécies de capim limão. O experimento foi realizado no Instituto Agronômico, em Campinas-SP, 04 de junho/05 a 28 de agosto/06. O delineamento experimental utilizado foi em blocos ao acaso, com três repetições, com os tratamentos em esquema fatorial 2 x 4, sendo duas espécies (C. citratus e C. flexuosus e quatro intervalos entre cortes (40; 60; 80 e 100 dias. Para C. flexuosus, maiores intervalos entre cortes proporcionaram maior massa seca acumulada ao longo do ciclo de cultivo, partindo de 329,04 para 704,16 g planta-1 de massa seca acumulada da parte aérea, para intervalos entre cortes de 40 e 100 dias, respectivamente. A espécie C. citratus apresentou resposta linear decrescente da massa seca acumulada da parte aérea quanto maior o intervalo entre cortes utilizado, produzindo 238,68 g planta-1 utilizando intervalo entre cortes de 40 dias.The aim of this study was to analyze the influence of the interval between cuts on the dry mass yield of the aerial part of two lemon grass species. The experiment was conducted at Agronomical Institute (IAC, in Campinas - SP, from June 4th, 2005 through August 28th, 2006. The experiment was carried out in a completely randomized block design, with three replications, and the treatments in a 2 x 4 factorial design, corresponding two species (C. citratus and C. flexuosus and four intervals between cuts (40; 60; 80 and 100 days. For C. flexuosus, longer intervals between cuts generated more dry mass accumulated throughout the cultivation cycle, beginning on 329,04 to 704,16 g plant-1 of accumulated dry mass of the aerial part, for intervals between cuts of 40 and 100 days, respectively. The C. citratus species showed a decrease in its linear response for the accumulated dry mass of the aerial part the longer the interval between cuts was, yielding 238,68 g plant-1 for a 40 day interval between

  14. Insular organization of gene space in grass genomes.

    Science.gov (United States)

    Gottlieb, Andrea; Müller, Hans-Georg; Massa, Alicia N; Wanjugi, Humphrey; Deal, Karin R; You, Frank M; Xu, Xiangyang; Gu, Yong Q; Luo, Ming-Cheng; Anderson, Olin D; Chan, Agnes P; Rabinowicz, Pablo; Devos, Katrien M; Dvorak, Jan

    2013-01-01

    Wheat and maize genes were hypothesized to be clustered into islands but the hypothesis was not statistically tested. The hypothesis is statistically tested here in four grass species differing in genome size, Brachypodium distachyon, Oryza sativa, Sorghum bicolor, and Aegilops tauschii. Density functions obtained under a model where gene locations follow a homogeneous Poisson process and thus are not clustered are compared with a model-free situation quantified through a non-parametric density estimate. A simple homogeneous Poisson model for gene locations is not rejected for the small O. sativa and B. distachyon genomes, indicating that genes are distributed largely uniformly in those species, but is rejected for the larger S. bicolor and Ae. tauschii genomes, providing evidence for clustering of genes into islands. It is proposed to call the gene islands "gene insulae" to distinguish them from other types of gene clustering that have been proposed. An average S. bicolor and Ae. tauschii insula is estimated to contain 3.7 and 3.9 genes with an average intergenic distance within an insula of 2.1 and 16.5 kb, respectively. Inter-insular distances are greater than 8 and 81 kb and average 15.1 and 205 kb, in S. bicolor and Ae. tauschii, respectively. A greater gene density observed in the distal regions of the Ae. tauschii chromosomes is shown to be primarily caused by shortening of inter-insular distances. The comparison of the four grass genomes suggests that gene locations are largely a function of a homogeneous Poisson process in small genomes. Nonrandom insertions of LTR retroelements during genome expansion creates gene insulae, which become less dense and further apart with the increase in genome size. High concordance in relative lengths of orthologous intergenic distances among the investigated genomes including the maize genome suggests functional constraints on gene distribution in the grass genomes.

  15. Insular organization of gene space in grass genomes.

    Directory of Open Access Journals (Sweden)

    Andrea Gottlieb

    Full Text Available Wheat and maize genes were hypothesized to be clustered into islands but the hypothesis was not statistically tested. The hypothesis is statistically tested here in four grass species differing in genome size, Brachypodium distachyon, Oryza sativa, Sorghum bicolor, and Aegilops tauschii. Density functions obtained under a model where gene locations follow a homogeneous Poisson process and thus are not clustered are compared with a model-free situation quantified through a non-parametric density estimate. A simple homogeneous Poisson model for gene locations is not rejected for the small O. sativa and B. distachyon genomes, indicating that genes are distributed largely uniformly in those species, but is rejected for the larger S. bicolor and Ae. tauschii genomes, providing evidence for clustering of genes into islands. It is proposed to call the gene islands "gene insulae" to distinguish them from other types of gene clustering that have been proposed. An average S. bicolor and Ae. tauschii insula is estimated to contain 3.7 and 3.9 genes with an average intergenic distance within an insula of 2.1 and 16.5 kb, respectively. Inter-insular distances are greater than 8 and 81 kb and average 15.1 and 205 kb, in S. bicolor and Ae. tauschii, respectively. A greater gene density observed in the distal regions of the Ae. tauschii chromosomes is shown to be primarily caused by shortening of inter-insular distances. The comparison of the four grass genomes suggests that gene locations are largely a function of a homogeneous Poisson process in small genomes. Nonrandom insertions of LTR retroelements during genome expansion creates gene insulae, which become less dense and further apart with the increase in genome size. High concordance in relative lengths of orthologous intergenic distances among the investigated genomes including the maize genome suggests functional constraints on gene distribution in the grass genomes.

  16. Germination sensitivities to water potential among co-existing C3 and C4 grasses of cool semi-arid prairie grasslands.

    Science.gov (United States)

    Mollard, F P O; Naeth, M A

    2015-03-01

    An untested theory states that C4 grass seeds could germinate under lower water potentials (Ψ) than C3 grass seeds. We used hydrotime modelling to study seed water relations of C4 and C3 Canadian prairie grasses to address Ψ divergent sensitivities and germination strategies along a risk-spreading continuum of responses to limited water. C4 grasses were Bouteloua gracilis, Calamovilfa longifolia and Schizachyrium scoparium; C3 grasses were Bromus carinatus, Elymus trachycaulus, Festuca hallii and Koeleria macrantha. Hydrotime parameters were obtained after incubation of non-dormant seeds under different Ψ PEG 6000 solutions. A t-test between C3 and C4 grasses did not find statistical differences in population mean base Ψ (Ψb (50)). We found idiosyncratic responses of C4 grasses along the risk-spreading continuum. B. gracilis showed a risk-taker strategy of a species able to quickly germinate in a dry soil due to its low Ψb (50) and hydrotime (θH ). The high Ψb (50) of S. scoparium indicates it follows the risk-averse strategy so it can only germinate in wet soils. C. longifolia showed an intermediate strategy: the lowest Ψb (50) yet the highest θH . K. macrantha, a C3 grass which thrives in dry habitats, had the highest Ψb (50), suggesting a risk-averse strategy for a C3 species. Other C3 species showed intermediate germination patterns in response to Ψ relative to C4 species. Our results indicate that grasses display germination sensitivities to Ψ across the risk-spreading continuum of responses. Thus seed water relations may be poor predictors to explain differential recruitment and distribution of C3 and C4 grasses in the Canadian prairies.

  17. Evolutionary history of chloridoid grasses estimated from 122 nuclear loci.

    Science.gov (United States)

    Fisher, Amanda E; Hasenstab, Kristen M; Bell, Hester L; Blaine, Ellen; Ingram, Amanda L; Columbus, J Travis

    2016-12-01

    Chloridoideae (chloridoid grasses) are a subfamily of ca. 1700 species with high diversity in arid habitats. Until now, their evolutionary relationships have primarily been studied with DNA sequences from the chloroplast, a maternally inherited organelle. Next-generation sequencing is able to efficiently recover large numbers of nuclear loci that can then be used to estimate the species phylogeny based upon bi-parentally inherited data. We sought to test our chloroplast-based hypotheses of relationships among chloridoid species with 122 nuclear loci generated through targeted-enrichment next-generation sequencing, sometimes referred to as hyb-seq. We targeted putative single-copy housekeeping genes, as well as genes that have been implicated in traits characteristic of, or particularly labile in, chloridoids: e.g., drought and salt tolerance. We recovered ca. 70% of the targeted loci (122 of 177 loci) in all 47 species sequenced using hyb-seq. We then analyzed the nuclear loci with Bayesian and coalescent methods and the resulting phylogeny resolves relationships between the four chloridoid tribes. Several novel findings with this data were: the sister lineage to Chloridoideae is unresolved; Centropodia+Ellisochloa are excluded from Chloridoideae in phylogenetic estimates using a coalescent model; Sporobolus subtilis is more closely related to Eragrostis than to other species of Sporobolus; and Tragus is more closely related to Chloris and relatives than to a lineage of mainly New World species. Relationships in Cynodonteae in the nuclear phylogeny are quite different from chloroplast estimates, but were not robust to changes in the method of phylogenetic analysis. We tested the data signal with several partition schemes, a concatenation analysis, and tests of alternative hypotheses to assess our confidence in this new, nuclear estimate of evolutionary relationships. Our work provides markers and a framework for additional phylogenetic studies that sample more

  18. Effects of Introduced Grasses, Grazing and Fire on Regional Biogeochemistry in Hawaii

    Science.gov (United States)

    Elmore, A. J.; Asner, G. P.

    2003-12-01

    African grasses introduced for grazing have expanded in geographic extent in mesic tropical systems of Hawaii and other regions of the world. Grassland expansion leads to increases in fire frequency, speeding woodland and forest destruction at greater geographic scales than occurs with grazing alone. At Pu'uwa'awa'a Ranch, Hawaii, restoration of the native woodland habitat has become a critical objective following the introduction and dominance of the African grass species Pennisetum clandestinum and P. setaceum. Grazing and grass-fueled fires have destroyed over 60% of the original forest. To stabilize these communities, managers must balance the combined effects of grazing and fire. Grazing reduces the recruitment success of native tropical trees, but grazing also reduces fire risk by moderating grass fuel conditions and restricting the extent and density of the most flammable grass species. Our study focuses on two questions: (1) What grazing intensity is necessary to change the fire conditions of a region given in situ soil and precipitation conditions? (2) Have long-term grazing conditions altered soil carbon and nitrogen stocks? We used high resolution imaging spectrometer data to measure photosynthetic and non-photosynthetic vegetation cover, analysis of soil carbon and nitrogen stocks, and measurements of plant community composition along gradients in grazing intensity. P. setaceum, the more flammable alien grass, was dominant where grazing intensity was low and at lower elevations where precipitation is low. The less flammable grass, P. clandestinum, occurred in regions of high grazing intensity and higher precipitation. Grazing influenced the dominance of P. setaceum and P. clandestinum only where precipitation and soil characteristics were suitable for both grasses to occur. At suitable sites, grazing reduced fire conditions through a species sift towards P. clandestinum. Soil carbon and nitrogen stocks decreased with grazing intensity, which was

  19. Modelling Water Uptake Provides a New Perspective on Grass and Tree Coexistence.

    Science.gov (United States)

    Mazzacavallo, Michael G; Kulmatiski, Andrew

    2015-01-01

    Root biomass distributions have long been used to infer patterns of resource uptake. These patterns are used to understand plant growth, plant coexistence and water budgets. Root biomass, however, may be a poor indicator of resource uptake because large roots typically do not absorb water, fine roots do not absorb water from dry soils and roots of different species can be difficult to differentiate. In a sub-tropical savanna, Kruger Park, South Africa, we used a hydrologic tracer experiment to describe the abundance of active grass and tree roots across the soil profile. We then used this tracer data to parameterize a water movement model (Hydrus 1D). The model accounted for water availability and estimated grass and tree water uptake by depth over a growing season. Most root biomass was found in shallow soils (0-20 cm) and tracer data revealed that, within these shallow depths, half of active grass roots were in the top 12 cm while half of active tree roots were in the top 21 cm. However, because shallow soils provided roots with less water than deep soils (20-90 cm), the water movement model indicated that grass and tree water uptake was twice as deep as would be predicted from root biomass or tracer data alone: half of grass and tree water uptake occurred in the top 23 and 43 cm, respectively. Niche partitioning was also greater when estimated from water uptake rather than tracer uptake. Contrary to long-standing assumptions, shallow grass root distributions absorbed 32% less water than slightly deeper tree root distributions when grasses and trees were assumed to have equal water demands. Quantifying water uptake revealed deeper soil water uptake, greater niche partitioning and greater benefits of deep roots than would be estimated from root biomass or tracer uptake data alone.

  20. Impacts of leguminous shrub encroachment on neighboring grasses include transfer of fixed nitrogen.

    Science.gov (United States)

    Zhang, Hai-Yang; Yu, Qiang; Lü, Xiao-Tao; Trumbore, Susan E; Yang, Jun-Jie; Han, Xing-Guo

    2016-04-01

    Shrub encroachment induced by global change and human disturbance strongly affects ecosystem structure and function. In this study, we explore the degree to which invading leguminous shrubs affected neighboring grasses, including via the transfer of fixed nitrogen (N). We measured N concentrations and natural abundance (15)N of shoot tissues from three dominant grasses from different plant functional groups across seven distances along a local transect (up to 500 cm) to the leguminous shrub, Caragana microphylla. C. microphylla did transfer fixed N to neighboring grasses, but the amount and distance of N transferred were strongly species-specific. Shoot N concentrations decreased significantly with distance from C. microphylla, for a rhizomatous grass, Leymus chinensis, and a bunchgrass, Achnatherum sibiricum. However, N concentrations of another bunchgrass, Stipa grandis, were higher only directly underneath the shrub canopy. Shoot δ(15)N values of L. chinensis were enriched up to 500 cm from the shrub, but for S. grandis were enriched only below the shrub canopy. In contrast, δ(15)N of A. sibiricum did not change along the 500-cm transect. Our results indicated the rhizomatous grass transferred fixed N over long distances while bunchgrasses did not. The presence of C. microphylla increased the shoot biomass of L. chinensis but decreased that of S. grandis and A. sibiricum. These findings highlight the potential role of nutrient-acquisition strategies of neighboring grasses in moderating the interspecific variation of fixed N transfer from the leguminous shrub. Overall, leguminous shrubs have either positive or negative effects on the neighboring grasses and dramatically affect plant community composition and structure.

  1. Review of the integrated process for the production of grass biomethane.

    Science.gov (United States)

    Nizami, Abdul-Sattar; Korres, Nicholas E; Murphy, Jerry D

    2009-11-15

    Production of grass biomethane is an integrated process which involves numerous stages with numerous permutations. The grass grown can be of numerous species, and it can involve numerous cuts. The lignocellulosic content of grass increases with maturity of grass; the first cut offers more methane potential than the later cuts. Water-soluble carbohydrates (WSC) are higher (and as such methane potential is higher) for grass cut in the afternoon as opposed to that cut in the morning. The method of ensiling has a significant effect on the dry solids content of the grass silage. Pit or clamp silage in southern Germany and Austria has a solids content of about 40%; warm dry summers allow wilting of the grass before ensiling. In temperate oceanic climates like Ireland, pit silage has a solids content of about 21% while bale silage has a solids content of 32%. Biogas production is related to mass of volatile solids rather than mass of silage; typically one ton of volatile solid produces 300 m(3) of methane. The dry solids content of the silage has a significant impact on the biodigester configuration. Silage with a high solids content would lend itself to a two-stage process; a leach bed where volatile solids are converted to a leachate high in chemical oxygen demand (COD), followed by an upflow anaerobic sludge blanket where the COD can be converted efficiently to CH(4). Alternative configurations include wet continuous processes such as the ubiquitous continuously stirred tank reactor; this necessitates significant dilution of the feedstock to effect a solids content of 12%. Various pretreatment methods may be employed especially if the hydrolytic step is separated from the methanogenic step. Size reduction, thermal, and enzymatic methodologies are used. Good digester design is to seek to emulate the cow, thus rumen fluid offers great potential for hydrolysis.

  2. Soil seed banks confer resilience to savanna grass-layer plants during seasonal disturbance

    Science.gov (United States)

    Scott, Kenneth; Setterfield, Samantha; Douglas, Michael; Andersen, Alan

    2010-03-01

    An understanding of soil seed bank processes is crucial for understanding vegetation dynamics, particularly in ecosystems experiencing frequent disturbance. This paper examines seed bank dynamics in a tropical savanna in northern Australia, an environment characterised by frequent fire and highly seasonal rainfall. In particular, we examine the contribution of seed bank processes to the high level of resilience shown by grass-layer vegetation in relation to fire. We assess the spatial congruence between seed bank composition and extant vegetation, document temporal variation in the germinable seed bank over the annual dry season, test the effects of laboratory-applied heat and smoke treatments on seed germinability, and determine the effect of experimental fires on seed bank composition. Although dominant species were shared, the composition of the germinable seed bank was significantly different to that of extant vegetation, with approximately half the extant species not being detected in the seed bank. The density and species richness of germinable seeds was significantly greater in the late dry season than the early dry season, with annual grasses showing particularly high levels of seed dormancy in the early dry season. The density and species richness of germinable seeds in the seed bank was significantly enhanced by laboratory-applied treatments of smoke and especially heat, driven by the response of legumes. However, fire had no significant effect on the density or species richness of germinable seeds in the field, indicating soil temperatures during fire were too low to overcome physical dormancy, or burial was too deep to experience adequate heating or smoke exposure. Our results provide a mechanistic understanding of the persistence of annual grasses and forbs in an environment subject to frequent fire and highly seasonal rainfall, and, together with the sprouting capacity of perennial grasses, explain the high resilience of savanna grass-layer plants in

  3. The role of wild grasses in the management of lepidopterous stem-borers on maize in the humid tropics of western Africa.

    Science.gov (United States)

    Ndemah, R; Gounou, S; Schulthess, F

    2002-12-01

    Sites in the humid forest of Cameroon and the derived savanna of Benin were selected to evaluate the effect of planting border rows of wild host plants on lepidopterous stem-borer infestations and on maize yield. Grass species were chosen that in surveys and greenhouse trials were highly attractive to ovipositing female moths but with offspring mortality of close to 100%, thus acting as trap plants. In Cameroon, elephant grass Pennisetum purpureum Moench significantly lowered infestations of Busseola fusca (Fuller), Sesamia calamistis Hampson and Eldana saccharina Walker and increased yields of maize though the differences were not significant during all three cropping seasons. In 1998 in Benin, the only grass tested, Pennisetum polystachion L., significantly increased parasitism of mainly S. calamistis eggs by Telenomus spp. and larvae by Cotesia sesamiae Cameron and reduced numbers of the cob-borer Mussidia nigrivenella Ragonot. In 1999, three grass species; P. polystachion, Sorghum arundinaceum (Desv.) Stapf and Panicum maximum Jacq. were tested. Panicum maximum was the most efficient species for suppressing S. calamistis and M. nigrivenella infestations and enhancing egg and larval parasitism. In the Benin trials, with the exception of M. nigrivenella damage to cobs, the grass species tested had no beneficial effect on yield because pest densities were too low and also rodent damage to maize was enhanced with grasses in the vicinity of the crop. By contrast, stand losses due to Fusarium verticillioides Sacc. (Nirenberg), were significantly reduced by border rows of grasses.

  4. Persistence of Overseeded Cool-Season Grasses in Bermudagrass Turf

    Directory of Open Access Journals (Sweden)

    Thomas Serensits

    2011-01-01

    Full Text Available Cool-season grass species are commonly overseeded into bermudagrass turf for winter color. When the overseeded grass persists beyond the spring; however, it becomes a weed. The ability of perennial ryegrass, Italian (annual ryegrass, intermediate ryegrass, and hybrid bluegrass to persist in bermudagrass one year after seeding was determined. Perennial ryegrass, intermediate ryegrass, and Italian ryegrass produced acceptable ground cover in the spring after fall seeding. Hybrid bluegrass did not establish well, resulting in unacceptable cover. Perennial ryegrass generally persisted the most one year after seeding, either because of summer survival of plants or because of new germination the following fall. Plant counts one year after seeding were greater in the higher seeding rate treatment compared to the lower seeding treatment rate of perennial ryegrass, suggesting new germination had occurred. Plant counts one year after seeding plots with intermediate ryegrass or Italian ryegrass were attributed primarily to latent germination and not summer survival. Applications of foramsulfuron generally did not prevent overseeded species stand one year after seeding, supporting the conclusion of new germination. Although quality is less with intermediate ryegrass compared to perennial ryegrass, it transitions out easier than perennial ryegrass, resulting in fewer surviving plants one year later.

  5. Analysis of the soil food web structure under grass and grass clover

    NARCIS (Netherlands)

    Eekeren, van N.J.M.; Smeding, F.W.; Vries, de F.T.; Bloem, J.

    2006-01-01

    The below ground biodiversity of soil organisms plays an important role in the functioning of the the soil ecosystem, and consequently the above ground plant production. The objective of this study is to investigate the effect of grass or grass-clover in combination with fertilisation on the soil fo

  6. Characterisation of a Giant Lemon Grass Acclimatised in the Congo-Brazzaville

    Directory of Open Access Journals (Sweden)

    Loumouamou Aubin Nestor

    2010-11-01

    Full Text Available The aim of this study to investigate the essential oil of the giant variety of lemon grass (Poaceae obtained from farmers in Congo-Kinshasa and tested in Congo-Brazzaville. Chemical analysis, by GC and GCMS, of the essential oil from different parts of the plant, extracted at different stages of growth, revealed the very high stability of the citral chemotype (>80%; giving it the status of interesting species for the production of citral oil. However, it could not be identified to any of the oil-yielding grasses already described in the literature. Like Cymbopogon citratus (DC Stapf it produces an essential oil containing more than 80% citral, but displays morphological characteristics of vigorous grasses. The botanical description of the plant and the chemical composition of its oil identify it to Cymbopogon densiflorus (Steud Stapf.

  7. SQ grass sublingual allergy immunotherapy tablet for disease-modifying treatment of grass pollen allergic rhinoconjunctivitis

    DEFF Research Database (Denmark)

    Dahl, Ronald; Roberts, Graham; de Blic, Jacques

    2016-01-01

    BACKGROUND: Allergy immunotherapy is a treatment option for allergic rhinoconjunctivitis (ARC). It is unique compared with pharmacotherapy in that it modifies the immunologic pathways that elicit an allergic response. The SQ Timothy grass sublingual immunotherapy (SLIT) tablet is approved in North...... America and throughout Europe for the treatment of adults and children (≥5 years old) with grass pollen-induced ARC. OBJECTIVE: The clinical evidence for the use of SQ grass SLIT-tablet as a disease-modifying treatment for grass pollen ARC is discussed in this review. METHODS: The review included....... CONCLUSION: Therefore, the SQ grass SLIT-tablet has an indication as a disease-modifying therapy in Europe, and a sustained effect is recognized in the United States....

  8. 12 Comprehensive Detection of Allergens in Grass Pollen Extracts by Mass Spectrometry

    OpenAIRE

    2012-01-01

    Background More than 40% of type 1-allergic individuals suffer from hypersensitivity to grass pollen. Patients are treated traditionally with specific immunotherapy using pollen extracts derived from one or several different Pooideae species. While for several species the most important allergens (group 1 and group 5) have been identified, other allergens have either not been identified or sequence data are still missing. We have used mass spectrometry (MS) together with genetic and immunolog...

  9. Forage mass and stocking rate of elephant grass pastures managed under agroecological and conventional systems

    Directory of Open Access Journals (Sweden)

    Clair Jorge Olivo

    2014-06-01

    Full Text Available The objective was to evaluate elephant grass (Pennisetum purpureum Schum. pastures, under the agroecological and conventional systems, as forage mass and stocking rate. In the agroecological system, the elephant grass was established in rows spaced by 3.0 m from each other. During the cool season ryegrass (Lolium multiflorum Lam. was established between these rows, which allowed the development of spontaneous growth species during the warm season. In the conventional system the elephant grass was established singularly in rows spaced 1.4 m from each other. Organic and chemical fertilizers were applied at 150 kg of N/ha/year with in the pastures under agroecological and conventional systems, respectively. Lactating Holstein cows which received 5.0 kg/day supplementary concentrate feed were used for evaluation. The experimental design was completely randomized, with two treatments (agroecological and conventional systems two replications (paddocks and independent evaluations (grazing cycles. The pastures were used during the whole year for the agroecological system and for 195 days in the conventional year. The average values of forage mass were 3.5 and 4.2 t/ha and the stocking rates were 2.08 and 3.23 AU/ha for the respective systems. The results suggest that the use of the elephant grass under the agroecological system allows for best distribution of forage and stocking rate to be more uniform throughout the year than the use of elephant grass in conventional system.

  10. Microsatellite genetic diversity and differentiation of native and introduced grass carp populations in three continents

    Science.gov (United States)

    Chapman, Duane C.; Chen, Qin; Wang, Chenghui; Zhao, Jinlian; Lu, Guoqing; Zsigmond, Jeney; Li, Sifa

    2012-01-01

    Grass carp (Ctenopharyngodon idella), a freshwater species native to China, has been introduced to about 100 countries/regions and poses both biological and environmental challenges to the receiving ecosystems. In this study, we analyzed genetic variation in grass carp from three introduced river systems (Mississippi River Basin in US, Danube River in Hungary, and Tone River in Japan) as well as its native ranges (Yangtze, Pearl, and Amur Rivers) in China using 21 novel microsatellite loci. The allelic richness, observed heterozygosity, and within-population gene diversity were found to be lower in the introduced populations than in the native populations, presumably due to the small founder population size of the former. Significant genetic differentiation was found between all pairwise populations from different rivers. Both principal component analysis and Bayesian clustering analysis revealed obvious genetic distinction between the native and introduced populations. Interestingly, genetic bottlenecks were detected in the Hungarian and Japanese grass carp populations, but not in the North American population, suggesting that the Mississippi River Basin grass carp has experienced rapid population expansion with potential genetic diversification during the half-century since its introduction. Consequently, the combined forces of the founder effect, introduction history, and rapid population expansion help explaining the observed patterns of genetic diversity within and among both native and introduced populations of the grass carp.

  11. Adaptation and detoxification mechanisms of Vetiver grass (Chrysopogon zizanioides) growing on gold mine tailings.

    Science.gov (United States)

    Melato, F A; Mokgalaka, N S; McCrindle, R I

    2016-01-01

    Vetiver grass (Chrysopogon zizanioides) was investigated for its potential use in the rehabilitation of gold mine tailings, its ability to extract and accumulate toxic metals from the tailings and its metal tolerant strategies. Vetiver grass was grown on gold mine tailings soil, in a hothouse, and monitored for sixteen weeks. The mine tailings were highly acidic and had high electrical conductivity. Vetiver grass was able to grow and adapt well on gold mine tailings. The results showed that Vetiver grass accumulated large amounts of metals in the roots and restricted their translocation to the shoots. This was confirmed by the bioconcentration factor of Zn, Cu, and Ni of >1 and the translocation factor of Vetiver grass against metal stress that include: chelation of toxic metals by phenolics, glutathione S-tranferase, and low molecular weight thiols; sequestration and accumulation of metals within the cell wall that was revealed by the scanning electron microscopy that showed closure of stomata and thickened cell wall and was confirmed by high content of cell wall bound phenolics. Metal induced reactive oxygen species are reduced or eliminated by catalase, superoxide dismutase and peroxidase dismutase.

  12. Genetic sorting of subordinate species in grassland modulated by intraspecific variation in dominant species.

    Directory of Open Access Journals (Sweden)

    Danny J Gustafson

    Full Text Available Genetic variation in a single species can have predictable and heritable effects on associated communities and ecosystem processes, however little is known about how genetic variation of a dominant species affects plant community assembly. We characterized the genetic structure of a dominant grass (Sorghastrum nutans and two subordinate species (Chamaecrista fasciculata, Silphium integrifolium, during the third growing season in grassland communities established with genetically distinct (cultivated varieties or local ecotypes seed sources of the dominant grasses. There were genetic differences between subordinate species growing in the cultivar versus local ecotype communities, indicating that intraspecific genetic variation in the dominant grasses affected the genetic composition of subordinate species during community assembly. A positive association between genetic diversity of S. nutans, C. fasciculata, and S. integrifolium and species diversity established the role of an intraspecific biotic filter during community assembly. Our results show that intraspecific variation in dominant species can significantly modulate the genetic composition of subordinate species.

  13. Divergent Evolutionary Pattern of Sugar Transporter Genes is Associated with the Difference in Sugar Accumulation between Grasses and Eudicots.

    Science.gov (United States)

    Wang, Wei; Zhou, Hui; Ma, Baiquan; Owiti, Albert; Korban, Schuyler S; Han, Yuepeng

    2016-06-30

    Sugars play a variety of roles in plants, and their accumulation in seeds and/or surrounding pericarp tissues is distinctly different between grasses and eudicots. However, little is known about the evolutionary pattern of genes involved in sugar accumulation in these two major groups of flowering plants. Here, we compared evolutionary rates, gene duplication, and selective patterns of genes involved in sugar metabolism and transport between grasses and eudicots using six grass species and seven eudicot species as materials. Overall, sugar transporter genes exhibit divergent evolutionary patterns, whereas, sugar metabolism genes showing similar evolutionary pattern between monocots and eudicots. Sugar transporter genes have higher frequencies of recent duplication in eudicots than in grasses and their patterns of evolutionary rate are different. Evidence for divergent selection of these two groups of flowering plants is also observed in sugar transporter genes, wherein, these genes have undergone positive selection in eudicots, but not in grasses. Taken together, these findings suggest that sugar transporter genes rather than sugar metabolism genes play important roles in sugar accumulation in plants, and that divergent evolutionary patterns of sugar transporter genes are associated with the difference of sugar accumulation in storage tissues of grasses and eudicots.

  14. Cloning and preliminary functional studies of the JAM-A gene in grass carp (Ctenopharyngodon idellus).

    Science.gov (United States)

    Du, Fukuan; Su, Jianguo; Huang, Rong; Liao, Lanjie; Zhu, Zuoyan; Wang, Yaping

    2013-06-01

    Grass carp (Ctenopharyngodon idellus) is a very important aquaculture species in China and other South-East Asian countries; however, disease outbreaks in this species are frequent, resulting in huge economic losses. Grass carp hemorrhage caused by grass carp reovirus (GCRV) is one of the most serious diseases. Junction adhesion molecule A (JAM-A) is the mammalian receptor for reovirus, and has been well studied. However, the JAM-A gene in grass carp has not been studied so far. In this study, we cloned and elucidated the structure of the JAM-A gene in grass carp (GcJAM-A) and then studied its functions during grass carp hemorrhage. GcJAM-A is composed of 10 exons and 9 introns, and its full-length cDNA is 1833 bp long, with an 888 bp open reading frame (ORF) that encodes a 295 amino acid protein. The GcJAM-A protein is predicted to contain a typical transmembrane domain. Maternal expression pattern of GcJAM-A is observed during early embryogenesis, while zygote expression occurs at 8 h after hatching. GcJAM-A is expressed strongly in the gill, liver, intestine and kidney, while it is expressed poorly in the blood, brain, spleen and head kidney. Moreover, lower expression is observed in the gill, liver, intestine, brain, spleen and kidney of 30-month-old individuals, compared with 6-month-old. In a GcJAM-A-knockdown cell line (CIK) infected with GCRV, the expression of genes involved in the interferon and apoptosis pathways was significantly inhibited. These results suggest that GcJAM-A could be a receptor for GCRV. We have therefore managed to characterize the GcJAM-A gene and provide evidence for its role as a receptor for GCRV.

  15. Evolution of Centromeric Retrotransposons in Grasses

    Science.gov (United States)

    Sharma, Anupma; Presting, Gernot G.

    2014-01-01

    Centromeric retrotransposons (CRs) constitute a family of plant retroelements, some of which have the ability to target their insertion almost exclusively to the functional centromeres. Our exhaustive analysis of CR family members in four grass genomes revealed not only horizontal transfer (HT) of CR elements between the oryzoid and panicoid grass lineages but also their subsequent recombination with endogenous elements that in some cases created prolific recombinants in foxtail millet and sorghum. HT events are easily identifiable only in cases where host genome divergence significantly predates HT, thus documented HT events likely represent only a fraction of the total. If the more difficult to detect ancient HT events occurred at frequencies similar to those observable in present day grasses, the extant long terminal repeat retrotransposons represent the mosaic products of HT and recombination that are optimized for retrotransposition in their host genomes. This complicates not only phylogenetic analysis but also the establishment of a meaningful retrotransposon nomenclature, which we have nevertheless attempted to implement here. In contrast to the plant-centric naming convention used currently for CR elements, we classify elements primarily based on their phylogenetic relationships regardless of host plant, using the exhaustively studied maize elements assigned to six different subfamilies as a standard. The CR2 subfamily is the most widely distributed of the six CR subfamilies discovered in grass genomes to date and thus the most likely to play a functional role at grass centromeres. PMID:24814286

  16. BIOACCUMULATION OF HEAVY METALS IN FORAGE GRASSES

    Directory of Open Access Journals (Sweden)

    Adam Łukowski

    2017-02-01

    Full Text Available The aim of this study was estimation of bioaccumulation of heavy metals (Pb, Ni, Cu, Zn, Cd in forage grasses from the area of Podlasie Province based on the bioaccumulation factor. In the soil samples the pH, organic carbon content and CEC were determined. Determination of heavy metals contents in plant and soil material was carried out by flame atomic absorption spectrometry. Soils were characterized mainly by acidic reaction, high cation exchange capacity and organic carbon content. The content of heavy metals in studied forage grasses did not exceed the polish regulations related to plant usage for feeding purposes, except the lead content in seven samples. Coefficients of variation for particular heavy metals content in studied forage grasses were as follows: Pb - 37%, Ni - 63%, Cu - 30%, Zn - 34%, Cd - 48%. The highest bioaccumulation factor was found for nickel and grass from the village Remieńkiń (11.54, while the lowest for cadmium and grass from the village Jemieliste (0.04.

  17. Plastic traits of an exotic grass contribute to its abundance but are not always favourable.

    Directory of Open Access Journals (Sweden)

    Jennifer Firn

    Full Text Available In herbaceous ecosystems worldwide, biodiversity has been negatively impacted by changed grazing regimes and nutrient enrichment. Altered disturbance regimes are thought to favour invasive species that have a high phenotypic plasticity, although most studies measure plasticity under controlled conditions in the greenhouse and then assume plasticity is an advantage in the field. Here, we compare trait plasticity between three co-occurring, C(4 perennial grass species, an invader Eragrostis curvula, and natives Eragrostis sororia and Aristida personata to grazing and fertilizer in a three-year field trial. We measured abundances and several leaf traits known to correlate with strategies used by plants to fix carbon and acquire resources, i.e. specific leaf area (SLA, leaf dry matter content (LDMC, leaf nutrient concentrations (N, C:N, P, assimilation rates (Amax and photosynthetic nitrogen use efficiency (PNUE. In the control treatment (grazed only, trait values for SLA, leaf C:N ratios, Amax and PNUE differed significantly between the three grass species. When trait values were compared across treatments, E. curvula showed higher trait plasticity than the native grasses, and this correlated with an increase in abundance across all but the grazed/fertilized treatment. The native grasses showed little trait plasticity in response to the treatments. Aristida personata decreased significantly in the treatments where E. curvula increased, and E. sororia abundance increased possibly due to increased rainfall and not in response to treatments or invader abundance. Overall, we found that plasticity did not favour an increase in abundance of E. curvula under the grazed/fertilized treatment likely because leaf nutrient contents increased and subsequently its' palatability to consumers. E. curvula also displayed a higher resource use efficiency than the native grasses. These findings suggest resource conditions and disturbance regimes can be manipulated to

  18. Rationale for developing new virus vectors to analyze gene function in grasses through virus-induced gene silencing.

    Science.gov (United States)

    Ramanna, Hema; Ding, Xin Shun; Nelson, Richard S

    2013-01-01

    The exploding availability of genome and EST-based sequences from grasses requires a technology that allows rapid functional analysis of the multitude of genes that these resources provide. There are several techniques available to determine a gene's function. For gene knockdown studies, silencing through RNAi is a powerful tool. Gene silencing can be accomplished through stable transformation or transient expression of a fragment of a target gene sequence. Stable transformation in rice, maize, and a few other species, although routine, remains a relatively low-throughput process. Transformation in other grass species is difficult and labor-intensive. Therefore, transient gene silencing methods including Agrobacterium-mediated and virus-induced gene silencing (VIGS) have great potential for researchers studying gene function in grasses. VIGS in grasses already has been used to determine the function of genes during pathogen challenge and plant development. It also can be used in moderate-throughput reverse genetics screens to determine gene function. However, the number of viruses modified to serve as silencing vectors in grasses is limited, and the silencing phenotype induced by these vectors is not optimal: the phenotype being transient and with moderate penetration throughout the tissue. Here, we review the most recent information available for VIGS in grasses and summarize the strengths and weaknesses in current virus-grass host systems. We describe ways to improve current virus vectors and the potential of other grass-infecting viruses for VIGS studies. This work is necessary because VIGS for the foreseeable future remains a higher throughput and more rapid system to evaluate gene function than stable transformation.

  19. Responses of African Grasses in the Genus Sporobolus to Defoliation and Sodium Stress: Tradeoffs, Cross-Tolerance, or Independent Responses?

    Science.gov (United States)

    Griffith, Daniel M.; Anderson, T. Michael

    2013-01-01

    In the Serengeti ecosystem of East Africa, grazing ungulates prefer areas with elevated grass Na, suggesting that some grasses tolerate both high soil Na and defoliation. We performed a factorial Na-by-defoliation greenhouse study with five abundant Sporobolus congeners to explore whether Serengeti grasses possess traits which: (i) confer tolerance to both Na and defoliation (cross-tolerance); (ii) display a tradeoff; or (iii) act independently in their tolerances. Our expectation was that related grasses would exhibit cross-tolerance when simultaneously subjected to Na and defoliation. Instead, we found that physiological tolerances and growth responses to Na and defoliation did not correlate but instead acted independently: species characterized by intense grazing in the field showed no growth or photosynthetic compensation for combined Na and defoliation. Additionally, in all but the highest Na dosage, mortality was higher when species were exposed to both Na and defoliation together. Across species, mortality rates were greater in short-statured species which occur on sodic soils in heavily grazed areas. Mortality among species was positively correlated with specific leaf area, specific root length, and relative growth rate, suggesting that rapidly growing species which invest in low cost tissues have higher rates of mortality when exposed to multiple stressors. We speculate that the prevalence of these species in areas of high Na and disturbance is explained by alternative strategies, such as high fecundity, a wide range of germination conditions, or further dispersal, to compensate for the lack of additional tolerance mechanisms. PMID:27137400

  20. Responses of African Grasses in the Genus Sporobolus to Defoliation and Sodium Stress: Tradeoffs, Cross-Tolerance, or Independent Responses?

    Directory of Open Access Journals (Sweden)

    T. Michael Anderson

    2013-11-01

    Full Text Available In the Serengeti ecosystem of East Africa, grazing ungulates prefer areas with elevated grass Na, suggesting that some grasses tolerate both high soil Na and defoliation. We performed a factorial Na-by-defoliation greenhouse study with five abundant Sporobolus congeners to explore whether Serengeti grasses possess traits which: (i confer tolerance to both Na and defoliation (cross-tolerance; (ii display a tradeoff; or (iii act independently in their tolerances. Our expectation was that related grasses would exhibit cross-tolerance when simultaneously subjected to Na and defoliation. Instead, we found that physiological tolerances and growth responses to Na and defoliation did not correlate but instead acted independently: species characterized by intense grazing in the field showed no growth or photosynthetic compensation for combined Na and defoliation. Additionally, in all but the highest Na dosage, mortality was higher when species were exposed to both Na and defoliation together. Across species, mortality rates were greater in short-statured species which occur on sodic soils in heavily grazed areas. Mortality among species was positively correlated with specific leaf area, specific root length, and relative growth rate, suggesting that rapidly growing species which invest in low cost tissues have higher rates of mortality when exposed to multiple stressors. We speculate that the prevalence of these species in areas of high Na and disturbance is explained by alternative strategies, such as high fecundity, a wide range of germination conditions, or further dispersal, to compensate for the lack of additional tolerance mechanisms.

  1. 干热河谷草本植物生物量分配及其对环境因子的响应%Biomass allocations and their response to environmental factors for grass species in an arid-hot valley

    Institute of Scientific and Technical Information of China (English)

    闫帮国; 樊博; 何光熊; 史亮涛; 潘志贤; 李建查; 岳学文; 刘刚才

    2016-01-01

    以干热河谷6种草本植物为对象,研究了水分、养分、刈割对生物量在根、茎、叶的分配及异速生长关系的影响.结果表明:刈割处理叶生物量质量分数从25.1%显著增加到31.2%,茎生物量质量分数从43.7%显著降低到34.2%;养分添加处理根生物量质量分数从34.0%显著降低到30.8%;水分处理对生物量分配没有显著影响.物种对根、茎、叶生物量分配有显著影响,适应贫瘠土壤的物种将更多生物量分配给叶和根,对茎生物量的分配相对较低.物种与环境因子存在显著的互作效应,表明环境因子对不同物种的生物量分配影响不同.适应贫瘠土壤的物种叶-茎标度指数和异速生长常数大于其他物种,而茎-根标度指数和异速生长常数小于其他物种.养分显著增加了叶-茎和叶-根的异速生长常数,刈割显著降低了茎-根的标度指数,水分处理则没有显著效应.环境因素对器官间异速生长关系的影响存在种间差异.生物量分配的种间差异及其对环境因素的响应特征可能对植物适应环境变化产生重要影响.%The effects of water supply frequency,nutrient addition and clipping on biomass allocations among roots,stems and leaves as well as their allometric scaling relationships for six grass species from an arid-hot valley were investigated.The results showed that the fraction of leaf biomass significantly increased from 25.1% to 31.2% and the faction of stem biomass decreased from 43.7% to 34.2% under clipping treatment.Fertilization significantly decreased the faction of root biomass from 34.0% to 30.8%.Water treatments had no significant effect on biomass allocations.Species identity significantly affected biomass allocations among roots,stems and leaves.Species adapted to infertile soils allocated more biomass into leaves and roots and less into stems.There were significant interactions between species and environmental

  2. Molecular biomarkers for grass pollen immunotherapy.

    Science.gov (United States)

    Popescu, Florin-Dan

    2014-03-26

    Grass pollen allergy represents a significant cause of allergic morbidity worldwide. Component-resolved diagnosis biomarkers are increasingly used in allergy practice in order to evaluate the sensitization to grass pollen allergens, allowing the clinician to confirm genuine sensitization to the corresponding allergen plant sources and supporting an accurate prescription of allergy immunotherapy (AIT), an important approach in many regions of the world with great plant biodiversity and/or where pollen seasons may overlap. The search for candidate predictive biomarkers for grass pollen immunotherapy (tolerogenic dendritic cells and regulatory T cells biomarkers, serum blocking antibodies biomarkers, especially functional ones, immune activation and immune tolerance soluble biomarkers and apoptosis biomarkers) opens new opportunities for the early detection of clinical responders for AIT, for the follow-up of these patients and for the development of new allergy vaccines.

  3. Photosynthetic light response of the C4 grasses Brachiaria brizantha and B. humidicola under shade

    Directory of Open Access Journals (Sweden)

    Dias-Filho Moacyr Bernardino

    2002-01-01

    Full Text Available Forage grasses in tropical pastures can be subjected to considerable diurnal and seasonal reductions in available light. To evaluate the physiological behavior of the tropical forage grasses Brachiaria brizantha cv. Marandu and B. humidicola to low light, the photosynthetic light response and chlorophyll contents of these species were compared for plants grown outdoors, on natural soil, in pots, in full sunlight and those shaded to 30 % of full sunlight, over a 30-day period. Both species showed the ability to adjust their photosynthetic behavior in response to shade. Photosynthetic capacity and light compensation point were lower for shade plants of both species, while apparent quantum yield was unaffected by the light regime. Dark respiration and chlorophyll a:b ratio were significantly reduced by shading only in B. humidicola. B. humidicola could be relatively more adapted to succeed, at least temporarily, in light-limited environments.

  4. Grass Biomethane for Agriculture and Energy

    DEFF Research Database (Denmark)

    Korres, N.E.; Thamsiriroj, T.; Smith, B.

    2011-01-01

    Many factors enforce the intensification of grassland utilization which is associated with significant environmental impacts subjected to various legislative constraints. Nevertheless, the need for diversification in agricultural production and the sustainability in energy within the European Union...... by 2020 can be met since savings up to 89.4% under various scenarios can be achieved. Grass biomethane production compared to other liquid biofuels either when these are produced by indigenous of imported feedstocks is very promising. Grass biomethane, given the mature and well known technology...

  5. MoDest GrassUp

    DEFF Research Database (Denmark)

    Jørgensen, Rasmus Nyholm; S. Nadimi, Esmaeil

    2010-01-01

    The Technology The technology is one of a kind, as there is no such mathematical model estimating animal feed uptake available today. The estimation of grass uptake, is based on real time wireless sensor data, cow merit and climate data. Relevant cow behaviour data (such as location, movement...... velocity of the cows while grazing and head frequency movements) are measured using wireless sensors (e.g. accelerometers, magnetometers) and collected by a wireless network. Grass length and density are  measured by NIR spectroscopy.   Intellectual Property Rights All intellectual property rights owned...

  6. Technology Optimization of Enzymolysis of Burmuda Grass

    Directory of Open Access Journals (Sweden)

    Liu Jun-Hong

    2014-03-01

    Full Text Available Cellulose can be degraded by enzyme to glucose, which provide carbon source for ethanol fermentation. This study, taking Burmuda grass as material, analyzed effects of temperature, time, pH, PBS dosage and ratio of enzyme on reducing sugar. It came to the conclusion that the best conditions of the enzymolysis of Burmuda grass are as follows: 50°C for temperature, 32 h for time, 4.20 for pH, 2 mL for PBS dosage, 4:3 for the ratio of xylanase and cellulase, the yield of reducing sugar reached 78.63%.

  7. Guidelines for growing perennial grasses for biofuel and bioproducts

    Science.gov (United States)

    Guidelines for growing perennial grasses for biofuel and bioproducts Rob Mitchell Abstract: Switchgrass, big bluestem, and warm-season grass mixtures provide numerous benefits. Existing field equipment, herbicides, and cultivar improvement promote rapid establishment in the planting year. These gra...

  8. Investigation into the Effect of Molds in Grasses on Their Content of Low Molecular Mass Thiols

    Directory of Open Access Journals (Sweden)

    Adam Nawrath

    2012-10-01

    Full Text Available The aim of this study was to investigate the effect of molds on levels of low molecular mass thiols in grasses. For this purpose, the three grass species Lolium perenne, Festulolium pabulare and Festulolium braunii were cultivated and sampled during four months, from June to September. The same species were also grown under controlled conditions. High-performance liquid chromatography with electrochemical detection was used for quantification of cysteine, reduced (GSH and oxidized (GSSG glutathione, and phytochelatins (PC2, PC3, PC4 and PC5. Data were statistically processed and analyzed. Thiols were present in all examined grass species. The effect of fungicide treatments applied under field conditions on the content of the evaluated thiols was shown to be insignificant. Species influenced (p < 0.05 PC3 and GSSG content. F. pabulare, an intergeneric hybrid of drought- and fungi-resistant Festuca arundinacea, was comparable in PC3 content with L. perenne and F. braunii under field conditions. Under controlled conditions, however, F. pabulare had higher (p < 0.05 PC3 content than did L. perenne and F. braunii. Under field conditions, differences between the evaluated species were recorded only in GSSG content, but only sampling in June was significant. F. pabulare had higher (p < 0.05 GSSG content in June than did L. perenne and F. braunii.

  9. Natural enemies of lepidopterous borers on maize and elephant grass in the forest zone of Cameroon.

    Science.gov (United States)

    Ndemah, R; Schulthess, F; Poehling, M; Borgemeister, C; Goergen, G

    2001-06-01

    The importance, geographical and temporal distributions of parasitoids of lepidopterous borers on maize and elephant grass, Pennisetum purpureum, were assessed during surveys in farmers' fields in six villages and two on-station trials in the forest zone of Cameroon between 1995 and 1996. The borer species encountered were Busseola fusca (Fuller), Sesamia calamistis Hampson, Eldana saccharina Walker on both host plants, and Mussidia nigrivenella Ragonot on maize only. Busseola fusca was the predominant host accounting for 44-57% and 96% on maize and elephant grass, respectively, followed by E. saccharina on maize with 27-39%. Fifteen hymenopterous, two dipterous and one fungal species were found on these stem and cob-borers. Among those were six pupal, six larval, four egg, one larval-pupal parasitoid and four hyperparasitoids. The scelionid parasitoids Telenomus busseolae Gahan and T. isis Polaszek were found on B. fusca eggs in all locations. During the first season, mean egg parasitism was low and ranged between 3.1% and 27% versus 54-87% during the second season. Species belonging to the Tetrastichus atriclavus Waterston complex were recovered from all four borer species. The majority and most common larval and pupal parasitoid species belonged to the ingress-and-sting guild. Larval and pupal parasitism were very erratic and on more than 50% of the sampling occasions no parasitoids were recovered. Parasitoid diversity was higher on elephant grass than maize.

  10. Classification of grass pollen through the quantitative analysis of surface ornamentation and texture.

    Science.gov (United States)

    Mander, Luke; Li, Mao; Mio, Washington; Fowlkes, Charless C; Punyasena, Surangi W

    2013-11-07

    Taxonomic identification of pollen and spores uses inherently qualitative descriptions of morphology. Consequently, identifications are restricted to categories that can be reliably classified by multiple analysts, resulting in the coarse taxonomic resolution of the pollen and spore record. Grass pollen represents an archetypal example; it is not routinely identified below family level. To address this issue, we developed quantitative morphometric methods to characterize surface ornamentation and classify grass pollen grains. This produces a means of quantifying morphological features that are traditionally described qualitatively. We used scanning electron microscopy to image 240 specimens of pollen from 12 species within the grass family (Poaceae). We classified these species by developing algorithmic features that quantify the size and density of sculptural elements on the pollen surface, and measure the complexity of the ornamentation they form. These features yielded a classification accuracy of 77.5%. In comparison, a texture descriptor based on modelling the statistical distribution of brightness values in image patches yielded a classification accuracy of 85.8%, and seven human subjects achieved accuracies between 68.33 and 81.67%. The algorithmic features we developed directly relate to biologically meaningful features of grass pollen morphology, and could facilitate direct interpretation of unsupervised classification results from fossil material.

  11. Volatile organic compound emissions from elephant grass and bamboo cultivars used as potential bioethanol crop

    Science.gov (United States)

    Crespo, E.; Graus, M.; Gilman, J. B.; Lerner, B. M.; Fall, R.; Harren, F. J. M.; Warneke, C.

    2013-02-01

    Volatile organic compound (VOC) emissions from elephant grass (Miscanthus gigantus) and black bamboo (Phyllostachys nigra) were measured online in semi-field chamber and plant enclosure experiments during growth and harvest using proton-transfer reaction mass spectrometry (PTR-MS), proton-transfer reaction ion-trap mass spectrometry (PIT-MS) and gas chromatography-mass spectrometry (GC-MS). Both cultivars are being considered for second-generation biofuel production. Before this study, no information was available on their yearly VOC emissions. This exploratory investigation shows that black bamboo is a strong isoprene emitter (daytime 28,516 ng gdwt-1 h-1) and has larger VOC emissions, especially for wound compounds from the hexanal and hexenal families, than elephant grass. Daytime emissions of methanol, acetaldehyde, acetone + propanal and acetic acid of black bamboo were 618, 249, 351, and 1034 ng gdwt-1 h-1, respectively. In addition, it is observed that elephant grass VOC emissions after harvesting strongly depend on the seasonal stage. Not taking VOC emission variations throughout the season for annual and perennial species into account, may lead to an overestimation of the impact on local air quality in dry periods. In addition, our data suggest that the use of perennial grasses for extensive growing for biofuel production have lower emissions than woody species, which might be important for regional atmospheric chemistry.

  12. Meiosis in elephant grass (Pennisetum purpureum, pearl millet (Pennisetum glaucum (Poaceae, Poales and their interspecific hybrids

    Directory of Open Access Journals (Sweden)

    Vânia Helena Techio

    2006-01-01

    Full Text Available The cultivated and sexually compatible species Pennisetum purpureum (elephant grass, 2n = 4x = 28 and Pennisetum glaucum (pearl millet, 2n = 2x = 14 can undergo hybridization which favors the amplification of their genetic background and the introgression of favorable alleles into breeding programs. The main problem with interspecific hybrids of these species is infertility due to triploidy (2n = 3x = 21. This study describes meiosis in elephant grass x pearl millet hybrids and their progenitors. Panicles were prepared according to the conventional protocol for meiotic studies and Alexander’s stain was used for assessing pollen viability. Pearl millet accessions presented regular meiosis with seven bivalents and high pollen viability. For elephant grass, 14 bivalents in diakinesis and metaphase I were observed. The BAG 63 elephant grass accession, derived from tissue culture, presented a high frequency of meiotic abnormalities. The three hybrid accessions presented a high frequency of abnormalities characterized by irregular chromosomal segregation which resulted in the formation of sterile pollen.

  13. Trait similarity patterns within grass and grasshopper communities: multitrophic community assembly at work.

    Science.gov (United States)

    Van der Plas, F; Anderson, T M; Olff, H

    2012-04-01

    Trait-based community assembly theory suggests that trait variation among co-occurring species is shaped by two main processes: abiotic filtering, important in stressful environments and promoting similarity, and competition, more important in productive environments and promoting dissimilarity. Previous studies have indeed found trait similarity to decline along productivity gradients. However, these studies have always been done on single trophic levels. Here, we investigated how interactions between trophic levels affect trait similarity patterns along environmental gradients. We propose three hypotheses for the main drivers of trait similarity patterns of plants and herbivores along environmental gradients: (1) environmental control of both, (2) bottom-up control of herbivore trait variation, and (3) top-down control of grass trait variation. To test this, we collected data on the community composition and trait variation of grasses (41 species) and grasshoppers (53 species) in 50 plots in a South African savanna. Structural equation models were used to investigate how the range and spacing of within-community functional trait values of both grasses and their insect herbivores (grasshoppers; Acrididae) respond to (1) rainfall and fire frequency gradients and (2) the trait similarity patterns of the other trophic level. The analyses revealed that traits of co-occurring grasses became more similar toward lower rainfall and higher fire frequency (environmental control), while showing little evidence for top-down control. Grasshopper trait range patterns, on the other hand, were mostly directly driven by vegetation structure and grass trait range patterns (bottom-up control), while environmental factors had mostly indirect effects via plant traits. Our study shows the potential to expand trait-based community assembly theory to include trophic interactions.

  14. Root proliferation in native perennial grasses of arid Patagonia, Argentina

    Institute of Scientific and Technical Information of China (English)

    Yanina A. TORRES; Mara M. MUJICA; Sandra S. BAIONI; Jos ENTO; Mara N. FIORETTI; Guillermo TUCAT; Carlos A. BUSSO; Oscar A. MONTENEGRO; Leticia ITHURRART; Hugo D. GIORGETTI; Gustavo RODRGUEZ; Diego BENTIVEGNA; Roberto E. BREVEDAN; Osvaldo A. FERNNDEZ

    2014-01-01

    Pappophorum vaginatum is the most abundant C4 perennial grass desirable to livestock in rangelands of northeastern Patagonia, Argentina. We hypothesized that (1) defoliation reduce net primary productivity, and root length density and weight in the native species, and (2) root net primary productivity, and root length density and weight, are greater in P. vaginatum than in the other, less desirable, native species (i.e., Aristida spegazzinii, A. subulata and Sporobolus cryptandrus). Plants of all species were either exposed or not to a severe defoliation twice a year during two growing seasons. Root proliferation was measured using the cylinder method. Cylindrical, iron structures, wrapped up using nylon mesh, were buried diagonally from the periphery to the center on individual plants. These structures, initially filled with soil without any organic residue, were dug up from the soil on 25 April 2008, after two successive defoliations in mid-spring 2007. During the second growing season (2008-2009), cylinders were destructively harvested on 4 April 2009, after one or two defoliations in mid-and/or late-spring, respectively. Roots grown into the cylinders were obtained after washing the soil manually. Defoliation during two successive years did reduce the study variables only after plants of all species were defoliated twice, which supported the first hypothesis. The greater root net primary productivity, root length den-sity and weight in P. vaginatum than in the other native species, in support of the second hypothesis, could help to explain its greater abundance in rangelands of Argentina.

  15. Senescence, dormancy and tillering in perennial C4 grasses.

    Science.gov (United States)

    Sarath, Gautam; Baird, Lisa M; Mitchell, Robert B

    2014-03-01

    Perennial, temperate, C4 grasses, such as switchgrass and miscanthus have been tabbed as sources of herbaceous biomass for the production of green fuels and chemicals based on a number of positive agronomic traits. Although there is important literature on the management of these species for biomass production on marginal lands, numerous aspects of their biology are as yet unexplored at the molecular level. Perenniality, a key agronomic trait, is a function of plant dormancy and winter survival of the below-ground parts of the plants. These include the crowns, rhizomes and meristems that will produce tillers. Maintaining meristem viability is critical for the continued survival of the plants. Plant tillers emerge from the dormant crown and rhizome meristems at the start of the growing period in the spring, progress through a phase of vegetative growth, followed by flowering and eventually undergo senescence. There is nutrient mobilization from the aerial portions of the plant to the crowns and rhizomes during tiller senescence. Signals arising from the shoots and from the environment can be expected to be integrated as the plants enter into dormancy. Plant senescence and dormancy have been well studied in several dicot species and offer a potential framework to understand these processes in temperate C4 perennial grasses. The availability of latitudinally adapted populations for switchgrass presents an opportunity to dissect molecular mechanisms that can impact senescence, dormancy and winter survival. Given the large increase in genomic and other resources for switchgrass, it is anticipated that projected molecular studies with switchgrass will have a broader impact on related species.

  16. Photosynthesis of C3, C3–C4, and C4 grasses at glacial CO2

    Science.gov (United States)

    Pinto, Harshini; Sharwood, Robert E.; Tissue, David T.; Ghannoum, Oula

    2014-01-01

    Most physiology comparisons of C3 and C4 plants are made under current or elevated concentrations of atmospheric CO2 which do not reflect the low CO2 environment under which C4 photosynthesis has evolved. Accordingly, photosynthetic nitrogen (PNUE) and water (PWUE) use efficiency, and the activity of the photosynthetic carboxylases [Rubisco and phosphoenolpyruvate carboxylase (PEPC)] and decarboxylases [NADP-malic enzyme (NADP-ME) and phosphoenolpyruvate carboxykinase (PEP-CK)] were compared in eight C4 grasses with NAD-ME, PCK, and NADP-ME subtypes, one C3 grass, and one C3–C4 grass grown under ambient (400 μl l–1) and glacial (180 μl l–1) CO2. Glacial CO2 caused a smaller reduction of photosynthesis and a greater increase of stomatal conductance in C4 relative to C3 and C3–C4 species. Panicum bisulcatum (C3) acclimated to glacial [CO2] by doubling Rubisco activity, while Rubisco was unchanged in Panicum milioides (C3–C4), possibly due to its high leaf N and Rubisco contents. Glacial CO2 up-regulated Rubisco and PEPC activities in concert for several C4 grasses, while NADP-ME and PEP-CK activities were unchanged, reflecting the high control exerted by the carboxylases relative to the decarboxylases on the efficiency of C4 metabolism. Despite having larger stomatal conductance at glacial CO2, C4 species maintained greater PWUE and PNUE relative to C3–C4 and C3 species due to higher photosynthetic rates. Relative to other C4 subtypes, NAD-ME and PEP-CK grasses had the highest PWUE and PNUE, respectively; relative to C3, the C3–C4 grass had higher PWUE and similar PNUE at glacial CO2. Biomass accumulation was reduced by glacial CO2 in the C3 grass relative to the C3–C4 grass, while biomass was less reduced in NAD-ME grasses compared with NADP-ME and PCK grasses. Under glacial CO2, high resource use efficiency offers a key evolutionary advantage for the transition from C3 to C4 photosynthesis in water- and nutrient-limited environments. PMID:24723409

  17. 7 CFR 201.56-5 - Grass family, Poaceae (Gramineae).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Grass family, Poaceae (Gramineae). 201.56-5 Section... ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administration of the Act § 201.56-5 Grass... grasses listed in § 201.2(h). (a) Cereals: Agrotricum, barley, oat, rye, mountain rye, wheat,...

  18. 7 CFR 1437.310 - Sea grass and sea oats.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Sea grass and sea oats. 1437.310 Section 1437.310 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT... Determining Coverage Using Value § 1437.310 Sea grass and sea oats. (a) Sea grass and sea oats are value...

  19. A Tensile Strength of Bermuda Grass and Vetiver Grass in Terms of Root Reinforcement Ability Toward Soil Slope Stabilization

    Science.gov (United States)

    Noorasyikin, M. N.; Zainab, M.

    2016-07-01

    An examination on root characteristics and root properties has been implemented in this study. Two types of bioengineering were chose which are Vetiver grass and Bermuda grass as these grasses were widely applied for slope stabilization. The root samples were taken to the laboratory to investigate its classification, characteristics and strength. The root of both grasses was found grow with fibrous root matrix system. In terms of root anchorage, the root matrix system of Vetiver grass was exhibits more strengthen than the Bermuda grass. However, observation on root image from Scanning Electron Microscope test reveals that the root of Vetiver grass becomes non-porous as the moisture content reduced. Meanwhile, the root tensile strength of Bermuda grass was obtained acquired low value with higher percentage of moisture content, root morphology and bonding strength. The results indicated that the root tensile strength is mainly influence by percentage of moisture content and root morphology.

  20. Effects of an invasive grass on the demography of the Caribbean cactus Harrisia portoricensis: Implications for cacti conservation

    Science.gov (United States)

    Rojas-Sandoval, Julissa; Meléndez-Ackerman, Elvia

    2012-05-01

    The impact of exotic species around the world is among the primary threats to the conservation and management of rare and endangered species. In this work we asked whether or not the presence of the African grass Megathyrsus maximus on Mona Island was associated with negative impacts on the demography of the endangered Caribbean cactus Harrisia portoricensis. To address this question we performed field observations where we compared demographic data collected at un-manipulated areas invaded by Megathyrsus with un-manipulated areas non-invaded by this exotic grass. Additionally, demographic data were also collected in areas in which we removed the exotic grass biomass using two alternative treatments: complete and partial grass removal. Results demonstrated that the presence of Megathyrsus has negative effects on demographic parameters of Harrisia at various stages throughout its life cycle. In general, the survival, growth, and reproduction of Harrisia plants were depressed under the presence of Megathyrsus. Growth and survival of seedlings and juveniles of Harrisia were more impacted by the presence of Megathyrsus than adult performance and seedling recruitment only occurred in areas with grass absence. Our combined results suggest that modifications of the micro-environment by the presence of Megathyrsus may add an additional level of vulnerability to the persistence of Harrisia, and as such this factor must be considered when designing conservation strategies for this endangered species. This study highlights the need for a greater emphasis on understanding the interactions between invasive grass species and native cacti, and the importance of such information in designing conservation strategies for cacti species elsewhere.

  1. Establishment of warm season grasses with and without the use of compost soil amendments

    Science.gov (United States)

    Perry, M.C.; Osenton, P.C.; Gough, G.A.; Lohnes, E.J.R.

    2000-01-01

    Two compost materials (COMPRO and LEAFGRO) were evaluated as soil amendments to enhance wildlife habitats, while maintaining optimal floral and faunal biodiversity. Special emphasis was placed on the role of compost in the establishment and retention of native warm season grasses (Andropogon gerardi, Schizachyrium scoparium, and Sorghastrum nutans). This study was conducted at two sites that were degraded by previous military and farming operations. Sites were plowed twice in 1996 and then a one inch layer of COMPRO or LEAFGRO was applied with a modified manure spreader and disked into the soil to a depth of 3 inches. Vegetation sampling was conducted in 1996, 1997, 1998, and 1999. Initially the greatest vegetation cover occurred in plots treated with LEAFGRO. Plots treated with COMPRO had less vegetation cover than both types of controls plots (with and without warmseason grasses). The reduced plant growth in the plots treated with COMPRO may have been related to the much higher soil pH of these plots on both sites. In subsequent years, amounts of warm season grasses increased, however, in general there was more cover of warm season grasses in plots that did not receive compost than those that did receive compost. Sorghastrum nutans was more abundant on the sites than either of the other two species of warm season grasses. Invertebrate and mammal data collected for three years indicated that there was not more faunal activity in the plots treated with LEAFGRO or COMPRO compost soil amendments. Results indicate that compost amendments did not improve establishment of warm season grasses and the resultant faunal diversity or abundance.

  2. Ontogenesis and nutritive value of warm-season perennial bunch grasses

    Directory of Open Access Journals (Sweden)

    Robert D. Ziehr

    2014-06-01

    Full Text Available Understanding the dynamics of nutritive values in warm-season perennial bunch grasses with change in ontogenesis is essential to managing their use as forage for livestock or cellulosic bioenergy feedstock. Accumulated growth (not previously harvested of Alamo lowland and accession 9065018 upland switch grass (Panicum virgatum, Lometa Indian grass (Sorghastrum nutans, Earl big bluestem (Andropogon gerardii, San Marcos eastern gama grass (Tripsacum dactyloides and Haskell sideoats grama (Bouteloua curtipendula , all native to the southern Great Plains of North America, as well as Selection 75 Klein grass (Panicum coloratum, originating in southern Africa but selected in North America, was harvested every 28 d for 3 yr, commencing 1 yr after establishment. Growth stage, crude protein (CP and in vitro dry matter disappearance (IVDMD over 48 h were evaluated at each date. Some entries, such as Haskell, San Marcos and Selection 75, initiated reproductive growth earlier in the growing season and had higher nutritive value [up to 119 g CP/kg dry matter (DM and 630 g IVDMD/kg DM] at seed set than those reproducing later in the season. Nutritive value of San Marcos and Selection 75 responded to autumn rainfall with resurging nutritive value (over 100 g CP/kg DM and over 600 g IVDMD/kg DM, whereas others did not. These nuances in nutritive value may be useful in manipulating species composition and season of utilization for grazing bunch grasses, especially when incorporated into opportunistic harvests of bioenergy feedstock. Normal 0 false false false EN-US X-NONE X-NONE

  3. PHYTOSOCIOLOGY AND ECOLOGY OF THE NATURAL DRY-GRASS COMMUNITIES ON OAHU, HAWAII

    Directory of Open Access Journals (Sweden)

    Kuswata - Kartawinata

    2014-01-01

    Full Text Available Using the Braun-Blanquet and ordination techniques, nine dry-grass community types were recognized on Oahu, seven of which were dominated by exotic grasses and two by native grasses, Hctcrnpogna eontortus and Erarjrostis variabilis. These community types occured in summer-drought, summer-dry and humid climates. The distribution of certain community types could be correlated directly with rainfall and soil pH. In the summer-drought climate the occurrence of the community types was related to topography, wind exposure, rockiness of the land surface and stoniness of the soil. The nine community types were not related to the established soil series, organic matter content and watsr retaining' capacity of the  surface  soils.Three distinct soil-water regimes were recognized in five community types: drought, dry and wet types. Seasonal variations in soil-water content were correlated closely  with   the   rainfall   pattern.The introduction and spread of exotic species resulted in a gradual disappearance of the native grass communities in the summer-drought zone. In the summer-dry zone, Grevillea robiista. trees and Meliiiis minutiflora grass mats were invading the Rhynchelytrum repens community. Artdropogon virginiciis, introduced in 1932, formed a wide spread herbaceous community in the humid zone. In some places, this community was invaded by Dicranopteris linearis fern mats and trees of Acacia, koa or Metrosideros collina. Fire in both the summer-dry and humid zones maintained and extended  the  grass communities.

  4. Notes on the nomenclature of some grasses

    NARCIS (Netherlands)

    Henrard, J.Th.

    1941-01-01

    In a former article 1) many new combinations and critical observations were published on various grasses all over the world. New investigations in critical genera together with the study of the existing literature made it necessary to accept various other arrangements in this important family. The o

  5. Nowcasting daily minimum air and grass temperature

    Science.gov (United States)

    Savage, M. J.

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) errors for grass minimum temperature and the 4-h nowcasts.

  6. The Prairie Life: The Sea of Grass.

    Science.gov (United States)

    Ratzlaff, Harriet

    1996-01-01

    Presents a lesson plan that explores the importance of the environment for 19th-century frontier settlers and the conflict between ranchers and small farmers over appropriate land use. Students watch a video movie, "The Sea of Grass"; read selections from "O Pioneers!"; and write a compare/contrast essay. (MJP)

  7. Boston: Community Schools from the Grass Roots

    Science.gov (United States)

    O'Neil, William F.

    1974-01-01

    In Boston, grass roots citizen pressure led to the formation of community schools to replace elementary schools. The community schools are operated by the Boston School Committee during the regular school day and by the Department of Public Facilities in the extended day and evening. (Author/DN)

  8. Fast growing trees and energy grasses

    Energy Technology Data Exchange (ETDEWEB)

    Samson, R.

    1993-12-31

    According to both the United States Department of Energy and the Department of Natural Resources Canada, the best way to produce biomass plantations is an agro-forestry system in which fast growing trees are used as a windbreak for fields of energy grasses. (TEC). 1 fig.

  9. Notes on the nomenclature of some grasses

    NARCIS (Netherlands)

    Henrard, J.Th.

    1940-01-01

    For the incorporation of various grasses in the herbaria of our institutes, we are constantly looking for the correct names to accept, according to the priority. The study of the existing names, as they are given in the Index Kewensis, is therefore indispensable. Working in various genera of the gra

  10. Effect of leucaena row spacing and cutting height on yield and chemical compositions of three associated grasses intercropped with leucaena

    Directory of Open Access Journals (Sweden)

    Tudsri, S.

    2002-07-01

    Full Text Available The experiment was conducted at Suwanvajokkasikit Research Station, Pakchong, to determine the yield and chemical compositions of ruzi (Brachiaria ruziziens, dwarf napier (Pennisetum purpureum, and Taiwan A25 (P. purpureum intercropped with leucaena (Leucaena leucocephala cv. Ivory Coast under irrigation. The design of the experiment was a randomized split-split plot with pasture species as the main plots, leucaena row spacings (1, 2, 4 m as sub - plots and leucaena cutting height (10 and 25 cm above ground levels as sub-sub-plots with three replications of 5 × 4 m sub-sub-plots. Dwarf napier produced the highest total dry matter yield, followed by Taiwan A25 and ruzi. Leucaena yield was highest in the ruzi plots and lowest in the dwarf napier plots. However, the total dry matter yield (grass + leucaena was highest in the dwarf napier plot and lowest in the ruzi plots. Increasing the row spacing between rows of leucaena resulted in a poorer leucaena yield but the reverse was true for the grasses. The recommendation for row spacing of leucaena was 1 m under irrigation conditions. Cutting of leucaena at 10 cm above ground levels depressed yield of leucaena but did not affect the associated grasses. In terms of chemical compositions it was found that the crude protein of the dwarf napier and Taiwan A25 were higher than that of the ruzi grass. Leucaena gave higher levels of crude protein than the grasses. The phosphorus and potassium levels of the grasses were higher than leucaena. ADF levels were higher in the grasses than in the legumes. Nutrient contents of grasses and leucaena were not affected by leucaena row spacing and cutting height.

  11. Evolutionary divergence of β-expansin structure and function in grasses parallels emergence of distinctive primary cell wall traits.

    Science.gov (United States)

    Sampedro, Javier; Guttman, Mara; Li, Lian-Chao; Cosgrove, Daniel J

    2015-01-01

    Expansins are wall-loosening proteins that promote the extension of primary cell walls without the hydrolysis of major structural components. Previously, proteins from the EXPA (α-expansin) family were found to loosen eudicot cell walls but to be less effective on grass cell walls, whereas the reverse pattern was found for EXPB (β-expansin) proteins obtained from grass pollen. To understand the evolutionary and structural bases for the selectivity of EXPB action, we assessed the extension (creep) response of cell walls from diverse monocot families to EXPA and EXPB treatments. Cell walls from Cyperaceae and Juncaceae (families closely related to grasses) displayed a typical grass response ('β-response'). Walls from more distant monocots, including some species that share with grasses high levels of arabinoxylan, responded preferentially to α-expansins ('α-response'), behaving in this regard like eudicots. An expansin with selective activity for grass cell walls was detected in Cyperaceae pollen, coinciding with the expression of genes from the divergent EXPB-I branch that includes grass pollen β-expansins. The evolutionary origin of this branch was located within Poales on the basis of phylogenetic analyses and its association with the 'sigma' whole-genome duplication. Accelerated evolution in this branch has remodeled the protein surface in contact with the substrate, potentially for binding highly substituted arabinoxylan. We propose that the evolution of the divergent EXPB-I group made a fundamental change in the target and mechanism of wall loosening in the grass lineage possible, involving a new structural role for xylans and the expansins that target them.

  12. Estimating grass and grass silage degradation characteristics by in situ and in vitro gas production methods

    Directory of Open Access Journals (Sweden)

    Danijel Karolyi

    2010-01-01

    Full Text Available Fermentation characteristics of grass and grass silage at different maturities were studied using in situ and in vitro gas production methods. In situ data determined difference between grass and silage. Degradable fraction decreased as grass matured while the undegradable fraction increased. Rate of degradation (kd was slower for silage than fresh grass. Gas production method (GP data showed that fermentation of degradable fraction was different between stage of maturity in both grass and silage. Other data did not show any difference with the exception for the rate of GP of soluble and undegradable fraction. The in situ degradation characteristics were estimated from GP characteristics. The degradable and undegradable fractions could be estimated by multiple relationships. Using the three-phases model for gas production kd and fermentable organic matter could be estimated from the same parameters. The only in situ parameter that could not be estimated with GP parameters was the soluble fraction. The GP method and the three phases model provided to be an alternative to the in situ method for animal feed evaluations.

  13. Grass and herbaceous plants for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Prine, G.M.; Mislevy, P.

    1983-01-01

    Florida has little fossil fuel resources, but the state does have an adequate climate for high plant biomass production. Grasses and herbaceous plants are renewable resources which could furnish a portion of Florida's energy needs. Dry matter yields of various annual and perennial grasses and herbaceous plants which can be grown in Florida are presented in this paper. Residues of crops already being grown for other reasons would be an economical source of biomass. The best alternative for an energy crop appears to be tropical perennial shrub-like legumes and tall, strong-stemmed grasses that have their top growth killed by frosts each winter and that regrow annually from below-ground regenerative plant parts. Napiergrass or elephantgrass (Pennisetum purpureum L.), leucaena (Leucaena leucocephala (Lam.) de Wit) and sugarcane (Saccharum spp.) are examples of such energy plants. Napiergrass (PI 300086) had dry matter yields when cut once at the end of the season of 44.5 and 52.4 Mg/ha in 1981 and 1982 respectively, at Gainesville, Fla. and 56.7 Mg/ha for the first season after planting (1982) at Ona, Fla. A dry matter yield of 73 Mg/ha was obtained from a 10-year-old clump of leucaena at Gainesville in 1981. However, research needs to be conducted on methods of harvesting and storing biomass plants to be used for energy. Napiergrass and other grasses may be solar dried standing after a freeze or following cutting in the fall and then be rolled into large bales for storage in the open or crude shelters. A year-round supply of economical biomass must be available before grasses and herbaceous plants are widely grown and used for energy purposes. 6 references.

  14. The chemical composition, fermentation profile, and microbial populations in tropical grass silages

    Directory of Open Access Journals (Sweden)

    João Paulo Sampaio Rigueira

    2013-09-01

    Full Text Available The objective of this study was to evaluate the fermentation profile, chemical composition and microbial population and losses in the silages of signalgrass and Mombasa grass fertilized with the following levels of nitrogen (N: 0, 30, 60 and 90 kg/ha. The grasses were harvested at 70 days of regrowth, chopped and then ensiled in laboratory silos that had 20 kg of capacity and a snap-top cover and were fitted with Bunsen valves. Before ensiling, samples of the plants were used for the isolation and identification of lactic acid bacteria (LAB in epiphytic microbiota. The design adopted was a 4 × 2 factorial arrangement, with four doses of N and two forage species, in a completely randomized design, with four replicates. The predominant species of LAB was Lactobacillus fermentum. The interaction between the N dose and forage species affected the dry matter (DM, crude protein (CP, neutral detergent fiber (NDF, acid detergent fiber (ADF and water soluble carbohydrates (WSC of the silages. The pH values and gas losses were influenced only by the forage species, with higher values for the Mombasa grass. For the ammonia (NH3-N levels and effluent losses, there was an effect of the interaction between the forage species and N doses, and the highest values of NH3-N and effluent losses were found in the Mombasa grass silage fertilized with 60 kg N/ha. Nitrogen fertilization reduces the levels of DM and WSC in the silages and also increases the levels of CP, NH3-N and effluent losses.

  15. A REVIEW ON LEMON GRASS: AGRICULTURAL AND MEDICINAL ASPECT

    Directory of Open Access Journals (Sweden)

    Vaibhav Srivastava

    2013-08-01

    Full Text Available Lemongrass (Cymbopogan flexuosus and Cymbopogan Citraus is regarded as one of the grass which is commonly available in India and abroad. It is widely used in different conditions of pain and discomfort. The oil (Lemongrass oil obtained from the grass has diverse medicinal value. It also produces semi-synthetic Vitamin A that reduces the risk of Xerophthalmia and Night blindness. The grass has great benefits to mankind as it revitalizes the body and mind, helps with infections and act as muscle and skin toner. This review will explore the plant / grass and also suggest for more cultivation of the grass because of its medicinal importance.

  16. Natural lactic acid bacteria population of tropical grasses and their fermentation factor analysis of silage prepared with cellulase and inoculant.

    Science.gov (United States)

    Khota, Waroon; Pholsen, Suradej; Higgs, David; Cai, Yimin

    2016-12-01

    Natural lactic acid bacteria (LAB) populations in tropical grasses and their fermentation characteristics on silage prepared with cellulase enzyme and LAB inoculants were studied. A commercial inoculant Lactobacillus plantarum Chikuso 1 (CH), a local selected strain Lactobacillus casei TH14 (TH14), and 2 cellulases, Acremonium cellulase (AC) and Maicelase (MC; Meiji Seika Pharma Co. Ltd., Tokyo, Japan), were used as additives to silage preparation with fresh and wilted (6 h) Guinea grass and Napier grass. Silage was prepared using a laboratory-scale fermentation system. Treatments were CH, TH14, AC at 0.01% fresh matter, AC 0.1%, MC 0.01%, MC 0.1%, CH+AC 0.01%, CH+AC 0.1%, CH+MC 0.01%, CH+MC 0.1%, TH14+AC 0.1%, TH14+AC 0.01%, TH14+MC 0.1%, and TH14+MC 0.01%. Microorganism counts of Guinea grass and Napier grass before ensiling were 10(2) LAB and 10(6) aerobic bacteria; these increased during wilting. Based on morphological and biochemical characteristics, and 16S rRNA gene sequence analysis, natural strains from both grasses were identified as L. plantarum, L. casei, Lactobacillus acidipiscis, Leuconostoc pseudomesenteroides, Leuconostoc garlicum, Weissella confusa, and Lactococcus lactis. Lactobacillus plantarum and L. casei are the dominant species and could grow at lower pH and produce more lactic acid than the other isolates. Crude protein and neutral detergent fiber were 5.8 and 83.7% of dry matter (DM) for Guinea grass, and 7.5 and 77.1% of DM for Napier grass. Guinea grass had a low level of water-soluble carbohydrates (0.39% of DM). Guinea grass silage treated with cellulase had a lower pH and higher lactic acid content than control and LAB treatments. The 0.1% AC and MC treatments had the best result for fermentation quality. All high water-soluble carbohydrate (2.38% DM) Napier grass silages showed good fermentation quality. Compared with control and LAB-inoculated silage, the cellulase-treated silages had significantly higher crude protein content and

  17. MINERAL HORIZONS, ELECTROMAGNETIC FIELDS AND CIRCULAR SHAPES IN THE GRASS

    Directory of Open Access Journals (Sweden)

    Valentino Straser

    2009-12-01

    Full Text Available The occasional appearance of circular shapes in meadows and farmland located on slopes usually affected by gravitational phenomena, offered an occasion for verifying the possible relation between the position of the circles in the grass, the gravitational movement of the slope affecting its mineral horizons and the variations of electric and static magnetic fields close to the circular shapes and in the surrounding area. The stress caused by the “creeping” movement in the uderlying ground turned out to be in direct relation with the variation in the electric and magnetic fields caused by piezoelectric and piezomagnetic minerals such as quartz. The onset of the electromagnetic process involves the conversion of electric energy on the surface into an area of spherical shape which is linked with a different growth of herbaceous species compared to the surrounding vegetation.

  18. Evidence for rapid evolution of phenology in an invasive grass.

    Science.gov (United States)

    Novy, A; Flory, S L; Hartman, J M

    2013-02-01

    Evolutionary dynamics of integrative traits such as phenology are predicted to be critically important to range expansion and invasion success, yet there are few empirical examples of such phenomena. In this study, we used multiple common gardens to examine the evolutionary significance of latitudinal variation in phenology of a widespread invasive species, the Asian short-day flowering annual grass Microstegium vimineum. In environmentally controlled growth chambers, we grew plants from seeds collected from multiple latitudes across the species' invasive range. Flowering time and biomass were both strongly correlated with the latitude of population origin such that populations collected from more northern latitudes flowered significantly earlier and at lower biomass than populations from southern locations. We suggest that this pattern may be the result of rapid adaptive evolution of phenology over a period of less than one hundred years and that such changes have likely promoted the northward range expansion of this species. We note that possible barriers to gene flow, including bottlenecks and inbreeding, have apparently not forestalled evolutionary processes for this plant. Furthermore, we hypothesize that evolution of phenology may be a widespread and potentially essential process during range expansion for many invasive plant species.

  19. Effects of feeding dairy cows different legume-grass silages on milk phytoestrogen concentration.

    Science.gov (United States)

    Höjer, A; Adler, S; Purup, S; Hansen-Møller, J; Martinsson, K; Steinshamn, H; Gustavsson, A-M

    2012-08-01

    Phytoestrogens are hormone-like substances in plants that can substantially influence human health (positively or negatively), and when fed to dairy cows are partly transferred to their milk. The aim of this study was to investigate the effects of varying the botanical composition and regrowth interval of legume-grass silage on phytoestrogen intake and milk phytoestrogen concentrations. In one experiment, 15 Swedish Red dairy cows were fed 2- or 3-cut red clover-grass silage, or 2-cut birdsfoot trefoil-grass silage. In a second experiment, 16 Norwegian Red dairy cows were fed short-term ley silage with red clover or long-term ley silage with white clover, and the effects of supplementation with α-tocopherol were also tested. High concentrations of formononetin and biochanin A were found in all silage mixtures with red clover. The milk concentration of equol was highest for cows on the 2-cut red clover-grass silage diet (1,494 μg/kg of milk). Because of the metabolism of biochanin A, genistein, and prunetin, their concentrations in milk and the apparent recovery were low. Coumestrol was detected in only short-term and long-term ley silage mixtures, and its milk concentration was low. Concentrations of secoisolariciresinol and matairesinol were higher in 2-cut birdsfoot trefoil-grass and long-term ley silage mixtures, those with legume species other than red clover, and the highest grass proportions. The 2-cut birdsfoot trefoil-grass silage diet also resulted in higher enterolactone concentration than the other diets (226 μg/kg of milk). Lengthening the regrowth interval increased the intake of secoisolariciresinol and decreased the recovery of lignans. Feeding long-term ley silage resulted in higher milk lignan concentrations but lower milk isoflavone concentrations than feeding short-term ley silage. The apparent recovery of all phytoestrogens except prunetin was highest on the 2-cut birdsfoot trefoil-grass silage diet. No effect of α-tocopherol supplementation

  20. Traffic-Related Trace Element Accumulation in Roadside Soils and Wild Grasses in the Qinghai-Tibet Plateau, China

    Directory of Open Access Journals (Sweden)

    Guanxing Wang

    2013-12-01

    Full Text Available This research examines traffic-source trace elements accumulations and distributions in roadside soils and wild grasses in the Qinghai-Tibet Plateau. A total of 100 soil samples and 100 grass samples including Achnatherum splendens, Anaphalis nepalensis, Artemisia sphaerocephala, Carex moorcroftii, Iris lacteal, Kobresia myosuroides, Oreosolen wattii, Oxytropis ochrocephala and Stellera chamaejasme were collected at 100 sites from different road segments. The contents of metals and metalloids, including Cu, Zn, Cd, Pb, Cr, Co, Ni and As, in the soil and grass samples were analyzed using ICP-MS. The total mean concentrations of the eight trace elements in soils are Cu (22.84 mg/kg, Zn (100.56 mg/kg, Cd (0.28 mg/kg, Pb (28.75 mg/kg, Cr (36.82 mg/kg, Co (10.24 mg/kg, Ni (32.44 mg/kg and As (21.43 mg/kg, while in grasses are Cu (9.85 mg/kg, Zn (31.47 mg/kg, Cd (0.05 mg/kg, Pb (2.06 mg/kg, Cr (14.16 mg/kg, Co (0.55 mg/kg, Ni (4.03 mg/kg and As (1.33 mg/kg. The metal and metalloid concentrations in the nine grass species were all below the critical values of hyperaccumulators. The mean values and Multivariate Analysis of Variance (MANOVA results indicate that: (1 the concentrations of the trace elements in the soils are higher than those in the grasses, (2 the concentrations of Cu, Zn, Cd, Pb in the soils decrease as the roadside distance increases, (3 the concentrations of trace elements in the grasses are the highest at 10 m from the road edge, (4 the higher the traffic volume, the higher the concentrations of the trace elements in the roadside soils and grasses, and (5 when the land cover is meadow, the lower the sand content in the soil, the lower the trace element concentrations. With a trace element's bioavailability represented by its transfer factor (TF from the soil to the grass, the TFs of the eight trace elements are not in the same orders for different grass species.

  1. Traffic-related trace element accumulation in roadside soils and wild grasses in the Qinghai-Tibet Plateau, China.

    Science.gov (United States)

    Wang, Guanxing; Yan, Xuedong; Zhang, Fan; Zeng, Chen; Gao, Dan

    2013-12-30

    This research examines traffic-source trace elements accumulations and distributions in roadside soils and wild grasses in the Qinghai-Tibet Plateau. A total of 100 soil samples and 100 grass samples including Achnatherum splendens, Anaphalis nepalensis, Artemisia sphaerocephala, Carex moorcroftii, Iris lacteal, Kobresia myosuroides, Oreosolen wattii, Oxytropis ochrocephala and Stellera chamaejasme were collected at 100 sites from different road segments. The contents of metals and metalloids, including Cu, Zn, Cd, Pb, Cr, Co, Ni and As, in the soil and grass samples were analyzed using ICP-MS. The total mean concentrations of the eight trace elements in soils are Cu (22.84 mg/kg), Zn (100.56 mg/kg), Cd (0.28 mg/kg), Pb (28.75 mg/kg), Cr (36.82 mg/kg), Co (10.24 mg/kg), Ni (32.44 mg/kg) and As (21.43 mg/kg), while in grasses are Cu (9.85 mg/kg), Zn (31.47 mg/kg), Cd (0.05 mg/kg), Pb (2.06 mg/kg), Cr (14.16 mg/kg), Co (0.55 mg/kg), Ni (4.03 mg/kg) and As (1.33 mg/kg). The metal and metalloid concentrations in the nine grass species were all below the critical values of hyperaccumulators. The mean values and Multivariate Analysis of Variance (MANOVA) results indicate that: (1) the concentrations of the trace elements in the soils are higher than those in the grasses, (2) the concentrations of Cu, Zn, Cd, Pb in the soils decrease as the roadside distance increases, (3) the concentrations of trace elements in the grasses are the highest at 10 m from the road edge, (4) the higher the traffic volume, the higher the concentrations of the trace elements in the roadside soils and grasses, and (5) when the land cover is meadow, the lower the sand content in the soil, the lower the trace element concentrations. With a trace element's bioavailability represented by its transfer factor (TF) from the soil to the grass, the TFs of the eight trace elements are not in the same orders for different grass species.

  2. Comparative and Evolutionary Analysis of Grass Pollen Allergens Using Brachypodium distachyon as a Model System

    Science.gov (United States)

    Sharma, Akanksha; Sharma, Niharika; Bhalla, Prem; Singh, Mohan

    2017-01-01

    Comparative genomics have facilitated the mining of biological information from a genome sequence, through the detection of similarities and differences with genomes of closely or more distantly related species. By using such comparative approaches, knowledge can be transferred from the model to non-model organisms and insights can be gained in the structural and evolutionary patterns of specific genes. In the absence of sequenced genomes for allergenic grasses, this study was aimed at understanding the structure, organisation and expression profiles of grass pollen allergens using the genomic data from Brachypodium distachyon as it is phylogenetically related to the allergenic grasses. Combining genomic data with the anther RNA-Seq dataset revealed 24 pollen allergen genes belonging to eight allergen groups mapping on the five chromosomes in B. distachyon. High levels of anther-specific expression profiles were observed for the 24 identified putative allergen-encoding genes in Brachypodium. The genomic evidence suggests that gene encoding the group 5 allergen, the most potent trigger of hay fever and allergic asthma originated as a pollen specific orphan gene in a common grass ancestor of Brachypodium and Triticiae clades. Gene structure analysis showed that the putative allergen-encoding genes in Brachypodium either lack or contain reduced number of introns. Promoter analysis of the identified Brachypodium genes revealed the presence of specific cis-regulatory sequences likely responsible for high anther/pollen-specific expression. With the identification of putative allergen-encoding genes in Brachypodium, this study has also described some important plant gene families (e.g. expansin superfamily, EF-Hand family, profilins etc) for the first time in the model plant Brachypodium. Altogether, the present study provides new insights into structural characterization and evolution of pollen allergens and will further serve as a base for their functional

  3. Copper tolerance of the biomass crops Elephant grass (Pennisetum purpureum Schumach), Vetiver grass (Vetiveria zizanioides) and the upland reed (Phragmites australis) in soil culture.

    Science.gov (United States)

    Liu, Xinghua; Shen, Yixing; Lou, Laiqing; Ding, Chenglong; Cai, Qingsheng

    2009-01-01

    Pot trials were conducted to study the influence of copper (Cu) on the growth and biomass of Elephant grass (EG, Pennisetum purpureum Schumach), Vetiver grass (VG, Vetiveria zizanioides) and the upland reed (UR, Phragmites australis). Cu toxicity in EG, VG and UR was positively correlated with the total and bioavailable Cu concentrations in the soil. Based on the EC50, dry weights, Cu contents, chlorophyll contents and photosynthesis rates, the Cu tolerance of the three species followed the trend EGNVGNUR. There were no significant differences in the unit calorific values among the different plants, though the total calorific values of EG were higher than those of VG and UR due to its higher biomass. The addition of KH2PO4 to the soil decreased the bioavailability of Cu and the Cu uptake by plants. EG could therefore be a good candidate for growth on Cu-contaminated soils, especially those improved by phosphate.

  4. Upgrading food wastes by means of bromelain and papain to enhance growth and immunity of grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Choi, W M; Lam, C L; Mo, W Y; Wong, M H

    2016-04-01

    The fast growing of global aquaculture industry accompanied with increasing pressure on the supply and price of traditional feed materials (e.g., fish meal and soy bean meal). This circumstance has urged the need to search alternative sources of feed stuff. Food waste was used as feed stuff in rearing fish which possess substantial protein and lipid. Grass carp are major species reared in Hong Kong with lower nutritional requirements; it is also an ideal species for investigating the feasibility of using food waste as fish feeds for local aquaculture industry. The growth and immunity, reflected by total protein, total immunologlobulin (IgI), and nitroblue tetrazolium (NBT) activity of grass carp blood, were depressed when feeding with food waste feeds without enzymes. However, the supplementation of bromelain and papain in fish feed enhanced the efficient use of food waste by grass carp, which in turn improved the fish immunity. The present results indicated that the addition of those enzymes could enhance the feed utilization by fish and hematological parameters of grass carp, and the improvement on growth and immunity superior to the control (commercial feed) was observed with the addition of bromelain and papain supplement. Addition of 1 and 2 % mixture of bromelain and papain could significantly enhance the lipid utilization in grass carp.

  5. Short-term priority over exotic annuals increases the initial density and longer-term cover of native perennial grasses.

    Science.gov (United States)

    Vaughni, Kurt J; Young, Truman P

    2015-04-01

    Temporal priority can affect individual performance and reproduction, as well as community assembly, but whether these effects persist over time remains unclear, and their demographic mechanisms have been little explored. The continued dominance of exotic annual grasses in California has been commonly attributed to their demonstrated early germination and rapid early growth relative to native perennial grasses. This advantage may play a crucial role in the structure of California exotic annual grasslands, as well as in the practice of native grassland restoration. We tested whether a two-week planting advantage under field conditions increased individual survival, growth, and reproduction for four native perennial grass species and whether these effects persisted over three years. We show that short-term priority significantly increased the establishment success of' native perennial grasses. Increased density of native grass seedlings presaged later large increases in cover that were not evident in the first year after planting. Although priority effects at the individual level may diminish over time, short differences in emergence timing can have long-lasting effects on community structure. Earlier germination and faster initial growth of exotic annual species may help explain their unprecedented invasion and continued dominance of California grasslands. Finally, these results highlight the importance of priority effects for effective exotic annual control during native grassland restoration in California: initial control can increase the establishment of native perennial seedlings, which then results in long-term control by mature native individuals.

  6. Tolerance of Grasses to Heavy Metals and Microbial Functional Diversity in Soils Contaminated with Copper Mine Tailings

    Institute of Scientific and Technical Information of China (English)

    TENG Ying; LUO Yong-Ming; HUANG Chang-Yong; LONG Jian; LI Zhen-Gao; P.CHRISTIE

    2008-01-01

    Copper (Cu) mine tallings,because of their high content of heavy metals,are usually hostile to plant colonization.A pot experiment was conducted to determine the tolerance of four forage grasses to heavy metals in Cu mine tailings and to examine the variation in the microbial functional diversity of soils from the tailing sites in southern China.All the four grass species survived on Cu mine tailings and Cu mine tailing-soil mixture.However,on pure mine tailings,the growth was minimal,whereas the growth was maximum for the control without mine railings.The tolerance of grasses to heavy metals followed the sequence: Paspalum notatum >Festuca arundinacea >Lolium perenne >Cynodon dactylon.The planting of forage grasses enhanced the soil microbial biomass.The Biolog data indicated that the soil microbial metabolic profile values (average well color development,community richness,and Shannon index) of the four forage grasses also followed the sequence: P.notatum > F.arundinacea > L.perenne > C.dactylon.Thus,P.notatum,under the experimental conditions of this study,may be considered as the preferred plant species for revegetation of Cu mine tailing areas.

  7. Gravid Anopheles gambiae sensu stricto avoid ovipositing in Bermuda grass hay infusion and it’s volatiles in two choice egg-count bioassays

    OpenAIRE

    Eneh, LK; Okal, MN; Borg-Karlson, AK; Fillinger, U; Lindh, JM

    2016-01-01

    Background A number of mosquito species in the Culex and Aedes genera prefer to lay eggs in Bermuda grass (Cynodon dactylon) hay infusions compared to water alone. These mosquitoes are attracted to volatile compounds from the hay infusions making the infusions effective baits in gravid traps used for monitoring vectors of arboviral and filarial pathogens. Since Bermuda grass is abundant and widespread, it is plausible to explore infusions made from it as a potential low cost bait for outdoor ...

  8. Phylogenetic analysis of the expansion of the MATH-BTB gene family in the grasses.

    Science.gov (United States)

    Juranić, Martina; Dresselhaus, Thomas

    2014-01-01

    MATH-BTB proteins are known to act as substrate-specific adaptors of cullin3 (CUL3)-based ubiquitin E3 ligases to target protein for ubiquitination. In a previous study we reported the presence of 31 MATH-BTB genes in the maize genome and determined the regulatory role of the MATH-BTB protein MAB1 during meiosis to mitosis transition. In contrast to maize, there are only 6 homologous genes in the model plant Arabidopsis, while this family has largely expanded in grasses. Here, we report a phylogenetic analysis of the MATH-BTB gene family in 9 land plant species including various mosses, eudicots, and grasses. We extend a previous classification of the plant MATH-BTB family and additionally arrange the expanded group into 5 grass-specific clades. Synteny studies indicate that expansion occurred to a large extent due to local gene duplications. Expression studies of 3 closely related MATH-BTB genes in maize (MAB1-3) indicate highly specific expression pattern. In summary, this work provides a solid base for further studies comparing genetic and functional information of the MATH-BTB family especially in the grasses.

  9. Phylogenetic analysis of the expansion of the MATH-BTB gene family in the grasses

    Science.gov (United States)

    Juranić, Martina; Dresselhaus, Thomas

    2014-01-01

    MATH-BTB proteins are known to act as substrate-specific adaptors of cullin3 (CUL3)-based ubiquitin E3 ligases to target protein for ubiquitination. In a previous study we reported the presence of 31 MATH-BTB genes in the maize genome and determined the regulatory role of the MATH-BTB protein MAB1 during meiosis to mitosis transition. In contrast to maize, there are only 6 homologous genes in the model plant Arabidopsis, while this family has largely expanded in grasses. Here, we report a phylogenetic analysis of the MATH-BTB gene family in 9 land plant species including various mosses, eudicots, and grasses. We extend a previous classification of the plant MATH-BTB family and additionally arrange the expanded group into 5 grass-specific clades. Synteny studies indicate that expansion occurred to a large extent due to local gene duplications. Expression studies of 3 closely related MATH-BTB genes in maize (MAB1–3) indicate highly specific expression pattern. In summary, this work provides a solid base for further studies comparing genetic and functional information of the MATH-BTB family especially in the grasses. PMID:24614623

  10. On the number of genes controlling the grass stage in longleaf pine.

    Science.gov (United States)

    Nelson, C D; Weng, C; Kubisiak, T L; Stine, M; Brown, C L

    2003-01-01

    The grass stage is an inherent and distinctive developmental trait of longleaf pine (Pinus palustris), in which height growth in the first few years after germination is suppressed. In operational forestry practice the grass stage extends for two to several years and often plays a role in planting failures and decisions to plant alternative species. Interspecies hybrids involving loblolly (P. taeda) and slash (P. elliottii var. elliottii) pines have been investigated as a means to produce planting stock with improved early height growth and to develop backcross populations for advanced generation breeding. We have reevaluated data from several interspecies populations, with the objective of estimating the number of genes contributing to the difference in first-year height growth between longleaf and loblolly pines. Estimates based on means and variances of parental and interspecies hybrid and backcross families suggest a minimum of 4 to 10 genes with standard errors less than half the estimates. These results suggest that the grass stage has evolved through the accumulation of alleles at several loci, each with small effects on various components of first-year height growth. Given the complexity of the grass-stage trait, tree breeders may need to combine genetic marker analysis with recurrent backcross breeding to efficiently develop longleaf pine planting stock for improved reforestation.

  11. In situ Shear Tests of Soil Samples with Grass Roots in Alpine Environment

    Directory of Open Access Journals (Sweden)

    E. Comino

    2009-01-01

    Full Text Available Problem statement: The presence of vegetation increases the soil burden stability along slopes and reduces soil erosion. Its contribution is due to mechanical (reinforcing soil shear resistance and hydrologic controls on streambank and superficial landslides. This study presented the results carried out from experimental in situ test focused to study the increased shear resistance of soil blocks due to root-reinforcement. A shear apparatus was set up in order to realize the measure. Approach: In this research the researchers tested the capacity root reinforcement of Festuca pratensis, Lolium perenne and Poa pratensis (Poaceae families, Medicago sativa, Trifolium pratensis and Lotus corniculatus (Fabaceae families grass species widespread in the Alpine environment. Results: In situ shear tests results revealed that grass roots fail progressively and their tendency were to slip, without failing. Shear-strengths calculated for root-reinforced soil with Fabaceae, yielded values between 19 and 166% higher than directly measured shear-strengths in soil with no roots. The shear displacement had an increase included between 493 and 1.900%. The shear time was always superior. The clod with roots, after the trials, were always packed together. Conclusion: These data were lower than those obtained with Poaceae tests (from 50-318%, but the two grass families were functional for a grass mix useful in technical seeding.

  12. Utilization of grasses for potential biofuel production and phytoremediation of heavy metal contaminated soils.

    Science.gov (United States)

    Balsamo, Ronald A; Kelly, William J; Satrio, Justinus A; Ruiz-Felix, M Nydia; Fetterman, Marisa; Wynn, Rodd; Hagel, Kristen

    2015-01-01

    This research focuses on investigating the use of common biofuel grasses to assess their potential as agents of long-term remediation of contaminated soils using lead as a model heavy metal ion. We present evidence demonstrating that switch grass and Timothy grass may be potentially useful for long-term phytoremediation of heavy metal contaminated soils and describe novel techniques to track and remove contaminants from inception to useful product. Enzymatic digestion and thermochemical approaches are being used to convert this lignocellulosic feedstock into useful product (sugars, ethanol, biocrude oil+biochar). Preliminary studies on enzymatic hydrolysis and fast pyrolysis of the Switchgrass materials that were grown in heavy metal contaminated soil and non-contaminated soils show that the presence of lead in the Switchgrass material feedstock does not adversely affect the outcomes of the conversion processes. These results indicate that the modest levels of contaminant uptake allow these grass species to serve as phytoremediation agents as well as feedstocks for biofuel production in areas degraded by industrial pollution.

  13. Management of warm-season grass mixtures for biomass production in South Dakota USA.

    Science.gov (United States)

    Mulkey, V R; Owens, V N; Lee, D K

    2008-02-01

    Switchgrass (Panicum virgatum L.), big bluestem (Andropogon gerardii Vitman), and indiangrass (Sorghastrum nutans (L.) Nash) are native warm-season grasses commonly used for pasture, hay, and conservation. More recently switchgrass has also been identified as a potential biomass energy crop, but management of mixtures of these species for biomass is not well documented. Therefore, the objectives of our study were to: (1) determine the effects of harvest timing and N rate on yield and biomass characteristics of established warm-season grass stands containing a mixture of switchgrass, big bluestem, and indiangrass, and (2) evaluate the impact of harvest management on species composition. Five N rates (0, 56, 112, and 224 kg ha(-1) applied annually in spring and 224 kg ha(-1) evenly split between spring and fall) and two harvest timings (anthesis and killing frost) were applied to plots at two South Dakota USA locations from 2001 to 2003. Harvesting once a year shortly after a killing frost produced the greatest yields with high concentrations of neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) along with lower concentrations of total nitrogen (TN) and ash. This harvest timing also allowed for the greatest percentage of desirable species while maintaining low grass weed percentages. While N rates of 56 and 112 kg ha(-1) tended to increase total biomass without promoting severe invasion of grass and broadleaf weed species, N application did not always result in significant increases in biomass production. Based on these results, mixtures of switchgrass and big bluestem were well suited for sustainable biomass energy production. Furthermore, N requirements of these mixtures were relatively low thus reducing production input costs.

  14. Epichloë Endophytes Alter Inducible Indirect Defences in Host Grasses

    Science.gov (United States)

    Li, Tao; Blande, James D.; Gundel, Pedro E.; Helander, Marjo; Saikkonen, Kari

    2014-01-01

    Epichloë endophytes are common symbionts living asymptomatically in pooid grasses and may provide chemical defences against herbivorous insects. While the mechanisms underlying these fungal defences have been well studied, it remains unknown whether endophyte presence affects the host's own defences. We addressed this issue by examining variation in the impact of Epichloë on constitutive and herbivore-induced emissions of volatile organic compounds (VOC), a well-known indirect plant defence, between two grass species, Schedonorus phoenix (ex. Festuca arundinacea; tall fescue) and Festuca pratensis (meadow fescue). We found that feeding by a generalist aphid species, Rhopalosiphum padi, induced VOC emissions by uninfected plants of both grass species but to varying extents, while mechanical wounding failed to do so in both species after one day of damage. Interestingly, regardless of damage treatment, Epichloë uncinata-infected F. pratensis emitted significantly lower quantities of VOCs than their uninfected counterparts. In contrast, Epichloë coenophiala-infected S. phoenix did not differ from their uninfected counterparts in constitutive VOC emissions but tended to increase VOC emissions under intense aphid feeding. A multivariate analysis showed that endophyte status imposed stronger differences in VOC profiles of F. pratensis than damage treatment, while the reverse was true for S. phoenix. Additionally, both endophytes inhibited R. padi population growth as measured by aphid dry biomass, with the inhibition appearing greater in E. uncinata-infected F. pratensis. Our results suggest, not only that Epichloë endophytes may play important roles in mediating host VOC responses to herbivory, but also that the magnitude and direction of such responses may vary with the identity of the Epichloë–grass symbiosis. Whether Epichloë-mediated host VOC responses will eventually translate into effects on higher trophic levels merits future investigation. PMID:24978701

  15. Distribution and Drivers of a Widespread, Invasive Wetland Grass, Phragmites australis, in Great Salt Lake Wetlands

    OpenAIRE

    Long, Arin Lexine

    2014-01-01

    Non-native invasive plant species can often have negative effects on native ecosystems, such as altered nutrient cycling, decreased habitat for wildlife, and outcompeting native plants. Around the Great Salt Lake (GSL), Utah, the invasive wetland grass Phragmites australis has become abundant in wetlands around the lake. Phragmites is replacing many native wetland plants provide important waterfowl habitat around the GSL. For successful management of Phragmites in GSL wetlands, it is importan...

  16. Epichloë endophytes alter inducible indirect defences in host grasses.

    Science.gov (United States)

    Li, Tao; Blande, James D; Gundel, Pedro E; Helander, Marjo; Saikkonen, Kari

    2014-01-01

    Epichloë endophytes are common symbionts living asymptomatically in pooid grasses and may provide chemical defences against herbivorous insects. While the mechanisms underlying these fungal defences have been well studied, it remains unknown whether endophyte presence affects the host's own defences. We addressed this issue by examining variation in the impact of Epichloë on constitutive and herbivore-induced emissions of volatile organic compounds (VOC), a well-known indirect plant defence, between two grass species, Schedonorus phoenix (ex. Festuca arundinacea; tall fescue) and Festuca pratensis (meadow fescue). We found that feeding by a generalist aphid species, Rhopalosiphum padi, induced VOC emissions by uninfected plants of both grass species but to varying extents, while mechanical wounding failed to do so in both species after one day of damage. Interestingly, regardless of damage treatment, Epichloë uncinata-infected F. pratensis emitted significantly lower quantities of VOCs than their uninfected counterparts. In contrast, Epichloë coenophiala-infected S. phoenix did not differ from their uninfected counterparts in constitutive VOC emissions but tended to increase VOC emissions under intense aphid feeding. A multivariate analysis showed that endophyte status imposed stronger differences in VOC profiles of F. pratensis than damage treatment, while the reverse was true for S. phoenix. Additionally, both endophytes inhibited R. padi population growth as measured by aphid dry biomass, with the inhibition appearing greater in E. uncinata-infected F. pratensis. Our results suggest, not only that Epichloë endophytes may play important roles in mediating host VOC responses to herbivory, but also that the magnitude and direction of such responses may vary with the identity of the Epichloë-grass symbiosis. Whether Epichloë-mediated host VOC responses will eventually translate into effects on higher trophic levels merits future investigation.

  17. Defending the leaf surface: intra- and inter-specific differences in silicon deposition in grasses in response to damage and silicon supply

    Directory of Open Access Journals (Sweden)

    Sue Elaine Hartley

    2015-02-01

    Full Text Available Understanding interactions between grasses and their herbivores is central to the conservation of species-rich grasslands and the protection of our most important crops against pests. Grasses employ a range of defenses against their natural enemies; silicon-based defenses have been shown to be one of the most effective. Silicon (Si is laid down on the leaf surface as spines and other sharp bodies, known as phytoliths, making grasses abrasive and their foliage indigestible to herbivores. Previous studies on Si defenses found that closely related species may have similar levels of Si in the leaves but differ markedly in abrasiveness. Here we show how the number, shape and distribution of Si-rich phytoliths and spines differ within and between different grass species and demonstrate that species also differ in their ability to change the deposition and distribution of these defenses in response to damage or increases in Si supply. Specifically, we tested the response of two genotypes of Festuca arundinacea known to differ in their surface texture and 3 different grass species (F. ovina, F. rubra and Deschampsia cespitosa differing in their abrasiveness to combined manipulation of leaf damage and Si supply. F.arundinacea plants with a harsh leaf surface had higher Si content and more spines on their leaf surface than soft varieties. F. ovina and D. cespitosa plants increased their leaf Si concentration and produced an increase in the number of leaf spines and phytoliths on the leaf surface in response to Si addition. F rubra also increased leaf Si content in response to treatments, particularly in damaged leaves, but did not deposit this in the form of spines or increased densities of phytoliths. We discuss how the form in which grasses deposit Si may affect their anti-herbivore characteristics and consider the ecological and agricultural implications of the differences in allocation to Si-based defenses between grass species.

  18. Defending the leaf surface: intra- and inter-specific differences in silicon deposition in grasses in response to damage and silicon supply.

    Science.gov (United States)

    Hartley, Sue E; Fitt, Rob N; McLarnon, Emma L; Wade, Ruth N

    2015-01-01

    Understanding interactions between grasses and their herbivores is central to the conservation of species-rich grasslands and the protection of our most important crops against pests. Grasses employ a range of defenses against their natural enemies; silicon-based defenses have been shown to be one of the most effective. Silicon (Si) is laid down on the leaf surface as spines and other sharp bodies, known as phytoliths, making grasses abrasive and their foliage indigestible to herbivores. Previous studies on Si defenses found that closely related species may have similar levels of Si in the leaves but differ markedly in abrasiveness. Here we show how the number, shape and distribution of Si-rich phytoliths and spines differ within and between different grass species and demonstrate that species also differ in their ability to change the deposition and distribution of these defenses in response to damage or increases in Si supply. Specifically, we tested the response of two genotypes of Festuca arundinacea known to differ in their surface texture and three different grass species (F. ovina, F. rubra, and Deschampsia cespitosa) differing in their abrasiveness to combined manipulation of leaf damage and Si supply. F. arundinacea plants with a harsh leaf surface had higher Si content and more spines on their leaf surface than soft varieties. F. ovina and D. cespitosa plants increased their leaf Si concentration and produced an increase in the number of leaf spines and phytoliths on the leaf surface in response to Si addition. F rubra also increased leaf Si content in response to treatments, particularly in damaged leaves, but did not deposit this in the form of spines or increased densities of phytoliths. We discuss how the form in which grasses deposit Si may affect their anti-herbivore characteristics and consider the ecological and agricultural implications of the differences in allocation to Si-based defenses between grass species.

  19. A new neodiplostomid (Digenea) from the intestine of chicks infected with metacercariae from the grass snake, Rhabdophis tigrina.

    Science.gov (United States)

    Shin, Eun-Hee; Kim, Jae-Lip; Chai, Jong-Yil

    2008-12-01

    Three species of neodiplostomula are known to inhabit the European grass snake, Rhabdophis tigrina, in the Republic of Korea: Pharyngostomum cordatum (large-sized neodiplostomula), an intestinal trematode of cats; Neodiplostomum seoulense (small-sized neodiplostomula), an intestinal trematode of humans and rodents; and Neodiplostomum leei (small-sized neodiplostomula), which migrates to the livers of rodents and is an intestinal trematode of birds. The present study describes a fourth species, Neodiplostomum (Conodiplostomum) boryongense n. sp. (Digenea: Neodiplostomidae), based on adult flukes recovered from the small intestines of chicks experimentally infected with small-sized neodiplostomula from the grass snake. The new species differs from 13 previously known species. It also differs from N. seoulense in its larger body size, severely bilobed testes, and smaller genital atrium, and from N. leei in its larger body size, smaller ventral sucker, presence of a genital cone, and vitelline follicles distributed chiefly in the forebody. The new species does not migrate to the livers of rodents nor does it develop to adulthood in the rodent intestines. However, the neodiplostomula of the new species are indistinguishable from those of the other 2 species. Results show that at least 4 species of neodiplostomula inhabit the grass snake in the Republic of Korea.

  20. Pollutant tracking for 3 Western North Atlantic sea grasses by remote sensing: Preliminary diminishing white light responses of Thalassia testudinum, Halodule wrightii, and Zostera marina.

    Science.gov (United States)

    Thorhaug, Anitra; Berlyn, Graeme P; Poulos, Helen M; Goodale, Uromi M

    2015-08-15

    Sea grasses are foundation species for estuarine ecosystems. The available light for sea grasses diminishes rapidly during pollutant spills, effluent releases, disturbances such as intense riverine input, and tidal changes. We studied how sea grasses' remote-sensing signatures and light-capturing ability respond to short term light alterations. In vivo responses were measured over the entire visible-light spectra to diminishing white-light on whole-living-plants' spectral reflectance, including 6h of full oceanic-light fluences from 10% to 100%. We analyzed differences by various reflectance indices. We compared the sea grasses species responses of tropical vs. temperate and intertidals (Halodule wrightii, and Zostera marina) vs. subtidal (Thalassia testudinum). Reflectance diminished with decreasing light intensity that coincided with greater accessory pigment stimulation (anthocyanin, carotenoids, xanthins). Chlorophyll a and Chlorophyll b differed significantly among species (Thalassia vs. Halodule). Photosynthetic efficiency diminished at high light intensities. The NDVI index was inadequate to perceive these differences. Our results demonstrate the leaf-level utility of data to remote sensing for mapping sea grass and sea grass stress.

  1. No effect of seed source on multiple aspects of ecosystem functioning during ecological restoration: cultivars compared to local ecotypes of dominant grasses

    Science.gov (United States)

    Baer, Sara G; Gibson, David J; Gustafson, Danny J; Benscoter, Allison M; Reed, Lewis K; Campbell, Ryan E; Klopf, Ryan P; Willand, Jason E; Wodika, Ben R

    2014-01-01

    Genetic principles underlie recommendations to use local seed, but a paucity of information exists on the genetic distinction and ecological consequences of using different seed sources in restorations. We established a field experiment to test whether cultivars and local ecotypes of dominant prairie grasses were genetically distinct and differentially influenced ecosystem functioning. Whole plots were assigned to cultivar and local ecotype grass sources. Three subplots within each whole plot were seeded to unique pools of subordinate species. The cultivar of the increasingly dominant grass, Sorghastrum nutans, was genetically different than the local ecotype, but genetic diversity was similar between the two sources. There were no differences in aboveground net primary production, soil carbon accrual, and net nitrogen mineralization rate in soil between the grass sources. Comparable productivity of the grass sources among the species pools for four years shows functional equivalence in terms of biomass production. Subordinate species comprised over half the aboveground productivity, which may have diluted the potential for documented trait differences between the grass sources to influence ecosystem processes. Regionally developed cultivars may be a suitable alternative to local ecotypes for restoration in fragmented landscapes with limited gene flow between natural and restored prairie and negligible recruitment by seed. PMID:24567751

  2. Detrimental and neutral effects of a wild grass-fungal endophyte symbiotum on insect preference and performance

    Science.gov (United States)

    The presence of seed-borne Epichloë/Neotyphodium (Ascomycota: Clavicipitaceae) fungal endophytes in temperate grasses can influence the outcome of grass–insect interactions. For example, the expression of endophyte-mediated resistance to insects depends on the insect species involved. The behavior...

  3. Interactions among climate and soil properties influence current and future geographic distribution of an invasive grass in the Chihuahuan Desert

    Science.gov (United States)

    Background/Question/Methods: Lehmann lovegrass (Eragrostis lehmanniana) is an invasive exotic perennial grass throughout the Sonoran Desert. However, in the neighboring Chihuahuan Desert, this species is generally present in low abundance, although data on its geographic distribution are scarce. Our...

  4. Complete Genome Sequence of Leifsonia xyli subsp. cynodontis Strain DSM46306, a Gram-Positive Bacterial Pathogen of Grasses

    Science.gov (United States)

    Zerillo, Marcelo Marques; Van Sluys, Marie-Anne; Camargo, Luis Eduardo Aranha; Kitajima, João Paulo

    2013-01-01

    We announce the complete genome sequence of Leifsonia xyli subsp. cynodontis, a vascular pathogen of Bermuda grass. The species also comprises Leifsonia xyli subsp. xyli, a sugarcane pathogen. Since these two subspecies have genome sequences available, a comparative analysis will contribute to our understanding of the differences in their biology and host specificity. PMID:24201198

  5. Seasonal greenhouse gas and soil nutrient cycling in semi-arid native and non-native perennial grass pastures

    Science.gov (United States)

    Previous research indicates that a difference occurs in native and non-native grass species in regard to drivers of greenhouse gas (GHG, (carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O))) emissions from soil. Drivers of soil nutrients could help establish best management practices to mit...

  6. A synteny-based draft genome sequence of the forage grass Lolium perenne

    DEFF Research Database (Denmark)

    Byrne, Stephen; Nagy, Istvan; Pfeifer, Matthias;

    2015-01-01

    Here we report the draft genome sequence of perennial ryegrass (Lolium perenne), an economically important forage and turf grass species that is widely cultivated in temperate regions worldwide. It is classified along with wheat, barley, oats and Brachypodium distachyon in the Pooideae sub-family...

  7. Seasonal greenhouse gas and soil nutrient cycling in semi-arid native and non-native perennial grass pastures

    Science.gov (United States)

    Previous research indicates that photosynthetic metabolism of warm- and cool-season grass species affects greenhouse gas (GHG, (carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O))) emissions from soil. This information could help establish best management practices to mitigate GHGs and stor...

  8. Effect of an Invasive Grass on Ambient Rates of Decomposition and Microbial Community Structure: A Search for Causality

    Science.gov (United States)

    In sutu decomposition of above and below ground plant biomass of the native grass species Andropogon glmoeratus (Walt.) B.S.P and exotic Imperata cylindrica (L.) Beauv. (cogongrass) was investigated using litter bags over the course of a 12 month period. The above and below ground biomass of the inv...

  9. Accuracy and Consistency of Grass Pollen Identification by Human Analysts Using Electron Micrographs of Surface Ornamentation

    Directory of Open Access Journals (Sweden)

    Luke Mander

    2014-08-01

    Full Text Available Premise of the study: Humans frequently identify pollen grains at a taxonomic rank above species. Grass pollen is a classic case of this situation, which has led to the development of computational methods for identifying grass pollen species. This paper aims to provide context for these computational methods by quantifying the accuracy and consistency of human identification. Methods: We measured the ability of nine human analysts to identify 12 species of grass pollen using scanning electron microscopy images. These are the same images that were used in computational identifications. We have measured the coverage, accuracy, and consistency of each analyst, and investigated their ability to recognize duplicate images. Results: Coverage ranged from 87.5% to 100%. Mean identification accuracy ranged from 46.67% to 87.5%. The identification consistency of each analyst ranged from 32.5% to 87.5%, and each of the nine analysts produced considerably different identification schemes. The proportion of duplicate image pairs that were missed ranged from 6.25% to 58.33%. Discussion: The identification errors made by each analyst, which result in a decline in accuracy and consistency, are likely related to psychological factors such as the limited capacity of human memory, fatigue and boredom, recency effects, and positivity bias.

  10. Perennial pastures for marginal farming country in southern Queensland. 2. Potential new grass cultivar evaluation

    Directory of Open Access Journals (Sweden)

    Richard G. Silcock

    2015-01-01

    Full Text Available Trials in the Condamine-Balonne basin, Australia, compared 11 promising perennial pasture grass accessions (4 Bothriochloa, 2 Cenchrus, 2 Urochloa and 1 each of Digitaria, Eragrostis and Panicum species against the best similar commercial cultivars on the basis of ease of establishment from seed, persistence once established, forage yield and ease of seed production.  Accessions sown at a site were determined by prior experience with them on a range of soils.  High quality seed was relatively easy to produce for both Urochloa species and for Eragrostis curvula CPI 30374 but problematic for the Bothriochloa spp.  Once established, all accessions persisted for 3–5 years and most were well grazed, but adequate establishment was sometimes a problem with Panicum stapfianum and Bothriochloa ewartiana.  The dry matter yield ratings of the non-commercial lines were similar to those of the commercial equivalents of the same species.  While agronomically valuable, none of the promising new grasses was considered worthy of commercialization at this point because their strengths did not warrant the setting up of a seed-production business in competition with current commercial enterprises.  Long-standing cultivars such as Gayndah buffel and Nixon sabi grass continued to exhibit their superior pasture qualities.Keywords: Herbicide tolerance, persistence, forage yield, establishment ease, commercialization, seed production.DOI: 10.17138/TGFT(315-26

  11. Biomethanation of Carpet Grass (Axonopus fissifolius

    Directory of Open Access Journals (Sweden)

    Chima Ngumah

    2014-01-01

    Full Text Available Axonopus fissifolius commonly called “carpet grass” was subjected to anaerobic digestion for 30 days. Anaerobic digestion was carried out in a batch-fed process at the ambient temperature of 27-290C. Biomethane measurements were obtained by measuring the volume displacement of a saturated filtered calcium hydroxide solution in a transparent calibrated vessel.  42.7g of fresh carpet grass clippings yielded 1.955 L of biomethane. Biomethane potential (BMP of carpet grass for a 30 day anaerobic digestion was 0.05 m3 CH4 kg-1 TS. The rates of biomethane potentials for the first, second, third, fourth and fifth six-day intervals were 1.5mL g-1 TS (2.81%, 6.4mL g-1 TS (14.58%, 16.1mL g-1 TS (30.18%, 17.74mL g-1 TS (33.25%, and 10.23mL g-1 TS (19.81% respectively. The total solids, volatile solids and pH of feedstock and digestate were 85.80% and 85.56%, 90.91% and 87.58%, 6.6 (27oC and 6.9 (27oC respectively.  The relatively high biomethane potential of carpet grass at the ambient temperature presented in this paper depicts anaerobic digestion as a viable means of profitably treating grass waste for both sanitation and generating biomethane especially in the tropics where the ambient temperatures are usually favourable for optimum biomethanation for most part of the year, thus making the process affordable and less cumbersome.DOI http://dx.doi.org/10.5755/j01.erem.66.4.5228

  12. Sensor Comparison for Grass Growth Estimation

    OpenAIRE

    Kabir, Md. Shaha Nur; Chung, Sun–Ok; Kim, Yong–Joo; Lee, Geung–Joo; Yu, Seung–Hwa; Lee, Kyeong–Hwan; Okayasu, Takashi; Inoue, Eiji

    2016-01-01

    Precision agriculture has been implemented in various cultivation operations for various crops. Recently, autonomous mower tractor with variable rate fertilization has been tried. Variable rate fertilization requires quantification of grass growth level. Objective of this study was to compare the performance of potential sensors under different growth levels and sensor operation conditions. A CCD camera, an ultrasonic module, and an optical reflectance sensor (i.e., Crop Circle) were tested a...

  13. Peanut cake concentrations in massai grass silage

    Directory of Open Access Journals (Sweden)

    Luciano S. Lima

    2013-03-01

    Full Text Available Objective. This experiment was conducted to evaluate the best concentration of peanut cake in the ensiling of massai grass of the chemical-bromatological composition, fermentative characteristics, forage value rate, ingestion estimates, and digestibility of dry matter in the silage. Materials and methods. The experiment was carried out at the Experimental Farm of São Gonçalo dos Campos at the Federal University of Bahia, Brazil. The treatments consisted of massai grass that was cut at 40 days and dehydrated, in addition to 0%, 8%, 16%, and 24% peanut cake in the fresh matter and treatment without cake. The material was compressed in experimental silos (7 liter that were opened after 76 days. Results. The addition of 8-24% peanut cake improved the silage’s chemical-bromatological parameters, increased the dry matter and non-fiber carbohydrates and reduced the fibrous components. There was a linear increase in the estimated values of digestibility and the ingestion of dry matter depending on the levels of peanut cake in the silage. There was an improvement in the fermentative characteristics, with a quadratic effect positive for levels of ammoniacal nitrogen. The forage value rate increased linearly with the inclusion of peanut cake. Conclusions. The inclusion of up to 24% peanut cake during ensiling of massai grass increases the nutritive value of silage and improves fermentation characteristics.

  14. Presence of Trifolium repens promotes complementarity of water use and N facilitation in diverse grass mixtures

    Directory of Open Access Journals (Sweden)

    Pauline eHernandez

    2016-04-01

    Full Text Available Legume species promote productivity and increase the digestibility of herbage in grasslands. Considerable experimental data also indicate that communities with legumes produce more above-ground biomass than is expected from monocultures. While it has been attributed to N facilitation, evidence to identify the mechanisms involved is still lacking and the role of complementarity in soil water acquisition by vertical root differentiation remains unclear. We used a 20-month mesocosm experiment to investigate the effects of species richness (single species, two- and five-species mixtures and functional diversity (presence of the legume Trifolium repens on a set of traits related to light, N and water use and measured at community level. We found a positive effect of Trifolium presence and abundance on biomass production and complementarity effects in the two-species mixtures from the second year. In addition the community traits related to water and N acquisition and use (leaf area, N, water-use efficiency and deep root growth were higher in the presence of Trifolium. With a multiple regression approach, we showed that the traits related to water acquisition and use were with N the main determinants of biomass production and complementarity effects in diverse mixtures. At shallow soil layers, lower root mass of Trifolium and higher soil moisture should increase soil water availability for the associated grass species. Conversely at deep soil layer, higher root growth and lower soil moisture mirror soil resource use increase of mixtures. Altogether, these results highlight N facilitation but almost soil vertical differentiation and thus complementarity for water acquisition and use in mixtures with Trifolium. Contrary to grass-Trifolium mixtures, no significant over-yielding was measured for grass mixtures even those having complementary traits (short and shallow vs tall and deep. Thus, vertical complementarity for soil resources uptake in mixtures

  15. How does altered precipitation and annual grass invasion affect plant N uptake in a native semi-arid shrub community?

    Science.gov (United States)

    Mauritz, M.; Lipson, D.; Cleland, E. E.

    2012-12-01

    Climate change is expected to alter precipitation patterns, which will change the timing and amount of plant resources. Precipitation patterns determine water and nitrogen (N) availability, because water stimulates microbial N turnover and N transport. In order for plants to utilize water and N, they must coincide with the phenology and meet physiological requirements of the plant. As resource supply shifts, differences in species' ability to acquire resources will affect plant community composition. Semiarid ecosystems, such as shrublands in Southern California, are particularly sensitive to shifts in precipitation because they are severely water limited. This study takes advantage of the altered phenology and resource demands presented by invasive annual grasses in a native semiarid shrubland. The goal is to understand how altered precipitation patterns affect plant N uptake. Rainfall levels were manipulated to 50% and 150% of ambient levels. It is expected that higher rainfall levels promote annual grass invasion because grasses have higher water and N requirements and begin to grow earlier in the season than shrubs. A 15N tracer was added with the first rain event and plant samples were collected regularly to track the movement of N into the plants. Net soil N accumulation was determined using resin bags. Invasive grasses altered the timing and amount of N uptake but amount of rainfall had less effect on N distribution. 15N was detected sooner and at higher level in grasses than shrubs. 24hours after the first rain event 15N was detectable in grasses, 15N accumulated rapidly and peaked 2 months earlier than shrubs. Shrub 15N levels remained at pre-rain event levels for the first 2 months and began to increase at the beginning of spring, peak mid-spring and decline as the shrubs entered summer dormancy. One year later 15N levels in annual grass litter remained high, while 15N levels in shrubs returned to initial background levels as a result of resorption. 15N

  16. Grassland structural heterogeneity in a savanna is driven more by productivity differences than by consumption differences between lawn and bunch grasses.

    Science.gov (United States)

    Veldhuis, Michiel P; Fakkert, Heleen F; Berg, Matty P; Olff, Han

    2016-11-01

    Savanna grasslands are characterized by high spatial heterogeneity in vegetation structure, aboveground biomass and nutritional quality, with high quality short-grass grazing lawns forming mosaics with patches of tall bunch grasses of lower quality. This heterogeneity can arise because of local differences in consumption, because of differences in productivity, or because both processes enforce each other (more production and consumption). However, the relative importance of both processes in maintaining mosaics of lawn and bunch grassland types has not been measured. Also their interplay been not been assessed across landscape gradients. In a South African savanna, we, therefore, measured the seasonal changes in primary production, nutritional quality and herbivore consumption (amount and percentage) of grazing lawns and adjacent bunch grass patches across a rainfall gradient. We found both higher amounts of primary production and, to a smaller extent, consumption for bunch grass patches. In addition, for bunch grasses primary production increased towards higher rainfall while foliar nitrogen concentrations decreased. Foliar nitrogen concentrations of lawn grasses decreased much less with increasing rainfall. Consequently, large herbivores targeted the biomass produced on grazing lawns with on average 75 % of the produced biomass consumed. We conclude that heterogeneity in vegetation structure in this savanna ecosystem is better explained by small-scale differences in productivity between lawn and bunch grass vegetation types than by local differences in consumption rates. Nevertheless, the high nutritional quality of grazing lawns is highly attractive and, therefore, important for the maintenance of the heterogeneity in species composition (i.e. grazing lawn maintenance).

  17. Associative nitrogen fixation, C4 photosynthesis, and the evolution of spittlebugs (Hemiptera: Cercopidae) as major pests of neotropical sugarcane and forage grasses.

    Science.gov (United States)

    Thompson, V

    2004-06-01

    Neotropical grass-feeding spittlebugs of several genera are important pests of pasture grasses from the southeastern USA to northern Argentina, and of sugarcane from southern Mexico to southern Brazil, causing estimated reductions of up to 70% in yield and estimated monetary losses of 840-2100 million US dollars annually. With few exceptions, the species badly damaged by these spittlebugs are introduced C4 grasses that exhibit associative nitrogen fixation. This study synthesizes evidence that the pest status of many tropical and subtropical grass-feeding spittlebugs is linked to associative N-fixation in their C4 hosts. Recognition that associative N-fixation is a major factor in spittlebug host preferences should deepen understanding of spittlebug agricultural ecology and facilitate efforts to combat spittlebug pests. In particular, spittlebugs should be susceptible to manipulation of xylem transport solutes. However, reduction of nitrate fertilizer rates, increase in ammonium fertilizer rates, or enhancement of associative N-fixation as a consequence of genetic engineering could make hosts more susceptible to spittlebug attack. Because of their predilection for C4 grasses, spittlebugs present a clear counterexample to the hypothesis that herbivores prefer C3 plants to C4 plants. Finally, it appears that declines in atmospheric carbon dioxide levels during recent geological history promoted the proliferation of C4 grasses. This, compounded by human agricultural activities, has driven an ecological and evolutionary radiation of grass-feeding spittlebugs that presents continuing opportunities for the evolution of spittlebug pests.

  18. Selected biometric and mechanical properties of the common reed Phragmites australis and the reed sweet grass Glyceria maxima rhizomes

    Directory of Open Access Journals (Sweden)

    Kowalik Weronika

    2016-12-01

    Full Text Available The results on the selected biometric and mechanical properties of common reed Phragmites australis and reed sweet grass Glyceria maxima were presented. The experiments were conducted with the help of the universal testing machine Instron 5966. The underground biomasses, diameters, tensile forces, displacements and tensile strengths for summer and winter rhizomes of both species were assessed and compared. The final results indicate that rhizomes of common reed had higher values of the studied parameters of biometric and stretching than sweet reed grass rhizomes. Therefore, there are more opportunities to use them to protect the coastline.

  19. Effect of simulated acid rain stress on germination of four turf grass seeds%模拟酸雨胁迫对4种草坪草种子萌发的影响

    Institute of Scientific and Technical Information of China (English)

    田如男; 张培东; 程澄

    2011-01-01

    以中性溶液(pH =7.0)为对照,研究了模拟酸雨(pH为2.0、2.5、3.0、3.5、4.0、5.0)胁迫对黑麦草(Lolium perenne)、高羊茅(Festuca arundinacea)、匍匐剪股颖(Agrostis palustris)和狗牙根(Cynodon dactylon)4种多年生草坪草种子萌发的影响.结果表明:酸雨胁迫对4种草坪草种子萌发的影响不同,pH =2.0的酸雨完全抑制了4种草坪草种子的萌发,表现为发芽率、发芽势、活力指数均为零.黑麦草、高羊茅种子能在pH:≥2.5的酸雨胁迫下正常萌发,匍匐剪股颖种子能在pH≥3.0的酸雨胁迫下正常萌发,狗牙根种子在不同程度酸雨胁迫下均萌发不良.此外,酸雨胁迫还延缓了4种草坪草种子的萌发进程.应用主成分分析和隶属函数分析法对4种草坪草种子抗酸雨胁迫能力进行综合评定,得出4种草坪草种子抗酸雨胁迫能力由强到弱的顺序依次为高羊茅、黑麦草、匍匐剪股颖、狗牙根.%The seeds of Lolium perenne, Festuca arundinacea, Agrostis palustris and Cynodon dactylon were treated with simulated acid rain at pH 2.0,2.5,3.0,3.5,4. 0,5.0 and 7. 0(as control) to study the effects of acid rain on their germination. The results showed that the seeds germination of four turf grass under acid rain stress were affected at different levels. Acid rain intensity pH 2.0 completely inhibited the seed germination of turf grass, showing no germination was observed and germination energy and vigor index was 0.0. The seeds of L. Perenne and F. Arundinacea could germinate normally under acid rain stress (pH^2. 5) ,and the seeds of A. Paluslris could germinate normally under acid rain stress (pH^3.0).The seeds of C. Dactylon germinated poorly under acid rain stress. In addition, the process of germination became slow under acid rain stress. The comprehensive evaluation results derived from principal components analysis and subordinate function analysis showed the order (from strong to weak) of anti-acid rain ability

  20. Towards reconstructing herbaceous biome dynamics and associated precipitation in Africa: insights from the classification of grass morphological traits

    Science.gov (United States)

    Pasturel, Marine; Alexandre, Anne; Novello, Alice; Moctar Dieye, Amadou; Wele, Abdoulaye; Paradis, Laure; Hely, Christelle

    2014-05-01

    Inter-tropical herbaceous ecosystems occupy a 1/5th of terrestrial surface, a half of the African continent, and are expected to extend in the next decades. Dynamic of these ecosystems is simulated with poor accuracy by Dynamic Global Vegetation Models (DGVMs). One of the bias results from the fact that the diversity of the grass layer dominating these herbaceous ecosystems is poorly taken into account. Mean annual precipitation and the length of the dry season are the main constrains of the dynamics of these ecosystems. Conversely, changes in vegetation affect the water cycle. Inaccuracy in herbaceous ecosystem simulation thus impacts simulations of the water cycle (including precipitation) and vice versa. In order to increase our knowledge of the relationships between grass morphological traits, taxonomy, biomes and climatic niches in Western and South Africa, a 3-step methodology was followed: i) values of culm height, leaf length and width of dominant grass species from Senegal were gathered from flora and clustered using the Partition Around Medoids (PAM) method; ii) trait group ability to sign climatic domains and biomes was assessed using Kruskal-Wallis tests; iii) genericity and robustness of the trait groups were evaluated through their application to Chadian and South African botanical datasets. Results show that 8 grass trait groups are present either in Senegal, Chad or South Africa. These 8 trait groups are distributed along mean annual precipitation and dry season length gradients. The combination of three of them allow to discriminate mean annual precipitation domains (1000 mm) and herbaceous biomes (steppes, savannas, South African grasslands and Nama-Karoo). With these results in hand, grass Plant Functional Types (PFTs) of the DGMV LPJ-GUESS will be re-parameterized and particular attention will be given to the herbaceous biomass assigned to each grass trait group. Simultaneously, relationships between grass trait groups and phytolith vegetation

  1. The investigation of growing and using of tall perennial grasses as energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Jasinskas, Algirdas [Institute of Agricultural Engineering, Lithuanian University of Agriculture, Instituto 20, Raudondvaris, LT-54132 Kaunas reg. (Lithuania)], E-mail: aljas@mei.lt; Zaltauskas, Algirdas [Institute of Agricultural Engineering, Lithuanian University of Agriculture, Instituto 20, Raudondvaris, LT-54132 Kaunas reg. (Lithuania); Kryzeviciene, Aldona [Lithuanian Institute of Agriculture, Instituto al. 1, LT-58344 Dotnuva-Akademija, Kedainiai reg. (Lithuania)

    2008-11-15

    The present paper provides the results of tests on tall-growing perennial grass biomass suitability for use as fuel, as well as findings on the energy potential of swards and energy efficiency of biofuel production from herbaceous plants. The tests were carried out for 3 years. Eight swards differing in species composition were grown. Two of them consisted of pure rhizomatous grasses-reed canary grass (Phalaris arundinacea L.) and awnless bromegrass (Bromus inermis Leyser.)-treated with mineral fertilisers, applying N{sub 60} split in two applications. The other swards consisted of the above-mentioned grass mixtures with legumes-sweet clover (Melilotus officinalis Lam.), perennial lupine (Lupinus polyphyllus Lindl.) and goat's rue (Galega orientalis Lam.). The mixtures did not receive nitrogen fertilisers. The soil of the experimental site is light loam with a humus content of 1.5-1.9%. The productivity of swards under good weather conditions ranged between 6.3 and 8.8 t DM ha{sup -1}, while under adverse conditions between 2.8 and 6.5 t ha{sup -1}. The net calorific value of dry biomass ranged from 17.1 to 18.5 MJ kg{sup -1} and depended on sward composition, growing conditions and cutting time. Combustion temperature ranged from 770 to 955 deg. C. In Lithuanian climatic conditions, the energy potential of tall-growing grass swards cultivated on light soils low in humus content was 115-153 GJ ha{sup -1}, and energy input for biofuel production amounted to 8.0-19.2 GJ ha{sup -1}.

  2. Adaptive evolution and divergent expression of heat stress transcription factors in grasses

    Science.gov (United States)

    2014-01-01

    Background Heat stress transcription factors (Hsfs) regulate gene expression in response to heat and many other environmental stresses in plants. Understanding the adaptive evolution of Hsf genes in the grass family will provide potentially useful information for the genetic improvement of modern crops to handle increasing global temperatures. Results In this work, we performed a genome-wide survey of Hsf genes in 5 grass species, including rice, maize, sorghum, Setaria, and Brachypodium, by describing their phylogenetic relationships, adaptive evolution, and expression patterns under abiotic stresses. The Hsf genes in grasses were divided into 24 orthologous gene clusters (OGCs) based on phylogeneitc relationship and synteny, suggesting that 24 Hsf genes were present in the ancestral grass genome. However, 9 duplication and 4 gene-loss events were identified in the tested genomes. A maximum-likelihood analysis revealed the effects of positive selection in the evolution of 11 OGCs and suggested that OGCs with duplicated or lost genes were more readily influenced by positive selection than other OGCs. Further investigation revealed that positive selection acted on only one of the duplicated genes in 8 of 9 paralogous pairs, suggesting that neofunctionalization contributed to the evolution of these duplicated pairs. We also investigated the expression patterns of rice and maize Hsf genes under heat, salt, drought, and cold stresses. The results revealed divergent expression patterns between the duplicated genes. Conclusions This study demonstrates that neofunctionalization by changes in expression pattern and function following gene duplication has been an important factor in the maintenance and divergence of grass Hsf genes. PMID:24974883

  3. Effects of feeding grass or red clover silage cut at two maturity stages in dairy cows. 1. Nitrogen metabolism and supply of amino acids.

    Science.gov (United States)

    Vanhatalo, A; Kuoppala, K; Ahvenjärvi, S; Rinne, M

    2009-11-01

    This study investigated the effects of plant species (red clover vs. timothy-meadow fescue) and forage maturity at primary harvest (early vs. late cut silage) on rumen fermentation, nutrient digestion, and nitrogen metabolism including omasal canal AA flow and plasma AA concentration in lactating cows. Five dairy cows equipped with rumen cannulas were used in a study designed as a 5 x 5 Latin square with 21-d periods. The diets consisted of early-cut and late-cut grass and red clover silage, respectively, and a mixture of late-cut grass and early-cut red clover silages given ad libitum with 9 kg/d of a standard concentrate. Grass silage dry matter intake tended to decrease but that of red clover silages tended to increase with advancing maturity. Milk yields were unchanged among treatments, milk protein and fat concentrations being lower for red clover than for grass silage diets. Rumen fluid pH was unchanged but volatile fatty acid and ammonia concentrations were higher for red clover than for grass silage diets. Intake of N, and omasal canal flows of total nonammonia N (NAN), microbial NAN, and dietary NAN were higher for red clover than for grass silage diets but were not affected by forage maturity. However, microbial NAN flow and amount of N excreted in the feces decreased with advancing maturity for grass diets but increased for red clover diets. Apparent ruminal N degradability of the diets was unchanged, but true ruminal N degradability decreased and efficiency of microbial synthesis increased with red clover diets compared with grass silage diets. Omasal canal flows of AA, except those for Met and Cys, were on average 20% higher for red clover than grass silage diets. Omasal canal digesta concentrations of Leu, Phe, branched-chain, and essential AA were higher but those of Met lower for red clover than for grass silage diets. Plasma AA concentrations, except for His (unchanged) and Met (lower), were higher for red clover than for grass diets. However, none

  4. C-isotope composition of fossil sedges and grasses

    Science.gov (United States)

    Kurschner, Wolfram M.

    2010-05-01

    C4 plants differ from C3 plants regarding their anatomy and their C-isotope composition. Both features can be used in the geological record to determine the presence of C4 plants. Yet, the evolution of the C4 pathway in the fossil record is enigmatic as palaeobotanical and geological evidence for C4 plants is sparse. The oldest structural evidence for Kranz anatomy has been found in Late Miocene permineralized grass leaf remains. But studies on the C-isotope composition of sedimentary organic matter indicate that abundant C4 biomass was present in N-America and Asia throughout the Miocene in expanding savannahs and grasslands. The success of C4 plants appears to be related also to an increasing seasonal aridity in the tropical climate belts and the co-evolution of grazers. However, C- isotope composition of palaeosols or vertebrate teeth only allows to estimate the abundance of C4 plant biomass in the vegetation or in the diet without further taxonomical specification which plant groups would have had C4 metabolism. In this contribution the first extensive C-isotope analysis of fossil seeds of sedges and a few grasses are presented. The age of the carpological material ranges from Late Eocene to Pliocene and was collected from several central European brown coal deposits. The 52 different taxa studied include several species of Carex, Cladiocarya, Eriopherum, Eleocharis, Scirpus, Sparganium. Most of them representing herbaceous elements of a (sub)tropical vegetation growing near the edge of a lake. The C-isotope composition of the fossil seeds varies between -30 and -23 o/oo indicating C3 photosynthesis. This first systematic inventory shows that C4 plants were absent in the European (sub)tropical brown coal forming wetland vegetation during the Tertiary. These preliminary data are in agreement with phylogenetic studies which predict the origin of C4 plants outside the European realm.

  5. Investigation of Desso GrassMaster® as application in hydraulic engineering

    NARCIS (Netherlands)

    Steeg, van der P.; Paulissen, M.P.C.P.; Roex, E.; Mommer, L.

    2015-01-01

    Dessa GrassMaster® is a reinforced grass system which is applied successfully on sports fields and enables to use a sports field more intensively than a normal grass field. In this report the possibility of an application of Dessa GrassMaster®in hydraulic conditions, with a focus on grass dikes, is

  6. Environmental Impact Study of the Northern Section of the Upper Mississippi River. Pool 2.

    Science.gov (United States)

    1973-11-01

    2 West side of East Channel 4 Area Quad. Quad. Quad. Species #1 #2 #3 (7Cadophora sp.* Green alga P* Cyanophyta Blue-green algae P Cyperaceae Sedges ...penn- Green ash P P sylvania var. subin tegerrimaJUlmus spp. Elm P P Agrostis palustris Creeping bentgrass P Cyperaceae Sedges P Equisetum arvense...CycZoloma Winged pigweed P atrip licifo Zi m Fabaceae Legumes P Cyperaceae Sedges P Melilotus sp.** Sweet clover P Panicw spp. Panic grasses P Polygonwn sp

  7. Effects of Neotyphodium endophytes on seed germination of three grass species under different pH conditions%不同酸碱条件下内生真菌对三种禾草种子萌发的影响

    Institute of Scientific and Technical Information of China (English)

    彭清青; 李春杰; 宋梅玲; 梁莹; 南志标

    2011-01-01

    Neotyphodium endophytes may improve host grass competitive abilities by increasing seed germina tion success and enhancing host plant growth under water stress, salt and other environmental stress condi tions. To find if there were differences in germination between Neotyphodium endophyte infected (E+) and uninfected (E-) plants of three grass species (Achnatherum inebrians, Festuca sinensis and Hordeum bre visubulatum), eight pH levels (pH 4-11) were used. The results indicated that the germination energy of E+ A. inebrians seed were much higher than those of E- seed at pH 6 -11 (P<0. 05); the germination rate was significantly higher at pH 4 - 5; the shoot and radical growth of E+ were higher than those of E-, especially at pH 7 - 11 (P<0. 05); and there was much higher dry weight at pH 4 - 7. The percentage of abnormal ger mination of E+ seed at pH 4 and at pH 11 was significantly (P<0. 05) lower than that of E- seed. Similarly, E+ F. sinensis seed performed much better than E- seed in germination rate, germination energy, radical growth, shoot growth and dry weight. There were significant differences in germination energy at pH 6 - 10 (P<0. 05), germination rate at pH 4 and pH 8-11 (P<0. 05), shoot growth at pH 4 -11 (P<0. 05), radical growth at pH 10 (P<0. 05), and the dry weight of E+ seedlings was significantly greater at pH 4 - 6 (P< 0. 05). The percentage of abnormal germination was highest at pH 11 (P<0. 05). Compared with E- H. bre visubulatum, E+ seed had greater germination energy at pH 4 -11 (P<0. 05); the shoot and radical growth were significantly greater than those of E- seedlings at pH 9 - 11 and pH 8 - 11 (P<0. 05) as was the dry weight at pH 4 -11 (P<0. 05). The percentage of abnormal germination of E+ seed was significantly less than that of E- seed at pH 4. Overall, the optimal pH value for A. inebrians was 6 - 9; for F. sinensis was 6 - 7, and for H. brevisubulatum was 7 - 9.%内生真菌可以通过提高禾草种子在干旱、盐胁迫等

  8. GWN-3189 B – A new selective herbicide based on Triallate for control of herbicide resistant grass weed in cereals

    Directory of Open Access Journals (Sweden)

    Mühlschlegel, Friedrich

    2014-02-01

    Full Text Available With substantial work on the formulation, Gowan offers a new herbicide (GWN-3189 B based on Triallate for use on winter wheat, winter barley, winter rye, winter triticale and spring barley. GWN-3189B will be applied from pre-emergence to early post-emergence of the crop and offers a broad spectrum against grass-weeds. GWN-3189 B is selective on all cereal species. As soil herbicide GWN-3189 B offers interesting alternatives in grass-weed resistance management. The efficacy on grass weed, especially on Alopecurus myosuroides (blackgrass, Apera spica venti (silky bentgrass and Lolium multiflorum (italian ryegrass is demonstrated with results of field trials performed in France, Great Britain and Germany.

  9. Functional Traits Differ between Cereal Crop Progenitors and Other Wild Grasses Gathered in the Neolithic Fertile Crescent

    OpenAIRE

    Cunniff, J.; Wilkinson, S.; Charles, M.; G. Jones; Rees, M. van; Osborne, CP

    2014-01-01

    The reasons why some plant species were selected as crops and others were abandoned during the Neolithic emergence of agriculture are poorly understood. We tested the hypothesis that the traits of Fertile Crescent crop progenitors were advantageous in the fertile, disturbed habitats surrounding early settlements and in cultivated fields. We screened functional traits related to competition and disturbance in a group of grass species that were increasingly exploited by early plant gatherers, a...

  10. Application of DNA (RAPD and ultrastructure to detect the effect of cadmium stress in Egyptian clover and Sudan grass plantlets

    Directory of Open Access Journals (Sweden)

    Amina A. Aly

    2012-04-01

    Full Text Available BackgroundIn recent years, several plant species have been used as bioindicators to evaluate the toxicity of environmental contaminants on vegetal organisms. In this study, Egyptian clover and Sudan grass seedlings were grown in four cadmium (Cd concentration levels (0.0, 25, 50 and 100 µM in MS media to analyze growth responses, Cd accumulation in the shoots and roots of plantlets, proline contents, chlorophylls content and MDA levels of both plantlets. As well as RAPD analysis and leaves ultrastructure were detected.ResultsThe results showed that there was a significant decrease in root and shoot lengths, Chl a, Chl b, total Chl and carotenoids contents for both Egyptian clover and Sudan grass. However, there was a significant increase in Cd accumulation, proline and malondialdehyde (MDA levels. The genetic variation between Egyptian clover and Sudan grass were evaluated using random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR markers to establish specific DNA markers associated with Cd stress. The results of transimssion electron microscopy (TEM showed a clear disorder in the Cd treated Egyptian clover and Sudan grass seedlings.ConclusionIn conclusion, biochemical, molecular and ultrastructure changes in Egyptian clover and Sudan grass could be used as a useful biomarker assay for the detection of genotoxic effects of Cd stress on plants. However, it is necessary to be further confirmed and optimized in the future research.

  11. Linear measurements of the leaf blade in xaraes and massai grasses for estimation of the leaf area

    Directory of Open Access Journals (Sweden)

    Wilton Ladeira da Silva

    2013-09-01

    Full Text Available Knowledge on the leaf area of foraging grasses is essential, since it’s one of the most important variables in the evaluation of plant growth. Thus, one aimed at determining equations which allow, through simple measurements of leaf length, as well as average and maximum width, to quickly and accurately estimate the actual leaf area of Brachiaria brizantha cv. Xaraes and Panicum maximum cv. Massai. One measured with millimeter rulers the length along the main vein (L, the maximum width perpendicular to the main vein (Wmax, and the average width (Wave of leaf blades in both species. For determining the actual leaf areas (ALA, one used the Li-Cor®, model LI 3000. Regression and correlation studies were performed between ALA and the leaf area estimated through the linear or exponential equations for choosing the best equations. For xaraes grass the equation with the best accuracy for estimating ALA was the linear 0.53+0.98 LWave and for massai grass the best options were the linear 1.30+0.92 LWave and the exponential 8.86e0.04LWmax and 10.30e0.03LWave. Estimates of the leaf area of xaraes grass and massai grass through simple measurements of leaf length and width have proved to be effective and accurate.

  12. Arbuscular mycorrhizal fungi reduce the differences in competitiveness between dominant and subordinate plant species.

    Science.gov (United States)

    Mariotte, Pierre; Meugnier, Claire; Johnson, David; Thébault, Aurélie; Spiegelberger, Thomas; Buttler, Alexandre

    2013-05-01

    In grassland communities, plants can be classified as dominants or subordinates according to their relative abundances, but the factors controlling such distributions remain unclear. Here, we test whether the presence of the arbuscular mycorrhizal (AM) fungus Glomus intraradices affects the competitiveness of two dominant (Taraxacum officinale and Agrostis capillaris) and two subordinate species (Prunella vulgaris and Achillea millefolium). Plants were grown in pots in the presence or absence of the fungus, in monoculture and in mixtures of both species groups with two and four species. In the absence of G. intraradices, dominants were clearly more competitive than subordinates. In inoculated pots, the fungus acted towards the parasitic end of the mutualism-parasitism continuum and had an overall negative effect on the growth of the plant species. However, the negative effects of the AM fungus were more pronounced on dominant species reducing the differences in competitiveness between dominant and subordinate species. The effects of G. intraradices varied with species composition highlighting the importance of plant community to mediate the effects of AM fungi. Dominant species were negatively affected from the AM fungus in mixtures, while subordinates grew identically with and without the fungus. Therefore, our findings predict that the plant dominance hierarchy may flatten out when dominant species are more reduced than subordinate species in an unfavourable AM fungal relationship (parasitism).

  13. Microbial succession of grass carp (Ctenopharyngodon idellus) filets during storage at 4°C and its contribution to biogenic amines' formation.

    Science.gov (United States)

    Wang, Hang; Luo, Yongkang; Huang, Heping; Xu, Qian

    2014-11-03

    Investigation on the microbial succession of grass carp filets during storage at 4°C was carried out. For identification, 16S rRNA genes of the isolated pure strains were sequenced and analyzed. Acinetobacter was dominant in fresh grass carp. Species from the genera Brevundimonas, Empedobacter, Pseudomonas, Microbacterium, Flavobacterium, Moraxella, Shewanella and Soonwooa were also detected at the initial day. The communities were dominated by Aeromonas and Acinetobacter after 6days. Aeromonas followed by Pseudomonas was the predominant genera at the end of shelf-life of grass carp, while other genera such as Shewanella, Acinetobacter, Flavobacteriaceae and Psychrobacter were present in smaller numbers. We investigated biogenic amines' (BAs) production by six strains isolated from spoiled grass carp filets. Shewanella putrefaciens showed significantly higher abilities to produce putrescine, than those from other genera. Aeromonas veronii revealed a strong ability to produce putrescine and cadaverine. However, Pseudomonas and Acinetobacter showed little ability to produce BAs.

  14. Effectiveness of Selected Native Plants as Competitors with Non-indigenous and Invasive Knapweed and Thistle Species

    Science.gov (United States)

    2011-09-01

    and phenology of the two grass species. In controlled greenhouse settings and field plantings, this work examined the growth, seed production, and...Maternal grass individuals were collected to examine the influence of the invasions on population genetics and phenology of the two species. In...12 2.2 Testing genetic variation of invaded and non-invaded Sporobolus airoides

  15. Isolation and Identification of Epiphytic Lactic Acid Bacteria from Guinea Grass (Panicum maximum

    Directory of Open Access Journals (Sweden)

    M. Pasebani

    2010-01-01

    Full Text Available Problem statement: Bacteria can perform a variety of beneficial functions, for example many lactic acid bacteria are responsible for fermentation of silage in the process of forage conservation. In the making of silage, epiphytic lactic acid bacteria are usually insufficient in numbers to promote efficient lactate fermentation. This study was conducted to identify the predominant indigenous bacteria, with emphasis on lactic acid bacteria, from Guinea grass (Panicum maximum. Approach: Two different condition of growth using nutrient and MRS agar were prepared for isolation of the bacteria. In total, 18 purified isolates were identified by BIOLOG identification system which comprised of 9 bacterial species. Standard plate count in the both conditions was considered. Results: Three bacterial species based on the first condition of growth were identified which were belonging to Flavimonas oryzihabitans, Enerobacter cloacae, Sphingomonas paucimobilis B. Lactic acid bacteria based on the second condition of growth were belonging to Weissella confusa, Weissella paramesenteroides, Leuconostoc mesenteroides ssp. dextranicum, Lactococcus lactis ssp. hordniae. Result of plate count showed that 8.3×103 CFU lactic acid bacteria are available per gram of fresh guinea grass. Conclusion: Three hetero-fermentative and one homo-fermentative lactic acid bacteria were identified which would be suggested to use as bacterial inoculants because of the insufficient amount of epiphytic lactic acid bacteria and the availability of pathogenic bacteria in the grass.

  16. Potential of grasses and rhizosphere bacteria for bioremediation of diesel-contaminated soils

    Directory of Open Access Journals (Sweden)

    Melissa Paola Mezzari

    2011-12-01

    Full Text Available The techniques available for the remediation of environmental accidents involving petroleum hydrocarbons are generally high-cost solutions. A cheaper, practical and ecologically relevant alternative is the association of plants with microorganisms that contribute to the degradation and removal of hydrocarbons from the soil. The growth of three tropical grass species (Brachiaria brizantha, Brachiaria decumbens and Paspalum notatum and the survival of root-associated bacterial communities was evaluated at different diesel oil concentrations. Seeds of three grass species were germinated in greenhouse and at different doses of diesel (0, 2.5, 5 and 10 g kg-1 soil. Plants were grown for 10 weeks with periodic assessment of germination, growth (fresh and dry weight, height, and number of bacteria in the soil (pots with or without plants. Growth and biomass of B. decumbens and P. notatum declined significantly when planted in diesel-oil contaminated soils. The presence of diesel fuel did not affect the growth of B. brizantha, which was highly tolerant to this pollutant. Bacterial growth was significant (p < 0.05 and the increase was directly proportional to the diesel dose. Bacteria growth in diesel-contaminated soils was stimulated up to 5-fold by the presence of grasses, demonstrating the positive interactions between rhizosphere and hydrocarbon-degrading bacteria in the remediation of diesel-contaminated soils.

  17. Vetiver Grass: a potential tool for phytoremediation of iron ore mine site spoil dump

    Directory of Open Access Journals (Sweden)

    Anita Mukherjee

    2015-06-01

    Full Text Available The impact of mining has lead to the generation of a large amount of spoil dumps that has become dangerous to human health, wildlife and biodiversity. Thus it is essential that the post mining areas and waste land generated need to be rapidly vegetated. Vetiver grass (Chrysopogon zizanioides (L. Roberty is a tropical plant which grows naturally in various soil conditions and is well known for its ability to resist DNA damage while growing on typically polluted soil conditions. The spoil dumps from the iron mine site is unstable and inhospitable for plant growth due to presence of various toxic heavy metals like - Fe, Mn, Zn, Cu, Pb, Ni, Cr, Cd etc. Vetiver system is an efficient bio-engineering tool for reclaiming such spoil dumps. There are 12 known species of Vetiver grass, and many hundreds of different cultivars that are exploited by users depending on need. In the present study we selected the polyploid infertile variety of vetiver and carried pot experiments. Vetiver plants grown on the iron ore mine spoil dump show distinct differences in their growth with fewer numbers of tillers, reduced chlorophyll content, upregulation of antioxidant enzymes and increased proline content. To investigate the level of DNA damage incurred and change in the genetic stability Comet assay and RAPD analysis were performed. Results confirmed that Vetiver grass can serve as a model species for phytoremediating the iron ore mine spoil dumps.

  18. Temperature responses of Rubisco from Paniceae grasses provide opportunities for improving C3 photosynthesis.

    Science.gov (United States)

    Sharwood, Robert E; Ghannoum, Oula; Kapralov, Maxim V; Gunn, Laura H; Whitney, Spencer M

    2016-11-28

    Enhancing the catalytic properties of the CO2-fixing enzyme Rubisco is a target for improving agricultural crop productivity. Here, we reveal extensive diversity in the kinetic response between 10 and 37 °C by Rubisco from C3 and C4 species within the grass tribe Paniceae. The CO2 fixation rate (kcatc) for Rubisco from the C4 grasses with nicotinamide adenine dinucleotide (NAD) phosphate malic enzyme (NADP-ME) and phosphoenolpyruvate carboxykinase (PCK) photosynthetic pathways was twofold greater than the kcatc of Rubisco from NAD-ME species across all temperatures. The declining response of CO2/O2 specificity with increasing temperature was less pronounced for PCK and NADP-ME Rubisco, which would be advantageous in warmer climates relative to the NAD-ME grasses. Modelled variation in the temperature kinetics of Paniceae C3 Rubisco and PCK Rubisco differentially stimulated C3 photosynthesis relative to tobacco above and below 25 °C under current and elevated CO2. Amino acid substitutions in the large subunit that could account for the catalytic variation among Paniceae Rubisco are identified; however, incompatibilities with Paniceae Rubisco biogenesis in tobacco hindered their mutagenic testing by chloroplast transformation. Circumventing these bioengineering limitations is critical to tailoring the properties of crop Rubisco to suit future climates.

  19. Seedling emergence of tall fescue and wheat grass under different climate conditions in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Behtari, B.; Luis, M. de

    2012-11-01

    Seedling emergence is one of the most important processes determining yield and the probability of crop failure. The ability to predict seedling emergence could enhance crop management by facilitating the implementation of more effective weed control strategies by optimizing the timing of weed control. The objective of the study was to select a seedling emergence thermal time model by comparing five different equations for tall fescue and wheat grass in two sites with different climate conditions (semiarid-temperate and humid-warm) in Iran. In addition, seedling emergence between two target species were studied. Among the five models compared, the Gompertz and Weibull models gave more successful results. In humid-warm conditions, the total emergence of wheat grass was higher than observed in tall fescue. In contrast, emergence was faster in tall fescue than wheat grass in both study sites. Given that early-emerging plants have been described as contributing more to crop yield than later-emerging ones, tall fescue is proposed as a more suitable specie for semiarid- temperate conditions in Iran. (Author) 31 refs.

  20. 毛乌素沙地根茎禾草拂子茅对异质性水分供应的表型可塑性%Phenotypic Plasticity in Response to the Heterogeneous Water Supply in the Rhizomatous Grass Species, Calamagrostis epigejos in the Mu Us Sandy Land of China

    Institute of Scientific and Technical Information of China (English)

    张称意; 于飞海; 陈玉福; 董鸣

    2003-01-01

    拂子茅(Calamagrostis epigejos(L.)Roth.)为根茎型多年生禾草,具细长根茎.为了探讨拂子茅在异质性水分环境中的表型差异,在内蒙古鄂尔多斯高原的毛乌素沙地对拂子茅由母株、子株组成的分株对给予了高水、低水两种不同的异质性土壤水分处理.实验结果表明:土壤水分状况显著地影响着拂子茅分株的生长表型.在高土壤水分条件下,拂子茅的分株产生的根茎、新生后代分株较多,并使生物量主要分配于地上部分,地上生物量积累多;在低土壤水分条件下,拂子茅分株产生较少的根茎与新生后代分株,并且分配到根系的生物量明显增大.在具有一定对比度的异质性土壤水分环境中,拂子茅分株并不因相连的其他分株所处的土壤水分状况而在根茎生长、新生后代分株的产生和生物量分配等特征上,与同质环境中的具有相同土壤水分状况的分株相比,有明显差异.这些结果揭示:拂子茅仅以分株的形式对异质性水分供应发生表型反应;相连的克隆分株在向顶向和向基向这两个基本方向上,不能对另一分株的土壤水分状况在生长表型上发生反应,它们在水分关系上可能是相互相对独立的.分株的相对独立可能有利于在气候干旱、扰动强烈的沙地环境中实现风险分摊,提高基株的存活几率.%Calamagrostis epigejos (L.) Roth. is a perennial grass with slender and long rhizome segmentsbetween interconnected neighbor ramets. To investigate the phenotypic plasticity in response to theheterogeneous soil water supply, ramet pairs of the species were subjected to heterogeneous watersupply by which either mother ramets or daughter ramets were in high or low soil water supply, respectively,in the Maowusu (Mu Us) Sandy Land of Nei Mongol. The results showed that the phenotypic characteris-tics of the individual ramets of C. epigejos were greatly influenced by the heterogeneous water

  1. Interaction between C 4 barnyard grass and C 3 upland rice under elevated CO 2: Impact of mycorrhizae

    Science.gov (United States)

    Tang, Jianjun; Xu, Liming; Chen, Xin; Hu, Shuijin

    2009-03-01

    Atmospheric CO 2 enrichment may impact arbuscular mycorrhizae (AM) development and function, which could have subsequent effects on host plant species interactions by differentially affecting plant nutrient acquisition. However, direct evidence illustrating this scenario is limited. We examined how elevated CO 2 affects plant growth and whether mycorrhizae mediate interactions between C 4 barnyard grass ( Echinochloa crusgalli (L.) Beauv.) and C 3 upland rice ( Oryza sativa L.) in a low nutrient soil. The monocultures and combinations with or without mycorrhizal inoculation were grown at ambient (400 ± 20 μmol mol -1) and elevated CO 2 (700 ± 20 μmol mol -1) levels. The 15N isotope tracer was introduced to quantify the mycorrhizally mediated N acquisition of plants. Elevated CO 2 stimulated the growth of C 3 upland rice but not that of C 4 barnyard grass under monoculture. Elevated CO 2 also increased mycorrhizal colonization of C 4 barnyard grass but did not affect mycorrhizal colonization of C 3 upland rice. Mycorrhizal inoculation increased the shoot biomass ratio of C 4 barnyard grass to C 3 upland rice under both CO 2 concentrations but had a greater impact under the elevated than ambient CO 2 level. Mycorrhizae decreased relative interaction index (RII) of C 3 plants under both ambient and elevated CO 2, but mycorrhizae increased RII of C 4 plants only under elevated CO 2. Elevated CO 2 and mycorrhizal inoculation enhanced 15N and total N and P uptake of C 4 barnyard grass in mixture but had no effects on N and P acquisition of C 3 upland rice, thus altering the distribution of N and P between the species in mixture. These results implied that CO 2 stimulation of mycorrhizae and their nutrient acquisition may impact competitive interaction of C 4 barnyard grass and C 3 upland rice under future CO 2 scenarios.

  2. Seeding method influences warm-season grass abundance and distribution but not local diversity in grassland restoration

    Science.gov (United States)

    Yurkonis, Kathryn A.; Wilsey, Brian J.; Moloney, Kirk A.; Drobney, Pauline; Larson, Diane L.

    2010-01-01

    Ecological theory predicts that the arrangement of seedlings in newly restored communities may influence future species diversity and composition. We test the prediction that smaller distances between neighboring seeds in drill seeded grassland plantings would result in lower species diversity, greater weed abundance, and larger conspecific patch sizes than otherwise similar broadcast seeded plantings. A diverse grassland seed mix was either drill seeded, which places seeds in equally spaced rows, or broadcast seeded, which spreads seeds across the ground surface, into 24 plots in each of three sites in 2005. In summer 2007, we measured species abundance in a 1 m2 quadrat in each plot and mapped common species within the quadrat by recording the most abundant species in each of 64 cells. Quadrat-scale diversity and weed abundance were similar between drilled and broadcast plots, suggesting that processes that limited establishment and controlled invasion were not affected by such fine-scale seed distribution. However, native warm-season (C4) grasses were more abundant and occurred in less compact patches in drilled plots. This difference in C4 grass abundance and distribution may result from increased germination or vegetative propagation of C4 grasses in drilled plots. Our findings suggest that local plant density may control fine-scale heterogeneity and species composition in restored grasslands, processes that need to be further investigated to determine whether seed distributions can be manipulated to increase diversity in restored grasslands.

  3. Colonization of native Andean grasses by arbuscular mycorrhizal fungi in Puna: a matter of altitude, host photosynthetic pathway and host life cycles.

    Science.gov (United States)

    Lugo, Mónica A; Negritto, María A; Jofré, Mariana; Anton, Ana; Galetto, Leonardo

    2012-08-01

    The relationships of altitude, host life cycle (annual or perennial) and photosynthetic pathway (C(3) or C(4) ) with arbuscular mycorrhiza (AM) root colonization were analysed in 35 species of Andean grasses. The study area is located in north-western Argentina along altitudinal sites within the Puna biogeographical region. Twenty-one sites from 3320 to 4314 m were sampled. Thirty-five grasses were collected, and the AM root colonization was quantified. We used multivariate analyses to test emerging patterns in these species by considering the plant traits and variables of AM colonization. Pearson's correlations were carried out to evaluate the specific relationships between some variables. Most grasses were associated with AM, but the colonization percentages were low in both C(3) and C(4) grasses. Nevertheless, the AM root colonization clearly decreased as the altitude increased. This distinctive pattern among different species was also observed between some of the populations of the same species sampled throughout the sites. An inverse relationship between altitude and AM colonization was found in this Southern Hemisphere Andean system. The effect of altitude on AM colonization seems to be more related to the grasses' photosynthetic pathway than to life cycles. This study represents the first report for this biogeographical region.

  4. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Steve A. [University of California San Diego

    2013-05-02

    Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass (Brachypodium distachyon) also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation.

  5. A novel test for host-symbiont codivergence indicates ancient origin of fungal endophytes in grasses

    CERN Document Server

    Schardl, Chris L; Lindstrom, Adam; Speakman, Skyler; Stromberg, Arnold; Yoshida, Ruriko

    2007-01-01

    Significant phylogenetic codivergence between plant or animal hosts ($H$) and their symbionts or parasites ($P$) indicate the importance of their interactions on evolutionary time scales. However, valid and realistic methods to test for codivergence are not fully developed. One of the systems where possible codivergence has been of interest involves the large subfamily of temperate grasses (Pooideae) and their endophytic fungi (epichloae). These widespread symbioses often help protect host plants from herbivory and stresses, and affect species diversity and food web structures. Here we introduce the MRCALink (most-recent-common-ancestor link) method and use it to investigate the possibility of grass-epichlo\\"e codivergence. MRCALink applied to ultrametric $H$ and $P$ trees identifies all corresponding nodes for pairwise comparisons of MRCA ages. The result is compared to the space of random $H$ and $P$ tree pairs estimated by a Monte Carlo method.

  6. Physiological aspects of vetiver grass for rehabilitation in abandoned metalliferous mine wastes.

    Science.gov (United States)

    Pang, J; Chan, G S Y; Zhang, J; Liang, J; Wong, M H

    2003-09-01

    Physiological aspects of why vetiver grass (Vetiveria zizanioides L.) can be tolerant to heavy metals and be used as an alternative method for rehabilitation of abandoned metalliferous mine wastelands have been investigated. The results showed that high proportions of lead and zinc (Pb/Zn) tailing greatly inhibited the leaf growth, dry matter accumulation, and photosynthesis of leaves, but stimulated the accumulation of proline and abscisic acid (ABA), and enhanced the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), implying that different mechanisms to detoxify active oxygen species (AOS) existed in different parts of plants. Physiological responses to heavy metal treatments differed greatly between roots and shoots. Nitrogen fertilizer application could greatly alleviate the adverse effects of high proportions of Pb/Zn tailing on vetiver grass growth.

  7. The Genetics of Biofuel Traits in Panicum Grasses: Developing a Model System with Diploid Panicum Hallii

    Energy Technology Data Exchange (ETDEWEB)

    Juenger, Thomas [Univ. of Texas, Austin, TX (United States). Dept. of Integrative Biology; Wolfrum, Ed [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-31

    Our DOE funded project focused on characterizing natural variation in C4 perennial grasses including switchgrass (Panicum virgatum) and Hall’s panicgrass (Panicum hallii). The main theme of our project was to better understand traits linked with plant performance and that impact the utility of plant biomass as a biofuel feedstock. In addition, our project developed tools and resources for studying genetic variation in Panicum hallii. Our project successfully screened both Panicum virgatum and Panicum hallii diverse natural collections for a host of phenotypes, developed genetic mapping populations for both species, completed genetic mapping for biofuel related traits, and helped in the development of genomic resources of Panicum hallii. Together, these studies have improved our understanding of the role of genetic and environmental factors in impacting plant performance. This information, along with new tools, will help foster the improvement of perennial grasses for feedstock applications.

  8. cDNA cloning and immunological characterization of the rye grass allergen Lol p I.

    Science.gov (United States)

    Perez, M; Ishioka, G Y; Walker, L E; Chesnut, R W

    1990-09-25

    The complete amino acid sequence of two "isoallergenic" forms of Lol p I, the major rye grass (Lolium perenne) pollen allergen, was deduced from cDNA sequence analysis. cDNA clones isolated from a Lolium perenne pollen library contained an open reading frame coding for a 240-amino acid protein. Comparison of the nucleotide and deduced amino acid sequence of two of these clones revealed four changes at the amino acid level and numerous nucleotide differences. Both clones contained one possible asparagine-linked glycosylation site. Northern blot analysis shows one RNA species of 1.2 kilobases. Based on the complete amino acid sequence of Lol p I, overlapping peptides covering the entire molecule were synthesized. Utilizing these peptides we have identified a determinant within the Lol p I molecule that is recognized by human leukocyte antigen class II-restricted T cells obtained from persons allergic to rye grass pollen.

  9. Acetogenic and sulfate-reducing bacteria inhabiting the rhizoplane and deep cortex cells of the sea grass Halodule wrightii.

    Science.gov (United States)

    Küsel, K; Pinkart, H C; Drake, H L; Devereux, R

    1999-11-01

    Recent declines in sea grass distribution underscore the importance of understanding microbial community structure-function relationships in sea grass rhizospheres that might affect the viability of these plants. Phospholipid fatty acid analyses showed that sulfate-reducing bacteria and clostridia were enriched in sediments colonized by the sea grasses Halodule wrightii and Thalassia testudinum compared to an adjacent unvegetated sediment. Most-probable-number analyses found that in contrast to butyrate-producing clostridia, acetogens and acetate-utilizing sulfate reducers were enriched by an order of magnitude in rhizosphere sediments. Although sea grass roots are oxygenated in the daytime, colorimetric root incubation studies demonstrated that acetogenic O-demethylation and sulfidogenic iron precipitation activities were tightly associated with washed, sediment-free H. wrightii roots. This suggests that the associated anaerobes are able to tolerate exposure to oxygen. To localize and quantify the anaerobic microbial colonization, root thin sections were hybridized with newly developed (33)P-labeled probes that targeted (i) low-G+C-content gram-positive bacteria, (ii) cluster I species of clostridia, (iii) species of Acetobacterium, and (iv) species of Desulfovibrio. Microautoradiography revealed intercellular colonization of the roots by Acetobacterium and Desulfovibrio species. Acetogenic bacteria occurred mostly in the rhizoplane and outermost cortex cell layers, and high numbers of sulfate reducers were detected on all epidermal cells and inward, colonizing some 60% of the deepest cortex cells. Approximately 30% of epidermal cells were colonized by bacteria that hybridized with an archaeal probe, strongly suggesting the presence of methanogens. Obligate anaerobes within the roots might contribute to the vitality of sea grasses and other aquatic plants and to the biogeochemistry of the surrounding sediment.

  10. Acetogenic and Sulfate-Reducing Bacteria Inhabiting the Rhizoplane and Deep Cortex Cells of the Sea Grass Halodule wrightii†

    Science.gov (United States)

    Küsel, Kirsten; Pinkart, Holly C.; Drake, Harold L.; Devereux, Richard

    1999-01-01

    Recent declines in sea grass distribution underscore the importance of understanding microbial community structure-function relationships in sea grass rhizospheres that might affect the viability of these plants. Phospholipid fatty acid analyses showed that sulfate-reducing bacteria and clostridia were enriched in sediments colonized by the sea grasses Halodule wrightii and Thalassia testudinum compared to an adjacent unvegetated sediment. Most-probable-number analyses found that in contrast to butyrate-producing clostridia, acetogens and acetate-utilizing sulfate reducers were enriched by an order of magnitude in rhizosphere sediments. Although sea grass roots are oxygenated in the daytime, colorimetric root incubation studies demonstrated that acetogenic O-demethylation and sulfidogenic iron precipitation activities were tightly associated with washed, sediment-free H. wrightii roots. This suggests that the associated anaerobes are able to tolerate exposure to oxygen. To localize and quantify the anaerobic microbial colonization, root thin sections were hybridized with newly developed 33P-labeled probes that targeted (i) low-G+C-content gram-positive bacteria, (ii) cluster I species of clostridia, (iii) species of Acetobacterium, and (iv) species of Desulfovibrio. Microautoradiography revealed intercellular colonization of the roots by Acetobacterium and Desulfovibrio species. Acetogenic bacteria occurred mostly in the rhizoplane and outermost cortex cell layers, and high numbers of sulfate reducers were detected on all epidermal cells and inward, colonizing some 60% of the deepest cortex cells. Approximately 30% of epidermal cells were colonized by bacteria that hybridized with an archaeal probe, strongly suggesting the presence of methanogens. Obligate anaerobes within the roots might contribute to the vitality of sea grasses and other aquatic plants and to the biogeochemistry of the surrounding sediment. PMID:10543830

  11. Rye grass is associated with fewer non-contact anterior cruciate ligament injuries than bermuda grass

    OpenAIRE

    2005-01-01

    Objective: To assess the contribution of ground variables including grass type to the rate of anterior cruciate ligament (ACL) injury in the Australian Football League (AFL), specifically which factors are primarily responsible for previously observed warm season and early season biases for ACL injuries.

  12. Sean Grass. Charles Dickens’s

    OpenAIRE

    Huguet, Christine

    2016-01-01

    Le livre qui fait l’objet du présent compte rendu mérite de retenir toute l’attention du lecteur, ne serait-ce que parce que son auteur, Sean Grass, a travaillé en terrain relativement vierge, ce qui, concernant un auteur du statut de Dickens, constitue un rare privilège. En raison de la place particulière qu’occupe Our Mutual Friend dans l’imposant corpus dickensien (il s’agit du dernier roman complet de Dickens, livré en feuilletons mensuels de mai 1864 à novembre 1865), on pourrait suppose...

  13. MERCURY INTOXICATION IN GRASS CARP (CTENOPHARYNGODON IDELLA)

    OpenAIRE

    2004-01-01

    The present project was carried out to study the effects of acute and chronic mercury intoxication in Grass carp (Ctenopharyngodon idella). For acute phase experiment, 48 fish were divided into four equal groups (A, B, C and D). Groups B, C and D were given HgCl2 at sublethal dose as 0.4, 0.5 and 0.6 mg/L, respectively, while group A acted as control. Skin, gills and kidneys were isolated from the fish after 48 and 96 hours for pathological studies. For chronic phase, 72 fish were divided int...

  14. Competition for water between walnut seedlings (Juglans regia) and rye grass (Lolium perenne) assessed by carbon isotope discrimination and delta18O enrichment.

    Science.gov (United States)

    Picon-Cochard, C; Nsourou-Obame, A; Collet, C; Guehl, J M; Ferhi, A

    2001-02-01

    Container-grown walnut seedlings (Juglans regia L.) were subjected to competition with rye grass (Lolium perenne L.) and to a 2-week soil drying cycle. One and 2 weeks after the beginning of the drought treatment, H2 18O (delta approximately equals +100%) was added to the bottom layer of soil in the plant containers to create a vertical H2 18O gradient. Rye grass competition reduced aboveground and belowground biomass of the walnut seedlings by 60%, whereas drought had no effect. The presence of rye grass reduced the dry weight of walnut roots in the upper soil layer and caused a 50% reduction in lateral root length. Rye grass competition combined with the drought treatment reduced walnut leaf CO2 assimilation rate (A) and leaf conductance (gw) by 20 and 39%, respectively. Transpiration rates in rye grass, both at the leaf level and at the plant or tiller level, were higher than in walnut seedlings. Leaf intrinsic water-use efficiency (A/gw) of walnut seedlings increased in response to drought and no differences were observed between the single-species and mixed-species treatments, as confirmed by leaf carbon isotope discrimination measurements. Measurement of delta18O in soil and in plant xylem sap indicated that the presence of rye grass did not affect the vertical profile of soil water uptake by walnut seedlings. Walnut seedlings and rye grass withdrew water from the top and middle soil layers in well-watered conditions, whereas during the drought treatment, walnut seedlings obtained water from all soil layers, but rye grass took up water from the bottom soil layer only.

  15. Relationships between milk fatty acid profiles and enteric methane production in dairy cattle fed grass- or grass silage-based diets

    NARCIS (Netherlands)

    Dijkstra, J.; Gastelen, van S.; Antunes Fernandes, E.C.; Warner, D.; Hatew, Bayissa; Klop, G.; Podesta, S.C.; Lingen, van H.J.; Hettinga, K.A.; Bannink, A.

    2016-01-01

    We quantified relationships between methane production and milk fatty acid (FA) profile in dairy cattle fed grass- or grass silage-based diets, and determined whether recent prediction equations for methane, based on a wide variety of diets, are applicable to grass- and grass silage-based diets. Dat

  16. Grassland Bird Responses to Three Edge Types in a Fragmented Mixed-Grass Prairie

    Directory of Open Access Journals (Sweden)

    Maggi S. Sliwinski

    2012-12-01

    Full Text Available One possible factor that may have contributed to the decline of grassland bird populations is edge avoidance. In the mixed-grass prairie, habitat fragmentation is often caused by juxtaposition of habitats with vegetation that is structurally similar to prairie, making it difficult to understand why birds avoid habitat edges. We hypothesized that display height or resource-use strategy, i.e., the degree to which a species depends on grassland habitat, might explain variation in sensitivity to habitat edges among different species of grassland birds. To test our hypotheses, we used data on the abundance of grassland birds in native mixed-grass prairie fields in southern Alberta, Canada, from 2000 to 2002. Point counts were conducted up to 4.1 km from croplands, 2.2 km from roads, and 1.8 km from wetlands. We used nonlinear regression models to determine the distance at which relative abundance of 12 bird species changed in response to edge, and linear regression to determine if display height or resource-use strategy explained variation in response to different types of edges. Variation in response to edge was not explained by display height or resource-use strategy. However, six species avoided wetland edges, two avoided roads, and four avoided cropland. Two species of conservation concern, Chestnut-collared Longspurs (Calcarius ornatus and Sprague's Pipits (Anthus spragueii, declined in abundance by 25% or more within 1.95 km and 0.91 km, respectively, of cropland edges. Because Chestnut-collared Longspurs avoided croplands to at least 1.95 km, it will be important to prevent further fragmentation of mixed-grass prairies by agriculture.

  17. Effects of elevated CO2 , nitrogen form and concentration on growth and photosynthesis of a fast- and slow-growing grass.

    Science.gov (United States)

    Bowler, J M; Press, M C

    1996-03-01

    Growth and photosynthesis of Agrostis capillaris L. and Nardus stricta L. were measured for plants grown under ambient and elevated concentrations of CO2 (340 and 550 μl CO2 l(-1) respectively) and a range of nitrogen concentrations (0.01, 0.1, 1 and 5 mg N l(-1) ) supplied as either ammonium sulphate or sodium nitrate. After 42 d of growth for A. capillaris and 49 d of growth for N. stricta, the higher nitrogen concentrations resulted in stimulation of growth. The form of nitrogen did not affect the total dry weight attained by A. capillaris. However, ammonium-grown N. stricta attained a greater total dry weight than did nitrate-grown plants. Nitrogen form influenced leaf area ratio, which was greater in nitrate-grown A. capillaris and in ammonium-grown N. stricta. At the two lowest nitrogen concentrations there was no effect of elevated CO2 on total dry weight in either species, whilst at the two highest nitrogen concentrations positive growth responses to elevated C02 were observed. Photosynthetic capacity and carboxylation efficiency were lower in plants grown in elevated CO2 at the two lowest nitrogen concentrations, and were associated with greater leaf soluble carbohydrate content and lower foliar nitrogen concentrations. By contrast, the CO2 treatment did not affect these parameters at the two highest nitrogen concentrations employed.

  18. Biophysical feedback mediates effects of invasive grasses on coastal dune shape.

    Science.gov (United States)

    Zarnetske, Phoebe L; Hacker, Sally D; Seabloom, Eric W; Ruggiero, Peter; Killian, Jason R; Maddux, Timothy B; Cox, Daniel

    2012-06-01

    Vegetation at the aquatic-terrestrial interface can alter landscape features through its growth and interactions with sediment and fluids. Even similar species may impart different effects due to variation in their interactions and feedbacks with the environment. Consequently, replacement of one engineering species by another can cause significant change in the physical environment. Here we investigate the species-specific ecological mechanisms influencing the geomorphology of U.S. Pacific Northwest coastal dunes. Over the last century, this system changed from open, shifting sand dunes with sparse vegetation (including native beach grass, Elymus mollis), to densely vegetated continuous foredune ridges resulting from the introduction and subsequent invasions of two nonnative grass species (Ammophila arenaria and Ammophila breviligulata), each of which is associated with different dune shapes and sediment supply rates along the coast. Here we propose a biophysical feedback responsible for differences in dune shape, and we investigate two, non-mutually exclusive ecological mechanisms for these differences: (1) species differ in their ability to capture sand and (2) species differ in their growth habit in response to sand deposition. To investigate sand capture, we used a moveable bed wind tunnel experiment and found that increasing tiller density increased sand capture efficiency and that, under different experimental densities, the native grass had higher sand capture efficiency compared to the Ammophila congeners. However, the greater densities of nonnative grasses under field conditions suggest that they have greater potential to capture more sand overall. We used a mesocosm experiment to look at plant growth responses to sand deposition and found that, in response to increasing sand supply rates, A. arenaria produced higher-density vertical tillers (characteristic of higher sand capture efficiency), while A. breviligulata and E. mollis responded with lower

  19. Differences in photosynthetic syndromes of four halophytic marsh grasses in Pakistan.

    Science.gov (United States)

    Moinuddin, Muhammad; Gulzar, Salman; Hameed, Abdul; Gul, Bilquees; Ajmal Khan, M; Edwards, Gerald E

    2017-01-01

    Salt-tolerant grasses of warm sub-tropical ecosystems differ in their distribution patterns with respect to salinity and moisture regimes. Experiments were conducted on CO2 fixation and light harvesting processes of four halophytic C4 grasses grown under different levels of salinity (0, 200 and 400 mM NaCl) under ambient environmental conditions. Two species were from a high saline coastal marsh (Aeluropus lagopoides and Sporobolus tremulus) and two were from a moderate saline sub-coastal draw-down tidal marsh (Paspalum paspalodes and Paspalidium geminatum). Analyses of the carbon isotope ratios of leaf biomass in plants indicated that carbon assimilation was occurring by C4 photosynthesis in all species during growth under varying levels of salinity. In the coastal species, with increasing salinity, there was a parallel decrease in rates of CO2 fixation (A), transpiration (E) and stomatal conductance (g s), with no effect on water use efficiency (WUE). These species were adapted for photoprotection by an increase in the Mehler reaction with an increase in activity of PSII/CO2 fixed accompanied by high levels of antioxidant enzymes, superoxide dismutase and ascorbate peroxidase. The sub-coastal species P. paspalodes and P. geminatum had high levels of carotenoid pigments and non-photochemical quenching by the xanthophyll cycle.

  20. Sunflower meal concentrations in Massai grass silage

    Directory of Open Access Journals (Sweden)

    Máikal S. Borja

    2012-08-01

    Full Text Available Objetive. This experiment was conducted to evaluate the best sunflower meal concentration in Massai grass silage. Materials and methods. The treatments were composed of 0, 8, 16, and 24% sunflower meal (natural matter basis during ensiling of Massai grass, with four repetitions. Results. The regression equation showed that the inclusion of sunflower meal between 2.14% and 13.91% obtained a silage dry matter between 25 and 35%, which are the values recommended for the production of high quality silage. The addition of sunflower meal showed a linear increase in crude protein, reaching 18% DM with the highest concentration of sunflower meal. The highest feed value index was obtained with the addition of 24% sunflower meal in the silage. The estimated total digestible nutrient of silage increased linearly with sunflower meal concentration. The silage pH values had a quadratic effect, reaching the lowest value (4.1 with 15% sunflower meal addition. Conclusions. Based on the chemical composition and forage quality, a concentration of 14% sunflower meal should be used for high-quality silage with good nutritional value.

  1. Elephant grass clones for silage production

    Directory of Open Access Journals (Sweden)

    Rerisson José Cipriano dos Santos

    2013-02-01

    Full Text Available Ensiling warm-season grasses often requires wilting due to their high moisture content, and the presence of low-soluble sugars in these grasses usually demands the use of additives during the ensiling process. This study evaluated the bromatological composition of the fodder and silage from five Pennisetum sp. clones (IPA HV 241, IPA/UFRPE Taiwan A-146 2.114, IPA/UFRPE Taiwan A-146 2.37, Elephant B, and Mott. The contents of 20 Polyvinyl chloride (PVC silos, which were opened after 90 days of storage, were used for the bromatological analysis and the evaluation of the pH, nitrogen, ammonia, buffer capacity, soluble carbohydrates, and fermentation coefficients. The effluent losses, gases and dry matter recovery were also calculated. Although differences were observed among the clones (p < 0.05 for the concentrations of dry matter, insoluble nitrogen in acid detergents, insoluble nitrogen in neutral detergents, soluble carbohydrates, fermentation coefficients, and in vitro digestibility in the forage before ensiling, no differences were observed for most of these variables after ensiling. All of the clones were efficient in the fermentation process. The IPA/UFRPE TAIWAN A-146 2.37 clone, however, presented a higher dry matter concentration and the best fermentation coefficient, resulting in a better silage quality, compared to the other clones.

  2. MACRO NUTRIENTS UPTAKE OF FORAGE GRASSES AT DIFFERENT SALINITY STRESSES

    Directory of Open Access Journals (Sweden)

    F. Kusmiyati

    2014-10-01

    Full Text Available The high concentration of sodium chloride (NaCl in saline soils has negative effects on the growth ofmost plants. The experiment was designed to evaluate macro nutrient uptake (Nitrogen, Phosphorus andPotassium of forage grasses at different NaCl concentrations in growth media. The experiment wasconducted in a greenhouse at Forage Crops Laboratory of Animal Agriculture Faculty, Diponegoro University.Split plot design was used to arrange the experiment. The main plot was forage grasses (Elephant grass(Pennisetum purpureum and King grass (Pennisetum hybrida. The sub plot was NaCl concentrationin growth media (0, 150, and 300 mM. The nitrogen (N, phosphorus (P and potassium (K uptake in shootand root of plant were measured. The result indicated increasing NaCl concentration in growth mediasignificantly decreased the N, P and K uptake in root and shoot of the elephant grass and king grass. Thepercentage reduction percentage of N, P and K uptake at 150 mM and 300 mM were high in elephant grassand king grass. It can be concluded that based on nitrogen, phosphorus and potassium uptake, elephantgrass and king grass are not tolerant to strong and very strong saline soil.

  3. Wave overtopping resistance of grassed dike slopes in Vietnam

    NARCIS (Netherlands)

    Trung, L.H.; Van der Meer, J.W.; Luong, N.Q.; Verhagen, H.J.; Schiereck, G.J.

    2011-01-01

    The resistance of various grassed slopes against wave overtopping has been appraised by means of the Wave Overtopping Simulator in situ for a couple of years in Viet Nam. Destructive test results show that a dike slope covered with grass could suffer a certain overtopping discharge not smaller than

  4. Criteria of response of lawn grass to the environmental pollution

    OpenAIRE

    Y. V. Likholat

    2005-01-01

    Growth, physiological and biochemical criteria of reaction of the lawn grass on heavy metals influence are ascertained. Connection between levels of the heavy metals accumulation and changes of morphological parameters and activity of antioxidative protection enzymes of the plants is shown. Revealed specific features of lawn grasses stability to separate pollutants (heavy metals) action will be used for gardening industrial sites.

  5. An optimized chloroplast DNA extraction protocol for grasses (Poaceae proves suitable for whole plastid genome sequencing and SNP detection.

    Directory of Open Access Journals (Sweden)

    Kerstin Diekmann

    Full Text Available BACKGROUND: Obtaining chloroplast genome sequences is important to increase the knowledge about the fundamental biology of plastids, to understand evolutionary and ecological processes in the evolution of plants, to develop biotechnological applications (e.g. plastid engineering and to improve the efficiency of breeding schemes. Extraction of pure chloroplast DNA is required for efficient sequencing of chloroplast genomes. Unfortunately, most protocols for extracting chloroplast DNA were developed for eudicots and do not produce sufficiently pure yields for a shotgun sequencing approach of whole plastid genomes from the monocot grasses. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a simple and inexpensive method to obtain chloroplast DNA from grass species by modifying and extending protocols optimized for the use in eudicots. Many protocols for extracting chloroplast DNA require an ultracentrifugation step to efficiently separate chloroplast DNA from nuclear DNA. The developed method uses two more centrifugation steps than previously reported protocols and does not require an ultracentrifuge. CONCLUSIONS/SIGNIFICANCE: The described method delivered chloroplast DNA of very high quality from two grass species belonging to highly different taxonomic subfamilies within the grass family (Lolium perenne, Pooideae; Miscanthus x giganteus, Panicoideae. The DNA from Lolium perenne was used for whole chloroplast genome sequencing and detection of SNPs. The sequence is publicly available on EMBL/GenBank.

  6. The floristic changes in the second year after sowing of different grasses and clovers on excluded from intensive agricultural production field

    Directory of Open Access Journals (Sweden)

    Wojciech Jabłoński

    2013-12-01

    Full Text Available The floristic changes on excluded from intensive agricultural production field, after sowing of different clover-grass mixtures, was investigated. On the second year of the experiment, it has been found the great elimination of different species of weeds, at treatment, it has been found the great elimination of different species of weeds, at treatment where clover and grass plants were growing. The best mixture for elimination so dangerous weed as Cirsium arvense (L. Scop. and Agropyron repens (L. P. B., was the mixture from 50% Trifolium pratense L. and 45% Phleum pratense L. with the addition of Achillea millefolium L. plants.

  7. Native Grass Community Management Plan for the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Ryon, Michael G [ORNL; Parr, Patricia Dreyer [ORNL; Cohen, Kari [ORNL

    2007-06-01

    Land managers at the Department of Energy's Oak Ridge National Laboratory in East Tennessee are restoring native warm-season grasses and wildflowers to various sites across the Oak Ridge Reservation (ORR). Some of the numerous benefits to planting native grasses and forbs include improved habitat quality for wildlife, improved aesthetic values, lower long-term maintenance costs, and compliance with Executive Order 13112 (Clinton 1999). Challenges to restoring native plants on the ORR include the need to gain experience in establishing and maintaining these communities and the potentially greater up-front costs of getting native grasses established. The goals of the native grass program are generally outlined on a fiscal-year basis. An overview of some of the issues associated with the successful and cost-effective establishment and maintenance of native grass and wildflower stands on the ORR is presented in this report.

  8. A comparative view of the evolution of grasses under domestication.

    Science.gov (United States)

    Glémin, Sylvain; Bataillon, Thomas

    2009-01-01

    Crop grasses were among the first plants to be domesticated c. 12,000 yr ago, and they still represent the main staple crops for humans. During domestication, as did many other crops, grasses went through dramatic genetic and phenotypic changes. The recent massive increase in genomic data has provided new tools to investigate the genetic basis and consequences of domestication. Beyond the genetics of domestication, many aspects of grass biology, including their phylogeny and developmental biology, are also increasingly well studied, offering a unique opportunity to analyse the domestication process in a comparative way. Taking such a comparative point of view, we review the history of domesticated grasses and how domestication affected their phenotypic and genomic diversity. Considering recent theoretical developments and the accumulation of genetic data, we revisit more specifically the role of mating systems in the domestication process. We close by suggesting future directions for the study of domestication in grasses.

  9. Grasses – a potential sustainable resource for biocrude production

    DEFF Research Database (Denmark)

    Grigoras, Ionela; Rosendahl, Lasse Aistrup; Toor, Saqib Sohail

    This study aims to map the spatial distribution of different types of grasses available in Denmark using a GIS (Geographical Information System) based approach and to supplement these with biofuel potential maps based on HtL conversion. Biomass yields (t/ha) and biofuel energy equivalent (GJ....../ha) are mapped as function of the type of grassland area (permanent, roadside, grass sown in crop rotation systems) using 2012 databases made available by Jordbrugs Analyser Portal and Danmarks Miljøportal. Grasses have become a promising lignocellulosic biomass for biofuels production due to the low cost factor......-crude yield and a high quality of the bio-crude using grasses as feedstock a series of experiments with meadow grass have been carried out in a batch reactor. Biomass input and liquefaction products are characterized using proximate analysis, elemental analysis, heating values, FTIR, GC/MS. Data is subject...

  10. Methane emission from tropical savanna Trachypogon sp. grasses

    Directory of Open Access Journals (Sweden)

    E. Sanhueza

    2006-01-01

    Full Text Available Methane flux measurements from the soil-grass system were made during the wet season in unperturbed plots and plots where standing dry and green Trachypogon sp. grasses were clipped to just above the soil surface. Results support the surprising discovery that vegetation emits methane. The results of this work allows to infer that the savanna dry/green mixture of grasses produce methane at a rate of ~10 ng m−2 s−1, which is in agreement with early published soil-grass system fluxes. An extrapolation of this flux to the global savanna produces an annual emission much lower than the CH4 production recently suggested in the literature. On the other hand, during the wet season savanna soil consume CH4 at a rate of ~4.7 ng m−2 s−1. Therefore, the tropical savanna soil-grass system would make a modest contribution to the global budget of methane.

  11. Symbiotically modified organisms: nontoxic fungal endophytes in grasses.

    Science.gov (United States)

    Gundel, Pedro E; Pérez, Luis I; Helander, Marjo; Saikkonen, Kari

    2013-08-01

    We propose that symbiotically modified organisms (SMOs) should be taken into account in sustainable agriculture. In this opinion article, we present the results of a meta-analysis of the literature, with a particular focus on the potential of SMOs in forage and turf grass production, to determine the impact of endophytes in grasses on livestock, the grassland ecosystems, and associated environments. SMOs can be incorporated into breeding programs to improve grass yield, resistance to pests and weeds, and forage quality for livestock by decreasing the level of toxic alkaloids. However, the benefits of these selected grass-endophyte symbiota appear to be highly dependent on grass cultivar, fungal strain, and environmental conditions, requiring a comprehensive understanding of the genetic bases and phenotypic plasticity of the traits of the plant-microbe unit in different environments.

  12. Water relations traits of C4 grasses depend on phylogenetic lineage, photosynthetic pathway, and habitat water availability.

    Science.gov (United States)

    Liu, Hui; Osborne, Colin P

    2015-02-01

    The repeated evolution of C4 photosynthesis in independent lineages has resulted in distinct biogeographical distributions in different phylogenetic lineages and the variants of C4 photosynthesis. However, most previous studies have only considered C3/C4 differences without considering phylogeny, C4 subtype, or habitat characteristics. We hypothesized that independent lineages of C4 grasses have structural and physiological traits that adapt them to environments with differing water availability. We measured 40 traits of 33 species from two major C4 grass lineages in a common glasshouse environment. Chloridoideae species were shorter, with narrower and longer leaves, smaller but denser stomata, and faster curling leaves than Panicoideae species, but overall differences in leaf hydraulic and gas exchange traits between the two lineages were weak. Chloridoideae species had two different ways to reach higher drought resistance potential than Panicoideae; NAD-ME species used water saving, whereas PCK species used osmotic adjustment. These patterns could be explained by the interactions of lineage×C4 subtype and lineage×habitat water availability in affected traits. Specifically, phylogeny tended to have a stronger influence on structural traits, and C4 subtype had more important effects on physiological traits. Although hydraulic traits did not differ consistently between lineages, they showed strong covariation and relationships with leaf structure. Thus, phylogenetic lineage, photosynthetic pathway, and adaptation to habitat water availability act together to influence the leaf water relations traits of C4 grasses. This work expands our understanding of ecophysiology in major C4 grass lineages, with implications for explaining their regional and global distributions in relation to climate.

  13. Water relations traits of C4 grasses depend on phylogenetic lineage, photosynthetic pathway, and habitat water availability

    Science.gov (United States)

    Liu, Hui; Osborne, Colin P.

    2015-01-01

    The repeated evolution of C4 photosynthesis in independent lineages has resulted in distinct biogeographical distributions in different phylogenetic lineages and the variants of C4 photosynthesis. However, most previous studies have only considered C3/C4 differences without considering phylogeny, C4 subtype, or habitat characteristics. We hypothesized that independent lineages of C4 grasses have structural and physiological traits that adapt them to environments with differing water availability. We measured 40 traits of 33 species from two major C4 grass lineages in a common glasshouse environment. Chloridoideae species were shorter, with narrower and longer leaves, smaller but denser stomata, and faster curling leaves than Panicoideae species, but overall differences in leaf hydraulic and gas exchange traits between the two lineages were weak. Chloridoideae species had two different ways to reach higher drought resistance potential than Panicoideae; NAD-ME species used water saving, whereas PCK species used osmotic adjustment. These patterns could be explained by the interactions of lineage×C4 subtype and lineage×habitat water availability in affected traits. Specifically, phylogeny tended to have a stronger influence on structural traits, and C4 subtype had more important effects on physiological traits. Although hydraulic traits did not differ consistently between lineages, they showed strong covariation and relationships with leaf structure. Thus, phylogenetic lineage, photosynthetic pathway, and adaptation to habitat water availability act together to influence the leaf water relations traits of C4 grasses. This work expands our understanding of ecophysiology in major C4 grass lineages, with implications for explaining their regional and global distributions in relation to climate. PMID:25504656

  14. Ecotype-specific improvement of nitrogen status in European grasses after drought combined with rewetting

    Science.gov (United States)

    Arfin Khan, Mohammed A. S.; Kreyling, Juergen; Beierkuhnlein, Carl; Jentsch, Anke

    2016-11-01

    Drought stress and associated low soil moisture can decrease N status of forage plants by reducing nitrogen (N) uptake. Conversely, rainfall and associated favorable soil moisture can improve plant N status. Yet, it is unclear to which degree drought combined with rewetting can buffer negative effects of drought on N status of forage plants and their populations. Here, we compared shoot N status (N concentration, total N uptake and C/N ratio) of four temperate grass species. Particularly, we investigated ecotypes (populations) grown from seeds from four to six European provenances/species after a drought treatment combined with rewetting (10 day harvest delay) versus continuously watered conditions for control. The experimental combination of drought and rewetting significantly increased shoot N concentration (+96%), N uptake (+31%); and decreased C/N ratio (-46%), biomass production (-29%) and C concentration (-1.4%) compared to control. Shoot N status was found to be different between target grass species and also within their populations under drought combined with rewetting treatment. Presumably drought-adapted populations did not perform better than populations from moist sites indicating no evidence of local adaptation. The drought combined with rewetting event could buffer the negative effects of drought. Shoot N status of grasses after drought and rewetting even exceeded control plants. This surprising finding can potentially be explained by higher N uptake, lack of growth dilution effects or delayed plant maturation. Furthermore, within-species shoot N status responses to drought combined with rewetting event were ecotype-specific, hinting at diverse responses of different population. For rangeland management, we recommend that if a drought event occurs during the growing season, harvesting should be delayed beyond a following rain event.

  15. Nutrient removal by grasses irrigated with wastewater and nitrogen balance for reed canarygrass

    Energy Technology Data Exchange (ETDEWEB)

    Geber, U.

    2000-04-01

    To develop complementary wastewater treatment systems that increase nutrient reduction and recycling, an experiment was conducted to evaluate the efficiency of three grass species as catch crops for N, P, and K at Aurahammar wastewater treatment plant (WWTP) in the southern part of Sweden. Another objective was also to assess soil accumulation of N, P, and K and the risk of N leaching by drainage. Three grasses--reed canarygrass (Phalaris arundinacea L.), meadow foxtail (Alopecurus pratensis L.), and smooth bromegrass (Bromus inermis Leyss.)--were irrigated with a mixture of treated effluent and supernatant at two levels of intensity [optimum level (equal to evapotranspiration) and over-optimal level] and at two nutrient levels, approximately 150 and 300 kg N ha{sup {minus}1}. There were small differences in dry matter (DM) yield between grass species and no difference in N removal among species. The amount of N removed in harvested biomass to N applied was 0.58 in 1995 and 0.63 in 1996. The amount of N removed increased with increased nutrient load. Applied amounts of P were the same as P in harvested biomass. All species removed K amounts several times greater than applied amounts. Increased nutrient load increased overall K removal. The low amount of mineral N and especially NO{sub 3}{sup {minus}}-N in the soil profile in autumn samplings indicate the risk for leaching is small. Soil water NO{sub 3}{sup {minus}} contents were also low, <2.5 mg NO{sub 3}{sup {minus}}-N L{sup {minus}1} during the growing season, with a mean value of <1 mg NO{sub 3}{sup {minus}}-N L{sup {minus}1}.

  16. Effect of the maturity stage of grass at harvesting on the chemical composition of grass clover silage

    Directory of Open Access Journals (Sweden)

    Marija Teskera

    2009-03-01

    Full Text Available The objective of this research was to determine changes in chemical composition and fermentation quality among grass clover silages harvested at different maturity stages. Grass clover silage was harvested in three maturity stages of orchardgrass (Dactylis glomerata L. that was a dominant grass in the sward: late vegetative (GS1, internode elongation (GS2 i and flowering (GS3. Classical chemical analysis methods were used to analyse 16 samples of each of the maturity stage. Dry matter (DM content of GS1, GS2 and GS3 was 396, 408 and 463 g kg-1 of the fresh sample, respectively, while crude protein (CP content was 120, 98 and 90 g kg-1 DM respectively. While comparing GS3 and GS1, delaying the term of grass harvesting significantly increased DM content (P<0.001, organic matter, (P<0.001, neutral detergent fibre (NDF (P<0.05 and acid detergent fibre (ADF (P<0.001. Early cut silage had significantly higher content of CP (P<0.001 in comparison with medium and late cut grass silage. It was concluded that maturity stage of grass clover at harvesting has significant influence on silage chemical composition. If the aim of production is higher quality grass silage, grass has to be cut at the earlier maturity stage.

  17. Water yield following forest-grass-forest transitions

    Science.gov (United States)

    Elliott, Katherine J.; Caldwell, Peter V.; Brantley, Steven T.; Miniat, Chelcy F.; Vose, James M.; Swank, Wayne T.

    2017-02-01

    Many currently forested areas in the southern Appalachians were harvested in the early 1900s and cleared for agriculture or pasture, but have since been abandoned and reverted to forest (old-field succession). Land-use and land-cover changes such as these may have altered the timing and quantity of water yield (Q). We examined 80 years of streamflow and vegetation data in an experimental watershed that underwent forest-grass-forest conversion (i.e., old-field succession treatment). We hypothesized that changes in forest species composition and water use would largely explain long-term changes in Q. Aboveground biomass was comparable among watersheds before the treatment (208.3 Mg ha-1), and again after 45 years of forest regeneration (217.9 Mg ha-1). However, management practices in the treatment watershed altered resulting species composition compared to the reference watershed. Evapotranspiration (ET) and Q in the treatment watershed recovered to pretreatment levels after 9 years of abandonment, then Q became less (averaging 5.4 % less) and ET more (averaging 4.5 % more) than expected after the 10th year up to the present day. We demonstrate that the decline in Q and corresponding increase in ET could be explained by the shift in major forest species from predominantly Quercus and Carya before treatment to predominantly Liriodendron and Acer through old-field succession. The annual change in Q can be attributed to changes in seasonal Q. The greatest management effect on monthly Q occurred during the wettest (i.e., above median Q) growing-season months, when Q was significantly lower than expected. In the dormant season, monthly Q was higher than expected during the wettest months.

  18. Sustainable bioethanol production combining biorefinery principles using combined raw materials from wheat undersown with clover-grass.

    Science.gov (United States)

    Thomsen, Mette Hedegaard; Hauggaard-Nielsen, Henrik; Haugaard-Nielsen, Henrik

    2008-05-01

    To obtain the best possible net energy balance of the bioethanol production the biomass raw materials used need to be produced with limited use of non-renewable fossil fuels. Intercropping strategies are known to maximize growth and productivity by including more than one species in the crop stand, very often with legumes as one of the components. In the present study clover-grass is undersown in a traditional wheat crop. Thereby, it is possible to increase input of symbiotic fixation of atmospheric nitrogen into the cropping systems and reduce the need for fertilizer applications. Furthermore, when using such wheat and clover-grass mixtures as raw material, addition of urea and other fermentation nutrients produced from fossil fuels can be reduced in the whole ethanol manufacturing chain. Using second generation ethanol technology mixtures of relative proportions of wheat straw and clover-grass (15:85, 50:50, and 85:15) were pretreated by wet oxidation. The results showed that supplementing wheat straw with clover-grass had a positive effect on the ethanol yield in simultaneous saccharification and fermentation experiments, and the effect was more pronounced in inhibitory substrates. The highest ethanol yield (80% of theoretical) was obtained in the experiment with high fraction (85%) of clover-grass. In order to improve the sugar recovery of clover-grass, it should be separated into a green juice (containing free sugars, fructan, amino acids, vitamins and soluble minerals) for direct fermentation and a fibre pulp for pretreatment together with wheat straw. Based on the obtained results a decentralized biorefinery concept for production of biofuel is suggested emphasizing sustainability, localness, and recycling principles.

  19. Vegetative hyphal fusion and subsequent nuclear behavior in Epichloe grass endophytes.

    Directory of Open Access Journals (Sweden)

    Jun-Ya Shoji

    Full Text Available Epichloë species (including the former genus Neotyphodium are fungal symbionts of many agronomically important forage grasses, and provide their grass hosts with protection from a wide range of biotic and abiotic stresses. Epichloë species include many interspecific hybrids with allodiploid-like genomes, which may provide the potential for combined traits or recombination to generate new traits. Though circumstantial evidence suggests that such interspecific hybrids might have arisen from nuclear fusion events following vegetative hyphal fusion between different Epichloë strains, this hypothesis has not been addressed empirically. Here, we investigated vegetative hyphal fusion and subsequent nuclear behavior in Epichloë species. A majority of Epichloë strains, especially those having a sexual stage, underwent self vegetative hyphal fusion. Vegetative fusion also occurred between two hyphae from different Epichloë strains. Though Epichloë spp. are uninucleate fungi, hyphal fusion resulted in two nuclei stably sharing the same cytoplasm, which might ultimately lead to nuclear fusion. In addition, protoplast fusion experiments gave rise to uninucleate putative hybrids, which apparently had two markers, one from each parent within the same nucleus. These results are consistent with the notion that interspecific hybrids arise from vegetative hyphal fusion. However, we also discuss additional factors, such as post-hybridization selection, that may be important to explain the recognized prevalence of hybrids in Epichloë species.

  20. Vegetative hyphal fusion and subsequent nuclear behavior in Epichloë grass endophytes.

    Science.gov (United States)

    Shoji, Jun-Ya; Charlton, Nikki D; Yi, Mihwa; Young, Carolyn A; Craven, Kelly D

    2015-01-01

    Epichloë species (including the former genus Neotyphodium) are fungal symbionts of many agronomically important forage grasses, and provide their grass hosts with protection from a wide range of biotic and abiotic stresses. Epichloë species include many interspecific hybrids with allodiploid-like genomes, which may provide the potential for combined traits or recombination to generate new traits. Though circumstantial evidence suggests that such interspecific hybrids might have arisen from nuclear fusion events following vegetative hyphal fusion between different Epichloë strains, this hypothesis has not been addressed empirically. Here, we investigated vegetative hyphal fusion and subsequent nuclear behavior in Epichloë species. A majority of Epichloë strains, especially those having a sexual stage, underwent self vegetative hyphal fusion. Vegetative fusion also occurred between two hyphae from different Epichloë strains. Though Epichloë spp. are uninucleate fungi, hyphal fusion resulted in two nuclei stably sharing the same cytoplasm, which might ultimately lead to nuclear fusion. In addition, protoplast fusion experiments gave rise to uninucleate putative hybrids, which apparently had two markers, one from each parent within the same nucleus. These results are consistent with the notion that interspecific hybrids arise from vegetative hyphal fusion. However, we also discuss additional factors, such as post-hybridization selection, that may be important to explain the recognized prevalence of hybrids in Epichloë species.

  1. Systematic studies of Australian stipoid grasses (Austrostipa based on micro-morphological and molecular characteristics

    Directory of Open Access Journals (Sweden)

    BETTY MAULIYA BUSTAM

    2010-01-01

    Full Text Available Bustam BM (2010 Systematic studies of Australian stipoid grasses (Austrostipa based on micro-morphological and molecular characteristics. Biodiversitas 11: 9-14. This research is one of many studies on stipoid grasses organized by the International Stipeae Working Group (ISWG. This research tested the subgeneric classification of Austrostipa proposed by Jacobs and Everett (1996 and tested how informative the micro morphological characters used. Data were collected from herbarium specimens of 36 species (33 species of Austrostipa, two species of Hesperostipa and one species of Anemanthele at Royal Botanic Gardens, Sydney. Twenty eight micro morphological characters were used. The data were collected from both adaxial and abaxial surfaces of leaves, and from the lemma epidermis using a scanning electron microscope (SEM. ISWG provided the molecular data. Parsimony analysis and a distance method (Unweighteic Pair Group with Arithmatic Mean: UPGMA were used to analyze mico morphological and molecular data separately. Only UPGMA analysis was used to analyze the combined data. The results support the monophyly of Austrostipa. However, there is a little support for the subgeneric classification of Austrostipa proposed by Jacobs and Everett (1996, other than for the consistent recognition of Falcatae. The characters for comparisons between genera are too homoplasious at this level and do not contain enough information for analyses at subgeneric level, a problem apparently shared with the DNA sequences.

  2. Silage preparation and fermentation quality of natural grasses treated with lactic acid bacteria and cellulase in meadow steppe and typical steppe.

    Science.gov (United States)

    Hou, Meiling; Ge, Gentu; Liu, Tingyu; Jia, Yushan; Cai, Yimin

    2016-09-27

    Silage preparation and fermentation quality of natural grasses in meadow steppe (MS) and typical steppe (TS) were studied. MS and TS contained thirty-three and nine species of natural grasses, respectively. Stipa Baicalensis in MS and Stipa grandi in TS were the dominant grasses with the highest dry matter (DM) yield. The crude protein (CP), neutral detergent fiber (NDF) and water-soluble carbohydrate (WSC) of the mixed natural grasses in both steppes were 8.02 to 9.03, 66.75 to 69.47 and 2.02 to 2.20% on a DM basis, respectively. The small-scale silages and round bale silages of mixed natural grasses in both steppes were prepared using the commercial lactic acid bacteria (LAB) inoculants Chikuso-1 (CH, Lactobacillus plantarum) and cellulase enzyme (AC, Acremonium cellulase) as additives. All silages treated with LAB and cellulase were well preserved with lower pH, butyric acid and ammonia-N content, and higher lactic acid and CP content than those of control in four kinds of silages. Compared with CH- or AC-treated silages, the CH+AC-treated silages had higher lactic acid content. The results confirmed that combination with LAB and cellulase may result in beneficial effects by improving the natural grass silage fermentation in both grasslands.

  3. Towards the re-introduction of grass pea (Lathyrus sativus) in the West Balkan Countries: the case of Serbia and Srpska (Bosnia and Herzegovina).

    Science.gov (United States)

    Mikić, A; Mihailović, V; Ćupina, B; Durić, B; Krstić, D; Vasić, M; Vasiljević, S; Karagić, D; Dorđević, V

    2011-03-01

    Vetchlings (Lathyrus spp.) are widely distributed in both Serbia and Srpska, and represent a valuable component of local floras all over the Balkan Peninsula. Despite this and the existence of a traditional Serbian name for grass pea (Lathyrus sativus L.), sastrica, and a pan-Slavic name for all vetchlings, grahor, today they are almost forgotten crops. The joint action of the Institute of Field and Vegetable Crops and the Faculty of Agriculture is aimed at re-introducing grass pea and other vetchlings as multifunctional crops. Within the legume collection in the Institute of Field and Vegetable Crops, a small Lathyrus spp. collection, including about 100 accessions of 16 species, most of them being grass pea, was established in 2002. The landraces of grass pea were collected in several regions of Serbia and Srpska, where they are used for human consumption. Grass pea is commonly used boiled and along with other pulses, with no reports on lathyrism among the local people. The first Serbian breeding programme in Novi Sad produced already two grass pea lines that were registered in November 2009 under the names of Studenica and Sitnica, developed from the crosses of Polish cultivars and local Serbian landraces.

  4. Application of wood chips for soil mulching in the cultivation of ornamental grasses

    Directory of Open Access Journals (Sweden)

    Henschke Monika

    2016-12-01

    Full Text Available A mulch is a layer of material applied to the surface of the soil. Mulching plays an important role in the maintenance of green spaces. Organic materials are still sought for the preparation of mulches. Recently interest in wood chips has grown. The aim of the study was to determine the effect of mulching with pine and birch chips on the contents of phenolic compounds in the soil, as well as on the growth and flowering of ornamental grasses – Bouteloua gracilis (Kunth. Lag. ex Griffiths, Panicum virgatum L. and Pennisetum alopecuroides L. The content of phenolic compounds in the soil steadily increased from spring to autumn. Mulching led to a substantial increase in the level of phenolic compounds. In the first year of cultivation more phenolic compounds were released by chips of pine than birch, while in the second year this difference did not occur. Mulching had a negative impact on the growth and flowering of ornamental grasses, especially in the first year of cultivation. Ornamental grass sensitivity to the substances released from mulches decreased with the age of the plants and was dependent on the species – Bouteloua gracilis was found to be particularly sensitive.

  5. Potential Effects of the Loss of Native Grasses on Grassland Invertebrate Diversity in Southeastern Australia

    Directory of Open Access Journals (Sweden)

    Roger Edgcumbe Clay

    2014-01-01

    Full Text Available Reduction in area of the southeastern temperate grasslands of Australia since European settlement has been accompanied by degradation of remaining remnants by various factors, including the replacement of native plant species by introduced ones. There are suggestions that these replacements have had deleterious effects on the invertebrate grassland community, but there is little evidence to support these suggestions. In the eastern Adelaide Hills of South Australia, four grassland invertebrate sampling areas, in close proximity, were chosen to be as similar as possible except for the visible amount of native grass they contained. Sample areas were surveyed in four periods (summer, winter, spring, and a repeat summer using pitfall traps and sweep-netting. A vegetation cover survey was conducted in spring. Morphospecies richness and Fisher’s alpha were compared and showed significant differences between sample areas, mainly in the summer periods. Regression analyses between morphospecies richness and various features of the groundcover/surface showed a strong positive and logical association between native grass cover and morphospecies richness. Two other associations with richness were less strong and lacked a logical explanation. If the suggested direct effect of native grass cover on invertebrate diversity is true, it has serious implications for the conservation of invertebrate biodiversity.

  6. Inherited fungal symbionts enhance establishment of an invasive annual grass across successional habitats.

    Science.gov (United States)

    Uchitel, Andrea; Omacini, Marina; Chaneton, Enrique J

    2011-02-01

    Plants infected with vertically transmitted fungal endophytes carry their microbial symbionts with them during dispersal into new areas. Yet, whether seed-borne endophytes enhance the host plant's ability to overcome colonisation barriers and to regenerate within invaded sites remains poorly understood. We examined how symbiosis with asexual endophytic fungi (Neotyphodium) affected establishment and seed loss to predators in the invasive annual grass Lolium multiflorum (Italian ryegrass) across contrasting successional plots. Italian ryegrass seeds with high and low endophyte incidence were sown into three communities: a 1-year-old fallow field, a 15-year-old grassland, and a 24-year-old forest, which conformed to an old-field chronosequence in the eastern Inland Pampa, Argentina. We found that endophyte infection consistently increased host population recruitment and reproductive output. Endophyte presence also enhanced aerial biomass production of ryegrass in a low recruitment year but not in a high recruitment year, suggesting that symbiotic effects on growth performance are density dependent. Endophyte presence reduced seed removal by rodents, although differential predation may not account for the increased success of infected grass populations. Overall, there was no statistical evidence for an endophyte-by-site interaction, indicating that the fungal endosymbiont benefitted host establishment regardless of large differences in biotic and abiotic environment among communities. Our results imply that hereditary endophytes may increase the chances for host grass species to pass various ecological filters associated with invasion resistance across a broad range of successional habitats.

  7. Suppression of prairie grasses due to excess magnesium in a portion of a restored prairie.

    Science.gov (United States)

    Franson, Raymond; Krabbe, Stephen; Scholes, Chad

    2017-01-02

    In June 2002, the Department of Energy (DOE) began establishing the 60 ha Howell Prairie at the DOE Weldon Spring Site (WSS). In one area, the clay base is different from the other soil (subarea 2C). Vegetation sampling was conducted on four permanent plots across the prairie beginning in 2008, and shows that three of the four plots have strong establishment of native prairie species including prairie grasses. The fourth plot (subarea 2C), where the soil is different, shows significantly less native grass cover and stunted vegetation compared to the other three plots. One hundred twenty-five soil samples were taken in 6 different months and in 6 different years across the entire prairie restoration. Across the prairie, potassium (K) and phosphorus (P) were not limiting. The pH, organic matter content (OM), and cation exchange capacity (CEC) did not show trends related to the vegetation issues in subarea 2C. Ordination of the ratio of magnesium (Mg):K shows that Mg is very high in subarea 2C, which has been demonstrated to suppress the growth of prairie grasses. Subarea 2C contains interstratified kaolinite-smectite clay which contributes Mg to soil. It is hypothesized that an inexpensive, nondestructive treatment (addition of K) could be applied to remediate this area.

  8. Uptake of C(14)-atrazine by prairie grasses in a phytoremediation setting.

    Science.gov (United States)

    Khrunyk, Yuliya; Schiewer, Silke; Carstens, Keri L; Hu, Dingfei; Coats, Joel R

    2017-02-01

    Agrochemicals significantly contribute to environmental pollution. In the USA, atrazine is a widely used pesticide and commonly found in rivers, water systems, and rural wells. Phytoremediation can be a cost-effective means of removing pesticides from soil. The objective of this project was to investigate the ability of prairie grasses to remove atrazine. (14)C-labeled atrazine was added to sterilized sand and water/nutrient cultures, and the analysis was performed after 21 days. Switchgrass and big bluestem were promising species for phytoremediation, taking up about 40% of the applied [(14)C] in liquid hydroponic cultures, and between 20% and 33% in sand cultures. Yellow Indiangrass showed low resistance to atrazine toxicity and low uptake of [(14)C] atrazine in liquid hydroponic cultures. Atrazine degradation increased progressively from sand to roots and leaves. Most atrazine taken up by prairie grasses from sand culture was degraded to metabolites, which accounted for 60-80% of [(14)C] detected in leaves. Deisopropylatrazine (DIA) was the main metabolite detected in sand and roots, whereas in leaves further metabolism took place, forming increased amounts of didealkylatrazine (DDA) and an unidentified metabolite. In conclusion, prairie grasses achieved high atrazine removal and degradation, showing a high potential for phytoremediation.

  9. Potential of four forage grasses in remediation of Cd and Zn contaminated soils.

    Science.gov (United States)

    Zhang, Xingfeng; Xia, Hanping; Li, Zhian; Zhuang, Ping; Gao, Bo

    2010-03-01

    A pot experiment was conducted in a greenhouse to evaluate the phytoremediation abilities of four forage grasses with respect to soil Cd and Zn pollution. High Cd pollution significantly increased the biomass of Pennisetum americanum (L.) LeekexPennisetum purpureum Schumach, showed no effect on Silphium perfoliatum Linn and significantly decreased biomass of Paspalum atratum cv. Reyan No. 11 and Stylosanthes guianensis cv. Reyan II. High Zn pollution significantly decreased biomass of all grasses. Shoot Cd extraction amounts were 624, 179, 21 and 15mug/plant for P. americanumxP. purpureum, P. atratum, S. guianensis and S. perfoliatum respectively at soil Cd concentration of 8mg/kg. The shoot Zn extraction amount for P. americanumxP. purpureum was 8189mug/plant while the other three grasses were severely intoxicated at the soil Zn concentration of 600mg/kg. P. americanumxP. purpureum and P. atratum could be useful for phytoextraction of either or both Cd and Zn pollution; S. perfoliatum could be regarded as a candidate species for phytostabilization of Cd contamination; while S. guianensis had no remediation capability.

  10. Plant growth and soil microbial community structure of legumes and grasses grown in monoculture or mixture

    Institute of Scientific and Technical Information of China (English)

    CHEN Meimei; CHEN Baodong; MARSCHNER Petra

    2008-01-01

    A greenhouse pot experiment was conducted to investigate the influence of soil moisture eontent on plant growth and the rhizospheremicrobial community structure of four plant species (white clover, alfalfa, sudan grass, tall fescue), grown individually or in a mixture.The soil moisture content was adjusted to 55% or 80% water holding capacity (WHC). The results indicated that the total plant biomassof one pot was lower at 55% WHC. At a given soil moisture, the total plant biomass of white clover and tall fescue in the mixture waslower than that in a monoculture, indicating their poor competitiveness. For leguminous plants, the decrease in soil moisture reducedthe total microbial biomass, bacterial biomass, fungal biomass, and fungal/baeterial ratio in soil as assessed by the phospholipid fattyacid analysis, whereas, lower soil moisture increased those parameters in the tall fescue. The microbial biomass in the soil with legumeswas higher than that in the soil with grasses and the two plant groups differed in soil microbial community composition. At high soilmoisture content, microbial communities of the plant mixture were similar to those of the legume monoculture, and the existenceof legumes in the mixture enhanced the bacterial and fungal biomass in the soil compared to the grasses grown in the monoculture,indicating that legumes played a dominant role in the soil microbial community changes in the plant mixture.

  11. Performances of legume-grass mixtures under different cutting managements in mediterranean environments

    Directory of Open Access Journals (Sweden)

    Pasquale Martiniello

    2011-02-01

    Full Text Available Annual forage crops have great importance for sustaining animal production in southern Italy. Knowledge of the performance of legume-grass associations under management similar to systems encountered in farm practice is essential for their effective exploitation of the available environmental resources. The purpose of this investigation was to estimate the effects of five cutting managements on the productivity and botanical composition of ten annual fodder crop mixtures in two Mediterranean environments. Ten ternary combinations of one grass (Avena sativa L., oat and Lolium multiflorum Lam., Italian ryegrass, one clover (Trifolium alexandrinum L., berseem; Trifolium incarnatum L., crimson and Trifolium squarrosum L., squarrosum or burr medic (Medicago polymorpha L. and common vetch (Vicia sativa L. were compared in a field trial (split-plot design, 3 replicates in two locations (Cagliari and Foggia, Italy during the 2000-2001 growing season. The cutting treatments included a winter grazing simulation (G, a cutting only regime at early (EF or late flowering (F of legumes and a combination of treatments (GEF and GF. Plant density (no. m-2 prior to cutting, dry matter yield (g m-2 and botanical composition (% were evaluated. Considerable differences were observed in the harvestable dry matter yields of mixtures among cutting treatments in both localities, with treatment F showing the higher values (787.1 and 415.7 g m-2 for Cagliari and Foggia, respectively. The forage species were able to compete and establish good growth during their initial phase in both localities. However, the botanical composition between the two sites differed considerably after the winter period. Particularly, at Foggia, grass dominance was a permanent feature of all treatments, and all the mixtures contained about 84% of grass. Italian ryegrass was the most representative species under all treatments in both sites. Mixtures with Italian ryegrass, crimson or berseem

  12. N-nitrosamines in grass silages.

    Science.gov (United States)

    Van Broekhoven, L W; Davies, J A

    1982-01-01

    During the fermentation of silages from nitrate-rich grass, the conditions are suitable for the formation of N-nitrosamines. Earlier investigations had shown that only low concentrations of volatile N-nitrosamines were formed. The first ten days of ensilage were investigated. The formation of nitrite was accompanied by the formation of volatile N-nitrosamines. NDMA and NDEA were detected in concentrations of up to about 2 micrograms/kg. After stabilisation of the silage, these concentrations dropped to about 0.6 microgram/kg. Preliminary results are presented concerning the presence of non-volatile N-nitroso compounds. The method of Walters et al. (1980) indicates that non-volatile N-nitroso compounds were present in amounts equivalent to 85 mg NPIP/kg sample.

  13. Symbioses of grasses with seedborne fungal endophytes.

    Science.gov (United States)

    Schardl, Christopher L; Leuchtmann, Adrian; Spiering, Martin J

    2004-01-01

    Grasses (family Poaceae) and fungi of the family Clavicipitaceae have a long history of symbiosis ranging in a continuum from mutualisms to antagonisms. This continuum is particularly evident among symbioses involving the fungal genus Epichloe (asexual forms = Neotyphodium spp.). In the more mutualistic symbiota, the epichloe endophytes are vertically transmitted via host seeds, and in the more antagonistic symbiota they spread contagiously and suppress host seed set. The endophytes gain shelter, nutrition, and dissemination via host propagules, and can contribute an array of host fitness enhancements including protection against insect and vertebrate herbivores and root nematodes, enhancements of drought tolerance and nutrient status, and improved growth particularly of the root. In some systems, such as the tall fescue N. coenophialum symbioses, the plant may depend on the endophyte under many natural conditions. Recent advances in endophyte molecular biology promise to shed light on the mechanisms of the symbioses and host benefits.

  14. An Inventory of Rare and Endangered Plant Species Found in the St. Louis, Missouri, Corps of Engineers District.

    Science.gov (United States)

    1976-06-01

    Illinois: Lilies to Orchids. Southern Illinois University Press, 288 pp. Mohlenbrock, R. H. 1972. The Illustrated Flora of Illinois: Grasses . Bromus to... Paspalum . Southern lllinois Univer- sity Press, 332 pp. Mohlenbrock, R. H. 1973. The Illustrated Flora of Illinois: Grasses . Panicum to Danthonia...species is known from three Missouri counties. T 34 RALLS (MO). Ruppia maritima L. var. rostrata Agardh Ditch Grass Classification: Missouri: Rare

  15. Seed defensins of barnyard grass Echinochloa crusgalli (L.) Beauv.

    Science.gov (United States)

    Odintsova, Tatyana I; Rogozhin, Eugene A; Baranov, Yurij; Musolyamov, Alexander Kh; Yalpani, Nasser; Egorov, Tsezi A; Grishin, Eugene V

    2008-01-01

    From the annual weed barnyard grass Echinochloa crusgalli (L.) Beauv., two novel defensins Ec-AMP-D1 and Ec-AMP-D2 that differ by a single amino acid substitution were isolated by a combination of different chromatographic procedures. Both defensins were active against several phytopathogenic fungi and the oomycete Phytophthora infestans at micromolar concentrations. The Ec-AMP-D1 showed higher activity against the oomycete than Ec-AMP-D2. The comparison of the amino acid sequences of the antifungal E. crusgalli defensins with those of earlier characterized T. kiharae defensins [T.I. Odintsova, Ts.A. Egorov, A.Kh. Musolyamov, M.S. Odintsova, V.A. Pukhalsky, E.V. Grishin, Seed defensins from T. kiharae and related species: genome localization of defensin-encoding genes, Biochimie, 89 (2007) 605-612.] that were devoid of substantial antifungal activity point to the C-terminal region of the molecule as the main determinant of the antifungal activity of E. crusgalli defensins.

  16. Extreme genetic diversity in asexual grass thrips populations.

    Science.gov (United States)

    Fontcuberta García-Cuenca, A; Dumas, Z; Schwander, T

    2016-05-01

    The continuous generation of genetic variation has been proposed as one of the main factors explaining the maintenance of sexual reproduction in nature. However, populations of asexual individuals may attain high levels of genetic diversity through within-lineage diversification, replicate transitions to asexuality from sexual ancestors and migration. How these mechanisms affect genetic variation in populations of closely related sexual and asexual taxa can therefore provide insights into the role of genetic diversity for the maintenance of sexual reproduction. Here, we evaluate patterns of intra- and interpopulation genetic diversity in sexual and asexual populations of Aptinothrips rufus grass thrips. Asexual A. rufus populations are found throughout the world, whereas sexual populations appear to be confined to few locations in the Mediterranean region. We found that asexual A. rufus populations are characterized by extremely high levels of genetic diversity, both in comparison with their sexual relatives and in comparison with other asexual species. Migration is extensive among asexual populations over large geographic distances, whereas close sexual populations are strongly isolated from each other. The combination of extensive migration with replicate evolution of asexual lineages, and a past demographic expansion in at least one of them, generated high local clone diversities in A. rufus. These high clone diversities in asexual populations may mimic certain benefits conferred by sex via genetic diversity and could help explain the extreme success of asexual A. rufus populations.

  17. Photorespiration in C4 grasses remains slow under drought conditions.

    Science.gov (United States)

    Carmo-Silva, Ana E; Powers, Stephen J; Keys, Alfred J; Arrabaça, Maria Celeste; Parry, Martin A J

    2008-07-01

    The CO(2)-concentrating mechanism present in C(4) plants decreases the oxygenase activity of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and, consequently, photorespiratory rates in air. Under drought conditions, the intercellular CO(2) concentration may decrease and cause photorespiration to increase. The C(4) grasses Paspalum dilatatum Poiret, Cynodon dactylon (L.) Pers. and Zoysia japonica Steudel were grown in soil and drought was imposed by ceasing to provide water. Net CO(2) assimilation (A) and stomatal conductance to water vapour decreased with leaf dehydration. Decreased carbon and increased oxygen isotope composition were also observed under drought. The response of A to CO(2) suggested that the compensation point was zero in all species irrespective of the extent of drought stress. A slight decrease of A as O(2) concentration increased above 10% provided evidence for slow photorespiratory gas exchanges. Analysis of amino acids contained in the leaves, particularly the decrease of glycine after 30 s in darkness, supported the presence of slow photorespiration rates, but these were slightly faster in Cynodon dactylon than in Paspalum dilatatum and Zoysia japonica. Although the contents of glycine and serine increased with dehydration and mechanistic modelling of C(4) photosynthesis suggested slightly increased photorespiration rates in proportion to photosynthesis, the results provide evidence that photorespiration remained slow under drought conditions.

  18. Aridity increases below-ground niche breadth in grass communities

    Science.gov (United States)

    Butterfield, Bradley J.; Bradford, John B.; Munson, Seth M.; Gremer, Jennifer R.

    2017-01-01

    Aridity is an important environmental filter in the assembly of plant communities worldwide. The extent to which root traits mediate responses to aridity, and how they are coordinated with leaf traits, remains un