WorldWideScience

Sample records for agroinfiltration reduces aba

  1. Abscisic (ABA)-aldehyde is a precursor to, and 1',4'-trans-ABA-diol a catabolite of, ABA in apple

    International Nuclear Information System (INIS)

    Rock, C.D.; Zeevaart, J.A.D.

    1990-01-01

    Previous 18 O labeling studies of abscisic acid (ABA) have shown that apple (Malus domestica Borkh. cv Granny Smith) fruits synthesize a majority of [ 18 O]ABA with the label incorporated in the 1'-hydroxyl position and unlabeled in the carboxyl group (JAD Zeevaart, TG Heath, DA Gage [1989] Plant Physiol 91: 1594-1601). It was proposed that exchange of 18 O in the side chain with the medium occurred at an aldehyde intermediate stage of ABA biosynthesis. We have isolated ABA-aldehyde and 1'-4'-trans-ABA-diol (ABA-trans-diol) from 18 O-labeled apple fruit tissue and measured the extent and position of 18 O incorporation by tandem mass spectrometry. 18 O-Labeling patterns of ABA-aldehyde, ABA-trans-diol, and ABA indicate that ABA-aldehyde is a precursor to, and ABA-trans-diol a catabolite of, ABA. Exchange of 18 O in the carbonyl of ABA-aldehyde can be the cause of loss of 18 O from the side chain of [ 18 O]ABA. Results of feeding experiments with deuterated substrates provide further support for the precursor-product relationship of ABA-aldehyde → ABAABA-trans-diol. The ABA-aldehyde and ABA-trans-diol contents of fruits and leaves were low, approximately 1 and 0.02 nanograms per gram fresh weight for ABA-aldehyde and ABA-trans-diol, respectively, while ABA levels in fruits ranged from 10 to 200 nanograms per gram fresh weight. ABA biosynthesis was about 10-fold lower in fruits than in leaves. In fruits, the majority of ABA was conjugated to β-D-glucopyranosyl abscisate, whereas in leaves ABA was mainly hydroxylated to phaseic acid. Parallel pathways for ABA and trans-ABA biosynthesis and conjugation in fruits and leaves are proposed

  2. Reduced ABA Accumulation in the Root System is Caused by ABA Exudation in Upland Rice (Oryza sativa L. var. Gaoshan1) and this Enhanced Drought Adaptation.

    Science.gov (United States)

    Shi, Lu; Guo, Miaomiao; Ye, Nenghui; Liu, Yinggao; Liu, Rui; Xia, Yiji; Cui, Suxia; Zhang, Jianhua

    2015-05-01

    Lowland rice (Nipponbare) and upland rice (Gaoshan 1) that are comparable under normal and moderate drought conditions showed dramatic differences in severe drought conditions, both naturally occurring long-term drought and simulated rapid water deficits. We focused on their root response and found that enhanced tolerance of upland rice to severe drought conditions was mainly due to the lower level of ABA in its roots than in those of the lowland rice. We first excluded the effect of ABA biosynthesis and catabolism on root-accumulated ABA levels in both types of rice by monitoring the expression of four OsNCED genes and two OsABA8ox genes. Next, we excluded the impact of the aerial parts on roots by suppressing leaf-biosynthesized ABA with fluridone and NDGA (nordihydroguaiaretic acid), and measuring the ABA level in detached roots. Instead, we proved that upland rice had the ability to export considerably more root-sourced ABA than lowland rice under severe drought, which improved ABA-dependent drought adaptation. The investigation of apoplastic pH in root cells and root anatomy showed that ABA leakage in the root system of upland rice was related to high apoplastic pH and the absence of Casparian bands in the sclerenchyma layer. Finally, taking some genes as examples, we predicted that different ABA levels in rice roots stimulated distinct ABA perception and signaling cascades, which influenced its response to water stress. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. ABA-alcohol is an intermediate in abscisic acid biosynthesis

    International Nuclear Information System (INIS)

    Rock, C.D.; Zeevaart, J.A.D.

    1990-01-01

    It has been established that ABA-aldehyde is a precursor to ABA. The ABA-deficient flacca and sitiens mutants of tomato are blocked in the conversion of ABA-aldehyde to ABA, and accumulate trans-ABA-alcohol. 18 O-Labeling studies of ABA in flacca and sitiens show that these mutants synthesize a large percentage of [ 18 O]ABA which contains two 18 O atoms in the carboxyl group. Furthermore, the mutants synthesize much greater amounts of trans-ABA-glucose ester (t-ABA-GE) compared with the wild type, and this [ 18 O]t-ABA-GE is also double labeled in the carboxyl group. Our interpretation of these data is that the 18 O in ABA-aldehyde is trapped in the side chain by reduction to [ 18 O]ABA-alcohol, followed by isomerization to [ 18 O]t-ABA-alcohol and oxidation with 18 O 2 to [ 18 O]t-ABA. The [ 18 O]t-ABA is then rapidly converted to [ 18 O]t-ABA-GE. Because [ 18 O]ABA doubly labeled in the carboxyl group has been observed in small amounts in labeling experiments with several species, and various species have been shown to convert ABA-aldehyde to ABA-alcohol and t-ABA-alcohol, we propose that ABA-alcohol is an ABA intermediate in a shunt pathway

  4. The ABA receptors -- we report you decide.

    Science.gov (United States)

    McCourt, Peter; Creelman, Robert

    2008-10-01

    The plant hormone abscisic acid (ABA) has been implicated in a variety of physiological responses ranging from seed dormancy to stomatal conductance. Recently, three groups have reported the molecular identification of three disparate ABA receptors. Unlike the identification of other hormone receptors, in these three cases high affinity binding to ABA rather than the isolation of ABA insensitive mutants led to these receptor genes. Interestingly, two of the receptors encode genes involved in floral timing and chlorophyll biosynthesis, which are not considered traditional ABA responses. And the third receptor has been clouded in issues of its molecular identity. To clearly determine the roles of these genes in ABA perception it will require placing of these ABA-binding proteins into the rich ABA physiological context that has built up over the years.

  5. ABA signaling in stress-response and seed development.

    Science.gov (United States)

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2013-07-01

    KEY MESSAGE : We review the recent progress on ABA signaling, especially ABA signaling for ABA-dependent gene expression, including the AREB/ABF regulon, SnRK2 protein kinase, 2C-type protein phosphatases and ABA receptors. Drought negatively impacts plant growth and the productivity of crops. Drought causes osmotic stress to organisms, and the osmotic stress causes dehydration in plant cells. Abscisic acid (ABA) is produced under osmotic stress conditions, and it plays an important role in the stress response and tolerance of plants. ABA regulates many genes under osmotic stress conditions. It also regulates gene expression during seed development and germination. The ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. ABRE-binding protein (AREB)/ABRE-binding factor (ABF) transcription factors (TFs) regulate ABRE-dependent gene expression. Other TFs are also involved in ABA-responsive gene expression. SNF1-related protein kinases 2 are the key regulators of ABA signaling including the AREB/ABF regulon. Recently, ABA receptors and group A 2C-type protein phosphatases were shown to govern the ABA signaling pathway. Moreover, recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress-response and seed development. The control of the expression of ABA signaling factors may improve tolerance to environmental stresses.

  6. Physiological and Molecular Processes Associated with Long Duration of ABA Treatment

    Directory of Open Access Journals (Sweden)

    Mei Wang

    2018-02-01

    Full Text Available Plants need to respond to various environmental stresses such as abiotic stress for proper development and growth. The responses to abiotic stress can be biochemically demanding, resulting in a trade-off that negatively affects plant growth and development. Thus, plant stress responses must be fine-tuned depending on the stress severity and duration. Abscisic acid, a phytohormone, plays a key role in responses to abiotic stress. Here, we investigated time-dependent physiological and molecular responses to long-term ABA treatment in Arabidopsis as an approach to gain insight into the plant responses to long-term abiotic stress. Upon ABA treatment, the amount of cellular ABA increased to higher levels, reaching to a peak at 24 h after treatment (HAT, and then gradually decreased with time whereas ABA-GE was maintained at lower levels until 24 HAT and then abruptly increased to higher levels at 48 HAT followed by a gradual decline at later time points. Many genes involved in dehydration stress responses, ABA metabolism, chloroplast biogenesis, and chlorophyll degradation were strongly expressed at early time points with a peak at 24 or 48 HAT followed by gradual decreases in induction fold or even suppression at later time points. At the physiological level, long-term ABA treatment caused leaf yellowing, reduced chlorophyll levels, and inhibited chloroplast division in addition to the growth suppression whereas short-term ABA treatment did not affect chlorophyll levels. Our results indicate that the duration of ABA treatment is a crucial factor in determining the mode of ABA-mediated signaling and plant responses: active mobilization of cellular resources at early time points and suppressive responses at later time points.

  7. Mesophyll conductance decreases in the wild type but not in an ABA-deficient mutant (aba1) of Nicotiana plumbaginifolia under drought conditions.

    Science.gov (United States)

    Mizokami, Yusuke; Noguchi, Ko; Kojima, Mikiko; Sakakibara, Hitoshi; Terashima, Ichiro

    2015-03-01

    Under drought conditions, leaf photosynthesis is limited by the supply of CO2 . Drought induces production of abscisic acid (ABA), and ABA decreases stomatal conductance (gs ). Previous papers reported that the drought stress also causes the decrease in mesophyll conductance (gm ). However, the relationships between ABA content and gm are unclear. We investigated the responses of gm to the leaf ABA content [(ABA)L ] using an ABA-deficient mutant, aba1, and the wild type (WT) of Nicotiana plumbaginifolia. We also measured leaf water potential (ΨL ) because leaf hydraulics may be related to gm . Under drought conditions, gm decreased with the increase in (ABA)L in WT, whereas both (ABA)L and gm were unchanged by the drought treatment in aba1. Exogenously applied ABA decreased gm in both WT and aba1 in a dose-dependent manner. ΨL in WT was decreased by the drought treatment to -0.7 MPa, whereas ΨL in aba1 was around -0.8 MPa even under the well-watered conditions and unchanged by the drought treatment. From these results, we conclude that the increase in (ABA)L is crucial for the decrease in gm under drought conditions. We discuss possible relationships between the decrease in gm and changes in the leaf hydraulics. © 2014 John Wiley & Sons Ltd.

  8. RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis

    KAUST Repository

    Ren, Zhonghai

    2010-03-08

    Soil salinity limits agricultural production and is a major obstacle for feeding the growing world population. We used natural genetic variation in salt tolerance among different Arabidopsis accessions to map a major quantitative trait locus (QTL) for salt tolerance and abscisic acid (ABA) sensitivity during seed germination and early seedling growth. A recombinant inbred population derived from Landsberg erecta (Ler; salt and ABA sensitive) x Shakdara (Sha; salt and ABA resistant) was used for QTL mapping. High-resolution mapping and cloning of this QTL, Response to ABA and Salt 1 (RAS1), revealed that it is an ABA- and salt stress-inducible gene and encodes a previously undescribed plant-specific protein. A premature stop codon results in a truncated RAS1 protein in Sha. Reducing the expression of RAS1 by transfer-DNA insertion in Col or RNA interference in Ler leads to decreased salt and ABA sensitivity, whereas overexpression of the Ler allele but not the Sha allele causes increased salt and ABA sensitivity. Our results suggest that RAS1 functions as a negative regulator of salt tolerance during seed germination and early seedling growth by enhancing ABA sensitivity and that its loss of function contributes to the increased salt tolerance of Sha.

  9. ARA-aldehyde and ABA-trans-diol in apple fruits

    International Nuclear Information System (INIS)

    Rock, C.D.; Zeevaart, J.A.D.

    1989-01-01

    We have isolated ABA-aldehyde and ABA-t-diol from postharvest apple fruits, cv. Granny Smith and confirmed their structure by GC-MS. These putative ABA biosynthetic precursors incorporate 18 O to a similar degree as ABA during 48 hours under 18 O 2 atmospheres. The presence of significant amounts of ABA-aldehyde can explain the unique 18 O labeling pattern of ABA in this tissue, where a majority of ABA molecules containing 18 O is labeled in the 1'-hydroxyl group and not in the side chain carboxyl group, the primary site of incorporation for stressed leaves. Exchange of the carbonyl oxygen of ABA-aldehyde with water would decrease 18 O enrichment in the side chain. Results of 18 O 2 experiments and feeding studies using hexadeutero-ABA-aldehyde will be presented and the biosynthetic relationship of these compounds discussed

  10. ABA suppresses Botrytis cinerea elicited NO production in tomato to influence H2O2 generation and increase host susceptibility

    Directory of Open Access Journals (Sweden)

    Anushen eSivakumaran

    2016-05-01

    Full Text Available Abscisic acid (ABA production has emerged a susceptibility factor in plant-pathogen interactions. This work examined the interaction of ABA with NO in tomato following challenge with the ABA-synthesising pathogen, Botrytis cinerea. Trace gas detection using a quantum cascade laser detected NO production within minutes of challenge with B. cinerea whilst photoacoustic laser detection detected ethylene production – an established mediator of defence against this pathogen - occurring after 6 h. Application of the NO generation inhibitor N-Nitro-L-arginine methyl ester (L-NAME suppressed both NO and ethylene production and resistance against B. cinerea. The tomato mutant sitiens fails to accumulate ABA (abscisic acid, shows increased resistance to B. cinerea and we noted exhibited elevated NO and ethylene production. Exogenous application of L-NAME or ABA reduced NO production in sitiens and reduced resistance to B. cinerea. Increased resistance to B. cinerea in sitiens have previously been linked to increased reactive oxygen species (ROS generation but this was reduced in both L-NAME and ABA treated sitiens. Taken together, our data suggests that ABA can decreases resistance to B. cinerea via reduction of NO production which also suppresses both ROS and ethylene production.

  11. SvABA

    DEFF Research Database (Denmark)

    Wala, Jeremiah A; Bandopadhayay, Pratiti; Greenwald, Noah

    2018-01-01

    Structural variants (SVs), including small insertion and deletion variants (indels), are challenging to detect through standard alignment-based variant calling methods. Sequence assembly offers a powerful approach to identifying SVs, but is difficult to apply at scale genome-wide for SV detection...... due to its computational complexity and the difficulty of extracting SVs from assembly contigs. We describe SvABA, an efficient and accurate method for detecting SVs from short-read sequencing data using genome-wide local assembly with low memory and computing requirements. We evaluated Sv...... complex somatic rearrangements with chains of short (applied SvABA to 344 cancer genomes from 11 cancer types and found that short templated-sequence insertions occur in ∼4% of all somatic rearrangements. Finally, we...

  12. The Dynamics of Embolism Refilling in Abscisic Acid (ABA-Deficient Tomato Plants

    Directory of Open Access Journals (Sweden)

    Francesca Secchi

    2012-12-01

    Full Text Available Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA is the dominant long-distance signal responsible for plant response to stress, and it is possible that it plays a role in the embolism/refilling cycle. To test this idea, a temporal analysis of embolism and refilling dynamics, transpiration rate and starch content was performed on ABA-deficient mutant tomato plants. ABA-deficient mutants were more vulnerable to embolism formation than wild-type plants, and application of exogenous ABA had no effect on vulnerability. However, mutant plants treated with exogenous ABA had lower stomatal conductance and reduced starch content in the xylem parenchyma cells. The lower starch content could have an indirect effect on the plant’s refilling activity. The results confirm that plants with high starch content (moderately stressed mutant plants were more likely to recover from loss of water transport capacity than plants with low starch content (mutant plants with application of exogenous ABA or plants experiencing severe water stress. This study demonstrates that ABA most likely does not play any direct role in embolism refilling, but through the modulation of carbohydrate content, it could influence the plant’s capacity for refilling.

  13. A distal ABA responsive element in AtNCED3 promoter is required for positive feedback regulation of ABA biosynthesis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Yan-Zhuo Yang

    Full Text Available The plant hormone abscisic acid (ABA plays a crucial role in plant development and responses to abiotic stresses. Recent studies indicate that a positive feedback regulation by ABA exists in ABA biosynthesis in plants under dehydration stress. To understand the molecular basis of this regulation, we analyzed the cis-elements of the AtNCED3 promoter in Arabidopsis. AtNCED3 encodes the first committed and highly regulated dioxygenase in the ABA biosynthetic pathway. Through delineated and mutagenesis analyses in stable-transformed Arabidopsis, we revealed that a distal ABA responsive element (ABRE: GGCACGTG, -2372 to -2364 bp is required for ABA-induced AtNCED3 expression. By analyzing the AtNCED3 expression in ABRE binding protein ABF3 over-expression transgenic plants and knock-out mutants, we provide evidence that the ABA feedback regulation of AtNCED3 expression is not mediated by ABF3.

  14. A distal ABA responsive element in AtNCED3 promoter is required for positive feedback regulation of ABA biosynthesis in Arabidopsis.

    Science.gov (United States)

    Yang, Yan-Zhuo; Tan, Bao-Cai

    2014-01-01

    The plant hormone abscisic acid (ABA) plays a crucial role in plant development and responses to abiotic stresses. Recent studies indicate that a positive feedback regulation by ABA exists in ABA biosynthesis in plants under dehydration stress. To understand the molecular basis of this regulation, we analyzed the cis-elements of the AtNCED3 promoter in Arabidopsis. AtNCED3 encodes the first committed and highly regulated dioxygenase in the ABA biosynthetic pathway. Through delineated and mutagenesis analyses in stable-transformed Arabidopsis, we revealed that a distal ABA responsive element (ABRE: GGCACGTG, -2372 to -2364 bp) is required for ABA-induced AtNCED3 expression. By analyzing the AtNCED3 expression in ABRE binding protein ABF3 over-expression transgenic plants and knock-out mutants, we provide evidence that the ABA feedback regulation of AtNCED3 expression is not mediated by ABF3.

  15. Intracellular compartimentation of abscisic acid (ABA) in guard cells and mesophyll cells under exposure to SO sub 2. Kompartimentierung von Abscisinsaeure (ABA) in Schliess- und Mesophyllzellen unter SO sub 2 -Belastung

    Energy Technology Data Exchange (ETDEWEB)

    Baier, M.; Daeter, W.; Hartung, W. (Wuerzburg Univ. (Germany, F.R.). Lehrstuhl fuer Botanik 1)

    1989-07-01

    The effect of SO{sub 2} on the intracellular compartimentation of ABA in guard cells and mesophyll cells of Valerianella locusta was investigated, using the efflux compartmental analysis, as described by Behl and Hartung (1986). The cytoplasmic ABA content of the guard cells was reduced drastically by 6 {mu}molxm{sup -3} SO{sub 2} (20% of the controls). The vacuolar content was decreased less dramatically (70% of the controls). The ABA distribution of mesophyll cells remained uneffected by 6 {mu}molxm{sup -3} SO{sub 2}. The SO{sub 2} effects are explained by an acidification of the compartments. (orig.).

  16. A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in arabidopsis.

    Directory of Open Access Journals (Sweden)

    M Águila Ruiz-Sola

    Full Text Available Abscisic acid (ABA is a hormone that plays a vital role in mediating abiotic stress responses in plants. Salt exposure induces the synthesis of ABA through the cleavage of carotenoid precursors (xanthophylls, which are found at very low levels in roots. Here we show that de novo ABA biosynthesis in salt-treated Arabidopsis thaliana roots involves an organ-specific induction of the carotenoid biosynthetic pathway. Upregulation of the genes encoding phytoene synthase (PSY and other enzymes of the pathway producing ABA precursors was observed in roots but not in shoots after salt exposure. A pharmacological block of the carotenoid pathway substantially reduced ABA levels in stressed roots, confirming that an increase in carotenoid accumulation contributes to fuel hormone production after salt exposure. Treatment with exogenous ABA was also found to upregulate PSY expression only in roots, suggesting an organ-specific feedback regulation of the carotenoid pathway by ABA. Taken together, our results show that the presence of high concentrations of salt in the growth medium rapidly triggers a root-specific activation of the carotenoid pathway, probably to ensure a proper supply of ABA precursors required for a sustained production of the hormone.

  17. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors.

    Science.gov (United States)

    Kobayashi, Yuhko; Murata, Michiharu; Minami, Hideyuki; Yamamoto, Shuhei; Kagaya, Yasuaki; Hobo, Tokunori; Yamamoto, Akiko; Hattori, Tsukaho

    2005-12-01

    The plant hormone abscisic acid (ABA) induces gene expression via the ABA-response element (ABRE) present in the promoters of ABA-regulated genes. A group of bZIP proteins have been identified as ABRE-binding factors (ABFs) that activate transcription through this cis element. A rice ABF, TRAB1, has been shown to be activated via ABA-dependent phosphorylation. While a large number of signalling factors have been identified that are involved in stomatal regulation by ABA, relatively less is known about the ABA-signalling pathway that leads to gene expression. We have shown recently that three members of the rice SnRK2 protein kinase family, SAPK8, SAPK9 and SAPK10, are activated by ABA signal as well as by hyperosmotic stress. Here we show that transient overexpression in cultured cell protoplasts of these ABA-activated SnRK2 protein kinases leads to the activation of an ABRE-regulated promoter, suggesting that these kinases are involved in the gene-regulation pathway of ABA signalling. We further show several lines of evidence that these ABA-activated SnRK2 protein kinases directly phosphorylate TRAB1 in response to ABA. Kinetic analysis of SAPK10 activation and TRAB1 phosphorylation indicated that the latter immediately followed the former. TRAB1 was found to be phosphorylated not only in response to ABA, but also in response to hyperosmotic stress, which was interpreted as the consequence of phosphorylation of TRAB1 by hyperosmotically activated SAPKs. Physical interaction between TRAB1 and SAPK10 in vivo was demonstrated by a co-immunoprecipitation experiment. Finally, TRAB1 was phosphorylated in vitro by the ABA-activated SnRK2 protein kinases at Ser102, which is phosphorylated in vivo in response to ABA and is critical for the activation function.

  18. Overexpression of an ABA biosynthesis gene using a stress inducible promoter enhances drought resistance in petunia

    Science.gov (United States)

    Plants respond to drought stress by closing their stomata and reducing transpirational water loss. The plant hormone abscisic acid (ABA) regulates growth and stomatal closure particularly when the plant is under environmental stresses. One of the key enzymes in the ABA biosynthesis of higher plants ...

  19. Identification and mechanism of ABA receptor antagonism

    KAUST Repository

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M.; Kovach, Amanda; Tham, Fook S.; Cutler, Sean R.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H. Eric

    2010-01-01

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands. © 2010 Nature America, Inc. All rights reserved.

  20. Identification and mechanism of ABA receptor antagonism

    KAUST Repository

    Melcher, Karsten

    2010-08-22

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands. © 2010 Nature America, Inc. All rights reserved.

  1. VvWRKY13 enhances ABA biosynthesis in Vitis vinifera

    Directory of Open Access Journals (Sweden)

    JIe Hao

    2017-06-01

    Full Text Available Abscisic acid (ABA plays critical roles in plant growth and development as well as in plants’ responses to abiotic stresses. We previously isolated VvWRKY13, a novel transcription factor, from Vitis vinifera (grapevine, and here we present evidence that VvWRKY13 may regulate ABA biosynthesis in plants. When VvWRKY13 was ectopically expressed in Arabidopsis, the transgenic lines showed delayed seed germination, smaller stomatal aperture size, and several other phenotypic changes, indicating elevated ABA levels in these plants. Sequence analysis of several genes that are involved in grapevine ABA synthetic pathway identified WRKY-specific binding elements (W-box or W-like box in the promoter regions. Indeed, transient overexpression of VvWRKY13 in grapevine leaves significantly increased the transcript levels of ABA synthetic pathway genes. Taken together, we conclude that VvWRKY13 may promote ABA production by activating genes in the ABA synthetic pathway.

  2. Role of thioproline on seed germination: interaction ROS-ABA and effects on antioxidative metabolism.

    Science.gov (United States)

    Barba-Espin, Gregorio; Nicolas, Eduardo; Almansa, Maria Soledad; Cantero-Navarro, Elena; Albacete, Alfonso; Hernández, José Antonio; Díaz-Vivancos, Pedro

    2012-10-01

    In this work we investigate the effect of the imbibition of pea seeds with different thioproline (TP) concentrations on the germination percentage and the early growth of the seedlings. The interaction between TP and hydrogen peroxide (H₂O₂) treatments is also analysed in order to test if any synergy in germination and growth occurs. Although the imbibition of pea seeds in the presence of TP did not significantly improve the germination percentage, TP and/or H₂O₂ pre-treatments increased seedlings growth. This increase in seedling growth was reduced by abscisic acid (ABA) addition. Imbibition of pea seeds in the presence of ABA also reduced the endogenous H₂O₂ contents of pea seedlings in control and TP-treated seeds. The incubation of pea seeds with TP and/or H₂O₂ in presence or absence of ABA decreased the activity of H₂O₂-scavenging enzymes. The increase of the endogenous H₂O₂ contents observed in TP and/or H₂O₂ treatments in absence of ABA could be correlated with the decrease in these activities. Finally, the hormone profile of pea seedlings was investigated. The results show that the increase in seedling growth is correlated with a decrease in ABA in samples pre-treated with H₂O₂ and TP + H₂O₂. Nevertheless, no significant differences in endogenous ABA concentration were observed with the TP pre-treatment. This paper suggests a relationship between endogenous H₂O₂ contents and plant growth, so reinforcing the intricate crosstalk between reactive oxygen species (ROS) and plant hormones in seed germination signalling and early seedling development. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  3. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation.

    Science.gov (United States)

    Yoshida, Takuya; Fujita, Yasunari; Sayama, Hiroko; Kidokoro, Satoshi; Maruyama, Kyonoshin; Mizoi, Junya; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2010-02-01

    A myriad of drought stress-inducible genes have been reported, and many of these are activated by abscisic acid (ABA). In the promoter regions of such ABA-regulated genes, conserved cis-elements, designated ABA-responsive elements (ABREs), control gene expression via bZIP-type AREB/ABF transcription factors. Although all three members of the AREB/ABF subfamily, AREB1, AREB2, and ABF3, are upregulated by ABA and water stress, it remains unclear whether these are functional homologs. Here, we report that all three AREB/ABF transcription factors require ABA for full activation, can form hetero- or homodimers to function in nuclei, and can interact with SRK2D/SnRK2.2, an SnRK2 protein kinase that was identified as a regulator of AREB1. Along with the tissue-specific expression patterns of these genes and the subcellular localization of their encoded proteins, these findings clearly indicate that AREB1, AREB2, and ABF3 have largely overlapping functions. To elucidate the role of these AREB/ABF transcription factors, we generated an areb1 areb2 abf3 triple mutant. Large-scale transcriptome analysis, which showed that stress-responsive gene expression is remarkably impaired in the triple mutant, revealed novel AREB/ABF downstream genes in response to water stress, including many LEA class and group-Ab PP2C genes and transcription factors. The areb1 areb2 abf3 triple mutant is more resistant to ABA than are the other single and double mutants with respect to primary root growth, and it displays reduced drought tolerance. Thus, these results indicate that AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent gene expression for ABA signaling under conditions of water stress.

  4. Interplay between ABA and phospholipases A(2) and D in the response of citrus fruit to postharvest dehydration.

    Science.gov (United States)

    Romero, Paco; Gandía, Mónica; Alférez, Fernando

    2013-09-01

    The interplay between abscisic acid (ABA) and phospholipases A2 and D (PLA2 and PLD) in the response of citrus fruit to water stress was investigated during postharvest by using an ABA-deficient mutant from 'Navelate' orange named 'Pinalate'. Fruit from both varieties harvested at two different maturation stages (mature-green and full-mature) were subjected to prolonged water loss inducing stem-end rind breakdown (SERB) in full-mature fruit. Treatment with PLA2 inhibitor aristolochic acid (AT) and PLD inhibitor lysophosphatidylethanolamine (LPE) reduced the disorder in both varieties, suggesting that phospholipid metabolism is involved in citrus peel quality. Expression of CsPLDα and CsPLDβ, and CssPLA2α and CssPLA2β was studied by real-time RT-PCR during water stress and in response to ABA. CsPLDα expression increased in mature-green fruit from 'Navelate' but not in 'Pinalate' and ABA did not counteract this effect. ABA enhanced repression of CsPLDα in full-mature fruit. CsPLDβ gene expression decreased in mature-green 'Pinalate', remained unchanged in 'Navelate' and was induced in full-mature fruit from both varieties. CssPLA2α expression increased in mature-green fruit from both varieties whereas in full-mature fruit only increased in 'Navelate'. CssPLA2β expression increased in mature-green flavedo from both varieties, but in full-mature fruit remained steady in 'Navelate' and barely increased in 'Pinalate' fruit. ABA reduced expression in both after prolonged storage. Responsiveness to ABA increased with maturation. Our results show interplay between PLA2 and PLD and suggest that ABA action is upstream phospholipase activation. Response to ABA during water stress in citrus is regulated during fruit maturation and involves membrane phospholipid degradation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Validation of functional fetal autonomic brain age score fABAS in 5 min short recordings

    International Nuclear Information System (INIS)

    Hoyer, Dirk; Kowalski, Eva-Maria; Schmidt, Alexander; Witte, Otto W; Schneider, Uwe; Schleußner, Ekkehard; Hatzmann, Wolfgang; Grönemeyer, Dietrich HW; Van Leeuwen, Peter

    2015-01-01

    With the objective of evaluating the functional maturation age and developmental disturbances we have previously introduced the fetal autonomic brain age score (fABAS) using 30 min fetal magnetocardiographic recordings (fMCG, Jena). The score is based on heart rate pattern indices that are related to universal principles of developmental biology. The present work aims at the validation of the fABAS methodology on 5 min recordings from an independent database (fMCG, Bochum).We found high agreement of fABAS obtained from Jena normal fetuses (5 min subsets, n  =  364) and Bochum recordings (n  =  322, normal fetuses). fABAS of 48 recordings from fetuses with intra-uterine growth restriction (IUGR, Bochum) was reduced in most of the cases, a result consistent with IUGR fetuses from Jena previously reported. fABAS calculated from 5 min snapshots only partly covers the accuracy when compared to fABAS from 30 min recordings. More precise diagnosis requires longer recordings.fABAS obtained from fMCG recordings is a strong candidate for standardized assessment of functional maturation age and developmental disturbances. Even 5 min recordings seem to be valuable for screening for maturation problems. (paper)

  6. Abscisic Acid (ABA) Regulation of Arabidopsis SR Protein Gene Expression

    Science.gov (United States)

    Cruz, Tiago M. D.; Carvalho, Raquel F.; Richardson, Dale N.; Duque, Paula

    2014-01-01

    Serine/arginine-rich (SR) proteins are major modulators of alternative splicing, a key generator of proteomic diversity and flexible means of regulating gene expression likely to be crucial in plant environmental responses. Indeed, mounting evidence implicates splicing factors in signal transduction of the abscisic acid (ABA) phytohormone, which plays pivotal roles in the response to various abiotic stresses. Using real-time RT-qPCR, we analyzed total steady-state transcript levels of the 18 SR and two SR-like genes from Arabidopsis thaliana in seedlings treated with ABA and in genetic backgrounds with altered expression of the ABA-biosynthesis ABA2 and the ABA-signaling ABI1 and ABI4 genes. We also searched for ABA-responsive cis elements in the upstream regions of the 20 genes. We found that members of the plant-specific SC35-Like (SCL) Arabidopsis SR protein subfamily are distinctively responsive to exogenous ABA, while the expression of seven SR and SR-related genes is affected by alterations in key components of the ABA pathway. Finally, despite pervasiveness of established ABA-responsive promoter elements in Arabidopsis SR and SR-like genes, their expression is likely governed by additional, yet unidentified cis-acting elements. Overall, this study pinpoints SR34, SR34b, SCL30a, SCL28, SCL33, RS40, SR45 and SR45a as promising candidates for involvement in ABA-mediated stress responses. PMID:25268622

  7. ABA Represses the Expression of Cell Cycle Genes and May Modulate the Development of Endodormancy in Grapevine Buds

    Directory of Open Access Journals (Sweden)

    Ricardo Vergara

    2017-05-01

    Full Text Available Recently, the plant hormone abscisic acid (ABA has been implicated as a key player in the regulation of endodormancy (ED in grapevine buds (Vitis vinifera L. In this study, we show that in the vine, the expression of genes related to the biosynthesis of ABA (VvNCED1; VvNCED2 and the content of ABA are significantly higher in the latent bud than at the shoot apex, while the expression of an ABA catabolic gene (VvA8H3 showed no significant difference between either organ. A negative correlation between the content of ABA and transcript levels of cell cycle genes (CCG was found in both tissues. This result suggested that ABA may negatively regulate the expression of CCG in meristematic tissues of grapevines. To test this proposition, the effect of ABA on the expression of CCG was analyzed in two meristematic tissues of the vine: somatic embryos and shoot apexes. The results indicated that cell cycle progression is repressed by ABA in both organs, since it down-regulated the expression of genes encoding cyclin-dependent kinases (VvCDKB1, VvCDKB2 and genes encoding cyclins of type A (VvCYCA1, VvCYCA2, VvCYCA3, B (VvCYCB, and D (VvCYCD3.2a and up-regulated the expression of VvICK5, a gene encoding an inhibitor of CDKs. During ED, the content of ABA increased, and the expression of CCG decreased. Moreover, the dormancy-breaking compound hydrogen cyanamide (HC reduced the content of ABA and up-regulated the expression of CCG, this last effect was abolished when HC and ABA were co-applied. Taken together, these results suggest that ABA-mediated repression of CCG transcription may be part of the mechanism through which ABA modulates the development of ED in grapevine buds.

  8. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rock, C.D.; Zeevaart, J.A.D. (Michigan State Univ., East Lansing (United States))

    1991-09-01

    The three mutant alleles of the ABA locus of Arabidopsis thaliana result in plants that are deficient in the plant growth regulator abscisic acid (ABA). The authors have used {sup 18}O{sub 2} to label ABA in water-stressed leaves of mutant and wild-type Arabidopsis. Analysis by selected ion monitoring and tandem mass spectrometry of ({sup 18}O)ABA and its catabolites, phaseic acid and ABA-glucose ester ({beta}-D-glucopyranosyl abscisate), indicates that the aba genotypes are impaired in ABA biosynthesis and have a small ABA precursor pool of compounds that contain oxygens on the rings, presumably oxygenated carotenoids (xanthophylls). Quantitation of the carotenoids form mutant and wild-type leaves establishes that the aba alleles cause a deficiency of the epoxy-carotenoids violaxanthin and neoxanthin and an accumulation of their biosynthetic precursor, zeaxanthin. These results provide evidence that ABA is synthesized by oxidative cleavage of epoxy-carotenoids (the indirect pathway). Furthermore the carotenoid mutant they describe undergoes normal greening. Thus the aba alleles provide an opportunity to study the physiological roles of epoxy-carotenoids in photosynthesis in a higher plants.

  9. N. plumbaginifolia zeaxanthin epoxidase transgenic lines have unaltered baseline ABA accumulations in roots and xylem sap, but contrasting sensitivities of ABA accumulation to water deficit.

    Science.gov (United States)

    Borel, C; Audran, C; Frey, A; Marion-Poll, A; Tardieu, F; Simonneau, T

    2001-03-01

    A series of transgenic lines of Nicotiana plumbaginifolia with modified expression of zeaxanthin epoxidase gene (ZEP) provided contrasting ABA accumulation in roots and xylem sap. For mild water stress, concentration of ABA in the xylem sap ([ABA](xylem)) was clearly lower in plants underexpressing ZEP mRNA (complemented mutants and antisense transgenic lines) than in wild-type. In well-watered conditions, all lines presented similar [ABA](xylem) and similar ABA accumulation rates in detached roots. Plants could, therefore, be grown under normal light intensities and evaporative demand. Both ZEP mRNA abundance and ABA accumulation rate in roots increased with water deficit in all transgenic lines, except in complemented aba2-s1 mutants in which the ZEP gene was controlled by a constitutive promoter which does not respond to water deficit. These lines presented no change in root ABA content either with time or dehydration. The increase in ZEP mRNA abundance in roots with decreasing RWC was more pronounced in detached roots than in whole plants, suggesting a difference in mechanism. In all transgenic lines, a linear relationship was observed between predawn leaf water potential and [ABA](xylem), which could be reproduced in several experiments in the greenhouse and in the growth chamber. It is therefore possible to represent the effect of the transformation by a single parameter, thereby allowing the use of a quantitative approach to assist understanding of the behaviour of transgenic lines.

  10. Arabidopsis DREB2C modulates ABA biosynthesis during germination.

    Science.gov (United States)

    Je, Jihyun; Chen, Huan; Song, Chieun; Lim, Chae Oh

    2014-09-12

    Plant dehydration-responsive element binding factors (DREBs) are transcriptional regulators of the APETELA2/Ethylene Responsive element-binding Factor (AP2/ERF) family that control expression of abiotic stress-related genes. We show here that under conditions of mild heat stress, constitutive overexpression seeds of transgenic DREB2C overexpression Arabidopsis exhibit delayed germination and increased abscisic acid (ABA) content compared to untransformed wild-type (WT). Treatment with fluridone, an inhibitor of the ABA biosynthesis abrogated these effects. Expression of an ABA biosynthesis-related gene, 9-cis-epoxycarotenoid dioxygenase 9 (NCED9) was up-regulated in the DREB2C overexpression lines compared to WT. DREB2C was able to trans-activate expression of NCED9 in Arabidopsis leaf protoplasts in vitro. Direct and specific binding of DREB2C to a complete DRE on the NCED9 promoter was observed in electrophoretic mobility shift assays. Exogenous ABA treatment induced DREB2C expression in germinating seeds of WT. Vegetative growth of transgenic DREB2C overexpression lines was more strongly inhibited by exogenous ABA compared to WT. These results suggest that DREB2C is a stress- and ABA-inducible gene that acts as a positive regulator of ABA biosynthesis in germinating seeds through activating NCED9 expression. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. ABA-dependent inhibition of the ubiquitin proteasome system during germination at high temperature in Arabidopsis.

    Science.gov (United States)

    Chiu, Rex Shun; Pan, Shiyue; Zhao, Rongmin; Gazzarrini, Sonia

    2016-12-01

    During germination, endogenous and environmental factors trigger changes in the transcriptome, translatome and proteome to break dormancy. In Arabidopsis thaliana, the ubiquitin proteasome system (UPS) degrades proteins that promote dormancy to allow germination. While research on the UPS has focused on the identification of proteasomal substrates, little information is known about the regulation of its activity. Here we characterized the activity of the UPS during dormancy release and maintenance by monitoring protein ubiquitination and degradation of two proteasomal substrates: Suc-LLVY-AMC, a well characterized synthetic substrate, and FUSCA3 (FUS3), a dormancy-promoting transcription factor degraded by the 26S proteasome. Our data indicate that proteasome activity and protein ubiquitination increase during imbibition at optimal temperature (21°C), and are required for seed germination. However, abscisic acid (ABA) and supraoptimal temperature (32°C) inhibit germination by dampening both protein ubiquitination and proteasome activity. Inhibition of UPS function by high temperature is reduced by the ABA biosynthesis inhibitor, fluridone, and in ABA biosynthetic mutants, suggesting that it is ABA dependent. Accordingly, inhibition of FUS3 degradation at 32°C is also dependent on ABA. Native gels show that inhibition of proteasome activity is caused by interference with the 26S/30S ratio as well as free 19S and 20S levels, impacting the proteasome degradation cycle. Transfer experiments show that ABA-mediated inhibition of proteasome activity at 21°C is restricted to the first 2 days of germination, a time window corresponding to seed sensitivity to environmental and ABA-mediated growth inhibition. Our data show that ABA and high temperature inhibit germination under unfavourable growth conditions by repressing the UPS. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  12. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination

    Directory of Open Access Journals (Sweden)

    Erwann eArc

    2013-03-01

    Full Text Available Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8’-hydroxylation. The hormonal balance between ABA and gibberellins (GAs has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8’-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination.

  13. The Role of MAPK Modules and ABA during Abiotic Stress Signaling

    KAUST Repository

    Zélicourt, Axel de

    2016-05-01

    To respond to abiotic stresses, plants have developed specific mechanisms that allow them to rapidly perceive and respond to environmental changes. The phytohormone abscisic acid (ABA) was shown to be a pivotal regulator of abiotic stress responses in plants, triggering major changes in plant physiology. The ABA core signaling pathway largely relies on the activation of SnRK2 kinases to mediate several rapid responses, including gene regulation, stomatal closure, and plant growth modulation. Mitogen-activated protein kinases (MAPKs) have also been implicated in ABA signaling, but an entire ABA-activated MAPK module was uncovered only recently. In this review, we discuss the evidence for a role of MAPK modules in the context of different plant ABA signaling pathways. Abiotic stresses impact average yield in agriculture by more than 50% globally.Since ABA is a key regulator of abiotic stress responses, an understanding of its functioning at the molecular level is essential for plant breeding. Although the ABA core signaling pathway has been unraveled, several downstream events are still unclear.MAPKs are involved in most plant developmental stages and in response to stresses. Several members of the MAPK family were shown to be directly or indirectly activated by the ABA core signaling pathway.Recent evidence shows that the complete MAP3K17/18-MKK3-MPK1/2/7/14 module is under the control of ABA, whose members are under the transcriptional and post-translational control of the ABA core signaling pathway. © 2016 Elsevier Ltd.

  14. ABA Is Involved in Regulation of Cold Stress Response in Bermudagrass

    Directory of Open Access Journals (Sweden)

    Xuebing Huang

    2017-10-01

    Full Text Available As a representative warm-season grass, Bermudagrass [Cynodon dactylon (L. Pers.] is widely used in turf systems. However, low temperature remarkably limits its growth and distribution. ABA is a crucial phytohormone that has been reported to regulate much important physiological and biochemical processes in plants under abiotic stress. Therefore, the objective of this study was to figure out the effects of ABA on the cold-sensitive (S and cold-resistant (R Bermudagrass genotypes response to cold stress. In this study, the plants were treated with 100 μM ABA solution and exposed to 4°C temperature. After 7 days of cold treatment, the electrolyte leakage (EL, malonaldehyde (MDA and H2O2 content were significantly increased in both genotypes compared with control condition, and these values were higher in R genotype than those of S genotype, respectively. By contrast, exogenous ABA application decreased the electrolyte leakage (EL, MDA and H2O2 content in both genotypes compared with those plants without ABA treatment under cold treatment condition. In addition, exogenous ABA application increased the levels of chlorophyll a fluorescence transient curve for both genotypes, and it was higher in R genotype than that of S genotype. Analysis of photosynthetic fluorescence parameters revealed that ABA treatment improved the performance of photosystem II under cold condition, particularly for the R genotype. Moreover, cold stress significantly increased δ13C values for both genotypes, while it was alleviated by exogenous ABA. Additionally, exogenous ABA application altered the expression of ABA- or cold related genes, including ABF1, CBF1, and LEA. In summary, exogenous ABA application enhanced cold resistance of both genotypes by maintaining cell membrane stability, improving the process of photosystem II, increasing carbon isotopic fractionation under cold stress, and more prominently in R genotype compared with S genotype.

  15. ABA receptors: The START of a new paradigm in phytohormone signalling

    KAUST Repository

    Klingler, John

    2010-06-03

    The phytohormone abscisic acid (ABA) plays a central role in plant development and in plant adaptation to both biotic and abiotic stressors. In recent years, knowledge of ABA metabolism and signal transduction has advanced rapidly to provide detailed glimpses of the hormone\\'s activities at the molecular level. Despite this progress, many gaps in understanding have remained, particularly at the early stages of ABA perception by the plant cell. The search for an ABA receptor protein has produced multiple candidates, including GCR2, GTG1, and GTG2, and CHLH. In addition to these candidates, in 2009 several research groups converged on a novel family of Arabidopsis proteins that bind ABA, and thereby interact directly with a class of protein phosphatases that are well known as critical players in ABA signal transduction. The PYR/PYL/RCAR receptor family is homologous to the Bet v 1-fold and START domain proteins. It consists of 14 members, nearly all of which appear capable of participating in an ABA receptor-signal complex that responds to the hormone by activating the transcription of ABA-responsive genes. Evidence is provided here that PYR/PYL/RCAR receptors can also drive the phosphorylation of the slow anion channel SLAC1 to provide a fast and timely response to the ABA signal. Crystallographic studies have vividly shown the mechanics of ABA binding to PYR/PYL/RCAR receptors, presenting a model that bears some resemblance to the binding of gibberellins to GID1 receptors. Since this ABA receptor family is highly conserved in crop species, its discovery is likely to usher a new wave of progress in the elucidation and manipulation of plant stress responses in agricultural settings. © 2010 The Author(s).

  16. ABFs, a family of ABA-responsive element binding factors.

    Science.gov (United States)

    Choi, H; Hong, J; Ha, J; Kang, J; Kim, S Y

    2000-01-21

    Abscisic acid (ABA) plays an important role in environmental stress responses of higher plants during vegetative growth. One of the ABA-mediated responses is the induced expression of a large number of genes, which is mediated by cis-regulatory elements known as abscisic acid-responsive elements (ABREs). Although a number of ABRE binding transcription factors have been known, they are not specifically from vegetative tissues under induced conditions. Considering the tissue specificity of ABA signaling pathways, factors mediating ABA-dependent stress responses during vegetative growth phase may thus have been unidentified so far. Here, we report a family of ABRE binding factors isolated from young Arabidopsis plants under stress conditions. The factors, isolated by a yeast one-hybrid system using a prototypical ABRE and named as ABFs (ABRE binding factors) belong to a distinct subfamily of bZIP proteins. Binding site selection assay performed with one ABF showed that its preferred binding site is the strong ABRE, CACGTGGC. ABFs can transactivate an ABRE-containing reporter gene in yeast. Expression of ABFs is induced by ABA and various stress treatments, whereas their induction patterns are different from one another. Thus, a new family of ABRE binding factors indeed exists that have the potential to activate a large number of ABA/stress-responsive genes in Arabidopsis.

  17. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells

    Directory of Open Access Journals (Sweden)

    Zhao Zhixin

    2011-05-01

    Full Text Available Abstract Background In the presence of drought and other desiccating stresses, plants synthesize and redistribute the phytohormone abscisic acid (ABA. ABA promotes plant water conservation by acting on specialized cells in the leaf epidermis, guard cells, which border and regulate the apertures of stomatal pores through which transpirational water loss occurs. Following ABA exposure, solute uptake into guard cells is rapidly inhibited and solute loss is promoted, resulting in inhibition of stomatal opening and promotion of stomatal closure, with consequent plant water conservation. There is a wealth of information on the guard cell signaling mechanisms underlying these rapid ABA responses. To investigate ABA regulation of gene expression in guard cells in a systematic genome-wide manner, we analyzed data from global transcriptomes of guard cells generated with Affymetrix ATH1 microarrays, and compared these results to ABA regulation of gene expression in leaves and other tissues. Results The 1173 ABA-regulated genes of guard cells identified by our study share significant overlap with ABA-regulated genes of other tissues, and are associated with well-defined ABA-related promoter motifs such as ABREs and DREs. However, we also computationally identified a unique cis-acting motif, GTCGG, associated with ABA-induction of gene expression specifically in guard cells. In addition, approximately 300 genes showing ABA-regulation unique to this cell type were newly uncovered by our study. Within the ABA-regulated gene set of guard cells, we found that many of the genes known to encode ion transporters associated with stomatal opening are down-regulated by ABA, providing one mechanism for long-term maintenance of stomatal closure during drought. We also found examples of both negative and positive feedback in the transcriptional regulation by ABA of known ABA-signaling genes, particularly with regard to the PYR/PYL/RCAR class of soluble ABA receptors and

  18. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells

    Science.gov (United States)

    2011-01-01

    Background In the presence of drought and other desiccating stresses, plants synthesize and redistribute the phytohormone abscisic acid (ABA). ABA promotes plant water conservation by acting on specialized cells in the leaf epidermis, guard cells, which border and regulate the apertures of stomatal pores through which transpirational water loss occurs. Following ABA exposure, solute uptake into guard cells is rapidly inhibited and solute loss is promoted, resulting in inhibition of stomatal opening and promotion of stomatal closure, with consequent plant water conservation. There is a wealth of information on the guard cell signaling mechanisms underlying these rapid ABA responses. To investigate ABA regulation of gene expression in guard cells in a systematic genome-wide manner, we analyzed data from global transcriptomes of guard cells generated with Affymetrix ATH1 microarrays, and compared these results to ABA regulation of gene expression in leaves and other tissues. Results The 1173 ABA-regulated genes of guard cells identified by our study share significant overlap with ABA-regulated genes of other tissues, and are associated with well-defined ABA-related promoter motifs such as ABREs and DREs. However, we also computationally identified a unique cis-acting motif, GTCGG, associated with ABA-induction of gene expression specifically in guard cells. In addition, approximately 300 genes showing ABA-regulation unique to this cell type were newly uncovered by our study. Within the ABA-regulated gene set of guard cells, we found that many of the genes known to encode ion transporters associated with stomatal opening are down-regulated by ABA, providing one mechanism for long-term maintenance of stomatal closure during drought. We also found examples of both negative and positive feedback in the transcriptional regulation by ABA of known ABA-signaling genes, particularly with regard to the PYR/PYL/RCAR class of soluble ABA receptors and their downstream targets

  19. Physiological studies on photochemical oxidant injury in rice plants. II. Effect of abscisic acid (ABA) on ozone injury and ethylene production in rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y.H.; Nakamura, H.; Ota, Y.

    1981-12-01

    In order to determine the effect of ABA on ozone injury to rice plants, ethylene production, rate of chlorophyll retention and ozone-sensitivity of rice plants pretreated with ABA solution were investigated. The experiments were carried out in pots using rice plants at the 7-8 leaf stage. The results obtained are summarized as follows: ethylene production by the leaf blades exposed to ozone increased with the increase in the dosage of ozone; ethylene production was higher in cv. Nihonbare which was more sensitive to ozone than in cv. Tongil; pre-treatment with ABA solution one hour before ozone treatment reduced ethylene production by the leaf blades exposed to ozone; and the rate of chlorophyll retention decreased following injury, but increased remarkably by the pre-treatment with ABA solution. In conclusion, it could be demonstrated that ozone injury of rice plants can be reduced by the pre-treatment with ABA solution. 28 references, 5 figures, 1 table.

  20. Towards the Identification of New Genes Involved in ABA-Dependent Abiotic Stresses Using Arabidopsis Suppressor Mutants of abh1 Hypersensitivity to ABA during Seed Germination

    Directory of Open Access Journals (Sweden)

    Iwona Szarejko

    2013-06-01

    Full Text Available Abscisic acid plays a pivotal role in the abiotic stress response in plants. Although great progress has been achieved explaining the complexity of the stress and ABA signaling cascade, there are still many questions to answer. Mutants are a valuable tool in the identification of new genes or new alleles of already known genes and in elucidating their role in signaling pathways. We applied a suppressor mutation approach in order to find new components of ABA and abiotic stress signaling in Arabidopsis. Using the abh1 (ABA hypersensitive 1 insertional mutant as a parental line for EMS mutagenesis, we selected several mutants with suppressed hypersensitivity to ABA during seed germination. Here, we present the response to ABA and a wide range of abiotic stresses during the seed germination and young seedling development of two suppressor mutants—soa2 (suppressor of abh1 hypersensitivity to ABA 2 and soa3 (suppressor of abh1 hypersensitivity to ABA 3. Generally, both mutants displayed a suppression of the hypersensitivity of abh1 to ABA, NaCl and mannitol during germination. Both mutants showed a higher level of tolerance than Columbia-0 (Col-0—the parental line of abh1 in high concentrations of glucose. Additionally, soa2 exhibited better root growth than Col-0 in the presence of high ABA concentrations. soa2 and soa3 were drought tolerant and both had about 50% fewer stomata per mm2 than the wild-type but the same number as their parental line—abh1. Taking into account that suppressor mutants had the same genetic background as their parental line—abh1, it was necessary to backcross abh1 with Landsberg erecta four times for the map-based cloning approach. Mapping populations, derived from the cross of abh1 in the Landsberg erecta background with each suppressor mutant, were created. Map based cloning in order to identify the suppressor genes is in progress.

  1. Physiological studies on photochemical oxidant injury in rice plants. III. Relationship between abscisic acid (ABA) and water metabolism in water-stressed rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y.H.; Ota, Y.

    1981-12-01

    Several experiments were carried out to determine the effects of exogenously applied ABA on water metabolism, and to clarify the endogenous ABA relationships in ozone-sensitivity under different soil water content in rice plants. The rice plants were cultivated in soil with 60, 80, and 100% of maximum water holding capacity and under submerged condition. The results of the experiments were as follows: ozone injury was reduced with increasing ABA content of which production was increased under water stress conditions. Under water stressed conditions, the rate of water loss was decreased with increasing concentration of ABA applied exogenously. It may be assumed that the ozone-sensitivity is closely related to the stomatal closure caused by the increased ABA content due to water stress. 5 references, 4 tables.

  2. Importance of Abscisic Acid (ABA in the In Vitro Conservation of Cassava (Manihot esculenta Crantz Importancia del Ácido Abscísico (ABA en la Conservación In Vitro de la Yuca (Manihot esculenta Crantz

    Directory of Open Access Journals (Sweden)

    L. Pedro Barrueto Cid

    2008-09-01

    Full Text Available The conventional technology for in vitro plant conservation for cassava (Manihot esculenta Crantz germplasm collections is laborious due to the need for several sub-culturing procedures per year. This practice implies high costs for medium preparation, tissue culture tubes, time-consuming labor, risks of contamination, mislabeling of accession, and the need for large growth chambers. We have developed a new procedure using in vitro cultivated nodal axillary buds treated with different abscisic acid (ABA concentrations to reduce the time for recycling transplants cultivated in a SP basic nutritive medium. Nodal explants were stored for three months with ABA. Plants were obtained after nodal axillary buds were placed in SP medium without ABA. Results indicated that 20 and 30 mM ABA induced bud dormancy and delayed sprouting without affecting subsequent growth of plants after treatment.La tecnología usual para conservación in vitro de colecciones de germoplasma de yuca (Manihotesculenta Crantz es corrientemente laboriosa y emplea varias transferencias por año. Este procedimiento envuelve altos costos en preparación de medios, consumo de tiempo, riesgos de manipulación y necesidad de mucho espacio para la mantención de colecciones en cámaras de cultivos. Se desarrolló un nuevo procedimiento usando yemas axilares nodales cultivadas in vitro con diferentes concentraciones de ácido abscísico (ABA, con el objetivo de reducir los ciclos de transferencia de los cultivos mantenidos en un medio nutritivo básico tal como el SP. Los segmentos nodales fueron almacenados por tres meses en presencia de ABA. Las plantas fueron obtenidas después que los segmentos nodales fueron transferidos al medio SP sin ABA. Los resultados indican que 20 y 30 mM de ABA indujeron una completa dormancia de yemas, sin afectar el desarrollo posterior de las yemas nodales y su consecuente conversión en planta.

  3. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana

    KAUST Repository

    Danquah, Agyemang

    2015-04-01

    Summary Abscisic acid (ABA) is a major phytohormone involved in important stress-related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA-triggered phosphoproteins as putative mitogen-activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA-activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3-1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA-dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR-SnRK2-PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA-induced MAPK pathway in plant stress signalling. Significance Statement We report in this article the identification of a complete MAPK module, composed of MAP3K17/18, MKK3 and MPK1/2/7/14, which is activated by ABA through the ABA core signalling complex. We showed that the activation of this module requires the MAP3K protein synthesis which occurs after hours of stress treatment, suggesting that the pathway is involved in a delayed wave of cellular responses to ABA and drought. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  4. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana

    KAUST Repository

    Danquah, Agyemang; Zé licourt, Axel de; Boudsocq, Marie; Neubauer, Jorinde; Frei Dit Frey, Nicolas; Leonhardt, Nathalie; Pateyron, Sté phanie; Gwinner, Frederik; Tamby, Jean Philippe; Ortiz-Masià , Dolores; Marcote, Marí a Jesú s; Hirt, Heribert; Colcombet, Jean

    2015-01-01

    Summary Abscisic acid (ABA) is a major phytohormone involved in important stress-related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA-triggered phosphoproteins as putative mitogen-activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA-activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3-1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA-dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR-SnRK2-PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA-induced MAPK pathway in plant stress signalling. Significance Statement We report in this article the identification of a complete MAPK module, composed of MAP3K17/18, MKK3 and MPK1/2/7/14, which is activated by ABA through the ABA core signalling complex. We showed that the activation of this module requires the MAP3K protein synthesis which occurs after hours of stress treatment, suggesting that the pathway is involved in a delayed wave of cellular responses to ABA and drought. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  5. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels.

    Science.gov (United States)

    Cohen, Ana C; Bottini, Rubén; Pontin, Mariela; Berli, Federico J; Moreno, Daniela; Boccanlandro, Hernán; Travaglia, Claudia N; Piccoli, Patricia N

    2015-01-01

    Production of phytohormones is one of the main mechanisms to explain the beneficial effects of plant growth-promoting rhizobacteria (PGPR) such as Azospirillum sp. The PGPRs induce plant growth and development, and reduce stress susceptibility. However, little is known regarding the stress-related phytohormone abscisic acid (ABA) produced by bacteria. We investigated the effects of Azospirillum brasilense Sp 245 strain on Arabidopsis thaliana Col-0 and aba2-1 mutant plants, evaluating the morphophysiological and biochemical responses when watered and in drought. We used an in vitro-grown system to study changes in the root volume and architecture after inoculation with Azospirillum in Arabidopsis wild-type Col-0 and on the mutant aba2-1, during early growth. To examine Arabidopsis development and reproductive success as affected by the bacteria, ABA and drought, a pot experiment using Arabidopsis Col-0 plants was also carried out. Azospirillum brasilense augmented plant biomass, altered root architecture by increasing lateral roots number, stimulated photosynthetic and photoprotective pigments and retarded water loss in correlation with incremented ABA levels. As well, inoculation improved plants seed yield, plants survival, proline levels and relative leaf water content; it also decreased stomatal conductance, malondialdehyde and relative soil water content in plants submitted to drought. Arabidopsis inoculation with A. brasilense improved plants performance, especially in drought. © 2014 Scandinavian Plant Physiology Society.

  6. A Microsomal Proteomics View of H2O2- and ABA-Dependent Responses

    KAUST Repository

    Alquraishi, May Majed; Thomas, Ludivine; Gehring, Chris; Marondedze, Claudius

    2017-01-01

    The plant hormone abscisic acid (ABA) modulates a number of plant developmental processes and responses to stress. In planta, ABA has been shown to induce reactive oxygen species (ROS) production through the action of plasma membrane-associated nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases. Although quantitative proteomics studies have been performed to identify ABA- or hydrogen peroxide (H₂O₂)-dependent proteins, little is known about the ABA- and H₂O₂-dependent microsomal proteome changes. Here, we examined the effect of 50 µM of either H₂O₂ or ABA on the Arabidopsis microsomal proteome using tandem mass spectrometry and identified 86 specifically H₂O₂-dependent, and 52 specifically ABA-dependent proteins that are differentially expressed. We observed differential accumulation of proteins involved in the tricarboxylic acid (TCA) cycle notably in response to H₂O₂. Of these, aconitase 3 responded to both H₂O₂ and ABA. Additionally, over 30 proteins linked to RNA biology responded significantly to both treatments. Gene ontology categories such as 'response to stress' and 'transport' were enriched, suggesting that H₂O₂ or ABA directly and/or indirectly cause complex and partly overlapping cellular responses. Data are available via ProteomeXchange with identifier PXD006513.

  7. A Microsomal Proteomics View of H2O2- and ABA-Dependent Responses

    KAUST Repository

    Alquraishi, May Majed

    2017-08-21

    The plant hormone abscisic acid (ABA) modulates a number of plant developmental processes and responses to stress. In planta, ABA has been shown to induce reactive oxygen species (ROS) production through the action of plasma membrane-associated nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases. Although quantitative proteomics studies have been performed to identify ABA- or hydrogen peroxide (H₂O₂)-dependent proteins, little is known about the ABA- and H₂O₂-dependent microsomal proteome changes. Here, we examined the effect of 50 µM of either H₂O₂ or ABA on the Arabidopsis microsomal proteome using tandem mass spectrometry and identified 86 specifically H₂O₂-dependent, and 52 specifically ABA-dependent proteins that are differentially expressed. We observed differential accumulation of proteins involved in the tricarboxylic acid (TCA) cycle notably in response to H₂O₂. Of these, aconitase 3 responded to both H₂O₂ and ABA. Additionally, over 30 proteins linked to RNA biology responded significantly to both treatments. Gene ontology categories such as \\'response to stress\\' and \\'transport\\' were enriched, suggesting that H₂O₂ or ABA directly and/or indirectly cause complex and partly overlapping cellular responses. Data are available via ProteomeXchange with identifier PXD006513.

  8. Transcriptome Analysis of ABA/JA-Dual Responsive Genes in Rice Shoot and Root.

    Science.gov (United States)

    Kim, Jin-Ae; Bhatnagar, Nikita; Kwon, Soon Jae; Min, Myung Ki; Moon, Seok-Jun; Yoon, In Sun; Kwon, Taek-Ryoun; Kim, Sun Tae; Kim, Beom-Gi

    2018-01-01

    The phytohormone abscisic acid (ABA) enables plants to adapt to adverse environmental conditions through the modulation of metabolic pathways and of growth and developmental programs. We used comparative microarray analysis to identify genes exhibiting ABA-dependent expression and other hormone-dependent expression among them in Oryza sativa shoot and root. We identified 854 genes as significantly up- or down-regulated in root or shoot under ABA treatment condition. Most of these genes had similar expression profiles in root and shoot under ABA treatment condition, whereas 86 genes displayed opposite expression responses in root and shoot. To examine the crosstalk between ABA and other hormones, we compared the expression profiles of the ABA-dependently regulated genes under several different hormone treatment conditions. Interestingly, around half of the ABA-dependently expressed genes were also regulated by jasmonic acid based on microarray data analysis. We searched the promoter regions of these genes for cis-elements that could be responsible for their responsiveness to both hormones, and found that ABRE and MYC2 elements, among others, were common to the promoters of genes that were regulated by both ABA and JA. These results show that ABA and JA might have common gene expression regulation system and might explain why the JA could function for both abiotic and biotic stress tolerance.

  9. Proteomic analyses reveal the key roles of BrlA and AbaA in biogenesis of gliotoxin in Aspergillus fumigatus

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Kwang-Soo, E-mail: shinks@dju.kr [Division of Life Science, Daejeon University, Daejeon, 300-716 (Korea, Republic of); Kim, Young Hwan [Biomedical Omics Team, Korea Basic Science Institute (KBSI), Ohcang, 368-883 (Korea, Republic of); Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 305-764 (Korea, Republic of); Department of Bio-Analytical Science, University of Science and Technology, Daejeon, 305-333 (Korea, Republic of); Yu, Jae-Hyuk, E-mail: jyu1@wisc.edu [Departments of Bacteriology and Genetics, The University of Wisconsin–Madison, Madison, WI, 53706 (United States)

    2015-07-31

    The opportunistic human pathogenic fungus Aspergillus fumigatus primarily reproduces by forming a large number of asexual spores (conidia). Sequential activation of the central regulators BrlA, AbaA and WetA is necessary for the fungus to undergo asexual development. In this study, to address the presumed roles of these key developmental regulators during proliferation of the fungus, we analyzed and compared the proteomes of vegetative cells of wild type (WT) and individual mutant strains. Approximately 1300 protein spots were detectable from 2-D electrophoresis gels. Among these, 13 proteins exhibiting significantly altered accumulation levels were further identified by ESI-MS/MS. Markedly, we found that the GliM and GliT proteins associated with gliotoxin (GT) biosynthesis and self-protection of the fungus from GT were significantly down-regulated in the ΔabaA and ΔbrlA mutants. Moreover, mRNA levels of other GT biosynthetic genes including gliM, gliP, gliT, and gliZ were significantly reduced in both mutant strains, and no and low levels of GT were detectable in the ΔbrlA and ΔabaA mutant strains, respectively. As GliT is required for the protection of the fungus from GT, growth of the ΔbrlA mutant with reduced levels of GliT was severely impaired by exogenous GT. Our studies demonstrate that AbaA and BrlA positively regulate expression of the GT biosynthetic gene cluster in actively growing vegetative cells, and likely bridge morphological and chemical development during the life-cycle of A. fumigatus. - Highlights: • Proteome analyses of WT and mutants reveal 13 differentially expressed proteins. • The GliT and GliM proteins are significantly down-regulated by ΔabaA and ΔbrlA. • Expression of other gliotoxin biosynthetic genes is lowered by ΔabaA and ΔbrlA. • Growth of ΔbrlA strain lacking GliT is completely inhibited by exogenous gliotoxin. • BrlA and AbaA play key roles in biogenesis of gliotoxin in Aspergillus fumigatus.

  10. Proteomic analyses reveal the key roles of BrlA and AbaA in biogenesis of gliotoxin in Aspergillus fumigatus

    International Nuclear Information System (INIS)

    Shin, Kwang-Soo; Kim, Young Hwan; Yu, Jae-Hyuk

    2015-01-01

    The opportunistic human pathogenic fungus Aspergillus fumigatus primarily reproduces by forming a large number of asexual spores (conidia). Sequential activation of the central regulators BrlA, AbaA and WetA is necessary for the fungus to undergo asexual development. In this study, to address the presumed roles of these key developmental regulators during proliferation of the fungus, we analyzed and compared the proteomes of vegetative cells of wild type (WT) and individual mutant strains. Approximately 1300 protein spots were detectable from 2-D electrophoresis gels. Among these, 13 proteins exhibiting significantly altered accumulation levels were further identified by ESI-MS/MS. Markedly, we found that the GliM and GliT proteins associated with gliotoxin (GT) biosynthesis and self-protection of the fungus from GT were significantly down-regulated in the ΔabaA and ΔbrlA mutants. Moreover, mRNA levels of other GT biosynthetic genes including gliM, gliP, gliT, and gliZ were significantly reduced in both mutant strains, and no and low levels of GT were detectable in the ΔbrlA and ΔabaA mutant strains, respectively. As GliT is required for the protection of the fungus from GT, growth of the ΔbrlA mutant with reduced levels of GliT was severely impaired by exogenous GT. Our studies demonstrate that AbaA and BrlA positively regulate expression of the GT biosynthetic gene cluster in actively growing vegetative cells, and likely bridge morphological and chemical development during the life-cycle of A. fumigatus. - Highlights: • Proteome analyses of WT and mutants reveal 13 differentially expressed proteins. • The GliT and GliM proteins are significantly down-regulated by ΔabaA and ΔbrlA. • Expression of other gliotoxin biosynthetic genes is lowered by ΔabaA and ΔbrlA. • Growth of ΔbrlA strain lacking GliT is completely inhibited by exogenous gliotoxin. • BrlA and AbaA play key roles in biogenesis of gliotoxin in Aspergillus fumigatus

  11. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy.

    Science.gov (United States)

    Wu, Jian; Seng, Shanshan; Sui, Juanjuan; Vonapartis, Eliana; Luo, Xian; Gong, Benhe; Liu, Chen; Wu, Chenyu; Liu, Chao; Zhang, Fengqin; He, Junna; Yi, Mingfang

    2015-01-01

    The phytohormone abscisic acid (ABA) regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5), which is a basic leucine zipper motif transcriptional factor (TF). GhABI5 is expressed in dormant vegetative organs (corm, cormel, and stolon) as well as in reproductive organs (stamen), and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6, and RD29B). Down-regulation of GhABI5 in dormant cormels via virus induced gene silence promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B). The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ) in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ).

  12. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5 is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy.

    Directory of Open Access Journals (Sweden)

    Jian eWu

    2015-11-01

    Full Text Available The phytohormone abscisic acid (ABA regulates plant development and is crucial for abiotic stress response. In this study, cold storage contributes to reducing endogenous ABA content, resulting in dormancy breaking of Gladiolus. The ABA inhibitor fluridone also promotes germination, suggesting that ABA is an important hormone that regulates corm dormancy. Here, we report the identification and functional characterization of the Gladiolus ABI5 homolog (GhABI5, which is a basic leucine zipper motif transcriptional factor (TF. GhABI5 is expressed in dormant vegetative organs (corm, cormel and stolon as well as in reproductive organs (stamen, and it is up-regulated by ABA or drought. Complementation analysis reveals that GhABI5 rescues the ABA insensitivity of abi5-3 during seed germination and induces the expression of downstream ABA response genes in Arabidopsis thaliana (EM1, EM6 and RD29B. Down-regulation of GhABI5 in dormant cormels via Virus Induced Gene Silence (VIGS promotes sprouting and reduces the expression of downstream genes (GhLEA and GhRD29B. The results of this study reveal that GhABI5 regulates bud dormancy (vegetative organ in Gladiolus in addition to its well-studied function in Arabidopsis seeds (reproductive organ.

  13. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis

    Science.gov (United States)

    Kwak, June M.; Mori, Izumi C.; Pei, Zhen-Ming; Leonhardt, Nathalie; Torres, Miguel Angel; Dangl, Jeffery L.; Bloom, Rachel E.; Bodde, Sara; Jones, Jonathan D.G.; Schroeder, Julian I.

    2003-01-01

    Reactive oxygen species (ROS) have been proposed to function as second messengers in abscisic acid (ABA) signaling in guard cells. However, the question whether ROS production is indeed required for ABA signal transduction in vivo has not yet been addressed, and the molecular mechanisms mediating ROS production during ABA signaling remain unknown. Here, we report identification of two partially redundant Arabidopsis guard cell-expressed NADPH oxidase catalytic subunit genes, AtrbohD and AtrbohF, in which gene disruption impairs ABA signaling. atrbohD/F double mutations impair ABA-induced stomatal closing, ABA promotion of ROS production, ABA-induced cytosolic Ca2+ increases and ABA- activation of plasma membrane Ca2+-permeable channels in guard cells. Exogenous H2O2 rescues both Ca2+ channel activation and stomatal closing in atrbohD/F. ABA inhibition of seed germination and root elongation are impaired in atrbohD/F, suggesting more general roles for ROS and NADPH oxidases in ABA signaling. These data provide direct molecular genetic and cell biological evidence that ROS are rate-limiting second messengers in ABA signaling, and that the AtrbohD and AtrbohF NADPH oxidases function in guard cell ABA signal transduction. PMID:12773379

  14. Ordering phenomena in ABA triblock copolymer gels

    DEFF Research Database (Denmark)

    Reynders, K.; Mischenko, N.; Kleppinger, R.

    1997-01-01

    Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network). The lat......Temperature and concentration dependencies of the degree of order in ABA triblock copolymer gels are discussed. Two factors can influence the ordering phenomena: the conformation of the midblocks (links of the network) and the polydispersity of the endblock domains (nodes of the network...

  15. Supplementation with Abscisic Acid Reduces Malaria Disease Severity and Parasite Transmission

    Science.gov (United States)

    Glennon, Elizabeth K. K.; Adams, L. Garry; Hicks, Derrick R.; Dehesh, Katayoon; Luckhart, Shirley

    2016-01-01

    Nearly half of the world's population is at risk for malaria. Increasing drug resistance has intensified the need for novel therapeutics, including treatments with intrinsic transmission-blocking properties. In this study, we demonstrate that the isoprenoid abscisic acid (ABA) modulates signaling in the mammalian host to reduce parasitemia and the formation of transmissible gametocytes and in the mosquito host to reduce parasite infection. Oral ABA supplementation in a mouse model of malaria was well tolerated and led to reduced pathology and enhanced gene expression in the liver and spleen consistent with infection recovery. Oral ABA supplementation also increased mouse plasma ABA to levels that can signal in the mosquito midgut upon blood ingestion. Accordingly, we showed that supplementation of a Plasmodium falciparum-infected blood meal with ABA increased expression of mosquito nitric oxide synthase and reduced infection prevalence in a nitric oxide-dependent manner. Identification of the mechanisms whereby ABA reduces parasite growth in mammals and mosquitoes could shed light on the balance of immunity and metabolism across eukaryotes and provide a strong foundation for clinical translation. PMID:27001761

  16. Anti-transpirant activity in xylem sap from flooded tomato (Lycopersicon esculentum Mill.) plants is not due to pH-mediated redistributions of root- or shoot-sourced ABA.

    Science.gov (United States)

    Else, Mark A; Taylor, June M; Atkinson, Christopher J

    2006-01-01

    In flooded soils, the rapid effects of decreasing oxygen availability on root metabolic activity are likely to generate many potential chemical signals that may impact on stomatal apertures. Detached leaf transpiration tests showed that filtered xylem sap, collected at realistic flow rates from plants flooded for 2 h and 4 h, contained one or more factors that reduced stomatal apertures. The closure could not be attributed to increased root output of the glucose ester of abscisic acid (ABA-GE), since concentrations and deliveries of ABA conjugates were unaffected by soil flooding. Although xylem sap collected from the shoot base of detopped flooded plants became more alkaline within 2 h of flooding, this rapid pH change of 0.5 units did not alter partitioning of root-sourced ABA sufficiently to prompt a transient increase in xylem ABA delivery. More shoot-sourced ABA was detected in the xylem when excised petiole sections were perfused with pH 7 buffer, compared with pH 6 buffer. Sap collected from the fifth oldest leaf of "intact" well-drained plants and plants flooded for 3 h was more alkaline, by approximately 0.4 pH units, than sap collected from the shoot base. Accordingly, xylem [ABA] was increased 2-fold in sap collected from the fifth oldest petiole compared with the shoot base of flooded plants. However, water loss from transpiring, detached leaves was not reduced when the pH of the feeding solution containing 3-h-flooded [ABA] was increased from 6.7 to 7.1 Thus, the extent of the pH-mediated, shoot-sourced ABA redistribution was not sufficient to raise xylem [ABA] to physiologically active levels. Using a detached epidermis bioassay, significant non-ABA anti-transpirant activity was also detected in xylem sap collected at intervals during the first 24 h of soil flooding.

  17. ABA-Mediated Stomatal Response in Regulating Water Use during the Development of Terminal Drought in Wheat

    Directory of Open Access Journals (Sweden)

    Renu Saradadevi

    2017-07-01

    Full Text Available End-of-season drought or “terminal drought,” which occurs after flowering, is considered the most significant abiotic stress affecting crop yields. Wheat crop production in Mediterranean-type environments is often exposed to terminal drought due to decreasing rainfall and rapid increases in temperature and evapotranspiration during spring when wheat crops enter the reproductive stage. Under such conditions, every millimeter of extra soil water extracted by the roots benefits grain filling and yield and improves water use efficiency (WUE. When terminal drought develops, soil dries from the top, exposing the top part of the root system to dry soil while the bottom part is in contact with available soil water. Plant roots sense the drying soil and produce signals, which on transmission to shoots trigger stomatal closure to regulate crop water use through transpiration. However, transpiration is linked to crop growth and productivity and limiting transpiration may reduce potential yield. While an early and high degree of stomatal closure affects photosynthesis and hence biomass production, a late and low degree of stomatal closure exhausts available soil water rapidly which results in yield losses through a reduction in post-anthesis water use. The plant hormone abscisic acid (ABA is considered the major chemical signal involved in stomatal regulation. Wheat genotypes differ in their ability to produce ABA under drought and also in their stomatal sensitivity to ABA. In this viewpoint article we discuss the possibilities of exploiting genotypic differences in ABA response to soil drying in regulating the use of water under terminal drought. Root density distribution in the upper drying layers of the soil profile is identified as a candidate trait that can affect ABA accumulation and subsequent stomatal closure. We also examine whether leaf ABA can be designated as a surrogate characteristic for improved WUE in wheat to sustain grain yield under

  18. Integrating role of ethylene and ABA in tomato plants adaptation to salt stress

    DEFF Research Database (Denmark)

    Amjad, Muhammad; Akhtar, Javaid; Anwar-ul-Haq, Muhammad

    2014-01-01

    concentrations of ABA and ethylene under saline conditions compared to control (0mM NaCl) and salt-sensitive genotype. The concentration of hormones was significantly higher in the treatment where no K was applied and it was lower in treatments where K was applied indicating that K application reduced...

  19. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio.

    Science.gov (United States)

    Shuai, Haiwei; Meng, Yongjie; Luo, Xiaofeng; Chen, Feng; Zhou, Wenguan; Dai, Yujia; Qi, Ying; Du, Junbo; Yang, Feng; Liu, Jiang; Yang, Wenyu; Shu, Kai

    2017-10-03

    Auxin is an important phytohormone which mediates diverse development processes in plants. Published research has demonstrated that auxin induces seed dormancy. However, the precise mechanisms underlying the effect of auxin on seed germination need further investigation, especially the relationship between auxins and both abscisic acid (ABA) and gibberellins (GAs), the latter two phytohormones being the key regulators of seed germination. Here we report that exogenous auxin treatment represses soybean seed germination by enhancing ABA biosynthesis, while impairing GA biogenesis, and finally decreasing GA 1 /ABA and GA 4 /ABA ratios. Microscope observation showed that auxin treatment delayed rupture of the soybean seed coat and radicle protrusion. qPCR assay revealed that transcription of the genes involved in ABA biosynthetic pathway was up-regulated by application of auxin, while expression of genes involved in GA biosynthetic pathway was down-regulated. Accordingly, further phytohormone quantification shows that auxin significantly increased ABA content, whereas the active GA 1 and GA 4 levels were decreased, resulting insignificant decreases in the ratiosGA 1 /ABA and GA 4 /ABA.Consistent with this, ABA biosynthesis inhibitor fluridone reversed the delayed-germination phenotype associated with auxin treatment, while paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Altogether, exogenous auxin represses soybean seed germination by mediating ABA and GA biosynthesis.

  20. Anthropogenic impacts on the water quality of Aba River, southeast ...

    African Journals Online (AJOL)

    Anthropogenic impacts on the water quality of Aba River, southeast Nigeria. ... Ethiopian Journal of Environmental Studies and Management ... of Aba River, southeast Nigeria was studied in four stations from November 2014 to August 2015 to identify the major anthropogenic activities and their impact on the water quality.

  1. The transport and distribution of 3H-ABA affected by al sress on soybean seedig

    International Nuclear Information System (INIS)

    Chen Guang; Sun Yang; Pang Jinduo

    2010-01-01

    A hydroponic experiment combining radioisotope techniques was carried out to understand the effect of Al stress on the transport and the distribution of 3 H-ABA by using Jilin70, a soybean variety of Al resistance. The transport and distribution of ABA affected by Al stress on soybean seedling were studied with radioisotope technique. The results showed that ABA could be transported up or down in soybean seedling. The stress of Al accelerated the transport of ABA and enhanced the distribution of ABA in the roots by Al stress. The paper present the foundation for the mechanisms of ABA under Al stress in plant. (authors)

  2. Assessment of burnout among health workers and bankers in Aba ...

    African Journals Online (AJOL)

    Aim: To determine the prevalence of burnout among health workers and bankers in Aba South Local Government Area in Abia State. Materials and Methods: A cross.sectional, descriptive study was carried out in 2013 among health workers and bankers in Aba metropolis. By multistage sampling method, proportionate ...

  3. Growth and ABA responses of maple seedlings to aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, A.; Robitaille, G.; Boutin, R. [Canadian Forestry Service, Sainte Foy, PQ (Canada); Nadeau, P. [Agriculture and Agri-Food Canada Research Station, Sainte-Foy, PQ (Canada)

    1995-12-01

    The impacts of low pH and 2.0 mM aluminum (Al) on the growth of sugar maple seedlings was assessed over a 13-week period. The hypothesis was that low pH and high aluminum concentration would lower the vigor of sugar maple seedlings and were contributing factors to sugar maple stand decline. The effects of the stresses were measured in roots and shoots. The concentration of abscisis acid (ABA) in xylem sap in response to Al over time was measured to determine whether it could be used as an indicator of Al stress in sugar maple seedlings. At week 9, total leaf area of Al-treated seedlings was reduced by 27%, but by week 13 leaf area was similar for seedlings in all treatments. None of the other growth parameters examined were negatively affected by the treatments at either week 9 or week 13. ABA concentration in the xylem sap was not affected by any of the treatments. The duration of exposure to Al was found critical when assessing a threshold concentration for Al toxicity because plants can acclimate to an Al concentration previously considered toxic. 36 refs., 1 tab., 6 figs.

  4. The biological activity of ABA-1-like protein from Ascaris lumbricoides

    OpenAIRE

    武藤, 理穂; 今井, 伸二郎; 手塚, 裕之; 古橋, 裕子; 藤田, 紘一郎

    2001-01-01

    The elevation of non-specific IgE (total IgE) in Ascaris infection can be seen one week after infection, and reaches a peak after approximately two weeks. It has been reported that ABA-1 protein is the main constituent in the pseudocoelomic fluid of Ascaris suum. To investigate the effect of the ABA-1-like protein from Ascaris lumbricoides (ALB), the cDNA was cloned by reverse transcriptase polymerase chain reaction, using original primers based on the consensus sequences of ABA-1 and TBA-1, ...

  5. The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jianjun Guo

    Full Text Available BACKGROUND: The plant hormone abscisic acid (ABA regulates diverse processes of plant growth and development. It has recently been proposed that GCR2 functions as a G-protein-coupled receptor (GPCR for ABA. However, the structural relationships and functionality of GCR2 have been challenged by several independent studies. A central question in this controversy is whether gcr2 mutants are insensitive to ABA, because gcr2 mutants were shown to display reduced sensitivity to ABA under one experimental condition (e.g. 22 degrees C, continuous white light with 150 micromol m(-2 s(-1 but were shown to display wild-type sensitivity under another slightly different condition (e.g. 23 degrees C, 14/10 hr photoperiod with 120 micromol m(-2 s(-1. It has been hypothesized that gcr2 appears only weakly insensitive to ABA because two other GCR2-like genes in Arabidopsis, GCL1 and GCL2, compensate for the loss of function of GCR2. PRINCIPAL FINDINGS: In order to test this hypothesis, we isolated a putative loss-of-function allele of GCL2, and then generated all possible combinations of mutations in each member of the GCR2 gene family. We found that all double mutants, including gcr2 gcl1, gcr2 gcl2, gcl1 gcl2, as well as the gcr2 gcl1 gcl2 triple mutant displayed wild-type sensitivity to ABA in seed germination and early seedling development assays, demonstrating that the GCR2 gene family is not required for ABA responses in these processes. CONCLUSION: These results provide compelling genetic evidence that GCR2 is unlikely to act as a receptor for ABA in the context of either seed germination or early seedling development.

  6. Production of ABA responses requires both the nuclear and cytoplasmic functional involvement of PYR1

    International Nuclear Information System (INIS)

    Park, EunJoo; Kim, Tae-Houn

    2017-01-01

    Abscisic acid (ABA) enhances stress tolerant responses in plants against unfavorable environmental conditions. In Arabidopsis, ABA promotes interactions between PYR/PYL/RCARs and PP2C, thereby allowing SnRK2s to phosphorylate downstream components required for the regulation of gene expression or for gating ion channels. Because PYR1 is known to localize to nucleus and cytoplasm it is a question whether nuclear or cytoplasmic PYR1 confer different functions to the ABA signaling pathway, as has been previously shown for regulatory proteins. In order to answer this question, transgenic lines expressing nuclear PYR1 were generated in an ABA insensitive mutant background. Enforced nuclear expression of PYR1 was examined by confocal microscopy and western blot analysis. Physiological analyses of the transgenic lines demonstrated that nuclear PYR1 is sufficient to generate ABA responses, such as, the inhibition of seed germination, root growth inhibition, the induction of gene expression, and stomatal closing movement. However, for the full recovery of ABA responses in the mutant background cytoplasmic PYR1 was required. The study suggests both nuclear and cytoplasmic PYR1 participate in the control of ABA signal transduction. - Highlights: • Nuclear and cytoplasmic functions of PYR1 were studied in the mutant which lacked majority of ABA responses. • Nuclear PYR1 reconstituted partially the ABA responses during seed germination, root growth, and guard cell movement. • Both the nuclear and cytoplasmic functions of PYR1 were required for the full generation of ABA responses.

  7. Dual DNA binding property of ABA insensitive 3 like factors targeted to promoters responsive to ABA and auxin.

    Science.gov (United States)

    Nag, Ronita; Maity, Manas Kanti; Dasgupta, Maitrayee

    2005-11-01

    The ABA responsive ABI3 and the auxin responsive ARF family of transcription factors bind the CATGCATG (Sph) and TGTCTC core motifs in ABA and auxin response elements (ABRE and AuxRE), respectively. Several evidences indicate ABI3s to act downstream to auxin too. Because DNA binding domain of ABI3s shows significant overlap with ARFs we enquired whether auxin responsiveness through ABI3s could be mediated by their binding to canonical AuxREs. Investigations were undertaken through in vitro gel mobility shift assays (GMSA) using the DNA binding domain B3 of PvAlf (Phaseolus vulgaris ABI3 like factor) and upstream regions of auxin responsive gene GH3 (-267 to -141) and ABA responsive gene Em (-316 to -146) harboring AuxRE and ABRE, respectively. We demonstrate that B3 domain of PvAlf could bind AuxRE only when B3 was associated with its flanking domain B2 (B2B3). Such strict requirement of B2 domain was not observed with ABRE, where B3 could bind with or without being associated with B2. This dual specificity in DNA binding of ABI3s was also demonstrated with nuclear extracts of cultured cells of Arachis hypogea. Supershift analysis of ABRE and AuxRE bound nuclear proteins with antibodies raised against B2B3 domains of PvAlf revealed that ABI3 associated complexes were detectable in association with both cis elements. Competition GMSA confirmed the same complexes to bind ABRE and AuxRE. This dual specificity of ABI3 like factors in DNA binding targeted to natural promoters responsive to ABA and auxin suggests them to have a potential role in conferring crosstalk between these two phytohormones.

  8. 77 FR 36231 - Americans With Disabilities Act (ADA) and Architectural Barriers Act (ABA) Accessibility...

    Science.gov (United States)

    2012-06-18

    ...-0004] RIN 3014-AA39 Americans With Disabilities Act (ADA) and Architectural Barriers Act (ABA... (ADA) and Architectural Barriers Act (ABA) Accessibility Guidelines to specifically address emergency... ensure that newly constructed and altered emergency transportable housing units covered by the ADA or ABA...

  9. ABA receptors: The START of a new paradigm in phytohormone signalling

    KAUST Repository

    Klingler, John; Batelli, Georgia; Zhu, Jian-Kang

    2010-01-01

    detailed glimpses of the hormone's activities at the molecular level. Despite this progress, many gaps in understanding have remained, particularly at the early stages of ABA perception by the plant cell. The search for an ABA receptor protein has produced

  10. Involvement of ABA in induction of secondary dormancy in barley (Hordeum vulgare L.) seeds.

    Science.gov (United States)

    Leymarie, Juliette; Robayo-Romero, Maria Emilia; Gendreau, Emmanuel; Benech-Arnold, Roberto L; Corbineau, Françoise

    2008-12-01

    At harvest, barley seeds are dormant because their germination is difficult above 20 degrees C. Incubation of primary dormant seeds at 30 degrees C, a temperature at which they do not germinate, results in a loss of their ability to germinate at 20 degrees C. This phenomenon which corresponds to an induction of a secondary dormancy is already observed after a pre-treatment at 30 degrees C as short as 4-6 h, and is optimal after 24-48 h. It is associated with maintenance of a high level of embryo ABA content during seed incubation at 30 degrees C, and after seed transfer at 20 degrees C, while ABA content decreases rapidly in embryos of primary dormant seeds placed directly at 20 degrees C. Induction of secondary dormancy also results in an increase in embryo responsiveness to ABA at 20 degrees C. Application of ABA during seed treatment at 30 degrees C has no significant additive effect on the further germination at 20 degrees C. In contrast, incubation of primary dormant seeds at 20 degrees C for 48 and 72 h in the presence of ABA inhibits further germination on water similarly to 24-48 h incubation at 30 degrees C. However fluridone, an inhibitor of ABA synthesis, applied during incubation of the grains at 30 degrees C has only a slight effect on ABA content and secondary dormancy. Expression of genes involved in ABA metabolism (HvABA8'OH-1, HvNCED1 and HvNCED2) was studied in relation to the expression of primary and secondary dormancies. The results presented suggest a specific role for HvNCED1 and HvNCED2 in regulation of ABA synthesis in secondary seed dormancy.

  11. The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence.

    Science.gov (United States)

    Liu, Tie; Longhurst, Adam D; Talavera-Rauh, Franklin; Hokin, Samuel A; Barton, M Kathryn

    2016-10-04

    Drought inhibits plant growth and can also induce premature senescence. Here we identify a transcription factor, ABA INSENSITIVE GROWTH 1 (ABIG1) required for abscisic acid (ABA) mediated growth inhibition, but not for stomatal closure. ABIG1 mRNA levels are increased both in response to drought and in response to ABA treatment. When treated with ABA, abig1 mutants remain greener and produce more leaves than comparable wild-type plants. When challenged with drought, abig1 mutants have fewer yellow, senesced leaves than wild-type. Induction of ABIG1 transcription mimics ABA treatment and regulates a set of genes implicated in stress responses. We propose a model in which drought acts through ABA to increase ABIG1 transcription which in turn restricts new shoot growth and promotes leaf senescence. The results have implications for plant breeding: the existence of a mutant that is both ABA resistant and drought resistant points to new strategies for isolating drought resistant genetic varieties.

  12. Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE(ABI)5 and ABRE-BINDING FACTOR (ABF)3.

    Science.gov (United States)

    Finkelstein, Ruth; Gampala, Srinivas S L; Lynch, Tim J; Thomas, Terry L; Rock, Christopher D

    2005-09-01

    Abscisic acid-responsive gene expression is regulated by numerous transcription factors, including a subgroup of basic leucine zipper factors that bind to the conserved cis-acting sequences known as ABA-responsive elements. Although one of these factors, ABA-insensitive 5 (ABI5), was identified genetically, the paucity of genetic data for the other family members has left it unclear whether they perform unique functions or act redundantly to ABI5 or each other. To test for potential redundancy with ABI5, we identified the family members with most similar effects and interactions in transient expression systems (ABF3 and ABF1), then characterized loss-of-function lines for those loci. The abf1 and abf3 monogenic mutant lines had at most minimal effects on germination or seed-specific gene expression, but the enhanced ABA- and stress-resistance of abf3 abi5 double mutants revealed redundant action of these genes in multiple stress responses of seeds and seedlings. Although ABI5, ABF3, and ABF1 have some overlapping effects, they appear to antagonistically regulate each other's expression at specific stages. Consequently, loss of any one factor may be partially compensated by increased expression of other family members.

  13. ABA pretreatment can alter the distribution of polysomes in salt-stressed barley sprouts

    Directory of Open Access Journals (Sweden)

    Szypulska Ewa

    2016-12-01

    Full Text Available The study analyzed caryopses of barley (Hordeum vulgare cv. Stratus. Caryopses were germinated in darkness at 20°C in three experimental setups: (a in distilled water for 24 hours, followed by 100 mM NaCl for another 24 hours (salinity stress, SS, (b in 100 μM of abscisic acid for the first 24 hours, followed by rinsing with distilled water to remove residual ABA, and in 100 mM NaCl for another 24 hours (ABA pretreatment + salinity stress, ABAS, (c in distilled water only (control, C. Changes in the content of free polysomes (FP, membrane-bound polysomes (MBP, cytoskeleton-bound polysomes (CBP and cytomatrix-bound polysomes (CMBP were examined in barley sprouts germinated in SS and ABAS treatments for 48 hours. In salt-stressed barley sprouts, the concentrations of membrane-bound and cytoskeleton-bound polysomes (MBP, CBP and CMBP decreased significantly, whereas an increase was noted only in the free polysome (FP fraction. ABA pretreatment altered the distribution of polysomes in stressed plants. The content of cytoskeletonbound polysomes (CBP and CMBP increased, FP levels decreased, whereas no changes in MBP content were observed in response to ABA treatment. Our results suggest that plants respond to salt stress by increasing the concentrations of free polysomes that are probably released from damaged cell structures, mainly membranes. Our present and previous findings indicate that ABA could inhibit the release of FP in stressed plants by enhancing polysome binding to the cytoskeleton.

  14. Aquaporins Contribute to ABA-Triggered Stomatal Closure through OST1-Mediated Phosphorylation

    Science.gov (United States)

    Grondin, Alexandre; Rodrigues, Olivier; Verdoucq, Lionel; Merlot, Sylvain; Leonhardt, Nathalie; Maurel, Christophe

    2015-01-01

    Stomatal movements in response to environmental stimuli critically control the plant water status. Although these movements are governed by osmotically driven changes in guard cell volume, the role of membrane water channels (aquaporins) has remained hypothetical. Assays in epidermal peels showed that knockout Arabidopsis thaliana plants lacking the Plasma membrane Intrinsic Protein 2;1 (PIP2;1) aquaporin have a defect in stomatal closure, specifically in response to abscisic acid (ABA). ABA induced a 2-fold increase in osmotic water permeability (Pf) of guard cell protoplasts and an accumulation of reactive oxygen species in guard cells, which were both abrogated in pip2;1 plants. Open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6), a protein kinase involved in guard cell ABA signaling, was able to phosphorylate a cytosolic PIP2;1 peptide at Ser-121. OST1 enhanced PIP2;1 water transport activity when coexpressed in Xenopus laevis oocytes. Upon expression in pip2;1 plants, a phosphomimetic form (Ser121Asp) but not a phosphodeficient form (Ser121Ala) of PIP2;1 constitutively enhanced the Pf of guard cell protoplasts while suppressing its ABA-dependent activation and was able to restore ABA-dependent stomatal closure in pip2;1. This work supports a model whereby ABA-triggered stomatal closure requires an increase in guard cell permeability to water and possibly hydrogen peroxide, through OST1-dependent phosphorylation of PIP2;1 at Ser-121. PMID:26163575

  15. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    International Nuclear Information System (INIS)

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M.H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2012-01-01

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.

  16. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M.H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric (Van Andel); (Scripps); (NWU); (Purdue); (UCR); (Chinese Aca. Sci.); (NU Singapore)

    2014-10-02

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.

  17. A transcriptional approach to unravel the connection between phospholipases A₂ and D and ABA signal in citrus under water stress.

    Science.gov (United States)

    Romero, Paco; Lafuente, M Teresa; Alférez, Fernando

    2014-07-01

    The effect of water stress on the interplay between phospholipases (PL) A2 and D and ABA signalling was investigated in fruit and leaves from the sweet orange Navelate and its fruit-specific ABA-deficient mutant Pinalate by studying simultaneously expression of 5 PLD and 3 PLA2-encoding genes. In general, expression levels of PLD-encoding genes were higher at harvest in the flavedo (coloured outer part of the peel) from Pinalate. Moreover, a higher and transient increase in expression of CsPLDα, CsPLDβ, CsPLDδ and CsPLDζ was observed in the mutant as compared to Navelate fruit under water stress, which may reflect a mechanism of acclimation to water stress influenced by ABA deficiency. An early induction in CsPLDγ gene expression, when increase in peel damage during fruit storage was most evident, suggested a role for this gene in membrane degradation processes during water stress. Exogenous ABA on mutant fruit modified the expression of all PLD genes and reduced the expression of CsPLDα and CsPLDβ by 1 week to levels similar to those of Navelate, suggesting a repressor role of ABA on these genes. In general, CssPLA2α and β transcript levels were lower in flavedo from Pinalate than from Navelate fruit during the first 3 weeks of storage, suggesting that expression of these genes also depends at least partially on ABA levels. Patterns of expression of PLD and PLA2-encoding genes were very similar in Navelate and Pinalate leaves, which have similar ABA levels, when comparing both RH conditions. Results comparison with other from previous works in the same experimental systems helped to decipher the effect of the stress severity on the differential response of some of these genes under dehydration conditions and pointed out the interplay between PLA2 and PLD families and their connection with ABA signalling in citrus. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Auxin and ABA act as central regulators of developmental networks associated with paradormancy in Canada thistle (Cirsium arvense)

    KAUST Repository

    Anderson, James V.

    2012-05-13

    Abstract Dormancy in underground vegetative buds of Canada thistle, an herbaceous perennial weed, allows escape from current control methods and contributes to its invasive nature. In this study, ∼65 % of root sections obtained from greenhouse propagated Canada thistle produced new vegetative shoots by 14 days post-sectioning. RNA samples obtained from sectioned roots incubated 0, 24, 48, and 72 h at 25°C under 16:8 h light-dark conditions were used to construct four MID-tagged cDNA libraries. Analysis of in silico data obtained using Roche 454 GS-FLX pyrosequencing technologies identified molecular networks associated with paradormancy release in underground vegetative buds of Canada thistle. Sequencing of two replicate plates produced ∼2.5 million ESTs with an average read length of 362 bases. These ESTs assembled into 67358 unique sequences (21777 contigs and 45581 singlets) and annotation against the Arabidopsis database identified 15232 unigenes. Among the 15232 unigenes, we identified processes enriched with transcripts involved in plant hormone signaling networks. To follow-up on these results, we examined hormone profiles in roots, which identified changes in abscisic acid (ABA) and ABA metabolites, auxins, and cytokinins post-sectioning. Transcriptome and hormone profiling data suggest that interaction between auxin- and ABA-signaling regulate paradormancy maintenance and release in underground adventitious buds of Canada thistle. Our proposed model shows that sectioning-induced changes in polar auxin transport alters ABA metabolism and signaling, which further impacts gibberellic acid signaling involving interactions between ABA and FUSCA3. Here we report that reduced auxin and ABA-signaling, in conjunction with increased cytokinin biosynthesis post-sectioning supports a model where interactions among hormones drives molecular networks leading to cell division, differentiation, and vegetative outgrowth. ©Springer-Verlag (outside the USA) 2012.

  19. ABA signaling in guard cells entails a dynamic protein-protein interaction relay from the PYL-RCAR family receptors to ion channels.

    Science.gov (United States)

    Lee, Sung Chul; Lim, Chae Woo; Lan, Wenzhi; He, Kai; Luan, Sheng

    2013-03-01

    Plant hormone abscisic acid (ABA) serves as an integrator of environmental stresses such as drought to trigger stomatal closure by regulating specific ion channels in guard cells. We previously reported that SLAC1, an outward anion channel required for stomatal closure, was regulated via reversible protein phosphorylation events involving ABA signaling components, including protein phosphatase 2C members and a SnRK2-type kinase (OST1). In this study, we reconstituted the ABA signaling pathway as a protein-protein interaction relay from the PYL/RCAR-type receptors, to the PP2C-SnRK2 phosphatase-kinase pairs, to the ion channel SLAC1. The ABA receptors interacted with and inhibited PP2C phosphatase activity against the SnRK2-type kinase, releasing active SnRK2 kinase to phosphorylate, and activate the SLAC1 channel, leading to reduced guard cell turgor and stomatal closure. Both yeast two-hybrid and bimolecular fluorescence complementation assays were used to verify the interactions among the components in the pathway. These biochemical assays demonstrated activity modifications of phosphatases and kinases by their interaction partners. The SLAC1 channel activity was used as an endpoint readout for the strength of the signaling pathway, depending on the presence of different combinations of signaling components. Further study using transgenic plants overexpressing one of the ABA receptors demonstrated that changing the relative level of interacting partners would change ABA sensitivity.

  20. Synthetic, spectroscopic and structural studies on 4-aminobenzoate complexes of divalent alkaline earth metals: x-ray crystal structures of [[Mg(H2O)6] (4-aba)2].2H2O and [Ca(H2O)2(4-aba)2] (4-aba=4-aminobenzoate)

    International Nuclear Information System (INIS)

    Murugavel, Ramaswamy; Karambelkar, Vivek V.; Anantharaman, Ganapathi

    2000-01-01

    Reactions between MCl 2 .nH 2 O (M = Mg, Ca, Sr, and Ba) and 4-aminobenzoic acid (4-abaH) result in the formation of complexes [(Mg(H 2 O) 6 )(4-aba) 2 ) .2H 2 O (I), [Ca(4-aba) 2 (H2 O ) 2 ] (2), [Sr(4-aba) 2 (H2 O ) 2 ] (3), and [Ba(4-aba) 2 Cl] (4), respectively. The new compounds 1 and 2, as well as the previously reported 3 and 4 form an extended intra- and intermolecular hydrogen bonded network in the solid-state. The compounds have been characterized by elemental analysis, pH measurements, thermogravimetric studies, and IR, NMR, and UV-Vis spectroscopy. The solid state structures of the molecules 1 and 2 have been determined by single crystal x-ray diffraction studies. In the case of magnesium complex 1, the dipositively charged Mg cation is surrounded by six water molecules and the two 4-aminobenzoate ligands show no direct bonding to the metal ion. The calcium ion in 2 is octa-coordinated with direct coordination of the 4-aminobenzoate ligands to the metal ion. The Ca-Ca separation in the polymeric chain of 2 is 3.9047(5) A. (author)

  1. The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration.

    Science.gov (United States)

    Romero, Paco; Lafuente, María T; Rodrigo, María J

    2012-08-01

    The abscisic acid (ABA) signalling core in plants include the cytosolic ABA receptors (PYR/PYL/RCARs), the clade-A type 2C protein phosphatases (PP2CAs), and the subclass III SNF1-related protein kinases 2 (SnRK2s). The aim of this work was to identify these ABA perception system components in sweet orange and to determine the influence of endogenous ABA on their transcriptional regulation during fruit development and ripening, taking advantage of the comparative analysis between a wild-type and a fruit-specific ABA-deficient mutant. Transcriptional changes in the ABA signalosome during leaf dehydration were also studied. Six PYR/PYL/RCAR, five PP2CA, and two subclass III SnRK2 genes, homologous to those of Arabidopsis, were identified in the Citrus genome. The high degree of homology and conserved motifs for protein folding and for functional activity suggested that these Citrus proteins are bona fide core elements of ABA perception in orange. Opposite expression patterns of CsPYL4 and CsPYL5 and ABA accumulation were found during ripening, although there were few differences between varieties. In contrast, changes in expression of CsPP2CA genes during ripening paralleled those of ABA content and agreeed with the relevant differences between wild-type and mutant fruit transcript accumulation. CsSnRK2 gene expression continuously decreased with ripening and no remarkable differences were found between cultivars. Overall, dehydration had a minor effect on CsPYR/PYL/RCAR and CsSnRK2 expression in vegetative tissue, whereas CsABI1, CsAHG1, and CsAHG3 were highly induced by water stress. The global results suggest that responsiveness to ABA changes during citrus fruit ripening, and leaf dehydration was higher in the CsPP2CA gene negative regulators than in the other ABA signalosome components.

  2. ABA-Cloud: support for collaborative breath research.

    Science.gov (United States)

    Elsayed, Ibrahim; Ludescher, Thomas; King, Julian; Ager, Clemens; Trosin, Michael; Senocak, Uygar; Brezany, Peter; Feilhauer, Thomas; Amann, Anton

    2013-06-01

    This paper introduces the advanced breath analysis (ABA) platform, an innovative scientific research platform for the entire breath research domain. Within the ABA project, we are investigating novel data management concepts and semantic web technologies to document breath analysis studies for the long run as well as to enable their full automatic reproducibility. We propose several concept taxonomies (a hierarchical order of terms from a glossary of terms), which can be seen as a first step toward the definition of conceptualized terms commonly used by the international community of breath researchers. They build the basis for the development of an ontology (a concept from computer science used for communication between machines and/or humans and representation and reuse of knowledge) dedicated to breath research.

  3. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    Science.gov (United States)

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M. H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2013-01-01

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites. PMID:22116026

  4. Regulation of carotenoid and ABA accumulation during the development and germination of Nicotiana plumbaginifolia seeds.

    Science.gov (United States)

    Frey, Anne; Boutin, Jean-Pierre; Sotta, Bruno; Mercier, Raphaël; Marion-Poll, Annie

    2006-08-01

    Abscisic acid (ABA) is derived from epoxycarotenoid cleavage and regulates seed development and maturation. A detailed carotenoid analysis was undertaken to study the contribution of epoxycarotenoid synthesis to the regulation of ABA accumulation in Nicotiana plumbaginifolia developing seeds. Maximal accumulation of xanthophylls occurred at mid-development in wild type seeds, when total ABA levels also peaked. In contrast, in ABA-deficient mutants xanthophyll synthesis was delayed, in agreement with the retardation in seed maturation. Seed dormancy was restored in mutants impaired in the conversion of zeaxanthin into violaxanthin by zeaxanthin epoxidase (ZEP), by the introduction of the Arabidopsis AtZEP gene under the control of promoters inducing expression during later stages of seed development compared to wild type NpZEP, and in dry and imbibed seeds. Alterations in the timing and level of ZEP expression did not highly affect the temporal regulation of ABA accumulation in transgenic seeds, despite notable perturbations in xanthophyll accumulation. Therefore, major regulatory control of ABA accumulation might occur downstream of epoxycarotenoid synthesis.

  5. Reciprocal Regulation of the TOR Kinase and ABA Receptor Balances Plant Growth and Stress Response.

    Science.gov (United States)

    Wang, Pengcheng; Zhao, Yang; Li, Zhongpeng; Hsu, Chuan-Chih; Liu, Xue; Fu, Liwen; Hou, Yueh-Ju; Du, Yanyan; Xie, Shaojun; Zhang, Chunguang; Gao, Jinghui; Cao, Minjie; Huang, Xiaosan; Zhu, Yingfang; Tang, Kai; Wang, Xingang; Tao, W Andy; Xiong, Yan; Zhu, Jian-Kang

    2018-01-04

    As sessile organisms, plants must adapt to variations in the environment. Environmental stress triggers various responses, including growth inhibition, mediated by the plant hormone abscisic acid (ABA). The mechanisms that integrate stress responses with growth are poorly understood. Here, we discovered that the Target of Rapamycin (TOR) kinase phosphorylates PYL ABA receptors at a conserved serine residue to prevent activation of the stress response in unstressed plants. This phosphorylation disrupts PYL association with ABA and with PP2C phosphatase effectors, leading to inactivation of SnRK2 kinases. Under stress, ABA-activated SnRK2s phosphorylate Raptor, a component of the TOR complex, triggering TOR complex dissociation and inhibition. Thus, TOR signaling represses ABA signaling and stress responses in unstressed conditions, whereas ABA signaling represses TOR signaling and growth during times of stress. Plants utilize this conserved phospho-regulatory feedback mechanism to optimize the balance of growth and stress responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Postharvest Exogenous Application of Abscisic Acid Reduces Internal Browning in Pineapple.

    Science.gov (United States)

    Zhang, Qin; Liu, Yulong; He, Congcong; Zhu, Shijiang

    2015-06-10

    Internal browning (IB) is a postharvest physiological disorder causing economic losses in pineapple, but there is no effective control measure. In this study, postharvest application of 380 μM abscisic acid (ABA) reduced IB incidence by 23.4-86.3% and maintained quality in pineapple fruit. ABA reduced phenolic contents and polyphenol oxidase and phenylalanine ammonia lyase activities; increased catalase and peroxidase activities; and decreased O2(·-), H2O2, and malondialdehyde levels. This suggests ABA could control IB through inhibiting phenolics biosynthesis and oxidation and enhancing antioxidant capability. Furthermore, the efficacy of IB control by ABA was not obviously affected by tungstate, ABA biosynthesis inhibitor, nor by diphenylene iodonium, NADPH oxidase inhibitor, nor by lanthanum chloride, calcium channel blocker, suggesting that ABA is sufficient for controlling IB. This process might not involve H2O2 generation, but could involve the Ca(2+) channels activation. These results provide potential for developing effective measures for controlling IB in pineapple.

  7. 40 CFR 63.1296 - Standards for slabstock flexible polyurethane foam production-HAP ABA equipment leaks.

    Science.gov (United States)

    2010-07-01

    ... polyurethane foam production-HAP ABA equipment leaks. 63.1296 Section 63.1296 Protection of Environment... production—HAP ABA equipment leaks. Each owner or operator of a new or existing slabstock affected source complying with the emission point specific limitation option provided in § 63.1293(a) shall control HAP ABA...

  8. 40 CFR 63.1295 - Standards for slabstock flexible polyurethane foam production-HAP ABA storage vessels.

    Science.gov (United States)

    2010-07-01

    ... polyurethane foam production-HAP ABA storage vessels. 63.1295 Section 63.1295 Protection of Environment... production—HAP ABA storage vessels. Each owner or operator of a new or existing slabstock affected source complying with the emission point specific limitation option provided in § 63.1293(a) shall control HAP ABA...

  9. Coping as a Predictor of Burnout and General Health in Therapists Working in ABA Schools

    Science.gov (United States)

    Griffith, G. M.; Barbakou, A.; Hastings, R. P.

    2014-01-01

    Background: Little is known about the work-related well-being of applied behaviour analysis (ABA) therapists who work in school-based contexts and deliver ABA interventions to children with autism. Methods: A questionnaire on work-related stress (burnout), general distress, perceived supervisor support and coping was completed by 45 ABA therapists…

  10. Profiling ABA metabolites in Nicotiana tabacum L. leaves by ultra-performance liquid chromatography-electrospray tandem mass spectrometry.

    Science.gov (United States)

    Turecková, Veronika; Novák, Ondrej; Strnad, Miroslav

    2009-11-15

    We have developed a simple method for extracting and purifying (+)-abscisic acid (ABA) and eight ABA metabolites--phaseic acid (PA), dihydrophaseic acid (DPA), neophaseic acid (neoPA), ABA-glucose ester (ABAGE), 7'-hydroxy-ABA (7'-OH-ABA), 9'-hydroxy-ABA (9'-OH-ABA), ABAaldehyde, and ABAalcohol--before analysis by a novel technique for these substances, ultra-performance liquid chromatography-electrospray ionisation tandem mass spectrometry (UPLC-ESI-MS/MS). The procedure includes addition of deuterium-labelled standards, extraction with methanol-water-acetic acid (10:89:1, v/v), simple purification by Oasis((R)) HLB cartridges, rapid chromatographic separation by UPLC, and sensitive, accurate quantification by MS/MS in multiple reaction monitoring modes. The detection limits of the technique ranged between 0.1 and 1 pmol for ABAGE and ABA acids in negative ion mode, and 0.01-0.50 pmol for ABAGE, ABAaldehyde, ABAalcohol and the methylated acids in positive ion mode. The fast liquid chromatographic separation and analysis of ABA and its eight measured derivatives by UPLC-ESI-MS/MS provide rapid, accurate and robust quantification of most of the substances, and the low detection limits allow small amounts of tissue (1-5mg) to be used in quantitative analysis. To demonstrate the potential of the technique, we isolated ABA and its metabolites from control and water-stressed tobacco leaf tissues then analysed them by UPLC-ESI-MS/MS. Only ABA, PA, DPA, neoPA, and ABAGE were detected in the samples. PA was the most abundant analyte (ca. 1000 pmol/g f.w.) in both the control and water-stressed tissues, followed by ABAGE and DPA, which were both present at levels ca. 5-fold lower. ABA levels were at least 100-fold lower than PA concentrations, but they increased following the water stress treatment, while ABAGE, PA, and DPA levels decreased. Overall, the technique offers substantial improvements over previously described methods, enabling the detailed, direct study of

  11. Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response

    OpenAIRE

    Chen, Li-Ting; Wu, Keqiang

    2010-01-01

    Our recent study revealed the involvement of the Arabidopsis histone deacetylase HDA6 in modulating ABA and salt stress responses. In this report, we further investigated the role of HDA19 in ABA and salt stress responses. The Arabidopsis HDA19 T-DNA insertion mutant, hda19-1, displayed a phenotype that was hypersensitive to ABA and salt stress. Compared with wild-type plants, the expression of ABA responsive genes, ABI1, ABI2, KAT1, KAT2 and RD29B, was decreased in hda19-1 plants when treate...

  12. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    OpenAIRE

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M. H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun

    2011-01-01

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, wh...

  13. PAISAGEM CULTURAL: AVALIAÇÃO DAS PAISAGENS CÊNICAS DE GUARAQUEÇABA (Cultural landscape: evaluation of scenic landscapes Guaraqueçaba)

    OpenAIRE

    SOUZA, Roberson Miranda; PASSOS, Messias Modesto dos; YAMAKI, Humberto

    2014-01-01

    A Paisagem Cultural do município de Guaraqueçaba que está localizado no Estado do Paraná, na planície costeira, representada no recorte com latitude entre 23º e 26º S e longitude 48º e 54º W, área de difícil acesso. Área de proteção ambiental, sendo Guaraqueçaba situada em uma privilegiada porção preservada de Floresta Tropical Úmida, aproximadamente 500 mil ha, que juntamente com a região Sul do Estado de São Paulo representa a maior área contínua de remanescentes dessa floresta. Deste modo ...

  14. Fern Stomatal Responses to ABA and CO2 Depend on Species and Growth Conditions.

    Science.gov (United States)

    Hõrak, Hanna; Kollist, Hannes; Merilo, Ebe

    2017-06-01

    Changing atmospheric CO 2 levels, climate, and air humidity affect plant gas exchange that is controlled by stomata, small pores on plant leaves and stems formed by guard cells. Evolution has shaped the morphology and regulatory mechanisms governing stomatal movements to correspond to the needs of various land plant groups over the past 400 million years. Stomata close in response to the plant hormone abscisic acid (ABA), elevated CO 2 concentration, and reduced air humidity. Whether the active regulatory mechanisms that control stomatal closure in response to these stimuli are present already in mosses, the oldest plant group with stomata, or were acquired more recently in angiosperms remains controversial. It has been suggested that the stomata of the basal vascular plants, such as ferns and lycophytes, close solely hydropassively. On the other hand, active stomatal closure in response to ABA and CO 2 was found in several moss, lycophyte, and fern species. Here, we show that the stomata of two temperate fern species respond to ABA and CO 2 and that an active mechanism of stomatal regulation in response to reduced air humidity is present in some ferns. Importantly, fern stomatal responses depend on growth conditions. The data indicate that the stomatal behavior of ferns is more complex than anticipated before, and active stomatal regulation is present in some ferns and has possibly been lost in others. Further analysis that takes into account fern species, life history, evolutionary age, and growth conditions is required to gain insight into the evolution of land plant stomatal responses. © 2017 American Society of Plant Biologists. All Rights Reserved.

  15. Amplification of ABA biosynthesis and signaling through a positive feedback mechanism in seeds.

    Science.gov (United States)

    Nonogaki, Mariko; Sall, Khadidiatou; Nambara, Eiji; Nonogaki, Hiroyuki

    2014-05-01

    Abscisic acid is an essential hormone for seed dormancy. Our previous study using the plant gene switch system, a chemically induced gene expression system, demonstrated that induction of 9-cis-epoxycarotenoid dioxygenase (NCED), a rate-limiting ABA biosynthesis gene, was sufficient to suppress germination in imbibed Arabidopsis seeds. Here, we report development of an efficient experimental system that causes amplification of NCED expression during seed maturation. The system was created with a Triticum aestivum promoter containing ABA responsive elements (ABREs) and a Sorghum bicolor NCED to cause ABA-stimulated ABA biosynthesis and signaling, through a positive feedback mechanism. The chimeric gene pABRE:NCED enhanced NCED and ABF (ABRE-binding factor) expression in Arabidopsis Columbia-0 seeds, which caused 9- to 73-fold increases in ABA levels. The pABRE:NCED seeds exhibited unusually deep dormancy which lasted for more than 3 months. Interestingly, the amplified ABA pathways also caused enhanced expression of Arabidopsis NCED5, revealing the presence of positive feedback in the native system. These results demonstrated the robustness of positive feedback mechanisms and the significance of NCED expression, or single metabolic change, during seed maturation. The pABRE:NCED system provides an excellent experimental system producing dormant and non-dormant seeds of the same maternal origin, which differ only in zygotic ABA. The pABRE:NCED seeds contain a GFP marker which enables seed sorting between transgenic and null segregants and are ideal for comparative analysis. In addition to its utility in basic research, the system can also be applied to prevention of pre-harvest sprouting during crop production, and therefore contributes to translational biology. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  16. Abscisic Acid Is a Major Regulator of Grape Berry Ripening Onset: New Insights into ABA Signaling Network

    Science.gov (United States)

    Pilati, Stefania; Bagagli, Giorgia; Sonego, Paolo; Moretto, Marco; Brazzale, Daniele; Castorina, Giulia; Simoni, Laura; Tonelli, Chiara; Guella, Graziano; Engelen, Kristof; Galbiati, Massimo; Moser, Claudio

    2017-01-01

    Grapevine is a world-wide cultivated economically relevant crop. The process of berry ripening is non-climacteric and does not rely on the sole ethylene signal. Abscisic acid (ABA) is recognized as an important hormone of ripening inception and color development in ripening berries. In order to elucidate the effect of this signal at the molecular level, pre-véraison berries were treated ex vivo for 20 h with 0.2 mM ABA and berry skin transcriptional modulation was studied by RNA-seq after the treatment and 24 h later, in the absence of exogenous ABA. This study highlighted that a small amount of ABA triggered its own biosynthesis and had a transcriptome-wide effect (1893 modulated genes) characterized by the amplification of the transcriptional response over time. By comparing this dataset with the many studies on ripening collected within the grapevine transcriptomic compendium Vespucci, an extended overlap between ABA- and ripening modulated gene sets was observed (71% of the genes), underpinning the role of this hormone in the regulation of berry ripening. The signaling network of ABA, encompassing ABA metabolism, transport and signaling cascade, has been analyzed in detail and expanded based on knowledge from other species in order to provide an integrated molecular description of this pathway at berry ripening onset. Expression data analysis was combined with in silico promoter analysis to identify candidate target genes of ABA responsive element binding protein 2 (VvABF2), a key upstream transcription factor of the ABA signaling cascade which is up-regulated at véraison and also by ABA treatments. Two transcription factors, VvMYB143 and VvNAC17, and two genes involved in protein degradation, Armadillo-like and Xerico-like genes, were selected for in vivo validation by VvABF2-mediated promoter trans-activation in tobacco. VvNAC17 and Armadillo-like promoters were induced by ABA via VvABF2, while VvMYB143 responded to ABA in a VvABF2-independent manner. This

  17. Crystallization and initial X-ray data of abscisic acid receptor PYL3 in the presence of (−)-ABA

    International Nuclear Information System (INIS)

    Zhang, Xingliang; Zhang, Qi; Wang, Guoqiang

    2013-01-01

    The complex of the abscisic acid receptor PYL3 with (−)-ABA was crystallized and refined to obtain high-quality diffraction data. Diffraction data were collected and processed at 2.65 Å resolution. Abscisic acid (ABA) modulates many complicated developmental processes and responses to environmental stimuli. Recently, several (+)-ABA signalling mechanisms by the RCAR/PYR1/PYL family of proteins (PYLs) have been proposed. However, the mechanism of the recognition and binding of the unnatural ligand (−)-ABA by PYLs has not yet been elucidated. In the present study, the expression, purification and crystallization of PYL3 in complex with (−)-ABA are reported. Diffraction data were refined to 2.65 Å resolution for this complex in space group P6 5 . These findings will help to explain the stereospecificity of PYLs for (−)-ABA and to explore the selective ABA agonists

  18. Proteomic analyses reveal the key roles of BrlA and AbaA in biogenesis of gliotoxin in Aspergillus fumigatus.

    Science.gov (United States)

    Shin, Kwang-Soo; Kim, Young Hwan; Yu, Jae-Hyuk

    2015-07-31

    The opportunistic human pathogenic fungus Aspergillus fumigatus primarily reproduces by forming a large number of asexual spores (conidia). Sequential activation of the central regulators BrlA, AbaA and WetA is necessary for the fungus to undergo asexual development. In this study, to address the presumed roles of these key developmental regulators during proliferation of the fungus, we analyzed and compared the proteomes of vegetative cells of wild type (WT) and individual mutant strains. Approximately 1300 protein spots were detectable from 2-D electrophoresis gels. Among these, 13 proteins exhibiting significantly altered accumulation levels were further identified by ESI-MS/MS. Markedly, we found that the GliM and GliT proteins associated with gliotoxin (GT) biosynthesis and self-protection of the fungus from GT were significantly down-regulated in the ΔabaA and ΔbrlA mutants. Moreover, mRNA levels of other GT biosynthetic genes including gliM, gliP, gliT, and gliZ were significantly reduced in both mutant strains, and no and low levels of GT were detectable in the ΔbrlA and ΔabaA mutant strains, respectively. As GliT is required for the protection of the fungus from GT, growth of the ΔbrlA mutant with reduced levels of GliT was severely impaired by exogenous GT. Our studies demonstrate that AbaA and BrlA positively regulate expression of the GT biosynthetic gene cluster in actively growing vegetative cells, and likely bridge morphological and chemical development during the life-cycle of A. fumigatus. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant.

    Science.gov (United States)

    Romero, Paco; Rodrigo, María J; Alférez, Fernando; Ballester, Ana-Rosa; González-Candelas, Luis; Zacarías, Lorenzo; Lafuente, María T

    2012-04-01

    Water stress affects many agronomic traits that may be regulated by the phytohormone abscisic acid (ABA). Within these traits, loss of fruit quality becomes important in many citrus cultivars that develop peel damage in response to dehydration. To study peel dehydration transcriptional responsiveness in harvested citrus fruit and the putative role of ABA in this process, this study performed a comparative large-scale transcriptional analysis of water-stressed fruits of the wild-type Navelate orange (Citrus sinesis L. Osbeck) and its spontaneous ABA-deficient mutant Pinalate, which is more prone to dehydration and to developing peel damage. Major changes in gene expression occurring in the wild-type line were impaired in the mutant fruit. Gene ontology analysis revealed the ability of Navelate fruits to induce the response to water deprivation and di-, tri-valent inorganic cation transport biological processes, as well as repression of the carbohydrate biosynthesis process in the mutant. Exogenous ABA triggered relevant transcriptional changes and repressed the protein ubiquitination process, although it could not fully rescue the physiological behaviour of the mutant. Overall, the results indicated that dehydration responsiveness requires ABA-dependent and -independent signals, and highlight that the ability of citrus fruits to trigger molecular responses against dehydration is an important factor in reducing their susceptibility to developing peel damage.

  20. Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases

    OpenAIRE

    Ng, Ley-Moy; Soon, Fen-Fen; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Suino-Powell, Kelly M.; Chalmers, Michael J.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2011-01-01

    Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the cryst...

  1. 40 CFR 63.1297 - Standards for slabstock flexible polyurethane foam production-HAP ABA emissions from the...

    Science.gov (United States)

    2010-07-01

    ... polyurethane foam production-HAP ABA emissions from the production line. 63.1297 Section 63.1297 Protection of... foam production—HAP ABA emissions from the production line. (a) Each owner or operator of a new or... § 63.1293(a)(1) shall control HAP ABA emissions from the slabstock polyurethane foam production line in...

  2. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis.

    Science.gov (United States)

    Shu, Kai; Qi, Ying; Chen, Feng; Meng, Yongjie; Luo, Xiaofeng; Shuai, Haiwei; Zhou, Wenguan; Ding, Jun; Du, Junbo; Liu, Jiang; Yang, Feng; Wang, Qiang; Liu, Weiguo; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Yang, Wenyu

    2017-01-01

    Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN), an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde) level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA 1 , GA 3 , and GA 4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA 1 /ABA, GA 3 /ABA, and GA 4 /ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress.

  3. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis

    Directory of Open Access Journals (Sweden)

    Kai Shu

    2017-08-01

    Full Text Available Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA while positively mediating abscisic acid (ABA biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN, an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA1, GA3, and GA4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA1/ABA, GA3/ABA, and GA4/ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress.

  4. Arabidopsis CPR5 independently regulates seed germination and postgermination arrest of development through LOX pathway and ABA signaling.

    Directory of Open Access Journals (Sweden)

    Guilan Gao

    Full Text Available The phytohormone abscisic acid (ABA and the lipoxygenases (LOXs pathway play important roles in seed germination and seedling growth and development. Here, we reported on the functional characterization of Arabidopsis CPR5 in the ABA signaling and LOX pathways. The cpr5 mutant was hypersensitive to ABA in the seed germination, cotyledon greening and root growth, whereas transgenic plants overexpressing CPR5 were insensitive. Genetic analysis demonstrated that CPR5 gene may be located downstream of the ABI1 in the ABA signaling pathway. However, the cpr5 mutant showed an ABA independent drought-resistant phenotype. It was also found that the cpr5 mutant was hypersensitive to NDGA and NDGA treatment aggravated the ABA-induced delay in the seed germination and cotyledon greening. Taken together, these results suggest that the CPR5 plays a regulatory role in the regulation of seed germination and early seedling growth through ABA and LOX pathways independently.

  5. Unraveling the involvement of ABA in the water deficit-induced modulation of nitrogen metabolism in Medicago truncatula seedlings.

    Science.gov (United States)

    Planchet, Elisabeth; Rannou, Olivier; Ricoult, Claudie; Limami, Anis M

    2011-07-01

    Effects of water deficit and/or abscisic acid (ABA) were investigated on early seedling growth of Medicago truncatula, and on glutamate metabolism under dark conditions. Water deficit (simulated by polyethylene glycol, PEG), ABA and their combination resulted in a reduction in growth rate of the embryo axis, and also in a synergistic increase of free amino acid (AA) content. However, the inhibition of water uptake retention induced by water deficit seemed to occur in an ABA-independent manner. Expression of several genes involved in glutamate metabolism was induced during water deficit, whereas ABA, in combination or not with PEG, repressed them. The only exception came from a gene encoding 1-pyrroline-5-carboxylate synthetase (P5CS) which appeared to be induced in an ABA-dependent manner under water deficit. Our results demonstrate clearly the involvement of an ABA-dependent and an ABA-independent regulatory system, governing growth and glutamate metabolism under water deficit.

  6. Type 2C Phosphatase 1 of Artemisia annua L. Is a Negative Regulator of ABA Signaling

    Directory of Open Access Journals (Sweden)

    Fangyuan Zhang

    2014-01-01

    Full Text Available The phytohormone abscisic acid (ABA plays an important role in plant development and environmental stress response. Additionally, ABA also regulates secondary metabolism such as artemisinin in the medicinal plant Artemisia annua L. Although an earlier study showed that ABA receptor, AaPYL9, plays a positive role in ABA-induced artemisinin content improvement, many components in the ABA signaling pathway remain to be elucidated in Artemisia annua L. To get insight of the function of AaPYL9, we isolated and characterized an AaPYL9-interacting partner, AaPP2C1. The coding sequence of AaPP2C1 encodes a deduced protein of 464 amino acids, with all the features of plant type clade A PP2C. Transcriptional analysis showed that the expression level of AaPP2C1 is increased after ABA, salt, and drought treatments. Yeast two-hybrid and bimolecular fluorescence complementation assays (BiFC showed that AaPYL9 interacted with AaPP2C1. The P89S, H116A substitution in AaPYL9 as well as G199D substitution or deletion of the third phosphorylation site-like motif in AaPP2C1 abolished this interaction. Furthermore, constitutive expression of AaPP2C1 conferred ABA insensitivity compared with the wild type. In summary, our data reveals that AaPP2C1 is an AaPYL9-interacting partner and involved in the negative modulation of the ABA signaling pathway in A. annua L.

  7. Role of abscisic acid (aba) in modulating the responses of two apple rootstocks to drought stress

    International Nuclear Information System (INIS)

    Zhang, L.; Li, X.; Li, B.; Han, M.; Liu, F.; Zhang, L.; Zheng, P.

    2014-01-01

    Drought stress is considered as the main limiting factor for apple (Malus domestica L.) production in some semi-arid areas of China. In this study, we investigated the modulation role of abscisic acid (ABA) and fluridone (ABA synthesis inhibitor) on water relations and antioxidant enzyme system in 2-year-old seedlings of two apple rootstocks i.e. Malus sieversii (Ledeb.) Roem. (MS) and Malus hupehensis (Pamp.) Rehd. (MH). Drought stress induced ion leakage, accumulation of malondiadehyde (MDA) and decreases in leaf water potential and relative water content (RWC) in both rootstocks, which were significantly alleviated by exogenous ABA application. Drought stress also induced markedly increases in endogenous ABA content and activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR), to a greater magnitude in MS as compared to MH rootstock. Concentration of 100 mol/L and 50 mol/L ABA had the most positive effects on drought-stressed rootstocks of MS and MH, respectively. Spraying optimum exogenous ABA contributed to enhancement in most of the above antioxidant enzymes activities but reduction in content of MDA and maintained the appropriate leaf water potential and RWC in both rootstocks. Pretreatment with fluridone aggravated ion leakage and the accumulation of MDA in two apple rootstocks under drought stress, which was overcome by exogenous ABA application to some extent. In conclusion, the endogenous ABA was probably involved in the regulation of two apple rootstocks in responses to drought stress. (author)

  8. Transient expression of color genes and in vitro regerenation from agroinfiltration-transformed floral tissues of Dendrobium Sonia 'Earsakul'

    International Nuclear Information System (INIS)

    Sahagun, Jorge R.

    2016-05-01

    Dendrobium Sonia 'Earsakul' is one of the favorite orchid hybrids in Thailand that has been popularized in most countries around the world due to its spectacular form, however, it is only limited to purple flower variety. As the high demand of tropical orchids increased the level of competition in the global market, molecular breeding offers an alternative to traditional hybridization for a rapid development of new cultivars with interesting qualities such as variation in flower colors. Therefore, we established a molecular baseline of a possible redirection of the endogenous anthocyanin into another flavonoid, the yellow aurone, in D. Sonia 'Earsakul'. We successfully constructed pSTARGATE-F3H, pCAMBIA1304-AmAS1 and pCAMBIA1304-Am4'CGT vectors characterized the individual effects of endogenous DseF3H silencing or overexpression of aurone genes, AS1 and 4'CGT and the combinations of the 3 genes through agroinfiltration-based transient transformation in petal and sepal tissues of D. Sonia 'Earsakul'. As expected, down-regulation of endogenous DseF3H mRNA transcript and color changes were observed in infiltrated areas of petal and sepal tissues as a result of impaired anthocynanin accumulation. On the other hand, the introduction of heterologous AmAS1 and Am4'CGT genes and their combined constructs have resulted to unexpected color phenotypes in D. Sonia 'Earsakul' petal and sepal tissues. The combination of the three gene constructs has resulted to white coupled with yellowish green phenotypes. However, semi-quantitative RT-PCR results could not be established if the color changes were the end products of aruone biosynthesis. Determination of the in vitro regenerative potential of petal and sepal tissues was also conducted for designing a new transformation system in orchids. Petal and sepal explants from floral buds (2.0-2.3 cm) survived on half-strength MS solid medium supplemented with or without α-naphthaleneacetic acid (NAA) or/and benzylaminopurine (BA) but

  9. Determination of ABA-binding proteins contents in subcellular fractions isolated from cotton seedlings using radioimmunoanalysis

    International Nuclear Information System (INIS)

    Tursunkhodjayeva, F.M.

    2004-01-01

    Full text: Knowledge of plants' hormone receptor sites is essential to understanding of the principles of phytohormone action in cells and tissues. The hormone abscisic acid (ABA) takes part in many important physiological processes of plants, including water balance and resistance to salt stress. The detection of salt tolerance in the early stages of ontogenesis is desirable for effective cultivation of cotton. Usually such characteristics are determined visually after genetic analysis of hybrids over several generations. This classic method of genetics requires a long time to grow several generations of cotton plants. In this connection we study ABA-binding protein contents in subcellular fractions isolated from seedlings of several kinds of cotton with different tolerance to salt stress. The contents of ABA-binding protein in nuclei and chloroplasts fractions isolated from cotton seedlings were determined using radioimmunoanalysis. The subcellular fractions were prepared by ultracentrifugation in 0,25 - 2,2 M sucrose gradient. ABA-binding protein was isolated from cotton seedlings by affinity chromatography. The antibodies against ABA-binding protein of cotton were developed in rabbits according standard protocols. Than the antibodies were labelled by radioisotope J 125 according Greenwood et al. It was shown, that the nuclei and chloroplasts fractions isolated from cotton with high tolerance to salt stress contain ABA-binding protein up to 1,5-1,8 times more, than the same fractions from cotton with low tolerance to salt stress. So, the ABA-binding protein contents in cotton seedlings may be considered as a marker for screening of cotton kinds, which may potentially have high tolerance to salt stress

  10. AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress.

    Science.gov (United States)

    Sun, Xinbo; Sun, Chunyu; Li, Zhigang; Hu, Qian; Han, Liebao; Luo, Hong

    2016-06-01

    Heat shock proteins (HSPs) are molecular chaperones that accumulate in response to heat and other abiotic stressors. Small HSPs (sHSPs) belong to the most ubiquitous HSP subgroup with molecular weights ranging from 12 to 42 kDa. We have cloned a new sHSP gene, AsHSP17 from creeping bentgrass (Agrostis stolonifera) and studied its role in plant response to environmental stress. AsHSP17 encodes a protein of 17 kDa. Its expression was strongly induced by heat in both leaf and root tissues, and by salt and abscisic acid (ABA) in roots. Transgenic Arabidopsis plants constitutively expressing AsHSP17 exhibited enhanced sensitivity to heat and salt stress accompanied by reduced leaf chlorophyll content and decreased photosynthesis under both normal and stressed conditions compared to wild type. Overexpression of AsHSP17 also led to hypersensitivity to exogenous ABA and salinity during germination and post-germinative growth. Gene expression analysis indicated that AsHSP17 modulates expression of photosynthesis-related genes and regulates ABA biosynthesis, metabolism and ABA signalling as well as ABA-independent stress signalling. Our results suggest that AsHSP17 may function as a protein chaperone to negatively regulate plant responses to adverse environmental stresses through modulating photosynthesis and ABA-dependent and independent signalling pathways. © 2015 John Wiley & Sons Ltd.

  11. Lipid profiling demonstrates that suppressing Arabidopsis phospholipase Dδ retards ABA-promoted leaf senescence by attenuating lipid degradation.

    Directory of Open Access Journals (Sweden)

    Yanxia Jia

    Full Text Available Senescence is the last phase of the plant life cycle and has an important role in plant development. Degradation of membrane lipids is an essential process during leaf senescence. Several studies have reported fundamental changes in membrane lipids and phospholipase D (PLD activity as leaves senesce. Suppression of phospholipase Dα1 (PLDα1 retards abscisic acid (ABA-promoted senescence. However, given the absence of studies that have profiled changes in the compositions of membrane lipid molecules during leaf senescence, there is no direct evidence that PLD affects lipid composition during the process. Here, we show that application of n-butanol, an inhibitor of PLD, and N-Acylethanolamine (NAE 12∶0, a specific inhibitor of PLDα1, retarded ABA-promoted senescence to different extents. Furthermore, phospholipase Dδ (PLDδ was induced in leaves treated with ABA, and suppression of PLDδ retarded ABA-promoted senescence in Arabidopsis. Lipid profiling revealed that detachment-induced senescence had different effects on plastidic and extraplastidic lipids. The accelerated degradation of plastidic lipids during ABA-induced senescence in wild-type plants was attenuated in PLDδ-knockout (PLDδ-KO plants. Dramatic increases in phosphatidic acid (PA and decreases in phosphatidylcholine (PC during ABA-induced senescence were also suppressed in PLDδ-KO plants. Our results suggest that PLDδ-mediated hydrolysis of PC to PA plays a positive role in ABA-promoted senescence. The attenuation of PA formation resulting from suppression of PLDδ blocks the degradation of membrane lipids, which retards ABA-promoted senescence.

  12. The biological activity of ABA-1-like protein from Ascaris lumbricoides.

    Science.gov (United States)

    Muto, R; Imai, S; Tezuka, H; Furuhashi, Y; Fujita, K

    2001-09-01

    The elevation of non-specific IgE (total IgE) in Ascaris infection can be seen one week after infection, and reaches a peak after approximately two weeks. It has been reported that ABA-1 protein is the main constituent in the pseudocoelomic fluid of Ascaris suum. To investigate the effect of the ABA-1-like protein from Ascaris lumbricoides (ALB), the cDNA was cloned by reverse transcriptase polymerase chain reaction, using original primers based on the consensus sequences of ABA-1 and TBA-1, that is an ABA-1-like protein from Toxocara canis. The clone was sequenced, we constructed the recombinant polyprotein of ALB (rALB14 and rALB7) based on the ALB sequence, and rALB was administrated to BALB/c mice. Fourteen days after inoculation with rALB14 which is the full length of ALB, the elevation of total IgE which we supposed to contain non-specific IgE was observed, and the results were as we expected. Furthermore, in an in-vitro experiment, we confirmed that the spleen cells proliferated when stimulated by rALB14 and concanavalin A. Therefore, the whole conformation of ALB is considered to be involved in the elevation of non-specific IgE, and is involved in the activation of T cells.

  13. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana.

    Science.gov (United States)

    Marin, E; Nussaume, L; Quesada, A; Gonneau, M; Sotta, B; Hugueney, P; Frey, A; Marion-Poll, A

    1996-05-15

    Abscisic acid (ABA) is a plant hormone which plays an important role in seed development and dormancy and in plant response to environmental stresses. An ABA-deficient mutant of Nicotiana plumbaginifolia, aba2, was isolated by transposon tagging using the maize Activator transposon. The aba2 mutant exhibits precocious seed germination and a severe wilty phenotype. The mutant is impaired in the first step of the ABA biosynthesis pathway, the zeaxanthin epoxidation reaction. ABA2 cDNA is able to complement N.plumbaginifolia aba2 and Arabidopsis thaliana aba mutations indicating that these mutants are homologous. ABA2 cDNA encodes a chloroplast-imported protein of 72.5 kDa, sharing similarities with different mono-oxigenases and oxidases of bacterial origin and having an ADP-binding fold and an FAD-binding domain. ABA2 protein, produced in Escherichia coli, exhibits in vitro zeaxanthin epoxidase activity. This is the first report of the isolation of a gene of the ABA biosynthetic pathway. The molecular identification of ABA2 opens the possibility to study the regulation of ABA biosynthesis and its cellular location.

  14. Effects of ABA application on cessation of shoot elongation in long-day grown Norway spruce seedlings.

    Science.gov (United States)

    Heide, O M

    1986-06-01

    Abscisic acid (ABA) was applied in lanolin to apical buds of Norway spruce (Picea abies (L.) Karst.) seedlings actively growing in a 24 h photoperiod. At a rate of 100 microg per plant, ABA suspended shoot elongation for about three weeks in the majority of plants but failed to induce normal winter buds. The role of ABA in the induction of dormancy is thus uncertain in conifers as well as in deciduous woody plants.

  15. Spread of carbapenem-resistant Acinetobacter baumannii global clone 2 in Asia and AbaR-type resistance islands.

    Science.gov (United States)

    Kim, Dae Hun; Choi, Ji-Young; Kim, Hae Won; Kim, So Hyun; Chung, Doo Ryeon; Peck, Kyong Ran; Thamlikitkul, Visanu; So, Thomas Man-Kit; Yasin, Rohani M D; Hsueh, Po-Ren; Carlos, Celia C; Hsu, Li Yang; Buntaran, Latre; Lalitha, M K; Song, Jae-Hoon; Ko, Kwan Soo

    2013-11-01

    In this surveillance study, we identified the genotypes, carbapenem resistance determinants, and structural variations of AbaR-type resistance islands among carbapenem-resistant Acinetobacter baumannii (CRAB) isolates from nine Asian locales. Clonal complex 92 (CC92), corresponding to global clone 2 (GC2), was the most prevalent in most Asian locales (83/108 isolates; 76.9%). CC108, or GC1, was a predominant clone in India. OXA-23 oxacillinase was detected in CRAB isolates from most Asian locales except Taiwan. blaOXA-24 was found in CRAB isolates from Taiwan. AbaR4-type resistance islands, which were divided into six subtypes, were identified in most CRAB isolates investigated. Five isolates from India, Malaysia, Singapore, and Hong Kong contained AbaR3-type resistance islands. Of these, three isolates harbored both AbaR3- and AbaR4-type resistance islands simultaneously. In this study, GC2 was revealed as a prevalent clone in most Asian locales, with the AbaR4-type resistance island predominant, with diverse variants. The significance of this study lies in identifying the spread of global clones of carbapenem-resistant A. baumannii in Asia.

  16. Effects of sulfite and pH an abscisic acid (ABA) dependent transpiration and on stomatal opening

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, N.; Maruta, I.; Sugahara, K.

    1980-01-01

    In rice, alday, wheat and tobacco (Nicotiana tabacum l. samsun and samsun nn) plants which contained large amounts of ABA, the transpiration rate decreased rapidly with 2 ppM SO/sub 2/ fumigation and reached 20 to 65% of the initial level after 5- to 30-min exposure depending on their ABAj contents. In the cases of broad bean and tobacco (n. Gutinosa l.) with low ABA contents, the rate slightly increased for 20 and 40 min, respectively, after the start of the fumigation and then decreased gradually. The transpiration rates of corn and sorghum, in spite of their extremely low ABA contents, pronouncedly decreased with SO/sub 2/ fumigation and reached 65 and 50%, respectively, of the initial levels after 40-min exposure. Foliar application of 0.04 N HCL to N. tacum l. samsun nn leaves remarkably depressed the transpiration rate, while the application of 0.04 m NA/sub 2/SO/sub 3/ decreased the rate only to the same level as water treatment. Foliar application of either HCL of Na/sub 2/SO/sub 3/ to N. glutinosa l. leaves exerted little change in the transpiration rate. When 10-4 m ABA was applied to broad bean leaves prior to HCl and Na/sub 2/SO/sub 3/ treatment, their transpiration rate was decreased by HCl, but not by Na/sub 2/SO/sub 3/ application. In sonicated epidermal strips peeled from broad bean leaves, Na/sub 2/SO/sub 3/ produced a slight increase in the stomatal aperture size in the absence of ABA, but showed no effect in the presence of ABA. The aperture size was identical in the pH range of 3.0 to 7.0 in the incubation medium. In the presence of ABA in the medium, the aperture size was small in the acidic region of pH with a minimal value at pH 4.0. ABA decreased the aperture size at concentrations above 10-9 m at pH 4.0 and 10-6 m at pH 7.0 in the medium. ABA uptake by epidermal strips was large in the acidic region, especially at pH 4.0.

  17. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca(2+-permeable channels and stomatal closure.

    Directory of Open Access Journals (Sweden)

    Izumi C Mori

    2006-10-01

    Full Text Available Abscisic acid (ABA signal transduction has been proposed to utilize cytosolic Ca(2+ in guard cell ion channel regulation. However, genetic mutants in Ca(2+ sensors that impair guard cell or plant ion channel signaling responses have not been identified, and whether Ca(2+-independent ABA signaling mechanisms suffice for a full response remains unclear. Calcium-dependent protein kinases (CDPKs have been proposed to contribute to central signal transduction responses in plants. However, no Arabidopsis CDPK gene disruption mutant phenotype has been reported to date, likely due to overlapping redundancies in CDPKs. Two Arabidopsis guard cell-expressed CDPK genes, CPK3 and CPK6, showed gene disruption phenotypes. ABA and Ca(2+ activation of slow-type anion channels and, interestingly, ABA activation of plasma membrane Ca(2+-permeable channels were impaired in independent alleles of single and double cpk3cpk6 mutant guard cells. Furthermore, ABA- and Ca(2+-induced stomatal closing were partially impaired in these cpk3cpk6 mutant alleles. However, rapid-type anion channel current activity was not affected, consistent with the partial stomatal closing response in double mutants via a proposed branched signaling network. Imposed Ca(2+ oscillation experiments revealed that Ca(2+-reactive stomatal closure was reduced in CDPK double mutant plants. However, long-lasting Ca(2+-programmed stomatal closure was not impaired, providing genetic evidence for a functional separation of these two modes of Ca(2+-induced stomatal closing. Our findings show important functions of the CPK6 and CPK3 CDPKs in guard cell ion channel regulation and provide genetic evidence for calcium sensors that transduce stomatal ABA signaling.

  18. Genome-wide targeted prediction of ABA responsive genes in rice based on over-represented cis-motif in co-expressed genes.

    Science.gov (United States)

    Lenka, Sangram K; Lohia, Bikash; Kumar, Abhay; Chinnusamy, Viswanathan; Bansal, Kailash C

    2009-02-01

    Abscisic acid (ABA), the popular plant stress hormone, plays a key role in regulation of sub-set of stress responsive genes. These genes respond to ABA through specific transcription factors which bind to cis-regulatory elements present in their promoters. We discovered the ABA Responsive Element (ABRE) core (ACGT) containing CGMCACGTGB motif as over-represented motif among the promoters of ABA responsive co-expressed genes in rice. Targeted gene prediction strategy using this motif led to the identification of 402 protein coding genes potentially regulated by ABA-dependent molecular genetic network. RT-PCR analysis of arbitrarily chosen 45 genes from the predicted 402 genes confirmed 80% accuracy of our prediction. Plant Gene Ontology (GO) analysis of ABA responsive genes showed enrichment of signal transduction and stress related genes among diverse functional categories.

  19. Relationship between abscisic acid (ABA) concentration and some ...

    African Journals Online (AJOL)

    This work investigated the effects of endogenous abscisic acid (ABA) and physiologic parameters related to yield in two wheat cultivars (Triticum aestivum L.), Marvdasht and Zagros (sensitive and tolerant to terminal season drought, respectively) grown in pots under well watered and water-stressed starting from anthesis ...

  20. Transcriptional regulation of genes encoding ABA metabolism enzymes during the fruit development and dehydration stress of pear 'Gold Nijisseiki'.

    Science.gov (United States)

    Dai, Shengjie; Li, Ping; Chen, Pei; Li, Qian; Pei, Yuelin; He, Suihuan; Sun, Yufei; Wang, Ya; Kai, Wenbin; Zhao, Bo; Liao, Yalan; Leng, Ping

    2014-09-01

    To investigate the contribution of abscisic acid (ABA) in pear 'Gold Nijisseiki' during fruit ripening and under dehydration stress, two cDNAs (PpNCED1 and PpNCED2) which encode 9-cis-epoxycarotenoid dioxygenase (NCED) (a key enzyme in ABA biosynthesis), two cDNAs (PpCYP707A1 and PpCYP707A2) which encode 8'-hydroxylase (a key enzyme in the oxidative catabolism of ABA), one cDNA (PpACS3) which encodes 1-aminocyclopropane-1-carboxylic acid (ACC), and one cDNA (PpACO1) which encodes ACC oxidase involved in ethylene biosynthesis were cloned from 'Gold Nijisseiki' fruit. In the pulp, peel and seed, expressions of PpNCED1 and PpNCED2 rose in two stages which corresponded with the increase of ABA levels. The expression of PpCYP707A1 dramatically declined after 60-90 days after full bloom (DAFB) in contrast to the changes of ABA levels during this period, while PpCYP707A2 stayed low during the whole development of fruit. Application of exogenous ABA at 100 DAFB increased the soluble sugar content and the ethylene release but significantly decreased the titratable acid and chlorophyll contents in fruits. When fruits harvested at 100 DAFB were stored in the laboratory (25 °C, 50% relative humidity), the ABA content and the expressions of PpNCED1/2 and PpCYP707A1 in the pulp, peel and seed increased significantly, while ethylene reached its highest value after the maximum peak of ABA accompanied with the expressions of PpACS3 and PpACO1. In sum the endogenous ABA may play an important role in the fruit ripening and dehydration of pear 'Gold Nijisseiki' and the ABA level was regulated mainly by the dynamics of PpNCED1, PpNCED2 and PpCYP707A1 at the transcriptional level. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Sap fluxes from different parts of the rootzone modulate xylem ABA concentration during partial rootzone drying and re-wetting.

    Science.gov (United States)

    Pérez-Pérez, J G; Dodd, I C

    2015-04-01

    Previous studies with partial rootzone drying (PRD) irrigation demonstrated that alternating the wet and dry parts of the rootzone (PRD-Alternated) increased leaf xylem ABA concentration ([X-ABA]leaf) compared with maintaining the same wet and dry parts of the rootzone (PRD-Fixed). To determine the relative contributions of different parts of the rootzone to this ABA signal, [X-ABA]leaf of potted, split-root tomato (Solanum lycopersicum) plants was modelled by quantifying the proportional water uptake from different soil compartments, and [X-ABA]leaf responses to the entire pot soil-water content (θpot). Continuously measuring soil-moisture depletion by, or sap fluxes from, different parts of the root system revealed that water uptake rapidly declined (within hours) after withholding water from part of the rootzone, but was rapidly restored (within minutes) upon re-watering. Two hours after re-watering part of the rootzone, [X-ABA]leaf was equally well predicted according to θpot alone and by accounting for the proportional water uptake from different parts of the rootzone. Six hours after re-watering part of the rootzone, water uptake by roots in drying soil was minimal and, instead, occurred mainly from the newly irrigated part of the rootzone, thus [X-ABA]leaf was best predicted by accounting for the proportional water uptake from different parts of the rootzone. Contrary to previous results, alternating the wet and dry parts of the rootzone did not enhance [X-ABA]leaf compared with PRD-Fixed irrigation. Further work is required to establish whether altered root-to-shoot ABA signalling contributes to the improved yields of crops grown with alternate, rather than fixed, PRD. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Overexpression of Arachis hypogaea AREB1 Gene Enhances Drought Tolerance by Modulating ROS Scavenging and Maintaining Endogenous ABA Content

    Directory of Open Access Journals (Sweden)

    Ling Li

    2013-06-01

    Full Text Available AhAREB1 (Arachis hypogaea Abscisic-acid Response Element Binding Protein 1 is a member of the basic domain leucine zipper (bZIP-type transcription factor in peanut. Previously, we found that expression of AhAREB1 was specifically induced by abscisic acid (ABA, dehydration and drought. To understand the drought defense mechanism regulated by AhAREB1, transgenic Arabidopsis overexpressing AhAREB1 was conducted in wild-type (WT, and a complementation experiment was employed to ABA non-sensitivity mutant abi5 (abscisic acid-insensitive 5. Constitutive expression of AhAREB1 confers water stress tolerance and is highly sensitive to exogenous ABA. Microarray and further real-time PCR analysis revealed that drought stress, reactive oxygen species (ROS scavenging, ABA synthesis/metabolism-related genes and others were regulated in transgenic Arabidopsis overexpressing AhAREB1. Accordingly, low level of ROS, but higher ABA content was detected in the transgenic Arabidopsis plants’ overexpression of AhAREB1. Taken together, it was concluded that AhAREB1 modulates ROS accumulation and endogenous ABA level to improve drought tolerance in transgenic Arabidopsis.

  3. The p450 monooxygenase BcABA1 is essential for abscisic acid biosynthesis in Botrytis cinerea

    DEFF Research Database (Denmark)

    Siewers, V.; Smedsgaard, Jørn; Tudzynski, P.

    2004-01-01

    The phytopathogenic ascomycete Botrytis cinerea is known to produce abscisic acid (ABA), which is thought to be involved in host-pathogen interaction. Biochemical analyses had previously shown that, in contrast to higher plants, the fungal ABA biosynthesis probably does not proceed via carotenoids...

  4. Loss of nitrate reductases NIA1 and NIA2 impairs stomatal closure by altering genes of core ABA signaling components in Arabidopsis.

    Science.gov (United States)

    Zhao, Chenchen; Cai, Shengguan; Wang, Yizhou; Chen, Zhong-Hua

    2016-06-02

    Nitrate reductases NIA1 and NIA2 determine NO production in plants and are critical to abscisic acid (ABA)-induced stomatal closure. However, the role for NIA1 and NIA2 in ABA signaling has not been paid much attention in nitrate reductase loss-of-function mutant nia1nia2. Recently, we have demonstrated that ABA-inhibited K(+)in current and ABA-enhanced slow anion current were absent in nia1nia2. Exogenous NO restored regulation of these channels for stomatal closure in nia1nia2. In this study, we found that mutating NIA1 and NIA2 impaired nearly all the key components of guard cell ABA signaling pathway in Arabidopsis. We also propose a simplified model for ABA signaling in the nia1nia2 mutant.

  5. Cloning and expression analysis of cDNAs for ABA 8'-hydroxylase during sweet cherry fruit maturation and under stress conditions.

    Science.gov (United States)

    Ren, Jie; Sun, Liang; Wu, Jiefang; Zhao, Shengli; Wang, Canlei; Wang, Yanping; Ji, Kai; Leng, Ping

    2010-11-15

    Abscisic acid (ABA) plays a key role in various aspects of plant growth and development, including adaptation to environmental stress and fruit maturation in sweet cherry fruit. In higher plants, the level of ABA is determined by synthesis and catabolism. In order to gain insight into ABA synthesis and catabolism in sweet cherry fruit during maturation and under stress conditions, four cDNAs of PacCYP707A1 -PacCYP707A4 for 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA, and one cDNA of PacNCED1 for 9-cis-epoxycarotenoid dioxygenase, a key enzyme in the ABA biosynthetic pathway, were isolated from sweet cherry fruit (Prunus avium L.). The timing and pattern of PacNCED1 expression was coincident with that of ABA accumulation, which was correlated to maturation of sweet cherry fruit. All four PacCYP707As were expressed at varying intensities throughout fruit development and appeared to play overlapping roles in ABA catabolism throughout sweet cherry fruit development. The application of ABA enhanced the expression of PacCYP707A1 -PacCYP707A3 as well as PacNCED1, but downregulated the PacCYP707A4 transcript level. Expressions of PacCYP707A1, PacCYP707A3 and PacNCED1 were strongly increased by water stress. No significant differences in PacCYP707A2 and PacCYP707A4 expression were observed between dehydrated and control fruits. The results suggest that endogenous ABA content is modulated by a dynamic balance between biosynthesis and catabolism, which are regulated by PacNCED1 and PacCYP707As transcripts, respectively, during fruit maturation and under stress conditions. Copyright © 2010 Elsevier GmbH. All rights reserved.

  6. Abscisic acid (ABA) and key proteins in its perception and signaling pathways are ancient, but their roles have changed through time.

    Science.gov (United States)

    Sussmilch, Frances C; Atallah, Nadia M; Brodribb, Timothy J; Banks, Jo Ann; McAdam, Scott A M

    2017-09-02

    Homologs of the Arabidopsis core abscisic acid (ABA) signaling component OPEN STOMATA1 (OST1) are best known for their role in closing stomata in angiosperm species. We recently characterized a fern OST1 homolog, GAMETOPHYTES ABA INSENSITIVE ON ANTHERDIOGEN 1 (GAIA1), which is not required for stomatal closure in ferns, consistent with physiologic evidence that shows the stomata of these plants respond passively to changes in leaf water status. Instead, gaia1 mutants reveal a critical role in ABA signaling for spore dormancy and sex determination, in a system regulated by antagonism between ABA and the gibberellin (GA)-derived fern hormone antheridiogen (A CE ). ABA and key proteins, including ABA receptors from the PYR/PYL/RCAR family and negative regulators of ABA-signaling from Group A of the type-2C protein phosphatases (PP2Cs), in addition to OST1 homologs, can be found in all terrestrial land plant lineages, ranging from liverworts that lack stomata, to angiosperms. As land plants have evolved and diversified over the past 450 million years, so too have the roles of this important plant hormone and the genes involved in its signaling and perception.

  7. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes.

    Science.gov (United States)

    Zhao, Yang; Xing, Lu; Wang, Xingang; Hou, Yueh-Ju; Gao, Jinghui; Wang, Pengcheng; Duan, Cheng-Guo; Zhu, Xiaohong; Zhu, Jian-Kang

    2014-06-03

    The phytohormone abscisic acid (ABA) regulates plant growth, development, and abiotic stress responses. ABA signaling is mediated by a group of receptors known as the PYR1/PYL/RCAR family, which includes the pyrabactin resistance 1-like protein PYL8. Under stress conditions, ABA signaling activates SnRK2 protein kinases to inhibit lateral root growth after emergence from the primary root. However, even in the case of persistent stress, lateral root growth eventually recovers from inhibition. We showed that PYL8 is required for the recovery of lateral root growth, following inhibition by ABA. PYL8 directly interacted with the transcription factors MYB77, MYB44, and MYB73. The interaction of PYL8 and MYB77 increased the binding of MYB77 to its target MBSI motif in the promoters of multiple auxin-responsive genes. Compared to wild-type seedlings, the lateral root growth of pyl8 mutant seedlings and myb77 mutant seedlings was more sensitive to inhibition by ABA. The recovery of lateral root growth was delayed in pyl8 mutant seedlings in the presence of ABA, and the defect was rescued by exposing pyl8 mutant seedlings to the auxin IAA (3-indoleacetic acid). Thus, PYL8 promotes lateral root growth independently of the core ABA-SnRK2 signaling pathway by enhancing the activities of MYB77 and its paralogs, MYB44 and MYB73, to augment auxin signaling. Copyright © 2014, American Association for the Advancement of Science.

  8. Roles of xanthophylls and exogenous ABA in protection against NaCl-induced photodamage in rice (Oryza sativa L) and cabbage (Brassica campestris).

    Science.gov (United States)

    Zhu, Su-Qin; Chen, Ming-Wei; Ji, Ben-Hua; Jiao, De-Mao; Liang, Jian-Sheng

    2011-08-01

    Changes in actual efficiency of PS II photochemistry, non-photochemical quenching (NPQ), content of xanthophylls and kinetics of de-epoxidation were studied in ABA-fed and non-ABA-fed leaves of rice and cabbage under NaCl stress. Salt stress induced more progressive decrease in actual efficiency of PS II photochemistry (ФPS II), higher reduction state of PS II, and a small significant increase in NPQ in NaCl-sensitive rice plants as compared with NaCl-tolerant cabbage plants, whereas exogenously supplied ABA alleviated the decrease in actual efficiency of PS II photochemistry (ФPS II), induced a lower reduction state of PS II, and caused higher capacity of NPQ in ABA-fed plants than in non-ABA-fed plants. As a result, there were higher activities of photosynthetic electron transport, higher capacity of energy dissipation, and lower cumulation of excess light in cabbage than in rice plants, and in ABA-fed leaves than in non-ABA-fed leaves. The effect of ABA was more efficient in cabbage than in rice plants. Addition of exogenous ABA resulted in enhancement of the size of the xanthophyll cycle pool, promotion of de-epoxidation of the xanthophyll cycle components, and a rise in the level of NPQ by altering the kinetics of de-epoxidation of the xanthophyll cycle. Protection from photodamage appears to be achieved by coordinated contributions by exogenous ABA and xanthophyll cycle-mediated NPQ. This variety of photoprotective mechanisms may be essential for conferring photodamage tolerance under NaCl stress. © The Author [2011]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved.

  9. Prevalence of falciparum malaria amongst pregnant women in Aba ...

    African Journals Online (AJOL)

    Malaria during pregnancy poses a substantial risk to mother and foetus especially an infection with Plasmodium falciparum. This study was undertaken to assess the prevalence of falciparum malaria among pregnant women in Aba South Local Government Area, Abia State, south-east Nigeria. Blood samples from 432 ...

  10. A NAP-AAO3 Regulatory Module Promotes Chlorophyll Degradation via ABA Biosynthesis in Arabidopsis Leaves[W][OPEN

    Science.gov (United States)

    Yang, Jiading; Worley, Eric

    2014-01-01

    Chlorophyll degradation is an important part of leaf senescence, but the underlying regulatory mechanisms are largely unknown. Excised leaves of an Arabidopsis thaliana NAC-LIKE, ACTIVATED BY AP3/PI (NAP) transcription factor mutant (nap) exhibited lower transcript levels of known chlorophyll degradation genes, STAY-GREEN1 (SGR1), NON-YELLOW COLORING1 (NYC1), PHEOPHYTINASE (PPH), and PHEIDE a OXYGENASE (PaO), and higher chlorophyll retention than the wild type during dark-induced senescence. Transcriptome coexpression analysis revealed that abscisic acid (ABA) metabolism/signaling genes were disproportionately represented among those positively correlated with NAP expression. ABA levels were abnormally low in nap leaves during extended darkness. The ABA biosynthetic genes 9-CIS-EPOXYCAROTENOID DIOXYGENASE2, ABA DEFICIENT3, and ABSCISIC ALDEHYDE OXIDASE3 (AAO3) exhibited abnormally low transcript levels in dark-treated nap leaves. NAP transactivated the promoter of AAO3 in mesophyll cell protoplasts, and electrophoretic mobility shift assays showed that NAP can bind directly to a segment (−196 to −162 relative to the ATG start codon) of the AAO3 promoter. Exogenous application of ABA increased the transcript levels of SGR1, NYC1, PPH, and PaO and suppressed the stay-green phenotype of nap leaves during extended darkness. Overexpression of AAO3 in nap leaves also suppressed the stay-green phenotype under extended darkness. Collectively, the results show that NAP promotes chlorophyll degradation by enhancing transcription of AAO3, which leads to increased levels of the senescence-inducing hormone ABA. PMID:25516602

  11. Parents' Experiences of Applied Behaviour Analysis (ABA)-Based Interventions for Children Diagnosed with Autistic Spectrum Disorder

    Science.gov (United States)

    McPhilemy, Catherine; Dillenburger, Karola

    2013-01-01

    Applied behaviour analysis (ABA)-based programmes are endorsed as the gold standard for treatment of children with autistic spectrum disorder (ASD) in most of North America. This is not the case in most of Europe, where instead a non-specified "eclectic" approach is adopted. We explored the social validity of ABA-based interventions with…

  12. Effects of exogenous ABA application on post-anthesis dry matter redistribution and grain starch accumulation of winter wheat with different staygreen characteristics

    Directory of Open Access Journals (Sweden)

    Dongqing Yang

    2014-04-01

    Full Text Available The objective of this study was to investigate whether and how exogenous abscisic acid (ABA is involved in mediating starch accumulation in the grain and redistribution of carbohydrates during grain filling of two wheat cultivars with different staygreen characteristics. At blooming stage, plants of Wennong 6 (a staygreen cultivar and Jimai 20 (control were sprayed with 10 mg L− 1 abscisic acid (ABA for 3 days. The application of ABA significantly (P < 0.05 increased grain filling rate, starch accumulation rate and content, remobilization of dry matters to kernels, and 1000-grain weight of the two cultivars. Exogenous ABA markedly (P < 0.05 increased grain yield at maturity, and Wennong 6 and Jiami 20 showed 14.14% and 4.86% higher compared yield than the control. Dry matter accumulation after anthesis of Wennong 6 was also significantly (P < 0.05 influenced by exogenous ABA, whereas that of Jimai 20 was unchanged. Application of ABA increased endogenous zeatin riboside (ZR content 7 days after anthesis (DAA, and spraying ABA significantly increased endogenous indole-3-acetic acid (IAA and ABA contents from 7 to 21 DAA and decreased gibberellin (GA3 content at 14 DAA, but increased GA3 content from 21 to 35 DAA. The results suggested that increased yield of staygreen was due to greater starch assimilation owing to a higher filling rate and longer grain-filling duration.

  13. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence.

    Science.gov (United States)

    Lü, Peitao; Zhang, Changqing; Liu, Jitao; Liu, Xiaowei; Jiang, Guimei; Jiang, Xinqiang; Khan, Muhammad Ali; Wang, Liangsheng; Hong, Bo; Gao, Junping

    2014-05-01

    Rose (Rosa hybrida) is one of the most important ornamental plants worldwide; however, senescence of its petals terminates the ornamental value of the flower, resulting in major economic loss. It is known that the hormones abscisic acid (ABA) and ethylene promote petal senescence, while gibberellins (GAs) delay the process. However, the molecular mechanisms underlying the antagonistic effects amongst plant hormones during petal senescence are still unclear. Here we isolated RhHB1, a homeodomain-leucine zipper I transcription factor gene, from rose flowers. Quantitative RT-PCR and GUS reporter analyses showed that RhHB1 was strongly expressed in senescing petals, and its expression was induced by ABA or ethylene in petals. ABA or ethylene treatment clearly accelerated rose petal senescence, while application of the gibberellin GA3 delayed the process. However, silencing of RhHB1 delayed the ABA- or ethylene-mediated senescence, and resulted in higher petal anthocyanin levels and lower expression of RhSAG12. Moreover, treatment with paclobutrazol, an inhibitor of GA biosynthesis, repressed these delays. In addition, silencing of RhHB1 blocked the ABA- or ethylene-induced reduction in expression of the GA20 oxidase encoded by RhGA20ox1, a gene in the GA biosynthetic pathway. Furthermore, RhHB1 directly binds to the RhGA20ox1 promoter, and silencing of RhGA20ox1 promoted petal senescence. Eight senescence-related genes showed substantial differences in expression in petals after treatment with GA3 or paclobutrazol. These results suggest that RhHB1 mediates the antagonistic effect of GAs on ABA and ethylene during rose petal senescence, and that the promotion of petal senescence by ABA or ethylene operates through an RhHB1-RhGA20ox1 regulatory checkpoint. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  14. Voltage-Dependent Anion Channel 2 of Arabidopsis thaliana (AtVDAC2 Is Involved in ABA-Mediated Early Seedling Development

    Directory of Open Access Journals (Sweden)

    Xufeng Li

    2009-05-01

    Full Text Available The voltage-dependent anion channel (VDAC is the major transport protein in the outer membrane of mitochondria and plays crucial roles in energy metabolism, apoptosis, and metabolites transport. In plants, the expression of VDACs can be affected by different stresses, including drought, salinity and pathogen defense. In this study, we investigated the expression pattern of AtVDAC2 in A. thaliana and found ABA suppressed the accumulation of AtVDAC2 transcripts. Further, phenotype analysis of this VDAC deregulated-expression transgenic Arabidopsis plants indicated that AtVDAC2 anti-sense line showed an ABA-insensitivity phenotype during the early seedling development under ABA treatment. The results suggested that AtVDAC2 might be involved in ABA signaling in A. thaliana.

  15. Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion.

    Science.gov (United States)

    Li, Yangyang; Wang, Cheng; Liu, Xinye; Song, Jian; Li, Hongjian; Sui, Zhipeng; Zhang, Ming; Fang, Shuang; Chu, Jinfang; Xin, Mingming; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2016-04-01

    Heterosis has been widely used in agriculture, but the underlying molecular principles are still largely unknown. During seed germination, we observed that maize (Zea mays) hybrid B73/Mo17 was less sensitive than its parental inbred lines to exogenous abscisic acid (ABA), and endogenous ABA content in hybrid embryos decreased more rapidly than in the parental inbred lines. ZmABA8ox1b, an ABA inactivation gene, was consistently more highly up-regulated in hybrid B73/Mo17 than in its parental inbred lines at early stages of seed germination. Moreover, ectopic expression of ZmABA8ox1b obviously promoted seed germination in Arabidopsis Remarkably, microscopic observation revealed that cell expansion played a major role in the ABA-mediated maize seed germination heterosis, which could be attributed to the altered expression of cell wall-related genes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. The effect of 2,4-D and ABA on respiration of isolated mitochondria from maize coleoptiles

    Directory of Open Access Journals (Sweden)

    Ewa Raczek

    2014-01-01

    Full Text Available The susceptibility of isolated maize mitochondria to the growth regulators: 2,4-dichlorophenoxyacetic acid (2,4-D and abscisic acid (ABA was studied. It was found that 2,4-D (a herbicide inhibits respiration in mitochondria, as do other herbicides or phenoxy-acids. In the entire range of concentrations used (10-3-10-9 M, 2,4-D introduced into the medium before the respiration reaction was begun, or during it, limited the intensity of succinate oxidation. It did not, however, markedly change phosphorylation properties. Uncoupling of oxidative phosphorylation took place only after preincubation of mitochondria with 2,4-D and was the result of the destruction of mitochondrial membranes. ABA (a growth inhibitor of plants caused a similar response in maize mitochondria. Preincubation of mitochondria with ABA lead to the uncoupling of oxidative phosphorylation. Whereas ABA introduced during respiration (state 4 respiration or before its onset, lowered the oxidative potential of mitochondria, it also changed the pattern of state 4-3-4 transition after addition of ADP (it was especially visible at high concentrations, which indicates that the coupling of oxidative phosphorylation with the respiratory chain has faltered. It seems that this negative effect of 2,4-D and ABA on respiration of isolated maize mitochondria is connected with the inhibitory effect of these growth regulators on the growth of maize coleoptiles. Interference in the organization mitochondrial membranes results in a lowered supply of ATP - a source of energy needed in elongation processes.

  17. Levels of ABA, its precursors and dehydrin-like proteins during ...

    African Journals Online (AJOL)

    2Department of Molecular Biology and Biotechnology, University of Dar es Salaam,. P.O Box 35179, Dar ... to combat stress. Levels of ABA and proteins that cross reacted with an anti – dehydrin ...... Cambridge, Melbourne). Wang, X.-Q., Ullah ...

  18. Deficiência hídrica e aplicação de ABA nas trocas gasosas e no acúmulo de flavonoides em calêndula (Calendula officinalis L. = Water deficit and ABA application on leaf gas exchange and flavonoid content in marigold (Calendula officinalis L..

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Pacheco

    2011-04-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos da deficiencia hidrica e aplicacao de acido abscisico (ABA sobre aspectos fisiologicos e teor de flavonoides em plantas de calendula. Oexperimento foi instalado em condicoes de casa-de-vegetacao com plantas envasadas. No inicio do florescimento de plantas de calendula, foram aplicados quatro intervalos de suspensao da irrigacao (irrigacao diaria; tres; seis e nove dias sem irrigar, acompanhados por tres doses de ABA (0, 10 e 100 ƒÊM. Avaliou-se o conteudo relativo de agua na folha (CRA e as trocas gasosas, utilizando-se um analisador portatil por infravermelho (A: fotossintese liquida, gs: condutancia estomatica, E: transpiracao, Ci: concentracao intercelular de CO2 e EUA: eficiencia de uso daagua. Aos nove dias sem irrigacao ocorreram reducoes significativas em todas as variaveis de trocas gasosas analisadas, independente da aplicacao de ABA. Concluiu-se que o efeito principal do ABA foi o de causar diminuicao na gs, a qual foi acompanhada de reducao em A somente quando as plantas estavam desidratadas. As intensidades de deficiencia hidrica testadas nao causaram interferencia no acumulo de flavonoides nas inflorescencias. Entretanto, o ABA restringiu a biossintese de flavonoides, tanto nas plantas-controle como nas plantas submetidas a deficiencia hidrica.The goal of this study was to evaluate the effects of water deficit and abscisic acid (ABA application on physiological parameters and flavonoid production in marigold plant. The experiment was performed under nursery conditions with potted plants. It was tested water deficit by withholding water (control . diary irrigation, 3, 6 and9 days without irrigation followed by 3 ABA concentrations (0, 10 e 100 ƒÊM applied in the beginning of blooming. It was evaluated the relative water content and the leaf gas exchange using a portable infrared gas analyzer (A: net photosynthesis, gs: stomatal conductance, E: transpiration, Ci: CO2 intercellular

  19. Two Groups of Thellungiella salsuginea RAVs Exhibit Distinct Responses and Sensitivity to Salt and ABA in Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Shaohui Yang

    Full Text Available Containing both AP2 domain and B3 domain, RAV (Related to ABI3/VP1 transcription factors are involved in diverse functions in higher plants. A total of eight TsRAV genes were isolated from the genome of Thellungiella salsuginea and could be divided into two groups (A- and B-group based on their sequence similarity. The mRNA abundance of all Thellungiella salsuginea TsRAVs followed a gradual decline during seed germination. In Thellungiella salsuginea seedling, transcripts of TsRAVs in the group A (A-TsRAVs were gradually and moderately reduced by salt treatment but rapidly and severely repressed by ABA treatment. In comparison, with a barely detectable constitutive expression, the transcriptional level of TsRAVs in the group B (B-TsRAVs exhibited a moderate induction in cotyledons when confronted with ABA. We then produced the "gain-of-function" transgenic Arabidopsis plants for each TsRAV gene and found that only 35S:A-TsRAVs showed weak growth retardation including reduced root elongation, suggesting their roles in negatively controlling plant growth. Under normal conditions, the germination process of all TsRAVs overexpressing transgenic seeds was inhibited with a stronger effect observed in 35S:A-TsRAVs seeds than in 35S:B-TsRAVs seeds. With the presence of NaCl, seed germination and seedling root elongation of all plants including wild type and 35S:TsRAVs plants were retarded and a more severe inhibition occurred to the 35S:A-TsRAV transgenic plants. ABA treatment only negatively affected the germination rates of 35S:A-TsRAV transgenic seeds but not those of 35S:B-TsRAV transgenic seeds. All 35S:TsRAVs transgenic plants showed a similar degree of reduction in root growth compared with untreated seedlings in the presence of ABA. Furthermore, the cotyledon greening/expansion was more severely inhibited 35S:A-TsRAVs than in 35S:B-TsRAVs seedlings. Upon water deficiency, with a wider opening of stomata, 35S:A-TsRAVs plants experienced a faster

  20. Hormonal control of seed development in gibberellin- and ABA-deficient tomato (Lycopersicon esculentum Mill. cv. Moneymaker) mutants

    NARCIS (Netherlands)

    Castro, de R.D.; Hilhorst, H.W.M.

    2006-01-01

    Developing seeds of tomato gibberellin (GA)-deficient gib1 and abscisic acid (ABA)-deficient sitw mutants enabled us to analyze the role of GA in the regulation of embryo histo-differentiation, and the role of ABA in the regulation of maturation and quiescence. Our data show that DNA synthesis and

  1. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice

    Directory of Open Access Journals (Sweden)

    Riaño-Pachón Diego

    2007-08-01

    Full Text Available Abstract Background In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs, ABRE and CE3, in thale cress (Arabidopsis thaliana and rice (Oryza sativa. Results Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Conclusion Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of

  2. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice.

    Science.gov (United States)

    Gómez-Porras, Judith L; Riaño-Pachón, Diego Mauricio; Dreyer, Ingo; Mayer, Jorge E; Mueller-Roeber, Bernd

    2007-08-01

    In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA) is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with the help of new molecular tools. The increasing availability of genomic sequences and gene expression data enables us to dissect ABA regulatory mechanisms at the individual gene expression level. In this paper we used an in-silico-based approach directed towards genome-wide prediction and identification of specific features of ABA-responsive elements. In particular we analysed the genome-wide occurrence and positional arrangements of two well-described ABA-responsive cis-regulatory elements (CREs), ABRE and CE3, in thale cress (Arabidopsis thaliana) and rice (Oryza sativa). Our results show that Arabidopsis and rice use the ABA-responsive elements ABRE and CE3 distinctively. Earlier reports for various monocots have identified CE3 as a coupling element (CE) associated with ABRE. Surprisingly, we found that while ABRE is equally abundant in both species, CE3 is practically absent in Arabidopsis. ABRE-ABRE pairs are common in both genomes, suggesting that these can form functional ABA-responsive complexes (ABRCs) in Arabidopsis and rice. Furthermore, we detected distinct combinations, orientation patterns and DNA strand preferences of ABRE and CE3 motifs in rice gene promoters. Our computational analyses revealed distinct recruitment patterns of ABA-responsive CREs in upstream sequences of Arabidopsis and rice. The apparent absence of CE3s in Arabidopsis suggests that another CE pairs with ABRE to establish a functional ABRC capable of interacting with transcription factors. Further studies will be

  3. The rose (Rosa hybrida) NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in rose and Arabidopsis.

    Science.gov (United States)

    Jiang, Guimei; Jiang, Xinqiang; Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing

    2014-01-01

    Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE) motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS) reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose RhNAC3 protein

  4. The rose (Rosa hybrida NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in rose and Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Guimei Jiang

    Full Text Available Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida, RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose Rh

  5. Cost and returns analysis of catfish marketing in Aba South Local ...

    African Journals Online (AJOL)

    Cost and returns analysis of catfish marketing in Aba South Local Government Area of Abia State, Nigeria. ... The constraints militating against catfish marketing were also identified. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  6. cost and returns analysis of catfish marketing in aba south local

    African Journals Online (AJOL)

    The study analyzed the cost and returns of catfish marketing in Aba South ... significantly influenced net income should be considered in policy issues. ... entrepreneur/manager at a profit. .... marketers were well experienced in their business.

  7. Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Ley-Moy; Soon, Fen-Fen; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Suino-Powell, Kelly M.; Chalmers, Michael J.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric (Van Andel); (Scripps); (Purdue); (NU Singapore)

    2014-10-02

    Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the crystal structures of full-length Arabidopsis thaliana SnRK2.3 and SnRK2.6 at 1.9- and 2.3-{angstrom} resolution, respectively. The structures, in combination with biochemical studies, reveal a two-step mechanism of intramolecular kinase activation that resembles the intermolecular activation of cyclin-dependent kinases. First, release of inhibition by PP2C allows the SnRK2s to become partially active because of an intramolecular stabilization of the catalytic domain by a conserved helix in the kinase regulatory domain. This stabilization enables SnRK2s to gain full activity by activation loop autophosphorylation. Autophosphorylation is more efficient in SnRK2.6, which has higher stability than SnRK2.3 and has well-structured activation loop phosphate acceptor sites that are positioned next to the catalytic site. Together, these data provide a structural framework that links ABA-mediated release of PP2C inhibition to activation of SnRK2 kinases.

  8. TRICARE Applied Behavior Analysis (ABA) Benefit: Comparison with Medicaid and Commercial Benefits.

    Science.gov (United States)

    Maglione, Margaret; Kadiyala, Srikanth; Kress, Amii; Hastings, Jaime L; O'Hanlon, Claire E

    2017-01-01

    This study compared the Applied Behavior Analysis (ABA) benefit provided by TRICARE as an early intervention for autism spectrum disorder with similar benefits in Medicaid and commercial health insurance plans. The sponsor, the Office of the Under Secretary of Defense for Personnel and Readiness, was particularly interested in how a proposed TRICARE reimbursement rate decrease from $125 per hour to $68 per hour for ABA services performed by a Board Certified Behavior Analyst compared with reimbursement rates (defined as third-party payment to the service provider) in Medicaid and commercial health insurance plans. Information on ABA coverage in state Medicaid programs was collected from Medicaid state waiver databases; subsequently, Medicaid provider reimbursement data were collected from state Medicaid fee schedules. Applied Behavior Analysis provider reimbursement in the commercial health insurance system was estimated using Truven Health MarketScan® data. A weighted mean U.S. reimbursement rate was calculated for several services using cross-state information on the number of children diagnosed with autism spectrum disorder. Locations of potential provider shortages were also identified. Medicaid and commercial insurance reimbursement rates varied considerably across the United States. This project concluded that the proposed $68-per-hour reimbursement rate for services provided by a board certified analyst was more than 25 percent below the U.S. mean.

  9. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress

    KAUST Repository

    Liu, Junwei; He, Hanzi; Vitali, Marco; Visentin, Ivan; Charnikhova, Tatsiana V.; Haider, Imran; Schubert, Andrea; Ruyter-Spira, Carolien P.; Bouwmeester, Harro J J; Lovisolo, Claudio; Cardinale, Francesca

    2015-01-01

    Main conclusion: Strigolactone changes and cross talk with ABA unveil a picture of root-specific hormonal dynamics under stress.Abstract: Strigolactones (SLs) are carotenoid-derived hormones influencing diverse aspects of development and communication with (micro)organisms, and proposed as mediators of environmental stimuli in resource allocation processes; to contribute to adaptive adjustments, therefore, their pathway must be responsive to environmental cues. To investigate the relationship between SLs and abiotic stress in Lotus japonicus, we compared wild-type and SL-depleted plants, and studied SL metabolism in roots stressed osmotically and/or phosphate starved. SL-depleted plants showed increased stomatal conductance, both under normal and stress conditions, and impaired resistance to drought associated with slower stomatal closure in response to abscisic acid (ABA). This confirms that SLs contribute to drought resistance in species other than Arabidopsis. However, we also observed that osmotic stress rapidly and strongly decreased SL concentration in tissues and exudates of wild-type Lotus roots, by acting on the transcription of biosynthetic and transporter-encoding genes and independently of phosphate abundance. Pre-treatment with exogenous SLs inhibited the osmotic stress-induced ABA increase in wild-type roots and down-regulated the transcription of the ABA biosynthetic gene LjNCED2. We propose that a transcriptionally regulated, early SL decrease under osmotic stress is needed (but not sufficient) to allow the physiological increase of ABA in roots. This work shows that SL metabolism and effects on ABA are seemingly opposite in roots and shoots under stress.

  10. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress

    KAUST Repository

    Liu, Junwei

    2015-02-26

    Main conclusion: Strigolactone changes and cross talk with ABA unveil a picture of root-specific hormonal dynamics under stress.Abstract: Strigolactones (SLs) are carotenoid-derived hormones influencing diverse aspects of development and communication with (micro)organisms, and proposed as mediators of environmental stimuli in resource allocation processes; to contribute to adaptive adjustments, therefore, their pathway must be responsive to environmental cues. To investigate the relationship between SLs and abiotic stress in Lotus japonicus, we compared wild-type and SL-depleted plants, and studied SL metabolism in roots stressed osmotically and/or phosphate starved. SL-depleted plants showed increased stomatal conductance, both under normal and stress conditions, and impaired resistance to drought associated with slower stomatal closure in response to abscisic acid (ABA). This confirms that SLs contribute to drought resistance in species other than Arabidopsis. However, we also observed that osmotic stress rapidly and strongly decreased SL concentration in tissues and exudates of wild-type Lotus roots, by acting on the transcription of biosynthetic and transporter-encoding genes and independently of phosphate abundance. Pre-treatment with exogenous SLs inhibited the osmotic stress-induced ABA increase in wild-type roots and down-regulated the transcription of the ABA biosynthetic gene LjNCED2. We propose that a transcriptionally regulated, early SL decrease under osmotic stress is needed (but not sufficient) to allow the physiological increase of ABA in roots. This work shows that SL metabolism and effects on ABA are seemingly opposite in roots and shoots under stress.

  11. Novel multiple opioid ligands based on 4-aminobenzazepinone (Aba), azepinoindole (Aia) and tetrahydroisoquinoline (Tic) scaffolds

    Science.gov (United States)

    Ballet, Steven; Marczak, Ewa D.; Feytens, Debby; Salvadori, Severo; Sasaki, Yusuke; Abell, Andrew D.; Lazarus, Lawrence H.; Balboni, Gianfranco; Tourwé, Dirk

    2010-01-01

    The dimerization and trimerization of the Dmt-Tic, Dmt-Aia and Dmt-Aba pharmacophores provided multiple ligands which were evaluated in vitro for opioid receptor binding and functional activity. Whereas the Tic- and Aba multimers proved to be dual and balanced δ/μ antagonists, as determined by the functional [S35]GTPγS binding assay, the dimerization of potent Aia-based ‘parent’ ligands unexpectedly resulted in substantial less efficient receptor binding and non-active dimeric compounds. PMID:20137938

  12. Levels of ABA, its precursors and dehydrin-like proteins during ...

    African Journals Online (AJOL)

    Abstract—Abscisic acid (ABA) and dehydrin proteins are thought to confer tolerance to plant tissue under physiological stress and drought. Rhizophora mucronata, a true mangrove species, is subjected to physiological drought from fluctuating high saline conditions where leaf loss or senescence is considered a possible ...

  13. Histopathological pattern of diseases of the cervix in Aba, South ...

    African Journals Online (AJOL)

    Background: Diseases of the cervix continue to pose a major public health problem in developing countries. Objective: To ascertain the pattern and frequency of cervical lesions in Aba, and the findings compared with the records of other workers elsewhere. Design: A retrospective analysis of hysterectomy, trachelectomy ...

  14. The Role of MAPK Modules and ABA during Abiotic Stress Signaling

    KAUST Repository

    Zé licourt, Axel de; Colcombet, Jean; Hirt, Heribert

    2016-01-01

    To respond to abiotic stresses, plants have developed specific mechanisms that allow them to rapidly perceive and respond to environmental changes. The phytohormone abscisic acid (ABA) was shown to be a pivotal regulator of abiotic stress responses

  15. The Arabidopsis aba4-1 mutant reveals a specific function for neoxanthin in protection against photooxidative stress.

    Science.gov (United States)

    Dall'Osto, Luca; Cazzaniga, Stefano; North, Helen; Marion-Poll, Annie; Bassi, Roberto

    2007-03-01

    The aba4-1 mutant completely lacks neoxanthin but retains all other xanthophyll species. The missing neoxanthin in light-harvesting complex (Lhc) proteins is compensated for by higher levels of violaxanthin, albeit with lower capacity for photoprotection compared with proteins with wild-type levels of neoxanthin. Detached leaves of aba4-1 were more sensitive to oxidative stress than the wild type when exposed to high light and incubated in a solution of photosensitizer agents. Both treatments caused more rapid pigment bleaching and lipid oxidation in aba4-1 than wild-type plants, suggesting that neoxanthin acts as an antioxidant within the photosystem II (PSII) supercomplex in thylakoids. While neoxanthin-depleted Lhc proteins and leaves had similar sensitivity as the wild type to hydrogen peroxide and singlet oxygen, they were more sensitive to superoxide anions. aba4-1 intact plants were not more sensitive than the wild type to high-light stress, indicating the existence of compensatory mechanisms of photoprotection involving the accumulation of zeaxanthin. However, the aba4-1 npq1 double mutant, lacking zeaxanthin and neoxanthin, underwent stronger PSII photoinhibition and more extensive oxidation of pigments than the npq1 mutant, which still contains neoxanthin. We conclude that neoxanthin preserves PSII from photoinactivation and protects membrane lipids from photooxidation by reactive oxygen species. Neoxanthin appears particularly active against superoxide anions produced by the Mehler's reaction, whose rate is known to be enhanced in abiotic stress conditions.

  16. Expression patterns of ABA and GA metabolism genes and hormone levels during rice seed development and imbibition: a comparison of dormant and non-dormant rice cultivars.

    Science.gov (United States)

    Liu, Yang; Fang, Jun; Xu, Fan; Chu, Jinfang; Yan, Cunyu; Schläppi, Michael R; Wang, Youping; Chu, Chengcai

    2014-06-20

    Seed dormancy is an important agronomic trait in cereals. Using deep dormant (N22), medium dormant (ZH11), and non-dormant (G46B) rice cultivars, we correlated seed dormancy phenotypes with abscisic acid (ABA) and gibberellin (GA) metabolism gene expression profiles and phytohormone levels during seed development and imbibition. A time course analysis of ABA and GA content during seed development showed that N22 had a high ABA level at early and middle seed developmental stages, while at late developmental stage it declined to the level of ZH11; however, its ABA/GA ratio maintained at a high level throughout seed development. By contrast, G46B had the lowest ABA content during seed development though at early developmental stage its ABA level was close to that of ZH11, and its ABA/GA ratio peaked at late developmental stage that was at the same level of ZH11. Compared with N22 and G46B, ZH11 had an even and medium ABA level during seed development and its ABA/GA ratio peaked at the middle developmental stage. Moreover, the seed development time-point having high ABA/GA ratio also had relatively high transcript levels for key genes in ABA and GA metabolism pathways across three cultivars. These indicated that the embryo-imposed dormancy has been induced before the late developmental stage and is determined by ABA/GA ratio. A similar analysis during seed imbibition showed that ABA was synthesized in different degrees for the three cultivars. In addition, water uptake assay for intact mature seeds suggested that water could permeate through husk barrier into seed embryo for all three cultivars; however, all three cultivars showed distinct colors by vanillin-staining indicative of the existence of flavans in their husks, which are dormancy inhibition compounds responsible for the husk-imposed dormancy. Copyright © 2014. Published by Elsevier Ltd.

  17. ABA signaling is necessary but not sufficient for RD29B transcriptional memory during successive dehydration stresses in Arabidopsis thaliana.

    Science.gov (United States)

    Virlouvet, Laetitia; Ding, Yong; Fujii, Hiroaki; Avramova, Zoya; Fromm, Michael

    2014-07-01

    Plants subjected to a prior dehydration stress were seen to have altered transcriptional responses during a subsequent dehydration stress for up to 5 days after the initial stress. The abscisic acid (ABA) inducible RD29B gene of Arabidopsis thaliana was strongly induced after the first stress and displayed transcriptional memory with transcript levels nine-fold higher during the second dehydration stress. These increased transcript levels were due to an increased rate of transcription and are associated with an altered chromatin template during the recovery interval between the dehydration stresses. Here we use a combination of promoter deletion/substitutions, mutants in the trans-acting transcription factors and their upstream protein kinases, and treatments with exogenous ABA or dehydration stress to advance our understanding of the features required for transcriptional memory of RD29B. ABA Response Elements (ABREs) are sufficient to confer transcriptional memory on a minimal promoter, although there is a context effect from flanking sequences. Different mutations in Snf1 Related Protein Kinase 2 (SnRK2) genes positively and negatively affected the response, suggesting that this effect is important for transcriptional memory. Although exogenous ABA treatments could prime transcriptional memory, a second ABA treatment was not sufficient to activate transcriptional memory. Therefore, we concluded that transcriptional memory requires ABA and an ABA-independent factor that is induced or activated by a subsequent dehydration stress and directly or indirectly results in a more active RD29B chromatin template. These results advance our knowledge of the cis- and trans-acting factors that are required for transcriptional memory of RD29B. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  18. Bromodomain proteins GTE9 and GTE11 are essential for specific BT2-mediated sugar and ABA responses in Arabidopsis thaliana.

    Science.gov (United States)

    Misra, Anjali; McKnight, Thomas D; Mandadi, Kranthi K

    2018-03-01

    Global Transcription Factor Group E proteins GTE9 and GTE11 interact with BT2 to mediate ABA and sugar responses in Arabidopsis thaliana. BT2 is a BTB-domain protein that regulates responses to various hormone, stress and metabolic conditions in Arabidopsis thaliana. Loss of BT2 results in plants that are hypersensitive to inhibition of germination by abscisic acid (ABA) and sugars. Conversely, overexpression of BT2 results in resistance to ABA and sugars. Here, we report the roles of BT2-interacting partners GTE9 and GTE11, bromodomain and extraterminal-domain proteins of Global Transcription Factor Group E, in BT2-mediated responses to sugars and hormones. Loss-of-function mutants, gte9-1 and gte11-1, mimicked the bt2-1-null mutant responses; germination of all three mutants was hypersensitive to inhibition by glucose and ABA. Loss of either GTE9 or GTE11 in a BT2 over-expressing line blocked resistance to sugars and ABA, indicating that both GTE9 and GTE11 were required for BT2 function. Co-immunoprecipitation of BT2 and GTE9 suggested that these proteins physically interact in vivo, and presumably function together to mediate responses to ABA and sugar signals.

  19. The ABA-INSENSITIVE-4 (ABI4) transcription factor links redox, hormone and sugar signaling pathways.

    Science.gov (United States)

    Foyer, Christine H; Kerchev, Pavel I; Hancock, Robert D

    2012-02-01

    The cellular reduction-oxidation (redox) hub processes information from metabolism and the environment and so regulates plant growth and defense through integration with the hormone signaling network. One key pathway of redox control involves interactions with ABSCISIC ACID (ABA). Accumulating evidence suggests that the ABA-INSENSITIVE-4 (ABI4) transcription factor plays a key role in transmitting information concerning the abundance of ascorbate and hence the ability of cells to buffer oxidative challenges. ABI4 is required for the ascorbate-dependent control of growth, a process that involves enhancement of salicylic acid (SA) signaling and inhibition of jasmonic acid (JA) signaling pathways. Low redox buffering capacity reinforces SA- JA- interactions through the mediation of ABA and ABI4 to fine-tune plant growth and defense in relation to metabolic cues and environmental challenges. Moreover, ABI4-mediated pathways of sugar sensitivity are also responsive to the abundance of ascorbate, providing evidence of overlap between redox and sugar signaling pathways.

  20. Personality Traits among Inmates of Aba Prison in Nigeria: Influence ...

    African Journals Online (AJOL)

    Aim: To assess the personality traits of inmates in Aba prison. Methods: Four hundred and six inmates were studied. Each inmate completed a semi-structured sociodemographic questionnaire and personality traits were assessed with the 44-item Big Five Inventory. Results: The majority (72.7%) of the inmates were within ...

  1. Immunolocalization of IAA and ABA in roots and needles of radiata pine (Pinus radiata) during drought and rewatering.

    Science.gov (United States)

    De Diego, N; Rodríguez, J L; Dodd, I C; Pérez-Alfocea, F; Moncaleán, P; Lacuesta, M

    2013-05-01

    Anatomical, physiological and phytohormonal changes involved in drought tolerance were examined in different Pinus radiata D. Don breeds subjected to soil drying and rewatering. Breeds with the smallest stomatal chamber size had the lowest transpiration rate and the highest intrinsic water-use efficiency. Xylem cell size was positively correlated with leaf hydraulic conductance and needle indole-3-acetic acid (IAA) concentrations, whereas transpiration rate was negatively correlated with needle abscisic acid (ABA) levels. Since these two phytohormones seem important in regulating the P. radiata drought response, they were simultaneously immunolocalized in roots and needles of the most tolerant breed (P. radiata var. radiata × var. cedrosensis) during two sequential drought cycles and after rewatering. During drought, IAA was unequally distributed into the pointed area of the needle cross-section and mainly located in mesophyll and vascular tissue cells of needles, possibly inducing needle epinasty, whereas ABA was principally located in guard cells, presumably to elicit stomata closure. In the roots, at the end of the first drought cycle, while strong IAA accumulation was observed in the cortex, ABA levels decreased probably due to translocation to the leaves. Rewatering modified the distribution of both IAA and ABA in the needles, causing an accumulation principally in vascular tissue, with residual concentrations in mesophyll, likely favouring the acclimatization of the plants for further drought cycles. Contrarily, in the roots IAA and ABA were located in the exodermis, a natural barrier that regulates the phytohormone translocation to other plant tissues and hormone losses to the soil solution after rewatering. These results confirm that immunolocalization is an efficient tool to understand the translocation of IAA and ABA in plants subjected to different water stress situations, and clarify their role in regulating physiological responses such as stomata

  2. Overlapping and distinct roles of AKIN10 and FUSCA3 in ABA and sugar signaling during seed germination.

    Science.gov (United States)

    Tsai, Allen Yi-Lun; Gazzarrini, Sonia

    2012-10-01

    The Arabidopsis B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed maturation and also a central modulator of hormonal responses during late embryogenesis and germination. Recently, we have identified AKIN10, the Arabidopsis ortholog of Snf1 (Sucrose Non-Fermenting-1)-Related Kinase1 (SnRK1), as a FUS3-interacting protein. We demonstrated that AKIN10 physically interacts with and phosphorylates FUS3 at its N-terminal region, and genetically interacts with FUS3 to regulate developmental phase transition and lateral organ growth. Snf1/AMPK/SnRK1 kinases are important sensors of the cellular energy level, and they are activated in response to starvation and cellular stress. Here we present findings that indicate FUS3 and AKIN10 functionally overlap in ABA signaling, but play different roles in sugar responses during germination. Seeds overexpressing FUS3 and AKIN10 both display ABA-hypersensitivity and delayed germination. The latter is partly dependent on de novo ABA synthesis in both genotypes, as delayed germination can be partially rescued by the ABA biosynthesis inhibitor, fluridone. However, seeds and seedlings overexpressing FUS3 and AKIN10 show different sugar responses. AKIN10-overexpressing seeds and seedlings are hypersensitive to glucose, while those overexpressing FUS3 display overall defects in osmotic stress, primarily during seedling growth, as they show increased sensitivity toward sorbitol and glucose. Hypersensitivity to sugar and/or osmotic stress during germination are partly dependent on de novo ABA synthesis for both genotypes, although are likely to act through distinct pathways. This data suggests that AKIN10 and FUS3 both act as positive regulators of seed responses to ABA, and that AKIN10 regulates sugar signaling while FUS3 mediates osmotic stress responses.

  3. Inoculation with Bacillus subtilis and Azospirillum brasilense produces abscisic acid that reduces IRT1-mediated cadmium uptake of roots.

    Science.gov (United States)

    Xu, Qianru; Pan, Wei; Zhang, Ranran; Lu, Qi; Xue, Wanlei; Wu, Cainan; Song, Bixiu; Du, Shaoting

    2018-05-08

    Cadmium (Cd) contamination of agricultural soils represents a serious risk to crop safety. A new strategy using abscisic acid (ABA)-generating bacteria, Bacillus subtilis or Azospirillum brasilense, was developed to reduce the Cd accumulation in plants grown in Cd-contaminated soil. Inoculation with either bacterium resulted in a pronounced increase in the ABA level in wild-type Arabidopsis Col-0 plants, accompanied by a decrease in Cd levels in plant tissues, which mitigated the Cd toxicity. As a consequence, the growth of plants exposed to Cd was improved. Nevertheless, B. subtilis and A. brasilense inoculation had little effect on Cd levels and toxicity in the ABA-insensitive mutant snrk 2.2/2.3, indicating that the action of ABA is required for these bacteria to reduce Cd accumulation in plants. Furthermore, inoculation with either B. subtilis or A. brasilense down-regulated the expression of IRT1 (IRON-REGULATED TRANSPORTER 1) in the roots of wild-type plants and had little effect on Cd levels in the IRT1-knockout mutants irt1-1 and irt1-2. In summary, we conclude that B. subtilis and A. brasilense can reduce Cd levels in plants via an IRT1-dependent ABA-mediated mechanism.

  4. Fruit load induces changes in global gene expression and in abscisic acid (ABA) and indole acetic acid (IAA) homeostasis in citrus buds.

    Science.gov (United States)

    Shalom, Liron; Samuels, Sivan; Zur, Naftali; Shlizerman, Lyudmila; Doron-Faigenboim, Adi; Blumwald, Eduardo; Sadka, Avi

    2014-07-01

    Many fruit trees undergo cycles of heavy fruit load (ON-Crop) in one year, followed by low fruit load (OFF-Crop) the following year, a phenomenon known as alternate bearing (AB). The mechanism by which fruit load affects flowering induction during the following year (return bloom) is still unclear. Although not proven, it is commonly accepted that the fruit or an organ which senses fruit presence generates an inhibitory signal that moves into the bud and inhibits apical meristem transition. Indeed, fruit removal from ON-Crop trees (de-fruiting) induces return bloom. Identification of regulatory or metabolic processes modified in the bud in association with altered fruit load might shed light on the nature of the AB signalling process. The bud transcriptome of de-fruited citrus trees was compared with those of ON- and OFF-Crop trees. Fruit removal resulted in relatively rapid changes in global gene expression, including induction of photosynthetic genes and proteins. Altered regulatory mechanisms included abscisic acid (ABA) metabolism and auxin polar transport. Genes of ABA biosynthesis were induced; however, hormone analyses showed that the ABA level was reduced in OFF-Crop buds and in buds shortly following fruit removal. Additionally, genes associated with Ca(2+)-dependent auxin polar transport were remarkably induced in buds of OFF-Crop and de-fruited trees. Hormone analyses showed that auxin levels were reduced in these buds as compared with ON-Crop buds. In view of the auxin transport autoinhibition theory, the possibility that auxin distribution plays a role in determining bud fate is discussed. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Arabidopsis Histone Demethylases LDL1 and LDL2 Control Primary Seed Dormancy by Regulating DELAY OF GERMINATION 1 and ABA Signaling-Related Genes

    Directory of Open Access Journals (Sweden)

    Ming lei Zhao

    2015-03-01

    Full Text Available Seed dormancy controls germination and plays a critical role in regulating the beginning of the life cycle of plants. Seed dormancy is established and maintained during seed maturation and is gradually broken during dry storage (after-ripening. The plant hormone abscisic acid (ABA and DELAY OF GERMINATION1 (DOG1 protein are essential regulators of seed dormancy. Recent studies revealed that chromatin modifications are also involved in the transcription regulation of seed dormancy. Here, we showed that two Arabidopsis histone demethylases, LYSINESPECIFIC DEMETHYLASE LIKE 1 and 2 (LDL1 and LDL2 act redundantly in repressing of seed dormancy. LDL1 and LDL2 are highly expressed in the early silique developing stage. The ldl1 ldl2 double mutant displays increased seed dormancy, whereas overexpression of LDL1 or LDL2 in Arabidopsis causes reduced dormancy. Furthermore, we showed that LDL1 and LDL2 repress the expression of seed dormancy-related genes, including DOG1, ABA2 and ABI3 during seed dormancy establishment. Furthermore, genetic analysis revealed that the repression of seed dormancy by LDL1 and LDL2 requires DOG1, ABA2 and ABI3. Taken together, our findings revealed that LDL1 and LDL2 play an essential role in seed dormancy.

  6. Adaptive Behaviour Assessment System: Indigenous Australian Adaptation Model (ABAS: IAAM)

    Science.gov (United States)

    du Plessis, Santie

    2015-01-01

    The study objectives were to develop, trial and evaluate a cross-cultural adaptation of the Adaptive Behavior Assessment System-Second Edition Teacher Form (ABAS-II TF) ages 5-21 for use with Indigenous Australian students ages 5-14. This study introduced a multiphase mixed-method design with semi-structured and informal interviews, school…

  7. Quantum Hall Effect and Semimetallic Behavior of Dual-Gated ABA-Stacked Trilayer Graphene

    Directory of Open Access Journals (Sweden)

    E. A. Henriksen

    2012-01-01

    Full Text Available The electronic structure of multilayer graphenes depends strongly on the number of layers as well as the stacking order. Here we explore the electronic transport of purely ABA-stacked trilayer graphenes in a dual-gated field-effect device configuration. We find both that the zero-magnetic-field transport and the quantum Hall effect at high magnetic fields are distinctly different from the monolayer and bilayer graphenes, and that they show electron-hole asymmetries that are strongly suggestive of a semimetallic band overlap. When the ABA trilayers are subjected to an electric field perpendicular to the sheet, Landau-level splittings due to a lifting of the valley degeneracy are clearly observed.

  8. A G-protein β subunit, AGB1, negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Dong-bei Xu

    Full Text Available Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2 was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1, were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44, were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade.

  9. The Arabidopsis aba4-1 Mutant Reveals a Specific Function for Neoxanthin in Protection against Photooxidative Stress[W

    Science.gov (United States)

    Dall'Osto, Luca; Cazzaniga, Stefano; North, Helen; Marion-Poll, Annie; Bassi, Roberto

    2007-01-01

    The aba4-1 mutant completely lacks neoxanthin but retains all other xanthophyll species. The missing neoxanthin in light-harvesting complex (Lhc) proteins is compensated for by higher levels of violaxanthin, albeit with lower capacity for photoprotection compared with proteins with wild-type levels of neoxanthin. Detached leaves of aba4-1 were more sensitive to oxidative stress than the wild type when exposed to high light and incubated in a solution of photosensitizer agents. Both treatments caused more rapid pigment bleaching and lipid oxidation in aba4-1 than wild-type plants, suggesting that neoxanthin acts as an antioxidant within the photosystem II (PSII) supercomplex in thylakoids. While neoxanthin-depleted Lhc proteins and leaves had similar sensitivity as the wild type to hydrogen peroxide and singlet oxygen, they were more sensitive to superoxide anions. aba4-1 intact plants were not more sensitive than the wild type to high-light stress, indicating the existence of compensatory mechanisms of photoprotection involving the accumulation of zeaxanthin. However, the aba4-1 npq1 double mutant, lacking zeaxanthin and neoxanthin, underwent stronger PSII photoinhibition and more extensive oxidation of pigments than the npq1 mutant, which still contains neoxanthin. We conclude that neoxanthin preserves PSII from photoinactivation and protects membrane lipids from photooxidation by reactive oxygen species. Neoxanthin appears particularly active against superoxide anions produced by the Mehler's reaction, whose rate is known to be enhanced in abiotic stress conditions. PMID:17351115

  10. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Haihong Jia

    Full Text Available The WRKY transcription factors modulate numerous physiological processes, including plant growth, development and responses to various environmental stresses. Currently, our understanding of the functions of the majority of the WRKY family members and their possible roles in signalling crosstalk is limited. In particular, very few WRKYs have been identified and characterised from an economically important crop, cotton. In this study, we characterised a novel group IIc WRKY gene, GhWRKY68, which is induced by different abiotic stresses and multiple defence-related signalling molecules. The β-glucuronidase activity driven by the GhWRKY68 promoter was enhanced after exposure to drought, salt, abscisic acid (ABA and H2O2. The overexpression of GhWRKY68 in Nicotiana benthamiana reduced resistance to drought and salt and affected several physiological indices. GhWRKY68 may mediate salt and drought responses by modulating ABA content and enhancing the transcript levels of ABA-responsive genes. GhWRKY68-overexpressing plants exhibited reduced tolerance to oxidative stress after drought and salt stress treatments, which correlated with the accumulation of reactive oxygen species (ROS, reduced enzyme activities, elevated malondialdehyde (MDA content and altered ROS-related gene expression. These results indicate that GhWRKY68 is a transcription factor that responds to drought and salt stresses by regulating ABA signalling and modulating cellular ROS.

  11. ABA-Induced Stomatal Closure Involves ALMT4, a Phosphorylation-Dependent Vacuolar Anion Channel of Arabidopsis[OPEN

    Science.gov (United States)

    Baetz, Ulrike; Huck, Nicola V.; Zhang, Jingbo

    2017-01-01

    Stomatal pores are formed between a pair of guard cells and allow plant uptake of CO2 and water evaporation. Their aperture depends on changes in osmolyte concentration of guard cell vacuoles, specifically of K+ and Mal2−. Efflux of Mal2− from the vacuole is required for stomatal closure; however, it is not clear how the anion is released. Here, we report the identification of ALMT4 (ALUMINUM ACTIVATED MALATE TRANSPORTER4) as an Arabidopsis thaliana ion channel that can mediate Mal2− release from the vacuole and is required for stomatal closure in response to abscisic acid (ABA). Knockout mutants showed impaired stomatal closure in response to the drought stress hormone ABA and increased whole-plant wilting in response to drought and ABA. Electrophysiological data show that ALMT4 can mediate Mal2− efflux and that the channel activity is dependent on a phosphorylatable C-terminal serine. Dephosphomimetic mutants of ALMT4 S382 showed increased channel activity and Mal2− efflux. Reconstituting the active channel in almt4 mutants impaired growth and stomatal opening. Phosphomimetic mutants were electrically inactive and phenocopied the almt4 mutants. Surprisingly, S382 can be phosphorylated by mitogen-activated protein kinases in vitro. In brief, ALMT4 likely mediates Mal2− efflux during ABA-induced stomatal closure and its activity depends on phosphorylation. PMID:28874508

  12. ABA renewal involves enhancements in both GluA2-lacking AMPA receptor activity and GluA1 phosphorylation in the lateral amygdala.

    Directory of Open Access Journals (Sweden)

    Kyungjoon Park

    Full Text Available Fear renewal, the context-specific relapse of fear following fear extinction, is a leading animal model of post-traumatic stress disorders (PTSD and fear-related disorders. Although fear extinction can diminish fear responses, this effect is restricted to the context where the extinction is carried out, and the extinguished fear strongly relapses when assessed in the original acquisition context (ABA renewal or in a context distinct from the conditioning and extinction contexts (ABC renewal. We have previously identified Ser831 phosphorylation of GluA1 subunit in the lateral amygdala (LA as a key molecular mechanism for ABC renewal. However, molecular mechanisms underlying ABA renewal remain to be elucidated. Here, we found that both the excitatory synaptic efficacy and GluA2-lacking AMPAR activity at thalamic input synapses onto the LA (T-LA synapses were enhanced upon ABA renewal. GluA2-lacking AMPAR activity was also increased during low-threshold potentiation, a potential cellular substrate of renewal, at T-LA synapses. The microinjection of 1-naphtylacetyl-spermine (NASPM, a selective blocker of GluA2-lacking AMPARs, into the LA attenuated ABA renewal, suggesting a critical role of GluA2-lacking AMPARs in ABA renewal. We also found that Ser831 phosphorylation of GluA1 in the LA was increased upon ABA renewal. We developed a short peptide mimicking the Ser831-containing C-tail region of GluA1, which can be phosphorylated upon renewal (GluA1S; thus, the phosphorylated GluA1S may compete with Ser831-phosphorylated GluA1. This GluA1S peptide blocked the low-threshold potentiation when dialyzed into a recorded neuron. The microinjection of a cell-permeable form of GluA1S peptide into the LA attenuated ABA renewal. In support of the GluA1S experiments, a GluA1D peptide (in which the serine at 831 is replaced with a phosphomimetic amino acid, aspartate attenuated ABA renewal when microinjected into the LA. These findings suggest that enhancements

  13. ABA renewal involves enhancements in both GluA2-lacking AMPA receptor activity and GluA1 phosphorylation in the lateral amygdala.

    Science.gov (United States)

    Park, Kyungjoon; Song, Beomjong; Kim, Jeongyeon; Hong, Ingie; Song, Sangho; Lee, Junuk; Park, Sungmo; Kim, Jihye; An, Bobae; Lee, Hyun Woo; Lee, Seungbok; Kim, Hyun; Lee, Justin C; Lee, Sukwon; Choi, Sukwoo

    2014-01-01

    Fear renewal, the context-specific relapse of fear following fear extinction, is a leading animal model of post-traumatic stress disorders (PTSD) and fear-related disorders. Although fear extinction can diminish fear responses, this effect is restricted to the context where the extinction is carried out, and the extinguished fear strongly relapses when assessed in the original acquisition context (ABA renewal) or in a context distinct from the conditioning and extinction contexts (ABC renewal). We have previously identified Ser831 phosphorylation of GluA1 subunit in the lateral amygdala (LA) as a key molecular mechanism for ABC renewal. However, molecular mechanisms underlying ABA renewal remain to be elucidated. Here, we found that both the excitatory synaptic efficacy and GluA2-lacking AMPAR activity at thalamic input synapses onto the LA (T-LA synapses) were enhanced upon ABA renewal. GluA2-lacking AMPAR activity was also increased during low-threshold potentiation, a potential cellular substrate of renewal, at T-LA synapses. The microinjection of 1-naphtylacetyl-spermine (NASPM), a selective blocker of GluA2-lacking AMPARs, into the LA attenuated ABA renewal, suggesting a critical role of GluA2-lacking AMPARs in ABA renewal. We also found that Ser831 phosphorylation of GluA1 in the LA was increased upon ABA renewal. We developed a short peptide mimicking the Ser831-containing C-tail region of GluA1, which can be phosphorylated upon renewal (GluA1S); thus, the phosphorylated GluA1S may compete with Ser831-phosphorylated GluA1. This GluA1S peptide blocked the low-threshold potentiation when dialyzed into a recorded neuron. The microinjection of a cell-permeable form of GluA1S peptide into the LA attenuated ABA renewal. In support of the GluA1S experiments, a GluA1D peptide (in which the serine at 831 is replaced with a phosphomimetic amino acid, aspartate) attenuated ABA renewal when microinjected into the LA. These findings suggest that enhancements in both the

  14. Abscisic acid (ABA) sensitivity regulates desiccation tolerance in germinated Arabidopsis seeds

    NARCIS (Netherlands)

    Maia de Oliveira, J.; Dekkers, S.J.W.; Dolle, M.; Ligterink, W.; Hilhorst, H.W.M.

    2014-01-01

    During germination, orthodox seeds lose their desiccation tolerance (DT) and become sensitive to extreme drying. Yet, DT can be rescued, in a well-defined developmental window, by the application of a mild osmotic stress before dehydration. A role for abscisic acid (ABA) has been implicated in this

  15. Anaemia in Pregnancy in Abia State University Teaching Hospital, Aba

    African Journals Online (AJOL)

    A prospective study of incidence of anaemia in pregnancy at Abia state University Teaching Hospital, Aba was conducted over a six-month period spanning from 31st January 2000 to 31st July 2000. The incidence of anaemia in pregnancy was 29%. The vast majority (97.6%) had mild anaemia. The result showed that most ...

  16. CmWRKY1 Enhances the Dehydration Tolerance of Chrysanthemum through the Regulation of ABA-Associated Genes.

    Directory of Open Access Journals (Sweden)

    Qingqing Fan

    Full Text Available WRKY transcription factors serve as antagonistic or synergistic regulators in a variety of abiotic stress responses in plants. Here, we show that CmWRKY1, a member of the group IIb WRKY family isolated from Chrysanthemum morifolium, exhibits no transcriptional activation in yeast cells. The subcellular localization examination showed that CmWRKY1 localizes to the nucleus in vivo. Furthermore, CmWRKY1-overexpressing transgenic lines exhibit enhanced dehydration tolerance in response to polyethylene glycol (PEG treatment compared with wild-type plants. We further confirmed that the transgenic plants exhibit suppressed expression levels of genes negatively regulated by ABA, such as PP2C, ABI1 and ABI2, and activated expression levels of genes positively regulated by ABA, such as PYL2, SnRK2.2, ABF4, MYB2, RAB18, and DREB1A. Taken together, our results indicate that CmWRKY1 plays an important role in the response to drought in chrysanthemum through an ABA-mediated pathway.

  17. The effect of strobilurins on leaf gas exchange, water use efficiency and ABA content in grapevine under field conditions.

    Science.gov (United States)

    Diaz-Espejo, Antonio; Cuevas, María Victoria; Ribas-Carbo, Miquel; Flexas, Jaume; Martorell, Sebastian; Fernández, José Enrique

    2012-03-01

    Strobilurins are one of the most important classes of agricultural fungicides. In addition to their anti-fungal effect, strobilurins have been reported to produce simultaneous effects in plant physiology. This study investigated whether the use of strobilurin fungicide improved water use efficiency in leaves of grapevines grown under field conditions in a Mediterranean climate in southern Spain. Fungicide was applied three times in the vineyard and measurements of leaf gas exchange, plant water status, abscisic acid concentration in sap ([ABA]), and carbon isotope composition in leaves were performed before and after applications. No clear effect on stomatal conductance, leaf water potential and intrinsic water use efficiency was found after three fungicide applications. ABA concentration was observed to increase after fungicide application on the first day, vanishing three days later. Despite this transient effect, evolution of [ABA] matched well with the evolution of leaf carbon isotope ratio, which can be used as a surrogate for plant water use efficiency. Morning stomatal conductance was negatively correlated to [ABA]. Yield was enhanced in strobilurin treated plants, whereas fruit quality remained unaltered. Published by Elsevier GmbH.

  18. Ectopic expression of soybean gmsbh1 confers aba sensitivity during seed germination and early seedling establishment in transgenic arabidopsis

    International Nuclear Information System (INIS)

    Shu, Y.; Zhou, Y.; Huang, S.; Chen, M.; Huang, L.; Ma, H.

    2017-01-01

    The class I KNOX homeobox transcription factors are known to play an important role in maintenance of plant phenotype, especially leaves and flowers. In this study, a soybean KNOX I homeobox transcription factor, GmSBH1, was analyzed and confirmed to play important roles in the process of seed germination and developing. Real time quantitative PCR assay showed that the transcript level of GmSBH1 in soybean seedlings was modulated by plant hormones, such as IAA, GA, MeJA and ABA.Yeast one-hybrid assay showed that GmSBH1 could bind to the ABRE cis-element. Overexpression of GmSBH1 in Arabidopsis resulted in the abnormal phenotype of flowers and siliques. In GmSBH1 transgenic lines, both seed germination and seedlings growth showed hypersensitive to ABA. Moreover, the expression of ABA-responsive genes, such as ABI3 and ABI5, were increased in the transgenic line seedlings. Taken together, ectopic expression of GmSBH1 could alter the morphology and confer ABA sensitivity during seed germination and early seedling growth in transgenic Arabidopsis. (author)

  19. Overexpression of StNF-YB3.1 reduces photosynthetic capacity and tuber production, and promotes ABA-mediated stomatal closure in potato (Solanum tuberosum L.).

    Science.gov (United States)

    Xuanyuan, Guochao; Lu, Congming; Zhang, Ruofang; Jiang, Jiming

    2017-08-01

    Nuclear factor Y (NF-Y) is one of the most ubiquitous transcription factors (TFs), comprising NF-YA, NF-YB and NF-YC subunits, and has been identified and reported in various aspects of development for plants and animals. In this work, StNF-YB3.1, a putative potato NF-YB subunit encoding gene, was isolated from Solanum tuberosum by rapid amplification of cDNA ends (RACE). Overexpression of StNF-YB3.1 in potato (cv. Atlantic) resulted in accelerated onset of flowering, and significant increase in leaf chlorophyll content in field trials. However, transgenic potato plants overexpressing StNF-YB3.1 (OEYB3.1) showed significant decreases in photosynthetic rate and stomatal conductance both at tuber initiation and bulking stages. OEYB3.1 lines were associated with significantly fewer tuber numbers and yield reduction. Guard cell size and stomatal density were not changed in OEYB3.1 plants, whereas ABA-mediated stomatal closure was accelerated compared to that of wild type plants because of the up-regulation of genes for ABA signaling, such as StCPK10-like, StSnRK2.6/OST1-like, StSnRK2.7-like and StSLAC1-like. We speculate that the acceleration of stomatal closure was a possible reason for the significantly decreased stomatal conductance and photosynthetic rate. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effects of dormancy-breaking chemicals on ABA levels in barley grain embryos

    NARCIS (Netherlands)

    Wang, M.; Meulen, R.M. van der; Visser, K.; Schalk, H.P. van; Duijn, B. van; Boer, A.H. de

    1998-01-01

    The endogenous ABA contents of dormant and nondormant barley grains were determined following application of different compounds to break dormancy. The chemicals used for breaking of dormancy in intact dormant grains were weak and strong acids, alcohols,. hydrogen peroxide, cyanide, nitrate,

  1. Optimization of Thermo-Mechanical Processing for Forging of Newly Developed Creep-Resistant Magnesium Alloy ABaX633

    Directory of Open Access Journals (Sweden)

    Kamineni Pitcheswara Rao

    2017-11-01

    Full Text Available The compressive strength and creep resistance of cast Mg-6Al-3Ba-3Ca (ABaX633 alloy has been measured in the temperature range of 25 to 250 °C, and compared with that of its predecessor ABaX422. The alloy is stronger and more creep-resistant than ABaX422, and exhibits only a small decrease of yield stress with temperature. The higher strength of ABaX633 is attributed to a larger volume fraction of intermetallic particles (Al, Mg2Ca and Mg21Al3Ba2 in its microstructure. Hot deformation mechanisms in ABaX633 have been characterized by developing a processing map in the temperature and strain rate ranges of 300 to 500 °C and 0.0003 to 10 s−1. The processing map exhibits two workability domains in the temperature and strain rate ranges of: (1 380 to 475 °C and 0.0003 to 0.003 s−1, and (2 480–500 °C and 0.003 to 0.5 s−1. The apparent activation energy values estimated in the above two domains (204 and 216 kJ/mol are higher than that for lattice self-diffusion of Mg, which is attributed to the large back-stress that is caused by the intermetallic particles. Optimum condition for bulk working is 500 °C and 0.01 s−1 at which hot workability will be maximum. Flow instability is exhibited at lower temperatures and higher strain rates, as well as at higher temperatures and higher strain rates. The predictions of the processing map on the workability domains, as well as the instability regimes are fully validated by the forging of a rib-web (cup shaped component under optimized conditions.

  2. Involvement of NADPH oxidase isoforms in the production of O2- manipulated by ABA in the senescing leaves of early-senescence-leaf (esl) mutant rice (Oryza sativa).

    Science.gov (United States)

    Li, Zhaowei; Wang, Fubiao; Zhao, Qian; Liu, Jianchao; Cheng, Fangmin

    2018-01-01

    In this study, the differences in reactive oxygen species (ROS) generation and abscisic acid (ABA) accumulation in senescing leaves were investigated by early-senescence-leaf (esl) mutant and its wild type, to clarify the relationship among ABA levels, ROS generation, and NADPH oxidase (Nox) in senescing leaves of rice (Oryza sativa). The temporal expression levels of OsNox isoforms in senescing leaves and their expression patterns in response to ABA treatment were determined through quantitative real-time reverse transcription PCR (qRT-PCR). Results showed that the flag leaf of the esl mutant generated more O2- concentrations and accumulated higher ABA levels than the wild-type cultivar did in the grain-filling stage. Exogenous ABA treatment induced O2- generation; however, it was depressed by diphenyleneiodonium chloride (DPI) pretreatment in the detached leaf segments. This finding suggested the involvement of NADPH oxidase in ABA-induced O2- generation. The esl mutant exhibited significantly higher expression of OsNox2, OsNox5, OsNox6, and OsNox7 in the initial of grain-filling stage, followed by sharply decrease. The transcriptional levels of OsNox1, OsNox3, and OsFR07 in the flag leaf of the esl mutant were significantly lower than those in the wild-type cultivar. The expression levels of OsNox2, OsNox5, OsNox6, and OsNox7 were significantly enhanced by exogenous ABA treatments. The enhanced expression levels of OsNox2 and OsNox6 were dependent on the duration of ABA treatment. The inducible expression levels of OsNox5 and OsNox7 were dependent on ABA concentrations. By contrast, exogenous ABA treatment severely repressed the transcripts of OsNox1, OsNox3, and OsFR07 in the detached leaf segments. Therefore, OsNox2, OsNox5, OsNox6, and OsNox7 were probably involved in the ABA-induced O2- generation in the initial stage of leaf senescence. Subsequently, other oxidases activated in deteriorating cells were associated with ROS generation and accumulation in the

  3. Abscisic acid induces a transient shift in signaling that enhances NF-κB-mediated parasite killing in the midgut of Anopheles stephensi without reducing lifespan or fecundity.

    Science.gov (United States)

    Glennon, Elizabeth K K; Torrevillas, Brandi K; Morrissey, Shannon F; Ejercito, Jadrian M; Luckhart, Shirley

    2017-07-13

    Abscisic acid (ABA) is naturally present in mammalian blood and circulating levels can be increased by oral supplementation. We showed previously that oral ABA supplementation in a mouse model of Plasmodium yoelii 17XNL infection reduced parasitemia and gametocytemia, spleen and liver pathology, and parasite transmission to the mosquito Anopheles stephensi fed on these mice. Treatment of cultured Plasmodium falciparum with ABA at levels detected in our model had no effects on asexual growth or gametocyte formation in vitro. However, ABA treatment of cultured P. falciparum immediately prior to mosquito feeding significantly reduced oocyst development in A. stephensi via ABA-dependent synthesis of nitric oxide (NO) in the mosquito midgut. Here we describe the mechanisms of effects of ABA on mosquito physiology, which are dependent on phosphorylation of TGF-β-activated kinase 1 (TAK1) and associated with changes in homeostatic gene expression and activity of kinases that are central to metabolic regulation in the midgut epithelium. Collectively, the timing of these effects suggests a transient physiological shift that enhances NF-κB-dependent innate immunity without significantly altering mosquito lifespan or fecundity. ABA is a highly conserved regulator of immune and metabolic homeostasis within the malaria vector A. stephensi with potential as a transmission-blocking supplemental treatment.

  4. Positive feedback regulation of a Lycium chinense-derived VDE gene by drought-induced endogenous ABA, and over-expression of this VDE gene improve drought-induced photo-damage in Arabidopsis.

    Science.gov (United States)

    Guan, Chunfeng; Ji, Jing; Zhang, Xuqiang; Li, Xiaozhou; Jin, Chao; Guan, Wenzhu; Wang, Gang

    2015-03-01

    Violaxanthin de-epoxidase (VDE) plays an important role in protecting the photosynthetic apparatus from photo-damage by dissipating excessively absorbed light energy as heat, via the conversion of violaxanthin (V) to intermediate product antheraxanthin (A) and final product zeaxanthin (Z) under light stress. We have cloned a VDE gene (LcVDE) from Lycium chinense, a deciduous woody perennial halophyte, which can grow in a large variety of soil types. The amino acid sequence of LcVDE has high homology with VDEs in other plants. Under drought stress, relative expression of LcVDE and the de-epoxidation ratio (Z+0.5A)/(V+A+Z) increased rapidly, and non-photochemical quenching (NPQ) also rose. Interestingly, these elevations induced by drought stress were reduced by the topical administration of abamine SG, a potent ABA inhibitor via inhibition of NCED in the ABA synthesis pathway. Until now, little has been done to explore the relationship between endogenous ABA and the expression of VDE genes. Since V serves as a common precursor for ABA, these data support the possible involvement of endogenous ABA in the positive feedback regulation of LcVDE gene expression in L. chinense under drought stress. Moreover, the LcVDE may be involved in modulating the level of photosynthesis damage caused by drought stress. Furthermore, the ratio of (Z+0.5A)/(V+A+Z) and NPQ increased more in transgenic Arabidopsis over-expressing LcVDE gene than the wild types under drought stress. The maximum quantum yield of primary photochemistry of PSII (Fv/Fm) in transgenic Arabidopsis decreased more slowly during the stressed period than that in wild types under the same conditions. Furthermore, transgenic Arabidopsis over-expressing LcVDE showed increased tolerance to drought stress. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Saving of drinking water in cooling system at Aq aba Thermal Power Station

    International Nuclear Information System (INIS)

    Al-Nsour, A.F.

    2001-01-01

    This paper discussing a new modification, design and implementation to the existing cooling water system of boiler drum continuous blow down water at Aq aba Thermal Power Stations to eliminate drinking water consumption as a coolant medium

  6. ABA, GA(3), and nitrate may control seed germination of Crithmum maritimum (Apiaceae) under saline conditions.

    Science.gov (United States)

    Atia, Abdallah; Debez, Ahmed; Barhoumi, Zouhaier; Smaoui, Abderrazak; Abdelly, Chedly

    2009-08-01

    Impaired germination is common among halophyte seeds exposed to salt stress, partly resulting from the salt-induced reduction of the growth regulator contents in seeds. Thus, the understanding of hormonal regulation during the germination process is a main key: (i) to overcome the mechanisms by which NaCl-salinity inhibit germination; and (ii) to improve the germination of these species when challenged with NaCl. In the present investigation, the effects of ABA, GA(3), NO(-)(3), and NH(+)(4) on the germination of the oilseed halophyte Crithmum maritimum (Apiaceae) were assessed under NaCl-salinity (up to 200 mM NaCl). Seeds were collected from Tabarka rocky coasts (N-W of Tunisia). The exogenous application of GA(3), nitrate (either as NaNO(3) or KNO(3)), and NH(4)Cl enhanced germination under NaCl salinity. The beneficial impact of KNO(3) on germination upon seed exposure to NaCl salinity was rather due to NO(-)(3) than to K(+), since KCl failed to significantly stimulate germination. Under optimal conditions for germination (0 mM NaCl), ABA inhibited germination over time in a dose dependent manner, but KNO(3) completely restored the germination parameters. Under NaCl salinity, the application of fluridone (FLU) an inhibitor of ABA biosynthesis, stimulated substantially seed germination. Taken together, our results point out that NO(-)(3) and GA(3) mitigate the NaCl-induced reduction of seed germination, and that NO(-)(3) counteracts the inhibitory effect of ABA on germination of C. maritimum.

  7. Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway.

    Science.gov (United States)

    Kizis, Dimosthenis; Pagès, Montserrat

    2002-06-01

    The abscisic acid-responsive gene rab17 of maize is expressed during late embryogenesis, and is induced by ABA and desiccation in embryo and vegetative tissues. ABRE and DRE cis-elements are involved in regulation of the gene by ABA and drought. Using yeast one-hybrid screening, we isolated two cDNAs encoding two new DRE-binding proteins, designated DBF1 and DBF2, that are members of the AP2/EREBP transcription factor family. Analysis of mRNA accumulation profiles showed that DBF1 is induced during maize embryogenesis and after desiccation, NaCl and ABA treatments in plant seedlings, whereas the DBF2 mRNA is not induced. DNA-binding preferences of DBFs were analysed by electrophoretic mobility shift assays, and showed that both DBF1 and DBF2 bound to the wild-type DRE2 element, but not to the DRE2 mutant or to the DRE1 element which differs only in a single nucleotide. Transactivation activity using particle bombardment showed that DBF1 functioned as activator of DRE2-dependent transcription of rab17 promoter by ABA, whereas DBF2 overexpression had a repression action downregulating not only the basal promoter activity, but also the ABA effect. These results show that ABA plays a role in the regulation of DBF activity, and suggests the existence of an ABA-dependent pathway for the regulation of genes through the C-repeat/DRE element.

  8. An ABA-responsive element in the AtSUC1 promoter is involved in the regulation of AtSUC1 expression.

    Science.gov (United States)

    Hoth, Stefan; Niedermeier, Matthias; Feuerstein, Andrea; Hornig, Julia; Sauer, Norbert

    2010-09-01

    Abscisic acid (ABA) and sugars regulate many aspects of plant growth and development, and we are only just beginning to understand the complex interactions between ABA and sugar signaling networks. Here, we show that ABA-dependent transcription factors bind to the promoter of the Arabidopsis thaliana AtSUC1 (At1g71880) sucrose transporter gene in vitro. We present the characterization of a cis-regulatory element by truncation of the AtSUC1 promoter and by electrophoretic mobility shift assays that is identical to a previously characterized ABA-responsive element (ABRE). In yeast 1-hybrid analyses we identified ABI5 (AtbZIP39; At2g36270) and AREB3 (AtbZIP66; At3g56850) as potential interactors. Analyses of plants expressing the beta-glucuronidase reporter gene under the control of ABI5 or AREB3 promoter sequences demonstrated that both transcription factor genes are co-expressed with AtSUC1 in pollen and seedlings, the primary sites of AtSUC1 action. Mutational analyses of the identified cis-regulatory element verified its importance for AtSUC1 expression in young seedlings. In abi5-4 seedlings, we observed an increase of sucrose-dependent anthocyanin accumulation and AtSUC1 mRNA levels. This suggests that ABI5 prevents an overshoot of sucrose-induced AtSUC1 expression and confirmed a novel cross-link between sugar and ABA signaling.

  9. Arabidopsis PCaP2 Functions as a Linker Between ABA and SA Signals in Plant Water Deficit Tolerance

    Directory of Open Access Journals (Sweden)

    Xianling Wang

    2018-05-01

    Full Text Available Water stress has a major influence on plant growth, development, and productivity. However, the cross-talk networks involved in drought tolerance are not well understood. Arabidopsis PCaP2 is a plasma membrane-associated Ca2+-binding protein. In this study, we employ qRT-PCR and β-glucuronidase (GUS histochemical staining to demonstrate that PCaP2 expression was strongly induced in roots, cotyledons, true leaves, lateral roots, and whole plants under water deficit conditions. Compared with the wild type (WT plants, PCaP2-overexpressing (PCaP2-OE plants displayed enhanced water deficit tolerance in terms of seed germination, seedling growth, and plant survival status. On the contrary, PCaP2 mutation and reduction via PCaP2-RNAi rendered plants more sensitive to water deficit. Furthermore, PCaP2-RNAi and pcap2 seedlings showed shorter root hairs and lower relative water content compared to WT under normal conditions and these phenotypes were exacerbated under water deficit. Additionally, the expression of PCaP2 was strongly induced by exogenous abscisic acid (ABA and salicylic acid (SA treatments. PCaP2-OE plants showed insensitive to exogenous ABA and SA treatments, in contrast to the susceptible phenotypes of pcap2 and PCaP2-RNAi. It is well-known that SNF1-related kinase 2s (SnRK2s and pathogenesis-related (PRs are major factors that influence plant drought tolerance by ABA- and SA-mediated pathways, respectively. Interestingly, PCaP2 positively regulated the expression of drought-inducible genes (RD29A, KIN1, and KIN2, ABA-mediated drought responsive genes (SnRK2.2, -2.3, -2.6, ABF1, -2, -3, -4, and SA-mediated drought responsive genes (PR1, -2, -5 under water deficit, ABA, or SA treatments. Taken together, our results showed that PCaP2 plays an important and positive role in Arabidopsis water deficit tolerance by involving in response to both ABA and SA signals and regulating root hair growth. This study provides novel insights into the

  10. Conceptos generales sobre ABA en niños con trastorno del espectro autista

    Directory of Open Access Journals (Sweden)

    Sandra Elizabeth Piñeros Ortiz

    2012-01-01

    Full Text Available Los trastornos del espectro autista (TEA son entidades que generan discapacidad. Diversas intervenciones psicofarmacológicas y psicosociales modulan algunas de las alteraciones comportamentales asociadas y mejoran la calidad de vida de las personas afectadas y de sus cuidadores. La terapia ABA es una de las intervenciones psicosociales más conocidas y utilizada en población con TEA. Mediante de la  formulación de preguntas clave y sus respuestas, este artículo realiza una breve descripción de los aspectos históricos, las principales características y los fundamentos teóricos del ABA. Se discuten los resultados de diversos estudios que señalan las limitaciones metodológicas de las investigaciones sobre  la efectividad de esta terapia y sus implicaciones para la práctica clínica.

  11. Mutations in the Arabidopsis Lst8 and Raptor genes encoding partners of the TOR complex, or inhibition of TOR activity decrease abscisic acid (ABA) synthesis.

    Science.gov (United States)

    Kravchenko, Alena; Citerne, Sylvie; Jéhanno, Isabelle; Bersimbaev, Rakhmetkazhi I; Veit, Bruce; Meyer, Christian; Leprince, Anne-Sophie

    2015-11-27

    The Target of Rapamycin (TOR) kinase regulates essential processes in plant growth and development by modulation of metabolism and translation in response to environmental signals. In this study, we show that abscisic acid (ABA) metabolism is also regulated by the TOR kinase. Indeed ABA hormone level strongly decreases in Lst8-1 and Raptor3g mutant lines as well as in wild-type (WT) Arabidopsis plants treated with AZD-8055, a TOR inhibitor. However the growth and germination of these lines are more sensitive to exogenous ABA. The diminished ABA hormone accumulation is correlated with lower transcript levels of ZEP, NCED3 and AAO3 biosynthetic enzymes, and higher transcript amount of the CYP707A2 gene encoding a key-enzyme in abscisic acid catabolism. These results suggest that the TOR signaling pathway is implicated in the regulation of ABA accumulation in Arabidopsis. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Expression of CdDHN4, a Novel YSK2-Type Dehydrin Gene from Bermudagrass, Responses to Drought Stress through the ABA-Dependent Signal Pathway.

    Science.gov (United States)

    Lv, Aimin; Fan, Nana; Xie, Jianping; Yuan, Shili; An, Yuan; Zhou, Peng

    2017-01-01

    Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4 , were estimated under various stresses and abscisic acid (ABA) treatments in two bermudagrasses ( Cynodon dactylon L.): Tifway (drought-tolerant) and C299 (drought-sensitive). The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions were higher in Tifway than in C299. A 1239-bp fragment, CdDHN4-P, the partial upstream sequence of the CdDHN4 gene, was cloned by genomic walking from Tifway. Bioinformatic analysis showed that the CdDHN4-P sequence possessed features typical of a plant promoter and contained many typical cis elements, including a transcription initiation site, a TATA-box, an ABRE, an MBS, a MYC, an LTRE, a TATC-box and a GT1-motif. Transient expression in tobacco leaves demonstrated that the promoter CdDHN4-P can be activated by ABA, drought and cold. These results indicate that CdDHN4 is regulated by an ABA-dependent signal pathway and that the high sensitivity of CdDHN4 to ABA might be an important mechanism enhancing the drought tolerance of bermudagrass.

  13. Expression of CdDHN4, a Novel YSK2-Type Dehydrin Gene from Bermudagrass, Responses to Drought Stress through the ABA-Dependent Signal Pathway

    Directory of Open Access Journals (Sweden)

    Aimin Lv

    2017-05-01

    Full Text Available Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4, were estimated under various stresses and abscisic acid (ABA treatments in two bermudagrasses (Cynodon dactylon L.: Tifway (drought-tolerant and C299 (drought-sensitive. The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions were higher in Tifway than in C299. A 1239-bp fragment, CdDHN4-P, the partial upstream sequence of the CdDHN4 gene, was cloned by genomic walking from Tifway. Bioinformatic analysis showed that the CdDHN4-P sequence possessed features typical of a plant promoter and contained many typical cis elements, including a transcription initiation site, a TATA-box, an ABRE, an MBS, a MYC, an LTRE, a TATC-box and a GT1-motif. Transient expression in tobacco leaves demonstrated that the promoter CdDHN4-P can be activated by ABA, drought and cold. These results indicate that CdDHN4 is regulated by an ABA-dependent signal pathway and that the high sensitivity of CdDHN4 to ABA might be an important mechanism enhancing the drought tolerance of bermudagrass.

  14. Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp hordei in Arabidopsis

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Hagedorn, Peter; De Torres-Zabala, Marta

    2008-01-01

    -representation of abscisic acid (ABA)-responsive genes, including the ABA biosynthesis gene AAO3, which is significantly induced in ataf1 plants compared to wild-type plants following inoculation with Bgh. Additionally, we show that Bgh inoculation results in decreased endogenous ABA levels in an ATAF1-dependent manner...

  15. Expression of CdDHN4, a Novel YSK2-Type Dehydrin Gene from Bermudagrass, Responses to Drought Stress through the ABA-Dependent Signal Pathway

    OpenAIRE

    Lv, Aimin; Fan, Nana; Xie, Jianping; Yuan, Shili; An, Yuan; Zhou, Peng

    2017-01-01

    Dehydrin improves plant resistance to many abiotic stresses. In this study, the expression profiles of a dehydrin gene, CdDHN4, were estimated under various stresses and abscisic acid (ABA) treatments in two bermudagrasses (Cynodon dactylon L.): Tifway (drought-tolerant) and C299 (drought-sensitive). The expression of CdDHN4 was up-regulated by high temperatures, low temperatures, drought, salt and ABA. The sensitivity of CdDHN4 to ABA and the expression of CdDHN4 under drought conditions wer...

  16. Quantitative statistical analysis of cis-regulatory sequences in ABA/VP1- and CBF/DREB1-regulated genes of Arabidopsis.

    Science.gov (United States)

    Suzuki, Masaharu; Ketterling, Matthew G; McCarty, Donald R

    2005-09-01

    We have developed a simple quantitative computational approach for objective analysis of cis-regulatory sequences in promoters of coregulated genes. The program, designated MotifFinder, identifies oligo sequences that are overrepresented in promoters of coregulated genes. We used this approach to analyze promoter sequences of Viviparous1 (VP1)/abscisic acid (ABA)-regulated genes and cold-regulated genes, respectively, of Arabidopsis (Arabidopsis thaliana). We detected significantly enriched sequences in up-regulated genes but not in down-regulated genes. This result suggests that gene activation but not repression is mediated by specific and common sequence elements in promoters. The enriched motifs include several known cis-regulatory sequences as well as previously unidentified motifs. With respect to known cis-elements, we dissected the flanking nucleotides of the core sequences of Sph element, ABA response elements (ABREs), and the C repeat/dehydration-responsive element. This analysis identified the motif variants that may correlate with qualitative and quantitative differences in gene expression. While both VP1 and cold responses are mediated in part by ABA signaling via ABREs, these responses correlate with unique ABRE variants distinguished by nucleotides flanking the ACGT core. ABRE and Sph motifs are tightly associated uniquely in the coregulated set of genes showing a strict dependence on VP1 and ABA signaling. Finally, analysis of distribution of the enriched sequences revealed a striking concentration of enriched motifs in a proximal 200-base region of VP1/ABA and cold-regulated promoters. Overall, each class of coregulated genes possesses a discrete set of the enriched motifs with unique distributions in their promoters that may account for the specificity of gene regulation.

  17. The cis-regulatory element CCACGTGG is involved in ABA and water-stress responses of the maize gene rab28.

    Science.gov (United States)

    Pla, M; Vilardell, J; Guiltinan, M J; Marcotte, W R; Niogret, M F; Quatrano, R S; Pagès, M

    1993-01-01

    The maize gene rab28 has been identified as ABA-inducible in embryos and vegetative tissues. It is also induced by water stress in young leaves. The proximal promoter region contains the conserved cis-acting element CCACGTGG (ABRE) reported for ABA induction in other plant genes. Transient expression assays in rice protoplasts indicate that a 134 bp fragment (-194 to -60 containing the ABRE) fused to a truncated cauliflower mosaic virus promoter (35S) is sufficient to confer ABA-responsiveness upon the GUS reporter gene. Gel retardation experiments indicate that nuclear proteins from tissues in which the rab28 gene is expressed can interact specifically with this 134 bp DNA fragment. Nuclear protein extracts from embryo and water-stressed leaves generate specific complexes of different electrophoretic mobility which are stable in the presence of detergent and high salt. However, by DMS footprinting the same guanine-specific contacts with the ABRE in both the embryo and leaf binding activities were detected. These results indicate that the rab28 promoter sequence CCACGTGG is a functional ABA-responsive element, and suggest that distinct regulatory factors with apparent similar affinity for the ABRE sequence may be involved in the hormone action during embryo development and in vegetative tissues subjected to osmotic stress.

  18. Involvement of NADPH oxidase isoforms in the production of O2− manipulated by ABA in the senescing leaves of early-senescence-leaf (esl) mutant rice (Oryza sativa)

    Science.gov (United States)

    Wang, Fubiao; Zhao, Qian; Liu, Jianchao; Cheng, Fangmin

    2018-01-01

    In this study, the differences in reactive oxygen species (ROS) generation and abscisic acid (ABA) accumulation in senescing leaves were investigated by early-senescence-leaf (esl) mutant and its wild type, to clarify the relationship among ABA levels, ROS generation, and NADPH oxidase (Nox) in senescing leaves of rice (Oryza sativa). The temporal expression levels of OsNox isoforms in senescing leaves and their expression patterns in response to ABA treatment were determined through quantitative real-time reverse transcription PCR (qRT-PCR). Results showed that the flag leaf of the esl mutant generated more O2- concentrations and accumulated higher ABA levels than the wild-type cultivar did in the grain-filling stage. Exogenous ABA treatment induced O2- generation; however, it was depressed by diphenyleneiodonium chloride (DPI) pretreatment in the detached leaf segments. This finding suggested the involvement of NADPH oxidase in ABA-induced O2- generation. The esl mutant exhibited significantly higher expression of OsNox2, OsNox5, OsNox6, and OsNox7 in the initial of grain-filling stage, followed by sharply decrease. The transcriptional levels of OsNox1, OsNox3, and OsFR07 in the flag leaf of the esl mutant were significantly lower than those in the wild-type cultivar. The expression levels of OsNox2, OsNox5, OsNox6, and OsNox7 were significantly enhanced by exogenous ABA treatments. The enhanced expression levels of OsNox2 and OsNox6 were dependent on the duration of ABA treatment. The inducible expression levels of OsNox5 and OsNox7 were dependent on ABA concentrations. By contrast, exogenous ABA treatment severely repressed the transcripts of OsNox1, OsNox3, and OsFR07 in the detached leaf segments. Therefore, OsNox2, OsNox5, OsNox6, and OsNox7 were probably involved in the ABA-induced O2- generation in the initial stage of leaf senescence. Subsequently, other oxidases activated in deteriorating cells were associated with ROS generation and accumulation in the

  19. Reduced astrocyte density underlying brain volume reduction in activity-based anorexia rats

    Science.gov (United States)

    Frintrop, Linda; Liesbrock, Johanna; Paulukat, Lisa; Johann, Sonja; Kas, Martien J; Tolba, Rene; Heussen, Nicole; Neulen, Joseph; Konrad, Kerstin; Herpertz-Dahlmann, Beate; Beyer, Cordian; Seitz, Jochen

    2018-04-01

    Severe grey and white matter volume reductions were found in patients with anorexia nervosa (AN) that were linked to neuropsychological deficits while their underlying pathophysiology remains unclear. For the first time, we analysed the cellular basis of brain volume changes in an animal model (activity-based anorexia, ABA). Female rats had 24 h/day running wheel access and received reduced food intake until a 25% weight reduction was reached and maintained for 2 weeks. In ABA rats, the volumes of the cerebral cortex and corpus callosum were significantly reduced compared to controls by 6% and 9%, respectively. The number of GFAP-positive astrocytes in these regions decreased by 39% and 23%, total astrocyte-covered area by 83% and 63%. In neurons no changes were observed. The findings were complemented by a 60% and 49% reduction in astrocyte (GFAP) mRNA expression. Volumetric brain changes in ABA animals mirror those in human AN patients. These alterations are associated with a reduction of GFAP-positive astrocytes as well as GFAP expression. Reduced astrocyte functioning could help explain neuronal dysfunctions leading to symptoms of rigidity and impaired learning. Astrocyte loss could constitute a new research target for understanding and treating semi-starvation and AN.

  20. A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops.

    Directory of Open Access Journals (Sweden)

    Réka Albert

    2017-09-01

    Full Text Available Stomata, microscopic pores in leaf surfaces through which water loss and carbon dioxide uptake occur, are closed in response to drought by the phytohormone abscisic acid (ABA. This process is vital for drought tolerance and has been the topic of extensive experimental investigation in the last decades. Although a core signaling chain has been elucidated consisting of ABA binding to receptors, which alleviates negative regulation by protein phosphatases 2C (PP2Cs of the protein kinase OPEN STOMATA 1 (OST1 and ultimately results in activation of anion channels, osmotic water loss, and stomatal closure, over 70 additional components have been identified, yet their relationships with each other and the core components are poorly elucidated. We integrated and processed hundreds of disparate observations regarding ABA signal transduction responses underlying stomatal closure into a network of 84 nodes and 156 edges and, as a result, established those relationships, including identification of a 36-node, strongly connected (feedback-rich component as well as its in- and out-components. The network's domination by a feedback-rich component may reflect a general feature of rapid signaling events. We developed a discrete dynamic model of this network and elucidated the effects of ABA plus knockout or constitutive activity of 79 nodes on both the outcome of the system (closure and the status of all internal nodes. The model, with more than 1024 system states, is far from fully determined by the available data, yet model results agree with existing experiments in 82 cases and disagree in only 17 cases, a validation rate of 75%. Our results reveal nodes that could be engineered to impact stomatal closure in a controlled fashion and also provide over 140 novel predictions for which experimental data are currently lacking. Noting the paucity of wet-bench data regarding combinatorial effects of ABA and internal node activation, we experimentally confirmed

  1. A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops.

    Science.gov (United States)

    Albert, Réka; Acharya, Biswa R; Jeon, Byeong Wook; Zañudo, Jorge G T; Zhu, Mengmeng; Osman, Karim; Assmann, Sarah M

    2017-09-01

    Stomata, microscopic pores in leaf surfaces through which water loss and carbon dioxide uptake occur, are closed in response to drought by the phytohormone abscisic acid (ABA). This process is vital for drought tolerance and has been the topic of extensive experimental investigation in the last decades. Although a core signaling chain has been elucidated consisting of ABA binding to receptors, which alleviates negative regulation by protein phosphatases 2C (PP2Cs) of the protein kinase OPEN STOMATA 1 (OST1) and ultimately results in activation of anion channels, osmotic water loss, and stomatal closure, over 70 additional components have been identified, yet their relationships with each other and the core components are poorly elucidated. We integrated and processed hundreds of disparate observations regarding ABA signal transduction responses underlying stomatal closure into a network of 84 nodes and 156 edges and, as a result, established those relationships, including identification of a 36-node, strongly connected (feedback-rich) component as well as its in- and out-components. The network's domination by a feedback-rich component may reflect a general feature of rapid signaling events. We developed a discrete dynamic model of this network and elucidated the effects of ABA plus knockout or constitutive activity of 79 nodes on both the outcome of the system (closure) and the status of all internal nodes. The model, with more than 1024 system states, is far from fully determined by the available data, yet model results agree with existing experiments in 82 cases and disagree in only 17 cases, a validation rate of 75%. Our results reveal nodes that could be engineered to impact stomatal closure in a controlled fashion and also provide over 140 novel predictions for which experimental data are currently lacking. Noting the paucity of wet-bench data regarding combinatorial effects of ABA and internal node activation, we experimentally confirmed several predictions

  2. Abscinazole-F1, a conformationally restricted analogue of the plant growth retardant uniconazole and an inhibitor of ABA 8'-hydroxylase CYP707A with no growth-retardant effect.

    Science.gov (United States)

    Todoroki, Yasushi; Kobayashi, Kyotaro; Shirakura, Minaho; Aoyama, Hikaru; Takatori, Kokichi; Nimitkeatkai, Hataitip; Jin, Mei-Hong; Hiramatsu, Saori; Ueno, Kotomi; Kondo, Satoru; Mizutani, Masaharu; Hirai, Nobuhiro

    2009-09-15

    To develop a specific inhibitor of abscisic acid (ABA) 8'-hydroxylase, a key enzyme in the catabolism of ABA, a plant hormone involved in stress tolerance, seed dormancy, and other various physiological events, we designed and synthesized conformationally restricted analogues of uniconazole (UNI), a well-known plant growth retardant, which inhibits a biosynthetic enzyme (ent-kaurene oxidase) of gibberellin as well as ABA 8'-hydroxylase. Although most of these analogues were less effective than UNI in inhibition of ABA 8'-hydroxylase and rice seedling growth, we found that a lactol-bridged analogue with an imidazole is a potent inhibitor of ABA 8'-hydroxylase but not of plant growth. This compound, abscinazole-F1, induced drought tolerance in apple seedlings upon spray treatment with a 10 microM solution.

  3. Spectroscopic and structural studies on some divalent metal salt of p-aminobenzoic acid (ABA(MG)) tetracyanonickelate complexes

    International Nuclear Information System (INIS)

    Atalay, Y.

    2004-01-01

    Infrared spectra of MLNi (CN) 4 [ M=Mn, Fe, Co, Ni, Zn or Cd and LDivalent metal salt of p- Aminobenzoic Acid or ABA (Mg) ] are reported. Their structure consists of polymeric layers of [M-Ni(CN) 4 ] α with the divalent metal salt of p-aminobenzoic acid [ABA(Mg)] molecules bound directly to the metal (M). These spectra were comparewith powder the Xray diffraction pattern of complexes. It is show that proposed structures for these complexes derived from Mattson 1000 FTIR spectra are consistent with the X-ray powder diffraction measurements and elemental analysis result

  4. Soybean Salt Tolerance 1 (GmST1) Reduces ROS Production, Enhances ABA Sensitivity, and Abiotic Stress Tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Ren, Shuxin; Lyle, Chimera; Jiang, Guo-Liang; Penumala, Abhishek

    2016-01-01

    Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative reverse transcription-polymerase chain reaction analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1 kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops.

  5. Soybean salt tolerance 1 (GmST1 reduces ROS production, enhances ABA sensitivity and abiotic stress tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Shuxin eRen

    2016-04-01

    Full Text Available Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species (ROS under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative RT-PCR analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops.

  6. Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon).

    Science.gov (United States)

    Speirs, Jim; Binney, Allan; Collins, Marisa; Edwards, Everard; Loveys, Brian

    2013-04-01

    The influence of different levels of irrigation and of variation in atmospheric vapour pressure deficit (VPD) on the synthesis, metabolism, and transport of abscisic acid (ABA) and the effects on stomatal conductance were examined in field-grown Cabernet Sauvignon grapevines. Xylem sap, leaf tissue, and root tissue were collected at regular intervals during two seasons in conjunction with measurements of leaf water potential (Ψleaf) and stomatal conductance (gs). The different irrigation levels significantly altered the Ψleaf and gs of the vines across both seasons. ABA abundance in the xylem sap was correlated with gs. The expression of genes associated with ABA synthesis, NCED1 and NCED2, was higher in the roots than in the leaves throughout and highest in the roots in mid January, a time when soil moisture declined and VPD was at its highest. Their expression in roots was also inversely related to the levels of irrigation and correlated with ABA abundance in the roots, xylem sap, and leaves. Three genes encoding ABA 8'-hydroxylases were isolated and their identities confirmed by expression in yeast cells. The expression of one of these, Hyd1, was elevated in leaves when VPD was below 2.0-2.5 kPa and minimal at higher VPD levels. The results provide evidence that ABA plays an important role in linking stomatal response to soil moisture status and that changes in ABA catabolism at or near its site of action allows optimization of gas exchange to current environmental conditions.

  7. Physiological studies on photochemical oxidant injury in rice plants. IV. Effect of nitrogen application on endogenous abscisic acid (ABA) production and ozone injury of rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y.H.; Ota, Y.

    1981-12-01

    In order to determine the effects of nitrogen application on ABA content of rice plants and their ozone-sensitivity, ABA production and ozone injuries were observed under different levels of nitrogen application with two Japonica and two Japonica X Indica type varieties. In all varieties, endogenous ABA content decreased with the increasing level of nitrogen applied, although total nitrogen content increased with the increasing level of nitrogen applied. Ozone injury was found with increasing level of nitrogen applied and to change depending on the varieties. Ozone injury was found to be more serious with increasing nitrogen content in Jinheung and Nongback, however it was less pronounced in Tongil and Milyang No. 23. Endogenous ABA content and ozone-sensitivity were related to the nitrogen content in the rice plants.

  8. 40 CFR Table 1 to Subpart III of... - HAP ABA Formulation Limitations Matrix for New Sources [see § 63.1297(d)(2)

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true HAP ABA Formulation Limitations Matrix for New Sources [see § 63.1297(d)(2)] 1 Table 1 to Subpart III of Part 63 Protection of Environment... Flexible Polyurethane Foam Production Pt. 63, Subpt. III, Table 1 Table 1 to Subpart III of Part 63—HAP ABA...

  9. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films.

    Science.gov (United States)

    Zhu, Wencai; Huang, Hui; Gao, Xiaochun; Ma, Houyi

    2014-12-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1-65 μM with a low detection limit of 0.01 μM (S/N=3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Improvement of Surface Flashover Performance of Al2O3 Ceramics in Vacuum by Adopting A-B-A Insulation System

    International Nuclear Information System (INIS)

    Li Shengtao; Zhang Tuo; Huang Qifeng; Li Weiwei; Ni Fengyan; Li Jianying

    2011-01-01

    A new insulation system with inorganic A-B-A insulators was proposed to improve the surface flashover performance in vacuum. Inorganic A-B-A insulator samples of Mo/Al 2 O 3 cermet-Al 2 O 3 ceramic-Mo/Al 2 O 3 cermet were prepared, in which the conductivity and permittivity of the Mo/Al 2 O 3 cermets were controlled through different amount of metallic molybdenum powder added. The effects of both conductivity and permittivity of Mo/Al 2 O 3 cermets on the DC and impulse surface flashover voltage in vacuum were experimentally investigated. The result showed that the DC and impulse surface flashover voltage were improved by 52% and 95%, respectively. For the distribution of electric field, two triple junctions, i.e., vacuum-layer A-cathode (TJ1) and vacuum-layer A-layer B (TJ2) were prepared with the introduction of layer A into the A-B-A insulation system. Based on the electric field distribution obtained via electrostatic field simulation and Maxwell-Wagner three-layer model, the electric field of TJ1 decreases while that of TJ2 increases with the increase in conductivity and permittivity of layer A under applied DC and impulse voltage, respectively. Therefore, the improvement of surface flashover performance of A-B-A insulators has been reasonably explained. (fusion engineering)

  11. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films

    International Nuclear Information System (INIS)

    Zhu, Wencai; Huang, Hui; Gao, Xiaochun; Ma, Houyi

    2014-01-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1–65 μM with a low detection limit of 0.01 μM (S/N = 3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. - Highlights: • The 4-ABA/ERGO/GCE was fabricated by a two-step electrochemical method. • Electrochemical behavior of acetaminophen at the 4-ABA/ERGO/GCE was investigated. • The electrochemical sensor exhibited a low detection limit and good selectivity. • This sensor was applied to the detection of acetaminophen in commercial tablets

  12. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wencai [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013 (China); Huang, Hui; Gao, Xiaochun [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Ma, Houyi, E-mail: hyma@sdu.edu.cn [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2014-12-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1–65 μM with a low detection limit of 0.01 μM (S/N = 3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. - Highlights: • The 4-ABA/ERGO/GCE was fabricated by a two-step electrochemical method. • Electrochemical behavior of acetaminophen at the 4-ABA/ERGO/GCE was investigated. • The electrochemical sensor exhibited a low detection limit and good selectivity. • This sensor was applied to the detection of acetaminophen in commercial tablets.

  13. Pollution of shallow groundwater in urban areas of developing countries; a comparative case study of Enugu and Aba towns of southeastern Nigeria

    International Nuclear Information System (INIS)

    Uma, K. O.; Ezeigbo, H. I.

    2000-07-01

    Field studies involving hydrochemical sampling of the groundwater in dug wells and shallow boreholes were carried out in the towns of Enugu (underlain by laterized clay aquifers) and Aba (underlain by loose sandstones). The results suggested generally similar enrichment pattern of some sewage sensitive geochemical parameters (Cl - , NO 3 , electric conductivity, HCO -3 and p H). There is, for instance, a clear elevation of the concentration of nitrates and chlorides above background values of zero and 10 mg/l respectively and these could be correlated with the intensity of urbanization in both towns. A significant observation was the relatively higher concentration of the sensitive parameters in the laterized clay aquifer beneath Enugu with respect to the sandy aquifer beneath Aba. The median concentration values of nitrates and chlorides were 20 mg/l and 16 mg/l at Aba whereas the values at Enugu were 27 mg/l and 72 mg/I respectively. The average electric conductance at Aba (300 mS/cm) was only about 50% of the corresponding value at Enugu, (610 mS/cm). There was also a more uniform concentration range at Enugu whereas outlier values were more common at Aba. The explanation for this could be found in both the matrix lithology and aquifer hydraulics in the areas. It is projected from the findings that thin laterized clay aquifers in hilly terrains could provide a highly conducive environment for rapid contaminant distribution. Such a hydrogeologic environment may even pose greater danger than that of a permeable sandy aquifer in flat terrains

  14. GhCAX3 gene, a novel Ca(2+/H(+ exchanger from cotton, confers regulation of cold response and ABA induced signal transduction.

    Directory of Open Access Journals (Sweden)

    Lian Xu

    Full Text Available As a second messenger, Ca(2+ plays a major role in cold induced transduction via stimulus-specific increases in [Ca(2+]cyt, which is called calcium signature. During this process, CAXs (Ca(2+/H(+ exchangers play critical role. For the first time, a putative Ca(2+/H(+ exchanger GhCAX3 gene from upland cotton (Gossypium hirsutum cv. 'YZ-1' was isolated and characterized. It was highly expressed in all tissues of cotton except roots and fibers. This gene may act as a regulator in cotton's response to abiotic stresses as it could be up-regulated by Ca(2+, NaCl, ABA and cold stress. Similar to other CAXs, it was proved that GhCAX3 also had Ca(2+ transport activity and the N-terminal regulatory region (NRR through yeast complementation assay. Over-expression of GhCAX3 in tobacco showed less sensitivity to ABA during seed germination and seedling stages, and the phenotypic difference between wild type (WT and transgenic plants was more significant when the NRR was truncated. Furthermore, GhCAX3 conferred cold tolerance in yeast as well as in tobacco seedlings based on physiological and molecular studies. However, transgenic plant seeds showed more sensitivity to cold stress compared to WT during seed germination, especially when expressed in N-terminal truncated version. Finally, the extent of sensitivity in transgenic lines was more severe than that in WT line under sodium tungstate treatment (an ABA repressor, indicating that ABA could alleviate cold sensitivity of GhCAX3 seeds, especially in short of its NRR. Meanwhile, we also found that overexpression of GhCAX3 could enhance some cold and ABA responsive marker genes. Taken together, these results suggested that GhCAX3 plays important roles in the cross-talk of ABA and cold signal transduction, and compared to full-length of GhCAX3, the absence of NRR could enhance the tolerance or sensitivity to cold stress, depending on seedling's developmental stages.

  15. Multi-subject atlas-based auto-segmentation reduces interobserver variation and improves dosimetric parameter consistency for organs at risk in nasopharyngeal carcinoma: A multi-institution clinical study

    International Nuclear Information System (INIS)

    Tao, Chang-Juan; Yi, Jun-Lin; Chen, Nian-Yong; Ren, Wei; Cheng, Jason; Tung, Stewart; Kong, Lin; Lin, Shao-Jun; Pan, Jian-Ji; Zhang, Guang-Shun; Hu, Jiang; Qi, Zhen-Yu; Ma, Jun; Lu, Jia-De; Yan, Di; Sun, Ying

    2015-01-01

    Background and purpose: To assess whether consensus guideline-based atlas-based auto-segmentation (ABAS) reduces interobserver variation and improves dosimetric parameter consistency for organs at risk (OARs) in nasopharyngeal carcinoma (NPC). Materials and methods: Eight radiation oncologists from 8 institutes contoured 20 OARs on planning CT images of 16 patients via manual contouring and manually-edited ABAS contouring. Interobserver variation [volume coefficient of variation (CV), Dice similarity coefficient (DSC), three-dimensional isocenter difference (3D-ICD)] and dosimetric parameters were compared between the two methods of contouring for each OAR. Results: Interobserver variation was significant for all OARs in manual contouring, resulting in significant dosimetric parameter variation (P < 0.05). Edited ABAS significantly improved multiple metrics and reduced dosimetric parameter variation for most OARs; brainstem, spinal cord, cochleae, temporomandibular joint (TMJ), larynx and pharyngeal constrictor muscle (PCM) obtained most benefit (range of mean DSC, volume CV and main ICD values was 0.36–0.83, 12.1–84.3%, 2.2–5.0 mm for manual contouring and 0.42–0.86, 7.2–70.6%, 1.2–3.5 mm for edited ABAS contouring, respectively; range of dose CV reduction: 1.0–3.0%). Conclusion: Substantial objective interobserver differences occur during manual contouring, resulting in significant dosimetric parameter variation. Edited ABAS reduced interobserver variation and improved dosimetric parameter consistency, particularly for brainstem, spinal cord, cochleae, TMJ, larynx and PCM

  16. Surviving a Dry Future: Abscisic Acid (ABA)-Mediated Plant Mechanisms for Conserving Water under Low Humidity

    Science.gov (United States)

    McAdam, Scott A. M.

    2017-01-01

    Angiosperms are able to respond rapidly to the first sign of dry conditions, a decrease in air humidity, more accurately described as an increase in the vapor pressure deficit between the leaf and the atmosphere (VPD), by abscisic acid (ABA)-mediated stomatal closure. The genes underlying this response offer valuable candidates for targeted selection of crop varieties with improved drought tolerance, a critical goal for current plant breeding programs, to maximize crop production in drier and increasingly marginalized environments, and meet the demands of a growing population in the face of a changing climate. Here, we review current understanding of the genetic mechanisms underpinning ABA-mediated stomatal closure, a key means for conserving water under dry conditions, examine how these mechanisms evolved, and discuss what remains to be investigated. PMID:29113039

  17. PENGEMBANGAN ASPEK SOSIAL ANAK USIA DINI DI TAMAN KANAK-KANAK ABA IV MANGLI JEMBER TAHUN 2016

    Directory of Open Access Journals (Sweden)

    Musyarofah Musyarofah

    2017-06-01

    Full Text Available Early childhood growth will affect the next period i.e. the attainment of maturity in social relations. This research would like to overview the early childhood development precisely and maximally, so the result will be able to develop all aspects of the scope of child development including social aspects. The goal in this research is to describe the early childhood social development in kindergarten (TK ABA IV Mangli Jember by using qualitative approach. The results showed that (1 the early childhood social abilities in kindergarten ABA IV Mangli Jember include the ability to get along, socialize and properly communicate with friends and teachers, working together, being patient in taking turn, caring and helping friends who is in trouble in classroom tasks, sharing food and toys, giving up to friends and being responsible.

  18. PENGEMBANGAN ASPEK SOSIAL ANAK USIA DINI DI TAMAN KANAK-KANAK ABA IV MANGLI JEMBER TAHUN 2016

    Directory of Open Access Journals (Sweden)

    Musyarofah

    2017-11-01

    Full Text Available Early childhood growth will affect the next period i.e. the attainment of maturity in social relations. This research would like to overview the early childhood development precisely and maximally, so the result will be able to develop all aspects of the scope of child development including social aspects. The goal in this research is to describe the early childhood social development in kindergarten (TK ABA IV Mangli Jember by using qualitative approach. The results showed that (1 the early childhood social abilities in kindergarten ABA IV Mangli Jember include the ability to get along, socialize and properly communicate with friends and teachers, working together, being patient in taking turn, caring and helping friends who is in trouble in classroom tasks, sharing food and toys, giving up to friends and being responsible.

  19. Time-series of the re-establishment of desiccation tolerance by ABA in germinated Arabidopsis thaliana seeds

    NARCIS (Netherlands)

    Dias Costa, Maria; Righetti, K.; Ligterink, Wilco; Buitink, J.; Hilhorst, Henk

    2015-01-01

    Mature seeds of Arabidopsis thaliana are desiccation tolerant, but they lose DT while progressing to germination. Yet, there is a small developmental window during which DT can be rescued by treatment with abscisic acid (ABA).

  20. The Role of Self-Efficacy and Autonomy Support in School Psychologists' Use of ABA

    Science.gov (United States)

    Runyon, Katie; Stevens, Tara; Roberts, Brook; Whittaker, Richelle; Clark, Ashley; Chapman, Christy K.; Boggs-Lopez, Misty

    2018-01-01

    The most recent version of the Individuals with Disabilities Education Improvement Act (IDEIA) emphasizes research-based intervention in the school setting. Administrators expect school psychologists to lead initiatives introducing interventions and techniques derived from scientific approaches, such as applied behavior analysis (ABA). However, in…

  1. Genome Sequence of Jumbo Phage vB_AbaM_ME3 of Acinetobacter baumanni

    OpenAIRE

    Buttimer, Colin; O?Sullivan, Lisa; Elbreki, Mohamed; Neve, Horst; McAuliffe, Olivia; Ross, R. Paul; Hill, Colin; O?Mahony, Jim; Coffey, Aidan

    2016-01-01

    Bacteriophage (phage) vB_AbaM_ME3 was previously isolated from wastewater effluent using the propagating host Acinetobacter baumannii DSM 30007. The full genome was sequenced, revealing it to be the largest Acinetobacter bacteriophage sequenced to date with a size of 234,900 bp and containing 326 open reading frames (ORFs).

  2. ABF2, ABF3, and ABF4 Promote ABA-Mediated Chlorophyll Degradation and Leaf Senescence by Transcriptional Activation of Chlorophyll Catabolic Genes and Senescence-Associated Genes in Arabidopsis.

    Science.gov (United States)

    Gao, Shan; Gao, Jiong; Zhu, Xiaoyu; Song, Yi; Li, Zhongpeng; Ren, Guodong; Zhou, Xin; Kuai, Benke

    2016-09-06

    Chlorophyll (Chl) degradation is an integral process of leaf senescence, and NYE1/SGR1 has been demonstrated as a key regulator of Chl catabolism in diverse plant species. In this study, using yeast one-hybrid screening, we identified three abscisic acid (ABA)-responsive element (ABRE)-binding transcription factors, ABF2 (AREB1), ABF3, and ABF4 (AREB2), as the putative binding proteins of the NYE1 promoter. Through the transactivation analysis, electrophoretic mobility shift assay, and chromatin immunoprecipitation, we demonstrated that ABF2, ABF3, and ABF4 directly bound to and activated the NYE1 promoter in vitro and in vivo. ABA is a positive regulator of leaf senescence, and exogenously applied ABA can accelerate Chl degradation. The triple mutant of the ABFs, abf2abf3abf4, as well as two ABA-insensitive mutants, abi1-1 and snrk2.2/2.3/2.6, exhibited stay-green phenotypes after ABA treatment, along with decreased induction of NYE1 and NYE2 expression. In contrast, overexpression of ABF4 accelerated Chl degradation upon ABA treatment. Interestingly, ABF2/3/4 could also activate the expression of two Chl catabolic enzyme genes, PAO and NYC1, by directly binding to their promoters. In addition, abf2abf3abf4 exhibited a functional stay-green phenotype, and senescence-associated genes (SAGs), such as SAG29 (SWEET15), might be directly regulated by the ABFs. Taken together, our results suggest that ABF2, ABF3, and ABF4 likely act as key regulators in mediating ABA-triggered Chl degradation and leaf senescence in general in Arabidopsis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  3. The Rose (Rosa hybrida) NAC Transcription Factor 3 Gene, RhNAC3, Involved in ABA Signaling Pathway Both in Rose and Arabidopsis

    OpenAIRE

    Jiang, Guimei; Jiang, Xinqiang; Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing

    2014-01-01

    Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory seq...

  4. AAB and ABA Renewal as a Function of the Number of Extinction Trials in Conditioned Taste Aversion

    Directory of Open Access Journals (Sweden)

    José E. Callejas-Aguilera

    2007-01-01

    Full Text Available Se realizaron tres experimentos en los que se exploró el efecto de renovación en aversión condicionada al sabor en función del número de ensayos de extinción. En el Experimento 1, tres grupos de ratas recibieron un ensayo de condicionamiento, donde una solución de sacarina se emparejó con LiCl, seguido por tres ensayos de extinción y dos ensayos de prueba. Los grupos difirieron en el contexto donde recibieron cada una de las fases (AAA, ABA y AAB. El cambio de contexto después de la extinción renovó la aversión condicionada al sabor, independientemente de si aquél implicó el regreso al contexto de condicionamiento (ABA o el paso a un contexto diferente (AAB. En el Experimento 2, aumentar el número de ensayos de extinción a 5 eliminó la renovación en el grupo AAB. El Experimento 3 replicó estos resultados dentro de un diseño factorial. Se discuten las implicaciones del efecto diferencial de la cantidad de extinción en la renovación AAB y ABA para la teoría de la recuperación de la información.

  5. Novel Fri1-like Viruses Infecting Acinetobacter baumannii-vB_AbaP_AS11 and vB_AbaP_AS12-Characterization, Comparative Genomic Analysis, and Host-Recognition Strategy.

    Science.gov (United States)

    Popova, Anastasia V; Lavysh, Daria G; Klimuk, Evgeniy I; Edelstein, Mikhail V; Bogun, Alexander G; Shneider, Mikhail M; Goncharov, Artemiy E; Leonov, Sergey V; Severinov, Konstantin V

    2017-07-17

    Acinetobacter baumannii is a gram-negative, non-fermenting aerobic bacterium which is often associated with hospital-acquired infections and known for its ability to develop resistance to antibiotics, form biofilms, and survive for long periods in hospital environments. In this study, we present two novel viruses, vB_AbaP_AS11 and vB_AbaP_AS12, specifically infecting and lysing distinct multidrug-resistant clinical A. baumannii strains with K19 and K27 capsular polysaccharide structures, respectively. Both phages demonstrate rapid adsorption, short latent periods, and high burst sizes in one-step growth experiments. The AS11 and AS12 linear double-stranded DNA genomes of 41,642 base pairs (bp) and 41,402 bp share 86.3% nucleotide sequence identity with the most variable regions falling in host receptor-recognition genes. These genes encode tail spikes possessing depolymerizing activities towards corresponding capsular polysaccharides which are the primary bacterial receptors. We described AS11 and AS12 genome organization and discuss the possible regulation of transcription. The overall genomic architecture and gene homology analyses showed that the phages are new representatives of the recently designated Fri1virus genus of the Autographivirinae subfamily within the Podoviridae family.

  6. Transport and concentration of abscisic acid (ABA) and auxin (IAA) in deciduous and coniferous trees. Transport und Gehalt von Abscisinsaeure (ABA) und Auxin (IAA) in Laub- und Nadelblaettern

    Energy Technology Data Exchange (ETDEWEB)

    Hartung, W.

    1988-09-01

    Abscisic acid and indoleacetic acid were chosen to examine whether intact deciduous and coniferous tissues from spruce, hemlock fir, spinage, barley and sorrel or isolated mesophyll protoplasts from barley and closing cell preparations from Valerianella locusta are affected by sulphur dioxide in terms of changes in the concentration, transportation and distribution of such plant hormones. The distribution of phytohormones like ABA and IAA over the individual cell compartments is determined by the different pH gradients of the latter. Owing to their acidity these hormones are accumulated in alkaline cell inclusion bodies like chloroplasts and cytosol. Potentially acid air pollutants like SO{sub 2} and NO{sub x} lead to acidification of previously alkaline cell compartments, due to which fact the cellular pH gradients are reduced. This, in turn, gives rise to a redistribution of phytohormones to the effect that certain target cells such as closing cells of leaves or meristem cells come under the influence of altered hormone concentrations and compositions. This is bound to affect the processes controlling the development, growth and stress behaviour of plants. (orig.) With 55 refs., 2 tabs., 16 figs.

  7. Assessment of burnout among health workers and bankers in Aba south local government area, Abia state, South East Nigeria.

    Science.gov (United States)

    Aguwa, E N; Nduka, I; Arinze-Onyia, S U

    2014-01-01

    To determine the prevalence of burnout among health workers and bankers in Aba South Local Government Area in Abia State. A cross-sectional, descriptive study was carried out in 2013 among health workers and bankers in Aba metropolis. By multistage sampling method, proportionate number of the health workers and bankers were selected. The study instrument was Freudenberger Burnout Scale. A total of 327 health workers and bankers were studied: 253 (77.4%) were health workers while 74 (22.6%) were bankers. The age range was 21 to 59 years, and 229 (70.0%) were females. Most (48.3%) had worked for 5 years or less and had burnout scores within 0-25. There was significant difference between gender ( P = 0.017), level of education ( P = 0.038), and type of occupation ( P = 0.002) to burnout score. Age ( P = 0.956), marital status ( P = 0.461), and years of work ( P = 0.247) did not significantly affect burnout score. Female health workers were significantly more at risk of burning out compared to their male counterparts. Among bankers, however, though females were more at risk, this was not significant. Sex, level of education and type of work were the greatest contributors to burnout score. The prevalence of burnout risk among health workers and bankers is high. More female health workers are at risk of burnout than male health workers. There should be policies aimed at identifying those most at risk and reducing the prevalence.

  8. ABA and ABC renewal of conditioned magazine approach are not impaired by dorsal hippocampus inactivation or lesions

    Science.gov (United States)

    Campese, Vincent; Delamater, Andrew R.

    2013-01-01

    Three experiments investigated the role of the dorsal hippocampus (DH) in renewal of conditioned and then extinguished magazine approach responding in rats. Experiments 1 and 2 found no effect of muscimol inactivation of the DH during testing on ABA and ABC renewal, respectively. However, subjects from these studies were subsequently found to be impaired on a delayed non-matching-to-place task following muscimol but not saline infusions. Experiment 3 found no effects of post-training excitotoxic lesions of the DH on ABA and ABC renewal. Lesioned subjects were, however, impaired on the delayed non-matching-to-place task compared to control subjects. These findings suggest that the DH may not play a similar role in Pavlovian extinction in appetitive learning tasks as has previously been reported in aversive learning. PMID:23583520

  9. An ABA-based Intervention Package for Treating the Inappropriate Use of a Communication Device Within Autistic Populations

    Directory of Open Access Journals (Sweden)

    Virge Connery

    2013-08-01

    Full Text Available The principles of applied behaviour analysis (ABA are widely used with autistic populations in managing challenging behaviour. The following paper will review supporting literature for creating a treatment package for targeting the misuse of a communication device in brief detail by using key elements in ABA. It will examine various types of attention (or response that may reinforce the problem behaviour, as well as intervention methods, such as functional communication training and noncontingent reinforcement. In addition, the necessity of extinction for effective intervention will be considered. A review of the literature may help inform the development of a successful treatment package that could be implemented within applied settings. Additional desirable outcomes include: reduction in aberrant behaviour, accessing attention appropriately, establishing the correct use of the communication device and increase in manding levels.

  10. Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant

    OpenAIRE

    Romero, Paco; Rodrigo, María J.; Alférez, Fernando; Ballester, Ana-Rosa; González-Candelas, Luis; Zacarías, Lorenzo; Lafuente, María T.

    2012-01-01

    Water stress affects many agronomic traits that may be regulated by the phytohormone abscisic acid (ABA). Within these traits, loss of fruit quality becomes important in many citrus cultivars that develop peel damage in response to dehydration. To study peel dehydration transcriptional responsiveness in harvested citrus fruit and the putative role of ABA in this process, this study performed a comparative large-scale transcriptional analysis of water-stressed fruits of the wild-type Navelate ...

  11. Genome Sequence of Jumbo Phage vB_AbaM_ME3 of Acinetobacter baumanni.

    Science.gov (United States)

    Buttimer, Colin; O'Sullivan, Lisa; Elbreki, Mohamed; Neve, Horst; McAuliffe, Olivia; Ross, R Paul; Hill, Colin; O'Mahony, Jim; Coffey, Aidan

    2016-08-25

    Bacteriophage (phage) vB_AbaM_ME3 was previously isolated from wastewater effluent using the propagating host Acinetobacter baumannii DSM 30007. The full genome was sequenced, revealing it to be the largest Acinetobacter bacteriophage sequenced to date with a size of 234,900 bp and containing 326 open reading frames (ORFs). Copyright © 2016 Buttimer et al.

  12. Bringing ABA into Early Childhood Routines to Meet the Needs of Young Children with ASD

    Science.gov (United States)

    Leach, Debra

    2014-01-01

    It is well documented that applied behavior analysis (ABA) approaches to intervention for young children with ASD have a strong evidence-base. Although federal special education law mandates that early intervention services and supports be implemented within the natural environment to the maximum extent appropriate, many young children with ASD…

  13. Novel Fri1-like Viruses Infecting Acinetobacter baumannii—vB_AbaP_AS11 and vB_AbaP_AS12—Characterization, Comparative Genomic Analysis, and Host-Recognition Strategy.

    Directory of Open Access Journals (Sweden)

    Anastasia V. Popova

    2017-07-01

    Full Text Available Acinetobacter baumannii is a gram-negative, non-fermenting aerobic bacterium which is often associated with hospital-acquired infections and known for its ability to develop resistance to antibiotics, form biofilms, and survive for long periods in hospital environments. In this study, we present two novel viruses, vB_AbaP_AS11 and vB_AbaP_AS12, specifically infecting and lysing distinct multidrug-resistant clinical A. baumannii strains with K19 and K27 capsular polysaccharide structures, respectively. Both phages demonstrate rapid adsorption, short latent periods, and high burst sizes in one-step growth experiments. The AS11 and AS12 linear double-stranded DNA genomes of 41,642 base pairs (bp and 41,402 bp share 86.3% nucleotide sequence identity with the most variable regions falling in host receptor–recognition genes. These genes encode tail spikes possessing depolymerizing activities towards corresponding capsular polysaccharides which are the primary bacterial receptors. We described AS11 and AS12 genome organization and discuss the possible regulation of transcription. The overall genomic architecture and gene homology analyses showed that the phages are new representatives of the recently designated Fri1virus genus of the Autographivirinae subfamily within the Podoviridae family.

  14. The Role of Mesolimbic Reward Neurocircuitry in Prevention and Rescue of the Activity-Based Anorexia (ABA) Phenotype in Rats.

    Science.gov (United States)

    Foldi, Claire J; Milton, Laura K; Oldfield, Brian J

    2017-11-01

    Patients suffering from anorexia nervosa (AN) become anhedonic; unable or unwilling to derive normal pleasures and avoid rewarding outcomes, most profoundly in food intake. The activity-based anorexia (ABA) model recapitulates many of the characteristics of the human condition, including anhedonia, and allows investigation of the underlying neurobiology of AN. The potential for increased neuronal activity in reward/hedonic circuits to prevent and rescue weight loss is investigated in this model. The mesolimbic pathway extending from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) was activated using a dual viral strategy, involving retrograde transport of Cre (CAV-2-Cre) to the VTA and coincident injection of DREADD receptors (AAV-hSyn-DIO-hM3D(Gq)-mCherry). Systemic clozapine-n-oxide (CNO; 0.3 mg/kg) successfully recruited a large proportion of the VTA-NAc dopaminergic projections, with activity evidenced by colocalization with elevated levels of Fos protein. The effects of reward circuit activation on energy balance and predicted survival was investigated in female Sprague-Dawley rats, where free access to running wheels was paired with time-limited (90 min) access to food, a paradigm (ABA) which will cause anorexia and death if unchecked. Excitation of the reward pathway substantially increased food intake and food anticipatory activity (FAA) to prevent ABA-associated weight loss, while overall locomotor activity was unchanged. Similar activation of reward circuitry, delayed until establishment of the ABA phenotype, rescued rats from their precipitous weight loss. Although these data are consistent with shifts primarily in food intake, the contribution of mechanisms including energy expenditure to survival remains to be determined. These results will inform the neurobiological underpinnings of AN, and provide insight into the mechanisms of reward circuitry relevant to feeding and weight loss.

  15. Gene Delivery into Plant Cells for Recombinant Protein Production

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2015-01-01

    Full Text Available Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications.

  16. An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress.

    Science.gov (United States)

    Li, Cong; Yue, Jing; Wu, Xiaowei; Xu, Cong; Yu, Jingjuan

    2014-10-01

    The DREB (dehydration-responsive element binding)-type transcription factors regulate the expression of stress-inducible genes by binding the DRE/CRT cis-elements in promoter regions. The upstream transcription factors that regulate the transcription of DREB transcription factors have not been clearly defined, although the function of DREB transcription factors in abiotic stress is known. In this study, an abscisic acid (ABA)-responsive DREB-binding protein gene (SiARDP) was cloned from foxtail millet (Setaria italica). The transcript level of SiARDP increased not only after drought, high salt, and low temperature stresses, but also after an ABA treatment in foxtail millet seedlings. Two ABA-responsive elements (ABRE1: ACGTGTC; ABRE2: ACGTGGC) exist in the promoter of SiARDP. Further analyses showed that two ABA-responsive element binding (AREB)-type transcription factors, SiAREB1 and SiAREB2, could physically bind to the ABRE core element in vitro and in vivo. The constitutive expression of SiARDP in Arabidopsis thaliana enhanced drought and salt tolerance during seed germination and seedling development, and overexpression of SiARDP in foxtail millet improved drought tolerance. The expression levels of target genes of SiARDP were upregulated in transgenic Arabidopsis and foxtail millet. These results reveal that SiARDP, one of the target genes of SiAREB, is involved in ABA-dependent signal pathways and plays a critical role in the abiotic stress response in plants. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Modelling of root ABA synthesis, stomatal conductance, transpiration and potato production under water saving irrigation regimes

    DEFF Research Database (Denmark)

    Plauborg, Finn; Abrahamsen, Per; Gjettermann, Birgitte

    2010-01-01

    . Experimental data was compared to simulated results from the new enhanced Daisy model which include modelling 2D soil water flow, abscisic acid (ABA) signalling and its effect on stomatal conductance and hence on transpiration and assimilation, and finally crop yield. The results demonstrated that the enhanced...

  18. ABA and GA3 regulate the synthesis of primary and secondary metabolites related to alleviation from biotic and abiotic stresses in grapevine.

    Science.gov (United States)

    Murcia, Germán; Fontana, Ariel; Pontin, Mariela; Baraldi, Rita; Bertazza, Gianpaolo; Piccoli, Patricia N

    2017-03-01

    Plants are able to synthesize a large number of organic compounds. Among them, primary metabolites are known to participate in plant growth and development, whereas secondary metabolites are mostly involved in defense and other facultative processes. In grapevine, one of the major fruit crops in the world, secondary metabolites, mainly polyphenols, are of great interest for the wine industry. Even though there is an extensive literature on the content and profile of those compounds in berries, scarce or no information is available regarding polyphenols in other organs. In addition, little is known about the effect of plant growth regulators (PGRs), ABA and GA 3 (extensively used in table grapes) on the synthesis of primary and secondary metabolites in wine grapes. In table grapes, cultural practices include the use of GA 3 sprays shortly before veraison, to increase berry and bunch size, and sugar content in fruits. Meanwhile, ABA applications to the berries on pre-veraison improve the skin coloring and sugar accumulation, anticipating the onset of veraison. Accordingly, the aim of this study was to assess and characterize primary and secondary metabolites in leaves, berries and roots of grapevine plants cv. Malbec at veraison, and changes in compositions after ABA and GA 3 aerial sprayings. Metabolic profiling was conducted using GC-MS, GC-FID and HPLC-MWD. A large set of metabolites was identified: sugars, alditols, organic acids, amino acids, polyphenols (flavonoids and non-flavonoids) and terpenes (mono-, sesqui-, di- and triterpenes). The obtained results showed that ABA applications elicited synthesis of mono- and sesquiterpenes in all assessed tissues, as well as L-proline, acidic amino acids and anthocyanins in leaves. Additionally, applications with GA 3 elicited synthesis of L-proline in berries, and mono- and sesquiterpenes in all the tissues. However, treatment with GA 3 seemed to block polyphenol synthesis, mainly in berries. In conclusion, ABA and GA

  19. Uniaxial Extensional Behavior of A--B--A Thermoplastic Elastomers: Structure-Properties Relationship and Modeling

    Science.gov (United States)

    Martinetti, Luca

    At service temperatures, A--B--A thermoplastic elastomers (TPEs) behave similarly to filled (and often entangled) B-rich rubbers since B block ends are anchored on rigid A domains. Therefore, their viscoelastic behavior is largely dictated by chain mobility of the B block rather than by microstructural order. Relating the small- and large-strain response of undiluted A--B--A triblocks to molecular parameters is a prerequisite for designing associated TPE-based systems that can meet the desired linear and nonlinear rheological criteria. This dissertation was aimed at connecting the chemical and topological structure of A--B--A TPEs with their viscoelastic properties, both in the linear and in the nonlinear regime. Since extensional deformations are relevant for the processing and often the end-use applications of thermoplastic elastomers, the behavior was investigated predominantly in uniaxial extension. The unperturbed size of polymer coils is one of the most fundamental properties in polymer physics, affecting both the thermodynamics of macromolecules and their viscoelastic properties. Literature results on poly(D,L-lactide) (PLA) unperturbed chain dimensions, plateau modulus, and critical molar mass for entanglement effect in viscosity were reviewed and discussed in the framework of the coil packing model. Self-consistency between experimental estimates of melt chain dimensions and viscoelastic properties was discussed, and the scaling behaviors predicted by the coil packing model were identified. Contrary to the widespread belief that amorphous polylactide must be intrinsically stiff, the coil packing model and accurate experimental measurements undoubtedly support the flexible nature of PLA. The apparent brittleness of PLA in mechanical testing was attributed to a potentially severe physical aging occurring at room temperature and to the limited extensibility of the PLA tube statistical segment. The linear viscoelastic response of A--B--A TPEs was first

  20. Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure.

    Science.gov (United States)

    Rodrigues, Olivier; Reshetnyak, Ganna; Grondin, Alexandre; Saijo, Yusuke; Leonhardt, Nathalie; Maurel, Christophe; Verdoucq, Lionel

    2017-08-22

    Stomatal movements are crucial for the control of plant water status and protection against pathogens. Assays on epidermal peels revealed that, similar to abscisic acid (ABA), pathogen-associated molecular pattern (PAMP) flg22 requires the At PIP2;1 aquaporin to induce stomatal closure. Flg22 also induced an increase in osmotic water permeability ( P f ) of guard cell protoplasts through activation of At PIP2;1. The use of HyPer, a genetic probe for intracellular hydrogen peroxide (H 2 O 2 ), revealed that both ABA and flg22 triggered an accumulation of H 2 O 2 in wild-type but not pip2;1 guard cells. Pretreatment of guard cells with flg22 or ABA facilitated the influx of exogenous H 2 O 2 Brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1) and open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6) were both necessary to flg22-induced P f and both phosphorylated At PIP2;1 on Ser121 in vitro. Accumulation of H 2 O 2 and stomatal closure as induced by flg22 was restored in pip2;1 guard cells by a phosphomimetic form (Ser121Asp) but not by a phosphodeficient form (Ser121Ala) of At PIP2;1. We propose a mechanism whereby phosphorylation of At PIP2;1 Ser121 by BAK1 and/or OST1 is triggered in response to flg22 to activate its water and H 2 O 2 transport activities. This work establishes a signaling role of plasma membrane aquaporins in guard cells and potentially in other cellular context involving H 2 O 2 signaling.

  1. The melt rheological behavior of AB, ABA, BAB, and (AB)n block copolymers with monodisperse aramide segments

    NARCIS (Netherlands)

    Araichimani, A.; Dullaert, Konraad; Gaymans, R.J.

    2009-01-01

    The melt rheological behavior of segmented block copolymers with high melting diamide (A) hard segments (HS) and polyether (B) soft segments was studied. The block copolymers can be classified as B (monoblock), AB (diblock), ABA (triblock, diamide end segment), BAB (triblock, diamide mid-segment)

  2. Demographic and ecological survey of dog population in aba, abia state, Nigeria.

    Science.gov (United States)

    Otolorin, Gbeminiyi Richard; Umoh, Jarlath U; Dzikwi, Asabe Adamu

    2014-01-01

    Dog ecology is essential in understanding the distribution, structure, and population density of dogs and pattern of dog ownership in any given area. A cross-sectional study was designed to study dog ecology in Aba, Abia state, Nigeria, from April to June 2013. The study revealed that the 500 households surveyed possessed 5,823 individuals and 747 dogs, giving a dog to human ratio of 1 : 7.8; hence dog population in Aba was estimated to be 68,121. About 495/747 (66.3%) of the dogs were exotic and 465/747 (62.2%) were males. A total of 319/500 (63.8%) of the households had fences that restrained dog movement and there was no incidence of dog bite in 447/500 (89.4%) of the households surveyed. There were statistical associations between vaccination against antirabies and breeds of dogs (χ (2) = 79.8, df = 2, P < 0.005). Exotic breed (adjusted OR = 0.39; CI = 0.23-0.65) and local breed of dogs (adjusted OR = 0.08; CI = 0.04-0.14) had less odds of being vaccinated as compared to crossbreed of dogs. About 126 dogs (2.5 dogs per street) were estimated from street counts survey. The relative high dog to human ratio and low vaccination coverage of owned dogs population pose public health concerns requiring adequate public health education and proper antirabies vaccination coverage of dogs in the study area.

  3. Synthesis and characterization of aba-type copolymers for encapsulation of bovine hemoglobin

    International Nuclear Information System (INIS)

    Lima, Felipe F.; Andrade, Cristina T.

    2012-01-01

    The use of biopolymers for the development of oxygen carriers has been extensively investigated. In this work, three different ABA triblock copolymers were synthesized and used to encapsulate purified bovine hemoglobin, using a double emulsion technique. The effect of polymer composition, homogenization velocity, and addition of a surfactant, on the protein entrapment was evaluated. These copolymers, which have a hydrophilic block, achieved higher values of encapsulation efficiency than the corresponding homopolymers. The increase in homogenization strength also promoted an increase in encapsulation efficiency. Capsules formation occurred even in the absence of PVA. (author)

  4. Degradation and protein release properties of microspheres prepared from biodegradable poly(lactide-co-glycolide) and ABA triblock copolymers: influence of buffer media on polymer erosion and bovine serum albumin release.

    Science.gov (United States)

    Bittner, B; Witt, C; Mäder, K; Kissel, T

    1999-08-05

    The aim of the present study was to investigate the influence of the chemical insertion of poly(ethylene oxide), PEO, into a poly(lactide-co-glycolide), PLG, backbone on the mechanisms of in vitro degradation and erosion of the polymer. For this purpose microspheres prepared by a modified W/O/W double emulsion technique using ABA triblock copolymers, consisting of PLG A-blocks attached to central PEO B-blocks were compared with microspheres prepared from PLG. Due to their molecular architecture the ABA triblock copolymers differed in their erosion and degradation behavior from PLG. Degradation occurred faster in the ABA polymers by cleavage of ester bonds inside the polymer backbone. Even erosion was shown to start immediately after incubation in different buffer media. By varying pH and ionic strength of the buffer it was found that both mass loss and molecular weight decay were accelerated in alkaline and acidic pH in the case of the ABA triblock copolymers. Although the pH of the medium had a moderate influence on the degradation of PLG, the molecular weight decay was not accompanied by a mass loss during the observation time. In a second set of experiments we prepared bovine serum albumin, BSA, loaded microspheres from both polymers. The release of BSA from ABA microspheres under in vitro conditions parallels the faster swelling and erosion rates. This could be confirmed by electron paramagnetic resonance, EPR, measurements with spin labeled albumin where an influx of buffer medium into the ABA microspheres was already observed within a few minutes. In contrast, PLG microspheres revealed a burst release without any erosion. The current study shows that the environmental conditions affected the degradation and erosion of the pure polymer microspheres in the same way as the release of the model protein. This leads to the conclusion that the more favorable degradation profile of the ABA triblock copolymers was responsible for the improvement of the release profile.

  5. Proteomic analysis reveals differential accumulation of small heat shock proteins and late embryogenesis abundant proteins between ABA-deficient mutant vp5 seeds and wild-type Vp5 seeds in maize

    Directory of Open Access Journals (Sweden)

    Xiaolin eWu

    2015-01-01

    Full Text Available ABA is a major plant hormone that plays important roles during many phases of plant life cycle, including seed development, maturity and dormancy, and especially the acquisition of desiccation tolerance. Understanding of the molecular basis of ABA-mediated plant response to stress is of interest not only in basic research on plant adaptation but also in applied research on plant productivity. Maize mutant viviparous-5 (vp5, deficient in ABA biosynthesis in seeds, is a useful material for studying ABA-mediated response in maize. Due to carotenoid deficiency, vp5 endosperm is white, compared to yellow Vp5 endosperm. However, the background difference at proteome level between vp5 and Vp5 seeds is unclear. This study aimed to characterize proteome alterations of maize vp5 seeds and to identify ABA-dependent proteins during seed maturation. We compared the embryo and endosperm proteomes of vp5 and Vp5 seeds by gel-based proteomics. Up to 46 protein spots, most in embryos, were found to be differentially accumulated between vp5 and Vp5. The identified proteins included small heat shock proteins (sHSPs, late embryogenesis abundant (LEA proteins, stress proteins, storage proteins and enzymes among others. However, EMB564, the most abundant LEA protein in maize embryo, accumulated in comparable levels between vp5 and Vp5 embryos, which contrasted to previously characterized, greatly lowered expression of emb564 mRNA in vp5 embryos. Moreover, LEA proteins and sHSPs displayed differential accumulations in vp5 embryos: six out of eight identified LEA proteins decreased while nine sHSPs increased in abundance. Finally, we discussed the possible causes of global proteome alterations, especially the observed differential accumulation of identified LEA proteins and sHSPs in vp5 embryos. The data derived from this study provides new insight into ABA-dependent proteins and ABA-mediated response during maize seed maturation.

  6. Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis.

    Science.gov (United States)

    Nakashima, Kazuo; Fujita, Yasunari; Katsura, Koji; Maruyama, Kyonoshin; Narusaka, Yoshihiro; Seki, Motoaki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2006-01-01

    ABA-responsive elements (ABREs) are cis-acting elements and basic leucine zipper (bZIP)-type ABRE-binding proteins (AREBs) are transcriptional activators that function in the expression of RD29B in vegetative tissue of Arabidopsis in response to abscisic acid (ABA) treatment. Dehydration-responsive elements (DREs) function as coupling elements of ABRE in the expression of RD29A in response to ABA. Expression analysis using abi3 and abi5 mutants showed that ABI3 and ABI5 play important roles in the expression of RD29B in seeds. Base-substitution analysis showed that two ABREs function strongly and one ABRE coupled with DRE functions weakly in the expression of RD29A in embryos. In a transient transactivation experiment, ABI3, ABI5 and AREB1 activated transcription of a GUS reporter gene driven by the RD29B promoter strongly but these proteins activated the transcription driven by the RD29A promoter weakly. In 35S::ABI3 Arabidopsis plants, the expression of RD29B was up-regulated strongly, but that of RD29A was up-regulated weakly. These results indicate that the expression of RD29B having ABREs in the promoter is up-regulated strongly by ABI3, whereas that of RD29A having one ABRE coupled with DREs in the promoter is up-regulated weakly by ABI3. We compared the expression of 7000 Arabidopsis genes in response to ABA treatment during germination and in the vegetative growth stage, and that in 35S::ABI3 plants using a full-length cDNA microarray. The expression of ABI3- and/or ABA-responsive genes and cis-elements in the promoters are discussed.

  7. HONSU, a protein phosphatase 2C, regulates seed dormancy by inhibiting ABA signaling in Arabidopsis.

    Science.gov (United States)

    Kim, Woohyun; Lee, Yeon; Park, Jeongmoo; Lee, Nayoung; Choi, Giltsu

    2013-04-01

    Seed dormancy, a seed status that prohibits germination even in the presence of inductive germination signals, is a poorly understood process. To identify molecular components that regulate seed dormancy, we screened T-DNA insertion lines and identified a mutant designated honsu (hon). HON loss-of-function mutants display deep seed dormancy, whereas HON-overexpressing lines display shallow seed dormancy. HON encodes a seed-specific group A phosphatase 2C (PP2C) and is one of the major negative regulators of seed dormancy among group A PP2Cs. Like other PP2C family members, HON interacts with PYR1/RCAR11 in the presence of ABA. Our analysis indicates that HON inhibits ABA signaling and activates gibberellic acid signaling, and both of these conditions must be satisfied to promote the release of seed dormancy. However, HON mRNA levels are increased in mutants displaying deep seed dormancy or under conditions that deepen seed dormancy, and decreased in mutants displaying shallow seed dormancy or under conditions that promote the release of seed dormancy. Taken together, our results indicate that the expression of HON mRNA is homeostatically regulated by seed dormancy.

  8. Formative Evaluation of an ABA Outreach Training Program for Parents of Children with Autism in Remote Areas

    Science.gov (United States)

    Heitzman-Powell, Linda S.; Buzhardt, Jay; Rusinko, Lisa C.; Miller, Todd M.

    2014-01-01

    Families in rural or remote areas have limited access to evidence-based intervention for their children with autism. Using web-based training and telemedicine technology, the current study investigated the feasibility of training seven parents to implement Applied Behavior Analysis (ABA) strategies with their children with autism. In this…

  9. Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit.

    Science.gov (United States)

    Kholová, Jana; Hash, C T; Kumar, P Lava; Yadav, Rattan S; Kocová, Marie; Vadez, Vincent

    2010-03-01

    It was previously shown that pearl millet genotypes carrying a terminal drought tolerance quantitative trait locus (QTL) had a lower transpiration rate (Tr; g cm(-2) d(-1)) under well-watered conditions than sensitive lines. Here experiments were carried out to test whether this relates to leaf abscisic acid (ABA) and Tr concentration at high vapour pressure deficit (VPD), and whether that leads to transpiration efficiency (TE) differences. These traits were measured in tolerant/sensitive pearl millet genotypes, including near-isogenic lines introgressed with a terminal drought tolerance QTL (NIL-QTLs). Most genotypic differences were found under well-watered conditions. ABA levels under well-watered conditions were higher in tolerant genotypes, including NIL-QTLs, than in sensitive genotypes, and ABA did not increase under water stress. Well-watered Tr was lower in tolerant than in sensitive genotypes at all VPD levels. Except for one line, Tr slowed down in tolerant lines above a breakpoint at 1.40-1.90 kPa, with the slope decreasing >50%, whereas sensitive lines showed no change in that Tr response across the whole VPD range. It is concluded that two water-saving (avoidance) mechanisms may operate under well-watered conditions in tolerant pearl millet: (i) a low Tr even at low VPD conditions, which may relate to leaf ABA; and (ii) a sensitivity to higher VPD that further restricts Tr, which suggests the involvement of hydraulic signals. Both traits, which did not lead to TE differences, could contribute to absolute water saving seen in part due to dry weight increase differences. This water saved would become critical for grain filling and deserves consideration in the breeding of terminal drought-tolerant lines.

  10. High-level HIV-1 Nef transient expression in Nicotiana benthamiana using the P19 gene silencing suppressor protein of Artichoke Mottled Crinckle Virus

    Directory of Open Access Journals (Sweden)

    Bianco Linda

    2009-11-01

    Full Text Available Abstract Background In recent years, different HIV antigens have been successfully expressed in plants by either stable transformation or transient expression systems. Among HIV proteins, Nef is considered a promising target for the formulation of a multi-component vaccine due to its implication in the first steps of viral infection. Attempts to express Nef as a single protein product (not fused to a stabilizing protein in transgenic plants resulted in disappointingly low yields (about 0.5% of total soluble protein. In this work we describe a transient expression system based on co-agroinfiltration of plant virus gene silencing suppressor proteins in Nicotiana benthamiana, followed by a two-step affinity purification protocol of plant-derived Nef. Results The effect of three gene silencing viral suppressor proteins (P25 of Potato Virus X, P19 of either Artichoke Mottled Crinckle virus and Tomato Bushy Stunt virus on Nef transient expression yield was evaluated. The P19 protein of Artichoke Mottled Crinckle virus (AMCV-P19 gave the highest expression yield in vacuum co-agroinfiltration experiments reaching 1.3% of total soluble protein, a level almost three times higher than that previously reported in stable transgenic plants. The high yield observed in the co-agroinfiltrated plants was correlated to a remarkable decrease of Nef-specific small interfering RNAs (siRNAs indicating an effective modulation of RNA silencing mechanisms by AMCV-P19. Interestingly, we also showed that expression levels in top leaves of vacuum co-agroinfiltrated plants were noticeably reduced compared to bottom leaves. Moreover, purification of Nef from agroinfiltrated tissue was achieved by a two-step immobilized metal ion affinity chromatography protocol with yields of 250 ng/g of fresh tissue. Conclusion We demonstrated that expression level of HIV-1 Nef in plant can be improved using a transient expression system enhanced by the AMCV-P19 gene silencing suppressor

  11. Role of protein farnesylation events in the ABA-mediated regulation of the Pinoresinol-Lariciresinol Reductase 1 (LuPLR1) gene expression and lignan biosynthesis in flax (Linum usitatissimum L.).

    Science.gov (United States)

    Corbin, Cyrielle; Decourtil, Cédric; Marosevic, Djurdjica; Bailly, Marlène; Lopez, Tatiana; Renouard, Sullivan; Doussot, Joël; Dutilleul, Christelle; Auguin, Daniel; Giglioli-Guivarc'h, Nathalie; Lainé, Eric; Lamblin, Frédéric; Hano, Christophe

    2013-11-01

    A Linum usitatissimum LuERA1 gene encoding a putative ortholog of the ERA1 (Enhanced Response to ABA 1) gene of Arabidopsis thaliana (encoding the beta subunit of a farnesyltransferase) was analyzed in silico and for its expression in flax. The gene and the protein sequences are highly similar to other sequences already characterized in plants and all the features of a farnesyltransferase were detected. Molecular modeling of LuERA1 protein confirmed its farnesyltransferase nature. LuERA1 is expressed in the vegetative organs and also in the outer seedcoat of the flaxseed, where it could modulate the previously observed regulation operated by ABA on lignan synthesis. This effect could be mediated by the regulation of the transcription of a key gene for lignan synthesis in flax, the LuPLR1 gene, encoding a pinoresinol lariciresinol reductase. The positive effect of manumycin A, a specific inhibitor of farnesyltransferase, on lignan biosynthesis in flax cell suspension systems supports the hypothesis of the involvement of such an enzyme in the negative regulation of ABA action. In Arabidopsis, ERA1 is able to negatively regulate the ABA effects and the mutant era1 has an enhanced sensitivity to ABA. When expressed in an Arabidopsis cell suspension (heterologous system) LuERA1 is able to reverse the effect of the era1 mutation. RNAi experiments in flax targeting the farnesyltransferase β-subunit encoded by the LuERA1 gene led to an increase LuPLR1 expression level associated with an increased content of lignan in transgenic calli. Altogether these results strongly suggest a role of the product of this LuERA1 gene in the ABA-mediated upregulation of lignan biosynthesis in flax cells through the activation of LuPLR1 promoter. This ABA signaling pathway involving ERA1 probably acts through the ABRE box found in the promoter sequence of LuPLR1, a key gene for lignan synthesis in flax, as demonstrated by LuPLR1 gene promoter-reporter experiments in flax cells using wild

  12. Effects of chilling and ABA on [3H]gibberellin A4 metabolism in somatic embryos of grape (Vitis vinifera L. x V. rupestris Scheele)

    International Nuclear Information System (INIS)

    Pearce, D.; Pharis, R.P.; Rajasekaran, K.; Mullins, M.G.

    1987-01-01

    Previous work has indicated that changes in gibberellin (GA) metabolism may be involved in chilling-induced release from dormancy in somatic embryos of grape (Vitis vinifera L. x V. rupestris Scheele). The authors have chilled somatic embryos of grape for 2, 4, or 8 weeks, then incubated them with [ 3 H]GA 4 (of high specific activity, 4.81 x 10 19 becquerel per millimole) for 48 hours at 26 0 C. Chilling had little effect on the total amount of free [ 3 H]GA-like metabolites formed during incubation at 26 0 C, but did change the relative proportions of individual metabolites. The amount of highly water-soluble [ 3 H] metabolites formed at 26 0 C decreased in embryos chilled for 4 or 8 weeks. The concentration of endogeneous GA precursors (e.g., GA 12 aldehyde-, kaurene, and kaurenoic acid-like substances) increased in embryos chilled for 4 or 8 weeks. Treatment with abscisic acid (ABA) (known to inhibit germination in grape embryos) concurrent with [ 3 H]GA 4 treatment at 26 0 C, reduced the uptake of [ 3 H] GA 4 but had little effect on the qualitative spectrum of metabolites. However, in the embryos chilled for 8 weeks and then treated with ABA for 48 hours at 26 0 C, there was a higher concentration of GA precursors than in untreated control embryos. Chilled embryos thus have an enhanced potential for an increase in free GAs through synthesis from increased amounts of GA precursors, or through a reduced ability to form highly water-soluble GA metabolites (i.e., GA conjugates or polyhydroxylated free GAs)

  13. Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice.

    Science.gov (United States)

    Chen, Yixing; Zhou, Xiaojin; Chang, Shu; Chu, Zhilin; Wang, Hanmeng; Han, Shengcheng; Wang, Yingdian

    2017-12-02

    The calcium-dependent protein kinases (CDPKs) are a class of plant-specific kinase that directly bind Ca 2+ and mediate the calcium-signaling pathways to play important physiological roles in growth and development. The rice genome contains 31 CDPK genes, one of which, OsCPK21, is known to modulate the abscisic acid (ABA) and salt stress responses in this crop; however, the molecular mechanisms underlying this regulation are largely unknown. In the present study, we performed yeast two-hybrid screening, glutathione S-transferase pull-down, co-immunoprecipitation, and bimolecular fluorescence complementation assays to confirm the interaction between OsCPK21 and one of its putative targets, Os14-3-3 (OsGF14e). We used an in vitro kinase assay and site-directed mutagenesis to verify that OsCPK21 phosphorylates OsGF14e at Tyr-138. We used real-time PCR to reveal that several ABA and salt inducible genes were more highly expressed in the OsCPK21-OE and OsGF14e WT-OE plants than in the mutant OsGF14e Y138A-OE and wild-type plants. These results suggest that OsCPK21 phosphorylates OsGF14e to facilitate the response to ABA and salt stress. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. AtRAV and AtbZIP transcription factors positively regulate ABA responses: Overexpression in cotton enhances drought stress adaptation

    Science.gov (United States)

    Drought tolerance is an important trait being pursued by the agbiotech industry. Abscisic acid (ABA) is a stress hormone that mediates a multitude of processes in growth and development, water use efficiency, and gene expression during seed development and in response to environmental stresses. Ar...

  15. Conceptos generales sobre aba en niños con trastorno del espectro autista

    OpenAIRE

    Piñeros Ortiz, Sandra Elizabeth; Toro Herrera, Sandra Milena

    2012-01-01

    Los trastornos del espectro autista (TEA) son entidades que generan discapacidad. Diversas intervenciones psicofarmacológicas y psicosociales modulan algunas de las alteraciones comportamentales asociadas y mejoran la calidad de vida de las personas afectadas y de sus cuidadores. La terapia ABA es una de las intervenciones psicosociales más conocidas y utilizada en población con TEA. Mediante de la  formulación de preguntas clave y sus respuestas, este artículo realiza una breve descripción d...

  16. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses.

    Science.gov (United States)

    Narusaka, Yoshihiro; Nakashima, Kazuo; Shinwari, Zabta K; Sakuma, Yoh; Furihata, Takashi; Abe, Hiroshi; Narusaka, Mari; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2003-04-01

    Many abiotic stress-inducible genes contain two cis-acting elements, namely a dehydration-responsive element (DRE; TACCGACAT) and an ABA-responsive element (ABRE; ACGTGG/TC), in their promoter regions. We precisely analyzed the 120 bp promoter region (-174 to -55) of the Arabidopsis rd29A gene whose expression is induced by dehydration, high-salinity, low-temperature, and abscisic acid (ABA) treatments and whose 120 bp promoter region contains the DRE, DRE/CRT-core motif (A/GCCGAC), and ABRE sequences. Deletion and base substitution analyses of this region showed that the DRE-core motif functions as DRE and that the DRE/DRE-core motif could be a coupling element of ABRE. Gel mobility shift assays revealed that DRE-binding proteins (DREB1s/CBFs and DREB2s) bind to both DRE and the DRE-core motif and that ABRE-binding proteins (AREBs/ABFs) bind to ABRE in the 120 bp promoter region. In addition, transactivation experiments using Arabidopsis leaf protoplasts showed that DREBs and AREBs cumulatively transactivate the expression of a GUS reporter gene fused to the 120 bp promoter region of rd29A. These results indicate that DRE and ABRE are interdependent in the ABA-responsive expression of the rd29A gene in response to ABA in Arabidopsis.

  17. Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio

    OpenAIRE

    Shuai, Haiwei; Meng, Yongjie; Luo, Xiaofeng; Chen, Feng; Zhou, Wenguan; Dai, Yujia; Qi, Ying; Du, Junbo; Yang, Feng; Liu, Jiang; Yang, Wenyu; Shu, Kai

    2017-01-01

    Auxin is an important phytohormone which mediates diverse development processes in plants. Published research has demonstrated that auxin induces seed dormancy. However, the precise mechanisms underlying the effect of auxin on seed germination need further investigation, especially the relationship between auxins and both abscisic acid (ABA) and gibberellins (GAs), the latter two phytohormones being the key regulators of seed germination. Here we report that exogenous auxin treatment represse...

  18. Kaolin modulates ABA and IAA dynamics and physiology of grapevine under Mediterranean summer stress.

    Science.gov (United States)

    Dinis, L-T; Bernardo, S; Luzio, A; Pinto, G; Meijón, M; Pintó-Marijuan, M; Cotado, A; Correia, C; Moutinho-Pereira, J

    2018-01-01

    The foliar exogenous application of kaolin, a radiation-reflecting inert mineral, has proven to be an effective short-term climate change mitigation strategy for Mediterranean vineyards. In this work, we address the hypothesis that kaolin could improve both the hormonal dynamics and physiological responses of grapevines growing in Douro Region, northern Portugal. For this purpose, the leaf water potential, gas exchange and chlorophyll a fluorescence parameters were monitored, as well as the abscisic acid (ABA) and indole-3-acetic acid (IAA) quantification and immunolocalization were assessed. The study revealed a slight decrease in ABA and an increase in IAA in the kaolin treatment, which in turn were associated with the improvement of physiological performance. A month after spraying, kaolin improves the water potential respectively, 30% and 17% in the predawn and midday periods. Besides, plants treated with kaolin showed higher values of stomatal conductance, net CO 2 assimilation rate and intrinsic water use efficiency. Kaolin also ameliorates the effective PSII efficiency (67%), as well as the maximum quantum efficiency of photosystem II and the photosynthetic electron transport rate (>73%). These results were consistent with the higher photochemical quenching and the lower non-photochemical quenching observed in treated leaves and with the better performance obtained by the JIP test parameters. Physiological and hormonal analysis confirmed that kaolin effectively enhance grapevine summer stress tolerance. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice

    NARCIS (Netherlands)

    Zhang, S.; Kohlen, W.; Jiang, L.; Bouwmeester, H.J.; Meijer, A.H.; Schluepmann, H.; Liu, C.M.; Ouwerkerk, P.B.F.

    2012-01-01

    Oshox22 belongs to the homeodomain-leucine zipper (HD-Zip) family I of transcription factors, most of which have unknown functions. Here we show that the expression of Oshox22 is strongly induced by salt stress, abscisic acid (ABA), and polyethylene glycol treatment (PEG), and weakly by cold stress.

  20. Characterisation and genome sequence of the lytic Acinetobacter baumannii bacteriophage vB_AbaS_Loki.

    Directory of Open Access Journals (Sweden)

    Dann Turner

    Full Text Available Acinetobacter baumannii has emerged as an important nosocomial pathogen in healthcare and community settings. While over 100 of Acinetobacter phages have been described in the literature, relatively few have been sequenced. This work describes the characterisation and genome annotation of a new lytic Acinetobacter siphovirus, vB_AbaS_Loki, isolated from activated sewage sludge. Sequencing revealed that Loki encapsulates a 41,308 bp genome, encoding 51 predicted open reading frames. Loki is most closely related to Acinetobacter phage IME_AB3 and more distantly related to Burkholderia phage KL1, Paracoccus phage vB_PmaS_IMEP1 and Pseudomonas phages vB_Pae_Kakheti25, vB_PaeS_SCH_Ab26 and PA73. Loki is characterised by a narrow host range, among the 40 Acinetobacter isolates tested, productive infection was only observed for the propagating host, A. baumannii ATCC 17978. Plaque formation was found to be dependent upon the presence of Ca2+ ions and adsorption to host cells was abolished upon incubation with a mutant of ATCC 17978 encoding a premature stop codon in lpxA. The complete genome sequence of vB_AbaS_Loki was deposited in the European Nucleotide Archive (ENA under the accession number LN890663.

  1. Identification and characterization of cis-acting elements involved in the regulation of ABA- and/or GA-mediated LuPLR1 gene expression and lignan biosynthesis in flax (Linum usitatissimum L.) cell cultures.

    Science.gov (United States)

    Corbin, Cyrielle; Renouard, Sullivan; Lopez, Tatiana; Lamblin, Frédéric; Lainé, Eric; Hano, Christophe

    2013-03-15

    Pinoresinol lariciresinol reductase 1, encoded by the LuPLR1 gene in flax (Linum usitatissimum L.), is responsible for the biosynthesis of (+)-secoisolariciresinol, a cancer chemopreventive phytoestrogenic lignan accumulated in high amount in the hull of flaxseed. Our recent studies have demonstrated a key role of abscisic acid (ABA) in the regulation of LuPLR1 gene expression and thus of the (+)-secoisolariciresinol synthesis during the flax seedcoat development. It is well accepted that gibberellins (GA) and ABA play antagonistic roles in the regulation of numerous developmental processes; therefore it is of interest to clarify their respective effects on lignan biosynthesis. Herein, using flax cell suspension cultures, we demonstrate that LuPLR1 gene expression and (+)-secoisolariciresinol synthesis are up-regulated by ABA and down-regulated by GA. The LuPLR1 gene promoter analysis and mutation experiments allow us to identify and characterize two important cis-acting sequences (ABRE and MYB2) required for these regulations. These results imply that a cross-talk between ABA and GA signaling orchestrated by transcription factors is involved in the regulation of lignan biosynthesis. This is particularly evidenced in the case of the ABRE cis-regulatory sequence of LuPLR1 gene promoter that appears to be a common target sequence of GA and ABA signals. Copyright © 2012 Elsevier GmbH. All rights reserved.

  2. Expression Analysis of Four Peroxiredoxin Genes from Tamarix hispida in Response to Different Abiotic Stresses and Exogenous Abscisic Acid (ABA

    Directory of Open Access Journals (Sweden)

    Guiyan Yang

    2012-03-01

    Full Text Available Peroxiredoxins (Prxs are a recently discovered family of antioxidant enzymes that catalyze the reduction of peroxides and alkyl peroxides. In this study, four Prx genes (named as ThPrxII, ThPrxIIE, ThPrxIIF, and Th2CysPrx were cloned from Tamarix hispida. Their expression profiles in response to stimulus of NaCl, NaHCO3, PEG, CdCl2 and abscisic acid (ABA in roots, stems and leaves of T. hispida were investigated using real-time RT-PCR. The results showed that the four ThPrxs were all expressed in roots, stems and leaves. Furthermore, the transcript levels of ThPrxIIE and ThPrxII were the lowest and the highest, respectively, in all tissue types. All the ThPrx genes were induced by both NaCl and NaHCO3 and reached their highest expression levels at the onset of stress in roots. Under PEG and CdCl2 stress, the expression patterns of these ThPrxs showed temporal and spatial specificity. The expressions of the ThPrxs were all differentially regulated by ABA, indicating that they are all involved in the ABA signaling pathway. These findings reveal a complex regulation of Prxs that is dependent on the type of Prx, tissue, and the signaling molecule. The divergence of the stress-dependent transcriptional regulation of the ThPrx gene family in T. hispida may provide an essential basis for the elucidation of Prx function in future work.

  3. Expression analysis of four peroxiredoxin genes from Tamarix hispida in response to different abiotic stresses and Exogenous Abscisic Acid (ABA).

    Science.gov (United States)

    Gao, Caiqiu; Zhang, Kaimin; Yang, Guiyan; Wang, Yucheng

    2012-01-01

    Peroxiredoxins (Prxs) are a recently discovered family of antioxidant enzymes that catalyze the reduction of peroxides and alkyl peroxides. In this study, four Prx genes (named as ThPrxII, ThPrxIIE, ThPrxIIF, and Th2CysPrx) were cloned from Tamarix hispida. Their expression profiles in response to stimulus of NaCl, NaHCO(3), PEG, CdCl(2) and abscisic acid (ABA) in roots, stems and leaves of T. hispida were investigated using real-time RT-PCR. The results showed that the four ThPrxs were all expressed in roots, stems and leaves. Furthermore, the transcript levels of ThPrxIIE and ThPrxII were the lowest and the highest, respectively, in all tissue types. All the ThPrx genes were induced by both NaCl and NaHCO(3) and reached their highest expression levels at the onset of stress in roots. Under PEG and CdCl(2) stress, the expression patterns of these ThPrxs showed temporal and spatial specificity. The expressions of the ThPrxs were all differentially regulated by ABA, indicating that they are all involved in the ABA signaling pathway. These findings reveal a complex regulation of Prxs that is dependent on the type of Prx, tissue, and the signaling molecule. The divergence of the stress-dependent transcriptional regulation of the ThPrx gene family in T. hispida may provide an essential basis for the elucidation of Prx function in future work.

  4. Group Training of Applied Behavior Analysis (ABA) Knowledge Competencies to Community-Based Service Providers for Adults with Developmental Disabilities

    Science.gov (United States)

    Luiselli, James K.; St. Amand, CarrieAnne; MaGee, Christine; Sperry, James M.

    2008-01-01

    We describe a training program to teach applied behavior analysis (ABA) knowledge competencies to paraprofessional staff (N = 47) at a habilitation services agency for adults with developmental disabilities. Before and following training, staff completed assessment of knowledge tests for three content areas: basic learning principles,…

  5. The Application of Ultra-High-Performance Liquid Chromatography Coupled with a LTQ-Orbitrap Mass Technique to Reveal the Dynamic Accumulation of Secondary Metabolites in Licorice under ABA Stress

    Directory of Open Access Journals (Sweden)

    Da Li

    2017-10-01

    Full Text Available The traditional medicine licorice is the most widely consumed herbal product in the world. Although much research work on studying the changes in the active compounds of licorice has been reported, there are still many areas, such as the dynamic accumulation of secondary metabolites in licorice, that need to be further studied. In this study, the secondary metabolites from licorice under two different methods of stress were investigated by ultra-high-performance liquid chromatography coupled with hybrid linear ion trap–Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap-MS. A complex continuous coordination of flavonoids and triterpenoids in a network was modulated by different methods of stress during growth. The results showed that a total of 51 secondary metabolites were identified in licorice under ABA stress. The partial least squares–discriminate analysis (PLS-DA revealed the distinction of obvious compounds among stress-specific districts relative to ABA stress. The targeted results showed that there were significant differences in the accumulation patterns of the deeply targeted 41 flavonoids and 10 triterpenoids compounds by PCA and PLS-DA analyses. To survey the effects of flavonoid and triterpenoid metabolism under ABA stress, we inspected the stress-specific metabolic changes. Our study testified that the majority of flavonoids and triterpenoids were elevated in licorice under ABA stress, while the signature metabolite affecting the dynamic accumulation of secondary metabolites was detected. Taken together, our results suggest that ABA-specific metabolite profiling dynamically changed in terms of the biosynthesis of flavonoids and triterpenoids, which may offer new trains of thought on the regular pattern of dynamic accumulation of secondary metabolites in licorice at the metabolite level. Our results also provide a reference for clinical applications and directional planting and licorice breeding.

  6. The Application of Ultra-High-Performance Liquid Chromatography Coupled with a LTQ-Orbitrap Mass Technique to Reveal the Dynamic Accumulation of Secondary Metabolites in Licorice under ABA Stress.

    Science.gov (United States)

    Li, Da; Xu, Guojie; Ren, Guangxi; Sun, Yufeng; Huang, Ying; Liu, Chunsheng

    2017-10-20

    The traditional medicine licorice is the most widely consumed herbal product in the world. Although much research work on studying the changes in the active compounds of licorice has been reported, there are still many areas, such as the dynamic accumulation of secondary metabolites in licorice, that need to be further studied. In this study, the secondary metabolites from licorice under two different methods of stress were investigated by ultra-high-performance liquid chromatography coupled with hybrid linear ion trap-Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap-MS). A complex continuous coordination of flavonoids and triterpenoids in a network was modulated by different methods of stress during growth. The results showed that a total of 51 secondary metabolites were identified in licorice under ABA stress. The partial least squares-discriminate analysis (PLS-DA) revealed the distinction of obvious compounds among stress-specific districts relative to ABA stress. The targeted results showed that there were significant differences in the accumulation patterns of the deeply targeted 41 flavonoids and 10 triterpenoids compounds by PCA and PLS-DA analyses. To survey the effects of flavonoid and triterpenoid metabolism under ABA stress, we inspected the stress-specific metabolic changes. Our study testified that the majority of flavonoids and triterpenoids were elevated in licorice under ABA stress, while the signature metabolite affecting the dynamic accumulation of secondary metabolites was detected. Taken together, our results suggest that ABA-specific metabolite profiling dynamically changed in terms of the biosynthesis of flavonoids and triterpenoids, which may offer new trains of thought on the regular pattern of dynamic accumulation of secondary metabolites in licorice at the metabolite level. Our results also provide a reference for clinical applications and directional planting and licorice breeding.

  7. Cloning and expression profiling of the PacSnRK2 and PacPP2C gene families during fruit development, ABA treatment, and dehydration stress in sweet cherry.

    Science.gov (United States)

    Shen, Xinjie; Guo, Xiao; Zhao, Di; Zhang, Qiang; Jiang, Yuzhuang; Wang, Yantao; Peng, Xiang; Wei, Yan; Zhai, Zefeng; Zhao, Wei; Li, Tianhong

    2017-10-01

    Plant SNF1-related protein kinase 2 (SnRK2) and protein phosphatase 2C (PP2C) family members are core components of the ABA signal transduction pathway. SnRK2 and PP2C proteins have been suggested to play crucial roles in fruit ripening and improving plant tolerance to drought stress, but supporting genetic information has been lacking in sweet cherry (Prunus avium L.). Here, we cloned six full-length SnRK2 genes and three full-length PP2C genes from sweet cherry cv. Hong Deng. Quantitative PCR analysis revealed that PacSnRK2.2, PacSnRK2.3, PacSnRK2.6, and PacPP2C1-3 were negatively regulated in fruits in response to exogenous ABA treatment, PacSnRK2.4 and PacSnRK2.5 were upregulated, and PacSnRK2.1 expression was not affected. The ABA treatment also significantly promoted the accumulation of anthocyanins in sweet cherry fruit. The expression of all PacSnRK2 and PacPP2C genes was induced by dehydration stress, which also promoted the accumulation of drought stress signaling molecules in the sweet cherry fruits, including ABA, soluble sugars, and anthocyanin. Furthermore, a yeast two-hybrid analysis demonstrated that PacPP2C1 interacts with all six PacSnRK2s, while PacPP2C3 does not interact with PacSnRK2.5. PacPP2C2 does not interact with PacSnRK2.1 or PacSnRK2.4. These results indicate that PacSnRK2s and PacPP2Cs may play a variety of roles in the sweet cherry ABA signaling pathway and the fruit response to drought stress. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Structures and self-activating photoluminescent properties of Sr3−xAxGaO4F (A=Ba, Ca) materials

    International Nuclear Information System (INIS)

    Green, Robert; Vogt, Thomas

    2012-01-01

    The synthesis, structures and photoluminescent properties of mixed oxyfluorides of the type Sr 3−x A x GaO 4 F are compared to Sr 3−x A x AlO 4 F (A=Ca, Ba) materials. In these compounds the F − and O 2− ions are ordered and located on two distinct crystallographic sites. When substituting Sr 2+ by Ba 2+ and Ca 2+ , we find in Sr 3−x A x GaO 4 F materials an ordering of the alkaline earth cations over the two crystallographic sites. The amount of Ba 2+ ions that can be substituted into Sr 3−x A x GaO 4 F is x≤1.2, which is slightly more than can be incorporated into the previously reported Al-analog Sr 3−x A x AlO 4 F (x=1.0). Conversely, the amount of Ca 2+ ions that can be substituted into Sr 3−x Ca x GaO 4 F (x=0.3) is significantly less than in Sr 3−x Ca x AlO 4 F (x=1.0). A post-synthesis reduction step causes these materials to exhibit self-activating broad band photoluminescence where the emitted colors vary with the amount of ions substituted into the host lattice. - Graphical abstract: TOC Statement The structures of the self-activating phosphors Sr 3−x A x MO 4 F (A=Ba, Ca and M=Al, Ga) can be rationalized as alternating layers of bond compression and elongation, which impact the photoluminescence. Highlights: ► Comparison of the structural changes in Sr 3−x A x AlO 4 F and Sr 3−x A x GaO 4 F (A=Ba, Ca) and its influence on the photoluminescence of these self-activating phosphors. ► Analysis of the Global Instability Index of the Sr 3−x A x AlO 4 F and Sr 3−x A x GaO 4 F (A=Ba, Ca). ► Comparison of the photoluminescence between the self-activating phosphors Sr 3−x A x AlO 4 F and Sr 3−x A x GaO 4 F (A=Ba, Ca).

  9. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis

    OpenAIRE

    Kai Shu; Ying Qi; Feng Chen; Yongjie Meng; Xiaofeng Luo; Haiwei Shuai; Wenguan Zhou; Jun Ding; Junbo Du; Jiang Liu; Feng Yang; Qiang Wang; Weiguo Liu; Taiwen Yong; Xiaochun Wang

    2017-01-01

    Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease i...

  10. Effect of root pruning and irrigation regimes on leaf water relations and xylem ABA and ionic concentrations in pear trees

    DEFF Research Database (Denmark)

    Wang, Yufei; Bertelsen, Marianne G.; Petersen, Karen Koefoed

    2014-01-01

    relation characteristics, stomatal conductance and xylem sap abscisic acid (ABA) and ionic concentrations. Results showed that leaf water potential, leaf turgor and stomatal conductance of root pruning (RP) treatment was significantly lower than those of non-root pruning (NP) treatment indicating that root...

  11. Changes in ABA, IAA and JA levels during calyx, fruit and leaves development in cape gooseberry plants (Physalis peruviana L.).

    Science.gov (United States)

    Álvarez-Flórez, F; López-Cristoffanini, C; Jáuregui, O; Melgarejo, L M; López-Carbonell, M

    2017-06-01

    Changes in abscisic acid (ABA), indole-3-acetic acid (IAA) and jasmonic acid (JA) content in developing calyx, fruits and leaves of Physalis peruviana L. plants were analysed. Plant hormones have been widely studied for their roles in the regulation of various aspects related to plant development and, in particular, into their action during development and ripening of fleshly fruits. The obtained evidences suggest that the functions of these hormones are no restricted to a particular development stage, and more than one hormone is involved in controlling various aspects of plant development. Our results will contribute to understand the role of these hormones during growth and development of calyx, fruits and leaves in cape gooseberry plants. This work offers a good, quickly and efficiently protocol to extract and quantify simultaneously ABA, IAA and JA in different tissues of cape gooseberry plants. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Genome-wide identification and expression analysis of the CaNAC family members in chickpea during development, dehydration and ABA treatments.

    Directory of Open Access Journals (Sweden)

    Chien Van Ha

    Full Text Available The plant-specific NAC transcription factors (TFs play important roles in regulation of diverse biological processes, including development, growth, cell division and responses to environmental stimuli. In this study, we identified the members of the NAC TF family of chickpea (Cicer arietinum and assess their expression profiles during plant development and under dehydration and abscisic acid (ABA treatments in a systematic manner. Seventy-one CaNAC genes were detected from the chickpea genome, including 8 membrane-bound members of which many might be involved in dehydration responses as judged from published literature. Phylogenetic analysis of the chickpea and well-known stress-related Arabidopsis and rice NACs enabled us to predict several putative stress-related CaNACs. By exploring available transcriptome data, we provided a comprehensive expression atlas of CaNACs in various tissues at different developmental stages. With the highest interest in dehydration responses, we examined the expression of the predicted stress-related and membrane-bound CaNACs in roots and leaves of chickpea seedlings, subjected to well-watered (control, dehydration and ABA treatments, using real-time quantitative PCR (RT-qPCR. Nine-teen of the 23 CaNACs examined were found to be dehydration-responsive in chickpea roots and/or leaves in either ABA-dependent or -independent pathway. Our results have provided a solid foundation for selection of promising tissue-specific and/or dehydration-responsive CaNAC candidates for detailed in planta functional analyses, leading to development of transgenic chickpea varieties with improved productivity under drought.

  13. Medial prefrontal cortex involvement in the expression of extinction and ABA renewal of instrumental behavior for a food reinforcer.

    Science.gov (United States)

    Eddy, Meghan C; Todd, Travis P; Bouton, Mark E; Green, John T

    2016-02-01

    Instrumental renewal, the return of extinguished instrumental responding after removal from the extinction context, is an important model of behavioral relapse that is poorly understood at the neural level. In two experiments, we examined the role of the dorsomedial prefrontal cortex (dmPFC) and the ventromedial prefrontal cortex (vmPFC) in extinction and ABA renewal of instrumental responding for a sucrose reinforcer. Previous work, exclusively using drug reinforcers, has suggested that the roles of the dmPFC and vmPFC in expression of extinction and ABA renewal may depend at least in part on the type of drug reinforcer used. The current experiments used a food reinforcer because the behavioral mechanisms underlying the extinction and renewal of instrumental responding are especially well worked out in this paradigm. After instrumental conditioning in context A and extinction in context B, we inactivated dmPFC, vmPFC, or a more ventral medial prefrontal cortex region by infusing baclofen/muscimol (B/M) just prior to testing in both contexts. In rats with inactivated dmPFC, ABA renewal was still present (i.e., responding increased when returned to context A); however responding was lower (less renewal) than controls. Inactivation of vmPFC increased responding in context B (the extinction context) and decreased responding in context A, indicating no renewal in these animals. There was no effect of B/M infusion on rats with cannula placements ventral to the vmPFC. Fluorophore-conjugated muscimol was infused in a subset of rats following test to visualize infusion spread. Imaging suggested that the infusion spread was minimal and mainly constrained to the targeted area. Together, these experiments suggest that there is a region of medial prefrontal cortex encompassing both dmPFC and vmPFC that is important for ABA renewal of extinguished instrumental responding for a food reinforcer. In addition, vmPFC, but not dmPFC, is important for expression of extinction of

  14. Effective School-Community Relations as a Key Performance Indicator for the Secondary School Administrator in Aba South District, Nigeria

    Science.gov (United States)

    Abraham, Nath. M.; Ememe, Ogbonna N.

    2012-01-01

    This study investigates Effective School-Community Relations as a key Performance Indicator (KPI) of Secondary Schools Administrator in Aba South District, Nigeria. Descriptive survey method was adopted. All the 248 teachers made up the population and sample in a purposive sampling technique representing 100% of the entire population as sample. A…

  15. A cytometry microparticle platform approach for screening tobacco microRNA changes after agrobacterium delivery

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Joshua D.; Chen, Qiang; Mason, Hugh S.

    2016-08-01

    Abstract Key message nta-miR-398 is significantly up-regulated while nta-miR-428d is significantly down-regulated in tobacco after agroinfiltration AbstractMicroRNAs are a class of non-coding regulatory RNAs that can modulate development as well as alter innate antiviral defenses in plants. In this study we explored host changes at the microRNA level within tobacco (Nicotiana benthamiana) after expression of a recombinant anti-Ebola GP1 antibody through Agrobacterium tumefaciens agroinfiltration delivery. A multiplex nanoparticle-based cytometry assay tracked the host expression changes of 53 tobacco microRNAs. Our results revealed that the most abundant microRNAs in actively growing leaves corresponded to nanoparticle probes specific to nta-mir-6149 and nta-miR-168b. After agroinfiltration, probes targeting nta-mir-398 and nta-mir-482d were significantly altered in their respective expression levels and were further verified through RT-qPCR analysis. To our knowledge this study is the first to profile microRNA expression in tobacco after agroinfiltration using a multiplex nanoparticle approach.

  16. A Randomized Clinical Trial Comparison between Pivotal Response Treatment (PRT) and Structured Applied Behavior Analysis (ABA) Intervention for Children with Autism

    Science.gov (United States)

    Mohammadzaheri, Fereshteh; Koegel, Lynn Kern; Rezaee, Mohammad; Rafiee, Seyed Majid

    2014-01-01

    Accumulating studies are documenting specific motivational variables that, when combined into a naturalistic teaching paradigm, can positively influence the effectiveness of interventions for children with autism spectrum disorder (ASD). The purpose of this study was to compare two applied behavior analysis (ABA) intervention procedures, a…

  17. Effects of Multiple Contexts and Context Similarity on the Renewal of Extinguished Conditioned Behaviour in an ABA Design with Humans

    Science.gov (United States)

    Balooch, Siavash Bandarian; Neumann, David L.

    2011-01-01

    The ABA renewal procedure involves pairing a conditional stimulus (CS) and an unconditional stimulus (US) in one context (A), presenting extinction trials of the CS alone in a second context (B), and nonreinforced test trials of the CS in the acquisition context (A). The renewal of extinguished conditioned behaviour is observed during test. The…

  18. Activity-Based Anorexia Reduces Body Weight without Inducing a Separate Food Intake Microstructure or Activity Phenotype in Female Rats—Mediation via an Activation of Distinct Brain Nuclei

    Science.gov (United States)

    Scharner, Sophie; Prinz, Philip; Goebel-Stengel, Miriam; Kobelt, Peter; Hofmann, Tobias; Rose, Matthias; Stengel, Andreas

    2016-01-01

    Anorexia nervosa (AN) is accompanied by severe somatic and psychosocial complications. However, the underlying pathogenesis is poorly understood, treatment is challenging and often hampered by high relapse. Therefore, more basic research is needed to better understand the disease. Since hyperactivity often plays a role in AN, we characterized an animal model to mimic AN using restricted feeding and hyperactivity. Female Sprague-Dawley rats were divided into four groups: no activity/ad libitum feeding (ad libitum, AL, n = 9), activity/ad libitum feeding (activity, AC, n = 9), no activity/restricted feeding (RF, n = 12) and activity/restricted feeding (activity-based anorexia, ABA, n = 11). During the first week all rats were fed ad libitum, ABA and AC had access to a running wheel for 24 h/day. From week two ABA and RF only had access to food from 9:00 to 10:30 a.m. Body weight was assessed daily, activity and food intake monitored electronically, brain activation assessed using Fos immunohistochemistry at the end of the experiment. While during the first week no body weight differences were observed (p > 0.05), after food restriction RF rats showed a body weight decrease: −13% vs. day eight (p 0.05). Similarly, the daily physical activity was not different between AC and ABA (p > 0.05). The investigation of Fos expression in the brain showed neuronal activation in several brain nuclei such as the supraoptic nucleus, arcuate nucleus, locus coeruleus and nucleus of the solitary tract of ABA compared to AL rats. In conclusion, ABA combining physical activity and restricted feeding likely represents a suited animal model for AN to study pathophysiological alterations and pharmacological treatment options. Nonetheless, cautious interpretation of the data is necessary since rats do not voluntarily reduce their body weight as observed in human AN. PMID:27826222

  19. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice

    OpenAIRE

    Riaño-Pachón Diego; Gómez-Porras Judith L; Dreyer Ingo; Mayer Jorge E; Mueller-Roeber Bernd

    2007-01-01

    Abstract Background In plants, complex regulatory mechanisms are at the core of physiological and developmental processes. The phytohormone abscisic acid (ABA) is involved in the regulation of various such processes, including stomatal closure, seed and bud dormancy, and physiological responses to cold, drought and salinity stress. The underlying tissue or plant-wide control circuits often include combinatorial gene regulatory mechanisms and networks that we are only beginning to unravel with...

  20. Activity-based anorexia reduces body weight without inducing a separate food intake microstructure or activity phenotype in female rats – mediation via an activation of distinct brain nuclei

    Directory of Open Access Journals (Sweden)

    Sophie Scharner

    2016-10-01

    Full Text Available Anorexia nervosa (AN is accompanied by severe somatic and psychosocial complications. However, the underlying pathogenesis is poorly understood, treatment is challenging and often hampered by high relapse. Therefore, more basic research is needed to better understand the disease. Since hyperactivity often plays a role in AN, we characterized an animal model to mimic AN using restricted feeding and hyperactivity. Female Sprague-Dawley rats were divided into four groups: no activity/ad libitum feeding (ad libitum, AL, n=9, activity/ad libitum feeding (activity, AC, n=9, no activity/restricted feeding (RF, n=12 and activity/restricted feeding (activity-based anorexia, ABA, n=11. During the first week all rats were fed ad libitum, ABA and AC had access to a running wheel for 24h/d. From week two ABA and RF only had access to food from 9:00-10:30 am. Body weight was assessed daily, activity and food intake monitored electronically, brain activation assessed using Fos immunohistochemistry at the end of the experiment. While during the first week no body weight differences were observed (p>0.05, after food restriction RF rats showed a body weight decrease: -13% vs. day eight (p0.05. Similarly, the daily physical activity was not different between AC and ABA (p>0.05. The investigation of Fos expression in the brain showed neuronal activation in several brain nuclei such as the supraoptic nucleus, arcuate nucleus, locus coeruleus and nucleus of the solitary tract of ABA compared to AL rats. In conclusion, ABA combining physical activity and restricted feeding likely represents a suited animal model for AN to study pathophysiological alterations and pharmacological treatment options. Nonetheless, cautious interpretation of the data is necessary since rats do not voluntarily reduce their body weight as observed in human AN.

  1. Quality of the paratransit service (tricycle and its operation in Aba, Nigeria: An analysis of customers' opinions

    Directory of Open Access Journals (Sweden)

    Obioma R. Nwaogbe

    2012-11-01

    Full Text Available This study examines the quality of the paratransit service and its operations in Aba, Abia State, Nigeria, with a view to identifying its challenges and contributions to informal transport and equitable service distribution to the residents of Aba. Structured questionnaires and past literature were used as sources of data. The primary data included road networks, number of trips per day by operators, operating speed, and purpose of travel, passengers' security, tricycle speed, and waiting time. The study was conducted by using two questionnaires: one for the operators and the other for tricycle users. The total number of completed questionnaires for the survey was 100 for operators and 229 for users. The sampling technique used was random sampling from several zones of the study area. Data were analysed using percentage and Chi-square statistical techniques for testing the hypotheses with the Minitab 11.0 version package. The study found that 92% of operators reported a high level of road network deterioration, and 61% reported making 9-12 trips per day. The hypothesis test was used to study people's feelings about the attributes of the service provided for paratransit users, such as affordability, regularity, comfort and safety. It was found that there is no significant difference at the 5% level between the various categories of these respondents.

  2. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2 - and ABA-induced stomatal closing.

    Science.gov (United States)

    Azoulay-Shemer, Tamar; Palomares, Axxell; Bagheri, Andisheh; Israelsson-Nordstrom, Maria; Engineer, Cawas B; Bargmann, Bastiaan O R; Stephan, Aaron B; Schroeder, Julian I

    2015-08-01

    Stomata mediate gas exchange between the inter-cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2 ]. [CO2 ] in leaves mediates stomatal movements. The role of guard cell photosynthesis in stomatal conductance responses is a matter of debate, and genetic approaches are needed. We have generated transgenic Arabidopsis plants that are chlorophyll-deficient in guard cells only, expressing a constitutively active chlorophyllase in a guard cell specific enhancer trap line. Our data show that more than 90% of guard cells were chlorophyll-deficient. Interestingly, approximately 45% of stomata had an unusual, previously not-described, morphology of thin-shaped chlorophyll-less stomata. Nevertheless, stomatal size, stomatal index, plant morphology, and whole-leaf photosynthetic parameters (PSII, qP, qN, FV '/FM' ) were comparable with wild-type plants. Time-resolved intact leaf gas-exchange analyses showed a reduction in stomatal conductance and CO2 -assimilation rates of the transgenic plants. Normalization of CO2 responses showed that stomata of transgenic plants respond to [CO2 ] shifts. Detailed stomatal aperture measurements of normal kidney-shaped stomata, which lack chlorophyll, showed stomatal closing responses to [CO2 ] elevation and abscisic acid (ABA), while thin-shaped stomata were continuously closed. Our present findings show that stomatal movement responses to [CO2 ] and ABA are functional in guard cells that lack chlorophyll. These data suggest that guard cell CO2 and ABA signal transduction are not directly modulated by guard cell photosynthesis/electron transport. Moreover, the finding that chlorophyll-less stomata cause a 'deflated' thin-shaped phenotype, suggests that photosynthesis in guard cells is critical for energization and guard cell turgor production. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  3. A.B.A. Checklist: Birds of Continental United States and Canada

    Science.gov (United States)

    Keith, G.S.; Balch, L.G.; Gibson, D.D.; McCaskie, R.G.; Robbins, C.S.; Small, A.; Sykes, P.W.; Tucker, J.A.

    1982-01-01

    The 'Summary' in this edition of the A BA Checklist has been greatly expanded to include all properly documented records for each accidental species. These records are published, except for a very few recent ones which are in press or in preparation. Emphasis is on records supported by specimens or photographs, but sight records are also included. To make these accounts more useful to researchers, a reference has been given for each record. All records, except those identified as '(photo)' or '(specimen)', or by some other type of objective evidence, are sight records. Because of the interest shown in this section of the Checklist, coverage has not been confined to accidental species (defined as those which have occurred fewer than ten times in the ABA Checklist area during the twentieth century). Accounts are also given for selected rare visitors and native species. Two of the primary references are abbreviated in the accounts: Audubon Field Notes-AFN, and American Birds-AB.

  4. A Randomized Clinical Trial Comparison Between Pivotal Response Treatment (PRT) and Adult-Driven Applied Behavior Analysis (ABA) Intervention on Disruptive Behaviors in Public School Children with Autism.

    Science.gov (United States)

    Mohammadzaheri, Fereshteh; Koegel, Lynn Kern; Rezaei, Mohammad; Bakhshi, Enayatolah

    2015-09-01

    Children with autism often demonstrate disruptive behaviors during demanding teaching tasks. Language intervention can be particularly difficult as it involves social and communicative areas, which are challenging for this population. The purpose of this study was to compare two intervention conditions, a naturalistic approach, Pivotal Response Treatment (PRT) with an adult-directed ABA approach on disruptive behavior during language intervention in the public schools. A randomized clinical trial design was used with two groups of children, matched according to age, sex and mean length of utterance. The data showed that the children demonstrated significantly lower levels of disruptive behavior during the PRT condition. The results are discussed with respect to antecedent manipulations that may be helpful in reducing disruptive behavior.

  5. PERCEPTION ABOUT BOTTLE FEEDING AMONG MOTHERS IN SELECTED HEALTH CARE SETTINGS IN ABA SOUTH LGA, ABIA STATE, NIGERIA

    OpenAIRE

    Achema.G.; Chigbo.R

    2011-01-01

    The study determined the perception of bottle feeding among mothers attending child welfare clinic in selected health centers in Aba South LGA. It also ascertained the knowledge of mothers about the breast feeding and factors responsible for chosen bottle feeding. A descriptive research design was adopted for the study where a total survey of 45 mothers who were selected systematically from the centers were interviewed as a method of data collection. The findings of the study showed that 93% ...

  6. Reduced abscisic acid content is responsible for enhanced sucrose accumulation by potassium nutrition in vegetable soybean seeds.

    Science.gov (United States)

    Tu, Bingjie; Liu, Changkai; Tian, Bowen; Zhang, Qiuying; Liu, Xiaobing; Herbert, Stephen J

    2017-05-01

    In order to understand the physiological mechanism of potassium (K) application in enhancing sugar content of vegetable soybean seeds, pot experiments were conducted in 2014 and 2015 with two vegetable soybean (Glycine max L. Merr.) cultivars (c.v. Zhongkemaodou 1 and c.v. 121) under normal rate of nitrogen and phosphorus application. Three potassium (K) fertilization treatments were imposed: No K application (K0), 120 kg K 2 SO 4 ha -1 at seeding (K1), and 120 kg K 2 SO 4 ha -1 at seedling + 1% K 2 SO 4 foliar application at flowering (K2). Contents of indole-3-acetic acid (IAA), gibberellins (GA), cytokinins (ZR) and abscisic acid (ABA) in seeds were determined from 4 to 8 weeks after flowering. K fertilization increased the contents of IAA, GA, ZR, soluble sugar, sucrose and fresh pod yield, but reduced ABA content consistently. When the contents of soluble sugar and sucrose reached the highest level at 7 weeks after flowering for the 2 cultivars, the contents of IAA、GA、ZR all reached the lowest level in general. The content of ABA in seed was negatively correlated with the sucrose content (P abscisic acid content plays a critical role in enhancing sucrose content, which might be a partial mechanism involved in K nutrition to improve the quality of vegetable soybean.

  7. A follow up on the distribution of coliform bacteria along the Jordanian coastline of the gulf of Aq aba

    International Nuclear Information System (INIS)

    Al-Mogharabi, M. S.; Khyami-Horani, H.

    1997-01-01

    A survey of the occurrence of enteric indicator organisms (e. g. total and fecal coliform) and enteric pathogenic bacteria (Salmonella sp.) was undertaken at ten sites, along the northern coast of the Gulf of Aq aba (Jordan)m during the period October 1994 to September 1995. Both total coliforms and Escherichia coli counts were within the accepted international standards for marine bathing water. the mean value per 100 ml seawater ranged between 18 to 70(n=12 months) for total coliforms, 1 to 27 (n=8 mon thus) for Escherichia coli and 1 to 9 (n = 8 months) for Salmonella species. The analysis of va rance for total coliforms revealed a highly significant temporal variations (P<0.001), but no significant spatial differences were found .Whereas, Salmonella sp. counts showed significant spatial variations (P<0.001), with the Border site being significantly different from the other sites except the Palace site. These results suggest that the hygienic water quality at the Jordanian side of the Gulf of Aq aba, is good all over the year although the sewage discharge from Ei lat might cause a health hazard as to be the major source of enteric pathogenic bacteria. (authors). 13 refs., 4 figs., 1 tab

  8. Chain conformations of ABA triblock coplymers in microphase-separated structures for SANS

    International Nuclear Information System (INIS)

    Matsushita, Y.; Nomura, M.; Watanabe, J.; Mogi, Y.; Noda, I.; Han, C.C.

    1993-01-01

    Single chain conformations of center block, polystyrene, of poly(2-vinylpyridine-b-styrene-b-2-vinylpyridine)(PSP) triblock copolymers of the ABA type in bulk were measured by small angle neutron scattering (SANS), while microphase separation structures were studied by small angle X-ray Scattering (SAXS) and transmission electron microscopy (TEM). From the morphological observations, PSP block copolymers have confirmed to have alternating lamellar structure both when φs = 0.33 and φs = 0.5, where φs is the volume fraction of polystyrene blocks. It was also clarified that the chain dimension of center blocks of sample with φs = 0.33 is smaller than that of sample with φs = 0.5. This result may mean that the center blocks have bridge-righ conformation when φs = 0.33 while they have loop-rich conformation when φs = 0.5. (author)

  9. Transient GUS gene expression in cassava (Manihot esculenta Crantz using Agrobacterium tumefaciens leaf infiltration

    Directory of Open Access Journals (Sweden)

    Paula Díaz T.

    2014-09-01

    Full Text Available Objective. Assess transient gene expression of GUS in cassava (Manihot esculenta Crantz leaves using Agrobacterium tumefaciens infiltration. Materials and methods. A. tumefaciens strains GV3101 and AGL1 containing pCAMBIA1305.2 were used to evaluate transient gene expression of β-glucuronidase (GUS. A. tumefaciens infiltration (agroinfiltration was made using both leaves from in vitro and 1 month old greenhouse plants. Leaves were incubated in X-GLUC buffer, stained and photographed to detect GUS activity. Results. Agroinfiltration assays showed GUS transient expression in leaves of cassava varieties widely cultivated in the north coast and eastern savannah, MCOL2215 (Venezuelan and CM6438-14 (Vergara, respectively. A. tumefaciens agressive strain AGL1 showed high efficiency inducing GUS expression in cassava leaves. Conclusions. We recommend using A. tumefaciens agressive strain AGL1 for agroinfiltration to assess transient expression in cassava leaves.

  10. Ethylene Responses in Rice Roots and Coleoptiles Are Differentially Regulated by a Carotenoid Isomerase-Mediated Abscisic Acid Pathway[OPEN

    Science.gov (United States)

    Yin, Cui-Cui; Ma, Biao; Collinge, Derek Phillip; Pogson, Barry James; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Chen, Hui; Yang, Chao; Lu, Xiang; Wang, Yi-Qin; Zhang, Wan-Ke; Chu, Cheng-Cai; Sun, Xiao-Hong; Fang, Shuang; Chu, Jin-Fang; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice. PMID:25841037

  11. Ethylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice (Oryza sativa L.) Seedlings

    Science.gov (United States)

    He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-01-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development. PMID:25330236

  12. Arabidopsis Tóxicos en Levadura 78 (AtATL78) mediates ABA-dependent ROS signaling in response to drought stress

    DEFF Research Database (Denmark)

    Suh, Ji Yeon; Kim, Soo Jin; Oh, Tae Rin

    2016-01-01

    concentrations of Ca(2+), a down-stream signaling molecule of ABA signaling pathway, atatl78 mutant plants successfully closed the pores. Furthermore, AtATL78 protein indirectly associated with catalases and the deficiency of AtATL78 led the reduction of catalase activity and H2O2, implying the function of At...

  13. Reducing cytoplasmic polyamine oxidase activity in Arabidopsis increases salt and drought tolerance by reducing reactive oxygen species production and increasing defense gene expression

    Directory of Open Access Journals (Sweden)

    G.H.M. eSagor

    2016-02-01

    Full Text Available The link between polyamine oxidases (PAOs, which function in polyamine catabolism, and stress responses remains elusive. Here, we address this issue using Arabidopsis pao mutants in which the expression of the five PAO genes is knocked-out or knocked-down. As the five single pao mutants and wild type (WT showed similar response to salt stress, we tried to generate the mutants that have either the cytoplasmic PAO pathway (pao1 pao5 or the peroxisomal PAO pathway (pao2 pao3 pao4 silenced. However, the latter triple mutant was not obtained. Thus, in this study, we used two double mutants, pao1 pao5 and pao2 pao4. Of interest, pao1 pao5 mutant was NaCl- and drought-tolerant, whereas pao2 pao4 showed similar sensitivity to those stresses as WT. To reveal the underlying mechanism of salt tolerance, further analyses were performed. Na uptake of the mutant (pao1 pao5 decreased to 75% of WT. PAO activity of the mutant was reduced to 62% of WT. The content of reactive oxygen species (ROS such as hydrogen peroxide, a reaction product of PAO action, and superoxide anion in the mutant became 81% and 72% of the levels in WT upon salt treatment. The mutant contained 2.8-fold higher thermospermine compared to WT. Moreover, the mutant induced the genes of salt overly sensitive-, abscisic acid (ABA-dependent- and ABA-independent- pathways more strongly than WT upon salt treatment. The results suggest that the Arabidopsis plant silencing cytoplasmic PAOs shows salinity tolerance by reducing ROS production and strongly inducing subsets of stress-responsive genes under stress conditions.

  14. Electrical signaling, stomatal conductance, ABA and Ethylene content in avocado trees in response to root hypoxia

    Science.gov (United States)

    Gurovich, Luis; Schaffer, Bruce; García, Nicolás; Iturriaga, Rodrigo

    2009-01-01

    Avocado (Persea americana Mill.) trees are among the most sensitive of fruit tree species to root hypoxia as a result of flooded or poorly drained soil. Similar to drought stress, an early physiological response to root hypoxia in avocado is a reduction of stomatal conductance. It has been previously determined in avocado trees that an extracellular electrical signal between the base of stem and leaves is produced and related to reductions in stomatal conductance in response to drought stress. The current study was designed to determine if changes in the extracellular electrical potential between the base of the stem and leaves in avocado trees could also be detected in response to short-term (min) or long-term (days) root hypoxia, and if these signals could be related to stomatal conductance (gs), root and leaf ABA and ACC concentrations, ethylene emission from leaves and leaf abscission. In contrast to previous observations for drought-stressed trees, short-term or long-term root hypoxia did not stimulate an electrical potential difference between the base of the stem and leaves. Short-term hypoxia did not result in a significant decrease in gs compared with plants in the control treatment, and no differences in ABA concentration were found between plants subjected to hypoxia and control plants. Long-term hypoxia in the root zone resulted in a significant decrease in gs, increased leaf ethylene and increased leaf abscission. The results indicate that for avocado trees exposed to root hypoxia, electrical signals do not appear to be the primary root-to-shoot communication mechanism involved in signaling for stomatal closure as a result of hypoxia in the root zone. PMID:19649181

  15. The Prevalence of Substance Use among Bandar Abas Azad Islamic University Students

    Directory of Open Access Journals (Sweden)

    Hamid Mardani

    2012-11-01

    Full Text Available Aim: Substance abuse is one of the most important problem and disease in current century that produced wide worry in the entire world. The solving of addiction among young and educated population is more important issue. The current research was aimed the study of the prevalence rate of the substance use (included: opium, alcohol, cigarette, Hubble bubble among Bandar Abas azad Islamic university students. Method: In this cross sectional study 310 university students were selected by stratified random sampling. For gathering data the prevalence substance use questionnaire was used. Results: The findings showed the start age was 22-25 years old. Also, prevalence rate of cigarette, Hubble bubble, opium, and alcohol were higher in boy students in comparison of girl students. The rate of difference was significant by run of chi square analysis. Conclusion: Sex, the history of substance use in family member, and friends were risk factors of substance use.

  16. Dukungan Orang Tua dengan Perilaku Cuci Tangan dan Gosok Gigi pada Anak di TK ABA Kepiton, Kulon Progo

    Directory of Open Access Journals (Sweden)

    Isman Susanto

    2015-03-01

    Full Text Available Childhood is a time that very susceptible to various diseases due to a less of affective sanitation and poor hygiene. Hands washing and teeth brushing behavior are part of the health behaviors that need to be invested to prevent the diseases. Parents have important role in providing support and maintaining their children’s health care. Objective of this research was to know a relationship between parents support with hands washing and teeth brushing behaviors among children in Kindergarten ABA Kepiton, Kulon Progo. This research was a Quantitative inductive research with cross sectional study approach. The Population were all of children and parents of children attending in kindergarten ABA Kepiton, Kulon Progo which consisted of 37 childrens. With a total sampling method, the number of samples was meet inclusion and exclusion criteria were 35 childrens. Analysis of the data used Fisher’s Exact Test. Results of Fisher’s Exact Test showed that there was relationship between parents support and hands washing behavior in children, p-value =0.009 (p<0.05 and there was no relationship between parents support and teeth brushing behavior in children, p-value=0.292 (p>0.05. In conclusion, there was a relationship between parents support and hands washing behavior in children and there was no relationship between parents support and teeth brushing behavior in children.

  17. Synthesis of ABA Tri-Block Co-Polymer Magnetopolymersomes via Electroporation for Potential Medical Application

    Directory of Open Access Journals (Sweden)

    Jennifer Bain

    2015-12-01

    Full Text Available The ABA tri-block copolymer poly(2-methyloxazoline–poly(dimethylsiloxane–poly(2-methyloxazoline (PMOXA–PDMS–PMOXA is known for its capacity to mimic a bilayer membrane in that it is able to form vesicular polymersome structures. For this reason, it is the subject of extensive research and enables the development of more robust, adaptable and biocompatible alternatives to natural liposomes for biomedical applications. However, the poor solubility of this polymer renders published methods for forming vesicles unreproducible, hindering research and development of these polymersomes. Here we present an adapted, simpler method for the production of PMOXA–PDMS–PMOXA polymersomes of a narrow polydispersity (45 ± 5.8 nm, via slow addition of aqueous solution to a new solvent/polymer mixture. We then magnetically functionalise these polymersomes to form magnetopolymersomes via in situ precipitation of iron-oxide magnetic nanoparticles (MNPs within the PMOXA–PDMS–PMOXA polymersome core and membrane. This is achieved using electroporation to open pores within the membrane and to activate the formation of MNPs. The thick PMOXA–PDMS–PMOXA membrane is well known to be relatively non-permeable when compared to more commonly used di-block polymer membranes due a distinct difference in both size and chemistry and therefore very difficult to penetrate using standard biological methods. This paper presents for the first time the application of electroporation to an ABA tri-block polymersome membrane (PMOXA–PDMS–PMOXA for intravesicular in situ precipitation of uniform MNPs (2.6 ± 0.5 nm. The electroporation process facilitates the transport of MNP reactants across the membrane yielding in situ precipitation of MNPs. Further to differences in length and chemistry, a tri-block polymersome membrane structure differs from a natural lipid or di-block polymer membrane and as such the application and effects of electroporation on this type of

  18. ESTRATÉGIAS DE MARKETING DIGITAL APLICADAS NOS CURSOS DE COMUNICAÇÃO SOCIAL DA UNOESC JOAÇABA

    OpenAIRE

    Santos, Paulo Ricardo; Paganini, Alice

    2014-01-01

    Este trabalho tem como tema principal o estudo das estratégias de marketing digital utilizadas nos Cursos de Comunicação Social da Universidade do Oeste de Santa Catarina (Unoesc) de Joaçaba, assim como analisar os benefícios que trouxeram aos cursos e aos acadêmicos. Para isso, efetuou-se um estudo referente a esse tipo de marketing, suas ferramentas e estratégias, além da respectiva evolução dessa nova forma de atuação dentro da comunicação. Além de o presente trabalho ter como objetivo apr...

  19. Borboletas e Mariposas (Insecta: Lepidoptera do Município de Joaçaba, Estado de Santa Catarina, Brasil

    Directory of Open Access Journals (Sweden)

    Mario Favretto

    2012-07-01

    Abstract. For the first time is presented a list of Lepidoptera recorded in the municipality of Joaçaba, state of Santa Catarina, Brazil. The individuals were collected between the years 2006 and 2010 in different environments resulting in 58 species belonging to ten families. The most abundant families were Nymphalidae and Saturniidae, representing 34,48% and 24,13% of the species richness respectively. In addition, the most representative genera of Nymphalidae were Morpho (three species, and Hamadryas (two species, while in Saturniidae were Rothschildia (three species and Automeris (two species.

  20. Involvement of abscisic acid in regulating antioxidative defense systems and IAA-oxidase activity and improving adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings under cadmium stress.

    Science.gov (United States)

    Li, Shi-Weng; Leng, Yan; Feng, Lin; Zeng, Xiao-Ying

    2014-01-01

    In vitro experiments were conducted to investigate the effects of abscisic acid (ABA) and Cd on antioxidative defense systems and indole-3-acetic acid (IAA) oxidase during adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings. The exogenous ABA significantly enhanced the number and fresh weight of the adventitious roots. CdCl2 strongly inhibited adventitious rooting. Pretreatment with 10 μM ABA clearly alleviated the inhibitory effect of Cd on rooting. ABA significantly reduced superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT) activities, as well as the levels of glutathione (GSH) and ascorbic acid (ASA) during adventitious rooting. ABA strongly increased IAA-oxidase activity during the induction (0-12 h) and expression (after 48 h) phases and increased the phenols levels. Cd treatment significantly reduced the activities of SOD, APX, POD, and IAA oxidase, as well as GSH level. Cd strongly increased ASA levels. ABA pretreatment counteracted Cd-induced alterations of certain antioxidants and antioxidative enzymes, e.g., remarkably rescued APX and POD activities, reduced the elevated SOD and CAT activities and ASA levels, and recovered the reduced GSH levels, caused by Cd stress. Thus, the physiological effects of the combination of ABA and Cd treatments were opposite of those obtained with Cd treatment alone, suggesting that ABA involved in the regulation of antioxidative defense systems and the alleviation of wounding- and Cd-induced oxidative stress.

  1. Transcriptional Responses of Chilean Quinoa (Chenopodium quinoa Willd.) Under Water Deficit Conditions Uncovers ABA-Independent Expression Patterns.

    Science.gov (United States)

    Morales, Andrea; Zurita-Silva, Andres; Maldonado, Jonathan; Silva, Herman

    2017-01-01

    HIGHLIGHTS R49 genotype displayed best performance on selected physiological parameters and highest tolerance to drought.R49 drought over-represented transcripts has exhibited 19% of genes (306 contigs) that presented no homology to published databases.Expression pattern for canonical responses to drought such as ABA biosynthesis and other genes induced in response to drought were assessed by qPCR. Global freshwater shortage is one of the biggest challenges of our time, often associated to misuse, increased consumption demands and the effects of climate change, paralleled with the desertification of vast areas. Chenopodium quinoa (Willd.) represents a very promising species, due to both nutritional content and cultivation under water constraint. We characterized drought tolerance of three Chilean genotypes and selected Genotype R49 (Salares ecotype) based upon Relative Water Content (RWC), Electrolyte Leakage (EL) and maximum efficiency of photosystem II (F v /F m ) after drought treatment, when compared to another two genotypes. Exploratory RNA-Seq of R49 was generated by Illumina paired-ends method comparing drought and control irrigation conditions. We obtained 104.8 million reads, with 54 million reads for control condition and 51 million reads for drought condition. Reads were assembled in 150,952 contigs, were 31,523 contigs have a reading frame of at least 300 nucleotides (100 aminoacids). BLAST2GO annotation showed a 15% of genes without homology to NCBI proteins, but increased to 19% (306 contigs) when focused into drought-induced genes. Expression pattern for canonical drought responses such as ABA biosynthesis and other genes induced were assessed by qPCR, suggesting novelty of R49 drought responses.

  2. Emerging Importance of Helicases in Plant Stress Tolerance: Characterization of Oryza sativa Repair Helicase XPB2 Promoter and Its Functional Validation in Tobacco under Multiple Stresses.

    Science.gov (United States)

    Raikwar, Shailendra; Srivastava, Vineet K; Gill, Sarvajeet S; Tuteja, Renu; Tuteja, Narendra

    2015-01-01

    Genetic material always remains at the risk of spontaneous or induced damage which challenges the normal functioning of DNA molecule, thus, DNA repair is vital to protect the organisms against genetic damage. Helicases, the unique molecular motors, are emerged as prospective molecules to engineer stress tolerance in plants and are involved in nucleic acid metabolism including DNA repair. The repair helicase, XPB is an evolutionary conserved protein present in different organisms, including plants. Availability of few efficient promoters for gene expression in plants provoked us to study the promoter of XPB for better understanding of gene regulation under stress conditions. Here, we report the in silico analysis of novel stress inducible promoter of Oryza sativa XPB2 (OsXPB2). The in vivo validation of functionality/activity of OsXPB2 promoter under abiotic and hormonal stress conditions was performed by Agrobacterium-mediated transient assay in tobacco leaves using OsXPB2::GUS chimeric construct. The present research revealed that OsXPB2 promoter contains cis-elements accounting for various abiotic stresses (salt, dehydration, or cold) and hormone (Auxin, ABA, or MeJA) induced GUS expression/activity in the promoter-reporter assay. The promoter region of OsXPB2 contains CACG, GTAACG, CACGTG, CGTCA CCGCCGCGCT cis acting-elements which are reported to be salt, dehydration, cold, MeJA, or ABA responsive, respectively. Functional analysis was done by Agrobacterium-mediated transient assay using agroinfiltration in tobacco leaves, followed by GUS staining and fluorescence quantitative analyses. The results revealed high induction of GUS activity under multiple abiotic stresses as compared to mock treated control. The present findings suggest that OsXPB2 promoter is a multi-stress inducible promoter and has potential applications in sustainable crop production under abiotic stresses by regulating desirable pattern of gene expression.

  3. Elevated air movement enhances stomatal sensitivity to abscisic acid in leaves developed at high relative air humidity

    Directory of Open Access Journals (Sweden)

    Dália R.A. Carvalho

    2015-05-01

    Full Text Available High relative air humidity (RH ≥ 85% during growth leads to stomata malfunctioning, resulting in water stress when plants are transferred to conditions of high evaporative demand. In this study, we hypothesized that an elevated air movement (MOV 24 h per day, during the whole period of leaf development would increase abscisic acid concentration ([ABA] enhancing stomatal functioning. Pot rose ‘Toril’ was grown at moderate (61% or high (92% RH combined with a negligible MOV or with a continuous MOV of 0.92 m s-1. High MOV reduced stomatal pore length and aperture in plants developed at high RH. Moreover, stomatal function improved when high MOV-treated plants were subjected to leaflet desiccation and ABA feeding. Endogenous concentration of ABA and its metabolites in the leaves was reduced by 35% in high RH, but contrary to our hypothesis this concentration was not significantly affected by high MOV. Interestingly, in detached leaflets grown at high RH, high MOV increased stomatal sensitivity to ABA since the amount of exogenous ABA required to decrease the transpiration rate was significantly reduced. This is the first study to show that high MOV increases stomatal functionality in leaves developed at high RH by reducing the stomatal pore length and aperture and enhancing stomatal sensitivity to ABA rather than increasing leaf [ABA].

  4. Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions.

    Science.gov (United States)

    Li, Yajun; Zhang, Jiachang; Zhang, Juan; Hao, Ling; Hua, Jinping; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-08-01

    LOS5/ABA3 gene encoding molybdenum cofactor sulphurase is involved in aldehyde oxidase (AO) activity in Arabidopsis, which indirectly regulates ABA biosynthesis and increased stress tolerance. Here, we used a constitutive super promoter to drive LOS5/ABA3 overexpression in soybean (Glycine max L.) to enhance drought tolerance in growth chamber and field conditions. Expression of LOS5/ABA3 was up-regulated by drought stress, which led to increasing AO activity and then a notable increase in ABA accumulation. Transgenic soybean under drought stress had reduced water loss by decreased stomatal aperture size and transpiration rate, which alleviated leaf wilting and maintained higher relative water content. Exposed to drought stress, transgenic soybean exhibited reduced cell membrane damage by reducing electrolyte leakage and production of malondialdehyde and promoting proline accumulation and antioxidant enzyme activities. Also, overexpression of LOS5/ABA3 enhanced expression of stress-up-regulated genes. Furthermore, the seed yield of transgenic plants is at least 21% higher than that of wide-type plants under drought stress conditions in the field. These data suggest that overexpression of LOS5/ABA3 could improve drought tolerance in transgenic soybean via enhanced ABA accumulation, which could activate expression of stress-up-regulated genes and cause a series of physiological and biochemical resistant responses. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Genome-Wide Analysis of the RAV Family in Soybean and Functional Identification of GmRAV-03 Involvement in Salt and Drought Stresses and Exogenous ABA Treatment

    Directory of Open Access Journals (Sweden)

    Shu-Ping Zhao

    2017-06-01

    Full Text Available Transcription factors play vital roles in plant growth and in plant responses to abiotic stresses. The RAV transcription factors contain a B3 DNA binding domain and/or an APETALA2 (AP2 DNA binding domain. Although genome-wide analyses of RAV family genes have been performed in several species, little is known about the family in soybean (Glycine max L.. In this study, a total of 13 RAV genes, named as GmRAVs, were identified in the soybean genome. We predicted and analyzed the amino acid compositions, phylogenetic relationships, and folding states of conserved domain sequences of soybean RAV transcription factors. These soybean RAV transcription factors were phylogenetically clustered into three classes based on their amino acid sequences. Subcellular localization analysis revealed that the soybean RAV proteins were located in the nucleus. The expression patterns of 13 RAV genes were analyzed by quantitative real-time PCR. Under drought stresses, the RAV genes expressed diversely, up- or down-regulated. Following NaCl treatments, all RAV genes were down-regulated excepting GmRAV-03 which was up-regulated. Under abscisic acid (ABA treatment, the expression of all of the soybean RAV genes increased dramatically. These results suggested that the soybean RAV genes may be involved in diverse signaling pathways and may be responsive to abiotic stresses and exogenous ABA. Further analysis indicated that GmRAV-03 could increase the transgenic lines resistance to high salt and drought and result in the transgenic plants insensitive to exogenous ABA. This present study provides valuable information for understanding the classification and putative functions of the RAV transcription factors in soybean.

  6. Depletion of abscisic acid levels in roots of flooded Carrizo citrange (Poncirus trifoliata L. Raf. × Citrus sinensis L. Osb.) plants is a stress-specific response associated to the differential expression of PYR/PYL/RCAR receptors.

    Science.gov (United States)

    Arbona, Vicent; Zandalinas, Sara I; Manzi, Matías; González-Guzmán, Miguel; Rodriguez, Pedro L; Gómez-Cadenas, Aurelio

    2017-04-01

    Soil flooding reduces root abscisic acid (ABA) levels in citrus, conversely to what happens under drought. Despite this reduction, microarray analyses suggested the existence of a residual ABA signaling in roots of flooded Carrizo citrange seedlings. The comparison of ABA metabolism and signaling in roots of flooded and water stressed plants of Carrizo citrange revealed that the hormone depletion was linked to the upregulation of CsAOG, involved in ABA glycosyl ester (ABAGE) synthesis, and to a moderate induction of catabolism (CsCYP707A, an ABA 8'-hydroxylase) and buildup of dehydrophaseic acid (DPA). Drought strongly induced both ABA biosynthesis and catabolism (CsNCED1, 9-cis-neoxanthin epoxycarotenoid dioxygenase 1, and CsCYP707A) rendering a significant hormone accumulation. In roots of flooded plants, restoration of control ABA levels after stress release was associated to the upregulation of CsBGLU18 (an ABA β-glycosidase) that cleaves ABAGE. Transcriptional profile of ABA receptor genes revealed a different induction in response to soil flooding (CsPYL5) or drought (CsPYL8). These two receptor genes along with CsPYL1 were cloned and expressed in a heterologous system. Recombinant CsPYL5 inhibited ΔNHAB1 activity in vitro at lower ABA concentrations than CsPYL8 or CsPYL1, suggesting its better performance under soil flooding conditions. Both stress conditions induced ABA-responsive genes CsABI5 and CsDREB2A similarly, suggesting the occurrence of ABA signaling in roots of flooded citrus seedlings. The impact of reduced ABA levels in flooded roots on CsPYL5 expression along with its higher hormone affinity reinforce the role of this ABA receptor under soil-flooding conditions and explain the expression of certain ABA-responsive genes.

  7. Osteopontin Reduces the Adhesion Force of Dental Bacteria Without Blocking Bacterial Cell Surface Glycoconjugates

    DEFF Research Database (Denmark)

    Kristensen, Mathilde Frost; Zeng, Guanghong; Neu, Thomas R.

    2017-01-01

    . paracasei, and lectins VGA and WGA to S. mitis. Immobilized bacteria were incubated with these lectins in the presence and absence of OPN. For each combination, 12 confocal images were acquired with fixed microscope settings, and average fluorescence intensities were determined. Experiments were performed......The bovine milk protein osteopontin (OPN) has been shown to reduce the adhesion of oral bacteria to saliva-coated surfaces, which reduces biofilm formation and may contribute to caries control. We now quantified the effect of OPN (Lacprodan OPN-10) treatment on the adhesion force of Lactobacillus...... and after OPN treatment. Adhesion energy was found to be reduced by 94% for L. paracasei and 61% for A. naeslundii (pbacteria was screened. Lectins BanLec, ConA, VGA and WGA bound well to A. naeslundii, lectins ABA and HPA to L...

  8. Inspection of the grapevine BURP superfamily highlights an expansion of RD22 genes with distinctive expression features in berry development and ABA-mediated stress responses.

    Science.gov (United States)

    Matus, José Tomás; Aquea, Felipe; Espinoza, Carmen; Vega, Andrea; Cavallini, Erika; Dal Santo, Silvia; Cañón, Paola; Rodríguez-Hoces de la Guardia, Amparo; Serrano, Jennifer; Tornielli, Giovanni Battista; Arce-Johnson, Patricio

    2014-01-01

    The RESPONSIVE TO DEHYDRATION 22 (RD22) gene is a molecular link between abscisic acid (ABA) signalling and abiotic stress responses. Its expression has been used as a reliable ABA early response marker. In Arabidopsis, the single copy RD22 gene possesses a BURP domain also located at the C-terminus of USP embryonic proteins and the beta subunit of polygalacturonases. In grapevine, a RD22 gene has been identified but putative paralogs are also found in the grape genome, possibly forming a large RD22 family in this species. In this work, we searched for annotations containing BURP domains in the Vitis vinifera genome. Nineteen proteins were defined by a comparative analysis between the two genome predictions and RNA-Seq data. These sequences were compared to other plant BURPs identified in previous genome surveys allowing us to reconceive group classifications based on phylogenetic relationships and protein motif occurrence. We observed a lineage-specific evolution of the RD22 family, with the biggest expansion in grapevine and poplar. In contrast, rice, sorghum and maize presented highly expanded monocot-specific groups. The Vitis RD22 group may have expanded from segmental duplications as most of its members are confined to a region in chromosome 4. The inspection of transcriptomic data revealed variable expression of BURP genes in vegetative and reproductive organs. Many genes were induced in specific tissues or by abiotic and biotic stresses. Three RD22 genes were further studied showing that they responded oppositely to ABA and to stress conditions. Our results show that the inclusion of RNA-Seq data is essential while describing gene families and improving gene annotations. Robust phylogenetic analyses including all BURP members from other sequenced species helped us redefine previous relationships that were erroneously established. This work provides additional evidence for RD22 genes serving as marker genes for different organs or stresses in grapevine.

  9. Transcript and hormone analyses reveal the involvement of ABA-signalling, hormone crosstalk and genotype-specific biological processes in cold-shock response in wheat

    Czech Academy of Sciences Publication Activity Database

    Kalapos, S.; Dobrev, Petre; Nagy, T.; Vítámvás, P.; Gyorgyey, J.; Kocsy, G.; Marincs, F.; Galiba, G.

    2016-01-01

    Roč. 253, DEC (2016), s. 86-97 ISSN 0168-9452 Institutional support: RVO:61389030 Keywords : complex phytohormone responses * abscisic-acid biosynthesis * frost-resistance * stress responses * gene-expression * chromosome 5a * triticum-monococcum * regulatory network * basal resistance * abiotic stresses * ABA-Signalling * Carbon metabolism * Freezing-tolerance * Gene ontology * Plant hormones * Short-term cold-shock * Triticum aestivum Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.437, year: 2016

  10. Novel de novo synthesized phosphate carrier compound ABA-PEG20k-Pi20 suppresses collagenase production in Enterococcus faecalis and prevents colonic anastomotic leak in an experimental model.

    Science.gov (United States)

    Wiegerinck, M; Hyoju, S K; Mao, J; Zaborin, A; Adriaansens, C; Salzman, E; Hyman, N H; Zaborina, O; van Goor, H; Alverdy, J C

    2018-04-16

    Previous work has demonstrated that anastomotic leak can be caused by collagenolytic bacteria such as Enterococcus faecalis via an effect on wound collagen. In humans, E. faecalis is the organism cultured most commonly from a leaking anastomosis, and is not routinely eliminated by standard oral or intravenous antibiotics. Novel strategies are needed to contain the virulence of this pathogen when present on anastomotic tissues. Polyphosphorylated polymer ABA-PEG20k-Pi20 was tested in mice for its ability to prevent anastomotic leak caused by collagenolytic E. faecalis. The study design included a distal colonic resection and anastomosis followed by introduction of E. faecalis to anastomotic tissues via enema. Mice were assigned randomly to receive either ABA-PEG20-Pi20 or its unphosphorylated precursor ABA-PEG20k in their drinking water. The development of anastomotic leak was determined after the animals had been killed. Overnight incubation of two different E. faecalis collagenolytic strains with 2 mmol/l of ABA-PEG20k-Pi20 led to near complete inhibition of collagenase production (from 21 000 to 1000 and from 68 000 to 5000 units; P leak rates decreased from eight of 15 to three of 15 animals (P leak caused by this organism. Clinical relevance Progress in understanding the pathogenesis of anastomotic leak continues to point to intestinal bacteria as key causative agents. The presence of pathogens such as Enterococcus faecalis that predominate on anastomotic tissues despite antibiotic use, coupled with their ability to produce collagenase, appears to alter the process of healing that leads to leakage. Further antibiotic administration may seem logical, but carries the unwanted risk of eliminating the normal microbiome, which functions competitively to exclude and suppress the virulence of pathogens such as E. faecalis. Therefore, non-antibiotic strategies that can suppress the production of collagenase by E. faecalis without affecting its growth, or potentially

  11. Effects of vivo morpholino knockdown of lateral hypothalamus orexin/hypocretin on renewal of alcohol seeking.

    Science.gov (United States)

    Prasad, Asheeta A; McNally, Gavan P

    2014-01-01

    Two experiments used vivo morpholinos to assess the role of orexin/hypocretin in ABA renewal of extinguished alcohol seeking. Rats were trained to respond for alcoholic beer in a distinctive context, A, and then extinguished in a second distinctive context, B. When rats were tested in the extinction context, ABB, responding was low but when they were tested in the training context, ABA, responding was significantly higher. Microinjection of an orexin/hypocretin antisense vivo morpholino into LH significantly reduced orexin/hypocretin protein expression but had no effect on the ABA renewal of alcohol seeking (Experiment 1). Microinjection of a higher dose of the antisense vivo morpholino into LH also significantly reduced orexin/hypocretin protein expression but this was not selective and yielded significant reduction in melanin-concentrating hormone (MCH) protein expression. This non-selective knockdown did significantly reduce ABA renewal as well as reduce the reacquisition of alcohol seeking. Taken together, these findings show an important role for LH in the ABA renewal of alcohol seeking but that orexin/hypocretin is not necessary for this renewal.

  12. Effects of vivo morpholino knockdown of lateral hypothalamus orexin/hypocretin on renewal of alcohol seeking.

    Directory of Open Access Journals (Sweden)

    Asheeta A Prasad

    Full Text Available Two experiments used vivo morpholinos to assess the role of orexin/hypocretin in ABA renewal of extinguished alcohol seeking. Rats were trained to respond for alcoholic beer in a distinctive context, A, and then extinguished in a second distinctive context, B. When rats were tested in the extinction context, ABB, responding was low but when they were tested in the training context, ABA, responding was significantly higher. Microinjection of an orexin/hypocretin antisense vivo morpholino into LH significantly reduced orexin/hypocretin protein expression but had no effect on the ABA renewal of alcohol seeking (Experiment 1. Microinjection of a higher dose of the antisense vivo morpholino into LH also significantly reduced orexin/hypocretin protein expression but this was not selective and yielded significant reduction in melanin-concentrating hormone (MCH protein expression. This non-selective knockdown did significantly reduce ABA renewal as well as reduce the reacquisition of alcohol seeking. Taken together, these findings show an important role for LH in the ABA renewal of alcohol seeking but that orexin/hypocretin is not necessary for this renewal.

  13. Effects of mechanical stress or abscisic acid on growth, water status and leaf abscisic acid content of eggplant seedlings

    Science.gov (United States)

    Latimer, J. G.; Mitchell, C. A.

    1988-01-01

    Container-grown eggplant (Solanum melongena L. var esculentum Nees. 'Burpee's Black Beauty') seedlings were conditioned with brief, periodic mechanical stress or abscisic acid (ABA) in a greenhouse prior to outdoor exposure. Mechanical stress consisted of seismic (shaking) or thigmic (stem flexing) treatment. Exogenous ABA (10(-3) or 10(-4)M) was applied as a soil drench 3 days prior to outdoor transfer. During conditioning, only thigmic stress reduced stem elongation and only 10(-3) M ABA reduced relative growth rate (RGR). Both conditioning treatments increased leaf specific chlorophyll content, but mechanical stress did not affect leaf ABA content. Outdoor exposure of unconditioned eggplant seedlings decreased RGR and leaf-specific chlorophyll content, but tended to increase leaf ABA content relative to that of plants maintained in the greenhouse. Conditioning did not affect RGR of plants subsequently transferred outdoors, but did reduce stem growth. Seismic stress applied in the greenhouse reduced dry weight gain by plants subsequently transferred outdoors. Mechanical stress treatments increased leaf water potential by 18-25% relative to that of untreated plants.

  14. Antagonism between abscisic acid and gibberellins is partially mediated by ascorbic acid during seed germination in rice.

    Science.gov (United States)

    Ye, Nenghui; Zhang, Jianhua

    2012-05-01

    The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. In the associated study, we investigated the relationship among ABA, reactive oxygen species (ROS), ascorbic acid (ASC) and GA during rice seed germination. ROS production is reduced by ABA, which hence results in decreasing ASC accumulation during imbibition. GA accumulation was also suppressed by a reduced ROS and ASC level, whereas application of exogenous ASC can partially rescue seed germination from ABA treatment. Further results show that production of ASC, which acts as a substrate in GA biosynthesis, was significantly inhibited by lycorine which thus suppressed the accumulation of GA. Consequently, expression of GA biosynthesis genes was suppressed by the low levels of ROS and ASC in ABA-treated seeds. These studies reveal a new role for ASC in mediating the antagonism between ABA and GA during seed germination in rice.

  15. Ab initio quasiparticle bandstructure of ABA and ABC-stacked graphene trilayers

    Science.gov (United States)

    Menezes, Marcos; Capaz, Rodrigo; Louie, Steven

    2013-03-01

    We obtain the quasiparticle band structure of ABA and ABC-stacked graphene trilayers through ab initio density functional theory (DFT) and many-body quasiparticle calculations within the GW approximation. To interpret our results, we fit the DFT and GW π bands to a low energy tight-binding model, which is found to reproduce very well the observed features near the K point. The values of the extracted hopping parameters are reported and compared with available theoretical and experimental data. For both stackings, the quasiparticle corrections lead to a renormalization of the Fermi velocity, an effect also observed in previous calculations on monolayer graphene. They also increase the separation between the higher energy bands, which is proportional to the nearest neighbor interlayer hopping parameter γ1. Both features are brought to closer agreement with experiment through the quasiparticle corrections. Finally, other effects, such as trigonal warping, electron-hole assymetry and energy gaps are discussed in terms of the associated parameters. This work was supported by the Brazilian funding agencies: CAPES, CNPq, FAPERJ and INCT-Nanomateriais de Carbono. It was also supported by NSF grant No. DMR10-1006184 and U.S. DOE under Contract No. DE-AC02-05CH11231.

  16. Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses

    International Nuclear Information System (INIS)

    Wang, Zhenyu; Zhao, Xiuyang; Wang, Bing; Liu, Erlong; Chen, Ni; Zhang, Wei; Liu, Heng

    2016-01-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) participate in diverse regulations of plant growth and environmental stress responses. In this work, an Arabidopsis hnRNP of unknown function, AtRNP1, was investigated. We found that AtRNP1 gene is highly expressed in rosette and cauline leaves, and slightly induced under drought, salt, osmotic and ABA stresses. AtRNP1 protein is localized to both the nucleus and cytoplasm. We performed homologous overexpression of AtRNP1 and found that the transgenic plants showed shortened root length and plant height, and accelerated flowering. In addition, the transgenic plants also showed reduced tolerance to drought, salt, osmotic and ABA stresses. Further studies revealed that under both normal and stress conditions, the proline contents in the transgenic plants are markedly decreased, associated with reduced expression levels of a proline synthase gene and several stress-responsive genes. These results suggested that the overexpression of AtRNP1 negatively affects plant growth and abiotic stress tolerance. - Highlights: • AtRNP1 is a widely expressed gene and its expression is slightly induced under abiotic stresses. • AtRNP1 protein is localized to both the nucleus and cytoplasm. • Overexpression of AtRNP1 affects plant growth. • Overexpression of AtRNP1 reduces plant tolerance to drought and salt stresses. • AtRNP1 overexpression plants show decreased proline accumulation and stress-responsive gene expressions.

  17. Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhenyu, E-mail: wzy72609@163.com [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Zhao, Xiuyang, E-mail: xiuzh@psb.vib-ugent.be [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Wang, Bing, E-mail: wangbing@ibcas.ac.cn [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Liu, Erlong, E-mail: liuel14@lzu.edu.cn [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Chen, Ni, E-mail: 63710156@qq.com [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China); Zhang, Wei, E-mail: wzhang1216@yahoo.com [Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444 (China); Liu, Heng, E-mail: hengliu@lzu.edu.cn [Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730030 (China)

    2016-04-01

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) participate in diverse regulations of plant growth and environmental stress responses. In this work, an Arabidopsis hnRNP of unknown function, AtRNP1, was investigated. We found that AtRNP1 gene is highly expressed in rosette and cauline leaves, and slightly induced under drought, salt, osmotic and ABA stresses. AtRNP1 protein is localized to both the nucleus and cytoplasm. We performed homologous overexpression of AtRNP1 and found that the transgenic plants showed shortened root length and plant height, and accelerated flowering. In addition, the transgenic plants also showed reduced tolerance to drought, salt, osmotic and ABA stresses. Further studies revealed that under both normal and stress conditions, the proline contents in the transgenic plants are markedly decreased, associated with reduced expression levels of a proline synthase gene and several stress-responsive genes. These results suggested that the overexpression of AtRNP1 negatively affects plant growth and abiotic stress tolerance. - Highlights: • AtRNP1 is a widely expressed gene and its expression is slightly induced under abiotic stresses. • AtRNP1 protein is localized to both the nucleus and cytoplasm. • Overexpression of AtRNP1 affects plant growth. • Overexpression of AtRNP1 reduces plant tolerance to drought and salt stresses. • AtRNP1 overexpression plants show decreased proline accumulation and stress-responsive gene expressions.

  18. Violaxanthin is an abscisic acid precursor in water-stressed dark-grown bean leaves

    International Nuclear Information System (INIS)

    Li, Yi; Walton, D.C.

    1990-01-01

    The leaves a dark-grown bean (Phaseolus vulgaris L.) seedlings accumulate considerably lower quantities of xanthophylls and carotenes than do leaves of light-grown seedlings, but they synthesize at least comparable amounts of abscisic acid (ABA) and its metabolites when water stressed. We observed a 1:1 relationship on a molar basis between the reduction in levels of ciolaxanthin, 9'-cis-neoxanthin, and 9-cis-violaxanthin and the accumulation of ABA, phaseic acid, and dihydrophaseic acid, when leaves from dark-grown plants were stressed for 7 hours. Early in the stress period, reductions in xanthophylls were greater than the accumulation of ABA and its metabolites, suggesting the accumulation of an intermediate which was subsequently converted to ABA. Leaves which were detached, but no stressed, did not accumulate ABA nor were their xanthophyll levels reduced. Leaves from plants that had been sprayed with cycloheximido did not accumulate ABA when stressed, nor were their xanthophyll levels reduced significantly. Incubation of dark-grown stressed leaves in an 18 O 2 -containing atmosphere resulted in the synthesis of ABA with levels of 18 O in the carboxyl group that were virtually identical to those observed in light-grown leaves. The results of these experiments indicate that violaxanthin is an ABA precursor in stressed dark-grown leaves, and they are used to suggest several possible pathways from violaxanthin to ABA

  19. Violaxanthin is an abscisic acid precursor in water-stressed dark-grown bean leaves

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi; Walton, D.C. (State Univ. of New York, Syracuse (USA))

    1990-03-01

    The leaves a dark-grown bean (Phaseolus vulgaris L.) seedlings accumulate considerably lower quantities of xanthophylls and carotenes than do leaves of light-grown seedlings, but they synthesize at least comparable amounts of abscisic acid (ABA) and its metabolites when water stressed. We observed a 1:1 relationship on a molar basis between the reduction in levels of ciolaxanthin, 9{prime}-cis-neoxanthin, and 9-cis-violaxanthin and the accumulation of ABA, phaseic acid, and dihydrophaseic acid, when leaves from dark-grown plants were stressed for 7 hours. Early in the stress period, reductions in xanthophylls were greater than the accumulation of ABA and its metabolites, suggesting the accumulation of an intermediate which was subsequently converted to ABA. Leaves which were detached, but no stressed, did not accumulate ABA nor were their xanthophyll levels reduced. Leaves from plants that had been sprayed with cycloheximido did not accumulate ABA when stressed, nor were their xanthophyll levels reduced significantly. Incubation of dark-grown stressed leaves in an {sup 18}O{sub 2}-containing atmosphere resulted in the synthesis of ABA with levels of {sup 18}O in the carboxyl group that were virtually identical to those observed in light-grown leaves. The results of these experiments indicate that violaxanthin is an ABA precursor in stressed dark-grown leaves, and they are used to suggest several possible pathways from violaxanthin to ABA.

  20. A radioimmunoassay for abscisic acid

    International Nuclear Information System (INIS)

    Walton, D.; Dashek, W.; Galson, E.

    1979-01-01

    We have developed a radioimmunoassay (RIA) for abscisic acid (ABA) in the 0.1 ng to 2.5 ng range. Antibodies were obtained from rabbits immunized with ABA bound via its carboxyl group to bovine serum albumin. Cross-reactivity studies indicate that ABA esters are completely cross-reactive with ABA, while trans, trans abscisic acid (t-ABA) phaseic acid (PA) and dihydrophaseic acid (DPA) have much lower but significant cross-reactivities. Purification methods which reduce the levels of cross-reacting substances are described. (orig.) 891 AJ/orig. 892 MKO [de

  1. Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Frey, Anne; Godin, Béatrice; Bonnet, Magda; Sotta, Bruno; Marion-Poll, Annie

    2004-04-01

    The role of maternally derived abscisic acid (ABA) during seed development has been studied using ABA-deficient mutants of Nicotiana plumbaginifolia Viviani. ABA deficiency induced seed abortion, resulting in reduced seed yield, and delayed growth of the remaining embryos. Mutant grafting onto wild-type stocks and reciprocal crosses indicated that maternal ABA, synthesized in maternal vegetative tissues and translocated to the seed, promoted early seed development and growth. Moreover ABA deficiency delayed both seed coat pigmentation and capsule dehiscence. Mutant grafting did not restore these phenotypes, indicating that ABA synthesized in the seed coat and capsule envelope may have a positive effect on capsule and testa maturation. Together these results shed light on the positive role of maternal ABA during N. plumbaginifolia seed development.

  2. UV-induced cross-linking of abscisic acid to binding proteins

    International Nuclear Information System (INIS)

    Cornelussen, M.H.M.; Karssen, C.M.; Loon, L.C. van

    1995-01-01

    Conditions for UV-induced cross-linking of abscisic acid (ABA) through its enone chromophore to binding proteins were evaluated. The effects of a UV-light band between 260 and 530 nm on both unconjugated and protein-conjugated ABA, as well as on anti-ABA antibodies as models of ABA-binding proteins were determined. UV irradiation caused both isomerization and photolysis of ABA, but increasing the lower irradiation boundary to 345 nm strongly reduced photolysis and largely prevented isomerization. When conjugated to alkaline phosphatase (AP), ABA remained stable when using either a 320 or a 345 nm filter. At these wavelengths both binding of ABA to antibodies as well as AP enzymatic activity were maintained. UV-induced cross-linking of monoclonal anti-ABA antibodies to immobilized ABA was analysed by immunoassays. Optimal cross-linking was achieved after a 5 min irradiation period at 0°, using a long pass, cut-on filter to quench wavelengths below 290 nm. This cross-linking faithfully reflected cognate binding activity. (author)

  3. Inspection of the grapevine BURP superfamily highlights an expansion of RD22 genes with distinctive expression features in berry development and ABA-mediated stress responses.

    Directory of Open Access Journals (Sweden)

    José Tomás Matus

    Full Text Available The RESPONSIVE TO DEHYDRATION 22 (RD22 gene is a molecular link between abscisic acid (ABA signalling and abiotic stress responses. Its expression has been used as a reliable ABA early response marker. In Arabidopsis, the single copy RD22 gene possesses a BURP domain also located at the C-terminus of USP embryonic proteins and the beta subunit of polygalacturonases. In grapevine, a RD22 gene has been identified but putative paralogs are also found in the grape genome, possibly forming a large RD22 family in this species. In this work, we searched for annotations containing BURP domains in the Vitis vinifera genome. Nineteen proteins were defined by a comparative analysis between the two genome predictions and RNA-Seq data. These sequences were compared to other plant BURPs identified in previous genome surveys allowing us to reconceive group classifications based on phylogenetic relationships and protein motif occurrence. We observed a lineage-specific evolution of the RD22 family, with the biggest expansion in grapevine and poplar. In contrast, rice, sorghum and maize presented highly expanded monocot-specific groups. The Vitis RD22 group may have expanded from segmental duplications as most of its members are confined to a region in chromosome 4. The inspection of transcriptomic data revealed variable expression of BURP genes in vegetative and reproductive organs. Many genes were induced in specific tissues or by abiotic and biotic stresses. Three RD22 genes were further studied showing that they responded oppositely to ABA and to stress conditions. Our results show that the inclusion of RNA-Seq data is essential while describing gene families and improving gene annotations. Robust phylogenetic analyses including all BURP members from other sequenced species helped us redefine previous relationships that were erroneously established. This work provides additional evidence for RD22 genes serving as marker genes for different organs or stresses

  4. Agrobacterium-mediated inoculation of chrysanthemum (Chrysanthemum morifolium) plants with chrysanthemum stunt viroid.

    Science.gov (United States)

    Nabeshima, Tomoyuki; Doi, Motoaki; Hosokawa, Munetaka

    2016-08-01

    Agroinfiltration was tested as a method of inoculation of chrysanthemum plants with chrysanthemum stunt viroid (CSVd). Binary vectors harboring dimeric CSVd sequences in sense and antisense orientations were constructed, and Agrobacterium transfected with these binary vectors was infiltrated into chrysanthemum leaves. Northern blotting and reverse transcription polymerase chain reaction analysis showed that local infection was established within 7 days and systemic infection within 20 days. CSVd polarities showed no difference in infectivity. This study showed that agroinfiltration of chrysanthemum plants is an easy, rapid, and cost-effective method for CSVd inoculation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yuxiang, E-mail: yuxiangqin@126.com [Department of Biotechnology, University of Jinan, Jinan 250022 (China); Tian, Yanchen [The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100 (China); Han, Lu; Yang, Xinchao [Department of Biotechnology, University of Jinan, Jinan 250022 (China)

    2013-11-15

    Highlights: •A class II WRKY transcription factor, TaWRKY79 was isolated and characterized. •TaWRKY79 was induced by NaCl or abscisic acid. •843 bp regulatory segment was sufficient to respond to ABA or NaCl treatment. •TaWRKY79 enhanced salinity and ionic tolerance while reduced sensitivity to ABA. •TaWRKY79 increased salinity and ionic tolerance in an ABA-dependent pathway. -- Abstract: The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusion between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway.

  6. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Qin, Yuxiang; Tian, Yanchen; Han, Lu; Yang, Xinchao

    2013-01-01

    Highlights: •A class II WRKY transcription factor, TaWRKY79 was isolated and characterized. •TaWRKY79 was induced by NaCl or abscisic acid. •843 bp regulatory segment was sufficient to respond to ABA or NaCl treatment. •TaWRKY79 enhanced salinity and ionic tolerance while reduced sensitivity to ABA. •TaWRKY79 increased salinity and ionic tolerance in an ABA-dependent pathway. -- Abstract: The isolation and characterization of TaWRKY79, a wheat class II WRKY transcription factor, is described. Its 1297 bp coding region includes a 987 bp long open reading frame. TaWRKY79 was induced by stressing seedlings with either NaCl or abscisic acid (ABA). When a fusion between an 843 bp segment upstream of the TaWRKY79 coding sequence and GUS was introduced into Arabidopsis thaliana, GUS staining indicated that this upstream segment captured the sequence(s) required to respond to ABA or NaCl treatment. When TaWRKY79 was constitutively expressed as a transgene in A. thaliana, the transgenic plants showed an improved capacity to extend their primary root in the presence of either 100 mM NaCl, 10 mM LiCl or 2 μM ABA. The inference was that TaWRKY79 enhanced the level of tolerance to both salinity and ionic stress, while reducing the level of sensitivity to ABA. The ABA-related genes ABA1, ABA2 ABI1 and ABI5 were all up-regulated in the TaWRKY79 transgenic plants, suggesting that the transcription factor operates in an ABA-dependent pathway

  7. FaPOD27 functions in the metabolism of polyphenols in strawberry fruit (Fragaria sp.

    Directory of Open Access Journals (Sweden)

    Su-Ying eYeh

    2014-10-01

    Full Text Available The strawberry (Fragaria × ananassa is one of the most preferred fresh fruit worldwide, accumulates numerous flavonoids but has limited shelf life due to excessive tissue softening caused by cell wall degradation. Since lignin is one of the polymers that strengthen plant cell walls and might contribute to some extent to fruit firmness monolignol biosynthesis was studied in strawberry fruit. Cinnamoyl-CoA reductase (CCR, cinnamyl alcohol dehydrogenase (CAD, and a peroxidase (POD27 gene were strongly expressed in red, ripe fruit whereas a second POD gene was primarily expressed in green, immature fruit. Moreover, FaPOD27 transcripts were strongly and constitutively induced in fruits exposed to Agrobacterium infection. Gene expression levels and enzymatic activities of FaCCR and FaCAD were efficiently suppressed through RNAi in FaCCR- and FaCAD-silenced strawberries. Besides, significantly elevated FaPOD transcript levels were detected after agroinfiltration of pBI-FaPOD constructs in fruits. At the same time, levels of G-monomers were considerably reduced in FaCCR-silenced fruits whereas the proportion of both G- and S-monomers decisively decreased in FaCAD-silenced and pBI-FaPOD fruits. Development, firmness, and lignin level of the treated fruits were similar to pBI-intron control fruits, presumably attributed to increased expression levels of FaPOD27 upon agroinfiltration. Additionally, enhanced firmness, accompanied with elevated lignin levels, was revealed in chalcone synthase-deficient fruits (CHS-, independent of down- or up-regulation of individual and combined FaCCR, FaCAD, and FaPOD genes by agroinfiltration, when compared to CHS-/pBI-intron control fruits. These approaches provide further insight into the genetic control of flavonoid and lignin synthesis in strawberries. The results suggest that FaPOD27 is a key gene for lignin biosynthesis in strawberry fruit and thus to improving the firmness of strawberries.

  8. Ab initio random structure searching of organic molecular solids: assessment and validation against experimental data† †Electronic supplementary information (ESI) available: Results of similarity analysis between the 11 structures of lowest energy obtained in the AIRSS calculations and the reported structures of form III and form IV of m-ABA; unit cell parameters and volumes for all structures considered; comparison of 2θ values derived from the unit cell parameters of different structural models representing form III of m-ABA; Le Bail fitting of the experimental powder XRD pattern of form IV of m-ABA recorded at 70 K using, as the initial structural model, the reported crystal structure following geometry optimization; table of calculated (GIPAW) absolute isotropic NMR shieldings; simulated powder XRD data for the considered structures after precise geometry optimization; experimental 1H MAS NMR spectra of forms III and IV. (pdf) The calculated and experimental data for this study are provided as a supporting dataset from WRAP, the Warwick Research Archive Portal at http://wrap.warwick.ac.uk/91884. See DOI: 10.1039/c7cp04186a

    Science.gov (United States)

    Zilka, Miri; Dudenko, Dmytro V.; Hughes, Colan E.; Williams, P. Andrew; Sturniolo, Simone; Franks, W. Trent; Pickard, Chris J.

    2017-01-01

    This paper explores the capability of using the DFT-D ab initio random structure searching (AIRSS) method to generate crystal structures of organic molecular materials, focusing on a system (m-aminobenzoic acid; m-ABA) that is known from experimental studies to exhibit abundant polymorphism. Within the structural constraints selected for the AIRSS calculations (specifically, centrosymmetric structures with Z = 4 for zwitterionic m-ABA molecules), the method is shown to successfully generate the two known polymorphs of m-ABA (form III and form IV) that have these structural features. We highlight various issues that are encountered in comparing crystal structures generated by AIRSS to experimental powder X-ray diffraction (XRD) data and solid-state magic-angle spinning (MAS) NMR data, demonstrating successful fitting for some of the lowest energy structures from the AIRSS calculations against experimental low-temperature powder XRD data for known polymorphs of m-ABA, and showing that comparison of computed and experimental solid-state NMR parameters allows different hydrogen-bonding motifs to be discriminated. PMID:28944393

  9. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin.

    Science.gov (United States)

    Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith

    2016-07-01

    Understanding the mechanisms regulating root development under drought conditions is an important question for plant biology and world agriculture. We examine the effect of osmotic stress on abscisic acid (ABA), cytokinin and ethylene responses and how they mediate auxin transport, distribution and root growth through effects on PIN proteins. We integrate experimental data to construct hormonal crosstalk networks to formulate a systems view of root growth regulation by multiple hormones. Experimental analysis shows: that ABA-dependent and ABA-independent stress responses increase under osmotic stress, but cytokinin responses are only slightly reduced; inhibition of root growth under osmotic stress does not require ethylene signalling, but auxin can rescue root growth and meristem size; osmotic stress modulates auxin transporter levels and localization, reducing root auxin concentrations; PIN1 levels are reduced under stress in an ABA-dependent manner, overriding ethylene effects; and the interplay among ABA, ethylene, cytokinin and auxin is tissue-specific, as evidenced by differential responses of PIN1 and PIN2 to osmotic stress. Combining experimental analysis with network construction reveals that ABA regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. HAB1–SWI3B Interaction Reveals a Link between Abscisic Acid Signaling and Putative SWI/SNF Chromatin-Remodeling Complexes in Arabidopsis[C][W

    Science.gov (United States)

    Saez, Angela; Rodrigues, Americo; Santiago, Julia; Rubio, Silvia; Rodriguez, Pedro L.

    2008-01-01

    Abscisic acid (ABA) has an important role for plant growth, development, and stress adaptation. HYPERSENSITIVE TO ABA1 (HAB1) is a protein phosphatase type 2C that plays a key role as a negative regulator of ABA signaling; however, the molecular details of HAB1 action in this process are not known. A two-hybrid screen revealed that SWI3B, an Arabidopsis thaliana homolog of the yeast SWI3 subunit of SWI/SNF chromatin-remodeling complexes, is a prevalent interacting partner of HAB1. The interaction mapped to the N-terminal half of SWI3B and required an intact protein phosphatase catalytic domain. Bimolecular fluorescence complementation and coimmunoprecipitation assays confirmed the interaction of HAB1 and SWI3B in the nucleus of plant cells. swi3b mutants showed a reduced sensitivity to ABA-mediated inhibition of seed germination and growth and reduced expression of the ABA-responsive genes RAB18 and RD29B. Chromatin immunoprecipitation experiments showed that the presence of HAB1 in the vicinity of RD29B and RAB18 promoters was abolished by ABA, which suggests a direct involvement of HAB1 in the regulation of ABA-induced transcription. Additionally, our results uncover SWI3B as a novel positive regulator of ABA signaling and suggest that HAB1 modulates ABA response through the regulation of a putative SWI/SNF chromatin-remodeling complex. PMID:19033529

  11. Silencing the SpMPK1, SpMPK2, and SpMPK3 Genes in Tomato Reduces Abscisic Acid—Mediated Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Yan Liang

    2013-11-01

    Full Text Available Drought is a major threat to agriculture production worldwide. Mitogen-activated protein kinases (MAPKs play a pivotal role in sensing and converting stress signals into appropriate responses so that plants can adapt and survive. To examine the function of MAPKs in the drought tolerance of tomato plants, we silenced the SpMPK1, SpMPK2, and SpMPK3 genes in wild-type plants using the virus-induced gene silencing (VIGS method. The results indicate that silencing the individual genes or co-silencing SpMPK1, SpMPK2, and SpMPK3 reduced the drought tolerance of tomato plants by varying degrees. Co-silencing SpMPK1 and SpMPK2 impaired abscisic acid (ABA-induced and hydrogen peroxide (H2O2-induced stomatal closure and enhanced ABA-induced H2O2 production. Similar results were observed when silencing SpMPK3 alone, but not when SpMPK1 and SpMPK2 were individually silenced. These data suggest that the functions of SpMPK1 and SpMPK2 are redundant, and they overlap with that of SpMPK3 in drought stress signaling pathways. In addition, we found that SpMPK3 may regulate H2O2 levels by mediating the expression of CAT1. Hence, SpMPK1, SpMPK2, and SpMPK3 may play crucial roles in enhancing tomato plants’ drought tolerance by influencing stomatal activity and H2O2 production via the ABA-H2O2 pathway.

  12. Printable, Degradable, and Biocompatible Ion Gels from a Renewable ABA Triblock Polyester and a Low Toxicity Ionic Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Boxin; Schneiderman, Deborah K.; Bidoky, Fazel Zare; Frisbie, C.Daniel; Lodge, Timothy P. (UMM)

    2017-09-15

    We have designed printable, biocompatible, and degradable ion gels by combining a novel ABA triblock aliphatic polyester, poly(ε-decalactone)-b-poly(dl-lactide)-b-poly(ε-decalactone), and a low toxicity ionic liquid, 1-butyl-1-methylpyrrolidinium bistrifluoromethanesulfonylimide ([P14][TFSI]). Due to the favorable compatibility between amorphous poly(dl-lactide) and [P14][TFSI] and the insolubility of the poly(ε-decalactone), the triblock polymer forms self-assembled micellar cross-links similar to thermoplastic elastomers, which ensures similar processing conditions and mechanical robustness during the fabrication of printed electrolyte-gated organic transistor devices. Additionally, the ester backbone in the polymer structure enables efficient hydrolytic degradation of these ion gels compared to those made previously using carbon-backbone polymers.

  13. Involvement of abscisic acid in correlative control of flower abscission in soybean

    International Nuclear Information System (INIS)

    Yarrow, G.L.

    1985-01-01

    Studies were carried out in three parts: (1) analysis of endogenous abscisic acid (ABA) in abscising and non-abscising flowers, (2) partitioning of radio-labelled ABA and photoassimilates within the soybean raceme, and (3) shading experiments, wherein endogenous levels, metabolism and partitioning of ABA were determined. Endogenous concentrations of ABA failed to show any consistent relationship to abscission of soybean flowers. Partitioning of radiolabelled ABA and photoassimilates displayed consistently higher sink strengths (% DPM) for both 3 H-ABA and 14 C-photoassimilates for non-abscising flowers than for abscising flowers within control racemes. Shading flowers with aluminum foil, 48 hrs prior to sampling, resulted in lowered endogenous ABA concentrations at 12, 17 and 22 days after anthesis (DAA), but not at 0 or 4 DAA. No differences were found in the catabolism of 3 H-ABA between shaded (abscising) and non-shaded (non-abscising) flowers. Reduced partitioning of ABA and photoassimilates to shaded flowers resulted when shades were applied at 0, 4, 12, and 17 DAA, but not at 22 DAA

  14. An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress

    OpenAIRE

    Li, Cong; Yue, Jing; Wu, Xiaowei; Xu, Cong; Yu, Jingjuan

    2014-01-01

    The DREB (dehydration-responsive element binding)-type transcription factors regulate the expression of stress-inducible genes by binding the DRE/CRT cis-elements in promoter regions. The upstream transcription factors that regulate the transcription of DREB transcription factors have not been clearly defined, although the function of DREB transcription factors in abiotic stress is known. In this study, an abscisic acid (ABA)-responsive DREB-binding protein gene (SiARDP) was cloned from foxta...

  15. Partial Root-Zone Drying of Olive (Olea europaea var. 'Chetoui' Induces Reduced Yield under Field Conditions.

    Directory of Open Access Journals (Sweden)

    Soumaya Dbara

    Full Text Available The productivity of olive trees in arid and semi-arid environments is closely linked to irrigation. It is necessary to improve the efficiency of irrigation techniques to optimise the amount of olive fruit produced in relation to the volume of water used. Partial root-zone drying (PRD is a water saving irrigation technique that theoretically allows the production of a root-to-shoot signal that modifies the physiology of the above-ground parts of the plant; specifically reducing stomatal conductance (gs and improving water use efficiency (WUE. Partial root-zone drying has been successfully applied under field conditions to woody and non-woody crops; yet the few previous trials with olive trees have produced contrasting results. Thirty year-old olive trees (Olea europaea 'var. Chetoui' in a Tunisian grove were exposed to four treatments from May to October for three-years: 'control' plants received 100% of the potential evapotranspirative demand (ETc applied to the whole root-zone; 'PRD100' were supplied with an identical volume of water to the control plants alternated between halves of the root-zone every ten-days; 'PRD50' were given 50% of ETc to half of the root-system, and; 'rain-fed' plants received no supplementary irrigation. Allowing part of the root-zone to dry resulted in reduced vegetative growth and lower yield: PRD100 decreased yield by ~47% during productive years. During the less productive years of the alternate bearing cycle, irrigation had no effect on yield; this suggests that withholding of water during 'off-years' may enhance the effectiveness of irrigation over a two-year cycle. The amount and quality of oil within the olive fruit was unaffected by the irrigation treatment. Photosynthesis declined in the PRD50 and rain-fed trees due to greater diffusive limitations and reduced biochemical uptake of CO2. Stomatal conductance and the foliar concentration of abscisic acid (ABA were not altered by PRD100 irrigation, which may

  16. Partial Root-Zone Drying of Olive (Olea europaea var. 'Chetoui') Induces Reduced Yield under Field Conditions.

    Science.gov (United States)

    Dbara, Soumaya; Haworth, Matthew; Emiliani, Giovani; Ben Mimoun, Mehdi; Gómez-Cadenas, Aurelio; Centritto, Mauro

    2016-01-01

    The productivity of olive trees in arid and semi-arid environments is closely linked to irrigation. It is necessary to improve the efficiency of irrigation techniques to optimise the amount of olive fruit produced in relation to the volume of water used. Partial root-zone drying (PRD) is a water saving irrigation technique that theoretically allows the production of a root-to-shoot signal that modifies the physiology of the above-ground parts of the plant; specifically reducing stomatal conductance (gs) and improving water use efficiency (WUE). Partial root-zone drying has been successfully applied under field conditions to woody and non-woody crops; yet the few previous trials with olive trees have produced contrasting results. Thirty year-old olive trees (Olea europaea 'var. Chetoui') in a Tunisian grove were exposed to four treatments from May to October for three-years: 'control' plants received 100% of the potential evapotranspirative demand (ETc) applied to the whole root-zone; 'PRD100' were supplied with an identical volume of water to the control plants alternated between halves of the root-zone every ten-days; 'PRD50' were given 50% of ETc to half of the root-system, and; 'rain-fed' plants received no supplementary irrigation. Allowing part of the root-zone to dry resulted in reduced vegetative growth and lower yield: PRD100 decreased yield by ~47% during productive years. During the less productive years of the alternate bearing cycle, irrigation had no effect on yield; this suggests that withholding of water during 'off-years' may enhance the effectiveness of irrigation over a two-year cycle. The amount and quality of oil within the olive fruit was unaffected by the irrigation treatment. Photosynthesis declined in the PRD50 and rain-fed trees due to greater diffusive limitations and reduced biochemical uptake of CO2. Stomatal conductance and the foliar concentration of abscisic acid (ABA) were not altered by PRD100 irrigation, which may indicate the

  17. Evaluation of atlas based auto-segmentation for head and neck target volume delineation in adaptive/replan IMRT

    International Nuclear Information System (INIS)

    Speight, R; Lindsay, R; Harding, R; Sykes, J; Karakaya, E; Prestwich, R; Sen, M

    2014-01-01

    IMRT for head and neck patients requires clinicians to delineate clinical target volumes (CTV) on a planning-CT (>2hrs/patient). When patients require a replan-CT, CTVs must be re-delineated. This work assesses the performance of atlas-based autosegmentation (ABAS), which uses deformable image registration between planning and replan-CTs to auto-segment CTVs on the replan-CT, based on the planning contours. Fifteen patients with planning-CT and replan-CTs were selected. One clinician delineated CTVs on the planning-CTs and up to three clinicians delineated CTVs on the replan-CTs. Replan-CT volumes were auto-segmented using ABAS using the manual CTVs from the planning-CT as an atlas. ABAS CTVs were edited manually to make them clinically acceptable. Clinicians were timed to estimate savings using ABAS. CTVs were compared using dice similarity coefficient (DSC) and mean distance to agreement (MDA). Mean inter-observer variability (DSC>0.79 and MDA<2.1mm) was found to be greater than intra-observer variability (DSC>0.91 and MDA<1.5mm). Comparing ABAS to manual CTVs gave DSC=0.86 and MDA=2.07mm. Once edited, ABAS volumes agreed more closely with the manual CTVs (DSC=0.87 and MDA=1.87mm). The mean clinician time required to produce CTVs reduced from 169min to 57min when using ABAS. ABAS segments volumes with accuracy close to inter-observer variability however the volumes require some editing before clinical use. Using ABAS reduces contouring time by a factor of three.

  18. Salt and drought stress and ABA responses related to bZIP genes from V. radiata and V. angularis.

    Science.gov (United States)

    Wang, Lanfen; Zhu, Jifeng; Li, Xiaoming; Wang, Shumin; Wu, Jing

    2018-04-20

    Mung bean and adzuki bean are warm-season legumes widely cultivated in China. However, bean production in major producing regions is limited by biotic and abiotic stress, such as drought and salt stress. Basic leucine zipper (bZIP) genes play key roles in responses to various biotic and abiotic stresses. However, only several bZIP genes involved in drought and salt stress in legumes, especially Vigna radiata and Vigna angularis, have been identified. In this study, we identified 54 and 50 bZIP proteins from whole-genome sequences of V. radiata and V. angularis, respectively. First, we comprehensively surveyed the characteristics of all bZIP genes, including their gene structure, chromosome distribution and motif composition. Phylogenetic trees showed that VrbZIP and VabZIP proteins were divided into ten clades comprising nine known and one unknown subgroup. The results of the nucleotide substitution rate of the orthologous gene pairs showed that bZIP proteins have undergone strong purifying selection: V. radiata and V. angularis diverged 1.25 million years ago (mya) to 9.20 mya (average of 4.95 mya). We also found that many cis-acting regulatory elements (CAREs) involved in abiotic stress and plant hormone responses were detected in the putative promoter regions of the bZIP genes. Finally, using the quantitative real-time PCR (qRT-PCR) method, we performed expression profiling of the bZIP genes in response to drought, salt and abscisic acid (ABA). We identified several bZIP genes that may be involved in drought and salt responses. Generally, our results provided useful and rich resources of VrbZIP and VabZIP genes for the functional characterization and understanding of bZIP transcription factors (TFs) in warm-season legumes. In addition, our results revealed important and interesting data - a subset of VrbZIP and VabZIP gene expression profiles in response to drought, salt and ABA stress. These results provide gene expression evidence for the selection of

  19. Antiviral Roles of Abscisic Acid in Plants

    Directory of Open Access Journals (Sweden)

    Mazen Alazem

    2017-10-01

    Full Text Available Abscisic acid (ABA is a key hormone involved in tuning responses to several abiotic stresses and also has remarkable impacts on plant defense against various pathogens. The roles of ABA in plant defense against bacteria and fungi are multifaceted, inducing or reducing defense responses depending on its time of action. However, ABA induces different resistance mechanisms to viruses regardless of the induction time. Recent studies have linked ABA to the antiviral silencing pathway, which interferes with virus accumulation, and the micro RNA (miRNA pathway through which ABA affects the maturation and stability of miRNAs. ABA also induces callose deposition at plasmodesmata, a mechanism that limits viral cell-to-cell movement. Bamboo mosaic virus (BaMV is a member of the potexvirus group and is one of the most studied viruses in terms of the effects of ABA on its accumulation and resistance. In this review, we summarize how ABA interferes with the accumulation and movement of BaMV and other viruses. We also highlight aspects of ABA that may have an effect on other types of resistance and that require further investigation.

  20. Characterization of a Poly(styrene-block-methylacrylate-random-octadecylacrylate-block-styrene) Shape Memory ABA Triblock Copolymer

    Science.gov (United States)

    Fei, Pengzhan; Cavicchi, Kevin

    2011-03-01

    A new ABA triblock copolymer of poly(styrene-block- methylacrylate-random-octadecylacrylate-block-styrene) (PS-b- PMA-r-PODA-b-PS) was synthesized by reversible addition fragmentation chain transfer polymerization. The triblock copolymer can generate a three-dimensional, physically crosslinked network by self-assembly, where the glassy PS domains physically crosslink the midblock chains. The side chain crystallization of the polyoctadecylacrylare (PODA) side chain generates a second reversible network enabling shape memory properties. Shape memory tests by uniaxial deformation and recovery of molded dog-bone shape samples demonstrate that shape fixities above 96% and shape recoveries above 98% were obtained for extensional strains up to 300%. An outstanding advantage of this shape memory material is that it can be very easily shaped and remolded by elevating the temperature to 140circ; C, and after remolding the initial shape memory properties are totally recovered by eliminating the defects introduced by the previous deformation cycling.

  1. Emerging importance of helicases in plant stress tolerance: characterization of Oryza sativa repair helicase XPB2 promoter and its functional validation in tobacco under multiple stresses

    Directory of Open Access Journals (Sweden)

    Shailendra eRaikwar

    2015-12-01

    Full Text Available Genetic material always remains at the risk of spontaneous or induced damage which challenges the normal functioning of DNA molecule, thus, DNA repair is vital to protect the organisms against genetic damage. DNA hHelicases, the unique molecular motors, are emerged as potentialprospective molecules to engineer stress tolerance in plants and are involved in a variety of DNA nucleic acid metabolismc processes including DNA repair. The DNA repair helicase, OsXPB2 is an evolutionary conserved protein present in different organisms, including plants. Availability of few efficient promoters for gene expression in plants provoked us to study the promoter of XPB for better understanding of gene regulation under stress The analysis of promoter sequence from plant genome is important in understanding the gene regulation. Hereconditions. Here, we report the in silico analysis of novel stress inducible promoter of rice Oryza sativa OsXPB2 (OsXPB2. gene is reported. The in vivo validation of functionality/activity of novel stress inducible promoter of rice OsXPB2 gene promoter under abiotic and hormonal stress conditions was performed by Agrobacterium-mediated transient assay in tobacco leaves using OsXPB2::GUS chimeric construct. Our resultsThe present research revealed that OsXPB2 promoter contains cis-elements accounting for various abiotic stresses (salt, dehydration or cold and hormone (Auxin, ABA or MeJA induced GUS expression/activity in the promoter-reporter assay. The promoter region of OsXPB2 contains CACG, GTAACG, CACGTG, CGTCA CCGCCGCGCT cis acting-elements which are reported to be salt, dehydration, cold, MeJA or ABA responsive, respectively. Functional analysis was done by Agrobacterium-transient assays using agroinfiltration in tobacco leaves, followed by GUS staining and fluorescence quantitative analyses. The results revealed high induction of GUS activity under multiple abiotic stresses as compared to mock treated control. The present

  2. Epigenetic chromatin modifiers in barley: IV. The study of barley Polycomb group (PcG genes during seed development and in response to external ABA

    Directory of Open Access Journals (Sweden)

    Stanca Michele A

    2010-04-01

    Full Text Available Abstract Background Epigenetic phenomena have been associated with the regulation of active and silent chromatin states achieved by modifications of chromatin structure through DNA methylation, and histone post-translational modifications. The latter is accomplished, in part, through the action of PcG (Polycomb group protein complexes which methylate nucleosomal histone tails at specific sites, ultimately leading to chromatin compaction and gene silencing. Different PcG complex variants operating during different developmental stages have been described in plants. In particular, the so-called FIE/MEA/FIS2 complex governs the expression of genes important in embryo and endosperm development in Arabidopsis. In our effort to understand the epigenetic mechanisms regulating seed development in barley (Hordeum vulgare, an agronomically important monocot plant cultivated for its endosperm, we set out to characterize the genes encoding barley PcG proteins. Results Four barley PcG gene homologues, named HvFIE, HvE(Z, HvSu(z12a, and HvSu(z12b were identified and structurally and phylogenetically characterized. The corresponding genes HvFIE, HvE(Z, HvSu(z12a, and HvSu(z12b were mapped onto barley chromosomes 7H, 4H, 2H and 5H, respectively. Expression analysis of the PcG genes revealed significant differences in gene expression among tissues and seed developmental stages and between barley cultivars with varying seed size. Furthermore, HvFIE and HvE(Z gene expression was responsive to the abiotic stress-related hormone abscisic acid (ABA known to be involved in seed maturation, dormancy and germination. Conclusion This study reports the first characterization of the PcG homologues, HvFIE, HvE(Z, HvSu(z12a and HvSu(z12b in barley. All genes co-localized with known chromosomal regions responsible for malting quality related traits, suggesting that they might be used for developing molecular markers to be applied in marker assisted selection. The Pc

  3. Disruption of a Guard Cell–Expressed Protein Phosphatase 2A Regulatory Subunit, RCN1, Confers Abscisic Acid Insensitivity in Arabidopsis

    Science.gov (United States)

    Kwak, June M.; Moon, Ji-Hye; Murata, Yoshiyuki; Kuchitsu, Kazuyuki; Leonhardt, Nathalie; DeLong, Alison; Schroeder, Julian I.

    2002-01-01

    Pharmacological studies have led to a model in which the phytohormone abscisic acid (ABA) may be positively transduced via protein phosphatases of the type 1 (PP1) or type 2A (PP2A) families. However, pharmacological evidence also exists that PP1s or PP2As may function as negative regulators of ABA signaling. Furthermore, recessive disruption mutants in protein phosphatases that function in ABA signal transduction have not yet been identified. A guard cell–expressed PP2A gene, RCN1, which had been characterized previously as a molecular component affecting auxin transport and gravity response, was isolated. A T-DNA disruption mutation in RCN1 confers recessive ABA insensitivity to Arabidopsis. The rcn1 mutation impairs ABA-induced stomatal closing and ABA activation of slow anion channels. Calcium imaging analyses show a reduced sensitivity of ABA-induced cytosolic calcium increases in rcn1, whereas mechanisms downstream of cytosolic calcium increases show wild-type responses, suggesting that RCN1 functions in ABA signal transduction upstream of cytosolic Ca2+ increases. Furthermore, rcn1 shows ABA insensitivity in ABA inhibition of seed germination and ABA-induced gene expression. The PP1 and PP2A inhibitor okadaic acid phenocopies the rcn1 phenotype in wild-type plants both in ABA-induced cytosolic calcium increases and in seed germination, and the wild-type RCN1 genomic DNA complements rcn1 phenotypes. These data show that RCN1 functions as a general positive transducer of early ABA signaling. PMID:12417706

  4. Osabc1k8, an abc1-like kinase gene, mediates abscisic acid sensitivity and dehydration tolerance response in rice seedlings

    International Nuclear Information System (INIS)

    Liu, Y.; Li, T.; Yang, C.

    2015-01-01

    The activity of bc1 complex kinase (ABC1K) protein family, which widely exists in prokaryotes and eukaryotes, consists of 15 members in rice, and the role of this family in plants has not yet been studied in details. In this study, a novel function of OsABC1K8 (LOC-Os06g48770), a member of rice ABC1K family, was characterized. The transcript level of OsABC1K8 changes in response to salt, dehydration, cold, PEG, oxidative (H/sub 2/O/sub 2/) stresses, or abscisic acid (ABA) treatment. Overexpression of OsABC1K8 significantly increased sensitivity to dehydration and reduced sensitivity to ABA. In the contrast, RNAi transgenic lines displayed significantly reduced sensitivity to dehydration stress and increased sensitivity to ABA. Furthermore, the transcriptional levels of several ABA/stress-regulated responsive genes were suppressed in OsABC1K8 over-expressing plants under dehydration stress. In conclusion, our results suggested that OsABC1K8 is a negative regulator in response to dehydration stress through an ABA-dependent pathway. (author)

  5. Abscisic-acid-induced cellular apoptosis and differentiation in glioma via the retinoid acid signaling pathway.

    Science.gov (United States)

    Zhou, Nan; Yao, Yu; Ye, Hongxing; Zhu, Wei; Chen, Liang; Mao, Ying

    2016-04-15

    Retinoid acid (RA) plays critical roles in regulating differentiation and apoptosis in a variety of cancer cells. Abscisic acid (ABA) and RA are direct derivatives of carotenoids and share structural similarities. Here we proposed that ABA may also play a role in cellular differentiation and apoptosis by sharing a similar signaling pathway with RA that may be involved in glioma pathogenesis. We reported for the first time that the ABA levels were twofold higher in low-grade gliomas compared with high-grade gliomas. In glioma tissues, there was a positive correlation between the ABA levels and the transcription of cellular retinoic acid-binding protein 2 (CRABP2) and a negative correlation between the ABA levels and transcription of fatty acid-binding protein 5 (FABP5). ABA treatment induced a significant increase in the expression of CRABP2 and a decrease in the expression of peroxisome proliferator-activated receptor (PPAR) in glioblastoma cells. Remarkably, both cellular apoptosis and differentiation were increased in the glioblastoma cells after ABA treatment. ABA-induced cellular apoptosis and differentiation were significantly reduced by selectively silencing RAR-α, while RAR-α overexpression exaggerated the ABA-induced effects. These results suggest that ABA may play a role in the pathogenesis of glioma by promoting cellular apoptosis and differentiation through the RA signaling pathway. © 2015 UICC.

  6. Gibberellin–Abscisic Acid Balances during Arbuscular Mycorrhiza Formation in Tomato

    Science.gov (United States)

    Martín-Rodríguez, José A.; Huertas, Raúl; Ho-Plágaro, Tania; Ocampo, Juan A.; Turečková, Veronika; Tarkowská, Danuše; Ludwig-Müller, Jutta; García-Garrido, José M.

    2016-01-01

    Plant hormones have become appropriate candidates for driving functional plant mycorrhization programs, including the processes that regulate the formation of arbuscules in arbuscular mycorrhizal (AM) symbiosis. Here, we examine the role played by ABA/GA interactions regulating the formation of AM in tomato. We report differences in ABA and GA metabolism between control and mycorrhizal roots. Active synthesis and catabolism of ABA occur in AM roots. GAs level increases as a consequence of a symbiosis-induced mechanism that requires functional arbuscules which in turn is dependent on a functional ABA pathway. A negative interaction in their metabolism has been demonstrated. ABA attenuates GA-biosynthetic and increases GA-catabolic gene expression leading to a reduction in bioactive GAs. Vice versa, GA activated ABA catabolism mainly in mycorrhizal roots. The negative impact of GA3 on arbuscule abundance in wild-type plants is partially offset by treatment with ABA and the application of a GA biosynthesis inhibitor rescued the arbuscule abundance in the ABA-deficient sitiens mutant. These findings, coupled with the evidence that ABA application leads to reduce bioactive GA1, support the hypothesis that ABA could act modifying bioactive GA level to regulate AM. Taken together, our results suggest that these hormones perform essential functions and antagonize each other by oppositely regulating AM formation in tomato roots. PMID:27602046

  7. Mechanisms of callose deposition in rice regulated by exogenous abscisic acid and its involvement in rice resistance to Nilaparvata lugens Stål (Hemiptera: Delphacidae).

    Science.gov (United States)

    Liu, Jinglan; Du, Haitao; Ding, Xu; Zhou, Yaodong; Xie, Pengfei; Wu, Jincai

    2017-12-01

    Callose is a plant cell wall polysaccharide controlled by β-1,3-glucanase and synthase. Abscisic acid (ABA) is an important plant hormone. Exogenous ABA promotes rice resistance to pests. Whether exogenous ABA could reduce the decline in rice yield after brown planthopper (Nilaparvata lugens Stål; BPH) feeding is an important question, however, the mechanisms behind rice resistance induced by ABA remain obscure. Electronic penetration graph (EPG) recording indicated a significant increase in rice resistance to BPH, and the number of BPH eggs decreased significantly upon application of exogenous ABA. As the concentration of ABA increased, the reduction in rice yield decreased significantly after BPH feeding. Further studies showed that β-1,3-glucanase activity was significantly lower, but synthase activity was higher after ABA treatment than in controls. Our results demonstrated that exogenous ABA suppressed β-1,3-glucanase and induced synthase activity, and promoted callose deposition. This is an important defense mechanism that prevents BPH from ingesting phloem sap. These studies provide support for an insect-resistance mechanism after ABA treatment and provide a reference for the integrated management of other piercing-sucking pests. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Xanthophylls and abscisic acid biosynthesis in water-stressed bean leaves

    International Nuclear Information System (INIS)

    Li, Y.; Walton, D.C.

    1987-01-01

    Experiments were designed to obtain evidence about the possible role of xanthophylls as abscisic acid (ABA) precursors in water-stressed leaves of Phaseolus vularis L. Leaves were exposed to 14 CO 2 and the specific activities of several major leaf xanthophylls and stress-induced ABA were determined after a chase in 12 CO 2 for varying periods of time. The ABA specific radioactivities were about 30 to 70% of that of lutein and violaxanthin regardless of the chase period. The specific activity of neoxanthin, however, was only about 15% of that of ABA. The effects of fluridone on xanthophyll and ABA levels and the extent of labeling of both from 14 CO 2 were determined. Fluridone did not inhibit the accumulation of ABA when leaves were stressed once, although subsequent stresses in the presence of fluridone did lead to a reduced ABA accumulation. The incorporation of 14 C from 14 CO 2 into ABA and the xanthophylls was inhibited by fluridone and to about the same extent. The incorporation of 18 O into ABA from violaxanthin which had been labeled in situ by means of the violaxanthin cycle was measured. The results indicated that a portion of the ABA accumulated during stress was formed from violaxanthin which had been labeled with 18 O. The results of these experiments are consistent with a preformed xanthophyll(s) as the major ABA precursor in water-stressed bean leaves

  9. Xanthophylls and abscisic acid biosynthesis in water-stressed bean leaves

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Walton, D.C.

    1987-12-01

    Experiments were designed to obtain evidence about the possible role of xanthophylls as abscisic acid (ABA) precursors in water-stressed leaves of Phaseolus vularis L. Leaves were exposed to /sup 14/CO/sub 2/ and the specific activities of several major leaf xanthophylls and stress-induced ABA were determined after a chase in /sup 12/CO/sub 2/ for varying periods of time. The ABA specific radioactivities were about 30 to 70% of that of lutein and violaxanthin regardless of the chase period. The specific activity of neoxanthin, however, was only about 15% of that of ABA. The effects of fluridone on xanthophyll and ABA levels and the extent of labeling of both from /sup 14/CO/sub 2/ were determined. Fluridone did not inhibit the accumulation of ABA when leaves were stressed once, although subsequent stresses in the presence of fluridone did lead to a reduced ABA accumulation. The incorporation of /sup 14/C from /sup 14/CO/sub 2/ into ABA and the xanthophylls was inhibited by fluridone and to about the same extent. The incorporation of /sup 18/O into ABA from violaxanthin which had been labeled in situ by means of the violaxanthin cycle was measured. The results indicated that a portion of the ABA accumulated during stress was formed from violaxanthin which had been labeled with /sup 18/O. The results of these experiments are consistent with a preformed xanthophyll(s) as the major ABA precursor in water-stressed bean leaves.

  10. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance.

    Science.gov (United States)

    Kim, Sunmi; Kang, Jung-Youn; Cho, Dong-Im; Park, Ji Hye; Kim, Soo Young

    2004-10-01

    Phytohormone abscisic acid (ABA) regulates stress-responsive gene expression during vegetative growth, which is mediated largely by cis-elements sharing the ACGTGGC consensus. Although many transcription factors are known to bind the elements in vitro, only a few have been demonstrated to have in vivo functions and their specific roles in ABA/stress responses are mostly unknown. Here, we report that ABF2, an ABF subfamily member of bZIP proteins interacting with the ABA-responsive elements, is involved in ABA/stress responses. Its overexpression altered ABA sensitivity, dehydration tolerance, and the expression levels of ABA/stress-regulated genes. Furthermore, ABF2 overexpression promoted glucose-induced inhibition of seedling development, whereas its mutation impaired glucose response. The reduced sugar sensitivity was not observed with mutants of two other ABF family members, ABF3 and ABF4. Instead, these mutants displayed defects in ABA, salt, and dehydration responses, which were not observed with the abf2 mutant. Our data indicate distinct roles of ABF family members: whereas ABF3 and ABF4 play essential roles in ABA/stress responses, ABF2 is required for normal glucose response. We also show that ABF2 overexpression affects multiple stress tolerance.

  11. Modulación de la expresión por GA y ABA de los genes Ss1 y Ss2 que codifican sacarosa sintasa en cebada

    OpenAIRE

    Carbonero Zalduegui, Pilar; Barrero Sicilia, Cristina; Oñate Sanchez, Luis; Hernando Amado, Sara; Rueda Romero, Paloma

    2008-01-01

    En este trabajo se ha llevado a cabo un estudio comparativo entre distintas isoformas de SUSy de cereales y arabidopsis. Además se ha realizado un análisis de expresión de HvSs1 y HvSs2 en distintos órganos, incluyendo patrones temporales en semillas en desarrollo y germinación, así como la variación de su respuesta a ácido abscísico (ABA) y giberélico (GA3).

  12. Variant BDNF-Val66Met Polymorphism is Associated with Layer-Specific Alterations in GABAergic Innervation of Pyramidal Neurons, Elevated Anxiety and Reduced Vulnerability of Adolescent Male Mice to Activity-Based Anorexia.

    Science.gov (United States)

    Chen, Yi-Wen; Surgent, Olivia; Rana, Barkha S; Lee, Francis; Aoki, Chiye

    2017-08-01

    Previously, we determined that rodents' vulnerability to food restriction (FR)-evoked wheel running during adolescence (activity-based anorexia, ABA) is associated with failures to increase GABAergic innervation of hippocampal and medial prefrontal pyramidal neurons. Since brain-derived neurotrophic factor (BDNF) promotes GABAergic synaptogenesis, we hypothesized that individual differences in this vulnerability may arise from differences in the link between BDNF bioavailability and FR-evoked wheel running. We tested this hypothesis in male BDNF-Val66Met knock-in mice (BDNFMet/Met), known for reduction in the activity-dependent BDNF secretion and elevated anxiety-like behaviors. We found that 1) in the absence of FR or a wheel (i.e., control), BDNFMet/Met mice are more anxious than wild-type (WT) littermates, 2) electron microscopically verified GABAergic innervations of pyramidal neurons of BDNFMet/Met mice are reduced at distal dendrites in hippocampal CA1 and medial prefrontal cortex, 3) following ABA, WT mice exhibit anxiety equal to those of the BDNFMet/Met mice and have lost GABAergic innervation along distal dendrites, 4) BDNFMet/Met mice show blunted ABA vulnerability, and 5) unexpectedly, GABAergic innervation is higher at somata of BDNFMet/Met mice than of WT. We conclude that lamina-specific GABAergic inhibition is important for regulating anxiety, whether arising from environmental stress, such as food deprivation, or genetically, such as BDNFMet/Met single nucleotide polymorphism. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Handbook of Applied Behavior Analysis

    Science.gov (United States)

    Fisher, Wayne W., Ed.; Piazza, Cathleen C., Ed.; Roane, Henry S., Ed.

    2011-01-01

    Describing the state of the science of ABA, this comprehensive handbook provides detailed information about theory, research, and intervention. The contributors are leading ABA authorities who present current best practices in behavioral assessment and demonstrate evidence-based strategies for supporting positive behaviors and reducing problem…

  14. Abscisic acid regulates pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol accumulation in developing flax (Linum usitatissimum L.) seeds.

    Science.gov (United States)

    Renouard, Sullivan; Corbin, Cyrielle; Lopez, Tatiana; Montguillon, Josiane; Gutierrez, Laurent; Lamblin, Frédéric; Lainé, Eric; Hano, Christophe

    2012-01-01

    Secoisolariciresinol diglucoside (SDG), the main phytoestrogenic lignan of Linum usitatissimum, is accumulated in the seed coat of flax during its development and pinoresinol-lariciresinol reductase (PLR) is a key enzyme in flax for its synthesis. The promoter of LuPLR1, a flax gene encoding a pinoresinol lariciresinol reductase, contains putative regulatory boxes related to transcription activation by abscisic acid (ABA). Gel mobility shift experiments evidenced an interaction of nuclear proteins extracted from immature flax seed coat with a putative cis-acting element involved in ABA response. As ABA regulates a number of physiological events during seed development and maturation we have investigated its involvement in the regulation of this lignan synthesis by different means. ABA and SDG accumulation time courses in the seed as well as LuPLR1 expression were first determined in natural conditions. These results showed that ABA timing and localization of accumulation in the flax seed coat could be correlated with the LuPLR1 gene expression and SDG biosynthesis. Experimental modulations of ABA levels were performed by exogenous application of ABA or fluridone, an inhibitor of ABA synthesis. When submitted to exogenous ABA, immature seeds synthesized 3-times more SDG, whereas synthesis of SDG was reduced in immature seeds treated with fluridone. Similarly, the expression of LuPLR1 gene in the seed coat was up-regulated by exogenous ABA and down-regulated when fluridone was applied. These results demonstrate that SDG biosynthesis in the flax seed coat is positively controlled by ABA through the transcriptional regulation of LuPLR1 gene.

  15. Alleviation of Drought Stress by Hydrogen Sulfide Is Partially Related to the Abscisic Acid Signaling Pathway in Wheat.

    Science.gov (United States)

    Ma, Dongyun; Ding, Huina; Wang, Chenyang; Qin, Haixia; Han, Qiaoxia; Hou, Junfeng; Lu, Hongfang; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Little information is available describing the effects of exogenous H2S on the ABA pathway in the acquisition of drought tolerance in wheat. In this study, we investigated the physiological parameters, the transcription levels of several genes involved in the abscisic acid (ABA) metabolism pathway, and the ABA and H2S contents in wheat leaves and roots under drought stress in response to exogenous NaHS treatment. The results showed that pretreatment with NaHS significantly increased plant height and the leaf relative water content of seedlings under drought stress. Compared with drought stress treatment alone, H2S application increased antioxidant enzyme activities and reduced MDA and H2O2 contents in both leaves and roots. NaHS pretreatment increased the expression levels of ABA biosynthesis and ABA reactivation genes in leaves; whereas the expression levels of ABA biosynthesis and ABA catabolism genes were up-regulated in roots. These results indicated that ABA participates in drought tolerance induced by exogenous H2S, and that the responses in leaves and roots are different. The transcription levels of genes encoding ABA receptors were up-regulated in response to NaHS pretreatment under drought conditions in both leaves and roots. Correspondingly, the H2S contents in leaves and roots were increased by NaHS pretreatment, while the ABA contents of leaves and roots decreased. This implied that there is complex crosstalk between these two signal molecules, and that the alleviation of drought stress by H2S, at least in part, involves the ABA signaling pathway.

  16. The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Wang, Zhenyu

    2011-05-01

    Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA biosynthesis, we screened for Arabidopsis thaliana mutants that failed to induce the NCED3 genee xpression in response to osmotic stress treatments. The ced1 (for 9-cis epoxycarotenoid dioxy genase defective 1) mutant isolated in this study showed markedly reduced expression of NCED3 in response to osmotic stress (polyethylene glycol)treatments compared with the wild type. Other ABA biosynthesis genes are also greatly reduced in ced1 under osmotic stress. ced1 mutant plants are very sensitive to even mild osmotic stress. Map-based cloning revealed unexpectedly thatCED1 encodes a putative a/b hydrolase domain-containing protein and is allelic to the BODYGUARD gene that was recently shown to be essential for cuticle biogenesis. Further studies discovered that other cut in biosynthesis mutants are also impaired in osmotic stress induction of ABA biosynthesis genes and are sensitive to osmotic stress. Our work demonstrates that the cuticle functions not merely as a physical barrier to minimize water loss but also mediates osmotic stress signaling and tolerance by regulating ABA biosynthesis and signaling. © 2011 American Society of Plant Biologists. All rights reserved.

  17. Effect of abscisic acid on biochemical constituents, enzymatic and non enzymatic antioxidant status of lettuce (Lactuca sativa L. under varied irrigation regimes

    Directory of Open Access Journals (Sweden)

    Mohamed A. Al Muhairi

    2015-12-01

    Full Text Available Economically important vegetable crop lettuce (Lactuca sativa L. of family Asteraceae was selected for the present investigation. It is being cultivated in UAE due to its commercial importance. In lettuce cultivation, the major problem is the requirement of large quantities of irrigation water. The present study was aimed to reduce the water consumption of lettuce cultivation; for that, a varied irrigation regime was used with the application of abscisic acid (ABA. The parameters studied were biochemical constituents, antioxidant potential and antioxidant enzymes’ activities in lettuce plants under drought stress and its response to ABA under stress. Drought stress caused an increase in the biochemical constituents like proline and amino acid contents when compared with control and also increased under individual ABA treatments and treatments under drought stress. The non-enzymatic antioxidant molecules like ascorbate and α-tocopherol showed significant increase under drought condition in lettuce. ABA slightly reduced these contents. The antioxidant enzymes like superoxide dismutase, catalase and peroxidase showed significant increase under drought condition and ABA caused significant enhancement in these antioxidant enzymes under drought stress and also in unstressed conditions, thereby protecting the plants from the deleterious effects of drought stress. From the results of this investigation, it can be concluded that ABA in 10 mg g−1 can be used as a potential tool to minimise the drought stress effects in lettuce cultivation.

  18. TaPP2C1, a Group F2 Protein Phosphatase 2C Gene, Confers Resistance to Salt Stress in Transgenic Tobacco.

    Directory of Open Access Journals (Sweden)

    Wei Hu

    Full Text Available Group A protein phosphatases 2Cs (PP2Cs are essential components of abscisic acid (ABA signaling in Arabidopsis; however, the function of group F2 subfamily PP2Cs is currently less known. In this study, TaPP2C1 which belongs to group F2 was isolated and characterized from wheat. Expression of the TaPP2C1-GFP fusion protein suggested its ubiquitous localization within a cell. TaPP2C1 expression was downregulated by abscisic acid (ABA and NaCl treatments, but upregulated by H2O2 treatment. Overexpression of TaPP2C1 in tobacco resulted in reduced ABA sensitivity and increased salt resistance of transgenic seedlings. Additionally, physiological analyses showed that improved resistance to salt stress conferred by TaPP2C1 is due to the reduced reactive oxygen species (ROS accumulation, the improved antioxidant system, and the increased transcription of genes in the ABA-independent pathway. Finally, transgenic tobacco showed increased resistance to oxidative stress by maintaining a more effective antioxidant system. Taken together, these results demonstrated that TaPP2C1 negatively regulates ABA signaling, but positively regulates salt resistance. TaPP2C1 confers salt resistance through activating the antioxidant system and ABA-independent gene transcription process.

  19. The glutamate carboxypeptidase AMP1 mediates abscisic acid and abiotic stress responses in Arabidopsis.

    Science.gov (United States)

    Shi, Yiting; Wang, Zheng; Meng, Pei; Tian, Siqi; Zhang, Xiaoyan; Yang, Shuhua

    2013-07-01

    ALTERED MERISTEM PROGRAM1 (AMP1) encodes a glutamate carboxypeptidase that plays an important role in shoot apical meristem development and phytohormone homeostasis. We isolated a new mutant allele of AMP1, amp1-20, from a screen for abscisic acid (ABA) hypersensitive mutants and characterized the function of AMP1 in plant stress responses. amp1 mutants displayed ABA hypersensitivity, while overexpression of AMP1 caused ABA insensitivity. Moreover, endogenous ABA concentration was increased in amp1-20- and decreased in AMP1-overexpressing plants under stress conditions. Application of ABA reduced the AMP1 protein level in plants. Interestingly, amp1 mutants accumulated excess superoxide and displayed hypersensitivity to oxidative stress. The hypersensitivity of amp1 to ABA and oxidative stress was partially rescued by reactive oxygen species (ROS) scavenging agent. Furthermore, amp1 was tolerant to freezing and drought stress. The ABA hypersensitivity and freezing tolerance of amp1 was dependent on ABA signaling. Moreover, amp1 had elevated soluble sugar content and showed hypersensitivity to high concentrations of sugar. By contrast, the contents of amino acids were changed in amp1 mutant compared to the wild-type. This study suggests that AMP1 modulates ABA, oxidative and abotic stress responses, and is involved in carbon and amino acid metabolism in Arabidopsis. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  20. Mutation in Rice Abscisic Acid2 Results in Cell Death, Enhanced Disease-Resistance, Altered Seed Dormancy and Development

    Directory of Open Access Journals (Sweden)

    Yongxiang Liao

    2018-03-01

    Full Text Available Lesion mimic mutants display spontaneous cell death, and thus are valuable for understanding the molecular mechanism of cell death and disease resistance. Although a lot of such mutants have been characterized in rice, the relationship between lesion formation and abscisic acid (ABA synthesis pathway is not reported. In the present study, we identified a rice mutant, lesion mimic mutant 9150 (lmm9150, exhibiting spontaneous cell death, pre-harvest sprouting, enhanced growth, and resistance to rice bacterial and blast diseases. Cell death in the mutant was accompanied with excessive accumulation of H2O2. Enhanced disease resistance was associated with cell death and upregulation of defense-related genes. Map-based cloning identified a G-to-A point mutation resulting in a D-to-N substitution at the amino acid position 110 of OsABA2 (LOC_Os03g59610 in lmm9150. Knock-out of OsABA2 through CRISPR/Cas9 led to phenotypes similar to those of lmm9150. Consistent with the function of OsABA2 in ABA biosynthesis, ABA level in the lmm9150 mutant was significantly reduced. Moreover, exogenous application of ABA could rescue all the mutant phenotypes of lmm9150. Taken together, our data linked ABA deficiency to cell death and provided insight into the role of ABA in rice disease resistance.

  1. Mutation in Rice Abscisic Acid2 Results in Cell Death, Enhanced Disease-Resistance, Altered Seed Dormancy and Development.

    Science.gov (United States)

    Liao, Yongxiang; Bai, Que; Xu, Peizhou; Wu, Tingkai; Guo, Daiming; Peng, Yongbin; Zhang, Hongyu; Deng, Xiaoshu; Chen, Xiaoqiong; Luo, Ming; Ali, Asif; Wang, Wenming; Wu, Xianjun

    2018-01-01

    Lesion mimic mutants display spontaneous cell death, and thus are valuable for understanding the molecular mechanism of cell death and disease resistance. Although a lot of such mutants have been characterized in rice, the relationship between lesion formation and abscisic acid (ABA) synthesis pathway is not reported. In the present study, we identified a rice mutant, lesion mimic mutant 9150 ( lmm9150 ), exhibiting spontaneous cell death, pre-harvest sprouting, enhanced growth, and resistance to rice bacterial and blast diseases. Cell death in the mutant was accompanied with excessive accumulation of H 2 O 2 . Enhanced disease resistance was associated with cell death and upregulation of defense-related genes. Map-based cloning identified a G-to-A point mutation resulting in a D-to-N substitution at the amino acid position 110 of OsABA2 (LOC_Os03g59610) in lmm9150 . Knock-out of OsABA2 through CRISPR/Cas9 led to phenotypes similar to those of lmm9150 . Consistent with the function of OsABA2 in ABA biosynthesis, ABA level in the lmm9150 mutant was significantly reduced. Moreover, exogenous application of ABA could rescue all the mutant phenotypes of lmm9150 . Taken together, our data linked ABA deficiency to cell death and provided insight into the role of ABA in rice disease resistance.

  2. A Co-Opted Hormonal Cascade Activates Dormant Adventitious Root Primordia upon Flooding in Solanum dulcamara1[OPEN

    Science.gov (United States)

    Dawood, Thikra; Kensche, Philip R.; Cristescu, Simona M.; Mariani, Celestina

    2016-01-01

    Soil flooding is a common stress factor affecting plants. To sustain root function in the hypoxic environment, flooding-tolerant plants may form new, aerenchymatous adventitious roots (ARs), originating from preformed, dormant primordia on the stem. We investigated the signaling pathway behind AR primordium reactivation in the dicot species Solanum dulcamara. Transcriptome analysis indicated that flooding imposes a state of quiescence on the stem tissue, while increasing cellular activity in the AR primordia. Flooding led to ethylene accumulation in the lower stem region and subsequently to a drop in abscisic acid (ABA) level in both stem and AR primordia tissue. Whereas ABA treatment prevented activation of AR primordia by flooding, inhibition of ABA synthesis was sufficient to activate them in absence of flooding. Together, this reveals that there is a highly tissue-specific response to reduced ABA levels. The central role for ABA in the response differentiates the pathway identified here from the AR emergence pathway known from rice (Oryza sativa). Flooding and ethylene treatment also induced expression of the polar auxin transporter PIN2, and silencing of this gene or chemical inhibition of auxin transport inhibited primordium activation, even though ABA levels were reduced. Auxin treatment, however, was not sufficient for AR emergence, indicating that the auxin pathway acts in parallel with the requirement for ABA reduction. In conclusion, adaptation of S. dulcamara to wet habitats involved co-option of a hormonal signaling cascade well known to regulate shoot growth responses, to direct a root developmental program upon soil flooding. PMID:26850278

  3. A Co-Opted Hormonal Cascade Activates Dormant Adventitious Root Primordia upon Flooding in Solanum dulcamara.

    Science.gov (United States)

    Dawood, Thikra; Yang, Xinping; Visser, Eric J W; Te Beek, Tim A H; Kensche, Philip R; Cristescu, Simona M; Lee, Sangseok; Floková, Kristýna; Nguyen, Duy; Mariani, Celestina; Rieu, Ivo

    2016-04-01

    Soil flooding is a common stress factor affecting plants. To sustain root function in the hypoxic environment, flooding-tolerant plants may form new, aerenchymatous adventitious roots (ARs), originating from preformed, dormant primordia on the stem. We investigated the signaling pathway behind AR primordium reactivation in the dicot species Solanum dulcamara Transcriptome analysis indicated that flooding imposes a state of quiescence on the stem tissue, while increasing cellular activity in the AR primordia. Flooding led to ethylene accumulation in the lower stem region and subsequently to a drop in abscisic acid (ABA) level in both stem and AR primordia tissue. Whereas ABA treatment prevented activation of AR primordia by flooding, inhibition of ABA synthesis was sufficient to activate them in absence of flooding. Together, this reveals that there is a highly tissue-specific response to reduced ABA levels. The central role for ABA in the response differentiates the pathway identified here from the AR emergence pathway known from rice (Oryza sativa). Flooding and ethylene treatment also induced expression of the polar auxin transporter PIN2, and silencing of this gene or chemical inhibition of auxin transport inhibited primordium activation, even though ABA levels were reduced. Auxin treatment, however, was not sufficient for AR emergence, indicating that the auxin pathway acts in parallel with the requirement for ABA reduction. In conclusion, adaptation of S. dulcamara to wet habitats involved co-option of a hormonal signaling cascade well known to regulate shoot growth responses, to direct a root developmental program upon soil flooding. © 2016 American Society of Plant Biologists. All Rights Reserved.

  4. An active Mitochondrial Complex II Present in Mature Seeds Contains an Embryo-Specific Iron-Sulfur Subunit Regulated by ABA and bZIP53 and Is Involved in Germination and Seedling Establishment.

    Science.gov (United States)

    Restovic, Franko; Espinoza-Corral, Roberto; Gómez, Isabel; Vicente-Carbajosa, Jesús; Jordana, Xavier

    2017-01-01

    Complex II (succinate dehydrogenase) is an essential mitochondrial enzyme involved in both the tricarboxylic acid cycle and the respiratory chain. In Arabidopsis thaliana , its iron-sulfur subunit (SDH2) is encoded by three genes, one of them ( SDH2.3 ) being specifically expressed during seed maturation in the embryo. Here we show that seed SDH2.3 expression is regulated by abscisic acid (ABA) and we define the promoter region (-114 to +49) possessing all the cis -elements necessary and sufficient for high expression in seeds. This region includes between -114 and -32 three ABRE (ABA-responsive) elements and one RY-enhancer like element, and we demonstrate that these elements, although necessary, are not sufficient for seed expression, our results supporting a role for the region encoding the 5' untranslated region (+1 to +49). The SDH2.3 promoter is activated in leaf protoplasts by heterodimers between the basic leucine zipper transcription factors bZIP53 (group S1) and bZIP10 (group C) acting through the ABRE elements, and by the B3 domain transcription factor ABA insensitive 3 (ABI3). The in vivo role of bZIP53 is further supported by decreased SDH2.3 expression in a knockdown bzip53 mutant. By using the protein synthesis inhibitor cycloheximide and sdh2 mutants we have been able to conclusively show that complex II is already present in mature embryos before imbibition, and contains mainly SDH2.3 as iron-sulfur subunit. This complex plays a role during seed germination sensu-stricto since we have previously shown that seeds lacking SDH2.3 show retarded germination and now we demonstrate that low concentrations of thenoyltrifluoroacetone, a complex II inhibitor, also delay germination. Furthermore, complex II inhibitors completely block hypocotyl elongation in the dark and seedling establishment in the light, highlighting an essential role of complex II in the acquisition of photosynthetic competence and the transition from heterotrophy to autotrophy.

  5. Impact of oral health on quality of life among the elderly population of Joaçaba, Santa Catarina, Brazil Impacto da condição bucal na qualidade de vida dos idosos de Joaçaba, Santa Catarina, Brasil

    Directory of Open Access Journals (Sweden)

    Maria Gabriela Haye Biazevic

    2004-03-01

    Full Text Available The objective of this study was to investigate the impact of oral health conditions on the quality of life of elderly people in Joaçaba - SC, in Southern Brazil. A survey based on systematic sampling of clusters was carried out with 183 elderly people that belong to old age groups. The survey was conducted in order to assess the oral conditions of the participants (use of and need for prosthesis based on the criteria from the World Health Organization publication "Oral Health Surveys, Basic Methods", 4th edition. The oral health impact profile (OHIP was used to evaluate the impact of oral condition in the quality of life. ABIPEME (Brazilian Association of Market Research Institutes criterion was used, together with the level of education and the number of people in the household to determine social inequalities. The participants were mostly women (82% and the OHIP mean was 10.35. No correlation was observed between the OHIP level and formal education or between OHIP and number of residents per household. There was a correlation of 0.240 (p = 0.001 between ABIPEME and OHIP. The OHIP mean for those not using maxillary prosthesis was 12.48 and the mean for those using it was 9.81 (p = 0.399. The mean OHIP for those in need of maxillary prosthesis for those who did not need it was 13.00 and 8.88, respectively (p = 0.014. The same trend was found for the use and need for mandibular prosthesis. The conclusion was that the need for maxillary and mandibular prosthesis impacted the quality of life among the elderly population of Joaçaba.O objetivo do presente estudo foi investigar o impacto da condição bucal na qualidade de vida dos idosos do município de Joaçaba - SC. Foi estudada a população de idosos que participa dos grupos da terceira idade a partir de amostra sistemática por conglomerados de 183 idosos. Foi realizado um levantamento epidemiológico utilizando os critérios de diagnóstico da OMS (Organização Mundial da Saúde (1997 para

  6. Cooperation of three WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in repressing two ABA-responsive genes ABI4 and ABI5 in Arabidopsis

    OpenAIRE

    Liu, Zhi-Qiang; Yan, Lu; Wu, Zhen; Mei, Chao; Lu, Kai; Yu, Yong-Tao; Liang, Shan; Zhang, Xiao-Feng; Wang, Xiao-Fang; Zhang, Da-Peng

    2012-01-01

    Three evolutionarily closely related WRKY-domain transcription factors WRKY18, WRKY40, and WRKY60 in Arabidopsis were previously identified as negative abscisic acid (ABA) signalling regulators, of which WRKY40 regulates ABI4 and ABI5 expression, but it remains unclear whether and how the three transcription factors cooperate to regulate expression of ABI4 and ABI5. In the present experiments, it was shown that WRKY18 and WRKY60, like WRKY40, interact with the W-box in the promoters of ABI4 a...

  7. Auxin as a player in the biocontrol of Fusarium head blight disease of barley and its potential as a disease control agent.

    Science.gov (United States)

    Petti, Carloalberto; Reiber, Kathrin; Ali, Shahin S; Berney, Margaret; Doohan, Fiona M

    2012-11-22

    Mechanisms involved in the biological control of plant diseases are varied and complex. Hormones, including the auxin indole acetic acid (IAA) and abscisic acid (ABA), are essential regulators of a multitude of biological functions, including plant responses to biotic and abiotic stressors. This study set out to determine what hormones might play a role in Pseudomonas fluorescens -mediated control of Fusarium head blight (FHB) disease of barley and to determine if biocontrol-associated hormones directly affect disease development. A previous study distinguished bacterium-responsive genes from bacterium-primed genes, distinguished by the fact that the latter are only up-regulated when both P. fluorescens and the pathogen Fusarium culmorum are present. In silico analysis of the promoter sequences available for a subset of the bacterium-primed genes identified several hormones, including IAA and ABA as potential regulators of transcription. Treatment with the bacterium or pathogen resulted in increased IAA and ABA levels in head tissue; both microbes had additive effects on the accumulation of IAA but not of ABA. The microbe-induced accumulation of ABA preceded that of IAA. Gene expression analysis showed that both hormones up-regulated the accumulation of bacterium-primed genes. But IAA, more than ABA up-regulated the transcription of the ABA biosynthesis gene NCED or the signalling gene Pi2, both of which were previously shown to be bacterium-responsive rather than primed. Application of IAA, but not of ABA reduced both disease severity and yield loss caused by F. culmorum, but neither hormone affect in vitro fungal growth. Both IAA and ABA are involved in the P. fluorescens-mediated control of FHB disease of barley. Gene expression studies also support the hypothesis that IAA plays a role in the primed response to F. culmorum. This hypothesis was validated by the fact that pre-application of IAA reduced both symptoms and yield loss asssociated with the disease

  8. Abscisic Acid Accumulates at Positive Turgor Potential in Excised Soybean Seedling Growing Zones 1

    Science.gov (United States)

    Creelman, Robert A.; Mullet, John E.

    1991-01-01

    Abscisic acid (ABA) accumulated in soybean (Glycine max [L.] Merr. cv Williams) hypocotyl elongating regions when seedlings were transferred to low water potential vermiculite (Ψ = −0.3 megapascals) even though positive turgor is retained in this tissue. Accumulation of ABA in growing zones could occur from de novo biosynthesis within this tissue or transport from adjacent nongrowing zones. Both growing and nongrowing hypocotyl and root tissues accumulated significant levels of ABA when excised and dehydrated to reduce turgor. Surprisingly, excised growing zones (which experienced no water loss) also accumulated ABA when incubated in darkness for 4 hours at 100% relative humidity and 29°C. Induction of ABA accumulation in the excised elongating region of the hypocotyl was not caused by disruption of root pressure or wounding. While excision of hypocotyl elongating regions induced ABA accumulation, no change in either extensin or p33 mRNA levels was observed. Accumulation of extensin or p33 mRNA required more severe wounding. This suggests that ABA is not involved in the response of these genes in wounded tissue and that wound signals are not causing ABA accumulation in excised tissue. Accumulation of ABA in excised elongating regions was correlated with growth inhibition and a decline in turgor to the yield threshold (Ψ;p = 0.37 megapascals; R Matyssek, S Maruyama, JS Boyer [1988] Plant Physiol 86: 1163-1167). Inhibiting hypocotyl growth by transferring seedlings to lower temperatures or light did not cause ABA accumulation. We conclude that induction of ABA accumulation in growing zones is more sensitive to changes in turgor than the induction which occurs in mature tissues. Images Figure 2 PMID:16668113

  9. Abscisic Acid accumulates at positive turgor potential in excised soybean seedling growing zones.

    Science.gov (United States)

    Creelman, R A; Mullet, J E

    1991-04-01

    Abscisic acid (ABA) accumulated in soybean (Glycine max [L.] Merr. cv Williams) hypocotyl elongating regions when seedlings were transferred to low water potential vermiculite (Psi = -0.3 megapascals) even though positive turgor is retained in this tissue. Accumulation of ABA in growing zones could occur from de novo biosynthesis within this tissue or transport from adjacent nongrowing zones. Both growing and nongrowing hypocotyl and root tissues accumulated significant levels of ABA when excised and dehydrated to reduce turgor. Surprisingly, excised growing zones (which experienced no water loss) also accumulated ABA when incubated in darkness for 4 hours at 100% relative humidity and 29 degrees C. Induction of ABA accumulation in the excised elongating region of the hypocotyl was not caused by disruption of root pressure or wounding. While excision of hypocotyl elongating regions induced ABA accumulation, no change in either extensin or p33 mRNA levels was observed. Accumulation of extensin or p33 mRNA required more severe wounding. This suggests that ABA is not involved in the response of these genes in wounded tissue and that wound signals are not causing ABA accumulation in excised tissue. Accumulation of ABA in excised elongating regions was correlated with growth inhibition and a decline in turgor to the yield threshold (Psi;(p) = 0.37 megapascals; R Matyssek, S Maruyama, JS Boyer [1988] Plant Physiol 86: 1163-1167). Inhibiting hypocotyl growth by transferring seedlings to lower temperatures or light did not cause ABA accumulation. We conclude that induction of ABA accumulation in growing zones is more sensitive to changes in turgor than the induction which occurs in mature tissues.

  10. Plastid Located WHIRLY1 Enhances the Responsiveness of Arabidopsis Seedlings Toward Abscisic Acid

    Science.gov (United States)

    Isemer, Rena; Krause, Kirsten; Grabe, Nils; Kitahata, Nobutaka; Asami, Tadao; Krupinska, Karin

    2012-01-01

    WHIRLY1 is a protein that can be translocated from the plastids to the nucleus, making it an ideal candidate for communicating information between these two compartments. Mutants of Arabidopsis thaliana lacking WHIRLY1 (why1) were shown to have a reduced sensitivity toward salicylic acid (SA) and abscisic acid (ABA) during germination. Germination assays in the presence of abamine, an inhibitor of ABA biosynthesis, revealed that the effect of SA on germination was in fact caused by a concomitant stimulation of ABA biosynthesis. In order to distinguish whether the plastid or the nuclear isoform of WHIRLY1 is adjusting the responsiveness toward ABA, sequences encoding either the complete WHIRLY1 protein or a truncated form lacking the plastid transit peptide were overexpressed in the why1 mutant background. In plants overexpressing the full-length sequence, WHIRLY1 accumulated in both plastids and the nucleus, whereas in plants overexpressing the truncated sequence, WHIRLY1 accumulated exclusively in the nucleus. Seedlings containing recombinant WHIRLY1 in both compartments were hypersensitive toward ABA. In contrast, seedlings possessing only the nuclear form of WHIRLY1 were as insensitive toward ABA as the why1 mutants. ABA was furthermore shown to lower the rate of germination of wildtype seeds even in the presence of abamine which is known to inhibit the formation of xanthoxin, the plastid located precursor of ABA. From this we conclude that plastid located WHIRLY1 enhances the responsiveness of seeds toward ABA even when ABA is supplied exogenously. PMID:23269926

  11. Generation of an Infectious Clone of a New Korean Isolate of Apple chlorotic leaf spot virus Driven by Dual 35S and T7 Promoters in a Versatile Binary Vector

    Directory of Open Access Journals (Sweden)

    Ik-Hyun Kim

    2017-12-01

    Full Text Available The full-length sequence of a new isolate of Apple chlorotic leaf spot virus (ACLSV from Korea was divergent, but most closely related to the Japanese isolate A4, at 84% nucleotide identity. The full-length cDNA of the Korean isolate of ACLSV was cloned into a binary vector downstream of the bacteriophage T7 RNA promoter and the Cauliflower mosaic virus 35S promoter. Chenopodium quinoa was successfully infected using in vitro transcripts synthesized using the T7 promoter, detected at 20 days post inoculation (dpi, but did not produce obvious symptoms. Nicotiana occidentalis and C. quinoa were inoculated through agroinfiltration. At 32 dpi the infection rate was evaluated; no C. quinoa plants were infected by agroinfiltration, but infection of N. occidentalis was obtained.

  12. Rodent model of activity-based anorexia.

    Science.gov (United States)

    Carrera, Olaia; Fraga, Ángela; Pellón, Ricardo; Gutiérrez, Emilio

    2014-04-10

    Activity-based anorexia (ABA) consists of a procedure that involves the simultaneous exposure of animals to a restricted feeding schedule, while free access is allowed to an activity wheel. Under these conditions, animals show a progressive increase in wheel running, a reduced efficiency in food intake to compensate for their increased activity, and a severe progression of weight loss. Due to the parallelism with the clinical manifestations of anorexia nervosa including increased activity, reduced food intake and severe weight loss, the ABA procedure has been proposed as the best analog of human anorexia nervosa (AN). Thus, ABA research could both allow a better understanding of the mechanisms underlying AN and generate useful leads for treatment development in AN. Copyright © 2014 John Wiley & Sons, Inc.

  13. Rice Stomatal Closure Requires Guard Cell Plasma Membrane ATP-Binding Cassette Transporter RCN1/OsABCG5.

    Science.gov (United States)

    Matsuda, Shuichi; Takano, Sho; Sato, Moeko; Furukawa, Kaoru; Nagasawa, Hidetaka; Yoshikawa, Shoko; Kasuga, Jun; Tokuji, Yoshihiko; Yazaki, Kazufumi; Nakazono, Mikio; Takamure, Itsuro; Kato, Kiyoaki

    2016-03-07

    Water stress is one of the major environmental stresses that affect agricultural production worldwide. Water loss from plants occurs primarily through stomatal pores. Here, we report that an Oryza sativa half-size ATP-binding cassette (ABC) subfamily G protein, RCN1/OsABCG5, is involved in stomatal closure mediated by phytohormone abscisic acid (ABA) accumulation in guard cells. We found that the GFP-RCN1/OsABCG5-fusion protein was localized at the plasma membrane in guard cells. The percentage of guard cell pairs containing both ABA and GFP-RCN1/OsABCG5 increased after exogenous ABA treatment, whereas they were co-localized in guard cell pairs regardless of whether exogenous ABA was applied. ABA application resulted in a smaller increase in the percentage of guard cell pairs containing ABA in rcn1 mutant (A684P) and RCN1-RNAi than in wild-type plants. Furthermore, polyethylene glycol (drought stress)-inducible ABA accumulation in guard cells did not occur in rcn1 mutants. Stomata closure mediated by exogenous ABA application was strongly reduced in rcn1 mutants. Finally, rcn1 mutant plants had more rapid water loss from detached leaves than the wild-type plants. These results indicate that in response to drought stress, RCN1/OsABCG5 is involved in accumulation of ABA in guard cells, which is indispensable for stomatal closure. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  14. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

    Science.gov (United States)

    Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  15. Etno parks in the function of cultural tourism development in the Mačva, Šabačka Posavina and Pocerina

    Directory of Open Access Journals (Sweden)

    Grčić Ljiljana

    2010-01-01

    Full Text Available The monuments of folk architecture have its historical, artistic and tourist value. They illustrate the characteristics of local culture and way of life, and therefore should be preserved for the future. The main touristic functions in them can be cognitive, educational, fun, and also vacation and recreation. If we would like to keep the traditional folk architecture, it is necessary to protect vulnerable areas at the source or in the open air museums. This paper presents an overview of the ethno-parks and other facilities in the Mačva, Šabac, Šabačka Pocerina and Posavina, which seems preserved examples of folk architecture and architecture from the nineteenth and early twentieth century, are part of the cultural heritage not only of these areas, but also the whole of Serbia.

  16. The role of FaBG3 in fruit ripening and B. cinerea fungal infection of strawberry.

    Science.gov (United States)

    Li, Qian; Ji, Kai; Sun, Yufei; Luo, Hao; Wang, Hongqing; Leng, Ping

    2013-10-01

    In plants, β-glucosidases (BG) have been implicated in developmental and pathogen defense, and are thought to take part in abscisic acid (ABA) synthesis via hydrolysis of ABA glucose ester to release active ABA; however, there is no genetic evidence for the role of BG genes in ripening and biotic/abiotic stress in fruits. To clarify the role of BG genes in fruit, eight Fa/FvBG genes encoding β-glucosidase were isolated using information from the GenBank strawberry nucleotide database. Of the Fa/FvBG genes examined, expression of FaBG3 was the highest, showing peaks at the mature stage, coincident with the changes observed in ABA content. To verify the role of this gene, we suppressed the expression of FaBG3 via inoculation with Agrobacterium tumefaciens containing tobacco rattle virus carrying a FaBG3 fragment (RNAi). The expression of FaBG3 in FaBG3-RNAi-treated fruit was markedly reduced, and the ABA content was lower than that of the control. FaBG3-RNAi-treated fruit did not exhibit full ripening, and were firmer, had lower sugar content, and were pale compared with the control due to down-regulation of ripening-related genes. FaBG3-RNAi-treated fruit with reduced ABA levels were much more resistant to Botrytis cinerea fungus but were more sensitive to dehydration stress than control fruit. These results indicate that FaBG3 may play key roles in fruit ripening, dehydration stress and B. cinerea fungal infection in strawberries via modulation of ABA homeostasis and transcriptional regulation of ripening-related genes. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  17. AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5

    KAUST Repository

    Kim, Junhyeok; Hyun, Wooyoung; Nguyen, Hoai Nguyen; Jeong, Chanyoung; Xiong, Liming; Hong, Sukwhan; Lee, Hojoung

    2014-01-01

    Various Myb proteins have been shown to play crucial roles in plants, including primary and secondary metabolism, determination of cell fate and identity, regulation of development and involvement in responses to biotic and abiotic stresses. The 126 R2R3 Myb proteins (with two Myb repeats) have been found in Arabidopsis; however, the functions of most of these proteins remain to be fully elucidated. In the present study, we characterized the function of AtMyb7 using molecular biological and genetic analyses. We used qRT-PCR to determine the levels of stress-response gene transcripts in wild-type and atmyb7 plants. We showed that ArabidopsisAtMyb7 plays a critical role in seed germination. Under abscisic acid (ABA) and high-salt stress conditions, atmyb7 plants showed a lower germination rate than did wild-type plants. Furthermore, AtMyb7 promoter:GUS seeds exhibited different expression patterns in response to variations in the seed imbibition period. AtMyb7 negatively controls the expression of the gene encoding bZIP transcription factor, ABI5, which is a key transcription factor in ABA signalling and serves as a crucial regulator of germination inhibition in Arabidopsis. © 2014 John Wiley & Sons Ltd.

  18. AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5

    KAUST Repository

    Kim, Junhyeok

    2014-08-27

    Various Myb proteins have been shown to play crucial roles in plants, including primary and secondary metabolism, determination of cell fate and identity, regulation of development and involvement in responses to biotic and abiotic stresses. The 126 R2R3 Myb proteins (with two Myb repeats) have been found in Arabidopsis; however, the functions of most of these proteins remain to be fully elucidated. In the present study, we characterized the function of AtMyb7 using molecular biological and genetic analyses. We used qRT-PCR to determine the levels of stress-response gene transcripts in wild-type and atmyb7 plants. We showed that ArabidopsisAtMyb7 plays a critical role in seed germination. Under abscisic acid (ABA) and high-salt stress conditions, atmyb7 plants showed a lower germination rate than did wild-type plants. Furthermore, AtMyb7 promoter:GUS seeds exhibited different expression patterns in response to variations in the seed imbibition period. AtMyb7 negatively controls the expression of the gene encoding bZIP transcription factor, ABI5, which is a key transcription factor in ABA signalling and serves as a crucial regulator of germination inhibition in Arabidopsis. © 2014 John Wiley & Sons Ltd.

  19. Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration.

    Science.gov (United States)

    Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-12-01

    Abscisic acid (ABA) has shown effectiveness in ameliorating inflammation in obesity, diabetes and cardiovascular disease models. The objective of this study was to determine whether ABA prevents or ameliorates experimental inflammatory bowel disease (IBD). C57BL/6J mice were fed diets with or without ABA (100mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate (DSS). The severity of clinical disease was assessed daily. Colonic mucosal lesions were evaluated by histopathology, and cellular adhesion molecular and inflammatory markers were assayed by real-time quantitative PCR. Flow cytometry was used to quantify leukocyte populations in the blood, spleen, and mesenteric lymph nodes (MLN). The effect of ABA on cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression in splenocytes was also investigated. ABA significantly ameliorated disease activity, colitis and reduced colonic leukocyte infiltration and inflammation. These improvements were associated with downregulation in vascular cell adhesion marker-1 (VCAM-1), E-selectin, and mucosal addressin adhesion marker-1 (MAdCAM-1) expression. ABA also increased CD4(+) and CD8(+) T-lymphocytes in blood and MLN and regulatory T cells in blood. In vitro, ABA increased CTLA-4 expression through a PPAR γ-dependent mechanism. We conclude that ABA ameliorates gut inflammation by modulating T cell distribution and adhesion molecule expression. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  20. Photoprotectant improves photostability and bioactivity of abscisic acid under UV radiation.

    Science.gov (United States)

    Gao, Fei; Hu, Tanglu; Tan, Weiming; Yu, Chunxin; Li, Zhaohu; Zhang, Lizhen; Duan, Liusheng

    2016-05-01

    Photosensitivity causes serious drawback for abscisic acid (ABA) application, but preferable methods to stabilize the compound were not found yet. To select an efficient photoprotectant for the improvement of photostability and bioactivity of ABA when exposed to UV light, we tested the effects of a photostabilizer bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate (HS-770) and two UV absorbers 2-hydroxy-4-n-octoxy-benzophenone (UV-531) and 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (BP-4) with or without HS-770 on the photodegradation of ABA. Water soluble UV absorber BP-4 and oil soluble UV absorber UV-531 showed significant photo-stabilizing capability on ABA, possibly due to competitive energy absorption of UVB by the UV absorbers. The two absorbers showed no significant difference. Photostabilizer HS-770 accelerated the photodegradation of ABA and did not improve the photo-stabilizing capability of BP-4, likely due to no absorption in UVB region and salt formation with ABA and BP-4. Approximately 26% more ABA was kept when 280mg/l ABA aqueous solution was irradiated by UV light for 2h in the presence of 200mg/l BP-4. What's more, its left bioactivity on wheat seed (JIMAI 22) germination was greatly kept by BP-4, comparing to that of ABA alone. The 300 times diluent of 280mg/l ABA plus 200mg/l BP-4 after 2h irradiation showed more than 13% inhibition on shoot and root growth of wheat seed than that of ABA diluent alone. We concluded that water soluble UV absorber BP-4 was an efficient agent to keep ABA activity under UV radiation. The results could be used to produce photostable products of ABA compound or other water soluble agrichemicals which are sensitive to UV radiation. The frequencies and amounts of the agrichemicals application could be thereafter reduced. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Syntheses, crystal structure, and electronic properties of the five ABaMQ{sub 4} compounds RbBaPS{sub 4}, CsBaPS{sub 4}, CsBaVS{sub 4}, RbBaVSe{sub 4}, and CsBaVSe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Mesbah, Adel [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (United States); ICSM, UMR 5257 CEA / CNRS / UM / ENSCM, Site de Marcoule-Bâtiment 426, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); Prakash, Jai [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (United States); Rocca, Dario; Lebègue, Sébastien [Laboratoire de Cristallographie, Résonance Magnétique, et Modélisations CRM2 (UMR UHP-CNRS 7036), Faculté des Sciences et Techniques, Université de Lorraine, BP 70239, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy Cedex (France); Beard, Jessica C.; Lewis, Benjamin A. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (United States); Ibers, James A., E-mail: ibers@chem.northwestern.edu [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (United States)

    2016-01-15

    Five new compounds belonging to the ABaMQ{sub 4} family were synthesized by solid-state chemistry at 1123 K. The compounds RbBaPS{sub 4}, CsBaPS{sub 4}, CsBaVS{sub 4}, RbBaVSe{sub 4}, and CsBaVSe{sub 4} are isostructural and have the TlEuPS{sub 4} structure type. They crystallize in space group D{sup 16}{sub 2h} – Pnma of the orthorhombic system. Their structure consists isolated MQ{sub 4} tetrahedra separated by A and Ba atoms to form a salt-like structure. Density Functional Theory (DFT) calculations of the electronic structures with the use of the HSE functional suggest that the compounds are semiconductors with calculated band gaps of 3.3 eV (RbBaPS{sub 4}), 3.4 eV (CsBaPS{sub 4}), 2.3 eV (CsBaVS{sub 4}), and 1.6 eV (RbBaVSe{sub 4}). - Graphical abstract: General view of the ABaMQ{sub 4} structure down the a axis. - Highlights: • Five new ABaMQ{sub 4} compounds were synthesized by solid-state chemistry at 1123 K. • RbBaPS{sub 4}, CsBaPS{sub 4}, CsBaVS{sub 4}, RbBaVSe{sub 4}, and CsBaVSe{sub 4} have the TlEuPS{sub 4} structure type. • The compounds are semiconductors with calculated band gaps ranging from 1.6 to 3.4 eV.

  2. Regulation of maize kernel weight and carbohydrate metabolism by abscisic acid applied at the early and middle post-pollination stages in vitro.

    Science.gov (United States)

    Zhang, Li; Li, Xu-Hui; Gao, Zhen; Shen, Si; Liang, Xiao-Gui; Zhao, Xue; Lin, Shan; Zhou, Shun-Li

    2017-09-01

    Abscisic acid (ABA) accumulates in plants under drought stress, but views on the role of ABA in kernel formation and abortion are not unified. The response of the developing maize kernel to exogenous ABA was investigated by excising kernels from cob sections at four days after pollination and culturing in vitro with different concentrations of ABA (0, 5, 10, 100μM). When ABA was applied at the early post-pollination stage (EPPS), significant weight loss was observed at high ABA concentration (100μM), which could be attributed to jointly affected sink capacity and activity. Endosperm cells and starch granules were decreased significantly with high concentration, and ABA inhibited the activities of soluble acid invertase and acid cell wall invertase, together with earlier attainment of peak values. When ABA was applied at the middle post-pollination stage (MPPS), kernel weight was observably reduced with high concentration and mildly increased with low concentration, which was regulated due to sink activity. The inhibitory effect of high concentration and the mild stimulatory effect of low concentration on sucrose synthase and starch synthase activities were noted, but a peak level of ADP-glucose pyrophosphorylase (AGPase) was stimulated in all ABA treatments. Interestingly, AGPase peak values were advanced by low concentration and postponed by high concentration. In addition, compared with the control, the weight of low ABA concentration treatments were not statistically significant at the two stages, whereas weight loss from high concentration applied at EPPS was considerably obvious compared with that of the MPPS, but neither led to kernel abortion. The temporal- and dose-dependent impacts of ABA reveal a complex process of maize kernel growth and development. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. The putative glutamate receptor 1.1 (AtGLR1.1) in Arabidopsis thaliana regulates abscisic acid biosynthesis and signaling to control development and water loss.

    Science.gov (United States)

    Kang, Jiman; Mehta, Sohum; Turano, Frank J

    2004-10-01

    The involvement of the putative glutamate receptor 1.1 (AtGLR1.1) gene in the regulation of abscisic acid (ABA) biosynthesis and signaling was investigated in Arabidopsis. Seeds from AtGLR1.1-deficient (antiAtGLR1.1) lines had increased sensitivity to exogenous ABA with regard to the effect of the hormone on the inhibition of seed germination and root growth. Seed germination, which was inhibited by an animal ionotropic glutamate receptor antagonist, 6,7-dinitroquinoxaline-2,3-[1H,4H]-dione, was restored by co-incubation with an inhibitor of ABA biosynthesis, fluridone. These results confirm that germination in antiAtGLR1.1 lines was inhibited by increased ABA. When antiAtGLR1.1 and WT seeds were co-incubated in fluridone and exogenous ABA, the antiAtGLR1.1 seeds were more sensitive to ABA. In addition, the antiAtGLR1.1 lines exhibited altered expression of ABA biosynthetic (ABA) and signaling (ABI) genes, when compared with WT. Combining the physiological and molecular results suggest that ABA biosynthesis and signaling in antiAtGLR1.1 lines are altered. ABA levels in leaves of antiAtGLR1.1 lines are higher than those in WT. In addition, the antiAtGLR1.1 lines had reduced stomatal apertures, and exhibited enhanced drought tolerance due to deceased water loss compared with WT lines. The results from these experiments imply that ABA biosynthesis and signaling can be regulated through AtGLR1.1 to trigger pre- and post-germination arrest and changes in whole plant responses to water stress. Combined with our earlier results, these findings suggest that AtGLR1.1 integrates and regulates the different aspects of C, N and water balance that are required for normal plant growth and development.

  4. Antidepressant effects of abscisic acid mediated by the downregulation of corticotrophin-releasing hormone gene expression in rats.

    Science.gov (United States)

    Qi, Cong-Cong; Zhang, Zhi; Fang, Hui; Liu, Ji; Zhou, Nan; Ge, Jin-Fang; Chen, Fang-Han; Xiang, Cheng-Bin; Zhou, Jiang-Ning

    2014-10-31

    Corticotrophin-releasing hormone (CRH) is considered to be the central driving force of the hypothalamic-pituitary-adrenal axis, which plays a key role in the stress response and depression. Clinical reports have suggested that excess retinoic acid (RA) is associated with depression. Abscisic acid (ABA) and RA are direct derivatives of carotenoids and share a similar molecular structure. Here, we proposed that ABA also plays a role in the regulation of CRH activity sharing with the RA signaling pathway. [3H]-ABA radioimmunoassay demonstrated that the hypothalamus of rats shows the highest concentration of ABA compared with the cortex and the hippocampus under basal conditions. Under acute stress, ABA concentrations increased in the serum, but decreased in the hypothalamus and were accompanied by increased corticosterone in the serum and c-fos expression in the hypothalamus. Moreover, chronic ABA administration increased sucrose intake and decreased the mRNA expression of CRH and retinoic acid receptor alpha (RARα) in the hypothalamus of rats. Furthermore, ABA improved the symptom of chronic unpredictable mild stress in model rats, as indicated by increased sucrose intake, increased swimming in the forced swim test, and reduced mRNA expression of CRH and RARα in the rat hypothalamus. In vitro, CRH expression decreased after ABA treatment across different neural cells. In BE(2)-C cells, ABA inhibited a series of retinoid receptor expression, including RARα, a receptor that could facilitate CRH expression directly. These results suggest that ABA may play a role in the pathogenesis of depression by downregulating CRH mRNA expression shared with the RA signaling pathway. © The Author 2014. Published by Oxford University Press on behalf of CINP.

  5. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress.

    Science.gov (United States)

    Roychoudhury, Aryadeep; Paul, Saikat; Basu, Supratim

    2013-07-01

    Salinity, drought and low temperature are the common forms of abiotic stress encountered by land plants. To cope with these adverse environmental factors, plants execute several physiological and metabolic responses. Both osmotic stress (elicited by water deficit or high salt) and cold stress increase the endogenous level of the phytohormone abscisic acid (ABA). ABA-dependent stomatal closure to reduce water loss is associated with small signaling molecules like nitric oxide, reactive oxygen species and cytosolic free calcium, and mediated by rapidly altering ion fluxes in guard cells. ABA also triggers the expression of osmotic stress-responsive (OR) genes, which usually contain single/multiple copies of cis-acting sequence called abscisic acid-responsive element (ABRE) in their upstream regions, mostly recognized by the basic leucine zipper-transcription factors (TFs), namely, ABA-responsive element-binding protein/ABA-binding factor. Another conserved sequence called the dehydration-responsive element (DRE)/C-repeat, responding to cold or osmotic stress, but not to ABA, occurs in some OR promoters, to which the DRE-binding protein/C-repeat-binding factor binds. In contrast, there are genes or TFs containing both DRE/CRT and ABRE, which can integrate input stimuli from salinity, drought, cold and ABA signaling pathways, thereby enabling cross-tolerance to multiple stresses. A strong candidate that mediates such cross-talk is calcium, which serves as a common second messenger for abiotic stress conditions and ABA. The present review highlights the involvement of both ABA-dependent and ABA-independent signaling components and their interaction or convergence in activating the stress genes. We restrict our discussion to salinity, drought and cold stress.

  6. The role of the atypical kinases ABC1K7 and ABC1K8 in abscisic acid responses

    Directory of Open Access Journals (Sweden)

    Anna eManara

    2016-03-01

    Full Text Available The ABC1K family of atypical kinases (activity of bc1 complex kinase is represented in bacteria, archaea and eukaryotes. In plants they regulate diverse physiological processes in the chloroplasts and mitochondria, but their precise functions are poorly defined. ABC1K7 and ABC1K8 are probably involved in oxidative stress responses, isoprenyl lipid synthesis and distribution of iron within chloroplasts. Because reactive oxygen species take part in abscisic acid (ABA-mediated processes, we investigated the functions of ABC1K7 and ABC1K8 during germination, stomatal movement and leaf senescence. Both genes were upregulated by ABA treatment and some ABA-responsive physiological processes were affected in abc1k7 and abc1k8 mutants. Germination was more severely affected by ABA, osmotic stress and salt stress in the single and double mutants; the stomatal aperture was smaller in the mutants under standard growth conditions and was not further reduced by exogenous ABA application; ABA-induced senescence symptoms were more severe in the leaves of the single and double mutants compared to wild type leaves. Taken together, our results suggest that ABC1K7 and ABC1K8 might be involved in the cross-talk between ABA and ROS signaling.

  7. A method to identify important dynamical states in Boolean models of regulatory networks: application to regulation of stomata closure by ABA in A. thaliana.

    Science.gov (United States)

    Bugs, Cristhian A; Librelotto, Giovani R; Mombach, José C M

    2011-12-22

    We introduce a method to analyze the states of regulatory Boolean models that identifies important network states and their biological influence on the global network dynamics. It consists in (1) finding the states of the network that are most frequently visited and (2) the identification of variable and frozen nodes of the network. The method, along with a simulation that includes random features, is applied to the study of stomata closure by abscisic acid (ABA) in A. thaliana proposed by Albert and coworkers. We find that for the case of study, that the dynamics of wild and mutant networks have just two states that are highly visited in their space of states and about a third of all nodes of the wild network are variable while the rest remain frozen in True or False states. This high number of frozen elements explains the low cardinality of the space of states of the wild network. Similar results are observed in the mutant networks. The application of the method allowed us to explain how wild and mutants behave dynamically in the SS and determined an essential feature of the activation of the closure node (representing stomata closure), i.e. its synchronization with the AnionEm node (representing anion efflux at the plasma membrane). The dynamics of this synchronization explains the efficiency reached by the wild and each of the mutant networks. For the biological problem analyzed, our method allows determining how wild and mutant networks differ 'phenotypically'. It shows that the different efficiencies of stomata closure reached among the simulated wild and mutant networks follow from a dynamical behavior of two nodes that are always synchronized. Additionally, we predict that the involvement of the anion efflux at the plasma membrane is crucial for the plant response to ABA. The algorithm used in the simulations is available upon request.

  8. Elastic properties of nano structured AZrO3 (A=Ba, Sr) single perovskites

    International Nuclear Information System (INIS)

    Pazhani, R.; Thomas, J.K.; Moses Ezhil Raj, A.; Solomon, S.; Bena Jothy, V.; Mathai, K.C.

    2011-01-01

    Nanocrystals of barium zirconate and strontium zirconate AZrO 3 (A=Ba and Sr) were synthesized by a unique self-sustained single-step combustion of an aqueous solution, containing Ba, Sr and Zr ions by using citric acid as complexing agent and liquor ammonia as fuel, thus giving rise to phase pure AZrO 3 nanopowder. In this process, a single phase pure nanopowder of AZrO 3 has been obtained without the need of calcination steps. The formation and stability of the compound was confirmed through the tolerance factor on the basis of the ionic radii of all the atoms of the compound. Phase-purity of the as-prepared powders was examined using X-ray diffraction. As-prepared powder was single phase, crystalline, and composed of uniform particles with sizes 20-30 nm. The crystal structure of AZrO 3 are respective cubic (Pm3-bar m, a=4.1839A) and orthorhombic (Pnma, a=5.7937A, b=8.17648A and c=5.7694A). Annealed samples of SrZrO 3 has improved crystal structure with a=5.764A, b=8.2292A and c=5.7989A, comparable to the standards. Microstrain acting on all the planes of the material is positive which indicates presence of tensile stress on the material. The calculated compressive stress on the surface of' the nanopowder is of the order 0.213 GPa to -0.274 GPa for BaZrO 3 and 4.443 GPa to -0.220 GPa for SrZrO 3 along various planes of the particles. (author)

  9. Protocol for a feasibility trial for improving breast feeding initiation and continuation: assets-based infant feeding help before and after birth (ABA)

    Science.gov (United States)

    Jolly, Kate; Ingram, Jenny; Clarke, Joanne; Johnson, Debbie; Trickey, Heather; Thomson, Gill; Dombrowski, Stephan U; Sitch, Alice; Dykes, Fiona; Feltham, Max G; Darwent, Kirsty; MacArthur, Christine; Roberts, Tracy

    2018-01-01

    Introduction Breast feeding improves the health of mothers and infants; the UK has low rates, with marked socioeconomic inequalities. While trials of peer support services have been effective in some settings, UK trials have not improved breast feeding rates. Qualitative research suggests that many women are alienated by the focus on breast feeding. We propose a change from breast feeding-focused interactions to respecting a woman’s feeding choices, inclusion of behaviour change theory and an increased intensity of contacts in the 2 weeks after birth when many women cease to breast feed. This will take place alongside an assets-based approach that focuses on the positive capability of individuals, their social networks and communities. We propose a feasibility study for a multicentre randomised controlled trial of the Assets feeding help Before and After birth (ABA) infant feeding service versus usual care. Methods and analysis A two-arm, non-blinded randomised feasibility study will be conducted in two UK localities. Women expecting their first baby will be eligible, regardless of feeding intention. The ABA infant feeding intervention will apply a proactive, assets-based, woman-centred, non-judgemental approach, delivered antenatally and postnatally tailored through face-to-face contacts, telephone and SMS texts. Outcomes will test the feasibility of delivering the intervention with recommended intensity and duration to disadvantaged women; acceptability to women, feeding helpers and professionals; and feasibility of a future randomised controlled trial (RCT), detailing recruitment rates, willingness to be randomised, follow-up rates at 3 days, 8 weeks and 6 months, and level of outcome completion. Outcomes of the proposed full trial will also be collected. Mixed methods will include qualitative interviews with women/partners, feeding helpers and health service staff; feeding helper logs; and review of audio-recorded helper–women interactions to assess

  10. Regulatory networks in pollen development under cold stress

    Directory of Open Access Journals (Sweden)

    Kamal Dev Sharma

    2016-03-01

    Full Text Available Cold stress modifies anthers’ metabolic pathways to induce pollen sterility. Cold-tolerant plants, unlike the susceptible ones, produce high proportion of viable pollen. Anthers in susceptible plants, when exposed to cold stress, increase abscisic acid (ABA metabolism and reduce ABA catabolism. Increased ABA negatively regulates expression of tapetum cell wall bound invertase and monosaccharide transport genes resulting in distorted carbohydrate pool in anther. Cold-stress also reduces endogenous levels of the bioactive gibberellins (GAs, GA4 and GA7, in susceptible anthers by repression of the GA biosynthesis genes. Here we discuss recent findings on mechanisms of cold susceptibility in anthers which determine pollen sterility. We also discuss differences in regulatory pathways between cold-stressed anthers of susceptible and tolerant plants that decide pollen sterility or viability.

  11. Isolation and functional characterisation of two new bZIP maize regulators of the ABA responsive gene rab28.

    Science.gov (United States)

    Nieva, Claudia; Busk, Peter K; Domínguez-Puigjaner, Eva; Lumbreras, Victoria; Testillano, Pilar S; Risueño, Maria-Carmen; Pagès, Montserrat

    2005-08-01

    The plant hormone abscisic acid regulates gene expression in response to growth stimuli and abiotic stress. Previous studies have implicated members of the bZIP family of transcription factors as mediators of abscisic acid dependent gene expression through the ABRE cis-element. Here, we identify two new maize bZIP transcription factors, EmBP-2 and ZmBZ-1 related to EmBP-1 and OsBZ-8 families. They are differentially expressed during embryo development; EmBP-2 is constitutive, whereas ZmBZ-1 is abscisic acid-inducible and accumulates during late embryogenesis. Both factors are nuclear proteins that bind to ABREs and activate transcription of the abscisic acid-inducible gene rab28 from maize. EmBP-2 and ZmBZ-1 are phosphorylated by protein kinase CK2 and phosphorylation alters their DNA binding properties. Our data suggest that EmBP-2 and ZmBZ-1 are involved in the expression of abscisic acid inducible genes such as rab28 and their activity is modulated by ABA and by phosphorylation.

  12. Reactive oxygen species induced by heat stress during grain filling of rice (Oryza sativa L.) are involved in occurrence of grain chalkiness.

    Science.gov (United States)

    Suriyasak, Chetphilin; Harano, Keisuke; Tanamachi, Koichiro; Matsuo, Kazuhiro; Tamada, Aina; Iwaya-Inoue, Mari; Ishibashi, Yushi

    2017-09-01

    Heat stress during grain filling increases rice grain chalkiness due to increased activity of α-amylase, which hydrolyzes starch. In rice and barley seeds, reactive oxygen species (ROS) produced after imbibition induce α-amylase activity via regulation of gibberellin (GA) and abscisic acid (ABA) levels during seed germination. Here, we examined whether ROS is involved in induction of grain chalkiness by α-amylase in developing rice grains under heat stress. To elucidate the role of ROS in grain chalkiness, we grew post-anthesis rice plants (Oryza sativa L. cv. Koshihikari) under control (25°C) or heat stress (30°C) conditions with or without antioxidant (dithiothreitol) treatment. The developing grains were analyzed for expression of NADPH oxidases, GA biosynthesis genes (OsGA3ox1, OsGA20ox1), ABA catabolism genes (OsABA8'OH1, OsABA8'OH2) and an α-amylase gene (OsAmy3E), endogenous H 2 O 2 content and the grain quality. In grains exposed to heat stress, the expression of NADPH oxidase genes (especially, OsRbohB, OsRbohD, OsRbohF and OsRbohI) and the ROS content increased. Heat stress also increased the expression of OsGA3ox1, OsGA20ox1, OsABA8'OH1, OsABA8'OH2 and OsAmy3E. On the other hand, dithiothreitol treatment reduced the effects of heat stress on the expression of these genes and significantly reduced grain chalkiness induced by heat stress. These results suggest that, similar to cereal seed germination mechanism, ROS produced under heat stress is involved in α-amylase induction in maturating rice grains through GA/ABA metabolism, and consequently caused grain chalkiness. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Auxin as a player in the biocontrol of Fusarium head blight disease of barley and its potential as a disease control agent

    Directory of Open Access Journals (Sweden)

    Petti Carloalberto

    2012-11-01

    Full Text Available Abstract Background Mechanisms involved in the biological control of plant diseases are varied and complex. Hormones, including the auxin indole acetic acid (IAA and abscisic acid (ABA, are essential regulators of a multitude of biological functions, including plant responses to biotic and abiotic stressors. This study set out to determine what hormones might play a role in Pseudomonas fluorescens –mediated control of Fusarium head blight (FHB disease of barley and to determine if biocontrol-associated hormones directly affect disease development. Results A previous study distinguished bacterium-responsive genes from bacterium-primed genes, distinguished by the fact that the latter are only up-regulated when both P. fluorescens and the pathogen Fusarium culmorum are present. In silico analysis of the promoter sequences available for a subset of the bacterium-primed genes identified several hormones, including IAA and ABA as potential regulators of transcription. Treatment with the bacterium or pathogen resulted in increased IAA and ABA levels in head tissue; both microbes had additive effects on the accumulation of IAA but not of ABA. The microbe-induced accumulation of ABA preceded that of IAA. Gene expression analysis showed that both hormones up-regulated the accumulation of bacterium-primed genes. But IAA, more than ABA up-regulated the transcription of the ABA biosynthesis gene NCED or the signalling gene Pi2, both of which were previously shown to be bacterium-responsive rather than primed. Application of IAA, but not of ABA reduced both disease severity and yield loss caused by F. culmorum, but neither hormone affect in vitro fungal growth. Conclusions Both IAA and ABA are involved in the P. fluorescens-mediated control of FHB disease of barley. Gene expression studies also support the hypothesis that IAA plays a role in the primed response to F. culmorum. This hypothesis was validated by the fact that pre-application of IAA reduced

  14. A Rationally Designed Agonist Defines Subfamily IIIA Abscisic Acid Receptors As Critical Targets for Manipulating Transpiration.

    Science.gov (United States)

    Vaidya, Aditya S; Peterson, Francis C; Yarmolinsky, Dmitry; Merilo, Ebe; Verstraeten, Inge; Park, Sang-Youl; Elzinga, Dezi; Kaundal, Amita; Helander, Jonathan; Lozano-Juste, Jorge; Otani, Masato; Wu, Kevin; Jensen, Davin R; Kollist, Hannes; Volkman, Brian F; Cutler, Sean R

    2017-11-17

    Increasing drought and diminishing freshwater supplies have stimulated interest in developing small molecules that can be used to control transpiration. Receptors for the plant hormone abscisic acid (ABA) have emerged as key targets for this application, because ABA controls the apertures of stomata, which in turn regulate transpiration. Here, we describe the rational design of cyanabactin, an ABA receptor agonist that preferentially activates Pyrabactin Resistance 1 (PYR1) with low nanomolar potency. A 1.63 Å X-ray crystallographic structure of cyanabactin in complex with PYR1 illustrates that cyanabactin's arylnitrile mimics ABA's cyclohexenone oxygen and engages the tryptophan lock, a key component required to stabilize activated receptors. Further, its sulfonamide and 4-methylbenzyl substructures mimic ABA's carboxylate and C6 methyl groups, respectively. Isothermal titration calorimetry measurements show that cyanabactin's compact structure provides ready access to high ligand efficiency on a relatively simple scaffold. Cyanabactin treatments reduce Arabidopsis whole-plant stomatal conductance and activate multiple ABA responses, demonstrating that its in vitro potency translates to ABA-like activity in vivo. Genetic analyses show that the effects of cyanabactin, and the previously identified agonist quinabactin, can be abolished by the genetic removal of PYR1 and PYL1, which form subclade A within the dimeric subfamily III receptors. Thus, cyanabactin is a potent and selective agonist with a wide spectrum of ABA-like activities that defines subfamily IIIA receptors as key target sites for manipulating transpiration.

  15. Plasmid borne Carbapenem-Hydrolyzing Class D β-Lactamases (CHDLs) and AdeABC efflux pump conferring carbapenem-tigecycline resistance among Acinetobacter baumannii isolates harboring TnAbaRs.

    Science.gov (United States)

    Savari, Mohammad; Ekrami, Alireza; Shoja, Saeed; Bahador, Abbas

    2017-03-01

    Here we studied the prevalence and mechanisms of simultaneous resistance to carbapenem and tigecycline and accumulation of resistance determinants reservoirs in genome of Acinetobacter baumannii (A. baumannii) clinical isolates. Susceptibility of the isolates were measured to 18 antimicrobial agents. Genetic diversity of the microbial population was determined using the International Clonal lineage typing (IC typing), multiple locus VNTR analysis (MLVA) and plasmid profiling methods. To detect the AbaRs, Carbapenem-Hydrolyzing Class D β-Lactamases (CHDLs) genes, AdeABC efflux pump genes and resistance determinants, PCR was used. Filter mating experiments were used to prove that if carbapenem resistance genes are located on conjugative plasmids or not. Among the A. baumannii clinical isolates, 40.8% were carbapenem-tigecycline resistant and in this population, 46.9% were belonging to IC I, IC II or IC III and 53.1% were IC variants. These isolates had fallen in 40 MLVA types and were harboring plasmids in multiple numbers and sizes. In this study, bla OXA-23-like was the most prevalent CHDL and conjugation analysis proved that the carbapenem resistance genes are located on conjugative plasmids. All efflux pump genes, except for adeC, were detected in all carbapenem-tigecycline resistant A. baumannii (CTRAb) isolates. Resistance determinants were distributed in both TnAbaRs and R plasmids with a shift toward the R plasmids. Emerging of carbapenem resistant A. baumannii (CRAB) with simultaneous resistance to the last line therapy including tigecycline represent emerging of extensively drug resistance (XDR) and pandrug resistance (PDR) phenotypes that would be a great threat to our public health system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions

    Science.gov (United States)

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis. PMID:26902640

  17. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions.

    Science.gov (United States)

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-02-23

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis.

  18. Abscisic acid as a factor in regulation of photosynthetic carbon metabolism of pea seedlings

    Directory of Open Access Journals (Sweden)

    Maria Faltynowicz

    2014-01-01

    Full Text Available The influence of abscisic acid (ABA on carbon metabolism and the activity of ribulosebisphosphate (RuBP and phosphoenolpyruvate (PEP carboxylases in 8-day-old pea seedlings was investigated. It was endeavoured to correlate the changes observed in metabolic processes with the endogenous ABA level. In plants treated with ABA incorporation of labeled carbon into sucrose, glucose, fructose and sugar phosphates was depressed, while 14C incorporation into starch, ribulose and malic acid was enhanced. The activity of RuBP carboxylase was considerably lowered, whereas that of PEP carboxylase was slightly increased. It is considered that inhibition of photosynthesis due to the action of ABA is caused to a great extent by the obstruction of the C-3 pathway and reduced activity of RuBP carboxylase, whereas (β-carboxylation was not blocked.

  19. Low doses of ultraviolet-B or ultraviolet-C radiation affect phytohormones in young pea plants

    International Nuclear Information System (INIS)

    Ivanov, S.; Azmi, A.; Prinsen, E.; Van Onckelen, H.; Alexieva, V.; Katerova, Z.

    2009-01-01

    Pea (cv. Scinado) seedlings were exposed to low doses of ultraviolet-B (UV-B; 4.4 and 13.3 kJ/square m/d) or UV-C (0.1 and 0.3 kJ/square m/d) radiation for 14 d. Aminocyclopropane carboxylic acid (ACC), indoleacetic acid (IAA) and abscisic acid (ABA) concentrations were quantified by gas chromatography coupled to mass spectrometry. The accumulation of ACC upon irradiation was dose-dependent. ABA conc. was reduced and IAA conc. increased upon UV-C treatment, whereas the UV-B doses used did not cause significant changes in ABA and IAA levels

  20. The C-terminal region (640-967) of Arabidopsis CPL1 interacts with the abiotic stress- and ABA-responsive transcription factors

    International Nuclear Information System (INIS)

    Bang, Woo Young; Kim, Se Won; Jeong, In Sil; Koiwa, Hisashi; Bahk, Jeong Dong

    2008-01-01

    Proteins in CPL1 family are unique to plants and contain a phosphatase catalytic domain and double-stranded RNA (dsRNA)-binding motifs (DRMs) in a single peptide. Though DRMs are important for the function of Arabidopsis CPL1 in vivo, the role of CPL1 DRM has been obscure. We have isolated two transcription factors, ANAC019 (At1g52890) and AtMYB3 (At1g22640), which specifically interact with the C-terminal region (640-967) of AtCPL1 containing two DRMs. Detailed interaction analysis indicated that AtMYB3 specifically interacted with the first DRM but not with the second DRM in CPL1 C-terminal fragment. GFP-fusion analysis indicated that AtMYB3 localized in nuclei-like CPL1, and its expression is induced by abiotic stress and ABA treatment. These results suggest that AtMYB3 function in abiotic stress signaling in concert with CPL1

  1. Tertiary-amine-containing thermo- and pH-sensitive hydrophilic ABA triblock copolymers: effect of different tertiary amines on thermally induced sol-gel transitions.

    Science.gov (United States)

    Henn, Daniel M; Wright, Roger A E; Woodcock, Jeremiah W; Hu, Bin; Zhao, Bin

    2014-03-11

    This Article reports on the synthesis of a series of well-defined, tertiary-amine-containing ABA triblock copolymers, composed of a poly(ethylene oxide) (PEO) central block and thermo- and pH-sensitive outer blocks, and the study of the effect of different tertiary amines on thermally induced sol-gel transition temperatures (T(sol-gel)) of their 10 wt % aqueous solutions. The doubly responsive ABA triblock copolymers were prepared from a difunctional PEO macroinitiator by atom transfer radical polymerization of methoxydi(ethylene glycol) methacrylate and ethoxydi(ethylene glycol) methacrylate at a feed molar ratio of 30:70 with ∼5 mol % of either N,N-diethylaminoethyl methacrylate (DEAEMA), N,N-diisopropylaminoethyl methacrylate, or N,N-di(n-butyl)aminoethyl methacrylate. The chain lengths of thermosensitive outer blocks and the molar contents of tertiary amines were very similar for all copolymers. Using rheological measurements, we determined the pH dependences of T(sol-gel) of 10 wt % aqueous solutions of these copolymers in a phosphate buffer. The T(sol-gel) versus pH curves of all polymers exhibited a sigmoidal shape. The T(sol-gel) increased with decreasing pH; the changes were small on both high and low pH sides. At a specific pH, the T(sol-gel) decreased with increasing the hydrophobicity of the tertiary amine, and upon decreasing pH the onset pH value for the T(sol-gel) to begin to increase noticeably was lower for the more hydrophobic tertiary amine-containing copolymer. In addition, we studied the effect of different tertiary amines on the release behavior of FITC-dextran from 10 wt % micellar gels in an acidic medium at 37 and 27 °C. The release profiles for three studied hydrogels at 37 °C were essentially the same, suggesting that the release was dominated by the diffusion of FITC-dextran. At 27 °C, the release was significantly faster for the DEAEMA-containing copolymer, indicating that both diffusion and gel dissolution contributed to the

  2. The ascorbate peroxidase APX1 is a direct target of a zinc finger transcription factor ZFP36 and a late embryogenesis abundant protein OsLEA5 interacts with ZFP36 to co-regulate OsAPX1 in seed germination in rice.

    Science.gov (United States)

    Huang, Liping; Jia, Jing; Zhao, Xixi; Zhang, MengYao; Huang, Xingxiu; E Ji; Ni, Lan; Jiang, Mingyi

    2018-01-01

    Seed germination is a vital developmental process. Abscisic acid (ABA) is an essential repressor of seed germination, while ROS (reactive oxygen species) also plays a vital role in regulating seed germination. ABA could inhibit the production of ROS in seed germination, but the mechanism of ABA reduced ROS production in seed germination was hitherto unknown. Here, by ChIP (chromatin immunoprecipitation)-seq, we found that ZFP36, a rice zinc finger transcription factor, could directly bind to the promoter of OsAPX1, coding an ascorbate peroxidase (APX) which has the most affinity for H 2 O 2 (substrate; a type of ROS), and act as a transcriptional activator of OsAPX1 promoter. Moreover, ZFP36 could interact with a late embryogenesis abundant protein OsLEA5 to co-regulate the promoter activity of OsAPX1. The seed germination is highly inhibited in ZFP36 overexpression plants under ABA treatment, while an RNA interference (RNAi) mutant of OsLEA5 rice seeds were less sensitive to ABA, and exogenous ASC (ascorbate acid) could alleviate the inhibition induced by ABA. Thus, our conclusion is that OsAPX1 is a direct target of ZFP36 and OsLEA5 could interact with ZFP36 to co-regulate ABA-inhibited seed germination by controlling the expression of OsAPX1. Copyright © 2017. Published by Elsevier Inc.

  3. Exogenous abscisic acid alleviates zinc uptake and accumulation in Populus × canescens exposed to excess zinc.

    Science.gov (United States)

    Shi, Wen-Guang; Li, Hong; Liu, Tong-Xian; Polle, Andrea; Peng, Chang-Hui; Luo, Zhi-Bin

    2015-01-01

    A greenhouse experiment was conducted to study whether exogenous abscisic acid (ABA) mediates the responses of poplars to excess zinc (Zn). Populus × canescens seedlings were treated with either basal or excess Zn levels and either 0 or 10 μm ABA. Excess Zn led to reduced photosynthetic rates, increased Zn accumulation, induced foliar ABA and salicylic acid (SA), decreased foliar gibberellin (GA3 ) and auxin (IAA), elevated root H2 O2 levels, and increased root ratios of glutathione (GSH) to GSSG and foliar ratios of ascorbate (ASC) to dehydroascorbate (DHA) in poplars. While exogenous ABA decreased foliar Zn concentrations with 7 d treatments, it increased levels of endogenous ABA, GA3 and SA in roots, and resulted in highly increased foliar ASC accumulation and ratios of ASC to DHA. The transcript levels of several genes involved in Zn uptake and detoxification, such as yellow stripe-like family protein 2 (YSL2) and plant cadmium resistance protein 2 (PCR2), were enhanced in poplar roots by excess Zn but repressed by exogenous ABA application. These results suggest that exogenous ABA can decrease Zn concentrations in P. × canescens under excess Zn for 7 d, likely by modulating the transcript levels of key genes involved in Zn uptake and detoxification. © 2014 John Wiley & Sons Ltd.

  4. Abscisic Acid Induces Rapid Reductions in Mesophyll Conductance to Carbon Dioxide.

    Directory of Open Access Journals (Sweden)

    Giuseppe Sorrentino

    Full Text Available The rate of photosynthesis (A of plants exposed to water deficit is a function of stomatal (gs and mesophyll (gm conductance determining the availability of CO2 at the site of carboxylation within the chloroplast. Mesophyll conductance often represents the greatest impediment to photosynthetic uptake of CO2, and a crucial determinant of the photosynthetic effects of drought. Abscisic acid (ABA plays a fundamental role in signalling and co-ordination of plant responses to drought; however, the effect of ABA on gm is not well-defined. Rose, cherry, olive and poplar were exposed to exogenous ABA and their leaf gas exchange parameters recorded over a four hour period. Application with ABA induced reductions in values of A, gs and gm in all four species. Reduced gm occurred within one hour of ABA treatment in three of the four analysed species; indicating that the effect of ABA on gm occurs on a shorter timescale than previously considered. These declines in gm values associated with ABA were not the result of physical changes in leaf properties due to altered turgor affecting movement of CO2, or caused by a reduction in the sub-stomatal concentration of CO2 (Ci. Increased [ABA] likely induces biochemical changes in the properties of the interface between the sub-stomatal air-space and mesophyll layer through the actions of cooporins to regulate the transport of CO2. The results of this study provide further evidence that gm is highly responsive to fluctuations in the external environment, and stress signals such as ABA induce co-ordinated modifications of both gs and gm in the regulation of photosynthesis.

  5. Effects of reduced training and detraining on upper and lower body explosive strength in adolescent male basketball players.

    Science.gov (United States)

    Santos, Eduardo J A M; Janeira, Manuel A A S

    2009-09-01

    The purpose of this study was to assess and compare the effects of detraining and of a reduced training program on upper- and lower-body explosive strength in adolescent male basketball players. To study this, 15 subjects, aged 14 to 15 years old, were randomly assigned to 1 of the 2 following groups: reduced training (RT; n = 8) and detraining (DTR; n = 7). The participants were assessed on squat jump (SJ), countermovement jump (CMJ), Abalakov test (ABA), depth jump (DJ), mechanical power (MP), and medicine ball throw (MBT) after a 10-week in-season complex training program (T0) and at the end of 4 (T4), 8 (T8), 12 (T12), and 16 (T16) weeks of detraining and of the reduced training periods. Both groups showed maintenance of explosive strength values and statistical similarity between them whatever the moment of evaluation. In conclusion, 16 weeks of detraining or of reduced training allow for the maintenance of the gains previously achieved by the application of a 10-week in-season complex training program. However, the lack of differences between detraining and reduced training leads to the conclusion that regular basketball practice can sustain by itself the previously achieved explosive strength gains, considering its mainly explosive characteristics.

  6. Alleviation of Osmotic Stress Effects by Exogenous Application of Salicylic or Abscisic Acid on Wheat Seedlings

    Science.gov (United States)

    Marcińska, Izabela; Czyczyło-Mysza, Ilona; Skrzypek, Edyta; Grzesiak, Maciej T.; Janowiak, Franciszek; Filek, Maria; Dziurka, Michał; Dziurka, Kinga; Waligórski, Piotr; Juzoń, Katarzyna; Cyganek, Katarzyna; Grzesiak, Stanisław

    2013-01-01

    The aim of the study was to assess the role of salicylic acid (SA) and abscisic acid (ABA) in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1) and drought resistant (CS) wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM) or ABA (0.1 μM) to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa). The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA) was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant activity

  7. Alleviation of Osmotic Stress Effects by Exogenous Application of Salicylic or Abscisic Acid on Wheat Seedlings

    Directory of Open Access Journals (Sweden)

    Katarzyna Cyganek

    2013-06-01

    Full Text Available The aim of the study was to assess the role of salicylic acid (SA and abscisic acid (ABA in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1 and drought resistant (CS wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM or ABA (0.1 μM to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa. The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant

  8. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana.

    Science.gov (United States)

    Ali-Rachedi, Sonia; Bouinot, Denise; Wagner, Marie-Hélène; Bonnet, Magda; Sotta, Bruno; Grappin, Philippe; Jullien, Marc

    2004-07-01

    Mature seeds of the Cape Verde Islands (Cvi) ecotype of Arabidopsis thaliana (L.) Heynh. show a very marked dormancy. Dormant (D) seeds completely fail to germinate in conditions that are favourable for germination whereas non-dormant (ND) seeds germinate easily. Cvi seed dormancy is alleviated by after-ripening, stratification, and also by nitrate or fluridone treatment. Addition of gibberellins to D seeds does not suppress dormancy efficiently, suggesting that gibberellins are not directly involved in the breaking of dormancy. Dormancy expression of Cvi seeds is strongly dependent on temperature: D seeds do not germinate at warm temperatures (20-27 degrees C) but do so easily at a low temperature (13 degrees C) or when a fluridone treatment is given to D seeds sown at high temperature. To investigate the role of abscisic acid (ABA) in dormancy release and maintenance, we measured the ABA content in both ND and D seeds imbibed using various dormancy-breaking conditions. It was found that dry D seeds contained higher amounts of ABA than dry ND after-ripened seeds. During early imbibition in standard conditions, there was a decrease in ABA content in both seeds, the rate of which was slower in D seeds. Three days after sowing, the ABA content in D seeds increased specifically and then remained at a high level. When imbibed with fluridone, nitrate or stratified, the ABA content of D seeds decreased and reached a level very near to that of ND seeds. In contrast, gibberellic acid (GA3) treatment caused a transient increase in ABA content. When D seeds were sown at low optimal temperature their ABA content also decreased to the level observed in ND seeds. The present study indicates that Cvi D and ND seeds can be easily distinguished by their ability to synthesize ABA following imbibition. Treatments used here to break dormancy reduced the ABA level in imbibed D seeds to the level observed in ND seeds, with the exception of GA3 treatment, which was active in promoting

  9. Interactions with the actin cytoskeleton are required for cell wall localization of barley stripe mosaic virus TGB proteins

    Science.gov (United States)

    The host cytoskeleton and membrane system are the main routes by which plant viruses move within or between cells. Barley stripe mosaic virus (BSMV) -induced actin filament thickening was visualized in the cytoskeleton of agroinfiltrated Nicotiana benthamiana epidermal cells expressing DsRed:Talin. ...

  10. Effect of abscisic acid and blue radiation on photosynthesis and growth of pea plants

    International Nuclear Information System (INIS)

    Siedlecka, M.; Romanowska, E.

    1993-01-01

    The effect of abscisic acid (ABA) on the net photosynthetic rate (PN), the ribulose 1,5-bisphosphate carboxylase (RuBPC) and the phosphoenolpyruvate carboxylase (PEPC) activities, the chlorophyll (Chl) content and growth of pea plants (Pisum sativum) grown under ''white'' (WR) or blue radiation (BR), were investigated. BR as compared to WR enhanced PN, the activities of examined enzymes, and Chl content. In spite of higher PN of the plants grown under BR, dry matter of their shoots was lower in comparison with WR. ABA-treated plants grown under both WR and BR showed reduction in PN. ABA had no effect on the activities of both RuBPC and PEPC and the Chl content. Independent on the radiation quality, ABA reduced stem elongation, but did not affect the biomass of whole shoots

  11. Arabidopsis YAK1 regulates abscisic acid response and drought resistance.

    Science.gov (United States)

    Kim, Dongjin; Ntui, Valentine Otang; Xiong, Liming

    2016-07-01

    Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination growth in Arabidopsis. AtYak1 knockout mutant plants were hyposensitive to ABA inhibition of seed germination, cotyledon greening, seedling growth, and stomatal movement. atyak1-1 mutant plants display reduced drought stress resistance, as evidenced by water loss rate and survival rate. Molecular genetic analysis revealed that AtYak1 deficiency led to elevated expression of stomatal-related gene, MYB60, and down-regulation of several stress-responsive genes. Altogether, these results indicate that AtYak1 plays a role as a positive regulator in ABA-mediated drought response in Arabidopsis. © 2016 Federation of European Biochemical Societies.

  12. Arabidopsis YAK1 regulates abscisic acid response and drought resistance

    KAUST Repository

    Kim, Dongjin

    2016-06-06

    Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination growth in Arabidopsis. AtYak1 knockout mutant plants were hyposensitive to ABA inhibition of seed germination, cotyledon greening, seedling growth, and stomatal movement. atyak1-1 mutant plants display reduced drought stress resistance, as evidenced by water loss rate and survival rate. Molecular genetic analysis revealed that AtYak1 deficiency led to elevated expression of stomatal-related gene, MYB60, and down-regulation of several stress-responsive genes. Altogether, these results indicate that AtYak1 plays a role as a positive regulator in ABA-mediated drought response in Arabidopsis. © 2016 Federation of European Biochemical Societies.

  13. Abscisic acid ameliorates atherosclerosis by suppressing macrophage and CD4+ T cell recruitment into the aortic wall.

    Science.gov (United States)

    Guri, Amir J; Misyak, Sarah A; Hontecillas, Raquel; Hasty, Alyssa; Liu, Dongmin; Si, Hongwei; Bassaganya-Riera, Josep

    2010-12-01

    Abscisic acid (ABA) is a natural phytohormone which improves insulin sensitivity and reduces adipose tissue inflammation when supplemented into diets of obese mice. The objective of this study was to investigate the mechanisms by which ABA prevents or ameliorates atherosclerosis. apolipoprotein E-deficient (ApoE(-/-)) mice were fed high-fat diets with or without ABA for 84 days. Systolic blood pressure was assessed on Days 0, 28, 56 and 72. Gene expression, immune cell infiltration and histological lesions were evaluated in the aortic root wall. Human aortic endothelial cells were used to examine the effect of ABA on 3',5'-cyclic adenosine monophosphate (cAMP) and nitric oxide (NO) production in vitro. We report that ABA-treated mice had significantly improved systolic blood pressure and decreased accumulation of F4/80(+)CD11b(+) macrophages and CD4(+) T cells in aortic root walls. At the molecular level, ABA significantly enhanced aortic endothelial nitric oxide synthase (eNOS) and tended to suppress aortic vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) expression and plasma MCP-1 concentrations. ABA also caused a dose-dependent increase in intracellular concentrations of cAMP and NO and up-regulated eNOS mRNA expression in human aortic endothelial cells. This is the first report showing that ABA prevents or ameliorates atherosclerosis-induced hypertension, immune cell recruitment into the aortic root wall and up-regulates aortic eNOS expression in ApoE(-/-) mice. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses1[OPEN

    Science.gov (United States)

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A.; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A.; Kay, Steve A.; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R.; Schroeder, Julian I.

    2015-01-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases. PMID:26175513

  15. Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid.

    Science.gov (United States)

    Xiao, Huogen; Siddiqua, Mahbuba; Braybrook, Siobhan; Nassuth, Annette

    2006-07-01

    The C-repeat (CRT)-binding factor/dehydration-responsive element (DRE) binding protein 1 (CBF/ DREB1) transcription factors control an important pathway for increased freezing and drought tolerance in plants. Three CBF/DREB1-like genes, CBF 1-3, were isolated from both freezing-tolerant wild grape (Vitis riparia) and freezing-sensitive cultivated grape (Vitis vinifera). The deduced proteins in V. riparia are 63-70% identical to each other and 96-98% identical to the corresponding proteins in V. vinifera. All Vitis CBF proteins are 42-51% identical to AtCBF1 and contain CBF-specific amino acid motifs, supporting their identification as CBF proteins. Grape CBF sequences are unique in that they contain 20-29 additional amino acids and three serine stretches. Agro-infiltration experiments revealed that VrCBF1b localizes to the nucleus. VrCBF1a, VrCBF1b and VvCBF1 activated a green fluorescent protein (GFP) or glucuronidase (GUS) reporter gene behind CRT-containing promoters. Expression of the endogenous CBF genes was low at ambient temperature and enhanced upon low temperature (4 degrees C) treatment, first for CBF1, followed by CBF2, and about 2 d later by CBF3. No obvious significant difference was observed between V. riparia and V. vinifera genes. The expression levels of all three CBF genes were higher in young tissues than in older tissues. CBF1, 2 and 3 transcripts also accumulated in response to drought and exogenous abscisic acid (ABA) treatment, indicating that grape contains unique CBF genes.

  16. The Occurrence of Apparent Bilateral Aldosterone Suppression in Adrenal Vein Sampling for Primary Aldosteronism

    Science.gov (United States)

    Shibayama, Yui; Wada, Norio; Naruse, Mitsuhide; Kurihara, Isao; Ito, Hiroshi; Yoneda, Takashi; Takeda, Yoshiyu; Umakoshi, Hironobu; Tsuiki, Mika; Ichijo, Takamasa; Fukuda, Hisashi; Katabami, Takuyuki; Yoshimoto, Takanobu; Ogawa, Yoshihiro; Kawashima, Junji; Ohno, Yuichi; Sone, Masakatsu; Fujita, Megumi; Takahashi, Katsutoshi; Shibata, Hirotaka; Kamemura, Kohei; Fujii, Yuichi; Yamamoto, Koichi; Suzuki, Tomoko

    2018-01-01

    Abstract Context In adrenal venous sampling (AVS) for patients with primary aldosteronism (PA), apparent bilateral aldosterone suppression (ABAS), defined as lower aldosterone/cortisol ratios in the bilateral adrenal veins than that in the inferior vena cava, is occasionally experienced. ABAS is uninterpretable with respect to lateralization of excess aldosterone production. We previously reported that ABAS was not a rare phenomenon and was significantly reduced after adrenocorticotropic hormone (ACTH) administration. Objective To validate the effects of ACTH administration and adding sampling positions in the left adrenal vein on the prevalence of ABAS in the larger Japan Primary Aldosteronism Study. Patients The data from 1689 patients with PA who underwent AVS between January 2006 and October 2016 were studied. All patients in the previous study, the West Japan Adrenal Vein Sampling study, were excluded. Outcome Measurements The prevalence of ABAS was investigated at two sampling positions in the left adrenal vein, the central vein and the common trunk, without and with ACTH administration. Results The prevalence of ABAS with ACTH administration was significantly lower than that without ACTH administration [without ACTH vs with ACTH: 79/440 (18.0%) vs 45/591 (7.6%); P AVS regardless of the sampling position in the left adrenal vein was confirmed in the larger cohort. PMID:29687091

  17. Effects of abscisic acid on ethylene biosynthesis and perception in Hibiscus rosa-sinensis L. flower development

    Science.gov (United States)

    Trivellini, Alice; Ferrante, Antonio; Vernieri, Paolo; Serra, Giovanni

    2011-01-01

    The effect of the complex relationship between ethylene and abscisic acid (ABA) on flower development and senescence in Hibiscus rosa-sinensis L. was investigated. Ethylene biosynthetic (HrsACS and HrsACO) and receptor (HrsETR and HrsERS) genes were isolated and their expression evaluated in three different floral tissues (petals, style–stigma plus stamens, and ovaries) of detached buds and open flowers. This was achieved through treatment with 0.1 mM 1-aminocyclopropane-1-carboxylic acid (ACC) solution, 500 nl l−1 methylcyclopropene (1-MCP), and 0.1 mM ABA solution. Treatment with ACC and 1-MCP confirmed that flower senescence in hibiscus is ethylene dependent, and treatment with exogenous ABA suggested that ABA may play a role in this process. The 1-MCP impeded petal in-rolling and decreased ABA content in detached open flowers after 9 h. This was preceded by an earlier and sequential increase in ABA content in 1-MCP-treated petals and style–stigma plus stamens between 1 h and 6 h. ACC treatment markedly accelerated flower senescence and increased ethylene production after 6 h and 9 h, particularly in style–stigma plus stamens. Ethylene evolution was positively correlated in these floral tissues with the induction of the gene expression of ethylene biosynthetic and receptor genes. Finally, ABA negatively affected the ethylene biosynthetic pathway and tissue sensitivity in all flower tissues. Transcript abundance of HrsACS, HrsACO, HrsETR, and HrsERS was reduced by exogenous ABA treatment. This research underlines the regulatory effect of ABA on the ethylene biosynthetic and perception machinery at a physiological and molecular level when inhibitors or promoters of senescence are exogenously applied. PMID:21841180

  18. Effects of abscisic acid and high osmoticum on storage protein gene expression in microspore embryos of Brassica napus

    International Nuclear Information System (INIS)

    Wilen, R.W.; Mandel, R.M.; Pharis, R.P.; Moloney, M.M.; Holbrook, L.A.

    1990-01-01

    Storage protein gene expression, characteristic of mid- to late embryogenesis, was investigated in microspore embryos of rapeseed (Brassica napus). These embryos, derived from the immature male gametophyte, accumulate little or no detectable napin or cruciferin mRNA when cultured on hormone-free medium containing 13% sucrose. The addition of abscisic acid (ABA) to the medium results in an increase in detectable transcripts encoding both these polypeptides. Storage protein mRNA is induced at 1 micromolar ABA with maximum stimulation occurring between 5 and 50 micromolar. This hormone induction results in a level of storage protein mRNA that is comparable to that observed in zygotic embryos of an equivalent morphological stage. Effects similar to that of ABA are noted when 12.5% sorbitol is added to the microspore embryo medium (osmotic potential = 25.5 bars). Time course experiments, to study the induction of napin and cruciferin gene expression demonstrated that the ABA effect occurred much more rapidly than the high osmoticum effect, although after 48 hours, the levels of napin or cruciferin mRNA detected were similar in both treatments. This difference in the rates of induction is consistent with the idea that the osmotic effect may be mediated by ABA which is synthesized in response to the reduced water potential. Measurements of ABA (by gas chromatography-mass spectrometry using [ 2 H 6 ]ABA as an internal standard) present in microspore embryos during sorbitol treatment and in embryos treated with 10 micromolar ABA were performed to investigate this possibility. Within 2 hours of culture on high osmoticum the level of ABA increased substantially and significantly above control and reached a maximum concentration within 24 hours. This elevated concentration was maintained for 48 hours after culturing and represents a sixfold increase over control embryos

  19. The Comparison of Effectiveness of Applied Behavioral Analysis and Treatment-Education Approach on Stereotyped Behavior, Interactional and Communicational Problems in Autistic Children

    Directory of Open Access Journals (Sweden)

    Hossein Ghamari-Givi

    2012-10-01

    Full Text Available Objective: The aim of this study was to consider the effectiveness of Applied Behavioral Analysis (ABA therapy and Treatment and Education of Autistic and related Communication handicapped children (TEACCH on stereotyped behavior, interactional and communicational problems in the autistic Children. Materials & Methods: Subjects of this experimental study were all of children in Tabriz autism school in second half of year 1388. Sample size was 29 children (21 boys and 8 girls in age range of 6-14 who were selected using random sampling method and were placed in Applied Behavioral Analysis group (8 boys and 2 girls, Treatment- Education group (9 boys and 1 girl, and control group (4 boys and 5 girls. The two scales applied for the study were Modified Checklist for Autism in Toddlers and Gilliam Autism Rating Scale. The data were analyzed using analysis of covariance. Results: The results of the research showed that the means of behavioral problem indicators in both ABA and TEACCH methods were reduced significantly in comparison with control group (P<0.01. Also in comparison of ABA therapy and TEACCH method, decline in the mean scores of communication problems was significant and in favour of ABA therapy (P<0.05. Conclusion: According to the results of study, although both ABA therapy and TEACCH method were effective in reducing symptoms of behavioral problems but because of being more effective, Applied Behavioral Analysis is suggested as a selective therapeutic approach for this research.

  20. Characterization of Plant Growth under Single-Wavelength Laser Light Using the Model Plant Arabidopsis Thaliana

    KAUST Repository

    Ooi, Amanda

    2016-12-01

    Indoor horticulture offers a promising solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available lighting is suboptimal, therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. Lasers are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Besides, laser beams can be tailored to match the absorption profiles of different plants. We have developed a prototype laser growth chamber and demonstrate that laser-grown plants can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteomic data show that the singlewavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture. Furthermore, stomatal movement partly determines the plant productivity and stress management. Abscisic acid (ABA) induces stomatal closure by promoting net K+-efflux from guard cells through outwardrectifying K+ (K+ out) channels to regulate plant water homeostasis. Here, we show that the Arabidopsis thaliana guard cell outward-rectifying K+ (ATGORK) channel is a direct target for ABA in the regulation of stomatal aperture and hence gas exchange and transpiration. Addition of (±)-ABA, but not the biologically inactive (−)-isomer, increases K+ out channel activity in Vicia faba guard cell protoplast. A similar ABA

  1. Malbec grape (Vitis vinifera L.) responses to the environment: Berry phenolics as influenced by solar UV-B, water deficit and sprayed abscisic acid.

    Science.gov (United States)

    Alonso, Rodrigo; Berli, Federico J; Fontana, Ariel; Piccoli, Patricia; Bottini, Rubén

    2016-12-01

    High-altitude vineyards receive elevated solar ultraviolet-B (UV-B) levels so producing high quality berries for winemaking because of induction in the synthesis of phenolic compounds. Water deficit (D) after veraison, is a commonly used tool to regulate berry polyphenols concentration in red wine cultivars. Abscisic acid (ABA) plays a crucial role in the acclimation to environmental factors/signals (including UV-B and D). The aim of the present study was to evaluate independent and interactive effects of high-altitude solar UV-B, moderate water deficit and ABA applications on Vitis vinifera cv. Malbec berries. The experiment was conducted during two growing seasons with two treatments of UV-B (+UV-B and -UV-B), watering (+D and -D) and ABA (+ABA and -ABA), in a factorial design. Berry fresh weight, sugar content, fruit yield, phenolic compounds profile and antioxidant capacity (ORAC) were analyzed at harvest. Previous incidence of high UV-B prevented deleterious effects of water deficit, i.e. berry weight reduction and diminution of sugar accumulation. High UV-B increased total phenols (mainly astilbin, quercetin and kaempferol) and ORAC, irrespectively of the combination with other factors. Fruit yield was reduced by combining water deficit and high UV-B or water deficit and ABA. Two applications of ABA were enough to induced biochemical changes increasing total anthocyanins, especially those with higher antioxidant capacity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Investigations into the endogenic abcisinic acid and cytokinin content of soja bean cultures with varying salt sensitivity, as well as into the effect of exogenically applied abcisinic acid to the Cl--translocation

    International Nuclear Information System (INIS)

    Roeb, G.

    1981-05-01

    Two soja bean cultures with different Cl - sensitivity the 'Lee' and 'Jackson' were used for the investigation. Salting of the growth medium with 75 nM NaCl massively increased the obcisinic acid (ABA) concentration in the leaves, not however of the cytokinin content. The high ABA concentrations remained in the 'Jackson' sort even after a 7-day salt treatment. The moderately salt-resistant sort 'Lee' had a remarkable Cl - retention mechanism. The addition of 10 -5 and 10 -6 M ABA to the growth medium reduced the Cl - concentration in the sprout and simultaneously increased the accumulation in the root. This ABA effect failed at high salt concentration. The order of magnitude in which ABA is taken up from a normal or salted growth medium and its distribution were investigated using 14 C. Macroautoradiographic investigations show that after 35 h the whole sprout is radioactively labelled whereby a prefered accumulation is found in youngest part of the sprout. The highest Cl - values were found in the older leaves. The ABA is obviously transported to the stomata with the transpiration flow and inhibits the transpiration by its effect on the stomata. Subjecting the soja beans to a 75 mM NaCl concentration, can lead to a decrease of transpiration due to the strong salt concentration. The addition of ABA as well had an inhibiting effect on the water release of the plants without influencing the Cl - translocation. (MG) [de

  3. The Occurrence of Apparent Bilateral Aldosterone Suppression in Adrenal Vein Sampling for Primary Aldosteronism.

    Science.gov (United States)

    Shibayama, Yui; Wada, Norio; Naruse, Mitsuhide; Kurihara, Isao; Ito, Hiroshi; Yoneda, Takashi; Takeda, Yoshiyu; Umakoshi, Hironobu; Tsuiki, Mika; Ichijo, Takamasa; Fukuda, Hisashi; Katabami, Takuyuki; Yoshimoto, Takanobu; Ogawa, Yoshihiro; Kawashima, Junji; Ohno, Yuichi; Sone, Masakatsu; Fujita, Megumi; Takahashi, Katsutoshi; Shibata, Hirotaka; Kamemura, Kohei; Fujii, Yuichi; Yamamoto, Koichi; Suzuki, Tomoko

    2018-05-01

    In adrenal venous sampling (AVS) for patients with primary aldosteronism (PA), apparent bilateral aldosterone suppression (ABAS), defined as lower aldosterone/cortisol ratios in the bilateral adrenal veins than that in the inferior vena cava, is occasionally experienced. ABAS is uninterpretable with respect to lateralization of excess aldosterone production. We previously reported that ABAS was not a rare phenomenon and was significantly reduced after adrenocorticotropic hormone (ACTH) administration. To validate the effects of ACTH administration and adding sampling positions in the left adrenal vein on the prevalence of ABAS in the larger Japan Primary Aldosteronism Study. The data from 1689 patients with PA who underwent AVS between January 2006 and October 2016 were studied. All patients in the previous study, the West Japan Adrenal Vein Sampling study, were excluded. The prevalence of ABAS was investigated at two sampling positions in the left adrenal vein, the central vein and the common trunk, without and with ACTH administration. The prevalence of ABAS with ACTH administration was significantly lower than that without ACTH administration [without ACTH vs with ACTH: 79/440 (18.0%) vs 45/591 (7.6%); P sampling position, at the central vein and at the common trunk [33/591 (5.6%) vs 32/591 (5.4%); P = 1.00]. The effectiveness of ACTH administration for the reduction of ABAS in AVS regardless of the sampling position in the left adrenal vein was confirmed in the larger cohort.

  4. Gene expression analyses in tomato near isogenic lines provide evidence for ethylene and abscisic acid biosynthesis fine-tuning during arbuscular mycorrhiza development.

    Science.gov (United States)

    Fracetto, Giselle Gomes Monteiro; Peres, Lázaro Eustáquio Pereira; Lambais, Marcio Rodrigues

    2017-07-01

    Plant responses to the environment and microorganisms, including arbuscular mycorrhizal fungi, involve complex hormonal interactions. It is known that abscisic acid (ABA) and ethylene may be involved in the regulation of arbuscular mycorrhiza (AM) and that part of the detrimental effects of ABA deficiency in plants is due to ethylene overproduction. In this study, we aimed to determine whether the low susceptibility to mycorrhizal colonization in ABA-deficient mutants is due to high levels of ethylene and whether AM development is associated with changes in the steady-state levels of transcripts of genes involved in the biosynthesis of ethylene and ABA. For that, tomato (Solanum lycopersicum) ethylene overproducer epinastic (epi) mutant and the ABA-deficient notabilis (not) and sitiens (sit) mutants, in the same Micro-Tom (MT) genetic background, were inoculated with Rhizophagus clarus, and treated with the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG). The development of AM, as well as the steady-state levels of transcripts involved in ethylene (LeACS2, LeACO1 and LeACO4) and ABA (LeNCED) biosynthesis, was determined. The intraradical colonization in epi, not and sit mutants was significantly reduced compared to MT. The epi mutant completely restored the mycorrhizal colonization to the levels of MT with the application of 10 µM of AVG, probably due to the inhibition of the ACC synthase gene expression. The steady-state levels of LeACS2 and LeACO4 transcripts were induced in mycorrhizal roots of MT, whereas the steady-state levels of LeACO1 and LeACO4 transcripts were significantly induced in sit, and the steady-state levels of LeNCED transcripts were significantly induced in all genotypes and in mycorrhizal roots of epi mutants treated with AVG. The reduced mycorrhizal colonization in sit mutants seems not to be limited by ethylene production via ACC oxidase regulation. Both ethylene overproduction and ABA deficiency impaired AM fungal

  5. Sinapic acid or its derivatives interfere with abscisic acid homeostasis during Arabidopsis thaliana seed germination.

    Science.gov (United States)

    Bi, Baodi; Tang, Jingliang; Han, Shuang; Guo, Jinggong; Miao, Yuchen

    2017-06-06

    Sinapic acid and its esters have broad functions in different stages of seed germination and plant development and are thought to play a role in protecting against ultraviolet irradiation. To better understand the interactions between sinapic acid esters and seed germination processes in response to various stresses, we analyzed the role of the plant hormone abscisic acid (ABA) in the regulation of sinapic acid esters involved in seed germination and early seedling growth. We found that exogenous sinapic acid promotes seed germination in a dose-dependent manner in Arabidopsis thaliana. High-performance liquid chromatography mass spectrometry analysis showed that exogenous sinapic acid increased the sinapoylcholine content of imbibed seeds. Furthermore, sinapic acid affected ABA catabolism, resulting in reduced ABA levels and increased levels of the ABA-glucose ester. Using mutants deficient in the synthesis of sinapate esters, we showed that the germination of mutant sinapoylglucose accumulator 2 (sng2) and bright trichomes 1 (brt1) seeds was more sensitive to ABA than the wild-type. Moreover, Arabidopsis mutants deficient in either abscisic acid deficient 2 (ABA2) or abscisic acid insensitive 3 (ABI3) displayed increased expression of the sinapoylglucose:choline sinapoyltransferase (SCT) and sinapoylcholine esterase (SCE) genes with sinapic acid treatment. This treatment also affected the accumulation of sinapoylcholine and free choline during seed germination. We demonstrated that sinapoylcholine, which constitutes the major phenolic component in seeds among various minor sinapate esters, affected ABA homeostasis during seed germination and early seedling growth in Arabidopsis. Our findings provide insights into the role of sinapic acid and its esters in regulating ABA-mediated inhibition of Arabidopsis seed germination in response to drought stress.

  6. Arabidopsis IQM4, a Novel Calmodulin-Binding Protein, Is Involved With Seed Dormancy and Germination in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yu Ping Zhou

    2018-06-01

    Full Text Available Seed dormancy and germination are regulated by complex mechanisms controlled by diverse hormones and environmental cues. Abscisic acid (ABA promotes seed dormancy and inhibits seed germination and post-germination growth. Calmodulin (CaM signals are involved with the inhibition of ABA during seed germination and seedling growth. In this study, we showed that Arabidopsis thaliana IQM4 could bind with calmodulin 5 (CaM5 both in vitro and in vivo, and that the interaction was the Ca2+-independent type. The IQM4 protein was localized in the chloroplast and the IQM4 gene was expressed in most tissues, especially the embryo and germinated seedlings. The T-DNA insertion mutants of IQM4 exhibited the reduced primary seed dormancy and lower ABA levels compared with wild type seeds. Moreover, IQM4 plays key roles in modulating the responses to ABA, salt, and osmotic stress during seed germination and post-germination growth. T-DNA insertion mutants exhibited ABA-insensitive and salt-hypersensitive phenotypes during seed germination and post-germination growth, whereas IQM4-overexpressing lines had ABA- and osmotic-hypersensitive, and salt-insensitive phenotypes. Gene expression analyses showed that mutation of IQM4 inhibited the expression of ABA biosynthetic genes NCED6 and NCED9, and seed maturation regulators LEC1, LEC2, ABI3, and ABI5 during the silique development, as well as promoted the expression of WRKY40 and inhibited that of ABI5 in ABA-regulated seed germination. These observations suggest that IQM4 is a novel Ca2+-independent CaM-binding protein, which is positively involved with seed dormancy and germination in Arabidopsis.

  7. Effective planning and management as critical factors in urban water supply and management in Umuahia and Aba, Abia State, Nigeria

    Science.gov (United States)

    Uchegbu, Smart N.

    Plan and policy development usually define the course, goal, execution, success or failure of any public utilities initiative. Urban water supply is not an exception. Planning and management in public water supply systems often determine the quality of service the water supply authorities can render. This paper, therefore, addresses the issue of effective planning and management as critical determinants of urban water supply and management with respect to two Nigerian cities Umuahia and Aba both in Abia State. Appropriate sampling methods systematic sampling and cluster techniques were employed in order to collect data for the study. The collected data were analyzed using multiple linear regression. The findings of the study indicate that planning and management indices such as funding, manpower, water storage tank capacity greatly influence the volume of water supplied in the study areas. Funding was identified as a major determinant of the efficiency of the water supply system. Therefore, the study advocates the need for sector reforms that would usher in private participants in the water sector both for improved funding and enhanced productivity.

  8. Cloning and characterization of a mitochondrial glyoxalase II from Brassica juncea that is upregulated by NaCl, Zn, and ABA

    International Nuclear Information System (INIS)

    Saxena, Mukesh; Bisht, Rekha; Roy, Suchandra Deb; Sopory, S.K.; Bhalla-Sarin, Neera

    2005-01-01

    A cDNA (1061 bp) Bj glyII was cloned from a mannitol induced library of Brassica juncea. It encoded a protein of 335 amino acids with a molecular weight of 36.52 kDa. The deduced amino acid sequence of the clone showed 92% and 56% identity with Pennisetum and rice glyoxalase II, respectively, and 30% identity was observed with the human glyoxalase II. Search for the identical residues revealed the presence of highly conserved THHHXDH domain which is involved in zinc binding. p-NN and pSORT analysis of this sequence revealed a N-terminal mitochondrial target peptide. The cDNA was cloned in pMAL and a fusion protein with MBP (78 kDa) was expressed in Escherichia coli. The recombinant protein was purified approximately sixfold by affinity purification on amylose column and showed its pH optima at 7.0. The K m was determined to be 120 μM using S-D-lactoylglutathione as substrate. The expression of Bj glyII under various abiotic stress conditions showed that it is upregulated by salinity, heavy metal stress, and ABA

  9. Infants Discriminate Voicing and Place of Articulation with Reduced Spectral and Temporal Modulation Cues

    Science.gov (United States)

    Cabrera, Laurianne; Lorenzi, Christian; Bertoncini, Josiane

    2015-01-01

    Purpose: This study assessed the role of spectro-temporal modulation cues in the discrimination of 2 phonetic contrasts (voicing and place) for young infants. Method: A visual-habituation procedure was used to assess the ability of French-learning 6-month-old infants with normal hearing to discriminate voiced versus unvoiced (/aba/-/apa/) and…

  10. Mechanistic Investigation of the Bypass of a Bulky Aromatic DNA Adduct Catalyzed by a Y-family DNA Polymerase

    Science.gov (United States)

    Gadkari, Varun V.; Tokarsky, E. John; Malik, Chanchal K.; Basu, Ashis K.; Suo, Zucai

    2014-01-01

    3-Nitrobenzanthrone (3-NBA), a nitropolyaromatic hydrocarbon (NitroPAH) pollutant in diesel exhaust, is a potent mutagen and carcinogen. After metabolic activation, the primary metabolites of 3-NBA react with DNA to form dG and dA adducts. One of the three major adducts identified is N-(2’-deoxyguanosin-8-yl)-3-aminobenzanthrone (dGC8-N-ABA). This bulky adduct likely stalls replicative DNA polymerases but can be traversed by lesion bypass polymerases in vivo. Here, we employed running start assays to show that a site-specifically placed dGC8-N-ABA is bypassed in vitro by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. However, the nucleotide incorporation rate of Dpo4 was significantly reduced opposite both the lesion and the template position immediately downstream from the lesion site, leading to two strong pause sites. To investigate the kinetic effect of dGC8-N-ABA on polymerization, we utilized pre-steady-state kinetic methods to determine the kinetic parameters for individual nucleotide incorporations upstream, opposite, and downstream from the dGC8-N-ABA lesion. Relative to the replication of the corresponding undamaged DNA template, both nucleotide incorporation efficiency and fidelity of Dpo4 were considerably decreased during dGC8-N-ABA lesion bypass and the subsequent extension step. The lower nucleotide incorporation efficiency caused by the lesion is a result of a significantly reduced dNTP incorporation rate constant and modestly weaker dNTP binding affinity. At both pause sites, nucleotide incorporation followed biphasic kinetics with a fast and a slow phase and their rates varied with nucleotide concentration. In contrast, only the fast phase was observed with undamaged DNA. A kinetic mechanism was proposed for the bypass of dGC8-N-ABA bypass catalyzed by Dpo4. PMID:25048879

  11. Investigation into the role of endogenous abscisic acid during ripening of imported avocado cv. Hass.

    Science.gov (United States)

    Meyer, Marjolaine D; Chope, Gemma A; Terry, Leon A

    2017-08-01

    The importance of ethylene in avocado ripening has been extensively studied. In contrast, little is known about the possible role of abscisic acid (ABA). The present work studied the effect of 1-methylcyclopropene (1-MCP) (0.3 μL L -1 ), e+® Ethylene Remover and the combination thereof on the quality of imported avocado cv. Hass fruit stored for 7 days at 12 °C. Ethylene production, respiration, firmness, colour, heptose (C7) sugars and ABA concentrations in mesocarp tissue were measured throughout storage. Treatment with e+® Ethylene Remover reduced ethylene production, respiration rate and physiological ripening compared with controls. Fruit treated with 1-MCP + e+® Ethylene Remover and, to a lesser extent 1-MCP alone, had the lowest ethylene production and respiration rate and hence the best quality. Major sugars measured in mesocarp tissue were mannoheptulose and perseitol, and their content was not correlated with ripening parameters. Mesocarp ABA concentration, as determined by mass spectrometry, increased as fruit ripened and was negatively correlated with fruit firmness. Results suggest a relationship between ABA and ethylene metabolism since blocking ethylene, and to a larger extent blocking and removing ethylene, resulted in lower ABA concentrations. Whether ABA influences avocado fruit ripening needs to be determined in future research. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. T cell PPARγ is required for the anti-inflammatory efficacy of abscisic acid against experimental IBD.

    Science.gov (United States)

    Guri, Amir J; Evans, Nicholas P; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2011-09-01

    The phytohormone abscisic acid (ABA) has been shown to be effective in ameliorating chronic and acute inflammation. The objective of this study was to investigate whether ABA's anti-inflammatory efficacy in the gut is dependent on peroxisome proliferator-activated receptor γ (PPARγ) in T cells. PPARγ-expressing and T cell-specific PPARγ null mice were fed diets with or without ABA (100 mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate. The severity of clinical disease was assessed daily, and mice were euthanized on Day 7 of the dextran sodium sulfate challenge. Colonic inflammation was assessed through macroscopic and histopathological examination of inflammatory lesions and real-time quantitative RT-PCR-based quantification of inflammatory genes. Flow cytometry was used to phenotypically characterize leukocyte populations in the blood and mesenteric lymph nodes. Colonic sections were stained immunohistochemically to determine the effect of ABA on colonic regulatory T (T(reg)) cells. ABA's beneficial effects on disease activity were completely abrogated in T cell-specific PPARγ null mice. Additionally, ABA improved colon histopathology, reduced blood F4/80(+)CD11b(+) monocytes, increased the percentage of CD4(+) T cells expressing the inhibitory molecule cytotoxic T lymphocyte antigen 4 in blood and enhanced the number of T(reg) cells in the mesenteric lymph nodes and colons of PPARγ-expressing but not T cell-specific PPARγ null mice. We conclude that dietary ABA ameliorates experimental inflammatory bowel disease by enhancing T(reg) cell accumulation in the colonic lamina propria through a PPARγ-dependent mechanism. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Copper suppresses abscisic acid catabolism and catalase activity, and inhibits seed germination of rice.

    Science.gov (United States)

    Ye, Nenghui; Li, Haoxuan; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Xu, Weifeng; Jing, Yu; Peng, Xinxiang; Zhang, Jianhua

    2014-11-01

    Although copper (Cu) is an essential micronutrient for plants, a slight excess of Cu in soil can be harmful to plants. Unfortunately, Cu contamination is a growing problem all over the world due to human activities, and poses a soil stress to plant development. As one of the most important biological processes, seed germination is sensitive to Cu stress. However, little is known about the mechanism of Cu-induced inhibition of seed germination. In the present study, we investigated the relationship between Cu and ABA which is the predominant regulator of seed germination. Cu at a concentration of 30 µM effectively inhibited germination of rice caryopsis. ABA content in germinating seeds under copper stress was also higher than that under control conditions. Quantitative real-time PCR (qRT-PCR) revealed that Cu treatment reduced the expression of OsABA8ox2, a key gene of ABA catabolism in rice seeds. In addition, both malondialdehyde (MDA) and H2O2 contents were increased by Cu stress in the germinating seeds. Antioxidant enzyme assays revealed that only catalase activity was reduced by excess Cu, which was consistent with the mRNA profile of OsCATa during seed germination under Cu stress. Together, our results demonstrate that suppression of ABA catabolism and catalase (CAT) activity by excess Cu leads to the inhibition of seed germination of rice. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. The influence of inhibitors of poly (ADP-ribose) polymerase on X-ray induced potentially lethal damage repair

    International Nuclear Information System (INIS)

    Brown, D.M.; Evans, J.W.; Brown, J.M.

    1984-01-01

    Inhibition of repair of X-ray-induced potentially lethal damage (PLD) could enhance the curability of radioresistant tumours. We have studied the effect of inhibitors of the enzyme poly (ADP-ribose) polymerase on X-ray PLD repair. Four classes of inhibitors are known: aromatic amides (e.g., 3-aminobenzamide), thymidine, nicotinamides and methyl xanthines (e.g., caffeine). Plateau-phase Chinese hamster ovary (HA-1) cultures were exposed to 10 mM concentrations of thymidine, nicotinamide, 3-aminobenzamide (3-ABA) and caffeine prior to irradiation to 12 Gy in air, and then incubated with drug at 37 0 C for varying times (0-6 h) prior to subculture. Irradiated cells without drug exhibited a 5-6 fold increase in survival over the 6 h period compared to cultures plated immediately after irradiation. Although none of the compounds proved cytotoxic to unirradiated controls over the 6.5 h exposure, all of the compounds except thymidine reduced the capacity of the cells to repair PLD. The order of the inhibitory effect was caffeine > 3-ABA > nicotinamide, and the inhibition was concentration dependent for nicotinamide and 3-ABA. We also studied the effect of 3-ABA on the radiation response of exponentially growing cells. 5 mM 3-ABA for 2h post-irradiation resulted in a dose-multiplicative sensitization reducing the D 0 from 0.88 Gy to 0.69 Gy, indicating an involvement of poly (ADP-ribose) polymerase in the radiosensitivity of exponentially growing as well as plateau-phase cells. (author)

  15. A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity.

    Directory of Open Access Journals (Sweden)

    Floriane L'Haridon

    2011-07-01

    Full Text Available Wounded leaves of Arabidopsis thaliana show transient immunity to Botrytis cinerea, the causal agent of grey mould. Using a fluorescent probe, histological staining and a luminol assay, we now show that reactive oxygen species (ROS, including H(2O(2 and O(2 (-, are produced within minutes after wounding. ROS are formed in the absence of the enzymes Atrboh D and F and can be prevented by diphenylene iodonium (DPI or catalase. H(2O(2 was shown to protect plants upon exogenous application. ROS accumulation and resistance to B. cinerea were abolished when wounded leaves were incubated under dry conditions, an effect that was found to depend on abscisic acid (ABA. Accordingly, ABA biosynthesis mutants (aba2 and aba3 were still fully resistant under dry conditions even without wounding. Under dry conditions, wounded plants contained higher ABA levels and displayed enhanced expression of ABA-dependent and ABA-reporter genes. Mutants impaired in cutin synthesis such as bdg and lacs2.3 are already known to display a high level of resistance to B. cinerea and were found to produce ROS even when leaves were not wounded. An increased permeability of the cuticle and enhanced ROS production were detected in aba2 and aba3 mutants as described for bdg and lacs2.3. Moreover, leaf surfaces treated with cutinase produced ROS and became more protected to B. cinerea. Thus, increased permeability of the cuticle is strongly linked with ROS formation and resistance to B. cinerea. The amount of oxalic acid, an inhibitor of ROS secreted by B. cinerea could be reduced using plants over expressing a fungal oxalate decarboxylase of Trametes versicolor. Infection of such plants resulted in a faster ROS accumulation and resistance to B. cinerea than that observed in untransformed controls, demonstrating the importance of fungal suppression of ROS formation by oxalic acid. Thus, changes in the diffusive properties of the cuticle are linked with the induction ROS and attending

  16. The small ethylene response factor ERF96 is involved in the regulation of the abscisic acid response in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Xiaoping eWang

    2015-11-01

    that water loss in ERF96 overexpression plants was slower than that in Col wild type plants. Stomatal closure assays indicated that ERF96 overexpression plants had reduced stomatal aperture in the presence of ABA. Taken together, our results suggest that AtERF96 positively regulates ABA responses in Arabidopsis.

  17. Arabidopsis Glutamate Receptor Homolog3.5 Modulates Cytosolic Ca2+ Level to Counteract Effect of Abscisic Acid in Seed Germination1[OPEN

    Science.gov (United States)

    Kong, Dongdong; Ju, Chuanli; Parihar, Aisha; Kim, So; Cho, Daeshik; Kwak, June M.

    2015-01-01

    Seed germination is a critical step in a plant’s life cycle that allows successful propagation and is therefore strictly controlled by endogenous and environmental signals. However, the molecular mechanisms underlying germination control remain elusive. Here, we report that the Arabidopsis (Arabidopsis thaliana) glutamate receptor homolog3.5 (AtGLR3.5) is predominantly expressed in germinating seeds and increases cytosolic Ca2+ concentration that counteracts the effect of abscisic acid (ABA) to promote germination. Repression of AtGLR3.5 impairs cytosolic Ca2+ concentration elevation, significantly delays germination, and enhances ABA sensitivity in seeds, whereas overexpression of AtGLR3.5 results in earlier germination and reduced seed sensitivity to ABA. Furthermore, we show that Ca2+ suppresses the expression of ABSCISIC ACID INSENSITIVE4 (ABI4), a key transcription factor involved in ABA response in seeds, and that ABI4 plays a fundamental role in modulation of Ca2+-dependent germination. Taken together, our results provide molecular genetic evidence that AtGLR3.5-mediated Ca2+ influx stimulates seed germination by antagonizing the inhibitory effects of ABA through suppression of ABI4. These findings establish, to our knowledge, a new and pivotal role of the plant glutamate receptor homolog and Ca2+ signaling in germination control and uncover the orchestrated modulation of the AtGLR3.5-mediated Ca2+ signal and ABA signaling via ABI4 to fine-tune the crucial developmental process, germination, in Arabidopsis. PMID:25681329

  18. Combination of individual tree detection and area-based approach in imputation of forest variables using airborne laser data

    Science.gov (United States)

    Vastaranta, Mikko; Kankare, Ville; Holopainen, Markus; Yu, Xiaowei; Hyyppä, Juha; Hyyppä, Hannu

    2012-01-01

    The two main approaches to deriving forest variables from laser-scanning data are the statistical area-based approach (ABA) and individual tree detection (ITD). With ITD it is feasible to acquire single tree information, as in field measurements. Here, ITD was used for measuring training data for the ABA. In addition to automatic ITD (ITD auto), we tested a combination of ITD auto and visual interpretation (ITD visual). ITD visual had two stages: in the first, ITD auto was carried out and in the second, the results of the ITD auto were visually corrected by interpreting three-dimensional laser point clouds. The field data comprised 509 circular plots ( r = 10 m) that were divided equally for testing and training. ITD-derived forest variables were used for training the ABA and the accuracies of the k-most similar neighbor ( k-MSN) imputations were evaluated and compared with the ABA trained with traditional measurements. The root-mean-squared error (RMSE) in the mean volume was 24.8%, 25.9%, and 27.2% with the ABA trained with field measurements, ITD auto, and ITD visual, respectively. When ITD methods were applied in acquiring training data, the mean volume, basal area, and basal area-weighted mean diameter were underestimated in the ABA by 2.7-9.2%. This project constituted a pilot study for using ITD measurements as training data for the ABA. Further studies are needed to reduce the bias and to determine the accuracy obtained in imputation of species-specific variables. The method could be applied in areas with sparse road networks or when the costs of fieldwork must be minimized.

  19. Abscisic acid regulates seed germination of Vellozia species in response to temperature.

    Science.gov (United States)

    Vieira, B C; Bicalho, E M; Munné-Bosch, S; Garcia, Q S

    2017-03-01

    The relationship between the phytohormones, gibberellin (GA) and abscisic acid (ABA) and light and temperature on seed germination is still not well understood. We aimed to investigate the role of the ABA and GA on seed germination of Vellozia caruncularis, V. intermedia and V. alutacea in response to light/dark conditions on different temperature. Seeds were incubated in GA (GA 3 or GA 4 ) or ABA and their respective biosynthesis inhibitors (paclobutrazol - PAC, and fluridone - FLU) solutions at two contrasting temperatures (25 and 40 °C). Furthermore, endogenous concentrations of active GAs and those of ABA were measured in seeds of V. intermedia and V. alutacea during imbibition/germination. Exogenous ABA inhibited the germination of Vellozia species under all conditions tested. GA, FLU and FLU + GA 3 stimulated germination in the dark at 25 °C (GA 4 being more effective than GA 3 ). PAC reduced seed germination in V. caruncularis and V. alutacea, but did not affect germination of V. intermedia at 40 °C either under light or dark conditions. During imbibition in the dark, levels of active GAs decreased in the seeds of V. intermedia, but were not altered in those of V. alutacea. Incubation at 40 °C decreased ABA levels during imbibition in both V. caruncularis and V. alutacea. We conclude that the seeds of Vellozia species studied here require light or high temperature to germinate and ABA has a major role in the regulation of Vellozia seed germination in response to light and temperature. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Physiological and molecular analysis of the interaction between aluminium toxicity and drought stress in common bean (Phaseolus vulgaris)

    Science.gov (United States)

    Yang, Zhong-Bao; Eticha, Dejene; Albacete, Alfonso; Rao, Idupulapati Madhusudana; Roitsch, Thomas; Horst, Walter Johannes

    2012-01-01

    Aluminium (Al) toxicity and drought are two major factors limiting common bean (Phaseolus vulgaris) production in the tropics. Short-term effects of Al toxicity and drought stress on root growth in acid, Al-toxic soil were studied, with special emphasis on Al–drought interaction in the root apex. Root elongation was inhibited by both Al and drought. Combined stresses resulted in a more severe inhibition of root elongation than either stress alone. This result was different from the alleviation of Al toxicity by osmotic stress (–0.60 MPa polyethylene glycol) in hydroponics. However, drought reduced the impact of Al on the root tip, as indicated by the reduction of Al-induced callose formation and MATE expression. Combined Al and drought stress enhanced up-regulation of ACCO expression and synthesis of zeatin riboside, reduced drought-enhanced abscisic acid (ABA) concentration, and expression of NCED involved in ABA biosynthesis and the transcription factors bZIP and MYB, thus affecting the regulation of ABA-dependent genes (SUS, PvLEA18, KS-DHN, and LTP) in root tips. The results provide circumstantial evidence that in soil, drought alleviates Al injury, but Al renders the root apex more drought-sensitive, particularly by impacting the gene regulatory network involved in ABA signal transduction and cross-talk with other phytohormones necessary for maintaining root growth under drought. PMID:22371077

  1. Abscisic acid and ethephon regulation of cellulase in the endosperm cap and radicle during lettuce seed germination.

    Science.gov (United States)

    Chen, Bingxian; Ma, Jun; Xu, Zhenjiang; Wang, Xiaofeng

    2016-10-01

    The purpose of this study was to investigate the role of cellulase in endosperm cap weakening and radicle elongation during lettuce (Lactuca sativa L.) seed germination. The application of abscisic acid (ABA) or ethephon inhibits or promotes germination, respectively, by affecting endosperm cap weakening and radicle elongation. Cellulase activities, and related protein and transcript abundances of two lettuce cellulase genes, LsCEL1 and LsCEL2, increase in the endosperm cap and radicle prior to radicle protrusion following imbibition in water. ABA or ethephon reduce or elevate, respectively, cellulase activity, and related protein and transcript abundances in the endosperm cap. Taken together, these observations suggest that cellulase plays a role in endosperm cap weakening and radicle elongation during lettuce seed germination, and that the regulation of cellulase in the endosperm cap by ABA and ethephon play a role in endosperm cap weakening. However, the influence of ABA and ethephon on radicle elongation may not be through their effects on cellulase. © 2016 Institute of Botany, Chinese Academy of Sciences.

  2. Development of Agrobacterium-mediated virus-induced gene silencing and performance evaluation of four marker genes in Gossypium barbadense.

    Directory of Open Access Journals (Sweden)

    Jinhuan Pang

    Full Text Available Gossypiumbarbadense is a cultivated cotton species and possesses many desirable traits, including high fiber quality and resistance to pathogens, especially Verticilliumdahliae (a devastating pathogen of Gossypium hirsutum, the main cultivated species. These elite traits are difficult to be introduced into G. hirsutum through classical breeding methods. In addition, genetic transformation of G. barbadense has not been successfully performed. It is therefore important to develop methods for evaluating the function and molecular mechanism of genes in G. barbadense. In this study, we had successfully introduced a virus-induced gene silencing (VIGS system into three cultivars of G. barbadense by inserting marker genes into the tobacco rattle virus (TRV vector. After we optimized the VIGS conditions, including light intensity, photoperiod, seedling age and Agrobacterium strain, 100% of plants agroinfiltrated with the GaPDS silencing vector showed white colored leaves. Three other marker genes, GaCLA1, GaANS and GaANR, were employed to further test this VIGS system in G. barbadense. The transcript levels of the endogenous genes in the silenced plants were reduced by more than 99% compared to control plants; these plants presented phenotypic symptoms 2 weeks after inoculation. We introduced a fusing sequence fragment of GaPDS and GaANR gene silencing vectors into a single plant, which resulted in both photobleaching and brownish coloration. The extent of silencing in plants agroinfiltrated with fusing two-gene-silencing vector was consistent with plants harboring a single gene silencing vector. The development of this VIGS system should promote analysis of gene function in G. barbadense, and help to contribute desirable traits for breeding of G. barbadense and G. hirsutum.

  3. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition.

    Science.gov (United States)

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-04-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development. © The Author 2016. Published by

  4. Exogenous application of abscisic acid may improve the growth and yield of sunflower hybrids under drought

    International Nuclear Information System (INIS)

    Hussain, S.; Iqbal, J.; Ibrahim, M.; Atta, S.; Ahmed, T.; Saleem, M.F.

    2014-01-01

    Sunflower genotypes perform differently under different water regimes. Drought stress at various growth stages drastically reduces the growth, development and yield of sunflower hybrids. However, exogenous application of abscisic acid helps in mitigating drought stress by improving growth, development and yield of sunflower. In the present study, three sunflower hybrids viz. DK-4040 (large stature), S-278 (medium stature) and SF-187 (short stature) were exposed to varied irrigation regimes and abscisic acid application schedule i.e. T1: four irrigations with schedule (25DAS, at bud, flower initiation and at achene formation) and with no ABA spray,T/sub 2/: three irrigations with schedule (25DAS, at flower initiation and at achene formation) and with no ABA spray, T/sub 3/: three irrigations with schedule (25DAS, at flower initiation and at achene formation) and with 8 mu MABA spray at bud initiation, T/sub 4/: three irrigations with schedule (25DAS, at bud initiation and at achene formation) and with no ABA spray, T/sub 5/: three irrigations with schedule (25DAS, at bud initiation and at achene formation) and with 8 mu M ABA spray at flower initiation. Experiment was laid out in Randomized Complete Design with factorial arrangement having three replications. ABA application at bud or at flower initiation under drought stress helped in mitigating the detrimental effects by improving growth and yield of sunflower hybrids. Enhancement in drought tolerance of sunflower genotypes was better when ABA was applied at bud initiation stage than that of at flower initiation stage under drought. Improvements in head diameter, achenes per head, 1000-achene weight, achene yield, oil yield, biological yield, harvest index, leaf area index and crop growth rate was recorded. Sunflower hybrid DK-4040 showed more improvement in drought tolerance byfoliar application of ABA under water deficit stress than that of the SF-187 and S-278. It is suggested that sunflower hybrid DK 4040

  5. A new look at stress: abscisic acid patterns and dynamics at high-resolution.

    Science.gov (United States)

    Jones, Alexander M

    2016-04-01

    Abscisic acid (ABA) is a key phytohormone promoting abiotic stress tolerance as well as developmental processes such as seed dormancy. A spatiotemporal map of ABA concentrations would greatly advance our understanding of the cell type and timing of ABA action. Organ and tissue-level ABA measurements, as well as indirect in vivo measurements such as cell-specific transcriptional analysis of ABA metabolic enzymes and ABA-responsive promoters, have all contributed to current views of the localization and timing of ABA accumulations. Recently developed Förster resonance energy transfer (FRET) biosensors for ABA that sense ABA levels directly promise to add unprecedented resolution to in vivo ABA spatiotemporal mapping and expand our knowledge of the mechanisms controlling ABA levels in space and time. © 2015 Carnegie Institution for Science New Phytologist © 2015 New Phytologist Trust.

  6. Compartmentation and equilibration of abscisic acid in isolated Xanthium cells

    International Nuclear Information System (INIS)

    Bray, E.A.; Zeevaart, J.A.D.

    1986-01-01

    The compartmentation of endogenous abscisic acid (ABA), applied (+/-)-[ 3 H]ABA, and (+/-)-trans-ABA was measured in isolated mesophyll cells of the Chicago strain of Xanthium strumarium L. The release of ABA to the medium in the presence or absence of DMSO was used to determine the equilibration of ABA in the cells. It was found that a greater percentage of the (+/-)-[ 3 H]ABA and the (+/-)-trans-ABA was released into the medium than of the endogenous ABA, indicating that applied ABA did not equilibrate with the endogenous material. Therefore, in further investigations only the compartmentation of endogenous ABA was studied. Endogenous ABA was released from Xanthium cells according to the pH gradients among the various cellular compartments. Thus, darkness, high external pH, KNO 2 , and drought-stress all increased the efflux of ABA from the cells. Efflux of ABA from the cells in the presence of 0.6 M mannitol occurred within 30 seconds, but only 8% of the endogenous material was released during the 20 minute treatment

  7. Synthesis and Biological Activity of 2',3'-iso-Aryl-abscisic Acid Analogs.

    Science.gov (United States)

    Wan, Chuan; Wang, Mingan; Yang, Dongyan; Han, Xiaoqiang; Che, Chuanliang; Ding, Shanshan; Xiao, Yumei; Qin, Zhaohai

    2017-12-15

    2',3'- iso -Benzoabscisic acid ( iso -PhABA), an excellent selective abscisic acid (ABA) analog, was developed in our previous work. In order to find its more structure-activity information, some structural modifications were completed in this paper, including the substitution of phenyl ring and replacing the ring with heterocycles. Thus, 16 novel analogs of iso -PhABA were synthesized and screened with three bioassays, Arabidopsis and lettuce seed germination and rice seedling elongation. Some of them, i.e., 2',3'- iso -pyridoabscisic acid ( iso -PyABA) and 2',3'- iso -franoabscisic acid ( iso -FrABA), displayed good bioactivities that closed to iso -PhABA and natural (+)-ABA. Some others, for instance, substituted- iso -PhABA, exhibited certain selectivity to different physiological process when compared to iso -PhABA or (+)-ABA. These analogs not only provided new candidates of ABA-like synthetic plant growth regulators (PGRs) for practical application, but also new potential selective agonist/antagonist for probing the specific function of ABA receptors.

  8. Induction of Barley Silicon Transporter HvLsi1 and HvLsi2, increased silicon concentration in the shoot and regulated Starch and ABA Homeostasis under Osmotic stress and Concomitant Potassium Deficiency

    Directory of Open Access Journals (Sweden)

    Seyed A. Hosseini

    2017-08-01

    Full Text Available Drought is one of the major stress factors reducing cereal production worldwide. There is ample evidence that the mineral nutrient status of plants plays a critical role in increasing plant tolerance to different biotic and abiotic stresses. In this regard, the important role of various nutrients e.g., potassium (K or silicon (Si in the mitigation of different stress factors, such as drought, heat or frost has been well documented. Si application has been reported to ameliorate plant nutrient deficiency. Here, we used K and Si either solely or in combination to investigate whether an additive positive effect on barley growth can be achieved under osmotic stress and which mechanisms contribute to a better tolerance to osmotic stress. To achieve this goal, barley plants were subjected to polyethylene glycol (PEG-induced osmotic stress under low or high K supply and two Si regimes. The results showed that barley silicon transporters HvLsi1 and HvLsi2 regulate the accumulation of Si in the shoot only when plant suffered from K deficiency. Si, in turn, increased the starch level under both osmotic stress and K deficiency and modulated the glycolytic and TCA pathways. Hormone profiling revealed that the beneficial effect of Si is most likely mediated also by ABA homeostasis and active cytokinin isopentenyl adenine (iP. We conclude that Si may effectively improve stress tolerance under K deficient condition in particular when additional stress like osmotic stress interferes.

  9. Functional mechanisms of drought tolerance in subtropical maize (Zea mays L.) identified using genome-wide association mapping.

    Science.gov (United States)

    Thirunavukkarasu, Nepolean; Hossain, Firoz; Arora, Kanika; Sharma, Rinku; Shiriga, Kaliyugam; Mittal, Swati; Mohan, Sweta; Namratha, Pottekatt Mohanlal; Dogga, Sreelatha; Rani, Tikka Shobha; Katragadda, Sumalini; Rathore, Abhishek; Shah, Trushar; Mohapatra, Trilochan; Gupta, Hari Shankar

    2014-12-24

    Earlier studies were focused on the genetics of temperate and tropical maize under drought. We identified genetic loci and their association with functional mechanisms in 240 accessions of subtropical maize using a high-density marker set under water stress. Out of 61 significant SNPs (11 were false-discovery-rate-corrected associations), identified across agronomic traits, models, and locations by subjecting the accessions to water stress at flowering stage, 48% were associated with drought-tolerant genes. Maize gene models revealed that SNPs mapped for agronomic traits were in fact associated with number of functional traits as follows: stomatal closure, 28; flowering, 15; root development, 5; detoxification, 4; and reduced water potential, 2. Interactions of these SNPS through the functional traits could lead to drought tolerance. The SNPs associated with ABA-dependent signalling pathways played a major role in the plant's response to stress by regulating a series of functions including flowering, root development, auxin metabolism, guard cell functions, and scavenging reactive oxygen species (ROS). ABA signalling genes regulate flowering through epigenetic changes in stress-responsive genes. ROS generated by ABA signalling are reduced by the interplay between ethylene, ABA, and detoxification signalling transductions. Integration of ABA-signalling genes with auxin-inducible genes regulates root development which in turn, maintains the water balance by regulating electrochemical gradient in plant. Several genes are directly or indirectly involved in the functioning of agronomic traits related to water stress. Genes involved in these crucial biological functions interacted significantly in order to maintain the primary as well as exclusive functions related to coping with water stress. SNPs associated with drought-tolerant genes involved in strategic biological functions will be useful to understand the mechanisms of drought tolerance in subtropical maize.

  10. TaCHP: a wheat zinc finger protein gene down-regulated by abscisic acid and salinity stress plays a positive role in stress tolerance.

    Science.gov (United States)

    Li, Cuiling; Lv, Jian; Zhao, Xin; Ai, Xinghui; Zhu, Xinlei; Wang, Mengcheng; Zhao, Shuangyi; Xia, Guangmin

    2010-09-01

    The plant response to abiotic stresses involves both abscisic acid (ABA)-dependent and ABA-independent signaling pathways. Here we describe TaCHP, a CHP-rich (for cysteine, histidine, and proline rich) zinc finger protein family gene extracted from bread wheat (Triticum aestivum), is differentially expressed during abiotic stress between the salinity-sensitive cultivar Jinan 177 and its tolerant somatic hybrid introgression cultivar Shanrong No.3. TaCHP expressed in the roots of seedlings at the three-leaf stage, and the transcript localized within the cells of the root tip cortex and meristem. TaCHP transcript abundance was higher in Shanrong No.3 than in Jinan 177, but was reduced by the imposition of salinity or drought stress, as well as by the exogenous supply of ABA. When JN17, a salinity hypersensitive wheat cultivar, was engineered to overexpress TaCHP, its performance in the face of salinity stress was improved, and the ectopic expression of TaCHP in Arabidopsis (Arabidopsis thaliana) also improved the ability of salt tolerance. The expression level of a number of stress reporter genes (AtCBF3, AtDREB2A, AtABI2, and AtABI1) was raised in the transgenic lines in the presence of salinity stress, while that of AtMYB15, AtABA2, and AtAAO3 was reduced in its absence. The presence in the upstream region of the TaCHP open reading frame of the cis-elements ABRE, MYBRS, and MYCRS suggests that it is a component of the ABA-dependent and -independent signaling pathways involved in the plant response to abiotic stress. We suggest that TaCHP enhances stress tolerance via the promotion of CBF3 and DREB2A expression.

  11. Abscisic Acid Antagonizes Ethylene Production through the ABI4-Mediated Transcriptional Repression of ACS4 and ACS8 in Arabidopsis.

    Science.gov (United States)

    Dong, Zhijun; Yu, Yanwen; Li, Shenghui; Wang, Juan; Tang, Saijun; Huang, Rongfeng

    2016-01-04

    Increasing evidence has revealed that abscisic acid (ABA) negatively modulates ethylene biosynthesis, although the underlying mechanism remains unclear. To identify the factors involved, we conducted a screen for ABA-insensitive mutants with altered ethylene production in Arabidopsis. A dominant allele of ABI4, abi4-152, which produces a putative protein with a 16-amino-acid truncation at the C-terminus of ABI4, reduces ethylene production. By contrast, two recessive knockout alleles of ABI4, abi4-102 and abi4-103, result in increased ethylene evolution, indicating that ABI4 negatively regulates ethylene production. Further analyses showed that expression of the ethylene biosynthesis genes ACS4, ACS8, and ACO2 was significantly decreased in abi4-152 but increased in the knockout mutants, with partial dependence on ABA. Chromatin immunoprecipitation-quantitative PCR assays showed that ABI4 directly binds the promoters of these ethylene biosynthesis genes and that ABA enhances this interaction. A fusion protein containing the truncated ABI4-152 peptide accumulated to higher levels than its full-length counterpart in transgenic plants, suggesting that ABI4 is destabilized by its C terminus. Therefore, our results demonstrate that ABA negatively regulates ethylene production through ABI4-mediated transcriptional repression of the ethylene biosynthesis genes ACS4 and ACS8 in Arabidopsis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  12. An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa).

    Science.gov (United States)

    Zhang, Ye; Lan, Hongxia; Shao, Qiaolin; Wang, Ruqin; Chen, Hui; Tang, Haijuan; Zhang, Hongsheng; Huang, Ji

    2016-01-01

    The plant hormones gibberellins (GA) and abscisic acid (ABA) play important roles in plant development and stress responses. Here we report a novel A20/AN1-type zinc finger protein ZFP185 involved in GA and ABA signaling in the regulation of growth and stress response. ZFP185 was constitutively expressed in various rice tissues. Overexpression of ZFP185 in rice results in a semi-dwarfism phenotype, reduced cell size, and the decrease of endogenous GA3 content. By contrast, higher GA3 content was observed in RNAi plants. The application of exogenous GA3 can fully rescue the semi-dwarfism phenotype of ZFP185 overexpressing plants, suggesting the negative role of ZFP185 in GA biosynthesis. Besides GA, overexpression of ZFP185 decreased ABA content and expression of several ABA biosynthesis-related genes. Moreover, it was found that ZFP185, unlike previously known A20/AN1-type zinc finger genes, increases sensitivity to drought, cold, and salt stresses, implying the negative role of ZFP185 in stress tolerance. ZFP185 was localized in the cytoplasm and lacked transcriptional activation potential. Our study suggests that ZFP185 regulates plant growth and stress responses by affecting GA and ABA biosynthesis in rice. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Identification and characterization of bZIP-type transcription factors involved in carrot (Daucus carota L.) somatic embryogenesis.

    Science.gov (United States)

    Guan, Yucheng; Ren, Haibo; Xie, He; Ma, Zeyang; Chen, Fan

    2009-10-01

    Seed dormancy is an important adaptive trait that enables seeds of many species to remain quiescent until conditions become favorable for germination. Abscisic acid (ABA) plays an important role in these developmental processes. Like dormancy and germination, the elongation of carrot somatic embryo radicles is retarded by sucrose concentrations at or above 6%, and normal growth resumes at sucrose concentrations below 3%. Using a yeast one-hybrid screening system, we isolated two bZIP-type transcription factors, CAREB1 and CAREB2, from a cDNA library prepared from carrot somatic embryos cultured in a high-sucrose medium. Both CAREB1 and CAREB2 were localized to the nucleus, and specifically bound to the ABA response element (ABRE) in the Dc3 promoter. Expression of CAREB2 was induced in seedlings by drought and exogenous ABA application; whereas expression of CAREB1 increased during late embryogenesis, and reduced dramatically when somatic embryos were treated with fluridone, an inhibitor of ABA synthesis. Overexpression of CAREB1 caused somatic embryos to develop slowly when cultured in low-sucrose medium, and retarded the elongation of the radicles. These results indicate that CAREB1 and CAREB2 have similar DNA-binding activities, but play different roles during carrot development. Our results indicate that CAREB1 functions as an important trans-acting factor in the ABA signal transduction pathway during carrot somatic embryogenesis.

  14. Nutritive values of brassica campestris L. oil as affected by growth regulator treatments

    International Nuclear Information System (INIS)

    Bano, A.; Khan, N.

    2009-01-01

    The effects of plant growth regulators, viz. Indole acetic acid (IAA), Gibberellic acid (GA) and Abscisic acid (ABA) were studied on fatty acid compositions, glucosinolate content and protein content of Brassica campestris L subsp. Oleifera (common name yellow sarson). Growth regulators were applied in seed soaking solution as well as foliar spray during vegetative phase and at flowering stage. There were reductions in the amount of long chain fatty acids viz erucic acid, eicosenoic acid and increase in the amount of unsaturated fatty acid viz. linoleic acid by lAA applications. The stimulating effect of lAA which reduced amount of unsaturated fatty acid was more pronounced when applied as foliar spray at vegetative stage. But, foliar spray of ABA during flowering increased the concentration of linoleic acid and reduced the eicosenoic acid and erucic acid. The glucosinolate content was greater in seeds soaked in 10/sup -5/ M lAA than that of control but less in 10/sup -5/ M GA treated seeds than that of control. The ABA treatment (10/sup -5/M) increased the concentration of glucosinolates in the seeds IAA treatments (10/sup -5/M) increased the protein percentage in the seeds. Foliar application of GA (10/sup -5/M) during vegetative growth and ABA (10/sup -5/M) as seed soaking prior to sowing as well as foliar spry during flowering decreased the protein content of seeds. (author)

  15. Relationship between abscisic acid (ABA) concentration and some ...

    African Journals Online (AJOL)

    saeed

    2011-11-16

    Nov 16, 2011 ... 2Agriculture Biotechnology Research Institute, Karaj, Iran. ... grain filling processes under water restriction are limited by low substrate availability and reduced ... Severe drought stress also inhibits the photosynthesis of.

  16. Abscisic acid negatively regulates post-penetration resistance of Arabidopsis to the biotrophic powdery mildew fungus.

    Science.gov (United States)

    Xiao, Xiang; Cheng, Xi; Yin, Kangquan; Li, Huali; Qiu, Jin-Long

    2017-08-01

    Pytohormone abscisic acid (ABA) plays important roles in defense responses. Nonetheless, how ABA regulates plant resistance to biotrophic fungi remains largely unknown. Arabidopsis ABA-deficient mutants, aba2-1 and aba3-1, displayed enhanced resistance to the biotrophic powdery mildew fungus Golovinomyces cichoracearum. Moreover, exogenously administered ABA increased the susceptibility of Arabidopsis to G. cichoracearum. Arabidopsis ABA perception components mutants, abi1-1 and abi2-1, also displayed similar phenotypes to ABA-deficient mutants in resistance to G. cichoracearum. However, the resistance to G. cichoracearum is not changed in downstream ABA signaling transduction mutants, abi3-1, abi4-1, and abi5-1. Microscopic examination revealed that hyphal growth and conidiophore production of G. cichoracearum were compromised in the ABA deficient mutants, even though pre-penetration and penetration growth of the fungus were not affected. In addition, salicylic acid (SA) and MPK3 are found to be involved in ABA-regulated resistance to G. cichoracearum. Our work demonstrates that ABA negatively regulates post-penetration resistance of Arabidopsis to powdery mildew fungus G. cichoracearum, probably through antagonizing the function of SA.

  17. Monoclonal antibodies for the detection and quantitation of the endogenous plant growth regulator, abscisic acid

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, R.; Weiler, E.W. (Bochum Univ. (Germany, F.R.). Lehrstuhl fuer Pflanzenphysiologie); Deus-Neumann, B. (Muenchen Univ. (Germany, F.R.). Inst. fuer pharmazeutische Biologie)

    1983-08-22

    Monoclonal antibodies (mAB) have been produced which recognize the physiologically active 2-cis-(S)-form of the endogenous plant growth regulator, abscisic acid (ABA). Cross-reaction with the ABA-catabolites, phaseic and dihydrophaseic acid, is negligible, and (R)-ABA, 2-trans-ABA, the ABA-conjugate, ABA-..beta..-D-glucopyranosyl ester, as well as the putative ABA precursor, xanthoxin, are totally unreactive. In addition to being very specific, the mAB exhibit high affinities for 2-cis-(S)-ABA; the K values were 7.9 x 10/sup 9/ l/mol and 3.7 x 10/sup 9/ l/mol for antibodies from two different clones. By mAB-radioimmunoassay (RIA), 4 pg of 2-cis-(S)-ABA (99.5% confidence level) can be detected. mAB-RIA can be used to quantitate ABA directly in unprocessed plant extracts.

  18. Monoclonal antibodies for the detection and quantitation of the endogenous plant growth regulator, abscisic acid

    International Nuclear Information System (INIS)

    Mertens, R.; Weiler, E.W.; Deus-Neumann, B.

    1983-01-01

    Monoclonal antibodies (mAB) have been produced which recognize the physiologically active 2-cis-(S)-form of the endogenous plant growth regulator, abscisic acid (ABA). Cross-reaction with the ABA-catabolites, phaseic and dihydrophaseic acid, is negligible, and (R)-ABA, 2-trans-ABA, the ABA-conjugate, ABA-β-D-glucopyranosyl ester, as well as the putative ABA precursor, xanthoxin, are totally unreactive. In addition to being very specific, the mAB exhibit high affinities for 2-cis-(S)-ABA; the K values were 7.9 x 10 9 l/mol and 3.7 x 10 9 l/mol for antibodies from two different clones. By mAB-radioimmunoassay (RIA), 4 pg of 2-cis-(S)-ABA (99.5% confidence level) can be detected. mAB-RIA can be used to quantitate ABA directly in unprocessed plant extracts. (Auth.)

  19. Virus-induced down-regulation of GmERA1A and GmERA1B genes enhances the stomatal response to abscisic acid and drought resistance in soybean.

    Directory of Open Access Journals (Sweden)

    Takuya Ogata

    Full Text Available Drought is a major threat to global soybean production. The limited transformation potential and polyploid nature of soybean have hindered functional analysis of soybean genes. Previous research has implicated farnesylation in the plant's response to abscisic acid (ABA and drought tolerance. We therefore used virus-induced gene silencing (VIGS to evaluate farnesyltransferase genes, GmERA1A and GmERA1B (Glycine max Enhanced Response to ABA1-A and -B, as potential targets for increasing drought resistance in soybean. Apple latent spherical virus (ALSV-mediated GmERA1-down-regulated soybean leaves displayed an enhanced stomatal response to ABA and reduced water loss and wilting under dehydration conditions, suggesting that GmERA1A and GmERA1B negatively regulate ABA signaling in soybean guard cells. The findings provide evidence that the ALSV-VIGS system, which bypasses the need to generate transgenic plants, is a useful tool for analyzing gene function using only a single down-regulated leaf. Thus, the ALSV-VIGS system could constitute part of a next-generation molecular breeding pipeline to accelerate drought resistance breeding in soybean.

  20. Determination of carbon-reduction-cycle intermediates in leaves of Arbutus unedo L. suffering depressions in photosynthesis after application of abscisic acid or exposure to dry air.

    Science.gov (United States)

    Loske, D; Raschke, K

    1988-02-01

    Gas exchange and contents of photosynthetic intermediates of leaves of Arbutus unedo L. were determined with the aim of recognizing the mechanisms of inhibition that were responsible for the "midday depression" of photosynthesis following exposure to dry air, and the decline in photosynthetic capacity following application of abscisic acid (ABA). Rapidly killed (<0.1 s) leaf samples were taken when gas analysis showed reduced CO2 assimilation. Determination of the contents of 3-phosphoglyceric acid (PGA), ribulose 1,5-bisphosphate (RuBP), triose phosphates, fructose 1,6-bisphosphate and hexose phosphates in the samples showed that significant variation occurred only in the level of PGA. As a result, the ratio PGA/RuBP decreased with increasing inhibition of photosynthesis, particularly when application of ABA had been the cause. A comparison of metabolite patterns did not bring out qualitative differences that would have indicated that effects of ABA and of dry air had been caused by separate mechanisms. Depression of photosynthesis occurred in the presence of sufficient RuBP which indicated that the carboxylation reaction of the carbon-reduction-cycle was inhibited after application of ABA or exposure to dry air.

  1. Liver function assessment in malaria, typhoid and malaria-typhoid co-infection in Aba, Abia State, Nigeria.

    Science.gov (United States)

    Enemchukwu, B N; Ibe, C C; Udedi, S C; Iroha, A; Ubaoji, K I; Ogundapo, S S

    2014-06-01

    Malaria and typhoid fever are among the most endemic diseases in the tropics and are associated with poverty and underdevelopment with significant morbidity and mortality. Both diseases can lead to liver damage if not properly treated. The liver function assessment was therefore conducted on (90) volunteer patients; comprising (30) patients with malaria only, (30) with typhoid only and (30) with malaria-typhoid co-infection randomly selected from Abia State University Teaching Hospital, Aba, Abia State, Nigeria and (20) healthy individuals were used as control. Blood samples collected from these subjects were screened for malaria parasite and Staphylococcus typhi using standard methods. Mean serum levels of ALP (112.55±84.23), AST (31.33±12.80), ALT (23.10±11.84), TB (19.43±5.02), CB (5.91±3.03) and ALP (116.69±48.68), AST (28.33±11.72), ALT (22.8±5.94), TB (19.31±5.84),CB (5.60±2.50) were obtained for those subjects with malaria and typhoid respectively and subjects with malaria-typhoid co-infection recorded the following; ALP (134.33±56.62), AST (33.97±8.43), ALT (24.40±4.37),TB (21.27±2.96),CB (6.58±3.10) while the control subjects had mean serum levels ofALP (71.05±18.18), AST (16.65±7.45), ALT (13.85±6.09), TB (10.05±4.85) and CB (3.00±1.67). These mean values were subjected to a statistical test using students t-test which revealed a significant increase (p<0.05).The results suggest that malaria, typhoid and malaria-typhoid co-infection can elevate ALP, AST, ALT, TB and CB serum levels and can lead to liver damage if not properly treated.

  2. Genome Wide Transcriptome Analysis reveals ABA mediated response in Arabidopsis during Gold (AuCl4- treatment

    Directory of Open Access Journals (Sweden)

    Devesh eShukla

    2014-11-01

    Full Text Available The unique physico-chemical properties of gold nanoparticles (AuNPs find manifold applications in diagnostics, medicine and catalysis. Chemical synthesis produces reactive AuNPs and generates hazardous by-products. Alternatively, plants can be utilized to produce AuNPs in an eco-friendly manner. To better control the biosynthesis of AuNPs, we need to first understand the detailed molecular response induced by AuCl4- In this study, we carried out global transcriptome analysis in root tissue of Arabidopsis grown for 12- hours in presence of gold solution (HAuCl4 using the novel unbiased Affymetrix exon array. Transcriptomics analysis revealed differential regulation of a total of 704 genes and 4900 exons. Of these, 492 and 212 genes were up- and downregulated, respectively. The validation of the expressed key genes, such as glutathione-S-transferases, auxin responsive genes, cytochrome P450 82C2, methyl transferases, transducin (G protein beta subunit, ERF transcription factor, ABC, and MATE transporters, was carried out through quantitative RT-PCR. These key genes demonstrated specific induction under AuCl4- treatment relative to other heavy metals, suggesting a unique plant-gold interaction. GO enrichment analysis reveals the upregulation of processes like oxidative stress, glutathione binding, metal binding, transport, and plant hormonal responses. Changes predicted in biochemical pathways indicated major modulation in glutathione mediated detoxification, flavones and derivatives, and plant hormone biosynthesis. Motif search analysis identified a highly significant enriched motif, ACGT, which is an abscisic acid responsive core element (ABRE, suggesting the possibility of ABA- mediated signaling. Identification of abscisic acid response element (ABRE points to the operation of a predominant signaling mechanism in response to AuCl4- exposure. Overall, this study presents a useful picture of plant-gold interaction with an identification of

  3. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants.

    Science.gov (United States)

    Cai, Ronghao; Dai, Wei; Zhang, Congsheng; Wang, Yan; Wu, Min; Zhao, Yang; Ma, Qing; Xiang, Yan; Cheng, Beijiu

    2017-12-01

    We cloned and characterized the ZmWRKY17 gene from maize. Overexpression of ZmWRKY17 in Arabidopsis led to increased sensitivity to salt stress and decreased ABA sensitivity through regulating the expression of some ABA- and stress-responsive genes. The WRKY transcription factors have been reported to function as positive or negative regulators in many different biological processes including plant development, defense regulation and stress response. This study isolated a maize WRKY gene, ZmWRKY17, and characterized its role in tolerance to salt stress by generating transgenic Arabidopsis plants. Expression of the ZmWRKY17 was up-regulated by drought, salt and abscisic acid (ABA) treatments. ZmWRKY17 was localized in the nucleus with no transcriptional activation in yeast. Yeast one-hybrid assay showed that ZmWRKY17 can specifically bind to W-box, and it can activate W-box-dependent transcription in planta. Heterologous overexpression of ZmWRKY17 in Arabidopsis remarkably reduced plant tolerance to salt stress, as determined through physiological analyses of the cotyledons greening rate, root growth, relative electrical leakage and malondialdehyde content. Additionally, ZmWRKY17 transgenic plants showed decreased sensitivity to ABA during seed germination and early seedling growth. Transgenic plants accumulated higher content of ABA than wild-type (WT) plants under NaCl condition. Transcriptome and quantitative real-time PCR analyses revealed that some stress-related genes in transgenic seedlings showed lower expression level than that in the WT when treated with NaCl. Taken together, these results suggest that ZmWRKY17 may act as a negative regulator involved in the salt stress responses through ABA signalling.

  4. Overexpression of a Protein Phosphatase 2C from Beech Seeds in Arabidopsis Shows Phenotypes Related to Abscisic Acid Responses and Gibberellin Biosynthesis1

    Science.gov (United States)

    Reyes, David; Rodríguez, Dolores; González-García, Mary Paz; Lorenzo, Oscar; Nicolás, Gregorio; García-Martínez, José Luis; Nicolás, Carlos

    2006-01-01

    A functional abscisic acid (ABA)-induced protein phosphatase type 2C (PP2C) was previously isolated from beech (Fagus sylvatica) seeds (FsPP2C2). Because transgenic work is not possible in beech, in this study we overexpressed this gene in Arabidopsis (Arabidopsis thaliana) to provide genetic evidence on FsPP2C2 function in seed dormancy and other plant responses. In contrast with other PP2Cs described so far, constitutive expression of FsPP2C2 in Arabidopsis, under the cauliflower mosaic virus 35S promoter, produced enhanced sensitivity to ABA and abiotic stress in seeds and vegetative tissues, dwarf phenotype, and delayed flowering, and all these effects were reversed by gibberellic acid application. The levels of active gibberellins (GAs) were reduced in 35S:FsPP2C2 plants, although transcript levels of AtGA20ox1 and AtGA3ox1 increased, probably as a result of negative feedback regulation, whereas the expression of GASA1 was induced by GAs. Additionally, FsPP2C2-overexpressing plants showed a strong induction of the Responsive to ABA 18 (RAB18) gene. Interestingly, FsPP2C2 contains two nuclear targeting sequences, and transient expression assays revealed that ABA directed this protein to the nucleus. Whereas other plant PP2Cs have been shown to act as negative regulators, our results support the hypothesis that FsPP2C2 is a positive regulator of ABA. Moreover, our results indicate the existence of potential cross-talk between ABA signaling and GA biosynthesis. PMID:16815952

  5. Movement of Abscisic Acid into the Apoplast in Response to Water Stress in Xanthium strumarium L.

    Science.gov (United States)

    Cornish, K; Zeevaart, J A

    1985-07-01

    The effect of water stress on the redistribution of abcisic acid (ABA) in mature leaves of Xanthium strumarium L. was investigated using a pressure dehydration technique. In both turgid and stressed leaves, the ABA in the xylem exudate, the ;apoplastic' ABA, increased before ;bulk leaf' stress-induced ABA accumulation began. In the initially turgid leaves, the ABA level remained constant in both the apoplast and the leaf as a whole until wilting symptoms appeared. Following turgor loss, sufficient quantities of ABA moved into the apoplast to stimulate stomatal closure. Thus, the initial increase of apoplastic ABA may be relevant to the rapid stomatal closure seen in stressed leaves before their bulk leaf ABA levels rise.Following recovery from water stress, elevated levels of ABA remained in the apoplast after the bulk leaf contents had returned to their prestress values. This apoplastic ABA may retard stomatal reopening during the initial recovery period.

  6. Abscisic acid synergizes with rosiglitazone to improve glucose tolerance, down-modulate macrophage accumulation in adipose tissue: possible action of the cAMP/PKA/PPAR γ axis

    Science.gov (United States)

    Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-01-01

    Background & Aims Abscisic acid (ABA) is effective in preventing insulin resistance and obesity-related inflammation through a PPAR γ-dependent mechanism. The objective of this study was to assess the efficacy ABA in improving glucose homeostasis and suppress inflammation when administered in combination with rosiglitazone (Ros) and to determine whether PPAR γ activation by ABA is initiated via cAMP/protein kinase A (PKA) signaling. Methods Obese db/db mice were fed high-fat diets containing 0, 10, or 70 mg/kg Ros with and without racemic ABA (100 mg/kg) for 60 days. Glucose tolerance and fasting insulin levels were assessed at 6 and 8 weeks, respectively, and adipose tissue macrophage (ATM) infiltration was examined by flow cytometry. Gene expression was examined on white adipose tissue (WAT) and stromal vascular cells (SVCs) cultured with ABA, Ros, or an ABA/Ros combination. Results Both Ros and ABA improved glucose tolerance, and ABA decreased plasma insulin levels while having no effect on Ros-induced weight gain. ABA in combination with low-dose Ros (10 mg/kg; Roslo) synergistically inhibited ATM infiltration. Treatment of SVCs with Ros, ABA or ABA/Ros suppressed expression of the M1 marker CCL17. ABA and Ros synergistically increased PPAR γ activity and pretreatment with a cAMP-inhibitor or a PKA-inhibitor abrogated ABA-induced PPAR γ activation. Conclusions ABA and Ros act synergistically to modulate PPAR γ activity and macrophage accumulation in WAT and ABA enhances PPAR γ activity through a membrane-initiated mechanism dependent on cAMP/PKA signaling. PMID:20207056

  7. Synthesis and biological activity of amino acid conjugates of abscisic acid.

    Science.gov (United States)

    Todoroki, Yasushi; Narita, Kenta; Muramatsu, Taku; Shimomura, Hajime; Ohnishi, Toshiyuki; Mizutani, Masaharu; Ueno, Kotomi; Hirai, Nobuhiro

    2011-03-01

    We prepared 19 amino acid conjugates of the plant hormone abscisic acid (ABA) and investigated their biological activity, enzymatic hydrolysis by a recombinant Arabidopsis amidohydrolases GST-ILR1 and GST-IAR3, and metabolic fate in rice seedlings. Different sets of ABA-amino acids induced ABA-like responses in different plants. Some ABA-amino acids, including some that were active in bioassays, were hydrolyzed by recombinant Arabidopsis GST-IAR3, although GST-ILR1 did not show hydrolysis activity for any of the ABA-amino acids. ABA-L-Ala, which was active in all the bioassays, an Arabidopsis seed germination, spinach seed germination, and rice seedling elongation assays, except in a lettuce seed germination assay and was hydrolyzed by GST-IAR3, was hydrolyzed to free ABA in rice seedlings. These findings suggest that some plant amidohydrolases hydrolyze some ABA-amino acid conjugates. Because our study indicates the possibility that different plants have hydrolyzing activity toward different ABA-amino acids, an ABA-amino acid may function as a species-selective pro-hormone of ABA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Movement of Abscisic Acid into the Apoplast in Response to Water Stress in Xanthium strumarium L. 1

    Science.gov (United States)

    Cornish, Katrina; Zeevaart, Jan A. D.

    1985-01-01

    The effect of water stress on the redistribution of abcisic acid (ABA) in mature leaves of Xanthium strumarium L. was investigated using a pressure dehydration technique. In both turgid and stressed leaves, the ABA in the xylem exudate, the `apoplastic' ABA, increased before `bulk leaf' stress-induced ABA accumulation began. In the initially turgid leaves, the ABA level remained constant in both the apoplast and the leaf as a whole until wilting symptoms appeared. Following turgor loss, sufficient quantities of ABA moved into the apoplast to stimulate stomatal closure. Thus, the initial increase of apoplastic ABA may be relevant to the rapid stomatal closure seen in stressed leaves before their bulk leaf ABA levels rise. Following recovery from water stress, elevated levels of ABA remained in the apoplast after the bulk leaf contents had returned to their prestress values. This apoplastic ABA may retard stomatal reopening during the initial recovery period. PMID:16664294

  9. Shoot-derived abscisic acid promotes root growth.

    Science.gov (United States)

    McAdam, Scott A M; Brodribb, Timothy J; Ross, John J

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture. © 2015 John Wiley & Sons Ltd.

  10. Comparable Efficacy of Abatacept Used as First-line or Second-line Biological Agent for Severe Juvenile Idiopathic Arthritis-related Uveitis.

    Science.gov (United States)

    Birolo, Carolina; Zannin, Maria Elisabetta; Arsenyeva, Svetlana; Cimaz, Rolando; Miserocchi, Elisabetta; Dubko, Margarita; Deslandre, Chantal Job; Falcini, Fernanda; Alessio, Maria; La Torre, Francesco; Denisova, Ekaterina; Martini, Giorgia; Nikishina, Irina; Zulian, Francesco

    2016-11-01

    Abatacept (ABA) has recently been proposed as second-line treatment in patients with juvenile idiopathic arthritis (JIA)-associated uveitis refractory to anti-tumor necrosis factor-α (anti-TNF) agents, but little is known about its efficacy as a first-line approach. The aim of the present study was to compare the safety and efficacy of ABA as a first-line biological agent (ABA-1) with that of ABA as a second-line treatment after 1 or more anti-TNF agents (ABA-2), in patients with severe JIA-related uveitis. In this multicenter study, we collected data on patients with severe JIA-related uveitis treated with ABA as a first-line or second-line biological agent. Changes in frequency of uveitis flares/year and ocular complications before and after ABA treatment, clinical remission, and side effects were recorded. Thirty-five patients with a mean age of 10.8 years were treated with ABA for a mean period of 19.6 months. In 4 patients, ABA administration was discontinued, owing to inefficacy on arthritis in 3 cases and allergic reaction in 1. Thirty-one patients, 14 in the ABA-1 group and 17 in the ABA-2 group, completed the 12-month followup period; of these, 17 (54.8%) had clinical remission. The mean frequency of uveitis flares decreased from 4.1 to 1.2 in the ABA-1 group (p = 0.002) and from 3.7 to 1.2 in the ABA-2 group (p = 0.004). Preexisting ocular complications improved or remained stable in all but 5 patients, all in the ABA-2 group. No significant difference was found between the efficacy of the 2 treatment modalities. ABA confirmed its good safety profile. ABA, used as first-line biological treatment or after 1 or more anti-TNF agents, induces a comparable improvement in severe refractory JIA-related uveitis.

  11. Comparative Study on Reagents Involved in Grape Bud Break and Their Effects on Different Metabolites and Related Gene Expression during Winter

    Directory of Open Access Journals (Sweden)

    Muhammad Khalil-Ur-Rehman

    2017-08-01

    Full Text Available To elucidate promoting and inhibiting effects of hydrogen cynamide (HC and abscisic acid (ABA on quiescence release of grape buds, physiological and molecular approaches were used to explore the mechanisms of quiescence based on metabolic and gene expression analysis. Physiological and molecular mechanisms involved in bud quiescence of grape were studied before and after application of HC, ABA, and ABA-HC. The data showed that ABA inhibited proclamation of quiescence in grape buds and attenuated the influence of HC. Bud quiescence was promoted and regulated by HC and ABA pre-treatment on buds of grape cultivar “Shine Muscat” with 5% HC, 100 μM ABA and combination of ABA-HC (5% HC+100 μM ABA during quiescence under forcing condition. Exogenous application of ABA elevated superoxide dismutase (SOD, peroxidase (POD and ascorbate peroxidase (APX related specific activities, while catalase (CAT activity was increased during initial period of forcing and then decreased. The concentration of plant growth hormones including gibberellins (GA and indole acetic acid increased by HC application but decreased the ABA contents under forcing condition. ABA increased the fructose content during quiescence under forcing condition while sucrose and total soluble sugars peaked in HC treated buds as compared to control. Genes related to ABA pathway, protein phosphatase 2C (PP2C family were down regulated in the buds treated with HC, ABA and ABA-HC as compared to control while two genes related to GA pathway (GID1 family, out of which one gene showed down regulation during initial period of forcing while other gene was up regulated in response to HC and ABA-HC treatments as compared to control. Exogenous ABA application up regulated genes related to antioxidant enzymes as compared to control. The gene probable fructose-bisphosphate aldolase 1, chloroplastic-like, was up regulated in response to ABA treatment as compared to control. Analysis of metabolites and

  12. A role for progesterone and α4-containing GABAA receptors of hippocampal pyramidal cells in the exacerbated running response of adolescent female mice to repeated food restriction stress

    Science.gov (United States)

    Wable, Gauri; Chen, Yi-Wen; Rashid, Shannon; Aoki, Chiye

    2015-01-01

    Adolescent females are particularly vulnerable to mental illnesses with comorbidity of anxiety, such as anorexia nervosa (AN). We used an animal model of AN, called activity-based anorexia (ABA), to investigate the neurobiological basis of vulnerability to repeated, food restriction (FR) stress-evoked anxiety. Twenty-one of 23 adolescent female mice responded to the 1st FR with increased wheel running activity (WRA), even during the limited period of food access, thereby capturing AN's symptoms of voluntary FR and over-exercise. Baseline WRA was an excellent predictor of FR-elicited WRA (severity of ABA, SOA), with high baseline-runners responding to FR with minimal SOA (i.e., negative correlation). Nine gained resistance to ABA following the 1st FR. Even though allopregnanolone (3α-OH-5α-pregnan-20-one, THP), the metabolite of progesterone (P4), is a well-recognized anxiolytic agent, subcutaneous P4 to these ABA-resistant animals during the 2nd FR was exacerbative, evoking greater WRA than the counterpart resistant group that received oil vehicle, only. Moreover, P4 had no WRA-reducing effect on animals that remained ABA-vulnerable. To explain the sensitizing effect of P4 upon the resistant mice, we examined the relationship between P4 treatment and levels of the α4 subunit of GABAARs at spines of pyramidal cells of the hippocampal CA1, a parameter previously shown to correlate with resistance to ABA. α4 levels at spine membrane correlated strongly and negatively with SOA during the 1st ABA (prior to P4 injection), confirming previous findings. α4 expression levels were greater among P4-treated animals that had gained resistance than of vehicle-treated resistant animals or of the vulnerable animals with or without P4. We propose that α4-GABAARs play a protective role by counterbalancing the ABA-induced increase in excitability of CA1 pyramidal neurons, and although exogenous P4's metabolite, THP, enhances α4 expression, especially among those that can gain

  13. Exogenous progesterone exacerbates running response of adolescent female mice to repeated food restriction stress by changing α4-GABAA receptor activity of hippocampal pyramidal cells.

    Science.gov (United States)

    Wable, G S; Chen, Y-W; Rashid, S; Aoki, C

    2015-12-03

    Adolescent females are particularly vulnerable to mental illnesses with co-morbidity of anxiety, such as anorexia nervosa (AN). We used an animal model of AN, called activity-based anorexia (ABA), to investigate the neurobiological basis of vulnerability to repeated, food restriction (FR) stress-evoked anxiety. Twenty-one of 23 adolescent female mice responded to the 1st FR with increased wheel-running activity (WRA), even during the limited period of food access, thereby capturing AN's symptoms of voluntary FR and over-exercise. Baseline WRA was an excellent predictor of FR-elicited WRA (severity of ABA, SOA), with high baseline runners responding to FR with minimal SOA (i.e., negative correlation). Nine gained resistance to ABA following the 1st FR. Even though allopregnanolone (3α-OH-5α-pregnan-20-one, THP), the metabolite of progesterone (P4), is a well-recognized anxiolytic agent, subcutaneous P4 to these ABA-resistant animals during the 2nd FR was exacerbative, evoking greater WRA than the counterpart resistant group that received oil vehicle, only. Moreover, P4 had no WRA-reducing effect on animals that remained ABA-vulnerable. To explain the sensitizing effect of P4 upon the resistant mice, we examined the relationship between P4 treatment and levels of the α4 subunit of GABAARs at spines of pyramidal cells of the hippocampal CA1, a parameter previously shown to correlate with resistance to ABA. α4 levels at spine membrane correlated strongly and negatively with SOA during the 1st ABA (prior to P4 injection), confirming previous findings. α4 levels were greater among P4-treated animals that had gained resistance than of vehicle-treated resistant animals or of the vulnerable animals with or without P4. We propose that α4-GABAARs play a protective role by counterbalancing the ABA-induced increase in excitability of CA1 pyramidal neurons, and although exogenous P4's metabolite, THP, enhances α4 expression, especially among those that can gain resistance

  14. Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition resistance of a zeaxanthin-accumulating mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Tardy, F; Havaux, M

    1996-06-01

    The abscisic-acid-deficient aba-1 mutant of Arabidopsis thaliana is unable to epoxidize zeaxanthin. As a consequence, it contains large amounts of this carotenoid and lacks epoxy-xanthophylls. HPLC analysis of pigment contents in leaves, isolated thylakoids and preparations of the major light-harvesting complex of photosystem II (PSII) (LHC-II) indicated that zeaxanthin replaced neoxanthin, violaxanthin and antheraxanthin in the light-harvesting system of PSII in aba-1. Non-denaturing electrophoretic fractionation of solubilized thylakoids showed that the xanthophyll imbalance in aba-1 was associated with a pronounced decrease in trimeric LHC-II in favour of monomeric complexes, with a substantial increase in free pigments (mainly zeaxanthin and chlorophyll b), suggesting a decreased stability of LHC-II. The reduced thermostability of PSII in aba-1 was also deduced from in vivo chlorophyll fluorescence measurements. Wild-type and aba-1 leaves could not be distinguished on the basis of their photosynthetic performance: no significant difference was observed between the two types of leaves for light-limited and light-saturated photosynthetic oxygen evolution, PSII photochemistry and PSII to PSI electron flow. When dark-adapted leaves (grown in white light of 80 mumol m-2s-1) were suddenly exposed to red light of 150 mumol m-2s-1, there was a strong nonphotochemical quenching of chlorophyll fluorescence, the amplitude of which was virtually identical (at steady state) in aba-1 and wild-type leaves, despite the fact that the xanthophyll cycle pigment pool was completely in the form of zeaxanthin in aba-1 and almost exclusively in the form of violaxanthin in the wild type. A high concentration of zeaxanthin in aba-1 thylakoids did not, in itself, provide any particular protection against the photoinhibition of PSII. Taken together, the presented results indicate the following: (1) zeaxanthin can replace epoxy-xanthophylls in LHC-II without significantly affecting the

  15. Exposure to activity-based anorexia impairs contextual learning in weight-restored rats without affecting spatial learning, taste, anxiety, or dietary-fat preference.

    Science.gov (United States)

    Boersma, Gretha J; Treesukosol, Yada; Cordner, Zachary A; Kastelein, Anneke; Choi, Pique; Moran, Timothy H; Tamashiro, Kellie L

    2016-02-01

    Relapse rates are high amongst cases of anorexia nervosa (AN) suggesting that some alterations induced by AN may remain after weight restoration. To study the consequences of AN without confounds of environmental variability, a rodent model of activity-based anorexia (ABA) can be employed. We hypothesized that exposure to ABA during adolescence may have long-term consequences in taste function, cognition, and anxiety-like behavior after weight restoration. To test this hypothesis, we exposed adolescent female rats to ABA (1.5 h food access, combined with voluntary running wheel access) and compared their behavior to that of control rats after weight restoration was achieved. The rats were tested for learning/memory, anxiety, food preference, and taste in a set of behavioral tests performed during the light period. Our data show that ABA exposure leads to reduced performance during the novel object recognition task, a test for contextual learning, without altering performance in the novel place recognition task or the Barnes maze, both tasks that test spatial learning. Furthermore, we do not observe alterations in unconditioned lick responses to sucrose nor quinine (described by humans as "sweet" and "bitter," respectively). Nor Do we find alterations in anxiety-like behavior during an elevated plus maze or an open field test. Finally, preference for a diet high in fat is not altered. Overall, our data suggest that ABA exposure during adolescence impairs contextual learning in adulthood without altering spatial leaning, taste, anxiety, or fat preference. © 2015 Wiley Periodicals, Inc.

  16. Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress.

    Science.gov (United States)

    Sun, Liang; Wang, Yan-Ping; Chen, Pei; Ren, Jie; Ji, Kai; Li, Qian; Li, Ping; Dai, Sheng-Jie; Leng, Ping

    2011-11-01

    In order to characterize the potential transcriptional regulation of core components of abscisic acid (ABA) signal transduction in tomato fruit development and drought stress, eight SlPYL (ABA receptor), seven SlPP2C (type 2C protein phosphatase), and eight SlSnRK2 (subfamily 2 of SNF1-related kinases) full-length cDNA sequences were isolated from the tomato nucleotide database of NCBI GenBank. All SlPYL, SlPP2C, and SlSnRK2 genes obtained are homologous to Arabidopsis AtPYL, AtPP2C, and AtSnRK2 genes, respectively. Based on phylogenetic analysis, SlPYLs and SlSnRK2s were clustered into three subfamilies/subclasses, and all SlPP2Cs belonged to PP2C group A. Within the SlPYL gene family, SlPYL1, SlPYL2, SlPYL3, and SlPYL6 were the major genes involved in the regulation of fruit development. Among them, SlPYL1 and SlPYL2 were expressed at high levels throughout the process of fruit development and ripening; SlPYL3 was strongly expressed at the immature green (IM) and mature green (MG) stages, while SlPYL6 was expressed strongly at the IM and red ripe (RR) stages. Within the SlPP2C gene family, the expression of SlPP2C, SlPP2C3, and SlPP2C4 increased after the MG stage; SlPP2C1 and SlPP2C5 peaked at the B3 stage, while SlPP2C2 and SlPP2C6 changed little during fruit development. Within the SlSnRK2 gene family, the expression of SlSnRK2.2, SlSnRK2.3, SlSnRK2.4, and SlSnRK2C was higher than that of other members during fruit development. Additionally, most SlPYL genes were down-regulated, while most SlPP2C and SlSnRK2 genes were up-regulated by dehydration in tomato leaf.

  17. Abscisic acid synergizes with rosiglitazone to improve glucose tolerance and down-modulate macrophage accumulation in adipose tissue: possible action of the cAMP/PKA/PPAR γ axis.

    Science.gov (United States)

    Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-10-01

    Abscisic acid (ABA) is effective in preventing insulin resistance and obesity-related inflammation through a PPAR γ-dependent mechanism. The objective of this study was to assess the efficacy ABA in improving glucose homeostasis and suppress inflammation when administered in combination with rosiglitazone (Ros) and to determine whether PPAR γ activation by ABA is initiated via cAMP/protein kinase A (PKA) signaling. Obese db/db mice were fed high-fat diets containing 0, 10, or 70 mg/kg Ros with and without racemic ABA (100 mg/kg) for 60 days. Glucose tolerance and fasting insulin levels were assessed at 6 and 8 weeks, respectively, and adipose tissue macrophage (ATM) infiltration was examined by flow cytometry. Gene expression was examined on white adipose tissue (WAT) and stromal vascular cells (SVCs) cultured with ABA, Ros, or an ABA/Ros combination. Both Ros and ABA improved glucose tolerance, and ABA decreased plasma insulin levels while having no effect on Ros-induced weight gain. ABA in combination with low-dose Ros (10 mg/kg; Roslo) synergistically inhibited ATM infiltration. Treatment of SVCs with Ros, ABA or ABA/Ros suppressed expression of the M1 marker CCL17. ABA and Ros synergistically increased PPAR γ activity and pretreatment with a cAMP-inhibitor or a PKA-inhibitor abrogated ABA-induced PPAR γ activation. ABA and Ros act synergistically to modulate PPAR γ activity and macrophage accumulation in WAT and ABA enhances PPAR γ activity through a membrane-initiated mechanism dependent on cAMP/PKA signaling. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  18. Abscisic acid content and the expression of genes related to its metabolism during maturation of triticale grains of cultivars differing in pre-harvest sprouting susceptibility.

    Science.gov (United States)

    Fidler, Justyna; Zdunek-Zastocka, Edyta; Prabucka, Beata; Bielawski, Wiesław

    2016-12-01

    Abscisic acid (ABA) is a plant hormone that plays a predominant role in the onset and maintenance of primary dormancy. Peak ABA accumulation in embryos of triticale grains was observed before any significant loss of water and was higher in Fredro, a cultivar less susceptible to pre-harvest sprouting (PHS), than in Leontino, a cultivar more sensitive to PHS. At full maturity, embryonic ABA content in Fredro was twice as high as in Leontino. Two full-length cDNAs of 9-cis-epoxycarotenoid dioxygenase (TsNCED1, TsNCED2), an enzyme involved in ABA biosynthesis, and two full-length cDNAs of ABA 8'-hydroxylase (TsABA8'OH1 and TsABA8'OH2), an enzyme involved in ABA catabolism, were identified in triticale grains and characterized. The maximum transcript level of both TsNCED1 and TsNCED2 preceded the peak of ABA accumulation, suggesting that both TsNCEDs contribute to reach this peak, although the expression of TsNCED1 was significantly higher in Fredro than in Leontino. High expression of TsABA8'OH2 and TsABA8'OH1 was observed long before and at the end of the ABA accumulation peak, respectively, but no differences were observed between cultivars. The obtained results suggest that mainly TsNCED1 might be related to the higher ABA content and higher resistance of Fredro to PHS. However, Fredro embryos not only have higher ABA content, but also exhibit greater sensitivity to ABA, which may also have a significant effect on grain dormancy and lower susceptibility to PHS for grains of this cultivar. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Characterization of the beta-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice.

    Science.gov (United States)

    Du, Hao; Wang, Nili; Cui, Fei; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2010-11-01

    Drought is a major limiting factor for crop production. To identify critical genes for drought resistance in rice (Oryza sativa), we screened T-DNA mutants and identified a drought-hypersensitive mutant, dsm2. The mutant phenotype was caused by a T-DNA insertion in a gene encoding a putative β-carotene hydroxylase (BCH). BCH is predicted for the biosynthesis of zeaxanthin, a carotenoid precursor of abscisic acid (ABA). The amounts of zeaxanthin and ABA were significantly reduced in two allelic dsm2 mutants after drought stress compared with the wild type. Under drought stress conditions, the mutant leaves lost water faster than the wild type and the photosynthesis rate, biomass, and grain yield were significantly reduced, whereas malondialdehyde level and stomata aperture were increased in the mutant. The mutant is also hypersensitive to oxidative stresses. The mutant had significantly lower maximal efficiency of photosystem II photochemistry and nonphotochemical quenching capacity than the wild type, indicating photoinhibition in photosystem II and decreased capacity for eliminating excess energy by thermal dissipation. Overexpression of DSM2 in rice resulted in significantly increased resistance to drought and oxidative stresses and increases of the xanthophylls and nonphotochemical quenching. Some stress-related ABA-responsive genes were up-regulated in the overexpression line. DSM2 is a chloroplast protein, and the response of DSM2 to environmental stimuli is distinctive from the other two BCH members in rice. We conclude that the DSM2 gene significantly contributes to control of the xanthophyll cycle and ABA synthesis, both of which play critical roles in the establishment of drought resistance in rice.

  20. On the role of abscisic acid in seed dormancy of red rice.

    Science.gov (United States)

    Gianinetti, Alberto; Vernieri, Paolo

    2007-01-01

    Abscisic acid (ABA) is commonly assumed to be the primary effector of seed dormancy, but conclusive evidence for this role is lacking. This paper reports on the relationships occurring in red rice between ABA and seed dormancy. Content of free ABA in dry and imbibed caryopses, both dormant and after-ripened, the effects of inhibitors, and the ability of applied ABA to revert dormancy breakage were considered. The results indicate: (i) no direct correlation of ABA content with the dormancy status of the seed, either dry or imbibed; (ii) different sensitivity to ABA of non-dormant seed and seed that was forced to germinate by fluridone; and (iii) an inability of exogenous ABA to reinstate dormancy in fluridone-treated seed, even though applied at a pH which favoured high ABA accumulation. These considerations suggest that ABA is involved in regulating the first steps of germination, but unidentified developmental effectors that are specific to dormancy appear to stimulate ABA synthesis and to enforce the responsiveness to this phytohormone. These primary effectors appear physiologically to modulate dormancy and via ABA they effect the growth of the embryo. Therefore, it is suggested that ABA plays a key role in integrating the dormancy-specific developmental signals with the control of growth.

  1. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress.

    Science.gov (United States)

    Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng

    2016-02-01

    The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter

  2. Hormonal and epigenetic regulation during embryogenic tissue habituation in Cucurbita pepo L.

    Science.gov (United States)

    Leljak-Levanić, Dunja; Mrvková, Mihaela; Turečková, Veronika; Pěnčík, Aleš; Rolčík, Jakub; Strnad, Miroslav; Mihaljević, Snježana

    2016-01-01

    Habituated embryogenic line of pumpkin contained more CKs and IAA, but less ABA than the non-habituated line. Pronounced hypomethylation correlated with the absence of 2,4-D, addition of 5-azaC, and the process of habituation. A comparative analysis between habituated and non-habituated embryogenic cultures of pumpkin (Cucurbita pepo L.) in relation to endogenous phytohormones, global DNA methylation, and developmental and regeneration capacities of the cultures was conducted. The analysis revealed more cytokinins (CKs) and indole-3-acetic acid (IAA), but less abscisic acid (ABA) in the habituated HEC line than in the non-habituated DEC line. Ribosides and ribotides were the most abundant CK forms in both HEC and DEC lines (75.9 and 57.6 %, respectively). HEC contained more free-base CKs (5.8 vs. 3.2 %), whereas DEC contained considerably more O-glycosides (39.1 vs. 18.3 %). Although prevalence of IAA was common for both lines, relative ratio of CKs and ABA differed between DEC and HEC lines. ABA was prevailing over CKs in DEC, while CKs prevailed over ABA in HEC line. Taking into account the importance of ABA for embryo maturation, the reduced endogenous ABA content in HEC line might be the reason for a 5-fold reduction in regeneration capacity compared to DEC. Both habituated and non-habituated embryogenic lines were highly methylated in the presence of 2,4-dichlorophenoxyacetic acid (2,4-D). Pronounced hypomethylation correlated with the absence of 2,4-D, addition of 5-azacytidine (5-azaC), but also with the process of habituation. The habituated line was resistant to the effect of hypomethylation drug 5-azaC and remained highly methylated even after the addition of 5-azaC. Also, 5-azaC did not change the developmental pattern in the habituated line, indicating the existence of separate mechanisms by which 2,4-D influences global DNA methylation in comparison to habituation-related global DNA methylation.

  3. Abscisic Acid as Pathogen Effector and Immune Regulator

    Science.gov (United States)

    Lievens, Laurens; Pollier, Jacob; Goossens, Alain; Beyaert, Rudi; Staal, Jens

    2017-01-01

    Abscisic acid (ABA) is a sesquiterpene signaling molecule produced in all kingdoms of life. To date, the best known functions of ABA are derived from its role as a major phytohormone in plant abiotic stress resistance. Different organisms have developed different biosynthesis and signal transduction pathways related to ABA. Despite this, there are also intriguing common themes where ABA often suppresses host immune responses and is utilized by pathogens as an effector molecule. ABA also seems to play an important role in compatible mutualistic interactions such as mycorrhiza and rhizosphere bacteria with plants, and possibly also the animal gut microbiome. The frequent use of ABA in inter-species communication could be a possible reason for the wide distribution and re-invention of ABA as a signaling molecule in different organisms. In humans and animal models, it has been shown that ABA treatment or nutrient-derived ABA is beneficial in inflammatory diseases like colitis and type 2 diabetes, which confer potential to ABA as an interesting nutraceutical or pharmacognostic drug. The anti-inflammatory activity, cellular metabolic reprogramming, and other beneficial physiological and psychological effects of ABA treatment in humans and animal models has sparked an interest in this molecule and its signaling pathway as a novel pharmacological target. In contrast to plants, however, very little is known about the ABA biosynthesis and signaling in other organisms. Genes, tools and knowledge about ABA from plant sciences and studies of phytopathogenic fungi might benefit biomedical studies on the physiological role of endogenously generated ABA in humans. PMID:28469630

  4. Synthesis, photostability and bioactivity of 2,3-cyclopropanated abscisic acid.

    Science.gov (United States)

    Wenjian, Liu; Xiaoqiang, Han; Yumei, Xiao; Jinlong, Fan; Yuanzhi, Zhang; Huizhe, Lu; Mingan, Wang; Zhaohai, Qin

    2013-12-01

    The plant hormone abscisic acid (ABA) plays a central role in the regulation of plant development and adaptation to environmental stress. The isomerization of ABA to the biologically inactive 2E-isomer by light considerably limits its applications in agricultural fields. To overcome this shortcoming, an ABA analogue, cis-2,3-cyclopropanated ABA, was synthesized, and its photostability and biological activities were investigated. This compound showed high photostability under UV light exposure, which was 4-fold higher than that of (±)-ABA. cis-2,3-cyclopropanated ABA exhibited high ABA-like activity, including the ability to effectively inhibit seed germination, seedling growth and stomatal movements of Arabidopsis. In some cases, its bioactivity approaches that of (±)-ABA. trans-2,3-cyclopropanated abscisic acid was also prepared, an isomer that was more photostable but which showed weak ABA-like activity. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  5. Expression Studies of the Zeaxanthin Epoxidase Gene in Nicotiana plumbaginifolia1

    Science.gov (United States)

    Audran, Corinne; Borel, Charlotte; Frey, Anne; Sotta, Bruno; Meyer, Christian; Simonneau, Thierry; Marion-Poll, Annie

    1998-01-01

    Abscisic acid (ABA) is a plant hormone involved in the control of a wide range of physiological processes, including adaptation to environmental stress and seed development. In higher plants ABA is a breakdown product of xanthophyll carotenoids (C40) via the C15 intermediate xanthoxin. The ABA2 gene of Nicotiana plumbaginifolia encodes zeaxanthin epoxidase, which catalyzes the conversion of zeaxanthin to violaxanthin. In this study we analyzed steady-state levels of ABA2 mRNA in N. plumbaginifolia. The ABA2 mRNA accumulated in all plant organs, but transcript levels were found to be higher in aerial parts (stems and leaves) than in roots and seeds. In leaves ABA2 mRNA accumulation displayed a day/night cycle; however, the ABA2 protein level remained constant. In roots no diurnal fluctuation in mRNA levels was observed. In seeds the ABA2 mRNA level peaked around the middle of development, when ABA content has been shown to increase in many species. In conditions of drought stress, ABA levels increased in both leaves and roots. A concomitant accumulation of ABA2 mRNA was observed in roots but not in leaves. These results are discussed in relation to the role of zeaxanthin epoxidase both in the xanthophyll cycle and in the synthesis of ABA precursors. PMID:9808747

  6. Expression studies of the zeaxanthin epoxidase gene in nicotiana plumbaginifolia

    Science.gov (United States)

    Audran; Borel; Frey; Sotta; Meyer; Simonneau; Marion-Poll

    1998-11-01

    Abscisic acid (ABA) is a plant hormone involved in the control of a wide range of physiological processes, including adaptation to environmental stress and seed development. In higher plants ABA is a breakdown product of xanthophyll carotenoids (C40) via the C15 intermediate xanthoxin. The ABA2 gene of Nicotiana plumbaginifolia encodes zeaxanthin epoxidase, which catalyzes the conversion of zeaxanthin to violaxanthin. In this study we analyzed steady-state levels of ABA2 mRNA in N. plumbaginifolia. The ABA2 mRNA accumulated in all plant organs, but transcript levels were found to be higher in aerial parts (stems and leaves) than in roots and seeds. In leaves ABA2 mRNA accumulation displayed a day/night cycle; however, the ABA2 protein level remained constant. In roots no diurnal fluctuation in mRNA levels was observed. In seeds the ABA2 mRNA level peaked around the middle of development, when ABA content has been shown to increase in many species. In conditions of drought stress, ABA levels increased in both leaves and roots. A concomitant accumulation of ABA2 mRNA was observed in roots but not in leaves. These results are discussed in relation to the role of zeaxanthin epoxidase both in the xanthophyll cycle and in the synthesis of ABA precursors.

  7. Abscisic Acid Regulates Auxin Homeostasis in Rice Root Tips to Promote Root Hair Elongation

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2017-06-01

    Full Text Available Abscisic acid (ABA plays an essential role in root hair elongation in plants, but the regulatory mechanism remains to be elucidated. In this study, we found that exogenous ABA can promote rice root hair elongation. Transgenic rice overexpressing SAPK10 (Stress/ABA-activated protein kinase 10 had longer root hairs; rice plants overexpressing OsABIL2 (OsABI-Like 2 had attenuated ABA signaling and shorter root hairs, suggesting that the effect of ABA on root hair elongation depends on the conserved PYR/PP2C/SnRK2 ABA signaling module. Treatment of the DR5-GUS and OsPIN-GUS lines with ABA and an auxin efflux inhibitor showed that ABA-induced root hair elongation depends on polar auxin transport. To examine the transcriptional response to ABA, we divided rice root tips into three regions: short root hair, long root hair and root tip zones; and conducted RNA-seq analysis with or without ABA treatment. Examination of genes involved in auxin transport, biosynthesis and metabolism indicated that ABA promotes auxin biosynthesis and polar auxin transport in the root tip, which may lead to auxin accumulation in the long root hair zone. Our findings shed light on how ABA regulates root hair elongation through crosstalk with auxin biosynthesis and transport to orchestrate plant development.

  8. Comparative Transcriptome Analysis Reveals the Influence of Abscisic Acid on the Metabolism of Pigments, Ascorbic Acid and Folic Acid during Strawberry Fruit Ripening.

    Directory of Open Access Journals (Sweden)

    Dongdong Li

    Full Text Available A comprehensive investigation of abscisic acid (ABA biosynthesis and its influence on other important phytochemicals is critical for understanding the versatile roles that ABA plays during strawberry fruit ripening. Using RNA-seq technology, we sampled strawberry fruit in response to ABA or nordihydroguaiaretic acid (NDGA; an ABA biosynthesis blocker treatment during ripening and assessed the expression changes of genes involved in the metabolism of pigments, ascorbic acid (AsA and folic acid in the receptacles. The transcriptome analysis identified a lot of genes differentially expressed in response to ABA or NDGA treatment. In particular, genes in the anthocyanin biosynthesis pathway were actively regulated by ABA, with the exception of the gene encoding cinnamate 4-hydroxylase. Chlorophyll degradation was accelerated by ABA mainly owing to the higher expression of gene encoding pheide a oxygenase. The decrease of β-carotene content was accelerated by ABA treatment and delayed by NDGA. A high negative correlation rate was found between ABA and β-carotene content, indicating the importance of the requirement for ABA synthesis during fruit ripening. In addition, evaluation on the folate biosynthetic pathway indicate that ABA might have minor function in this nutrient's biosynthesis process, however, it might be involved in its homeostasis. Surprisingly, though AsA content accumulated during fruit ripening, expressions of genes involved in its biosynthesis in the receptacles were significantly lower in ABA-treated fruits. This transcriptome analysis expands our understanding of ABA's role in phytochemical metabolism during strawberry fruit ripening and the regulatory mechanisms of ABA on these pathways were discussed. Our study provides a wealth of genetic information in the metabolism pathways and may be helpful for molecular manipulation in the future.

  9. Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro

    International Nuclear Information System (INIS)

    Bruzzone, Santina; Battaglia, Florinda; Mannino, Elena; Parodi, Alessia; Fruscione, Floriana; Basile, Giovanna; Salis, Annalisa; Sturla, Laura; Negrini, Simone; Kalli, Francesca; Stringara, Silvia; Filaci, Gilberto

    2012-01-01

    Highlights: ► ABA is an endogenous hormone in humans, regulating different cell responses. ► ABA reverts some of the functions altered in SSc fibroblasts to a normal phenotype. ► UV-B irradiation increases ABA content in SSc cultures. ► SSc fibroblasts could benefit from exposure to ABA and/or to UV-B. -- Abstract: The phytohormone abscisic acid (ABA) has been recently identified as an endogenous hormone in humans, regulating different cell functions, including inflammatory processes, insulin release and glucose uptake. Systemic sclerosis (SSc) is a chronic inflammatory disease resulting in fibrosis of skin and internal organs. In this study, we investigated the effect of exogenous ABA on fibroblasts obtained from healthy subjects and from SSc patients. Migration of control fibroblasts induced by ABA was comparable to that induced by transforming growth factor-β (TGF-β). Conversely, migration toward ABA, but not toward TGF-β, was impaired in SSc fibroblasts. In addition, ABA increased cell proliferation in fibroblasts from SSc patients, but not from healthy subjects. Most importantly, presence of ABA significantly decreased collagen deposition by SSc fibroblasts, at the same time increasing matrix metalloproteinase-1 activity and decreasing the expression level of tissue inhibitor of metalloproteinase (TIMP-1). Thus, exogenously added ABA appeared to revert some of the functions altered in SSc fibroblasts to a normal phenotype. Interestingly, ABA levels in plasma from SSc patients were found to be significantly lower than in healthy subjects. UV-B irradiation induced an almost 3-fold increase in ABA content in SSc cultures. Altogether, these results suggest that the fibrotic skin lesions in SSc patients could benefit from exposure to high(er) ABA levels.

  10. Abscisic acid dynamics in roots detected with genetically encoded FRET sensors

    Science.gov (United States)

    Jones, Alexander M; Danielson, Jonas ÅH; ManojKumar, Shruti N; Lanquar, Viviane; Grossmann, Guido; Frommer, Wolf B

    2014-01-01

    Cytosolic hormone levels must be tightly controlled at the level of influx, efflux, synthesis, degradation and compartmentation. To determine ABA dynamics at the single cell level, FRET sensors (ABACUS) covering a range ∼0.2–800 µM were engineered using structure-guided design and a high-throughput screening platform. When expressed in yeast, ABACUS1 detected concentrative ABA uptake mediated by the AIT1/NRT1.2 transporter. Arabidopsis roots expressing ABACUS1-2µ (Kd∼2 µM) and ABACUS1-80µ (Kd∼80 µM) respond to perfusion with ABA in a concentration-dependent manner. The properties of the observed ABA accumulation in roots appear incompatible with the activity of known ABA transporters (AIT1, ABCG40). ABACUS reveals effects of external ABA on homeostasis, that is, ABA-triggered induction of ABA degradation, modification, or compartmentation. ABACUS can be used to study ABA responses in mutants and quantitatively monitor ABA translocation and regulation, and identify missing components. The sensor screening platform promises to enable rapid fine-tuning of the ABA sensors and engineering of plant and animal hormone sensors to advance our understanding of hormone signaling. DOI: http://dx.doi.org/10.7554/eLife.01741.001 PMID:24737862

  11. Synthesis, crystal structure and biological activity of 2-hydroxyethylammonium salt of p-aminobenzoic acid.

    Directory of Open Access Journals (Sweden)

    Manuela E Crisan

    Full Text Available p-Aminobenzoic acid (pABA plays important roles in a wide variety of metabolic processes. Herein we report the synthesis, theoretical calculations, crystallographic investigation, and in vitro determination of the biological activity and phytotoxicity of the pABA salt, 2-hydroxyethylammonium p-aminobenzoate (HEA-pABA. The ability of neutral and anionic forms of pABA to interact with TIR1 pocket was investigated by calculation of molecular electrostatic potential maps on the accessible surface area, docking experiments, Molecular Dynamics and Quantum Mechanics/Molecular Mechanics calculations. The docking study of the folate precursor pABA, its anionic form and natural auxin (indole-3-acetic acid, IAA with the auxin receptor TIR1 revealed a similar binding mode in the active site. The phytotoxic evaluation of HEA-pABA, pABA and 2-hydroxyethylamine (HEA was performed on the model plant Arabidopsis thaliana ecotype Col 0 at five different concentrations. HEA-pABA and pABA acted as potential auxin-like regulators of root development in Arabidopsis thaliana (0.1 and 0.2 mM and displayed an agravitropic root response at high concentration (2 mM. This study suggests that HEA-pABA and pABA might be considered as potential new regulators of plant growth.

  12. Placental miR-340 mediates vulnerability to activity based anorexia in mice.

    Science.gov (United States)

    Schroeder, Mariana; Jakovcevski, Mira; Polacheck, Tamar; Drori, Yonat; Luoni, Alessia; Röh, Simone; Zaugg, Jonas; Ben-Dor, Shifra; Albrecht, Christiane; Chen, Alon

    2018-04-23

    Anorexia nervosa (AN) is a devastating eating disorder characterized by self-starvation that mainly affects women. Its etiology is unknown, which impedes successful treatment options leading to a limited chance of full recovery. Here, we show that gestation is a vulnerable window that can influence the predisposition to AN. By screening placental microRNA expression of naive and prenatally stressed (PNS) fetuses and assessing vulnerability to activity-based anorexia (ABA), we identify miR-340 as a sexually dimorphic regulator involved in prenatal programming of ABA. PNS caused gene-body hypermethylation of placental miR-340, which is associated with reduced miR-340 expression and increased protein levels of several target transcripts, GR, Cry2 and H3F3b. MiR-340 is linked to the expression of several nutrient transporters both in mice and human placentas. Using placenta-specific lentiviral transgenes and embryo transfer, we demonstrate the key role miR-340 plays in the mechanism involved in early life programming of ABA.

  13. CKB1 is involved in abscisic acid and gibberellic acid signaling to regulate stress responses in Arabidopsis thaliana.

    Science.gov (United States)

    Yuan, Congying; Ai, Jianping; Chang, Hongping; Xiao, Wenjun; Liu, Lu; Zhang, Cheng; He, Zhuang; Huang, Ji; Li, Jinyan; Guo, Xinhong

    2017-05-01

    Casein kinase II (CK2), an evolutionarily well-conserved Ser/Thr kinase, plays critical roles in all higher organisms including plants. CKB1 is a regulatory subunit beta of CK2. In this study, homozygous T-DNA mutants (ckb1-1 and ckb1-2) and over-expression plants (35S:CKB1-1, 35S:CKB1-2) of Arabidopsis thaliana were studied to understand the role of CKB1 in abiotic stress and gibberellic acid (GA) signaling. Histochemical staining showed that although CKB1 was expressed in all organs, it had a relatively higher expression in conducting tissues. The ckb1 mutants showed reduced sensitivity to abscisic acid (ABA) during seed germination and seedling growth. The increased stomatal aperture, leaf water loss and proline accumulation were observed in ckb1 mutants. In contrast, the ckb1 mutant had increased sensitivity to polyaluminum chloride during seed germination and hypocotyl elongation. We obtained opposite results in over-expression plants. The expression levels of a number of genes in the ABA and GA regulatory network had changed. This study demonstrates that CKB1 is an ABA signaling-related gene, which subsequently influences GA metabolism, and may play a positive role in ABA signaling.

  14. The effect of competition from neighbours on stomatal conductance in lettuce and tomato plants.

    Science.gov (United States)

    Vysotskaya, Lidiya; Wilkinson, Sally; Davies, William J; Arkhipova, Tatyana; Kudoyarova, Guzel

    2011-05-01

    Competition decreased transpiration from young lettuce plants after 2 days, before any reductions in leaf area became apparent, and stomatal conductance (g(s) ) of lettuce and tomato plants was also reduced. Stomatal closure was not due to hydraulic signals or competition for nutrients, as soil water content, leaf water status and leaf nitrate concentrations were unaffected by neighbours. Competition-induced stomatal closure was absent in an abscisic acid (ABA)-deficient tomato mutant, flacca, indicating a fundamental involvement of ABA. Although tomato xylem sap ABA concentrations were unaffected by the presence of neighbours, ABA/pH-based stomatal modulation is still likely to underlie the response to competition, as soil and xylem sap alkalization was observed in competing plants. Competition also modulated leaf ethylene production, and treatment of lettuce plants with an ethylene perception inhibitor (1-methylcyclopropene) diminished the difference in g(s) between single and competing plants grown in a controlled environment room, but increased it in plants grown in the greenhouse: ethylene altered the extent of the stomatal response to competition. Effects of competition on g(s) are discussed in terms of the detection of the absence of neighbours: increases in g(s) and carbon fixation may allow faster initial space occupancy within an emerging community/crop. © 2011 Blackwell Publishing Ltd.

  15. Abscisic Acid Metabolism in Relation to Water Stress and Leaf Age in Xanthium strumarium1

    Science.gov (United States)

    Cornish, Katrina; Zeevaart, Jan A.D.

    1984-01-01

    Intact plants of Xanthium strumarium L. were subjected to a water stress-recovery cycle. As the stress took effect, leaf growth ceased and stomatal resistance increased. The mature leaves then wilted, followed by the half expanded ones. Water, solute, and pressure potentials fell steadily in all leaves during the rest of the stress period. After 3 days, the young leaves lost turgor and the plants were rewatered. All the leaves rapidly regained turgor and the younger ones recommenced elongation. Stomatal resistance declined, but several days elapsed before pre-stress values were attained. Abscisic acid (ABA) and phaseic acid (PA) levels rose in all the leaves after the mature ones wilted. ABA-glucose ester (ABA-GE) levels increased to a lesser extent, and the young leaves contained little of this conjugate. PA leveled off in the older leaves during the last 24 hours of stress, and ABA levels declined slightly. The young leaves accumulated ABA and PA throughout the stress period and during the 14-hour period immediately following rewatering. The ABA and PA contents, expressed per unit dry weight, were highest in the young leaves. Upon rewatering, large quantities of PA appeared in the mature leaves as ABA levels fell to the pre-stress level within 14 hours. In the half expanded and young leaves, it took several days to reach pre-stress ABA values. ABA-GE synthesis ceased in the mature leaves, once the stress was relieved, but continued in the half expanded and young leaves for 2 days. Mature leaves, when detached and stressed, accumulated an amount of ABA similar to that in leaves on the intact plant. In contrast, detached and stressed young leaves produced little ABA. Detached mature leaves, and to a lesser extent the half expanded ones, rapidly catabolized ABA to PA and ABA-GE, but the young leaves did not. Studies with radioactive (±)-ABA indicated that in young leaves the conversion of ABA to PA took place at a much lower rate than in mature ones. Leaves of all

  16. Abscisic Acid Metabolism in Relation to Water Stress and Leaf Age in Xanthium strumarium.

    Science.gov (United States)

    Cornish, K; Zeevaart, J A

    1984-12-01

    Intact plants of Xanthium strumarium L. were subjected to a water stress-recovery cycle. As the stress took effect, leaf growth ceased and stomatal resistance increased. The mature leaves then wilted, followed by the half expanded ones. Water, solute, and pressure potentials fell steadily in all leaves during the rest of the stress period. After 3 days, the young leaves lost turgor and the plants were rewatered. All the leaves rapidly regained turgor and the younger ones recommenced elongation. Stomatal resistance declined, but several days elapsed before pre-stress values were attained.Abscisic acid (ABA) and phaseic acid (PA) levels rose in all the leaves after the mature ones wilted. ABA-glucose ester (ABA-GE) levels increased to a lesser extent, and the young leaves contained little of this conjugate. PA leveled off in the older leaves during the last 24 hours of stress, and ABA levels declined slightly. The young leaves accumulated ABA and PA throughout the stress period and during the 14-hour period immediately following rewatering. The ABA and PA contents, expressed per unit dry weight, were highest in the young leaves. Upon rewatering, large quantities of PA appeared in the mature leaves as ABA levels fell to the pre-stress level within 14 hours. In the half expanded and young leaves, it took several days to reach pre-stress ABA values. ABA-GE synthesis ceased in the mature leaves, once the stress was relieved, but continued in the half expanded and young leaves for 2 days.Mature leaves, when detached and stressed, accumulated an amount of ABA similar to that in leaves on the intact plant. In contrast, detached and stressed young leaves produced little ABA. Detached mature leaves, and to a lesser extent the half expanded ones, rapidly catabolized ABA to PA and ABA-GE, but the young leaves did not. Studies with radioactive (+/-)-ABA indicated that in young leaves the conversion of ABA to PA took place at a much lower rate than in mature ones. Leaves of all

  17. Abscisic Acid Accumulation by Roots of Xanthium strumarium L. and Lycopersicon esculentum Mill. in Relation to Water Stress 1

    Science.gov (United States)

    Cornish, Katrina; Zeevaart, Jan A. D.

    1985-01-01

    Plants of Xanthium strumarium L. and Lycopersicon esculentum Mill. cv `Rheinlands Ruhm' were grown in solution culture, and control and steam-girdled intact plants were stressed. Detached roots of both species were stressed to different extents in two ways: (a) either in warm air or, (b) in the osmoticum Aquacide III. The roots of both species produced and accumulated progressively more abscisic acid (ABA), the greater the stress inflicted by either method. ABA-glucose ester levels in Xanthium roots were not affected by water stress and were too low to be the source of the stress-induced ABA. The fact that ABA accumulated in detached roots and in roots of girdled plants proves that ABA was synthesized in the roots and not merely transported from the shoots. Maximum ABA accumulation in detached roots occurred after 60 to 70% loss of fresh weight. In Xanthium roots, ABA levels continued to increase for at least 11 hours, and no catabolism was apparent when stressed roots were immersed in water, although the roots did stop accumulating ABA. When osmotically stressed, Xanthium roots reached a maximum ABA level after 2 hours, but ABA continued to rise in the medium. Under optimal stress conditions, endogenous ABA levels increased 100 times over their prestress values in detached roots of Xanthium, and 15 times in Lycopersicon under nonoptimal stress, when endogenous ABA was expressed as concentrations based on tissue water content. These are much greater relative increases than observed in the leaves (15 times in Xanthium, 3 times in Lycopersicon), although the roots contain substantially less ABA than the leaves in all circumstances. The results suggest that the endogenous level of ABA in roots could rise appreciably prior to leaf wilt, and could modify the plant's water economy before the leaves become stressed. PMID:16664467

  18. Abscisic Acid Accumulation by Roots of Xanthium strumarium L. and Lycopersicon esculentum Mill. in Relation to Water Stress.

    Science.gov (United States)

    Cornish, K; Zeevaart, J A

    1985-11-01

    Plants of Xanthium strumarium L. and Lycopersicon esculentum Mill. cv ;Rheinlands Ruhm' were grown in solution culture, and control and steam-girdled intact plants were stressed. Detached roots of both species were stressed to different extents in two ways: (a) either in warm air or, (b) in the osmoticum Aquacide III. The roots of both species produced and accumulated progressively more abscisic acid (ABA), the greater the stress inflicted by either method. ABA-glucose ester levels in Xanthium roots were not affected by water stress and were too low to be the source of the stress-induced ABA. The fact that ABA accumulated in detached roots and in roots of girdled plants proves that ABA was synthesized in the roots and not merely transported from the shoots.Maximum ABA accumulation in detached roots occurred after 60 to 70% loss of fresh weight. In Xanthium roots, ABA levels continued to increase for at least 11 hours, and no catabolism was apparent when stressed roots were immersed in water, although the roots did stop accumulating ABA. When osmotically stressed, Xanthium roots reached a maximum ABA level after 2 hours, but ABA continued to rise in the medium.Under optimal stress conditions, endogenous ABA levels increased 100 times over their prestress values in detached roots of Xanthium, and 15 times in Lycopersicon under nonoptimal stress, when endogenous ABA was expressed as concentrations based on tissue water content. These are much greater relative increases than observed in the leaves (15 times in Xanthium, 3 times in Lycopersicon), although the roots contain substantially less ABA than the leaves in all circumstances. The results suggest that the endogenous level of ABA in roots could rise appreciably prior to leaf wilt, and could modify the plant's water economy before the leaves become stressed.

  19. Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzone, Santina, E-mail: santina.bruzzone@unige.it [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Advanced Biotechnology Center, Largo Rosanna Benzi 10, 16132 Genova (Italy); Battaglia, Florinda [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Mannino, Elena [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Parodi, Alessia [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Fruscione, Floriana [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Advanced Biotechnology Center, Largo Rosanna Benzi 10, 16132 Genova (Italy); Basile, Giovanna [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Salis, Annalisa; Sturla, Laura [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Negrini, Simone; Kalli, Francesca; Stringara, Silvia [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Filaci, Gilberto [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Department of Internal Medicine, Viale Benedetto XV 6, 16132 Genova (Italy); and others

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer ABA is an endogenous hormone in humans, regulating different cell responses. Black-Right-Pointing-Pointer ABA reverts some of the functions altered in SSc fibroblasts to a normal phenotype. Black-Right-Pointing-Pointer UV-B irradiation increases ABA content in SSc cultures. Black-Right-Pointing-Pointer SSc fibroblasts could benefit from exposure to ABA and/or to UV-B. -- Abstract: The phytohormone abscisic acid (ABA) has been recently identified as an endogenous hormone in humans, regulating different cell functions, including inflammatory processes, insulin release and glucose uptake. Systemic sclerosis (SSc) is a chronic inflammatory disease resulting in fibrosis of skin and internal organs. In this study, we investigated the effect of exogenous ABA on fibroblasts obtained from healthy subjects and from SSc patients. Migration of control fibroblasts induced by ABA was comparable to that induced by transforming growth factor-{beta} (TGF-{beta}). Conversely, migration toward ABA, but not toward TGF-{beta}, was impaired in SSc fibroblasts. In addition, ABA increased cell proliferation in fibroblasts from SSc patients, but not from healthy subjects. Most importantly, presence of ABA significantly decreased collagen deposition by SSc fibroblasts, at the same time increasing matrix metalloproteinase-1 activity and decreasing the expression level of tissue inhibitor of metalloproteinase (TIMP-1). Thus, exogenously added ABA appeared to revert some of the functions altered in SSc fibroblasts to a normal phenotype. Interestingly, ABA levels in plasma from SSc patients were found to be significantly lower than in healthy subjects. UV-B irradiation induced an almost 3-fold increase in ABA content in SSc cultures. Altogether, these results suggest that the fibrotic skin lesions in SSc patients could benefit from exposure to high(er) ABA levels.

  20. The role of abscisic acid in regulating cucumber fruit development and ripening and its transcriptional regulation.

    Science.gov (United States)

    Wang, Yanping; Wang, Ya; Ji, Kai; Dai, Shengjie; Hu, Ying; Sun, Liang; Li, Qian; Chen, Pei; Sun, Yufei; Duan, Chaorui; Wu, Yan; Luo, Hao; Zhang, Dian; Guo, Yangdong; Leng, Ping

    2013-03-01

    Cucumber (Cucumis sativus L.), a kind of fruit usually harvested at the immature green stage, belongs to non-climacteric fruit. To investigate the contribution of abscisic acid (ABA) to cucumber fruit development and ripening, variation in ABA level was investigated and a peak in ABA level was found in pulp before fruit get fully ripe. To clarify this point further, exogenous ABA was applied to cucumber fruits at two different development stages. Results showed that ABA application at the turning stage promotes cucumber fruit ripening, while application at the immature green stage had inconspicuous effects. In addition, with the purpose of understanding the transcriptional regulation of ABA, two partial cDNAs of CsNCED1 and CsNCED2 encoding 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA biosynthetic pathway; one partial cDNA of CsCYP707A1 for 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA and two partial cDNAs of CsBG1 and CsBG2 for β-glucosidase (BG) that hydrolyzes ABA glucose ester (ABA-GE) to release active ABA were cloned from cucumber. The DNA and deduced amino acid sequences of these obtained genes respectively showed high similarities to their homologous genes in other plants. Real-time PCR analysis revealed that ABA content may be regulated by its biosynthesis (CsNCEDs), catabolism (CsCYP707A1) and reactivation genes (CsBGs) at the transcriptional level during cucumber fruit development and ripening, in response to ABA application, dehydration and pollination, among which CsNCED1, CsCYP707A1 and CsBG1 were highly expressed in pulp and may play more important roles in regulating ABA metabolism. Copyright © 2013 Elsevier Masson SAS. All rights reserved.