WorldWideScience

Sample records for agrobacterium sp strain

  1. Utilization of Trihalogenated Propanes by Agrobacterium radiobacter AD1 through Heterologous Expression of the Haloalkane Dehalogenase from Rhodococcus sp. Strain m15-3

    Science.gov (United States)

    Bosma, Tjibbe; Kruizinga, Edwin; de Bruin, Erik J.; Poelarends, Gerrit J.; Janssen, Dick B.

    1999-01-01

    Trihalogenated propanes are toxic and recalcitrant organic compounds. Attempts to obtain pure bacterial cultures able to use these compounds as sole carbon and energy sources were unsuccessful. Both the haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 (DhlA) and that from Rhodococcus sp. strain m15-3 (DhaA) were found to dehalogenate trihalopropanes to 2,3-dihalogenated propanols, but the kinetic properties of the latter enzyme are much better. Broad-host-range dehalogenase expression plasmids, based on RSF1010 derivatives, were constructed with the haloalkane dehalogenase from Rhodococcus sp. strain m15-3 under the control of the heterologous promoters Plac, PdhlA, and Ptrc. The resulting plasmids yielded functional expression in several gram-negative bacteria. A catabolic pathway for trihalopropanes was designed by introducing these broad-host-range dehalogenase expression plasmids into Agrobacterium radiobacter AD1, which has the ability to utilize dihalogenated propanols for growth. The recombinant strain AD1(pTB3), expressing the haloalkane dehalogenase gene under the control of the dhlA promoter, was able to utilize both 1,2,3-tribromopropane and 1,2-dibromo-3-chloropropane as sole carbon sources. Moreover, increased expression of the haloalkane dehalogenase resulted in elevated resistance to trihalopropanes. PMID:10508091

  2. Phenanthrene-degrading pathway of Agrobacterium sp. Phx1

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; YUAN Hongli; WANG Shuangqing; HUANG Huaizeng

    2005-01-01

    The metabolic pathway of phenanthrene-degrading strain Agrobacterium sp. Phx1 was investigated. Phx1 almost was able to transform 100 υg/mL of phenanthrene completely in 1 day in broth media of beef extract-peptone (BP), Luria-Bertani (LB) and mineral salts media (MS), and LB and BP could promote the growth and degradation efficiency of Phx1. The GC-MS was employed to analyze the metabolites of the 1st, 3rd, 7th days of phenanthrene degradation in MS. As a result, the 1-Hydroxy-2-naphthoic acid (1H2N) and 1-naphthol (NOL) were detected in the metabolites of the 1st day. Only NOL was observed on the 3rd day and it disappeared on the 7th day. The accumulated NOL did not pertain to the defined pathway of phenanthrene degradation by bacteria. The further HPLC study confirmed the finding in GC-MS analysis and found the production of catechol (CAT) from o-phthalic acid (OPA) in the phenanthrene metabolizing, which has never been reported in the defined degrading pathways. This production was also evidenced by the production of CAT using OPA as substrate. All of our results showed that the Agrobacterium sp. Phx1 had a novel phenanthrene-degrading pathway.

  3. Strain specific Agrobacterium-mediated genetic transformation of Bacopa monnieri

    Directory of Open Access Journals (Sweden)

    Sheetal Yadav

    2014-12-01

    Full Text Available Agrobacterium-mediated genetic transformation is the most preferred strategy utilized for plant genetic transformation. The present study was carried out to analyze the influence of three different strains of Agrobacterium tumefaciens on genetic transformation of Bacopa monnieri (L. Pennell. In the present study, B. monnieri was genetically transformed with three different strains of A. tumefaciens viz. LBA4404, EHA105 and GV3101 harbouring expression vector pCAMBIA2301 containing β-glucuronidase (GUS as a reporter gene. The putative transformants were analyzed by PCR method using transgene specific primers. Expression and presence of GUS reporter protein were analyzed by histochemical staining assay and quantitative analysis of GUS enzyme was done using fluorometric assay. No statistically significant difference in transformation efficiency was found for all the three strains. Interestingly, Gus expression was variable with LBA4404 plants showing highest GUS activity.

  4. A new QRT-PCR assay designed for the differentiation between elements provided from Agrobacterium sp. in GMOs plant events and natural Agrobacterium sp. bacteria.

    Science.gov (United States)

    Nabi, Nesrine; Chaouachi, Maher; Zellama, Mohamed Salem; Ben Hafsa, Ahmed; Mrabet, Besma; Saïd, Khaled; Fathia, Harzallah Skhiri

    2016-04-01

    The question asked in the present work was how to differentiate between contamination of field samples with and GM plants contained sequences provided from this bacterium in order to avoid false positives in the frame of the detection and the quantification of GMO. For this, new set of primers and corresponding TaqMan Minor Groove Binder (MGB) probes were designed to target Agrobacterium sp. using the tumor-morphology-shooty gene (TMS1). Final standard curves were calculated for each pathogen by plotting the threshold cycle value against the bacterial number (log (colony forming units) per milliliter) via linear regression. The method designed was highly specific and sensitive, with a detection limit of 10CFU/ml. No significant cross-reaction was observed. Results from this study showed that TaqMan real-time PCR, is potentially an effective method for the rapid and reliable quantification of Agrobacterium sp. in samples containing GMO or non GMO samples. PMID:26593465

  5. Synergistic Action of D-Glucose and Acetosyringone on Agrobacterium Strains for Efficient Dunaliella Transformation

    Science.gov (United States)

    Srinivasan, Ramachandran

    2016-01-01

    An effective transformation protocol for Dunaliella, a β-carotene producer, was developed using the synergistic mechanism of D-glucose and Acetosyringone on three different Agrobacterium strains (EHA105, GV3101 and LBA4404). In the present study, we investigated the pre-induction of Agrobacterium strains harboring pMDC45 binary vector in TAP media at varying concentrations of D-glucose (5 mM, 10 mM, and 15mM) and 100 μM of Acetosyringone for co-cultivation. Induction of Agrobacterium strains with 10 mM D-glucose and 100 μM Acetosyringone showed higher rates of efficiency compared to other treatments. The presence of GFP and HPT transgenes as a measure of transformation efficiency from the transgenic lines were determined using fluorescent microscopy, PCR, and southern blot analyzes. Highest transformation rate was obtained with the Agrobacterium strain LBA4404 (181 ± 3.78 cfu per 106 cells) followed by GV3101 (128 ± 5.29 cfu per 106 cells) and EHA105 (61 ± 5.03 cfu per 106 cells). However, the Agrobacterium strain GV3101 exhibited more efficient single copy transgene (HPT) transfer into the genome of D. salina than LBA4404. Therefore, future studies dealing with genetic modifications in D. salina can utilize GV3101 as an optimal Agrobacterium strain for gene transfer. PMID:27351975

  6. Degradation of the Ferric Chelate of EDTA by a Pure Culture of an Agrobacterium sp

    OpenAIRE

    Lauff, John J.; Steele, D. Bernie; Coogan, Louise A.; Breitfeller, James M.

    1990-01-01

    A pure culture of an Agrobacterium sp. (deposited as ATCC 55002) that mineralizes the ferric chelate of EDTA (ferric-EDTA) was isolated by selective enrichment from a treatment facility receiving industrial waste containing ferric-EDTA. The isolate grew on ferric-EDTA as the sole carbon source at concentrations exceeding 100 mM. As the degradation proceeded, carbon dioxide, ammonia, and an unidentified metabolite(s) were produced; the pH increased, and iron was precipitated from solution. The...

  7. Use of Ti plasmid DNA probes for determining tumorigenicity of agrobacterium strains

    International Nuclear Information System (INIS)

    Probes consisting of T-DNA genes from the Ti plasmid of Agrobacterium tumefaciens were used for determining tumorigenicity of strains. Two 32P-labeled probes hybridized with 28 of 28 tumorigenic strains of the pathogen but not with 20 of 22 nontumorigenic strains. One probe, pTHE17, consists of all but the far left portion of the T-DNA of strain C58. Probe SmaI7 consists of SmaI fragment 7 of pTiC58, including onc genes 1, 4, and 6a and most of 2. Another probe, pAL4044, consisting of the vir region of strain Ach-5, hybridized with several nontumorigenic as well as tumorigenic strains. Colony hybridizations were done with 28 tumorigenic and 22 nontumorigenic Agrobacterium strains. About 106 CFU of the different tumorigenic strains were detectable with this method. Southern analyses confirmed the presence or absence of Ti plasmids in strains for which tumorigenicity was questioned. Colony hybridization with the T-DNA probes provides a rapid and sensitive means for determining the tumorigenic nature of Agrobacterium strains

  8. Efficiency of different Agrobacterium rhizogenes strains on hairy roots induction in Solanum mammosum.

    Science.gov (United States)

    Ooi, Chai Theam; Syahida, Ahmad; Stanslas, Johnson; Maziah, Mahmood

    2013-03-01

    This article presents the abilities and efficiencies of five different strains of Agrobacterium rhizogenes (strain ATCC 31798, ATCC 43057, AR12, A4 and A13) to induce hairy roots on Solanum mammosum through genetic transformation. There is significant difference in the transformation efficiency (average number of days of hairy root induction) and transformation frequency for all strains of A. rhizogenes (P ammonium nitrate and potassium nitrate and 5 % (w/v) sucrose, had exhibited improvement in growth index, that is, the fresh biomass was almost double as compared to its initial growth in unmodified half-strength MS medium. PMID:23090845

  9. Influence of volatile organic compounds emitted by Pseudomonas and Serratia strains on Agrobacterium tumefaciens biofilms.

    Science.gov (United States)

    Plyuta, Vladimir; Lipasova, Valentina; Popova, Alexandra; Koksharova, Olga; Kuznetsov, Alexander; Szegedi, Erno; Chernin, Leonid; Khmel, Inessa

    2016-07-01

    The ability to form biofilms plays an important role in bacteria-host interactions, including plant pathogenicity. In this work, we investigated the action of volatile organic compounds (VOCs) produced by rhizospheric strains of Pseudomonas chlororaphis 449, Pseudomonas fluorescens B-4117, Serratia plymuthica IC1270, as well as Serratia proteamaculans strain 94, isolated from spoiled meat, on biofilms formation by three strains of Agrobacterium tumefaciens which are causative agents of crown-gall disease in a wide range of plants. In dual culture assays, the pool of volatiles emitted by the tested Pseudomonas and Serratia strains suppressed the formation of biofilms of A. tumefaciens strains grown on polycarbonate membrane filters and killed Agrobacterium cells in mature biofilms. The individual VOCs produced by the tested Pseudomonas strains, that is, ketones (2-nonanone, 2-heptanone, 2-undecanone), and dimethyl disulfide (DMDS) produced by Serratia strains, were shown to kill A. tumefaciens cells in mature biofilms and suppress their formation. The data obtained in this study suggest an additional potential of some ketones and DMDS as protectors of plants against A. tumefaciens strains, whose virulence is associated with the formation of biofilms on the infected plants. PMID:27214244

  10. Effective Immobilization of Agrobacterium sp. IFO 13140 Cells in Loofa Sponge for Curdlan Biosynthesis

    Directory of Open Access Journals (Sweden)

    Camila Ortiz Martinez

    2015-05-01

    Full Text Available Curdlan production by Agrobacterium sp. IFO13140 immobilized on loofa sponge, alginate and loofa sponge with alginate was investigated. There was no statistically-significant difference in curdlan production when the microorganism was immobilized in different matrices. The loofa sponge was chosen because of its practical application and economy and because it provides a high stability through its continued use. The best conditions for immobilization on loofa sponge were 50 mg of cell, 200 rpm and 72 h of incubation, which provided a curdlan production 1.50-times higher than that obtained by free cells. The higher volumetric productivity was achieved by immobilized cells (0.09 g/L/h at 150 rpm. The operating stability was evaluated, and until the fourth cycle, immobilized cells retained 87.40% of the production of the first cycle. The immobilized cells remained active after 300 days of storage at 4 °C. The results of this study demonstrate success in immobilizing cells for curdlan biosynthesis, making the process potentially suitable for industrial scale-up. Additional studies may show a possible contribution to the reduction of operating costs.

  11. Complete Genome Sequence of the Sesbania Symbiont and Rice Growth-Promoting Endophyte Rhizobium sp. Strain IRBG74

    OpenAIRE

    Crook, Matthew B.; Mitra, Shubhajit; Ané, Jean-Michel; Sadowsky, Michael J.; Gyaneshwar, Prasad

    2013-01-01

    Rhizobium sp. strain IRBG74 is the first known nitrogen-fixing symbiont in the Agrobacterium/Rhizobium clade that nodulates the aquatic legume Sesbania sp. and is also a growth-promoting endophyte of wetland rice. Here, we present the sequence of the IRBG74 genome, which is composed of a circular chromosome, a linear chromosome, and a symbiotic plasmid, pIRBG74a.

  12. Use of Agrobacterium rhizogenes Strain 18r12v and Paromomycin Selection for Transformation of Brachypodium distachyon and Brachypodium sylvaticum

    Science.gov (United States)

    Collier, Ray; Bragg, Jennifer; Hernandez, Bryan T.; Vogel, John P.; Thilmony, Roger

    2016-01-01

    The genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brachypodium has relied mainly on Agrobacterium tumefaciens strain AGL1. Currently the antibiotic hygromycin B has been the selective agent of choice for robust identification of transgenic calli in Brachypodium distachyon and Brachypodium sylvaticum but few other chemicals have been shown to work as well for selection of transgenic Brachypodium cells in tissue culture. This study demonstrates that Agrobacterium rhizogenes strain 18r12v and paromomycin selection can be successfully used for the efficient generation of transgenic B. distachyon and B. sylvaticum. Additionally we observed that the transformation rates were similar to or higher than those obtained with A. tumefaciens strain AGL1 and hygromycin selection. The A. rhizogenes strain 18r12v harboring the pARS1 binary vector and paromomycin selection is an effective means of generating transgenic Brachypodium plants. This novel approach will facilitate the transgenic complementation of T-DNA knockout mutants of B. distachyon which were created using hygromycin selection, as well as aid the implementation of more complex genome manipulation strategies which require multiple rounds of transformation. PMID:27252729

  13. Purification, gene cloning, and characterization of γ-butyrobetainyl CoA synthetase from Agrobacterium sp. 525a.

    Science.gov (United States)

    Fujimitsu, Hiroshi; Matsumoto, Akira; Takubo, Sayaka; Fukui, Akiko; Okada, Kazuma; Mohamed Ahmed, Isam A; Arima, Jiro; Mori, Nobuhiro

    2016-08-01

    The report is the first of purification, overproduction, and characterization of a unique γ-butyrobetainyl CoA synthetase from soil-isolated Agrobacterium sp. 525a. The primary structure of the enzyme shares 70-95% identity with those of ATP-dependent microbial acyl-CoA synthetases of the Rhizobiaceae family. As distinctive characteristics of the enzyme of this study, ADP was released in the catalytic reaction process, whereas many acyl CoA synthetases are annotated as an AMP-forming enzyme. The apparent Km values for γ-butyrobetaine, CoA, and ATP were, respectively, 0.69, 0.02, and 0.24 mM. PMID:27125317

  14. Influence of different strains of Agrobacterium rhizogenes on induction of hairy roots and lignan production in Linum tauricum ssp. tauricum

    Directory of Open Access Journals (Sweden)

    Iliana Ionkova

    2009-01-01

    Full Text Available Hairy root cultures were induced from leaf explants of Linum tauricum ssp. Tauricum by infection with Agrobacterium rhizogenes. Different bacterial strains of Agrobacterium rhizogenes - TR 105 and ATCC 15834 were evaluated for induction of transformed hairy roots in Linum tauricum ssp. Tauricum. These different strains varied in their virulence for induction of hairy roots in this species. Acetosyringon in cultivation medium was used to increase of frequency of hairy root induction. Growth kinetics of transgenic roots indicated a similar pattern of growth, with maximum growth occurring between 17 and 20 days. The transformed nature of tissue was confirmed by the production of opines. The lignin production of different clones was found to be growth-related. The cultures produced to 2.6% of the lignin 4′-demethyl-6-methoxypodophylotoxin (4′-DM-MPTOX and to 3.5% of the lignin 6-methoxypodophyllotoxin (6MPTOX on a dry weight basis, which was 10 to 12 times higher than in Linum tauricum ssp. Tauricum cell suspensions. Transformed cultures showed significant differences in lignin content. The highest amount of 4′-DM-MPTOX and MPTOX was found in transformed line induced by strain ATCC 15834. Rapidly growing root lines were selected to increase the efficiency of he production of lignans.

  15. The development of plasmid-free strains of Agrobacterium tumefaciens by using incompatibility with a Rhizobium meliloti plasmid to eliminate pAtC58.

    Science.gov (United States)

    Hynes, M F; Simon, R; Pühler, A

    1985-03-01

    Agrobacterium tumefaciens strains LBA275 and LBA290 were cured of their cryptic plasmid pAtC58 by the introduction of the Rhizobium meliloti plasmid pRme41a, which is incompatible with pAtC58. pRme41a and pTiC58, the resident Ti plasmid of LBA275, were subsequently eliminated by growth at supraoptimal temperature (40 degrees C). The resulting plasmid-free Agrobacterium strains, UBAPF1 and UBAPF2, have proved extremely useful for the study of Rhizobium plasmids. The loss of the cryptic plasmid pAtC58 has no effect on the tumor-forming ability of the Agrobacterium strains; when the Ti plasmid is present, normal tumors are formed on Kalanchoe daigremontiana. PMID:4001194

  16. Effect of Different Agrobacterium rhizogenes Strains on Hairy Root Induction and Phenylpropanoid Biosynthesis in Tartary Buckwheat (Fagopyrum tataricum Gaertn).

    Science.gov (United States)

    Thwe, Aye; Valan Arasu, Mariadhas; Li, Xiaohua; Park, Chang Ha; Kim, Sun Ju; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2016-01-01

    The development of an efficient protocol for successful hairy root induction by Agrobacterium rhizogenes is the key step toward an in vitro culturing method for the mass production of secondary metabolites. The selection of an effective Agrobacterium strain for the production of hairy roots is highly plant species dependent and must be determined empirically. Therefore, our goal was to investigate the transformation efficiency of different A. rhizogenes strains for the induction of transgenic hairy roots in Fagopyrum tataricum 'Hokkai T10' cultivar; to determine the expression levels of the polypropanoid biosynthetic pathway genes, such as ftpAL, FtC4H, Ft4CL, FrCHS, FrCH1, FrF3H, FtFLS1, FtFLS2, FtF3(,) H1, FtF3'H2, FtANS, and FtDFR; and to quantify the in vitro synthesis of phenolic compounds and anthocyanins. Among different strains, R1000 was the most promising candidate for hairy root stimulation because it induced the highest growth rate, root number, root length, transformation efficiency, and total anthocyanin and rutin content. The R1000, 15834, and A4 strains provided higher transcript levels for most metabolic pathway genes for the synthesis of rutin (22.31, 15.48, and 13.04 μg/mg DW, respectively), cyanidin 3-O-glucoside (800, 750, and 650 μg/g DW, respectively), and cyanidin 3-O-rutinoside (2410, 1530, and 1170 μg/g DW, respectively). A suitable A. rhizogenes strain could play a vital role in the fast growth of the bulk amount of hairy roots and secondary metabolites. Overall, R1000 was the most promising strain for hairy root induction in buckwheat. PMID:27014239

  17. Effect of different Agrobacterium rhizogenes strains on hairy root induction and phenylpropanoid biosynthesis in tartary buckwheat (Fagopyrum tataricum Gaertn

    Directory of Open Access Journals (Sweden)

    Aye Aye eThwe

    2016-03-01

    Full Text Available The development of an efficient protocol for successful hairy root induction by Agrobacterium rhizogenes is the key step toward an in vitro culturing method for the mass production of secondary metabolites. The selection of an effective Agrobacterium strain for the production of hairy roots is highly plant species dependent and must be determined empirically. Therefore, our goal was to investigate the transformation efficiency of different A. rhizogenes strains for the induction of transgenic hairy roots in Fagopyrum tataricum ‘Hokkai T10’ cultivar; to determine the expression levels of the polypropanoid biosynthetic pathway genes, such as FtPAL, FtC4H, Ft4CL, FrCHS, FrCH1, FrF3H, FtFLS1, FtFLS2, FtF3, H1, FtF3,H2, FtANS, and FtDFR; and to quantify the in vitro synthesis of phenolic compounds and anthocyanins. Among different strains, R1000 was the most promising candidate for hairy root stimulation because it induced the highest growth rate, root number, root length, transformation efficiency, and total anthocyanin and rutin content. The R1000, 15834, and A4 strains provided higher transcript levels for most metabolic pathway genes for the synthesis of rutin (22.31, 15.48, and 13.04 µg/mg DW, respectively, cyanidin 3-O-glucoside (800, 750, and 650 µg /g DW, respectively, and cyanidin 3-O-rutinoside (2410, 1530, and 1170 µg /g DW, respectively. A suitable A. rhizogenes strain could play a vital role in the fast growth of the bulk amount of hairy roots and secondary metabolites. Overall, R1000 was the most promising strain for hairy root induction in buckwheat.

  18. Effect of Different Agrobacterium rhizogenes Strains on Hairy Root Induction and Phenylpropanoid Biosynthesis in Tartary Buckwheat (Fagopyrum tataricum Gaertn)

    Science.gov (United States)

    Thwe, Aye; Valan Arasu, Mariadhas; Li, Xiaohua; Park, Chang Ha; Kim, Sun Ju; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2016-01-01

    The development of an efficient protocol for successful hairy root induction by Agrobacterium rhizogenes is the key step toward an in vitro culturing method for the mass production of secondary metabolites. The selection of an effective Agrobacterium strain for the production of hairy roots is highly plant species dependent and must be determined empirically. Therefore, our goal was to investigate the transformation efficiency of different A. rhizogenes strains for the induction of transgenic hairy roots in Fagopyrum tataricum ‘Hokkai T10’ cultivar; to determine the expression levels of the polypropanoid biosynthetic pathway genes, such as ftpAL, FtC4H, Ft4CL, FrCHS, FrCH1, FrF3H, FtFLS1, FtFLS2, FtF3, H1, FtF3′H2, FtANS, and FtDFR; and to quantify the in vitro synthesis of phenolic compounds and anthocyanins. Among different strains, R1000 was the most promising candidate for hairy root stimulation because it induced the highest growth rate, root number, root length, transformation efficiency, and total anthocyanin and rutin content. The R1000, 15834, and A4 strains provided higher transcript levels for most metabolic pathway genes for the synthesis of rutin (22.31, 15.48, and 13.04 μg/mg DW, respectively), cyanidin 3-O-glucoside (800, 750, and 650 μg/g DW, respectively), and cyanidin 3-O-rutinoside (2410, 1530, and 1170 μg/g DW, respectively). A suitable A. rhizogenes strain could play a vital role in the fast growth of the bulk amount of hairy roots and secondary metabolites. Overall, R1000 was the most promising strain for hairy root induction in buckwheat. PMID:27014239

  19. Genome and proteome analysis of 7-7-1, a flagellotropic phage infecting Agrobacterium sp H13-3

    Directory of Open Access Journals (Sweden)

    Kropinski Andrew M

    2012-05-01

    Full Text Available Abstract Background The flagellotropic phage 7-7-1 infects motile cells of Agrobacterium sp H13-3 by attaching to and traveling along the rotating flagellar filament to the secondary receptor at the base, where it injects its DNA into the host cell. Here we describe the complete genomic sequence of 69,391 base pairs of this unusual bacteriophage. Methods The sequence of the 7-7-1 genome was determined by pyro(454sequencing to a coverage of 378-fold. It was annotated using MyRAST and a variety of internet resources. The structural proteome was analyzed by SDS-PAGE coupled electrospray ionization-tandem mass spectrometry (MS/MS. Results Sequence annotation and a structural proteome analysis revealed 127 open reading frames, 84 of which are unique. In six cases 7-7-1 proteins showed sequence similarity to proteins from the virulent Burkholderia myovirus BcepB1A. Unique features of the 7-7-1 genome are the physical separation of the genes encoding the small (orf100 and large (orf112 subunits of the DNA packaging complex and the apparent lack of a holin-lysin cassette. Proteomic analysis revealed the presence of 24 structural proteins, five of which were identified as baseplate (orf7, putative tail fibre (orf102, portal (orf113, major capsid (orf115 and tail sheath (orf126 proteins. In the latter case, the N-terminus was removed during capsid maturation, probably by a putative prohead protease (orf114.

  20. Agrobacterium tumefaciens-mediated transformation in the entomopathogenic fungus Lecanicillium lecanii and development of benzimidazole fungicide resistant strains.

    Science.gov (United States)

    Zhang, Yan-Jun; Zhao, Jin-Jin; Xie, Ming; Peng, De-Liang

    2014-10-01

    Lecanicillium lecanii has been used in the biological control of several insects in agricultural practice. Since the gene manipulation tools for this entomopathogenic fungus have not been sufficiently developed, Agrobacterium tumefaciens-mediated transformation (ATMT) in L. lecanii was investigated in this study, using the wild-type isolate FZ9906 as a progenitor strain and the hygromycin B resistance (hph) gene as a selection marker. Furthermore, a field carbendazim-resistant (mrt) gene from Botrytis cinerea was expressed in L. lecanii FZ9906 via the ATMT system. The results revealed that the frequency of transformation surpassed 25transformants/10(6) conidia, most of the putative transformants contained a single copy of T-DNA, and the T-DNA inserts were stably inherited after five generations. All putative transformants had indistinguishable biological characteristics relative to the wild-type strain, excepting two transformants with altered growth habits or virulence. Moreover, the resistance of the putative transformants to carbendazim (MBC) was improved, and the highest one was 380-fold higher than the wild-type strain. In conclusion, ATMT is an effective and suitable system for L. lecanii transformation, and will be a useful tool for the basic and application research of gene functions and gene modifications of this strain. PMID:25107375

  1. Computational prediction of over-annotated protein-coding genes in the genome of Agrobacterium tumefaciens strain C58

    Science.gov (United States)

    Yu, Jia-Feng; Sui, Tian-Xiang; Wang, Hong-Mei; Wang, Chun-Ling; Jing, Li; Wang, Ji-Hua

    2015-12-01

    Agrobacterium tumefaciens strain C58 is a type of pathogen that can cause tumors in some dicotyledonous plants. Ever since the genome of A. tumefaciens strain C58 was sequenced, the quality of annotation of its protein-coding genes has been queried continually, because the annotation varies greatly among different databases. In this paper, the questionable hypothetical genes were re-predicted by integrating the TN curve and Z curve methods. As a result, 30 genes originally annotated as “hypothetical” were discriminated as being non-coding sequences. By testing the re-prediction program 10 times on data sets composed of the function-known genes, the mean accuracy of 99.99% and mean Matthews correlation coefficient value of 0.9999 were obtained. Further sequence analysis and COG analysis showed that the re-annotation results were very reliable. This work can provide an efficient tool and data resources for future studies of A. tumefaciens strain C58. Project supported by the National Natural Science Foundation of China (Grant Nos. 61302186 and 61271378) and the Funding from the State Key Laboratory of Bioelectronics of Southeast University.

  2. Genome sequencing and annotation of Serratia sp. strain TEL.

    Science.gov (United States)

    Lephoto, Tiisetso E; Gray, Vincent M

    2015-12-01

    We present the annotation of the draft genome sequence of Serratia sp. strain TEL (GenBank accession number KP711410). This organism was isolated from entomopathogenic nematode Oscheius sp. strain TEL (GenBank accession number KM492926) collected from grassland soil and has a genome size of 5,000,541 bp and 542 subsystems. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession number LDEG00000000. PMID:26697332

  3. Metabolism of glyphosate in Pseudomonas sp. strain LBr.

    OpenAIRE

    Jacob, G S; Garbow, J.R.; Hallas, L E; Kimack, N M; Kishore, G M; Schaefer, J.

    1988-01-01

    Metabolism of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. strain LBr, a bacterium isolated from a glyphosate process waste stream, was examined by a combination of solid-state 13C nuclear magnetic resonance experiments and analysis of the phosphonate composition of the growth medium. Pseudomonas sp. strain LBr was capable of eliminating 20 mM glyphosate from the growth medium, an amount approximately 20-fold greater than that reported for any other microorganism to date. The bact...

  4. Auxin autonomy in cultured tobacco teratoma tissues transformed by an auxin-mutant strain of Agrobacterium tumefaciens.

    Science.gov (United States)

    Campell, B R; Su, L Y; Pengelly, W L

    1992-08-01

    We have studied the mechanism of auxin autonomy in tobacco (Nicotiana tabacum L.) crowngall tissues transformed by the auxin-mutant (tms (-)) A66 strain of Agrobacterium tumefaciens. Normally, tms (-) tobacco tumor tissues require the formation of shoots to exhibit auxin-independent growth in culture. We have isolated from tms (-) tobacco cells several stable variants that are fully hormone-independent and grow rapidly as friable, unorganized tissues, thus mimicking the growth and morphology of tms (+) tobacco cells that produce high levels of auxin. However, none of the variants contained the high levels of auxin found in tms (+) tumor cells. The variants could be divided into two classes with respect to their response to applied auxin. The first class was highly sensitive to applied auxin: low concentrations (1 μM) of α-naphthaleneacetic acid (NAA) severely inhibited growth and markedly stimulated the accumulation of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC). The second class of variants showed a low sensitivity to applied auxin: growth was promoted by concentrations of NAA up to 10 μM, and growth inhibition and high ACC levels were observed only at high NAA concentrations (100 μM). Unorganized variants with low auxin sensitivity were also isolated from a variant line with high auxin sensitivity. The isolation of tumor cells that exhibited the growth phenotype of tms (+) cells while retaining the low auxin content and low auxin sensitivity of tms (-) cells indicates that full hormone autonomy, characteristic of wild-type crown-gall tumors, can be achieved by a mechanism that is independent of changes in the auxin physiology of the cells. PMID:24178208

  5. Draft Genome Sequence of Rhodococcus sp. Strain 311R

    Science.gov (United States)

    Ehsani, Elham; Jauregui, Ruy; Geffers, Robert; Jareck, Michael; Boon, Nico; Pieper, Dietmar H.

    2015-01-01

    Here, we report the draft genome sequence of Rhodococcus sp. strain 311R, which was isolated from a site contaminated with alkanes and aromatic compounds. Strain 311R shares 90% of the genome of Rhodococcus erythropolis SK121, which is the closest related bacteria. PMID:25999565

  6. Rhodococcus sp. strain TM1 plays a synergistic role in the degradation of piperidine by Mycobacterium sp. strain THO100.

    Science.gov (United States)

    Kim, Yong-Hak; Kang, Un-Beom; Konishi, Kyoko; Lee, Cheolju

    2006-09-01

    Mycobacterium sp. strain THO100 and Rhodococcus sp. strain TM1 were isolated from a morpholine-containing enrichment culture of activated sewage sludge. Strain THO100, but not strain TM1, was able to degrade alicyclic amines such as morpholine, piperidine, and pyrrolidine. The mixed strains THO100 and TM1 showed a better growth on piperidine as the substrate than the pure strain THO100 because strain TM1 was able to reduce the level of glutaraldehyde (GA) produced during piperidine degradation. GA was toxic to strain THO100 (IC(50) = 28.3 microM) but less toxic to strain TM1 (IC(50) = 215 microM). Strain THO100 possessed constitutive semialdehyde dehydrogenases, namely Sad1 and Sad2, whose activities toward succinic semialdehyde (SSA) were strongly inhibited by GA. The two isozymes were identified as catalase-peroxidase (KatG = Sad1) and semialdehyde dehydrogenase (Sad2) based on mass spectrometric analyses of tryptic peptides and database searches of the partial DNA sequences of their genes. In contrast, strain TM1 containing another constitutive enzyme Gad1 could oxidize both SSA and GA. This study suggested that strain TM1 possessing Gad1 played a synergistic role in reducing the toxic and inhibitory effects of GA produced in the degradation of piperidine by strain THO100. PMID:16832627

  7. Heptaketides with antiviral activity from three endolichenic fungal strains Nigrospora sp., Alternaria sp. and Phialophora sp.

    Science.gov (United States)

    He, Jun-Wei; Chen, Guo-Dong; Gao, Hao; Yang, Fan; Li, Xiao-Xia; Peng, Tao; Guo, Liang-Dong; Yao, Xin-Sheng

    2012-09-01

    Two new heptaketides, (+)-(2S,3S,4aS)-altenuene (1a) and (-)-(2S,3S,4aR)-isoaltenuene (2a), together with six known compounds, (-)-(2R,3R,4aR)-altenuene (1b), (+)-(2R,3R,4aS)-isoaltenuene (2b), 5'-methoxy-6-methyl-biphenyl-3,4,3'-triol (3), alternariol (4), alternariol-9-methyl ether (5), and 4-hydroxyalternariol-9-methyl ether (6) were isolated from the EtOAc extract of an endolichenic fungal strain Nigrospora sphaerica (No.83-1-1-2). Compounds 1a and 1b were separated from enantiomers 1 by chiral HPLC, and so were 2a and 2b from enantiomers 2. Interestingly, 1-6 were also obtained from other two endolichenic fungal strains Alternaria alternata (No.58-8-4-1) and Phialophora sp. (No.96-1-8-1). The structures of 1-6 were elucidated by means of MS, HR-MS, NMR, and X-ray diffraction. Furthermore, the absolute configurations of 1a-2b were determined by CD experiments and CD calculation. Of these compounds, 4 and 5 showed antiviral activity against herpes simplex virus (HSV) in vitro, with IC(50) values of 13.5 and 21.3 μM, and with selective index (SI) values of 26.5 and 17.1, respectively. PMID:22613072

  8. Degradation of alkylphenol ethoxylates by Pseudomonas sp. strain TR01.

    OpenAIRE

    Maki, H; Masuda, N.; Fujiwara, Y; Ike, M; Fujita, M.

    1994-01-01

    An alkylphenol ethoxylate-degrading bacterium was isolated from activated sludge of a municipal sewage treatment plant by enrichment culture. This organism was found to belong to the genus Pseudomonas; since no corresponding species was identified, we designated it as Pseudomonas sp. strain TR01. This strain had an optimal temperature and pH of 30 degrees C and 7, respectively, for both growth and the degradation of Triton N-101 (a nonylphenol ethoxylate in which the average number of ethylen...

  9. Metabolism of dimethylphthalate by Micrococcus sp. strain 12B.

    OpenAIRE

    Eaton, R W; Ribbons, D W

    1982-01-01

    During growth of Micrococcus sp. strain 12B with dimethylphthalate, 4-carboxy-2-hydroxymuconate lactone (CHML, X) and 3,4-dihydroxyphthalate-2-methyl ester (XI) were isolated from culture filtrates. CHML is the lactone of intermediate 4-carboxy-2-hydroxymuconate (IX). Accumulation of XI which is not a substrate for 3,4-dihydroxyphthalate-2-decarboxylase in strain 12B afforded an easy access to the preparation of 3,4-dihydroxyphthalate.

  10. Biodegradation of hexavalent chromium (Cr+6) in wastewater using Pseudomonas sp. and Bacillus sp. bacterial strains

    OpenAIRE

    Muhammad Qasim

    2013-01-01

    The recovery of toxic metal compounds is a deep concern in all industries. Hexavalent chromium is particularly worrying because of its toxic influence on human health. In this paper, biodegradation of hexavalent chromium (Cr+6) present in wastewater has been studied using two different bacterial strains; Pseudomonas sp. and Bacillus sp. A chemostat (with and without recycle of cells) with 10 L liquid culture volume was used to study the substrate and the biomass cell concentrations with time....

  11. Enzymological Characterization of Atm, the First Laccase from Agrobacterium sp. S5-1, with the Ability to Enhance In Vitro digestibility of Maize Straw.

    Directory of Open Access Journals (Sweden)

    Wei Si

    Full Text Available Laccase is an enzyme that catalyzes oxidation of phenolic compounds, diamines and aromatic amines. In this study, a novel laccase-like gene (atm in a ligninolyitic isolate Agrobacterium sp. S5-1 from soil humus was identified and heterologously expressed in Escherichia coli. Atm exhibited its maximal activity at pH 4.5 and at 50°C. This enzyme was tolerant to high temperature, a broad range of pH, heavy metal ions (Co3+, Mn2+, Cu2+ and Ni2+, 20 mM and all tested organic solvents. Furthermore, Atm significantly (p<0.05 increased dry matter digestibility of maize straw from 23.44% to 27.96% and from 29.53% to 37.10% after 8 or 24 h of digestion and improved acid detergent fiber digestibility from 5.81% to 10.33% and from 12.80% to 19.07% after 8 or 24 h of digestion, respectively. The combination of Atm and fibrolytic enzymes significantly (p<0.05 enhanced neutral detergent fiber digestibility from 19.02% to 24.55% after 24 h of digestion respectively. Results showed treatment with Atm effectively improved in vitro digestibility of maize straw, thus suggesting that Atm has an application potential for bioconversion of lignin rich agricultural byproducts into animal feed and cellulosic ethanol.

  12. Draft Genome Sequences of Sphingobium sp. Strain TCM1 and Sphingomonas sp. Strain TDK1, Haloalkyl Phosphate Flame Retardant- and Plasticizer-Degrading Bacteria

    Science.gov (United States)

    Abe, Katsumasa; Kasai, Daisuke; Fukuda, Masao; Takahashi, Shouji

    2016-01-01

    Sphingobium sp. strain TCM1 and Sphingomonas sp. strain TDK1 are haloalkyl phosphate flame retardant- and plasticizer-degrading bacteria. We report here the draft genome sequences of these strains to provide insights into the molecular mechanism underlying their degradation ability. PMID:27417843

  13. Integrative Gene Cloning and Expression System for Streptomyces sp. US 24 and Streptomyces sp. TN 58 Bioactive Molecule Producing Strains

    Directory of Open Access Journals (Sweden)

    Samiha Sioud

    2009-01-01

    Full Text Available Streptomyces sp. US 24 and Streptomyces sp. TN 58, two strains producing interesting bioactive molecules, were successfully transformed using E. coli ET12567 (pUZ8002, as a conjugal donor, carrying the integrative plasmid pSET152. For the Streptomyces sp. US 24 strain, two copies of this plasmid were tandemly integrated in the chromosome, whereas for Streptomyces sp. TN 58, the integration was in single copy at the attB site. Plasmid pSET152 was inherited every time for all analysed Streptomyces sp. US 24 and Streptomyces sp. TN 58 exconjugants under nonselective conditions. The growth, morphological differentiation, and active molecules production of all studied pSET152 integrated exconjugants were identical to those of wild type strains. Consequently, conjugal transfer using pSET152 integration system is a suitable means of genes transfer and expression for both studied strains. To validate the above gene transfer system, the glucose isomerase gene (xylA from Streptomyces sp. SK was expressed in strain Streptomyces sp. TN 58. Obtained results indicated that heterologous glucose isomerase could be expressed and folded effectively. Glucose isomerase activity of the constructed TN 58 recombinant strain is of about eighteenfold higher than that of the Streptomyces sp. SK strain. Such results are certainly of importance due to the potential use of improved strains in biotechnological process for the production of high-fructose syrup from starch.

  14. Crystallization and preliminary X-ray analysis of an exotype alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, a member of polysaccharide lyase family 15

    International Nuclear Information System (INIS)

    The crystallization and preliminary X-ray characterization of a family PL-15 exotype alginate lyase are presented. Almost all alginate lyases depolymerize alginate in an endolytical fashion via a β-elimination reaction. The alginate lyase Atu3025 from Agrobacterium tumefaciens strain C58, consisting of 776 amino-acid residues, is a novel exotype alginate lyase classified into polysaccharide lyase family 15. The enzyme was crystallized at 293 K by sitting-drop vapour diffusion with polyethylene glycol 4000 as a precipitant. Preliminary X-ray analysis showed that the Atu3025 crystal belonged to space group P21 and diffracted to 2.8 Å resolution, with unit-cell parameters a = 107.7, b = 108.3, c = 149.5 Å, β = 91.5°

  15. Effect of salt stress on the physiology of Frankia sp strain CcI6

    Indian Academy of Sciences (India)

    Rediet Oshone; Samira R Mansour; Louis S Tisa

    2013-11-01

    Actinorhizal plants are able to overcome saline soils and reclaim land. Frankia sp strain CcI6 was isolated from nodules of Casuarina cunninghamiana found in Egypt. Phylogenetic analysis of Frankia sp. strain CcI6 revealed that the strain is closely related to Frankia sp. strain CcI3. The strain displays an elevated level of NaCl tolerance. Vesicle production and nitrogenase activity were also influenced by NaCl.

  16. Effect of salt stress on the physiology of Frankia sp strain CcI6.

    Science.gov (United States)

    Oshone, Rediet; Mansour, Samira R; Tisa, Louis S

    2013-11-01

    Actinorhizal plants are able to overcome saline soils and reclaim land. Frankia sp strain CcI6 was isolated from nodules of Casuarina cunninghamiana found in Egypt. Phylogenetic analysis of Frankia sp. strain CcI6 revealed that the strain is closely related to Frankia sp. strain CcI3. The strain displays an elevated level of NaCl tolerance. Vesicle production and nitrogenase activity were also influenced by NaCl. PMID:24287648

  17. Differentiation of Phytopathogenic Agrobacterium spp.

    Directory of Open Access Journals (Sweden)

    Nemanja Kuzmanović

    2011-01-01

    Full Text Available Due to the difficulties in differentiation of phytopathogenic Agrobacterium spp. and lack of a standardized protocol, we carried out selection and evaluation of suitable methods based on the bacterial physiological, genetic and pathogenic properties. Strains of Agrobacterium tumefaciens, A. rhizogenes and A. vitis were differentiated using standard bacteriological and molecular methods. The biochemical and physiological tests confirmed authenticity of the strains. Two duplex PCR methods were conducted with four different primer pairs. In all strains, presence of plasmid virD2 and virC pathogenicity genes was detected. Chromosomal pehA gene was determined in A. vitis strain. Pathogenicity was confirmed on carrot slices and young plants of tomato and sunflower. Strains of A. tumefaciens and A. vitis were pathogenic on all test plants, while strain of A. rhizogenes induced characteristic symptoms only on carrot slices. The tests used in this study provided reliable discrimination between the three species and confirmed their identity as tumorigenic (TiAgrobacterium tumefaciens and A. vitis, and rhizogenic (Ri A. rhizogenes.

  18. Genome Sequences of the Lignin-Degrading Pseudomonas sp. Strain YS-1p and Rhizobium sp. Strain YS-1r Isolated from Decaying Wood

    OpenAIRE

    Prabhakaran, Madhu; Couger, Matthew B.; Jackson, Colin A.; Weirick, Tyler; Fathepure, Babu Z.

    2015-01-01

    Pseudomonas sp. strain YS-1p and Rhizobium sp. strain YS-1r were isolated from a lignin-degrading enrichment culture. The isolates degraded lignin-derived monomers, dimers, alkali lignin, and, to a smaller extent (3% to 5%), lignin in switch grass and alfalfa. Genome analysis revealed the presence of a variety of lignin-degrading genes.

  19. Biodegradation of 4-chloronitrobenzene by biochemical cooperation between Sphingomonas sp. strain CNB3 and Burkholderia sp. strain CAN6 isolated from activated sludge.

    Science.gov (United States)

    Zhang, Longjiang; Wang, Xin; Jiao, Yiying; Chen, Xu; Zhou, Lingyan; Guo, Kun; Ge, Feng; Wu, Jun

    2013-05-01

    Two bacterial strains were isolated from activated sludge by using 4-chloronitrobenzene (4-CB) as the sole source of carbon for enrichment. One of the isolates was identified as Sphingomonas sp. strain CNB3 and the other as Burkholderia sp. strain CAN6, mainly through morphological and physiological characteristics and 16S rRNA gene sequence analysis. Sphingomonas sp. strain CNB3 could transform 4-CB to 4-chloroaniline, which accumulated in the medium. Burkholderia sp. strain CAN6 could transform 4-chloroaniline but not 4-CB. The co-culture of Sphingomonas sp. strain CNB3 and Burkholderia sp. strain CAN6 could degrade 4-CB completely by the biochemical cooperation of two strains to overcome the degradative limitations of each species alone. In addition, the biochemical pathway of 4-chloroaniline transformation by Burkholderia sp. strain CAN6 was proposed based on the determined related enzyme activities. The results suggested that 4-chloroaniline was completely transformed via the ortho-cleavage and modified ortho-cleavage pathways. PMID:23473429

  20. Construction of a gene bank and use of the chromosome walking technique for the detection of new putative agrocin genes in Agrobacterium tumefaciens strain D286

    International Nuclear Information System (INIS)

    A gene bank of Agrobacterium tumefaciens D286 wt has been constructed by cloning D286 wt DNA partially digested with EcoRI in the cosmid vector pLAFRI. The library; composed of 1750 members with a 27.7 kb average insert size was probed with pCDTn5-3, a cosmid vector carrying a D286:: Tn5 insert from the strain D286:: Tn5 Ag-. One recombinant cosmid of the library, pCDO932, was detected. The insert DNA of pCDO932 has sequences homologous to the D286:: Tn5 insert of pCDTn5-3, therefore it carries putative wt agrocin D286 genes. The insert DNA of pCDO932 was isolated and used to probe the D286 wt gene library. Chromosome walking resulted in the detection of pCD2375. EcoRI restriction digestions and DNA homology studies of pCDO932 and pCD2375 showed that their D286 wt inserts are both composed of 4 EcoRI DNA sub-fragments totalling 21.8 and 24.8 kb respectively, with an overlapping sequence extending 3.5 kb. In order to overcome the failure to detect A. tumefaciens cells transformed with pCDO932. Vectors pSUP204-1 was constructed. Such vector has been derived from pSUP204 which were slightly altered by cloning into it a 700 bp λ DNA SalI fragmet. This resulted in insertion inactivation of the Tcr gene, allows the use of pSUP204-1 as a subcloning vector in conjugations and transformations involving pCDO932 or pCD2375 and strains D286:: Tn5 Ag- and C58 C1G. Two recombinant cosmids bearing D286 wt DNA inserts, at least one of which (pCDO932) contains DNA sequences putatively affecting agrocin D286 production, are now available for further genetic manipulations. pSUP204-1 should prove useful as a subcloning vector for transformations and conjugations involving recombinant cosmids from the D286 wt gene bank and Agrobacterium strains. Future work on the molecular biology of agrocin D286 production is discussed. The DNA probe used in this study was labelled with phosphorus 32

  1. Biodegradation of hexavalent chromium (Cr+6) in wastewater using Pseudomonas sp. and Bacillus sp. bacterial strains

    Energy Technology Data Exchange (ETDEWEB)

    Qasim, Muhammad [Department of Chemical Engineering, American University of Sharjah (United Arab Emirates)

    2013-07-01

    The recovery of toxic metal compounds is a deep concern in all industries. Hexavalent chromium is particularly worrying because of its toxic influence on human health. In this paper, biodegradation of hexavalent chromium (Cr+6) present in wastewater has been studied using two different bacterial strains; Pseudomonas sp. and Bacillus sp. A chemostat (with and without recycle of cells) with 10 L liquid culture volume was used to study the substrate and the biomass cell concentrations with time. Also, the degree of substrate conversion was studied by the varying the dilution rate as an independent parameter. The dilution rate (ratio of feed flow rate to the culture volume) was varied by varying the feed volumetric rate from 110-170 mL/h for inlet hexavalent chromium concentrations of 70 mg/dm3. The results show that a chemostat with recycle gives a better performance in terms of substrate conversion than a chemostat without a recycle. Moreover, the degree of substrate conversion decreases as the dilution rate is increased. Also, Bacillus sp. was found to give higher conversions compared to pseudomonas sp.

  2. Biodegradation of mixtures of substituted benzenes by Pseudomonas sp. strain JS150.

    OpenAIRE

    Haigler, B E; Pettigrew, C A; Spain, J C

    1992-01-01

    Pseudomonas sp. strain JS150 was isolated as a nonencapsulated variant of Pseudomonas sp. strain JS1 that contains the genes for the degradative pathways of a wide range of substituted aromatic compounds. Pseudomonas sp. strain JS150 grew on phenol, ethylbenzene, toluene, benzene, naphthalene, benzoate, p-hydroxybenzoate, salicylate, chlorobenzene, and several 1,4-dihalogenated benzenes. We designed experiments to determine the conditions required for induction of the individual pathways and ...

  3. Degradation of alkylphenol ethoxylates by Pseudomonas sp. strain TR01.

    Science.gov (United States)

    Maki, H; Masuda, N; Fujiwara, Y; Ike, M; Fujita, M

    1994-07-01

    An alkylphenol ethoxylate-degrading bacterium was isolated from activated sludge of a municipal sewage treatment plant by enrichment culture. This organism was found to belong to the genus Pseudomonas; since no corresponding species was identified, we designated it as Pseudomonas sp. strain TR01. This strain had an optimal temperature and pH of 30 degrees C and 7, respectively, for both growth and the degradation of Triton N-101 (a nonylphenol ethoxylate in which the average number of ethylene oxide [EO] units is 9.5). The strain was unable to mineralize Triton N-101 but was able to degrade its EO chain exclusively. The resulting dominant intermediate was identified by normal-phase high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry as a nonylphenol ethoxylate with 2 mol of EO units. A carboxylated metabolite, [(nonylphenoxy)ethoxy]acetic acid, was detected by gas chromatography-mass spectrometry. This bacterium also metabolized alcohol ethoxylates with various numbers of EO units but not polyethylene glycols whatever their degree of polymerization. By oxygen consumption assay, the alkyl group or arene corresponding to the hydrophobic part of alcohol ethoxylates or alkylphenol ethoxylates was shown to contribute to the induction of the metabolic system of the EO chain of Triton N-101, instead of the EO chain itself, which corresponds to its hydrophilic part. Thus, the isolated pseudomonad bacterium has unique substrate assimilability: it metabolizes the EO chain only when the chain linked to bulky hydrophobic groups. PMID:8074508

  4. Decolorization of sulfonated azo dye Metanil Yellow by newly isolated bacterial strains: Bacillus sp. strain AK1 and Lysinibacillus sp. strain AK2.

    Science.gov (United States)

    Anjaneya, O; Souche, S Yogesh; Santoshkumar, M; Karegoudar, T B

    2011-06-15

    Two different bacterial strains capable of decolorizing a highly water soluble azo dye Metanil Yellow were isolated from dye contaminated soil sample collected from Atul Dyeing Industry, Bellary, India. The individual bacterial strains Bacillus sp. AK1 and Lysinibacillus sp. AK2 decolorized Metanil Yellow (200 mg L(-1)) completely within 27 and 12h respectively. Various parameters like pH, temperature, NaCl and initial dye concentrations were optimized to develop an economically feasible decolorization process. The maximum concentration of Metanil Yellow (1000 mg L(-1)) was decolorized by strains AK2 and AK1 within 78 and 84 h respectively. These strains could decolorize Metanil Yellow over a broad pH range 5.5-9.0; the optimum pH was 7.2. The decolorization of Metanil Yellow was most efficient at 40°C and confirmed by UV-visible spectroscopy, TLC, HPLC and GC/MS analysis. Further, both the strains showed the involvement of azoreductase in the decolorization process. Phytotoxicity studies of catabolic products of Metanil Yellow on the seeds of chick pea and pigeon pea revealed much reduction in the toxicity of metabolites as compared to the parent dye. These results indicating the effectiveness of strains AK1 and AK2 for the treatment of textile effluents containing azo dyes. PMID:21470774

  5. Induction of Nitrate-Dependent Fe(II) Oxidation by Fe(II) in Dechloromonas sp. Strain UWNR4 and Acidovorax sp. Strain 2AN

    OpenAIRE

    Chakraborty, Anirban; Picardal, Flynn

    2013-01-01

    We evaluated the inducibility of nitrate-dependent Fe(II)-EDTA oxidation (NDFO) in non-growth, chloramphenicol-amended, resting-cell suspensions of Dechloromonas sp. strain UWNR4 and Acidovorax sp. strain 2AN. Cells previously incubated with Fe(II)-EDTA oxidized ca. 6-fold more Fe(II)-EDTA than cells previously incubated with Fe(III)-EDTA. This is the first report of induction of NDFO by Fe(II).

  6. Complete Genome Sequence of the Fenitrothion-Degrading Burkholderia sp. Strain YI23

    OpenAIRE

    Lim, Jong Sung; Choi, Beom Soon; Choi, Ah Young; Kim, Kyung Duk; Kim, Dong In; Choi, Ik Young; Ka, Jong-Ok

    2012-01-01

    Burkholderia species are ubiquitous in soil environments. Many Burkholderia species isolated from various environments have the potential to biodegrade man-made chemicals. Burkholderia sp. strain YI23 was isolated from a golf course soil and identified as a fenitrothion-degrading bacterium. In this study, we report the complete genome sequence of Burkholderia sp. strain YI23.

  7. Genome Sequence of the Plant Growth-Promoting Rhizobacterium Bacillus sp. Strain 916

    OpenAIRE

    Wang, Xiaoyu; Luo, Chuping; Chen, Zhiyi

    2012-01-01

    Bacillus sp. strain 916, isolated from the soil, showed strong activity against Rhizoctonia solani. Here, we present the high-quality draft genome sequence of Bacillus sp. strain 916. Its 3.9-Mb genome reveals a number of genes whose products are possibly involved in promotion of plant growth or antibiosis.

  8. Genome Sequence of the Acidophilic Bacterium Acidocella sp. Strain MX-AZ02

    DEFF Research Database (Denmark)

    Servín-Garcidueñas, Luis E.; Garrett, Roger A.; Amils, Ricardo;

    2013-01-01

    Here, we report the draft genome sequence of Acidocella sp. strain MX-AZ02, an acidophilic and heterotrophic alphaproteobacterium isolated from a geothermal lake in western Mexico.......Here, we report the draft genome sequence of Acidocella sp. strain MX-AZ02, an acidophilic and heterotrophic alphaproteobacterium isolated from a geothermal lake in western Mexico....

  9. Molecular responses of Frankia sp. strain QA3 to naphthalene.

    Science.gov (United States)

    Baker, Ethan; Tang, Yang; Chu, Feixia; Tisa, Louis S

    2015-04-01

    The Frankia-actinorhizal plant symbiosis plays a significant role in plant colonization in soils contaminated with heavy metals and toxic aromatic hydrocarbons. The molecular response of Frankia upon exposure to soil contaminants is not well understood. To address this issue, we subjected Frankia sp. strain QA3 to naphthalene stress and showed that it could grow on naphthalene as a sole carbon source. Bioinformatic analysis of the Frankia QA3 genome identified a potential operon for aromatic compound degradation as well as several ring-hydroxylating dioxygenases. Under naphthalene stress, the expression of these genes was upregulated. Proteome analysis showed a differential protein profile for cells under naphthalene stress. Several protein spots were analyzed and used to identify proteins involved in stress response, metabolism, and energy production, including a lignostilbene dioxygenase. These results provide a model for understanding the molecular response of Frankia to common soil pollutants, which may be required for survival and proliferation of the bacterium and their hosts in polluted environments. PMID:25742598

  10. Genome sequence of Oceanicaulis sp. strain HTCC2633, isolated from the Western Sargasso Sea.

    Science.gov (United States)

    Oh, Hyun-Myung; Kang, Ilnam; Vergin, Kevin L; Lee, Kiyoung; Giovannoni, Stephen J; Cho, Jang-Cheon

    2011-01-01

    The genus Oceanicaulis represents dimorphic rods that were originally isolated from a marine dinoflagellate. Here, we announce the genome sequence of Oceanicaulis sp. strain HTCC2633, isolated by dilution-to-extinction culturing from the Sargasso Sea. The genome information of strain HTCC2633 indicates a chemoorganotrophic way of life of this strain. PMID:21036991

  11. Genome Sequence of Oceanicaulis sp. Strain HTCC2633, Isolated from the Western Sargasso Sea ▿

    OpenAIRE

    Oh, Hyun-Myung; Kang, Ilnam; Vergin, Kevin L.; Lee, Kiyoung; Giovannoni, Stephen J.; Cho, Jang-Cheon

    2010-01-01

    The genus Oceanicaulis represents dimorphic rods that were originally isolated from a marine dinoflagellate. Here, we announce the genome sequence of Oceanicaulis sp. strain HTCC2633, isolated by dilution-to-extinction culturing from the Sargasso Sea. The genome information of strain HTCC2633 indicates a chemoorganotrophic way of life of this strain.

  12. Draft Genome Sequence of Microbacterium sp. Strain HM58-2, Which Hydrolyzes Acylhydrazides

    Science.gov (United States)

    Akiyama, Tomonori; Ishige, Taichiro; Kanesaki, Yu; Ito, Shinsaku; Oinuma, Ken-Ichi; Takaya, Naoki; Sasaki, Yasuyuki

    2016-01-01

    We report the draft genome sequence of Microbacterium sp. strain HM58-2, which produces hydrazidase, an enzyme hydrolyzing acylhydrazides. The estimated genome size is 3.9 Mb. Genome sequence information of this strain will help to identify an assimilating mechanism of nonnatural compounds in this strain and to develop ecological applications. PMID:27313297

  13. Genome Sequence of Streptomyces sp. Strain TOR3209, a Rhizosphere Microecology Regulator Isolated from Tomato Rhizosphere

    OpenAIRE

    Hu, Dong; Li, Xiaozhi; Chang, Yueli; He, Huan; Zhang, Cuimian; Jia, Nan; Li, Hongtao; Wang, Zhanwu

    2012-01-01

    Streptomyces sp. strain TOR3209, isolated from tomato rhizosphere, can regulate the rhizosphere microecology of a variety of crops. Strain TOR3209 could improve plant systemic resistance and promote plant growth. Here, the genome sequence of strain TOR3209 is reported, providing the molecular biological basis of the regulation mechanism of rhizosphere microecology.

  14. Genome Sequence of Gluconacetobacter sp. Strain SXCC-1, Isolated from Chinese Vinegar Fermentation Starter▿

    OpenAIRE

    Du, Xin-jun; Jia, Shi-ru; Yang, Yue; Wang, Shuo

    2011-01-01

    Gluconacetobacter strains are prominent bacteria during traditional vinegar fermentation. Here, we report a draft genome sequence of Gluconacetobacter sp. strain SXCC-1. This strain was isolated from a fermentation starter (Daqu) used for commercial production of Shanxi vinegar, the best-known vinegar of China.

  15. Induction of Chloramphenicol and Tetracycline Resistance in Flexibacter sp. Strain FS-1

    OpenAIRE

    Barcak, G J; Burchard, R P

    1985-01-01

    The gliding bacterium Flexibacter sp. strain FS-1 exhibits inducible resistance to chloramphenicol (Cmr) and tetracycline (Tcr). Either chloramphenicol or tetracycline alone induced a Cmr Tcr phenotype. The resistance is apparently not plasmid encoded.

  16. Draft Genome Sequences of Geobacillus sp. Strains CAMR5420 and CAMR12739

    OpenAIRE

    De Maayer, Pieter; Williamson, Carolyn E.; Vennard, Christopher T.; Danson, Michael J.; Don A Cowan

    2014-01-01

    Thermophilic Geobacillus spp. can efficiently hydrolyze hemicellulose polymers and are therefore of interest in biotechnological applications. Here we report the genome sequences of two hemicellulolytic strains, Geobacillus sp. CAMR12739 and CAMR5420.

  17. Draft Genome Sequence of Lysinibacillus sp. Strain A1, Isolated from Malaysian Tropical Soil

    OpenAIRE

    Chan, Kok-Gan; Chen, Jian Woon; Chang, Chien-Yi; Yin, Wai-Fong; Chan, Xin-Yue

    2015-01-01

    In this work, we describe the genome of Lysinibacillus sp. strain A1, which was isolated from tropical soil. Analysis of its genome sequence shows the presence of a gene encoding for a putative peptidase responsible for nitrogen compounds.

  18. Optimization of genetic transformation with Agrobacterium rhizogenes

    International Nuclear Information System (INIS)

    To optimize the genetic transformation efficiency using Agrobacterium rhizogenes, carrot sections inoculated with the Agrobacterium strain A4TC were co-cultivated with acetosyringone, phloroglucinol, and a mix of both. Acetosyringone is one of the phenolic compounds produced by plant tissues in response to wounding, which induces the transfer of T-DNA from the agrobacteria to the plant. Phloroglucinol is also a phenolic compound; however, it has a synergistic action with auxins by partially inhibiting cytokinin activity. The highest transformation efficiency (75%) was obtained with acetosyringone (100 mM) in combination with phloroglucinol (25 mg l-1). In general, a 6-day co-cultivation, independently of treatments, induced the best transformation rate. Inclusion of 100 mg l-1 kanamycin efficiently discriminated transformed roots from non-transgenic ones. This paper also presents a novel bacterial elimination method, by which Agrobacterium can be completely eliminated in 48 h with Cefotaxime at a dosage of 500 mg l-1. Author

  19. Draft Genome Sequence of Hawaiian Sea Slug Symbiont Vibrio sp. Strain ER1A

    OpenAIRE

    Davis, Jeanette; Hill, Russell T.

    2014-01-01

    Bacteria belonging to the genus Vibrio are prevalent in the marine environment and are known for forming symbiotic relationships with hosts. Vibrio sp. strain ER1A is a dominant symbiont of the Hawaiian sea slug, Elysia rufescens. Here we report the draft genome sequence of Vibrio sp. ER1A.

  20. Draft Genome of Pseudomonas sp. Strain 11/12A, Isolated from Lake Washington Sediment.

    Science.gov (United States)

    McTaggart, Tami L; Shapiro, Nicole; Woyke, Tanja; Chistoserdova, Ludmila

    2015-01-01

    We announce here the genome sequencing of Pseudomonas sp. strain 11/12A from Lake Washington sediment. From the genome content, a versatile lifestyle is predicted but not one of bona fide methylotrophy. With the availability of its genomic sequence, Pseudomonas sp. 11/12A presents a prospective model for studying microbial communities in lake sediments. PMID:25700412

  1. Draft Genome of Pseudomonas sp. Strain 11/12A, Isolated from Lake Washington Sediment

    OpenAIRE

    McTaggart, Tami L.; Shapiro, Nicole; Woyke, Tanja; Chistoserdova, Ludmila

    2015-01-01

    We announce here the genome sequencing of Pseudomonas sp. strain 11/12A from Lake Washington sediment. From the genome content, a versatile lifestyle is predicted but not one of bona fide methylotrophy. With the availability of its genomic sequence, Pseudomonas sp. 11/12A presents a prospective model for studying microbial communities in lake sediments.

  2. Antibiofilm Activity of the Marine Bacterium Pseudoalteromonas sp. Strain 3J6▿

    Science.gov (United States)

    Dheilly, Alexandra; Soum-Soutéra, Emmanuelle; Klein, Géraldine L.; Bazire, Alexis; Compère, Chantal; Haras, Dominique; Dufour, Alain

    2010-01-01

    Biofilm formation results in medical threats or economic losses and is therefore a major concern in a variety of domains. In two-species biofilms of marine bacteria grown under dynamic conditions, Pseudoalteromonas sp. strain 3J6 formed mixed biofilms with Bacillus sp. strain 4J6 but was largely predominant over Paracoccus sp. strain 4M6 and Vibrio sp. strain D01. The supernatant of Pseudoalteromonas sp. 3J6 liquid culture (SN3J6) was devoid of antibacterial activity against free-living Paracoccus sp. 4M6 and Vibrio sp. D01 cells, but it impaired their ability to grow as single-species biofilms and led to higher percentages of nonviable cells in 48-h biofilms. Antibiofilm molecules of SN3J6 were able to coat the glass surfaces used to grow biofilms and reduced bacterial attachment about 2-fold, which might partly explain the biofilm formation defect but not the loss of cell viability. SN3J6 had a wide spectrum of activity since it affected all Gram-negative marine strains tested except other Pseudoalteromonas strains. Biofilm biovolumes of the sensitive strains were reduced 3- to 530-fold, and the percentages of nonviable cells were increased 3- to 225-fold. Interestingly, SN3J6 also impaired biofilm formation by three strains belonging to the human-pathogenic species Pseudomonas aeruginosa, Salmonella enterica, and Escherichia coli. Such an antibiofilm activity is original and opens up a variety of applications for Pseudoalteromonas sp. 3J6 and/or its active exoproducts in biofilm prevention strategies. PMID:20363799

  3. Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanol metabolism.

    OpenAIRE

    Singer, M E; Finnerty, W R

    1985-01-01

    The role of fatty aldehyde dehydrogenases (FALDHs) in hexadecane and hexadecanol metabolism was studied in Acinetobacter sp. strain HO1-N. Two distinct FALDHs were demonstrated in Acinetobacter sp. strain HO1-N: a membrane-bound, NADP-dependent FALDH activity induced 5-, 15-, and 9-fold by growth on hexadecanol, dodecyl aldehyde, and hexadecane, respectively, and a constitutive, NAD-dependent, membrane-localized FALDH. The NADP-dependent FALDH exhibited apparent Km and Vmax values for decyl a...

  4. Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B.

    OpenAIRE

    Gilbert, E S; Crowley, D. E.

    1997-01-01

    Plant compounds that induced Arthrobacter sp. strain B1B to cometabolize polychlorinated biphenyls (PCBs) were identified by a screening assay based on the formation of a 4,4'-dichlorobiphenyl ring fission product. A chemical component of spearmint (Mentha spicata), l-carvone, induced Arthrobacter sp. strain B1B to cometabolize Aroclor 1242, resulting in significant degradation of 26 peaks in the mixture, including selected tetra- and pentachlorobiphenyls. Evidence for PCB biodegradation incl...

  5. Genome Sequence of Rhodococcus sp. Strain BCP1, a Biodegrader of Alkanes and Chlorinated Compounds

    Science.gov (United States)

    Cappelletti, M.; Di Gennaro, P.; D’Ursi, P.; Orro, A.; Mezzelani, A.; Landini, M.; Fedi, S.; Frascari, D.; Presentato, A.; Milanesi, L.

    2013-01-01

    Rhodococcus sp. strain BCP1 cometabolizes chlorinated compounds and mineralizes a broad range of alkanes, as it is highly tolerant to them. The high-quality draft genome sequence of Rhodococcus sp. strain BCP1, consisting of 6,231,823 bp, with a G+C content of 70.4%, 5,902 protein-coding genes, and 58 RNA genes, is presented here. PMID:24158549

  6. Metabolism of Dibutylphthalate and Phthalate by Micrococcus sp. Strain 12B

    OpenAIRE

    1982-01-01

    Micrococcus sp. strain 12B was isolated by enriching for growth with dibutylphthalate as the sole carbon and energy source. A pathway for the metabolism of dibutylphthalate and phthalate by micrococcus sp. strain 12B is proposed: dibutylphthalate leads to monobutylphthalate leads to phthalate leads to 3,4-dihydro-3,4-dihydroxyphthalate leads to 3,4-dihydroxyphthalate leads to protocatechuate (3,4-dihdroxybenzoate). Protocatechuate is metabolized both by the meta-cleavage pathway through 4-car...

  7. Hexavalent Chromium Removal by a Paecilomyces sp. Fungal Strain Isolated from Environment

    OpenAIRE

    Cárdenas-González, Juan F.; Ismael Acosta-Rodríguez

    2010-01-01

    A resistant and capable fungal strain in removing hexavalent chromium was isolated from an environment near of Chemical Science Faculty, located in the city of San Luis Potosí, Mexico. The strain was identified as Paecilomyces sp., by macro- and microscopic characteristics. Strain resistance of the strain to high Cr (VI) concentrations and its ability to reduce chromium were studied. When it was incubated in minimal medium with glucose, another inexpensive commercial carbon source like unrefi...

  8. Complete Genome Sequence of Sphingomonas sp. Strain NIC1, an Efficient Nicotine-Degrading Bacterium

    Science.gov (United States)

    Zhu, Xiongyu; Wang, Weiwei; Xu, Ping

    2016-01-01

    Sphingomonas sp. strain NIC1, an efficient nicotine-degrading bacterium, was isolated from tobacco leaves. Here, we present the complete genome sequence of strain NIC1, which contains one circular chromosome and two circular plasmids. The genomic information will provide insights into its molecular mechanism for nicotine degradation. PMID:27417841

  9. [Phylogenetic analysis of the genes for naphthalene and phenanthrene degradation in Burkholderia sp. strains].

    Science.gov (United States)

    Izmalkova, T Yu; Sazonova, O I; Kosheleva, I A; Boronin, A M

    2013-06-01

    The genetic systems responsible for naphthalene and phenanthrene catabolism have been analyzed in the five strains of Burkholderia sp. isolated from soil samples (West Siberia) contaminated by heavy residual fuel oil and in the strain Burkholderia sp. BS3702 from the laboratory collection isolated from soil samples of the coke gas works (Vidnoe, Moscow oblast). The results of this work demonstrate that naphthalene and phenanthrene degradation in the above strains is encoded by the sequences not homologous to the classical nah genes of pseudomonades. In the Burkholderia sp. BS3702 strain, the initial stages of phenanthrene degradation and the subsequent stages of salicylate degradation are controlled by the sequences of different evolutionary origins (phn and nag genes). PMID:24450193

  10. Continuous degradation of trichloroethylene by Xanthobacter sp. strain Py2 during growth on propene.

    OpenAIRE

    Reij, M.W.; Kieboom, J.; de Bont, J A; Hartmans, S

    1995-01-01

    Propene-grown Xanthobacter sp. strain Py2 cells can degrade trichloroethylene (TCE), but the transformation capacity of such cells was limited and depended on both the TCE concentration and the biomass concentration. Toxic metabolites presumably accumulated extracellularly, because the fermentation of glucose by yeast cells was inhibited by TCE degradation products formed by strain Py2. The affinity of the propene monooxygenase for TCE was low, and this allowed strain Py2 to grow on propene i...

  11. Advances in transforming kudzu (Pueraria phaseoloides) and carrot (Daucus carota var. Danvers 126) roots with different Agrobacterium rhizogenes strains for increasing MA fungi growth

    OpenAIRE

    Marisol Medina Sierra; Francisco Hernando Orozco P.; María Elena Márquez F.

    2011-01-01

    En el presente trabajo se transformaron raíces de kudzú (Pueraria phaseoloides) y de zanahoria (Daucus carota) en diferentes medios de cultivo, mediante el empleo de cinco cepas diferentes de Agrobacterium rhizogenes; de comportamiento diferente tanto en la transformación de zanahoria por las cepas de A. rhizogenes A.r.15834, A.r.8196 y A.r.2659; como en la transformación de kudzú por las cepas A.r.15834 y A.r.1724. Por otro lado, se logró la multiplicación en medio White modificado (WM) de l...

  12. Draft Genome Sequence of the Antitrypanosomally Active Sponge-Associated Bacterium Actinokineospora sp. Strain EG49

    KAUST Repository

    Harjes, Janno

    2014-03-06

    The marine sponge-associated bacterium Actinokineospora sp. strain EG49 produces the antitrypanosomal angucycline-like compound actinosporin A. The draft genome of Actinokineospora sp. EG49 has a size of 7.5 megabases and a GC content of 72.8% and contains 6,629 protein-coding sequences (CDS). antiSMASH predicted 996 genes residing in 36 secondary metabolite gene clusters.

  13. Effects of Agrobacterium tumefac iens on the Symptoms of Paulownia sp. Plantlet in Vitro Cultured%根癌农杆菌对感染植原体的泡桐组培苗症状的影响

    Institute of Scientific and Technical Information of China (English)

    田国忠; 朱水芳; 罗飞; 李怀方; 裘维蕃

    2001-01-01

    采用含有激素合成相关基因的根癌农杆菌,伤口接种已感染植原体的泡桐丛枝组培苗和健康组培苗,结果发现对丛枝苗的致瘤能力明显低于健康对照苗,且被接种病苗的丛枝症状缓解.从健苗获得的T-DNA转化泡桐瘤组织细胞能在无激素培养基上稳定生长和连续继代培养2年以上,说明瘤组织细胞自身已获得了细胞分裂素和生长素合成能力.根据已报道的根癌农杆菌株系pTil 5955 T-DNA的异戊烯基转移酶基因(ipt)的保守序列,设计了一对引物(CYT和CYT′),用多聚酶链式反应(PCR)扩增了我国杨树致瘤农杆菌ipt基因部分序列(427 bp片段),也从遗传转化的两个泡桐无性系瘤组织At-ZH和At-T35扩增出此特异片段,从而进一步肯定了T-DNA已被整合到泡桐的染色体上,表明泡桐易于通过Ti质粒载体途径进行基因转移操作,但用此引物未能从泡桐、甘薯健株和感染植原体的组培病苗扩增出相应的427 bp特异片段.当用此遗传转化瘤组织嫁接病苗时,可减轻丛枝症状的严重度,延长病苗的存活时间和诱导病株生根,这进一步证实了泡桐在与植原体相互作用过程中激素代谢发生了变化.%By using Agrobacterium tumefac iens isolated from poplar crown gall disease with the hormone-produ cing genes in the T-DNA to inoculate healthy and infected Paulownia plantlets with phytoplasma, it is showed that tumorigensis of dise ased plantlets dropped apparently and the symptoms of witches' broom suppressed to some extent. The T-DNA was transformed into Paulownia resulting in tumor formation independent of exogenous hormone addition and ke eping subculture of tumor tissues for more than 2 years, thus confirming that th e tumor tissues gained the ability to synthesize cytokinin and auxin by itself. Based on the conserved sequence of isopentenyl adenosine transferase gene (ipt) of Agrobacterium tumefaciens Op ine pTil 5955 strain, a pair of DNA

  14. Agrobacterium: nature's genetic engineer.

    Science.gov (United States)

    Nester, Eugene W

    2014-01-01

    Agrobacterium was identified as the agent causing the plant tumor, crown gall over 100 years ago. Since then, studies have resulted in many surprising observations. Armin Braun demonstrated that Agrobacterium infected cells had unusual nutritional properties, and that the bacterium was necessary to start the infection but not for continued tumor development. He developed the concept of a tumor inducing principle (TIP), the factor that actually caused the disease. Thirty years later the TIP was shown to be a piece of a tumor inducing (Ti) plasmid excised by an endonuclease. In the next 20 years, most of the key features of the disease were described. The single-strand DNA (T-DNA) with the endonuclease attached is transferred through a type IV secretion system into the host cell where it is likely coated and protected from nucleases by a bacterial secreted protein to form the T-complex. A nuclear localization signal in the endonuclease guides the transferred strand (T-strand), into the nucleus where it is integrated randomly into the host chromosome. Other secreted proteins likely aid in uncoating the T-complex. The T-DNA encodes enzymes of auxin, cytokinin, and opine synthesis, the latter a food source for Agrobacterium. The genes associated with T-strand formation and transfer (vir) map to the Ti plasmid and are only expressed when the bacteria are in close association with a plant. Plant signals are recognized by a two-component regulatory system which activates vir genes. Chromosomal genes with pleiotropic functions also play important roles in plant transformation. The data now explain Braun's old observations and also explain why Agrobacterium is nature's genetic engineer. Any DNA inserted between the border sequences which define the T-DNA will be transferred and integrated into host cells. Thus, Agrobacterium has become the major vector in plant genetic engineering. PMID:25610442

  15. Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2.

    Science.gov (United States)

    Song, Jin Hwan; Jeon, Che Ok; Choi, Mun Hwan; Yoon, Sung Chul; Park, Woojun

    2008-08-01

    To produce polyhydroxyalkanoate (PHA) from inexpensive substrates by bacteria, vegetable-oil-degrading bacteria were isolated from a rice field using enrichment cultivation. The isolated Pseudomonas sp. strain DR2 showed clear orange or red spots of accumulated PHA granules when grown on phosphate and nitrogen limited medium containing vegetable oil as the sole carbon source and stained with Nile blue A. Up to 37.34% (w/w) of intracellular PHA was produced from corn oil, which consisted of three major 3-hydroxyalkanoates; octanoic (C8:0, 37.75% of the total 3-hydroxyalkanoate content of PHA), decanoic (C10:0, 36.74%), and dodecanoic (C12:0, 11.36%). Pseudomonas sp. strain DR2 accumulated up to 23.52% (w/w) of PHAMCL from waste vegetable oil. The proportion of 3- hydroxyalkanoate of the waste vegetable-oil-derived PHA [hexanoic (5.86%), octanoic (45.67%), decanoic (34.88%), tetradecanoic (8.35%), and hexadecanoic (5.24%)] showed a composition ratio different from that of the corn-oil-derived PHA. Strain DR2 used three major fatty acids in the same ratio, and linoleic acid was the major source of PHA production. Interestingly, the production of PHA in Pseudomonas sp. strain DR2 could not occur in either acetate- or butyrate-amended media. Pseudomonas sp. strain DR2 accumulated a greater amount of PHA than other well-studied strains (Chromobacterium violaceum and Ralstonia eutropha H16) when grown on vegetable oil. The data showed that Pseudomonas sp. strain DR2 was capable of producing PHA from waste vegetable oil. PMID:18756101

  16. CpcM posttranslationally methylates asparagine-71/72 of phycobiliprotein beta subunits in Synechococcus sp. strain PCC 7002 and Synechocystis sp. strain PCC 6803.

    Science.gov (United States)

    Shen, Gaozhong; Leonard, Heidi S; Schluchter, Wendy M; Bryant, Donald A

    2008-07-01

    Cyanobacteria produce phycobilisomes, which are macromolecular light-harvesting complexes mostly assembled from phycobiliproteins. Phycobiliprotein beta subunits contain a highly conserved gamma-N-methylasparagine residue, which results from the posttranslational modification of Asn71/72. Through comparative genomic analyses, we identified a gene, denoted cpcM, that (i) encodes a protein with sequence similarity to other S-adenosylmethionine-dependent methyltransferases, (ii) is found in all sequenced cyanobacterial genomes, and (iii) often occurs near genes encoding phycobiliproteins in cyanobacterial genomes. The cpcM genes of Synechococcus sp. strain PCC 7002 and Synechocystis sp. strain PCC 6803 were insertionally inactivated. Mass spectrometric analyses of phycobiliproteins isolated from the mutants confirmed that the CpcB, ApcB, and ApcF were 14 Da lighter than their wild-type counterparts. Trypsin digestion and mass analyses of phycobiliproteins isolated from the mutants showed that tryptic peptides from phycocyanin that included Asn72 were also 14 Da lighter than the equivalent peptides from wild-type strains. Thus, CpcM is the methyltransferase that modifies the amide nitrogen of Asn71/72 of CpcB, ApcB, and ApcF. When cells were grown at low light intensity, the cpcM mutants were phenotypically similar to the wild-type strains. However, the mutants were sensitive to high-light stress, and the cpcM mutant of Synechocystis sp. strain PCC 6803 was unable to grow at moderately high light intensities. Fluorescence emission measurements showed that the ability to perform state transitions was impaired in the cpcM mutants and suggested that energy transfer from phycobiliproteins to the photosystems was also less efficient. The possible functions of asparagine N methylation of phycobiliproteins are discussed. PMID:18469097

  17. Draft genome sequence of Thermoactinomyces sp. strain AS95 isolated from a Sebkha in Thamelaht, Algeria.

    Science.gov (United States)

    Bezuidt, Oliver K I; Gomri, Mohamed A; Pierneef, Rian; Van Goethem, Marc W; Kharroub, Karima; Cowan, Don A; Makhalanyane, Thulani P

    2016-01-01

    The members of the genus Thermoactinomyces are known for their protein degradative capacities. Thermoactinomyces sp. strain AS95 is a Gram-positive filamentous bacterium, isolated from moderately saline water in the Thamelaht region of Algeria. This isolate is a thermophilic aerobic bacterium with the capacity to produce extracellular proteolytic enzymes. This strain exhibits up to 99 % similarity with members of the genus Thermoactinomyces, based on 16S rRNA gene sequence similarity. Here we report on the phenotypic features of Thermoactinomyces sp. strain AS95 together with the draft genome sequence and its annotation. The genome of this strain is 2,558,690 bp in length (one chromosome, but no plasmid) with an average G + C content of 47.95 %, and contains 2550 protein-coding and 60 RNA genes together with 64 ORFs annotated as proteases. PMID:27617058

  18. Comparative properties of glutamine synthetases I and II in Rhizobium and Agrobacterium spp.

    OpenAIRE

    Fuchs, R L; Keister, D L

    1980-01-01

    Some properties of glutamine synthetase I (GSI) and GSII are described for a fast-growing Rhizobium sp. (Rhizobium trifolii T1), a slow-growing Rhizobium sp. (Rhizobium japonicum USDA 83), and Agrobacterium tumefaciens C58. GSII of the fast-growing Rhizobium sp. and GSII of the Agrobacterium sp. were considerably more heat labile than GSII of the slow-growing Rhizobium sp. As previously shown in R. japonicum 61A76, GSI became adenylylated rapidly in all species tested in response to ammonium....

  19. Agrobacterium rhizogenes mediated transformation of Rhodiola sp. - an approach to enhance the level of bioactive compounds

    DEFF Research Database (Denmark)

    Himmelboe, Martin; Lauridsen, Uffe Bjerre; Hegelund, Josefine Nymark;

    2015-01-01

    in simulated bioreactors including various concentrations of the auxin, indole acetic acid (IAA) were used to improve the growth of the roots. Of R. pachyclados accession no. 1, 41%±10 of inoculated stem explants developed roots. This was not significantly different from the controls of which 53%±0 developed...... developed any roots during the experiment. The putatively transformed roots transferred to simulated bioreactors increased in weight with no significant differences between the auxin treatments. The preliminary results indicate that the inoculation of Rhodiola sp. might have resulted in transformed roots...

  20. Genes for phycocyanin subunits in Synechocystis sp. strain PCC 6701 and assembly mutant UV16.

    OpenAIRE

    Anderson, L K; Grossman, A R

    1990-01-01

    The cyanobacterial phycobilisome is a large protein complex located on the photosynthetic membrane. It harvests light energy and transfers it to chlorophyll for use in photosynthesis. Phycobilisome assembly mutants in the unicellular cyanobacterium Synechocystis sp. strain 6701 have been characterized. One such mutant, UV16, contains a defect in the assembly of the biliprotein phycocyanin. We report the cloning and sequencing of the phycocyanin genes from wild-type Synechocystis strain 6701 a...

  1. Draft Genome Sequence of Burkholderia sp. Strain CCA53, Isolated from Leaf Soil

    Science.gov (United States)

    Kimura, Zen-ichiro; Yusoff, Mohd Zulkhairi Mohd; Nakashima, Nobutaka; Hoshino, Tamotsu

    2016-01-01

    Burkholderia sp. strain CCA53 was isolated from leaf soil collected in Higashi-Hiroshima City in Hiroshima Prefecture, Japan. Here, we present a draft genome sequence of this strain, which consists of a total of 4 contigs containing 6,647,893 bp, with a G+C content of 67.0% and comprising 9,329 predicted coding sequences. PMID:27389268

  2. Novel Pathway of Salicylate Degradation by Streptomyces sp. Strain WA46

    OpenAIRE

    Ishiyama, Daisuke; Vujaklija, Dusica; Davies, Julian

    2004-01-01

    A novel salicylate-degrading Streptomyces sp., strain WA46, was identified by UV fluorescence on solid minimal medium containing salicylate; trace amounts of gentisate were detected by high-pressure liquid chromatography when strain WA46 was grown with salicylate. PCR amplification of WA46 DNA with degenerate primers for gentisate 1,2-dioxygenase (GDO) genes produced an amplicon of the expected size. Sequential PCR with nested GDO primers was then used to identify a salicylate degradation gen...

  3. Alkaloids from an algicolous strain of Talaromyces sp.

    Science.gov (United States)

    Yang, Haibin; Li, Fang; Ji, Naiyun

    2016-03-01

    Compounds isolated and identified in a culture of the alga-endophytic fungus Talaromyces sp. cf-16 included two naturally occurring alkaloids, 2-[( S)-hydroxy(phenyl)methyl]-3-methylquinazolin-4(3H)-one ( 1a) and 2-[( R)-hydroxy(phenyl)methyl]-3-methylquinazolin-4(3H)-one ( 1b), that were identified for the first time. In addition, seven known compounds ( 2- 8) were obtained from the culture. Following chiral column chromatography, compounds 1a and 1b were identified as enantiomers by spectroscopic analyses and quantum chemical calculations. Bioassay results showed that 5 was more toxic to brine shrimp than the other compounds, and that 3- 6 could inhibit Staphylococcus aureus.

  4. Draft Genome Sequence of the Lignin-Degrading Burkholderia sp. Strain LIG30, Isolated from Wet Tropical Forest Soil

    OpenAIRE

    Woo, Hannah L.; Utturkar, Sagar; Klingeman, Dawn; Simmons, Blake A.; DeAngelis, Kristen M; Brown, Steven D.; Hazen, Terry C.

    2014-01-01

    Burkholderia species are common soil Betaproteobacteria capable of degrading recalcitrant aromatic compounds and xenobiotics. Burkholderia sp. strain LIG30 was isolated from wet tropical forest soil and is capable of utilizing lignin as a sole carbon source. Here we report the draft genome sequence of Burkholderia sp. strain LIG30.

  5. Complete Genome Sequence of Labrenzia sp. Strain CP4, Isolated from a Self-Regenerating Biocathode Biofilm

    Science.gov (United States)

    Wang, Zheng; Eddie, Brian J.; Malanoski, Anthony P.; Hervey, W. Judson; Lin, Baochuan

    2016-01-01

    Here, we present the complete genome sequence of Labrenzia sp. strain CP4, isolated from an electricity-consuming marine biocathode biofilm. Labrenzia sp. strain CP4 consists of a circular 5.2 Mbp chromosome and an 88 Kbp plasmid. PMID:27174270

  6. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1.

    Science.gov (United States)

    Ferrer, Alonso; Bunk, Boyke; Spröer, Cathrin; Biedendieck, Rebekka; Valdés, Natalia; Jahn, Martina; Jahn, Dieter; Orellana, Omar; Levicán, Gloria

    2016-03-20

    We describe the complete genome sequence of Leptospirillum sp. group II strain CF-1, an acidophilic bioleaching bacterium isolated from an acid mine drainage (AMD). This work provides data to gain insights about adaptive response of Leptospirillum spp. to the extreme conditions of bioleaching environments. PMID:26853478

  7. Draft Genome Sequence of Lactobacillus sp. Strain TCF032-E4, Isolated from Fermented Radish

    Science.gov (United States)

    Chen, Meng; Horvath, Philippe

    2015-01-01

    Here, we report the draft genome sequence of Lactobacillus sp. strain TCF032-E4 (= CCTCC AB2015090 = DSM 100358), isolated from a Chinese fermented radish. The total length of the 57 contigs is about 2.9 Mb, with a G+C content of 43.5 mol% and 2,797 predicted coding sequences (CDSs). PMID:26227596

  8. Draft Genome Sequence of the Naphthalene Degrader Herbaspirillum sp. Strain RV1423

    Science.gov (United States)

    Jauregui, Ruy; Rodelas, Belén; Geffers, Robert; Boon, Nico; Pieper, Dietmar H.

    2014-01-01

    Herbaspirillum sp. strain RV1423 was isolated from a site contaminated with alkanes and aromatic compounds and harbors the complete pathway for naphthalene degradation. The new features found in RV1423 increase considerably the versatility and the catabolic potential of a genus of bacteria previously considered mainly to be diazotrophic endophytes to plants. PMID:24652979

  9. Transformation of carbon tetrachloride via sulfur and oxygen substitution by Pseudomonas sp. strain KC.

    OpenAIRE

    Lewis, T A; Crawford, R L

    1995-01-01

    Pseudomonas sp. strain KC transforms carbon tetrachloride into carbon dioxide and nonvolatile products, without chloroform as an intermediate. To define the pathway for hydrolysis, nonvolatile products were analyzed. Condensation products containing the carbon atom of carbon tetrachloride as carbonyl and thioxo moieties were identified, indicating the intermediacy of phosgene and thiophosgene in the pathway.

  10. Genome Sequence of Streptomyces sp. Strain RTd22, an Endophyte of the Mexican Sunflower

    Science.gov (United States)

    Chagas, Fernanda O.; Bacha, Larissa V.; Samborskyy, Markyian; Conti, Raphael; Pessotti, Rita C.; Clardy, Jon

    2016-01-01

    We report here the complete genome sequence of Streptomyces sp. strain RTd22, an endophytic actinobacterium that was isolated from the roots of the Mexican sunflower Tithonia diversifolia. The bacterium’s 11.1-Mb linear chromosome is predicted to encode a large number of unknown natural products. PMID:27445382

  11. Draft Genome Sequence of Halomonas sp. KHS3, a Polyaromatic Hydrocarbon-Chemotactic Strain

    OpenAIRE

    Gasperotti, Ana Florencia; Studdert, Claudia Alicia; Revale, Santiago; Herrera Seitz, María Karina

    2015-01-01

    The draft genome sequence of Halomonas sp. KHS3, isolated from seawater from Mar del Plata harbor, is reported. This strain is able to grow using aromatic compounds as a carbon source and shows strong chemotactic response toward these substrates. Genes involved in motility, chemotaxis, and degradation of aromatic hydrocarbons were identified.

  12. Polycyclic aromatic hydrocarbon degradation by the white rot fungus Bjerkandera sp. strain BOS55.

    NARCIS (Netherlands)

    Kotterman, M.J.J.

    1998-01-01

    Outline of this thesisIn this thesis the conditions for optimal PAH oxidation by the white rot fungus Bjerkandera sp. strain BOS55 were evaluated. In Chapter 2, culture conditions like aeration and cosubstrate concentrations, which influenced the oxidation of the PAH compound anthra

  13. OXIDATION OF POLYCHLORINATED BIPHENYLS BY PSEUDOMONAS SP. STRAIN LB400 AND PSEUDOMONAS PSEUDOALCALIGENES KF707

    Science.gov (United States)

    Biphenyl-grown cells and cell extracts prepared from biphenyl-grown cells of Pseudomonas sp. strain LB400 oxidize a much wider range of chlorinated biphenyls than do analogous preparations from Pseudomonas pseudoalcaligenes KF707. These results are attributed to differences in th...

  14. OXIDATION OF BIPHENYL BY A MULTICOMPONENT ENZYME SYSTEM FROM PSEUDOMONAS SP. STRAIN LB400

    Science.gov (United States)

    Pseudomonas sp. strain LB400 grows on biphenyl as the sole carbon and energy source. This organism also cooxidizes several chlorinated biphenyl congeners. Biphenyl dioxygenase activity in cell extract required addition of NAD(P)H as an electron donor for the conversion of bipheny...

  15. Oxidation of polychlorinated biphenyls by Pseudomonas sp. strain LB400 and Pseudomonas pseudoalcaligenes KF707.

    OpenAIRE

    Gibson, D T; Cruden, D. L.; Haddock, J D; Zylstra, G J; Brand, J M

    1993-01-01

    Biphenyl-grown cells and cell extracts prepared from biphenyl-grown cells of Pseudomonas sp. strain LB400 oxidize a much wider range of chlorinated biphenyls than do analogous preparations from Pseudomonas pseudoalcaligenes KF707. These results are attributed to differences in the substrate specificity of the biphenyl 2,3-dioxygenases from both organisms.

  16. Draft Genome Sequence of Hoeflea sp. Strain BAL378, a Potential Producer of Bioactive Compounds

    DEFF Research Database (Denmark)

    Bentzon-Tilia, Mikkel; Riemann, Lasse; Gram, Lone

    2014-01-01

    Some phytoplankton-associated marine bacteria produce bioactive compounds. Members of the genus Hoeflea may be examples of such bacteria; however, data describing their metabolisms are scarce. Here, we report the draft genome sequence of Hoeflea sp. strain BAL378, a putative producer of bacterioc...... of bacteriocins, polyketides, and auxins, as demonstrated by genome mining....

  17. Draft Genome Sequences of Kosmotoga sp. Strain DU53 and Kosmotoga arenicorallina S304.

    Science.gov (United States)

    Pollo, Stephen M J; Charchuk, Rhianna; Nesbø, Camilla L

    2016-01-01

    Here, we announce the draft genome sequences of two thermophilic Thermotogae bacteria: Kosmotoga sp. strain DU53, isolated from a continental oil reservoir, and Kosmotoga arenicorallina, isolated from hydrothermal sediments. The sequences will provide further insight into evolution of the Kosmotogales. PMID:27313308

  18. Complete Genome Sequence of Cyanobium sp. NIES-981, a Marine Strain Potentially Useful for Ecotoxicological Bioassays

    Science.gov (United States)

    Shimura, Yohei; Suzuki, Shigekatsu; Yamagishi, Takahiro; Tatarazako, Norihisa; Kawachi, Masanobu

    2016-01-01

    Cyanobium sp. NIES-981 is a marine cyanobacterium isolated from tidal flat sands in Okinawa, Japan. Here, we report the complete 3.0-Mbp genome sequence of NIES-981, which is composed of a single chromosome, and its annotation. This sequence information may provide a basis for developing an ecotoxicological bioassay using this strain. PMID:27469961

  19. Complete Genome Sequence of Algoriphagus sp. Strain M8-2, Isolated from a Brackish Lake

    Science.gov (United States)

    Muraguchi, Yusuke; Kushimoto, Koya; Ohtsubo, Yoshiyuki; Suzuki, Tomohiro; Dohra, Hideo; Kimbara, Kazuhide

    2016-01-01

    Algoriphagus sp. strain M8-2 was isolated from a brackish lake, Lake Sanaru, in Hamamatsu, Japan, as a filterable bacterium through a 0.22-µm-pore-size membrane filter. We report here the complete nucleotide sequence of the M8-2 genome (a 3,882,610-bp chromosome). PMID:27174266

  20. Draft Genome Sequence of Rickettsia sp. Strain MEAM1, Isolated from the Whitefly Bemisia tabaci

    OpenAIRE

    Rao, Qiong; Wang, Shuang; Zhu, Dan-Tong; Wang, Xiao-Wei; Liu, Shu-Sheng

    2012-01-01

    We report the draft genome sequence of the Rickettsia sp. strain MEAM1, which is a facultative symbiont from an invasive species of the whitefly Bemisia tabaci. The total length of the assembled genome is approximately 1.24 Mb, with 335 scaffolds and 1,247 coding sequences predicted within the genome.

  1. Large-scale bioreactor production of the herbicide-degrading Aminobacter sp. strain MSH1

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Knudsen, Berith Elkær; Frkova, Zuzana;

    2014-01-01

    The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon and with an...

  2. Deep Desulfurization of Extensively Hydrodesulfurized Middle Distillate Oil by Rhodococcus sp. Strain ECRD-1

    OpenAIRE

    Grossman, M. J.; Lee, M. K.; Prince, R C; Minak-Bernero, V.; George, G. N.; Pickering, I. J.

    2001-01-01

    Dibenzothiophene (DBT), and in particular substituted DBTs, are resistant to hydrodesulfurization (HDS) and can persist in fuels even after aggressive HDS treatment. Treatment by Rhodococcus sp. strain ECRD-1 of a middle distillate oil whose sulfur content was virtually all substituted DBTs produced extensive desulfurization and a sulfur level of 56 ppm.

  3. Draft Genome Sequence of the Carbofuran-Mineralizing Novosphingobium sp. Strain KN65.2

    OpenAIRE

    Nguyen, Thi Phi Oanh; De Mot, René; Springael, Dirk

    2015-01-01

    Complete mineralization of the N-methylcarbamate insecticide carbofuran, including mineralization of the aromatic moiety, appears to be confined to sphingomonad isolates. Here, we report the first draft genome sequence of such a sphingomonad strain, i.e., Novosphingobium sp. KN65.2, isolated from carbofuran-exposed agricultural soil in Vietnam.

  4. Draft Genome Sequence of the Oyster Larval Probiotic Bacterium Vibrio sp. Strain OY15

    OpenAIRE

    Harold J. Schreier; Schott, Eric J.

    2014-01-01

    We report the draft genome sequence of Vibrio sp. strain OY15, a Gram-negative marine bacterium isolated from an oyster (Crassostrea virginica) digestive tract and shown to possess probiotic activity. The availability of this genome sequence will facilitate the study of the mechanisms of probiotic activity as well as virulence capacity.

  5. Complete Genome Sequence of Cyanobacterium Geminocystis sp. Strain NIES-3709, Which Harbors a Phycoerythrin-Rich Phycobilisome.

    Science.gov (United States)

    Hirose, Yuu; Katayama, Mitsunori; Ohtsubo, Yoshiyuki; Misawa, Naomi; Iioka, Erica; Suda, Wataru; Oshima, Kenshiro; Hanaoka, Mitsumasa; Tanaka, Kan; Eki, Toshihiko; Ikeuchi, Masahiko; Kikuchi, Yo; Ishida, Makoto; Hattori, Masahira

    2015-01-01

    The cyanobacterium Geminocystis sp. strain NIES-3709 accumulates a larger amount of phycoerythrin than the related NIES-3708 strain does. Here, we determined the complete genome sequence of the NIES-3709 strain. Our genome data suggest that the different copy number of rod linker genes for phycoerythrin leads to the different phycoerythrin contents between the two strains. PMID:25931605

  6. Complete genome sequence of carotenoid-producing Microbacterium sp. strain PAMC28756 isolated from an Antarctic lichen.

    Science.gov (United States)

    Han, So-Ra; Kim, Ki-Hwa; Ahn, Do-Hwan; Park, Hyun; Oh, Tae-Jin

    2016-05-20

    Microbacterium sp. strain PAMC28756, of the family Microbacteriaceae, was isolated from Stereocaulon sp., an Antarctic lichen. Complete genome sequencing of Microbacterium sp. PAMC28756 revealed, for the first time in the genus Microbacterium, a series of key genes involved in C50 carotenoid biosynthesis. An analysis of the Microbacterium sp. PAMC28756 genome will lead to a better understanding of the carotenoid biosynthesis pathway. Furthermore, the sequence data will provide novel insight into UV radiation resistance in extremely cold environments. PMID:27015978

  7. Transformation of carbon tetrachloride by Pseudomonas sp. strain KC under denitrification conditions

    International Nuclear Information System (INIS)

    A denitrifying Pseudomonas sp. (strain KC) capable of transforming carbon tetrachloride (CT) was isolated from groundwater aquifer solids. Major products of the transformation of 14C-labeled CT by Pseudomonas strain KC under denitrification conditions were 14CO2 and an unidentified water-soluble fraction. Little or no chloroform was produced. Addition of dissolved trace metals, notably, ferrous iron and cobalt, to the growth medium appeared to enhance growth of Pseudomonas strain KC while inhibiting transformation of CT. It is hypothesized that transformation of CT by this organism is associated with the mechanism of trace-metal scavenging

  8. Biomineralization of N,N-dimethylformamide by Paracoccus sp. strain DMF.

    Science.gov (United States)

    Swaroop, Shiv; Sughosh, P; Ramanathan, Gurunath

    2009-11-15

    N,N-dimethylformamide (DMF) is a man-made compound that is widely used as a solvent for the synthesis of various organic compounds. In this study, a bacterial strain Paracoccus sp. DMF capable of using DMF as the sole carbon, nitrogen and energy source, was isolated from an enrichment culture developed using activated sludge from domestic waste water treatment unit as the source inoculum. The strain DMF was characterized by biochemical tests and 16S rDNA sequence analysis, to be belonging to the genus Paracoccus. Growth on DMF was accompanied with ammonia release and the total organic carbon (TOC) analysis indicated its extensive mineralization. Batch culture studies were conducted in the substrate range of 100-5000 mg L(-1) to determine the biokinetic constants. Strain Paracoccus sp. DMF could tolerate very high concentrations of DMF as the growth was observed even at 15000 mg L(-1). High (micro(max)) and (K(i)) showed the suitability of the strain for the treatment of DMF containing waste water. Transient accumulation of dimethylamine (DMA) in the medium during the growth on DMF and utilization of DMA and monomethylamine (MMA) as growth substrates by Paracoccus sp. strain DMF showed that the pathway of DMF degradation involves DMA and MMA as intermediates, ultimately leading to the formation of carbon dioxide (CO(2)) and ammonia (NH(3)). PMID:19592157

  9. Physical and Metabolic Interactions of Pseudomonas sp. Strain JA5-B45 and Rhodococcus sp. Strain F9-D79 during Growth on Crude Oil and Effect of a Chemical Surfactant on Them

    OpenAIRE

    Van Hamme, Jonathan D.; Ward, Owen P.

    2001-01-01

    Methods to enhance crude oil biodegradation by mixed bacterial cultures, for example, (bio)surfactant addition, are complicated by the diversity of microbial populations within a given culture. The physical and metabolic interactions between Rhodococcus sp. strain F9-D79 and Pseudomonas sp. strain JA5-B45 were examined during growth on Bow River crude oil. The effects of a nonionic chemical surfactant, Igepal CO-630 (nonylphenol ethoxylate), also were evaluated. Strain F9-D79 grew attached to...

  10. Transcriptomes of Frankia sp. strain CcI3 in growth transitions

    Directory of Open Access Journals (Sweden)

    Bickhart Derek M

    2011-08-01

    Full Text Available Abstract Background Frankia sp. strains are actinobacteria that form N2-fixing root nodules on angiosperms. Several reference genome sequences are available enabling transcriptome studies in Frankia sp. Genomes from Frankia sp. strains differ markedly in size, a consequence proposed to be associated with a high number of indigenous transposases, more than 200 of which are found in Frankia sp. strain CcI3 used in this study. Because Frankia exhibits a high degree of cell heterogeneity as a consequence of its mycelial growth pattern, its transcriptome is likely to be quite sensitive to culture age. This study focuses on the behavior of the Frankia sp. strain CcI3 transcriptome as a function of nitrogen source and culture age. Results To study global transcription in Frankia sp. CcI3 grown under different conditions, complete transcriptomes were determined using high throughput RNA deep sequencing. Samples varied by time (five days vs. three days and by culture conditions (NH4+ added vs. N2 fixing. Assembly of millions of reads revealed more diversity of gene expression between five-day and three-day old cultures than between three day old cultures differing in nitrogen sources. Heat map analysis organized genes into groups that were expressed or repressed under the various conditions compared to median expression values. Twenty-one SNPs common to all three transcriptome samples were detected indicating culture heterogeneity in this slow-growing organism. Significantly higher expression of transposase ORFs was found in the five-day and N2-fixing cultures, suggesting that N starvation and culture aging provide conditions for on-going genome modification. Transposases have previously been proposed to participate in the creating the large number of gene duplication or deletion in host strains. Subsequent RT-qPCR experiments confirmed predicted elevated transposase expression levels indicated by the mRNA-seq data. Conclusions The overall pattern of

  11. Strategy for improving extracellular lipolytic activities by a novel thermotolerant Staphylococcus sp. strain

    Directory of Open Access Journals (Sweden)

    Cherif Slim

    2011-11-01

    Full Text Available Abstract Background Extracellular bacterial lipases received much attention for their substrate specificity and their ability to function under extreme environments (pH, temperature.... Many staphylococci produced lipases which were released into the culture medium. Reports of extracellular thermostable lipases from Staphylococcus sp. and active in alkaline conditions are not previously described. Results This study focused on novel strategies to increase extracellular lipolytic enzyme production by a novel Staphylococcus sp. strain ESW. The microorganism needed neutral or alkaline pH values between 7.0 and 12.0 for growth. For pH values outside this range, cell growth seemed to be significantly inhibited. Staphylococcus sp. culture was able to grow within a wide temperature range (from 30 to 55°C. The presence of oils in the culture medium leaded to improvements in cells growth and lipolytic enzyme activity. On the other hand, although chemical surfactants leaded to an almost complete inhibition of growth and lipolytic enzyme production, their addition along the culture could affect the location of the enzyme. In addition, our results showed that this novel Staphylococcus sp. strain produced biosurfactants simultaneously with lipolytic activity, when soapstock (The main co-product of the vegetable oil refining industry, was used as the sole carbon source. Conclusion A simultaneous biosurfactant and extracellular lipolytic enzymes produced bacterial strain with potential application in soap stock treatment

  12. Herbaspirillum sp. strain GW103 alleviates salt stress in Brassica rapa L. ssp. pekinensis.

    Science.gov (United States)

    Lee, Gun Woong; Lee, Kui-Jae; Chae, Jong-Chan

    2016-05-01

    Mutual interactions between plant and rhizosphere bacteria facilitate plant growth and reduce risks of biotic and abiotic stresses. The present study demonstrates alleviation of salt stress in Brassica rapa L. ssp. perkinensis (Chinese cabbage) by Herbaspirillum sp. strain GW103 isolated from rhizosphere soil of Phragmites australis. The strain was capable of producing plant beneficial factors, such as auxin, siderophore, and 1-aminocylopropane-1-carboxylic acid deaminase. Treatment of strain GW103 on Chinese cabbage under salt stress increased K(+)/Na(+) ratio in roots generating balance in the ratio of ion homeostasis and consequently contributed to the increase of biomass. In addition, root colonization potential of the strain was observed by green fluorescent protein (GFP)-tagging approach. These results strongly suggest the beneficial impact of strain GW103 by inducing the alleviation of salt stress and development of stress tolerance in Chinese cabbage via plant-microbe interaction. PMID:26358119

  13. Metabolism of bismuth subsalicylate and intracellular accumulation of bismuth by Fusarium sp. strain BI.

    Science.gov (United States)

    Dodge, Anthony G; Wackett, Lawrence P

    2005-02-01

    Enrichment cultures were conducted using bismuth subsalicylate as the sole source of carbon and activated sludge as the inoculum. A pure culture was obtained and identified as a Fusarium sp. based on spore morphology and partial sequences of 18S rRNA, translation elongation factor 1-alpha, and beta-tubulin genes. The isolate, named Fusarium sp. strain BI, grew to equivalent densities when using salicylate or bismuth subsalicylate as carbon sources. Bismuth nitrate at concentrations of up to 200 muM did not limit growth of this organism on glucose. The concentration of soluble bismuth in suspensions of bismuth subsalicylate decreased during growth of Fusarium sp. strain BI. Transmission electron microscopy and energy-dispersive spectroscopy revealed that the accumulated bismuth was localized in phosphorus-rich granules distributed in the cytoplasm and vacuoles. Long-chain polyphosphates were extracted from fresh biomass grown on bismuth subsalicylate, and inductively coupled plasma optical emission spectrometry showed that these fractions also contained high concentrations of bismuth. Enzyme activity assays of crude extracts of Fusarium sp. strain BI showed that salicylate hydroxylase and catechol 1,2-dioxygenase were induced during growth on salicylate, indicating that this organism degrades salicylate by conversion of salicylate to catechol, followed by ortho cleavage of the aromatic ring. Catechol 2,3-dioxygenase activity was not detected. Fusarium sp. strain BI grew with several other aromatic acids as carbon sources: benzoate, 3-hydroxybenzoate, 4-hydroxybenzoate, gentisate, d-mandelate, l-phenylalanine, l-tyrosine, phenylacetate, 3-hydroxyphenylacetate, 4-hydroxyphenylacetate, and phenylpropionate. PMID:15691943

  14. Metabolism of Bismuth Subsalicylate and Intracellular Accumulation of Bismuth by Fusarium sp. Strain BI

    OpenAIRE

    Dodge, Anthony G.; Wackett, Lawrence P

    2005-01-01

    Enrichment cultures were conducted using bismuth subsalicylate as the sole source of carbon and activated sludge as the inoculum. A pure culture was obtained and identified as a Fusarium sp. based on spore morphology and partial sequences of 18S rRNA, translation elongation factor 1-α, and β-tubulin genes. The isolate, named Fusarium sp. strain BI, grew to equivalent densities when using salicylate or bismuth subsalicylate as carbon sources. Bismuth nitrate at concentrations of up to 200 μM d...

  15. Lipopolysaccharide dependence of cyanophage sensitivity and aerobic nitrogen fixation in Anabaena sp. strain PCC 7120.

    OpenAIRE

    Xu, X.; Khudyakov, I; Wolk, C P

    1997-01-01

    Fox- mutants of Anabaena sp. strain PCC 7120 are unable to fix dinitrogen in the presence of oxygen. A fragment of the DNA of Anabaena sp. was cloned by complementation of a spontaneous Fox-, cyanophage-resistant mutant, R56, and characterized. Random insertion of transposon Tn5 delimited the complementing DNA to a 0.6-kb portion of the cloned fragment. Sequencing of this region and flanking DNA showed one complete open reading frame (ORF) similar to the gene rfbP (undecaprenyl-phosphate gala...

  16. A Novel Radiation-Resistant Strain of Filobasidium sp. Isolated from the West Sea of Korea

    International Nuclear Information System (INIS)

    A novel radiation-resistant Filobasidium sp. yeast strain was isolated from seawater. Along with this strain, a total of 656 yeast isolates were purified from seawater samples collected from three locations in the West Sea of Korea and assessed for their radiation tolerance. Among these isolates, five were found to survive a 5 kGy radiation dose. The most radiation resistant strain was classified as Filobasidium sp. based on 18S rDNA sequence analysis and hence was named Filobasidium RRY1 (Radiation-Resistant Yeast 1). RRY1 differed from F. elegans, which is closely related to RRY1, in terms of the optimal growth temperature and radiation resistance, and was resistant to high doses of γ-ionizing radiation (D10: 6-7 kGy). When exposed to a high dose of 3 kGy irradiation, the RRY1 cells remained intact and undistorted, with negligible cell death. When these irradiated cells were allowed to recover, the cells fully repaired their genomic DNA within 3 h of growth recovery. This is the first report in which a radiation-resistant response has been investigated at the physiological, morphological, and molecular levels in a strain of Filobasidium sp. (author)

  17. Biodegradation of phenol by free and immobilized Acinetobacter sp.strain PD12

    Institute of Scientific and Technical Information of China (English)

    WANG Ying; TIAN Ye; HAN Bin; ZHAO Hua-bing; BI Jian-nan; CAI Bao-li

    2007-01-01

    A new phenol-degrading bacterium with high biodegradation activity and high tolerance of phenol, strain PD 12, was isolated from the activated sludge of Tianjin Jizhuangzi Wastewater Treatment Facility in China. This strain was capable of removing 500 mg phenol/L in liquid minimal medium by 99.6% within 9 h and metabolizing phenol at concentrations up to 1100 mg/L. DNA sequencing and homologous analysis of 16S rRNA gene identified PD12 to be an Acinetobacter sp. Polyvinyl alcohol (PVA) was used as a gel matrix to immobilize Acinetobacter sp. strain PD12 by repeated freezing and thawing. The factors affecting phenol degradation of immobilized cells were investigated, and the results showed that the immobilized cells could tolerate a high phenol level and protected the bacteria against changes in temperature and pH. Storage stability and reusability tests revealed that the phenol degradation functions of immobilized cells were stable after reuse for 50 times or storing at 4℃ for 50 d. These results indicate that immobilized Acinetobacter sp. strain PD 12 possesses a good application potential in the treatment of phenol-containing wastewater.

  18. Isolation and Characterization of a Dichlorvos-Degrading Strain DDV-1 of Ochrobactrum sp.

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Hua; ZHANG Guo-Shun; ZHANG Zhong-Hui; XU Jian-Hong; LI Shun-Peng

    2006-01-01

    The objective of this research was to isolate a dichlorvos (2,2-dichlorovinyl dimethyl phosphate)-degrading strain of Ochrobactrum sp., and determine its effectiveness in remediation of a dichlorvos-contaminated soil. A dichlorvos-degrading bacterium (strain DDV-1) was successfully isolated and identified as an Ochrobactrum sp. based on its 16S rDNA sequence analysis. Strain DDV-1 was able to utilize dichlorvos as a sole carbon source, and the optimal pH and temperature for its cell growth and degradation were 7.0 and 30 ℃, respectively. Also, the growth and degradation of strain DDV-1 showed the same response to dissolved oxygen. In addition, the soil degradation test indicated that in soil spiked with 100 mg L-1 or 500 mg L-1 dichlorvos and inoculated with 0.5% or 1.0% (v/v) strain DDV-1, complete degradation of dichlorvos could be achieved in 24 h. The present study showed that strain DDV-1 was a fast dichlorvos-degrading bacterium in soil. However, further research will be needed to clarify the degradation pathway and the properties of the key enzymes involved in its biodegradation.

  19. Antioxidant activity and free radical scavenging activities of Streptomyces sp.strain MJM 10778

    Institute of Scientific and Technical Information of China (English)

    Dong-Ryung; Lee; Sung-Kwon; Lee; Bong-Keun; Choi; Jinhua; Cheng; Young-Sil; Lee; Seung; Hwan; Yang; Joo-Won; Suh

    2014-01-01

    Objective:To investigate the antioxidant activity of soil-borne aetinobacteria.Methods:The total phenolic contents,the level of antioxidant potential by DPPH radical scavenging activity,MO scavenging activity,and ABTS radical scavenging activity in ethyl acelale extract were determined.Results:The 16 S rDNA sequencing analysis revealed that Streptomyces sp.strain MJM 10778.which was isolated from Hambak Mountain.Korea,has 99.9% similarity to Streptomyces misionensis(S.misionenis) NBRC 13063.The physiological and the morphological test revealed that the strain MJM 10778 has different characteristics from the strain NBRC.13063.The entire antioxidant assay with the ethyl acelale extract displayed good radical scavenging activity.The IC50 values of the strain MJM 10778 extract on DPPH,.NO.and ABTS radicals were identified to he 92.8 μg/mL,0.02 μg/ml,and 134.9 μg/mL,respectively.The ethyl acetate extract of the strain MJM 10778 showed an 81.500% of cell viability at 100 μg/mL in Raw264.7cell viability assay.Conclusions:The results obtained suggesl that the ethyl acetate extract of Streptomyces sp.strain MJM 10778 could be considered as a potential source of drug for the diseases that is caused by free radicals with its anti-oxidant activities and low cytotoxicity.

  20. EFEKTIVITAS Bacillus thuringiensis H-14 STRAIN LOKAL DALAM BUAH KELAPA TERHADAP LARVA Anopheles sp dan Culex sp di KAMPUNG LAUT KABUPATEN CILACAP

    Directory of Open Access Journals (Sweden)

    Blondine Ch. P

    2013-07-01

    Full Text Available Abstrak Bacillus thuringiensis serotipe H-14 strain lokal adalah bakteri patogen bersifat target spesifiknya larva nyamuk, aman bagi mamalia dan lingkungan. Penelitian bertujuan menentukan efektivitas B. thuringiensis H-14 strain lokal yang dikembangbiakkan dalam buah kelapa untuk pengendalian larva Anopheles sp dan Culex sp. Rancangan eksperimental semu, terdiri dari kelompok perlakuan dan kontrol. Bacillus thuringiensis H-14 strain lokal dikembangbiakan dalam10 buah kelapa umur 6–8 bulan, dengan berat kira-kira 1 kg, telah berisi air kelapa sekitar 400-500 ml/buah kelapa yang diperoleh dari Desa Klaces, Kampung Laut, Kabupaten Cilacap. Diinkubasi selama 14 hari pada temperatur kamar dan ditebarkan di 6 kolam yang menjadi habitat perkembangbiakan larva nyamuk dengan luas berkisar 3–100 m2.Hasil yang diperoleh menunjukkan efektivitas B. thuringiensis H-14 strain lokal terhadap larva Anopheles sp dan Culex sp selama 1 hari sesudah penebaran kematian larva berturut-turut sebesar 80–100% dan 79,31–100%. Sedangkan pada hari ke-14 sebesar 69,30–76,71% dan 67,69–86,04%. Buah kelapa dapat digunakan sebagai media lokal alternatif untuk pengembangbiakan B. thuringiensis H-14 strain lokal Kata kunci: B. thuringiensis H-14,  strain  lokal, buah kelapa, pengendalian larva Abstract Bacillus thuringiensis serotype H-14 local strain is pathogenic bacteria which specific  target to mosquito larvae. It is safe for mammals and enviroment. The aims of this study was to determine the effectivity of B. thuringiensis H-14 local strain which culturing in thecoconut wates against Anopheles sp and Culex sp mosquito larvae. This research is quasi experiment which consist of treated  and control groups. Bacillus thuringiensis H-14 local strain was cultured in 10 coconuts with 6–8 months age with weight around 1 kg that contained were approximately 400-500 ml/coconut were taken from Klaces village, Kampung Laut. After that the coconuts incubated for 14

  1. Quantitative proteomic analysis of ibuprofen-degrading Patulibacter sp. strain I11

    DEFF Research Database (Denmark)

    Almeida, Barbara; Kjeldal, Henrik; Lolas, Ihab Bishara Yousef;

    2013-01-01

    Ibuprofen is the third most consumed pharmaceutical drug in the world. Several isolates have been shown to degrade ibuprofen, but very little is known about the biochemistry of this process. This study investigates the degradation of ibuprofen by Patulibacter sp. strain I11 by quantitative...... proteomics using a metabolic labelling strategy. The whole genome of Patulibacter sp. strain I11 was sequenced to provide a species-specific protein platform for optimal protein identification. The bacterial proteomes of actively ibuprofen-degrading cells and cells grown in the absence of ibuprofen was...... identified and quantified by gel based shotgun-proteomics. In total 251 unique proteins were quantitated using this approach. Biological process and pathway analysis indicated a number of proteins that were up-regulated in response to active degradation of ibuprofen, some of them are known to be involved in...

  2. Reclassification of non-pigmented Erwinia herbicola strains from trees as Erwinia billingiae sp. nov.

    Science.gov (United States)

    Mergaert, J; Hauben, L; Cnockaert, M C; Swings, J

    1999-04-01

    Twenty-two Erwinia-like strains, isolated from trees since the late fifties and belonging to a distinct phenotypic group with resemblance to Pantoea agglomerans, were further characterized by conventional biochemical tests, the BIOLOG metabolic fingerprinting system and fatty acid analysis. Their phylogenetic positions were determined by comparing the 16S rRNA gene sequence of a representative strain to available sequences of Erwinia, Pantoea, Pectobacterium and Brenneria species. The strains were shown to belong to the genus Erwinia, with Erwinia rhapontici and Erwinia persicina as the closest phylogenetic relatives. The name Erwinia billingiae sp. nov. is proposed (type strain LMG 2613T) and a description of the species is given. PMID:10319458

  3. Biodegradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1

    Directory of Open Access Journals (Sweden)

    Preeti N. Tallur

    2015-09-01

    Full Text Available Pyrethroid pesticide cypermethrin is a environmental pollutant because of its widespread use, toxicity and persistence. Biodegradation of such chemicals by microorganisms may provide an cost-effective method for their detoxification. We have investigated the degradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1 in various matrices such as, polyurethane foam (PUF, polyacrylamide, sodium alginate and agar. The optimum temperature and pH for the degradation of cypermethrin by immobilized cells of Micrococcus sp. were found to be 30 °C and 7.0, respectively. The rate of degradation of 10 and 20 mM of cypermethrin by freely suspended cells were compared with that of immobilized cells in batches and semi-continuous with shaken cultures. PUF-immobilized cells showed higher degradation of cypermethrin (10 mM and 20 mM than freely suspended cells and cells immobilized in other matrices. The PUF-immobilized cells of Micrococcus sp. strain CPN 1 were retain their degradation capacity. Thus, they can be reused for more than 32 cycles, without losing their degradation capacity. Hence, the PUF-immobilized cells of Micrococcus sp. could potentially be used in the bioremediation of cypermethrin contaminated water.

  4. Biodegradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1.

    Science.gov (United States)

    Tallur, Preeti N; Mulla, Sikandar I; Megadi, Veena B; Talwar, Manjunatha P; Ninnekar, Harichandra Z

    2015-01-01

    Pyrethroid pesticide cypermethrin is a environmental pollutant because of its widespread use, toxicity and persistence. Biodegradation of such chemicals by microorganisms may provide an cost-effective method for their detoxification. We have investigated the degradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1 in various matrices such as, polyurethane foam (PUF), polyacrylamide, sodium alginate and agar. The optimum temperature and pH for the degradation of cypermethrin by immobilized cells of Micrococcus sp. were found to be 30 °C and 7.0, respectively. The rate of degradation of 10 and 20 mM of cypermethrin by freely suspended cells were compared with that of immobilized cells in batches and semi-continuous with shaken cultures. PUF-immobilized cells showed higher degradation of cypermethrin (10 mM and 20 mM) than freely suspended cells and cells immobilized in other matrices. The PUF-immobilized cells of Micrococcus sp. strain CPN 1 were retain their degradation capacity. Thus, they can be reused for more than 32 cycles, without losing their degradation capacity. Hence, the PUF-immobilized cells of Micrococcus sp. could potentially be used in the bioremediation of cypermethrin contaminated water. PMID:26413046

  5. In Vivo Role of Catalase-Peroxidase in Synechocystis sp. Strain PCC 6803

    OpenAIRE

    Tichy, Martin; Vermaas, Wim

    1999-01-01

    The katG gene coding for the only catalase-peroxidase in the cyanobacterium Synechocystis sp. strain PCC 6803 was deleted in this organism. Although the rate of H2O2 decomposition was about 30 times lower in the ΔkatG mutant than in the wild type, the strain had a normal phenotype and its doubling time as well as its resistance to H2O2 and methyl viologen were indistinguishable from those of the wild type. The residual H2O2-scavenging capacity was more than sufficient to deal with the rate of...

  6. Degradation of p-chlorotoluene by a mutant of Pseudomonas sp. strain JS6.

    OpenAIRE

    Haigler, B E; Spain, J C

    1989-01-01

    Pseudomonas sp. strain JS6 grows on chlorobenzene, p-dichlorobenzene, or toluene as a sole source of carbon and energy. It does not grow on p-chlorotoluene (p-CT). Growth on glucose in the presence of p-CT resulted in the accumulation of 4-chloro-2,3-dihydroxy-1-methylbenzene (3-chloro-6-methylcatechol), 4-chloro-2,3-dihydroxy-1-methylcyclohexa-4,6-diene (p-CT dihydrodiol), and 2-methyl-4-carboxymethylenebut-2-en-4-olide (2-methyl dienelactone). Strain JS21, a spontaneous mutant capable of gr...

  7. Karyotype rearrangements and telomere analysis in Myzus persicae ( Hemiptera , Aphididae ) strains collected on Lavandula sp. plants

    OpenAIRE

    Mauro Mandrioli; Federica Zanasi; Gian Carlo Manicardi

    2014-01-01

    Abstract Karyotype analysis of nine strains of the peach-potato aphid Myzus persicae (Sulzer, 1776), collected on Lavandula sp. plants, evidenced showed that five of them had a standard 2n = 12 karyotype, one possessed a fragmentation of the X chromosome occurring at the telomere opposite to the NOR-bearing one and three strains had a chromosome number 2n = 11 due to a non-reciprocal translocation of an autosome A3 onto an A1 chromosome. Interestingly, the terminal portion of the autosome A1 ...

  8. Cloning of a Novel Arylamidase Gene from Paracoccus sp. Strain FLN-7 That Hydrolyzes Amide Pesticides

    OpenAIRE

    Zhang, Jun; Yin, Jin-Gang; Hang, Bao-Jian; Cai, Shu; He, Jian; Zhou, Shun-Gui; Li, Shun-Peng

    2012-01-01

    The bacterial isolate Paracoccus sp. strain FLN-7 hydrolyzes amide pesticides such as diflubenzuron, propanil, chlorpropham, and dimethoate through amide bond cleavage. A gene, ampA, encoding a novel arylamidase that catalyzes the amide bond cleavage in the amide pesticides was cloned from the strain. ampA contains a 1,395-bp open reading frame that encodes a 465-amino-acid protein. AmpA was expressed in Escherichia coli BL21 and homogenously purified using Ni-nitrilotriacetic acid affinity c...

  9. Isolation and characterization of a fungus Aspergillus sp. strain F-3 capable of degrading alkali lignin.

    Science.gov (United States)

    Yang, Y S; Zhou, J T; Lu, H; Yuan, Y L; Zhao, L H

    2011-09-01

    A fungus strain F-3 was selected from fungal strains isolated from forest soil in Dalian of China. It was identified as one Aspergillus sp. stain F-3 with its morphologic, cultural characteristics and high homology to the genus of rDNA sequence. The budges or thickened node-like structures are peculiar structures of hyphae of the strain. The fungus degraded 65% of alkali lignin (2,000 mg l(-1)) after day 8 of incubation at 30°C at pH 7. The removal of colority was up to 100% at 8 days. The biodegradation of lignin by Aspergillus sp. F-3 favored initial pH 7.0. Excess acid or alkali conditions were not propitious to lignin decomposing. Addition of ammonium L: -tartrate or glucose delayed or repressed biodegradation activities. During lignin degradation, manganese peroxidase (28.2 U l(-1)) and laccase (3.5 U l(-1))activities were detected after day 7 of incubation. GC-MS analysis of biodegraded products showed strain F-3 could convert alkali lignin into small molecules or other utilizable products. Strain F-3 may co-culture with white rot fungus and decompose alkali lignin effectively. PMID:21350882

  10. Molecular and biochemical characterization of the tetralin degradation pathway in Rhodococcus sp. strain TFB

    OpenAIRE

    Tomás‐Gallardo, Laura; Santero, Eduardo; Camafeita, Emilio; Calvo, Enrique; Schlömann, Michael; Floriano, Belén

    2009-01-01

    Summary The tetralin biodegradation pathway in Rhodococcus sp. strain TFB, a Gram‐positive bacterium resistant to genetic manipulation, was characterized using a proteomic approach. Relative protein expression in cell free extracts from tetralin‐ and glucose‐grown cells was compared using the 2D‐DIGE technique. Identification of proteins specifically expressed in tetralin‐grown cells was used to characterize a complete set of genes involved in tetralin degradation by reverse genetics. We prop...

  11. Combination of degradation pathways for naphthalene utilization in Rhodococcus sp. strain TFB

    OpenAIRE

    Tomás-Gallardo, Laura; Gómez-Álvarez, Helena; Santero, Eduardo; Floriano, Belén

    2013-01-01

    R hodococcus sp. strain TFB is a metabolic versatile bacterium able to grow on naphthalene as the only carbon and energy source. Applying proteomic, genetic and biochemical approaches, we propose in this paper that, at least, three coordinated but independently regulated set of genes are combined to degrade naphthalene in TFB. First, proteins involved in tetralin degradation are also induced by naphthalene and may carry out its conversion to salicylaldehyde. This is the only part of the napht...

  12. Isolation and characterization of Burkholderia sp. strain CCA53 exhibiting ligninolytic potential

    OpenAIRE

    Akita, Hironaga; Kimura, Zen-ichiro; Mohd Yusoff, Mohd Zulkhairi; Nakashima, Nobutaka; Hoshino, Tamotsu

    2016-01-01

    Microbial degradation of lignin releases fermentable sugars, effective utilization of which could support biofuel production from lignocellulosic biomass. In the present study, a lignin-degrading bacterium was isolated from leaf soil and identified as Burkholderia sp. based on 16S rRNA gene sequencing. This strain was named CCA53, and its lignin-degrading capability was assessed by observing its growth on medium containing alkali lignin or lignin-associated aromatic monomers as the sole carbo...

  13. Characterization of the Arsenate Respiratory Reductase from Shewanella sp. Strain ANA-3

    OpenAIRE

    Malasarn, Davin; Keeffe, Jennifer R.; Newman, Dianne K.

    2008-01-01

    Microbial arsenate respiration contributes to the mobilization of arsenic from the solid to the soluble phase in various locales worldwide. To begin to predict the extent to which As(V) respiration impacts arsenic geochemical cycling, we characterized the expression and activity of the Shewanella sp. strain ANA-3 arsenate respiratory reductase (ARR), the key enzyme involved in this metabolism. ARR is expressed at the beginning of the exponential phase and persists throughout the stationary ph...

  14. Draft Genome Sequence of Halomonas sp. HG01, a Polyhydroxyalkanoate-Accumulating Strain Isolated from Peru.

    Science.gov (United States)

    Cardinali-Rezende, Juliana; Nahat, Rafael Augusto Teodoro Pereira de Souza; Guzmán Moreno, César Wilber; Carreño Farfán, Carmen Rosa; Silva, Luiziana Ferreira; Taciro, Marilda Keico; Gomez, José Gregório Cabrera

    2016-01-01

    Halomonas sp. strain HG01, isolated from a salt mine in Peru, is a halophilic aerobic heterotrophic bacterium accumulating poly-3-hydroxybutyrate and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from different carbon sources. Here, we report the draft genome sequence of this isolate, which was found to be 3,665,487 bp long, with a G+C content of 68%. PMID:26798101

  15. Draft Genome Sequence of Halomonas sp. HG01, a Polyhydroxyalkanoate-Accumulating Strain Isolated from Peru

    OpenAIRE

    Cardinali-Rezende, Juliana; Nahat, Rafael Augusto Teodoro Pereira de Souza; Guzmán Moreno, César Wilber; Carreño Farfán, Carmen Rosa; Silva, Luiziana Ferreira; Taciro, Marilda Keico; Gomez, José Gregório Cabrera

    2016-01-01

    Halomonas sp. strain HG01, isolated from a salt mine in Peru, is a halophilic aerobic heterotrophic bacterium accumulating poly-3-hydroxybutyrate and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from different carbon sources. Here, we report the draft genome sequence of this isolate, which was found to be 3,665,487 bp long, with a G+C content of 68%.

  16. Effect of biotin on alkaloid production during submerged cultivation of Claviceps sp. strain SD-58.

    OpenAIRE

    Desai, J. D.; Desai, A J; Patel, H C

    1983-01-01

    Addition of biotin to culture medium NL-406 significantly increased alkaloid yield during submerged cultivation of Claviceps sp. strain SD-58. Alkaloid yield was further enhanced by incorporating leucine in biotin-supplemented culture medium. Increased alkaloid production was associated with an increase in the lipid content of cells and in the number of chlamydospores. Biotin deficiency caused a reduction in alkaloid yield and a parallel decrease in lipid content and chlamydospore numbers.

  17. Polycyclic aromatic hydrocarbon degradation by the white rot fungus Bjerkandera sp. strain BOS55.

    OpenAIRE

    Kotterman, M.J.J.

    1998-01-01

    Outline of this thesisIn this thesis the conditions for optimal PAH oxidation by the white rot fungus Bjerkandera sp. strain BOS55 were evaluated. In Chapter 2, culture conditions like aeration and cosubstrate concentrations, which influenced the oxidation of the PAH compound anthracene and the ligninolytic indicator dye Poly R-478 by the white rot fungus, were studied. Two parameters were identified as the most important PAH oxidation rate-limiting factors: the hydrogen peroxide production r...

  18. Purification and Properties of a Xylan-Binding Endoxylanase from Alkaliphilic Bacillus sp. Strain K-1

    OpenAIRE

    Ratanakhanokchai, Khanok; Kyu, Khin Lay; Tanticharoen, Morakot

    1999-01-01

    An alkaliphilic bacterium, Bacillus sp. strain K-1, produces extracellular xylanolytic enzymes such as xylanases, β-xylosidase, arabinofuranosidase, and acetyl esterase when grown in xylan medium. One of the extracellular xylanases that is stable in an alkaline state was purified to homogeneity by affinity adsorption-desorption on insoluble xylan. The enzyme bound to insoluble xylan but not to crystalline cellulose. The molecular mass of the purified xylan-binding xylanase was estimated to be...

  19. Biodegradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1

    OpenAIRE

    Tallur, Preeti N.; Mulla, Sikandar I.; Megadi, Veena B.; Talwar, Manjunatha P.; Ninnekar, Harichandra Z.

    2015-01-01

    Pyrethroid pesticide cypermethrin is a environmental pollutant because of its widespread use, toxicity and persistence. Biodegradation of such chemicals by microorganisms may provide an cost-effective method for their detoxification. We have investigated the degradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1 in various matrices such as, polyurethane foam (PUF), polyacrylamide, sodium alginate and agar. The optimum temperature and pH for the degradation of cyperme...

  20. Microbial System for Polysaccharide Depolymerization: Enzymatic Route for Xanthan Depolymerization by Bacillus sp. Strain GL1

    OpenAIRE

    Nankai, Hirokazu; Hashimoto, Wataru; Miki, Hikaru; Kawai, Shigeyuki; Murata, Kousaku

    1999-01-01

    An enzymatic route for the depolymerization of a heteropolysaccharide (xanthan) in Bacillus sp. strain GL1, which was closely related to Brevibacillus thermoruber, was determined by analyzing the structures of xanthan depolymerization products. The bacterium produces extracellular xanthan lyase catalyzing the cleavage of the glycosidic bond between pyruvylated mannosyl and glucuronyl residues in xanthan side chains (W. Hashimoto et al., Appl. Environ. Microbiol. 64:3765–3768, 1998). The modif...

  1. Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecane and hexadecanol metabolism

    International Nuclear Information System (INIS)

    The role of fatty aldehyde dehydrogenases (FALDHs) in hexadecane and hexadecanol metabolism was studied in Acinetobacter sp. strain HO1-N. Two distinct FALDHs were demonstrated in Acinetobacter sp. strain HO1-N: (i) a membrane-bound, NADP-dependent FALDH activity induced 5-, 15-, and 9 fold by growth on hexadecanol, dodecyl aldehyde, and hexadecane, respectively, and (ii) a constitutive, NAD-dependent, membrane-localized FALDH. Dodecyl aldehyde-negative mutants were isolated and grouped into two phenotypic classes based on growth: class 1 mutants were hexadecane and hexadecanol negative and class 2 mutants were hexadecane and hexadecanol positive. Specific activity of NADP-dependent FALDH in Ald21 (class 1 mutant) was 85% lower than that of wild-type FALDH, while the specific activity of Ald24 (class 2 mutant) was 55% greater than that of wild-type FALDH. Ald21R, a dodecyl aldehyde-positive revertant able to grow on hexadecane, hexadecanol, and dodecyl aldehyde, exhibited a 100% increase in the specific activity of the NADP-dependent FALDH. This study provides genetic and physiological evidence for the role of fatty aldehyde as an essential metabolic intermediate and NADP-dependent FALDH as a key enzyme in the dissimilation of hexadecane, hexadecanol, and dodecyl aldehyde in Acinetobacter sp. strain HO1-N

  2. 2,3-Dihydroxybiphenyl dioxygenase gene was first discovered in Arthrobacter sp. strain P J3

    Institute of Scientific and Technical Information of China (English)

    YANG MeiYing; MA PengDa; LI WenMing; LIU JinYing; LI Liang; ZHU XiaoJuan; WANG XingZhi

    2007-01-01

    Bacterium strain PJ3, isolated from wastewater and identified as Arthrobacter sp. bacterium based on its 16S rDNA gene, could use carbazole as the sole carbon, nitrogen and energy source. The genomic libraryof strain PJ3 was constructed and a positive clone JM109 (pUCW402) was screened out for the expression of dioxygenase by the ability to form yellow ring-fission product. A 2,3-dihydroxybiphenyl dioxygenase (23DHBD) gene of 933 bp was found in the 3360 bp exogenous fragment of pUCW402 by GenSCAN software and BLAST analysis. The phylogenetic analysis showed that 23DHBD from strain PJ3 formed a deep branch separate from a cluster containing most known 23DHBD in GenBank.Southern hybridization confirmed for the first time that the 23DHBD gene was from the genomic DNA of Arthrobacter sp. PJ3. In order to test the gene function, recombinant bacterium BL21 (pETW-8) was constructed to express 23DHBD. The expression level in BL21 (pETW-8) was highest compared with the recombinant bacteria JM109 (pUCW402) and strain PJ3. We observed that 23DHBD was not absolute specific. The enzyme activity was higher with 2,3-dihydroxybiphenyl as a substrate than with catechol.The substrate specificity assay suggested that 23DHBD was essential for cleavage of bi-cyclic aromatic compounds during the course of aromatic compound biodegradation in Arthrobacter sp. strain PJ3.

  3. Proposal of Afipia gen. nov., with Afipia felis sp. nov. (formerly the cat scratch disease bacillus), Afipia clevelandensis sp. nov. (formerly the Cleveland Clinic Foundation strain), Afipia broomeae sp. nov., and three unnamed genospecies.

    OpenAIRE

    Brenner, D. J.; Hollis, D G; Moss, C W; English, C K; Hall, G. S.; Vincent, J.; Radosevic, J; Birkness, K A; W.F. Bibb; Quinn, F D

    1991-01-01

    On the basis of phenotypic characterization and DNA relatedness determinations, the genus Afipia gen. nov., which contains six species, is described. The type species is Afipia felis sp. nov. (the cat scratch disease bacillus). Afipia clevelandensis sp. nov., Afipia broomeae sp. nov., and three unnamed not associated with cat-borne disease. All but one strain (Afipia genospecies 3) were isolated from human wound and respiratory sources. All Afipia species are gram-negative, oxidase-positive, ...

  4. Complete genome sequence of the xylan-degrading Mucilaginibacter sp. strain PAMC26640 isolated from an Arctic lichen.

    Science.gov (United States)

    Oh, Tae-Jin; Han, So-Ra; Kang, Seunghyun; Park, Hyun; Kim, Augustine Yonghwi

    2016-06-10

    Mucilaginibacter sp. PAMC26640 is a xylan-degrading bacterium isolated from the Arctic lichen Stereocaulon sp. Here, we present the first complete genome sequence of Mucilaginibacter sp. strain PAMC26640, which contains several genes involved in xylan utilization. This genome information provides new insights into the genetic basis of its physiology and further analysis of key metabolic genes related to the xylan degradation pathway. PMID:27080447

  5. Preliminary studies of new strains of Trametes sp. from Argentina for laccase production ability.

    Science.gov (United States)

    Fonseca, María Isabel; Tejerina, Marcos Raúl; Sawostjanik-Afanasiuk, Silvana Soledad; Giorgio, Ernesto Martin; Barchuk, Mónica Lucrecia; Zapata, Pedro Darío; Villalba, Laura Lidia

    2016-01-01

    Oxidative enzymes secreted by white rot fungi can be applied in several technological processes within the paper industry, biofuel production and bioremediation. The discovery of native strains from the biodiverse Misiones (Argentina) forest can provide useful enzymes for biotechnological purposes. In this work, we evaluated the laccase and manganese peroxidase secretion abilities of four newly discovered strains of Trametes sp. that are native to Misiones. In addition, the copper response and optimal pH and temperature for laccase activity in culture supernatants were determined. The selected strains produced variable amounts of laccase and MnP; when Cu(2+) was added, both enzymes were significantly increased. Zymograms showed that two isoenzymes were increased in all strains in the presence of Cu(2+). Strain B showed the greatest response to Cu(2+) addition, whereas strain A was more stable at the optimal temperature and pH. Strain A showed interesting potential for future biotechnological approaches due to the superior thermo-stability of its secreted enzymes. PMID:26991301

  6. Draft Genome Sequence of Paenibacillus sp. Strain MSt1 with Broad Antimicrobial Activity, Isolated from Malaysian Tropical Peat Swamp Soil

    OpenAIRE

    Aw, Yoong Kit; Ong, Kuan Shion; Catherine M Yule; Gan, Han Ming; Lee, Sui Mae

    2014-01-01

    We report the draft genome sequence of Paenibacillus sp. strain MSt1, which has broad-range antimicrobial activity, isolated from tropical peat swamp soil. Genes involved in antimicrobial biosynthesis are found to be present in this genome.

  7. Augmentation of tribenuron methyl removal from polluted soil with Bacillus sp.strain BS2 and indigenous earthworms

    Institute of Scientific and Technical Information of China (English)

    Qiang Tang; Zhiping Zhao; Yajun Liu; Nanxi Wang; Baojun Wang; Yanan Wang; Ningyi Zhou; Shuangjiang Liu

    2012-01-01

    Tribenuron methyl(TBM)is a member of the sulfonylurea herbicide family and is widely used worldwide.In this study,TBMdegrading bacteria were enriched with TBM as potential carbon,nitrogen or sulfur source,and 44 bacterial isolates were obtained.These isolates were phylogenetically diverse,and were grouped into 25 operational taxonomic units and 14 currently known genera.Three representatives,Bacillus sp.strain BS2,Microbacterium sp.strain BS3,and Cellulosimicrobium sp.strain BS 11,were selected,and their growth and TBM removal from culture broth were investigated.In addition,indigenous earthworms were collected and applied to augment TBM degradation in lab-scale soil column experiments.Results demonstrated that Bacillus sp.strain BS2 and earthworms significantly increased TBM removal during soil column experiments.

  8. Genome Sequence of a Typical Ultramicrobacterium, Curvibacter sp. Strain PAE-UM, Capable of Phthalate Ester Degradation

    Science.gov (United States)

    Ma, Dan; Hao, Zhenyu; Sun, Rui

    2016-01-01

    Curvibacter sp. strain PAE-UM, isolated from river sediment, is a typical ultramicrobacterium capable of phthalate ester degradation. The genome of Curvibacter sp. PAE-UM consists of 3,284,473 bp, and its information will provide insights into the molecular mechanisms underlying its degradation ability. PMID:26769923

  9. Genome Sequence of a Typical Ultramicrobacterium, Curvibacter sp. Strain PAE-UM, Capable of Phthalate Ester Degradation

    OpenAIRE

    Ma, Dan; Hao, Zhenyu; Sun, Rui; Bartlam, Mark; Wang, Yingying

    2016-01-01

    Curvibacter sp. strain PAE-UM, isolated from river sediment, is a typical ultramicrobacterium capable of phthalate ester degradation. The genome of Curvibacter sp. PAE-UM consists of 3,284,473 bp, and its information will provide insights into the molecular mechanisms underlying its degradation ability.

  10. Genome Sequence of Pseudomonas sp. Strain S9, an Extracellular Arylsulfatase-Producing Bacterium Isolated from Mangrove Soil ▿

    OpenAIRE

    Long, Mengxian; Ruan, Lingwei; Yu, Ziniu; Xu, Xun

    2011-01-01

    Pseudomonas sp. strain S9 was originally isolated from mangrove soil in Xiamen, China. It is an aerobic bacterium which shows extracellular arylsulfatase activity. Here, we describe the 4.8-Mb draft genome sequence of Pseudomonas sp. S9, which exhibits novel cysteine-type sulfatases.

  11. Myxoxanthophyll Is Required for Normal Cell Wall Structure and Thylakoid Organization in the Cyanobacterium Synechocystis sp. Strain PCC 6803

    OpenAIRE

    Mohamed, Hatem E.; Allison M. L. van de Meene; Roberson, Robert W.; Vermaas, Wim F. J.

    2005-01-01

    Myxoxanthophyll is a carotenoid glycoside in cyanobacteria that is of unknown biological significance. The sugar moiety of myxoxanthophyll in Synechocystis sp. strain PCC 6803 was identified as dimethyl fucose. The open reading frame sll1213 encoding a fucose synthetase orthologue was deleted to probe the role of fucose and to determine the biological significance of myxoxanthophyll in Synechocystis sp. strain PCC 6803. Upon deletion of sll1213, a pleiotropic phenotype was obtained: when prop...

  12. Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8.

    OpenAIRE

    Piddington, C S; Kovacevich, B R; Rambosek, J

    1995-01-01

    Dibenzothiophene (DBT), a model compound for sulfur-containing organic molecules found in fossil fuels, can be desulfurized to 2-hydroxybiphenyl (2-HBP) by Rhodococcus sp. strain IGTS8. Complementation of a desulfurization (dsz) mutant provided the genes from Rhodococcus sp. strain IGTS8 responsible for desulfurization. A 6.7-kb TaqI fragment cloned in Escherichia coli-Rhodococcus shuttle vector pRR-6 was found to both complement this mutation and confer desulfurization to Rhodococcus fascian...

  13. The influence of Agrobacterium rhizogenes on induction of hairy roots and ß-carboline alkaloids production in Tribulus terrestris L.

    OpenAIRE

    Sharifi, Sara; Sattari, Taher Nejad; Zebarjadi, Alireza; Majd, Ahmad; Ghasempour, Hamidreza

    2013-01-01

    We have developed an efficient transformation system for Tribulus terrestris L., an important medicinal plant, using Agrobacterium rhizogenes strains AR15834 and GMI9534 to generate hairy roots. Hairy roots were formed directly from the cut edges of leaf explants 10–14 days after inoculation with the Agrobacterium with highest frequency transformation being 49 %, which was achieved using Agrobacterium rhizogenes AR15834 on hormone-free MS medium after 28 days inoculation. PCR analysis showed ...

  14. Representational Difference Analysis and Real-Time PCR for Strain-Specific Quantification of Lactobacillus sobrius sp. nov.

    OpenAIRE

    Konstantinov, S.R.; Smidt, H.; De Vos

    2005-01-01

    Lactobacillus sobrius sp. nov., which was recently isolated from the intestine of weaning piglets, has potential probiotic properties. To follow the fate of L. sobrius strain 001T in dietary interventions, a novel and strain-specific quantitative detection procedure was developed. This procedure was based on the isolation of specific genomic fragments from the type strain by representational difference analysis and their detection by real-time PCR. The described strain-specific quantification...

  15. High-quality genome sequence and description of Bacillus ndiopicus strain FF3T sp. nov.

    Directory of Open Access Journals (Sweden)

    C.I. Lo

    2015-11-01

    Full Text Available Strain FF3T was isolated from the skin-flora of a 39-year-old healthy Senegalese man. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry did not allow any identification. This strain exhibited a 16S rRNA sequence similarity of 96.8% with Bacillus massiliensis, the phylogenetically closest species with standing nomenclature. Using a polyphasic study made of phenotypic and genomic analyses, strain FF3T was Gram-positive, aeroanaerobic and rod shaped and exhibited a genome of 4 068 720 bp with a G+C content of 37.03% that coded 3982 protein-coding and 67 RNA genes (including four rRNA operons. On the basis of these data, we propose the creation of Bacillus ndiopicus sp. nov.

  16. Noncontiguous finished genome sequence and description of Diaminobutyricimonas massiliensis strain FF2T sp. nov.

    Directory of Open Access Journals (Sweden)

    C.I. Lo

    2015-11-01

    Full Text Available Strain FF2T was isolated from the blood sample of a 35 year-old febrile Senegalese male, in Dielmo, Senegal. This strain exhibited a 97.47% 16S rRNA sequence identity with Diaminobutyricimonas aerilata. The score from MALDI-TOF-MS does not allow any identification. Using a polyphasic study made of phenotypic and genomic analyses, strain FF2T was Gram-negative, aerobic, motile, rod-shaped, and exhibited a genome of 3,227,513 bp (1 chromosome but no plasmid with a G+C content of 70.13% that coded 3,091 protein-coding and 56 RNA genes. On the basis of these data, we propose the creation of Diaminobutyricimonas massiliensis sp. nov.

  17. Screening of bacterial strains for pectinolytic activity: characterization of the polygalacturonase produced by Bacillus sp

    Directory of Open Access Journals (Sweden)

    Soares Márcia M.C.N.

    1999-01-01

    Full Text Available One hundred sixty eight bacterial strains, isolated from soil and samples of vegetable in decomposition, were screened for the use of citrus pectin as the sole carbon source. 102 were positive for pectinase depolymerization in assay plates as evidenced by clear hydrolization halos. Among them, 30% presented considerable pectinolytic activity. The cultivation of these strains by submerged and semi-solid fermentation for polygalacturonase production indicated that five strains of Bacillus sp produced high quantities of the enzyme. The physico-chemical characteristics, such as optimum pH of 6.0 - 7.0, optimum temperatures between 45oC and 55oC, stability at temperatures above 40oC and in neutral and alkaline pH, were determined.

  18. Effects of Biocontrol Strain E26 on Some Ecological Factors

    Institute of Scientific and Technical Information of China (English)

    WANG Hui-min; SUN Yan-li; WANG Jian-hui

    2002-01-01

    This study was to evaluate the ecological risk of strain E26 (Agrobacterium sp. ) by detecting its survival in waters and its effects on rhizosphere microorganisms. The data showed that E26 could not be detected in distilled water, tap water, river water, and rainwater after 36, 36, 8, and 9 days, respectively. E26 did not reveal significant effects on the population of bacteria, fungi, and actinomyces in rhizosphere soil and on the root surface of grapevines.

  19. Effects of modified Phycobilin biosynthesis in the Cyanobacterium Synechococcus sp. Strain PCC 7002.

    Science.gov (United States)

    Alvey, Richard M; Biswas, Avijit; Schluchter, Wendy M; Bryant, Donald A

    2011-04-01

    The pathway for phycocyanobilin biosynthesis in Synechococcus sp. strain PCC 7002 comprises two enzymes: heme oxygenase and phycocyanobilin synthase (PcyA). The phycobilin content of cells can be modified by overexpressing genes encoding alternative enzymes for biliverdin reduction. Overexpression of the pebAB and HY2 genes, encoding alternative ferredoxin-dependent biliverdin reductases, caused unique effects due to the overproduction of phycoerythrobilin and phytochromobilin, respectively. Colonies overexpressing pebAB became reddish brown and visually resembled strains that naturally produce phycoerythrin. This was almost exclusively due to the replacement of phycocyanobilin by phycoerythrobilin on the phycocyanin α-subunit. This phenotype was unstable, and such strains rapidly reverted to the wild-type appearance, presumably due to strong selective pressure to inactivate pebAB expression. Overproduction of phytochromobilin, synthesized by the Arabidopsis thaliana HY2 product, was tolerated much better. Cells overexpressing HY2 were only slightly less pigmented and blue-green than the wild type. Although the pcyA gene could not be inactivated in the wild type, pcyA was easily inactivated when cells expressed HY2. These results indicate that phytochromobilin can functionally substitute for phycocyanobilin in Synechococcus sp. strain PCC 7002. Although functional phycobilisomes were assembled in this strain, the overall phycobiliprotein content of cells was lower, the efficiency of energy transfer by these phycobilisomes was lower than for wild-type phycobilisomes, and the absorption cross-section of the cells was reduced relative to that of the wild type because of an increased spectral overlap of the modified phycobiliproteins with chlorophyll a. As a result, the strain producing phycobiliproteins carrying phytochromobilin grew much more slowly at low light intensity. PMID:21296968

  20. Characterization of a Synechococcus sp. strain PCC 7002 spontaneous mutant strain defective in accumulation of photosystem II core chlorophyll-protein complexes.

    OpenAIRE

    Webb, R.; Punnett, T

    1989-01-01

    Two photosystem II-associated chlorophyll-protein complexes of Synechococcus sp. strain PCC 7002 were identified. Their polypeptide compositions were similar to those of chlorophyll-containing antenna complexes of other cyanobacteria. Strain GT8B did not possess the complex responsible for 695-nm fluorescence and was unable to grow photoautotrophically; hence, this complex is necessary for photosystem II function in vivo.

  1. A Possible Role of Peptides in the Growth Enhancement of an Industrial Strain of Saccharomyces sp.

    Directory of Open Access Journals (Sweden)

    Dino Paolo Cortes

    2005-06-01

    Full Text Available Individual addition of a commercially available nutritional supplement and a methanol extract from an industrial Saccharomyces sp. strain SMC resulted in the enhanced growth of Saccharomyces sp. strain SMC in minimal medium. Isolation of the growth enhancing components from aqueous extracts of the supplement and the cellular extract was performed using reversed-phase, gel filtration, and ion exchange chromatography. Reversed-phase chromatography using Sep-Pak® vac C18 yielded aqueous washes which elicited increased yeast growth. Gel filtration chromatography of the aqueous washes in a group separation mode using Sephadex G25 gave three distinct groups for the nutritional supplement, and four distinct groups for the cellular extract. Fraction groups that exhibited growth enhancing activity also exhibited high absorbances at all three wavelengths of 214, 260, and 280 nm. Two major fractions which tested positive for growth enhancing activity in succeeding experiments were obtained after passing each of the active GFC groups through a Toyopearl SP 550C cation exchanger column. The active component from the cellular extract did not bind to the cation exchanger. The absorbance data at 214 nm (peptide bond experimental absorbance maximum wavelength, the Bradford assay (showing the presence of proteinaceous matter, and the active component’s inclusion in the Sephadex G25 fractionation range of 1-5 kDa (characteristic of small peptides suggest that the growth enhancing components of the nutritional supplement and methanol cell extracts are peptides.

  2. AFB1 Bio-Degradation by a New Strain- Stenotrophomonas. Sp

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The paper was to find the bacteria to degrade aflatoxin B 1 (AFB 1) and realize the application of biological degradation on AFB1. Using cumarin as the carbon source and energy on the first screening, then the ten strains which were first screened out were taken to degrade AFB 1 1 00 μg kg-1. Strain NMO-3 was screened out of ten strains, the degradation ratio of AFB1 reached 85.7%, which was more prominent than the others (P < 0.01). With the analysis of colony morphology, physiological and biochemistry experiments, and 16S rDNA gene sequence, the strain NMO-3 was finally identified as Stenotrophomonas sp. Using cumarin as the carbon source and energy could screen out the AFB1 degradation strains. Acute toxicity tests show that the viable number of NMO-3 lower than 3.12×1010 cfu mL-1 is safety. The crude enzyme was obtained by 65% ammonium sulfate fractionation, and it could degrade AFB1. It is the first report for the strain's detoxi-AFB1.

  3. Advances in transforming kudzu (Pueraria phaseoloides and carrot (Daucus carota var. Danvers 126 roots with different Agrobacterium rhizogenes strains for increasing MA fungi growth

    Directory of Open Access Journals (Sweden)

    Marisol Medina Sierra

    2011-12-01

    Full Text Available Kudzú (P. phaseoloides and carrot (D. carota roots were transformed in this survey into different kinds of culture medium by using five different A. rhizogenes strains. These presented different behaviour both in carrot transformation by A. rhizogenes 15834, A.r.8196 and A.r.2659 strains as well as kudzu transformation by A.r.15834 and A.r.1724 strains. Transformed carrot root growth was increased in WM culture medium, whilst transformed kudzu root growth did not increase in either the same medium or in modified MS medium. Transformed carrot roots were used for G. intrarradices increase and sporulation; however, wild AMF strains, isolated from a mining area (the lower Cauca area of Antioquia, did not grow either in roots from this specie or those from kudzu, in spite of this plant having great affinity for wild AMF strains. The results represent an advance in the procedure for DNA isolation and keeping AMF collections, required for other research.

  4. Exopolysaccharide production by a marine Pseudoalteromonas sp. strain isolated from Madeira Archipelago ocean sediments.

    Science.gov (United States)

    Roca, Christophe; Lehmann, Mareen; Torres, Cristiana A V; Baptista, Sílvia; Gaudêncio, Susana P; Freitas, Filomena; Reis, Maria A M

    2016-06-25

    Exopolysaccharides (EPS) are polymers excreted by some microorganisms with interesting properties and used in many industrial applications. A new Pseudoalteromonas sp. strain, MD12-642, was isolated from marine sediments and cultivated in bioreactor in saline culture medium containing glucose as carbon source. Its ability to produce EPS under saline conditions was demonstrated reaching an EPS production of 4.4g/L within 17hours of cultivation, corresponding to a volumetric productivity of 0.25g/Lh, the highest value so far obtained for Pseudoalteromonas sp. strains. The compositional analysis of the EPS revealed the presence of galacturonic acid (41-42mol%), glucuronic acid (25-26mol%), rhamnose (16-22mol%) and glucosamine (12-16mol%) sugar residues. The polymer presents a high molecular weight (above 1000kDa). These results encourage the biotechnological exploitation of strain MD12-642 for the production of valuable EPS with unique composition, using saline by-products/wastes as feedstocks. PMID:26923806

  5. Antifungal properties of Foeniculum vulgare, Carum carvi and Eucalyptus sp. essential oils against Candida albicans strains

    Directory of Open Access Journals (Sweden)

    Skrobonja Jelica M.

    2013-01-01

    Full Text Available Aromatic plants are among the most important sources of biologically active secondary metabolites, with high antimicrobal potential. This study was carried out to examine in vitro antifungal activity of Foeniculum vulgare (Apiaceae, Carum carvi (Apiaceae and Eucalyptus sp.(Myrtaceae essential oils against three Candida albicans strains of different origin (laboratory-CAL, human pulmonary-CAH and ATCC10231-CAR. The essential oils were screened on C. albicans using disc and well-diffusion and microdilution method, and compared to Nystatine and Fluconazole as standard anti-mycotics. The activity of tested oils was expressed by inhibition zone diameter (mm, minimum inhibitory concentration (MIC and minimum fungicidal concentration (MFC (mg/ml. The results indicated that studied essential oils show antifungal activity against all three isolates of C. albicans. It was observed that each oil exhibits different degree of antifungal activity depending on the oil concentration applied as well as on analyzed strain of C. albicans. Carum carvi demonstrated the strongest antifungal effect to all tested strains, showing the lowest MIC values (0.03mg/ml for CAL, 0.06mg/ml for CAH, and 0.11mg/ml for CAR, respectively. Eucalyptus sp. exhibited the lowest antifungal activity, with MIC values ranging from 0.11 mg/ml for CAL to 0.45 mg/ml for both CAH and CAR. [Projekat Ministarstva nauke Republike Srbije, br. 172058

  6. Draft genome sequence of Frankia sp. strain CN3, an atypical, noninfective (Nod-) ineffective (Fix-) isolate from Coriaria nepalensis.

    Science.gov (United States)

    Ghodhbane-Gtari, Faten; Beauchemin, Nicholas; Bruce, David; Chain, Patrick; Chen, Amy; Walston Davenport, Karen; Deshpande, Shweta; Detter, Chris; Furnholm, Teal; Goodwin, Lynne; Gtari, Maher; Han, Cliff; Han, James; Huntemann, Marcel; Ivanova, Natalia; Kyrpides, Nikos; Land, Miriam L; Markowitz, Victor; Mavrommatis, Kostas; Nolan, Matt; Nouioui, Imen; Pagani, Ioanna; Pati, Amrita; Pitluck, Sam; Santos, Catarina L; Sen, Arnab; Sur, Saubashya; Szeto, Ernest; Tavares, Fernando; Teshima, Hazuki; Thakur, Subarna; Wall, Luis; Woyke, Tanja; Tisa, Louis S

    2013-01-01

    We report here the genome sequence of Frankia sp. strain CN3, which was isolated from Coriaria nepalensis. This genome sequence is the first from the fourth lineage of Frankia, strains of which are unable to reinfect actinorhizal plants. At 10 Mb, it represents the largest Frankia genome sequenced to date. PMID:23516212

  7. Draft Genome Sequence of Tatumella sp. Strain UCD-D_suzukii (Phylum Proteobacteria) Isolated from Drosophila suzukii Larvae

    OpenAIRE

    Dunitz, Madison I.; James, Pamela M.; Jospin, Guillaume; Eisen, Jonathan A.; Coil, David A.; Chandler, James Angus

    2014-01-01

    Here we present the draft genome of Tatumella sp. strain UCD-D_suzukii, the first member of this genus to be sequenced. The genome contains 3,602,931 bp in 72 scaffolds. This strain was isolated from Drosophila suzukii larvae as part of a larger project to study the microbiota of D. suzukii.

  8. Draft Genome Sequence of Tatumella sp. Strain UCD-D_suzukii (Phylum Proteobacteria) Isolated from Drosophila suzukii Larvae.

    OpenAIRE

    Dunitz, MI; James, PM; Jospin, G; Eisen, JA; Coil, DA; Chandler, JA

    2014-01-01

    Here we present the draft genome of Tatumella sp. strain UCD-D_suzukii, the first member of this genus to be sequenced. The genome contains 3,602,931 bp in 72 scaffolds. This strain was isolated from Drosophila suzukii larvae as part of a larger project to study the microbiota of D. suzukii.

  9. Draft Genome Sequence of Tatumella sp. Strain UCD-D_suzukii (Phylum Proteobacteria) Isolated from Drosophila suzukii Larvae.

    Science.gov (United States)

    Dunitz, Madison I; James, Pamela M; Jospin, Guillaume; Eisen, Jonathan A; Coil, David A; Chandler, James Angus

    2014-01-01

    Here we present the draft genome of Tatumella sp. strain UCD-D_suzukii, the first member of this genus to be sequenced. The genome contains 3,602,931 bp in 72 scaffolds. This strain was isolated from Drosophila suzukii larvae as part of a larger project to study the microbiota of D. suzukii. PMID:24762940

  10. Draft Genome Sequence of Streptomyces sp. Strain Wigar10, Isolated from a Surface-Sterilized Garlic Bulb

    OpenAIRE

    Klassen, Jonathan L.; Adams, Sandye M; Bramhacharya, Shanti; Giles, Steven S.; Goodwin, Lynne A.; Woyke, Tanja; Currie, Cameron R

    2011-01-01

    Streptomyces sp. strain Wigar10 was isolated from a surface-sterilized garlic bulb (Allium sativum var. Purple Stripe). Its genome encodes several novel secondary metabolite biosynthetic gene clusters and provides a genetic basis for further investigation of this strain's chemical biology and potential for interaction with its garlic host.

  11. Draft Genome Sequence of Methylobacterium sp. Strain ARG-1 Isolated from the White-Rot Fungus Armillaria gallica

    Science.gov (United States)

    Collins, Caitlin; Kowalski, Caitlin; Zebrowski, Jessica; Tulchinskaya, Yevgeniya; Tai, Albert K.; James-Pederson, Magdalena

    2016-01-01

    Methylobacterium sp. strain ARG-1 was isolated from a cell culture of hyphal tips of the white-rot fungus Armillaria gallica. We describe here the sequencing, assembly, and annotation of its genome, confirming the presence of genes involved in methylotrophy. This is the first genome announcement of a strain of Methylobacterium associated with A. gallica. PMID:27257212

  12. Genome sequence of Acinetobacter sp. strain HA, isolated from the gut of the polyphagous insect pest Helicoverpa armigera.

    Science.gov (United States)

    Malhotra, Jaya; Dua, Ankita; Saxena, Anjali; Sangwan, Naseer; Mukherjee, Udita; Pandey, Neeti; Rajagopal, Raman; Khurana, Paramjit; Khurana, Jitendra P; Lal, Rup

    2012-09-01

    In this study, Acinetobacter sp. strain HA was isolated from the midgut of a fifth-instar larva of Helicoverpa armigera. Here, we report the draft genome sequence (3,125,085 bp) of this strain that consists of 102 contigs, 2,911 predicted coding sequences, and a G+C content of 41%. PMID:22933775

  13. Raoultella sp. strain L03 fixes N2 in association with micropropagated sugarcane plants.

    Science.gov (United States)

    Luo, Ting; Ou-Yang, Xue-Qing; Yang, Li-Tao; Li, Yang-Rui; Song, Xiu-Peng; Zhang, Ge-Min; Gao, Yi-Jing; Duan, Wei-Xing; An, Qianli

    2016-08-01

    N2 -fixing bacteria belonging to the genus Raoultella of the family Enterobacteriaceae are widely associated with plants. Raoultella sp. strain L03 was isolated from surface-sterilized sugarcane roots. In this study, we inoculated the strain L03 to microbe-free micropropagated plantlets of the main sugarcane cultivar ROC22 grown in Guangxi, China and determined N2 -fixation and association between strain L03 and sugarcane plants. Inoculation of strain L03 increased plant biomass, total N, N concentration and chlorophyll, and relieved N-deficiency symptoms of plants under an N-limiting condition. An (15) N isotope dilution assay revealed (15) N isotope dilution in the inoculated sugarcane plants and incorporation of the fixed (14) N from air into chlorophyll. Moreover, a gfp-tagged and antibiotic-resistant L03 strain was reisolated from surface-sterilized sugarcane plants and was detected in plant tissues by fluorescent microscopy. This study for the first time demonstrates that a Raoultella bacterium is able to fix N2 in association with the plant host. PMID:27059698

  14. Characterization of triclosan metabolism in Sphingomonas sp. strain YL-JM2C.

    Science.gov (United States)

    Mulla, Sikandar I; Wang, Han; Sun, Qian; Hu, Anyi; Yu, Chang-Ping

    2016-01-01

    Triclosan (TCS) is one of the most widespread emerging contaminants and has adverse impact on aquatic ecosystem, yet little is known about its complete biodegradation mechanism in bacteria. Sphingomonas sp, strain YL-JM2C, isolated from activated sludge of a wastewater treatment plant, was very effective on degrading TCS. Response surface methodology (RSM) was applied to optimize the conditions like temperature and pH. From RSM, the optimal TCS degradation conditions were found to be 30 °C and pH 7.0. Under optimal conditions, strain YL-JM2C completely mineralized TCS (5 mg L(-1)) within 72 h. Gas chromatography-mass spectrometry analysis revealed that 2,4-dichlorophenol, 2-chlorohydroquinone and hydroquinone are three main by-products of TCS. Furthermore, stable isotope experimental results revealed that the (13)C12-TCS was completely mineralized into CO2 and part of heavier carbon ((13)C) of labeled TCS was utilized by strain YL-JM2C to synthesize fatty acids (PLFAs). Cell surface hydrophobicity (CSH) and degradation test results suggested that the strain could enhance degradation capacity of TCS through increasing CSH. In addition, the bacterium also completely degraded spiked TCS (5 mg L(-1)) in wastewater collected from the wastewater treatment plant. Hence, these results suggest that the strain has potential to remediate TCS in the environment. PMID:26912101

  15. Alcohol dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecane and hexadecanol metabolism.

    OpenAIRE

    Singer, M E; Finnerty, W R

    1985-01-01

    Multiple alcohol dehydrogenases (ADH) were demonstrated in Acinetobacter sp. strain HO1-N. ADH-A and ADH-B were distinguished on the basis of electrophoretic mobility, pyridine nucleotide cofactor requirement, and substrate specificity. ADH-A is a soluble, NAD-linked, inducible ethanol dehydrogenase (EDH) exhibiting an apparent Km for ethanol of 512 microM and a Vmax of 138 nmol/min. An ethanol-negative mutant (Eth1) was isolated which contained 6.5% of wild-type EDH activity and was deficien...

  16. Purification and characterization of the IM-2-binding protein from Streptomyces sp. strain FRI-5.

    OpenAIRE

    Ruengjitchatchawalya, M; Nihira, T; Yamada, Y

    1995-01-01

    IM-2 [(2R,3R,1'R)-2-(1'-hydroxybutyl)-3-(hydroxymethyl)butanolide] of Streptomyces sp. strain FRI-5 is one of the butyrolactone autoregulators of Streptomyces species and triggers production of blue pigment as well as the nucleoside antibiotics showdomycin and minimycin. A tritium-labeled IM-2 analogue, 2,3-trans-2(1'-beta-hydroxy-[4',5'-3H]pentyl)-3-(hydroxymethyl)butano lide ([3H]IM-2-C5; 40 Ci/mmol), was synthesized for a competitive binding assay, and an IM-2-specific binding protein was ...

  17. Purification and some properties of carbon monoxide dehydrogenase from Acinetobacter sp. strain JC1 DSM 3803.

    OpenAIRE

    Kim, K.S.; Ro, Y T; Kim, Y. M.

    1989-01-01

    A brown carbon monoxide dehydrogenase from CO-autotrophically grown cells of Acinetobacter sp. strain JC1, which is unstable outside the cells, was purified 80-fold in seven steps to better than 95% homogeneity, with a yield of 44% in the presence of the stabilizing agents iodoacetamide (1 mM) and ammonium sulfate (100 mM). The final specific activity was 474 mumol of acceptor reduced per min per mg of protein as determined by an assay based on the CO-dependent reduction of thionin. Methyl vi...

  18. Abenquines A-D: aminoquinone derivatives produced by Streptomyces sp. strain DB634.

    Science.gov (United States)

    Schulz, Dirk; Beese, Pascal; Ohlendorf, Birgit; Erhard, Arlette; Zinecker, Heidi; Dorador, Cristina; Imhoff, Johannes F

    2011-12-01

    New bioactive secondary metabolites, called abenquines, were found in the fermentation broth of Streptomyces sp. strain DB634, which was isolated from the soils of the Chilean highland of the Atacama Desert. They are composed of an amino acid linked to an N-acetyl-aminobenzoquinone. Isolation of the abenquines (1-4), their structure elucidation by NMR analysis and MS, as well as the kinetics of their production are presented. The abenquines show inhibitory activity against bacteria, dermatophytic fungi and phosphodiesterase type 4b. The amino acid attached to the quinone is relevant to the enzyme inhibitory activity. PMID:21952099

  19. Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1.

    OpenAIRE

    Nakamura, S.; Wakabayashi, K; Nakai, R; Aono, R; Horikoshi, K

    1993-01-01

    An alkaliphilic Bacillus sp. strain, 41M-1, isolated from soil produced multiple xylanases extracellularly. One of these xylanases was purified to homogeneity by ammonium sulfate fractionation and anion-exchange chromatography. The moleculr mass of this enzyme (xylanase J) was 36 kDa, and the isoelectric point was pH 5.3. Xylanase J was most active at pH 9.0. The optimum temperature for the activity at pH 9.0 was around 50 degrees C. The enzyme was stable up to 55 degrees C at pH 9.0 for 30 m...

  20. Purification and properties of xylanase A from alkali-tolerant Bacillus sp. strain BP-23.

    OpenAIRE

    A. Blanco; Vidal, T; Colom, J F; Pastor, F I

    1995-01-01

    Xylanase A from the recently isolated Bacillus sp. strain BP-23 was purified to homogeneity. The enzyme shows a molecular mass of 32 kDa and an isoelectric point of 9.3. Optimum temperature and pH for xylanase activity were 50 degrees C and 5.5 respectively. Xylanase A was completely inhibited by N-bromosuccinimide. The main products of birchwood xylan hydrolysis were xylotetraose and xylobiose. The enzyme was shown to facilitate chemical bleaching of pulp, generating savings of 38% in terms ...

  1. Protein tyrosine phosphorylation in the cyanobacterium Anabaena sp. strain PCC 7120.

    OpenAIRE

    McCartney, B; Howell, L.D.; Kennelly, P J; Potts, M.

    1997-01-01

    Components of a protein tyrosine phosphorylation/dephosphorylation network were identified in the cyanobacterium Anabaena sp. strain PCC 7120. Three phosphotyrosine (P-Tyr) proteins of 27, 36, and 52 kDa were identified through their conspicuous immunoreactions with RC20H monoclonal antibodies specific for P-Tyr. These immunoreactions were outcompeted completely by free P-Tyr (5 mM) but not by phosphoserine or phosphothreonine. The P-Tyr content of the three major P-Tyr proteins and several m...

  2. Repression of the Antifungal Activity of Pseudomonas sp. Strain DF41 by the Stringent Response ▿

    OpenAIRE

    Manuel, Jerrylynn; Berry, Chrystal; Selin, Carrie; Fernando, W.G. Dilantha; De Kievit, Teresa R.

    2011-01-01

    The stringent response (SR) enables bacteria to adapt to nutrient limitation through production of the nucleotides guanosine tetraphosphate and guanosine pentaphosphate, collectively known as (p)ppGpp. Two enzymes are responsible for the intracellular pools of (p)ppGpp: RelA acts as a synthetase, while SpoT can function as either a synthetase or a hydrolase. We investigated how the SR affects the ability of the biological control agent Pseudomonas sp. strain DF41 to inhibit the fungal pathoge...

  3. Purification, biochemical characterization, and genetic cloning of the phytase produced by Burkholderia sp. strain a13

    OpenAIRE

    Rezende Graminho, Eduardo; Takaya, Naoki; Nakamura, Akira; Hoshino, Takayuki

    2015-01-01

    A phytase-producing bacterium, Burkholderia sp. a13 (JCM 30421), was isolated from Lake Kasumigaura by enrichment cultivation using minimum medium containing phytic acid as the sole phosphorus source. The phytase production by strain a13 was induced by the presence of phytic acid and repressed by the addition of glucose. The purified enzyme had a molecular weight of 44 kDa and a phytase activity of 174 μmol min–1 mg–1. The enzyme showed broad substrate specificity, but the highest activity wa...

  4. patS Minigenes Inhibit Heterocyst Development of Anabaena sp. Strain PCC 7120

    OpenAIRE

    Wu, Xiaoqiang; Liu, Duan; Lee, Martin H.; Golden, James W.

    2004-01-01

    The patS gene encodes a small peptide that is required for normal heterocyst pattern formation in the cyanobacterium Anabaena sp. strain PCC 7120. PatS is proposed to control the heterocyst pattern by lateral inhibition. patS minigenes were constructed and expressed by different developmentally regulated promoters to gain further insight into PatS signaling. patS minigenes patS4 to patS8 encode PatS C-terminal 4 (GSGR) to 8 (CDERGSGR) oligopeptides. When expressed by PpetE, PpatS, or PrbcL pr...

  5. Xanthan Lyase of Bacillus sp. Strain GL1 Liberates Pyruvylated Mannose from Xanthan Side Chains

    OpenAIRE

    Hashimoto, Wataru; Miki, Hikaru; Tsuchiya, Noriaki; Nankai, Hirokazu; Murata, Kousaku

    1998-01-01

    When the bacterium Bacillus sp. strain GL1 was grown in a medium containing xanthan as the carbon source, the viscosity of the medium decreased in association with growth, showing that the bacterium had xanthan-depolymerizing enzymes. One of the xanthan-depolymerizing enzymes (xanthan lyase) was present in the medium and was found to be induced by xanthan. The xanthan lyase purified from the culture fluid was a monomer with a molecular mass of 75 kDa, and was most active at pH 5.5 and 50°C. T...

  6. Purification and properties of alpha-pinene oxide lyase from Nocardia sp. strain P18.3.

    OpenAIRE

    Griffiths, E T; Harries, P C; Jeffcoat, R; Trudgill, P W

    1987-01-01

    alpha-Pinene oxide is an intermediate in the degradation of alpha-pinene by Nocardia sp. strain P18.3 and some Pseudomonas strains. The epoxide is cleaved by a lyase which catalyzes a concerted reaction in which both rings of the bicyclic structure are cleaved with the formation of cis-2-methyl-5-isopropylhexa-2,5-dienal. The enzyme has been purified to homogeneity from Nocardia sp. strain P18.3. It was induced by growth with alpha-pinene and constituted 6 to 7% of the soluble protein of cell...

  7. Reiterated DNA Sequences in Rhizobium and Agrobacterium spp

    OpenAIRE

    Flores, M.; González, V.; Brom, S; Martínez, E.; Piñero, D; Romero, D.; Dávila, G; Palacios, R

    1988-01-01

    Repeated DNA sequences are a general characteristic of eucaryotic genomes. Although several examples of DNA reiteration have been found in procaryotic organisms, only in the case of the archaebacteria Halobacterium halobium and Halobacterium volcanii [C. Sapienza and W. F. Doolittle, Nature (London) 295:384-389, 1982], has DNA reiteration been reported as a common genomic feature. The genomes of two Rhizobium phaseoli strains, one Rhizobium meliloti strain, and one Agrobacterium tumefaciens s...

  8. Ageing of atrazine in manure amended soils assessed by bioavailability to Pseudomonas sp. strain ADP

    DEFF Research Database (Denmark)

    Glæsner, Nadia; Bælum, Jacob; Strobel, Bjarne W.;

    2014-01-01

    Animal manure is applied to agricultural land in areas of high livestock production. In the present study, we evaluated ageing of atrazine in two topsoils with and without addition of manure and in one subsoil. Ageing was assessed as the bioavailability of atrazine to the atrazine mineralizing...... bacteria Pseudomonas sp. strain ADP. Throughout an ageing period of 90 days bioavailability was investigated at days 1, 10, 32, 60 and 90, where ~108 cells g−1 of the ADP strain was inoculated to the 14C-atrazine exposed soil and 14CO2 was collected over 7 days as a measure of mineralized atrazine. Even...... though the bioavailable residue decreased in all of the three soils as time proceeded, we found that ageing occurred faster in the topsoils rich in organic carbon than in subsoil. For one topsoil rich in organic carbon content, Simmelkær, we observed a higher degree of ageing when treated with manure...

  9. Degradation of triclocarban by a triclosan-degrading Sphingomonas sp. strain YL-JM2C.

    Science.gov (United States)

    Mulla, Sikandar I; Hu, Anyi; Wang, Yuwen; Sun, Qian; Huang, Shir-Ly; Wang, Han; Yu, Chang-Ping

    2016-02-01

    Bacterial degradation plays a vital role in determining the environmental fate of micropollutants like triclocarban. The mechanism of triclocarban degradation by pure bacterium is not yet explored. The purpose of this study was to identify metabolic pathway that might be involved in bacterial degradation of triclocarban. Triclosan-degrading Sphingomonas sp. strain YL-JM2C was first found to degrade up to 35% of triclocarban (4 mg L(-1)) within 5 d. Gas chromatography-mass spectrometry detected 3,4-dichloroaniline, 4-chloroaniline and 4-chlorocatechol as the major metabolites of the triclocarban degradation. Furthermore, total organic carbon results confirmed that the intermediates, 3,4-dichloroaniline (4 mg L(-1)) and 4-chloroaniline (4 mg L(-1)) could be degraded up to 77% and 80% by strain YL-JM2C within 5 d. PMID:26364219

  10. Antagonistic activities of some Bifidobacterium sp. strains isolated from resident infant gastrointestinal microbiota on Gram-negative enteric pathogens.

    Science.gov (United States)

    Delcaru, Cristina; Alexandru, Ionela; Podgoreanu, Paulina; Cristea, Violeta Corina; Bleotu, Coralia; Chifiriuc, Mariana Carmen; Bezirtzoglou, Eugenia; Lazar, Veronica

    2016-06-01

    The gastrointestinal microbiota contributes to the consolidation of the anti-infectious barrier against enteric pathogens. The purpose of this study was to investigate the influence of Bifidobacterium sp. strains, recently isolated from infant gastrointestinal microbiota on the in vitro growth and virulence features expression of enteropathogenic bacterial strains. The antibacterial activity of twelve Bifidobacterium sp. strains isolated from human feces was examined in vitro against a wide range of Gram negative pathogenic strains isolated from 30 infant patients (3 days to 5 years old) with diarrhea. Both potential probiotic strains (Bifidobacterium longum, Bifidobacterium pseudocatenulatum, Bifidobacterium catenulatum, Bifidobacterium breve, Bifidobacterium ruminantium) and enteropathogenic strains (EPEC, EIEC, Klebsiella pneumoniae, Salmonella sp., Yersinia enterocolitica, Pseudomonas aeruginosa) were identified by MALDI-TOF and confirmed serologically when needed. The bactericidal activity, growth curve, adherence to the cellular HEp-2 substratum and production of soluble virulence factors have been assessed in the presence of different Bifidobacterium sp. cultures and fractions (whole culture and free-cell supernatants). Among the twelve Bifidobacterium sp. strains, the largest spectrum of antimicrobial activity against 9 of the 18 enteropathogenic strains was revealed for a B. breve strain recently isolated from infant intestinal feces. The whole culture and free-cell supernatant of B. breve culture decreased the multiplication rate, shortened the log phase and the total duration of the growth curve, with an earlier entrance in the decline phase and inhibited the adherence capacity to a cellular substratum and the swimming/swarming motility too. These results indicate the significant probiotic potential of the B. breve strain. PMID:26921694

  11. Construction and analysis of an intergeneric fusion from Pigmentiphaga sp. strain AAP-1 and Pseudomonas sp. CTN-4 for degrading acetamiprid and chlorothalonil.

    Science.gov (United States)

    Wang, Guangli; Zhu, Danfeng; Xiong, Minghua; Zhang, Hui; Liu, Yuan

    2016-07-01

    Pseudomonas sp. CTN-4 degrades chlorothalonil (CTN) but not acetamiprid (AAP), and Pigmentiphaga sp. strain AAP-1 degrades AAP but not CTN. A functional strain, AC, was constructed through protoplast fusion of two parental strains (Pseudomonas sp. CTN-4 and Pigmentiphaga sp. strain AAP-1) in order to simultaneously improve the degradation efficiency of AAP and CTN. Fusant-AC with eight transfers on plates containing two antibiotics and CTN was obtained. For the purpose of identifying and confirming the genetic relationship between fusant-AC and its parents, randomly amplified polymorphic DNA (RAPD), scanning electron microscopy (SEM), and 16S ribosomal DNA (rDNA) analysis were performed. In toto, RAPD fingerprint analysis produced 194 clear bands with 9 primers, which not only had bands in common with strains CTN-4 and AAP-1, but also had its own novel fusant-specific bands. The genetic similarity indices between fusant-AC and parental strains CTN-4 and AAP-1 were 0.40 and 0.69, respectively. The result of SEM indicated that the cell morphology of fusant-AC differed from both its parents. The fusant strain AC possesses a strong capability for AAP and CTN degradation. At AAP concentration (50-300 mg L(-1)), the degradation was achieved within 5 h. At the initial dose of 50 and 100 mg L(-1) CTN, the percentages reached 96 and 91 % over a 36-h incubation period. The present study indicates that the protoplast-fusion technique may have possible applications in environmental pollution control. PMID:27023810

  12. Isolation and characterization of Staphylococcus sp. strain NBRIEAG-8 from arsenic contaminated site of West Bengal

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Shubhi; Singh, Namrata; Singh, Nandita [CSIR - National Botanical Research Institute, Lucknow, UP (India). Eco-auditing Lab.; Verma, Praveen C.; Singh, Ankit; Mishra, Manisha [CSIR - National Botanical Research Institute, Lucknow, UP (India). Plant Molecular Biology and Genetic Engineering; Sharma, Neeta [Lucknow Univ., UP (India). Plant Pathology Lab.

    2012-09-15

    Arsenic contaminated rhizospheric soils of West Bengal, India were sampled for arsenic resistant bacteria that could transform different arsenic forms. Staphylococcus sp. NBRIEAG-8 was identified by16S rDNA ribotyping, which was capable of growing at 30,000 mg l{sup -1} arsenate [As(V)] and 1,500 mg l{sup -1} arsenite [As(III)]. This bacterial strain was also characterized for arsenical resistance (ars) genes which may be associated with the high-level resistance in the ecosystems of As-contaminated areas. A comparative proteome analysis was conducted with this strain treated with 1,000 mg l{sup -1} As(V) to identify changes in their protein expression profiles. A 2D gel analysis showed a significant difference in the proteome of arsenic treated and untreated bacterial culture. The change in pH of cultivating growth medium, bacterial growth pattern (kinetics), and uptake of arsenic were also evaluated. After 72 h of incubation, the strain was capable of removing arsenic from the culture medium amended with arsenate and arsenite [12% from As(V) and 9% from As(III)]. The rate of biovolatilization of As(V) was 23% while As(III) was 26%, which was determined indirectly by estimating the sum of arsenic content in bacterial biomass and medium. This study demonstrates that the isolated strain, Staphylococcus sp., is capable for uptake and volatilization of arsenic by expressing ars genes and 8 new upregulated proteins which may have played an important role in reducing arsenic toxicity in bacterial cells and can be used in arsenic bioremediation. (orig.)

  13. Genome Sequence of Halomonas sp. Strain MCTG39a, a Hydrocarbon-Degrading and Exopolymeric Substance-Producing Bacterium

    OpenAIRE

    Gutierrez, Tony; Whitman, William B.; Huntemann, Marcel; Copeland, Alex; Chen, Amy; Kyrpides, Nikos; Markowitz, Victor; Pillay, Manoj; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Andersen, Evan; Pati, Amrita; Stamatis, Dimitrios; Reddy, T. B. K.

    2015-01-01

    Halomonas sp. strain MCTG39a was isolated from coastal sea surface water based on its ability to utilize n-hexadecane. During growth in marine medium the strain produces an amphiphilic exopolymeric substance (EPS) amended with glucose, which emulsifies a variety of oil hydrocarbon substrates. Here, we present the genome sequence of this strain, which is 4,979,193 bp with 4,614 genes and an average G+C content of 55.0%.

  14. Genome Sequence of Halomonas sp. Strain MCTG39a, a Hydrocarbon-Degrading and Exopolymeric Substance-Producing Bacterium.

    Science.gov (United States)

    Gutierrez, Tony; Whitman, William B; Huntemann, Marcel; Copeland, Alex; Chen, Amy; Kyrpides, Nikos; Markowitz, Victor; Pillay, Manoj; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Andersen, Evan; Pati, Amrita; Stamatis, Dimitrios; Reddy, T B K; Ngan, Chew Yee; Chovatia, Mansi; Daum, Chris; Shapiro, Nicole; Cantor, Michael N; Woyke, Tanja

    2015-01-01

    Halomonas sp. strain MCTG39a was isolated from coastal sea surface water based on its ability to utilize n-hexadecane. During growth in marine medium the strain produces an amphiphilic exopolymeric substance (EPS) amended with glucose, which emulsifies a variety of oil hydrocarbon substrates. Here, we present the genome sequence of this strain, which is 4,979,193 bp with 4,614 genes and an average G+C content of 55.0%. PMID:26184945

  15. Physiological and Genetic Description of Dissimilatory Perchlorate Reduction by the Novel Marine Bacterium Arcobacter sp. Strain CAB

    OpenAIRE

    Carlström, Charlotte I.; Wang, Ouwei; Melnyk, Ryan A.; Bauer, Stefan; Lee, Joyce; Engelbrektson, Anna; Coates, John D.

    2013-01-01

    ABSTRACT A novel dissimilatory perchlorate-reducing bacterium (DPRB), Arcobacter sp. strain CAB, was isolated from a marina in Berkeley, CA. Phylogenetically, this halophile was most closely related to Arcobacter defluvii strain SW30-2 and Arcobacter ellisii. With acetate as the electron donor, strain CAB completely reduced perchlorate (ClO4 −) or chlorate (ClO3 −) [collectively designated (per)chlorate] to innocuous chloride (Cl−), likely using the perchlorate reductase (Pcr) and chlorite di...

  16. Complete Genome Sequence of Bradyrhizobium sp. Strain CCGE-LA001, Isolated from Field Nodules of the Enigmatic Wild Bean Phaseolus microcarpus.

    Science.gov (United States)

    Servín-Garcidueñas, Luis E; Rogel, Marco A; Ormeño-Orrillo, Ernesto; Zayas-Del Moral, Alejandra; Sánchez, Federico; Martínez-Romero, Esperanza

    2016-01-01

    We present the complete genome sequence of Bradyrhizobium sp. strain CCGE-LA001, a nitrogen-fixing bacterium isolated from nodules of Phaseolus microcarpus. Strain CCGE-LA001 represents the first sequenced bradyrhizobial strain obtained from a wild Phaseolus sp. Its genome revealed a large and novel symbiotic island. PMID:26988045

  17. Characterization of a chromosomally encoded 2,4-dichlorophenoxyacetic acid/alpha-ketoglutarate dioxygenase from Burkholderia sp. strain RASC.

    OpenAIRE

    Suwa, Y.; Wright, A D; Fukimori, F; Nummy, K A; Hausinger, R P; Holben, W E; Forney, L J

    1996-01-01

    The findings of previous studies indicate that the genes required for metabolism of the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) are typically encoded on broad-host-range plasmids. However, characterization of plasmid-cured strains of Burkholderia sp. strain RASC, as well as mutants obtained by transposon mutagenesis, suggested that the 2,4-D catabolic genes were located on the chromosome of this strain. Mutants of Burkholderia strain RASC unable to degrade 2,4-D (2,4-D- strains) were...

  18. Combination of degradation pathways for naphthalene utilization in Rhodococcus sp. strain TFB.

    Science.gov (United States)

    Tomás-Gallardo, Laura; Gómez-Álvarez, Helena; Santero, Eduardo; Floriano, Belén

    2014-03-01

    Rhodococcus sp. strain TFB is a metabolic versatile bacterium able to grow on naphthalene as the only carbon and energy source. Applying proteomic, genetic and biochemical approaches, we propose in this paper that, at least, three coordinated but independently regulated set of genes are combined to degrade naphthalene in TFB. First, proteins involved in tetralin degradation are also induced by naphthalene and may carry out its conversion to salicylaldehyde. This is the only part of the naphthalene degradation pathway showing glucose catabolite repression. Second, a salicylaldehyde dehydrogenase activity that converts salicylaldehyde to salicylate is detected in naphthalene-grown cells but not in tetralin- or salicylate-grown cells. Finally, we describe the chromosomally located nag genes, encoding the gentisate pathway for salicylate conversion into fumarate and pyruvate, which are only induced by salicylate and not by naphthalene. This work shows how biodegradation pathways in Rhodococcus sp. strain TFB could be assembled using elements from different pathways mainly because of the laxity of the regulatory systems and the broad specificity of the catabolic enzymes. PMID:24325207

  19. Potential contribution of the diazotrophic cyanobacterium, Cyanothece sp. strain 51142, to a bioregenerative life support system.

    Science.gov (United States)

    Arieli, B; Schneegurt, M A; Sherman, L A

    1996-01-01

    Long-duration manned space missions will likely require the development of bioregenerative means of life support. Such a Controlled Ecological Life Support System (CELSS) would use higher plants to provide food and a breathable atmosphere for the crew and employ a waste processing system to recover elements for recycling. The current study identifies ways in which a cyanobacterial component may enhance the sustainability of a space-deployed CELSS, including balancing CO2/O2 gas exchange, production of bioavailable N, dietary supplementation, and contingency against catastrophic failure of the higher plant crops. Relevant quantitative data have been collected about the cyanobacterium, Cyanothece sp. strain ATCC 51142, a large, aerobic, unicellular diazotroph. This organism grew rapidly (466 g dry wt. m-3 d-1) and under diverse environmental conditions, was amenable to large-scale culture, could be grown with relative energy efficiency (3.8% conversion), could actively fix atmospheric N2 (35.0 g m-3 d-1), could survive extreme environmental insults, and exhibited gas exchange properties (assimilatory quotient of 0.49) that may be useful for correcting the gas exchange ratio imbalances observed between humans and higher plants. It is suggested that a diazotrophic cyanobacterium, like Cyanothece sp. strain ATCC 51142, may be a safe, effective, and renewable complement or alternative to physicochemical backup systems in a CELSS. PMID:11538563

  20. Functional characterization of a soybean growth stimulator Bradyrhizobium sp. strain SR-6 showing acylhomoserine lactone production.

    Science.gov (United States)

    Ali, Amanat; Ayesha; Hameed, Sohail; Imran, Asma; Iqbal, Mazhar; Iqbal, Javed; Oresnik, Ivan J

    2016-09-01

    A soybean nodule endophytic bacterium Bradyrhizobium sp. strain SR-6 was characterized for production of acyl homoserine lactones (AHLs) as quorum sensing molecules. Mass spectrometry analysis of AHLs revealed the presence of C6-HSL, 3OH-C6-HSL, C8-HSL, C10-HSL, 3oxoC10-HSL, 3oxo-C12-HSL and 3OH-C12-HSL which are significantly different from those reported earlier in soybean symbionts. Purified AHL extracts significantly improved wheat and soybean seedling growth and root hair development along with increased soybean nodulation under axenic conditions. A positive correlation was observed among in vivo nitrogenase and catalase enzyme activities of the strain SR-6. Transmission electron microscopic analysis showed the cytochemical localization of catalase activity within the bacteroids, specifically attached to the peribacteroidal membrane. Root and nodule colonization proved rhizosphere competence of SR-6. The inoculation of SR-6 resulted in increased shoot length (13%), plant dry matter (50%), grain weight (16%), seed yield (20%) and N-uptake (14%) as compared to non-inoculated soybean plants. The symbiotic bacterium SR-6 has potential to improve soybean growth and yield in sub-humid climate of Azad Jammu and Kashmir region of Pakistan. The production and mass spectrometric profiling of AHLs as well as in vivo cytochemical localization of catalase enzyme activity in soybean Bradyrhizobium sp. have never been reported earlier elsewhere before our these investigations. PMID:27242370

  1. Enhanced degradation of 2-nitrotoluene by immobilized cells of Micrococcus sp. strain SMN-1.

    Science.gov (United States)

    Mulla, Sikandar I; Talwar, Manjunatha P; Bagewadi, Zabin K; Hoskeri, Robertcyril S; Ninnekar, Harichandra Z

    2013-02-01

    Nitrotoluenes are the toxic pollutants of the environment because of their large scale use in the production of explosives. Biodegradation of such chemicals by microorganisms may provide an effective method for their detoxification. We have studied the degradation of 2-nitrotoluene by cells of Micrococcus sp. strain SMN-1 immobilized in various matrices such as polyurethane foam (PUF), sodium alginate (SA), sodium alginate-polyvinyl alcohol (SA-PVA), agar and polyacrylamide. The rate of degradation of 15 and 30 mM 2-nitrotoluene by freely suspended cells and immobilized cells in batches and fed-batch with shaken cultures were compared. The PUF-immobilized cells achieved higher degradation of 15 and 30 mM 2-nitrotoluene than freely suspended cells and the cells immobilized in SA-PVA, polyacrylamide, SA and agar. The PUF-immobilized cells could be reused more than 24 cycles without loosing their degradation capacity and showed more tolerance to pH and temperature changes than freely suspended cells. These results revealed the enhanced rate of degradation of 2-nitrotoluene by PUF-immobilized cells of Micrococcus sp. strain SMN-1. PMID:23153775

  2. Achromobacter denitrificans strain SP1 efficiently remediates di(2-ethylhexyl)phthalate.

    Science.gov (United States)

    Pradeep, S; Josh, M K Sarath; Binod, P; Devi, R Sudha; Balachandran, S; Anderson, Robin C; Benjamin, Sailas

    2015-02-01

    This study describes how Achromobacter denitrificans strain SP1, a novel isolate from heavily plastics-contaminated sewage sludge efficiently consumed the hazardous plasticizer, di(2-ethylhexyl)phthalate (DEHP) as carbon source supplemented in a simple basal salt medium (BSM). Response surface methodology was employed for the statistical optimization of the process parameters such as temperature (32°C), agitation (200 rpm), DEHP concentration (10 mM), time (72 h) and pH (8.0). At these optimized conditions, experimentally observed DEHP degradation was 63%, while the predicted value was 59.2%; and the correlation coefficient between them was 0.998, i.e., highly significant and fit to the predicted model. Employing GC-MS analysis, the degradation pathway was partially deduced with intermediates such as mono(2-ethylhexyl)phthalate and 2-ethyl hexanol. Briefly, this first report describes A. denitrificans strain SP1 as a highly efficient bacterium for completely remediating the hazardous DEHP (10 mM) in 96 h in BSM (50% consumed in 60 h), which offers great potentials for efficiently cleaning the DEHP-contaminated environments such as soil, sediments and water upon its deployment. PMID:25463861

  3. Crystallization of the extracellular rubber oxygenase RoxA from Xanthomonas sp. strain 35Y

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Maren [Abteilung Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen (Germany); Braaz, Reinhard; Jendrossek, Dieter [Institut für Mikrobiologie, Universität Stuttgart, Allmandring 31, 70550 Stuttgart (Germany); Einsle, Oliver, E-mail: oeinsle@uni-goettingen.de [Abteilung Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen (Germany)

    2008-02-01

    The extracellular rubber-degrading enzyme rubber oxygenase A (RoxA) from Xanthomonas sp. strain 35Y has been crystallized and diffraction data have been collected to high resolution. Rubber oxygenase A (RoxA) from Xanthomonas sp. strain 35Y is an extracellular dioxygenase that is capable of cleaving the double bonds of poly(cis-1,4-isoprene) into short-chain isoprene units with 12-oxo-4,8-dimethyl-trideca-4,8-diene-1-al (ODTD) as the major cleavage product. Crystals of the dihaem c-type cytochrome RoxA were grown by sitting-drop vapour diffusion using polyethylene glycol as a precipitant. RoxA crystallized in space group P2{sub 1}, with unit-cell parameters a = 72.4, b = 97.1, c = 101.1 Å, β = 98.39°, resulting in two monomers per asymmetric unit. Diffraction data were collected to a limiting resolution of 1.8 Å. Despite a protein weight of 74.1 kDa and only two iron sites per monomer, phasing was successfully carried out by multiple-wavelength anomalous dispersion.

  4. Karyotype rearrangements and telomere analysis in Myzus persicae (Hemiptera, Aphididae strains collected on Lavandula sp. plants

    Directory of Open Access Journals (Sweden)

    Mauro Mandrioli

    2014-10-01

    Full Text Available Karyotype analysis of nine strains of the peach-potato aphid Myzus persicae (Sulzer, 1776, collected on Lavandula sp. plants, evidenced showed that five of them had a standard 2n = 12 karyotype, one possessed a fragmentation of the X chromosome occurring at the telomere opposite to the NOR-bearing one and three strains had a chromosome number 2n = 11 due to a non-reciprocal translocation of an autosome A3 onto an A1 chromosome. Interestingly, the terminal portion of the autosome A1 involved in the translocation was the same in all the three strains, as evidenced by FISH with the histone cluster as a probe. The study of telomeres in the M. persicae strain with the X fission evidenced that telomerase synthesised de novo telomeres at the breakpoints resulting in the stabilization of the chromosomal fragments. Lastly, despite the presence of a conserved telomerase, aphid genome is devoid of genes coding for shelterin, a complex of proteins involved in telomere functioning frequently reported as conserved in eukaryotes. The absence of this complex, also confirmed in the genome of other arthropods, suggests that the shift in the sequence of the telomeric repeats has been accompanied by other changes in the telomere components in arthropods in respect to other metazoans.

  5. Kinetics of D-lactic acid production by Sporolactobacillus sp. strain CASD using repeated batch fermentation.

    Science.gov (United States)

    Zhao, Bo; Wang, Limin; Li, Fengsong; Hua, Dongliang; Ma, Cuiqing; Ma, Yanhe; Xu, Ping

    2010-08-01

    D-lactic acid was produced by Sporolactobacillus sp. strain CASD in repeated batch fermentation with one- and two-reactor systems. The strain showed relatively high energy consumption in its growth-related metabolism in comparison with other lactic acid producers. When the fermentation was repeated with 10% (v/v) of previous culture to start a new batch, D-lactic acid production shifted from being cell-maintenance-dependent to cell-growth-dependent. In comparison with the one-reactor system, D-lactic acid production increased approximately 9% in the fourth batch of the two-reactor system. Strain CASD is an efficient D-lactic acid producer with increased growth rate at the early stage of repeated cycles, which explains the strain's physiological adaptation to repeated batch culture and improved performance in the two-reactor fermentation system. From a kinetic point of view, two-reactor fermentation system was shown to be an alternative for conventional one-reactor repeated batch operation. PMID:20374976

  6. Strain improvement of Chlorella sp. for phenol biodegradation by adaptive laboratory evolution.

    Science.gov (United States)

    Wang, Libo; Xue, Chuizhao; Wang, Liang; Zhao, Quanyu; Wei, Wei; Sun, Yuhan

    2016-04-01

    Microalgae are highly efficient photosynthesis cell factories for CO2 capture, biofuel productions and wastewater treatment. Phenol is a typical environmental contaminant. Microalgae normally have a low tolerance for, and a low degradation rate to, high concentration of phenol. Adaptive laboratory evolution was performed for phenolic wastewater treatment by Chlorella sp. The resulting strain was obtained after 31 cycles (about 95d) under 500mg/L phenol as environmental stress. It could grow under 500mg/L and 700mg/L phenol without significant inhibition. The maximal biomass concentrations of the resulting strain at day 8 were 3.40g/L under 500mg/L phenol and 2.70g/L under 700mg/L phenol, respectively. They were more than two times of those of the original strain. In addition, 500mg/L phenol was fully removed by the resulting strain in 7d when the initial cell density was 0.6g/L. PMID:26803904

  7. Inactivation of a transgene due to transposition of insertion sequence (IS136) of Agrobacterium tumefaciens

    Indian Academy of Sciences (India)

    Preeti Rawat; Sanjeev Kumar; Deepak Pental; Pradeep Kumar Burma

    2009-06-01

    Agrobacterium strains harbour insertion sequences, which are known to transpose into genomes as well as into Ti plasmids. In this study we report the inactivation of a transgene due to transposition of the A. tumefaciens insertion sequence IS136. The transposition was discovered following transformation of plant tissues, although the fidelity of the binary vector was confirmed following transformation into Agrobacterium. Such transpositions are rare but can occur and it is thus important to check the fidelity of the binary vector at different times of Agrobacterium growth in order to avoid failure in achieving transgene expression.

  8. Complete genome sequence of Hymenobacter sp. strain PAMC26554, an ionizing radiation-resistant bacterium isolated from an Antarctic lichen.

    Science.gov (United States)

    Oh, Tae-Jin; Han, So-Ra; Ahn, Do-Hwan; Park, Hyun; Kim, Augustine Yonghwi

    2016-06-10

    A Gram-negative, rod-shaped, red-pink in color, and UV radiation-resistant bacterium Hymenobacter sp. strain PAMC26554 was isolated from Usnea sp., an Antarctic lichen, and belongs to the class of Cytophagia and the phylum of Bacteroidetes. The complete genome of Hymenobacter sp. PAMC26554 consists of one chromosome (5,244,843bp) with two plasmids (199,990bp and 6421bp). The genomic sequence indicates that Hymenobacter sp. strain PAMC26554 possesses several genes involved in the nucleotide excision repair pathway that protects damaged DNA. This complete genome information will help us to understand its adaptation and novel survival strategy in the Antarctic extreme cold environment. PMID:27063139

  9. High-Quality Draft Genome Sequence of Leucobacter sp. Strain G161, a Distinct and Effective Chromium Reducer

    OpenAIRE

    Ge, Shimei; Ai, Wenjing; Dong, Xinjiao

    2016-01-01

    Here, we report the genome sequence for Leucobacter sp. strain G161 due to its distinct and effective hexavalent chromium reduction under aerobic growth conditions, followed by facultative anaerobic incubation. The draft genome sequence of Leucobacter sp. G161 comprises 3,554,188 bp, with an average G+C content of 65.3%, exhibiting 3,341 protein-coding genes and 55 predicted RNA genes.

  10. Antimicrobial activities of Rhizobium sp strains against Pseudomonas savastanoi, the agent responsible for the olive knot disease in Algeria

    OpenAIRE

    Kacem, M.; Kazouz, F.; Merabet, C.; Rezki, M.; de Lajudie, Philippe; Bekki, A

    2009-01-01

    In the present investigation, six Rhizobium strains isolated from Algerian soil were checked for their antimicrobial activity against Pseudomonas savastanoi, the agent responsible for olive knot disease. Rhizobium sp. ORN 24 and ORN 83 were found to produce antimicrobial activities against Pseudomonas savastanoi. The antimicrobial activity produced by Rhizobium sp. ORN24 was precipitable with ammonium sulfate, between 1,000 and 10,000 KDa molecular weight, heat resistant but sensitive to prot...

  11. Antimicrobial activities of Rhizobium sp. strains against Pseudomonas savastanoi, the agent responsible for the olive knot disease in Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, K.; Fadhila, K.; Chahinez, M.; Merien, R.; Philippe, L. de; Abdelkader, B.

    2009-07-01

    In the present investigation, six Rhizobium strains isolated from Algerian soil were checked for their antimicrobial activity against Pseudomonas savastanoi, the agent responsible for olive knot disease. Rhizobium sp. ORN 24 and ORN 83 were found to produce antimicrobial activities against Pseudomonas savastanoi. The antimicrobial activity produced by Rhizobium sp. ORN24 was precipitable with ammonium sulfate, between 1,000 and 10,000 KDa molecular weight, heat resistant but sensitive to proteases and detergents. These characteristics suggest the bacteriocin nature of the antimicrobial substance produced by Rhizobium sp. ORN24, named rhizobiocin 24. In contrast, the antimicrobial activity produced by Rhizobium sp. ORN83 was not precipitable with ammonium sulfate; it was smaller than 1,000 KDa molecular weight, heat labile, and protease and detergent resistant. These characteristics could indicate the relationship between the antimicrobial substance produced by Rhizobium sp. ORN 83 and the small bacteriocins described in other rhizobia. (Author) 51 refs.

  12. Targeted Gene Disruption of the Cyclo (L-Phe, L-Pro Biosynthetic Pathway in Streptomyces sp. US24 Strain

    Directory of Open Access Journals (Sweden)

    Samiha Sioud

    2007-01-01

    Full Text Available We have previously isolated a new actinomycete strain from Tunisian soil called Streptomyces sp. US24, and have shown that it produces two bioactive molecules including a Cyclo (L-Phe, L-Pro diketopiperazine (DKP. To identify the structural genes responsible for the synthesis of this DKP derivative, a PCR amplification (696 bp was carried out using the Streptomyces sp. US24 genomic DNA as template and two degenerate oligonucleotides designed by analogy with genes encoding peptide synthetases (NRPS. The detection of DKP derivative biosynthetic pathway of the Streptomyces sp. US24 strain was then achieved by gene disruption via homologous recombination using a suicide vector derived from the conjugative plasmid pSET152 and containing the PCR product. Chromatography analysis, biological tests and spectroscopic studies of supernatant cultures of the wild-type Streptomyces sp. US24 strain and three mutants obtained by this gene targeting disruption approach showed that the amplified DNA fragment is required for Cyclo (L-Phe, L-Pro biosynthesis in Streptomyces sp. US24 strain. This DKP derivative seems to be produced either directly via a nonribosomal pathway or as a side product in the course of nonribosomal synthesis of a longer peptide.

  13. Transcription of the extended hyp-operon in Nostoc sp. strain PCC 7120

    Directory of Open Access Journals (Sweden)

    Lindblad Peter

    2008-04-01

    Full Text Available Abstract Background The maturation of hydrogenases into active enzymes is a complex process and e.g. a correctly assembled active site requires the involvement of at least seven proteins, encoded by hypABCDEF and a hydrogenase specific protease, encoded either by hupW or hoxW. The N2-fixing cyanobacterium Nostoc sp. strain PCC 7120 may contain both an uptake and a bidirectional hydrogenase. The present study addresses the presence and expression of hyp-genes in Nostoc sp. strain PCC 7120. Results RT-PCRs demonstrated that the six hyp-genes together with one ORF may be transcribed as a single operon. Transcriptional start points (TSPs were identified 280 bp upstream from hypF and 445 bp upstream of hypC, respectively, demonstrating the existence of several transcripts. In addition, five upstream ORFs located in between hupSL, encoding the small and large subunits of the uptake hydrogenase, and the hyp-operon, and two downstream ORFs from the hyp-genes were shown to be part of the same transcript unit. A third TSP was identified 45 bp upstream of asr0689, the first of five ORFs in this operon. The ORFs are annotated as encoding unknown proteins, with the exception of alr0692 which is identified as a NifU-like protein. Orthologues of the four ORFs asr0689-alr0692, with a highly conserved genomic arrangement positioned between hupSL, and the hyp genes are found in several other N2-fixing cyanobacteria, but are absent in non N2-fixing cyanobacteria with only the bidirectional hydrogenase. Short conserved sequences were found in six intergenic regions of the extended hyp-operon, appearing between 11 and 79 times in the genome. Conclusion This study demonstrated that five ORFs upstream of the hyp-gene cluster are co-transcribed with the hyp-genes, and identified three TSPs in the extended hyp-gene cluster in Nostoc sp. strain PCC 7120. This may indicate a function related to the assembly of a functional uptake hydrogenase, hypothetically in the

  14. Soluble Methane Monooxygenase Gene Clusters from Trichloroethylene-Degrading Methylomonas sp. Strains and Detection of Methanotrophs during In Situ Bioremediation

    OpenAIRE

    Shigematsu, Toru; Hanada, Satoshi; Eguchi, Masahiro; Kamagata, Yoichi; Kanagawa, Takahiro; Kurane, Ryuichiro

    1999-01-01

    The soluble MMO (sMMO) gene clusters from group I methanotrophs were characterized. An 8.1-kb KpnI fragment from Methylomonas sp. strain KSWIII and a 7.5-kb SalI fragment from Methylomonas sp. strain KSPIII which contained the sMMO gene clusters were cloned and sequenced. The sequences of these two fragments were almost identical. The sMMO gene clusters in the fragment consisted of six open reading frames which were 52 to 79% similar to the corresponding genes of previously described sMMO gen...

  15. Crystallization and preliminary X-ray diffraction analysis of the amidase domain of allophanate hydrolase from Pseudomonas sp. strain ADP

    International Nuclear Information System (INIS)

    The amidase domain of the allophanate hydrolase AtzF from Pseudomonas sp. strain ADP has been crystallized and preliminary X-ray diffraction data have been collected. The allophanate hydrolase from Pseudomonas sp. strain ADP was expressed and purified, and a tryptic digest fragment was subsequently identified, expressed and purified. This 50 kDa construct retained amidase activity and was crystallized. The crystals diffracted to 2.5 Å resolution and adopted space group P21, with unit-cell parameters a = 82.4, b = 179.2, c = 112.6 Å, β = 106.6°

  16. Cloning and expression of the transposable chlorobenzoate-3,4-dioxygenase genes of Alcaligenes sp. strain BR60.

    OpenAIRE

    Nakatsu, C. H.; Wyndham, R. C.

    1993-01-01

    Growth on 3-chlorobenzoate was found to induce the enzymes of the protocatechuate meta ring fission pathway in Alcaligenes sp. strain BR60. The chlorobenzoate catabolic genes, designated cba, were localized to a 3.7-kb NotI-EcoRI fragment within the nonrepeated region of the composite transposon Tn5271. The cba genes were cloned onto two broad-host-range vectors and expressed in Escherichia coli and Alcaligenes sp. strain BR6024. In E. coli, expression of the cba genes with the IPTG (isopropy...

  17. Copper tolerance in Frankia sp. strain EuI1c involves surface binding and copper transport.

    Science.gov (United States)

    Rehan, Medhat; Furnholm, Teal; Finethy, Ryan H; Chu, Feixia; El-Fadly, Gomaah; Tisa, Louis S

    2014-09-01

    Several Frankia strains have been shown to be copper-tolerant. The mechanism of their copper tolerance was investigated for Frankia sp. strain EuI1c. Copper binding was shown by binding studies. Unusual globular structures were observed on the surface of the bacterium. These globular structures were composed of aggregates containing many relatively smaller "leaf-like" structures. Scanning electron microscopy with energy-dispersive X-ray (SEM-EDAX) analysis of these structures indicated elevated copper and phosphate levels compared to the control cells. Fourier transform infrared spectroscopy (FTIR) analysis indicated an increase in extracellular phosphate on the cell surface of copper-stressed cells. Bioinformatics' analysis of the Frankia sp. strain EuI1c genome revealed five potential cop genes: copA, copZ, copC, copCD, and copD. Experiments with Frankia sp. strain EuI1c using qRT-PCR indicated an increase in messenger RNA (mRNA) levels of the five cop genes upon Cu(2+) stress. After 5 days of Cu(2+) stress, the copA, copZ, copC, copCD, and copD mRNA levels increased 25-, 8-, 18-, 18-, and 25-fold, respectively. The protein profile of Cu(2+)-stressed Frankia sp. strain EuI1c cells revealed the upregulation of a 36.7 kDa protein that was identified as FraEuI1c_1092 (sulfate-binding periplasmic transport protein). Homologues of this gene were only present in the genomes of the Cu(2+)-resistant Frankia strains (EuI1c, DC12, and CN3). These data indicate that copper tolerance by Frankia sp. strain EuI1c involved the binding of copper to the cell surface and transport proteins. PMID:24903815

  18. Genome Sequence of Lactobacillus saerimneri 30a (Formerly Lactobacillus sp. Strain 30a), a Reference Lactic Acid Bacterium Strain Producing Biogenic Amines

    OpenAIRE

    Romano, Andrea; Trip, Hein; Campbell-Sills, Hugo; Bouchez, Olivier; Sherman, David; Lolkema, Juke S.; Lucas, Patrick M

    2013-01-01

    Lactobacillus sp. strain 30a (Lactobacillus saerimneri) produces the biogenic amines histamine, putrescine, and cadaverine by decarboxylating their amino acid precursors. We report its draft genome sequence (1,634,278 bases, 42.6% G+C content) and the principal findings from its annotation, which might shed light onto the enzymatic machineries that are involved in its production of biogenic amines.

  19. Ammonia triggers photodamage of photosystem II in the cyanobacterium Synechocystis sp. strain PCC 6803.

    Science.gov (United States)

    Drath, Miriam; Kloft, Nicole; Batschauer, Alfred; Marin, Kay; Novak, Jens; Forchhammer, Karl

    2008-05-01

    Ammonia has long been known to be toxic for many photosynthetic organisms; however, the target for its toxicity remains elusive. Here, we show that in the cyanobacterium Synechocystis sp. strain PCC 6803, ammonia triggers a rapid photodamage of photosystem II (PSII). Whereas wild-type cells can cope with this damage by turning on the FtsH2-dependent PSII repair cycle, the FtsH2-deficient mutant is highly sensitive and loses PSII activity at millimolar concentration of ammonia. Ammonia-triggered PSII destruction is light dependent and occurs already at low photon fluence rates. Experiments with monochromatic light showed that ammonia-promoted PSII photoinhibition is executed by wavebands known to directly destroy the manganese cluster in the PSII oxygen-evolving complex, suggesting that the oxygen-evolving complex may be a direct target for ammonia toxicity. PMID:18322144

  20. Ammonia Triggers Photodamage of Photosystem II in the Cyanobacterium Synechocystis sp. Strain PCC 68031[OA

    Science.gov (United States)

    Drath, Miriam; Kloft, Nicole; Batschauer, Alfred; Marin, Kay; Novak, Jens; Forchhammer, Karl

    2008-01-01

    Ammonia has long been known to be toxic for many photosynthetic organisms; however, the target for its toxicity remains elusive. Here, we show that in the cyanobacterium Synechocystis sp. strain PCC 6803, ammonia triggers a rapid photodamage of photosystem II (PSII). Whereas wild-type cells can cope with this damage by turning on the FtsH2-dependent PSII repair cycle, the FtsH2-deficient mutant is highly sensitive and loses PSII activity at millimolar concentration of ammonia. Ammonia-triggered PSII destruction is light dependent and occurs already at low photon fluence rates. Experiments with monochromatic light showed that ammonia-promoted PSII photoinhibition is executed by wavebands known to directly destroy the manganese cluster in the PSII oxygen-evolving complex, suggesting that the oxygen-evolving complex may be a direct target for ammonia toxicity. PMID:18322144

  1. Identification of salt-tolerant Sinorhizobium sp. strain BL3 membrane proteins based on proteomics

    DEFF Research Database (Denmark)

    Tanthanuch, Waraporn; Tittabutr, Panlada; Mohammed, Shabaz; Matthiesen, Rune; Yamabhai, Montarop; Manassila, Monchai; Jensen, Ole Noerregaard; Boonkerd, Nantakorn; Teaumroong, Neung

    2010-01-01

    Sinorhizobium sp. BL3 is a salt-tolerant strain that can fix atmospheric nitrogen in symbiosis with leguminous host plants under salt-stress conditions. Since cell membranes are the first barrier to environmental change, it is interesting to explore the membrane proteins within this protective...... barrier under salt stress. The protein contents of membrane-enriched fractions obtained from BL3 were analyzed by nanoflow liquid chromatography interfaced with electrospray ionization tandem mass spectrometry. A total of 105 membrane proteins were identified. These proteins could be classified into 17...... functional categories, the two biggest of which were energy production and conversion, and proteins not in clusters of orthologous groups (COGs). In addition, a comparative analysis of membrane proteins between salt-stressed and non-stressed BL3 cells was conducted using a membrane enrichment method and off...

  2. Antifungal activity of violacein purified from a novel strain of Chromobacterium sp. NIIST (MTCC 5522).

    Science.gov (United States)

    Sasidharan, Anju; Sasidharan, Nishanth Kumar; Amma, Dileepkumar Bhaskaran Nair Saraswathy; Vasu, Radhakrishnan Kokkuvayil; Nataraja, Anupama Vijaya; Bhaskaran, Krishnakumar

    2015-10-01

    A novel strain of Chromobacterium sp. NIIST (MTCC 5522) producing high level of purple blue bioactive compound violacein was isolated from clay mine acidic sediment. During 24 h aerobic incubation in modified Luria Bertani medium, around 0.6 g crude violacein was produced per gram of dry weight biomass. An inexpensive method for preparing crystalline, pure violacein from crude pigment was developed (12.8 mg violacein/L) and the pure compound was characterized by different spectrometric methods. The violacein prepared was found effective against a number of plant and human pathogenic fungi and yeast species such as Cryptococcus gastricus, Trichophyton rubrum, Fusarium oxysporum, Rhizoctonia solani, Aspergillus flavus, Penicillium expansum, and Candida albicans. The best activity was recorded against Trichophyton rubrum (2 -g/ml), a human pathogen responsible for causing athlete-s foot infection. This is the first report of antifungal activity of purified violacein against pathogenic fungi and yeast. PMID:26428920

  3. Biochemical characterisation of lipase from a new strain of Bacillus sp. ITP-001

    Directory of Open Access Journals (Sweden)

    José Murillo P. Barbosa

    2012-01-01

    Full Text Available Lipases are characterised mainly by catalytic versatility and application in different industrial segments. The aim of this study was to biochemically characterise a lipase from a new strain of Bacillus sp. ITP-001. The isoelectric point and molecular mass were 3.12 and 54 kDa, respectively. The optima lipase activity was 276 U g-1 at pH 7.0 and a temperature of 80 ºC, showing greater stability at pH 5.0 and 37 ºC. Enzymatic activity was stimulated by various ions and pyridine, and inhibited by Cu+ and ethanol. The values of Km and v max were 105.26 mmol and 0.116 mmol min-1 g-1, respectively determined by the Eadie-Scatchard method.

  4. Coregulated genes link sulfide:quinone oxidoreductase and arsenic metabolism in Synechocystis sp. strain PCC6803.

    Science.gov (United States)

    Nagy, Csaba I; Vass, Imre; Rákhely, Gábor; Vass, István Zoltán; Tóth, András; Duzs, Agnes; Peca, Loredana; Kruk, Jerzy; Kós, Péter B

    2014-10-01

    Although the biogeochemistry of the two environmentally hazardous compounds arsenic and sulfide has been extensively investigated, the biological interference of these two toxic but potentially energy-rich compounds has only been hypothesized and indirectly proven. Here we provide direct evidence for the first time that in the photosynthetic model organism Synechocystis sp. strain PCC6803 the two metabolic pathways are linked by coregulated genes that are involved in arsenic transport, sulfide oxidation, and probably in sulfide-based alternative photosynthesis. Although Synechocystis sp. strain PCC6803 is an obligate photoautotrophic cyanobacterium that grows via oxygenic photosynthesis, we discovered that specific genes are activated in the presence of sulfide or arsenite to exploit the energy potentials of these chemicals. These genes form an operon that we termed suoRSCT, located on a transposable element of type IS4 on the plasmid pSYSM of the cyanobacterium. suoS (sll5036) encodes a light-dependent, type I sulfide:quinone oxidoreductase. The suoR (sll5035) gene downstream of suoS encodes a regulatory protein that belongs to the ArsR-type repressors that are normally involved in arsenic resistance. We found that this repressor has dual specificity, resulting in 200-fold induction of the operon upon either arsenite or sulfide exposure. The suoT gene encodes a transmembrane protein similar to chromate transporters but in fact functioning as an arsenite importer at permissive concentrations. We propose that the proteins encoded by the suoRSCT operon might have played an important role under anaerobic, reducing conditions on primordial Earth and that the operon was acquired by the cyanobacterium via horizontal gene transfer. PMID:25022856

  5. Structure, function, and regulation of the aldouronate utilization gene cluster from Paenibacillus sp. strain JDR-2.

    Science.gov (United States)

    Chow, Virginia; Nong, Guang; Preston, James F

    2007-12-01

    Direct bacterial conversion of the hemicellulose fraction of hardwoods and crop residues to biobased products depends upon extracellular depolymerization of methylglucuronoxylan (MeGAX(n)), followed by assimilation and intracellular conversion of aldouronates and xylooligosaccharides to fermentable xylose. Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium, secretes a multimodular cell-associated GH10 endoxylanase (XynA1) that catalyzes depolymerization of MeGAX(n) and rapidly assimilates the principal products, beta-1,4-xylobiose, beta-1,4-xylotriose, and MeGAX(3), the aldotetrauronate 4-O-methylglucuronosyl-alpha-1,2-xylotriose. Genomic libraries derived from this bacterium have now allowed cloning and sequencing of a unique aldouronate utilization gene cluster comprised of genes encoding signal transduction regulatory proteins, ABC transporter proteins, and the enzymes AguA (GH67 alpha-glucuronidase), XynA2 (GH10 endoxylanase), and XynB (GH43 beta-xylosidase/alpha-arabinofuranosidase). Expression of these genes, as well as xynA1 encoding the secreted GH10 endoxylanase, is induced by growth on MeGAX(n) and repressed by glucose. Sequences in the yesN, lplA, and xynA2 genes within the cluster and in the distal xynA1 gene show significant similarity to catabolite responsive element (cre) defined in Bacillus subtilis for recognition of the catabolite control protein (CcpA) and consequential repression of catabolic regulons. The aldouronate utilization gene cluster in Paenibacillus sp. strain JDR-2 operates as a regulon, coregulated with the expression of xynA1, conferring the ability for efficient assimilation and catabolism of the aldouronate product generated by a multimodular cell surface-anchored GH10 endoxylanase. This cluster offers a desirable metabolic potential for bacterial conversion of hemicellulose fractions of hardwood and crop residues to biobased products. PMID:17921311

  6. DL-7-azatryptophan and citrulline metabolism in the cyanobacterium Anabaena sp. strain 1F

    International Nuclear Information System (INIS)

    An alternative route for the primary assimilation of ammonia proceeds via glutamine synthetase-carbamyl phosphate synthetase and its inherent glutaminase activity in Anabaena sp. strain 1F, a marine filamentous, heterocystous cyanobacterium. Evidence for the presence of this possible alternative route to glutamate was provided by the use of amino acid analogs as specific enzyme inhibitors, enzymological studies, and radioistopic labeling experiments. The amino acid pool patterns of continuous cultures of Anabaena sp. strain 1F were markedly influenced by the nitrogen source. A relatively high concentration of glutamate was maintained in the amino acid pools of all cultures irrespective of the nitrogen source, reflecting the central role of glutamate in nitrogen metabolism. The addition of 1.0 microM azaserine increased the intracellular pools of glutamate and glutamine. All attempts to detect any enzymatic activity for glutamate synthase by measuring the formation of L-[14C]glutamate from 2-keto-[1-14C]glutarate and glutamine failed. The addition of 10 microM DL-7-azatryptophan caused a transient accumulation of intracellular citrulline and alanine which was not affected by the presence of chloramphenicol. The in vitro activity of carbamyl phosphate synthetase and glutaminase increased severalfold in the presence of azatryptophan. Results from radioisotopic labeling experiments with [14C]bicarbonate and L-[1-14C]ornithine also indicated that citrulline was formed via carbamyl phosphate synthetase and ornithine transcarbamylase. In addition to its effects on nitrogen metabolism, azatryptophan also affected carbon metabolism by inhibiting photosynthetic carbon assimilation and photosynthetic oxygen evolution

  7. Isolation and Characterization of Two Cyanobacterial Strains Calothrix Sp. and Microchaete Sp. from Rice Fields of Karimganj District, Assam, North East India

    Directory of Open Access Journals (Sweden)

    Moirangthem Thajamanbi

    2016-08-01

    Full Text Available Studies on various nitrogen fixing microalgal strains found in the rice paddy field soils are carried out in different parts of the world. In the present study two cyanobacterial strains belonging to the order nostocales, Calothrix sp. and Microchaete sp. were isolated from the rice fields of Karimganj district, South Assam, India and characterized based on their morphological, biochemical and molecular analysis. For the phenotypic characterization - growth, pigments (chlorophyll a, total carotenoid content, phycobiliproteins and biochemical properties (total carbohydrate and soluble proteins were studied. The study showed that both strains contain lower phycoerythrin content as compared to the other pigments. The Microchaete strain contain a higher total carotenoid content while chlorophyll a accumulation was higher in the Calothrix strain. Phylogenetic compairision was made using 16S rRNA gene sequences including other sequences of Calothrix, Microchaete and Tolypothrix species from GenBank. The results showed that polyphasic approach provides necessary information for the identification of cyanobacterial species using morphological analysis in combination with molecular techniques.

  8. The cobY gene of the archaeon Halobacterium sp. strain NRC-1 is required for de novo cobamide synthesis.

    Science.gov (United States)

    Woodson, J D; Peck, R F; Krebs, M P; Escalante-Semerena, J C

    2003-01-01

    Genetic and nutritional analyses of mutants of the extremely halophilic archaeon Halobacterium sp. strain NRC-1 showed that open reading frame (ORF) Vng1581C encodes a protein with nucleoside triphosphate:adenosylcobinamide-phosphate nucleotidyltransferase enzyme activity. This activity was previously associated with the cobY gene of the methanogenic archaeon Methanobacterium thermoautotrophicum strain DeltaH, but no evidence was obtained to demonstrate the direct involvement of this protein in cobamide biosynthesis in archaea. Computer analysis of the Halobacterium sp. strain NRC-1 ORF Vng1581C gene and the cobY gene of M. thermoautotrophicum strain DeltaH showed the primary amino acid sequence of the proteins encoded by these two genes to be 35% identical and 48% similar. A strain of Halobacterium sp. strain NRC-1 carrying a null allele of the cobY gene was auxotrophic for cobinamide-GDP, a known intermediate of the late steps of cobamide biosynthesis. The auxotrophic requirement for cobinamide-GDP was corrected when a wild-type allele of cobY was introduced into the mutant strain, demonstrating that the lack of cobY function was solely responsible for the observed block in cobamide biosynthesis in this archaeon. The data also show that Halobacterium sp. strain NRC-1 possesses a high-affinity transport system for corrinoids and that this archaeon can synthesize cobamides de novo under aerobic growth conditions. To the best of our knowledge this is the first genetic and nutritional analysis of cobalamin biosynthetic mutants in archaea. PMID:12486068

  9. The cobY Gene of the Archaeon Halobacterium sp. Strain NRC-1 Is Required for De Novo Cobamide Synthesis

    OpenAIRE

    Woodson, J. D.; Peck, R. F.; Krebs, M P; Escalante-Semerena, J C

    2003-01-01

    Genetic and nutritional analyses of mutants of the extremely halophilic archaeon Halobacterium sp. strain NRC-1 showed that open reading frame (ORF) Vng1581C encodes a protein with nucleoside triphosphate:adenosylcobinamide-phosphate nucleotidyltransferase enzyme activity. This activity was previously associated with the cobY gene of the methanogenic archaeon Methanobacterium thermoautotrophicum strain ΔH, but no evidence was obtained to demonstrate the direct involvement of this protein in c...

  10. Genomic and Physiological Characterization of the Chromate-Reducing, Aquifer-Derived Firmicute Pelosinus sp. Strain HCF1

    OpenAIRE

    Beller, Harry R.; Han, Ruyang; Karaoz, Ulas; Lim, HsiaoChien; Eoin L. Brodie

    2013-01-01

    Pelosinus spp. are fermentative firmicutes that were recently reported to be prominent members of microbial communities at contaminated subsurface sites in multiple locations. Here we report metabolic characteristics and their putative genetic basis in Pelosinus sp. strain HCF1, an isolate that predominated anaerobic, Cr(VI)-reducing columns constructed with aquifer sediment. Strain HCF1 ferments lactate to propionate and acetate (the methylmalonyl-coenzyme A [CoA] pathway was identified in t...

  11. Draft Genome Sequence of Pseudozyma brasiliensis sp. nov. Strain GHG001, a High Producer of Endo-1,4-Xylanase Isolated from an Insect Pest of Sugarcane.

    Science.gov (United States)

    Oliveira, Juliana Velasco de Castro; Dos Santos, Renato Augusto Corrêa; Borges, Thuanny A; Riaño-Pachón, Diego Mauricio; Goldman, Gustavo Henrique

    2013-01-01

    Here, we present the nuclear and mitochondrial genome sequences of Pseudozyma brasiliensis sp. nov. strain GHG001. P. brasiliensis sp. nov. is the closest relative of Pseudozyma vetiver. P. brasiliensis sp. nov. is capable of growing on xylose or xylan as a sole carbon source and has great biotechnological potential. PMID:24356824

  12. Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection.

    OpenAIRE

    Matthysse, A G

    1983-01-01

    During the attachment of Agrobacterium tumefaciens to carrot tissue culture cells, the bacteria synthesize cellulose fibrils. We examined the role of these cellulose fibrils in the attachment process by determining the properties of bacterial mutants unable to synthesize cellulose. Such cellulose-minus bacteria attached to the carrot cell surface, but, in contrast to the parent strain, with which larger clusters of bacteria were seen on the plant cell, cellulose-minus mutant bacteria were att...

  13. Crystallization and preliminary X-ray diffraction studies of maleylacetate reductase from Rhizobium sp. strain MTP-10005

    OpenAIRE

    FUJII, Tomomi; Goda, Yuko; Yoshida, Masahiro; Oikawa, Tadao; Hata, Yasuo

    2008-01-01

    Maleylacetate reductase from Rhizobium sp. strain MTP-10005 has been crystallized using the sitting-drop vapour-diffusion method and microseeding. The crystals contained one dimeric molecule per asymmetric unit and diffracted to 1.79 Å resolution.

  14. Complete Genome Sequence of Cyanobacterium Geminocystis sp. Strain NIES-3708, Which Performs Type II Complementary Chromatic Acclimation.

    Science.gov (United States)

    Hirose, Yuu; Katayama, Mitsunori; Ohtsubo, Yoshiyuki; Misawa, Naomi; Iioka, Erica; Suda, Wataru; Oshima, Kenshiro; Hanaoka, Mitsumasa; Tanaka, Kan; Eki, Toshihiko; Ikeuchi, Masahiko; Kikuchi, Yo; Ishida, Makoto; Hattori, Masahira

    2015-01-01

    To explore the variation of the light-regulated genes during complementary chromatic acclimation (CCA), we determined the complete genome sequence of the cyanobacterium Geminocystis sp. strain NIES-3708. Within the light-regulated operon for CCA, we found genes for phycoerythrin but not phycocyanin, suggesting that this cyanobacterium modulates phycoerythrin composition only (type II CCA). PMID:25953174

  15. Genomic Insights into Aquimarina sp. Strain EL33, a Bacterial Symbiont of the Gorgonian Coral Eunicella labiata

    Science.gov (United States)

    Keller-Costa, Tina; Silva, Rúben; Lago-Lestón, Asunción

    2016-01-01

    To address the metabolic potential of symbiotic Aquimarina spp., we report here the genome sequence of Aquimarina sp. strain EL33, a bacterium isolated from the gorgonian coral Eunicella labiata. This first-described (to our knowledge) animal-associated Aquimarina genome possesses a sophisticated repertoire of genes involved in drug/antibiotic resistance and biosynthesis. PMID:27540075

  16. Draft Genome Sequence of Thauera sp. Strain SWB20, Isolated from a Singapore Wastewater Treatment Facility Using Gel Microdroplets

    Science.gov (United States)

    Davenport, Karen W.; Li, Po-E; Ahmed, Sanaa A.; Daligault, Hajnalka; Gleasner, Cheryl D.; Kunde, Yuliya; McMurry, Kim; Lo, Chien-Chi; Reitenga, Krista G.; Daughton, Ashlynn R.; Shen, Xiaohong; Frietze, Seth; Wang, Dongping; Drautz-Moses, Daniela I.; Schuster, Stephan; Chain, Patrick S.; Han, Cliff

    2015-01-01

    We report here the genome sequence of Thauera sp. strain SWB20, isolated from a Singaporean wastewater treatment facility using gel microdroplets (GMDs) and single-cell genomics (SCG). This approach provided a single clonal microcolony that was sufficient to obtain a 4.9-Mbp genome assembly of an ecologically relevant Thauera species. PMID:25792053

  17. Draft Genome Sequence of Thauera sp. Strain SWB20, Isolated from a Singapore Wastewater Treatment Facility Using Gel Microdroplets

    OpenAIRE

    Dichosa, Armand E. K.; Davenport, Karen W.; Li, Po-E; Ahmed, Sanaa A.; Daligault, Hajnalka; Gleasner, Cheryl D.; Kunde, Yuliya; McMurry, Kim; Lo, Chien-Chi; Reitenga, Krista G.; Daughton, Ashlynn R.; Shen, Xiaohong; Frietze, Seth; WANG, Dongping; Johnson, S. L.

    2015-01-01

    We report here the genome sequence of Thauera sp. strain SWB20, isolated from a Singaporean wastewater treatment facility using gel microdroplets (GMDs) and single-cell genomics (SCG). This approach provided a single clonal microcolony that was sufficient to obtain a 4.9-Mbp genome assembly of an ecologically relevant Thauera species.

  18. Functional nodFE genes are present in Sinorhizobium sp. strain MUS10, a symbiont of tropical legume Sesbania rostrata

    Science.gov (United States)

    Sinorhizobium sp. strain MUS10, a rhizobium from the Indian subcontinent, forms nitrogen-fixing nodules on the stems and roots of tropical legume Sesbania rostrata. The structure of Nod factors (NFs) of MUS10 are similar to those of Azorhizobium caulinodans, S. saheli bv sesbaniae and S. terangae bv...

  19. Draft Genome Sequence of Frankia sp. Strain BMG5.12, a Nitrogen-Fixing Actinobacterium Isolated from Tunisian Soils.

    Science.gov (United States)

    Nouioui, Imen; Beauchemin, Nicholas; Cantor, Michael N; Chen, Amy; Detter, J Chris; Furnholm, Teal; Ghodhbane-Gtari, Faten; Goodwin, Lynne; Gtari, Maher; Han, Cliff; Han, James; Huntemann, Marcel; Hua, Susan Xinyu; Ivanova, Natalia; Kyrpides, Nikos; Markowitz, Victor; Mavrommatis, Kostas; Mikhailova, Natalia; Nordberg, Henrik P; Ovchinnikova, Galina; Pagani, Ioanna; Pati, Amrita; Sen, Arnab; Sur, Saubashya; Szeto, Ernest; Thakur, Subarna; Wall, Luis; Wei, Chia-Lin; Woyke, Tanja; Tisa, Louis S

    2013-01-01

    Members of the actinomycete genus Frankia form a nitrogen-fixing symbiosis with 8 different families of actinorhizal plants. We report a draft genome sequence for Frankia sp. strain BMG5.12, a nitrogen-fixing actinobacterium isolated from Tunisian soils with the ability to infect Elaeagnus angustifolia and Myrica gale. PMID:23846272

  20. Draft Genome Sequence of Frankia sp. Strain DC12, an Atypical, Noninfective, Ineffective Isolate from Datisca cannabina.

    Science.gov (United States)

    Tisa, Louis S; Beauchemin, Nicholas; Cantor, Michael N; Furnholm, Teal; Ghodhbane-Gtari, Faten; Goodwin, Lynne; Copeland, Alex; Gtari, Maher; Huntemann, Marcel; Ivanova, Natalia; Kyrpides, Nikos; Markowitz, Victor; Mavrommatis, Kostas; Mikhailova, Natalia; Nouioui, Imen; Oshone, Rediet; Ovchinnikova, Galina; Pagani, Ioanna; Palaniappan, Krishnaveni; Pati, Amrita; Sen, Arnab; Shapiro, Nicole; Szeto, Ernest; Wall, Luis; Wishart, Jessie; Woyke, Tanja

    2015-01-01

    Frankia sp. strain DC12, isolated from root nodules of Datisca cannabina, is a member of the fourth lineage of Frankia, which is unable to reinfect actinorhizal plants. Here, we report its 6.88-Mbp high-quality draft genome sequence, with a G+C content of 71.92% and 5,858 candidate protein-coding genes. PMID:26251504

  1. Draft Genome Sequence of Frankia sp. Strain BCU110501, a Nitrogen-Fixing Actinobacterium Isolated from Nodules of Discaria trinevis.

    Science.gov (United States)

    Wall, Luis G; Beauchemin, Nicholas; Cantor, Michael N; Chaia, Eugenia; Chen, Amy; Detter, J Chris; Furnholm, Teal; Ghodhbane-Gtari, Faten; Goodwin, Lynne; Gtari, Maher; Han, Cliff; Han, James; Huntemann, Marcel; Hua, Susan Xinyu; Ivanova, Natalia; Kyrpides, Nikos; Markowitz, Victor; Mavrommatis, Kostas; Mikhailova, Natalia; Nordberg, Henrik P; Nouioui, Imen; Ovchinnikova, Galina; Pagani, Ioanna; Pati, Amrita; Sen, Arnab; Sur, Saubashya; Szeto, Ernest; Thakur, Subarna; Wei, Chia-Lin; Woyke, Tanja; Tisa, Louis S

    2013-01-01

    Frankia forms a nitrogen-fixing symbiosis with actinorhizal plants. We report a draft genome sequence for Frankia sp. strain BCU110501, a nitrogen-fixing actinobacterium isolated from nodules of Discaria trinevis grown in the Patagonia region of Argentina. PMID:23846281

  2. Draft Genome Sequence of MCPA-Degrading Sphingomonas sp. Strain ERG5, Isolated from a Groundwater Aquifer in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Tue Kjærgaard; Kot, Witold; Sørensen, Sebastian R;

    2015-01-01

    Sphingomonas sp. strain ERG5 was isolated from a bacterial community, originating from a groundwater aquifer polluted with low pesticide concentrations. This bacterium degrades 2-methyl-4-chlorophenoxyacetic acid (MCPA) in a wide spectrum of concentrations and has been shown to function in...

  3. Genome Sequence of Halomonas sp. Strain A3H3, Isolated from Arsenic-Rich Marine Sediments

    OpenAIRE

    Koechler, Sandrine; Plewniak, Frédéric; Barbe, Valérie; Battaglia-Brunet, Fabienne; Jost, Bernard; Joulian, Catherine; Philipps, Muriel; Vicaire, Serge; Vincent, Stéphanie; Ye, Tao; Bertin, Philippe N.

    2013-01-01

    We report the genome sequence of Halomonas sp. strain A3H3, a bacterium with a high tolerance to arsenite, isolated from multicontaminated sediments of the l’Estaque harbor in Marseille, France. The genome is composed of a 5,489,893-bp chromosome and a 157,085-bp plasmid.

  4. Complete Genome Sequence of Pelosinus sp. Strain UFO1 Assembled Using Single-Molecule Real-Time DNA Sequencing Technology

    OpenAIRE

    Brown, Steven D.; Utturkar, Sagar M.; Magnuson, Timothy S.; Ray, Allison E.; Poole, Farris L.; Lancaster, W Andrew; Thorgersen, Michael P.; Adams, Michael W. W.; Elias, Dwayne A.

    2014-01-01

    Pelosinus species can reduce metals such as Fe(III), U(VI), and Cr(VI) and have been isolated from diverse geographical regions. Five draft genome sequences have been published. We report the complete genome sequence for Pelosinus sp. strain UFO1 using only PacBio DNA sequence data and without manual finishing.

  5. Draft Genome Sequence of Nitrosospira sp. Strain APG3, a Psychrotolerant Ammonia-Oxidizing Bacterium Isolated from Sandy Lake Sediment

    OpenAIRE

    Garcia, Juan C.; Urakawa, Hidetoshi; Le, Vang Q.; Stein, Lisa Y.; Klotz, Martin G; Nielsen, Jeppe L.

    2013-01-01

    Bacteria in the genus Nitrosospira play vital roles in the nitrogen cycle. Nitrosospira sp. strain APG3 is a psychrotolerant betaproteobacterial ammonia-oxidizing bacterium isolated from freshwater lake sediment. The draft genome revealed that it represents a new species of cluster 0 Nitrosospira, which is presently not represented by described species.

  6. Draft Genome Sequence of Pseudomonas sp. Strain 10-1B, a Polycyclic Aromatic Hydrocarbon Degrader in Contaminated Soil

    OpenAIRE

    Bello-Akinosho, Maryam; Adeleke, Rasheed; Swanevelder, Dirk; Thantsha, Mapitsi

    2015-01-01

    Pseudomonas sp. strain 10-1B was isolated from artificially polluted soil after selective enrichment. Its draft genome consists of several predicted genes that are involved in the hydroxylation of the aromatic ring, which is the rate-limiting step in the biodegradation of polycyclic aromatic hydrocarbons.

  7. Draft Genome Sequence of Anaeromyxobacter sp. Strain PSR-1, an Arsenate-Respiring Bacterium Isolated from Arsenic-Contaminated Soil

    OpenAIRE

    Tonomura, Mimori; Ehara, Ayaka; Suzuki, Haruo; Amachi, Seigo

    2015-01-01

    Here, we report a draft genome sequence of Anaeromyxobacter sp. strain PSR-1, an arsenate-respiring bacterium isolated from arsenic-contaminated soil. It contained three distinct arsenic resistance gene clusters (ars operons), while no respiratory arsenate reductase gene (arr) was identified.

  8. Genome Sequence of Maribius sp. Strain MOLA 401, a Marine Roseobacter with a Quorum-Sensing Cell-Dependent Physiology

    OpenAIRE

    Doberva, Margot; Sanchez-Ferandin, Sophie; Ferandin, Yoan; Intertaglia, Laurent; Joux, Fabien; Lebaron, Philippe; Lami, Raphaël

    2014-01-01

    Maribius sp. strain MOLA401 is an alphaproteobacterium isolated from a coral reef lagoon located in New Caledonia, France. We report the genome sequence and its annotation which, interestingly, reveals the presence of genes involved in quorum sensing. This is the first report of a full genome within the genus Maribius.

  9. Genome Sequence of Maribius sp. Strain MOLA 401, a Marine Roseobacter with a Quorum-Sensing Cell-Dependent Physiology.

    Science.gov (United States)

    Doberva, Margot; Sanchez-Ferandin, Sophie; Ferandin, Yoan; Intertaglia, Laurent; Joux, Fabien; Lebaron, Philippe; Lami, Raphaël

    2014-01-01

    Maribius sp. strain MOLA401 is an alphaproteobacterium isolated from a coral reef lagoon located in New Caledonia, France. We report the genome sequence and its annotation which, interestingly, reveals the presence of genes involved in quorum sensing. This is the first report of a full genome within the genus Maribius. PMID:25278539

  10. Genome Sequence of Maribius sp. Strain MOLA 401, a Marine Roseobacter with a Quorum-Sensing Cell-Dependent Physiology

    OpenAIRE

    Doberva, Margot; Sanchez-Ferandin, Sophie; Ferandin, Yoan; Intertaglia, Laurent; Joux, Fabien; Lebaron, Philippe; Lami, Raphaël

    2014-01-01

    International audience Maribius sp. strain MOLA401 is an alphaproteobacterium isolated from a coral reef lagoon located in New Caledonia, France. We report the genome sequence and its annotation which, interestingly, reveals the presence of genes involved in quorum sensing. This is the first report of a full genome within the genus Maribius.

  11. Preliminary Study and Improve the Production of Metabolites with Antifungal Activity by A Bacillus Sp Strain IBA 33

    Directory of Open Access Journals (Sweden)

    María Antonieta Gordillo

    2009-04-01

    Full Text Available Bacillus sp strain IBA 33 metabolites, isolated from decaying lemon fruits, were evaluated for the control of pathogenic and non-pathogenic fungi (Penicillium digitatum, Geotrichum candidum, Penicillium expansum, Aspergillus clavatus, Aspergillus flavus, Aspergillus niger, and Fusarium moniliforme. These metabolites were recovered from Landy medium (LM without aminoacids. In order to optimize metabolites production the LM was modified by adding different concentrations and sources of amino acids and carbohydrates at different culture conditions. Bacillus sp strain IBA 33 metabolites efficacy to control fungi were evaluated with in vitro and in vivo assays. A. flavus growth inhibition was 52% with the metabolites of Bacillus sp strain IBA 33 recovered from LM (MBLM in vitro assays. MBLM supplemented with 0.5% glutamic acid, inhibited the growth of P. digitatum, G. candidum, A. clavatus, A. niger and F. moniliforme by 65%, 88.44%, 84%, 34% and 92% respectively. The highest inhibition of P. expansum was 45% with MBLM supplemented with 0.5% aspartic acid. Similar results were obtained in vivo assays. These results showed that Bacillus sp strain IBA 33 metabolites specificity against fungi depended on the composition of the LM.

  12. Preliminary Study and Improve the Production of Metabolites with Antifungal Activity by A Bacillus Sp Strain IBA 33

    Directory of Open Access Journals (Sweden)

    María Antonieta Gordillo

    2009-01-01

    Full Text Available Bacillus sp strain IBA 33 metabolites, isolated from decaying lemon fruits, were evaluated for the control of pathogenic and non-pathogenic fungi (Penicillium digitatum, Geotrichum candidum, Penicillium expansum, Aspergillus clavatus, Aspergillus flavus, Aspergillus niger, and Fusarium moniliforme. These metabolites were recovered from Landy medium (LM without aminoacids. In order to optimize metabolites production the LM was modified by adding different concentrations and sources of amino acids and carbohydrates at different culture conditions.Bacillus sp strain IBA 33 metabolites efficacy to control fungi were evaluated with in vitro and in vivo assays. A. flavus growth inhibition was 52% with the metabolites of Bacillus sp strain IBA 33 recovered from LM (MBLM in vitro assays. MBLM supplemented with 0.5% glutamic acid, inhibited the growth of P. digitatum, G. candidum, A. clavatus, A. niger and F. moniliforme by 65%, 88.44%, 84%, 34% and 92% respectively. The highest inhibition of P. expansum was 45% with MBLM supplemented with 0.5% aspartic acid. Similar results were obtained in vivo assays. These results showed that Bacillus sp strain IBA 33 metabolites specificity against fungi depended on the composition of the LM.

  13. Dechlorination pathways of diverse chlorinated aromatic pollutants conducted by Dehalococcoides sp. strain CBDB1

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Gui-Ning [School of Environmental Science and Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006 (China); Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 (United States); School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China); Tao, Xue-Qin [School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225 (China); Huang, Weilin [Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 (United States); Dang, Zhi, E-mail: chzdang@scut.edu.cn [School of Environmental Science and Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006 (China); Li, Zhong [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Cong-Qiang [The State Key Lab of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China)

    2010-05-15

    Dechlorination of chlorinated aromatic pollutants (CAPs) has become a major issue in recent decades. This paper reported a theoretical indicator for predicting the reductive dechlorination pathways of polychlorinated dibenzo-p-dioxins (PCDDs), chlorobenzenes and chlorophenols transformed by Dehalococcoides sp. strain CBDB1. Density functional theory (DFT) calculations were carried out at the B3LYP/6-31G(d) level for all related CAPs and Mulliken atomic charges on chlorine atoms (Q{sub Cl(n)}) were adopted as the probe of the dechlorination reaction activity. Q{sub Cl(n)} can consistently indicate the main dechlorination daughter products of PCDDs, chlorobenzenes and chlorophenols conducted by strain CBDB1. The dechlorination reaction favors elimination of the chlorine atoms having greater Q{sub Cl(n)} values. The chlorine atom with the greatest Q{sub Cl(n)} value tends preferentially to be eliminated, whereas the chlorine atom with the smallest Q{sub Cl(n)} value tends unlikely to be eliminated or does not react at all. For a series of compounds having similar structure, the maximal Q{sub Cl(n)} of each molecular can be used to predict the possibility of its daughter product(s). In addition, the difference ({Delta}Q{sub Cl(n)}) between the maximal Q{sub Cl(n)} and the next maximal Q{sub Cl(n)} of the same molecule can be used to assess the possibility of formation of multiple dechlorination products.

  14. Alcohol dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanse and hexadecanol metabolism

    International Nuclear Information System (INIS)

    Multiple alcohol dehydrogenases (ADH) were demonstrated in Acinetobacter sp. strain HO1-N. ADH-A and ADH-B were distinguished on the basis of electrophoretic mobility, pyridine nucleotide cofactor requirement, and substrate specificity. ADH-A is a soluble, NAD-linked, inducible ethanol dehydrogenase (EDH). An ethanol-negative mutant (Eth1) was isolated which contained 6.5% of wild-type EDH activity and was deficient in ADH-A. Eth1 exhibited normal growth on hexadecane and hexadecanol. A second ethanol-negative mutant (Eth3) was acetaldehyde dehydrogenase (ALDH) deficient, having 12.5% of wild-type ALDH activity. Eth3 had threefold-higher EDH activity than the wild-type strain. ALDH is a soluble, NAD-linked, ethanol-inducible enzyme. Eth3 exhibited normal growth on hexadecane, hexadecanol, and fatty aldehyde. ADH-B is soluble, constitutive, NADP-linked ADH which was active with medium-chain-length alcohols. Hexadecanol dehydrogenase (HDH), a soluble and membrane-bound, NAD-linked ADH, was induced 5- to 11-fold by growth on hexadecane or hexadecanol. HDH was distinct from ADH-A and ADH-B. NAD-linked HDH appears to possess a functional role in hexadecane and hexadecanol dissimilation

  15. Algicidal metabolites produced by Bacillus sp. strain B1 against Phaeocystis globosa.

    Science.gov (United States)

    Zhao, Ling; Chen, Lina; Yin, Pinghe

    2014-03-01

    The bloom of Phaeocystis globosa has broken out frequently in the coastal areas of China in recent years, which has led to substantial economic losses. This study shows that Bacillus sp. strain B1, which was previously identified by our group, is effective in regulating P. globosa by excreting active metabolites. Heat stability, pH stability and molecular weight range of the algicidal compounds from strain B1 were measured and the results demonstrated that the algicidal activities of these compounds were not affected by pH or temperature variation. The algicidal compounds extracted with methanol were isolated and purified by ODS-A column chromatography and HPLC. The algicidal compounds corresponding to peaks 2-5 eluted from HPLC were further analysed by quadrupole time-of-flight mass spectrometry (Q-TOF-MS). PeakView™ Software determined the compounds corresponding to peaks 2-5 to be L-histidine, o-tyrosine, N-acetylhistamine and urocanic acid on the basis of the accurate mass information, the isotopic pattern and MS-MS spectra. Furthermore, these compounds were also able to eliminate Skeletonema costatum, Prorocentrum donghaiense and Heterosigma akashiwo. This is the first report of bacteria-derived algicidal compounds being identified only by Q-TOF-MS and PeakView™ Software, and these compounds may be used as the constituents of algicides in the future. PMID:24370882

  16. Enhancement of the potential to utilize octopine in the nonfluorescent Pseudomonas sp. strain 92

    International Nuclear Information System (INIS)

    The nonfluorescent Pseudomonas sp. strain 92 requires the presence of a supplementary carbon source for growth on octopine, whereas the spontaneous mutant RB100 has acquired the capacity to utilize this opine as the sole carbon and nitrogen source. Insertional mutagenesis of RB100 with transposon Tn5 generated mutants which were unable to grow on octopine and others which grew slowly on this substrate. Both types of mutants yielded revertants that had regained the ability to utilize octopine. Some of the revertants had lost the transposon, whereas in others the transposon was retained but with rearrangements of the insertion site. Genes of octopine catabolism from strain 92 were cloned on a cosmid vector to generate pK3. The clone pK3 conferred the ability to utilize octopine as the sole carbon and nitrogen source on the host Pseudomonas putida KT2440. Although they conferred an equivalent growth phenotype, the mutant genes carried by RB100 and the cloned genes on pK3 differed in their regulation. Utilization of [14C]octopine was inducible by octopine in RB100 and was constitutive in KT2440(pK3)

  17. Anilofos tolerance and its mineralization by the cyanobacterium Synechocystis sp. strain PUPCCC 64.

    Directory of Open Access Journals (Sweden)

    D P Singh

    Full Text Available This study deals with anilofos tolerance and its mineralization by the common rice field cyanobacterium Synechocystis sp. strain PUPCCC 64. The organism tolerated anilofos up to 25 mg L(-1. The herbicide caused inhibitory effects on photosynthetic pigments of the test organism in a dose-dependent manner. The organism exhibited 60, 89, 96, 85 and 79% decrease in chlorophyll a, carotenoids, phycocyanin, allophycocyanin and phycoerythrin, respectively, in 20 mg L(-1 anilofos on day six. Activities of superoxide dismutase, catalase and peroxidase increased by 1.04 to 1.80 times over control cultures in presence of 20 mg L(-1 anilofos. Glutathione content decreased by 26% while proline content was unaffected by 20 mg L(-1 anilofos. The test organism showed intracellular uptake and metabolized the herbicide. Uptake of herbicide by test organism was fast during initial six hours followed by slow uptake until 120 hours. The organism exhibited maximum anilofos removal at 100 mg protein L(-1, pH 8.0 and 30°C. Its growth in phosphate deficient basal medium in the presence of anilofos (2.5 mg L(-1 indicated that herbicide was used by the strain PUPCCC 64 as a source of phosphate.

  18. Improvement of Fish Sauce Quality by Strain CMC5-3-1: A Novel Species of Staphylococcus sp.

    Science.gov (United States)

    Udomsil, Natteewan; Rodtong, Sureelak; Tanasupawat, Somboon; Yongsawatdigul, Jirawat

    2015-09-01

    Staphylococcus sp. CMC5-3-1 and CMS5-7-5 isolated from fermented fish sauce at 3 to 7 mo, respectively, showed different characteristics on protein hydrolysis and volatile formation. These Gram-positive cocci were able to grow in up to 15% NaCl with the optimum at 0.5% to 5% NaCl in tryptic soy broth. Based on ribosomal 16S rRNA gene sequences, Staphylococcus sp. CMC5-3-1 and CMS5-7-5 showed 99.0% similarity to that of Staphylococcus piscifermentans JCM 6057(T) , but DNA-DNA relatedness was fermentations with both strains. Fish sauce inoculated with Staphylococcus sp. CMC5-3-1 showed the highest content of total glutamic acid (P dark chocolate note. Staphylococcus sp. CMC5-3-1 could be applied as a starter culture to improve the umami and aroma of fish sauce. PMID:26256665

  19. Survival Strategies of the Plant-Associated Bacterium Enterobacter sp. Strain EG16 under Cadmium Stress.

    Science.gov (United States)

    Chen, Yanmei; Chao, Yuanqing; Li, Yaying; Lin, Qingqi; Bai, Jun; Tang, Lu; Wang, Shizhong; Ying, Rongrong; Qiu, Rongliang

    2016-01-01

    Plant-associated bacteria are of great interest because of their potential use in phytoremediation. However, their ability to survive and promote plant growth in metal-polluted soils remains unclear. In this study, a soilborne Cd-resistant bacterium was isolated and identified as Enterobacter sp. strain EG16. It tolerates high external Cd concentrations (Cd(2+) MIC, >250 mg liter(-1)) and is able to produce siderophores and the plant hormone indole-3-acetic acid (IAA), both of which contribute to plant growth promotion. Surface biosorption in this strain accounted for 31% of the total Cd accumulated. The potential presence of cadmium sulfide, shown by energy-dispersive X-ray (EDX) analysis, suggested intracellular Cd binding as a Cd response mechanism of the isolate. Cd exposure resulted in global regulation at the transcriptomic level, with the bacterium switching to an energy-conserving mode by inhibiting energy-consuming processes while increasing the production of stress-related proteins. The stress response system included increased import of sulfur and iron, which become deficient under Cd stress, and the redirection of sulfur metabolism to the maintenance of intracellular glutathione levels in response to Cd toxicity. Increased production of siderophores, responding to Cd-induced Fe deficiency, not only is involved in the Cd stress response systems of EG16 but may also play an important role in promoting plant growth as well as alleviating the Cd-induced inhibition of IAA production. The newly isolated strain EG16 may be a suitable candidate for microbially assisted phytoremediation due to its high resistance to Cd and its Cd-induced siderophore production, which is likely to contribute to plant growth promotion. PMID:26729719

  20. Characterization and purification of bile salt hydrolase from Lactobacillus sp. strain 100-100

    International Nuclear Information System (INIS)

    The authors have characterized and purified the bile salt hydrolase from Lactobacillus sp. strain 100-100. Bile salt hydrolase from cells of the strain was purified with column and high-performance liquid chromatography. The activity was assayed in whole cells and cell-free extracts with either a radiochemical assay involving [14C]taurocholic acid or a nonradioactive assay involving trinitrobenzene sulfonate. The activity was detectable only in stationary-phase cells. Within 20 min after conjugated bile acids were added to stationary-phase cultures of strain 100-100, the activity in whole cells increased to levels three- to fivefold higher than in cells from cultures grown in medium free of bile salts. In cell-free extracts, however, the activity was about equal whether or not the cells have been grown with bile salts present. When supernatant solutions from cultures grown in medium containing taurocholic acid were used to suspend cells grown in medium free of the bile salt, the bile salt hydrolase activity detected in whole cells increased two- to threefold. Two forms of the hydrolase were purified from the cells and designated hydrolases A and B. They eluted from anion-exchange high-performance liquid chromatography in two sets of fractions, A at 0.15 M NaCl and B at 0.18 M NaCl. Their apparent molecular weights in nondenaturing polyacrylamide gel electrophoresis were 115,000 and 105,000, respectively. However, discrepancies existed in the apparent molecular weights and number of peptides detected in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the two forms. Whether the enzyme exists in two forms in the cells remains to be determined

  1. Production and Purification of a Novel Xanthan Lyase from a Xanthan-Degrading Microbacterium sp. Strain XT11

    OpenAIRE

    Fan Yang; Lan Yang; Xiaoyu Guo; Xue Wang; Lili Li; Zhicheng Liu; Wei Wang(College of William and Mary); Xianzhen Li

    2014-01-01

    A xanthan lyase was produced and purified from the culture supernatant of an excellent xanthan-modifying strain Microbacterium sp. XT11. Xanthan lyase was induced by xanthan but was inhibited by its structural monomer glucose. Its production by strain XT11 is much higher than that by all other reported strains. The purified xanthan lyase has a molecular mass of 110 kDa and a specific activity of 28.2 U/mg that was much higher than that of both Paenibacillus and Bacillus lyases. It was specifi...

  2. Cloning and characterization of a xylanase, KRICT PX1 from the strain Paenibacillus sp. HPL-001.

    Science.gov (United States)

    Hwang, In Taek; Lim, Hee Kyung; Song, Ha Young; Cho, Soo Jin; Chang, Jong-San; Park, No-Joong

    2010-01-01

    The KRICT PX1 gene (GB: FJ380951) consisting of 996bp encoding a protein of 332 amino acids (38.1kDa) from the recently isolated Paenibacillus sp. strain HPL-001 (KCTC11365BP) has been cloned and expressed in Escherichia coli. The xylanase KRICT PX1 showed high activity on birchwood xylan, and was active over a pH range of 5.0 to 11.0, with two optima at pH 5.5 and 9.5 at 50 degrees C with K(m) value of 5.35 and 3.23, respectively. The xylanase activity was not affected by most salts, such as NaCl, LiCl, KCl, NH(4)Cl, CaCl(2), MgCl(2), MnCl(2), and CsCl(2) at 1mM, but affected by CuSO(4), ZnSO(4), and FeCl(3). One mM of EDTA, 2-mercaptoethanol, and PMSF did not affect the xylanase activity. TLC analysis of the catalyzed products after reaction with birchwood xylan revealed that xylobiose was the major product with smaller amounts of xylotriose and xylose. A similarity analysis of the amino acids in KRICT PX1 resulted 72% identity with xylanase from Geobacillus stearothermophilus (GB: ZP_03040360), 70% identity with intracellular xylanase from an uncultured bacterium (GB: AAP51133), 68% identity with endo-1-4-xylanse from Paenibacillus sp. (GB: ZP_02847150). In addition, the amino acid alignment of KRICT PX1 with glycosyl hydralase (GH) family 10 xylanases revealed a high degree of homology in highly conserved regions including the catalytic sites, and this was confirmed through PROSITE scan. These results imply that KRICT PX1 is a new xylanase gene, and this alkaline xylanase belongs to GH family 10. PMID:20493247

  3. Characterization of Halomonas sp. strain H11 α-glucosidase activated by monovalent cations and its application for efficient synthesis of α-D-glucosylglycerol.

    Science.gov (United States)

    Ojima, Teruyo; Saburi, Wataru; Yamamoto, Takeshi; Kudo, Toshiaki

    2012-03-01

    An α-glucosidase (HaG) with the following unique properties was isolated from Halomonas sp. strain H11: (i) high transglucosylation activity, (ii) activation by monovalent cations, and (iii) very narrow substrate specificity. The molecular mass of the purified HaG was estimated to be 58 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). HaG showed high hydrolytic activities toward maltose, sucrose, and p-nitrophenyl α-D-glucoside (pNPG) but to almost no other disaccharides or malto-oligosaccharides higher than trisaccharides. HaG showed optimum activity to maltose at 30°C and pH 6.5. Monovalent cations such as K(+), Rb(+), Cs(+), and NH(4)(+) increased the enzymatic activity to 2- to 9-fold of the original activity. These ions shifted the activity-pH profile to the alkaline side. The optimum temperature rose to 40°C in the presence of 10 mM NH(4)(+), although temperature stability was not affected. The apparent K(m) and k(cat) values for maltose and pNPG were significantly improved by monovalent cations. Surprisingly, k(cat)/K(m) for pNPG increased 372- to 969-fold in their presence. HaG used some alcohols as acceptor substrates in transglucosylation and was useful for efficient synthesis of α-d-glucosylglycerol. The efficiency of the production level was superior to that of the previously reported enzyme Aspergillus niger α-glucosidase in terms of small amounts of by-products. Sequence analysis of HaG revealed that it was classified in glycoside hydrolase family 13. Its amino acid sequence showed high identities, 60%, 58%, 57%, and 56%, to Xanthomonas campestris WU-9701 α-glucosidase, Xanthomonas campestris pv. raphani 756C oligo-1,6-glucosidase, Pseudomonas stutzeri DSM 4166 oligo-1,6-glucosidase, and Agrobacterium tumefaciens F2 α-glucosidase, respectively. PMID:22226947

  4. Lipopolysaccharide dependence of cyanophage sensitivity and aerobic nitrogen fixation in Anabaena sp. strain PCC 7120.

    Science.gov (United States)

    Xu, X; Khudyakov, I; Wolk, C P

    1997-05-01

    Fox- mutants of Anabaena sp. strain PCC 7120 are unable to fix dinitrogen in the presence of oxygen. A fragment of the DNA of Anabaena sp. was cloned by complementation of a spontaneous Fox-, cyanophage-resistant mutant, R56, and characterized. Random insertion of transposon Tn5 delimited the complementing DNA to a 0.6-kb portion of the cloned fragment. Sequencing of this region and flanking DNA showed one complete open reading frame (ORF) similar to the gene rfbP (undecaprenyl-phosphate galactosephosphotransferase) and two partial ORFs similar to genes rfbD (GDP-D-mannose dehydratase) and rfbZ (first mannosyl transferase), all of which are active in the synthesis of the O antigen unit of the lipopolysaccharide (LPS) component of the outer membrane of gram-negative bacteria. In a transposon (Tn5-1087b)-induced, Fox-, cyanophage-resistant mutant, B14, the transposon was found within the same rfbP-like ORF. The three ORFs were insertionally inactivated with the omega cassette (P. Prentki and H. M. Krisch, Gene 29:303-313, 1984) or with Tn5::omega. Only the insertions in the rfbZ- and rfbP-like ORFs led to resistance to cyanophages A-1(L) and A-4(L) and to a Fox- phenotype. Electrophoretic analysis showed that interruption of the rfbZ- and rfbP-like ORFs resulted in a change in or loss of the characteristic pattern of the lengths of the LPS, whereas interruption of the rfbD-like ORF merely changed the distribution of the lengths of the LPS to one with a greater prevalence of low molecular weights. According to electron microscopy, interruption of the rfbP-like ORF may have led to aberrant deposition of the layers of the heterocyst envelope, resulting in increased leakage of oxygen into the heterocyst. The results suggest that modified LPS may prevent cyanophage infection of Anabaena sp. vegetative cells and the formation of a functional heterocyst envelope. PMID:9139904

  5. Enhanced Virulence Gene Activity of Agrobacterium in Muskmelon (Cucumis melo L. cv. ‘Birdie’

    Directory of Open Access Journals (Sweden)

    Abul K.M. MOHIUDDIN

    2011-05-01

    Full Text Available Muskmelon (Cucumis melo L. cultivar ‘Birdie’, was evaluated for its response to the tumorigenic Agrobacterium tumefaciens and the oncogenic A. rhizogenes strains. Stem and petiole of three week-old in vitro-grown muskmelon plants were inoculated with five strains of A. tumefaciens and A. rhizogenes each and observed phenotypic expressions i.e. induction of crown galls and hairy roots. This phenotypic expression was efficaciously increased when virulence gene activity of different strains of two Agrobacterium species was enhanced. Intensive studies on enhancement of virulence gene activity of Agrobacterium found to be correlated to the appropriate light intensity (39.3 μmol m-2 s-1 with a specific concentration of monocyclic phenolic compound, acetosyringone (20 μM. The gene activity was also influenced by several other physical factors e.g. plant tissue type, Agrobacterium species and their strains, and plant tissue-Agrobacterium interaction. Among the different A. tumefaciens strains, LBA4404 showed the best virulence gene activity in both stem and petiole through the formation of higher rate of crown galls. On the other hand, strain 15834 of A. rhizogenes showed better gene activity in stem and 8196 in petiole through the formation of higher rate of hairy roots as well as higher average number of hairy roots. Among the two different types of explants, petiole was more susceptible to both Agrobacterium species. Thus it was concluded that future muskmelon transformation study can efficiently be carried out with LBA4404, 15834 and 8196 strains using petiole explants by adding 20 μM of acetosyringone in the medium.

  6. Biochemical Characterization of 3-Methyl-4-nitrophenol Degradation in Burkholderia sp. Strain SJ98

    Science.gov (United States)

    Min, Jun; Lu, Yang; Hu, Xiaoke; Zhou, Ning-Yi

    2016-01-01

    Several strains have been reported to grow on 3-methyl-4-nitrophenol (3M4NP), the primary breakdown product of the excessively used insecticide fenitrothion. However, the microbial degradation of 3M4NP at molecular and biochemical levels remains unknown. Here, methyl-1,4-benzoquinone (MBQ) and methylhydroquinone (MHQ), rather than catechol proposed previously, were identified as the intermediates before ring cleavage during 3M4NP degradation by Burkholderia sp. strain SJ98. Real-time quantitative PCR analysis indicated that the pnpABA1CDEF cluster involved in para-nitrophenol (PNP) and 2-chloro-4-nitrophenol (2C4NP) catabolism was also likely responsible for 3M4NP degradation in this strain. Purified PNP 4-monooxygenase (PnpA) is able to catalyze the monooxygenation of 3M4NP to MBQ and exhibited an apparent Km value of 20.3 ± 2.54 μM for 3M4NP, and pnpA is absolutely necessary for the catabolism of 3M4NP by gene knock-out and complementation. PnpB, a 1,4-benzoquinone reductase catalyzes the reduction of MBQ to MHQ, and also found to enhance PnpA activity in vitro in the conversion of 3M4NP to MBQ. By sequential catalysis assays, PnpCD, PnpE, and PnpF were likely involved in the lower pathway of 3M4NP catabolism. Although NpcCD, NpcE, and NpcF are able to catalyze the sequential conversion of MHQ in vitro, these enzymes are unlikely involved in 3M4NP catabolism because their coding genes were not upregulated by 3M4NP induction in vivo. These results revealed that the enzymes involved in PNP and 2C4NP catabolism were also responsible for 3M4NP degradation in strain SJ98. This fills a gap in our understanding of the microbial degradation of 3M4NP at molecular and biochemical levels and also provides another example to illustrate the adaptive flexibility in microbial catabolism for structurally similar compounds. PMID:27252697

  7. Genome Sequence of Lactobacillus saerimneri 30a (Formerly Lactobacillus sp. Strain 30a), a Reference Lactic Acid Bacterium Strain Producing Biogenic Amines

    OpenAIRE

    Romano, Andrea; Trip, Hein; Campbell-Sills, Hugo; Bouchez, Olivier; Sherman, David; Lolkema, Juke S.; Lucas, Patrick M

    2013-01-01

    Lactobacillus sp. strain 30a (Lactobacillus saerimneri) produces the biogenic amines histamine, putrescine, and cadaverine by decarboxylating their amino acid precursors. We report its draft genome sequence (1,634,278 bases, 42.6% G+C content) and the principal findings from its annotation, which might shed light onto the enzymatic machineries that are involved in its production of biogenic amines.

  8. Isolation of Paenibacillus sp. and Variovorax sp. strains from decaying woods and characterization of their potential for cellulose deconstruction.

    Science.gov (United States)

    Ghio, Silvina; Lorenzo, Gonzalo Sabarís Di; Lia, Verónica; Talia, Paola; Cataldi, Angel; Grasso, Daniel; Campos, Eleonora

    2012-01-01

    Prospection of cellulose-degrading bacteria in natural environments allows the identification of novel cellulases and hemicellulases that could be useful in second-generation bioethanol production. In this work, cellulolytic bacteria were isolated from decaying native forest soils by enrichment on cellulose as sole carbon source. There was a predominance of Gram positive isolates that belonged to the phyla Proteobacteria and Firmicutes. Many primary isolates with cellulolytic activity were not pure cultures. From these consortia, isolation of pure constituents was attempted in order to test the hypothesis whether microbial consortia are needed for full degradation of complex substrates. Two isolates, CB1-2-A-5 and VG-4-A-2, were obtained as the pure constituents of CB1-2 and VG-4 consortia, respectively. Based on 16S RNA sequence, they could be classified as Variovorax paradoxus and Paenibacillus alvei. Noteworthy, only VG-4 consortium showed measurable xylan degrading capacity and signs of filter paper degradation. However, no xylan or filter paper degrading capacities were observed for the pure cultures isolated from it, suggesting that other members of this consortium were necessary for these hydrolyzing activities. Our results indicated that Paenibacillus sp. and Variovorax sp. as well as VG-4 consortium, might be a useful source of hydrolytic enzymes. Moreover, although Variovorax sp. had been previously identified in metagenomic studies of cellulolytic communities, this is the first report on the isolation and characterization of this microorganism as a cellulolytic genus. PMID:23301200

  9. Mechanism of cadmium resistance and adsorption of a yeast strain Rhodotorula sp. Y11

    Institute of Scientific and Technical Information of China (English)

    YUAN Hongli; LI Zhijian; WANG Nengfei; HUANG Huaizeng

    2005-01-01

    The mechanism of cadmium resistance of a yeast strain Rhodotorula sp. Y11 isolated from mine soil was investigated. We found that the yeast cells treated with different methods showed different cadmium-adsorption models. Grown in medium supplied with 100 mg/L of cadmium, 3.29% of the cell-absorbed cadmium was accounted in the cytoplasm. However, only 1% was taken into the cytoplasm and 99% was bound to the cell wall using the lyophilized biomass to adsorb cadmium in double distilled water. Treatments with alkali, ethanol-chloroform and proteinase showed different influences on the biosorption of whole cells and isolated cell walls. FT-IR analysis showed that acetyl of chitin was the active compound in the cells to absorb cadmium. The production of Metallothioneins, proteins related to the resistance to heavy metal in yeast, was evidently induced by cadmium, achieving 638.8 μg/g wet weight, which was about 85 folds higher than that in the uninduced biomass and was also much higher than that reported previously. The molecular weight of Metallothioneins was 6500 Da estimated by SDS-PAGE.

  10. Antimicrobial Protein Candidates from the Thermophilic Geobacillus sp. Strain ZGt-1: Production, Proteomics, and Bioinformatics Analysis

    Science.gov (United States)

    Alkhalili, Rawana N.; Bernfur, Katja; Dishisha, Tarek; Mamo, Gashaw; Schelin, Jenny; Canbäck, Björn; Emanuelsson, Cecilia; Hatti-Kaul, Rajni

    2016-01-01

    A thermophilic bacterial strain, Geobacillus sp. ZGt-1, isolated from Zara hot spring in Jordan, was capable of inhibiting the growth of the thermophilic G. stearothermophilus and the mesophilic Bacillus subtilis and Salmonella typhimurium on a solid cultivation medium. Antibacterial activity was not observed when ZGt-1 was cultivated in a liquid medium; however, immobilization of the cells in agar beads that were subjected to sequential batch cultivation in the liquid medium at 60 °C showed increasing antibacterial activity up to 14 cycles. The antibacterial activity was lost on protease treatment of the culture supernatant. Concentration of the protein fraction by ammonium sulphate precipitation followed by denaturing polyacrylamide gel electrophoresis separation and analysis of the gel for antibacterial activity against G. stearothermophilus showed a distinct inhibition zone in 15–20 kDa range, suggesting that the active molecule(s) are resistant to denaturation by SDS. Mass spectrometric analysis of the protein bands around the active region resulted in identification of 22 proteins with molecular weight in the range of interest, three of which were new and are here proposed as potential antimicrobial protein candidates by in silico analysis of their amino acid sequences. Mass spectrometric analysis also indicated the presence of partial sequences of antimicrobial enzymes, amidase and dd-carboxypeptidase. PMID:27548162

  11. Emulsification potential of a newly isolated biosurfactant-producing bacterium, Rhodococcus sp. strain TA6.

    Science.gov (United States)

    Shavandi, Mahmoud; Mohebali, Ghasemali; Haddadi, Azam; Shakarami, Heidar; Nuhi, Ashrafossadat

    2011-02-01

    An indigenous biosurfactant producing bacterium, Rhodococcus sp. strain TA6 was isolated from Iranian oil contaminated soil using an efficient enrichment and screening method. During growth on sucrose and several hydrocarbon substrates as sole carbon source, the bacterium could produce biosurfactants. As a result of biosurfactant synthesis, the surface tension of the growth medium was reduced from 68mNm(-1) to values below 30mNm(-1). The biosurfactant was capable of forming stable emulsions with various hydrocarbons ranging from pentane to light motor oil. Preliminary chemical characterization revealed that the TA6 biosurfactant consisted of extracellular lipids and glycolipids. The biosurfactant was stable during exposure to high salinity (10% NaCl), elevated temperatures (120°C for 15min) and within a wide pH range (4.0-10.0). The culture broth was effective in recovering up to 70% of the residual oil from oil-saturated sand packs which indicates the potential value of the biosurfactant in enhanced oil recovery. PMID:21030223

  12. p-Aminoacetophenonic Acids Produced by a Mangrove Endophyte Streptomyces sp. (strain HK10552

    Directory of Open Access Journals (Sweden)

    Fangfang Wang

    2010-04-01

    Full Text Available Four new p-aminoacetophenonic acids, named (2E-11-(4′-aminophenyl-5,9-dihydroxy-4,6,8-trimethyl-11-oxo-undec-2-enoic acid (1, 9-(4′-aminophenyl-3,7-dihydroxy-2,4,6-trimethyl-9-oxo-nonoic acid(2, (2E-11-(4′-aminophenyl-5,9-O-cyclo-4,6,8-trimethyl-11-oxo-undec-2-enoic acid (3 and 9-(4′-aminophenyl-3,7-O-cyclo-2,4,6-trimethyl-9-oxo-nonoic acid(4, were isolated from an endophyte Streptomyces sp. (strain HK10552 of the mangrove plant Aegiceras corniculatum. The structures of 1–4 were elucidated by using spectroscopic analyses. The relative stereoconfigurations of compounds 3 and 4 were determined by NOESY experiments. In the bioassay test, 1–4 showed no cytotoxicity against the Hela cell lines. Compound 4 also showed no inhibitory bioactivity on HCV protease and SecA ATPase and wasn’t active against VSVG/HIV-luc pseudotyping virus.

  13. Antimicrobial Protein Candidates from the Thermophilic Geobacillus sp. Strain ZGt-1: Production, Proteomics, and Bioinformatics Analysis.

    Science.gov (United States)

    Alkhalili, Rawana N; Bernfur, Katja; Dishisha, Tarek; Mamo, Gashaw; Schelin, Jenny; Canbäck, Björn; Emanuelsson, Cecilia; Hatti-Kaul, Rajni

    2016-01-01

    A thermophilic bacterial strain, Geobacillus sp. ZGt-1, isolated from Zara hot spring in Jordan, was capable of inhibiting the growth of the thermophilic G. stearothermophilus and the mesophilic Bacillus subtilis and Salmonella typhimurium on a solid cultivation medium. Antibacterial activity was not observed when ZGt-1 was cultivated in a liquid medium; however, immobilization of the cells in agar beads that were subjected to sequential batch cultivation in the liquid medium at 60 °C showed increasing antibacterial activity up to 14 cycles. The antibacterial activity was lost on protease treatment of the culture supernatant. Concentration of the protein fraction by ammonium sulphate precipitation followed by denaturing polyacrylamide gel electrophoresis separation and analysis of the gel for antibacterial activity against G. stearothermophilus showed a distinct inhibition zone in 15-20 kDa range, suggesting that the active molecule(s) are resistant to denaturation by SDS. Mass spectrometric analysis of the protein bands around the active region resulted in identification of 22 proteins with molecular weight in the range of interest, three of which were new and are here proposed as potential antimicrobial protein candidates by in silico analysis of their amino acid sequences. Mass spectrometric analysis also indicated the presence of partial sequences of antimicrobial enzymes, amidase, and dd-carboxypeptidase. PMID:27548162

  14. Cloning and characterization of two xyloglucanases from Paenibacillus sp. strain KM21.

    Science.gov (United States)

    Yaoi, Katsuro; Nakai, Tomonori; Kameda, Yoshiro; Hiyoshi, Ayako; Mitsuishi, Yasushi

    2005-12-01

    Two xyloglucan-specific endo-beta-1,4-glucanases (xyloglucanases [XEGs]), XEG5 and XEG74, with molecular masses of 40 kDa and 105 kDa, respectively, were isolated from the gram-positive bacterium Paenibacillus sp. strain KM21, which degrades tamarind seed xyloglucan. The genes encoding these XEGs were cloned and sequenced. Based on their amino acid sequences, the catalytic domains of XEG5 and XEG74 were classified in the glycoside hydrolase families 5 and 74, respectively. XEG5 is the first xyloglucanase belonging to glycoside hydrolase family 5. XEG5 lacks a carbohydrate-binding module, while XEG74 has an X2 module and a family 3 type carbohydrate-binding module at its C terminus. The two XEGs were expressed in Escherichia coli, and recombinant forms of the enzymes were purified and characterized. Both XEGs had endoglucanase active only toward xyloglucan and not toward Avicel, carboxymethylcellulose, barley beta-1,3/1,4-glucan, or xylan. XEG5 is a typical endo-type enzyme that randomly cleaves the xyloglucan main chain, while XEG74 has dual endo- and exo-mode activities or processive endo-mode activity. XEG5 digested the xyloglucan oligosaccharide XXXGXXXG to produce XXXG, whereas XEG74 digestion of XXXGXXXG resulted in XXX, XXXG, and GXXXG, suggesting that this enzyme cleaves the glycosidic bond of unbranched Glc residues. Analyses using various oligosaccharide structures revealed that unique structures of xyloglucan oligosaccharides can be prepared with XEG74. PMID:16332739

  15. A Tn5051-like mer-containing transposon identified in a heavy metal tolerant strain Achromobacter sp. AO22

    Directory of Open Access Journals (Sweden)

    Bhave Mrinal

    2009-03-01

    Full Text Available Abstract Background Achromobacter sp. AO22 (formerly Alcaligenes sp. AO22, a bacterial strain isolated from a lead-contaminated industrial site in Australia, was previously found to be resistant to moderate to high levels of mercury, copper and other heavy metals. However, the nature and location of the genetic basis for mercuric ion resistance in this strain, had not been previously identified. Findings Achromobacter sp. AO22 contains a functional mer operon with all four essential genes (merRTPA and shows >99% DNA sequence identity to that of Tn501. The mer operon was present on a transposon, designated TnAO22, captured by introducing a broad-host-range IncP plasmid into Achromobacter sp. AO22 and subsequently transferring it to E. coli recipients. The transposition frequency of TnAO22 was 10-2 to 10-3 per target plasmid transferred. Analysis of TnAO22 sequence revealed it belonged to the Tn21 subgroup of the Tn3 superfamily of transposons, with the transposition module having >99% identity with Tn5051 of a Pseudomonas putida strain isolated from a water sample in New York. Conclusion TnAO22 is thus a new variant of Tn5051 of the Tn3 superfamily and the transposon and its associated mercury resistance system are among the few such systems reported in a soil bacterium. Achromobacter sp. AO22 can thus be exploited for applications such as in situ mercury bioremediation of contaminated sites, or the mobile unit and mer operon could be mobilized to other bacteria for similar purposes.

  16. Identification of Novel Genes Involved in Long-Chain n-Alkane Degradation by Acinetobacter sp. Strain DSM 17874▿

    Science.gov (United States)

    Throne-Holst, Mimmi; Wentzel, Alexander; Ellingsen, Trond E.; Kotlar, Hans-Kristian; Zotchev, Sergey B.

    2007-01-01

    Acinetobacter sp. strain DSM 17874 is capable of utilizing n-alkanes with chain lengths ranging from that of decane (C10H22) to that of tetracontane (C40H82) as a sole carbon source. Two genes encoding AlkB-type alkane hydroxylase homologues, designated alkMa and alkMb, have been shown to be involved in the degradation of n-alkanes with chain lengths of from 10 to 20 C atoms in this strain. Here, we describe a novel high-throughput screening method and the screening of a transposon mutant library to identify genes involved in the degradation of n-alkanes with C chain lengths longer than 20, which are solid at 30°C, the optimal growth temperature for Acinetobacter sp. strain DSM 17874. A library consisting of approximately 6,800 Acinetobacter sp. strain DSM 17874 transposon mutants was constructed and screened for mutants unable to grow on dotriacontane (C32H66) while simultaneously showing wild-type growth characteristics on shorter-chain n-alkanes. For 23 such mutants isolated, the genes inactivated by transposon insertion were identified. Targeted inactivation and complementation studies of one of these genes, designated almA and encoding a putative flavin-binding monooxygenase, confirmed its involvement in the strain's metabolism of long-chain n-alkanes. To our knowledge, almA represents the first cloned gene shown to be involved in the bacterial degradation of long-chain n-alkanes of 32 C's and longer. Genes encoding AlmA homologues were also identified in other long-chain n-alkane-degrading Acinetobacter strains. PMID:17400787

  17. Draft Genome Sequence of Criibacterium bergeronii gen. nov., sp. nov., Strain CCRI-22567T, Isolated from a Vaginal Sample from a Woman with Bacterial Vaginosis.

    Science.gov (United States)

    Maheux, Andrée F; Bérubé, Ève; Boudreau, Dominique K; Raymond, Frédéric; Corbeil, Jacques; Roy, Paul H; Boissinot, Maurice; Omar, Rabeea F

    2016-01-01

    Criibacterium bergeronii gen. nov., sp. nov., CCRI-22567 is the type strain of the new genus Criibacterium The strain was isolated from a woman with bacterial vaginosis. The genome assembly comprised 2,384,460 bp, with 34.4% G+C content. This is the first genome announcement of a strain belonging to the genus Criibacterium. PMID:27587833

  18. Genetic labelling and application of the isoproturon-mineralizing Sphingomonas sp. strain SRS2 in soil and rhizosphere

    DEFF Research Database (Denmark)

    Kristensen, K.E.; Jacobsen, C.S.; Hansen, L.H.;

    2006-01-01

    AIMS: To construct a luxAB-labelled Sphingomonas sp. strain SRS2 maintaining the ability to mineralize the herbicide isoproturon and usable for monitoring the survival and distribution of strain SRS2 on plant roots in laboratory systems. METHODS AND RESULTS: We inserted the mini-Tn5-luxAB marker...... for monitoring colonization of barley roots. CONCLUSIONS: We successfully constructed a genetically labelled isoproturon-mineralizing-strain SRS2 and demonstrated its ability to survive in soil and its colonization of rhizosphere. SIGNIFICANCE AND IMPACT OF THE STUDY: The construction of a lux...... into strain SRS2 using conjugational mating. In the transconjugant mutants luciferase was produced in varying levels. The mutants showed significant differences in their ability to degrade isoproturon. One luxAB-labelled mutant maintained the ability to mineralize isoproturon and was therefore selected...

  19. Metabolism of 2-Chloro-4-Nitroaniline via Novel Aerobic Degradation Pathway by Rhodococcus sp. Strain MB-P1

    OpenAIRE

    Fazlurrahman Khan; Deepika Pal; Surendra Vikram; Swaranjit Singh Cameotra

    2013-01-01

    2-chloro-4-nitroaniline (2-C-4-NA) is used as an intermediate in the manufacture of dyes, pharmaceuticals, corrosion inhibitor and also used in the synthesis of niclosamide, a molluscicide. It is marked as a black-listed substance due to its poor biodegradability. We report biodegradation of 2-C-4-NA and its pathway characterization by Rhodococcus sp. strain MB-P1 under aerobic conditions. The strain MB-P1 utilizes 2-C-4-NA as the sole carbon, nitrogen, and energy source. In the growth medium...

  20. Global Transcriptional Response of the Alkalitolerant Cyanobacterium Synechocystis sp. Strain PCC 6803 to pH 10.

    OpenAIRE

    Summerfield, Tina C.; Sherman, Louis A.

    2008-01-01

    Many cyanobacterial strains are able to grow at a pH range from neutral to pH 10 or 11. Such alkaline conditions favor cyanobacterial growth (e.g., bloom formation), and cyanobacteria must have developed strategies to adjust to changes in CO2 concentration and ion availability. Synechocystis sp. strain PCC 6803 exhibits similar photoautotrophic growth characteristics at pH 10 and pH 7.5, and we examined global gene expression following transfer from pH 7.5 to pH 10 to determine cellular adapt...

  1. Characterization of a purified thermostable xylanase from Caldicoprobacter algeriensis sp. nov. strain TH7C1(T)

    OpenAIRE

    Bouanane-Darenfed, A.; Boucherba, N.; Bouacem, K.; Gagaoua, M.; Joseph, M; Kebbouche-Gana, S.; Nateche, F.; Hacene, H.; Ollivier, Bernard; Cayol, J. L.; Fardeau, Marie-Laure

    2016-01-01

    The present study investigates the purification and biochemical characterization of an extracellular thermostable xylanase (called XYN35) from Caldicoprobacter algeriensis sp. nov., strain TH7C1(T), a thermophilic, anaerobic strain isolated from the hydrothermal hot spring of Guelma (Algeria). The maximum xylanase activity recorded after 24 h of incubation at 70 degrees C and in an optimized medium containing 10 g/L mix birchwood-and oats spelt-xylan was 250 U/mL. The pure protein was obtaine...

  2. Identification and Cloning of Genes Involved in Specific Desulfurization of Dibenzothiophene by Rhodococcus sp. Strain IGTS8

    OpenAIRE

    Denome, Sylvia A.; Olson, Edwin S.; Young, Kevin D.

    1993-01-01

    The gram-positive bacterium Rhodococcus sp. strain IGTS8 is able to remove sulfur from certain aromatic compounds without breaking carbon-carbon bonds. In particular, sulfur is removed from dibenzothiophene (DBT) to give the final product, 2-hydroxybiphenyl. A genomic library of IGTS8 was constructed in the cosmid vector pLAFR5, but no desulfurization phenotype was imparted to Escherichia coli. Therefore, IGTS8 was mutagenized, and a new strain (UV1) was selected that had lost the ability to ...

  3. Aerobic Degradation of N-Methyl-4-Nitroaniline (MNA) by Pseudomonas sp. Strain FK357 Isolated from Soil

    OpenAIRE

    Khan, Fazlurrahman; Vyas, Bhawna; Pal, Deepika; Cameotra, Swaranjit Singh

    2013-01-01

    N-Methyl-4-nitroaniline (MNA) is used as an additive to lower the melting temperature of energetic materials in the synthesis of insensitive explosives. Although the biotransformation of MNA under anaerobic condition has been reported, its aerobic microbial degradation has not been documented yet. A soil microcosms study showed the efficient aerobic degradation of MNA by the inhabitant soil microorganisms. An aerobic bacterium, Pseudomonas sp. strain FK357, able to utilize MNA as the sole car...

  4. Genomic and Transcriptomic Analyses of the Facultative Methanotroph Methylocystis sp. Strain SB2 Grown on Methane or Ethanol

    OpenAIRE

    Vorobev, Alexey; Jagadevan, Sheeja; Jain, Sunit; Anantharaman, Karthik; Dick, Gregory J.; Vuilleumier, Stéphane; Semrau, Jeremy D.

    2014-01-01

    A minority of methanotrophs are able to utilize multicarbon compounds as growth substrates in addition to methane. The pathways utilized by these microorganisms for assimilation of multicarbon compounds, however, have not been explicitly examined. Here, we report the draft genome of the facultative methanotroph Methylocystis sp. strain SB2 and perform a detailed transcriptomic analysis of cultures grown with either methane or ethanol. Evidence for use of the canonical methane oxidation pathwa...

  5. Ecological Physiology of Synechococcus sp. Strain SH-94-5, a Naturally Occurring Cyanobacterium Deficient in Nitrate Assimilation

    OpenAIRE

    Miller, Scott R.; Castenholz, Richard W.

    2001-01-01

    Synechococcus sp. strain SH-94-5 is a nitrate assimilation-deficient cyanobacterium which was isolated from an ammonium-replete hot spring in central Oregon. While this clone could grow on ammonium and some forms of organic nitrogen as sole nitrogen sources, it could not grow on either nitrate or nitrite, even under conditions favoring passive diffusion. It was determined that this clone does not express functional nitrate reductase or nitrite reductase and that the lack of activity of either...

  6. Isolation and identification of berberine and berberrubine metabolites by berberine-utilizing bacterium Rhodococcus sp. strain BD7100.

    Science.gov (United States)

    Ishikawa, Kazuki; Takeda, Hisashi; Wakana, Daigo; Sato, Fumihiko; Hosoe, Tomoo

    2016-05-01

    Based on the finding of a novel berberine (BBR)-utilizing bacterium, Rhodococcus sp. strain BD7100, we investigated the degradation of BBR and its analog berberrubine (BRU). Resting cells of BD7100 demethylenated BBR and BRU, yielding benzeneacetic acid analogs. Isolation of benzeneacetic acid analogs suggested that BD7100 degraded the isoquinoline ring of the protoberberine skeleton. This work represents the first report of cleavage of protoberberine skeleton by a microorganism. PMID:26882131

  7. Investigation of the Amycolatopsis sp. Strain ATCC 39116 Vanillin Dehydrogenase and Its Impact on the Biotechnical Production of Vanillin

    OpenAIRE

    Fleige, Christian; Hansen, Gunda; Kroll, Jens; Steinbüchel, Alexander

    2013-01-01

    The actinomycete Amycolatopsis sp. strain ATCC 39116 is capable of synthesizing large amounts of vanillin from ferulic acid, which is a natural cell wall component of higher plants. The desired intermediate vanillin is subject to undesired catabolism caused by the metabolic activity of a hitherto unknown vanillin dehydrogenase (VDHATCC 39116). In order to prevent the oxidation of vanillin to vanillic acid and thereby to obtain higher yields and concentrations of vanillin, the responsible vani...

  8. Purification and Characterization of Two Distinct Metalloproteases Secreted by the Entomopathogenic Bacterium Photorhabdus sp. Strain Az29

    OpenAIRE

    Cabral, C. M.; Cherqui, A.; Pereira, A.; Simões, N.

    2004-01-01

    Photorhabdus sp. strain Az29 is symbiotic with an Azorean nematode of the genus Heterorhabditis in a complex that is highly virulent to insects even at low temperatures. The virulence of the bacteria is mainly attributed to toxins and bacterial enzymes secreted during parasitism. The bacteria secrete proteases during growth, with a peak at the end of the exponential growth phase. Protease secretion was higher in cultures growing at lower temperatures. At 10°C the activity was highest and rema...

  9. Biochemical Properties of a New Cold-Active Mono- and Diacylglycerol Lipase from Marine Member Janibacter sp. Strain HTCC2649

    OpenAIRE

    Dongjuan Yuan; Dongming Lan; Ruipu Xin; Bo Yang; Yonghua Wang

    2014-01-01

    Mono- and di-acylglycerol lipase has been applied to industrial usage in oil modification for its special substrate selectivity. Until now, the reported mono- and di-acylglycerol lipases from microorganism are limited, and there is no report on the mono- and di-acylglycerol lipase from bacteria. A predicted lipase (named MAJ1) from marine Janibacter sp. strain HTCC2649 was purified and biochemical characterized. MAJ1 was clustered in the family I.7 of esterase/lipase. The optimum activity ...

  10. Taxonomy of haemolytic and/or proteolytic strains of the genus Acinetobacter with the proposal of Acinetobacter courvalinii sp. nov. (genomic species 14 sensu Bouvet & Jeanjean), Acinetobacter dispersus sp. nov. (genomic species 17), Acinetobacter modestus sp. nov., Acinetobacter proteolyticus sp. nov. and Acinetobacter vivianii sp. nov.

    Science.gov (United States)

    Nemec, Alexandr; Radolfova-Krizova, Lenka; Maixnerova, Martina; Vrestiakova, Eliska; Jezek, Petr; Sedo, Ondrej

    2016-04-01

    We aimed to define the taxonomic status of 40 haemolytic and/or proteolytic strains of the genus Acinetobacter which were previously classified into five putative species termed as genomic species 14BJ (n = 9), genomic species 17 (n = 9), taxon 18 (n = 7), taxon 19 (n = 6) and taxon 20 (n = 9). The strains were recovered mostly from human clinical specimens or soil and water ecosystems and were highly diverse in geographical origin and time of isolation. Comparative analysis of the rpoB and gyrB gene sequences of all strains, and the whole-genome sequences of selected strains, showed that these putative species formed five respective, well-supported clusters within a distinct clade of the genus Acinetobacter which typically, although not exclusively, encompasses strains with strong haemolytic activity. The whole-genome-based average nucleotide identity (ANIb) values supported the species status of each of these clusters. Moreover, the distinctness and coherence of the clusters were supported by whole-cell profiling based on MALDI-TOF MS. Congruent with these findings were the results of metabolic and physiological testing. We conclude that the five putative taxa represent respective novel species, for which the names Acinetobacter courvalinii sp. nov. (type strain ANC 3623T = CCUG 67960T = CIP 110480T = CCM 8635T), Acinetobacter dispersus sp. nov. (type strain ANC 4105T = CCUG 67961T = CIP 110500T = CCM 8636T), Acinetobacter modestus sp. nov. (type strain NIPH 236T = CCUG 67964T = CIP 110444T = CCM 8639T), Acinetobacter proteolyticus sp. nov. (type strain NIPH 809T = CCUG 67965T = CIP 110482T = CCM 8640T) and Acinetobacter vivianii sp. nov. (type strain NIPH 2168T = CCUG 67967T = CIP 110483T = CCM 8642T) are proposed. PMID:26822020

  11. Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1.

    Science.gov (United States)

    Kits, K Dimitri; Klotz, Martin G; Stein, Lisa Y

    2015-09-01

    Obligate methanotrophs belonging to the Phyla Proteobacteria and Verrucomicrobia require oxygen for respiration and methane oxidation; nevertheless, aerobic methanotrophs are abundant and active in low oxygen environments. While genomes of some aerobic methanotrophs encode putative nitrogen oxide reductases, it is not understood whether these metabolic modules are used for NOx detoxification, denitrification or other purposes. Here we demonstrate using microsensor measurements that a gammaproteobacterial methanotroph Methylomonas denitrificans sp. nov. strain FJG1(T) couples methane oxidation to nitrate reduction under oxygen limitation, releasing nitrous oxide as a terminal product. Illumina RNA-Seq data revealed differential expression of genes encoding a denitrification pathway previously unknown to methanotrophs as well as the pxmABC operon in M. denitrificans sp. nov. strain FJG1(T) in response to hypoxia. Physiological and transcriptome data indicate that genetic inventory encoding the denitrification pathway is upregulated only upon availability of nitrate under oxygen limitation. In addition, quantitation of ATP levels demonstrates that the denitrification pathway employs inventory such as nitrate reductase NarGH serving M. denitrificans sp. nov. strain FJG1(T) to conserve energy during oxygen limitation. This study unravelled an unexpected metabolic flexibility of aerobic methanotrophs, thereby assigning these bacteria a new role at the metabolic intersection of the carbon and nitrogen cycles. PMID:25580993

  12. Efficient biodegradation of phenanthrene by a novel strain Massilia sp. WF1 isolated from a PAH-contaminated soil.

    Science.gov (United States)

    Wang, Haizhen; Lou, Jun; Gu, Haiping; Luo, Xiaoyan; Yang, Li; Wu, Laosheng; Liu, Yong; Wu, Jianjun; Xu, Jianming

    2016-07-01

    A novel phenanthrene (PHE)-degrading strain Massilia sp. WF1, isolated from PAH-contaminated soil, was capable of degrading PHE by using it as the sole carbon source and energy in a range of pH (5.0-8.0), temperatures (20-35 °C), and PHE concentrations (25-400 mg L(-1)). Massilia sp. WF1 exhibited highly effective PHE-degrading ability that completely degraded 100 mg L(-1) of PHE over 2 days at optimal conditions (pH 6.0, 28 °C). The kinetics of PHE biodegradation by Massilia sp. WF1 was well represented by the Gompertz model. Results indicated that PHE biodegradation was inhibited by the supplied lactic acid but was promoted by the supplied carbon sources of glucose, citric acid, and succinic acid. Salicylic acid (SALA) and phthalic acid (PHTA) were not utilized by Massilia sp. WF1 and had no obvious effect on PHE biodegradation. Only two metabolites, 1-hydroxy-2-naphthoic acid (1H2N) and PHTA, were identified in PHE biodegradation process. Quantitatively, nearly 27.7 % of PHE was converted to 1H2N and 30.3 % of 1H2N was further metabolized to PHTA. However, the PHTA pathway was broken and the SALA pathway was ruled out in PHE biodegradation process by Massilia sp. WF1. PMID:27026540

  13. Remoción de Cromo Hexavalente por el Hongo Paecilomyces sp. Aislado del Medio Ambiente Hexavalent Chromium Removal by a Paecilomyces sp Fungal Strain Isolated from Environment

    Directory of Open Access Journals (Sweden)

    Juan F Cárdenas-González

    2011-01-01

    Full Text Available Se aisló un hongo resistente y capaz de remover cromo hexavalente a partir del medio ambiente de una zona cercana a la Facultad de Ciencias Químicas, Universidad de San Luis Potosí en México. La cepa fue identificada como Paecilomyces sp, en base a sus características macro y microscópicas. La biomasa fúngica remueve eficientemente Cromo (VI en solución y puede utilizarse para descontaminar nichos acuáticos contaminados, ya que 1 g de biomasa fúngica remueve 100 y 1000 mg/100 mL del metal a una y tres horas de incubación, y elimina totalmente 297 mg Cr(VI/g de tierra contaminada.A fungal strain resistant to Cr (VI and capable of removing the oxyanion from the médium was isolated from the environment near the Chemical Science Faculty, University San Luis Potosí in México. The strain was identified as Paecilomyces sp, by macro and microscopic characteristics. It was concluded that this fungal biomass can be used for the removal of Cr (VI in aqueous solutions, since 1 g of fungal biomass removes 100 y 1000 mg/100 mL of this metal after one and three hours of incubation, and removes 297 mg Cr (VI from contaminated soil.

  14. Antimicrobial activity of Rhizobium sp. strains against Pseudomonas savastanoi, the agent responsible for the olive knot disease in Algeria

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available In the present investigation, six Rhizobium strains isolated from Algerian soil were checked for their antimicrobial activity against Pseudomonas savastanoi, the agent responsible for olive knot disease. Rhizobium sp. ORN 24 and ORN 83 were found to produce antimicrobial activities against Pseudomonas savastanoi. The antimicrobial activity produced by Rhizobium sp. ORN24 was precipitable with ammonium sulfate, between 1,000 and 10,000 KDa molecular weight, heat resistant but sensitive to proteases and detergents. These characteristics suggest the bacteriocin nature of the antimicrobial substance produced by Rhizobium sp. ORN24, named rhizobiocin 24. In contrast, the antimicrobial activity produced by Rhizobium sp. ORN83 was not precipitable with ammonium sulfate; it was smaller than 1,000 KDa molecular weight, heat labile, and protease and detergent resistant. These characteristics could indicate the relationship between the antimicrobial substance produced by Rhizobium sp. ORN 83 and the “small” bacteriocins described in other rhizobia.

    En la presente investigación, seis cepas de Rhizobium aisladas de suelos argelinos fueron estudiadas para conocer su actividad antimicrobiana contra Pseudomonas savastanoi, el agente causante de la tuberculosis del olivo. Rhizobium sp. ORN 24 y ORN 83 produjeron actividad antimicrobiana contra Pseudomonas savastanoi. La actividad antimicrobiana producida por Rhizobium sp. ORN 24 precipitó con sulfato amónico, tuvo un peso molecular entre 1000 y 10000 KDa, fue resistente al calor pero sensible a proteasas y detergentes. Estas características sugieren que la sustancia antimicrobial producida por Rhizobium sp. ORN 24 es la bacteriocina natural conocida como rizobiocina 24. Por el contrario, la actividad antimicrobiana producida por Rhizobium sp. ORN83 no fue precipitable con sulfato amónico, y tuvo un peso molecular menor de 1000 KDa, fue lábil al calor y resistente a detergentes y proteasas. Estas

  15. Solid-state fermentation for the production of meroparamycin by streptomyces sp. strain MAR01.

    Science.gov (United States)

    El-Naggar, Moustafa Y; El-Assar, Samy A; Abdul-Gawad, Sahar M

    2009-05-01

    The antibiotic meroparamycin was produced in the free culture system of Streptomyces sp. strain MAR01. Five solid substrates (rice, wheat bran, Quaker, bread, and ground corn) were screened for their ability to support meroparamycin production in solid-state fermentation. In batch culture, wheat bran recorded the highest antibacterial activity with the lowest residual substrate values. The highest residual substrate values were recorded for both ground corn and Quaker. On the other hand, no antibacterial activity was detected for rice as a solid substrate. The use of the original strength of starch-nitrate medium in the solid-state fermentation gave a lower antibacterial activity compared with the free culture system. Doubling the strength of this medium resulted in the increase in the activity to be equivalent to the free culture. The initial pH (7.0) of the culture medium and 2 ml of spore suspension (1 ml contains 5x10(9) spores/ml) were the optima for antibiotic production. The water was the best eluent for the extraction of the antibiotic from the solid-state culture. Ten min was enough time to extract the antibiotic using a mixer, whereas, 60 min was required when shaking was applied. Semicontinuous production of meroparamycin using a percolation method demonstrated a more or less constant antibacterial activity over 4 runs (450-480 microg/ml). The semicontinuous production of the antibiotic was monitored in a fixed-bed bioreactor and the maximum activity was attained after the fourth run (510 microg/ml) and the overall process continued for 85 days. PMID:19494694

  16. Some observations on the growth and cyst production characteristics of the brine shrimp Artemia sp. (Gujarat strain) in pond culture and its potential for import substitution

    OpenAIRE

    Gopalakrishnan, P.; Krishna Raju, V.; Thaker, S R

    1989-01-01

    Experimental culture of the brine shrimp Artemia sp. (Gujarat strain) and production of cyst is discussed. The qualitative and quantitative aspects of the cyst and its economic potential for import substitution are highlighted.

  17. Draft Genome Sequence of Paracoccus sp. MKU1, a New Bacterial Strain Isolated from an Industrial Effluent with Potential for Bioremediation

    Science.gov (United States)

    Nisha, Kamaldeen Nasrin; Sridhar, Jayavel; Varalakshmi, Perumal; Ashokkumar, Balasubramaniem

    2016-01-01

    Paracoccus sp. MKU1, a novel dimethylformamide degrading bacterial strain was originally isolated from an industrial effluent, Tirupur region, Tamil Nadu, India. Here, we report the draft genome sequence of Paracoccus sp. MKU1, which could provide the genetic insights on its evolution and application of this versatile bacterium for effective degradation of xenobiotics and thus in bioremediation.

  18. Metabolism of Chlorotoluenes by Burkholderia sp. Strain PS12 and Toluene Dioxygenase of Pseudomonas putida F1: Evidence for Monooxygenation by Toluene and Chlorobenzene Dioxygenases

    OpenAIRE

    Lehning, A.; Fock, U.; Wittich, R.; Timmis, K N; Pieper, D.H.

    1997-01-01

    The degradation of toluene by Pseudomonas putida F1 and of chlorobenzenes by Burkholderia sp. strain PS12 is initiated by incorporation of dioxygen into the aromatic nucleus to form cis-dihydrodihydroxybenzenes. Toluene-grown cells of P. putida F1 and 3-chlorobenzoate-grown cells of Burkholderia sp. strain PS12 were found to monooxygenate the side chain of 2- and 3-chlorotoluene to the corresponding chlorobenzyl alcohols. Further metabolism of these products was slow, and the corresponding ch...

  19. Permanent Draft Genome Sequence of Frankia sp. Strain Allo2, a Salt-Tolerant Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Allocasuarina.

    Science.gov (United States)

    Oshone, Rediet; Ngom, Mariama; Abebe-Akele, Feseha; Simpson, Stephen; Morris, Krystalynne; Sy, Mame Ourèye; Champion, Antony; Thomas, W Kelley; Tisa, Louis S

    2016-01-01

    Frankia sp. strain Allo2 is a member of Frankia lineage Ib, which is able to reinfect plants of the Casuarinaceae family, and exhibits a high level of salt tolerance compared to other isolates. Here, we report the 5.3-Mbp draft genome sequence of Frankia sp. strain Allo2 with a G+C content of 70.0% and 4,224 candidate protein-encoding genes. PMID:27198023

  20. Strain and culture medium optimization for production enhancement of prodiginines from marine-derived Streptomyces sp. GQQ-10

    Science.gov (United States)

    Li, Xueping; Zhang, Guojian; Zhu, Tianjiao; Li, Dehai; Gu, Qianqun

    2012-09-01

    A mutant (GQQ-M6) of a Sponge-Derived streptomyces sp. GQQ-10 obtained by UV-induced mutation was used for producing prodiginines (PGs). Single factor experiments and orthogonal array design (OAD) methods were employed for medium optimization. In the single factor method, the effects of soluble starch, glucose, soybean flour, yeast extract and sodium acetate on PGs production were investigated individually. In the subsequent OAD experiments, the concentrations of these 5 key nutritional components combined with salinity were further adjusted. The mutant strain GQQ-M6 gave a 2.2-fold higher PGs production than that of the parent strain; OAD experiments offered a PGs yield of 61mg L-1, which was 10 times higher than that of the initial GQQ-10 strain under the original cultivation mode.

  1. Strain and Culture Medium Optimization for Production Enhancement of Prodiginines from Marine-Derived Streptomyces sp.GQQ-10

    Institute of Scientific and Technical Information of China (English)

    LI Xueping; ZHANG Guojian; ZHU Tianjiao; LI Dehai; GU Qianqun

    2012-01-01

    A mutant(GQQ-M6)of a Sponge-Derived streptomyces sp.GQQ-10 obtained by UV-induced mutation was used for producing prodiginines(PGs).Single factor experiments and orthogonal array design(OAD)methods were employed for medium optimization.In the single factor method,the effects of soluble starch,glucose,soybean flour,yeast extract and sodium acetate on PGs production were investigated individually.In the subsequent OAD experiments,the concentrations of these 5 key nutritional components combined with salinity were further adjusted.The mutant strain GQQ-M6 gave a 2.2-fold higher PGs production than that of the parent strain;OAD experiments offered a PGs yield of 61mgL-1,which was 10 times higher than that of the initial GQQ-10 strain under the original cultivation mode.

  2. Aerobic degradation of 4-nitroaniline (4-NA) via novel degradation intermediates by Rhodococcus sp. strain FK48

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Fazlurrahman; Pandey, Janmejay; Vikram, Surendra; Pal, Deepika; Cameotra, Swaranjit Singh, E-mail: ssc@imtech.res.in

    2013-06-15

    Highlights: • This study reports isolation of a novel bacterium capable of mineralizing 4-nitroaniline (4-NA). • This bacterium has been identified as Rhodococcus sp. strain FK48. • Strain FK48 degrades 4-NA via a novel aerobic degradation pathway that involves 4-AP and 1,2,4-BT. • Subsequent degradation proceeds via ring fission and formation of maleylacetate. • This is the first report showing elucidation of catabolic pathway for microbial degradation 4-NA. -- Abstract: An aerobic strain, Rhodococcus sp. strain FK48, capable of growing on 4-nitroaniline (4-NA) as the sole source of carbon, nitrogen, and energy has been isolated from enrichment cultures originating from contaminated soil samples. During growth studies with non- induced cells of FK48 catalyzed sequential denitrification (release of NO{sub 2} substituent) and deamination (release of NH{sub 2} substituent) of 4-NA. However, none of the degradation intermediates could be identified with growth studies. During resting cell studies, 4-NA-induced cells of strain FK48 transformed 4-NA via a previously unknown pathway which involved oxidative hydroxylation leading to formation of 4-aminophenol (4-AP). Subsequent degradation involved oxidated deamination of 4-AP and formation of 1,2,4-benzenetriol (BT) as the major identified terminal aromatic intermediate. Identification of these intermediates was ascertained by HPLC, and GC–MS analyses of the culture supernatants. 4-NA-induced cells of strain FK48 showed positive activity for 1,2,4-benzenetriol dioxygenase in spectrophotometric assay. This is the first conclusive study on aerobic microbial degradation of 4-NA and elucidation of corresponding metabolic pathway.

  3. Aerobic degradation of 4-nitroaniline (4-NA) via novel degradation intermediates by Rhodococcus sp. strain FK48

    International Nuclear Information System (INIS)

    Highlights: • This study reports isolation of a novel bacterium capable of mineralizing 4-nitroaniline (4-NA). • This bacterium has been identified as Rhodococcus sp. strain FK48. • Strain FK48 degrades 4-NA via a novel aerobic degradation pathway that involves 4-AP and 1,2,4-BT. • Subsequent degradation proceeds via ring fission and formation of maleylacetate. • This is the first report showing elucidation of catabolic pathway for microbial degradation 4-NA. -- Abstract: An aerobic strain, Rhodococcus sp. strain FK48, capable of growing on 4-nitroaniline (4-NA) as the sole source of carbon, nitrogen, and energy has been isolated from enrichment cultures originating from contaminated soil samples. During growth studies with non- induced cells of FK48 catalyzed sequential denitrification (release of NO2 substituent) and deamination (release of NH2 substituent) of 4-NA. However, none of the degradation intermediates could be identified with growth studies. During resting cell studies, 4-NA-induced cells of strain FK48 transformed 4-NA via a previously unknown pathway which involved oxidative hydroxylation leading to formation of 4-aminophenol (4-AP). Subsequent degradation involved oxidated deamination of 4-AP and formation of 1,2,4-benzenetriol (BT) as the major identified terminal aromatic intermediate. Identification of these intermediates was ascertained by HPLC, and GC–MS analyses of the culture supernatants. 4-NA-induced cells of strain FK48 showed positive activity for 1,2,4-benzenetriol dioxygenase in spectrophotometric assay. This is the first conclusive study on aerobic microbial degradation of 4-NA and elucidation of corresponding metabolic pathway

  4. Genome analysis coupled with physiological studies reveals a diverse nitrogen metabolism in Methylocystis sp. strain SC2.

    Directory of Open Access Journals (Sweden)

    Bomba Dam

    Full Text Available BACKGROUND: Methylocystis sp. strain SC2 can adapt to a wide range of methane concentrations. This is due to the presence of two isozymes of particulate methane monooxygenase exhibiting different methane oxidation kinetics. To gain insight into the underlying genetic information, its genome was sequenced and found to comprise a 3.77 Mb chromosome and two large plasmids. PRINCIPAL FINDINGS: We report important features of the strain SC2 genome. Its sequence is compared with those of seven other methanotroph genomes, comprising members of the Alphaproteobacteria, Gammaproteobacteria, and Verrucomicrobia. While the pan-genome of all eight methanotroph genomes totals 19,358 CDS, only 154 CDS are shared. The number of core genes increased with phylogenetic relatedness: 328 CDS for proteobacterial methanotrophs and 1,853 CDS for the three alphaproteobacterial Methylocystaceae members, Methylocystis sp. strain SC2 and strain Rockwell, and Methylosinus trichosporium OB3b. The comparative study was coupled with physiological experiments to verify that strain SC2 has diverse nitrogen metabolism capabilities. In correspondence to a full complement of 34 genes involved in N2 fixation, strain SC2 was found to grow with atmospheric N2 as the sole nitrogen source, preferably at low oxygen concentrations. Denitrification-mediated accumulation of 0.7 nmol (30N2/hr/mg dry weight of cells under anoxic conditions was detected by tracer analysis. N2 production is related to the activities of plasmid-borne nitric oxide and nitrous oxide reductases. CONCLUSIONS/PERSPECTIVES: Presence of a complete denitrification pathway in strain SC2, including the plasmid-encoded nosRZDFYX operon, is unique among known methanotrophs. However, the exact ecophysiological role of this pathway still needs to be elucidated. Detoxification of toxic nitrogen compounds and energy conservation under oxygen-limiting conditions are among the possible roles. Relevant features that may stimulate

  5. SACCHAROTHRIX SP. ABH26, A NEW ACTINOBACTERIAL STRAIN FROM ALGERIAN SAHARAN SOIL: ISOLATION, IDENTIFICATION AND ANTIMICROBIAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Abdelhadi Lahoum

    2015-04-01

    Full Text Available A new strain of actinobacteria, designated ABH26, was isolated from a Saharan soil in the Adrar region (Algeria, by the dilution agar plating method using a chitin-vitamins B medium supplemented with polymyxin and penicillin. The morphological studies showed that this strain represents a member of the Saccharothrix genus. Phylogenetic analysis showed that this strain had 16S rRNA gene sequence similarities ranging from 97.63% (with Saccharothrix violaceirubra NBRC 102064T to 99.86% (with Saccharothrix xinjiangensis NBRC 101911T. Furthermore, strain ABH26 presented a strong activity against mycotoxigenic and phytopathogenic fungi including Aspergillus carbonarius (M333, A. flavus (NRRL 3251, A. westerdijkiae (ATCC 3174, Fusarium oxysporum f. sp. lini (Fol and F. solani (Fsol. Additionally, the strain exhibited an important antimicrobial activity against many strains of the pathogenic yeast Candida albicans (M2, M3 and IPA200 and against methicillin resistant Staphylococcus aureus (MRSA 639c. Thus, four solvents (n-hexane, dichloromethane, ethyl acetate and n-butanol were used for the extraction of produced antibiotic compounds. The highest antimicrobial activities were obtained using the butanolic extract. The thin layer chromatography (TLC method showed two bioactive spots, named HAD1 and HAD2, which were reveled negatively by using chemical revelators (ninhydrin, naphtoresorcinol-sulfuric acid, ferrous iron chloride and formaldehyde-sulfuric. These results indicated the absence of amine group, sugar, hydroxamic acid, phenol and aromatic compound.

  6. Degradation of recalcitrant aliphatic and aromatic hydrocarbons by a dioxin-degrader Rhodococcus sp. strain p52.

    Science.gov (United States)

    Yang, Hai-Yan; Jia, Rui-Bao; Chen, Bin; Li, Li

    2014-09-01

    This study investigates the ability of Rhodococcus sp. strain p52, a dioxin degrader, to biodegrade petroleum hydrocarbons. Strain p52 can use linear alkanes (tetradecane, tetracosane, and dotriacontane), branched alkane (pristane), and aromatic hydrocarbons (naphthalene and phenanthrene) as sole carbon and energy sources. Specifically, the strain removes 85.7 % of tetradecane within 48 h at a degradation rate of 3.8 mg h(-1) g(-1) dry cells, and 79.4 % of tetracosane, 66.4 % of dotriacontane, and 63.9 % of pristane within 9-11 days at degradation rates of 20.5, 14.7, and 20.3 mg day(-1) g(-1) dry cells, respectively. Moreover, strain p52 consumes 100 % naphthalene and 55.3 % phenanthrene within 9-11 days at respective degradation rates of 16 and 12.9 mg day(-1) g(-1) dry cells. Metabolites of the petroleum hydrocarbons by strain p52 were analyzed. Genes encoding alkane-hydroxylating enzymes, including cytochrome P450 (CYP450) enzyme (CYP185) and two alkane-1-monooxygenases, were amplified by polymerase chain reaction. The transcriptional activities of these genes in the presence of petroleum hydrocarbons were detected by reverse transcription-polymerase chain reaction. The results revealed potential of strain p52 to degrade petroleum hydrocarbons. PMID:24859700

  7. Plant–Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer

    OpenAIRE

    Nonaka, Satoko; Ezura, Hiroshi

    2014-01-01

    Agrobacterium tumefaciens has a unique ability to transfer genes into plant genomes. This ability has been utilized for plant genetic engineering. However, the efficiency is not sufficient for all plant species. Several studies have shown that ethylene decreased the Agrobacterium-mediated transformation frequency. Thus, A. tumefaciens with an ability to suppress ethylene evolution would increase the efficiency of Agrobacterium-mediated transformation. Some studies showed that plant growth-pro...

  8. COLONIZATION OF VIGNA RADIATA ROOTS BY CHROMIUM RESISTANT BACTERIAL STRAINS OF OCHROBACTRUM INTERMEDIUM, BACILLUS CEREUS AND BREVIBA CTERIUM SP.

    Institute of Scientific and Technical Information of China (English)

    MUHAMMAD Faisal; SHAHIDA Hasnain

    2005-01-01

    The present study deals with colonization potential of plant growth promoting bacterial strains ( Ochrobactrum intermedium, Bacillus cereus and Brevibacterium sp. ) on Vigna radiata roots. The roots were heavily colonized with O. intermedium and B. cereus as compared to Brevibacterium sp. O. intermedium mainly colonized rhizoplane while B. cereus occurred both on the rhizoplane and near root zone. O. intermedium and B. cereus were found to be present both on the rhizoplane and near root zone, while Brevibacterium only in the rhizosphere in the form of groups. The cells of B. cereus were found more in the sites where root exudates were existed. From the above results it was observed that the number of O. intermedium cells were large at root exudate site. Fig 2, Tab 1, Ref 15

  9. Isolation and complementation of mutants of Anabaena sp. strain PCC 7120 unable to grow aerobically on dinitrogen

    International Nuclear Information System (INIS)

    Mutants of Anabaena sp. strain PCC 7120 unable to grow aerobically on dinitrogen were isolated by mutagenesis with UV irradiation, followed by a period of incubation in yellow light and then by penicillin enrichment. A cosmid vector, pRL25C, containing replicons functional in Escherichia coli and in Anabaena species was constructed. DNA from wild-type Anabaena sp. strain PCC 7120 was partially digested with Sau3AI, and size-fractionated fragments about 40 kilobases (kb) in length were ligated into the phosphatase-treated unique BamHI site of pRL25C. A library of 1054 cosmid clones was generated in E. coli DH1 bearing helper plasmid pDS4101. A derivative of conjugative plasmid RP-4 was transferred to this library by conjugation, and the library was replicated to lawns of mutant Anabaena strains with defects in the polysaccharide layer of the envelopes of the heterocysts. Mutant EF116 was complemented by five cosmids, three of which were subjected to detailed restriction mapping; a 2.8-kb fragment of DNA derived from one of the cosmids was found to complement EF116. Mutant EF113 was complemented by a single cosmid, which was also restriction mapped, and was shown to be complemented by a 4.8-kb fragment of DNA derived from this cosmid

  10. Molecular characterization of protease activity in Serratia sp. strain SCBI and its importance in cytotoxicity and virulence.

    Science.gov (United States)

    Petersen, Lauren M; Tisa, Louis S

    2014-11-01

    A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex. PMID:25182493

  11. [Study on the bioleaching mechanism of manganse (II) from manganese-electrolytic residue by manganese-resistant strain Fusarium sp].

    Science.gov (United States)

    Huang, Yu-Xia; Cao, Jian-Bing; Li, Xiao-Ming; Yang, Qi; Huang, Hua-Jun; Liu, Xian; Yang, Hui

    2011-09-01

    The manganse bioleaching mechanism by a manganese-resistant strain Fusarium sp. was investigated, through analyzing the bioleaching rate and manganese-electrolytic residue characterizations with the presence of Fusarium sp. and with the addition of organic acids. Special attention was paid to explore the relationship among the manganese's leaching rate, pH, and organic acid concentration during Fusarium sp. bioleaching process. The research results showed that, with the addition of Fusarium sp., some looser and more porous manganese-electrolytic residues could be obtained. And after 47 hours, the leaching rate reached to 84% which was 2.30 times higher than that leached by individual organic acid even after 130 hours; the leaching rate of manganese and the concentrations of organic acids increased at the initial stage and then decreased, while pH was the reversed. Additionally, the concentration of Succinic acid and L-Malic acid reached their crest value (11.12 g/L and 10.23 g/L) at 57 and 62 hours respectively. Yet the pH reached the lowest (4.09) at 29 h, which implied that, Fusarium sp. and organic acid produced played an important role in the leaching of manganese, leading to a high-efficiency and time-saving process. However, due to the high density of manganese-electrolytic residue and the concurrence of the produce and consumption of organic acid together with the adsorption and complexation, the relationship among the extraction rate for manganese ion, pH, and the concentration of organic acid produced could not be described by simple linear correlation and the leaching rate decreased significantly in the later stage. PMID:22165242

  12. High-Quality Draft Genome Sequence of Pseudomonas sp. BRG100, a Strain with Bioherbicidal Properties against Setaria viridis (Green Foxtail) and Other Pests of Agricultural Significance

    OpenAIRE

    Dumonceaux, Tim J.; Town, Jennifer; Links, Matthew G.; Boyetchko, Sue

    2014-01-01

    Pseudomonas sp. BRG100 inhibits the growth of certain agricultural pests and is a potentially useful biopesticide for weeds and plant diseases. We have sequenced the 6.25-Mbp genome of this strain and assembled it into 4 scaffolds. Genome sequence comparisons revealed that this strain may represent a novel species of Pseudomonas.

  13. Draft Genome Sequence of Methylobacterium sp. Strain L2-4, a Leaf-Associated Endophytic N-Fixing Bacterium Isolated from Jatropha curcas L.

    Science.gov (United States)

    Madhaiyan, Munusamy; Chan, Kam Lock; Ji, Lianghui

    2014-01-01

    Methylobacterium sp. strain L2-4 is an efficient nitrogen-fixing leaf colonizer of biofuel crop Jatropha curcas. This strain is able to greatly improve the growth and seed yield of Jatropha curcas and is the second reported genome sequence of plant growth-promoting bacteria isolated from Jatropha curcas. PMID:25502683

  14. Draft Genome Sequence of Methylobacterium sp. Strain L2-4, a Leaf-Associated Endophytic N-Fixing Bacterium Isolated from Jatropha curcas L.

    OpenAIRE

    Madhaiyan, Munusamy; Chan, Kam Lock; Ji, Lianghui

    2014-01-01

    Methylobacterium sp. strain L2-4 is an efficient nitrogen-fixing leaf colonizer of biofuel crop Jatropha curcas. This strain is able to greatly improve the growth and seed yield of Jatropha curcas and is the second reported genome sequence of plant growth-promoting bacteria isolated from Jatropha curcas.

  15. Draft Genome Sequence of Pseudoalteromonas sp. Strain XI10 Isolated from the Brine-Seawater Interface of Erba Deep in the Red Sea

    KAUST Repository

    Zhang, Guishan

    2016-03-10

    Pseudoalteromonas sp. strain XI10 was isolated from the brine-seawater interface of Erba Deep in the Red Sea, Saudi Arabia. Here, we present the draft genome sequence of strain XI10, a gammaproteobacterium that synthesizes polysaccharides for biofilm formation when grown in liquid culture.

  16. Genome Sequence of Halomonas sp. Strain KO116, an Ionic Liquid-Tolerant Marine Bacterium Isolated from a Lignin-Enriched Seawater Microcosm

    OpenAIRE

    O’Dell, Kaela B.; Woo, Hannah L.; Utturkar, Sagar; Klingeman, Dawn; Brown, Steven D.; Hazen, Terry C

    2015-01-01

    Halomonas sp. strain KO116 was isolated from Nile Delta Mediterranean Sea surface water enriched with insoluble organosolv lignin. It was further screened for growth on alkali lignin minimal salts medium agar. The strain tolerates the ionic liquid 1-ethyl-3-methylimidazolium acetate. Its complete genome sequence is presented in this report.

  17. Involvement of an Alkane Hydroxylase System of Gordonia sp. Strain SoCg in Degradation of Solid n-Alkanes▿

    OpenAIRE

    Lo Piccolo, Luca; De Pasquale, Claudio; Fodale, Roberta; Puglia, Anna Maria; Quatrini, Paola

    2010-01-01

    Enzymes involved in oxidation of long-chain n-alkanes are still not well known, especially those in Gram-positive bacteria. This work describes the alkane degradation system of the n-alkane degrader actinobacterium Gordonia sp. strain SoCg, which is able to grow on n-alkanes from dodecane (C12) to hexatriacontane (C36) as the sole C source. SoCg harbors in its chromosome a single alk locus carrying six open reading frames (ORFs), which shows 78 to 79% identity with the alkane hydroxylase (AH)...

  18. Mode of action of metabolites from Bacillus sp. strain IBA 33 on Geotrichum citri-aurantii arthroconidia.

    Science.gov (United States)

    Gordillo, María Antonieta; Navarro, Antonio R; Maldonado, María Cristina

    2015-11-01

    Geotrichum citri-aurantii is a postharvest phytopathogenic fungus of lemons. We studied the mode of action of antifungal metabolites from Bacillus sp. strain IBA 33 on arthroconidia of G. citri-aurantii. These metabolites are lipopeptides belonging to the iturin family. Membrane permeabilization of G. citri-aurantii was analyzed and mitochondrial respiratory rate was evaluated. Disturbance of the plasma membrane promotes the leakage of many cellular components into the surrounding media, and mitochondrial membrane disorganization promotes the inhibition of the respiratory rate. Our findings provide insights into the ability of lipopeptides to suppress plant fungal pathogens and their possible agronomical applications. PMID:26394707

  19. Draft Genome Sequence of Halomonas sp. Strain KM-1, a Moderately Halophilic Bacterium That Produces the Bioplastic Poly(3-Hydroxybutyrate)

    OpenAIRE

    Kawata, Yoshikazu; Kawasaki, Kazunori; Shigeri, Yasushi

    2012-01-01

    We report the draft genome sequence of Halomonas sp. strain KM-1, which was isolated in Ikeda City, Osaka, Japan, and which produces the bioplastic poly(3-hydroxybutyrate). The total length of the assembled genome is 4,992,811 bp, and 4,220 coding sequences were predicted within the genome. Genes encoding proteins that are involved in the production and depolymerization of poly(3-hydroxybutyrate) were identified. The identification of these genes might be of use in the production of the biopl...

  20. Extracellular lipase of Pseudomonas sp. strain ATCC 21808: purification, characterization, crystallization, and preliminary X-ray diffraction data.

    OpenAIRE

    Kordel, M; Hofmann, B; Schomburg, D; Schmid, R. D.

    1991-01-01

    A procedure for the purification of a very hydrophobic lipase from Pseudomonas sp. strain ATCC 21808 was elaborated by avoiding the use of long-chain detergents in view of subsequent crystallization of the enzyme. The purification procedure included chromatography on Q-Sepharose in the presence of n-octyl-beta-D-glucopyranoside, Ca2+ precipitation of fatty acids, and Octyl-Sepharose chromatography. The enzyme was purified 260-fold to a yield of 35% and a specific activity of 3,300 U/mg. The m...

  1. Degradation of Microcystin-LR and RR by a Stenotrophomonas sp. Strain EMS Isolated from Lake Taihu, China

    OpenAIRE

    Zhi Qi Shi; Yan Feng Xue; Jing Dong Yang; Shao Hua Yan; Liang Bin Hu; Wei Zhou; Jian Chen

    2010-01-01

    A bacterial strain EMS with the capability of degrading microcystins (MCs) was isolated from Lake Taihu, China. The bacterium was tentatively identified as a Stenotrophomonas sp. The bacterium could completely consume MC-LR and MC-RR within 24 hours at a concentration of 0.7 µg/mL and 1.7 µg/mL, respectively. The degradation of MC-LR and MC-RR by EMS occurred preferentially in an alkaline environment. In addition, mlrA gene involved in the degradation of MC-LR and MC-RR was detected in EMS. D...

  2. The moxFG region encodes four polypeptides in the methanol-oxidizing bacterium Methylobacterium sp. strain AM1

    OpenAIRE

    Anderson, D J; Lidstrom, M E

    1988-01-01

    The polypeptides encoded by a putative methanol oxidation (mox) operon of Methylobacterium sp. strain AM1 were expressed in Escherichia coli, using a coupled in vivo T7 RNA polymerase/promoter gene expression system. Two mox genes had been previously mapped to this region: moxF, the gene encoding the methanol dehydrogenase (MeDH) polypeptide; and moxG, a gene believed to encode a soluble type c cytochrome, cytochrome cL. In this study, four polypeptides of Mr 60,000, 30,000, 20,000, and 12,00...

  3. Polysaccharide Lyase: Molecular Cloning, Sequencing, and Overexpression of the Xanthan Lyase Gene of Bacillus sp. Strain GL1

    OpenAIRE

    Hashimoto, Wataru; Miki, Hikaru; Tsuchiya, Noriaki; Nankai, Hirokazu; Murata, Kousaku

    2001-01-01

    When grown on xanthan as a carbon source, the bacterium Bacillus sp. strain GL1 produces extracellular xanthan lyase (75 kDa), catalyzing the first step of xanthan depolymerization (H. Nankai, W. Hashimoto, H. Miki, S. Kawai, and K. Murata, Appl. Environ. Microbiol. 65:2520–2526, 1999). A gene for the lyase was cloned, and its nucleotide sequence was determined. The gene contained an open reading frame consisting of 2,793 bp coding for a polypeptide with a molecular weight of 99,308. The poly...

  4. Characterization and optimization of 1-Aminocyclopropane-1-Carboxylate Deaminase (ACCD activity in different rhizospheric PGPR along with Microbacterium sp. strain ECI-12A

    Directory of Open Access Journals (Sweden)

    Ashok Kumar

    2013-03-01

    Full Text Available A total of nine strains of plant growth promoting rhizobacteria were analyzed for ACC deaminase activity, where highest ACC deaminase activity was found in Klebsiella sp strain ECI-10A (539.1 nmol α-keto butyrate/ mg protein/ h and lowest in Microbacterium sp strain ECI-12A (122.0 nmol α-keto butyrate/ mg protein/ h. Although Microbacterium sp strain ECI-12A showed lowest level of ACC deaminase activity, but, the species of Microbacterium isolated from rhizosphere is the first report. Microbacterium sp strain ECI-12A was also analyzed under varying conditions of time, amount of 1-Aminocyclopropane-1- carboxylate (ACC, and temperature for optimization of the ACC deaminase activity. The optimum activity was recorded with the supplementation of 5mM ACC at 30oC temperature after 24h of culture growth. All the nine strains showed acdS gene in the PCR amplification of that gene. No any rhizospheric Microbacterium species showing ACC deaminase activity have been reported earlier, therefore, we report here ACC deaminase activity in Microbacterium sp ECI-12A isolated from rice rhizosphere is a novel finding.

  5. In vitro quenching of fish pathogen Edwardsiella tarda AHL production using marine bacterium Tenacibaculum sp. strain 20J cell extracts.

    Science.gov (United States)

    Romero, Manuel; Muras, Andrea; Mayer, Celia; Buján, Noemí; Magariños, Beatriz; Otero, Ana

    2014-04-01

    Quorum quenching (QQ) has become an interesting alternative for solving the problem of bacterial antibiotic resistance, especially in the aquaculture industry, since many species of fish-pathogenic bacteria control their virulence factors through quorum sensing (QS) systems mediated by N-acylhomoserine lactones (AHLs). In a screening for bacterial strains with QQ activity in different marine environments, Tenacibaculum sp. strain 20J was identified and selected for its high degradation activity against a wide range of AHLs. In this study, the QQ activity of live cells and crude cell extracts (CCEs) of strain 20J was characterized and the possibilities of the use of CCEs of this strain to quench the production of AHLs in cultures of the fish pathogen Edwardsiella tarda ACC35.1 was explored. E. tarda ACC35.1 produces N-hexanoyl-L-homoserine lactone (C6-HSL) and N-oxohexanoyl-L-homoserine lactone (OC6-HSL). This differs from profiles registered for other E. tarda strains and indicates an important intra-specific variability in AHL production in this species. The CCEs of strain 20J presented a wide-spectrum QQ activity and, unlike Bacillus thuringiensis serovar Berliner ATCC10792 CCEs, were effective in eliminating the AHLs produced in E. tarda ACC35.1 cultures. The fast and wide-spectrum AHL-degradation activity shown by this member of the Cytophaga-Flexibacter-Bacteroidetes group consolidates this strain as a promising candidate for the control of AHL-based QS pathogens, especially in the marine fish farming industry. PMID:24695235

  6. Mutations that affect structure and assembly of light-harvesting proteins in the cyanobacterium Synechocystis sp. strain 6701

    International Nuclear Information System (INIS)

    The unicellular cyanobacterium Synechocystis sp. strain 6701 was mutagenized with UV irradiation and screened for pigment changes that indicated genetic lesions involving the light-harvesting proteins of the phycobilisome. A previous examination of the pigment mutant UV16 showed an assembly defect in the phycocyanin component of the phycobilisome. Mutagenesis of UV16 produced an additional double mutant, UV16-40, with decreased phycoerythrin content. Phycocyanin and phycoerythrin were isolated from UV16-40 and compared with normal biliproteins. The results suggested that the UV16 mutation affected the alpha subunit of phycocyanin, while the phycoerythrin beta subunit from UV16-40 had lost one of its three chromophores. Characterization of the unassembled phycobilisome components in these mutants suggests that these strains will be useful for probing in vivo the regulated expression and assembly of phycobilisomes

  7. [Susceptibility to antibiotics and biochemical activity of strains of Acinetobacter sp. isolated from various sources].

    Science.gov (United States)

    Gospodarek, E

    1993-01-01

    The study was performed on 576 Acinetobacter strains isolated from clinical material, objects from hospital, environment, soil, water and from animals. Applying API 20NE system identification was following: A. baumanii (61.1%), A. junii (19.4%), A. haemolyticus (4.3%), A. lwoffii (3.3%), A. johnsonii (0.52%) and not belonging to above genus strains (11.3%). Over 47% strains of Acinetobacter were isolated from clinical material as the only bacteria (mainly from samples received from intensive care units and surgical and urological wards). Out of 23 antibiotics and antimicrobials used for investigation of 535 strains of Acinetobacter, most active were imipenem (99%) of susceptible strains, ofloxacin and ciprofloxacin (95%) and netilmicin (88%). Multiple resistant strains were isolated more frequently from hospital environment than from other sources--these were mostly A. baumanii and A. junii. PMID:8189806

  8. Mixotrophic growth of two thermophilic Methanosarcina strains, Methanosarcina thermophila TM-1 and Methanosarcina sp. SO-2P, on methanol and hydrogen/carbon dioxide

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana; Ahring, Birgitte Kiær

    1997-01-01

    Two thermophilic strains, Methanosarcina thermophila TM-1 and Methanosarcina sp. SO-2P, were capable of mixotrophic growth on methanol and H-2/CO2. Activated carbon was, however, found to be necessary to support good growth. Both strains used hydrogen and methanol simultaneously. When methanol was...... depleted, hydrogen utilization continued and methane was further produced with concurrent cell growth. UV epifluorescence microscopy revealed that aggregates of both strains exhibited a bright red fluorescence besides the usual blue-green fluorescence....

  9. Weight and morphometric growth of different strains of tilapia (Oreochromis sp

    Directory of Open Access Journals (Sweden)

    Ivan Bezerra Allaman

    2013-05-01

    Full Text Available The objective of this study was to evaluate the morphometric growth and weight gain of strains of tilapia (Thai, Red, UFLA and Commercial by nonlinear models. Initially, 500 male fingerlings of each strain, at 85 (Red and UFLA and 86 (Thai and Commercial days of age, were stocked separately in raceways with 56 m³. Twenty fish of each strain were randomly sampled, weighed and measured monthly. Five nonlinear models (Brody, von Bertalanffy, Gompertz, logistic and exponential were tested, choosing one that best fit to the data. The variables studied were: weight, standard length (SL, head length (HL, height 1 (H1, height 2 (H2, height 3 (H3, first distance (D1, second distance (D2, first width (W1, second width (W2 and third width (W3. The exponential model had the best fit to weight and morphometric data, with the exception of W2, in which the best fitted model was von Bertalanffy. The convergence of the exponential model to data indicates that the cultivation period studied was not enough for the strains to reach maturity weight. The UFLA strain presented the lowest value for parameter "a" (initial weight estimate, 8.71 g, and the highest for parameter k (specific growth rate, 0.0127, when compared with other evaluated strains. However, the highest k of UFLA was not enough to overcome the final weight observed for the Commercial strain (603.1 g, which was higher than all other strains. Regarding the morphometric measurements, the UFLA strain also had the highest k for the variables SL, HL, HH, H1, H2, H3 and D2, and similar k to Commercial and Thai strains for the variables D1 and W3 respectively. The strains differ as to weight gain and morphometric growth.

  10. Reduction of Selenite to Elemental Red Selenium by Rhizobium sp. strain B1

    Science.gov (United States)

    bacterium that reduces the soluble and toxic selenite anion to insoluble elemental red selenium (Se0) was isolated from a laboratory bioreactor. Biochemical, morphological, and 16S rRNA gene sequence alignment identify the isolate as a Rhizobium sp. that is related to but is genetically divergent ...

  11. Approach toward enhancement of halophilic protease production by Halobacterium sp. strain LBU50301 using statistical design response surface methodology

    Directory of Open Access Journals (Sweden)

    Julalak Chuprom

    2016-06-01

    Full Text Available A new potent halophilic protease producer, Halobacterium sp. strain LBU50301 was isolated from salt-fermented fish samples (budu and identified by phenotypic analysis, and 16S rDNA gene sequencing. Thereafter, sequential statistical strategy was used to optimize halophilic protease production from Halobacterium sp. strain LBU50301 by shake-flask fermentation. The classical one-factor-at-a-time (OFAT approach determined gelatin was the best nitrogen source. Based on Plackett–Burman (PB experimental design; gelatin, MgSO4·7H2O, NaCl and pH significantly influenced the halophilic protease production. Central composite design (CCD determined the optimum level of medium components. Subsequently, an 8.78-fold increase in corresponding halophilic protease yield (156.22 U/mL was obtained, compared with that produced in the original medium (17.80 U/mL. Validation experiments proved the adequacy and accuracy of model, and the results showed the predicted value agreed well with the experimental values. An overall 13-fold increase in halophilic protease yield was achieved using a 3 L laboratory fermenter and optimized medium (231.33 U/mL.

  12. Crystallization and preliminary X-ray crystallographic studies of β-transaminase from Mesorhizobium sp. strain LUK

    International Nuclear Information System (INIS)

    β-Transaminase from Mesorhizobium sp. strain LUK was crystallized. The crystals were found to belong to the orthorhombic space group C2221, with unit-cell parameters a = 90.91, b = 192.17, c = 52.75 Å. The crystals were obtained at 293 K and diffracted to a resolution of 2.5 Å. β-Transaminase (β-TA) catalyzes the transamination reaction between β-aminocarboxylic acids and keto acids. This enzyme is a particularly suitable candidate for use as a biocatalyst for the asymmetric synthesis of enantiochemically pure β-amino acids for pharmaceutical purposes. The β-TA from Mesorhizobium sp. strain LUK (β-TAMs) belongs to a novel class in that it shows β-transaminase activity with a broad and unique substrate specificity. In this study, β-TAMs was overexpressed in Escherichia coli with an engineered C-terminal His tag. β-TAMs was then purified to homogeneity and crystallized at 293 K. X-ray diffraction data were collected to a resolution of 2.5 Å from a crystal that belonged to the orthorhombic space group C2221, with unit-cell parameters a = 90.91, b = 192.17, c = 52.75 Å

  13. Analysing the dhaT gene in Colombian Clostridium sp. (Clostridia 1,3-propanediol-producing strains

    Directory of Open Access Journals (Sweden)

    Diana Milena Quilaguy-Ayure

    2010-04-01

    Full Text Available To analyze the dhaT gene, one of the genes responsible for the 1,3-propanediol (1,3-PD production, in two native Clostridiumstrains. Materials and methods: The dhaT gene was amplified by Polimerase Chain Reaction with specific primers designed fromClostridium butyricum VPI1718 operon. Bioinformatics tools like BLASTN, ORF finder, BLASTP and ClustalW were used to determinethe identity of the sequence and to assign a function. Results: DNA amplification products were obtained from Colombian Clostridium sp.native strains (IBUN 13A and IBUN 158B and the Clostridium butyricum DSM 2478 strain, which were sequenced. According to thebioinformatics analysis of the above sequences, a high degree of similarity was found with the dhaT gene of different bacterial species. Thehighest percentage of identity was obtained with the Clostridium butyricum VPI 1718 strain. Conclusion: knowledge of the physicalstructure of the 1,3-PD operon in native strains opens the way for developing genetic and metabolic engineering strategies for improvingprocesses productivity.

  14. Comparison of Ti plasmids from three different biotypes of Agrobacterium tumefaciens isolated from grapevines.

    OpenAIRE

    Knauf, V C; Panagopoulos, C G; Nester, E. W.

    1983-01-01

    Twenty-six plasmids from grapevine isolates of Agrobacterium tumefaciens were analyzed by SmaI fingerprinting and by hybridization of nick-translated DNA to DNA of another plasmid. These experiments established that octopine Ti plasmids are not highly conserved, although octopine Ti plasmids from biotype 1 A. tumefaciens strains appeared to be very similar. Octopine Ti plasmids from biotype 3 strains are more variable in terms of host range and SmaI fingerprints, but share extensive DNA homol...

  15. Physiological and taxonomic description of the novel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. strain 2002

    OpenAIRE

    Weber, Karrie A; Hedrick, David B.; Peacock, Aaron D.; Thrash, J. Cameron; White, David C.; Achenbach, Laurie A.; Coates, John D.

    2009-01-01

    A lithoautotrophic, Fe(II) oxidizing, nitrate-reducing bacterium, strain 2002 (ATCC BAA-1479; =DSM 18807), was isolated as part of a study on nitrate-dependent Fe(II) oxidation in freshwater lake sediments. Here we provide an in-depth phenotypic and phylogenetic description of the isolate. Strain 2002 is a gram-negative, non-spore forming, motile, rod-shaped bacterium which tested positive for oxidase, catalase, and urease. Analysis of the complete 16S rRNA gene sequence placed strain 2002 in...

  16. Complete Genome Sequence of Enterobacter sp. Strain R4-368, an Endophytic N-Fixing Gammaproteobacterium Isolated from Surface-Sterilized Roots of Jatropha curcas L.

    OpenAIRE

    Madhaiyan, Munusamy; Peng, Ni; Ji, Lianghui

    2013-01-01

    Enterobacter sp. strain R4-368 is one of the few characterized Jatropha endophytic diazotrophic bacteria and was isolated from surface-sterilized roots. This bacterium shows strong growth-promoting effects, being able to increase plant biomass and seed yields. Enterobacter sp. R4-368 is the second fully sequenced diazotrophic Enterobacter species. The sequence information shall facilitate the elucidation of the molecular mechanisms of plant growth promotion, nitrogen fixation in nonlegume pla...

  17. Complete Genome Sequence of the d-Amino Acid Catabolism Bacterium Phaeobacter sp. Strain JL2886, Isolated from Deep Seawater of the South China Sea.

    Science.gov (United States)

    Fu, Yingnan; Wang, Rui; Zhang, Zilian; Jiao, Nianzhi

    2016-01-01

    Phaeobacter sp. strain JL2886, isolated from deep seawater of the South China Sea, can catabolize d-amino acids. Here, we report the complete genome sequence of Phaeobacter sp. JL2886. It comprises ~4.06 Mbp, with a G+C content of 61.52%. A total of 3,913 protein-coding genes and 10 genes related to d-amino acid catabolism were obtained. PMID:27587825

  18. Characterization of extracellular amylase produced by haloalkalophilic strain Kocuria sp. HJ014.

    Science.gov (United States)

    Soto-Padilla, Marisela Y; Gortáres-Moroyoqui, Pablo; Cira-Chávez, Luis A; Levasseur, Anthony; Dendooven, Luc; Estrada-Alvarado, María Isabel

    2016-08-01

    The haloalkaliphilic bacterium Kocuria sp. (HJ014) has the ability to produce extracellular amylase. The aim of this study was to purify and characterize this protein. The amylase enzyme with a specific activity of 753,502 U/mg was purified 5.7- fold using Sepharose 4B and Sephacryl S-300 gel filtration columns. The molecular weight of the enzyme was 45,000 Da as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The amylase showed maximum activity at pH 9 and 50°C in the presence of 3.5 M NaCl. The Km was 3.0 mg/ml and Vmax 90.09 U/ml. It was found that extracellular amylase from Kocuria sp. has a high industrial potential. PMID:26813880

  19. Isolation of Streptomyces sp. strain capable of butyltin compounds degradation with high efficiency.

    Science.gov (United States)

    Bernat, Przemysław; Długoński, Jerzy

    2009-11-15

    Dibutyltin (DBT), a widely used plastic stabilizer, has been detected in the environment as well as in human tissues. DBT is considered to be highly neurotoxic and immunotoxic. Hence, DBT needs to be considered as a potential toxic chemical. Degradation of butyltin compounds by Streptomyces sp. isolated from plant waste composting heaps was studied. Glucose grown cells degraded organotin from 10 to 40 mg l(-1). After 1 day of incubation 90% of DBT (added at 20 mg l(-1)) was converted to less toxic derivative--monobutyltin (MBT). DBT metabolism was inhibited by metyrapone addition, a known cytochrome P-450 inhibitor. It could provide evidence that cytochrome P-450 system is involved in DBT metabolism in Streptomyces sp. IM P102. Moreover, according to our knowledge, the degradation of DBT by actinobacterium has not been previously described. PMID:19592163

  20. Novel bioemulsifier produced by a Paenibacilus sp. strain and its applicability in microbial enhanced oil recovery

    OpenAIRE

    Gudiña, Eduardo J.; L. R. Rodrigues; J.A. Teixeira

    2015-01-01

    Microbial Enhanced Oil Recovery (MEOR) is potentially useful to increment oil recovery from reservoirs beyond primary and secondary recovery operations using microorganisms and their metabolites. In situ stimulation of microorganisms that produce surface active compounds reduces the capillary forces that retain the oil inside the reservoir, thus promoting its flow and increasing oil production. Paenibacillus sp. #510, isolated from crude oil samples obtained from a Brazilian oil field, produc...

  1. Comparison of proteolytic activity of Candida sp. strains depending on their origin.

    Science.gov (United States)

    Modrzewska, B; Kurnatowski, P; Khalid, K

    2016-06-01

    The aim of the research was to evaluate the proteolytic activity of various Candida strains isolated from the oral cavity of persons without clinical symptoms of fungal infection, outpatients with oral cavity disorders and patients hospitalized due to head and neck tumors. A secondary aim was to confirm the presence of secreted aspartyl protease (SAP) genes in the isolated strains and then to compare it depending on the fungal species. Material consisted of 134 fungal strains that were analysed by a modified Staib method and polymerase chain reaction (PCR) with the use of specific primer pairs. The greatest proteolytic activity of fungi was observed at pH 3.5. The proteolysis were the strongest for strains isolated from dental patients and the weakest from persons without changes in the oral cavity. In total, 61.9% of the strains exhibited the presence of at least one of the SAP1-3 genes in all examined groups, SAP1 being the most common; SAP4-6 genes were not observed. All genes were more frequent in the strains isolated from the dental patients than from other groups. SAP1-3 genes were present in Candida albicans, C. tropicalis, C. parapsilosis, C. glabrata, C. humicola and C. lipolytica, but were not noted in other isolated species. The lowest activity of proteolytic enzymes and the least number of aspartyl protease genes are observed among strains isolated from patients without clinical symptoms of mycosis. SAP1-3 genes are most frequently detected in the strains isolated from the oral cavity; their presence varies depending on the species of the fungi. PMID:26922385

  2. Comparative evaluation of Amblyomma ovale ticks infected and noninfected by Rickettsia sp. strain Atlantic rainforest, the agent of an emerging rickettsiosis in Brazil.

    Science.gov (United States)

    Krawczak, Felipe S; Agostinho, Washington C; Polo, Gina; Moraes-Filho, Jonas; Labruna, Marcelo B

    2016-04-01

    In 2010, a novel spotted fever group rickettsiosis was reported in the Atlantic rainforest coast of Brazil. The etiological agent was identified as Rickettsia sp. strain Atlantic rainforest, and the tick Amblyomma ovale was incriminated as the presumed vector. The present study evaluated under laboratory conditions four colonies of A. ovale: two started from engorged females that were naturally infected by Rickettsia sp. strain Atlantic rainforest (designated as infected groups); the two others started from noninfected females (designated as control groups). All colonies were reared in parallel from F0 engorged female to F2 unfed nymphs. Tick-naïve vesper mice (Calomys callosus) or domestic rabbits were used for feeding of each tick stage. Rickettsia sp. strain Atlantic rainforest was preserved by transstadial maintenance and transovarial transmission in A. ovale ticks for at least 2 generations (from F0 females to F2 nymphs), because nearly 100% of the tested larvae, nymphs, and adults from the infected groups were shown by PCR to contain rickettsial DNA. All vesper mice and rabbits infested by larvae and nymphs, and 50% of the rabbits infested by adults from the infected groups seroconverted, indicating that these tick stages were vector competent for Rickettsia sp. strain Atlantic rainforest. Expressive differences in mortality rates and reproductive performance were observed between engorged females from the infected and control groups, as indicated by 75.0% and 97.1% oviposition success, respectively, and significantly lower egg mass weight, conversion efficiency index, and percentage of egg hatching for the infected groups. Our results indicate that A. ovale can act as a natural reservoir for Rickettsia sp. strain Atlantic rainforest. However, due to deleterious effect caused by this rickettsial agent on engorged females, amplifier vertebrate hosts might be necessary for persistent perpetuation of Rickettsia sp. strain Atlantic rainforest in A. ovale under

  3. Physiological and genetic description of dissimilatory perchlorate reduction by the novel marine bacterium Arcobacter sp. strain CAB.

    Science.gov (United States)

    Carlström, Charlotte I; Wang, Ouwei; Melnyk, Ryan A; Bauer, Stefan; Lee, Joyce; Engelbrektson, Anna; Coates, John D

    2013-01-01

    A novel dissimilatory perchlorate-reducing bacterium (DPRB), Arcobacter sp. strain CAB, was isolated from a marina in Berkeley, CA. Phylogenetically, this halophile was most closely related to Arcobacter defluvii strain SW30-2 and Arcobacter ellisii. With acetate as the electron donor, strain CAB completely reduced perchlorate (ClO4(-)) or chlorate (ClO3(-)) [collectively designated (per)chlorate] to innocuous chloride (Cl(-)), likely using the perchlorate reductase (Pcr) and chlorite dismutase (Cld) enzymes. When grown with perchlorate, optimum growth was observed at 25 to 30°C, pH 7, and 3% NaCl. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) preparations were dominated by free-swimming straight rods with 1 to 2 polar flagella per cell. Strain CAB utilized a variety of organic acids, fructose, and hydrogen as electron donors coupled to (per)chlorate reduction. Further, under anoxic growth conditions strain CAB utilized the biogenic oxygen produced as a result of chlorite dismutation to oxidize catechol via the meta-cleavage pathway of aerobic catechol degradation and the catechol 2,3-dioxygenase enzyme. In addition to (per)chlorate, oxygen and nitrate were alternatively used as electron acceptors. The 3.48-Mb draft genome encoded a distinct perchlorate reduction island (PRI) containing several transposases. The genome lacks the pcrC gene, which was previously thought to be essential for (per)chlorate reduction, and appears to use an unrelated Arcobacter c-type cytochrome to perform the same function. IMPORTANCE The study of dissimilatory perchlorate-reducing bacteria (DPRB) has largely focused on freshwater, mesophilic, neutral-pH environments. This study identifies a novel marine DPRB in the genus Arcobacter that represents the first description of a DPRB associated with the Campylobacteraceae. Strain CAB is currently the only epsilonproteobacterial DPRB in pure culture. The genome of strain CAB lacks the pcrC gene found in all

  4. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops.

    Science.gov (United States)

    Singh, Roshan Kumar; Prasad, Manoj

    2016-05-01

    Steady increase in global population poses several challenges to plant science research, including demand for increased crop productivity, grain yield, nutritional quality and improved tolerance to different environmental factors. Transgene-based approaches are promising to address these challenges by transferring potential candidate genes to host organisms through different strategies. Agrobacterium-mediated gene transfer is one such strategy which is well known for enabling efficient gene transfer in both monocot and dicots. Due to its versatility, this technique underwent several advancements including development of improved in vitro plant regeneration system, co-cultivation and selection methods, and use of hyper-virulent strains of Agrobacterium tumefaciens harbouring super-binary vectors. The efficiency of this method has also been enhanced by the use of acetosyringone to induce the activity of vir genes, silver nitrate to reduce the Agrobacterium-induced necrosis and cysteine to avoid callus browning during co-cultivation. In the last two decades, extensive efforts have been invested towards achieving efficient Agrobacterium-mediated transformation in cereals. Though high-efficiency transformation systems have been developed for rice and maize, comparatively lesser progress has been reported in other graminaceous crops. In this context, the present review discusses the progress made in Agrobacterium-mediated transformation system in rice, maize, wheat, barley, sorghum, sugarcane, Brachypodium, millets, bioenergy and forage and turf grasses. In addition, it also provides an overview of the genes that have been recently transferred to these graminaceous crops using Agrobacterium, bottlenecks in this technique and future possibilities for crop improvement. PMID:26660352

  5. Isolation and characterization of an acrylamide-degrading yeast Rhodotorula sp. strain MBH23 KCTC 11960BP.

    Science.gov (United States)

    Rahim, M B H; Syed, M A; Shukor, M Y

    2012-10-01

    As well as for chemical and environmental reasons, acrylamide is widely used in many industrial applications. Due to its carcinogenicity and toxicity, its discharge into the environment causes adverse effects on humans and ecology alike. In this study, a novel acrylamide-degrading yeast has been isolated. The isolate was identified as Rhodotorula sp. strain MBH23 using ITS rRNA analysis. The results showed that the best carbon source for growth was glucose at 1.0% (w/v). The optimum acrylamide concentration, being a nitrogen source for cellular growth, was at 500 mg l(-1). The highest tolerable concentration of acrylamide was 1500 mg l(-1) whereas growth was completely inhibited at 2000 mg l(-1). At 500 mg l(-1), the strain MBH completely degraded acrylamide on day 5. Acrylic acid as a metabolite was detected in the media. Strain MBH23 grew well between pH 6.0 and 8.0 and between 27 and 30 °C. Amides such as 2-chloroacetamide, methacrylamide, nicotinamide, acrylamide, acetamide, and propionamide supported growth. Toxic heavy metals such as mercury, chromium, and cadmium inhibited growth on acrylamide. PMID:22144174

  6. Production and Purification of a Novel Xanthan Lyase from a Xanthan-Degrading Microbacterium sp. Strain XT11

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2014-01-01

    Full Text Available A xanthan lyase was produced and purified from the culture supernatant of an excellent xanthan-modifying strain Microbacterium sp. XT11. Xanthan lyase was induced by xanthan but was inhibited by its structural monomer glucose. Its production by strain XT11 is much higher than that by all other reported strains. The purified xanthan lyase has a molecular mass of 110 kDa and a specific activity of 28.2 U/mg that was much higher than that of both Paenibacillus and Bacillus lyases. It was specific on the pyruvated mannosyl residue in the intact xanthan molecule, but about 50% lyase activity remained when xanthan was partially depyruvated. Xanthan lyase was optimally active at pH 6.0–6.5 and 40°C and alkali-tolerant at a high pH value of 11.0. The metal ions including K+, Ca2+, Na+, Mg2+, Mn2+, and Li+ strongly stimulated xanthan lyase activity but ions Zn2+ and Cu2+ were its inhibitor. Xanthan lyase should be a novel enzyme different from the other xanthan lyases ever reported.

  7. Plant-Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer ability

    Directory of Open Access Journals (Sweden)

    Satoko eNonaka

    2014-12-01

    Full Text Available Agrobacterium tumefaciens has a unique ability to transfer genes into plant genomes. This ability has been utilized for plant genetic engineering. However, the efficiency is not sufficient for all plant species. Several studies have shown that ethylene decreased the Agrobacterium-mediated transformation frequency. Thus, A. tumefaciens with an ability to suppress ethylene evolution would increase the efficiency of Agrobacterium-mediated transformation. Some studies showed that plant growth-promoting rhizobacteria (PGPR can reduce ethylene levels in plants through 1-aminocyclopropane-1-carboxylic acid (ACC deaminase, which cleaves the ethylene precursor ACC into α-ketobutyrate and ammonia, resulting in reduced ethylene production. The whole genome sequence data showed that A. tumefaciens does not possess an ACC deaminase gene in its genome. Therefore, providing ACC deaminase activity to the bacteria would improve gene transfer. As expected, A. tumefaciens with ACC deaminase activity, designated as super-Agrobacterium, could suppress ethylene evolution and increase the gene transfer efficiency in several plant species. In this review, we summarize plant–Agrobacterium interactions and their applications for improving Agrobacterium-mediated genetic engineering techniques via super-Agrobacterium.

  8. Crystallization and preliminary X-ray diffraction studies of maleylacetate reductase from Rhizobium sp. strain MTP-10005

    International Nuclear Information System (INIS)

    Maleylacetate reductase from Rhizobium sp. strain MTP-10005 has been crystallized using the sitting-drop vapour-diffusion method and microseeding. The crystals contained one dimeric molecule per asymmetric unit and diffracted to 1.79 Å resolution. Maleylacetate reductase (EC 1.3.1.32), which catalyzes the reduction of maleylacetate to 3-oxoadipate, plays an important role in the aerobic microbial catabolism of resorcinol. The enzyme has been crystallized at 293 K by the sitting-drop vapour-diffusion method supplemented with a microseeding technique, using ammonium sulfate as the precipitating agent. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a = 56.85, b = 121.13, c = 94.09 Å, β = 101.48°, and contained one dimeric molecule in the asymmetric unit. It diffracted to 1.79 Å resolution

  9. Expression, purification, crystallization and preliminary X-ray analysis of maleylacetate reductase from Burkholderia sp. strain SJ98

    International Nuclear Information System (INIS)

    Purification and preliminary X-ray crystallographic analysis of maleylacetate reductase encoded by the pnpD gene is reported. Maleylacetate reductase (EC 1.3.1.32) is an important enzyme that is involved in the degradation pathway of aromatic compounds and catalyzes the reduction of maleylacetate to 3-oxoadipate. The gene pnpD encoding maleylacetate reductase in Burkholderia sp. strain SJ98 was cloned, expressed in Escherichia coli and purified by affinity chromatography. The enzyme was crystallized in both native and SeMet-derivative forms by the sitting-drop vapour-diffusion method using PEG 3350 as a precipitant at 293 K. The crystals belonged to space group P21212, with unit-cell parameters a = 72.91, b = 85.94, c = 53.07 Å. X-ray diffraction data for the native and SeMet-derivative crystal were collected to 2.7 and 2.9 Å resolution, respectively

  10. Degradation of Microcystin-LR and RR by a Stenotrophomonas sp. Strain EMS Isolated from Lake Taihu, China

    Directory of Open Access Journals (Sweden)

    Zhi Qi Shi

    2010-03-01

    Full Text Available A bacterial strain EMS with the capability of degrading microcystins (MCs was isolated from Lake Taihu, China. The bacterium was tentatively identified as a Stenotrophomonas sp. The bacterium could completely consume MC-LR and MC-RR within 24 hours at a concentration of 0.7 µg/mL and 1.7 µg/mL, respectively. The degradation of MC-LR and MC-RR by EMS occurred preferentially in an alkaline environment. In addition, mlrA gene involved in the degradation of MC-LR and MC-RR was detected in EMS. Due to the limited literature this gene has rare homologues. Sequencing analysis of the translated protein from mlrA suggested that MlrA might be a transmembrane protein, which suggests a possible new protease family having unique function.

  11. Crystallization and preliminary X-ray diffraction studies of maleylacetate reductase from Rhizobium sp. strain MTP-10005

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Tomomi; Goda, Yuko [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Yoshida, Masahiro; Oikawa, Tadao [Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680 (Japan); Hata, Yasuo, E-mail: hata@scl.kyoto-u.ac.jp [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2008-08-01

    Maleylacetate reductase from Rhizobium sp. strain MTP-10005 has been crystallized using the sitting-drop vapour-diffusion method and microseeding. The crystals contained one dimeric molecule per asymmetric unit and diffracted to 1.79 Å resolution. Maleylacetate reductase (EC 1.3.1.32), which catalyzes the reduction of maleylacetate to 3-oxoadipate, plays an important role in the aerobic microbial catabolism of resorcinol. The enzyme has been crystallized at 293 K by the sitting-drop vapour-diffusion method supplemented with a microseeding technique, using ammonium sulfate as the precipitating agent. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a = 56.85, b = 121.13, c = 94.09 Å, β = 101.48°, and contained one dimeric molecule in the asymmetric unit. It diffracted to 1.79 Å resolution.

  12. THE RESISTANCE TO ANTIBIOTICS IN STRAINS OF E. COLI AND ENTEROCOCCUS SP. ISOLATED FROM RECTAL SWABS OF LAMBS AND CALVES

    Directory of Open Access Journals (Sweden)

    IVANA NOVÁKOVÁ

    2013-07-01

    Full Text Available he aim of this study was to determine the prevalence and antibiotic resistance of enterococcii and E. coli strains isolated from dairy calves and lambs. Susceptibilities of isolated enterococci were tested using the disk diffusion method. The interpretation of inhibition zones around the disks was according to CLSI 2004 Performance standards for antimicrobial susceptibility testing. In our study, all isolates (E. coli and enterococci were multiresistant (100% to tetracycline, streptomycin and compound sulphonamides. Lower levels of resistance to enrofloxacin were noted. Antimicrobial resistance profiles of Enterococcus sp. isolated from lambs indicated that the highest percentage of susceptibility was exhibited to tetracycline (100% and streptomycin (100% and compound sulphonamides (100%. The intermediate resistance was exhibited against compound enrofloxacin (80%. The high frequencies of resistant isolates of Enterococcus sp. from calves were documented in tetracycline (100%, streptomycin (100% and compound sulphonamides (100% and enrofloxacin (50%. The high percentage (compound sulphonamides-100%, tetracycline-100% and streptomycin- 100% of multiresistant E. coli (isolates from dairy calves was noticed. There were no significant correlations between groups.

  13. Penicillium donkii sp. nov. and some observations on sclerotial strains of Penicillium funiculosum

    NARCIS (Netherlands)

    Stolk, Amelia C.

    1973-01-01

    A description and drawings of a new species of Penicillium, P. donkii, are presented. Penicillium purpurogenum Stoll var. rubri-sclerotium Thom is considered a synonym of P. funiculosum Thom. Some observations are recorded, especially in connection with the cultural appearance of sclerotial strains

  14. Direct Adherence of Fe(III Particles onto Sheaths of Leptothrix sp. Strain OUMS1 in Culture

    Directory of Open Access Journals (Sweden)

    Tatsuki Kunoh

    2016-01-01

    Full Text Available Leptothrix species, one of the Fe/Mn-oxidizing bacteria, oxidize Fe(II and produce extracellular, microtubuar, Fe-encrusted sheaths. Since protein(s involved in Fe(II oxidation is excreted from Leptothrix cells, the oxidation from Fe(II to Fe(III and subsequent Fe(III deposition to sheaths have been thought to occur in the vicinity or within the sheaths. Previously, Fe(III particles generated in MSVP medium amended with Fe(II salts by abiotic oxidation were directly recruited onto cell-encasing and/or -free sheaths of L. cholodnii SP-6. In this study, whether this direct Fe(III adherence to sheaths also occurs in silicon-glucose-peptone (SGP medium amended with Fe(0 (SGP + Fe was investigated using another strain of Leptothrix sp., OUMS1. Preparation of SGP + Fe with Fe powder caused turbidity within a few hours due to abiotic generation of Fe(III particles via Fe(II, and the medium remained turbid until day 8. When OUMS1 was added to SGP + Fe, the turbidity of the medium cleared within 35 h as Fe(III particles adhered to sheaths. When primitive sheaths, cell-killed, cell-free, or lysozyme/EDTA/SDS- and proteinase K-treated sheath remnants were mixed with Fe(III particles, the particles immediately adhered to each. Thus, vital activity of cells was not required for the direct Fe(III particle deposition onto sheaths regardless of Leptothrix strains.

  15. Characterization and molecular cloning of a novel enzyme, inorganic polyphosphate/ATP-glucomannokinase, of Arthrobacter sp. strain KM.

    Science.gov (United States)

    Mukai, Takako; Kawai, Shigeyuki; Matsukawa, Hirokazu; Matuo, Yuhsi; Murata, Kousaku

    2003-07-01

    A bacterium exhibiting activities of several inorganic polyphosphate [poly(P)]- and ATP-dependent kinases, including glucokinase, NAD kinase, mannokinase, and fructokinase, was isolated, determined to belong to the genus Arthrobacter, and designated Arthrobacter sp. strain KM. Among the kinases, a novel enzyme responsible for the poly(P)- and ATP-dependent mannokinase activities was purified 2,200-fold to homogeneity from a cell extract of the bacterium. The purified enzyme was a monomer with a molecular mass of 30 kDa. This enzyme phosphorylated glucose and mannose with a high affinity for glucose, utilizing poly(P) as well as ATP, and was designated poly(P)/ATP-glucomannokinase. The K(m) values of the enzyme for glucose, mannose, ATP, and hexametaphosphate were determined to be 0.50, 15, 0.20, and 0.02 mM, respectively. The catalytic sites for poly(P)-dependent phosphorylation and ATP-dependent phosphorylation of the enzyme were found to be shared, and the poly(P)-utilizing mechanism of the enzyme was shown to be nonprocessive. The gene encoding the poly(P)/ATP-glucomannokinase was cloned from Arthrobacter sp. strain KM, and its nucleotide sequence was determined. This gene contained an open reading frame consisting of 804 bp coding for a putative polypeptide with a calculated molecular mass of 29,480 Da. The deduced amino acid sequence of the polypeptide exhibited homology to the amino acid sequences of the poly(P)/ATP-glucokinase of Mycobacterium tuberculosis H37Rv (level of homology, 45%), ATP-dependent glucokinases of Corynebacterium glutamicum (45%), Renibacterium salmoninarum (45%), and Bacillus subtilis (35%), and proteins of bacteria belonging to the order Actinomyces whose functions are not known. Alignment of these homologous proteins revealed seven conserved regions. The mannose and poly(P) binding sites of poly(P)/ATP-glucomannokinase are discussed. PMID:12839753

  16. Biodegradation of methyl red by Bacillus sp. strain UN2: decolorization capacity, metabolites characterization, and enzyme analysis.

    Science.gov (United States)

    Zhao, Ming; Sun, Peng-Fei; Du, Lin-Na; Wang, Guan; Jia, Xiao-Ming; Zhao, Yu-Hua

    2014-05-01

    Azo dyes are recalcitrant and refractory pollutants that constitute a significant menace to the environment. The present study is focused on exploring the capability of Bacillus sp. strain UN2 for application in methyl red (MR) degradation. Effects of physicochemical parameters (pH of medium, temperature, initial concentration of dye, and composition of the medium) were studied in detail. The suitable pH and temperature range for MR degradation by strain UN2 were respectively 7.0-9.0 and 30-40 °C, and the optimal pH value and temperature were respectively 8.0 and 35 °C. Mg(2+) and Mn(2+) (1 mM) were found to significantly accelerate the MR removal rate, while the enhancement by either Fe(3+) or Fe(2+) was slight. Under the optimal degradation conditions, strain UN2 exhibited greater than 98 % degradation of the toxic azo dye MR (100 ppm) within 30 min. Analysis of samples from decolorized culture flasks confirmed biodegradation of MR into two prime metabolites: N,N'dimethyl-p-phenyle-nediamine and 2-aminobenzoic acid. A study of the enzymes responsible for the biodegradation of MR, in the control and cells obtained during (10 min) and after (30 min) degradation, showed a significant increase in the activities of azoreductase, laccase, and NADH-DCIP reductase. Furthermore, a phytotoxicity analysis demonstrated that the germination inhibition was almost eliminated for both the plants Triticum aestivum and Sorghum bicolor by MR metabolites at 100 mg/L concentration, yet the germination inhibition of parent dye was significant. Consequently, the high efficiency of MR degradation enables this strain to be a potential candidate for bioremediation of wastewater containing MR. PMID:24474566

  17. Isolation and characterization of a furfural-degrading bacterium Bacillus cereus sp. strain DS1.

    Science.gov (United States)

    Zheng, Dan; Bao, Jianguo; Lu, Jueming; Gao, Chunlei

    2015-02-01

    Furfural was found to be the main organic pollutant in the wastewater coming from the Diosgenin factory. This substance is derived from acidic pentosan in Dioscorea zingiberensis and is also found in a variety of agricultural byproducts, including corncobs, oat, wheat bran, and sawdust. It is regarded as a toxicant and an inhibitor to the growth of microorganism in both sewage disposal and biological fermentation. A furfural-degrading strain (DS1) was isolated from activated sludge of wastewater treatment plant in a diosgenin factory by continuous enrichment culture. The strain was identified as Bacillus cereus based on morphological, physiological tests, as well as on 16S rDNA sequence and Biolog analyses. The capacity of this strain to grow on a mineral salt medium, utilizing furfural as the sole carbon and energy source to degrade furfural, was investigated in this study. Under the condition of pH 9.0, temperature 35 °C, with rotating speed of 150 rpm, and an inoculum of 6 %, the strain showed that the furfural degradation capacity reaches 35 % in 7 days, as measured by high-performance liquid chromatography. The addition of inorganic carbon sources could bring down the biodegradation efficiency of the furfural. The strain DS1 showed better furfural removal capacity, as compared to other inorganic carbon sources in the media. Furthermore, a furfural concentration of as high as 4,000 mg L(-1) was tolerated by the culture. The capacity to degrade furfural was demonstrated for the first time by using the genus B. cereus. This study suggests the possible application in biodegradation strategies. PMID:25274411

  18. Mutants of Agrobacterium tumefaciens with elevated vir gene expression

    International Nuclear Information System (INIS)

    Expression of Agrobacterium tumefaciens virulence (vir) genes requires virA, virG, and a plant-derived inducing compound such as acetosyringone. To identify the critical functional domains of virA and virG, a mutational approach was used. Agrobacterium A136 harboring plasmid pGP159, which contains virA, virG, and a reporter virB:lacZ gene fusion, was mutagenized with UV light or nitrosoguanidine. Survivors that formed blue colonies on a plate containing 5-bromo-4-chloro-3-indolyl beta-D-galactoside were isolated and analyzed. Quantification of beta-galactosidase activity in liquid assays identified nine mutant strains. By plasmid reconstruction and other procedures, all mutations mapped to the virA locus. These mutations caused an 11- to 560-fold increase in the vegetative level of virB:lacZ reporter gene expression. DNA sequence analysis showed that the mutations are located in four regions of VirA: transmembrane domain one, the active site, a glycine-rich region with homology to ATP-binding sites, and a region at the C terminus that has homology to the N terminus of VirG

  19. Monolayer Adsorption of a “Bald” Mutant of the Highly Adhesive and Hydrophobic Bacterium Acinetobacter sp. Strain Tol 5 to a Hydrocarbon Surface▿

    OpenAIRE

    Hori, Katsutoshi; Watanabe, Hisami; Ishii, Shun'ichi; Tanji, Yasunori; Unno, Hajime

    2008-01-01

    The affinity of microbial cells for hydrophobic interfaces is important because it directly affects the efficiency of various bioprocesses, including green biotechnologies. The toluene-degrading bacterium Acinetobacter sp. strain Tol 5 has filamentous appendages and a hydrophobic cell surface, shows high adhesiveness to solid surfaces, and self-agglutinates. A “bald” mutant of this bacterium, strain T1, lacks the filamentous appendages and has decreased adhesiveness but retains a hydrophobic ...

  20. Draft Genome Sequence of Chloroflexus sp. Strain isl-2, a Thermophilic Filamentous Anoxygenic Phototrophic Bacterium Isolated from the Strokkur Geyser, Iceland.

    Science.gov (United States)

    Gaisin, Vasil A; Ivanov, Timophey M; Kuznetsov, Boris B; Gorlenko, Vladimir M; Grouzdev, Denis S

    2016-01-01

    We report here the draft genome sequence of the thermophilic filamentous anoxygenic phototrophic bacterium Chloroflexus sp. strain isl-2, which was isolated from the Strokkur geyser, Iceland, and contains 5,222,563 bp with a G+C content of 59.65%. The annotated genome sequence offers the genetic basis for understanding the strain's ecological role as a phototrophic bacterium within the bacterial community. PMID:27445390

  1. Degradation of fluorene by Brevibacterium sp. strain DPO 1361: a novel C-C bond cleavage mechanism via 1,10-dihydro-1,10-dihydroxyfluoren-9-one

    OpenAIRE

    Trenz, Stefan Peter; Engesser, Karl-Heinrich; Fischer, Peter; Knackmuss, Hans-Joachim

    1994-01-01

    Angular dioxygenation has been established as the crucial step in dibenzofuran degradation by Brevibacterium sp. strain DPO 1361 (V. Strubel, K. H. Engesser, P. Fischer, and H.-J. Knackmuss, J. Bacteriol. 173:1932-1937, 1991). The same strain utilizes biphenyl and fluorene as sole sources of carbon and energy. The fluorene degradation sequence is proposed to be initiated by oxidation of the fluorene methylene group to 9-fluorenol. Cells grown on fluorene exhibit pronounced 9-fluorenol dehydro...

  2. Draft Genome Sequence of Bacillus sp. GZT, a 2,4,6-Tribromophenol-Degrading Strain Isolated from the River Sludge of an Electronic Waste-Dismantling Region

    Science.gov (United States)

    Liang, Zhishu; Li, Guiying; Das, Ranjit

    2016-01-01

    Here, we report the draft genome sequence of Bacillus sp. strain GZT, a 2,4,6-tribromophenol (TBP)-degrading bacterium previously isolated from an electronic waste-dismantling region. The draft genome sequence is 5.18 Mb and has a G+C content of 35.1%. This is the first genome report of a brominated flame retardant-degrading strain. PMID:27257197

  3. Complete Genome Sequence of the Hyperthermophilic Archaeon Pyrococcus sp. Strain ST04, Isolated from a Deep-Sea Hydrothermal Sulfide Chimney on the Juan de Fuca Ridge

    OpenAIRE

    Jung, Jong-Hyun; Lee, Ju-Hoon; Holden, James F.; Seo, Dong-Ho; Shin, Hakdong; Kim, Hae-Yeong; Kim, Wooki; Ryu, Sangryeol; Park, Cheon-Seok

    2012-01-01

    Pyrococcus sp. strain ST04 is a hyperthermophilic, anaerobic, and heterotrophic archaeon isolated from a deep-sea hydrothermal sulfide chimney on the Endeavour Segment of the Juan de Fuca Ridge in the northeastern Pacific Ocean. To further understand the distinct characteristics of this archaeon at the genome level (polysaccharide utilization at high temperature and ATP generation by a Na+ gradient), the genome of strain ST04 was completely sequenced and analyzed. Here, we present the complet...

  4. Role of Light Intensity and Temperature in the Regulation of Hydrogen Photoproduction by the Marine Cyanobacterium Oscillatoria sp. Strain Miami BG7

    OpenAIRE

    Phlips, E. J.; Mitsui, A

    1983-01-01

    The effects of several key environmental factors on the development and control of hydrogen production in the marine blue-green alga (cyanobacterium) Oscillatoria sp. strain Miami BG7 were studied in relation to the potential application of this strain to a bio-solar energy technology. The production of cellular biomass capable of evolving hydrogen gas was strongly affected by light intensity, temperature, and the input of ammonia as a nutrient. Depletion of combined nitrogen from the growth ...

  5. Agrobacterium tumefaciens-mediated transformation of poinsettia, Euphorbia pulcherrima, with virus-derived hairpin RNA constructs confers resistance to Poinsettia mosaic virus

    OpenAIRE

    Clarke, Jihong Liu; Spetz, Carl; Haugslien, Sissel; Xing, Shaochen; Dees, Merete W.; Moe, Roar; Blystad, Dag-Ragnar

    2008-01-01

    Agrobacterium-mediated transformation for poinsettia (Euphorbia pulcherrima Willd. Ex Klotzsch) is reported here for the first time. Internode stem explants of poinsettia cv. Millenium were transformed by Agrobacterium tumefaciens, strain LBA 4404, harbouring virus-derived hairpin (hp) RNA gene constructs to induce RNA silencing-mediated resistance to Poinsettia mosaic virus (PnMV). Prior to transformation, an efficient somatic embryogenesis system was developed for poinsettia cv. Millenium i...

  6. Characterization of the wzc gene from Pantoea sp. strain PPE7 and its influence on extracellular polysaccharide production and virulence on Pleurotus eryngii.

    Science.gov (United States)

    Kim, Min Keun; Lee, Young Han; Kim, Hyeran; Lee, Jeongyeo; Ryu, Jae San

    2015-01-01

    To characterize of the pathogenicity gene from the soft rot pathogen Pantoea sp. PPE7 in Pleurotus eryngii, we constructed over 10,000 kanamycin-resistant transposon mutants of Pantoea sp. strain PPE7 by transposon mutagenesis. One mutant, Pantoea sp. NPPE9535, did not cause a soft rot disease on Pleurotus eryngii was confirmed by the pathogenicity test. The transposon was inserted into the wzc gene and the disruption of the wzc gene resulted in the reduction of polysaccharide production and abolished the virulence of Pantoea sp. strain PPE7 in P. eryngii. Analysis of the hydropathic profile of this protein indicated that it is composed of two main domains: an N-terminal domain including two transmembrane α-helices and a C-terminal cytoplasmic domain consisting of a tyrosine-rich region. Comparative analysis indicated that the amino acid sequence of Wzc is similar to that of a number of proteins involved in the synthesis or export of polysaccharides in other bacterial species. Purified GST-Wzc was found to affect the phosphorylation of tyrosine residue in vivo. These results showed that the wzc gene might play an important role in the virulence of Pantoea sp. strain PPE7 in P. eryngii. PMID:25183654

  7. Influence of Temperature on the Physiology and Virulence of the Insect Pathogen Serratia sp. Strain SCBI

    OpenAIRE

    Petersen, Lauren M.; Tisa, Louis S.

    2012-01-01

    The physiology of a newly recognized Serratia species, termed South African Caenorhabditis briggsae Isolate (SCBI), which is both a nematode mutualist and an insect pathogen, was investigated and compared to that of Serratia marcescens Db11, a broad-host-range pathogen. The two Serratia strains had comparable levels of virulence for Manduca sexta and similar cytotoxic activity patterns, but motility and lipase and hemolytic activities differed significantly between them.

  8. Influence of temperature on the physiology and virulence of the insect pathogen Serratia sp. Strain SCBI.

    Science.gov (United States)

    Petersen, Lauren M; Tisa, Louis S

    2012-12-01

    The physiology of a newly recognized Serratia species, termed South African Caenorhabditis briggsae Isolate (SCBI), which is both a nematode mutualist and an insect pathogen, was investigated and compared to that of Serratia marcescens Db11, a broad-host-range pathogen. The two Serratia strains had comparable levels of virulence for Manduca sexta and similar cytotoxic activity patterns, but motility and lipase and hemolytic activities differed significantly between them. PMID:23042169

  9. Biological Efficacy of Streptomyces sp. Strain BN1 against the Cereal Head Blight Pathogen Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Boknam Jung

    2013-03-01

    Full Text Available Fusarium head blight (FHB caused by the filamentous fungus Fusarium graminearum is one of the most severe diseases threatening the production of small grains. Infected grains are often contaminated with mycotoxins such as zearalenone and trichothecences. During survey of contamination by FHB in rice grains, we found a bacterial isolate, designated as BN1, antagonistic to F. graminearum. The strain BN1 had branching vegetative hyphae and spores, and its aerial hyphae often had long, straight filaments bearing spores. The 16S rRNA gene of BN1 had 100% sequence identity with those found in several Streptomyces species. Phylogenetic analysis of ITS regions showed that BN1 grouped with S. sampsonii with 77% bootstrap value, suggesting that BN1 was not a known Streptomyces species. In addition, the efficacy of the BN1 strain against F. graminearum strains was tested both in vitro and in vivo. Wheat seedling length was significantly decreased by F. graminearum infection. However, this effect was mitigated when wheat seeds were treated with BN1 spore suspension prior to F. graminearum infection. BN1 also significantly decreased FHB severity when it was sprayed onto wheat heads, whereas BN1 was not effective when wheat heads were point inoculated. These results suggest that spraying of BN1 spores onto wheat heads during the wheat flowering season can be efficient for plant protection. Mechanistic studies on the antagonistic effect of BN1 against F. graminearum remain to be analyzed.

  10. Draft Genome Sequence of Clostridium sp. Strain Ade.TY, a New Biohydrogen- and Biochemical-Producing Bacterium Isolated from Landfill Leachate Sludge

    OpenAIRE

    Wong, Y. M.; Juan, J. C.; Ting, Adeline; Wu, T. Y.; Gan, H. M.; Austin, C.M.

    2014-01-01

    Clostridium sp. strain Ade.TY is potentially a new biohydrogen-producing species isolated from landfill leachate sludge. Here we present the assembly and annotation of its genome, which may provide further insights into its gene interactions for efficient biohydrogen production.

  11. Draft Genome Sequence of Hymenobacter sp. Strain AT01-02, Isolated from a Surface Soil Sample in the Atacama Desert, Chile

    DEFF Research Database (Denmark)

    Hansen, Anders Cai Holm; Paulino-Lima, Ivan Glaucio; Fujishima, Kosuke;

    2016-01-01

    Here, we report the 5.09-Mb draft genome sequence of Hymenobacter sp. strain AT01-02, which was isolated from a surface soil sample in the Atacama Desert, Chile. The isolate is extremely resistant to UV-C radiation and is able to accumulate high intracellular levels of Mn/Fe....

  12. Draft genome sequence of Streptomyces sp. strain Wb2n-11, a desert isolate with broad-spectrum antagonism against soilborne phytopathogens

    Energy Technology Data Exchange (ETDEWEB)

    Koeberl, Martina; White, Richard A.; Erschen, Sabine; El-Arabi, Tarek F.; Jansson, Janet K.; Berg, Gabriele

    2015-08-06

    Streptomyces sp. strain Wb2n-11, isolated from native desert soil, exhibited broad-spectrum antagonism against plant pathogenic fungi, bacteria and nematodes. The 8.2 Mb draft genome reveals genes putatively responsible for its promising biocontrol activity and genes which enable the soil bacterium to directly interact beneficially with plants.

  13. Draft Genome Sequence of Frankia sp. Strain CcI6, a Salt-Tolerant Nitrogen-Fixing Actinobacterium Isolated from the Root Nodule of Casuarina cunninghamiana.

    Science.gov (United States)

    Mansour, Samira R; Oshone, Rediet; Hurst, Sheldon G; Morris, Krystalynne; Thomas, W Kelley; Tisa, Louis S

    2014-01-01

    Members of the actinomycete genus Frankia form a nitrogen-fixing symbiosis with 8 different families of actinorhizal plants. We report a 5.57-Mbp draft genome sequence for Frankia sp. strain CcI6, a salt-tolerant nitrogen-fixing actinobacterium isolated from root nodules of Casurina cunninghamiana grown in Egyptian soils. PMID:24435877

  14. Draft Genome sequence of Frankia sp. strains CN3 , an atypical, non-infective (Nod-) ineffective (Fix-) isolate from Coriaria nepalensis

    Energy Technology Data Exchange (ETDEWEB)

    Ghodhbane-Gtari, Faten [University of New Hampshire; Beauchemin, Nicholas [University of New Hampshire; Bruce, David [Los Alamos National Laboratory (LANL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Davenport, Karen W. [Los Alamos National Laboratory (LANL); Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Furnholm, Teal [University of New Hampshire; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Gtari, Maher [University of New Hampshire; Han, Cliff [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Nouioui, Imen [University of Tunis-El Manar, Tunisia; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Santos, Catarina [Instiuto Celular e Aplicada, Portugal; Sen, Arnab [University of North Bengal, Siliguri, India; Sur, Saubashya [University of North Bengal, Siliguri, India; Szeto, Ernest [U.S. Department of Energy, Joint Genome Institute; Tavares, Fernando [Instiuto Celular e Aplicada, Portugal; Hazuki, Teshima [Los Alamos National Laboratory (LANL); Thakur, Subarna [University of North Bengal, Siliguri, India; Wall, Luis [University of Quilmes, Argentina; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Tisa, Louis S. [University of New Hampshire

    2013-01-01

    We report here the genome sequence of Frankia sp. strain CN3, which was isolated from Coriaria nepalensis. This genome sequence is the first from the fourth lineage of Frankia, that are unable to re-infect actinorhizal plants. At 10 Mb, it represents the largest Frankia genome sequenced to date.

  15. Draft genome sequence of Frankia sp. strain QA3, a nitrogen-fixing actinobacterium isolated from the root nodule of Alnus nitida.

    Science.gov (United States)

    Sen, Arnab; Beauchemin, Nicholas; Bruce, David; Chain, Patrick; Chen, Amy; Walston Davenport, Karen; Deshpande, Shweta; Detter, Chris; Furnholm, Teal; Ghodbhane-Gtari, Faten; Goodwin, Lynne; Gtari, Maher; Han, Cliff; Han, James; Huntemann, Marcel; Ivanova, Natalia; Kyrpides, Nikos; Land, Miriam L; Markowitz, Victor; Mavrommatis, Kostas; Nolan, Matt; Nouioui, Imen; Pagani, Ioanna; Pati, Amrita; Pitluck, Sam; Santos, Catarina L; Sur, Saubashya; Szeto, Ernest; Tavares, Fernando; Teshima, Hazuki; Thakur, Subarna; Wall, Luis; Woyke, Tanja; Wishart, Jessie; Tisa, Louis S

    2013-01-01

    Members of the actinomycete genus Frankia form a nitrogen-fixing symbiosis with 8 different families of actinorhizal plants. We report a high-quality draft genome sequence for Frankia sp. strain QA3, a nitrogen-fixing actinobacterium isolated from root nodules of Alnus nitida. PMID:23516220

  16. Draft Genome Sequence of Frankia sp. Strain CcI6, a Salt-Tolerant Nitrogen-Fixing Actinobacterium Isolated from the Root Nodule of Casuarina cunninghamiana

    OpenAIRE

    Mansour, Samira R.; Oshone, Rediet; Hurst, Sheldon G.; Morris, Krystalynne; Thomas, W Kelley; Tisa, Louis S.

    2014-01-01

    Members of the actinomycete genus Frankia form a nitrogen-fixing symbiosis with 8 different families of actinorhizal plants. We report a 5.57-Mbp draft genome sequence for Frankia sp. strain CcI6, a salt-tolerant nitrogen-fixing actinobacterium isolated from root nodules of Casurina cunninghamiana grown in Egyptian soils.

  17. Genome Sequence of Pseudomonas sp. Strain Chol1, a Model Organism for the Degradation of Bile Salts and Other Steroid Compounds

    KAUST Repository

    Holert, Johannes

    2013-01-15

    Bacterial degradation of steroid compounds is of high ecological and biotechnological relevance. Pseudomonas sp. strain Chol1 is a model organism for studying the degradation of the steroid compound cholate. Its draft genome sequence is presented and reveals one gene cluster responsible for the metabolism of steroid compounds.

  18. Draft Genome Sequence of Hymenobacter sp. Strain AT01-02, Isolated from a Surface Soil Sample in the Atacama Desert, Chile

    OpenAIRE

    Hansen, Anders Cai Holm; Paulino-Lima, Ivan Glaucio; Fujishima, Kosuke; Rothschild, Lynn Justine; Jensen, Peter Ruhdal

    2016-01-01

    Here, we report the 5.09-Mb draft genome sequence of Hymenobacter sp. strain AT01-02, which was isolated from a surface soil sample in the Atacama Desert, Chile. The isolate is extremely resistant to UV-C radiation and is able to accumulate high intracellular levels of Mn/Fe.

  19. Draft Genome Sequence of Hymenobacter sp. Strain AT01-02, Isolated from a Surface Soil Sample in the Atacama Desert, Chile.

    Science.gov (United States)

    Holm Hansen, Anders Cai; Paulino-Lima, Ivan Glaucio; Fujishima, Kosuke; Rothschild, Lynn Justine; Jensen, Peter Ruhdal

    2016-01-01

    Here, we report the 5.09-Mb draft genome sequence of Hymenobacter sp. strain AT01-02, which was isolated from a surface soil sample in the Atacama Desert, Chile. The isolate is extremely resistant to UV-C radiation and is able to accumulate high intracellular levels of Mn/Fe. PMID:26868392

  20. Complete Genome Sequence of Paenibacillus sp. Strain IHBB 10380 Using PacBio Single-Molecule Real-Time Sequencing Technology

    OpenAIRE

    Pal, Mohinder; Swarnkar, Mohit K.; Thakur, Rishu; Kiran, Shashi; Chhibber, Sanjay; Singh, Anil K.; Gulati, Arvind

    2015-01-01

    The complete genome sequence of 5.77 Mb is reported for Paenibacillus sp. strain IHBB 10380, isolated from the cold desert area of the northwestern Himalayas and exhibiting amylase and cellulase activities. The gene-coding clusters predicted the presence of genes for hydrolytic enzymes in the genome.

  1. Identification of Bacilysin, Chlorotetaine, and Iturin A Produced by Bacillus sp. Strain CS93 Isolated from Pozol, a Mexican Fermented Maize Dough

    OpenAIRE

    Phister, Trevor G.; O'Sullivan, Daniel J.; McKay, Larry L.

    2004-01-01

    Three antimicrobial compounds produced by Bacillus sp. strain CS93 isolated from pozol were identified by using high-performance liquid chromatography and mass spectrometry. The three compounds were iturin, bacilysin, and chlorotetaine. Production of these compounds by CS93 could account for the medicinal properties attributed to pozol.

  2. Draft Genome Sequence of Halomonas sp. Strain HAL1, a Moderately Halophilic Arsenite-Oxidizing Bacterium Isolated from Gold-Mine Soil

    OpenAIRE

    Lin, Yanbing; Fan, Haoxin; Hao, Xiuli; Johnstone, Laurel; Hu, Yao; Wei, Gehong; Alwathnani, Hend A.; Wang, Gejiao; Rensing, Christopher

    2012-01-01

    We report the draft genome sequence of arsenite-oxidizing Halomonas sp. strain HAL1, isolated from the soil of a gold mine. Genes encoding proteins involved in arsenic resistance and transformation, phosphate utilization and uptake, and betaine biosynthesis were identified. Their identification might help in understanding how arsenic and phosphate metabolism are intertwined.

  3. Purification of a glutathione S-transferase and a glutathione conjugate-specific dehydrogenase involved in isoprene metabolism in Rhodococcus sp. strain AD45

    NARCIS (Netherlands)

    Hylckama Vlieg, Johan E.T. van; Kingma, Jaap; Kruizinga, Wim; Janssen, Dick B.

    1999-01-01

    A glutathione S transferase (GST) with activity toward 1,2-eposy-2-methyl-3-butene (isoprene monoxide) and cis-1,2-dichloroepoxyethane was purified from the isoprene-utilizing bacterium Rhodococcus sp. strain AD45, The homodimeric enzyme (two subunits of 27 kDa each) catalyzed the glutathione (GSH)-

  4. Draft Genome Sequence of the Alkaliphilic and Xylanolytic Paenibacillus sp. Strain JCM 10914, Isolated from the Gut of a Soil-Feeding Termite

    OpenAIRE

    Ohkuma, Moriya; Yuki, Masahiro; Oshima, Kenshiro; Suda, Wataru; Oshida, Yumi; Kitamura, Keiko; Iida, Toshiya; Hattori, Masahira

    2014-01-01

    Panibacillus sp. strain JCM 10914 is a xylanolytic alkaliphile isolated from the gut of a soil-feeding termite. Its draft genome sequence revealed various genes for hydrolytic enzymes and will facilitate studies on adaptation to the highly alkaline gut environment and its role in digesting soil organic matter in the gut.

  5. Draft Genome Sequence of Methylosinus sp. Strain 3S-1, an Isolate from Rice Root in a Low-Nitrogen Paddy Field.

    Science.gov (United States)

    Bao, Zhihua; Shinoda, Ryo; Minamisawa, Kiwamu

    2016-01-01

    N2-fixing methanotrophs play an important role in the methane-nitrogen cycle in rice paddies. We report here the draft genome sequence of Methylosinus sp. strain 3S-1 isolated from rice root in a paddy field without N fertilizer input. PMID:27587832

  6. Draft Genome Sequence of Cylindrospermopsis sp. Strain CR12 Extracted from the Minimetagenome of a Nonaxenic Unialgal Culture from a Tropical Freshwater Lake

    Science.gov (United States)

    Mohamed Nor, Nur Hazimah; Tan, Boon Fei; Te, Shu Harn; Thompson, Janelle R.

    2016-01-01

    Cylindrospermopsis is known to be one of the major bloom-forming cyanobacterial genera in many freshwater environments. We report here the draft genome sequence of a tropical Cylindrospermopsis sp. strain, CR12, which is capable of producing the hepatotoxic cylindrospermopsin. PMID:26868404

  7. Nucleotide sequence of the beta-cyclodextrin glucanotransferase gene of alkalophilic Bacillus sp. strain 1011 and similarity of its amino acid sequence to those of alpha-amylases.

    OpenAIRE

    Kimura, K.; Kataoka, S; Ishii, Y; Takano, T.; Yamane, K

    1987-01-01

    The nucleotide sequence of the gene for cyclodextrin glucanotransferase of alkalophilic Bacillus sp. strain 1011 was determined. The deduced amino acid sequence at the NH2-terminal side of the enzyme showed a high homology with the sequences of alpha-amylase in the three regions which constitutes the active centers of alpha-amylases.

  8. Convergent synthesis of a tetrasaccharide repeating unit of the O-specific polysaccharide from the cell wall lipopolysaccharide of Azospirillum brasilense strain Sp7

    OpenAIRE

    Mandal, Pintu Kumar; Dhara, Debashis; Misra, Anup Kumar

    2014-01-01

    A straightforward convergent synthesis has been carried out for the tetrasaccharide repeating unit of the O-specific cell wall lipopolysaccharide of the strain Sp7 of Azospirillum brasilense. The target tetrasaccharide has been synthesized from suitably protected monosaccharide intermediates in 42% overall yield in seven steps by using a [2 + 2] block glycosylation approach.

  9. Convergent synthesis of a tetrasaccharide repeating unit of the O-specific polysaccharide from the cell wall lipopolysaccharide of Azospirillum brasilense strain Sp7

    Directory of Open Access Journals (Sweden)

    Pintu Kumar Mandal

    2014-01-01

    Full Text Available A straightforward convergent synthesis has been carried out for the tetrasaccharide repeating unit of the O-specific cell wall lipopolysaccharide of the strain Sp7 of Azospirillum brasilense. The target tetrasaccharide has been synthesized from suitably protected monosaccharide intermediates in 42% overall yield in seven steps by using a [2 + 2] block glycosylation approach.

  10. Draft Genome Sequence of Micrococcus sp. Strain MS-AsIII-49, an Arsenate-Reducing Isolate from Tropical Metal-Rich Sediment.

    Science.gov (United States)

    Costa, Patrícia S; Tschoeke, Diogo A; Silva, Bruno S O; Thompson, Fabiano; Reis, Mariana P; Chartone-Souza, Edmar; Nascimento, Andréa M A

    2015-01-01

    Micrococcus sp. strain MS-AsIII-49, which was isolated from a tropical metal-polluted stream sediment in Brazil, has the ability to reduce AsV to AsIII. Analysis of its draft genome revealed 186 contigs with a total size of 2,440,924 bp encoding several metal resistance genes. PMID:25883272

  11. Draft Genome Sequence of Micrococcus sp. Strain MS-AsIII-49, an Arsenate-Reducing Isolate from Tropical Metal-Rich Sediment

    OpenAIRE

    Costa, Patrícia S; Tschoeke, Diogo A.; Silva, Bruno S. O.; Thompson, Fabiano; Reis, Mariana P.; Chartone-Souza, Edmar; Nascimento, Andréa M. A.

    2015-01-01

    Micrococcus sp. strain MS-AsIII-49, which was isolated from a tropical metal-polluted stream sediment in Brazil, has the ability to reduce AsV to AsIII. Analysis of its draft genome revealed 186 contigs with a total size of 2,440,924 bp encoding several metal resistance genes.

  12. Mineralization of low-chlorinated biphenyls by Burkholderia sp. strain LB400 and by a two-membered consortium upon directed interspecies transfer of chlorocatechol pathway genes

    Energy Technology Data Exchange (ETDEWEB)

    Potrawfke, T.; Loehnert, T.H.; Timmis, K.N.; Wittich, R.M. [Gesellschaft fuer Biotechnologische Forschung mbH, Braunschweig (Germany). Bereich Mikrobiologie

    1998-12-31

    The biphenyl-mineralizing bacerium Burkholderia sp. strain LB400 also utilized 3-chloro-, 4-chloro-, 2,3`-dichloro- and 2,4`-dichlorobiphenyl for growth. By the attack of the initial enzyme a chlorine was eliminated dioxygenolytically from position 2 of one of the aromatic rings when hydrogens of both were substituted by chlorine. The strain mineralized 3-chloro- and 2,3`-dichlorobiphenyl via the central intermediate 3-chlorobenzoate through its chlorocatechol pathway enzymes, but excreted stoichiometric amounts of 4-chlorobenzoate from 4-chloro- and 2,4-dichlorobiphenyl. These two compounds were mineralized by a co-culture of strain LB400 and a derivative of the (methyl-)benzoate-degrading strain Pseudomonas putida mt-2 (TOL). The complete degradation was achieved upon transfer of a cluster of at least five genes, encoding the regulated chlorocatechol pathway operon, from strain LB400 to strain mt-2. This transfer was demonstrated by the polymerase chain reaction. (orig.)

  13. Use of combined microscopic and spectroscopic techniques to reveal interactions between uranium and Microbacterium sp. A9, a strain isolated from the Chernobyl exclusion zone

    Energy Technology Data Exchange (ETDEWEB)

    Theodorakopoulos, Nicolas [CEA, DSV, IBEB, SBVME, LIPM, F-13108 Saint-Paul-lez-Durance (France); CNRS, UMR 7265, F-13108 Saint-Paul-lez-Durance (France); Université d' Aix-Marseille, F-13108 Saint-Paul-lez-Durance (France); IRSN/PRP-ENV/SERIS/L2BT, bat 183, B.P. 3, F-13115 Saint Paul-lez-Durance (France); Chapon, Virginie [CEA, DSV, IBEB, SBVME, LIPM, F-13108 Saint-Paul-lez-Durance (France); CNRS, UMR 7265, F-13108 Saint-Paul-lez-Durance (France); Université d' Aix-Marseille, F-13108 Saint-Paul-lez-Durance (France); Coppin, Fréderic; Floriani, Magali [IRSN/PRP-ENV/SERIS/L2BT, bat 183, B.P. 3, F-13115 Saint Paul-lez-Durance (France); Vercouter, Thomas [CEA, DEN, DANS, DPC SEARS, LANIE, F-91191 Gif-Sur-Yvette Cedex (France); Sergeant, Claire [Univ Bordeaux, CENBG, UMR5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, F-33170 Gradignan (France); Camilleri, Virginie [IRSN/PRP-ENV/SERIS/L2BT, bat 183, B.P. 3, F-13115 Saint Paul-lez-Durance (France); Berthomieu, Catherine [CEA, DSV, IBEB, SBVME, LIPM, F-13108 Saint-Paul-lez-Durance (France); CNRS, UMR 7265, F-13108 Saint-Paul-lez-Durance (France); Université d' Aix-Marseille, F-13108 Saint-Paul-lez-Durance (France); Février, Laureline, E-mail: laureline.fevrier@irsn.fr [IRSN/PRP-ENV/SERIS/L2BT, bat 183, B.P. 3, F-13115 Saint Paul-lez-Durance (France)

    2015-03-21

    Highlights: • Microbacterium sp. A9 develops various detoxification mechanisms. • Microbacterium sp. A9 promotes metal efflux from the cells. • Microbacterium sp. A9 releases phosphate to prevent uranium entrance in the cells. • Microbacterium sp. A9 stores U intracellularly as autunite. - Abstract: Although uranium (U) is naturally found in the environment, soil remediation programs will become increasingly important in light of certain human activities. This work aimed to identify U(VI) detoxification mechanisms employed by a bacteria strain isolated from a Chernobyl soil sample, and to distinguish its active from passive mechanisms of interaction. The ability of the Microbacterium sp. A9 strain to remove U(VI) from aqueous solutions at 4 °C and 25 °C was evaluated, as well as its survival capacity upon U(VI) exposure. The subcellular localisation of U was determined by TEM/EDX microscopy, while functional groups involved in the interaction with U were further evaluated by FTIR; finally, the speciation of U was analysed by TRLFS. We have revealed, for the first time, an active mechanism promoting metal efflux from the cells, during the early steps following U(VI) exposure at 25 °C. The Microbacterium sp. A9 strain also stores U intracellularly, as needle-like structures that have been identified as an autunite group mineral. Taken together, our results demonstrate that this strain exhibits a high U(VI) tolerance based on multiple detoxification mechanisms. These findings support the potential role of the genus Microbacterium in the remediation of aqueous environments contaminated with U(VI) under aerobic conditions.

  14. Characterization of a marine-isolated mercury-resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiwei; Chen, Lingxin; Liu, Dongyan [Chinese Academy of Sciences, Yantai, SD (China). Yantai Inst. of Coastal Zone Research (YICCAS); Chinese Academy of Sciences, Yantai, SD (China). Shandong Provincial Key Lab. of Coastal Zone Environmental Processes

    2012-02-15

    The Pseudomonas putida strain SP1 was isolated from marine environment and was found to be resistant to 280 {mu}M HgCl{sub 2}. SP1 was also highly resistant to other metals, including CdCl{sub 2}, CoCl{sub 2}, CrCl{sub 3}, CuCl{sub 2}, PbCl{sub 2}, and ZnSO{sub 4}, and the antibiotics ampicillin (Ap), kanamycin (Kn), chloramphenicol (Cm), and tetracycline (Tc). mer operon, possessed by most mercury-resistant bacteria, and other diverse types of resistant determinants were all located on the bacterial chromosome. Cold vapor atomic absorption spectrometry and a volatilization test indicated that the isolated P. putida SP1 was able to volatilize almost 100% of the total mercury it was exposed to and could potentially be used for bioremediation in marine environments. The optimal pH for the growth of P. putida SP1 in the presence of HgCl{sub 2} and the removal of HgCl{sub 2} by P. putida SP1 was between 8.0 and 9.0, whereas the optimal pH for the expression of merA, the mercuric reductase enzyme in mer operon that reduces reactive Hg{sup 2+} to volatile and relatively inert monoatomic Hg{sup 0} vapor, was around 5.0. LD50 of P. putida SP1 to flounder and turbot was 1.5 x 10{sup 9} CFU. Biofilm developed by P. putida SP1 was 1- to 3-fold lower than biofilm developed by an aquatic pathogen Pseudomonas fluorescens TSS. The results of this study indicate that P. putida SP1 is a low virulence strain that can potentially be applied in the bioremediation of HgCl{sub 2} contamination over a broad range of pH. (orig.)

  15. Metabolism of 2-Chloro-4-Nitroaniline via Novel Aerobic Degradation Pathway by Rhodococcus sp. Strain MB-P1

    Science.gov (United States)

    Khan, Fazlurrahman; Pal, Deepika; Vikram, Surendra; Cameotra, Swaranjit Singh

    2013-01-01

    2-chloro-4-nitroaniline (2-C-4-NA) is used as an intermediate in the manufacture of dyes, pharmaceuticals, corrosion inhibitor and also used in the synthesis of niclosamide, a molluscicide. It is marked as a black-listed substance due to its poor biodegradability. We report biodegradation of 2-C-4-NA and its pathway characterization by Rhodococcus sp. strain MB-P1 under aerobic conditions. The strain MB-P1 utilizes 2-C-4-NA as the sole carbon, nitrogen, and energy source. In the growth medium, the degradation of 2-C-4-NA occurs with the release of nitrite ions, chloride ions, and ammonia. During the resting cell studies, the 2-C-4-NA-induced cells of strain MB-P1 transformed 2-C-4-NA stoichiometrically to 4-amino-3-chlorophenol (4-A-3-CP), which subsequently gets transformed to 6-chlorohydroxyquinol (6-CHQ) metabolite. Enzyme assays by cell-free lysates prepared from 2-C-4-NA-induced MB-P1 cells, demonstrated that the first enzyme in the 2-C-4-NA degradation pathway is a flavin-dependent monooxygenase that catalyzes the stoichiometric removal of nitro group and production of 4-A-3-CP. Oxygen uptake studies on 4-A-3-CP and related anilines by 2-C-4-NA-induced MB-P1 cells demonstrated the involvement of aniline dioxygenase in the second step of 2-C-4-NA degradation. This is the first report showing 2-C-4-NA degradation and elucidation of corresponding metabolic pathway by an aerobic bacterium. PMID:23614030

  16. Metabolism of 2-chloro-4-nitroaniline via novel aerobic degradation pathway by Rhodococcus sp. strain MB-P1.

    Directory of Open Access Journals (Sweden)

    Fazlurrahman Khan

    Full Text Available 2-chloro-4-nitroaniline (2-C-4-NA is used as an intermediate in the manufacture of dyes, pharmaceuticals, corrosion inhibitor and also used in the synthesis of niclosamide, a molluscicide. It is marked as a black-listed substance due to its poor biodegradability. We report biodegradation of 2-C-4-NA and its pathway characterization by Rhodococcus sp. strain MB-P1 under aerobic conditions. The strain MB-P1 utilizes 2-C-4-NA as the sole carbon, nitrogen, and energy source. In the growth medium, the degradation of 2-C-4-NA occurs with the release of nitrite ions, chloride ions, and ammonia. During the resting cell studies, the 2-C-4-NA-induced cells of strain MB-P1 transformed 2-C-4-NA stoichiometrically to 4-amino-3-chlorophenol (4-A-3-CP, which subsequently gets transformed to 6-chlorohydroxyquinol (6-CHQ metabolite. Enzyme assays by cell-free lysates prepared from 2-C-4-NA-induced MB-P1 cells, demonstrated that the first enzyme in the 2-C-4-NA degradation pathway is a flavin-dependent monooxygenase that catalyzes the stoichiometric removal of nitro group and production of 4-A-3-CP. Oxygen uptake studies on 4-A-3-CP and related anilines by 2-C-4-NA-induced MB-P1 cells demonstrated the involvement of aniline dioxygenase in the second step of 2-C-4-NA degradation. This is the first report showing 2-C-4-NA degradation and elucidation of corresponding metabolic pathway by an aerobic bacterium.

  17. Metabolism of 2-chloro-4-nitroaniline via novel aerobic degradation pathway by Rhodococcus sp. strain MB-P1.

    Science.gov (United States)

    Khan, Fazlurrahman; Pal, Deepika; Vikram, Surendra; Cameotra, Swaranjit Singh

    2013-01-01

    2-chloro-4-nitroaniline (2-C-4-NA) is used as an intermediate in the manufacture of dyes, pharmaceuticals, corrosion inhibitor and also used in the synthesis of niclosamide, a molluscicide. It is marked as a black-listed substance due to its poor biodegradability. We report biodegradation of 2-C-4-NA and its pathway characterization by Rhodococcus sp. strain MB-P1 under aerobic conditions. The strain MB-P1 utilizes 2-C-4-NA as the sole carbon, nitrogen, and energy source. In the growth medium, the degradation of 2-C-4-NA occurs with the release of nitrite ions, chloride ions, and ammonia. During the resting cell studies, the 2-C-4-NA-induced cells of strain MB-P1 transformed 2-C-4-NA stoichiometrically to 4-amino-3-chlorophenol (4-A-3-CP), which subsequently gets transformed to 6-chlorohydroxyquinol (6-CHQ) metabolite. Enzyme assays by cell-free lysates prepared from 2-C-4-NA-induced MB-P1 cells, demonstrated that the first enzyme in the 2-C-4-NA degradation pathway is a flavin-dependent monooxygenase that catalyzes the stoichiometric removal of nitro group and production of 4-A-3-CP. Oxygen uptake studies on 4-A-3-CP and related anilines by 2-C-4-NA-induced MB-P1 cells demonstrated the involvement of aniline dioxygenase in the second step of 2-C-4-NA degradation. This is the first report showing 2-C-4-NA degradation and elucidation of corresponding metabolic pathway by an aerobic bacterium. PMID:23614030

  18. Agrobacterium-mediated transformation of cauliflower: optimization of protocol and development of Bt-transgenic cauliflower

    Indian Academy of Sciences (India)

    R Chakrabarty; N Viswakarma; S R Bhat; P B Kirti; B D Singh; V L Chopra

    2002-09-01

    A number of factors that are known to influence genetic transformation were evaluated to optimize Agrobacterium-mediated transformation of hypocotyl explants of cauliflower variety Pusa Snowball K-1. The binary vector p35SGUSINT mobilized into Agrobacterium strain GV2260 was used for transformation and transient GUS expression was used as the basis for identifying the most appropriate conditions for transformation. Explant age, preculture period, bacterial strain and density were found to be critical determinants of transformation efficiency. Using the optimized protocol, the synthetic cryIA(b) gene was mobilized into cauliflower. Molecular analyses of transgenics established the integration and expression of the transgene. Insect bioassays indicated the effectiveness of the transgene against infestation by diamondback moth (Plutella xylostella) larvae.

  19. Tumorogênese em plantas causadas por espécies de Agrobacterium Tumorigenesis in plants induced by species of Agrobacterium

    OpenAIRE

    Reginaldo da Silva Romeiro; José Roberto Vieira Júnior; Sérgio Hermínio Brommonschenkel

    2007-01-01

    Tumores - sintomas hiperplásicos em plantas - incitados por espécies de Agrobacterium sp. sempre exerceram fascínio sobre fitopatologistas desde o início do Século XX, quando Erwin Smith e colaboradores demonstraram serem eles de etiologia bacteriana. No início, imaginava-se que os tumores eram decorrentes de alterações hormonais na planta provocadas pela bactéria. Contudo, até recentemente, a microbiologia e a biologia molecular não eram suficientemente avançadas para que os cientistas pudes...

  20. The Metabolic Pathway of 4-Aminophenol in Burkholderia sp. Strain AK-5 Differs from That of Aniline and Aniline with C-4 Substituents

    OpenAIRE

    Takenaka, Shinji; Okugawa, Susumu; Kadowaki, Maho; Murakami, Shuichiro; Aoki, Kenji

    2003-01-01

    Burkholderia sp. strain AK-5 utilized 4-aminophenol as the sole carbon, nitrogen, and energy source. A pathway for the metabolism of 4-aminophenol in strain AK-5 was proposed based on the identification of three key metabolites by gas chromatography-mass spectrometry analysis. Strain AK-5 converted 4-aminophenol to 1,2,4-trihydroxybenzene via 1,4-benzenediol. 1,2,4-Trihydroxybenzene 1,2-dioxygenase cleaved the benzene ring of 1,2,4-trihydroxybenzene to form maleylacetic acid. The enzyme showe...

  1. Complete genome sequence of Acinetobacter sp. TTH0-4, a cold-active crude oil degrading strain isolated from Qinghai-Tibet Plateau.

    Science.gov (United States)

    Zhang, Gaosen; Chen, Tuo; Chang, Sijing; Zhang, Wei; Wu, Xiukun; Wu, Minghui; Wang, Yilin; Long, Haozhi; Chen, Ximing; Wang, Yun; Liu, Guangxiu

    2016-05-20

    Acinetobacter sp. strain TTH0-4 was isolated from a permafrost region in Qinghai-Tibet Plateau. With its capability to degrade crude oil at low temperature, 10°C, the strain could be an excellent candidate for the bioremediation of crude oil pollution in cold areas or at cold seasons. We sequenced and annotated the whole genome to serve as a basis for further elucidation of the genetic background of this promising strain, and provide opportunities for investigating the metabolic and regulatory mechanisms and optimizing the biodegradative activity in cold environment. PMID:26988394

  2. Agrobacterium: Nature’s Genetic Engineer

    Directory of Open Access Journals (Sweden)

    Eugene William Nester

    2015-01-01

    Full Text Available Agrobacterium was identified as the agent causing the plant tumor, crown gall over 100 years ago.Since then, studies have resulted in many surprising observations. Armin Braun demonstrated that Agrobacterium infected cells had unusual nutritional properties, and that the bacterium was necessary to start the infection but not for continued tumor development. He developed the concept of a tumor inducing principle or TIP, the factor that actually caused the disease. Thirty years later the TIP was shown to be a piece of a tumor inducing (Ti plasmid excised by an endonuclease. In the next 20 years, most of the key features of the disease were described. The single stranded DNA (T-DNA with the endonuclease attached is transferred through a type IV secretion system into the host cell where it is coated and protected from nucleases by a bacterial secreted protein,VirE2. A nuclear localization signal in the endonuclease guides the T-strand into the nucleus where it is integrated randomly into the host chromosome. Other secreted proteins likely aid in uncoating the T-complex. The genes associated with T-strand formation and transfer (vir map to the Ti plasmid and are only expressed when the bacteria are at a plant’s wound site. Plant signals are recognized by a two-component system which activates vir genes. However, chromosomal genes with pleiotrophic functions also play important roles in plant transformation. The T-DNA encodes enzymes of auxin, cytokinin and opine synthesis, the latter a food source for Agrobacterium. The data now explain Braun’s observations made 75 years ago and also explain why Agrobacterium is Nature’s Genetic Engineer. Since any DNA inserted between the border sequences which define the T-DNA will be transferred and integrated into host cells, Agrobacterium has become the major vector in plant genetic engineering.

  3. Agrobacterium tumefaciens-mediated transformation of corn (Zea mays L.) multiple shoots

    OpenAIRE

    Cao, Shi-liang; Masilamany, Pathmalojiny; Li, Wen-bin; Pauls, K. Peter

    2014-01-01

    An Agrobacterium tumefaciens-mediated corn transformation method based on multiple shoot tissue cultures was developed, which is effective with a variety of corn inbred lines and standard binary vectors. Six factors that affected the success of corn transformation were tested, including A. tumefaciens strain, corn genotype, tissue culture growth stage, medium composition, co-culture temperature and surfactant treatment. Agropine-type bacteria (EHA 101 and AGL 1) were eightfold more effective ...

  4. A diffusible compound can enhance conjugal transfer of the Ti plasmid in Agrobacterium tumefaciens.

    OpenAIRE

    Zhang, L H; Kerr, A.

    1991-01-01

    Several octopine strains of Agrobacterium tumefaciens were tested for Ti plasmid (pTi) transfer after induction by 400 micrograms of octopine per ml for 24 h. The strains could be divided into two groups, transfer efficient (Trae) and transfer inefficient (Traie); the respective rates of transfer were 0.77 x 10(-2) to 1.14 x 10(-2) and 0.33 x 10(-6) to 9.8 x 10(-6) plasmid transconjugant per donor cell. Transfer efficiencies of Traie strains were greatly increased when the time of induction w...

  5. Isolation, characterization and heterologous expression of a novel chitosanase from Janthinobacterium sp. strain 4239

    Directory of Open Access Journals (Sweden)

    Stougaard Peter

    2010-01-01

    Full Text Available Abstract Background Chitosanases (EC 3.2.1.132 hydrolyze the polysaccharide chitosan, which is composed of partially acetylated β-(1,4-linked glucosamine residues. In nature, chitosanases are produced by a number of Gram-positive and Gram-negative bacteria, as well as by fungi, probably with the primary role of degrading chitosan from fungal and yeast cell walls for carbon metabolism. Chitosanases may also be utilized in eukaryotic cell manipulation for intracellular delivery of molecules formulated with chitosan as well as for transformation of filamentous fungi by temporal modification of the cell wall structures. However, the chitosanases used so far in transformation and transfection experiments show optimal activity at high temperature, which is incompatible with most transfection and transformation protocols. Thus, there is a need for chitosanases, which display activity at lower temperatures. Results This paper describes the isolation of a chitosanase-producing, cold-active bacterium affiliated to the genus Janthinobacterium. The 876 bp chitosanase gene from the Janthinobacterium strain was isolated and characterized. The chitosanase was related to the Glycosyl Hydrolase family 46 chitosanases with Streptomyces chitosanase as the closest related (64% amino acid sequence identity. The chitosanase was expressed recombinantly as a periplasmic enzyme in Escherichia coli in amounts about 500 fold greater than in the native Janthinobacterium strain. Determination of temperature and pH optimum showed that the native and the recombinant chitosanase have maximal activity at pH 5-7 and at 45°C, but with 30-70% of the maximum activity at 10°C and 30°C, respectively. Conclusions A novel chitosanase enzyme and its corresponding gene was isolated from Janthinobacterium and produced recombinantly in E. coli as a periplasmic enzyme. The Janthinobacterium chitosanase displayed reasonable activity at 10°C to 30°C, temperatures that are preferred in

  6. Meropenem as an Alternative Antibiotic Agent for Suppression of Agrobacterium in Genetic Transformation of Orchid

    Institute of Scientific and Technical Information of China (English)

    CAO Ying; Niimi Yoshiyuki; HU Shang-lian

    2006-01-01

    A case of Meropenem as a novel antibacterial agent to suppress and eliminate Agrobacterium tumefaciens in the Agrobacterium-mediated transformation of orchid protocorm-like bodies (PLBs) has been reported in this article. The in vitro activities of meropenem and four comparator antibacterial agents against three Agrobacterium tumefaciens strains, LBA4404, EHA101, and GV3101, were assessed. In addition, the effect of meropenem on the growth of Dendrobium phalaenopsis PLBs was determined. Compared with other commonly used antibiotics (including ampicillin,carbenicillin, cefotaxime, and cefoperazone), meropenem showed the highest activity in suppressing all tested A.tumefaciens strains (minimum inhibitory concentration [MIC] < 0.5 mg L-1, which is equal to minimum bactericidal concentration [MBC]). Meropenem, at all tested concentrations, except for 10 mg L-1 concentration, had little negative effect on the growth of orchid tissues. The A. tumefaciens strain EHA101 in genetic transformation with vector pIG121Hm in infected PLBs of the orchid was visually undetectable after a two-month subculture in 1/2 MS medium with 50 mg L-1 meropenem and 25 mg L-1 hygromacin. The expression and incorporation of the transgenes were confirmed by GUS histochemical assay and PCR analysis. Meropenem may be an alternative antibiotic for the effective suppression of A. tumefaciens in genetic transformation.

  7. Microbial community profiling of the Chinoike Jigoku ("Blood Pond Hell") hot spring in Beppu, Japan: isolation and characterization of Fe(III)-reducing Sulfolobus sp. strain GA1.

    Science.gov (United States)

    Masaki, Yusei; Tsutsumi, Katsutoshi; Hirano, Shin-Ichi; Okibe, Naoko

    2016-09-01

    Chinoike Jigoku ("Blood Pond Hell") is located in the hot spring town of Beppu on the southern island of Kyushu in Japan, and is the site of a red-colored acidic geothermal pond. This study aimed to investigate the microbial population composition in this extremely acidic environment and to isolate/characterize acidophilic microorganism with metal-reducing ability. Initially, PCR (using bacteria- and archaea-specific primers) of environmental DNA samples detected the presence of bacteria, but not archaea. This was followed by random sequencing analysis, confirming the presence of wide bacterial diversity at the site (123 clones derived from 18 bacterial and 1 archaeal genera), including those closely related to known autotrophic and heterotrophic acidophiles (Acidithiobacillus sp., Sulfobacillus sp., Alicyclobacillus sp.). Nevertheless, successive culture enrichment with Fe(III) under micro-aerobic conditions led to isolation of an unknown archaeal organism, Sulfolobus sp. GA1 (with 99.7% 16S rRNA gene sequence identity with Sulfolobus shibatae). Unlike many other known Sulfolobus spp., strain GA1 was shown to lack sulfur oxidation ability. Strain GA1 possessed only minor Fe(II) oxidation ability, but readily reduced Fe(III) during heterotrophic growth under micro-aerobic conditions. Strain GA1 was capable of reducing highly toxic Cr(VI) to less toxic/soluble Cr(III), demonstrating its potential utility in bioremediation of toxic metal species. PMID:27208660

  8. Isolation and Characterization of the First Xylanolytic Hyperthermophilic Euryarchaeon Thermococcus sp. Strain 2319x1 and Its Unusual Multidomain Glycosidase.

    Science.gov (United States)

    Gavrilov, Sergey N; Stracke, Christina; Jensen, Kenneth; Menzel, Peter; Kallnik, Verena; Slesarev, Alexei; Sokolova, Tatyana; Zayulina, Kseniya; Bräsen, Christopher; Bonch-Osmolovskaya, Elizaveta A; Peng, Xu; Kublanov, Ilya V; Siebers, Bettina

    2016-01-01

    Enzymes from (hyper)thermophiles "Thermozymes" offer a great potential for biotechnological applications. Thermophilic adaptation does not only provide stability toward high temperature but is also often accompanied by a higher resistance to other harsh physicochemical conditions, which are also frequently employed in industrial processes, such as the presence of, e.g., denaturing agents as well as low or high pH of the medium. In order to find new thermostable, xylan degrading hydrolases with potential for biotechnological application we used an in situ enrichment strategy incubating Hungate tubes with xylan as the energy substrate in a hot vent located in the tidal zone of Kunashir Island (Kuril archipelago). Using this approach a hyperthermophilic euryarchaeon, designated Thermococcus sp. strain 2319x1, growing on xylan as sole energy and carbon source was isolated. The organism grows optimally at 85°C and pH 7.0 on a variety of natural polysaccharides including xylan, carboxymethyl cellulose (CMC), amorphous cellulose (AMC), xyloglucan, and chitin. The protein fraction extracted from the cells surface with Tween 80 exhibited endoxylanase, endoglucanase and xyloglucanase activities. The genome of Thermococcus sp. strain 2319x1 was sequenced and assembled into one circular chromosome. Within the newly sequenced genome, a gene, encoding a novel type of glycosidase (143 kDa) with a unique five-domain structure, was identified. It consists of three glycoside hydrolase (GH) domains and two carbohydrate-binding modules (CBM) with the domain order GH5-12-12-CBM2-2 (N- to C-terminal direction). The full length protein, as well as truncated versions, were heterologously expressed in Escherichia coli and their activity was analyzed. The full length multidomain glycosidase (MDG) was able to hydrolyze various polysaccharides, with the highest activity for barley β-glucan (β- 1,3/1,4-glucoside), followed by that for CMC (β-1,4-glucoside), cellooligosaccharides and

  9. Isolation and characterization of the first xylanolytic hyperthermophilic euryarchaeon Thermococcus sp. strain 2319x1 and its unusual multidomain glycosidase

    Directory of Open Access Journals (Sweden)

    Sergey N Gavrilov

    2016-05-01

    Full Text Available Enzymes from (hyperthermophiles Thermozymes offer a great potential for biotechnological applications. Thermophilic adaptation does not only provide stability towards high temperature but is also often accompanied by a higher resistance to other harsh physicochemical conditions, which are also frequently employed in industrial processes, such as the presence of e.g. denaturing agents as well as low or high pH of the medium. In order to find new thermostable, xylan degrading hydrolases with potential for biotechnological application we used an in situ enrichment strategy incubating Hungate tubes with xylan as the energy substrate in a hot vent located in the tidal zone of Kunashir Island (Kuril archipelago. Using this approach a hyperthermophilic euryarchaeon, designated Thermococcus sp. strain 2319x1, growing on xylan as sole energy and carbon source was isolated. The organism grows optimally at 85°C and pH 7.0 on a variety of natural polysaccharides including xylan, carboxymethyl cellulose (CMC, amorphous cellulose (AMC, xyloglucan, and chitin. The protein fraction extracted from the cells surface with Twin 80 exhibited endoxylanase, endoglucanase and xyloglucanase activities. The genome of Thermococcus sp. strain 2319x1 was sequenced and assembled into one circular chromosome. Within the newly sequenced genome, a gene, encoding a novel type of glycosidase (143 kDa with a unique five-domain structure, was identified. It consists of three glycoside hydrolase (GH domains and two carbohydrate-binding modules (CBM with the domain order GH5-12-12-CBM2-2 (N- to C-terminal direction. The full length protein, as well as truncated versions, were heterologously expressed in Escherichia coli and their activity was analyzed. The full length multidomain glycosidase (MDG was able to hydrolyze various polysaccharides, with the highest activity for barley β-glucan (β-1,3/1,4-glucoside, followed by that for carboxymethyl cellulose (β-1,4-glucoside

  10. Complete Genome Sequence of Enterobacter sp. Strain R4-368, an Endophytic N-Fixing Gammaproteobacterium Isolated from Surface-Sterilized Roots of Jatropha curcas L.

    Science.gov (United States)

    Madhaiyan, Munusamy; Peng, Ni; Ji, Lianghui

    2013-01-01

    Enterobacter sp. strain R4-368 is one of the few characterized Jatropha endophytic diazotrophic bacteria and was isolated from surface-sterilized roots. This bacterium shows strong growth-promoting effects, being able to increase plant biomass and seed yields. Enterobacter sp. R4-368 is the second fully sequenced diazotrophic Enterobacter species. The sequence information shall facilitate the elucidation of the molecular mechanisms of plant growth promotion, nitrogen fixation in nonlegume plant species, and evolution of biological nitrogen fixation systems. PMID:23908287

  11. Hydrogen producting characteristics by a novel strain of bacteria-ethanoligenens sp. B49

    Institute of Scientific and Technical Information of China (English)

    XU Li-ying; REN Nan-qi; WANG Xing-zu; ZHANG Ying; XU Hui; CHEN Guan-xiong; JIA Yong-feng

    2008-01-01

    The objective of this work is to investigate the fermentation capacity and metabolic characteristics of a novel strain of bacteria B49 isolated from anaerobic activated sludge. The examination was conducted in batch culture at 35 ℃. The results showed that the carbon flow gave priority to the production of ethanol, and yield of ethanol is always greater than that of acetic acid. The hydrogen and ethanol occurred simultaneously. The exponential phase of the B49's cell growth was from 12 to 22 h. Evolution of hydrogen appeared to start after the exponential phase of cell growth and reach maximum production at the early stationary phase. The rate of hydrogen production reached a maximum of 16.8 mL/h, and the percentage of hydrogen gas in the headspace of serum bottle obtained a maximum of 41% at 22 h. The B49 was able to grow using molasses as substrate for cell growth. When the molasses was used as substrate, maximum yield of hydrogen was obtained 2460 mL/L culture at 2% (V/V) of molasses. The hydrogen yield was increased to 3060 mL/L culture after addition of 0.5 g/L of yeast extract in the molasses medium and the yield of hydrogen was increased by 24.4%.

  12. Characterization of Klebsiella sp. strain 10982, a colonizer of humans that contains novel antibiotic resistance alleles and exhibits genetic similarities to plant and clinical Klebsiella isolates.

    Science.gov (United States)

    Hazen, Tracy H; Zhao, LiCheng; Sahl, Jason W; Robinson, Gwen; Harris, Anthony D; Rasko, David A; Johnson, J Kristie

    2014-01-01

    A unique Klebsiella species strain, 10982, was cultured from a perianal swab specimen obtained from a patient in the University of Maryland Medical Center intensive care unit. Klebsiella sp. 10982 possesses a large IncA/C multidrug resistance plasmid encoding a novel FOX AmpC β-lactamase designated FOX-10. A novel variant of the LEN β-lactamase was also identified. Genome sequencing and bioinformatic analysis demonstrated that this isolate contains genes associated with nitrogen fixation, allantoin metabolism, and citrate fermentation. These three gene regions are typically present in either Klebsiella pneumoniae clinical isolates or Klebsiella nitrogen-fixing endophytes but usually not in the same organism. Phylogenomic analysis of Klebsiella sp. 10982 and sequenced Klebsiella genomes demonstrated that Klebsiella sp. 10982 is present on a branch that is located intermediate between the genomes of nitrogen-fixing endophytes and K. pneumoniae clinical isolates. Metabolic features identified in the genome of Klebsiella sp. 10982 distinguish this isolate from other Klebsiella clinical isolates. These features include the nitrogen fixation (nif) gene cluster, which is typically present in endophytic Klebsiella isolates and is absent from Klebsiella clinical isolates. Additionally, the Klebsiella sp. 10982 genome contains genes associated with allantoin metabolism, which have been detected primarily in K. pneumoniae isolates from liver abscesses. Comparative genomic analysis of Klebsiella sp. 10982 demonstrated that this organism has acquired genes conferring new metabolic strategies and novel antibiotic resistance alleles, both of which may enhance its ability to colonize the human body. PMID:24395222

  13. Biodegradation of lindane using a novel yeast strain, Rhodotorula sp. VITJzN03 isolated from agricultural soil.

    Science.gov (United States)

    Abdul Salam, Jaseetha; Lakshmi, V; Das, Devlina; Das, Nilanjana

    2013-03-01

    Lindane is a notorious organochlorine pesticide due to its high toxicity, persistence in the environment and its tendency to bioaccumulate. A yeast strain isolated from sorghum cultivation field was able to use lindane as carbon and energy source under aerobic conditions. With molecular techniques, it was identified and named as Rhodotorula strain VITJzN03. The effects of nutritional and environmental factors on yeast growth and the biodegradation of lindane was investigated. The maximum production of yeast biomass along with 100 % lindane mineralization was noted at an initial lindane concentration of 600 mg l(-1) within a period of 10 days. Lindane concentration above 600 mg l(-1) inhibited the growth of yeast in liquid medium. A positive relationship was noted between the release of chloride ions and the increase of yeast biomass as well as degradation of lindane. The calculated degradation rate and half life of lindane were found to be 0.416 day(-1) and 1.66 days, respectively. The analysis of the metabolites using GC-MS identified the formation of seven intermediates including γ-pentachlorocyclohexane(γ-PCCH), 1,3,4,6-tetrachloro-1,4-cyclohexadiene(1,4-TCCHdiene), 1,2,4-trichlorobenzene (1,2,4 TCB), 1,4-dichlorobenzene (1,4 DCB), chloro-cis-1,2-dihydroxycyclohexadiene (CDCHdiene), 3-chlorocatechol (3-CC) and maleylacetate (MA) derivatives indicating that lindane degradation follows successive dechlorination and oxido-reduction. Based on the results of the present study, the possible pathway for lindane degradation by Rhodotorula sp. VITJzN03 has been proposed. To the best of our knowledge, this is the first report on lindane degradation by yeast which can serve as a potential agent for in situ bioremediation of medium to high level lindane-contaminated sites. PMID:23108665

  14. Characterization of a purified thermostable xylanase from Caldicoprobacter algeriensis sp. nov. strain TH7C1(T).

    Science.gov (United States)

    Amel, Bouanane-Darenfed; Nawel, Boucherba; Khelifa, Bouacem; Mohammed, Gagaoua; Manon, Joseph; Salima, Kebbouche-Gana; Farida, Nateche; Hocine, Hacene; Bernard, Ollivier; Jean-Luc, Cayol; Marie-Laure, Fardeau

    2016-01-01

    The present study investigates the purification and biochemical characterization of an extracellular thermostable xylanase (called XYN35) from Caldicoprobacter algeriensis sp. nov., strain TH7C1(T), a thermophilic, anaerobic strain isolated from the hydrothermal hot spring of Guelma (Algeria). The maximum xylanase activity recorded after 24 h of incubation at 70 °C and in an optimized medium containing 10 g/L mix birchwood- and oats spelt-xylan was 250 U/mL. The pure protein was obtained after heat treatment (1 h at 70 °C), followed by sequential column chromatographies on Sephacryl S-200 gel filtration and Mono-S Sepharose anion-exchange. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis indicated that the purified enzyme is a monomer with a molecular mass of 35,075.10 Da. The results from amino-acid sequence analysis revealed high homology between the 21 NH2-terminal residues of XYN35 and those of bacterial xylanases. The enzyme showed optimum activity at pH 11 and 70 °C. While XYN35 was activated by Ca(2+), Mn(2+), and Mg(2+), it was completely inhibited by Hg(2+) and Cd(2+). The xylanase showed higher specific activity on soluble oat-spelt xylan, followed by beechwood xylan. This enzyme was also noted to obey the Michaelis-Menten kinetics, with Km and kcat values on oat-spelt xylan being 1.33 mg/mL and 400 min(-1), respectively. Thin-layer chromatography soluble oat-spelt xylan (TLC) analysis showed that the final hydrolyzed products of the enzyme from birchwood xylan were xylose, xylobiose, and xylotriose. Taken together, the results indicated that the XYN35 enzyme has a number of attractive biochemical properties that make it a potential promising candidate for future application in the pulp bleaching industry. PMID:26687892

  15. Cloning, expression and characterization of a novel cold‑adapted GDSL family esterase from Photobacterium sp. strain J15.

    Science.gov (United States)

    Shakiba, Mehrnoush Hadaddzadeh; Ali, Mohd Shukuri Mohamad; Rahman, Raja Noor Zaliha Raja Abd; Salleh, Abu Bakar; Leow, Thean Chor

    2016-01-01

    The gene encoding for a novel cold-adapted enzyme from family II of bacterial classification (GDSL family) was cloned from the genomic DNA of Photobacterium sp. strain J15 in an Escherichia coli system, yielding a recombinant 36 kDa J15 GDSL esterase which was purified in two steps with a final yield and purification of 38.6 and 15.3 respectively. Characterization of the biochemical properties showed the J15 GDSL esterase had maximum activity at 20 °C and pH 8.0, was stable at 10 °C for 3 h and retained 50 % of its activity after a 6 h incubation at 10 °C. The enzyme was activated by Tween-20, -60 and Triton-X100 and inhibited by 1 mM Sodium dodecyl sulphate (SDS), while β-mercaptoethanol and Dithiothreitol (DTT) enhanced activity by 4.3 and 5.4 fold respectively. These results showed the J15 GDSL esterase was a novel cold-adapted enzyme from family II of lipolytic enzymes. A structural model constructed using autotransporter EstA from Pseudomonas aeruginosa as a template revealed the presence of a typical catalytic triad consisting of a serine, aspartate, and histidine which was verified with site directed mutagenesis on active serine. PMID:26475626

  16. Contrasted reactivity to oxygen tensions in Frankia sp. strain CcI3 throughout nitrogen fixation and assimilation.

    Science.gov (United States)

    Ghodhbane-Gtari, Faten; Hezbri, Karima; Ktari, Amir; Sbissi, Imed; Beauchemin, Nicholas; Gtari, Maher; Tisa, Louis S

    2014-01-01

    Reconciling the irreconcilable is a primary struggle in aerobic nitrogen-fixing bacteria. Although nitrogenase is oxygen and reactive oxygen species-labile, oxygen tension is required to sustain respiration. In the nitrogen-fixing Frankia, various strategies have been developed through evolution to control the respiration and nitrogen-fixation balance. Here, we assessed the effect of different oxygen tensions on Frankia sp. strain CcI3 growth, vesicle production, and gene expression under different oxygen tensions. Both biomass and vesicle production were correlated with elevated oxygen levels under both nitrogen-replete and nitrogen-deficient conditions. The mRNA levels for the nitrogenase structural genes (nifHDK) were high under hypoxic and hyperoxic conditions compared to oxic conditions. The mRNA level for the hopanoid biosynthesis genes (sqhC and hpnC) was also elevated under hyperoxic conditions suggesting an increase in the vesicle envelope. Under nitrogen-deficient conditions, the hup2 mRNA levels increased with hyperoxic environment, while hup1 mRNA levels remained relatively constant. Taken together, these results indicate that Frankia protects nitrogenase by the use of multiple mechanisms including the vesicle-hopanoid barrier and increased respiratory protection. PMID:24987692

  17. Contrasted Reactivity to Oxygen Tensions in Frankia sp. Strain CcI3 throughout Nitrogen Fixation and Assimilation

    Directory of Open Access Journals (Sweden)

    Faten Ghodhbane-Gtari

    2014-01-01

    Full Text Available Reconciling the irreconcilable is a primary struggle in aerobic nitrogen-fixing bacteria. Although nitrogenase is oxygen and reactive oxygen species-labile, oxygen tension is required to sustain respiration. In the nitrogen-fixing Frankia, various strategies have been developed through evolution to control the respiration and nitrogen-fixation balance. Here, we assessed the effect of different oxygen tensions on Frankia sp. strain CcI3 growth, vesicle production, and gene expression under different oxygen tensions. Both biomass and vesicle production were correlated with elevated oxygen levels under both nitrogen-replete and nitrogen-deficient conditions. The mRNA levels for the nitrogenase structural genes (nifHDK were high under hypoxic and hyperoxic conditions compared to oxic conditions. The mRNA level for the hopanoid biosynthesis genes (sqhC and hpnC was also elevated under hyperoxic conditions suggesting an increase in the vesicle envelope. Under nitrogen-deficient conditions, the hup2 mRNA levels increased with hyperoxic environment, while hup1 mRNA levels remained relatively constant. Taken together, these results indicate that Frankia protects nitrogenase by the use of multiple mechanisms including the vesicle-hopanoid barrier and increased respiratory protection.

  18. Production of α-amylase from Streptomyces sp. SLBA-08 strain using agro-industrial by-products

    Directory of Open Access Journals (Sweden)

    Édilla Ribeiro dos Santos

    2012-10-01

    Full Text Available Approximately 1.5 trillion tons are the estimated yearly biomass production, making it an essentially unlimited source of raw material for environmentally friendly and biocompatible products transformed by microorganism, specially fungi and actinomycetes. Several lignocellulosic residues, such as sisal waste and sugarcane bagasse contain starch in their structures which could become important sources for the production of amylases. This study evaluated the production of amylolytic enzymes using Streptomyces sp. SLBA-08 strain, isolated from a semi-arid soil, according to their ability to grow on soluble starch as the sole carbon source. The effect of the carbon source (sisal waste and sugarcane bagasse on α-amylase production was studied using submerged cultivations at 30 ºC. The highest level of α-amylase activity corresponded to 10.1 U. mL-1 and was obtained using sisal waste (2.7% and urea (0.8% in submerged fermentation after 3 days of cultivation. The partial characterization showed the best α-amylase activity at 50ºC and pH 7.0. These results are of great importance for the use of sisal waste as a substrate for biotechnological proposes.

  19. Biochemical Properties of a New Cold-Active Mono- and Diacylglycerol Lipase from Marine Member Janibacter sp. Strain HTCC2649

    Directory of Open Access Journals (Sweden)

    Dongjuan Yuan

    2014-06-01

    Full Text Available Mono- and di-acylglycerol lipase has been applied to industrial usage in oil modification for its special substrate selectivity. Until now, the reported mono- and di-acylglycerol lipases from microorganism are limited, and there is no report on the mono- and di-acylglycerol lipase from bacteria. A predicted lipase (named MAJ1 from marine Janibacter sp. strain HTCC2649 was purified and biochemical characterized. MAJ1 was clustered in the family I.7 of esterase/lipase. The optimum activity of the purified MAJ1 occurred at pH 7.0 and 30 °C. The enzyme retained 50% of the optimum activity at 5 °C, indicating that MAJ1 is a cold-active lipase. The enzyme activity was stable in the presence of various metal ions, and inhibited in EDTA. MAJ1 was resistant to detergents. MAJ1 preferentially hydrolyzed mono- and di-acylglycerols, but did not show activity to triacylglycerols of camellia oil substrates. Further, MAJ1 is low homologous to that of the reported fungal diacylglycerol lipases, including Malassezia globosa lipase 1 (SMG1, Penicillium camembertii lipase U-150 (PCL, and Aspergillus oryzae lipase (AOL. Thus, we identified a novel cold-active bacterial lipase with a sn-1/3 preference towards mono- and di-acylglycerides for the first time. Moreover, it has the potential, in oil modification, for special substrate selectivity.

  20. Biochemical properties of a new cold-active mono- and diacylglycerol lipase from marine member Janibacter sp. strain HTCC2649.

    Science.gov (United States)

    Yuan, Dongjuan; Lan, Dongming; Xin, Ruipu; Yang, Bo; Wang, Yonghua

    2014-01-01

    Mono- and di-acylglycerol lipase has been applied to industrial usage in oil modification for its special substrate selectivity. Until now, the reported mono- and di-acylglycerol lipases from microorganism are limited, and there is no report on the mono- and di-acylglycerol lipase from bacteria. A predicted lipase (named MAJ1) from marine Janibacter sp. strain HTCC2649 was purified and biochemical characterized. MAJ1 was clustered in the family I.7 of esterase/lipase. The optimum activity of the purified MAJ1 occurred at pH 7.0 and 30 °C. The enzyme retained 50% of the optimum activity at 5 °C, indicating that MAJ1 is a cold-active lipase. The enzyme activity was stable in the presence of various metal ions, and inhibited in EDTA. MAJ1 was resistant to detergents. MAJ1 preferentially hydrolyzed mono- and di-acylglycerols, but did not show activity to triacylglycerols of camellia oil substrates. Further, MAJ1 is low homologous to that of the reported fungal diacylglycerol lipases, including Malassezia globosa lipase 1 (SMG1), Penicillium camembertii lipase U-150 (PCL), and Aspergillus oryzae lipase (AOL). Thus, we identified a novel cold-active bacterial lipase with a sn-1/3 preference towards mono- and di-acylglycerides for the first time. Moreover, it has the potential, in oil modification, for special substrate selectivity. PMID:24927145

  1. Production, purification and characterization of thermostable α-amylase from soil isolate Bacillus sp. strain B-10

    Directory of Open Access Journals (Sweden)

    Ravindra Nath Singh

    2016-04-01

    Full Text Available A bacterial strain B-10 that produces α-amylase was isolated from compost and kitchen waste receiving agricultural soil. Based on microbiological and biochemical tests the isolate B-10 was identified as Bacillus sp. Alpha-amylase produced by this isolate was purified by (NH42SO4 precipitation and DEAE cellulose ion-exchange chromatography showing 15.91 and 48.21 fold purification, respectively. SDS-PAGE of the purified enzyme confirmed the purification and monomeric nature of the enzyme. The purified α-amylase showed maximum activity at pH 7 and temperature 50°C. The enzyme was significantly active in the temperature range of 30-60°C for the studied period of 2 h. During the incubation of purified enzyme at pH ranging from 5 to 10 for 24 h the maximum stability was observed at pH 7 followed by pH 8, whereas at extreme pH, the stability was very poor. Km and Vmax were found to be 1.4 mg/mL and 6.2 U/mL, respectively.

  2. Comparative Proteomic Analysis of saccharopolyspora spinosa SP06081 and PR2 strains reveals the differentially expressed proteins correlated with the increase of spinosad yield

    Science.gov (United States)

    2011-01-01

    Background Saccharopolyspora spinosa produces the environment-friendly biopesticide spinosad, a mixture of two polyketide-derived macrolide active ingredients called spinosyns A and D. Therefore considerable interest is in the improvement of spinosad production because of its low yield in wild-type S. spinosa. Recently, a spinosad-hyperproducing PR2 strain with stable heredity was obtained from protoplast regeneration of the wild-type S. spinosa SP06081 strain. A comparative proteomic analysis was performed on the two strains during the first rapid growth phase (RG1) in seed medium (SM) by using label-free quantitative proteomics to investigate the underlying mechanism leading to the enhancement of spinosad yield. Results In total, 224 proteins from the SP06081 strain and 204 proteins from the PR2 strain were unambiguously identified by liquid chromatography-tandem mass spectrometry analysis, sharing 140 proteins. A total of 12 proteins directly related to spinosad biosynthesis were identified from the two strains in RG1. Comparative analysis of the shared proteins revealed that approximately 31% of them changed their abundance significantly and fell in all of the functional groups, such as tricarboxylic acid cycles, glycolysis, biosynthetic processes, catabolic processes, transcription, translation, oxidation and reduction. Several key enzymes involved in the synthesis of primary metabolic intermediates used as precursors for spinosad production, energy supply, polyketide chain assembly, deoxysugar methylation, and antioxidative stress were differentially expressed in the same pattern of facilitating spinosad production by the PR2 strain. Real-time reverse transcriptase polymerase chain reaction analysis revealed that four of five selected genes showed a positive correlation between changes at the translational and transcriptional expression level, which further confirmed the proteomic analysis. Conclusions The present study is the first comprehensive and

  3. Permeable Reactive Biobarriers for In Situ Cr(VI) Reduction: Bench Scale Tests Using Cellulomonas sp. Strain ES6

    Energy Technology Data Exchange (ETDEWEB)

    Sridhar Viamajala; Brent M. Peyton; Robin Gerlach; Vaideeswaran; William A. Apel; James N. Petersen

    2008-12-01

    Chromate (Cr(VI)) reduction studies were performed in bench scale flow columns using the fermentative subsurface isolate Cellulomonas sp. strain ES6. In these tests, columns packed with either quartz sand or hydrous ferric oxide (HFO)-coated quartz sand, were inoculated with strain ES6 and fed nutrients to stimulate growth before nutrient-free Cr(VI) solutions were injected. Results show that in columns containing quartz sand, a continuous inflow of 2 mg/L Cr(VI) was reduced to below detection limits in the effluent for durations of up to 5.7 residence times after nutrient injection was discontinued proving the ability of strain ES6 to reduce chromate in the absence of an external electron donor. In the HFO-containing columns, Cr(VI) reduction was significantly prolonged and effluent Cr(VI) concentrations remained below detectable levels for periods of up to 66 residence times after nutrient injection was discontinued. Fe was detected in the effluent of the HFO-containing columns throughout the period of Cr(VI) removal indicating that the insoluble Fe(III) bearing solids were being continuously reduced to form soluble Fe(II) resulting in prolonged abiotic Cr(VI) reduction. Thus, growth of Cellulomonas within the soil columns resulted in formation of permeable reactive barriers that could reduce Cr(VI) and Fe(III) for extended periods even in the absence of external electron donors. Other bioremediation systems employing Fe(II)-mediated reactions require a continuous presence of external nutrients to regenerate Fe(II). After depletion of nutrients, contaminant removal within these systems occurs by reaction with surface-associated Fe(II) that can rapidly become inaccessible due to formation of crystalline Fe-minerals or other precipitates. The ability of fermentative organisms like Cellulomonas to reduce metals without continuous nutrient supply in the subsurface offers a viable and economical alternative technology for in situ remediation of Cr

  4. Genes involved in the synthesis of the exopolysaccharide methanolan by the obligate methylotroph Methylobacillus sp strain 12S.

    Science.gov (United States)

    Yoshida, Takako; Ayabe, Yuko; Yasunaga, Masaaki; Usami, Yusuke; Habe, Hiroshi; Nojiri, Hideaki; Omori, Toshio

    2003-02-01

    Methylobacillus sp. strain 12S produces an exopolysaccharide (EPS), methanolan, composed of glucose, mannose and galactose. Twenty-four ORFs flanking a Tn5 insertion site in an EPS-deficient mutant were identified, and 21 genes (epsCBAKLDEFGHIJMNOPQRSTU) were predicted to participate in methanolan synthesis on the basis of the features of the primary sequence. Gene disruption analyses revealed that epsABCEFGIJNOP and epsR are required for methanolan synthesis, whereas epsKD and epsH are not essential. EpsFG and EpsE showed homology with Wzc (chain length regulator) and Wza (export protein) of group 1 capsule-producing Escherichia coli, suggesting that methanolan was synthesized via a Wzy-like biosynthesis system. This possibility was supported by the fact that the putative hydropathy profiles of EpsH and EpsM were similar to those of Wzx and Wzy, which are also involved in the flipping of the repeating unit in the cytoplasmic membrane and the polymerization of the capsule in the Wzy-dependent system. EpsBJNOP and EpsR are probably glycosyltransferases involved in the synthesis of the repeating unit onto the lipid carrier. In particular, EpsB appeared to catalyse the initial transfer of the glucose moiety. On the basis of their predicted location in the cells, it is proposed that EpsI and EpsL are involved in methanolan export to the cell surface. E. coli strains expressing EpsQ, EpsS and EpsT showed enhanced activities of GDP-mannose pyrophosphorylase, UDP-galactose 4-epimerase and UDP-glucose pyrophosphorylase, respectively, revealing that they were responsible for the production of the activated compositional sugars of methanolan. EpsU contains a conserved a lytic transglycosylase motif, indicating that it could participate in the degradation of polysaccharides. EpsA and EpsK, which have conserved DNA-binding and cAMP-binding motifs, respectively, were deduced to be transcriptional regulators. In particular, EpsA seems to positively regulate the transcription of

  5. Remoción de Cromo (VI por una Cepa de Paecilomyces sp Resistente a Cromato Removal of Chromium (VI in a Chromate-Resistant Strain of Paecilomyces sp

    Directory of Open Access Journals (Sweden)

    Juan F Cárdenas-González

    2011-01-01

    Full Text Available Se analizó la capacidad de remoción de Cr(VI de una cepa de Paecilomyces sp. Cuando el hongo se incubó en medio mínimo con glucosa y otras fuentes de carbono comerciales y de bajo costo, como azúcar moscabada y piloncillo ó glicerol, en presencia de 50 mg/L de Cr(VI, removió totalmente el Cr(VI. La reducción a Cr(III ocurre en el medio de cultivo después de 7 días de incubación a 28°C, pH 4.0, y un inoculo de 38 mg. El hongo también redujo eficientemente la concentración de Cr(VI a partir de tierra contaminada. Los resultados indican que la cepa de Paecilomyces sp tiene la capacidad de reducir Cr(VI a Cr(III, y por lo tanto puede utilizarse para eliminar la contaminación por Cr(VI.The ability to reduce chromium (VI by a fungal strain of Paecilomyces sp was studied. When it was incubated in minimal medium with glucose and other inexpensive commercial carbon sources such as unrefined and brown sugar or glycerol, in the presence of 50 mg/L of Cr(VI, the strain caused complete removal of Cr(VI. The reduction to Cr (III occurs in the growth medium after 7 days of incubation, at 28°C, pH 4.0, and inoculum of 38 mg. Also, the fungi efficiently reduced the concentration of Cr(VI from contaminated soil wastes. The results indicate that the fungal strain of Paecilomyces sp has the capacity of reducing Cr(VI to Cr(III, and therefore it could be useful for the removal of Cr(VI pollution.

  6. Conclusion on the peer review of the pesticide risk assessment of the active substance Pseudomonas sp. strain DSMZ 13134

    Directory of Open Access Journals (Sweden)

    European Food Safety Authority

    2012-12-01

    Full Text Available The conclusions of the European Food Safety Authority (EFSA following the peer review of the initial risk assessments carried out by the competent authority of the rapporteur Member State the Netherlands, for the pesticide active substance Pseudomonas sp. strain DSMZ 13134 are reported. The context of the peer review was that required by Commission Regulation (EU No 188/2011. The conclusions were reached on the basis of the evaluation of the representative uses of Pseudomonas sp. strain DSMZ 13134 as a fungicide on seed potatoes, flowers, tomatoes, cucumbers, peppers, eggplant, lettuce and cabbage. The reliable endpoints concluded as being appropriate for use in regulatory risk assessment, derived from the available studies and literature in the dossier peer reviewed, are presented. Missing information identified as being required by the regulatory framework is listed. Concerns are identified.

  7. Crystallization and preliminary X-ray analysis of l-azetidine-2-carboxylate hydrolase from Pseudomonas sp. strain A2C

    International Nuclear Information System (INIS)

    l-Azetidine-2-carboxylate hydrolase from Pseudomonas sp. strain A2C was crystallized and diffraction data were collected to a resolution of 1.38 Å. l-Azetidine-2-carboxylate hydrolase from Pseudomonas sp. strain A2C catalyzes a ring-opening reaction that detoxifies l-azetidine-2-carboxylate, an analogue of l-proline. Recombinant l-azetidine-2-carboxylate hydrolase was overexpressed, purified and crystallized using polyethylene glycol and magnesium acetate as precipitants. The needle-shaped crystal belonged to space group P21, with unit-cell parameters a = 35.6, b = 63.6, c = 54.7 Å, β = 105.5°. The crystal diffracted to a resolution of 1.38 Å. The calculated VM value was 2.2 Å3 Da−1, suggesting that the crystal contains one enzyme subunit in the asymmetric unit

  8. Determination of Key Metabolites during Biodegradation of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine with Rhodococcus sp. Strain DN22†

    OpenAIRE

    Fournier, Diane; Halasz, Annamaria; Spain, Jim; Fiurasek, Petr; Hawari, Jalal

    2002-01-01

    Rhodococcus sp. strain DN22 can convert hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to nitrite, but information on degradation products or the fate of carbon is not known. The present study describes aerobic biodegradation of RDX (175 μM) when used as an N source for strain DN22. RDX was converted to nitrite (NO2−) (30%), nitrous oxide (N2O) (3.2%), ammonia (10%), and formaldehyde (HCHO) (27%), which later converted to carbon dioxide. In experiments with ring-labeled [15N]-RDX, gas chromato...

  9. Global Transcriptional Response of the Alkali-Tolerant Cyanobacterium Synechocystis sp. Strain PCC 6803 to a pH 10 Environment▿ †

    OpenAIRE

    Summerfield, Tina C.; Sherman, Louis A.

    2008-01-01

    Many cyanobacterial strains are able to grow at a pH range from neutral to pH 10 or 11. Such alkaline conditions favor cyanobacterial growth (e.g., bloom formation), and cyanobacteria must have developed strategies to adjust to changes in CO2 concentration and ion availability. Synechocystis sp. strain PCC 6803 exhibits similar photoautotrophic growth characteristics at pH 10 and pH 7.5, and we examined global gene expression following transfer from pH 7.5 to pH 10 to determine cellular adapt...

  10. Stringent control during carbon starvation of marine Vibrio sp. strain S14: molecular cloning, nucleotide sequence, and deletion of the relA gene.

    OpenAIRE

    Flärdh, K; Axberg, T; Albertson, N H; Kjelleberg, S

    1994-01-01

    In order to evaluate the role of the stringent response in starvation adaptations of the marine Vibrio sp. strain S14, we have cloned the relA gene and generated relaxed mutants of this organism. The Vibrio relA gene was selected from a chromosomal DNA library by complementation of an Escherichia coli delta relA strain. The nucleotide sequence contains a 743-codon open reading frame that encodes a polypeptide that is identical in length and highly homologous to the E. coli RelA protein. The a...

  11. Draft Genome Sequence of Chloroflexus sp. Strain isl-2, a Thermophilic Filamentous Anoxygenic Phototrophic Bacterium Isolated from the Strokkur Geyser, Iceland

    Science.gov (United States)

    Gaisin, Vasil A.; Ivanov, Timophey M.; Kuznetsov, Boris B.; Gorlenko, Vladimir M.

    2016-01-01

    We report here the draft genome sequence of the thermophilic filamentous anoxygenic phototrophic bacterium Chloroflexus sp. strain isl-2, which was isolated from the Strokkur geyser, Iceland, and contains 5,222,563 bp with a G+C content of 59.65%. The annotated genome sequence offers the genetic basis for understanding the strain’s ecological role as a phototrophic bacterium within the bacterial community. PMID:27445390

  12. Draft Genome Sequence of Flavobacterium sp. Strain TAB 87, Able To Inhibit the Growth of Cystic Fibrosis Bacterial Pathogens Belonging to the Burkholderia cepacia Complex.

    Science.gov (United States)

    Presta, Luana; Inzucchi, Ilaria; Bosi, Emanuele; Fondi, Marco; Perrin, Elena; Miceli, Elisangela; Tutino, Maria Luisa; Lo Giudice, Angelina; de Pascale, Donatella; Fani, Renato

    2016-01-01

    We report here the draft genome sequence of the Flavobacterium sp. TAB 87 strain, isolated from Antarctic seawater during a summer campaign near the French Antarctic station Dumont d'Urville (60°40'S, 40°01'E). It will allow for comparative genomics and the fulfillment of both fundamental and application-oriented investigations. It allowed the recognition of genes associated with the production of bioactive compounds and antibiotic resistance. PMID:27198032

  13. Identification of Three Alcohol Dehydrogenase Genes Involved in the Stereospecific Catabolism of Arylglycerol-β-Aryl Ether by Sphingobium sp. Strain SYK-6▿ †

    OpenAIRE

    Sato, Yusuke; Moriuchi, Hideki; Hishiyama, Shojiro; Otsuka, Yuichiro; Oshima, Kenji; Kasai, Daisuke; Nakamura, Masaya; Ohara, Seiji; Katayama, Yoshihiro; Fukuda, Masao; Masai, Eiji

    2009-01-01

    Degradation of arylglycerol-β-aryl ether is the most important process in bacterial lignin catabolism. Sphingobium sp. strain SYK-6 degrades guaiacylglycerol-β-guaiacyl ether (GGE) to α-(2-methoxyphenoxy)-β-hydroxypropiovanillone (MPHPV), and then the ether linkage of MPHPV is cleaved to generate α-glutathionyl-β-hydroxypropiovanillone (GS-HPV) and guaiacol. We have characterized three enantioselective glutathione S-transferase genes, including two genes that are involved in the ether cleavag...

  14. Genomic Analysis of Anaerobic Respiration in the Archaeon Halobacterium sp. Strain NRC-1: Dimethyl Sulfoxide and Trimethylamine N-Oxide as Terminal Electron Acceptors†

    OpenAIRE

    Müller, Jochen A.; DasSarma, Shiladitya

    2005-01-01

    We have investigated anaerobic respiration of the archaeal model organism Halobacterium sp. strain NRC-1 by using phenotypic and genetic analysis, bioinformatics, and transcriptome analysis. NRC-1 was found to grow on either dimethyl sulfoxide (DMSO) or trimethylamine N-oxide (TMAO) as the sole terminal electron acceptor, with a doubling time of 1 day. An operon, dmsREABCD, encoding a putative regulatory protein, DmsR, a molybdopterin oxidoreductase of the DMSO reductase family (DmsEABC), and...

  15. Regulation of pH attenuates toxicity of a byproduct produced by an ethanologenic strain of Sphingomonas sp. A1 during ethanol fermentation from alginate

    OpenAIRE

    Fujii, Mari; Yoshida, Shiori; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Marine macroalgae is a promising carbon source that contains alginate and mannitol as major carbohydrates. A bioengineered ethanologenic strain of the bacterium Sphingomonas sp. A1 can produce ethanol from alginate, but not mannitol, whereas the yeast Saccharomyces paradoxus NBRC 0259–3 can produce ethanol from mannitol, but not alginate. Thus, one practical approach for converting both alginate and mannitol into ethanol would involve two-step fermentation, in which the ethanologenic bacteriu...

  16. Bioconversion of tyrosol into hydroxytyrosol and 3,4-dihydroxyphenylacetic acid under hypersaline conditions by the new Halomonas sp strain HTB24

    OpenAIRE

    Liebgott, Pierre-Pol; Labat, Marc; Casalot, Laurence; Amouric, Agnès S.; LORQUIN, Jean

    2007-01-01

    This paper reports the characterization of a Halomonas sp. strain (named HTB24) isolated from olive-mill wastewater and capable of transforming tyrosol into hydroxytyrosol (HT) and 3,4-dihydroxyphenylacetic acid (DHPA) in hypersaline conditions. This is the first time that a halophile has been shown to perform such reactions. The potent natural antioxidant HT was obtained through a C3 hydroxylation on the ring cycle, whereas DHPA was synthesized via the 4-hydroxyphenylacetic acid (HPA) pathwa...

  17. Characterization of Klebsiella sp. Strain 10982, a Colonizer of Humans That Contains Novel Antibiotic Resistance Alleles and Exhibits Genetic Similarities to Plant and Clinical Klebsiella Isolates

    OpenAIRE

    Hazen, Tracy H.; Zhao, LiCheng; Sahl, Jason W.; Robinson, Gwen; Harris, Anthony D.; Rasko, David A.; Johnson, J. Kristie

    2014-01-01

    A unique Klebsiella species strain, 10982, was cultured from a perianal swab specimen obtained from a patient in the University of Maryland Medical Center intensive care unit. Klebsiella sp. 10982 possesses a large IncA/C multidrug resistance plasmid encoding a novel FOX AmpC β-lactamase designated FOX-10. A novel variant of the LEN β-lactamase was also identified. Genome sequencing and bioinformatic analysis demonstrated that this isolate contains genes associated with nitrogen fixation, all...

  18. A β-Alanine Catabolism Pathway Containing a Highly Promiscuous ω-Transaminase in the 12-Aminododecanate-Degrading Pseudomonas sp. Strain AAC

    OpenAIRE

    Wilding, Matthew; Thomas S Peat; Newman, Janet; Scott, Colin

    2016-01-01

    ABSTRACT We previously isolated the transaminase KES23458 from Pseudomonas sp. strain AAC as a promising biocatalyst for the production of 12-aminododecanoic acid, a constituent building block of nylon-12. Here, we report the subsequent characterization of this transaminase. It exhibits activity with a broad substrate range which includes α-, β-, and ω-amino acids, as well as α,ω-diamines and a number of other industrially relevant compounds. It is therefore a prospective candidate for the bi...

  19. Non-Sterilized Fermentative Production of Polymer-Grade L-Lactic Acid by a Newly Isolated Thermophilic Strain Bacillus sp. 2–6

    OpenAIRE

    Jiayang Qin; Bo Zhao; Xiuwen Wang; Limin Wang; Bo Yu; Yanhe Ma; Cuiqing Ma; Hongzhi Tang; Jibin Sun; Ping Xu

    2009-01-01

    BACKGROUND: The demand for lactic acid has been increasing considerably because of its use as a monomer for the synthesis of polylactic acid (PLA), which is a promising and environment-friendly alternative to plastics derived from petrochemicals. Optically pure L-lactic acid is essential for polymerization of PLA. The high fermentation cost of L-lactic acid is another limitation for PLA polymers to compete with conventional plastics. METHODOLOGY/PRINCIPAL FINDINGS: A Bacillus sp. strain 2-6 f...

  20. Purification, cloning, and primary structure of an enantiomer-selective amidase from Brevibacterium sp. strain R312: structural evidence for genetic coupling with nitrile hydratase.

    OpenAIRE

    Mayaux, J F; Cerebelaud, E; Soubrier, F.; Faucher, D; Pétré, D

    1990-01-01

    An enantiomer-selective amidase active on several 2-aryl and 2-aryloxy propionamides was identified and purified from Brevibacterium sp. strain R312. Oligonucleotide probes were designed from limited peptide sequence information and were used to clone the corresponding gene, named amdA. Highly significant homologies were found at the amino acid level between the deduced sequence of the enantiomer-selective amidase and the sequences of known amidases such as indoleacetamide hydrolases from Pse...

  1. 3-(2-hydroxyphenyl)catechol as substrate for proximal meta ring cleavage in dibenzofuran degradation by Brevibacterium sp. strain DPO 1361.

    OpenAIRE

    Strubel, Volker; Engesser, Karl-Heinrich; Fischer, Peter; Knackmuss, Hans-Joachim

    1991-01-01

    Brevibacterium sp. strain DPO 1361 oxygenates dibenzofuran in the unusual angular position. The 3-(2-hydroxyphenyl)catechol thus generated is subject to meta ring cleavage in the proximal position, yielding 2-hydroxy-6-(2-hydroxyphenyl)-6-oxo-2,4-hexadienoic acid, which is hydrolyzed to 2-oxo-4-pentenoate and salicylate by 2-hydroxy-6-oxo-6-phenyl-2,4-hexadienoic acid hydrolase. The proximal mode of ring cleavage is definitely established by isolation and unequivocal structural characterizati...

  2. Draft Genome Sequence of Triclosan-Degrading Bacterium Sphingomonas sp. Strain YL-JM2C, Isolated from a Wastewater Treatment Plant in China

    OpenAIRE

    Mulla, Sikandar I.; Hu, Anyi; Xu, Haili; Yu, Chang-Ping

    2015-01-01

    Sphingomonas sp. strain YL-JM2C was isolated from a wastewater treatment plant in Xiamen, China, by enrichment on triclosan. The bacterium is of special interest because of its ability to degrade triclosan. Here, we present a draft genome sequence of the microorganism and its functional annotation. To our best knowledge, this is the first report of a draft genome sequence of a triclosan-degrading bacterium

  3. In Vitro Analysis of Roles of a Disulfide Bridge and a Calcium Binding Site in Activation of Pseudomonas sp. Strain KWI-56 Lipase

    OpenAIRE

    Yang, Junhao; Kobayashi, Koei; Iwasaki, Yugo; Nakano, Hideo; Yamane, Tsuneo

    2000-01-01

    The expression of lipase from Pseudomonas sp. strain KWI-56 (recently reclassified as Burkholderia cepacia) had been found to be dependent on an activator gene (act) downstream of its structural gene (lip). In this work, the mature lipase was synthesized in an enzymatically active form with a cell-free Escherichia coli S30 coupled transcription-translation system by expressing a recombinant lipase gene (rlip) encoding the mature lipase in the presence of its purified activator or by coexpress...

  4. Biodegradation of Heavy C Oil by Alcanivorax sp. a1 Strain Isolated from Recovered Bunker Oil Spilt in the “Solar I” Accident

    OpenAIRE

    Yoshikawa, Takeshi; Murata, Kei; Uno, Seiichi; Koyama, Jiro; Maeda, Hiroto; Hayashi, Masazumi; Sadaba, Resurreccion B.

    2010-01-01

    The genus Alcanivorax is known as a petroleum hydrocarbon degrader and primarily contributes to bioremediation process of hydrocarbon pollution in petroleum-contaminated marine environments. In the present study, biodegradability of heavy C oil constituents by Alcanivorax sp. a1 strain, isolated from bunker oil recovered from the “Solar1” oil spill accident offshore the Guimaras Island, the Philippines in 2006, was investigated. The isolate showed remarkable growth in UPFe medium supplemen...

  5. Complete genome sequence of a xanthan-degrading Microbacterium sp. strain XT11 with the potential for xantho-oligosaccharides production.

    Science.gov (United States)

    Yang, Fan; Li, Lili; Si, Yang; Yang, Ming; Guo, Xiaoyu; Hou, Yingmin; Chen, Xiaoyi; Li, Xianzhen

    2016-03-20

    Here, we reported a high-quality complete genome sequence of a xanthan-degrading bacterium Microbacterium sp. XT11, newly isolated from garden soil, China. Several genes probably involved in xanthan degradation pathway were detected as a gene cluster in the genome. The genome information of strain XT11 will be valuable for clarifying the molecular mechanism for xanthan degradation and producing xantho-oligosaccharides. PMID:26853476

  6. Aerobic Degradation of N-Methyl-4-Nitroaniline (MNA) by Pseudomonas sp. Strain FK357 Isolated from Soil

    Science.gov (United States)

    Khan, Fazlurrahman; Vyas, Bhawna; Pal, Deepika; Cameotra, Swaranjit Singh

    2013-01-01

    N-Methyl-4-nitroaniline (MNA) is used as an additive to lower the melting temperature of energetic materials in the synthesis of insensitive explosives. Although the biotransformation of MNA under anaerobic condition has been reported, its aerobic microbial degradation has not been documented yet. A soil microcosms study showed the efficient aerobic degradation of MNA by the inhabitant soil microorganisms. An aerobic bacterium, Pseudomonas sp. strain FK357, able to utilize MNA as the sole carbon, nitrogen, and energy source, was isolated from soil microcosms. HPLC and GC-MS analysis of the samples obtained from growth and resting cell studies showed the formation of 4-nitroaniline (4-NA), 4-aminophenol (4-AP), and 1, 2, 4-benzenetriol (BT) as major metabolic intermediates in the MNA degradation pathway. Enzymatic assay carried out on cell-free lysates of MNA grown cells confirmed N-demethylation reaction is the first step of MNA degradation with the formation of 4-NA and formaldehyde products. Flavin-dependent transformation of 4-NA to 4-AP in cell extracts demonstrated that the second step of MNA degradation is a monooxygenation. Furthermore, conversion of 4-AP to BT by MNA grown cells indicates the involvement of oxidative deamination (release of NH2 substituent) reaction in third step of MNA degradation. Subsequent degradation of BT occurs by the action of benzenetriol 1, 2-dioxygenase as reported for the degradation of 4-nitrophenol. This is the first report on aerobic degradation of MNA by a single bacterium along with elucidation of metabolic pathway. PMID:24116023

  7. Aerobic degradation of N-methyl-4-nitroaniline (MNA by Pseudomonas sp. strain FK357 isolated from soil.

    Directory of Open Access Journals (Sweden)

    Fazlurrahman Khan

    Full Text Available N-Methyl-4-nitroaniline (MNA is used as an additive to lower the melting temperature of energetic materials in the synthesis of insensitive explosives. Although the biotransformation of MNA under anaerobic condition has been reported, its aerobic microbial degradation has not been documented yet. A soil microcosms study showed the efficient aerobic degradation of MNA by the inhabitant soil microorganisms. An aerobic bacterium, Pseudomonas sp. strain FK357, able to utilize MNA as the sole carbon, nitrogen, and energy source, was isolated from soil microcosms. HPLC and GC-MS analysis of the samples obtained from growth and resting cell studies showed the formation of 4-nitroaniline (4-NA, 4-aminophenol (4-AP, and 1, 2, 4-benzenetriol (BT as major metabolic intermediates in the MNA degradation pathway. Enzymatic assay carried out on cell-free lysates of MNA grown cells confirmed N-demethylation reaction is the first step of MNA degradation with the formation of 4-NA and formaldehyde products. Flavin-dependent transformation of 4-NA to 4-AP in cell extracts demonstrated that the second step of MNA degradation is a monooxygenation. Furthermore, conversion of 4-AP to BT by MNA grown cells indicates the involvement of oxidative deamination (release of NH2 substituent reaction in third step of MNA degradation. Subsequent degradation of BT occurs by the action of benzenetriol 1, 2-dioxygenase as reported for the degradation of 4-nitrophenol. This is the first report on aerobic degradation of MNA by a single bacterium along with elucidation of metabolic pathway.

  8. Photoautotrophic Polyhydroxybutyrate Granule Formation Is Regulated by Cyanobacterial Phasin PhaP in Synechocystis sp. Strain PCC 6803.

    Science.gov (United States)

    Hauf, Waldemar; Watzer, Björn; Roos, Nora; Klotz, Alexander; Forchhammer, Karl

    2015-07-01

    Cyanobacteria are photoautotrophic microorganisms which fix atmospheric carbon dioxide via the Calvin-Benson cycle to produce carbon backbones for primary metabolism. Fixed carbon can also be stored as intracellular glycogen, and in some cyanobacterial species like Synechocystis sp. strain PCC 6803, polyhydroxybutyrate (PHB) accumulates when major nutrients like phosphorus or nitrogen are absent. So far only three enzymes which participate in PHB metabolism have been identified in this organism, namely, PhaA, PhaB, and the heterodimeric PHB synthase PhaEC. In this work, we describe the cyanobacterial PHA surface-coating protein (phasin), which we term PhaP, encoded by ssl2501. Translational fusion of Ssl2501 with enhanced green fluorescent protein (eGFP) showed a clear colocalization to PHB granules. A deletion of ssl2501 reduced the number of PHB granules per cell, whereas the mean PHB granule size increased as expected for a typical phasin. Although deletion of ssl2501 had almost no effect on the amount of PHB, the biosynthetic activity of PHB synthase was negatively affected. Secondary-structure prediction and circular dichroism (CD) spectroscopy of PhaP revealed that the protein consists of two α-helices, both of them associating with PHB granules. Purified PhaP forms oligomeric structures in solution, and both α-helices of PhaP contribute to oligomerization. Together, these results support the idea that Ssl2501 encodes a cyanobacterial phasin, PhaP, which regulates the surface-to-volume ratio of PHB granules. PMID:25911471

  9. Inactivation of nitrate reductase alters metabolic branching of carbohydrate fermentation in the cyanobacterium Synechococcus sp. strain PCC 7002.

    Science.gov (United States)

    Qian, Xiao; Kumaraswamy, G Kenchappa; Zhang, Shuyi; Gates, Colin; Ananyev, Gennady M; Bryant, Donald A; Dismukes, G Charles

    2016-05-01

    To produce cellular energy, cyanobacteria reduce nitrate as the preferred pathway over proton reduction (H2 evolution) by catabolizing glycogen under dark anaerobic conditions. This competition lowers H2 production by consuming a large fraction of the reducing equivalents (NADPH and NADH). To eliminate this competition, we constructed a knockout mutant of nitrate reductase, encoded by narB, in Synechococcus sp. PCC 7002. As expected, ΔnarB was able to take up intracellular nitrate but was unable to reduce it to nitrite or ammonia, and was unable to grow photoautotrophically on nitrate. During photoautotrophic growth on urea, ΔnarB significantly redirects biomass accumulation into glycogen at the expense of protein accumulation. During subsequent dark fermentation, metabolite concentrations--both the adenylate cellular energy charge (∼ATP) and the redox poise (NAD(P)H/NAD(P))--were independent of nitrate availability in ΔnarB, in contrast to the wild type (WT) control. The ΔnarB strain diverted more reducing equivalents from glycogen catabolism into reduced products, mainly H2 and d-lactate, by 6-fold (2.8% yield) and 2-fold (82.3% yield), respectively, than WT. Continuous removal of H2 from the fermentation medium (milking) further boosted net H2 production by 7-fold in ΔnarB, at the expense of less excreted lactate, resulting in a 49-fold combined increase in the net H2 evolution rate during 2 days of fermentation compared to the WT. The absence of nitrate reductase eliminated the inductive effect of nitrate addition on rerouting carbohydrate catabolism from glycolysis to the oxidative pentose phosphate (OPP) pathway, indicating that intracellular redox poise and not nitrate itself acts as the control switch for carbon flux branching between pathways. PMID:26479976

  10. Dehalogenimonas sp. Strain WBC-2 Genome and Identification of Its trans-Dichloroethene Reductive Dehalogenase, TdrA.

    Science.gov (United States)

    Molenda, Olivia; Quaile, Andrew T; Edwards, Elizabeth A

    2016-01-01

    The Dehalogenimonas population in a dechlorinating enrichment culture referred to as WBC-2 was previously shown to be responsible for trans-dichloroethene (tDCE) hydrogenolysis to vinyl chloride (VC). In this study, blue native polyacrylamide gel electrophoresis (BN-PAGE) followed by enzymatic assays and protein identification using liquid chromatography coupled with mass spectrometry (LC-MS/MS) led to the functional characterization of a novel dehalogenase, TdrA. This new reductive dehalogenase (RDase) catalyzes the dechlorination of tDCE to VC. A metagenome of the WBC-2 culture was sequenced, and a complete Dehalogenimonas genome, only the second Dehalogenimonas genome to become publicly available, was closed. The tdrA dehalogenase found within the Dehalogenimonas genome appears to be on a genomic island similar to genomic islands found in Dehalococcoides. TdrA itself is most similar to TceA from Dehalococcoides sp. strain FL2 with 76.4% amino acid pairwise identity. It is likely that the horizontal transfer of rdhA genes is not only a feature of Dehalococcoides but also a feature of other Dehalococcoidia, including Dehalogenimonas. A set of primers was developed to track tdrA in WBC-2 subcultures maintained on different electron acceptors. This newest dehalogenase is an addition to the short list of functionally defined RDases sharing the usual characteristic motifs (including an AB operon, a TAT export sequence, two iron-sulfur clusters, and a corrinoid binding domain), substrate flexibility, and evidence for horizontal gene transfer within the Dehalococcoidia. PMID:26452554

  11. Does S-metolachlor affect the performance of Pseudomonas sp. strain ADP as bioaugmentation bacterium for atrazine-contaminated soils?

    Directory of Open Access Journals (Sweden)

    Cristina A Viegas

    Full Text Available Atrazine (ATZ and S-metolachlor (S-MET are two herbicides widely used, often as mixtures. The present work examined whether the presence of S-MET affects the ATZ-biodegradation activity of the bioaugmentation bacterium Pseudomonas sp. strain ADP in a crop soil. S-MET concentrations were selected for their relevance in worst-case scenarios of soil contamination by a commercial formulation containing both herbicides. At concentrations representative of application of high doses of the formulation (up to 50 µg g(-1 of soil, corresponding to a dose approximately 50× higher than the recommended field dose (RD, the presence of pure S-MET significantly affected neither bacteria survival (~10(7 initial viable cells g(-1 of soil nor its ATZ-mineralization activity. Consistently, biodegradation experiments, in larger soil microcosms spiked with 20× or 50 × RD of the double formulation and inoculated with the bacterium, revealed ATZ to be rapidly (in up to 5 days and extensively (>96% removed from the soil. During the 5 days, concentration of S-MET decreased moderately to about 60% of the initial, both in inoculated and non-inoculated microcosms. Concomitantly, an accumulation of the two metabolites S-MET ethanesulfonic acid and S-MET oxanilic acid was found. Despite the dissipation of almost all the ATZ from the treated soils, the respective eluates were still highly toxic to an aquatic microalgae species, being as toxic as those from the untreated soil. We suggest that this high toxicity may be due to the S-MET and/or its metabolites remaining in the soil.

  12. Draft Genome Sequence of a Tetrabromobisphenol A–Degrading Strain, Ochrobactrum sp. T, Isolated from an Electronic Waste Recycling Site

    Science.gov (United States)

    Liang, Zhishu; Li, Guiying; Zhang, Guoxia; Das, Ranjit

    2016-01-01

    Ochrobactrum sp. T was previously isolated from a sludge sample collected from an electronic waste recycling site and characterized as a unique tetrabromobisphenol A (TBBPA)–degrading bacterium. Here, the draft genome sequence (3.9 Mb) of Ochrobactrum sp. T is reported to provide insights into its diversity and its TBBPA biodegradation mechanism in polluted environments. PMID:27445374

  13. Biosorption of cadmium by Brevundimonas sp. ZF12 strain, a novel biosorbent isolated from hot-spring waters in high background radiation areas

    Energy Technology Data Exchange (ETDEWEB)

    Masoudzadeh, Nasrin [Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran (Iran, Islamic Republic of); Department of Biology, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Zakeri, Fardideh [Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran (Iran, Islamic Republic of); National Radiation Protection Department - Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Lotfabad, Tayebe bagheri [Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran (Iran, Islamic Republic of); Sharafi, Hakimeh [Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran (Iran, Islamic Republic of); Department of Biology, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Masoomi, Fatemeh; Zahiri, Hoseein Shahbani; Ahmadian, Gholamreza [Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran (Iran, Islamic Republic of); Noghabi, Kambiz Akbari, E-mail: Akbari@nigeb.ac.ir [Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran (Iran, Islamic Republic of)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Isolation and characterization of a novel cadmium-biosorbent (Brevundimonas sp. ZF12) from high background radiation areas. Black-Right-Pointing-Pointer Brevundimonas sp. ZF12 caused 50% removal of cadmium at the concentration level of 250 ppm. Black-Right-Pointing-Pointer Solution pH values used for the reusability study have powerful desorptive features to recover Cd ions sorbed onto the biomass. Black-Right-Pointing-Pointer This is the first study carried out so far for the cadmium removal from aqueous solutions by a novel biosorbent Brevundimonas sp. ZF12. Black-Right-Pointing-Pointer In our opinion, the isolate can be an attractive alternative to remove the cadmium-containing wastewaters. - Abstract: The aim of this study is to screen cadmium biosorbing bacterial strains isolated from soils and hot-springs containing high concentrations of radium ({sup 226}Ra) in Ramsar using a batch system. Brevundimonas sp. ZF12 strain isolated from the water with high {sup 226}Ra content caused 50% removal of cadmium at a concentration level of 250 ppm. The biosorption equilibrium data are fitted well by the Langmuir adsorption isotherm and kinetic studies indicated that the biosorption follows pseudo second-order model. The effect of different physico-chemical parameters like biomass concentration, pH, cadmium concentration, temperature and contact time on cadmium sorption was also investigated using FTIR, SEM and XRD analytical techniques. A high desorption efficiency (above 90%) was obtained using a pH range of 2.0-4.0. Reusability of the biomass was examined under consecutive biosorption-desorption cycles repeated thrice. In conclusion, Brevundimonas sp. ZF12 is proposed as an excellent cadmium biosorbent that may have important applications in Cd removal from wastewaters.

  14. Effect of aflatoxin B1 on growth and enzymatic activity of a native strain of Bacillus sp Efecto de la aflatoxina B1 sobre el crecimiento y actividad proteolítica de una cepa nativa de Bacillus sp

    Directory of Open Access Journals (Sweden)

    Márquez Edna Judith

    2004-07-01

    Full Text Available The effect of different aflatoxin B1 (AFAB1 concentrations on alkaline protease growth and enzymatic activity was evaluated; a native strain of alkalophilic Bacillus sp cultivated in CSL (Corn Steep Liquor was used. It was found that the effect of AFAB1 on the strain inhibited its growth and enzymatic activity to 1 ppm, showing that the strain is highly sensible to AFAB1, meaning that medium obtained f rom Colombian corn contaminated with this mycotoxin cannot be easily used. Concentrations less than 0.1 ppm did not affect growth and enzymatic activity. Key words: Bacillus, aflatoxin, alkaline proteases.Se evaluó el efecto de diferentes concentraciones de aflatoxina B1 (AFAB1 sobre el crecimiento y actividad enzimática de proteasas alcalinas de una cepa nativa de Bacillus sp Alcalofílico cultivada en LAM (Licor Agotado de Maíz. Se encontró que la cepa inhibe su crecimiento y actividad enzimática a 1 ppm, lo que demuestra una alta sensibilidad de la cepa evaluada a la AFAB1 e imposibilita utilizar fácilmente medios obtenidos de maíz nacional contaminado con esta micotoxina. Las concentraciones inferiores a 0.1 ppm no tienen ningún efecto sobre el crecimiento y la actividad enzimática. Palabras clave: Bacillus, aflatoxina, proteasas alcalinas.

  15. Draft Genome Sequence of Pseudomonas sp. Strain BMS12, a Plant Growth-Promoting and Protease-Producing Bacterium, Isolated from the Rhizosphere Sediment of Phragmites karka of Chilika Lake, India.

    Science.gov (United States)

    Mishra, Samir R; Panda, Ananta Narayan; Ray, Lopamudra; Sahu, Neha; Mishra, Gayatri; Jadhao, Sudhir; Suar, Mrutyunjay; Adhya, Tapan Kumar; Rastogi, Gurdeep; Pattnaik, Ajit Kumar; Raina, Vishakha

    2016-01-01

    We report the 4.51 Mb draft genome of Pseudomonas sp. strain BMS12, a Gram-negative bacterium in the class of Gammaproteobacteria, isolated from the rhizospheric sediment of Phragmites karka, an invasive weed in Chilika Lake, Odisha, India. The Pseudomonas sp. strain BMS12 is capable of producing proteases and is also an efficient plant growth promoter that can be useful for various phytoremedial and industrial applications. PMID:27365340

  16. Permanent Draft Genome Sequence for Frankia sp. Strain EI5c, a Single-Spore Isolate of a Nitrogen-Fixing Actinobacterium, Isolated from the Root Nodules of Elaeagnus angustifolia.

    Science.gov (United States)

    D'Angelo, Timothy; Oshone, Rediet; Abebe-Akele, Feseha; Simpson, Stephen; Morris, Krystalynne; Thomas, W Kelley; Tisa, Louis S

    2016-01-01

    Frankia sp. strain EI5c is a member of Frankia lineage III, which is able to reinfect plants of the Eleagnaceae, Rhamnaceae, Myricaceae, and Gymnostoma, as well as the genus Alnus Here, we report the 6.6-Mbp draft genome sequence of Frankia sp. strain EI5c with a G+C content of 72.14 % and 5,458 candidate protein-encoding genes. PMID:27389275

  17. Draft Genome Sequence of Pseudomonas sp. Strain BMS12, a Plant Growth-Promoting and Protease-Producing Bacterium, Isolated from the Rhizosphere Sediment of Phragmites karka of Chilika Lake, India

    Science.gov (United States)

    Mishra, Samir R.; Panda, Ananta Narayan; Ray, Lopamudra; Sahu, Neha; Mishra, Gayatri; Jadhao, Sudhir; Suar, Mrutyunjay; Adhya, Tapan Kumar; Rastogi, Gurdeep; Pattnaik, Ajit Kumar

    2016-01-01

    We report the 4.51 Mb draft genome of Pseudomonas sp. strain BMS12, a Gram-negative bacterium in the class of Gammaproteobacteria, isolated from the rhizospheric sediment of Phragmites karka, an invasive weed in Chilika Lake, Odisha, India. The Pseudomonas sp. strain BMS12 is capable of producing proteases and is also an efficient plant growth promoter that can be useful for various phytoremedial and industrial applications. PMID:27365340

  18. Distribution of SpHtp 1 gene among different Saprolegnia strains%SpHtp1基因在不同种属水霉菌株中的分布

    Institute of Scientific and Technical Information of China (English)

    叶鑫; 赵依妮; 曹海鹏; 胡鲲; 杨先乐

    2014-01-01

    In order to understand the distribution of the Sp Htp 1 gene among different saprolegnia strains,using Saprolegnia parasitica (ATCC200013 TM )genomic DNA as the template,a pair of gene-specific primers was designed,a PCR method was developed and the parameters for PCR amplification was optimized.The PCR product was extracted,linked into pMD18-T vector and then cloned into E .coli DH5α.The recombination plasmid was identified by PCR and sequenced to prove the amplification of the target gene.As a result,a 224 bp DNA fragment of the Sp Htp 1 gene can be amplified from the sapro-legnia genome,which had an identity of 99% in sequence with that of other Saprolegnia strains.Addi-tionally,17 samples from all over China were tested using this method and the Sp Htp 1 gene was present in 8 (47%)samples.The results indicated that the Sp Htp 1 gene is expressed specifically in S .parasiti-ca ,which can be used potentially for detection of Saprolegnia .%为研究 Sp Htp 1基因在不同种属水霉菌株中的分布,以寄生水霉 ATCC200013 TM 的基因组 DNA 为模板,设计1对特异性引物,进行 PCR 扩增。将扩增片段回收,并克隆入 T 载体,转化大肠杆菌 DH5α,挑取阳性克隆测序。将测序结果与 GenBank 中登录的 Sp Htp 1基因序列进行比较,同源性为99%。以该方法调查从水霉病主要流行地区分离的17株水霉菌 Sp Htp 1基因的分布情况,结果发现:在17株水霉菌株中,有8株水霉菌检测到 Sp Htp 1基因,阳性率为47%,且所有含 Sp Htp 1基因的菌株在分类地位上均隶属于寄生水霉(Sapro-legnia parasitica )。Sp Htp 1基因可能在寄生水霉中特异性存在,该基因有望用于寄生水霉的分离鉴定。

  19. Host genes involved in Agrobacterium-mediated transformation

    NARCIS (Netherlands)

    Soltani, Jalal

    2009-01-01

    Agrobacterium is the nature’s genetic engineer that can transfer genes across the kingdom barriers to both prokaryotic and eukaryotic host cells. The host genes which are involved in Agrobacterium-mediated transformatiom (AMT) are not well known. Here, I studied in a systematic way to identify the w

  20. Diazinon degradation by a novel strain Ralstonia sp. DI-3 and X-ray crystal structure determination of the metabolite of diazinon

    Indian Academy of Sciences (India)

    GUANGLI WANG; YUAN LIU

    2016-09-01

    Diazinon is a widely used organophosphorus insecticide often detected in the environment. A highly effectivediazinon-degrading Ralstonia sp. strain DI-3 was isolated from agricultural soil. Strain DI-3 can utilize dimethoateas its sole carbon source for growth and degrade an initial concentration of 100 mg·L^{−1} diazinon to non-detectablelevels within 60 h in liquid culture. A small amount of second carbon source as co-substrate could slightly enhance thebiodegradation of diazinon. In addition, a less toxic metabolic intermediate formed during the degradation of diazinonmediated by strain DI-3 was purified using thin-layer chromatography (TLC) and identified based on single-crystal Xraydiffraction analysis, allowing a degradation pathway for diazinon by pure culture to be proposed. Finally, this isthe first providing authentic evidence to describe the metabolite.

  1. Identification of Specific Variations in a Non-Motile Strain of Cyanobacterium Synechocystis sp. PCC 6803 Originated from ATCC 27184 by Whole Genome Resequencing

    Directory of Open Access Journals (Sweden)

    Qinglong Ding

    2015-10-01

    Full Text Available Cyanobacterium Synechocystis sp. PCC 6803 is a widely used model organism in basic research and biofuel biotechnology application. Here, we report the genomic sequence of chromosome and seven plasmids of a glucose-tolerant, non-motile strain originated from ATCC 27184, GT-G, in use at Guangzhou. Through high-throughput genome re-sequencing and verification by Sanger sequencing, eight novel variants were identified in its chromosome and plasmids. The eight novel variants, especially the five non-silent mutations might have interesting effects on the phenotype of GT-G strains, for example the truncated Sll1895 and Slr0322 protein. These resequencing data provide background information for further research and application based on the GT-G strain and also provide evidence to study the evolution and divergence of Synechocystis 6803 globally.

  2. Multiphasic characterization of a plant growth promoting bacterial strain, Burkholderia sp, 7016 and its effect on tomato growth in the field

    Institute of Scientific and Technical Information of China (English)

    GAO Miao[1; ZHOU Jian-jiao[1; WANG En-tao[2; CHEN Qian[1; XU Jing[1; SUN Jian-guana[1

    2015-01-01

    Aiming at searching for plant growth promoting rhizobacteria (PGPR), a bacterium strain coded as 7016 was isolated from soybean rhizosphere and was characterized in the present study. It was identified as Burkholderia sp. based on 16S rDNA sequence analysis, as well as phenotypic and biochemical characterizations. This bacterium presented nitrogenase activity, 1-aminocyclopropane-l-carboxylic acid (ACC) deaminase activity and phosphate solubilizing ability; inhibited the growth of Sclerotinia sclerotiorum, Gibberella zeae and Verticillium dahliae; and produced small quantities of indole acetic acid (IAA). In green house experiments, significant increases in shoot height and weight, root length and weight, and stem diameter were observed on tomato plants in 30 d after inoculation with strain 7016. Result of 16S rDNA PCR-DGGE showed that 7016 survived in the rhizosphere of tomato seedlings. In the field experiments, Burkholderia sp. 7016 enhanced the tomato yield and significantly promoted activities of soil urease, phosphatase, sucrase, and catalase. All these results demonstrated Burkholderia sp. 7016 as a valuable PGPR and a candidate of biofertilizer.

  3. Multiphasic characterization of a plant growth promoting bacterial strain, Burkholderia sp. 7016 and its effect on tomato growth in the ifeld

    Institute of Scientific and Technical Information of China (English)

    GAO Miao; ZHOU Jian-jiao; WANG En-tao; CHEN Qian; XU Jing; SUN Jian-guang

    2015-01-01

    Aiming at searching for plant growth promoting rhizobacteria (PGPR), a bacterium strain coded as 7016 was isolated from soybean rhizosphere and was characterized in the present study. It was identiifed as Burkholderia sp. based on 16S rDNA sequence analysis, as wel as phenotypic and biochemical characterizations. This bacterium presented nitrogenase activity, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity and phosphate solubilizing ability;inhibited the growth of Sclerotinia sclerotiorum, Gibberel a zeae and Verticil ium dahliae;and produced smal quantities of indole acetic acid (IAA). In green house experiments, signiifcant increases in shoot height and weight, root length and weight, and stem diameter were observed on tomato plants in 30 d after inoculation with strain 7016. Result of 16S rDNA PCR-DGGE showed that 7016 survived in the rhizosphere of tomato seedlings. In the ifeld experiments, Burkholderia sp. 7016 enhanced the tomato yield and signiifcantly promoted activities of soil urease, phosphatase, sucrase, and catalase. Al these results demonstrated Burkholderia sp. 7016 as a valuable PGPR and a candidate of biofertilizer.

  4. Isolation of proline-based cyclic dipeptides from Bacillus sp. N strain associated with rhabditid [corrected] entomopathogenic nematode and its antimicrobial properties.

    Science.gov (United States)

    Kumar, Nishanth; Mohandas, C; Nambisan, Bala; Kumar, D R Soban; Lankalapalli, Ravi S

    2013-02-01

    Entomopathogenic nematodes (EPN) are well-known as biological control agents and are found to have associated bacteria which can produce a wide range of bioactive secondary metabolites. We report herewith isolation of six proline containing cyclic dipeptides cyclo(D-Pro-L-Leu), cyclo(L-Pro-L-Met), cyclo(D-Pro-L-Phe), cyclo(L-Pro-L-Phe), cyclo(L-Pro-L-Tyr) and cyclo(L-Pro-D-Tyr) from ethyl acetate extract of the Luria Broth (LB) cell free culture filtrate of Bacillus sp. strain N associated with a new EPN Rhabditis sp. from sweet potato weevil grubs collected from Central Tuber Crops Research Institute farm. Antimicrobial studies of these 2,5-diketopiperazines (DKPs) against both medicinally and agriculturally important bacterium and fungi showed potent inhibitory values in the range of μg/mL. Cyclic dipeptides showed significantly higher activity than the commercial fungicide bavistin against agriculturally important fungi, viz., Fusarium oxysporum, Rhizoctonia solani, and Pencillium expansum. The highest activity of 2 μg/mL by cyclo(L-Pro-L-Phe) was recorded against P. expansum, a plant pathogen responsible for causing post harvest decay of stored apples and oranges. To our knowledge, this is the first report on the isolation of these DKPs from Rhabditis EPN bacterial strain Bacillus sp. PMID:23065379

  5. Identification and Plant Interaction of a Phyllobacterium sp., a Predominant Rhizobacterium of Young Sugar Beet Plants.

    Science.gov (United States)

    Lambert, B; Joos, H; Dierickx, S; Vantomme, R; Swings, J; Kersters, K; Van Montagu, M

    1990-04-01

    The second most abundant bacterium on the root surface of young sugar beet plants was identified as a Phyllobacterium sp. (Rhizobiaceae) based on a comparison of the results of 39 conventional identification tests, 167 API tests, 30 antibiotic susceptibility tests, and sodium dodecyl sulfate-polyacrylamide gel electrophoretic fingerprints of total cellular proteins with type strains of Phyllobacterium myrsinacearum and Phyllobacterium rubiacearum. It was found on 198 of 1,100 investigated plants between the 2nd and 10th leaf stage on three different fields in Belgium and one field in Spain. Densities ranged from 2 x 10 to 2 x 10 CFU/g of root. Five isolates exerted a broad-spectrum in vitro antifungal activity. DNA-DNA hybridizations showed that Phyllobacterium sp. does not contain DNA sequences that are homologous with the attachment genes chvA, chvB, the transferred-DNA (T-DNA) hormone genes iaaH and ipt from Agrobacterium tumefaciens, iaaM from A. tumefaciens and Pseudomonas savastanoi, or the nitrogenase genes nifHDK from Klebsiella pneumoniae. Phyllobacterium sp. produces indolylacetic acid in in vitro cultures and induces auxinlike effects when cocultivated with callus tissue of tobacco. When Phyllobacterium sp. was transformed with a Ti plasmid derivative, it gained the capacity to induce tumors on Kalanchoe daigremontiana. The potential role of Phyllobacterium sp. in this newly recognized niche is discussed. PMID:16348158

  6. Genetic transformation of loblolly pine using mature zygotic embryo explants by Agrobacterium tumefaciens

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Agrobacterium tumefaciens strain LBA 4404 carrying pBI121 plasmid was used to transform mature zygotic embryos of three genotypes (E-Hb, E-Ma, and E-Mc) of loblolly pine. The results demonstrated that the expression frequency of b-glucuronidase reporter gene (GUS) varied among genotypes after mature zygotic em-bryos were infected with Agrobacterium tumefaciens cultures. The highest frequency (27.8%) of GUS expressing embryos was obtained from genotype E-Mc with mean number of 21.9 blue GUS spots per embryo. Expression of b-glucuronidase reporter gene was observed on cotyledons, hypocotyls, and radicles of transformed mature zy-gotic embryos, as well as on organogenic callus and regenerated shoots derived from co-cultivated mature zygotic embryos. Nineteen regenerated transgenic plants were obtained from GUS expression and kanamycin resistant calli. The presence and integration of the GUS gene was confirmed by polymerase chain reaction (PCR) and Southern blot analysis. These results suggested that an efficient Agrobacterium tumefaciens-mediated transfor-mation protocol for stable integration of foreign genes into loblolly pine has been developed and that this transfor-mation system could be useful for the future studies on transferring economically important genes to loblolly pine.

  7. A cyclophilin from the polycentric anaerobic rumen fungus Orpinomyces sp. strain PC-2 is highly homologous to vertebrate cyclophilin B

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, X.L.; Ljungdahl, L.G. [Univ. of Georgia, Athens, GA (United States)

    1995-03-28

    A cyclophilin (CyP) purified to homogeneity from the polycentric anaerobic rumen fungus Orpinomyces sp. strain PC-2 had a molecular mass of 20.5 kDa and a pI of 8.1. The protein catalyzed the isomerization of the prolyl peptide bond of N-succinyl-Ala-Ala-(cis,trans)-Pro-Phe p-nitroanilide with a k{sub cat}/K{sub m} value of 9.3 x 10{sup 6} M{sup {minus}1}{center_dot}s{sup {minus}1} at 10{degrees}C and pH 7.8. Cyclosporin A strongly inhibited this peptidylprolyl cis-trans isomerase activity with an IC{sub 50} of 19.6 nM. The sequence of the first 30 N-terminal amino acids of this CyP had high homology with the N-terminal sequences of other eukaryotic CyPs. By use of a DNA hybridization probe amplified by PCR with degenerate oligonucleotide primers designed based on the amino acid sequences of the N terminus of this CyP and highly conserved internal regions of other CyPs, a full-length cDNA clone was isolated. It possessed an open reading frame encoding a polypeptide of 203 amino acids with a calculated molecular weight of 21,969, containing a putative hydrophobic signal peptide sequence of 22 amino acids preceding the N terminus of the mature enzyme and a C-terminal sequence, Lys-Ala-Glu-Leu, characteristic of an endoplasmic reticulum retention signal. The Orpinomyces PC-2 CyP is a typical type B CyP. The amino acid sequence of the Orpinomyces CyP exhibits striking degrees of identity with the corresponding human (70%), bovine (69%), mouse (68%), chicken (66%), maize (61%), and yeast (54%) proteins. Phylogenetic analysis based on the CyP sequences indicated that the evolutionary origin of the Orpinomyces CyP was closely related with CyPs of animals. 51 refs., 3 figs., 2 tabs.

  8. Complete genome sequence of Burkholderia sp. strain PAMC28687, a potential octopine-utilizing bacterium isolated from Antarctica lichen.

    Science.gov (United States)

    Han, So-Ra; Yu, Sang-Cheol; Ahn, Do-Hwan; Park, Hyun; Oh, Tae-Jin

    2016-05-20

    We report the complete genome sequence of Burkholderia sp. PAMC28687, which was isolated from the Antarctica lichen Useea sp., for better understanding of its catabolic traits in utilizing octopine as a source of carbon/nitrogen between Burkholderia and lichen. The genome consists of three circular chromosomes with five circular plasmids for the total 6,881,273bp sized genome with a G+C content of 58.14%. PMID:27034021

  9. Cometabolic Degradation of Trichloroethene by Rhodococcus sp. Strain L4 Immobilized on Plant Materials Rich in Essential Oils▿ †

    OpenAIRE

    Suttinun, Oramas; Müller, Rudolf; Luepromchai, Ekawan

    2010-01-01

    The cometabolic degradation of trichloroethene (TCE) by Rhodococcus sp. L4 was limited by the loss of enzyme activity during TCE transformation. This problem was overcome by repeated addition of inducing substrates, such as cumene, limonene, or cumin aldehyde, to the cells. Alternatively, Rhodococcus sp. L4 was immobilized on plant materials which contain those inducers in their essential oils. Cumin seeds were the most suitable immobilizing material, and the immobilized cells tolerated up to...

  10. Agrobacterium-mediated transformation of Fusarium proliferatum.

    Science.gov (United States)

    Bernardi-Wenzel, J; Quecine, M C; Azevedo, J L; Pamphile, J A

    2016-01-01

    Fusarium proliferatum is an important pathogen that is associated with plant diseases and primarily affects aerial plant parts by producing different mycotoxins, which are toxic to humans and animals. Within the last decade, this fungus has also been described as one of the causes of red root rot or sudden death syndrome in soybean, which causes extensive damage to this crop. This study describes the Agrobacterium tumefaciens-mediated transformation of F. proliferatum as a tool for the disruption of pathogenicity genes. The genetic transformation was performed using two binary vectors (pCAMDsRed and pFAT-GFP) containing the hph (hygromycin B resistance) gene as a selection marker and red and green fluorescence, respectively. The presence of acetosyringone and the use of filter paper or nitrocellulose membrane were evaluated for their effect on the transformation efficiency. A mean processing rate of 94% was obtained with 96 h of co-cultivation only in the presence of acetosyringone and the use of filter paper or nitrocellulose membrane did not affect the transformation process. Hygromycin B resistance and the presence of the hph gene were confirmed by PCR, and fluorescence due to the expression of GFP and DsRed protein was monitored in the transformants. A high rate of mitotic stability (95%) was observed. The efficiency of Agrobacterium-mediated transformation of F. proliferatum allows the technique to be used for random insertional mutagenesis studies and to analyze fungal genes involved in the infection process. PMID:27323127

  11. Bacillus sp. strain P38: an efficient producer of L-lactate from cellulosic hydrolysate, with high tolerance for 2-furfural.

    Science.gov (United States)

    Peng, Lili; Wang, Limin; Che, Chengchuan; Yang, Ge; Yu, Bo; Ma, Yanhe

    2013-12-01

    In this study, efficient polymer-grade L-lactic acid production was achieved with the strain Bacillus sp. P38 by using cellulosic hydrolysate as the sole carbon source. In fed-batch fermentation, 180 g L(-1)L-lactic acid was obtained with a volumetric productivity of 2.4 g L(-1)h(-1) and a yield of 0.96 g g(-1) total reducing sugars. No D-isomer of lactic acid was detected in the broth. Strain P38 tolerated up to 10 g L(-1) 2-furfural, and lactate production was sharply inhibited only when the 2-furfural concentration was higher than 6 g L(-1). Moreover, strain P38 also tolerated high concentrations (>6 g L(-1)) of other fermentation inhibitors in cellulosic hydrolysate, such as vanillin and acetic acid, although it was slightly sensitive to formic acid. The efficient L-lactic acid production, combined with high inhibitor tolerance and efficient pentose utilization, indicate that Bacillus sp. P38 is a promising producer of polymer-grade L-lactic acid from cellulosic biomass. PMID:24096283

  12. IDENTIFICATION OF Staphylococcus sp. STRAINS ISOLATED FROM POSITIVE WIDAL BLOOD BASED ON 16S rRNA GENE SEQUENCES

    Directory of Open Access Journals (Sweden)

    Sri Darmawati

    2015-12-01

    Full Text Available The purpose of this study is to identify 8 strains of Staphylococcus genus members isolated from positive Widal blood (4 strains of Staphylococcus saprophyticus, 1 strain of Staphylococcus warneri, 2 strains of Staphylococcus hominis, 1 strain of Staphylococcus xylosus and 1 strain of Staphylococcus capitis based on 16S rRNA gene sequences. The methods used in this study are conducting PCR of 16S rRNA gene, cloning genes using T-Vector pMD20 which is transformed to E. coli DH5α, sequencing. The results show that four strains (BA 47.4, BA 19.2, KD 29.5 and TG 09.1 are identified as Stap. Saprophyticus strains of Stap. saprophyticus members of ATCC 15305T (99.01-100% similarity. The strain of TG 01.3 is identified as Stap. Warneri strain of TG 01.3 of Stap. Warneri members of ATCC 27836T (99.74-99.93% similarity, 2strains (KT 29.2 and KD 35.1 are identified as of Stap. hominis members of DSM 20328T (99.4-99.67% similarity. The strain of KT 30.5 is not identified

  13. Non-sterilized fermentative production of polymer-grade L-lactic acid by a newly isolated thermophilic strain Bacillus sp. 2-6.

    Directory of Open Access Journals (Sweden)

    Jiayang Qin

    Full Text Available BACKGROUND: The demand for lactic acid has been increasing considerably because of its use as a monomer for the synthesis of polylactic acid (PLA, which is a promising and environment-friendly alternative to plastics derived from petrochemicals. Optically pure L-lactic acid is essential for polymerization of PLA. The high fermentation cost of L-lactic acid is another limitation for PLA polymers to compete with conventional plastics. METHODOLOGY/PRINCIPAL FINDINGS: A Bacillus sp. strain 2-6 for production of L-lactic acid was isolated at 55 degrees C from soil samples. Its thermophilic characteristic made it a good lactic acid producer because optically pure L-lactic acid could be produced by this strain under open condition without sterilization. In 5-liter batch fermentation of Bacillus sp. 2-6, 118.0 g/liter of L-lactic acid with an optical purity of 99.4% was obtained from 121.3 g/liter of glucose. The yield was 97.3% and the average productivity was 4.37 g/liter/h. The maximum L-lactic acid concentration of 182.0 g/liter was obtained from 30-liter fed-batch fermentation with an average productivity of 3.03 g/liter/h and product optical purity of 99.4%. CONCLUSIONS/SIGNIFICANCE: With the newly isolated Bacillus sp. strain 2-6, high concentration of optically pure L-lactic acid could be produced efficiently in open fermentation without sterilization, which would lead to a new cost-effective method for polymer-grade L-lactic acid production from renewable resources.

  14. Bioemulsifier production by Microbacterium sp. strains isolated from mangrove and their application to remove cadmiun and zinc from hazardous industrial residue

    Directory of Open Access Journals (Sweden)

    Erick Aniszewski

    2010-03-01

    Full Text Available The contamination of ecosystems with heavy metals is an important issue in current world and remediation technologies should be in according to environmental sustainability concept. Bioemulsifier are promising agents to be used in metal removal and could be effective to many applications in environmental industries. The aims of this work was screening the potential production of bioemulsifier by microorganisms isolated from an oil contaminated mangrove, and evaluate cadmium and zinc removal potential of those strains from a hazardous industrial residue. From that, bioemulsifier-producing bacteria were isolated from urban mangrove sediments. Four isolates were identified as Microbacterium sp by 16S rRNA analysis and were able to reduce up to 53.3% of culture medium surface tension (TS when using glucose as carbon and energy source and 20.2% when sucrose was used. Suspensions containing bioemulsifier produced by Microbacterium sp. strains show to be able to remove cadmium and zinc from contaminated industrial residue, and its ability varied according carbon source. Significant differences in metal removal were observed by all strains depending on the carbon source. When glucose was used, Cd and Zn removal varied from 17 to 41%, and 14 to 68%, respectively. However, when sucrose was used it was observed only 4 to a maximum of 15% of Cd removal, and 4 to 17% of Zn removal. When the same tests were performed after ethanol precipitation, the results were different: the percentages of removal of Zn (7-27% and Cd (14-32% were higher from sucrose cultures. This is the first report of heavy metals removal by bioemulsifier from Microbacterium sp.

  15. Rickettsia sp. strain colombianensi (Rickettsiales: Rickettsiaceae): a new proposed Rickettsia detected in Amblyomma dissimile (Acari: Ixodidae) from iguanas and free-living larvae ticks from vegetation.

    Science.gov (United States)

    Miranda, Jorge; Portillo, Aránzazu; Oteo, José A; Mattar, Salim

    2012-07-01

    From January to December 2009, 55 Amblyomma dissimile (Koch) ticks removed from iguanas in the municipality of Monteria and 3,114 ticks [458 Amblyomma sp. larvae, 2,636 Rhipicephalus microplus (Canestrini) larvae and 20 Amblyomma sp. nymphs] collected over vegetation in Los Cordobas were included in the study. The ticks were pooled into groups from which DNA was extracted. For initial screening of Rickettsia sp., each pool was analyzed by gltA real-time polymerase chain reaction (PCR). Positive pools were further studied using gltA, ompA, and ompB conventional PCR assays. Sequencing and phylogenetic analysis were also conducted. Rickettsial DNA was found in 28 pools of ticks (16 A. dissimile pools and 12 free-living larvae pools) out of 113 (24.7%) using real-time PCR. The same 28 pools were also positive using conventional PCR assays aimed to amplify gltA, ompA, and ompB. For each gene analyzed, PCR products obtained from 4/28 pools (two pools of A. dissimile, one pool of Amblyomma sp. larvae and one pool of Rh. microplus larvae) were randomly chosen and sequenced twice. Nucleotide sequences generated were identical to each other for each of the rickettsial genes gltA, ompA, and ompB, and showed 99.4, 95.6, and 96.4% identity with those of Rickettsia tamurae. They were deposited in the GenBank database under accession numbers JF905456, JF905458, and JF905457, respectively. In conclusion, we present the first molecular evidence of a novel Rickettsia (Rickettsia sp. strain Colombianensi) infecting A. dissimile ticks collected from iguanas, and also Rh. microplus and unspeciated Amblyomma larvae from vegetation in Colombia. PMID:22897060

  16. 中度嗜盐菌 Halomonas sp.BYS-1的渗透调节%Osmoregulation of a Halophilic Bacteria Strain Halomonas sp.BYS-1

    Institute of Scientific and Technical Information of China (English)

    洪青; 张国顺; 张忠辉; 何健; 李顺鹏

    2004-01-01

    Halomonas sp.BYS-1是一株从活性污泥中分离的中度嗜盐菌,它能在0.1~2.6 mol/LNaCl的以苯乙酸为唯一碳源的基础培养基中生长.BYS-1在不同NaCl条件下生长时,胞内的Na+含量基本不发生变化;它主要通过积累K+、谷氨酸和甜菜碱来调节胞内外的渗透压平衡.当培养基中的NaCl浓度从0.1 mol/L上升到2.0 mol/L时,其胞内的K+、谷氨酸和甜菜碱分别提高了1.9、2.4和13.6倍.

  17. Role of α-Methylacyl Coenzyme A Racemase in the Degradation of Methyl-Branched Alkanes by Mycobacterium sp. Strain P101

    OpenAIRE

    Sakai, Yasuyoshi; Takahashi, Hironori; Wakasa, Yuori; Kotani, Tetsuya; Yurimoto, Hiroya; Miyachi, Nobuya; Van Veldhoven, Paul P.; Kato, Nobuo

    2004-01-01

    A new isolate, Mycobacterium sp. strain P101, is capable of growth on methyl-branched alkanes (pristane, phytane, and squalane). Among ca. 10,000 Tn5-derived mutants, we characterized 2 mutants defective in growth on pristane or n-hexadecane. A single copy of Tn5 was found to be inserted into the coding region of mcr (α-methylacyl coenzyme A [α-methylacyl-CoA] racemase gene) in mutant P1 and into the coding region of mls (malate synthase gene) in mutant H1. Mutant P1 could not grow on methyl-...

  18. Proton efflux coupled to dark H2 oxidation in whole cells of a marine sulfur photosynthetic bacterium (Chromatium sp. strain Miami PBS1071).

    OpenAIRE

    Kumazawa, S; Izawa, S; Mitsui, A

    1983-01-01

    Whole cells of photoanaerobically grown Chromatium sp. strain Miami PBS1071, a marine sulfur purple bacterium, oxidized H2 in the dark through the oxyhydrogen reaction at rates of up to 59 nmol of H2 per mg (dry weight) per min. H2 oxidation was routinely measured in H2 pulse experiments with air-equilibrated cells. The reaction was accompanied by a reversible H+ efflux from the cells, suggesting an outward H+ translocation reaction coupled to H2 oxidation. The H+/e- ratio, calculated from si...

  19. Genes encoding the alpha, gamma, delta, and four F0 subunits of ATP synthase constitute an operon in the cyanobacterium Anabaena sp. strain PCC 7120.

    OpenAIRE

    McCarn, D F; R A Whitaker; Alam, J; Vrba, J M; Curtis, S E

    1988-01-01

    A cluster of genes encoding subunits of ATP synthase of Anabaena sp. strain PCC 7120 was cloned, and the nucleotide sequences of the genes were determined. This cluster, denoted atp1, consists of four F0 genes and three F1 genes encoding the subunits a (atpI), c (atpH), b' (atpG), b (atpF), delta (atpD), alpha (aptA), and gamma (atpC) in that order. Closely linked upstream of the ATP synthase subunit genes is an open reading frame denoted gene 1, which is equivalent to the uncI gene of Escher...

  20. Isolation and Characterization of IS1409, an Insertion Element of 4-Chlorobenzoate-Degrading Arthrobacter sp. Strain TM1, and Development of a System for Transposon Mutagenesis

    OpenAIRE

    Gartemann, Karl-Heinz; Eichenlaub, Rudolf

    2001-01-01

    A new insertion element of 1,449 bp with 25-bp perfect terminal repeats, designated IS1409, was identified in the chromosome of 4-chlorobenzoate-degrading Arthrobacter sp. strain TM1 NCIB12013. Upon insertion, IS1409 causes a target duplication of 8 bp. IS1409 carries only a single open reading frame of 435 codons encoding the transposase TnpA. Both TnpA and the overall organization of IS1409 are highly similar to those of some related insertion elements of the ISL3 group (J. Mahillon and M. ...

  1. Hydrogen Peroxide Production as a Limiting Factor in Xenobiotic Compound Oxidation by Nitrogen-Sufficient Cultures of Bjerkandera sp. Strain BOS55 Overproducing Peroxidases

    OpenAIRE

    Kotterman, M.; Wasseveld, R. A.; Field, J. A.

    1996-01-01

    The overproduction of ligninolytic peroxidase by the N-deregulated white rot fungus Bjerkandera sp. strain BOS55 under nitrogen-sufficient conditions had no noteworthy effect on the oxidation of anthracene or the decolorization of the polymeric aromatic dye Poly R-478 in 6-day-old cultures. Only when the endogenous production of H(inf2)O(inf2) was increased by the addition of extra oxygen and glucose could a 2.5-fold increase in the anthracene oxidation rate and a 6-fold increase in the Poly ...

  2. Oxygen-Dependent Growth of the Sulfate-Reducing Bacterium Desulfovibrio oxyclinae in Coculture with Marinobacter sp. Strain MB in an Aerated Sulfate-Depleted Chemostat

    OpenAIRE

    Sigalevich, Pavel; Cohen, Yehuda

    2000-01-01

    A chemostat coculture of the sulfate-reducing bacterium Desulfovibrio oxyclinae and the facultatively aerobic heterotroph Marinobacter sp. strain MB was grown for 1 week under anaerobic conditions at a dilution rate of 0.05 h−1. It was then exposed to an oxygen flux of 223 μmol min−1 by gassing the growth vessel with 5% O2. Sulfate reduction persisted under these conditions, though the amount of sulfate reduced decreased by 45% compared to the amount reduced during the initial anaerobic mode....

  3. Identification of a new virulence locus in Agrobacterium tumefaciens that affects polysaccharide composition and plant cell attachment.

    OpenAIRE

    Thomashow, M F; Karlinsey, J E; Marks, J R; Hurlbert, R. E.

    1987-01-01

    We have identified a new virulence locus in Agrobacterium tumefaciens. Strains carrying Tn5 inserts at this locus could not incite tumors on Kalanchoe daigremontiana, Nicotiana rustica, tobacco, or sunflower and had severely attenuated virulence on carrot disks. We termed the locus pscA, because the mutants that defined the locus were initially isolated as having an altered polysaccharide composition; they were nonfluorescent on media containing Leucophor or Calcofluor, indicating a defect in...

  4. A novel Gateway®-compatible binary vector allows direct selection of recombinant clones in Agrobacterium tumefaciens

    OpenAIRE

    Traore Sy; Zhao Bingyu

    2011-01-01

    Abstract Background Cloning genes into plasmid vectors is one of the key steps for studying gene function. Recently, Invitrogen™ developed a convenient Gateway® cloning system based on the site-specific DNA recombination properties of bacteriophage lambda and the cytotoxic protein ccdB, which is lethal to most E. coli strains. The ccdB protein, however, is not toxic to Agrobacterium tumefaciens, an important player often used for studying gene function in planta. This limits the direct applic...

  5. Effects of squirting cucumber (Ecballium elaterium) fruit juice onAgrobacterium tumefaciens-mediated transformation of plants

    OpenAIRE

    ÖZCAN, SANCAR FATİH; Yildiz, Mustafa; AHMED, HUSSEIN ABDULLAH AHMED; Aasim, Muhammad

    2015-01-01

    Abstract: Different concentrations of squirting cucumber (Ecballium elaterium (L.) A.Rich.) fruit juice were added to Agrobacterium tumefaciens growth, leaf disc inoculation, and cocultivation media, to investigate its effect on the transformation frequency of tobacco and potato. A. tumefaciens strain GV2260 harboring p35S GUS-INT and pAoPR1-GUS-INT plasmids were used separately in the transformation experiments. Neomycin phosphotransferase (NPT-II) gene was used as a plant selectable marker ...

  6. Regeneration of plants from callus tissues of hairy roots induced by Agrobacterium rhizogenes on Alhagi pseudoalhagi

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The legume forage Alhagi pseudoalhagi was transformed by the Agrobacterium rhizogenes strain A4 using cotyledon and hypocotyl segments as infection materials. Regenerated plants were achieved from sterile calli derived from hairy roots, which occurred at or near the infection sites. The regenerated plants from hairy root were characterized by normal leaf morphology and stem growth but a shallow and more extensive root system than normal plants. Opine synthesis, PCR and Southern blot confirmed that TDNA had been integrated into the A. pseudoalhagi genome. Acetosyringone (AS) was found to be vital for successful transformation of A. pseudoalhagi.

  7. Characterization of the replication and stability regions of Agrobacterium tumefaciens plasmid pTAR.

    OpenAIRE

    Gallie, D R; Zaitlin, D; Perry, K L; Kado, C I

    1984-01-01

    A 5.4-kilobase region containing the origin of replication and stability maintenance of the 44-kilobase Agrobacterium tumefaciens plasmid pTAR has been mapped and characterized. Within this region is a 1.3-kilobase segment that is capable of directing autonomous replication. The remaining segment contains the stability locus for maintenance of pTAR during nonselective growth. Approximately 35% of pTAR shares sequence homology with pAg119, a 44-kilobase cryptic plasmid in grapevine strain 1D11...

  8. Tumor induction by Agrobacterium rhizogenes involves the transfer of plasmid DNA to the plant genome

    OpenAIRE

    White, Frank F; Ghidossi, Gina; Gordon, Milton P.; Nester, Eugene W.

    1982-01-01

    The DNA from tumors of Nicotiana glauca initiated by strains of Agrobacterium rhizogenes was shown to contain sequences that are homologous to the root-inducing (Ri) plasmid of the bacterium. Two independently established tumor lines contained a similar portion of the Ri-plasmid. The Ri-plasmid also hybridized to DNA fragments from uninfected N. glauca. A cosmid clone of the Ri-plasmid encompassing the region containing the Ri-plasmid sequences that are stably transferred to the plant also hy...

  9. Primary structure and catalytic mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1

    OpenAIRE

    Rink, R; Fennema, M.; Smids, M; Dehmel, U; Janssen, DB

    1997-01-01

    The epoxide hydrolase gene from Agrobacterium radiobacter AD1, a bacterium that is able to grow on epichlorohydrin as the sole carbon source, was cloned by means of the polymerase chain reaction with two degenerate primers based on the N-terminal and C-terminal sequences of the enzyme, The epoxide hydrolase gene coded for a protein of 294 amino acids with a molecular mass of 34 kDa, An identical epoxide hydrolase gene was cloned from chromosomal DNA of the closely related strain A, radiobacte...

  10. Nonorthogonal {{sp}}^{3}{{d}}^{5} tight-binding parameterization of single-layer phosphorene under biaxial strain and application to FETs

    Science.gov (United States)

    Lee, Jaehyun; Seo, Jumbeom; Oh, Jung Hyun; Shin, Mincheol

    2016-06-01

    This paper presents a new set of {{sp}}3{{d}}5 tight-binding (TB) parameters for single-layer phosphorene within the Naval Research Laboratory (NRL) scheme. For this, we develop the numerical algorithm to find the NRL TB parameters fitted to ab initio results. It is shown that the proposed NRL TB parameters successfully reproduce the band structure of a single-layer phosphorene, and even under biaxial or uniaxial strain, they appropriately describe the effects, such as modification of anisotropic effective masses and band gap. Via the top-of-the-barrier model, we also investigate the performance of single-layer phosphorene FETs under biaxial strain with the NRL TB Hamiltonian and find that the results are well in accordance with those of previous studies.

  11. Transformation of the monocotyledonous Alstroemeria by Agrobacterium tumefaciens.

    Science.gov (United States)

    Akutsu, M; Ishizaki, T; Sato, H

    2004-03-01

    An efficient procedure is described for the transformation of the monocotyledonous Alstroemeria by Agrobacterium tumefaciens via callus regeneration. Calli derived from ovules were co-cultivated with A. tumefaciens strains EHA101 and LBA4404, which harbored the binary vector plasmids pIG121Hm and pTOK233, respectively. These plasmids contain the beta-glucuronidase gene ( gusA) as a reporter gene and the hygromycin phosphotransferase and neomycin phosphotransferase II ( nptII) genes as selective markers. Inoculated calli were first plated for 4 weeks on medium containing cefotaxime to eliminate bacteria, following which time transformed cells were selected on medium that contained 20 mg/l hygromycin. A histochemical assay for GUS activity revealed that hygromycin-based selection was completed after 8 weeks. The integration of the T-DNA of pIG121Hm and pTOK233 into the genome of the cells was confirmed by PCR analysis. Efficient shoot regeneration from the transformed calli was observed on half-strength MS medium supplemented with 0.5 mg/l naphthaleneacetic acid and 0.5 mg/l benzyladenine after about 5 months of culture. The presence of the gusA and nptII genes in the genomic DNA of regenerated plants was detected by means of PCR and PCR-Southern hybridization, and the expression of these transgenes was verified by reverse transcription-PCR. PMID:14615906

  12. The BlcC (AttM) Lactonase of Agrobacterium tumefaciens Does Not Quench the Quorum-Sensing System That Regulates Ti Plasmid Conjugative Transfer ▿ †

    OpenAIRE

    Khan, Sharik R.; Farrand, Stephen K.

    2008-01-01

    The conjugative transfer of Agrobacterium plasmids is controlled by a quorum-sensing system consisting of TraR and its acyl-homoserine lactone (HSL) ligand. The acyl-HSL is essential for the TraR-mediated activation of the Ti plasmid Tra genes. Strains A6 and C58 of Agrobacterium tumefaciens produce a lactonase, BlcC (AttM), that can degrade the quormone, leading some to conclude that the enzyme quenches the quorum-sensing system. We tested this hypothesis by examining the effects of the muta...

  13. Use of silica-encapsulated Pseudomonas sp. strain NCIB 9816-4 in biodegradation of novel hydrocarbon ring structures found in hydraulic fracturing waters.

    Science.gov (United States)

    Aukema, Kelly G; Kasinkas, Lisa; Aksan, Alptekin; Wackett, Lawrence P

    2014-08-01

    The most problematic hydrocarbons in hydraulic fracturing (fracking) wastewaters consist of fused, isolated, bridged, and spiro ring systems, and ring systems have been poorly studied with respect to biodegradation, prompting the testing here of six major ring structural subclasses using a well-characterized bacterium and a silica encapsulation system previously shown to enhance biodegradation. The direct biological oxygenation of spiro ring compounds was demonstrated here. These and other hydrocarbon ring compounds have previously been shown to be present in flow-back waters and waters produced from hydraulic fracturing operations. Pseudomonas sp. strain NCIB 9816-4, containing naphthalene dioxygenase, was selected for its broad substrate specificity, and it was demonstrated here to oxidize fundamental ring structures that are common in shale-derived waters but not previously investigated with this or related enzymes. Pseudomonas sp. NCIB 9816-4 was tested here in the presence of a silica encasement, a protocol that has previously been shown to protect bacteria against the extremes of salinity present in fracking wastewaters. These studies demonstrate the degradation of highly hydrophobic compounds by a silica-encapsulated model bacterium, demonstrate what it may not degrade, and contribute to knowledge of the full range of hydrocarbon ring compounds that can be oxidized using Pseudomonas sp. NCIB 9816-4. PMID:24907321

  14. Draft Genome Sequence of Insecticidal Streptomyces sp. Strain PCS3-D2, Isolated from Mangrove Soil in Philippines

    OpenAIRE

    Bayot-Custodio, Aileen N.; Alcantara, Edwin P.; Zulaybar, Teofila O.

    2014-01-01

    A draft genome sequence of a Streptomyces sp. isolated from mangrove soil in Cebu, Philippines, is described here. This isolate produced compounds with contact insecticidal activity against important corn pests. The genome contains 7,479,793 bp (in 27 scaffolds), 6,297 predicted genes, and 29 secondary metabolite biosynthetic gene clusters.

  15. Morphology and SSU rDNA-based Phylogeny of a New Strain of Saccamoeba sp (Saccamoeba Frenzel, 1892, Amoebozoa)

    Czech Academy of Sciences Publication Activity Database

    Dyková, Iva; Kostka, Martin; Pecková, Hana

    2008-01-01

    Roč. 47, č. 4 (2008), s. 397-405. ISSN 0065-1583 R&D Projects: GA MŠk LC522 Institutional research plan: CEZ:AV0Z60220518 Keywords : Amoebozoa * Saccamoeba sp. * Phylogeny Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 1.013, year: 2008

  16. Effect of pretreatments on enhanced degradation of polyisoprene rubber by newly isolated bacillus sp, strain S10

    International Nuclear Information System (INIS)

    The present investigation was conducted to isolate polyisoprene rubber (latex gloves) degrading microorganisms from soil. Twelve bacterial species were isolated through enrichment technique and were screened for their capacity to degrade rubber. Best growth was observed with Bacillus sp. S 10 in terms of diameter of the spot on latex overlay mineral salt agar plates and increase in optical density as determined at 600 nm for liquid culture. The effect of different pretreatments like extraction of rubber pieces with organic solvent (acetone), pretreatment with UV and sunlight, effect of temperature and pH were optimized for Bacillus sp. S10 in liquid MSM with pieces of gloves as the only source of carbon In case of pretreated rubber best growth was observed in case of acetone pretreated rubber shown by increase in optical density. Bacillus sp. S10 grew best at pH 7 at 37 degree C Qualitative analysis of degradation of pretreated rubbers, after incubation in liquid MSM with Bacillus sp. S I 0 was done through FTIR which showed marked differences in transmittance spectra of test and control due to changes in the functional groups Present study on biodegradation may provide an opportunity for further studies on the applications of biotechnological processes as a tool for rubber waste management. (author)

  17. Systemic colonization of potato plants by a soilborne, green fluorescent protein-tagged strain of Dickeya sp. biovar 3.

    Science.gov (United States)

    Czajkowski, Robert; de Boer, Waldo J; Velvis, Henk; van der Wolf, Jan M

    2010-02-01

    ABSTRACT Colonization of potato plants by soilborne, green fluorescent protein (GFP)-tagged Dickeya sp. IPO2254 was investigated by selective plating, epifluorescence stereo microscopy (ESM), and confocal laser scanning microscopy (CLSM). Replicated experiments were carried out in a greenhouse using plants with an intact root system and plants from which ca. 30% of the lateral roots was removed. One day after soil inoculation, adherence of the pathogen on the roots and the internal colonization of the plants were detected using ESM and CLSM of plant parts embedded in an agar medium. Fifteen days post-soil inoculation, Dickeya sp. was found on average inside 42% of the roots, 13% of the stems, and 13% of the stolons in plants with undamaged roots. At the same time-point, in plants with damaged roots, Dickeya sp. was found inside 50% of the roots, 25% of the stems, and 25% of the stolons. Thirty days postinoculation, some plants showed true blackleg symptoms. In roots, Dickeya sp. was detected in parenchyma cells of the cortex, both inter- and intracellularly. In stems, bacteria were found in xylem vessels and in protoxylem cells. Microscopical observations were confirmed by dilution spread-plating the plant extracts onto agar medium directly after harvest. The implications of infection from soilborne inoculum are discussed. PMID:20055647

  18. Comparative genomic analysis provides insights into the evolution and niche adaptation of marine Magnetospira sp. QH-2 strain.

    Science.gov (United States)

    Ji, Boyang; Zhang, Sheng-Da; Arnoux, Pascal; Rouy, Zoe; Alberto, François; Philippe, Nadège; Murat, Dorothée; Zhang, Wei-Jia; Rioux, Jean-Baptiste; Ginet, Nicolas; Sabaty, Monique; Mangenot, Sophie; Pradel, Nathalie; Tian, Jiesheng; Yang, Jing; Zhang, Lichen; Zhang, Wenyan; Pan, Hongmiao; Henrissat, Bernard; Coutinho, Pedro M; Li, Ying; Xiao, Tian; Médigue, Claudine; Barbe, Valérie; Pignol, David; Talla, Emmanuel; Wu, Long-Fei

    2014-02-01

    Magnetotactic bacteria (MTB) are capable of synthesizing intracellular organelles, the magnetosomes, that are membrane-bounded magnetite or greigite crystals arranged in chains. Although MTB are widely spread in various ecosystems, few axenic cultures are available, and only freshwater Magnetospirillum spp. have been genetically analysed. Here, we present the complete genome sequence of a marine magnetotactic spirillum, Magnetospira sp. QH-2. The high number of repeats and transposable elements account for the differences in QH-2 genome structure compared with other relatives. Gene cluster synteny and gene correlation analyses indicate that the insertion of the magnetosome island in the QH-2 genome occurred after divergence between freshwater and marine magnetospirilla. The presence of a sodium-quinone reductase, sodium transporters and other functional genes are evidence of the adaptive evolution of Magnetospira sp. QH-2 to the marine ecosystem. Genes well conserved among freshwater magnetospirilla for nitrogen fixation and assimilatory nitrate respiration are absent from the QH-2 genome. Unlike freshwater Magnetospirillum spp., marine Magnetospira sp. QH-2 neither has TonB and TonB-dependent receptors nor does it grow on trace amounts of iron. Taken together, our results show a distinct, adaptive evolution of Magnetospira sp. QH-2 to marine sediments in comparison with its closely related freshwater counterparts. PMID:23841906

  19. Crystallization and preliminary X-ray crystallographic analysis of a thermostable organic solvent-tolerant lipase from Bacillus sp. strain 42

    International Nuclear Information System (INIS)

    Crystallographic data of organic solvent-tolerant lipase from Bacillus sp. strain 42 was collected at 2.0 Å with unit-cell parameters a =117.41, b = 80.85, c = 99.44 Å, β=96.40°. The protein–solvent interactions will be studied since lipase 42 was stable in water-miscible solvent. An organic solvent-tolerant lipase from Bacillus sp. strain 42 was crystallized using the capillary-tube method. The purpose of studying this enzyme was in order to better understand its folding and to characterize its properties in organic solvents. By initially solving its structure in the native state, further studies on protein–solvent interactions could be performed. X-ray data were collected at 2.0 Å resolution using an in-house diffractometer. The estimated crystal dimensions were 0.09 × 0.19 × 0.08 mm. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a = 117.41, b = 80.85, c = 99.44 Å, β = 96.40°

  20. Cadmium increases catechol 2,3-dioxygenase activity in Variovorax sp. 12S, a metal-tolerant and phenol-degrading strain.

    Science.gov (United States)

    Hupert-Kocurek, Katarzyna; Saczyńska, Agnieszka; Piotrowska-Seget, Zofia

    2013-11-01

    A Gram-negative bacterium, designated as strain 12S, was isolated from a heavy metal-polluted soil. According to the biochemical characteristics, FAME analysis, and 16S rRNA gene sequence analysis, the isolated strain was identified as Variovorax sp. 12S. In the presence of 0.1 mM cadmium, 12S was able to completely utilize up to 1.5 mM of phenol as the sole carbon and energy source in an MSM-TRIS medium. Degradation of phenol was accompanied by a slow bacterial growth rate and an extension of the lag phase. The cells grown on phenol showed catechol 2,3-dioxygenase (C23O) activity. The activity of C23O from 12S cultivated in medium with Cd(2+) was almost 20 % higher than in the control. Since environmental contamination with aromatic compounds is often accompanied by the presence of heavy metals, Variovorax sp. 12S and its C23O appear to be very powerful and useful tools in the biotreatment of wastewaters and soil decontamination. PMID:23934429