WorldWideScience

Sample records for agrin binds bmp2

  1. Delivery of RANKL-Binding Peptide OP3-4 Promotes BMP-2-Induced Maxillary Bone Regeneration.

    Science.gov (United States)

    Uehara, T; Mise-Omata, S; Matsui, M; Tabata, Y; Murali, R; Miyashin, M; Aoki, K

    2016-06-01

    Although bone morphogenetic protein 2 (BMP-2) is known to stimulate osteogenesis, there is evidence that high doses of BMP-2 can lead to side effects, including inflammation and carcinogenesis. The supplementation of other bone-augmenting agents is considered helpful in preventing such side effects by reducing the amount of BMP-2 required to obtain a sufficient amount of bone. We recently showed that a receptor activator of nuclear factor κB ligand (RANKL)-binding peptide promotes osteoblast differentiation. In the present study, we aimed to investigate whether OP3-4, a RANKL-binding peptide, promotes BMP-2-induced bone formation in the murine maxilla using an injectable gelatin hydrogel (GH) carrier. A GH carrier containing OP3-4 with BMP-2 was subperiosteally injected into the murine maxillary right diastema between the incisor and the first molar. The mice were sacrificed 28 d after the injections. The local bone formation in the OP3-4-BMP-2-injected group was analyzed in comparison to the carrier-injected, BMP-2-injected, and control-peptide-BMP-2-injected groups. The GH carrier containing OP3-4 with BMP-2 enlarged the radio-opaque area and increased the bone mineral content and density in the radiological analyses in comparison to the other experimental groups. Interestingly, fluorescence-based histological analyses revealed that the mineralization had started from the outside, then proceeded inward, suggesting that the size of the newly formed bone had already been set before calcification started and that the effects of OP3-4 might be involved in accelerating the early steps of osteogenesis. Actually, OP3-4 enhanced the BMP-2-induced 5-bromo-2'-deoxyuridine (BrdU)-positive cell numbers at the injected site on day 7 and the expression of Runx2 and Col1a1, which are early osteogenic cell markers, on day 10 after the subperiosteal injections. In summary, we demonstrated, for the first time, that the application of OP3-4 by subperiosteal injection promoted BMP

  2. Enhancement of the Regenerative Potential of Anorganic Bovine Bone Graft Utilizing a Polyglutamate-Modified BMP2 Peptide with Improved Binding to Calcium-Containing Materials.

    Science.gov (United States)

    Bain, Jennifer L; Bonvallet, Paul P; Abou-Arraj, Ramzi V; Schupbach, Peter; Reddy, Michael S; Bellis, Susan L

    2015-09-01

    Autogenous bone is the gold standard material for bone grafting in craniofacial and orthopedic regenerative medicine. However, due to complications associated with harvesting donor bone, clinicians often use commercial graft materials that may lose their osteoinductivity due to processing. This study was aimed to functionalize one of these materials, anorganic bovine bone (ABB), with osteoinductive peptides to enhance regenerative capacity. Two peptides known to induce osteoblastic differentiation of mesenchymal stem cells were evaluated: (1) DGEA, an amino acid motif within collagen I and (2) a biomimetic peptide derived from bone morphogenic protein 2 (BMP2pep). To achieve directed coupling of the peptides to the graft surface, the peptides were engineered with a heptaglutamate domain (E7), which confers specific binding to calcium moieties within bone mineral. Peptides with the E7 domain exhibited greater anchoring to ABB than unmodified peptides, and E7 peptides were retained on ABB for at least 8 weeks in vivo. To assess the osteoinductive potential of the peptide-conjugated ABB, ectopic bone formation was evaluated utilizing a rat subcutaneous pouch model. ABB conjugated with full-length recombinant BMP2 (rBMP2) was also implanted as a model for current clinical treatments utilizing rBMP2 passively adsorbed to carriers. These studies showed that E7BMP2pep/ABB samples induced more new bone formation than all other peptides, and an equivalent amount of new bone as compared with rBMP2/ABB. A mandibular defect model was also used to examine intrabony healing of peptide-conjugated ABB. Bone healing was monitored at varying time points by positron emission tomography imaging with (18)F-NaF, and it was found that the E7BMP2pep/ABB group had greater bone metabolic activity than all other groups, including rBMP2/ABB. Importantly, animals implanted with rBMP2/ABB exhibited complications, including inflammation and formation of cataract-like lesions in the eye, whereas

  3. BMP2 Transfer to Neighboring Cells and Activation of Signaling.

    Science.gov (United States)

    Alborzinia, Hamed; Shaikhkarami, Marjan; Hortschansky, Peter; Wölfl, Stefan

    2016-09-01

    Morphogen gradients and concentration are critical features during early embryonic development and cellular differentiation. Previously we reported the preparation of biologically active, fluorescently labeled BMP2 and quantitatively analyzed their binding to the cell surface and followed BMP2 endocytosis over time on the level of single endosomes. Here we show that this internalized BMP2 can be transferred to neighboring cells and, moreover, also activates downstream BMP signaling in adjacent cells, indicated by Smad1/5/8 phosphorylation and activation of the downstream target gene id1. Using a 3D matrix to modulate cell-cell contacts in culture we could show that direct cell-cell contact significantly increased BMP2 transfer. Using inhibitors of vesicular transport, transfer was strongly inhibited. Interestingly, cotreatment with the physiological BMP inhibitor Noggin increased BMP2 uptake and transfer, albeit activation of Smad signaling in neighboring cells was completely suppressed. Our findings present a novel and interesting mechanism by which morphogens such as BMP2 can be transferred between cells and how this is modulated by BMP antagonists such as Noggin, and how this influences activation of Smad signaling by BMP2 in neighboring cells. PMID:27306974

  4. Effects of Purified Recombinant Neural and Muscle Agrin on Skeletal Muscle Fibers in Vivo

    OpenAIRE

    Bezakova, Gabriela; Helm, Johannes P.; Francolini, Maura; Lømo, Terje

    2001-01-01

    Aggregation of acetylcholine receptors (AChRs) in muscle fibers by nerve-derived agrin plays a key role in the formation of neuromuscular junctions. So far, the effects of agrin on muscle fibers have been studied in culture systems, transgenic animals, and in animals injected with agrin–cDNA constructs. We have applied purified recombinant chick neural and muscle agrin to rat soleus muscle in vivo and obtained the following results. Both neural and muscle agrin bind uniformly to the surface o...

  5. Biological activity of a genetically modified BMP-2 variant with inhibitory activity

    Directory of Open Access Journals (Sweden)

    Kübler Alexander C

    2009-02-01

    Full Text Available Abstract Background Alterations of the binding epitopes of bone morphogenetic protein-2 (BMP-2 lead to a modified interaction with the ectodomains of BMP receptors. In the present study the biological effect of a BMP-2 double mutant with antagonistic activity was evaluated in vivo. Methods Equine-derived collagenous carriers were loaded with recombinant human BMP-2 (rhBMP-2 in a well-known dose to provide an osteoinductive stimulus. The study was performed in a split animal design: carriers only coupled with rhBMP-2 (control were implanted into prepared cavities of lower limb muscle of rats, specimens coupled with rhBMP-2 as well as BMP-2 double mutant were placed into the opposite limb in the same way. After 28 days the carriers were explanted, measured radiographically and characterized histologically. Results As expected, the BMP-2 loaded implants showed a typical heterotopic bone formation. The specimens coupled with both proteins showed a significant decreased bone formation in a dose dependent manner. Conclusion The antagonistic effect of a specific BMP-2 double mutant could be demonstrated in vivo. The dose dependent influence on heterotopic bone formation by preventing rhBMP-2 induced osteoinduction suggests a competitive receptor antagonism.

  6. Repressive BMP2 gene regulatory elements near the BMP2 promoter

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shan [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry (UMDNJ), New Jersey Medical School (NJMS), Newark, NJ (United States); Chandler, Ronald L. [Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (United States); Fritz, David T. [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry (UMDNJ), New Jersey Medical School (NJMS), Newark, NJ (United States); Mortlock, Douglas P. [Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (United States); Rogers, Melissa B., E-mail: rogersmb@umdnj.edu [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry (UMDNJ), New Jersey Medical School (NJMS), Newark, NJ (United States)

    2010-02-05

    The level of bone morphogenetic protein 2 (BMP2) profoundly influences essential cell behaviors such as proliferation, differentiation, apoptosis, and migration. The spatial and temporal pattern of BMP2 synthesis, particular in diverse embryonic cells, is highly varied and dynamic. We have identified GC-rich sequences within the BMP2 promoter region that strongly repress gene expression. These elements block the activity of a highly conserved, osteoblast enhancer in response to FGF2 treatment. Both positive and negative gene regulatory elements control BMP2 synthesis. Detecting and mapping the repressive motifs is essential because they impede the identification of developmentally regulated enhancers necessary for normal BMP2 patterns and concentration.

  7. Repressive BMP2 gene regulatory elements near the BMP2 promoter

    International Nuclear Information System (INIS)

    The level of bone morphogenetic protein 2 (BMP2) profoundly influences essential cell behaviors such as proliferation, differentiation, apoptosis, and migration. The spatial and temporal pattern of BMP2 synthesis, particular in diverse embryonic cells, is highly varied and dynamic. We have identified GC-rich sequences within the BMP2 promoter region that strongly repress gene expression. These elements block the activity of a highly conserved, osteoblast enhancer in response to FGF2 treatment. Both positive and negative gene regulatory elements control BMP2 synthesis. Detecting and mapping the repressive motifs is essential because they impede the identification of developmentally regulated enhancers necessary for normal BMP2 patterns and concentration.

  8. Characterization of a gene family encoding SEA (sea-urchin sperm protein, enterokinase and agrin-domain proteins with lectin-like and heme-binding properties from Schistosoma japonicum.

    Directory of Open Access Journals (Sweden)

    Evaristus Chibunna Mbanefo

    Full Text Available BACKGROUND: We previously identified a novel gene family dispersed in the genome of Schistosoma japonicum by retrotransposon-mediated gene duplication mechanism. Although many transcripts were identified, no homolog was readily identifiable from sequence information. METHODOLOGY/PRINCIPAL FINDINGS: Here, we utilized structural homology modeling and biochemical methods to identify remote homologs, and characterized the gene products as SEA (sea-urchin sperm protein, enterokinase and agrin-domain containing proteins. A common extracellular domain in this family was structurally similar to SEA-domain. SEA-domain is primarily a structural domain, known to assist or regulate binding to glycans. Recombinant proteins from three members of this gene family specifically interacted with glycosaminoglycans with high affinity, with potential implication in ligand acquisition and immune evasion. Similar approach was used to identify a heme-binding site on the SEA-domain. The heme-binding mode showed heme molecule inserted into a hydrophobic pocket, with heme iron putatively coordinated to two histidine axial ligands. Heme-binding properties were confirmed using biochemical assays and UV-visible absorption spectroscopy, which showed high affinity heme-binding (K D = 1.605×10(-6 M and cognate spectroscopic attributes of hexa-coordinated heme iron. The native proteins were oligomers, antigenic, and are localized on adult worm teguments and gastrodermis; major host-parasite interfaces and site for heme detoxification and acquisition. CONCLUSIONS: The results suggest potential role, at least in the nucleation step of heme crystallization (hemozoin formation, and as receptors for heme uptake. Survival strategies exploited by parasites, including heme homeostasis mechanism in hemoparasites, are paramount for successful parasitism. Thus, assessing prospects for application in disease intervention is warranted.

  9. Abnormalities in the Enamel in Bmp2-Deficient Mice

    OpenAIRE

    Feng, Junsheng; Yang, Guobin; Yuan, Guohua; GLUHAK-HEINRICH, JELICA; Yang, Wuchen; Wang, Lynn; Chen, Zhi; Schulze McDaniel, Jennifer; DONLY, KEVIN J; Harris, Stephen E.; Macdougall, Mary; Chen, Shuo

    2011-01-01

    Tooth development is regulated by epithelial-mesenchymal interactions and their reciprocal molecular signaling. Bone morphogenetic protein 2 (Bmp2) is essential for tooth formation. However, the role of Bmp2 during enamel formation remains unknown in vivo. In this study, the role of Bmp2 in the regulation of postnatal enamel formation was investigated via the conditional ablation of Bmp2 in enamel using the (Osx-Cre) mouse. Bmp2 gene ablation was confirmed by PCR analysis in Osx-Cre, Bmp2flox...

  10. Fibrin Hydrogel Based Bone Substitute Tethered with BMP-2 and BMP-2/7 Heterodimers

    Directory of Open Access Journals (Sweden)

    Lindsay S. Karfeld-Sulzer

    2015-03-01

    Full Text Available Current clinically used delivery methods for bone morphogenetic proteins (BMPs are collagen based and require large concentrations that can lead to dangerous side effects. Fibrin hydrogels can serve as osteoinductive bone substitute materials in non-load bearing bone defects in combination with BMPs. Two strategies to even further optimize such a fibrin based system include employing more potent BMP heterodimers and engineering growth factors that can be covalently tethered to and slowly released from a fibrin matrix. Here we present an engineered BMP-2/BMP-7 heterodimer where an N-terminal transglutaminase substrate domain in the BMP-2 portion provides covalent attachment to fibrin together with a central plasmin substrate domain, a cleavage site for local release of the attached BMP-2/BMP-7 heterodimer under the influence of cell-activated plasmin. In vitro and in vivo results revealed that the engineered BMP-2/BMP-7 heterodimer induces significantly more alkaline phosphatase activity in pluripotent cells and bone formation in a rat calvarial model than the engineered BMP-2 homodimer. Therefore, the engineered BMP-2/BMP-7 heterodimer could be used to reduce the amount of BMP needed for clinical effect.

  11. Bone Enhancement with BMP-2 for Safe Clinical Translation

    OpenAIRE

    Kisiel, Marta

    2013-01-01

    Bone morphogenetic protein-2 (BMP-2) is considered a promising adjuvant for the treatment of bone regeneration. However, BMP-2 delivery in a conventional collagen scaffold needs a high dose to achieve an effective outcome. Moreover, such dosage may lead to serious side effects. The aim of the following thesis was to find clinically acceptable strategies reducing the required dose of BMP-2 by improving the delivery and optimizing the preclinical testing of the new approaches. In all the studie...

  12. Perlecan domain 1 recombinant proteoglycan augments BMP-2 activity and osteogenesis

    Directory of Open Access Journals (Sweden)

    DeCarlo Arthur A

    2012-09-01

    Full Text Available Abstract Background Many growth factors, such as bone morphogenetic protein (BMP-2, have been shown to interact with polymers of sulfated disacharrides known as heparan sulfate (HS glycosaminoglycans (GAGs, which are found on matrix and cell-surface proteoglycans throughout the body. HS GAGs, and some more highly sulfated forms of chondroitin sulfate (CS, regulate cell function by serving as co-factors, or co-receptors, in GF interactions with their receptors, and HS or CS GAGs have been shown to be necessary for inducing signaling and GF activity, even in the osteogenic lineage. Unlike recombinant proteins, however, HS and CS GAGs are quite heterogenous due, in large part, to post-translational addition, then removal, of sulfate groups to various positions along the GAG polymer. We have, therefore, investigated whether it would be feasible to deliver a DNA pro-drug to generate a soluble HS/CS proteoglycan in situ that would augment the activity of growth-factors, including BMP-2, in vivo. Results Utilizing a purified recombinant human perlecan domain 1 (rhPln.D1 expressed from HEK 293 cells with HS and CS GAGs, tight binding and dose-enhancement of rhBMP-2 activity was demonstrated in vitro. In vitro, the expressed rhPln.D1 was characterized by modification with sulfated HS and CS GAGs. Dose-enhancement of rhBMP-2 by a pln.D1 expression plasmid delivered together as a lyophilized single-phase on a particulate tricalcium phosphate scaffold for 6 or more weeks generated up to 9 fold more bone volume de novo on the maxillary ridge in a rat model than in control sites without the pln.D1 plasmid. Using a significantly lower BMP-2 dose, this combination provided more than 5 times as much maxillary ridge augmentation and greater density than rhBMP-2 delivered on a collagen sponge (InFuse™. Conclusions A recombinant HS/CS PG interacted strongly and functionally with BMP-2 in binding and cell-based assays, and, in vivo, the pln.247 expression plasmid

  13. Bmp2 Is Required for Odontoblast Differentiation and Pulp Vasculogenesis

    OpenAIRE

    Yang, W; Harris, M.A.; Y. Cui; Mishina, Y; Harris, S.E.; Gluhak-Heinrich, J.

    2012-01-01

    Using the Bmp2 floxed/3.6Col1a1-Cre (Bmp2-cKOod) mouse model, we have observed severe defects in odontogenesis and dentin formation with the removal of the Bmp2 gene in early-polarizing odontoblasts. The odontoblasts in the Bmp2-cKOod do not mature properly and fail to form proper dentin with normal dentinal tubules and activate terminal differentiation, as reflected by decreased Osterix, Col1a1, and Dspp expression. There is less dentin, and the dentin is hypomineralized and patchy. We also ...

  14. BMP-2 and titanium particles synergistically activate osteoclast formation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, S.X. [Affiliated Hospital of Ningxia Medical University, Department of Orthopedics, Yinchuan, Ningxia Hui Autonomous Region, China, Department of Orthopedics, Affiliated Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region (China); Guo, H.H. [Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region (China); Zhang, J. [Institute of Pathology, Xi' an Jiaotong University, Xi' an Shaanxi, China, Institute of Pathology, Xi' an Jiaotong University, Xi' an Shaanxi (China); Yu, B. [Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region (China); Sun, K.N.; Jin, Q.H. [Affiliated Hospital of Ningxia Medical University, Department of Orthopedics, Yinchuan, Ningxia Hui Autonomous Region, China, Department of Orthopedics, Affiliated Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region (China)

    2014-05-09

    A previous study showed that BMP-2 (bone morphogenetic protein-2) and wear debris can separately support osteoclast formation induced by the receptor activator of NF-κB ligand (RANKL). However, the effect of BMP-2 on wear debris-induced osteoclast formation is unclear. In this study, we show that neither titanium particles nor BMP-2 can induce osteoclast formation in RAW 264.7 mouse leukemic monocyte macrophage cells but that BMP-2 synergizes with titanium particles to enhance osteoclast formation in the presence of RANKL, and that at a low concentration, BMP-2 has an optimal effect to stimulate the size and number of multinuclear osteoclasts, expression of osteoclast genes, and resorption area. Our data also clarify that the effects caused by the increase in BMP-2 on phosphorylated SMAD levels such as c-Fos expression increased throughout the early stages of osteoclastogenesis. BMP-2 and titanium particles stimulate the expression of p-JNK, p-P38, p-IkB, and P50 compared with the titanium group. These data suggested that BMP-2 may be a crucial factor in titanium particle-mediated osteoclast formation.

  15. Enhanced reconstruction of long bone architecture by a growth factor mutant combining positive features of GDF-5 and BMP-2.

    Science.gov (United States)

    Kleinschmidt, Kerstin; Ploeger, Frank; Nickel, Joachim; Glockenmeier, Julia; Kunz, Pierre; Richter, Wiltrud

    2013-08-01

    Non healing bone defects remain a worldwide health problem and still only few osteoinductive growth factors are available for clinical use in bone regeneration. By introducing BMP-2 residues into growth and differentiation factor (GDF)-5 we recently produced a mutant GDF-5 protein BB-1 which enhanced heterotopic bone formation in mice. Designed to combine positive features of GDF-5 and BMP-2, we suspected that this new growth factor variant may improve long bone healing compared to the parent molecules and intended to unravel functional mechanisms behind its action. BB-1 acquired an increased binding affinity to the BMP-IA receptor, mediated enhanced osteogenic induction of human mesenchymal stem cells versus GDF-5 and higher VEGF secretion than BMP-2 in vitro. Rabbit radius defects treated with a BB-1-coated collagen carrier healed earlier and with increased bone volume compared to BMP-2 and GDF-5 according to in vivo micro-CT follow-up. While BMP-2 callus often remained spongy, BB-1 supported earlier corticalis and marrow cavity formation, showing no pseudojoint persistence like with GDF-5. Thus, by combining positive angiogenic and osteogenic features of GDF-5 and BMP-2, only BB-1 restored a natural bone architecture within 12 weeks, rendering this promising growth factor variant especially promising for long bone regeneration. PMID:23680368

  16. BMP-2 Is Involved in Scleral Remodeling in Myopia Development.

    Directory of Open Access Journals (Sweden)

    Honghui Li

    Full Text Available The development of myopia is associated with scleral remodeling, but it is unclear which factors regulate this process. This study investigated bone morphogenetic protein-2 (BMP-2 expression in the sclera of guinea pigs with lens-induced myopia (LIM and after recovery from myopia and evaluated the effect of BMP-2 on extracellular matrix (ECM synthesis in human scleral fibroblasts (HSFs cultured in vitro. Lens-induced myopia was brought about in two groups of guinea pigs (the lens-induced myopia and myopia recovery groups by placing -4.00 D lenses on the right eye for three weeks. The left eye served as a contralateral control. In the recovery group, the lenses were removed after one week. The refractive power and axial length of the eyes were measured, and the BMP-2 expression levels in the sclera were measured. After three weeks, the lens-induced eyes acquired relative myopia in both groups of guinea pigs. Immunostaining of the eyeballs revealed significantly decreased BMP-2 expression in the posterior sclera of the myopic eyes compared to the contralateral eyes. One week after lens removal, BMP-2 expression recovered, and no differences were observed between the experimental and contralateral eyes in the recovery group. HSFs were cultured with BMP-2 or transforming growth factor-β1 (TGF-β1. Type I and type III collagen synthesis was significantly up-regulated following BMP-2 treatment in culture after one and two weeks, but the ratio of type III to type I collagen mRNA was not increased. Biosynthesis of glycosaminoglycan (GAG and aggrecan was increased in HSFs treated with BMP-2. Some chondrogenesis-associated genes expression increased in HSFs treated with BMP-2. From this study, we concluded that BMP-2 is involved in scleral remodeling in the development and recovery of lens-induced myopia.

  17. BMP-2 Is Involved in Scleral Remodeling in Myopia Development

    Science.gov (United States)

    Li, Honghui; Cui, Dongmei; Zhao, Feng; Huo, Lijun; Hu, Jianmin; Zeng, Junwen

    2015-01-01

    The development of myopia is associated with scleral remodeling, but it is unclear which factors regulate this process. This study investigated bone morphogenetic protein-2 (BMP-2) expression in the sclera of guinea pigs with lens-induced myopia (LIM) and after recovery from myopia and evaluated the effect of BMP-2 on extracellular matrix (ECM) synthesis in human scleral fibroblasts (HSFs) cultured in vitro. Lens-induced myopia was brought about in two groups of guinea pigs (the lens-induced myopia and myopia recovery groups) by placing -4.00 D lenses on the right eye for three weeks. The left eye served as a contralateral control. In the recovery group, the lenses were removed after one week. The refractive power and axial length of the eyes were measured, and the BMP-2 expression levels in the sclera were measured. After three weeks, the lens-induced eyes acquired relative myopia in both groups of guinea pigs. Immunostaining of the eyeballs revealed significantly decreased BMP-2 expression in the posterior sclera of the myopic eyes compared to the contralateral eyes. One week after lens removal, BMP-2 expression recovered, and no differences were observed between the experimental and contralateral eyes in the recovery group. HSFs were cultured with BMP-2 or transforming growth factor-β1 (TGF-β1). Type I and type III collagen synthesis was significantly up-regulated following BMP-2 treatment in culture after one and two weeks, but the ratio of type III to type I collagen mRNA was not increased. Biosynthesis of glycosaminoglycan (GAG) and aggrecan was increased in HSFs treated with BMP-2. Some chondrogenesis-associated genes expression increased in HSFs treated with BMP-2. From this study, we concluded that BMP-2 is involved in scleral remodeling in the development and recovery of lens-induced myopia. PMID:25965995

  18. BMP-2 and ALP gene expression induced by a BMP-2 gene-fibronectin-apatite composite layer

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiupeng; Sogo, Yu; Li Xia; Ito, Atsuo [Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Oyane, Ayako [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Tsurushima, Hideo, E-mail: xp-wang@aist.go.jp, E-mail: xiupengw@hotmail.com [Department of Neurosurgery, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575 (Japan)

    2011-08-15

    The bone morphogenetic protein 2 (BMP-2) gene delivery system with a gene-fibronectin (Fn)-apatite composite layer was fabricated on the surface of a hydroxyapatite ceramic scaffold. The BMP-2 gene-Fn-apatite composite layer was coated on the scaffold using a supersaturated calcium phosphate solution supplemented with BMP-2 DNA and Fn. The scaffolds were ectopically implanted into the dorsal subcutaneous tissue of rats. Four weeks after the implantation, the hydroxyapatite scaffold coated with the BMP-2 gene-Fn-apatite composite layer showed improved gene expressions of BMP-2 and alkaline phosphatase as compared with the scaffold coated with the apatite layer. Although these results suggest the possibility of ectopic bone formation induced by the present gene delivery system, further study is necessary to prove this.

  19. BMP-2 Is Involved in Scleral Remodeling in Myopia Development

    OpenAIRE

    Honghui Li; Dongmei Cui; Feng Zhao; Lijun Huo; Jianmin Hu; Junwen Zeng

    2015-01-01

    The development of myopia is associated with scleral remodeling, but it is unclear which factors regulate this process. This study investigated bone morphogenetic protein-2 (BMP-2) expression in the sclera of guinea pigs with lens-induced myopia (LIM) and after recovery from myopia and evaluated the effect of BMP-2 on extracellular matrix (ECM) synthesis in human scleral fibroblasts (HSFs) cultured in vitro. Lens-induced myopia was brought about in two groups of guinea pigs (the lens-induced ...

  20. A Receptor Tyrosine Kinase Inhibitor, Dovitinib (TKI-258), Enhances BMP-2-Induced Osteoblast Differentiation In Vitro.

    Science.gov (United States)

    Lee, Yura; Bae, Kyoung Jun; Chon, Hae Jung; Kim, Seong Hwan; Kim, Soon Ae; Kim, Jiyeon

    2016-05-31

    Dovitinib (TKI258) is a small molecule multi-kinase inhibitor currently in clinical phase I/II/III development for the treatment of various types of cancers. This drug has a safe and effective pharmacokinetic/pharmacodynamic profile. Although dovitinib can bind several kinases at nanomolar concentrations, there are no reports relating to osteoporosis or osteoblast differentiation. Herein, we investigated the effect of dovitinib on human recombinant bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Dovitinib enhanced the BMP-2-induced alkaline phosphatase (ALP) induction, which is a representative marker of osteoblast differentiation. Dovitinib also stimulated the translocation of phosphorylated Smad1/5/8 into the nucleus and phosphorylation of mitogen-activated protein kinases, including ERK1/2 and p38. In addition, the mRNA expression of BMP-4, BMP-7, ALP, and OCN increased with dovitinib treatment. Our results suggest that dovitinib has a potent stimulating effect on BMP-2-induced osteoblast differentiation and this existing drug has potential for repositioning in the treatment of bone-related disorders. PMID:27025387

  1. Smurf1 plays a role in EGF inhibition of BMP2-induced osteogenic differentiation

    International Nuclear Information System (INIS)

    It has been demonstrated that epidermal growth factor (EGF) plays a role in supporting the proliferation of bone marrow stromal cells in bone but inhibits their osteogenic differentiation. However, the mechanism underlying EGF inhibition of osteoblast differentiation remains unclear. Smurf1 is an E3 ubiquitin ligase that targets Smad1/5 and Runx2, which are critical transcription factors for bone morphogenetic protein 2 (BMP2)-induced osteoblast differentiation. In this study, we investigated the effect of EGF on the expression of Smurf1, and the role of Smurf1 in EGF inhibition of osteogenic differentiation using C2C12 cells, a murine myoblast cell line. EGF increased Smurf1 expression, which was blocked by inhibiting the activity of either JNK or ERK. Chromatin immunoprecipitation and Smurf1 promoter assays demonstrated that c-Jun and Runx2 play roles in the EGF induction of Smurf1 transcription. EGF suppressed BMP2-induced expression of osteogenic marker genes, which were rescued by Smurf1 knockdown. EGF downregulated the protein levels of Runx2 and Smad1 in a proteasome-dependent manner. EGF decreased the transcriptional activity of Runx2 and Smurf1, which was partially rescued by Smurf1 silencing. Taken together, these results suggest that EGF increases Smurf1 expression via the activation of JNK and ERK and the subsequent binding of c-Jun and Runx2 to the Smurf1 promoter and that Smurf1 mediates the inhibitory effect of EGF on BMP2-induced osteoblast differentiation. - Highlights: • EGF increases the expression level of Smurf1 in mesenchymal precursor cells. • EGF reduces the protein levels and transcriptional activity of Runx2 and Smad1. • EGF suppresses BMP2-induced osteogenic differentiation, which is rescued by Smurf1 knockdown

  2. Smurf1 plays a role in EGF inhibition of BMP2-induced osteogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hye-Lim; Park, Hyun-Jung; Kwon, Arang [Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749 (Korea, Republic of); Baek, Kyunghwa [Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung 210-702, Gangwondo (Korea, Republic of); Woo, Kyung Mi; Ryoo, Hyun-Mo; Kim, Gwan-Shik [Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749 (Korea, Republic of); Baek, Jeong-Hwa, E-mail: baekjh@snu.ac.kr [Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749 (Korea, Republic of)

    2014-05-01

    It has been demonstrated that epidermal growth factor (EGF) plays a role in supporting the proliferation of bone marrow stromal cells in bone but inhibits their osteogenic differentiation. However, the mechanism underlying EGF inhibition of osteoblast differentiation remains unclear. Smurf1 is an E3 ubiquitin ligase that targets Smad1/5 and Runx2, which are critical transcription factors for bone morphogenetic protein 2 (BMP2)-induced osteoblast differentiation. In this study, we investigated the effect of EGF on the expression of Smurf1, and the role of Smurf1 in EGF inhibition of osteogenic differentiation using C2C12 cells, a murine myoblast cell line. EGF increased Smurf1 expression, which was blocked by inhibiting the activity of either JNK or ERK. Chromatin immunoprecipitation and Smurf1 promoter assays demonstrated that c-Jun and Runx2 play roles in the EGF induction of Smurf1 transcription. EGF suppressed BMP2-induced expression of osteogenic marker genes, which were rescued by Smurf1 knockdown. EGF downregulated the protein levels of Runx2 and Smad1 in a proteasome-dependent manner. EGF decreased the transcriptional activity of Runx2 and Smurf1, which was partially rescued by Smurf1 silencing. Taken together, these results suggest that EGF increases Smurf1 expression via the activation of JNK and ERK and the subsequent binding of c-Jun and Runx2 to the Smurf1 promoter and that Smurf1 mediates the inhibitory effect of EGF on BMP2-induced osteoblast differentiation. - Highlights: • EGF increases the expression level of Smurf1 in mesenchymal precursor cells. • EGF reduces the protein levels and transcriptional activity of Runx2 and Smad1. • EGF suppresses BMP2-induced osteogenic differentiation, which is rescued by Smurf1 knockdown.

  3. 3D bioprinting of BMSC-laden methacrylamide gelatin scaffolds with CBD-BMP2-collagen microfibers.

    Science.gov (United States)

    Du, Mingchun; Chen, Bing; Meng, Qingyuan; Liu, Sumei; Zheng, Xiongfei; Zhang, Cheng; Wang, Heran; Li, Hongyi; Wang, Nuo; Dai, Jianwu

    2015-12-01

    Three-dimensional (3D) bioprinting combines biomaterials, cells and functional components into complex living tissues. Herein, we assembled function-control modules into cell-laden scaffolds using 3D bioprinting. A customized 3D printer was able to tune the microstructure of printed bone mesenchymal stem cell (BMSC)-laden methacrylamide gelatin scaffolds at the micrometer scale. For example, the pore size was adjusted to 282 ± 32 μm and 363 ± 60 μm. To match the requirements of the printing nozzle, collagen microfibers with a length of 22 ± 13 μm were prepared with a high-speed crusher. Collagen microfibers bound bone morphogenetic protein 2 (BMP2) with a collagen binding domain (CBD) as differentiation-control module, from which BMP2 was able to be controllably released. The differentiation behaviors of BMSCs in the printed scaffolds were compared in three microenvironments: samples without CBD-BMP2-collagen microfibers in the growth medium, samples without microfibers in the osteogenic medium and samples with microfibers in the growth medium. The results indicated that BMSCs showed high cell viability (>90%) during printing; CBD-BMP2-collagen microfibers induced BMSC differentiation into osteocytes within 14 days more efficiently than the osteogenic medium. Our studies suggest that these function-control modules are attractive biomaterials and have potential applications in 3D bioprinting. PMID:26684899

  4. Matrix-immobilized BMP-2 on microcontact printed fibronectin as in vitro tool to study BMP-mediated signaling and cell migration

    Directory of Open Access Journals (Sweden)

    Kristin eHauff

    2015-05-01

    Full Text Available During development, bone morphogenetic proteins (BMPs exert important functions in several tissues by regulating signaling for cell differentiation and migration. In vivo the extracellular matrix (ECM not only provides a support for adherent cells, but also presents a reservoir of growth factors (GFs. Several constituents of the ECM provide adhesive cues, which serve as binding sites for cell transmembrane receptors, such as integrins, which convey adhesion-mediated signaling to the intracellular compartment. Integrins do not function alone but rather crosstalk and cooperate with other receptors, such as GF receptors, in regulating cell responses to extracellular signals. To this, we present here the immobilization of BMP-2 onto cellular fibronectin (cFN, a key protein of the ECM, to investigate their impact on GF-mediated signaling and migration.Following biotinylation, BMP-2 was linked to biotinylated cFN using NeutrAvidin (NA as cross-linker. Characterization with QCM-D and ELISA confirmed the efficient immobilization of BMP-2 on cFN over a period of 24 h.To validate the bioactivity of matrix-immobilized BMP-2 (iBMP-2 we investigated short- and long-term responses of C2C12 myoblasts in comparison to soluble BMP-2 (sBMP-2 or in absence of GFs. Similarly to sBMP-2, iBMP-2 triggered Smad 1/5 phosphorylation and translocation into the nucleus corresponding to the activation of BMP-mediated Smad-dependent pathway. Additionally, successful suppression of myotube formation was observed after six days.We next implemented this approach to fabricate cFN micro patterned stripes by soft lithography. These stripes only allowed cell-surface interaction on the pattern due to passivation of the surface in between, thus serving as platform for studies on directed cell migration. During a 10 h-period, cells showed an increased migratory activity upon BMP-2 exposure.Thus, this versatile tool retains the GF's bioactivity and allows the presentation of ECM

  5. Transmembrane Agrin Regulates Dendritic Filopodia and Synapse Formation in Mature Hippocampal Neuron Cultures

    OpenAIRE

    McCroskery, Seumas; Bailey, Allison; Lin, Lin; Daniels, Mathew P.

    2009-01-01

    The transmembrane isoform of agrin (Tm-agrin) is the predominant form expressed in the brain but its putative roles in brain development are not well understood. Recent reports have implicated Tm-agrin in the formation and stabilization of filopodia on neurites of immature central and peripheral neurons in culture. In maturing central neurons, dendritic filopodia are believed to facilitate synapse formation. In the present study we have investigated the role of Tm-agrin in regulation of dendr...

  6. Complexation and sequestration of BMP-2 from an ECM mimetic hyaluronan gel for improved bone formation.

    Directory of Open Access Journals (Sweden)

    Marta Kisiel

    Full Text Available Bone morphogenetic protein-2 (BMP-2 is considered a promising adjuvant for the treatment of skeletal non-union and spinal fusion. However, BMP-2 delivery in a conventional collagen scaffold necessitates a high dose to achieve an efficacious outcome. To lower its effective dose, we precomplexed BMP-2 with the glycosaminoglycans (GAGs dermatan sulfate (DS or heparin (HP, prior to loading it into a hyaluronic acid (HA hydrogel. In vitro release studies showed that BMP-2 precomplexed with DS or HP had a prolonged delivery compared to without GAG. BMP-2-DS complexes achieved a slightly faster release in the first 24 h than HP; however, both delivered BMP-2 for an equal duration. Analysis of the kinetic interaction between BMP-2 and DS or HP showed that HP had approximately 10 times higher affinity for BMP-2 than DS, yet it equally stabilized the protein, as determined by alkaline phosphatase activity. Ectopic bone formation assays at subcutaneous sites in rats demonstrated that HA hydrogel-delivered BMP-2 precomplexed with GAG induced twice the volume of bone compared with BMP-2 delivered uncomplexed to GAG.

  7. Bone regeneration by implantation of adipose-derived stromal cells expressing BMP-2

    International Nuclear Information System (INIS)

    In this study, we reported that the adipose-derived stromal cells (ADSCs) genetically modified by bone morphogenetic protein 2 (BMP-2) healed critical-sized canine ulnar bone defects. First, the osteogenic and adipogenic differentiation potential of the ADSCs derived from canine adipose tissue were demonstrated. And then the cells were modified by the BMP-2 gene and the expression and bone-induction ability of BMP-2 were identified. Finally, the cells modified by BMP-2 gene were applied to a β-tricalcium phosphate (TCP) carrier and implanted into ulnar bone defects in the canine model. After 16 weeks, radiographic, histological, and histomorphometry analysis showed that ADSCs modified by BMP-2 gene produced a significant increase of newly formed bone area and healed or partly healed all of the bone defects. We conclude that ADSCs modified by the BMP-2 gene can enhance the repair of critical-sized bone defects in large animals

  8. In Vitro and In Vivo Studies of BMP-2-Loaded PCL–Gelatin–BCP Electrospun Scaffolds

    OpenAIRE

    Kim, Bo-Ram; Nguyen, Thuy Ba Linh; Min, Young-Ki; Lee, Byong-Taek

    2014-01-01

    To confirm the effect of recombinant human bone morphogenetic protein-2 (BMP-2) for bone regeneration, BMP-2-loaded polycaprolactone (PCL)–gelatin (Gel)–biphasic calcium phosphate (BCP) fibrous scaffolds were fabricated using the electrospinning method. The electrospinning process to incorporate BCP nanoparticles into the PCL–Gel scaffolds yielded an extracellular matrix-like microstructure that was a hybrid system composed of nano- and micro-sized fibers. BMP-2 was homogeneously loaded on th...

  9. Signaling Crosstalk between PPARγ and BMP2 in Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Ichiro Takada

    2012-01-01

    Full Text Available Recent studies have revealed that PPARγ’s transactivation function is regulated by extracellular signals. In particular, cytokines and Wnt family proteins suppress the ligand-inducible transactivation function of PPARγ and attenuate adipogenesis/osteoblastogenesis switching in mesenchymal stem cells (MSCs. For example, Wnt5a suppresses PPARγ transcriptional activity through the NLK/SETDB1/CHD7 pathway. Among these factors, BMP2 strongly induces bone formation, but the effect of BMP2 on PPARγ function remains unclear. We examined the effect of BMP2 and PPARγ in ST2 cells and found that PPARγ activation affected BMP2’s signaling pathway through epigenetic regulation. Although BMP2 did not interfere with PPARγ-mediated adipogenesis, BMP2 increased mRNA expression levels of PPARγ target genes (such as Fabp4 and Nr1h3 when cells were first treated with troglitazone (TRO. Moreover, PPARγ activation affected BMP2 through enhancement of histone activation markers (acetylated histone H3 and trimethylated Lys4 of histone H3 on the Runx2 promoter. After TRO treatment for three hours, BMP2 enhanced the levels of active histone marks on the promoter of a PPARγ target gene. These results suggest that the order of treatment with BMP2 and a PPARγ ligand is critical for adipogenesis and osteoblastogenesis switching in MSCs.

  10. BMP-2 induces versican and hyaluronan that contribute to post-EMT AV cushion cell migration.

    Directory of Open Access Journals (Sweden)

    Kei Inai

    Full Text Available Distal outgrowth and maturation of mesenchymalized endocardial cushions are critical morphogenetic events during post-EMT atrioventricular (AV valvuloseptal morphogenesis. We explored the role of BMP-2 in the regulation of valvulogenic extracellular matrix (ECM components, versican and hyaluronan (HA, and cell migration during post-EMT AV cushion distal outgrowth/expansion. We observed intense staining of versican and HA in AV cushion mesenchyme from the early cushion expansion stage, Hamburger and Hamilton (HH stage-17 to the cushion maturation stage, HH stage-29 in the chick. Based on this expression pattern we examined the role of BMP-2 in regulating versican and HA using 3D AV cushion mesenchymal cell (CMC aggregate cultures on hydrated collagen gels. BMP-2 induced versican expression and HA deposition as well as mRNA expression of versican and Has2 by CMCs in a dose dependent manner. Noggin, an antagonist of BMP, abolished BMP-2-induced versican and HA as well as mRNA expression of versican and Has2. We further examined whether BMP-2-promoted cell migration was associated with expression of versican and HA. BMP-2- promoted cell migration was significantly impaired by treatments with versican siRNA and HA oligomer. In conclusion, we provide evidence that BMP-2 induces expression of versican and HA by AV CMCs and that these ECM components contribute to BMP-2-induced CMC migration, indicating critical roles for BMP-2 in distal outgrowth/expansion of mesenchymalized AV cushions.

  11. Phenotype discovery by gene expression profiling: mapping of biological processes linked to BMP-2-mediated osteoblast differentiation.

    Science.gov (United States)

    Balint, Eva; Lapointe, David; Drissi, Hicham; van der Meijden, Caroline; Young, Daniel W; van Wijnen, Andre J; Stein, Janet L; Stein, Gary S; Lian, Jane B

    2003-05-15

    Understanding physiological control of osteoblast differentiation necessitates characterization of the regulatory signals that initiate the events directing a cell to lineage commitment and establishing competency for bone formation. The bone morphogenetic protein, BMP-2, a member of the TGFbeta superfamily, induces osteoblast differentiation and functions through the Smad signal transduction pathway during in vivo bone formation. However, the molecular targets of BMP-mediated gene transcription during the process of osteoblast differentiation have not been comprehensively identified. In the present study, BMP-2 responsive factors involved in the early stages of commitment and differentiation to the osteoblast phenotype were analyzed by microarray gene expression profiling in samples ranging from 1 to 24 h following BMP-2 dependent differentiation of C2C12 premyoblasts into the osteogenic lineage. A total of 1,800 genes were responsive to BMP-2 and expression was modulated from 3- to 14-fold for less than 100 genes during the time course. Approximately 50% of these 100 genes are either up- or downregulated. Major events associated with phenotypic changes towards the osteogenic lineage were identified from hierarchical and functional clustering analyses. BMP-2 immediately responsive genes (1-4 h), which exhibited either transient or sustained expression, reflect activation and repression of non-osseous BMP-2 developmental systems. This initial response was followed by waves of expression of nuclear proteins and developmental regulatory factors including inhibitors of DNA binding, Runx2, C/EBP, Zn finger binding proteins, forkhead, and numerous homeobox proteins (e.g., CDP/cut, paired, distaless, Hox) which are expressed at characterized stages during osteoblast differentiation. A sequential profile of genes mediating changes in cell morphology, cell growth, and basement membrane formation is observed as a secondary transient early response (2-8 h). Commitment to the

  12. BMP2 Regulation of CXCL12 Cellular, Temporal, and Spatial Expression is Essential During Fracture Repair

    Science.gov (United States)

    Myers, Timothy J; Longobardi, Lara; Willcockson, Helen; Temple, Joseph D; Tagliafierro, Lidia; Ye, Ping; Li, Tieshi; Esposito, Alessandra; Moats-Staats, Billie M; Spagnoli, Anna

    2016-01-01

    The cellular and humoral responses that orchestrate fracture healing are still elusive. Here we report that bone morphogenic protein 2 (BMP2)-dependent fracture healing occurs through a tight control of chemokine C-X-C motif-ligand-12 (CXCL12) cellular, spatial, and temporal expression. We found that the fracture repair process elicited an early site-specific response of CXCL12+-BMP2+ endosteal cells and osteocytes that was not present in unfractured bones and gradually decreased as healing progressed. Absence of a full complement of BMP2 in mesenchyme osteoprogenitors (BMP2cKO/+) prevented healing and led to a dysregulated temporal and cellular upregulation of CXCL12 expression associated with a deranged angiogenic response. Healing was rescued when BMP2cKO/+ mice were systemically treated with AMD3100, an antagonist of CXCR4 and agonist for CXCR7 both receptors for CXCL12. We further found that mesenchymal stromal cells (MSCs), capable of delivering BMP2 at the endosteal site, restored fracture healing when transplanted into BMP2cKO/+ mice by rectifying the CXCL12 expression pattern. Our in vitro studies showed that in isolated endosteal cells, BMP2, while inducing osteoblastic differentiation, stimulated expression of pericyte markers that was coupled with a decrease in CXCL12. Furthermore, in isolated BMP2cKO/cKO endosteal cells, high expression levels of CXCL12 inhibited osteoblastic differentiation that was restored by AMD3100 treatment or coculture with BMP2-expressing MSCs that led to an upregulation of pericyte markers while decreasing platelet endothelial cell adhesion molecule (PECAM). Taken together, our studies show that following fracture, a CXCL12+-BMP2+ perivascular cell population is recruited along the endosteum, then a timely increase of BMP2 leads to downregulation of CXCL12 that is essential to determine the fate of the CXCL12+-BMP2+ to osteogenesis while departing their supportive role to angiogenesis. Our findings have far

  13. BMP2 Regulation of CXCL12 Cellular, Temporal, and Spatial Expression is Essential During Fracture Repair.

    Science.gov (United States)

    Myers, Timothy J; Longobardi, Lara; Willcockson, Helen; Temple, Joseph D; Tagliafierro, Lidia; Ye, Ping; Li, Tieshi; Esposito, Alessandra; Moats-Staats, Billie M; Spagnoli, Anna

    2015-11-01

    The cellular and humoral responses that orchestrate fracture healing are still elusive. Here we report that bone morphogenic protein 2 (BMP2)-dependent fracture healing occurs through a tight control of chemokine C-X-C motif-ligand-12 (CXCL12) cellular, spatial, and temporal expression. We found that the fracture repair process elicited an early site-specific response of CXCL12(+)-BMP2(+) endosteal cells and osteocytes that was not present in unfractured bones and gradually decreased as healing progressed. Absence of a full complement of BMP2 in mesenchyme osteoprogenitors (BMP2(cKO/+)) prevented healing and led to a dysregulated temporal and cellular upregulation of CXCL12 expression associated with a deranged angiogenic response. Healing was rescued when BMP2(cKO/+) mice were systemically treated with AMD3100, an antagonist of CXCR4 and agonist for CXCR7 both receptors for CXCL12. We further found that mesenchymal stromal cells (MSCs), capable of delivering BMP2 at the endosteal site, restored fracture healing when transplanted into BMP2(cKO/+) mice by rectifying the CXCL12 expression pattern. Our in vitro studies showed that in isolated endosteal cells, BMP2, while inducing osteoblastic differentiation, stimulated expression of pericyte markers that was coupled with a decrease in CXCL12. Furthermore, in isolated BMP2(cKO/cKO) endosteal cells, high expression levels of CXCL12 inhibited osteoblastic differentiation that was restored by AMD3100 treatment or coculture with BMP2-expressing MSCs that led to an upregulation of pericyte markers while decreasing platelet endothelial cell adhesion molecule (PECAM). Taken together, our studies show that following fracture, a CXCL12(+)-BMP2(+) perivascular cell population is recruited along the endosteum, then a timely increase of BMP2 leads to downregulation of CXCL12 that is essential to determine the fate of the CXCL12(+)-BMP2(+) to osteogenesis while departing their supportive role to angiogenesis. Our findings have far

  14. Immortalization and characterization of mouse floxed Bmp2/4 osteoblasts

    International Nuclear Information System (INIS)

    Generation of a floxed Bmp2/4 osteoblast cell line is a valuable tool for studying the modulatory effects of Bmp2 and Bmp4 on osteoblast differentiation as well as relevant molecular events. In this study, primary floxed Bmp2/4 mouse osteoblasts were cultured and transfected with simian virus 40 large T-antigen. Transfection was verified by polymerase chain reaction (PCR) and immunohistochemistry. To examine the characteristics of the transfected cells, morphology, proliferation and mineralization were analyzed, expression of cell-specific genes including Runx2, ATF4, Dlx3, Osx, dentin matrix protein 1, bone sialoprotein, osteopontin, osteocalcin, osteonectin and collagen type I was detected. These results show that transfected floxed Bmp2/4 osteoblasts bypassed senescence with a higher proliferation rate, but retain the genotypic and phenotypic characteristics similar to the primary cells. Thus, we for the first time demonstrate the establishment of an immortalized mouse floxed Bmp2/4 osteoblast cell line.

  15. Immortalization and characterization of mouse floxed Bmp2/4 osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Li-An [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi-an (China); Yuan, Guohua; Yang, Guobin [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Key Laboratory of Oral Biomedical Engineering Ministry of Education, Wuhan (China); Ortiz-Gonzalez, Iris [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Yang, Wuchen; Cui, Yong [Department of Periodontics, Dental School, The University of Texas Health Science Center at San Antonio, TX (United States); MacDougall, Mary [Department of Oral/Maxillofacial Surgery, University of Alabama, Birmingham, AL (United States); Donly, Kevin J. [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Harris, Stephen [Department of Periodontics, Dental School, The University of Texas Health Science Center at San Antonio, TX (United States); Chen, Shuo, E-mail: chens0@uthscsa.edu [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States)

    2009-08-14

    Generation of a floxed Bmp2/4 osteoblast cell line is a valuable tool for studying the modulatory effects of Bmp2 and Bmp4 on osteoblast differentiation as well as relevant molecular events. In this study, primary floxed Bmp2/4 mouse osteoblasts were cultured and transfected with simian virus 40 large T-antigen. Transfection was verified by polymerase chain reaction (PCR) and immunohistochemistry. To examine the characteristics of the transfected cells, morphology, proliferation and mineralization were analyzed, expression of cell-specific genes including Runx2, ATF4, Dlx3, Osx, dentin matrix protein 1, bone sialoprotein, osteopontin, osteocalcin, osteonectin and collagen type I was detected. These results show that transfected floxed Bmp2/4 osteoblasts bypassed senescence with a higher proliferation rate, but retain the genotypic and phenotypic characteristics similar to the primary cells. Thus, we for the first time demonstrate the establishment of an immortalized mouse floxed Bmp2/4 osteoblast cell line.

  16. Expression of active hBMP2 in transgenic tobacco plants.

    Science.gov (United States)

    Suo, Guangli; Chen, Bing; Zhang, Jingyu; Gao, Yuan; Wang, Xia; He, Zhengquan; Dai, Jianwu

    2006-12-01

    Bone morphogenetic protein 2 (BMP2) is important for bone tissue repair. The goal of this research is to construct a high level human BMP2 (hBMP2) expression system using transgenic tobacco plants as a bioreactor. Cauliflower mosaic virus (CaMV) 35S promoter, alfalfa mosaic virus (AMV) enhancer, tobacco mosaic virus (TMV) enhancer, matrix attachment regions (MARs) sequence, and "Kozak" sequence were used to construct recombinant expression vectors and the high-expression vectors were screened out through GUS-fusions assay. The promoter is the most important factor; double-CaMV 35S promoter is more effective than single promoter. The AMV or TMV enhancer is able to promote the foreign protein expression. After four-step purification, the activated hBMP2 (0.02% total soluble protein) was obtained. Our results suggested that the transgenic tobacco has great potential to be used as a bioreactor to produce hBMP2. PMID:16819603

  17. Formation of functional synaptic connections between cultured cortical neurons from agrin-deficient mice.

    OpenAIRE

    LI, ZHEN; Hilgenberg, Lutz G. W.; O'Dowd, Diane K.; Smith, Martin A

    1999-01-01

    Numerous studies suggest that the extracellular matrix protein agrin directs the formation of the postsynaptic apparatus at the neuromuscular junction (NMJ). Strong support for this hypothesis comes from the observation that the high density of acetylcholine receptors (AChR) normally present at the neuromuscular junction fails to form in muscle of embryonic agrin mutant mice. Agrin is expressed by many populations of neurons in the central nervous system (CNS), suggesting that this molecule m...

  18. Effect of rhBMP-2 Immobilized Anorganic Bovine Bone Matrix on Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Jung-Bo Huh

    2015-07-01

    Full Text Available Anorganic bovine bone matrix (Bio-Oss® has been used for a long time for bone graft regeneration, but has poor osteoinductive capability. The use of recombinant human bone morphogenetic protein-2 (rhBMP-2 has been suggested to overcome this limitation of Bio-Oss®. In the present study, heparin-mediated rhBMP-2 was combined with Bio-Oss® in animal experiments to investigate bone formation performance; heparin was used to control rhBMP-2 release. Two calvarial defects (8 mm diameter were formed in a white rabbit model and then implanted or not (controls with Bio-Oss® or BMP-2/Bio-Oss®. The Bio-Oss® and BMP-2/Bio-Oss® groups had significantly greater new bone areas (expressed as percentages of augmented areas than the non-implanted controls at four and eight weeks after surgery, and the BMP-2/Bio-Oss® group (16.50 ± 2.87 (n = 6 had significantly greater new bone areas than the Bio-Oss® group (9.43 ± 3.73 (n = 6 at four weeks. These findings suggest that rhBMP-2 treated heparinized Bio-Oss® markedly enhances bone regeneration.

  19. Effect of rhBMP-2 Immobilized Anorganic Bovine Bone Matrix on Bone Regeneration.

    Science.gov (United States)

    Huh, Jung-Bo; Yang, June-Jip; Choi, Kyung-Hee; Bae, Ji Hyeon; Lee, Jeong-Yeol; Kim, Sung-Eun; Shin, Sang-Wan

    2015-01-01

    Anorganic bovine bone matrix (Bio-Oss®) has been used for a long time for bone graft regeneration, but has poor osteoinductive capability. The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) has been suggested to overcome this limitation of Bio-Oss®. In the present study, heparin-mediated rhBMP-2 was combined with Bio-Oss® in animal experiments to investigate bone formation performance; heparin was used to control rhBMP-2 release. Two calvarial defects (8 mm diameter) were formed in a white rabbit model and then implanted or not (controls) with Bio-Oss® or BMP-2/Bio-Oss®. The Bio-Oss® and BMP-2/Bio-Oss® groups had significantly greater new bone areas (expressed as percentages of augmented areas) than the non-implanted controls at four and eight weeks after surgery, and the BMP-2/Bio-Oss® group (16.50 ± 2.87 (n = 6)) had significantly greater new bone areas than the Bio-Oss® group (9.43 ± 3.73 (n = 6)) at four weeks. These findings suggest that rhBMP-2 treated heparinized Bio-Oss® markedly enhances bone regeneration. PMID:26184187

  20. BMP-2 Induced Expression of Alx3 That Is a Positive Regulator of Osteoblast Differentiation.

    Directory of Open Access Journals (Sweden)

    Takashi Matsumoto

    Full Text Available Bone morphogenetic proteins (BMPs regulate many aspects of skeletal development, including osteoblast and chondrocyte differentiation, cartilage and bone formation, and cranial and limb development. Among them, BMP-2, one of the most potent osteogenic signaling molecules, stimulates osteoblast differentiation, while it inhibits myogenic differentiation in C2C12 cells. To evaluate genes involved in BMP-2-induced osteoblast differentiation, we performed cDNA microarray analyses to compare BMP-2-treated and -untreated C2C12 cells. We focused on Alx3 (aristaless-like homeobox 3 which was clearly induced during osteoblast differentiation. Alx3, a homeobox gene related to the Drosophilaaristaless gene, has been linked to developmental functions in craniofacial structures and limb development. However, little is known about its direct relationship with bone formation. In the present study, we focused on the mechanisms of Alx3 gene expression and function during osteoblast differentiation induced by BMP-2. In C2C12 cells, BMP-2 induced increase of Alx3 gene expression in both time- and dose-dependent manners through the BMP receptors-mediated SMAD signaling pathway. In addition, silencing of Alx3 by siRNA inhibited osteoblast differentiation induced by BMP-2, as showed by the expressions of alkaline phosphatase (Alp, Osteocalcin, and Osterix, while over-expression of Alx3 enhanced osteoblast differentiation induced by BMP-2. These results indicate that Alx3 expression is enhanced by BMP-2 via the BMP receptors mediated-Smad signaling and that Alx3 is a positive regulator of osteoblast differentiation induced by BMP-2.

  1. Low dose BMP-2 treatment for bone repair using a PEGylated fibrinogen hydrogel matrix.

    Science.gov (United States)

    Ben-David, Dror; Srouji, Samer; Shapira-Schweitzer, Keren; Kossover, Olga; Ivanir, Eran; Kuhn, Gisela; Müller, Ralph; Seliktar, Dror; Livne, Erella

    2013-04-01

    Bone repair strategies utilizing resorbable biomaterial implants aim to stimulate endogenous cells in order to gradually replace the implant with functional repair tissue. These biomaterials should therefore be biodegradable, osteoconductive, osteoinductive, and maintain their integrity until the newly formed host tissue can contribute proper function. In recent years there has been impressive clinical outcomes for this strategy when using osteoconductive hydrogel biomaterials in combination with osteoinductive growth factors such as human recombinant bone morphogenic protein (hrBMP-2). However, the success of hrBMP-2 treatments is not without risks if the factor is delivered too rapidly and at very high doses because of a suboptimal biomaterial. Therefore, the aim of this study was to evaluate the use of a PEGylated fibrinogen (PF) provisional matrix as a delivery system for low-dose hrBMP-2 treatment in a critical size maxillofacial bone defect model. PF is a semi-synthetic hydrogel material that can regulate the release of physiological doses of hrBMP-2 based on its controllable physical properties and biodegradation. hrBMP-2 release from the PF material and hrBMP-2 bioactivity were validated using in vitro assays and a subcutaneous implantation model in rats. Critical size calvarial defects in mice were treated orthotopically with PF containing 8 μg/ml hrBMP-2 to demonstrate the capacity of these bioactive implants to induce enhanced bone formation in as little as 6 weeks. Control defects treated with PF alone or left empty resulted in far less bone formation when compared to the PF/hrBMP-2 treated defects. These results demonstrate the feasibility of using a semi-synthetic biomaterial containing small doses of osteoinductive hrBMP-2 as an effective treatment for maxillofacial bone defects. PMID:23375953

  2. BMP-2 Overexpression Augments Vascular Smooth Muscle Cell Motility by Upregulating Myosin Va via Erk Signaling

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2014-01-01

    Full Text Available Background. The disruption of physiologic vascular smooth muscle cell (VSMC migration initiates atherosclerosis development. The biochemical mechanisms leading to dysfunctional VSMC motility remain unknown. Recently, cytokine BMP-2 has been implicated in various vascular physiologic and pathologic processes. However, whether BMP-2 has any effect upon VSMC motility, or by what manner, has never been investigated. Methods. VSMCs were adenovirally transfected to genetically overexpress BMP-2. VSMC motility was detected by modified Boyden chamber assay, confocal time-lapse video assay, and a colony wounding assay. Gene chip array and RT-PCR were employed to identify genes potentially regulated by BMP-2. Western blot and real-time PCR detected the expression of myosin Va and the phosphorylation of extracellular signal-regulated kinases 1/2 (Erk1/2. Immunofluorescence analysis revealed myosin Va expression locale. Intracellular Ca2+ oscillations were recorded. Results. VSMC migration was augmented in VSMCs overexpressing BMP-2 in a dose-dependent manner. siRNA-mediated knockdown of myosin Va inhibited VSMC motility. Both myosin Va mRNA and protein expression significantly increased after BMP-2 administration and were inhibited by Erk1/2 inhibitor U0126. BMP-2 induced Ca2+ oscillations, generated largely by a “cytosolic oscillator”. Conclusion. BMP-2 significantly increased VSMCs migration and myosin Va expression, via the Erk signaling pathway and intracellular Ca2+ oscillations. We provide additional insight into the pathophysiology of atherosclerosis, and inhibition of BMP-2-induced myosin Va expression may represent a potential therapeutic strategy.

  3. Effect of rhBMP-2 Immobilized Anorganic Bovine Bone Matrix on Bone Regeneration

    OpenAIRE

    Jung-Bo Huh; June-Jip Yang; Kyung-Hee Choi; Ji Hyeon Bae; Jeong-Yeol Lee; Sung-Eun Kim; Sang-Wan Shin

    2015-01-01

    Anorganic bovine bone matrix (Bio-Oss®) has been used for a long time for bone graft regeneration, but has poor osteoinductive capability. The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) has been suggested to overcome this limitation of Bio-Oss®. In the present study, heparin-mediated rhBMP-2 was combined with Bio-Oss® in animal experiments to investigate bone formation performance; heparin was used to control rhBMP-2 release. Two calvarial defects (8 mm diameter) were fo...

  4. Dexamethasone, BMP-2, and 1,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Henriksen, Z; Sørensen, O H;

    2004-01-01

    D), 100 nM Dex, and/or 100 ng/ml BMP-2. The osteoblast phenotype was assessed as alkaline phosphatase (AP) activity/staining, production of osteocalcin and procollagen type 1 (P1NP), parathyroid hormone (PTH)-induced cyclic adenosine mono-phosphate (cAMP) production, and in vitro mineralization. AP...... activity was increased by Dex, but not by BMP-2 treatment. P1NP production was decreased after Dex treatment, while BMP-2 had no effect on P1NP levels. Osteocalcin production was low in cultures not stimulated with vitamin D. Dex or BMP-2 treatment alone did not affect the basic osteocalcin levels, but in...... osteoblastic cells with different phenotypic characteristics, and a selective activation of some of the most important genes and functions of the mature osteoblast can thus be performed in vitro....

  5. Evolution, gene regulation and functional analysis of BMP2 in fish

    OpenAIRE

    Marques, Cátia Andreia Lourenço

    2013-01-01

    Bone morphogenetic proteins (BMPs) are multifunctional growth factors belonging to the transforming growth factor β (TGFβ) superfamily with a central role in bone formation and mineralization. BMP2, a founding member of this family, has demonstrated remarkable osteogenic properties and is clinically used to promote bone repair and fracture healing. Lack of basic data on factors regulating BMP2 expression and activity have hampered a better understanding of its role in bone formation and bone-...

  6. Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats.

    Directory of Open Access Journals (Sweden)

    Michelle T Poldervaart

    Full Text Available The design of bioactive three-dimensional (3D scaffolds is a major focus in bone tissue engineering. Incorporation of growth factors into bioprinted scaffolds offers many new possibilities regarding both biological and architectural properties of the scaffolds. This study investigates whether the sustained release of bone morphogenetic protein 2 (BMP-2 influences osteogenicity of tissue engineered bioprinted constructs. BMP-2 loaded on gelatin microparticles (GMPs was used as a sustained release system, which was dispersed in hydrogel-based constructs and compared to direct inclusion of BMP-2 in alginate or control GMPs. The constructs were supplemented with goat multipotent stromal cells (gMSCs and biphasic calcium phosphate to study osteogenic differentiation and bone formation respectively. BMP-2 release kinetics and bioactivity showed continuous release for three weeks coinciding with osteogenicity. Osteogenic differentiation and bone formation of bioprinted GMP containing constructs were investigated after subcutaneous implantation in mice or rats. BMP-2 significantly increased bone formation, which was not influenced by the release timing. We showed that 3D printing of controlled release particles is feasible and that the released BMP-2 directs osteogenic differentiation in vitro and in vivo.

  7. Effect of a Novel Nonviral Gene Delivery of BMP-2 on Bone Healing

    Directory of Open Access Journals (Sweden)

    P. Schwabe

    2012-01-01

    Full Text Available Background. Gene therapeutic drug delivery approaches have been introduced to improve the efficiency of growth factors at the site of interest. This study investigated the efficacy and safety of a new nonviral copolymer-protected gene vector (COPROG for the stimulation of bone healing. Methods. In vitro, rat osteoblasts were transfected with COPROG + luciferase plasmid or COPROG + hBMP-2 plasmid. In vivo, rat tibial fractures were intramedullary stabilized with uncoated versus COPROG+hBMP-2-plasmid-coated titanium K-wires. The tibiae were prepared for biomechanical and histological analyses at days 28 and 42 and for transfection/safety study at days 2, 4, 7, 28, and 42. Results. In vitro results showed luciferase expression until day 21, and hBMP-2-protein was measured from day 2 – day 10. In vivo, the local application of hBMP-2-plasmid showed a significantly higher maximum load after 42 days compared to that in the control. The histomorphometric analysis revealed a significantly less mineralized periosteal callus area in the BMP-2 group compared to the control at day 28. The rt-PCR showed no systemic biodistribution of luciferase RNA. Conclusion. A positive effect on fracture healing by nonviral BMP-2 plasmid application from COPROG-coated implants could be shown in this study; however, the effect of the vector may be improved with higher plasmid concentrations. Transfection showed no biodistribution to distant organs and was considered to be safe.

  8. BMP-2 and BMP-2/7 Heterodimers Conjugated to a Fibrin/Hyaluronic Acid Hydrogel in a Large Animal Model of Mild Intervertebral Disc Degeneration.

    Science.gov (United States)

    Peeters, Mirte; Detiger, Suzanne E L; Karfeld-Sulzer, Lindsay S; Smit, Theo H; Yayon, Avner; Weber, Franz E; Helder, Marco N

    2015-01-01

    Intervertebral disc (IVD) degeneration is etiologically associated with low back pain and is currently only treated in severe cases with spinal fusion. Regenerative medicine attempts to restore degenerated tissue by means of cells, hydrogels, and/or growth factors and can therefore be used to slow, halt, or reverse the degeneration of the IVD in a minimally invasive manner. Previously, the growth factors bone morphogenetic proteins 2 and 7 (BMP-2, -7) were shown to enhance disc regeneration, in vitro and in vivo. Since BMPs have only a short in vivo half-life, and to prevent heterotopic ossification, we evaluated the use of a slow release system for BMP-2 homodimers and BMP-2/7 heterodimers for IVD regeneration. BMP growth factors were conjugated to a fibrin/hyaluronic acid (FB/HA) hydrogel and intradiscally injected in a goat model of mild IVD degeneration to study safety and efficacy. Mild degeneration was induced in five lumbar discs of seven adult Dutch milk goats, by injections with the enzyme chondroitinase ABC. After 12 weeks, discs were treated with either FB/HA-hydrogel only or supplemented with 1 or 5 μg/mL of BMP-2 or BMP-2/7. BMPs were linked to the FB/HA hydrogels using a transglutaminase moiety, to be released through an incorporated plasmin cleavage site. After another 12 weeks, goats were sacrificed and discs were assessed using radiography, MRI T2* mapping, and biochemical and histological analyses. All animals maintained weight throughout the study and no heterotopic bone formation or other adverse effects were noted during follow-up. Radiographs showed significant disc height loss upon induction of mild degeneration. MRI T2* mapping showed strong and significant correlations with biochemistry and histology as shown before. Surprisingly, no differences could be demonstrated in any parameter between intervention groups. To our knowledge, this is the first large animal study evaluating BMPs conjugated to an FB/HA-hydrogel for the treatment of

  9. Sustained and promoter dependent bone morphogenetic protein expression by rat mesenchymal stem cells after BMP-2 transgene electrotransfer

    Directory of Open Access Journals (Sweden)

    E Ferreira

    2012-07-01

    Full Text Available Transplantation of mesenchymal stem cells (MSCs with electrotransferred bone morphogenetic protein-2 (BMP-2 transgene is an attractive therapeutic modality for the treatment of large bone defects: it provides both stem cells with the ability to form bone and an effective bone inducer while avoiding viral gene transfer. The objective of the present study was to determine the influence of the promoter driving the human BMP-2 gene on the level and duration of BMP-2 expression after transgene electrotransfer into rat MSCs. Cytomegalovirus, elongation factor-1α, glyceraldehyde 3-phosphate dehydrogenase, and beta-actin promoters resulted in a BMP-2 secretion rate increase of 11-, 78-, 66- and 36-fold over respective controls, respectively. In contrast, the osteocalcin promoter had predictable weak activity in undifferentiated MSCs but induced the strongest BMP-2 secretion rates in osteoblastically-differentiated MSCs. Regardless of the promoter driving the transgene, a plateau of maximal BMP-2 secretion persisted for at least 21 d after the hBMP-2 gene electrotransfer. The present study demonstrates the feasibility of gene electrotransfer for efficient BMP-2 transgene delivery into MSCs and for a three-week sustained BMP-2 expression. It also provides the first in vitro evidence for a safe alternative to viral methods that permit efficient BMP-2 gene delivery and expression in MSCs but raise safety concerns that are critical when considering clinical applications.

  10. Local Application of BMP-2 Specific Plasmids in Fibrin Glue does not Promote Implant Fixation

    Directory of Open Access Journals (Sweden)

    Plank Christan

    2011-07-01

    Full Text Available Abstract Background BMP-2 is known to accelerate fracture healing and might also enhance osseointegration and implant fixation. Application of recombinant BMP-2 has a time-limited effect. Therefore, a gene transfer approach with a steady production of BMP-2 appears to be attractive. The aim of this study was to examine the effect of locally applied BMP-2 plasmids on the bone-implant integration in a non-weight bearing rabbit tibia model using a comparatively new non-viral copolymer-protected gene vector (COPROG. Methods Sixty rabbits were divided into 4 groups. All of them received nailing of both tibiae. The verum group had the nails inserted with the COPROG vector and BMP-2 plasmids using fibrin glue as a carrier. Controls were a group with fibrin glue only and a blank group. After 28 and 56 days, these three groups were sacrificed and one tibia was randomly chosen for biomechanical testing, while the other tibia underwent histomorphometrical examination. In a fourth group, a reporter-gene was incorporated in the fibrin glue instead of the BMP-2 formula to prove that transfection was successful. Results Implant fixation strength was significantly lower after 28 and 56 days in the verum group. Histomorphometry supported the findings after 28 days, showing less bone-implant contact. In the fourth group, successful transfection could be confirmed by detection of the reporter-gene in 20 of 22 tibiae. But, also systemic reporter-gene expression was found in heterotopic locations, showing an undesired spreading of the locally applied gene formula. Conclusion Our results underline the transfecting capability of this vector and support the idea that BMP-2 might diminish osseointegration. Further studies are necessary to specify the exact mechanisms and the systemic effects.

  11. Regulating the osteogenic function of rhBMP 2 by different titanium surface properties.

    Science.gov (United States)

    Xiao, Ming; Biao, Meina; Chen, Yangmei; Xie, Meiju; Yang, Bangcheng

    2016-08-01

    Bone morphogenetic protein 2 (BMP-2) is important for regulating the osteogenic differentiation of mesenchymal stem cells and the response of bone tissue. It adsorbs on the surface of biomedical implants immediately and plays a role of mediator between the materials surfaces and the host cells. Studies usually connect the material surface properties and the new bone formation directly. However, interaction between the adsorbed BMP-2 on the implant surface and the cells in the tissue is the key to explaining the osteogenic properties of the material. So, in this article, we investigated the conformational and functional changes induced by the surface modified titanium metals. We found that the α-helix and β-sheet structure of rhBMP-2 can be well maintained on the anodic oxidation treated titanium surface. The osteogenic function of rhBMP-2 can sustain for a relatively long time even though there is less amount adhere to the surface compared with that on the acid alkali treated titanium. Surface properties, especially the morphology enable a larger amount of rhBMP-2 to adsorb to the surface of the acid alkali treated titanium, but the conformation of the protein is severely influenced. The percentage of α-helix structure is also significantly decreased so that the efficacy of rhBMP-2 is only maintained in the early time. This study indicated that different surface modification of the surface could regulate the structure of rhBMP-2 and then further influence its osteogenic function. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1882-1893, 2016. PMID:26991341

  12. Osseointegration of titanium implants by addition of recombinant bone morphogenetic protein 2 (rhBMP-2)

    Energy Technology Data Exchange (ETDEWEB)

    Lichtinger, T.K.; Mueller, R.T.; Schuermann, N.; Oldenburg, M. [Essen Univ. (Germany). Dept. of Orthopaedic Surgery; Wiemann, M. [Inst. of Physiology, Univ. of Essen (Germany); Chatzinikolaidou, M.; Jennissen, H.P. [Inst. of Physiological Chemistry, Univ. of Essen (Germany); Rumpf, H.M.

    2001-12-01

    The osseointegration of long-term implants is often incomplete such that gaps remain between the implant surface and the surrounding hard tissue. This study examines the effect of soluble recombinant human bone morphogenic protein 2 (rhBMP-2) on gap healing and osseous integration. The effect of a single, intraoperative application of soluble rhBMP-2 on the formation of new bone around titanium implants was studied. A total of 8 titanium-alloy cylinders (Ti-6Al-4V) with a plasma spray coating (TPS; 400 {mu}m thickness) were implanted into femoral condyles of mature sheep: rhBMP-2 solution (1 {mu}g) was pipetted into the 1 mm wide cleft around 4 implants; 4 further implants served as rhBMP-2-free controls. Two of these controls exhibited an additional calciumphosphate-coating. The cleft around the implants served as testing zone to study the formation of new bone by microradiographical and histological analyses. The follow-up periods were 4 and 9 weeks, respectively. A significant amount of new bone contacting the implants' surface was detected where rhBMP-2-solution had been used: In 50% a circumferential osseoinduction occurred within 4 weeks and a nearly complete osseointegration was observed after 9 weeks. In all cases bone formation was exaggerated and filled the spongiosa with compact bone. Time matched TPS-controls and controls with calciumphosphate coating showed no notable formation of new bone. The results suggest that a single administration of soluble rhBMP-2 into a bone cavity can augment bone formation and also osseointegration of titanium implants. Further investigations based on these findings are necessary to develop long-term implants (e.g. joint replacements) with rhBMP-2-biocoating for humans. (orig.)

  13. No advantage to rhBMP-2 in addition to autogenous graft for fracture nonunion.

    Science.gov (United States)

    Takemoto, Richelle; Forman, Jordanna; Taormina, David P; Egol, Kenneth A

    2014-06-01

    Bone morphogenetic proteins are a necessary component of the fracture healing cascade. Few studies have delineated the efficacy of iliac crest bone graft and recombinant human bone morphogenetic protein 2 (rhBMP-2), especially, in comparison with the gold standard treatment of nonunion, which is autogenous bone graft alone. This study compared the outcome of patients with fracture nonunion treated with autogenous bone graft plus rhBMP-2 adjuvant vs patients treated with autogenous bone graft alone. A total of 118 consecutive patients who were to undergo long bone nonunion surgery with autogenous bone graft (50) or autogenous bone graft plus rhBMP-2 (68) were identified. Surgical intervention included either harvested iliac autogenous bone graft or autogenous bone graft plus 1.5 mg/mL of rhBMP-2 placed in and around the site of nonunion. No differences were found in the distribution of nonunion sites included within each group. Twelve-month follow-up was obtained on 100 of 118 patients (84.7%). Analyses of demographic characteristics (including tobacco), medical comorbidities, previous surgeries, and nonunion type (atrophic vs hypertrophic) did not differ. Postoperative complication rates did not differ. The percentage of patients who progressed to union did not differ. Mean time to union in the autogenous bone graft plus rhBMP-2 group was 6.6 months (±3.9) vs 5.4 (±2.7) months in the autogenous bone graft-only group (P=.06). Rates of revision (16.2% for rhBMP-2 plus autogenous bone graft vs 8% for autogenous bone graft) did not differ statistically (P=.19), nor did 12-month scores of pain and functional assessment. Although rhBMP-2 is a safe adjuvant, there was no benefit seen when rhBMP-2 was added to autogenous bone graft in the treatment of long bone nonunion. Given its high cost, rhBMP-2 should be reconsidered as an aid to autogenous bone graft in the treatment of nonunion. PMID:24972432

  14. Osteogenic effect of controlled released rhBMP-2 in 3D printed porous hydroxyapatite scaffold.

    Science.gov (United States)

    Wang, Hai; Wu, Gui; Zhang, Jing; Zhou, Kui; Yin, Bo; Su, Xinlin; Qiu, Guixing; Yang, Guang; Zhang, Xianglin; Zhou, Gang; Wu, Zhihong

    2016-05-01

    Recently, 3D printing as effective technology has been highlighted in the biomedical field. Previously, a porous hydroxyapatite (HA) scaffold with the biocompatibility and osteoconductivity has been developed by this method. However, its osteoinductivity is limited. The main purpose of this study was to improve it by the introduction of recombinant human bone morphogenetic protein-2 (rhBMP-2). This scaffold was developed by coating rhBMP-2-delivery microspheres with collagen. These synthesized scaffolds were characterized by Scanning Electron Microscopy (SEM), a delivery test in vitro, cell culture, and the experiments in vivo by a Micro-computed tomography (μCT) scan and histological evaluation of VanGieson staining. SEM results indicated the surface of scaffolds were more fit for the adhesion of hMSCs to coat collagen/rhBMP-2 microspheres. Biphasic release of rhBMP-2 could continue for more than 21 days, and keep its osteoinductivity to induce osteogenic differentiation of hMSCs in vitro. In addition, the experiments in vivo showed that the scaffold had a good bone regeneration capacity. These findings demonstrate that the HA/Collagen/Chitosan Microspheres system can simultaneously achieve localized long-term controlled release of rhBMP-2 and bone regeneration, which provides a promising route for improving the treatment of bone defects. PMID:26896655

  15. Effects of codon modification on human BMP2 gene expression in tobacco plants.

    Science.gov (United States)

    Suo, Guangli; Chen, Bing; Zhang, Jingyu; Duan, Ziyuan; He, Zhengquan; Yao, Wei; Yue, Chaoyin; Dai, Jianwu

    2006-07-01

    Bone morphogenetic protein 2 (BMP2) has great potential in therapeutic applications. We are working on generating transgenic plants as a bioreactor to produce BMP2. We have studied the effects of codon optimization on the expression of human BMP2 (hBMP2) in tobacco plants. Three modified hBMP2 genes were transformed into tobacco under the control of either cauliflower mosaic virus 35S (CaMV35S) promoter or double-CaMV35S promoter plus alfalfa mosaic virus (AMV) enhancer. The fused beta-glucuronidase (GUS) reporter gene was used to facilitate the assay of protein expression. The results indicated that codon optimization could increase the protein expression level obviously under CaMV35S promoter. However, under relatively stronger initiation condition (double-CaMV35S promoter plus AMV enhancer), only the gene with the lowest degree of codon optimization could increase the protein expression level. Our findings suggest that the action of codon optimization may be influenced by the factors of promoter strength and A+T content in tobacco plants. PMID:16491379

  16. Tracheal cartilage regeneration and new bone formation by slow release of bone morphogenetic protein (BMP)-2.

    Science.gov (United States)

    Igai, Hitoshi; Chang, Sung Soo; Gotoh, Masashi; Yamamoto, Yasumichi; Yamamoto, Masaya; Tabata, Yasuhiko; Yokomise, Hiroyasu

    2008-01-01

    We investigated the efficiency of bone morphogenetic protein (BMP)-2 released slowly from gelatin sponge for tracheal cartilage regeneration. A 1-cm gap was made in the mid-ventral portion of each of 10 consecutive tracheal cartilages. In the control group (n = 4), the resulting gap was left untreated. In the gelatin group (n = 4), plain gelatin was implanted in the gap. In the BMP-2 group (n = 4), gelatin containing 100 microg BMP-2 was implanted. We euthanatized all dogs in each group at 1, 3, 6, and 12 months after the implantation, respectively, and then examined the implant site macro- and microscopically. In the BMP-2 group, regenerated fibrous cartilage and newly formed bone were observed at 1 and 12 months. Regenerated cartilage was observed at the ends of the host cartilage stumps, with newly formed bone in the middle portion. The gaps were filled with regenerated cartilage and newly formed bone. At 3 and 6 months, regenerated cartilage, but not newly formed bone, was evident. The regenerated cartilage was covered with perichondrium and showed continuity with the host cartilage. We succeeded in inducing cartilage regeneration and new bone formation in canine trachea by slow release of 100 microg BMP-2 from gelatin. PMID:18204324

  17. Preconditioning Human Mesenchymal Stem Cells with a Low Concentration of BMP2 Stimulates Proliferation and Osteogenic Differentiation In Vitro

    DEFF Research Database (Denmark)

    Lysdahl, Helle; Baatrup, Anette; Foldager, Casper Bindzus; Bünger, Cody

    2014-01-01

    treatment strategy in which human bone marrow-derived mesenchymal stem cells (hMSCs) are preconditioned with low concentrations of BMP2 for a short time in vitro. hMSCs in suspension were stimulated for 15 min with 10 and 20 ng/mL of BMP2. After the BMP2 was removed, the cells were seeded and cultured in...... maturation of hMSCs. This implies that preconditioning with BMP2 might be more effective at inducing proliferation and osteogenic differentiation of hMSCs than continuous stimulation. Preconditioning with BMP2 could benefit the clinical application of BMP2 since side effects from high-dose treatments could...

  18. Sustained presentation of BMP-2 enhances osteogenic differentiation of human adipose-derived stem cells in gelatin hydrogels.

    Science.gov (United States)

    Samorezov, Julia E; Headley, Emma B; Everett, Christopher R; Alsberg, Eben

    2016-06-01

    Human adipose-derived stem cells (hASCs) show great potential for healing bone defects. Bone morphogenetic protein-2 (BMP-2) has been reported to stimulate their osteogenic differentiation both in vitro and in vivo. Here, methacrylated gelatin (GelMA) hydrogels were evaluated as a system to deliver BMP-2 to encapsulated hASCs from two different donors, and BMP-2 delivered from the hydrogels was compared to BMP-2 presented exogenously in culture media. GelMA hydrogels were shown to provide sustained, localized presentation of BMP-2 due to electrostatic interactions between the growth factor and biomaterial after an initial burst release. Both donors exhibited similar responses to the loaded and exogenous growth factor; BMP-2 from the hydrogels had a statistically significant effect on hASC osteogenic differentiation compared to exogenous BMP-2. Expression of alkaline phosphatase was accelerated, and cells in hydrogels with loaded BMP-2 deposited more calcium at one, two, and four weeks than cells without BMP-2 or with the growth factor presented in the media. There were no statistically significant differences in calcium content between groups with 25, 50, or 100 µg/mL loaded BMP-2, suggesting that using a lower growth factor dose may be as effective as a higher loading amount in this system. Taken together, these findings suggest that controlled delivery of BMP-2 from the GelMA enhances its osteogenic bioactivity compared to free growth factor presented in the media. Thus, the GelMA system is a promising biomaterial for BMP-2-mediated hASC osteogenesis. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1387-1397, 2016. PMID:26822338

  19. Integration of a Notch-dependent mesenchymal gene program and Bmp2-driven cell invasiveness regulates murine cardiac valve formation.

    Science.gov (United States)

    Luna-Zurita, Luis; Prados, Belén; Grego-Bessa, Joaquim; Luxán, Guillermo; del Monte, Gonzalo; Benguría, Alberto; Adams, Ralf H; Pérez-Pomares, José María; de la Pompa, José Luis

    2010-10-01

    Cardiac valve formation is crucial for embryonic and adult heart function. Valve malformations constitute the most common congenital cardiac defect, but little is known about the molecular mechanisms regulating valve formation and homeostasis. Here, we show that endocardial Notch1 and myocardial Bmp2 signal integration establish a valve-forming field between 2 chamber developmental domains. Patterning occurs through the activation of endocardial epithelial-to-mesenchymal transition (EMT) exclusively in prospective valve territories. Mice with constitutive endocardial Notch1 activity ectopically express Hey1 and Heyl. They also display an activated mesenchymal gene program in ventricles and a partial (noninvasive) EMT in vitro that becomes invasive upon BMP2 treatment. Snail1, TGF-β2, or Notch1 inhibition reduces BMP2-induced ventricular transformation and invasion, whereas BMP2 treatment inhibits endothelial Gsk3β, stabilizing Snail1 and promoting invasiveness. Integration of Notch and Bmp2 signals is consistent with Notch1 signaling being attenuated after myocardial Bmp2 deletion. Notch1 activation in myocardium extends Hey1 expression to nonchamber myocardium, represses Bmp2, and impairs EMT. In contrast, Notch deletion abrogates endocardial Hey gene transcription and extends Bmp2 expression to the ventricular endocardium. This embryonic Notch1-Bmp2-Snail1 relationship may be relevant in adult valve disease, in which decreased NOTCH signaling causes valve mesenchyme cell formation, fibrosis, and calcification. PMID:20890042

  20. Polymorphism of BMP2 Gene Associated with Growth Traits in Guizhou Semi-Fine Wool Sheep

    OpenAIRE

    Xiao Yun Shen; Xin Wang; Wen Ting Li; Yong Jun Li; Li Juan Li

    2012-01-01

    Bone Morphogenetic Protein 2 (BMP2) plays a crucial role in bone growth. The objective of this study was to investigate variations in sheep BMP2 gene and their associations with growth traits in 320 Guizhou Semi-Fine Wool sheep. Five fragments of BMP-2 gene were investigated only exon2 region of BMP-2 gene showed polymorphism after PCR-SSCP and DNA sequencing methods. There was one G>A (g. 273 G>A) mutation located in nucleotide position of GenBank Accession No. EU854586 which constructed thr...

  1. The p38/MK2/Hsp25 pathway is required for BMP-2-induced cell migration.

    Directory of Open Access Journals (Sweden)

    Cristina Gamell

    Full Text Available BACKGROUND: Bone morphogenetic proteins (BMPs have been shown to participate in the patterning and specification of several tissues and organs during development and to regulate cell growth, differentiation and migration in different cell types. BMP-mediated cell migration requires activation of the small GTPase Cdc42 and LIMK1 activities. In our earlier report we showed that activation of LIMK1 also requires the activation of PAKs through Cdc42 and PI3K. However, the requirement of additional signaling is not clearly known. METHODOLOGY/PRINCIPAL FINDINGS: Activation of p38 MAPK has been shown to be relevant for a number of BMP-2's physiological effects. We report here that BMP-2 regulation of cell migration and actin cytoskeleton remodelling are dependent on p38 activity. BMP-2 treatment of mesenchymal cells results in activation of the p38/MK2/Hsp25 signaling pathway downstream from the BMP receptors. Moreover, chemical inhibition of p38 signaling or genetic ablation of either p38α or MK2 blocks the ability to activate the downstream effectors of the pathway and abolishes BMP-2-induction of cell migration. These signaling effects on p38/MK2/Hsp25 do not require the activity of either Cdc42 or PAK, whereas p38/MK2 activities do not significantly modify the BMP-2-dependent activation of LIMK1, measured by either kinase activity or with an antibody raised against phospho-threonine 508 at its activation loop. Finally, phosphorylated Hsp25 colocalizes with the BMP receptor complexes in lamellipodia and overexpression of a phosphorylation mutant form of Hsp25 is able to abolish the migration of cells in response to BMP-2. CONCLUSIONS: These results indicate that Cdc42/PAK/LIMK1 and p38/MK2/Hsp25 pathways, acting in parallel and modulating specific actin regulatory proteins, play a critical role in integrating responses during BMP-induced actin reorganization and cell migration.

  2. Apoptosis inhibitors and mini-agrin have additive benefits in congenital muscular dystrophy mice

    OpenAIRE

    Meinen, Sarina; Lin, Shuo; Thurnherr, Raphael; Erb, Michael; Meier, Thomas; Rüegg, Markus A.

    2011-01-01

    Mutations in LAMA2 cause a severe form of congenital muscular dystrophy, called MDC1A. Studies in mouse models have shown that transgenic expression of a designed, miniaturized form of the extracellular matrix molecule agrin (‘mini-agrin’) or apoptosis inhibition by either overexpression of Bcl2 or application of the pharmacological substance omigapil can ameliorate the disease. Here, we tested whether mini-agrin and anti-apoptotic agents act on different pathways and thus exert additive bene...

  3. Combination therapy with BMP-2 and a systemic RANKL inhibitor enhances bone healing in a mouse critical-sized femoral defect.

    Science.gov (United States)

    Bougioukli, Sofia; Jain, Ashish; Sugiyama, Osamu; Tinsley, Brian A; Tang, Amy H; Tan, Matthew H; Adams, Douglas J; Kostenuik, Paul J; Lieberman, Jay R

    2016-03-01

    Recombinant human BMP-2 (rhBMP-2) is a potent osteoinductive agent, but has been associated not only with bone formation, but also osteoclastogenesis and bone resorption. Osteoprotegerin (OPG) is a RANKL inhibitor that blocks differentiation and function of osteoclasts. We hypothesized that the combination of local BMP-2 (recombinant protein or a product of gene therapy) plus systemic OPG-Fc is more effective than BMP-2 alone in promoting bone repair. To test this hypothesis we used a mouse critical-sized femoral defect model. Col2.3eGFP (osteoblastic marker) male mice were treated with rhBMP-2 (group I), rhBMP-2 and systemic OPG (group II), rhBMP-2 and delayed administration of OPG (group III), mouse BM cells transduced with a lentiviral vector containing the BMP-2 gene (LV-BMP-2; group IV), LV-BMP-2 and systemic OPG (group V), a carrier alone (group VI) and administration of OPG alone (group VII). All bone defects treated with BMP-2 (alone or combined with OPG) healed, whereas minimal bone formation was noted in animals treated with the carrier alone or OPG alone. MicroCT analysis showed that bone volume (BV) in rhBMP-2+OPG and LV-BMP-2+OPG groups was significantly higher compared to rhBMP-2 alone (p<0.01) and LV-BMP-2 alone (p<0.001). Similar results were observed in histomorphometry, with rhBMP-2 alone defects exhibiting significantly lower bone area (B.Ar) compared to rhBMP-2+OPG defects (p<0.005) and LV-BMP-2 defects having a significantly lower B.Ar compared to all BMP-2+OPG treated groups (p≤0.01). TRAP staining demonstrated a major osteoclast response in the groups that did not receive OPG (rhBMP-2, LV-BMP-2 and sponge alone) beginning as early as 7days post-operatively. In conclusion, we demonstrated that locally delivered BMP-2 (recombinant protein or gene therapy) in combination with systemically administered OPG improved bone healing compared to BMP-2 alone in a mouse critical-sized bone defect. These data indicate that osteoclasts can diminish

  4. Rescuing Z+ agrin splicing in Nova null mice restores synapse formation and unmasks a physiologic defect in motor neuron firing

    OpenAIRE

    Ruggiu, Matteo; Herbst, Ruth; Kim, Natalie; Jevsek, Marko; Fak, John J.; Mann, Mary Anne; Fischbach, Gerald; Burden, Steven J.; Darnell, Robert B.

    2009-01-01

    Synapse formation at the neuromuscular junction (NMJ) requires an alternatively spliced variant of agrin (Z+ agrin) that is produced only by neurons. Here, we show that Nova1 and Nova2, neuron-specific splicing factors identified as targets in autoimmune motor disease, are essential regulators of Z+ agrin. Nova1/Nova2 double knockout mice are paralyzed and fail to cluster AChRs at the NMJ, and breeding them with transgenic mice constitutively expressing Z+ agrin in motor neurons rescued AChR ...

  5. Biodegradable Chitosan Nanoparticle Coatings on Titanium for the Delivery of BMP-2

    Directory of Open Access Journals (Sweden)

    Nils Poth

    2015-01-01

    Full Text Available A simple method for the functionalization of a common implant material (Ti6Al4V with biodegradable, drug loaded chitosan-tripolyphosphate (CS-TPP nanoparticles is developed in order to enhance the osseointegration of endoprostheses after revision operations. The chitosan used has a tailored degree of acetylation which allows for a fast biodegradation by lysozyme. The degradability of chitosan is proven via viscometry. Characteristics and degradation of nanoparticles formed with TPP are analyzed using dynamic light scattering. The particle degradation via lysozyme displays a decrease in particle diameter of 40% after 4 days. Drug loading and release is investigated for the nanoparticles with bone morphogenetic protein 2 (BMP-2, using ELISA and the BRE luciferase test for quantification and bioactivity evaluation. Furthermore, nanoparticle coatings on titanium substrates are created via spray-coating and analyzed by ellipsometry, scanning electron microscopy and X-ray photoelectron spectroscopy. Drug loaded nanoparticle coatings with biologically active BMP-2 are obtained in vitro within this work. Additionally, an in vivo study in mice indicates the dose dependent induction of ectopic bone growth through CS-TPP-BMP-2 nanoparticles. These results show that biodegradable CS-TPP coatings can be utilized to present biologically active BMP-2 on common implant materials like Ti6Al4V.

  6. Improving the osteogenic potential of BMP-2 with hyaluronic acid hydrogel modified with integrin-specific fibronectin fragment

    NARCIS (Netherlands)

    Kisiel, M.; Martino, M.M.; Ventura, M.; Hubbell, J.A.; Hilborn, J.; Ossipov, D.A.

    2013-01-01

    While human bone morphogenetic protein-2 (rhBMP-2) is a promising growth factor for bone regeneration, its clinical efficacy has recently shown to be below expectation. In order to improve the clinical translation of rhBMP-2, there exists strong motivation to engineer better delivery systems. Hyalur

  7. Mesenchymal stem cells with rhBMP-2 inhibits the growth of canine osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Grassi Rici Rose

    2012-02-01

    Full Text Available Abstract Background The bone morphogenetic proteins (BMPs belong to a unique group of proteins that includes the growth factor TGF-β. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs and belong to the University of São Paulo, College of Veterinary Medicine (FMVZ-USP stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. Results We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p

  8. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo.

    Directory of Open Access Journals (Sweden)

    Shriram Nallamshetty

    Full Text Available The effects of retinoids, the structural derivatives of vitamin A (retinol, on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA and its precursor all trans retinaldehyde (Rald, exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1, the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT demonstrated that Aldh1a1-deficient (Aldh1a1(-/- female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1(-/- mice. In serum assays, Aldh1a1(-/- mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1(-/- mesenchymal stem cells (MSCs expressed significantly higher levels of bone morphogenetic protein 2 (BMP2 and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1(-/- mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1(-/- mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling.

  9. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Chieri [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan); Iwasaki, Tsuyoshi, E-mail: tsuyo-i@huhs.ac.jp [Division of Pharmacotherapy, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe 650-8530 (Japan); Kitano, Sachie; Tsunemi, Sachi; Sano, Hajime [Division of Rheumatology, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501 (Japan)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We investigated the role of S1P signaling for osteoblast differentiation. Black-Right-Pointing-Pointer Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. Black-Right-Pointing-Pointer S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. Black-Right-Pointing-Pointer MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murine satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P

  10. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    International Nuclear Information System (INIS)

    Highlights: ► We investigated the role of S1P signaling for osteoblast differentiation. ► Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. ► S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. ► MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murine satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P receptor-mediated signaling plays a crucial role for osteoblast differentiation.

  11. Induction of chronic pancreatitis by pancreatic duct ligation activates BMP2, apelin, and PTHrP expression in mice.

    Science.gov (United States)

    Rastellini, Cristiana; Han, Song; Bhatia, Vandanajay; Cao, Yanna; Liu, Ka; Gao, Xuxia; Ko, Tien C; Greeley, George H; Falzon, Miriam

    2015-10-01

    Chronic pancreatitis (CP) is a devastating disease with no treatments. Experimental models have been developed to reproduce the parenchyma and inflammatory responses typical of human CP. For the present study, one objective was to assess and compare the effects of pancreatic duct ligation (PDL) to those of repetitive cerulein (Cer)-induced CP in mice on pancreatic production of bone morphogenetic protein-2 (BMP2), apelin, and parathyroid hormone-related protein (PTHrP). A second objective was to determine the extent of cross talk among pancreatic BMP2, apelin, and PTHrP signaling systems. We focused on BMP2, apelin, and PTHrP since these factors regulate the inflammation-fibrosis cascade during pancreatitis. Findings showed that PDL- and Cer-induced CP resulted in significant elevations in expression and peptide/protein levels of pancreatic BMP2, apelin, and PTHrP. In vivo mouse and in vitro pancreatic cell culture experiments demonstrated that BMP2 stimulated pancreatic apelin expression whereas apelin expression was inhibited by PTHrP exposure. Apelin or BMP2 exposure inhibited PTHrP expression, and PTHrP stimulated upregulation of gremlin, an endogenous inhibitor of BMP2 activity. Transforming growth factor-β (TGF-β) stimulated PTHrP expression. Together, findings demonstrated that PDL- and Cer-induced CP resulted in increased production of the pancreatic BMP2, apelin, and PTHrP signaling systems and that significant cross talk occurred among pancreatic BMP2, apelin, and PTHrP. These results together with previous findings imply that these factors interact via a pancreatic network to regulate the inflammation-fibrosis cascade during CP. More importantly, this network communicated with TGF-β, a key effector of pancreatic pathophysiology. This novel network may be amenable to pharmacologic manipulations during CP in humans. PMID:26229008

  12. The efficacy of rhBMP-2 versus autograft for posterolateral lumbar spine fusion in elderly patients

    OpenAIRE

    Lee, Kwang-Bok; Taghavi, Cyrus E.; Hsu, Margaret S.; Song, Kyung-Jin; Yoo, Jeong Hyun; Keorochana, Gun; Ngo, Stephanie S.; Wang, Jeffrey C.

    2009-01-01

    Few studies have specifically examined the outcomes following rhBMP-2 usage in patients 65 years and older. The purpose of this retrospective study is to evaluate the efficacy of rhBMP-2 with allograft versus autograft for posterolateral lumbar fusion in patients 65 years and older. One hundred twenty-seven patients were divided into three groups based on fusion material and age. Subjects in group A (n = 34) consisted of patients 65 years and older who received rhBMP-2 and allograft. Group B ...

  13. Gene gun transferring-bone morphogenetic protein 2 (BMP-2) gene enhanced bone fracture healing in rabbits

    OpenAIRE

    Li, Wenju; Wei, Haifeng; Xia, Chunmei; Zhu, Xiaomeng; Hou, Guozhu; Xu, Feng; Xinghua SONG; Zhan, Yulin

    2015-01-01

    Purpose: Transferring the bone morphogenetic protein 2 (BMP-2) genes into the tissues or cells can improve the bone healing of the fracture has been widely accepted. We evaluated the efficiency of using gene gun to transfer the BMP-2 gene thereby affected the healing of a fractured bone. Methods: The vector coding for BMP-2 was constructed by a non-replicating encephalo-myocarditis virus (ECMV)-based vector. The segmental bone defect (1.5 cm) model was created by a wire-saw at the middle part...

  14. Vergleich von BMP-4 versus BMP-2 für die osteogene Differenzierung von Periostzellen

    OpenAIRE

    Klumpp, Florian (Alexander Stephan)

    2010-01-01

    Es ist heute bekannt, dass humane periostale mesenchymale Stammzellen (PMSCs) eine aussichtsreiche Grundlage für ein erfolgreiches Knochen Tissue Engineering darstellen. Dennoch ist die osteogene Differenzierung noch nicht vollständig be-schrieben. Da BMP-2 und BMP-4 nachweislich Regulatoren der Osteogenese sind, bestand die Aufgabe der vorliegenden Arbeit darin, die Wirkung derer auf die osteo-gene Differenzierung humaner PMSCs zu untersuchen. Isolierte humane PMSCs wurden mit Hilfe von o...

  15. Histone deacetylases control neurogenesis in embryonic brain by inhibition of BMP2/4 signaling.

    Directory of Open Access Journals (Sweden)

    Maya Shakèd

    Full Text Available BACKGROUND: Histone-modifying enzymes are essential for a wide variety of cellular processes dependent upon changes in gene expression. Histone deacetylases (HDACs lead to the compaction of chromatin and subsequent silencing of gene transcription, and they have recently been implicated in a diversity of functions and dysfunctions in the postnatal and adult brain including ocular dominance plasticity, memory consolidation, drug addiction, and depression. Here we investigate the role of HDACs in the generation of neurons and astrocytes in the embryonic brain. PRINCIPAL FINDINGS: As a variety of HDACs are expressed in differentiating neural progenitor cells, we have taken a pharmacological approach to inhibit multiple family members. Inhibition of class I and II HDACs in developing mouse embryos with trichostatin A resulted in a dramatic reduction in neurogenesis in the ganglionic eminences and a modest increase in neurogenesis in the cortex. An identical effect was observed upon pharmacological inhibition of HDACs in in vitro-differentiating neural precursors derived from the same brain regions. A reduction in neurogenesis in ganglionic eminence-derived neural precursors was accompanied by an increase in the production of immature astrocytes. We show that HDACs control neurogenesis by inhibition of the bone morphogenetic protein BMP2/4 signaling pathway in radial glial cells. HDACs function at the transcriptional level by inhibiting and promoting, respectively, the expression of Bmp2 and Smad7, an intracellular inhibitor of BMP signaling. Inhibition of the BMP2/4 signaling pathway restored normal levels of neurogenesis and astrogliogenesis to both ganglionic eminence- and cortex-derived cultures in which HDACs were inhibited. CONCLUSIONS: Our results demonstrate a transcriptionally-based regulation of BMP2/4 signaling by HDACs both in vivo and in vitro that is critical for neurogenesis in the ganglionic eminences and that modulates cortical

  16. BMP-2 in der Therapie der Pseudarthrose langer Röhrenknochen

    OpenAIRE

    Hellriegel, Tom

    2010-01-01

    Effective therapy for long bone non-unions is still a challenge in trauma and orthopedic surgery and treatment is time and cost-intensive. Complications can lead to ensuing health-related problems for the patient and their ability to work can be restricted. An innovative approach to stimulate bone regeneration is the application of growth factors. Bone morphogenetic protein-2 (BMP-2) has a high osteoinductive capacity and might stimulate human non-union healing. The purpose of this stud...

  17. BMP2 gene delivery to bone mesenchymal stem cell by chitosan-g-PEI nonviral vector

    Science.gov (United States)

    Yue, Jianhui; Wu, Jun; Liu, Di; Zhao, Xiaoli; Lu, William W.

    2015-04-01

    Nanotechnology has made a significant impact on the development of nanomedicine. Nonviral vectors have been attracting more attention for the advantage of biosafety in gene delivery. Polyethylenimine (PEI)-conjugated chitosan (chitosan-g-PEI) emerged as a promising nonviral vector and has been demonstrated in many tumor cells. However, there is a lack of study focused on the behavior of this vector in stem cells which hold great potential in regenerative medicine. Therefore, in this study, in vitro gene delivering effect of chitosan-g-PEI was investigated in bone marrow stem cells. pIRES2-ZsGreen1-hBMP2 dual expression plasmid containing both the ZsGreen1 GFP reporter gene and the BMP2 functional gene was constructed for monitoring the transgene expression level. Chitosan-g-PEI-mediated gene transfer showed 17.2% of transfection efficiency and more than 80% of cell viability in stem cells. These values were higher than that of PEI. The expression of the delivered BMP2 gene in stem cells enhanced the osteogenic differentiation. These results demonstrated that chitosan-g-PEI is capable of applying in delivering gene to stem cells and providing potential applications in stem cell-based gene therapy.

  18. Fabrication of an rhBMP-2 loaded porous β-TCP microsphere-hyaluronic acid-based powder gel composite and evaluation of implant osseointegration

    OpenAIRE

    Lee, Jae Hyup; Kim, Jungju; Baek, Hae-Ri; Lee, Kyung Mee; Seo, Jun-Hyuk; Lee, Hyun-Kyung; Lee, A-Young; Zheng, Guang Bin; Chang, Bong-Soon; Lee, Choon-Ki

    2014-01-01

    Methods to improve osseointegration that include implantation of rhBMP-2 with various kinds of carriers are currently of considerable interest. The present study was conducted to evaluate if the rhBMP-2 loaded β-TCP microsphere-hyaluronic acid-based powder-like hydrogel composite (powder gel) can act as an effective rhBMP-2 carrier for implantation in host bone with a bone defect or poor bone quality. The release pattern for rhBMP-2 was then evaluated against an rhBMP-2-loaded collagen sponge...

  19. LRP4 third β-propeller domain mutations cause novel congenital myasthenia by compromising agrin-mediated MuSK signaling in a position-specific manner

    Science.gov (United States)

    Ohkawara, Bisei; Cabrera-Serrano, Macarena; Nakata, Tomohiko; Milone, Margherita; Asai, Nobuyuki; Ito, Kenyu; Ito, Mikako; Masuda, Akio; Ito, Yasutomo; Engel, Andrew G.; Ohno, Kinji

    2014-01-01

    Congenital myasthenic syndromes (CMS) are heterogeneous disorders in which the safety margin of neuromuscular transmission is compromised by one or more specific mechanisms. Using Sanger and exome sequencing in a CMS patient, we identified two heteroallelic mutations, p.Glu1233Lys and p.Arg1277His, in LRP4 coding for the postsynaptic low-density lipoprotein receptor-related protein 4. LRP4, expressed on the surface of the postsynaptic membrane of the neuromuscular junction, is a receptor for neurally secreted agrin, and LRP4 bound by agrin activates MuSK. Activated MuSK in concert with Dok-7 stimulates rapsyn to concentrate and anchor AChR on the postsynaptic membrane and interacts with other proteins implicated in the assembly and maintenance of the neuromuscular junction. LRP4 also functions as an inhibitor of Wnt/beta-catenin signaling. The identified mutations in LRP4 are located at the edge of its 3rd beta-propeller domain and decrease binding affinity of LRP4 for both MuSK and agrin. Mutations in the LRP4 3rd beta-propeller domain were previously reported to impair Wnt signaling and cause bone diseases including Cenani–Lenz syndactyly syndrome and sclerosteosis-2. By analyzing naturally occurring and artificially introduced mutations in the LRP4 3rd beta-propeller domain, we show that the edge of the domain regulates the MuSK signaling whereas its central cavity governs Wnt signaling. We conclude that LRP4 is a new CMS disease gene and that the 3rd beta propeller domain of LRP4 mediates the two signaling pathways in a position-specific manner. PMID:24234652

  20. Inhibitory effect of BMP-2 gene transfection mediated by nanoparticles on proliferation of graft vascular inner membrane

    International Nuclear Information System (INIS)

    Objective: To investigate the inhibitory effect of bone morphogenetic protein 2 (BMP-2) gene transfection mediated by nanoparticles (NP) on proliferation of vascular smooth muscle cells (VSMC) in rat vein grafting model, and to provide a new method to prevent restenosis. Methods: The VSMC were transduced in vitro with NP BMP-2 DNA complex prepared with PLGA and used as BMP-2-PLGA group, meanwhile simple PLGA group and control group were set up. The cell proliferation was determined by flow cytometry. Autogenous vein graft models were established in 72 rabbits by transplanting internal branch of jugular vein to carotid artery, then divided into BMP-2 group, empty vector group and simple graft control group. The grafted veins were harvested at 3, 7, 14 and 28 d respectively after operation. The thickness of vascular inner membrane was detected with Verhoeff staining. The exogenous BMP-2 protein expression in veins was determined by Western blotting. The expressions of proliferating nuclear antigen (PCNA) and BMP-2 were detected by immunohistochemistry. Results: Compared with control group, the inhibitory rate of cell proliferation and apoptotic rate in BMP-2-PLGA group were increased obviously (P<0.05) and the cell cycle was arrested in G1 phase (P<0.052). Compared with empty vector group and simple graft control group, the thickness of vascular inner membrane in BMP-2 group was decreased (P<0.01), but there was no significant difference between empty vector group and simple graft control group. Compared with empty vector group and graft simple graft control group, the BMP-2 protein expressions in rabbit vein graft tissue in BMP-2 group 3, 7, 14 d after operation were significantly increased (P<0.05); the PCNA expressions were significantly decreased 7-28 d after operation (P<0.05); but there was no significant difference between empty vector group and simple graft control group. Conclusion: Expression of BMP-2 gene can prevent intimal hyperplasia (IH) and VSMC

  1. Osteo-/odontogenic differentiation of BMP2 and VEGF gene-co-transfected human stem cells from apical papilla.

    Science.gov (United States)

    Zhang, Wen; Zhang, Xiaolei; Ling, Junqi; Wei, Xi; Jian, Yutao

    2016-05-01

    Stem cells from apical papilla (SCAP) possess clear osteo‑/odontogenic differentiation capabilities, and are regarded as the major cellular source for root dentin development. Bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor (VEGF) serve pivotal roles in the modulation of tooth development and dentin formation. However, the synergistic effects of BMP2 and VEGF on osteo‑/odontogenic differentiation of SCAP remain unclear. The current study aimed to investigate the proliferative and osteo‑/odontogenic differentiating capabilities of BMP2 and VEGF gene-co-transfected SCAP (SCAP-BMP2-VEGF) in vitro. The basic characteristics of the isolated SCAP were identified by the induction of multipotent differentiation and by flow cytometry. Lentiviral vector‑mediated gene transfection was conducted with SCAP in order to construct blank vector‑transfected SCAP (SCAP-green fluorescent protein), BMP2 gene-transfected SCAP (SCAP-BMP2), VEGF gene‑transfected SCAP (SCAP‑VEGF) and SCAP-BMP2-VEGF. The Cell Counting Kit 8 assay was used to analyze the proliferative capacities of the four groups of cells. The expression of osteo-/odontogenic genes and proteins in the cells were evaluated by reverse transcription-quantitative polymerase chain reaction and western blotting. The mineralized nodules formed by the four group cells were visualized by alkaline phosphatase (ALP) staining. Among the four groups of cells, SCAP‑VEGF was demonstrated to exhibit increased proliferation, and SCAP‑BMP2‑VEGF exhibited reduced proliferation during eight days observation. SCAP‑BMP2‑VEGF exhibited significantly increased expression levels of ALP, osteocalcin, dentin sialophosphoprotein, dentin matrix acidic phosphoprotein gene 1 and dentin sialoprotein than the other three groups at the majority of the time points. Furthermore, the SCAP‑BMP2‑VEGF group exhibited a significantly greater number of ALP‑positive mineralized nodules than the other

  2. Establishment of Immortalized BMP2/4 Double Knock-Out Osteoblastic Cells Is Essential for Study of Osteoblast Growth, Differentiation, and Osteogenesis.

    Science.gov (United States)

    Wu, Li-An; Wang, Feng; Donly, Kevin J; Baker, Andrew; Wan, Chunyan; Luo, Daoshu; MacDougall, Mary; Chen, Shuo

    2016-06-01

    Bone morphogenetic proteins 2 and 4 (BMP2/4) are essential for osteoblast differentiation and osteogenesis. Generation of a BMP2/4 dual knock-out ((ko/ko) ) osteoblastic cell line is a valuable asset for studying effects of BMP2/4 on skeletal development. In this study, our goal was to create immortalized mouse deleted BMP2/4 osteoblasts by infecting adenoviruses with Cre recombinase and green fluorescent protein genes into immortalized murine floxed BMP2/4 osteoblasts. Transduced BMP2/4(ko/ko) cells were verified by green immunofluorescence and PCR. BMP2/4(ko/ko) osteoblasts exhibited small size, slow cell proliferation rate and cell growth was arrested in G1 and G2 phases. Expression of bone-relate genes was reduced in the BMP2/4(ko/ko) cells, resulting in delay of cell differentiation and mineralization. Importantly, extracellular matrix remodeling was impaired in the BMP2/4(ko/ko) osteoblasts as reflected by decreased Mmp-2 and Mmp-9 expressions. Cell differentiation and mineralization were rescued by exogenous BMP2 and/or BMP4. Therefore, we for the first time described establishment of an immortalized deleted BMP2/4 osteoblast line useful for study of mechanisms in regulating osteoblast lineages. J. Cell. Physiol. 231: 1189-1198, 2016. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:26595646

  3. A late role for bmp2b in the morphogenesis of semicircular canal ducts in the zebrafish inner ear.

    Directory of Open Access Journals (Sweden)

    Katherine L Hammond

    Full Text Available The Bone Morphogenetic Protein (BMP genes bmp2 and bmp4 are expressed in highly conserved patterns in the developing vertebrate inner ear. It has, however, proved difficult to elucidate the function of BMPs during ear development as mutations in these genes cause early embryonic lethality. Previous studies using conditional approaches in mouse and chicken have shown that Bmp4 has a role in semicircular canal and crista development, but there is currently no direct evidence for the role of Bmp2 in the developing inner ear.We have used an RNA rescue strategy to test the role of bmp2b in the zebrafish inner ear directly. Injection of bmp2b or smad5 mRNA into homozygous mutant swirl (bmp2b(-/- embryos rescues the early patterning defects in these mutants and the fish survive to adulthood. As injected RNA will only last, at most, for the first few days of embryogenesis, all later development occurs in the absence of bmp2b function. Although rescued swirl adult fish are viable, they have balance defects suggestive of vestibular dysfunction. Analysis of the inner ears of these fish reveals a total absence of semicircular canal ducts, structures involved in the detection of angular motion. All other regions of the ear, including the ampullae and cristae, are present and appear normal. Early stages of otic development in rescued swirl embryos are also normal.Our findings demonstrate a critical late role for bmp2b in the morphogenesis of semicircular canals in the zebrafish inner ear. This is the first demonstration of a developmental role for any gene during post-embryonic stages of otic morphogenesis in the zebrafish. Despite differences in the early stages of semicircular canal formation between zebrafish and amniotes, the role of Bmp2 in semicircular canal duct outgrowth is likely to be conserved between different vertebrate species.

  4. Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Caiwen; Zhou Huifang; Fu Yao; Gu Ping; Fan Xianqun [Department of Ophthalmology, Shanghai Ninth People' s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011 (China); Liu Guangpeng [Key Laboratory of Tissue Engineering, Shanghai Ninth People' s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011 (China); Zhang Peng [Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Science (China); Hou Hongliang; Tang Tingting, E-mail: drfanxianqun@126.com [Department of Orthopedics, Shanghai Ninth People' s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011 (China)

    2011-02-15

    Bone graft substitutes with osteogenic factors alone often exhibit poor bone regeneration due to inadequate vascularization. Combined delivery of osteogenic and angiogenic factors from biodegradable scaffolds may enhance bone regeneration. We evaluated the effects of bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor (VEGF), combined with natural coral scaffolds, on the repair of critical-sized bone defects in rabbit orbits. In vitro expanded rabbit bone marrow stromal cells (BMSCs) were transfected with human BMP2 and VEGF165 genes. Target protein expression and osteogenic differentiation were confirmed after gene transduction. Rabbit orbital defects were treated with a coral scaffold loaded with BMP2-transduced and VEGF-transduced BMSCs, BMP2-expressing BMSCs, VEGF-expressing BMSCs, or BMSCs without gene transduction. Volume and density of regenerated bone were determined by micro-computed tomography at 4, 8, and 16 weeks after implantation. Neovascularity, new bone deposition rate, and new bone formation were measured by immunostaining, tetracycline and calcein labelling, and histomorphometric analysis at different time points. The results showed that VEGF increased blood vessel formation relative to groups without VEGF. Combined delivery of BMP2 and VEGF increased new bone deposition and formation, compared with any single factor. These findings indicate that mimicking the natural bone development process by combined BMP2 and VEGF delivery improves healing of critical-sized orbital defects in rabbits.

  5. An experimental study on application of implant to irradiated bone. Effect of combination with rhBMP-2

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate the effects of rhBMP-2 on wound healing around implants placed in irradiated bone. Fifty-four male Wistar rats were used. A single dose of 30 Gy irradiation from a Linac source was delivered to the right lower leg of all rats. The left leg was kept as a non-irradiated site. A pure titanium screw with a block of Poly D, L-lactic-co-glycolic acid and gelatin sponge (PGS) containing 100 ng rhBMP-2 was installed to the bilateral tibial proximal metaphysis three months after irradiation. The rats in which the screw and PGS without rhBMP-2 were implanted and those in which only the screw was implanted served as controls. The rats were sacrificed one, two, and eight weeks after the placement. Non-decalcified specimens stained with toluidine blue were used for histological analyses. The bone volume in the medullary cavity and bone-implant contact ratio was also quantified with a contact microradiogram. Administration of rhBMP-2 promoted bone formation around the implant of the irradiated group. Administration of rhBMP-2 improved the bone-implant contact of the irradiated group in the early time period. The results indicate that simultaneous administration of rhBMP-2 is effective in implant placement into irradiated bone. (author)

  6. Optimization of entrapping conditions to improve the release of BMP-2 from PELA carriers by response surface methodology

    International Nuclear Information System (INIS)

    A microcapsule prepared from triblock copolymer poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA, PELA) was investigated as a controlled release carrier for recombinant human bone morphogenetic protein-2 (rhBMP-2). The rhBMP-2/PELA microspheres were prepared using the water-in-oil-in-water (W/O/W) solvent evaporation method. This work was conducted to optimize the entrapping conditions of the rhBMP-2 loaded PELA copolymer. The effects on encapsulation efficiency (EE) of different molecular weights (MW) of PEG in the copolymer, the amount of PELA, the amount of rhBMP-2, the span-20 concentration, the polyvinyl alcohol (PVA) concentration and stirring time were tested. On the basis of single-factor experiments, the optimum parameters were achieved using response surface methodology (RSM). The results showed that the highest EE of BMP-2 was achieved with a span-20 concentration of 0.5%, PEG MW 4000 Da, a stirring time of 30 min at 800 rpm min−1, 282.3 mg of PELA, 1 μg of rhBMP-2 and PVA concentration 0.79%. Under these optimal conditions, it was predicted that the highest EE to be achieved would be 76.5%; the actual EE achieved was 75%. (paper)

  7. Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration

    International Nuclear Information System (INIS)

    Bone graft substitutes with osteogenic factors alone often exhibit poor bone regeneration due to inadequate vascularization. Combined delivery of osteogenic and angiogenic factors from biodegradable scaffolds may enhance bone regeneration. We evaluated the effects of bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor (VEGF), combined with natural coral scaffolds, on the repair of critical-sized bone defects in rabbit orbits. In vitro expanded rabbit bone marrow stromal cells (BMSCs) were transfected with human BMP2 and VEGF165 genes. Target protein expression and osteogenic differentiation were confirmed after gene transduction. Rabbit orbital defects were treated with a coral scaffold loaded with BMP2-transduced and VEGF-transduced BMSCs, BMP2-expressing BMSCs, VEGF-expressing BMSCs, or BMSCs without gene transduction. Volume and density of regenerated bone were determined by micro-computed tomography at 4, 8, and 16 weeks after implantation. Neovascularity, new bone deposition rate, and new bone formation were measured by immunostaining, tetracycline and calcein labelling, and histomorphometric analysis at different time points. The results showed that VEGF increased blood vessel formation relative to groups without VEGF. Combined delivery of BMP2 and VEGF increased new bone deposition and formation, compared with any single factor. These findings indicate that mimicking the natural bone development process by combined BMP2 and VEGF delivery improves healing of critical-sized orbital defects in rabbits.

  8. RhBMP-2 microspheres-loaded chitosan/collagen scaffold enhanced osseointegration: an experiment in dog.

    Science.gov (United States)

    Shi, Shanshan; Cheng, Xiangrong; Wang, Jiawei; Zhang, Wei; Peng, Lin; Zhang, Yufeng

    2009-01-01

    The purpose of this study is to develop a novel recombinant human bone morphogenetic protein-2 (rhBMP-2) sustained release scaffold for dental implant osseointegration, and to evaluate the effect of this scaffold on promoting bone formation. RhBMP-2 was encapsulated in the poly-D,L-lactide-co-glycolide (PLGA) biodegradable microspheres, which were subsequently dispersed in a chitosan/collagen composite scaffold. This rhBMP-2 microspheres-loaded scaffold (S-MB) was compared with a chitosan/collagen scaffold without microspheres that directly encapsulated rhBMP-2 (S-B) in vitro and in vivo. The microstructure of the new scaffold was examined with scanning electron microscopy. The release profile of rhBMP-2 in vitro was measured at interval periods. The effect of rhBMP-2 encapsulated scaffolds on enhancing bone formation through implantation in dogs' mandibles was identified by histological examination of the regenerated bone after 4 weeks of implantation. Due to PLGA microspheres being loaded, the S-MB exhibited lower values at porosity and swelling rate, as well as a higher effective release dose than that of the S-B. Bone density, bone-implant contact, and bone-fill values measured from dog experiments demonstrated that the S-MB induced bone regeneration more quickly and was timely substituted by new bone. It was concluded that this sustained carrier scaffold based on microspheres was more effective to induce implant osseointegration. PMID:18667455

  9. Does Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) Use in Adult Spinal Deformity (ASD) Increase Complications and Are Complications Associated With Location of rhBMP-2 Use?: A Prospective, Multicenter Study of 279 Consecutive Patients.

    Science.gov (United States)

    Bess, Shay; Line, Breton G; Lafarge, Virginie; Schwab, Frank; Shaffrey, Christopher I; Hart, Robert A; Boachie-Adjei, Oheneba; Akbarnia, Behrooz A; Ames, Christopher P; Burton, Douglas C; Deverin, Vedat; Fu, Kai-Ming G; Gupta, Munish; Hostin, Richard; Kebaish, Khaled; Klineberg, Eric; Mundis, Gregory; O'Brien, Michael; Shelokov, Alexis; Smith, Justin S

    2013-11-18

    Study Design. Multi-center, prospective analysis of consecutive ASD patients.Objective. Evaluate complications associated with rhBMP-2 use in ASDSummary of Background Data. Off-label rhBMP-2 use is common, however under-reporting of rhBMP-2 associated complications has been recently scrutinized.Methods. ASD patients consecutively enrolled into a prospective, multicenter database, were evaluated for type and timing of acute perioperative complications. Inclusion criteria: age ≥ 18 years, ASD, spinal arthrodesis >4 levels, and ≥3 months follow-up. Patients divided into those receiving rhBMP-2 (BMP) or no rhBMP-2 (NOBMP). BMP divided into location of use: posterior (PBMP), interbody (IBMP), and interbody + posterior spine (I+PBMP). Correlations between acute perioperative complications and rhBMP-2 use including total dose, dose/level and location of use were evaluated.Results. 279 patients (mean age 57 years, mean spinal levels fused 12.0, mean follow-up 28.8 months) met inclusion criteria. BMP (n = 172; average posterior dose = 2.5 mg/level, average interbody dose = 5 mg/level) had similar age, smoking history, previous spine surgery, total spinal levels fused, estimated blood loss, and duration of hospital stay as NOBMP (n = 107; p>0.05). BMP had greater Charlson Comorbidity Index (1.9 vs. 1.2), greater scoliosis (43° vs. 38°), longer operative time (488.2 vs. 414.6 minutes), more osteotomies/patient (4.0 vs. 1.6) and greater percentage of anteroposterior fusion (APSF; 20.9% vs. 8.4%) than NOBMP, respectively (p0.05). Multivariate analysis demonstrated small to non-existent correlations between rhBMP-2 use and complications.Conclusions. RhBMP-2 use and location of rhBMP-2 use in ASD surgery, at reported doses, does not increase acute major, neurological or wound complications. Research is needed for higher rhBMP-2 dosing and long-term follow-up. PMID:24253783

  10. BMP-2 functions independently of SHH signaling and triggers cell condensation and apoptosis in regenerating axolotl limbs

    Directory of Open Access Journals (Sweden)

    Finnson Kenneth

    2010-02-01

    Full Text Available Abstract Background Axolotls have the unique ability, among vertebrates, to perfectly regenerate complex body parts, such as limbs, after amputation. In addition, axolotls pattern developing and regenerating autopods from the anterior to posterior axis instead of posterior to anterior like all tetrapods studied to date. Sonic hedgehog is important in establishing this anterior-posterior axis of limbs in all tetrapods including axolotls. Interestingly, its expression is conserved (to the posterior side of limb buds and blastemas in axolotl limbs as in other tetrapods. It has been suggested that BMP-2 may be the secondary mediator of sonic hedgehog, although there is mounting evidence to the contrary in mice. Since BMP-2 expression is on the anterior portion of developing and regenerating limbs prior to digit patterning, opposite to the expression of sonic hedgehog, we examined whether BMP-2 expression was dependent on sonic hedgehog signaling and whether it affects patterning of the autopod during regeneration. Results The expression of BMP-2 and SOX-9 in developing and regenerating axolotl limbs corresponded to the first digits forming in the anterior portion of the autopods. The inhibition of sonic hedgehog signaling with cyclopamine caused hypomorphic limbs (during development and regeneration but did not affect the expression of BMP-2 and SOX-9. Overexpression of BMP-2 in regenerating limbs caused a loss of digits. Overexpression of Noggin (BMP inhibitor in regenerating limbs also resulted in a loss of digits. Histological analysis indicated that the loss due to BMP-2 overexpression was the result of increased cell condensation and apoptosis while the loss caused by Noggin was due to a decrease in cell division. Conclusion The expression of BMP-2 and its target SOX-9 was independent of sonic hedgehog signaling in developing and regenerating limbs. Their expression correlated with chondrogenesis and the appearance of skeletal elements has

  11. Establishment of Immortalized Mouse Bmp2 Knock-Out Dental Papilla Mesenchymal Cells Necessary for Study of Odontoblastic Differentiation and Odontogenesis.

    Science.gov (United States)

    Wu, Lian; Wang, Feng; Donly, Kevin J; Wan, Chunyan; Luo, Daoshu; Harris, Stephen E; MacDougall, Mary; Chen, Shuo

    2015-11-01

    Bmp2 is essential for dentin formation. Bmp2 cKO mice exhibited similar phenotype to dentinogenesis imperfecta, showing dental pulp exposure, hypomineralized dentin, and delayed odontoblast differentiation. As it is relatively difficult to obtain lot of primary Bmp2 cKO dental papilla mesenchymal cells and to maintain a long-term culture of these primary cells, availability of immortalized deleted Bmp2 dental papilla mesenchymal cells is critical for studying the underlying mechanism of Bmp2 signal in odontogenesis. In this study, our goal was to generate an immortalized deleted Bmp2 dental papilla mesenchymal (iBmp2(ko/ko)dp) cell line by introducing Cre recombinase and green fluorescent protein (GFP) into the immortalized mouse floxed Bmp2 dental papilla mesenchymal (iBmp2(fx/fx)dp) cells. iBmp2(ko/ko)dp cells were confirmed by GFP and PCR. The deleted Bmp2 cells exhibited slow cell proliferation rate and cell growth was arrested in G2 phase. Expression of tooth-related marker genes and cell differentiation were decreased in the deleted cells. Importantly, extracellular matrix remodeling was impaired in the iBmp2(ko/ko)dp cells as reflected by the decreased Mmp-9 expression. In addition, with exogenous Bmp2 induction, these cell differentiation and mineralization were rescued as well as extracellular matrix remodeling was enhanced. Therefore, we for the first time described establishment of iBmp(ko/ko) cells that are useful for study of mechanisms in regulating dental papilla mesenchymal cell lineages. PMID:26037045

  12. Establishment of Immortalized Mouse Bmp2 Knock-Out Dental Papilla Mesenchymal Cells Necessary for Study of Odontoblastic Differentiation and Odontogenesis

    Science.gov (United States)

    Wu, Lian; Wang, Feng; Donly, Kevin J.; Wan, Chunyan; Luo, Daoshu; Harris, Stephen E.; Macdougall, Mary; Chen, Shuo

    2016-01-01

    Bmp2 is essential for dentin formation. Bmp2 cKO mice exhibited similar phenotype to dentinogenesis imperfecta, showing dental pulp exposure, hypomineralized dentin, and delayed odontoblast differentiation. As it is relatively difficult to obtain lot of primary Bmp2 cKO dental papilla mesenchymal cells and to maintain a long-term culture of these primary cells, availability of immortalized deleted Bmp2 dental papilla mesenchymal cells is critical for studying the underlying mechanism of Bmp2 signal in odontogenesis. In this study, our goal was to generate an immortalized deleted Bmp2 dental papilla mesenchymal (iBmp2ko/ko dp) cell line by introducing Cre fluorescent protein (GFP) into the immortalized mouse floxed Bmp2 dental papilla mesenchymal (iBmp2fx/fx dp) cells. iBmp2ko/ko dp cells were confirmed by GFP and PCR. The deleted Bmp2 cells exhibited slow cell proliferation rate and cell growth was arrested in G2 phase. Expression of tooth-related marker genes and cell differentiation were decreased in the deleted cells. Importantly, extracellular matrix remodeling was impaired in the iBmp2ko/ko dp cells as reflected by the decreased Mmp-9 expression. In addition, with exogenous Bmp2 induction, these cell differentiation and mineralization were rescued as well as extracellular matrix remodeling was enhanced. Therefore, we for the first time described establishment of iBmpko/ko cells that are useful for study of mechanisms in regulating dental papilla mesenchymal cell lineages. PMID:26037045

  13. Osteoinductivity Assessment of BMP-2 Loaded Composite Chitosan-Nano-Hydroxyapatite Scaffolds in a Rat Muscle Pouch

    Directory of Open Access Journals (Sweden)

    Warren O. Haggard

    2011-08-01

    Full Text Available The objective of this study was to evaluate the osteoinductivity of composite chitosan-nano-hydroxyapatite scaffolds in a rat muscle pouch model. Previous in vitro characterization demonstrated the ability of the scaffolds to promote bone regeneration and as a carrier for local delivery of BMP-2. Composite microspheres were prepared using a co-precipitation method, and scaffolds were fabricated using an acid wash to adhere beads together. To determine the in vivo osteoinductivity of the scaffolds, the following groups (n = 6 were implanted into muscle pouches created in the latissimus dorsi of Sprague Dawley rats: (A lyophilized scaffolds without rhBMP-2, (B lyophilized scaffolds with rhBMP-2, (C non-lyophilized scaffolds with rhBMP-2, and (D absorbable collagen sponge with rhBMP-2 (control. Groups B, C, and D were loaded with 4 mL of a 9.0 μg/mL solution of rhBMP-2 for 48 h. The rats were sacrificed after one month and samples were analyzed for amount of residual implant material, new bone, and osteoid. Although the experimental groups displayed minimal degradation after one month, all of the scaffolds contained small amounts of woven bone and considerable amounts of osteoid. Approximately thirty percent of the open space available for tissue ingrowth in the scaffolds contained new bone or osteoid in the process of mineralization. The ability of the composite scaffolds (with and without BMP-2 to promote ectopic bone growth in vivo was demonstrated.

  14. Evaluation of nanostructure and microstructure of bone regenerated by BMP-2-porous scaffolds.

    Science.gov (United States)

    Del Rosario, Carlos; Rodríguez-Evora, Maria; Reyes, Ricardo; González-Orive, Alejandro; Hernández-Creus, Alberto; Shakesheff, Kevin M; White, Lisa J; Delgado, Araceli; Evora, Carmen

    2015-09-01

    In this study, three systems containing BMP-2 were fabricated, including two electrospun sandwich-like-systems of PLGA 75:25 and PLGA 50:50 and a microsphere system of PLGA 50:50 to be implanted in a critical size defect in rat calvaria. The in vivo BMP-2 release profiles of the three systems were similar. The total dose was released during the first two weeks. To evaluate the nano and microstructure of the regenerated bone a multi-technique analysis was used, including stereo microscope, X-Ray; AFM, micro-CT, and histological analyses. The progression of bone regeneration was followed at 4, 8, and 12 weeks after the microsphere system implantation whereas the two electrospun systems were evaluated at fixed 12 weeks. All the techniques applied showed high bone regeneration. The average values of bone volume density, bone mineral density, Young's modulus, and the percent of bone repair were ∼70% of the values of the native bone. Besides, SEM-EDX analysis indicated that the main chemical elements in the new bone were oxygen, calcium, and phosphorus in a ratio similar to that of native bone. In comparison, the micro-CT may provide an alternative to histology for the evaluation of bone formation at the defect size. PMID:25689580

  15. Segmental bone regeneration using rhBMP-2-loaded collagen/chitosan microspheres composite scaffold in a rabbit model

    International Nuclear Information System (INIS)

    The reconstruction of segmental bone defects remains an urgent problem in the orthopaedic field, and bone morphogenetic protein-2 (BMP-2) is known for its potent osteoinductive properties in bone regeneration. In this study, chitosan microspheres (CMs) were prepared and combined with absorbable collagen sponge to maintain controlled-release recombinant human bone morphogenetic protein-2 (rhBMP-2). The rhBMP-2-loaded composite scaffolds were implanted into 15 mm radius defects of rabbits and the bone-repair ability was evaluated systematically. CMs were spherical in shape and had a polyporous surface, according to SEM images. The complex scaffold exhibited an ideal releasing profile in vitro. The micro-computed tomographic analysis revealed that the rhBMP-2-loaded composite scaffold not only bridged the defects as early as 4 weeks, but also healed the defects and presented recanalization of the bone-marrow cavity at 12 weeks. These results were confirmed by x-ray. When compared with other control groups, the composite scaffold group remarkably enhanced new bone formation and mechanical properties, as evidenced by bone mineral content evaluation, histological observations and biomechanical testing. Moreover, the biocompatibility and appropriate degradation of the composite scaffold could be obtained. All of these results clearly demonstrated that the composite scaffold is a promising carrier of BMP-2 for the treatment of segmental bone defects. (paper)

  16. A composited PEG-silk hydrogel combining with polymeric particles delivering rhBMP-2 for bone regeneration.

    Science.gov (United States)

    Ma, Dakun; An, Gang; Liang, Min; Liu, Yugang; Zhang, Bin; Wang, Yansong

    2016-08-01

    Given the fabulous potential of promoting bone regeneration, BMP-2 has been investigated widely in the bone tissue engineering field. A sophisticated biomaterial loaded with BMP-2, which could avoid the required supraphysiological dose leading to high medical costs and risks of complications, has been considered as a promising strategy to treat non-healing bone defects. In this study, we developed a simple approach to engineer a composited hydrogel consisting polymeric particles (PLA/PLGA) used as a BMP-2 delivery vehicle. Compared with other groups, the introduction of PLA into PEG-silk gels endowed the hydrogel new physicochemical characteristics especially hydrophobicity which inhibited the burst release of BMP-2 and enhanced gel's structural stability. Moreover, such composited gels could stabilize entrapped proteins and maintain their bioactivity fully in vitro. In vivo, the bio-degradability experiment demonstrated this system was biocompatible and the reinforced hydrophobicity significantly decreased degradation rate, and in rat critical-sized cranial defects model, the gel containing PLA promoted the most bone formation. These findings demonstrated the introduction of PLA changed physicochemical features of gels more suitable as a BMP-2 carrier indicated by inducing bone regeneration efficiently in large bone defects at low delivered dose and this system may own translational potential. PMID:27157747

  17. BMP2基因修饰犬脂肪源性基质细胞修复自体大段骨缺损%Repairing canine segmental bone defects using BMP2 gene modified adipose-derived stromal cells

    Institute of Scientific and Technical Information of China (English)

    李慧武; 戴尅戎; 汤亭亭; 张晓玲; 唐坚; 孙晓江; 张双燕; 楼觉人

    2008-01-01

    Objective To evaluate osteogenetic effectiveness of porous β-tricalcium phosphate(β-TCP) ceramic mixed with human bone morphogenetic protein2 gene(Adv-hBMP2)modified adipose derived stromal cells (ADSCs) in the repair of critical-sized bone defects..Methods The ADSCs taken from the back of beagle dogs were modified by the BMP2 gene.The expression and bone-induction ability of BMP2 was identified by ELISA and ectopic bone formation in nude mice.The cells were applied to a β-tricalcium phosphate (TGP)carrier and implanted into ulnar bone defects in the canine model.18 ulnar bone defects were divided into three groups randomly and filled with granular TCP alone,granular TCP and ADSCs,or TCP and ADSCs transduced with Adv-hBMP2 respectively.All dogs were followed clinically and roentgenographically for 16 weeks and then sacrificed.Results ELISA and ectopic bone formation in nude mice showed the recombinant ADSCs could express BMP2 highly and stably.No bone defects healed after implanting granular TCP alone or granular TCP and ADSCs.In the TCP and ADSCs transduced with AdvhBMP2 group,two defects healed,four partly healed.Histological examination showed woven bone at the both end of the cortices but entirelv fibrous tissue in the middle in which defects filled with TCP alone or TCP and ADSCs.Defects filled with TCP and transduced ADSCs showed substatial new bone formation.Histomorphometry showed TCP combined with ADSCs did not significantly increase new bone area compared with TCP alone.TCP and recombinant ADSCs produced a significant increase in newly formed bone area.Conclusion ADSCs tansduced with BMP2 gene in a TCP carrier can enhance bone regeneratmn to repair the critically-sized bone defect.%目的 评价BMP2基因修饰的犬脂肪源性基质细胞(ADSCs)与β-磷酸三钙(β-TCP)复合修复自体大段骨缺损的疗效.方法 从比格犬背部脂肪组织中提取基质细胞,转染腺病毒介导的人BMP2基因(Adv-hBMP2),通过ELISA和裸鼠体内异位成骨实验鉴定BMP

  18. Surface delivery of tunable doses of BMP-2 from an adaptable polymeric scaffold induces volumetric bone regeneration.

    Science.gov (United States)

    Bouyer, Michael; Guillot, Raphael; Lavaud, Jonathan; Plettinx, Cedric; Olivier, Cécile; Curry, Véronique; Boutonnat, Jean; Coll, Jean-Luc; Peyrin, Françoise; Josserand, Véronique; Bettega, Georges; Picart, Catherine

    2016-10-01

    The rapid and effective bone regeneration of large non-healing defects remains challenging. Bioactive proteins, such as bone morphogenetic protein (BMP)-2, are proved their osteoinductivity, but their clinical use is currently limited to collagen as biomaterial. Being able to deliver BMP-2 from any other biomaterial would broaden its clinical use. This work presents a novel means for repairing a critical size volumetric bone femoral defect in the rat by combining a osteoinductive surface coating (2D) to a polymeric scaffold (3D hollow tube) made of commercially-available PLGA. Using a polyelectrolyte film as BMP-2 carrier, we tune the amount of BMP-2 loaded in and released from the polyelectrolyte film coating over a large extent by controlling the film crosslinking level and initial concentration of BMP-2 in solution. Using microcomputed tomography and quantitative analysis of the regenerated bone growth kinetics, we show that the amount of newly formed bone and kinetics can be modulated: an effective and fast repair was obtained in 1-2 weeks in the best conditions, including complete defect bridging, formation of vascularized and mineralized bone tissue. Histological staining and high-resolution computed tomography revealed the presence of bone regeneration inside and around the tube with spatially distinct organization for trabecular-like and cortical bones. The amount of cortical bone and its thickness increased with the BMP-2 dose. In view of the recent developments in additive manufacturing techniques, this surface-coating technology may be applied in combination with various types of polymeric or metallic scaffolds to offer new perspectives of bone regeneration in personalized medicine. PMID:27454063

  19. BMP2 genetically engineered MSCs and EPCs promote vascularized bone regeneration in rat critical-sized calvarial bone defects.

    Directory of Open Access Journals (Sweden)

    Xiaoning He

    Full Text Available Current clinical therapies for critical-sized bone defects (CSBDs remain far from ideal. Previous studies have demonstrated that engineering bone tissue using mesenchymal stem cells (MSCs is feasible. However, this approach is not effective for CSBDs due to inadequate vascularization. In our previous study, we have developed an injectable and porous nano calcium sulfate/alginate (nCS/A scaffold and demonstrated that nCS/A composition is biocompatible and has proper biodegradability for bone regeneration. Here, we hypothesized that the combination of an injectable and porous nCS/A with bone morphogenetic protein 2 (BMP2 gene-modified MSCs and endothelial progenitor cells (EPCs could significantly enhance vascularized bone regeneration. Our results demonstrated that delivery of MSCs and EPCs with the injectable nCS/A scaffold did not affect cell viability. Moreover, co-culture of BMP2 gene-modified MSCs and EPCs dramatically increased osteoblast differentiation of MSCs and endothelial differentiation of EPCs in vitro. We further tested the multifunctional bone reconstruction system consisting of an injectable and porous nCS/A scaffold (mimicking the nano-calcium matrix of bone and BMP2 genetically-engineered MSCs and EPCs in a rat critical-sized (8 mm caviarial bone defect model. Our in vivo results showed that, compared to the groups of nCS/A, nCS/A+MSCs, nCS/A+MSCs+EPCs and nCS/A+BMP2 gene-modified MSCs, the combination of BMP2 gene -modified MSCs and EPCs in nCS/A dramatically increased the new bone and vascular formation. These results demonstrated that EPCs increase new vascular growth, and that BMP2 gene modification for MSCs and EPCs dramatically promotes bone regeneration. This system could ultimately enable clinicians to better reconstruct the craniofacial bone and avoid donor site morbidity for CSBDs.

  20. BMP2 Genetically Engineered MSCs and EPCs Promote Vascularized Bone Regeneration in Rat Critical-Sized Calvarial Bone Defects

    Science.gov (United States)

    He, Xiaoning; Dziak, Rosemary; Yuan, Xue; Mao, Keya; Genco, Robert; Swihart, Mark; Sarkar, Debanjan; Li, Chunyi; Wang, Changdong; Lu, Li; Andreadis, Stelios; Yang, Shuying

    2013-01-01

    Current clinical therapies for critical-sized bone defects (CSBDs) remain far from ideal. Previous studies have demonstrated that engineering bone tissue using mesenchymal stem cells (MSCs) is feasible. However, this approach is not effective for CSBDs due to inadequate vascularization. In our previous study, we have developed an injectable and porous nano calcium sulfate/alginate (nCS/A) scaffold and demonstrated that nCS/A composition is biocompatible and has proper biodegradability for bone regeneration. Here, we hypothesized that the combination of an injectable and porous nCS/A with bone morphogenetic protein 2 (BMP2) gene-modified MSCs and endothelial progenitor cells (EPCs) could significantly enhance vascularized bone regeneration. Our results demonstrated that delivery of MSCs and EPCs with the injectable nCS/A scaffold did not affect cell viability. Moreover, co-culture of BMP2 gene-modified MSCs and EPCs dramatically increased osteoblast differentiation of MSCs and endothelial differentiation of EPCs in vitro. We further tested the multifunctional bone reconstruction system consisting of an injectable and porous nCS/A scaffold (mimicking the nano-calcium matrix of bone) and BMP2 genetically-engineered MSCs and EPCs in a rat critical-sized (8 mm) caviarial bone defect model. Our in vivo results showed that, compared to the groups of nCS/A, nCS/A+MSCs, nCS/A+MSCs+EPCs and nCS/A+BMP2 gene-modified MSCs, the combination of BMP2 gene -modified MSCs and EPCs in nCS/A dramatically increased the new bone and vascular formation. These results demonstrated that EPCs increase new vascular growth, and that BMP2 gene modification for MSCs and EPCs dramatically promotes bone regeneration. This system could ultimately enable clinicians to better reconstruct the craniofacial bone and avoid donor site morbidity for CSBDs. PMID:23565253

  1. Betulinic acid synergically enhances BMP2-induced bone formation via stimulating Smad 1/5/8 and p38 pathways

    OpenAIRE

    Choi, Hyuck; Jeong, Byung-Chul; Kook, Min-Suk; Koh, Jeong-Tae

    2016-01-01

    Background Healing of bone defects is a dynamic and orchestrated process that relies on multiple growth factors and cell types. Bone morphogenetic protein 2 (BMP2) is a key growth factor for bone healing, which stimulates mesenchymal stem cells to differentiate into osteoblasts. Betulinic acid (BetA) is a natural pentacyclic triterpenoid from plants. This study aimed to examine combinatory effects of BetA and BMP2 on ectopic bone generation in mice. Results In MC3T3-E1 preosteoblast culture, ...

  2. Influence of BMP-2 on early follicular development and mRNA expression of oocyte specific genes in bovine preantral follicles cultured in vitro.

    Science.gov (United States)

    Rossi, Rodrigo O D S; da Cunha, Ellen V; Portela, Antonia M L R; Passos, José R S; Costa, José J N; Silva, Anderson W B; Saraiva, Márcia V A; Peixoto, Christina A; Donato, Mariana A M; van den Hurk, Robert; Silva, José R V

    2016-03-01

    This study evaluates the effect of different concentrations (0, 10, 50 and 100ng/mL) of bone morphogenetic protein-2 (BMP-2) on primordial and secondary follicle development. It also investigates the effects of FSH and BMP-2 on the growth, morphology, ultrastructure and expression of mRNA for GDF9, NLRP5 and NPM2 genes in secondary follicles cultured for 18 days. The presence of BMP-2 at all tested concentrations increased the development of primordial follicles in vitro, but the highest concentration of BMP-2 (100 ng/mL) reduced the percentage of normal follicles when compared with tissues cultured with 10 ng/mL BMP-2. During culture of secondary follicles, in contrast to higher concentrations (50 or 100 ng/mL), 10 ng/mL BMP-2 kept the morphology of follicles during initial stages of in vitro culture. This concentration of BMP-2 also benefits maintenance of the ultrastructure of 18-day cultured follicles. The presence of both BMP-2 and FSH in culture medium resulted in a significant (PFSH and BMP-2 reduced follicular mRNA expression of GDF9 and NLRP5 when compared to follicles cultured in media containing only FSH. In combination with FSH, BMP-2 reduced the mRNA levels of NPM2, when compared to follicles cultured in control medium. It is concluded from these data that 10 ng/mL BMP-2 promotes the growth of primordial in vitro and it helps to maintain the ultrastructure of secondary follicles, while FSH is more important for better expression of follicular markers like GDF9 and NLRP5. PMID:26435174

  3. Reduction of Adipose Tissue Formation by the Controlled Release of BMP-2 Using a Hydroxyapatite-Coated Collagen Carrier System for Sinus-Augmentation/Extraction-Socket Grafting

    Directory of Open Access Journals (Sweden)

    Jung-Seok Lee

    2015-11-01

    Full Text Available The effects of hydroxyapatite (HA-coating onto collagen carriers for application of recombinant human bone morphogenetic protein 2 (rhBMP-2 on cell differentiation in vitro, and on in vivo healing patterns after sinus-augmentation and alveolar socket-grafting were evaluated. In vitro induction of osteogenic/adipogenic differentiation was compared between the culture media with rhBMP-2 solution and with the released rhBMP-2 from the control collagen and from the HA-coated collagen. Demineralized bovine bone and collagen/HA-coated collagen were grafted with/without rhBMP-2 in sinus-augmentation and tooth-extraction-socket models. Adipogenic induction by rhBMP-2 released from HA-coated collagen was significantly reduced compared to collagen. In the sinus-augmentation model, sites that received rhBMP-2 exhibited large amounts of vascular tissue formation at two weeks and increased adipose tissue formation at eight weeks; this could be significantly reduced by using HA-coated collagen as a carrier for rhBMP-2. In extraction-socket grafting, dimensional reduction of alveolar ridge was significantly decreased at sites received rhBMP-2 compared to control sites, but adipose tissue was increased within the regenerated socket area. In conclusion, HA-coated collagen carrier for Escherichia coli-derived rhBMP-2 (ErhBMP-2 may reduce in vitro induction of adipogenic differentiation and in vivo adipose bone marrow tissue formation in bone tissue engineering by ErhBMP-2.

  4. Agrin and synaptic laminin are required to maintain adult neuromuscular junctions.

    Directory of Open Access Journals (Sweden)

    Melanie A Samuel

    Full Text Available As synapses form and mature the synaptic partners produce organizing molecules that regulate each other's differentiation and ensure precise apposition of pre- and post-synaptic specializations. At the skeletal neuromuscular junction (NMJ, these molecules include agrin, a nerve-derived organizer of postsynaptic differentiation, and synaptic laminins, muscle-derived organizers of presynaptic differentiation. Both become concentrated in the synaptic cleft as the NMJ develops and are retained in adulthood. Here, we used mutant mice to ask whether these organizers are also required for synaptic maintenance. Deletion of agrin from a subset of adult motor neurons resulted in the loss of acetylcholine receptors and other components of the postsynaptic apparatus and synaptic cleft. Nerve terminals also atrophied and eventually withdrew from muscle fibers. On the other hand, mice lacking the presynaptic organizer laminin-α4 retained most of the synaptic cleft components but exhibited synaptic alterations reminiscent of those observed in aged animals. Although we detected no marked decrease in laminin or agrin levels at aged NMJs, we observed alterations in the distribution and organization of these synaptic cleft components suggesting that such changes could contribute to age-related synaptic disassembly. Together, these results demonstrate that pre- and post-synaptic organizers actively function to maintain the structure and function of adult NMJs.

  5. 脊柱融合术患者BMP-2基因突变的检测及其意义%Mutational analysis of BMP-2 gene in the patients of spinal fusion

    Institute of Scientific and Technical Information of China (English)

    周传利; 陈晓亮

    2007-01-01

    目的 检测脊柱融合术患者的骨形态发生蛋白-2(BMP-2)基因突变状况.方法 从80例行脊柱融合术患者的术前空腹静脉血中提取DNA,采用聚合酶链反应-单链构象多态性分析(PCR-SSCP)及测序技术,检测其BMP-2基因部分编码区及其侧翼序列的突变.结果 脊柱融合术患者的外周静脉血中BMP-2基因有突变:TCG→GCG,TCA→TCG,并引起相应多肽的结构改变.结论 脊柱融合术患者中存在BMP-2基因突变及多态性分布,并有可能影响植骨融合效果.

  6. BMP-2-enhanced chondrogenesis involves p38 MAPK-mediated down-regulation of Wnt-7a pathway.

    Science.gov (United States)

    Jin, Eun-Jung; Lee, Sun-Young; Choi, Young-Ae; Jung, Jae-Chang; Bang, Ok-Sun; Kang, Shin-Sung

    2006-12-31

    The bone morphogenetic protein (BMP) family has been implicated in control of cartilage development. Here, we demonstrate that BMP-2 promotes chondrogenesis by activating p38 mitogen-activated protein kinase (MAPK), which in turn downregulates Wnt-7a/b-catenin signaling responsible for proteasomal degradation of Sox9. Exposure of mesenchymal cells to BMP-2 resulted in upregulation of Sox9 protein and a concomitant decrease in the level of b-catenin protein and Wnt-7a signaling. In agreement with this, the interaction of Sox9 with b-catenin was inhibited in the presence of BMP-2. Inhibition of the p38 MAPK pathway using a dominant negative mutant led to sustained Wnt-7a signaling and decreased Sox9 expression, with consequent inhibition of precartilage condensation and chondrogenic differentiation. Moreover, overexpression of b-catenin caused degradation of Sox9 via the ubiquitin/26S proteasome pathway. Our results collectively indicate that the increase in Sox9 protein resulting from downregulation of b-catenin/Wnt-7a signaling is mediated by p38 MAPK during BMP-2 induced chondrogenesis in chick wing bud mesenchymal cells. PMID:17202865

  7. Vitapex can promote the expression of BMP-2 during the bone regeneration of periapical lesions in rats

    Directory of Open Access Journals (Sweden)

    Xianyin Xia

    2013-01-01

    Full Text Available Purpose: To investigate the effect of Vitapex on the healing of periapical lesions and the expression of bone morphogenetic protein (BMP-2 during the periapical bone regeneration. Materials and Methods: Periapical lesions were induced in Sprague-Dawley (S-D rats by an occlusal pulp exposure in the mandibular first molars and were verified by X-ray. Total of 36 rats were randomly divided into three groups, and they were obturated with Zinc Oxide Eugenol (ZOE, or with Vitapex, or non-treated as negative control group. The rats of three groups were randomly killed at week 0, 2, 4, and 8 after root canal therapy, and then the mandibles were processed for histological examination and immunohistochemistry analysis. Results: At week 0, only a few BMP-2 positive cells could be observed in all rats. While the expression of BMP-2 was dramatically increased in case of Vitapex group at week 2 and week 4, and then climaxed at week 8. However, no apparent changes were observed in ZOE group and negative group at week 2, 4, and 8. Conclusion: These observations suggested that Vitapex has a greater ability in inducing bone regeneration than ZOE by the expression of BMP-2 induction in the treatment of rats experimental periapical lesions.

  8. [BMP-2 gene carried by biodegradable scaffold and fibrinous gel for repairing segmental radial defect in rabbit].

    Science.gov (United States)

    Li, Jianjun; Wang, Enbo; Sun, Hongbin; Han, Dong; Wang, Huan; Bai, Lunhao; Li, Lei; Liu, Xueyong; Xu, Xinxiang

    2007-04-01

    Adenovirus carrying BMP-2 gene, after being mixed with fibrinous gel, was siphoned off on biodegradable scaffolds (PLA/PCL). The composite was used to repair 1.5 cm long radius defect in rabbits. Four methods were in use in the experiments: Ad-BMP-2 plus fibrinous gel and PLA/PCL (Group A), reconstructed hBMP-2 plus fibrinous gel and PLA/PCL (Group B), Ad-Lacz plus fibrinous gel and PLA/PCL (Group C), and fibrinous gel and PLA/PCL (Group D). Results showed that the defects treated in Group A were repaired with much more new bone regenerated, bridged earlier and stronger than those in Group B 12 weeks after operation. The defects treated in the other two groups could not attain osseous tissue healing. BMP-2 gene carried by biodegradable scaffold and fibrinous gel is easy to conduct and has very strong osteoinduction ability. It is really a good method to repair segmental bone defects. PMID:17591257

  9. In vitro and in vivo evaluation of bone morphogenetic protein-2 (BMP-2) immobilized collagen-coated polyetheretherketone (PEEK)

    Science.gov (United States)

    Du, Ya-Wei; Zhang, Li-Nan; Ye, Xin; Nie, He-Min; Hou, Zeng-Tao; Zeng, Teng-Hui; Yan, Guo-Ping; Shang, Peng

    2015-03-01

    Polyetheretherketone (PEEK) is regarded as one of the most potential candidates of biomaterials in spinal implant applications. However, as a bioinert material, PEEK plays a limited role in osteoconduction and osseointegration. In this study, recombinant human bone morphogenetic protein-2 (rhBMP-2) was immobilized onto the surface of collagen-coated PEEK in order to prepare a multi-functional material. After adsorbed onto the PEEK surface by hydrophobic interaction, collagen was cross-linked with N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). EDC/NHS system also contributed to the immobilization of rhBMP-2. Water contact angle tests, XPS and SEM clearly demonstrated the surface changes. ELISA tests quantified the amount of rhBMP-2 immobilized and the release over a period of 30 d. In vitro evaluation proved that the osteogenesis differentiation rate was higher when cells were cultured on modified PEEK discs than on regular ones. In vivo tests were conducted and positive changes of major parameters were presented. This report demonstrates that the rhBMP-2 immobilized method for PEEK modification increase bioactivity in vitro and in vivo, suggesting its practicability in orthopedic and spinal clinical applications.

  10. Osteogenic differentiation as a result of BMP-2 plasmid DNA based gene therapy in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    F Wegman

    2011-03-01

    Full Text Available Bone regeneration is one of the major focus points in the field of regenerative medicine. A well-known stimulus of bone formation is bone morphogenetic protein-2 (BMP-2, which has already been extensively used in clinical applications. We investigated the possibility of achieving osteogenic differentiation both in vitro and in vivo as a result of prolonged presence of BMP-2 using plasmid DNA-based gene therapy. By delivering BMP-2 cDNA in an alginate hydrogel, a versatile formulation is developed. High transfection efficiencies of up to 95% were obtained in both human multipotent stromal cells (MSCs and MG-63 cells using naked DNA in vitro. Over a period of 5 weeks, an increasing amount of biologically active BMP-2 was released from the cells and remained present in the gel. In vivo, transfected cells were found after both two and six weeks implantation in naked mice, even in groups without seeded cells, thus indicating in vivo transfection of endogenous cells. The protein levels were effective in inducing osteogenic differentiation in vitro, as seen by elevated alkaline phosphatase (ALP production and in vivo, as demonstrated by the production of collagen I and osteocalcin in a mineralised alginate matrix.

  11. N-cadherin mediated distribution of beta-catenin alters MAP kinase and BMP-2 signaling on chondrogenesis-related gene expression.

    Science.gov (United States)

    Modarresi, Rozbeh; Lafond, Toulouse; Roman-Blas, Jorge A; Danielson, Keith G; Tuan, Rocky S; Seghatoleslami, M Reza

    2005-05-01

    We have examined the effect of calcium-dependent adhesion, mediated by N-cadherin, on cell signaling during chondrogenesis of multipotential embryonic mouse C3H10T1/2 cells. The activity of chondrogenic genes, type II collagen, aggrecan, and Sox9 were examined in monolayer (non-chondrogenic), and micromass (chondrogenic) cultures of parental C3H10T1/2 cells and altered C3H10T1/2 cell lines that express a dominant negative form of N-cadherin (delta390-T1/2) or overexpress normal N-cadherin (MNCD2-T1/2). Our findings show that missexpression or inhibition of N-cadherin in C3H10T1/2 cells results in temporal and spatial changes in expression of the chondrogenic genes Sox9, aggrecan, and collagen type II. We have also analyzed activity of the serum response factor (SRF), a nuclear target of MAP kinase signaling implicated in chondrogenesis. In semi-confluent monolayer cultures (minimum cell-cell contact) of C3H10T1/2, MNCD2-T1/2, or delta390-T1/2 cells, there was no significant change in the pattern of MAP kinase or bone morphogenetic protein-2 (BMP-2) regulation of SRF. However, in micromass cultures, the effect of MAP kinase and BMP-2 on SRF activity was proportional to the nuclear localization of beta-catenin, a Wnt stabilized cytoplasmic factor that can associate with lymphoid enhancer-binding factor (LEF) to serve as a transcription factor. Our findings suggest that the extent of adherens junction formation mediated by N-cadherin can modulate the potential Wnt-induced nuclear activity of beta-catenin. PMID:15723280

  12. Simultaneous gene transfer of bone morphogenetic protein (BMP) -2 and BMP-7 by in vivo electroporation induces rapid bone formation and BMP-4 expression

    OpenAIRE

    Kawai, Mariko; Bessho, Kazuhisa; Maruyama, Hiroki; Miyazaki, Jun-ichi; Yamamoto, Toshio

    2006-01-01

    Background: Transcutaneous in vivo electroporation is expected to be an effective gene-transfer method for promoting bone regeneration using the BMP-2 plasmid vector. To promote enhanced osteoinduction using this method, we simultaneously transferred cDNAs for BMP-2 and BMP-7, as inserts in the non-viral vector pCAGGS.

  13. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features

    International Nuclear Information System (INIS)

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer–Emmett–Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g−1, respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG < 0) and entropy increasing (ΔS > 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. - Highlights: • A novel protein adsorption studies based on sheet, rod and whisker of HA were designed. • Kinetic and thermodynamics parameters of BMP-2 and HA bonded materials were evaluated. • Surface topographies of the HA effect BMP-2 adsorption • The HA-whisker material had excellent adsorption performance for protein enrichment. • The electrostatic interaction is responsible for the BMP-2

  14. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu [College of Science, Sichuan Agricultural University, Ya' an 625014 (China); He, Hua [Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Sichuan 611130 (China); Rao, Hanbing, E-mail: rhbscu@gmail.com [College of Science, Sichuan Agricultural University, Ya' an 625014 (China)

    2015-07-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer–Emmett–Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g{sup −1}, respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG < 0) and entropy increasing (ΔS > 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. - Highlights: • A novel protein adsorption studies based on sheet, rod and whisker of HA were designed. • Kinetic and thermodynamics parameters of BMP-2 and HA bonded materials were evaluated. • Surface topographies of the HA effect BMP-2 adsorption • The HA-whisker material had excellent adsorption performance for protein enrichment. • The electrostatic interaction is responsible for the

  15. Retrovirus-mediated transfer of the fusion gene encoding EGFP-BMP2 in mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Zhang Yingang; Guo Xiong; Liu Zheng; Wang Shijie

    2007-01-01

    Objective To develop retrovirus-mediated transfer of the fusion gene encoding EGFP-BMP2 in mesenchymal stem cells. Methods Mesenchymal stem cells from New Zealand white rabbits were transduced with retroviral pLEGFP-BMP2 vector by the optimized retroviral transduction protocol. Fluorescent microscopy's examination was to evaluate the results of the transduction, flow cytometer's analysis was to evaluate the transduction efficiency and the Fluorescence-activated cell sorting method was to sort the transduced cells. Bioactivity test from C2C12K4 cells was to show the expression and bio-activity of the fusion gene. Results Fluorescent microscopy showed the success of the transduction. By flow cytometer's analysis, the mean efficiency of the transduction with EGFP was (42.8±6.1)% SD. Transduced cells were sorted efficiently by the fluorescence-activated cell sorting method and after sorting, almost of those showed the expression of BMP2. Fluorescently and strongly bioactivity test for C2C12K4 cells demonstrated that fluorescent materials were located the surface of cells and the activity of luciferase increased compared with the control. Analysis of long-term expression showed there was no difference between 2 week-time point and 3 month-time point of culture post-sorting. Conclusion Mesenchymal stem cells can be transduced efficiently by retrovirus-mediated transfer of the fusion gene encoding EGFP-BMP2, the highly pure transduced cells are obtained by the fluorescence-activated cell sorting technique, the expressed chimeric protein embraced the double bioactivity of EGFP and BMP2, and moreover, the expression had not attenuated over time.

  16. In silico Mechano-Chemical Model of Bone Healing for the Regeneration of Critical Defects: The Effect of BMP-2.

    Directory of Open Access Journals (Sweden)

    Frederico O Ribeiro

    Full Text Available The healing of bone defects is a challenge for both tissue engineering and modern orthopaedics. This problem has been addressed through the study of scaffold constructs combined with mechanoregulatory theories, disregarding the influence of chemical factors and their respective delivery devices. Of the chemical factors involved in the bone healing process, bone morphogenetic protein-2 (BMP-2 has been identified as one of the most powerful osteoinductive proteins. The aim of this work is to develop and validate a mechano-chemical regulatory model to study the effect of BMP-2 on the healing of large bone defects in silico. We first collected a range of quantitative experimental data from the literature concerning the effects of BMP-2 on cellular activity, specifically proliferation, migration, differentiation, maturation and extracellular matrix production. These data were then used to define a model governed by mechano-chemical stimuli to simulate the healing of large bone defects under the following conditions: natural healing, an empty hydrogel implanted in the defect and a hydrogel soaked with BMP-2 implanted in the defect. For the latter condition, successful defect healing was predicted, in agreement with previous in vivo experiments. Further in vivo comparisons showed the potential of the model, which accurately predicted bone tissue formation during healing, bone tissue distribution across the defect and the quantity of bone inside the defect. The proposed mechano-chemical model also estimated the effect of BMP-2 on cells and the evolution of healing in large bone defects. This novel in silico tool provides valuable insight for bone tissue regeneration strategies.

  17. Repair of Cranial Bone Defects Using rhBMP2 and Submicron Particle of Biphasic Calcium Phosphate Ceramics with Through-Hole

    Directory of Open Access Journals (Sweden)

    Byung-Chul Jeong

    2015-01-01

    Full Text Available Recently a submicron particle of biphasic calcium phosphate ceramic (BCP with through-hole (donut-shaped BCP (d-BCP was developed for improving the osteoconductivity. This study was performed to examine the usefulness of d-BCP for the delivery of osteoinductive rhBMP2 and the effectiveness on cranial bone regeneration. The d-BCP was soaked in rhBMP2 solution and then freeze-dried. Scanning electron microscope (SEM, energy dispersive spectroscopy (EDS, and Raman spectroscopy analyses confirmed that rhBMP2 was well delivered onto the d-BCP surface and the through-hole. The bioactivity of the rhBMP2/d-BCP composite was validated in MC3T3-E1 cells as an in vitro model and in critical-sized cranial defects in C57BL/6 mice. When freeze-dried d-BCPs with rhBMP2 were placed in transwell inserts and suspended above MC3T3-E1, alkaline phosphatase activity and osteoblast-specific gene expression were increased compared to non-rhBMP2-containing d-BCPs. For evaluating in vivo effectiveness, freeze-dried d-BCPs with or without rhBMP2 were implanted into critical-sized cranial defects. Microcomputed tomography and histologic analysis showed that rhBMP2-containing d-BCPs significantly enhanced cranial bone regeneration compared to non-rhBMP2-containing control. These results suggest that a combination of d-BCP and rhBMP2 can accelerate bone regeneration, and this could be used to develop therapeutic strategies in hard tissue healing.

  18. Repair of Rabbit Femoral Defects with a Novel BMP2-derived Oligopeptide P24

    Institute of Scientific and Technical Information of China (English)

    Zhixia DUAN; Qixin ZHENG; Xiaodong GUO; Changwen LI; Bin WU; Weigang WU

    2008-01-01

    In this study, the bioactivity of a novel BMP2-derived oligopeptide P24 was investigated by using the model of rabbit femoral defect after loaded in the biodegradable poly (lactic acid / glycolic acid / asparagic acid-co-polyethylene glycol) (PLGA-[ASP-PEG]). A 1.5-cm unilateral segmental bone defect was created in the left femoral diaphysis in each of the 30 new zealand white rabbits.The defects of 18 legs filled with BMP2-derived peptide P24 combined with PLGA-[ASP-PEG]scaffold serves as the experimental group, and the defects in the rest 12 rabbits filled with(PLGA-[ASP-PEG]) without P24 as control group. The bone-repairing capability in the target region of the two group was grossly, radiologically, histopathologically and biomechanically evaluated 4, 8and 12 weeks after the operation. Our results showed that in each group, primary healing of incision was achieved in the two groups. Radiographically, in experimental group, defects were filled with induced callus within 8 weeks, and a cortical bone-like structure was observed in some animals at the12th week. According to the standardized stage of bone defect repair, 9 (64.28%) achieved grade-4healing. In contrast, little bone formation was seen in the defects even 12 weeks after the operation,and 5 (62.50%) had grade 0 healing in this group. Histologically, tissue engineering material was mostly absorbed and cartilage was found around implants in the experimental group at the 4th week;8 weeks after operation, the engineering material was completely absorbed, and formation of woven bone was observed and typical trabecular bone structure could be seen. In control group, 8 weeks after operation, the defect was filled with fibrous tissues, and no bone-like structure was observed. Statistical analysis showed very significant difference in biomechanical indicators between the two groups (P<0.05). It is concluded that new oligopeptide P24 can induce excellent bone regeneration and promote bone repair.

  19. Modernization of NBC protection system of ICV BMP - 2 and 2K

    International Nuclear Information System (INIS)

    The ICV BMP-2 and 2K are of Russian origin and has the basic Nuclear Biological Chemical (NBC) protection system in terms of providing a pressurized crew compartment with clean and filtered air from NBC filters. However, the complete system is manual. It does not have any sensors for sensing Initial Nuclear Radiation (INR), Fallout Radiation and Chemical Warfare Agents (CWA) detector. The nuclear radiations, at high doses, have severe effects in humans and sensitive electronic equipment. The threat comes from external exposure to ionizing radiation as well as heat, blast and internal radiological contamination. The combat effectiveness of the crew is severely affected at radiation exposure of 2 Sv and above. The lethal dose, LD-50/30, is 4.5 Sv. This paper describes the work carried out for the automation of NBC protection system by incorporating BMPs with Radiation sensor (RADMAC), Chemical agent detector (GlD-3), Automatic Control Unit (ACU), Blower Control Unit (BCU) and cable harness. (author)

  20. Fabrication of Core-Shell PEI/pBMP2-PLGA Electrospun Scaffold for Gene Delivery to Periodontal Ligament Stem Cells

    Directory of Open Access Journals (Sweden)

    Qiao Xie

    2016-01-01

    Full Text Available Bone tissue engineering is the most promising technology for enhancing bone regeneration. Scaffolds loaded with osteogenic factors improve the therapeutic effect. In this study, the bioactive PEI (polyethylenimine/pBMP2- (bone morphogenetic protein-2 plasmid- PLGA (poly(D, L-lactic-co-glycolic acid core-shell scaffolds were prepared using coaxial electrospinning for a controlled gene delivery to hPDLSCs (human periodontal ligament stem cells. The pBMP2 was encapsulated in the PEI phase as a core and PLGA was employed to control pBMP2 release as a shell. First, the scaffold characterization and mechanical properties were evaluated. Then the gene release behavior was analyzed. Our results showed that pBMP2 was released at high levels in the first few days, with a continuous release behavior in the next 28 days. At the same time, PEI/pBMP2 showed high transfection efficiency. Moreover, the core-shell electrospun scaffold showed BMP2 expression for a much longer time (more than 28 days compared with the single axial electrospun scaffold, as evaluated by qRT-PCR and western blot after culturing with hPDLSCs. These results suggested that the core-shell PEI/pBMP2-PLGA scaffold fabricated by coaxial electrospinning had a good gene release behavior and showed a prolonged expression time with a high transfection efficiency.

  1. Integrins, muscle agrin and sarcoglycans during muscular inactivity conditions: an immunohistochemical study

    Directory of Open Access Journals (Sweden)

    G Anastasi

    2009-06-01

    Full Text Available Sarcoglycans are transmembrane proteins that seem to be functionally and pathologically as important as dystrophin. Sarcoglycans cluster together to form a complex, which is localized in the cell membrane of skeletal, cardiac, and smooth muscle. It has been proposed that the dystrophin-glycoprotein complex (DGC links the actin cytoskeleton with the extracellular matrix and the proper maintenance of this connection is thought to be crucial to the mechanical stability of the sarcolemma. The integrins are a family of heterodimeric cell surface receptors which play a crucial role in cell adhesion including cell-matrix and intracellular interactions and therefore are involved in various biological phenomena, including cell migration, and differentiation tissue repair. Sarcoglycans and integrins play a mechanical and signaling role stabilizing the systems during cycles of contraction and relaxation.Several studies suggested the possibility that integrins might play a role in muscle agrin signalling. On these basis, we performed an immunohistochemical analyzing sarcoglycans, integrins and agrin, on human skeletal muscle affected by sensitive-motor polyneuropathy, in order to better define the correlation between these proteins and neurogenic atrophy due to peripheral neuropathy. Our results showed the existence of a cascade mechanism which provoke a loss of regulatory effects of muscle activity on costameres, due to loss of muscle and neural agrin.This cascade mechanism could determine a quantitative modification of transmembrane receptors and loss of ?7B could be replaced and reinforced by enhanced expression of the ?7A integrin to restore muscle fiber viability. Second, it is possible that the reduced cycles of contraction and relaxation of muscle fibers, during muscular atrophy, provoke a loss of mechanical stresses transmitted over cell surface receptors that physically couple the cytoskeleton to extracellular matrix. Consequently, these mechanical

  2. Expression of human bone morphogenetic protein (BMP-2 and BMP-4 genes in transgenic bovine fibroblasts Expressão dos genes bone morphogenetic protein (BMP-2 e BMP-4 em fibroblastos bovinos transgênicos

    Directory of Open Access Journals (Sweden)

    C. Oleskovicz

    2004-08-01

    Full Text Available cDNAs dos genes bone morphogenetic protein-2 (BMP-2 e bone morphogenetic protein-4 (BMP-4 foram sintetizados a partir de RNA total extraído de tecidos ósseos de pacientes que apresentavam trauma facial (fraturas do maxilar entre o 7º e o 10º dia pós-trauma e clonados num vetor para expressão em células mamíferas, sob controle do promotor de citomegalovírus (CMV. Os vetores contendo os genes BMP-2 e o BMP-4 foram utilizados para a transfecção de fibroblastos bovinos. mRNAs foram indiretamente detectados por RT-PCR nas células transfectadas. As proteínas BMP-2 e BMP-4 foram detectadas mediante análises de Western blot. Os resultados demonstram a possibilidade de produção desses fatores de crescimento celular em fibroblastos bovinos. Essas células poderão ser utilizadas como fontes doadoras de material genético para a técnica de transferência nuclear na geração de animais transgênicos.

  3. Injectable perlecan domain 1-hyaluronan microgels potentiate the cartilage repair effect of BMP2 in a murine model of early osteoarthritis

    International Nuclear Information System (INIS)

    The goal of this study was to use bioengineered injectable microgels to enhance the action of bone morphogenetic protein 2 (BMP2) and stimulate cartilage matrix repair in a reversible animal model of osteoarthritis (OA). A module of perlecan (PlnD1) bearing heparan sulfate (HS) chains was covalently immobilized to hyaluronic acid (HA) microgels for the controlled release of BMP2 in vivo. Articular cartilage damage was induced in mice using a reversible model of experimental OA and was treated by intra-articular injection of PlnD1-HA particles with BMP2 bound to HS. Control injections consisted of BMP2-free PlnD1-HA particles, HA particles, free BMP2 or saline. Knees dissected following these injections were analyzed using histological, immunostaining and gene expression approaches. Our results show that knees treated with PlnD1-HA/BMP2 had lesser OA-like damage compared to control knees. In addition, the PlnD1-HA/BMP2-treated knees had higher mRNA levels encoding for type II collagen, proteoglycans and xylosyltransferase 1, a rate-limiting anabolic enzyme involved in the biosynthesis of glycosaminoglycan chains, relative to control knees (PlnD1-HA). This finding was paralleled by enhanced levels of aggrecan in the articular cartilage of PlnD1-HA/BMP2-treated knees. Additionally, decreases in the mRNA levels encoding for cartilage-degrading enzymes and type X collagen were seen relative to controls. In conclusion, PlnD1-HA microgels constitute a formulation improvement compared to HA for efficient in vivo delivery and stimulation of proteoglycan and cartilage matrix synthesis in mouse articular cartilage. Ultimately, PlnD1-HA/BMP2 may serve as an injectable therapeutic agent for slowing or inhibiting the onset of OA after knee injury.

  4. Effect of implantation of biodegradable magnesium alloy on BMP-2 expression in bone of ovariectomized osteoporosis rats

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yue, E-mail: 373073766@qq.com [Liaoning Medical University, 40 Songpo Road, Jinzhou, 121000 (China); Ren, Ling, E-mail: lren@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Liu, Chang, E-mail: meixifan1971@163.com [Liaoning Medical University, 40 Songpo Road, Jinzhou, 121000 (China); Yuan, Yajiang, E-mail: yuan925@163.com [Liaoning Medical University, 40 Songpo Road, Jinzhou, 121000 (China); Lin, Xiao, E-mail: linx@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Tan, Lili, E-mail: lltan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Chen, Shurui, E-mail: 272146792@qq.com [Liaoning Medical University, 40 Songpo Road, Jinzhou, 121000 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China); Mei, Xifan, E-mail: meixifan1971@163.com [Liaoning Medical University, 40 Songpo Road, Jinzhou, 121000 (China)

    2013-10-01

    The study was focused on the implantation of a biodegradable AZ31 magnesium alloy into the femoral periosteal of the osteoporosis modeled rats. The experimental results showed that after 4 weeks implantation of AZ31 alloy in the osteoporosis modeled rats, the expression of BMP-2 in bone tissues of the rats was much enhanced, even higher than the control group, which should promote the bone formation and be beneficial for reducing the harmful effect of osteoporosis. Results of HE stains showed that the implantation of AZ31 alloy did not have obvious pathological changes on both the liver and kidney of the animal. - Highlights: • Mg alloy greatly increased expression of BMP-2 in osteoporosis modeled rat bone. • Mg alloy showed good biological safety. • Mg alloy is beneficial for reducing the symptom of osteoporosis.

  5. Effect of implantation of biodegradable magnesium alloy on BMP-2 expression in bone of ovariectomized osteoporosis rats

    International Nuclear Information System (INIS)

    The study was focused on the implantation of a biodegradable AZ31 magnesium alloy into the femoral periosteal of the osteoporosis modeled rats. The experimental results showed that after 4 weeks implantation of AZ31 alloy in the osteoporosis modeled rats, the expression of BMP-2 in bone tissues of the rats was much enhanced, even higher than the control group, which should promote the bone formation and be beneficial for reducing the harmful effect of osteoporosis. Results of HE stains showed that the implantation of AZ31 alloy did not have obvious pathological changes on both the liver and kidney of the animal. - Highlights: • Mg alloy greatly increased expression of BMP-2 in osteoporosis modeled rat bone. • Mg alloy showed good biological safety. • Mg alloy is beneficial for reducing the symptom of osteoporosis

  6. Induction of osteoconductivity by BMP-2 gene modification of mesenchymal stem cells combined with plasma-sprayed hydroxyapatite coating

    Science.gov (United States)

    Wu, Jiang; Guo, Ying-qiang; Yin, Guang-fu; Chen, Huai-qing; Kang, Yunqing

    2008-11-01

    Success in bone implant depends greatly on the composition and surface features of the implant. The surface-modification measures not only favor the implant's osteoconductivity, but also promote both bone anchoring and biomechanical stability. This paper reports an approach to combine a hydroxyapatite (HA) coated substrate with a cellular vehicle for the delivery of bone morphogenetic protein-2 (BMP-2) synergistically enhancing the osteoconductivity of implant surfaces. We examined the attachment, growth and osteoinductive activity of transfected BMP-producing bone marrow mesenchymal stem cells (BMSCs) on a plasma-sprayed HA coated substrate. It was found that the HA coated substrate could allow the attachment and growth of BMP-2 gene modified BMSCs, and this combined application synergistically enhanced osteconductivity of the substrate surface. This synergistic method may be of osseointegration value in orthopedic and dental implant surgery.

  7. E. coli-Produced BMP-2 as a Chemopreventive Strategy for Colon Cancer: A Proof-of-Concept Study

    Directory of Open Access Journals (Sweden)

    Saravanan Yuvaraj

    2012-01-01

    Full Text Available Colon cancer is a serious health problem, and novel preventive and therapeutical avenues are urgently called for. Delivery of proteins with anticancer activity through genetically modified bacteria provides an interesting, potentially specific, economic and effective approach here. Interestingly, bone morphogenetic protein 2 (BMP-2 is an important and powerful tumour suppressor in the colon and is thus an attractive candidate protein for delivery through genetically modified bacteria. It has not been shown, however, that BMP production in the bacterial context is effective on colon cancer cells. Here we demonstrate that transforming E. coli with a cDNA encoding an ileal-derived mature human BMP-2 induces effective apoptosis in an in vitro model system for colorectal cancer, whereas the maternal organism was not effective in this respect. Furthermore, these effects were sensitive to cotreatment with the BMP inhibitor Noggin. We propose that prevention and treatment of colorectal cancer using transgenic bacteria is feasible.

  8. Three-Dimensional Printing of rhBMP-2-Loaded Scaffolds with Long-Term Delivery for Enhanced Bone Regeneration in a Rabbit Diaphyseal Defect

    OpenAIRE

    Shim, Jin-Hyung; Kim, Se Eun; Park, Ju Young; Kundu, Joydip; Kim, Sung Won; Kang, Seong Soo; Cho, Dong-Woo

    2014-01-01

    In this study, recombinant human bone morphogenetic protein-2 (rhBMP-2) delivery system with slow mode was successfully developed in three-dimensional (3D) printing-based polycaprolactone (PCL)/poly(lactic-co-glycolic acid) (PLGA) scaffolds for bone formation of critical-sized rabbit segmental diaphyseal defect. To control the delivery of the rhBMP-2, collagen (for long-term delivery up to 28 days) and gelatin (for shor-term delivery within a week) solutions encapsulating rhBMP-2 were dispens...

  9. Mandibular bone repair by implantation of rhBMP-2 in a slow release carrier of polylactic acid--an experimental study in rats.

    OpenAIRE

    Schliephake, Henning; Weich, Herbert A.; Dullin, Christian; Gruber, Rudolf; Frahse, Sarah

    2008-01-01

    The aim of the present study was to test the hypothesis that human recombinant bone morphogenic protein 2 (rhBMP-2) implanted in a slow release carrier of polylactic acid (PLA) can repair a non-healing defect in the rat mandible and maintain the thickness of an augmented volume. p-DL-lactic acid discs were produced and loaded with 48 and 96 microg rhBMP-2 and inserted into non-healing defects of the mandible of 45 Wistar rats. Fifteen rats received implants with 96 microg rhBMP-2 (Group 2), 4...

  10. Effects of rhBMP-2 on Sandblasted and Acid Etched Titanium Implant Surfaces on Bone Regeneration and Osseointegration: Spilt-Mouth Designed Pilot Study

    OpenAIRE

    Nam-Ho Kim; So-Hyoun Lee; Jae-Jun Ryu; Kyung-Hee Choi; Jung-Bo Huh

    2015-01-01

    This study was conducted to evaluate effects of rhBMP-2 applied at different concentrations to sandblasted and acid etched (SLA) implants on osseointegration and bone regeneration in a bone defect of beagle dogs as pilot study using split-mouth design. Methods. For experimental groups, SLA implants were coated with different concentrations of rhBMP-2 (0.1, 0.5, and 1 mg/mL). After assessment of surface characteristics and rhBMP-2 releasing profile, the experimental groups and untreated contro...

  11. Retrovirus-mediated transfer of the fusion gene encoding EGFP-BMP_2 in mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Bone marrow mesenchymal stemcells(MSCs)are pluripotential stemcells that have the capacitytodifferentiate into chondrocytes and osteoblasts[1].Ithas been well documented that bone morphogeneticproteins(BMPs),a group of proteins belonging tothe TGF-βsuperfamily,can induce bone for mationbothin vivoandin vitroas well as promote osteo-blastic differentiation of MSC[2].HeterologousBMP2is successfully transferred to MSCs and genetherapy is employed based on repairing bony andcartilage defects,spinal fusion[3-5]....

  12. Nanotopography Directs Mesenchymal Stem Cells to Osteoblast Lineage through Regulation of microRNA-SMAD-BMP-2 Circuit

    Science.gov (United States)

    KATO, ROGERIO B.; ROY, BHASKAR; DE OLIVEIRA, FABIOLA S.; FERRAZ, EMANUELA P.; DE OLIVEIRA, PAULO T.; KEMPER, AUSTIN G.; HASSAN, MOHAMMAD Q.; ROSA, ADALBERTO L.; BELOTI, MARCIO M.

    2016-01-01

    The aim of this study was to investigate if chemically produced nanotopography on titanium (Ti) surface induces osteoblast differentiation of cultured human bone marrow mesenchymal stem cells (hMSCs) by regulating the expression of microRNAs (miRs). It was demonstrated that Ti with nanotopography induces osteoblast differentiation of hMSCs as evidenced by upregulation of osteoblast specific markers compared with untreated (control) Ti at day 4. At this time-point, miR-sequencing analysis revealed that 20 miRs were upregulated (>2 fold) while 20 miRs were downregulated (>3 fold) in hMSCs grown on Ti with nanotopography compared with control Ti. Three miRs, namely miR-4448, -4708 and -4773, which were significantly downregulated (>5 fold) by Ti with nanotopography affect osteoblast differentiation of hMSCs. These miRs that directly target SMAD1 and SMAD4, both key transducers of the bone morphogenetic protein 2 (BMP-2) osteogenic signal, were upregulated by Ti with nanotopography. Overexpression of miR-4448, -4708 and 4773 in MC3T3-E1 pre-osteoblasts noticeably inhibited gene and protein expression of SMAD1 and SMAD4 and therefore repressed the gene expression of key bone markers. Additionally, it was observed that the treatment with BMP-2 displayed a higher osteogenic effect on MC3T3-E1 cells grown on Ti with nanotopography compared with control Ti, suggesting that the BMP-2 signaling pathway was more effective on this surface. Taken together, these results indicate that a complex regulatory network involving a miR-SMAD-BMP-2 circuit governs the osteoblast differentiation induced by Ti with nanotopography. PMID:24619927

  13. Repair of rabbit radial bone defects using true bone ceramics combined with BMP-2-related peptide and type I collagen

    International Nuclear Information System (INIS)

    An ideal bone graft material is the one characterized with good biocompatibility, biodegradation, osteoconductivity and osteoinductivity. In this study, a novel synthetic BMP-2-related peptide (designated P24) corresponding to residues of the knuckle epitope of BMP-2 was introduced into a biomimetic scaffold based on sintered bovine bone or true bone ceramics (TBC) and type I collagen (TBC/collagen I) using a simulated body fluid (SBF). Hydroxylapatite crystal mineralization with a Ca/P molar ratio of 1.63 was observed on the surface of P24/TBC/collagen I composite by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) techniques. Cell adhesion rate evaluation of bone marrow stromal cells (BMSCs) seeded on materials in vitro showed that the percentage of cells attached to P24/TBC/collagen I composite was significantly higher than that of the TBC/collagen I composite. A 10 mm unilateral segmental bone defect was created in the radius of New Zealand white rabbits and randomly implanted with three groups of biomaterials (Group A: P24/TBC/collagen I composite; Group B: TBC/collagen I composite and Group C: TBC alone). Based on radiographic evaluation and histological examination, the implants of P24/TBC/collagen I composite significantly stimulated bone growth, thereby confirming the enhanced rate of bone healing compared with that of TBC/collagen I composite and TBC alone. It was concluded that BMP-2-related peptide P24 could induce nucleation of calcium phosphate crystals on the surface of TBC/collagen I composite. The TBC/collagen I composite loaded with the synthetic BMP-2-related peptide is a promising scaffold biomaterial for bone tissue engineering.

  14. Elucidation of a Novel Pathway through Which HDAC1 Controls Cardiomyocyte Differentiation through Expression of SOX-17 and BMP2

    OpenAIRE

    Hoxha, Eneda; Lambers, Erin; Wasserstrom, John A.; Mackie, Alexander; Ramirez, Veronica; Abramova, Tatiana; Verma, Suresh K.; Krishnamurthy, Prasanna; Kishore, Raj

    2012-01-01

    Embryonic Stem Cells not only hold a lot of potential for use in regenerative medicine, but also provide an elegant and efficient way to study specific developmental processes and pathways in mammals when whole animal gene knock out experiments fail. We have investigated a pathway through which HDAC1 affects cardiovascular and more specifically cardiomyocyte differentiation in ES cells by controlling expression of SOX17 and BMP2 during early differentiation. This data explains current discrep...

  15. Repair of rabbit radial bone defects using true bone ceramics combined with BMP-2-related peptide and type I collagen

    Energy Technology Data Exchange (ETDEWEB)

    Li Jingfeng; Lin Zhenyu; Zheng Qixin, E-mail: zheng-qx@163.com; Guo Xiaodong, E-mail: gxdwh@yahoo.com.cn; Lan Shenghui; Liu Sunan; Yang Shuhua

    2010-10-12

    An ideal bone graft material is the one characterized with good biocompatibility, biodegradation, osteoconductivity and osteoinductivity. In this study, a novel synthetic BMP-2-related peptide (designated P24) corresponding to residues of the knuckle epitope of BMP-2 was introduced into a biomimetic scaffold based on sintered bovine bone or true bone ceramics (TBC) and type I collagen (TBC/collagen I) using a simulated body fluid (SBF). Hydroxylapatite crystal mineralization with a Ca/P molar ratio of 1.63 was observed on the surface of P24/TBC/collagen I composite by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) techniques. Cell adhesion rate evaluation of bone marrow stromal cells (BMSCs) seeded on materials in vitro showed that the percentage of cells attached to P24/TBC/collagen I composite was significantly higher than that of the TBC/collagen I composite. A 10 mm unilateral segmental bone defect was created in the radius of New Zealand white rabbits and randomly implanted with three groups of biomaterials (Group A: P24/TBC/collagen I composite; Group B: TBC/collagen I composite and Group C: TBC alone). Based on radiographic evaluation and histological examination, the implants of P24/TBC/collagen I composite significantly stimulated bone growth, thereby confirming the enhanced rate of bone healing compared with that of TBC/collagen I composite and TBC alone. It was concluded that BMP-2-related peptide P24 could induce nucleation of calcium phosphate crystals on the surface of TBC/collagen I composite. The TBC/collagen I composite loaded with the synthetic BMP-2-related peptide is a promising scaffold biomaterial for bone tissue engineering.

  16. Full regeneration of segmental bone defects using porous titanium implants loaded with BMP-2 containing fibrin gels

    Directory of Open Access Journals (Sweden)

    J van der Stok

    2015-03-01

    Full Text Available Regeneration of load-bearing segmental bone defects is a major challenge in trauma and orthopaedic surgery. The ideal bone graft substitute is a biomaterial that provides immediate mechanical stability, while stimulating bone regeneration to completely bridge defects over a short period. Therefore, selective laser melted porous titanium, designed and fine-tuned to tolerate full load-bearing, was filled with a physiologically concentrated fibrin gel loaded with bone morphogenetic protein-2 (BMP-2. This biomaterial was used to graft critical-sized segmental femoral bone defects in rats. As a control, porous titanium implants were either left empty or filled with a fibrin gels without BMP-2. We evaluated bone regeneration, bone quality and mechanical strength of grafted femora using in vivo and ex vivo µCT scanning, histology, and torsion testing. This biomaterial completely regenerated and bridged the critical-sized bone defects within eight weeks. After twelve weeks, femora were anatomically re-shaped and revealed open medullary cavities. More importantly, new bone was formed throughout the entire porous titanium implants and grafted femora regained more than their innate mechanical stability: torsional strength exceeded twice their original strength. In conclusion, combining porous titanium implants with a physiologically concentrated fibrin gels loaded with BMP-2 improved bone regeneration in load-bearing segmental defects. This material combination now awaits its evaluation in larger animal models to show its suitability for grafting load-bearing defects in trauma and orthopaedic surgery.

  17. BMP2 induced osteogenic differentiation of human umbilical cord stem cells in a peptide-based hydrogel scaffold

    Science.gov (United States)

    Lakshmana, Shruthi M.

    Craniofacial tissue loss due to traumatic injuries and congenital defects is a major clinical problem around the world. Cleft palate is the second most common congenital malformation in the United States occurring with an incidence of 1 in 700. Some of the problems associated with this defect are feeding difficulties, speech abnormalities and dentofacial anomalies. Current treatment protocol offers repeated surgeries with extended healing time. Our long-term goal is to regenerate bone in the palatal region using tissue-engineering approaches. Bone tissue engineering utilizes osteogenic cells, osteoconductive scaffolds and osteoinductive signals. Mesenchymal stem cells derived from human umbilical cord (HUMSCs) are highly proliferative with the ability to differentiate into osteogenic precursor cells. The primary objective of the study was to characterize HUMSCs and culture them in a 3D hydrogel scaffold and investigate their osteogenic potential. PuraMatrix(TM) is an injectable 3D nanofiber scaffold capable of self-assembly when exposed to physiologic conditions. Our second objective was to investigate the effect of Bone Morphogenic Protein 2 (BMP2) in enhancing the osteogenic differentiation of HUMSCs encapsulated in PuraMatrix(TM). We isolated cells isolated from Wharton's Jelly region of the umbilical cord obtained from NDRI (New York, NY). Isolated cells satisfied the minimal criteria for mesenchymal stem cells (MSCs) as defined by International Society of Cell Therapy in terms of plastic adherence, fibroblastic phenotype, surface marker expression and osteogenic differentiation. Flow Cytometry analysis showed that cells were positive for CD73, CD90 and CD105 while negative for hematopoietic marker CD34. Alkaline phosphatase activity (ALP) of HUMSCs showed peak activity at 2 weeks (p<0.05). Cells were encapsulated in 0.2% PuraMatrix(TM) at cell densities of 10x104, 20x104, 40x10 4 and 80x104. Cell viability with WST and proliferation with Live-Dead cell assays

  18. Identification of a novel agrin-dependent pathway in cell signaling and adhesion within the erythroid niche.

    Science.gov (United States)

    Anselmo, A; Lauranzano, E; Soldani, C; Ploia, C; Angioni, R; D'amico, G; Sarukhan, A; Mazzon, C; Viola, A

    2016-08-01

    Establishment of cell-cell adhesion is crucial in embryonic development as well as within the stem cell niches of an adult. Adhesion between macrophages and erythroblasts is required for the formation of erythroblastic islands, specialized niches where erythroblasts proliferate and differentiate to produce red blood cells throughout life. The Eph family is the largest known family of receptor tyrosine kinases (RTKs) and controls cell adhesion, migration, invasion and morphology by modulating integrin and adhesion molecule activity and by modifying the actin cytoskeleton. Here, we identify the proteoglycan agrin as a novel regulator of Eph receptor signaling and characterize a novel mechanism controlling cell-cell adhesion and red cell development within the erythroid niche. We demonstrate that agrin induces clustering and activation of EphB1 receptors on developing erythroblasts, leading to the activation of α5β1 integrins. In agreement, agrin knockout mice display severe anemia owing to defective adhesion to macrophages and impaired maturation of erythroid cells. These results position agrin-EphB1 as a novel key signaling couple regulating cell adhesion and erythropoiesis. PMID:26990660

  19. The effects of 3D bioactive glass scaffolds and BMP-2 on bone formation in rat femoral critical size defects and adjacent bones

    International Nuclear Information System (INIS)

    Reconstruction of critical size defects in the load-bearing area has long been a challenge in orthopaedics. In the past, we have demonstrated the feasibility of using a biodegradable load-sharing scaffold fabricated from poly(propylene fumarate)/tricalcium phosphate (PPF/TCP) loaded with bone morphogenetic protein-2 (BMP-2) to successfully induce healing in those defects. However, there is limited osteoconduction observed with the PPF/TCP scaffold itself. For this reason, 13-93 bioactive glass scaffolds with local BMP-2 delivery were investigated in this study for inducing segmental defect repairs in a load-bearing region. Furthermore, a recent review on BMP-2 revealed greater risks in radiculitis, ectopic bone formation, osteolysis and poor global outcome in association with the use of BMP-2 for spinal fusion. We also evaluated the potential side effects of locally delivered BMP-2 on the structures of adjacent bones. Therefore, cylindrical 13-93 glass scaffolds were fabricated by indirect selective laser sintering with side holes on the cylinder filled with dicalcium phosphate dehydrate as a BMP-2 carrier. The scaffolds were implanted into critical size defects created in rat femurs with and without 10 μg of BMP-2. The x-ray and micro-CT results showed that a bridging callus was found as soon as three weeks and progressed gradually in the BMP group while minimal bone formation was observed in the control group. Degradation of the scaffolds was noted in both groups. Stiffness, peak load and energy to break of the BMP group were all higher than the control group. There was no statistical difference in bone mineral density, bone area and bone mineral content in the tibiae and contralateral femurs of the control and BMP groups. In conclusion, a 13-93 bioactive glass scaffold with local BMP-2 delivery has been demonstrated for its potential application in treating large bone defects. (paper)

  20. MRI of transforaminal lumbar interbody fusion: imaging appearance with and without the use of human recombinant bone morphogenetic protein-2 (rhBMP-2)

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Michael G.; Goldberg, Judd M.; Gaskin, Cree M.; Barr, Michelle S.; Alford, Bennett [University of Virginia, Department of Radiology and Medical Imaging, Charlottesville, VA (United States); Patrie, James T. [University of Virginia, Department of Public Health Sciences, Charlottesville, VA (United States); Shen, Francis H. [University of Virginia, Department of Orthopedic Surgery, Charlottesville, VA (United States)

    2014-09-15

    To describe the vertebral endplate and intervertebral disc space MRI appearance following TLIF, with and without the use of rhBMP-2, and to determine if the appearance is concerning for discitis/osteomyelitis. After institutional review board approval, 116 TLIF assessments performed on 75 patients with rhBMP-2 were retrospectively and independently reviewed by five radiologists and compared to 73 TLIF assessments performed on 45 patients without rhBMP-2. MRIs were evaluated for endplate signal, disc space enhancement, disc space fluid, and abnormal paraspinal soft tissue. Endplate edema-like signal was reported when T1-weighted hypointensity, T2-weighted hyperintensity, and endplate enhancement were present. Subjective concern for discitis/osteomyelitis on MRI was graded on a five-point scale. Generalized estimating equation binomial regression model analysis was performed with findings correlated with rhBMP-2 use, TLIF level, graft type, and days between TLIF and MRI. The rhBMP-2 group demonstrated endplate edema-like signal (OR 5.66; 95 % CI [1.58, 20.24], p = 0.008) and disc space enhancement (OR 2.40; 95 % CI [1.20, 4.80], p = 0.013) more often after adjusting for the TLIF level, graft type, and the number of days following TLIF. Both groups had a similar temporal distribution for endplate edema-like signal but disc space enhancement peaked earlier in the rhBMP-2 group. Disc space fluid was only present in the rhBMP-2 group. Neither group demonstrated abnormal paraspinal soft tissue and discitis/osteomyelitis was not considered likely in any patient. Endplate edema-like signal and disc space enhancement were significantly more frequent and disc space enhancement developed more rapidly following TLIF when rhBMP-2 was utilized. The concern for discitis/osteomyelitis was similar and minimal in both groups. (orig.)

  1. MRI of transforaminal lumbar interbody fusion: imaging appearance with and without the use of human recombinant bone morphogenetic protein-2 (rhBMP-2)

    International Nuclear Information System (INIS)

    To describe the vertebral endplate and intervertebral disc space MRI appearance following TLIF, with and without the use of rhBMP-2, and to determine if the appearance is concerning for discitis/osteomyelitis. After institutional review board approval, 116 TLIF assessments performed on 75 patients with rhBMP-2 were retrospectively and independently reviewed by five radiologists and compared to 73 TLIF assessments performed on 45 patients without rhBMP-2. MRIs were evaluated for endplate signal, disc space enhancement, disc space fluid, and abnormal paraspinal soft tissue. Endplate edema-like signal was reported when T1-weighted hypointensity, T2-weighted hyperintensity, and endplate enhancement were present. Subjective concern for discitis/osteomyelitis on MRI was graded on a five-point scale. Generalized estimating equation binomial regression model analysis was performed with findings correlated with rhBMP-2 use, TLIF level, graft type, and days between TLIF and MRI. The rhBMP-2 group demonstrated endplate edema-like signal (OR 5.66; 95 % CI [1.58, 20.24], p = 0.008) and disc space enhancement (OR 2.40; 95 % CI [1.20, 4.80], p = 0.013) more often after adjusting for the TLIF level, graft type, and the number of days following TLIF. Both groups had a similar temporal distribution for endplate edema-like signal but disc space enhancement peaked earlier in the rhBMP-2 group. Disc space fluid was only present in the rhBMP-2 group. Neither group demonstrated abnormal paraspinal soft tissue and discitis/osteomyelitis was not considered likely in any patient. Endplate edema-like signal and disc space enhancement were significantly more frequent and disc space enhancement developed more rapidly following TLIF when rhBMP-2 was utilized. The concern for discitis/osteomyelitis was similar and minimal in both groups. (orig.)

  2. Improved Bone Formation in Osteoporotic Rabbits with the Bone Morphogenetic Protein-2 (rhBMP-2) Coated Titanium Screws Which Were Coated By Using Plasma Polymerization Technique

    OpenAIRE

    Salih Gulsen; Dilek Cokeliler; Hilal Goktas; Aysu Kucukturhan; Bilgehan Ozcil; Hakan Caner

    2014-01-01

    Delaying of bone fusion in osteoporotic patients underwent spinal stabilization surgery leads to screw loosening, and this causes pseudoarticulation, mobility and fibrosis at vertebral segments. To prevent these complications, the screws coated with recombinant bone morphogenetic protein-2 (rhBMP-2) could be used. To verify this hypothesis, we coated 5 Titanium screws with rhBMP-2 using plasma polymerization method, and also used 10 uncoated screws for making comparison between coated and unc...

  3. Medium-Term Function of a 3D Printed TCP/HA Structure as a New Osteoconductive Scaffold for Vertical Bone Augmentation: A Simulation by BMP-2 Activation

    Directory of Open Access Journals (Sweden)

    Mira Moussa

    2015-04-01

    Full Text Available Introduction: A 3D-printed construct made of orthogonally layered strands of tricalcium phosphate (TCP and hydroxyapatite has recently become available. The material provides excellent osteoconductivity. We simulated a medium-term experiment in a sheep calvarial model by priming the blocks with BMP-2. Vertical bone growth/maturation and material resorption were evaluated. Materials and methods: Titanium hemispherical caps were filled with either bare- or BMP-2 primed constructs and placed onto the calvaria of adult sheep (n = 8. Histomorphometry was performed after 8 and 16 weeks. Results: After 8 weeks, relative to bare constructs, BMP-2 stimulation led to a two-fold increase in bone volume (Bare: 22% ± 2.1%; BMP-2 primed: 50% ± 3% and a 3-fold decrease in substitute volume (Bare: 47% ± 5%; BMP-2 primed: 18% ± 2%. These rates were still observed at 16 weeks. The new bone grew and matured to a haversian-like structure while the substitute material resorbed via cell- and chemical-mediation. Conclusion: By priming the 3D construct with BMP-2, bone metabolism was physiologically accelerated, that is, enhancing vertical bone growth and maturation as well as material bioresorption. The scaffolding function of the block was maintained, leaving time for the bone to grow and mature to a haversian-like structure. In parallel, the material resorbed via cell-mediated and chemical processes. These promising results must be confirmed in clinical tests.

  4. BMP-2体外定向诱导犬BMSCs向成骨方向分化的实验研究%Experimental study of human BMP-2 on osteogenic induction in BMSCs of dogs in vitro

    Institute of Scientific and Technical Information of China (English)

    许蕾; 韩建国; 李家锋

    2015-01-01

    Objective:To provide seed cells for bone tissue engineering in the late establishment by establishing the cul-ture system of bone marrow mesenchymal stem cells( BMSCs)of dogs in vitro,and using human BMP-2 to make them in-duced to differentiate into osteoblasts. Methods:The extraction of BMSCs of adult beagle dogs was made,then the whole marrow adherence method and density gradient centrifugation were used to isolate and culture BMSCs in vitro,and observe the cell growth morphology everyday. The third generation BMSCs with good growth form was divided into two groups. The experimental group were cultured with adding 200ng/ml human BMP-2 containing fetal bovine serum(FBS)while the control group were cultured only with complete medium containing FBS. Then we used the detection of alkaline phosphatase staining after 3 weeks′induction,alizarin red staining and Von-Kossa staining after 4 weeks′induction to identify the differentiation of osteoblasts. Results:After 3 weeks of induction of experimental group with alkaline phosphatase,staining showed the cyto-plasm of positive expression of black particles,and it was negative in the control group;After 4 weeks of induction of experi-mental group with alizarin red staining and Von-Kossa staining showed positive expression of calcium nodules,and it was negative in the control group. All the staining results in the experimental group showed the characteristics of osteoblasts. Conclusion:BMSCs of dogs,which are extracted and cultivated in vitro,can directionally differentiate into osteoblasts under the action of human BMP-2.%目的:通过将犬骨髓间充质干细胞( bone marrow mesenchymal stem cells,BMSCs)建立体外培养体系,运用人骨形态发生蛋白-2(bone morphogenetic protein-2,BMP-2)体外定向诱导分化为成骨细胞,为后期建立骨组织工程提供种子细胞。方法提取比格犬BMSCs,全骨髓贴壁法结合密度梯度离心法行体外分离培养,每日观察细

  5. A Novel Human TGF-β1 Fusion Protein in Combination with rhBMP-2 Increases Chondro-Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells

    Science.gov (United States)

    Claros, Silvia; Rico-Llanos, Gustavo A.; Becerra, José; Andrades, José A.

    2014-01-01

    Transforming growth factor-beta (TGF-β) is involved in processes related to the differentiation and maturation of osteoprogenitor cells into osteoblasts. Rat bone marrow (BM) cells were cultured in a collagen-gel containing 0.5% fetal bovine serum (FBS) for 10 days in the presence of rhTGF (recombinant human TGF)-β1-F2, a fusion protein engineered to include a high-affinity collagen-binding decapeptide derived from von Willebrand factor. Subsequently, cells were moderately expanded in medium with 10% FBS for 4 days and treated with a short pulse of rhBMP (recombinant human bone morphogenetic protein)-2 for 4 h. During the last 2 days, dexamethasone and β-glycerophosphate were added to potentiate osteoinduction. Concomitant with an up-regulation of cell proliferation, DNA synthesis levels were determined. Polymerase chain reaction was performed to reveal the possible stemness of these cells. Osteogenic differentiation was evaluated in terms of alkaline phosphatase activity and mineralized matrix formation as well as by mRNA expression of osteogenic marker genes. Moreover, cells were placed inside diffusion chambers and implanted subcutaneously into the backs of adult rats for 4 weeks. Histological study provided evidence of cartilage and bone-like tissue formation. This experimental procedure is capable of selecting cell populations from BM that, in the presence of rhTGF-β1-F2 and rhBMP-2, achieve skeletogenic potential in vitro and in vivo. PMID:24968268

  6. Administration of BMP2/7 in utero partially reverses Rubinstein-Taybi syndrome-like skeletal defects induced by Pdk1 or Cbp mutations in mice.

    Science.gov (United States)

    Shim, Jae-Hyuck; Greenblatt, Matthew B; Singh, Anju; Brady, Nicholas; Hu, Dorothy; Drapp, Rebecca; Ogawa, Wataru; Kasuga, Masato; Noda, Tetsuo; Yang, Sang-Hwa; Lee, Sang-Kyou; Rebel, Vivienne I; Glimcher, Laurie H

    2012-01-01

    Mutations in the coactivator CREB-binding protein (CBP) are a major cause of the human skeletal dysplasia Rubinstein-Taybi syndrome (RTS); however, the mechanism by which these mutations affect skeletal mineralization and patterning is unknown. Here, we report the identification of 3-phosphoinositide-dependent kinase 1 (PDK1) as a key regulator of CBP activity and demonstrate that its functions map to both osteoprogenitor cells and mature osteoblasts. In osteoblasts, PDK1 activated the CREB/CBP complex, which in turn controlled runt-related transcription factor 2 (RUNX2) activation and expression of bone morphogenetic protein 2 (BMP2). These pathways also operated in vivo, as evidenced by recapitulation of RTS spectrum phenotypes with osteoblast-specific Pdk1 deletion in mice (Pdk1osx mice) and by the genetic interactions observed in mice heterozygous for both osteoblast-specific Pdk1 deletion and either Runx2 or Creb deletion. Finally, treatment of Pdk1osx and Cbp+/- embryos with BMPs in utero partially reversed their skeletal anomalies at birth. These findings illustrate the in vivo function of the PDK1-AKT-CREB/CBP pathway in bone formation and provide proof of principle for in utero growth factor supplementation as a potential therapy for skeletal dysplasias. PMID:22133875

  7. A Novel Human TGF-β1 Fusion Protein in Combination with rhBMP-2 Increases Chondro-Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Silvia Claros

    2014-06-01

    Full Text Available Transforming growth factor-beta (TGF-β is involved in processes related to the differentiation and maturation of osteoprogenitor cells into osteoblasts. Rat bone marrow (BM cells were cultured in a collagen-gel containing 0.5% fetal bovine serum (FBS for 10 days in the presence of rhTGF (recombinant human TGF-β1-F2, a fusion protein engineered to include a high-affinity collagen-binding decapeptide derived from von Willebrand factor. Subsequently, cells were moderately expanded in medium with 10% FBS for 4 days and treated with a short pulse of rhBMP (recombinant human bone morphogenetic protein-2 for 4 h. During the last 2 days, dexamethasone and β-glycerophosphate were added to potentiate osteoinduction. Concomitant with an up-regulation of cell proliferation, DNA synthesis levels were determined. Polymerase chain reaction was performed to reveal the possible stemness of these cells. Osteogenic differentiation was evaluated in terms of alkaline phosphatase activity and mineralized matrix formation as well as by mRNA expression of osteogenic marker genes. Moreover, cells were placed inside diffusion chambers and implanted subcutaneously into the backs of adult rats for 4 weeks. Histological study provided evidence of cartilage and bone-like tissue formation. This experimental procedure is capable of selecting cell populations from BM that, in the presence of rhTGF-β1-F2 and rhBMP-2, achieve skeletogenic potential in vitro and in vivo.

  8. Trehalose maintains bioactivity and promotes sustained release of BMP-2 from lyophilized CDHA scaffolds for enhanced osteogenesis in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Jun Zhao

    Full Text Available Calcium phosphate (Ca-P scaffolds have been widely employed as a supportive matrix and delivery system for bone tissue engineering. Previous studies using osteoinductive growth factors loaded Ca-P scaffolds via passive adsorption often experience issues associated with easy inactivation and uncontrolled release. In present study, a new delivery system was fabricated using bone morphogenetic protein-2 (BMP-2 loaded calcium-deficient hydroxyapatite (CDHA scaffold by lyophilization with addition of trehalose. The in vitro osteogenesis effects of this formulation were compared with lyophilized BMP-2/CDHA construct without trehalose and absorbed BMP-2/CDHA constructs with or without trehalose. The release characteristics and alkaline phosphatase (ALP activity analyses showed that addition of trehalose could sufficiently protect BMP-2 bioactivity during lyophilization and achieve sustained BMP-2 release from lyophilized CDHA construct in vitro and in vivo. However, absorbed BMP-2/CDHA constructs with or without trehalose showed similar BMP-2 bioactivity and presented a burst release. Quantitative real-time PCR (RT-qPCR and enzyme-linked immunosorbent assay (ELISA demonstrated that lyophilized BMP-2/CDHA construct with trehalose (lyo-tre-BMP-2 promoted osteogenic differentiation of bone marrow stromal cells (bMSCs significantly and this formulation could preserve over 70% protein bioactivity after 5 weeks storage at 25°C. Micro-computed tomography, histological and fluorescent labeling analyses further demonstrated that lyo-tre-BMP-2 formulation combined with bMSCs led to the most percentage of new bone volume (38.79% ± 5.32% and area (40.71% ± 7.14% as well as the most percentage of fluorochrome stained bone area (alizarin red S: 2.64% ± 0.44%, calcein: 6.08% ± 1.37% and mineral apposition rate (4.13 ± 0.62 µm/day in critical-sized rat cranial defects healing. Biomechanical tests also indicated the maximum stiffness (118.17 ± 15.02 Mpa and

  9. Injection of a soluble fragment of neural agrin (NT-1654 considerably improves the muscle pathology caused by the disassembly of the neuromuscular junction.

    Directory of Open Access Journals (Sweden)

    Stefan Hettwer

    Full Text Available Treatment of neuromuscular diseases is still an unsolved problem. Evidence over the last years strongly indicates the involvement of malformation and dysfunction of neuromuscular junctions in the development of such medical conditions. Stabilization of NMJs thus seems to be a promising approach to attenuate the disease progression of muscle wasting diseases. An important pathway for the formation and maintenance of NMJs is the agrin/Lrp4/MuSK pathway. Here we demonstrate that the agrin biologic NT-1654 is capable of activating the agrin/Lrp4/MuSK system in vivo, leading to an almost full reversal of the sarcopenia-like phenotype in neurotrypsin-overexpressing (SARCO mice. We also show that injection of NT-1654 accelerates muscle re-innervation after nerve crush. This report demonstrates that a systemically administered agrin fragment has the potential to counteract the symptoms of neuromuscular disorders.

  10. BMP2, 4 and 6 and BMPR1B are altered from early stages of bovine cystic ovarian disease development.

    Science.gov (United States)

    Díaz, Pablo U; Hein, Gustavo J; Belotti, Eduardo M; Rodríguez, Fernanda M; Rey, Florencia; Amweg, Ayelén N; Matiller, Valentina; Baravalle, María E; Ortega, Hugo H; Salvetti, Natalia R

    2016-10-01

    Cystic ovarian disease (COD) is an important cause of subfertility in dairy cattle. Bone morphogenetic proteins (BMPs), mainly BMP2, BMP4 and BMP6, play a key role in female fertility. In this study, we hypothesized that an altered BMP system is associated with ovarian alterations contributing to COD pathogenesis. Therefore, we examined the expression of BMP2, BMP4 and BMP6 and BMP receptor 1B (BMPR1B) in the ovaries of animals with spontaneous or ACTH-induced COD, as well as during the development of the disease, in a model of follicular persistence induced by low doses of progesterone (at 5, 10 and 15 days of follicular persistence). Results showed changes in BMP2, BMP4 and BMP6 expression during folliculogenesis, in granulosa and theca cells in the COD groups, as well as at different stages of follicular persistence. Results also showed changes in BMPR1B expression in developing follicles in animals with COD, and at the initial stages of follicular persistence (P5). Comparison between groups showed significant differences, mainly in BMP4 and BMP6 expression, in granulosa and theca cells of different follicular categories. The expression of these BMPs also increased in cystic and persistent follicles, in relation to antral follicles of the control group. BMPR1B showed high expression in cystic follicles. Together, these results may indicate an alteration in BMPs, especially in BMP4 and BMP6, as well as in BMPR1B, which occurs early in folliculogenesis and incipiently during the development of COD, which could be a major cause of recurrence of this disease in cattle.Free Spanish abstract: A Spanish translation of this abstract is freely available at http://www.reproduction-online.org/content/early/2016/08/01/REP-15-0315/suppl/DC1. PMID:27486268

  11. Enhancement of Tendon–Bone Healing for Anterior Cruciate Ligament (ACL Reconstruction Using Bone Marrow-Derived Mesenchymal Stem Cells Infected with BMP-2

    Directory of Open Access Journals (Sweden)

    Shiyi Chen

    2012-10-01

    Full Text Available At present, due to the growing attention focused on the issue of tendon–bone healing, we carried out an animal study of the use of genetic intervention combined with cell transplantation for the promotion of this process. Here, the efficacy of bone marrow stromal cells infected with bone morphogenetic protein-2 (BMP-2 on tendon–bone healing was determined. A eukaryotic expression vector containing the BMP-2 gene was constructed and bone marrow-derived mesenchymal stem cells (bMSCs were infected with a lentivirus. Next, we examined the viability of the infected cells and the mRNA and protein levels of BMP-2-infected bMSCs. Gastrocnemius tendons, gastrocnemius tendons wrapped by bMSCs infected with the control virus (bMSCs+Lv-Control, and gastrocnemius tendons wrapped by bMSCs infected with the recombinant BMP-2 virus (bMSCs+Lv-BMP-2 were used to reconstruct the anterior cruciate ligament (ACL in New Zealand white rabbits. Specimens from each group were harvested four and eight weeks postoperatively and evaluated using biomechanical and histological methods. The bMSCs were infected with the lentivirus at an efficiency close to 100%. The BMP-2 mRNA and protein levels in bMSCs were significantly increased after lentiviral infection. The bMSCs and BMP-2-infected bMSCs on the gastrocnemius tendon improved the biomechanical properties of the graft in the bone tunnel; specifically, bMSCs infected with BMP-2 had a positive effect on tendon–bone healing. In the four-week and eight-week groups, bMSCs+Lv-BMP-2 group exhibited significantly higher maximum loads of 29.3 ± 7.4 N and 45.5 ± 11.9 N, respectively, compared with the control group (19.9 ± 6.4 N and 21.9 ± 4.9 N (P = 0.041 and P = 0.001, respectively. In the eight-week groups, the stiffness of the bMSCs+Lv-BMP-2 group (32.5 ± 7.3 was significantly higher than that of the bMSCs+Lv-Control group (22.8 ± 7.4 or control groups (12.4 ± 6.0 (p = 0.036 and 0.001, respectively. Based on the

  12. Effect of a freeze-dried CMC/PLGA microsphere matrix of rhBMP-2 on bone healing

    OpenAIRE

    Schrier, Jay A.; Fink, Betsy F.; Rodgers, Janet B.; Vasconez, Henry C; DeLuca, Patrick P.

    2001-01-01

    The hypothesis of this research was that implants of poly(lactide-co-glycolide) (PLGA) microspheres loaded with bone morphogenetic protein-2 (rhBMP-2) and distributed in a freeze-dried carboxymethylcellulose (CMC) matrix would produce more new bone than would matrix implants of non-protein-loaded microspheres or matrix implants of only CMC. To test this hypothesis it was necessary to fashion microsphere-loaded CMC implants that were simple to insert, fit precisely into a defect, and would not...

  13. Cell adhesion to agrin presented as a nanopatterned substrate is consistent with an interaction with the extracellular matrix and not transmembrane adhesion molecules

    Directory of Open Access Journals (Sweden)

    Wolfram Tobias

    2008-12-01

    Full Text Available Abstract Background Molecular spacing is important for cell adhesion in a number of ways, ranging from the ordered arrangement of matrix polymers extracellularly, to steric hindrance of adhesion/signaling complexes intracellularly. This has been demonstrated using nanopatterned RGD peptides, a canonical extracellular matrix ligand for integrin interactions. Cell adhesion was greatly reduced when the RGD-coated nanoparticles were separated by more than 60 nm, indicating a sharp spacing-dependent threshold for this form of cell adhesion. Results Here we show a similar dependence of cell adhesion on the spacing of agrin, a protein that exists as both a secreted, matrix-bound form and a type-2 transmembrane form in vivo. Agrin was presented as a substrate for cell adhesion assays by anchoring recombinant protein to gold nanoparticles that were arrayed at tunable distances onto glass coverslips. Cells adhered well to nanopatterned agrin, and when presented as uniformly coated substrates, adhesion to agrin was comparable to other well-studied adhesion molecules, including N-Cadherin. Adhesion of both mouse primary cortical neurons and rat B35 neuroblastoma cells showed a spacing-dependent threshold, with a sharp drop in adhesion when the space between agrin-coated nanoparticles increased from 60 to 90 nm. In contrast, adhesion to N-Cadherin decreased gradually over the entire range of distances tested (uniform, 30, 60, 90, and 160 nm. The spacing of the agrin nanopattern also influenced cell motility, and peptide competition suggested adhesion was partially integrin dependent. Finally, differences in cell adhesion to C-terminal agrin fragments of different lengths were detected using nanopatterned substrates, and these differences were not evident using uniformly coated substrates. Conclusion These results suggest nanopatterned substrates may provide a physiological presentation of adhesive substrates, and are consistent with cells adhering to agrin

  14. The effect of SDF-1α on low dose BMP-2 mediated bone regeneration by release from heparinized mineralized collagen type I matrix scaffolds in a murine critical size bone defect model.

    Science.gov (United States)

    Zwingenberger, Stefan; Langanke, Robert; Vater, Corina; Lee, Geoffrey; Niederlohmann, Eik; Sensenschmidt, Markus; Jacobi, Angela; Bernhardt, Ricardo; Muders, Michael; Rammelt, Stefan; Knaack, Sven; Gelinsky, Michael; Günther, Klaus-Peter; Goodman, Stuart B; Stiehler, Maik

    2016-09-01

    The treatment of critical size bone defects represents a challenge. The growth factor bone morphogenetic protein 2 (BMP-2) is clinically established but has potentially adverse effects when used at high doses. The aim of this study was to evaluate if stromal derived factor-1 alpha (SDF-1α) and BMP-2 released from heparinized mineralized collagen type I matrix (MCM) scaffolds have a cumulative effect on bone regeneration. MCM scaffolds were functionalized with heparin, loaded with BMP-2 and/or SDF-1α and implanted into a murine critical size femoral bone defect (control group, low dose BMP-2 group, low dose BMP-2 + SDF-1α group, and high dose BMP-2 group). After 6 weeks, both the low dose BMP-2 + SDF-1α group (5.8 ± 0.6 mm³, p = 0.0479) and the high dose BMP-2 group (6.5 ± 0.7 mm³, p = 0.008) had a significantly increased regenerated bone volume compared to the control group (4.2 ± 0.5 mm³). There was a higher healing score in the low dose BMP-2 + SDF-1α group (median grade 8; Q1-Q3 7-9; p = 0.0357) than in the low dose BMP-2 group (7; Q1-Q3 5-9) histologically. This study showed that release of BMP-2 and SDF-1α from heparinized MCM scaffolds allows for the reduction of the applied BMP-2 concentration since SDF-1α seems to enhance the osteoinductive potential of BMP-2. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2126-2134, 2016. PMID:27060915

  15. Enhanced osteogenic activity and anti-inflammatory properties of Lenti-BMP-2-loaded TiO2 nanotube layers fabricated by lyophilization following trehalose addition

    Directory of Open Access Journals (Sweden)

    Zhang X

    2016-01-01

    Full Text Available Xiaochen Zhang,1 Zhiyuan Zhang,1 Gang Shen,2 Jun Zhao2 1Department of Oral and Maxillofacial Surgery, 2Department of Orthodontics, College of Stomatology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China Abstract: To enhance biocompatibility and osseointegration between titanium implants and surrounding bone tissue, numerous efforts have been made to modify the surface topography and composition of Ti implants. In this paper, Lenti-BMP-2-loaded TiO2 nanotube coatings were fabricated by lyophilization in the presence of trehalose to functionalize the surface. We characterized TiO2 nanotube layers in terms of the following: surface morphology; Lenti-BMP-2 and trehalose release; their ability to induce osteogenesis, proliferation, and anti-inflammation in vitro; and osseointegration in vivo. The anodized TiO2 nanotube surfaces exhibited an amorphous glassy matrix perpendicular to the Ti surface. Both Lenti-BMP-2 and trehalose showed sustained release over the course of 8 days. Results from real-time quantitative polymerase chain reaction studies demonstrated that lyophilized Lenti-BMP-2/TiO2 nanotubes constructed with trehalose (Lyo-Tre-Lenti-BMP-2 significantly promoted osteogenic differentiation of bone marrow stromal cells but not their proliferation. In addition, Lyo-Tre-Lenti-BMP-2 nanotubes effectively inhibited lipopolysaccharide-induced interleukin-1β and tumor necrosis factor-α production. In vivo, the formulation also promoted osseointegration. This study presents a promising new method for surface-modifying biomedical Ti-based implants to simultaneously enhance their osteogenic potential and anti-inflammatory properties, which can better satisfy clinical needs. Keywords: osteogenesis, anti-inflammation, TiO2 nanotube layers, Lenti-BMP-2, lyophilization, trehalose 

  16. Simultaneous gene transfer of bone morphogenetic protein (BMP -2 and BMP-7 by in vivo electroporation induces rapid bone formation and BMP-4 expression

    Directory of Open Access Journals (Sweden)

    Miyazaki Jun-ichi

    2006-08-01

    Full Text Available Abstract Background Transcutaneous in vivo electroporation is expected to be an effective gene-transfer method for promoting bone regeneration using the BMP-2 plasmid vector. To promote enhanced osteoinduction using this method, we simultaneously transferred cDNAs for BMP-2 and BMP-7, as inserts in the non-viral vector pCAGGS. Methods First, an in vitro study was carried out to confirm the expression of BMP-2 and BMP-7 following the double-gene transfer. Next, the individual BMP-2 and BMP-7 plasmids or both together were injected into rat calf muscles, and transcutaneous electroporation was applied 8 times at 100 V, 50 msec. Results In the culture system, the simultaneous transfer of the BMP-2 and BMP-7 genes led to a much higher ALP activity in C2C12 cells than did the transfer of either gene alone. In vivo, ten days after the treatment, soft X-ray analysis showed that muscles that received both pCAGGS-BMP-2 and pCAGGS-BMP-7 had better-defined opacities than those receiving a single gene. Histological examination showed advanced ossification in calf muscles that received the double-gene transfer. BMP-4 mRNA was also expressed, and RT-PCR showed that its level increased for 3 days in a time-dependent manner in the double-gene transfer group. Immunohistochemistry confirmed that BMP-4-expressing cells resided in the matrix between muscle fibers. Conclusion The simultaneous transfer of BMP-2 and BMP-7 genes using in vivo electroporation induces more rapid bone formation than the transfer of either gene alone, and the increased expression of endogenous BMP-4 suggests that the rapid ossification is related to the induction of BMP-4.

  17. Three-dimensional printing of rhBMP-2-loaded scaffolds with long-term delivery for enhanced bone regeneration in a rabbit diaphyseal defect.

    Science.gov (United States)

    Shim, Jin-Hyung; Kim, Se Eun; Park, Ju Young; Kundu, Joydip; Kim, Sung Won; Kang, Seong Soo; Cho, Dong-Woo

    2014-07-01

    In this study, recombinant human bone morphogenetic protein-2 (rhBMP-2) delivery system with slow mode was successfully developed in three-dimensional (3D) printing-based polycaprolactone (PCL)/poly(lactic-co-glycolic acid) (PLGA) scaffolds for bone formation of critical-sized rabbit segmental diaphyseal defect. To control the delivery of the rhBMP-2, collagen (for long-term delivery up to 28 days) and gelatin (for shor-term delivery within a week) solutions encapsulating rhBMP-2 were dispensed into a hollow cylinderical type of PCL/PLGA scaffold. An effective dose of 5μg/mL was determined by measuring the alkaline phosphatase and osteocalcin gene expression levels of human nasal inferior turbinate-derived mesenchymal stromal cells (hTMSCs) seeded on the PCL/PLGA/collagen scaffold in vitro. However, it was found that a burst release of rhBMP-2 from the PCL/PLGA/gelatin scaffold did not induce the osteogenic differentiation of hTMSCs in vitro at an equivalent dose. In the in vivo animal experiements, microcomputed tomography and histological analyses confirmed that PCL/PLGA/collagen/rhBMP-2 scaffolds (long-term delivery mode) showed the best bone healing quality at both weeks 4 and 8 after implantation without inflammatory response. On the other hand, a large number of macrophages indicating severe inflammation provoked by burst release of rhBMP-2 were observed in the vicinity of PCL/PLGA/gelatin/rhBMP-2 (short-term delivery mode) at week 4. PMID:24517081

  18. Bone induction through controlled release of novel BMP-2-related peptide from PTMC11-F127-PTMC11 hydrogels

    International Nuclear Information System (INIS)

    Bone morphogenetic protein 2 (BMP-2) is the most powerful osteogenic factor; its effectiveness in enhancing osteoblastic activation has been confirmed both in vitro and in vivo. We developed a novel peptide (designated P24) derived from the ‘knuckle’ epitope of BMP-2 and found it also had osteogenic bioactivity to some extent. The main objective of this study was to develop a controlled release system based on poly(trimethylene carbonate)–F127–poly(trimethylene carbonate) (PTMC11-F127-PTMC11) hydrogels for the P24 peptide, to promote bone formation. By varying the copolymer concentrations, we demonstrated that P24/PTMC11-F127-PTMC11 hydrogels were an efficient system for the sustained release of P24 over 21–35 days. The P24-loaded hydrogels elevated alkaline phosphatase activity and promoted the expression of osteocalcin mRNA in bone marrow stromal cells (BMSCs) in vitro. Radiographic and histological examination showed that P24-loaded hydrogels could induce more effective ectopic bone formation in vivo than P24-free hydrogels. These results indicate that the PTMC11-F127-PTMC11 hydrogel is a suitable carrier for the controlled release of P24, and is a promising injectable biomaterial for the induction of bone regeneration. (paper)

  19. Abrogation of epithelial BMP2 and BMP4 causes Amelogenesis Imperfecta by reducing MMP20 and KLK4 expression

    Science.gov (United States)

    Xie, Xiaohua; Liu, Chao; Zhang, Hua; Jani, Priyam H.; Lu, Yongbo; Wang, Xiaofang; Zhang, Bin; Qin, Chunlin

    2016-01-01

    Amelogenesis Imperfecta (AI) can be caused by the deficiencies of enamel matrix proteins, molecules responsible for the transportation and secretion of enamel matrix components, and proteases processing enamel matrix proteins. In the present study, we discovered the double deletion of bone morphogenetic protein 2 (Bmp2) and bone morphogenetic protein 4 (Bmp4) in the dental epithelium by K14-cre resulted in hypoplastic enamel and reduced density in X-ray radiography as well as shortened enamel rods under scanning electron microscopy. Such enamel phenotype was consistent with the diagnosis of hypoplastic amelogenesis imperfecta. Histological and molecular analyses revealed that the removal of matrix proteins in the mutant enamel was drastically delayed, which was coincided with the greatly reduced expression of matrix metalloproteinase 20 (MMP20) and kallikrein 4 (KLK4). Although the expression of multiple enamel matrix proteins was down-regulated in the mutant ameloblasts, the cleavage of ameloblastin was drastically impaired. Therefore, we attributed the AI primarily to the reduction of MMP20 and KLK4. Further investigation found that BMP/Smad4 signaling pathway was down-regulated in the K14-cre;Bmp2f/f;Bmp4f/fameloblasts, suggesting that the reduced MMP20 and KLK4 expression may be due to the attenuated epithelial BMP/Smad4 signaling. PMID:27146352

  20. Cardiogenic induction of pluripotent stem cells streamlined through a conserved SDF-1/VEGF/BMP2 integrated network.

    Directory of Open Access Journals (Sweden)

    Anca Chiriac

    Full Text Available BACKGROUND: Pluripotent stem cells produce tissue-specific lineages through programmed acquisition of sequential gene expression patterns that function as a blueprint for organ formation. As embryonic stem cells respond concomitantly to diverse signaling pathways during differentiation, extraction of a pro-cardiogenic network would offer a roadmap to streamline cardiac progenitor output. METHODS AND RESULTS: To resolve gene ontology priorities within precursor transcriptomes, cardiogenic subpopulations were here generated according to either growth factor guidance or stage-specific biomarker sorting. Innate expression profiles were independently delineated through unbiased systems biology mapping, and cross-referenced to filter transcriptional noise unmasking a conserved progenitor motif (55 up- and 233 down-regulated genes. The streamlined pool of 288 genes organized into a core biological network that prioritized the "Cardiovascular Development" function. Recursive in silico deconvolution of the cardiogenic neighborhood and associated canonical signaling pathways identified a combination of integrated axes, CXCR4/SDF-1, Flk-1/VEGF and BMP2r/BMP2, predicted to synchronize cardiac specification. In vitro targeting of the resolved triad in embryoid bodies accelerated expression of Nkx2.5, Mef2C and cardiac-MHC, enhanced beating activity, and augmented cardiogenic yield. CONCLUSIONS: Transcriptome-wide dissection of a conserved progenitor profile thus revealed functional highways that coordinate cardiogenic maturation from a pluripotent ground state. Validating the bioinformatics algorithm established a strategy to rationally modulate cell fate, and optimize stem cell-derived cardiogenesis.

  1. Gelatin Tight-Coated Poly(lactide-co-glycolide Scaffold Incorporating rhBMP-2 for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Juan Wang

    2015-03-01

    Full Text Available Surface coating is the simplest surface modification. However, bioactive molecules can not spread well on the commonly used polylactone-type skeletons; thus, the surface coatings of biomolecules are typically unstable due to the weak interaction between the polymer and the bioactive molecules. In this study, a special type of poly(lactide-co-glycolide (PLGA-based scaffold with a loosened skeleton was fabricated by phase separation, which allowed gelatin molecules to more readily diffuse throughout the structure. In this application, gelatin modified both the internal substrate and external surface. After cross-linking with glutaraldehyde, the surface layer gelatin was tightly bound to the diffused gelatin, thereby preventing the surface layer gelatin coating from falling off within 14 days. After gelatin modification, PLGA scaffold demonstrated enhanced hydrophilicity and improved mechanical properties (i.e., increased compression strength and elastic modulus in dry and wet states. Furthermore, a sustained release profile of recombinant human bone morphogenetic protein-2 (rhBMP-2 was achieved in the coated scaffold. The coated scaffold also supported the in vitro attachment, proliferation, and osteogenesis of rabbit bone mesenchymal stem cells (BMSCs, indicating the bioactivity of rhBMP-2. These results collectively demonstrate that the cross-linked-gelatin-coated porous PLGA scaffold incorporating bioactive molecules is a promising candidate for bone tissue regeneration.

  2. Scaffold-mediated BMP-2 minicircle DNA delivery accelerated bone repair in a mouse critical-size calvarial defect model.

    Science.gov (United States)

    Keeney, Michael; Chung, Michael T; Zielins, Elizabeth R; Paik, Kevin J; McArdle, Adrian; Morrison, Shane D; Ransom, Ryan C; Barbhaiya, Namrata; Atashroo, David; Jacobson, Gunilla; Zare, Richard N; Longaker, Michael T; Wan, Derrick C; Yang, Fan

    2016-08-01

    Scaffold-mediated gene delivery holds great promise for tissue regeneration. However, previous attempts to induce bone regeneration using scaffold-mediated non-viral gene delivery rarely resulted in satisfactory healing. We report a novel platform with sustained release of minicircle DNA (MC) from PLGA scaffolds to accelerate bone repair. MC was encapsulated inside PLGA scaffolds using supercritical CO2 , which showed prolonged release of MC. Skull-derived osteoblasts transfected with BMP-2 MC in vitro result in higher osteocalcin gene expression and mineralized bone formation. When implanted in a critical-size mouse calvarial defect, scaffolds containing luciferase MC lead to robust in situ protein production up to at least 60 days. Scaffold-mediated BMP-2 MC delivery leads to substantially accelerated bone repair as early as two weeks, which continues to progress over 12 weeks. This platform represents an efficient, long-term nonviral gene delivery system, and may be applicable for enhancing repair of a broad range of tissues types. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2099-2107, 2016. PMID:27059085

  3. Abrogation of epithelial BMP2 and BMP4 causes Amelogenesis Imperfecta by reducing MMP20 and KLK4 expression.

    Science.gov (United States)

    Xie, Xiaohua; Liu, Chao; Zhang, Hua; Jani, Priyam H; Lu, Yongbo; Wang, Xiaofang; Zhang, Bin; Qin, Chunlin

    2016-01-01

    Amelogenesis Imperfecta (AI) can be caused by the deficiencies of enamel matrix proteins, molecules responsible for the transportation and secretion of enamel matrix components, and proteases processing enamel matrix proteins. In the present study, we discovered the double deletion of bone morphogenetic protein 2 (Bmp2) and bone morphogenetic protein 4 (Bmp4) in the dental epithelium by K14-cre resulted in hypoplastic enamel and reduced density in X-ray radiography as well as shortened enamel rods under scanning electron microscopy. Such enamel phenotype was consistent with the diagnosis of hypoplastic amelogenesis imperfecta. Histological and molecular analyses revealed that the removal of matrix proteins in the mutant enamel was drastically delayed, which was coincided with the greatly reduced expression of matrix metalloproteinase 20 (MMP20) and kallikrein 4 (KLK4). Although the expression of multiple enamel matrix proteins was down-regulated in the mutant ameloblasts, the cleavage of ameloblastin was drastically impaired. Therefore, we attributed the AI primarily to the reduction of MMP20 and KLK4. Further investigation found that BMP/Smad4 signaling pathway was down-regulated in the K14-cre;Bmp2(f/f);Bmp4(f/f)ameloblasts, suggesting that the reduced MMP20 and KLK4 expression may be due to the attenuated epithelial BMP/Smad4 signaling. PMID:27146352

  4. Enhancement of tendon-to-bone healing after anterior cruciate ligament reconstruction using bone marrow-derived mesenchymal stem cells genetically modified with bFGF/BMP2

    Science.gov (United States)

    Chen, Biao; Li, Bin; Qi, Yong-Jian; Ni, Qu-Bo; Pan, Zheng-Qi; Wang, Hui; Chen, Liao-Bin

    2016-01-01

    Many strategies, including various growth factors and gene transfer, have been used to augment healing after anterior cruciate ligament (ACL) reconstruction. The biological environment regulated by the growth factors during the stage of tendon-bone healing was considered important in controlling the integrating process. The purpose of this study was to evaluate the effects of bone marrow-derived mesenchymal stem cells (BMSCs) genetically modified with bone morphogenetic protein 2 (BMP2) and basic fibroblast growth factor (bFGF) on healing after ACL reconstruction. BMSCs were infected with an adenoviral vector encoding BMP2 (AdBMP2) or bFGF (AdbFGF). Then, the infected BMSCs were surgically implanted into the tendon-bone interface. At 12 weeks postoperatively, the formation of abundant cartilage-like cells, smaller tibial bone tunnel and significantly higher ultimate load and stiffness levels, through histological analysis, micro-computed tomography and biomechanical testing, were observed. In addition, the AdBMP2-plus-AdbFGF group had the smallest bone tunnel and the best mechanical properties among all the groups. The addition of BMP2 or bFGF by gene transfer resulted in better cellularity, new bone formation and higher mechanical property, which contributed to the healing process after ACL reconstruction. Furthermore, the co-application of these two genes was more powerful and efficient than either single gene therapy. PMID:27173013

  5. Gene delivery nanocarriers of bioactive glass with unique potential to load BMP2 plasmid DNA and to internalize into mesenchymal stem cells for osteogenesis and bone regeneration

    Science.gov (United States)

    Kim, Tae-Hyun; Singh, Rajendra K.; Kang, Min Sil; Kim, Joong-Hyun; Kim, Hae-Won

    2016-04-01

    The recent development of bioactive glasses with nanoscale morphologies has spurred their specific applications in bone regeneration, for example as drug and gene delivery carriers. Bone engineering with stem cells genetically modified with this unique class of nanocarriers thus holds great promise in this avenue. Here we report the potential of the bioactive glass nanoparticle (BGN) system for the gene delivery of mesenchymal stem cells (MSCs) targeting bone. The composition of 15% Ca-added silica, proven to be bone-bioactive, was formulated into surface aminated mesoporous nanospheres with enlarged pore sizes, to effectively load and deliver bone morphogenetic protein-2 (BMP2) plasmid DNA. The enlarged mesopores were highly effective in loading BMP2-pDNA with an efficiency as high as 3.5 wt% (pDNA w.r.t. BGN), a level more than twice than for small-sized mesopores. The BGN nanocarriers released the genetic molecules in a highly sustained manner (for as long as 2 weeks). The BMP2-pDNA/BGN complexes were effectively internalized to rat MSCs with a cell uptake level of ~73%, and the majority of cells were transfected to express the BMP2 protein. Subsequent osteogenesis of the transfected MSCs was demonstrated by the expression of bone-related genes, including bone sialoprotein, osteopontin, and osteocalcin. The MSCs transfected with BMP2-pDNA/BGN were locally delivered inside a collagen gel to the target calvarium defects. The results showed significantly improved bone regeneration, as evidenced by the micro-computed tomographic, histomorphometric and immunohistochemical analyses. This study supports the excellent capacity of the BGN system as a pDNA-delivery nanocarrier in MSCs, and the engineered system, BMP2-pDNA/BGN with MSCs, may be considered a new promising candidate to advance the therapeutic potential of stem cells through genetic modification, targeting bone defects and diseases.The recent development of bioactive glasses with nanoscale morphologies has

  6. Effects of BMP-2 and dexamethasone on osteogenic differentiation of rat dental follicle progenitor cells seeded on three-dimensional beta-TCP

    Energy Technology Data Exchange (ETDEWEB)

    Xu Lulu; Jin Zuolin; Duan Yinzhong [Department of Orthodontics, Stomatological College, Fourth Military Medical University, Xi' an 710032 (China); Liu Hongchen; Wang Dongsheng; E Lingling [Department of Stomatology, China PLA General Hospital, Beijing 100853 (China); Xu Lin, E-mail: jinzuolin88@yahoo.com.c, E-mail: duanyinzhong@yahoo.com.c [Department of Stomatology, the First Hospital of PLA, Lanzhou 730000 (China)

    2009-12-15

    The aim of this study was to investigate the effects of BMP-2 and dexamethasone (Dex) on osteogenic differentiation of rat dental follicle progenitor cells (RDFCs) seeded on three-dimensional beta-TCP. The alkaline phosphatase (ALP), the calcium and phosphonium, the osteocalcin in media of the third passage RDFCs on biomaterial beta-TCP after 1-3, 3-7, 7-14 days of culture were examined respectively. The growth of cells on the scaffolds was observed by scanning electron microscope (SEM) after 3, 7 days of culture and by implanting in the backs of severe combined immunodeficient (SCID) mice for bone regeneration. The third passage RDFCs could be seen adhered, extended and proliferated on the beta-TCP by scanning electron microscopy. The ALP activity, the calcium and phosphoniums and the osteocalcin content of dexamethasone (10{sup -8} M) or/and BMP-2 (100 ng ml{sup -1}) were significantly higher than their existence in the control group. They were the significantly highest among four groups after joint application of BMP-2 and dexamethasone. After 8 weeks of implantation, the percentage of the new bones formed area in the RDFCs+beta-TCP+BMP-2+Dex group was significantly higher than that in the RDFCs+beta-TCP+BMP-2 group. In contrast, beta-TCP, RDFCs+beta-TCP+Dex and control constructs lacked new bone formation by histological staining and histomorphometric analysis. The BMP-2+Dex could significantly promote osteogenic differentiation of RDFCs on beta-TCP. beta-TCP supported fast cellular adhesion, proliferation and differentiation of RDFCs. The feasibility of its application in periodontal tissue engineering was also proved.

  7. Effects of BMP-2 and dexamethasone on osteogenic differentiation of rat dental follicle progenitor cells seeded on three-dimensional β-TCP

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the effects of BMP-2 and dexamethasone (Dex) on osteogenic differentiation of rat dental follicle progenitor cells (RDFCs) seeded on three-dimensional β-TCP. The alkaline phosphatase (ALP), the calcium and phosphonium, the osteocalcin in media of the third passage RDFCs on biomaterial β-TCP after 1-3, 3-7, 7-14 days of culture were examined respectively. The growth of cells on the scaffolds was observed by scanning electron microscope (SEM) after 3, 7 days of culture and by implanting in the backs of severe combined immunodeficient (SCID) mice for bone regeneration. The third passage RDFCs could be seen adhered, extended and proliferated on the β-TCP by scanning electron microscopy. The ALP activity, the calcium and phosphoniums and the osteocalcin content of dexamethasone (10-8 M) or/and BMP-2 (100 ng ml-1) were significantly higher than their existence in the control group. They were the significantly highest among four groups after joint application of BMP-2 and dexamethasone. After 8 weeks of implantation, the percentage of the new bones formed area in the RDFCs+β-TCP+BMP-2+Dex group was significantly higher than that in the RDFCs+β-TCP+BMP-2 group. In contrast, β-TCP, RDFCs+β-TCP+Dex and control constructs lacked new bone formation by histological staining and histomorphometric analysis. The BMP-2+Dex could significantly promote osteogenic differentiation of RDFCs on β-TCP. β-TCP supported fast cellular adhesion, proliferation and differentiation of RDFCs. The feasibility of its application in periodontal tissue engineering was also proved.

  8. Functionalisation of PLLA nanofiber scaffolds using a possible cooperative effect between collagen type I and BMP-2: impact on colonization and bone formation in vivo.

    Science.gov (United States)

    Schofer, Markus D; Tünnermann, Lisa; Kaiser, Hendric; Roessler, Philip P; Theisen, Christina; Heverhagen, Johannes T; Hering, Jacqueline; Voelker, Maximilian; Agarwal, Seema; Efe, Turgay; Fuchs-Winkelmann, Susanne; Paletta, Jürgen R J

    2012-09-01

    The reconstruction of large bone defects after injury or tumor resection often requires the use of bone substitution. Artificial scaffolds based on synthetic biomaterials can overcome disadvantages of autologous bone grafts, like limited availability and donor side morbidity. Among them, scaffolds based on nanofibers offer great advantages. They mimic the extracellular matrix, can be used as a carrier for growth factors and allow the differentiation of human mesenchymal stem cells. Differentiation is triggered by a series of signaling processes, including integrin and bone morphogenetic protein (BMP), which act in a cooperative manner. The aim of this study was to analyze whether these processes can be remodeled in artificial poly-(l)-lactide acid (PLLA) based nanofiber scaffolds in vivo. Electrospun matrices composed of PLLA-collagen type I or BMP-2 incorporated PLLA-collagen type I were implanted in calvarial critical size defects in rats. Cranial CT-scans were taken 4, 8 and 12 weeks after implantation. Specimens obtained after euthanasia were processed for histology and immunostainings on osteocalcin, BMP-2 and Smad5. After implantation the scaffolds were inhomogeneously colonized and cells were only present in wrinkle- or channel-like structures. Ossification was detected only in focal areas of the scaffold. This was independent of whether BMP-2 was incorporated in the scaffold. However, cells that migrated into the scaffold showed an increased ratio of osteocalcin and Smad5 positive cells compared to empty defects. Furthermore, in case of BMP-2 incorporated PLLA-collagen type I scaffolds, 4 weeks after implantation approximately 40 % of the cells stained positive for BMP-2 indicating an autocrine process of the ingrown cells. These findings indicate that a cooperative effect between BMP-2 and collagen type I can be transferred to PLLA nanofibers and furthermore, that this effect is active in vivo. However, this had no effect on bone formation. The reason for

  9. Off-label innovation: characterization through a case study of rhBMP-2 for spinal fusion.

    Science.gov (United States)

    Schnurman, Zane; Smith, Michael L; Kondziolka, Douglas

    2016-09-01

    OBJECTIVE Off-label therapies are widely used in clinical practice by spinal surgeons. Some patients and practitioners have advocated for increased regulation of their use, and payers have increasingly questioned reimbursment for off-label therapies. In this study, the authors applied a model that quantifies publication data to analyze the developmental process from initial on-label use to off-label innovation, using as an example recombinant human bone morphogenetic protein 2 (rhBMP-2) because of its wide off-label use. METHODS As a case study of off-label innovation, the developmental patterns of rhBMP-2 from FDA-approved use for anterior lumbar interbody fusion to several of its off-label uses, including posterolateral lumbar fusion, anterior cervical discectomy and fusion, and posterior lumbar interbody fusion/transforaminal lumbar interbody fusion, were evaluated using the "progressive scholarly acceptance" (PSA) model. In this model, PSA is used as an end point indicating acceptance of a therapy or procedure by the relevant scientific community and is reached when the total number of peer-reviewed studies devoted to refinement or improvement of a therapy surpasses the total number assessing initial efficacy. Report characteristics, including the number of patients studied and study design, were assessed in addition to the time to and pattern of community acceptance, and results compared with previous developmental study findings. Disclosures and reported conflicts of interest for all articles were reviewed, and these data were also used in the analysis. RESULTS Publication data indicated that the acceptance of rhBMP-2 off-label therapies occurred more rapidly and with less evidence than previously studied on-label therapies. Additionally, the community appeared to respond more robustly (by rapidly changing publication patterns) to reports of adverse events than to new questions of efficacy. CONCLUSIONS The development of off-label therapies, including the

  10. Diabetes mellitus affects the biomechanical function of the callus and the expression of TGF-beta1 and BMP2 in an early stage of fracture healing

    OpenAIRE

    Xu, M. T.; Sun, S.; Zhang, L.; Xu, F.; Du, S.L.; Zhang, X. D.; Wang, D. W.

    2015-01-01

    Transforming growth factor beta 1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2) are important regulators of bone repair and regeneration. In this study, we examined whether TGF-β1 and BMP-2 expressions were delayed during bone healing in type 1 diabetes mellitus. Tibial fractures were created in 95 diabetic and 95 control adult male Wistar rats of 10 weeks of age. At 1, 2, 3, 4, and 5 weeks after fracture induction, five rats were sacrificed from each group. The expressions of TGF-β1 and ...

  11. Gene Delivery of TGF-β3 and BMP2 in an MSC-Laden Alginate Hydrogel for Articular Cartilage and Endochondral Bone Tissue Engineering.

    Science.gov (United States)

    Gonzalez-Fernandez, Tomas; Tierney, Erica G; Cunniffe, Grainne M; O'Brien, Fergal J; Kelly, Daniel J

    2016-05-01

    Incorporating therapeutic genes into three-dimensional biomaterials is a promising strategy for enhancing tissue regeneration. Alginate hydrogels have been extensively investigated for cartilage and bone tissue engineering, including as carriers of transfected cells to sites of injury, making them an ideal gene delivery platform for cartilage and osteochondral tissue engineering. The objective of this study was to develop gene-activated alginate hydrogels capable of supporting nanohydroxyapatite (nHA)-mediated nonviral gene transfer to control the phenotype of mesenchymal stem cells (MSCs) for either cartilage or endochondral bone tissue engineering. To produce these gene-activated constructs, MSCs and nHA complexed with plasmid DNA (pDNA) encoding for transforming growth factor-beta 3 (pTGF-β3), bone morphogenetic protein 2 (pBMP2), or a combination of both (pTGF-β3-pBMP2) were encapsulated into alginate hydrogels. Initial analysis using reporter genes showed effective gene delivery and sustained overexpression of the transgenes were achieved. Confocal microscopy demonstrated that complexing the plasmid with nHA before hydrogel encapsulation led to transport of the plasmid into the nucleus of MSCs, which did not happen with naked pDNA. Gene delivery of TGF-β3 and BMP2 and subsequent cell-mediated expression of these therapeutic genes resulted in a significant increase in sulfated glycosaminoglycan and collagen production, particularly in the pTGF-β3-pBMP2 codelivery group in comparison to the delivery of either pTGF-β3 or pBMP2 in isolation. In addition, stronger staining for collagen type II deposition was observed in the pTGF-β3-pBMP2 codelivery group. In contrast, greater levels of calcium deposition were observed in the pTGF-β3- and pBMP2-only groups compared to codelivery, with a strong staining for collagen type X deposition, suggesting these constructs were supporting MSC hypertrophy and progression along an endochondral pathway. Together, these

  12. Regulació de la migració cel·lular induïda per BMP-2

    OpenAIRE

    Gamell Fullà, Cristina

    2009-01-01

    EN CATALÀ :Les proteïnes morfogenètiques òssies (BMPs) són membres de la superfamília del TGF-beta i s'ha demostrat que participen en la determinació i especificació de varis teixits i òrgans durant el desenvolupament dels vertebrats i que regulen la proliferació, l'apoptosi i la diferenciació de múltiples tipus cel·lulars. Les BMPs van ser originàriament identificades per a la seva habilitat d'induir la formació ectòpica d'os i entre ells, BMP-2, -4 and -7 resulten essencials perquè tingui l...

  13. Transforming growth factor β1 inhibits bone morphogenic protein (BMP-2 and BMP-7 signaling via upregulation of Ski-related novel protein N (SnoN: possible mechanism for the failure of BMP therapy?

    Directory of Open Access Journals (Sweden)

    Ehnert Sabrina

    2012-09-01

    Full Text Available Abstract Background Bone morphogenic proteins (BMPs play a key role in bone formation. Consequently, it was expected that topical application of recombinant human (rhBMP-2 and rhBMP-7 would improve the healing of complex fractures. However, up to 36% of fracture patients do not respond to this therapy. There are hints that a systemic increase in transforming growth factor β1 (TGFβ1 interferes with beneficial BMP effects. Therefore, in the present work we investigated the influence of rhTGFβ1 on rhBMP signaling in primary human osteoblasts, with the aim of more specifically delineating the underlying regulatory mechanisms. Methods BMP signaling was detected by adenoviral Smad-binding-element-reporter assays. Gene expression was determined by reverse transcription polymerase chain reaction (RT-PCR and confirmed at the protein level by western blot. Histone deacetylase (HDAC activity was determined using a test kit. Data sets were compared by one-way analysis of variance. Results Our findings showed that Smad1/5/8-mediated rhBMP-2 and rhBMP-7 signaling is completely blocked by rhTGFβ1. We then investigated expression levels of genes involved in BMP signaling and regulation (for example, Smad1/5/8, TGFβ receptors type I and II, noggin, sclerostin, BMP and activin receptor membrane bound inhibitor (BAMBI, v-ski sarcoma viral oncogene homolog (Ski, Ski-related novel protein N (SnoN and Smad ubiquitination regulatory factors (Smurfs and confirmed the expression of regulated genes at the protein level. Smad7 and SnoN were significantly induced by rhTGFβ1 treatment while expression of Smad1, Smad6, TGFβRII and activin receptor-like kinase 1 (Alk1 was reduced. Elevated SnoN expression was accompanied by increased HDAC activity. Addition of an HDAC inhibitor, namely valproic acid, fully abolished the inhibitory effect of rhTGFβ1 on rhBMP-2 and rhBMP-7 signaling. Conclusions rhTGFβ1 effectively blocks rhBMP signaling in osteoblasts. As possible

  14. The origin of bmp16, a novel Bmp2/4 relative, retained in teleost fish genomes

    Directory of Open Access Journals (Sweden)

    Meyer Axel

    2009-12-01

    Full Text Available Abstract Background Whole genome sequences have allowed us to have an overview of the evolution of gene repertoires. The target of the present study, the TGFβ superfamily, contains many genes involved in vertebrate development, and provides an ideal system to explore the relationships between evolution of gene repertoires and that of developmental programs. Results As a result of a bioinformatic survey of sequenced vertebrate genomes, we identified an uncharacterized member of the TGFβ superfamily, designated bmp16, which is confined to teleost fish species. Our molecular phylogenetic study revealed a high affinity of bmp16 to the Bmp2/4 subfamily. Importantly, further analyses based on the maximum-likelihood method unambiguously ruled out the possibility that this teleost-specific gene is a product of teleost-specific genome duplication. This suggests that the absence of a bmp16 ortholog in tetrapods is due to a secondary loss. In situ hybridization showed embryonic expression of the zebrafish bmp16 in the developing swim bladder, heart, tail bud, and ectoderm of pectoral and median fin folds in pharyngula stages, as well as gut-associated expression in 5-day embryos. Conclusion Comparisons of expression patterns revealed (1 the redundancy of bmp16 expression with its homologs in presumably plesiomorphic expression domains, such as the fin fold, heart, and tail bud, which might have permitted its loss in the tetrapod lineage, and (2 the loss of craniofacial expression and gain of swim bladder expression of bmp16 after the gene duplication between Bmp2, -4 and -16. Our findings highlight the importance of documenting secondary changes of gene repertoires and expression patterns in other gene families.

  15. Effects of local delivery of BMP2, zoledronate and their combination on bone microarchitecture, biomechanics and bone turnover in osteoporotic rabbits.

    Science.gov (United States)

    Jing, Da; Hao, Xuguang; Xu, Fang; Liu, Jian; Xu, Fei; Luo, Erping; Meng, Guolin

    2016-01-01

    The hip fracture is one major clinical challenge associated with osteoporosis, resulting in heavy socioeconomic burdens and high mortality. Systemic therapies of anti-osteoporosis drugs are expensive, time-consuming and also evoke substantial side effects, which fails to provide early protection from fractures. Accumulating evidence demonstrates the high bioavailability and therapeutic efficacy of local drug delivery in accelerating facture healing and bone defect repair. This study aims at investigating the effects of local delivery of BMP2 and zoledronate (two promising anabolic/anti-catobolic reagents) encapsulated by fibrin sealants into femoral necks on regulating bone quality and remodeling in osteoporotic rabbits subjected to combined ovariectomy and glucocorticoid injection. We show that 6-week BMP2 delivery exhibited more prominent effect on mitigating trabecular bone microarchitecture deterioration and mechanical strength reduction of femoral necks than local zoledronate treatment. BMP2 plus zoledronate showed more significant improvement of bone microstructure, mechanical strength and bone formation rate at 12 weeks post injection than single BMP2 or zoledronate delivery via μCT, biomechanical, histomorphometric and serum biochemical analyses. This study enriches our knowledge for understanding the availability of local drug delivery for improving bone quantity and quality, which may lead to earlier, safer and more efficient protection from osteoporosis-induced fractures in clinics. PMID:27329730

  16. Effects of rhBMP-2 on Sandblasted and Acid Etched Titanium Implant Surfaces on Bone Regeneration and Osseointegration: Spilt-Mouth Designed Pilot Study

    Science.gov (United States)

    Kim, Nam-Ho; Lee, So-Hyoun; Ryu, Jae-Jun; Choi, Kyung-Hee; Huh, Jung-Bo

    2015-01-01

    This study was conducted to evaluate effects of rhBMP-2 applied at different concentrations to sandblasted and acid etched (SLA) implants on osseointegration and bone regeneration in a bone defect of beagle dogs as pilot study using split-mouth design. Methods. For experimental groups, SLA implants were coated with different concentrations of rhBMP-2 (0.1, 0.5, and 1 mg/mL). After assessment of surface characteristics and rhBMP-2 releasing profile, the experimental groups and untreated control groups (n = 6 in each group, two animals in each group) were placed in split-mouth designed animal models with buccal open defect. At 8 weeks after implant placement, implant stability quotients (ISQ) values were recorded and vertical bone height (VBH, mm), bone-to-implant contact ratio (BIC, %), and bone volume (BV, %) in the upper 3 mm defect areas were measured. Results. The ISQ values were highest in the 1.0 group. Mean values of VBH (mm), BIC (%), and BV (%) were greater in the 0.5 mg/mL and 1.0 mg/mL groups than those in 0.1 and control groups in buccal defect areas. Conclusion. In the open defect area surrounding the SLA implant, coating with 0.5 and 1.0 mg/mL concentrations of rhBMP-2 was more effective, compared with untreated group, in promoting bone regeneration and osseointegration. PMID:26504807

  17. Dual Delivery of BMP-2 and bFGF from a New Nano-Composite Scaffold, Loaded with Vascular Stents for Large-Size Mandibular Defect Regeneration

    Directory of Open Access Journals (Sweden)

    Hang Zhao

    2013-06-01

    Full Text Available The aim of this study was to investigate the feasibility and advantages of the dual delivery of bone morphogenetic protein-2 (BMP-2 and basic fibroblast growth factor (bFGF from nano-composite scaffolds (PLGA/PCL/nHA loaded with vascular stents (PLCL/Col/nHA for large bone defect regeneration in rabbit mandibles. Thirty-six large bone defects were repaired in rabbits using engineering bone composed of allogeneic bone marrow mesenchymal stem cells (BMSCs, bFGF, BMP-2 and scaffolds composed of PLGA/PCL/nHA loaded with PLCL/Col/nHA. The experiments were divided into six groups: BMSCs/bFGF/BMP-2/scaffold, BMSCs/BMP-2/scaffold, BMSCs/bFGF/scaffold, BMSCs/scaffold, scaffold alone and no treatment. Sodium alginate hydrogel was used as the carrier for BMP-2 and bFGF and its features, including gelling, degradation and controlled release properties, was detected by the determination of gelation and degradation time coupled with a controlled release study of bovine serum albumin (BSA. AlamarBlue assay and alkaline phosphatase (ALP activity were used to evaluate the proliferation and osteogenic differentiation of BMSCs in different groups. X-ray and histological examinations of the samples were performed after 4 and 12 weeks post-implantation to clarify new bone formation in the mandible defects. The results verified that the use of sodium alginate hydrogel as a controlled release carrier has good sustained release ability, and the combined application of bFGF and BMP-2 could significantly promote the proliferation and osteogenic differentiation of BMSCs (p < 0.05 or p < 0.01. In addition, X-ray and histological examinations of the samples exhibited that the dual release group had significantly higher bone formation than the other groups. The above results indicate that the delivery of both growth factors could enhance new bone formation and vascularization compared with delivery of BMP-2 or bFGF alone, and may supply a promising way of repairing large

  18. Smad4 mediated BMP2 signal is essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Si, Lina; Shi, Jin; Gao, Wenqun [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Zheng, Min [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Liu, Lingjuan; Zhu, Jing [Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China); Tian, Jie, E-mail: jietian@cqmu.edu.cn [Heart Centre, Children’s Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing 400014 (China)

    2014-07-18

    Highlights: • BMP2 can upregulated cardiac related gene GATA4, Nkx2.5, MEF2c and Tbx5. • Inhibition of Smad4 decreased BMP2-induced hyperacetylation of histone H3. • Inhibition of Smad4 diminished BMP2-induced overexpression of GATA4 and Nkx2.5. • Inhibition of Smad4 decreased hyperacetylated H3 in the promoter of GATA4 and Nkx2.5. • Smad4 is essential for BMP2 induced hyperacetylated histone H3. - Abstract: BMP2 signaling pathway plays critical roles during heart development, Smad4 encodes the only common Smad protein in mammals, which is a pivotal nuclear mediator. Our previous studies showed that BMP2 enhanced the expression of cardiac transcription factors in part by increasing histone H3 acetylation. In the present study, we tested the hypothesis that Smad4 mediated BMP2 signaling pathway is essential for the expression of cardiac core transcription factors by affecting the histone H3 acetylation. We successfully constructed a lentivirus-mediated short hairpin RNA interference vector targeting Smad4 (Lv-Smad4) in rat H9c2 embryonic cardiac myocytes (H9c2 cells) and demonstrated that it suppressed the expression of the Smad4 gene. Cultured H9c2 cells were transfected with recombinant adenoviruses expressing human BMP2 (AdBMP2) with or without Lv-Smad4. Quantitative real-time RT-PCR analysis showed that knocking down of Smad4 substantially inhibited both AdBMP2-induced and basal expression levels of cardiac transcription factors GATA4 and Nkx2.5, but not MEF2c and Tbx5. Similarly, chromatin immunoprecipitation (ChIP) analysis showed that knocking down of Smad4 inhibited both AdBMP2-induced and basal histone H3 acetylation levels in the promoter regions of GATA4 and Nkx2.5, but not of Tbx5 and MEF2c. In addition, Lv-Smad4 selectively suppressed AdBMP2-induced expression of HAT p300, but not of HAT GCN5 in H9c2 cells. The data indicated that inhibition of Smad4 diminished both AdBMP2 induced and basal histone acetylation levels in the promoter regions of

  19. Smad4 mediated BMP2 signal is essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells

    International Nuclear Information System (INIS)

    Highlights: • BMP2 can upregulated cardiac related gene GATA4, Nkx2.5, MEF2c and Tbx5. • Inhibition of Smad4 decreased BMP2-induced hyperacetylation of histone H3. • Inhibition of Smad4 diminished BMP2-induced overexpression of GATA4 and Nkx2.5. • Inhibition of Smad4 decreased hyperacetylated H3 in the promoter of GATA4 and Nkx2.5. • Smad4 is essential for BMP2 induced hyperacetylated histone H3. - Abstract: BMP2 signaling pathway plays critical roles during heart development, Smad4 encodes the only common Smad protein in mammals, which is a pivotal nuclear mediator. Our previous studies showed that BMP2 enhanced the expression of cardiac transcription factors in part by increasing histone H3 acetylation. In the present study, we tested the hypothesis that Smad4 mediated BMP2 signaling pathway is essential for the expression of cardiac core transcription factors by affecting the histone H3 acetylation. We successfully constructed a lentivirus-mediated short hairpin RNA interference vector targeting Smad4 (Lv-Smad4) in rat H9c2 embryonic cardiac myocytes (H9c2 cells) and demonstrated that it suppressed the expression of the Smad4 gene. Cultured H9c2 cells were transfected with recombinant adenoviruses expressing human BMP2 (AdBMP2) with or without Lv-Smad4. Quantitative real-time RT-PCR analysis showed that knocking down of Smad4 substantially inhibited both AdBMP2-induced and basal expression levels of cardiac transcription factors GATA4 and Nkx2.5, but not MEF2c and Tbx5. Similarly, chromatin immunoprecipitation (ChIP) analysis showed that knocking down of Smad4 inhibited both AdBMP2-induced and basal histone H3 acetylation levels in the promoter regions of GATA4 and Nkx2.5, but not of Tbx5 and MEF2c. In addition, Lv-Smad4 selectively suppressed AdBMP2-induced expression of HAT p300, but not of HAT GCN5 in H9c2 cells. The data indicated that inhibition of Smad4 diminished both AdBMP2 induced and basal histone acetylation levels in the promoter regions of

  20. Mandibular bone repair by implantation of rhBMP-2 in a slow release carrier of polylactic acid--an experimental study in rats.

    Science.gov (United States)

    Schliephake, Henning; Weich, Herbert A; Dullin, Christian; Gruber, Rudolf; Frahse, Sarah

    2008-01-01

    The aim of the present study was to test the hypothesis that human recombinant bone morphogenic protein 2 (rhBMP-2) implanted in a slow release carrier of polylactic acid (PLA) can repair a non-healing defect in the rat mandible and maintain the thickness of an augmented volume. p-DL-lactic acid discs were produced and loaded with 48 and 96 microg rhBMP-2 and inserted into non-healing defects of the mandible of 45 Wistar rats. Fifteen rats received implants with 96 microg rhBMP-2 (Group 2), 48 microg rhBMP-2 (Group 1) and blank implants without BMP (Group 0) each on one side of the mandible. Unfilled defects of the same size on the contralateral sides of the mandibles served as empty controls. After 6, 13 and 26 weeks, implants of each group were retrieved from five animals each and submitted to flat panel detector computed tomography. Bone formation and thickness of augmentation was assessed by computer-assisted histomorphometry. In Group 2 significantly more bone was produced than in Group 1. Implants of Group 1 induced significantly more bone than the blank controls only after 6 weeks, whereas the difference was not significant after 13 and 26 weeks. Differences between Group 2 and Group 1 were clearly significant after 26 weeks. The thickness of bone tissue was maintained in Group 2 whereas it decreased in Group 1 and was negligible in Group 0. It is concluded that the PLA implants with 96 microg rhBMP-2 were able to bridge a non-healing defect in the rat mandible and maintained the thickness of an augmented volume. However, continuous supply of osteogenic signals appears to be required to compensate for adverse effects during polymer degradation. PMID:17936352

  1. Chondrocyte outgrowth into a gelatin scaffold in a single impact load model of damage/repair – effect of BMP-2

    Directory of Open Access Journals (Sweden)

    Vincent Thea

    2007-12-01

    Full Text Available Abstract Background Articular cartilage has little capacity for repair in vivo, however, a small number of studies have shown that, in vitro, a damage/repair response can be induced. Recent work by our group has shown that cartilage can respond to single impact load and culture by producing repair cells on the articular surface. The purpose of this study was to identify whether chondrocyte outgrowth into a 3D scaffold could be observed following single impact load and culture. The effect of bone morphogenic-2 (BMP-2 on this process was investigated. Methods Cartilage explants were single impact loaded, placed within a scaffold and cultured for up to 20 days +/- BMP-2. Cell numbers in the scaffold, on and extruding from the articular surface were quantified and the immunohistochemistry used to identify the cellular phenotype. Results Following single impact load and culture, chondrocytes were observed in a 3D gelatin scaffold under all culture conditions. Chondrocytes were also observed on the articular surface of the cartilage and extruding out of the parent cartilage and on to the cartilage surface. BMP-2 was demonstrated to quantitatively inhibit these events. Conclusion These studies demonstrate that articular chondrocytes can be stimulated to migrate out of parent cartilage following single impact load and culture. The addition of BMP-2 to the culture medium quantitatively reduced the repair response. It may be that the inhibitory effect of BMP-2 in this experimental model provides a clue to the apparent inability of articular cartilage to heal itself following damage in vivo.

  2. Evaluation of a Novel HA/ZrO2-Based Porous Bioceramic Artificial Vertebral Body Combined with a rhBMP-2/Chitosan Slow-Release Hydrogel

    Science.gov (United States)

    Shi, Yihui; Quan, Renfu; Xie, Shangju; Li, Qiang; Cao, Guoping; Zhuang, Wei; Zhang, Liang; Shao, Rongxue; Yang, Disheng

    2016-01-01

    A new HA/ZrO2-based porous bioceramic artificial vertebral body (AVB), carried a recombinant human bone morphogenetic protein-2 (rhBMP-2)/chitosan slow-release hydrogel was prepared to repair vertebral bone defect in beagles. An ionic cross-linking was used to prepare the chitosan hydrogel (CS gel) as the rhBMP-2 slow-release carrier. The vertebral body defects were implanted with the rhBMP-2-loaded AVB in group A, or a non-drug-loaded AVB in group B, or autologous iliac in group C. The encapsulation rate of rhBMP-2 in rhBMP-2-loaded CS gel was 91.88±1.53%, with a drug load of 39.84±2.34 ng/mg. At 6, 12, 24 weeks postoperatively, radiography showed that the bone calluses gradually increased with time in group A, where the artificial vertebral body had completely fused with host-bone at 24 weeks after surgery. In group C, an apparent bone remodeling was occurred in the early stages, and the graft-bone and host-bone had also fused completely at 24 weeks postoperatively. In group B, fusion occurred less than in groups A and C. At 24 weeks after surgery, micro-computed tomography (Micro-CT) revealed that the volume of newly-formed bone in group A was significantly more than in group B (p<0.05). At 24 weeks after surgery, ultra-compressive strengths of the operated segments were 14.03±1.66 MPa in group A, 8.62±1.24 MPa in group B, and 13.78±1.43 MPa in group C. Groups A and C were both significantly higher than group B (p < 0.05). At 24 weeks postoperatively, the hard tissue sections showed that the AVB of group A had tightly fused with host bone, and that pores of the AVB had been filled with abundant nearly mature bone, and that the new bone structured similarly to a trabecular framework, which was similar to that in group C. In contrast, implant fusion of the AVB in group B was not as apparent as group A. In conclusion, the novel HA/ZrO2-based porous bioceramic AVB carried the rhBMP-2-loaded CS gel can promote the repair of bony defect, and induce bone tissue to

  3. Integration of a Novel Injectable Nano Calcium Sulfate/Alginate Scaffold and BMP2 Gene-Modified Mesenchymal Stem Cells for Bone Regeneration

    Science.gov (United States)

    He, Xiaoning; Dziak, Rosemary; Mao, Keya; Genco, Robert; Swithart, Mark; Li, Chunyi

    2013-01-01

    The repair of craniofacial bone defects is surgically challenging due to the complex anatomical structure of the craniofacial skeleton. Current strategies for bone tissue engineering using a preformed scaffold have not resulted in the expected clinical regeneration due to difficulty in seeding cells into the deep internal space of scaffold, and the inability to inject them in minimally invasive surgeries. In this study, we used the osteoconductive and mechanical properties of nano-scale calcium sulfate (nCS) and the biocompatibility of alginate to develop the injectable nCS/alginate (nCS/A) paste, and characterized the effect of this nCS/A paste loaded with bone morphogenetic protein 2 (BMP2) gene-modified rat mesenchymal stem cells (MSCs) on bone and blood vessel growth. Our results showed that the nCS/A paste was injectable under small injection forces. The mechanical properties of the nCS/A paste were increased with an increased proportion of alginate. MSCs maintained their viability after the injection, and MSCs and BMP2 gene-modified MSCs in the injectable pastes remained viable, osteodifferentiated, and yielded high alkaline phosphatase activity. By testing the ability of this injectable paste and BMP2-gene-modified MSCs for the repair of critical-sized calvarial bone defects in a rat model, we found that BMP2-gene-modified MSCs in nCS/A (nCS/A+M/B2) showed robust osteogenic activity, which resulted in consistent bone bridging of the bone defects. The vessel density in nCS/A+M/B2 was significantly higher than that in the groups of blank control, nCS/A alone, and nCS/A mixed with MSCs (nCS/A+M). These results indicate that BMP2 promotes MSCs-mediated bone formation and vascularization in nCS/A paste. Overall, the results demonstrated that the combination of injectable nCS/A paste and BMP2-gene-modified MSCs is a new and effective strategy for the repair of bone defects. PMID:22994418

  4. Osteogenesis differentiation of human periodontal ligament cells by CO2 laser-treatment stimulating macrophages via BMP2 signalling pathway

    International Nuclear Information System (INIS)

    Immune reactions play an important role in determining the biostimulation of bone formation, either in new bone formation or inflammatory fibrous tissue encapsulation. Macrophage cell, the important effector cells in the immune reaction, which are indispensable for osteogenesis and their heterogeneity and plasticity, render macrophages a primer target for immune system modulation. However, there are very few studies about the effects of macrophage cells on laser treatment-regulated osteogenesis. In this study, we used CO2 laser as a model biostimulation to investigate the role of macrophage cells on the CO2 laser stimulated osteogenesis. Bone morphogenetic protein 2 (BMP2) was also significantly up regulated by the CO2 laser stimulation, indicating that macrophage may participate in the CO2 laser stimulated osteogenesis. Interestingly, when laser treatment macrophage-conditioned medium were applied to human periodontal ligament cells (hPDLs), the osteogenesis differentiation of hPDLs was significantly enhanced, indicating the important role of macrophages in CO2 laser-induced osteogenesis. These findings provided valuable insights into the mechanism of CO2 laser-stimulated osteogenic differentiation, and a strategy to optimize the evaluation system for the in vitro osteogenesis capacity of laser treatment. (paper)

  5. Wnt1 and BMP2: two factors recruiting multipotent neural crest progenitors isolated from adult bone marrow.

    Science.gov (United States)

    Glejzer, A; Laudet, E; Leprince, P; Hennuy, B; Poulet, C; Shakhova, O; Sommer, L; Rogister, B; Wislet-Gendebien, S

    2011-06-01

    Recent studies have shown that neural crest-derived progenitor cells can be found in diverse mammalian tissues including tissues that were not previously shown to contain neural crest derivatives, such as bone marrow. The identification of those "new" neural crest-derived progenitor cells opens new strategies for developing autologous cell replacement therapies in regenerative medicine. However, their potential use is still a challenge as only few neural crest-derived progenitor cells were found in those new accessible locations. In this study, we developed a protocol, based on wnt1 and BMP2 effects, to enrich neural crest-derived cells from adult bone marrow. Those two factors are known to maintain and stimulate the proliferation of embryonic neural crest stem cells, however, their effects have never been characterized on neural crest cells isolated from adult tissues. Using multiple strategies from microarray to 2D-DIGE proteomic analyses, we characterized those recruited neural crest-derived cells, defining their identity and their differentiating abilities. PMID:20976520

  6. Efficacy of rhBMP-2 loaded PCL/PLGA/β-TCP guided bone regeneration membrane fabricated by 3D printing technology for reconstruction of calvaria defects in rabbit

    International Nuclear Information System (INIS)

    We successfully fabricated a three-dimensional (3D) printing-based PCL/PLGA/β-TCP guided bone regeneration (GBR) membrane that slowly released rhBMP-2. To impregnate the GBR membrane with intact rhBMP-2, collagen solution encapsulating rhBMP-2 (5 µg ml−1) was infused into pores of a PCL/PLGA/β-TCP membrane constructed using a 3D printing system with four dispensing heads. In a release profile test, sustained release of rhBMP-2 was observed for up to 28 d. To investigate the efficacy of the GBR membrane on bone regeneration, PCL/PLGA/β-TCP membranes with or without rhBMP-2 were implanted in an 8 mm calvaria defect of rabbits. Bone formation was evaluated at weeks 4 and 8 histologically and histomorphometrically. A space making ability of the GBR membrane was successfully maintained in both groups, and significantly more new bone was formed at post-implantation weeks 4 and 8 by rhBMP-2 loaded GBR membranes. Interestingly, implantation with rhBMP-2 loaded GBR membranes led to almost entire healing of calvaria defects within 8 weeks. (paper)

  7. Multifunctional Thin Film Biomatrice Biosensor in a Degradable Scaffold Containing Bone Morphogenetic Protein-2 (BMP-2) for Controlled Release in Skeletal Tissue Engineering

    Science.gov (United States)

    McDaniel, Harvey; Lomax, Linda

    2001-03-01

    Bone morphonogenetic proteins (BMP-2) have been under investigation for three decades. Deminerialized bone and extracts of deminerialized bone are o steoinductive with a temporal sequence of bone induction. Native and recombi nant BMP's have shown the ability, thru growth and differentiative factors t o induce de novo bone formation both invitro and invivo. Their principle fun ction is to induce transformation of undifferentiated mesenchymal cells into osteoblasts. Native and recombinant BMP's, when purified and used without carrier disp erse after implantation and exert no effect on bone induction. The delivery system provides the missing component to successsfully applying osteogenic p roteins for clinical need. Biological and physio-chemical properties are str ictly adhered tofor a successful delivery system. The BMP delivery system ca rrier for osteo inductive payload provided; 1)non tumorgenic genecity, 2) no n immunogenecity, 3) water insoluble, 4) biosorbability with predictable enz ymatic degradation, and 5) an optimized surface for compatibility, cell migr ation and attachment with a negative surface change that encouraged target c ell attachment. Being a controlled Release System, it binded the proteins wi th predictible BMP released kinetics. Porosity with interconnecting voids pr otected the BMP from noon specific proteolysis and promoted rapid vascular a nd mesenchymal invasion. Far wide ranging clinical applications of mechanica l and biofunctional requirements were met with the BMP delivery system. Cohe sion and malleability were reqiured forcontour augmentation, and reconstruct ion of the discontinuity defects, prevented dislocation and retained the sha pe and bone replaced the system. Biological systems have elastic activity associated with them. The activi ty was current associated with a time dependant biological/biochemical react ion (enzymic activity). Bioelectric phoenomena associated with charged molec ules in a biologic structure caused

  8. The effects of substrate-streching strain on the BMP-2 mRNA expression in three kinds of mouse cell lines%基底拉伸应变对小鼠三种骨组织细胞BMP-2 mRNA表达的影响

    Institute of Scientific and Technical Information of China (English)

    闫玉仙; 宋梅; 郭春; 郭勇; 宫元伟; 李瑞欣; 张西正

    2010-01-01

    目的 研究基底拉伸应变对小鼠成骨细胞系MC3T3-E1、破骨细胞系RAW264.7及骨细胞MLO-Y4三种细胞BMP-2 mRNA表达的影响.方法 三种细胞随机分为0 με、1 000 με、1 500 με、2 000 με、2 500 με和5 000 με组,最佳拉伸时间和周期为1次/d,每次1 h,连续3 d,频率为0.5 Hz.采用卫生装备研究所自行设计研制的四点弯曲装置对小鼠三种细胞进行拉伸加载.采用RT-PCR技术分别研究不同应变对小鼠三种细胞BMP-2 mRNA表达.结果 MC3T3-E1细胞RT-PCR结果显示:1 500 με、2 000 με组和2 500 με组与0 με组相比BMP-2 mRNA表达显著增强(P<0.01);5 000 με组与0 με组相比BMP-2 mRNA表达显著降低(P<0.01);RAW264.7细胞RT-PCR结果显示:1 500 με、2 000 με组和2 500 με组与0 με组相比BMP-2 mRNA表达显著降低(P<0.01);5 000με组与0 με组相比BMP-2 mRNA表达显著降低(P<0.01);MLO-Y4细胞BMP2基因表达结果与MC3T3-E1一致.结论 ①BMP-2在成骨细胞系MC3T3-E1、破骨细胞系RAW-264.7及骨细胞系MLO-Y4三种细胞中均有表达;②1 500 με、2 000 με、2 500 με三种生理剂量的拉伸应变可以显著增加MC3T3-E1、MLO-Y4 细胞BMP-2的表达,并呈剂量依赖性,超生理剂量5 000 με可以显著降低MC3T3-E1、MLO-Y4细胞BMP-2的表达;③相同的力学拉伸作用条件下,BMP-2在RAW-264.7细胞中表达与MC3T3-E1、MLO-Y4细胞的表达趋势相反.

  9. Self-assembled Biodegradable Nanoparticles and Polysaccharides as Biomimetic ECM Nanostructures for the Synergistic effect of RGD and BMP-2 on Bone Formation.

    Science.gov (United States)

    Wang, Zhenming; Dong, Li; Han, Lu; Wang, Kefeng; Lu, Xiong; Fang, Liming; Qu, Shuxin; Chan, Chun Wai

    2016-01-01

    Producing biomimetic extracellular matrix (ECM) is an effective approach to improve biocompatibility of medical devices. In this study, biomimetic ECM nanostructures are constructed through layer-by-layer self-assembling positively charged chitosan (Chi), negatively charged oxidized sodium alginate (OAlg), and positively charged bovine serum albumin (BSA)-based nanoparticles. The BSA-based nanoparticles in the self-assembled films not only result in porous nanostructures similar to natural ECM, but also preserve the activity and realize the sustained release of Bone morphogenetic protein-2 (BMP-2). The results of bone marrow stem cells (BMSCs) culture demonstrate that the penta-peptide glycine-arginine-glycine-aspartate-serine (GRGDS) grafted Chi/OAlg films favor cell adhesion and proliferation. GRGDS and BMP-2 in biomimetic ECM nanostructures synergistically promote BMSC functions and new bone formation. The RGD and BMP incorporated biomimetic ECM coatings could be applied on a variety of biomedical devices to improve the bioactivity and biocompatibility. PMID:27121121

  10. Self-assembled Biodegradable Nanoparticles and Polysaccharides as Biomimetic ECM Nanostructures for the Synergistic effect of RGD and BMP-2 on Bone Formation

    Science.gov (United States)

    Wang, Zhenming; Dong, Li; Han, Lu; Wang, Kefeng; Lu, Xiong; Fang, Liming; Qu, Shuxin; Chan, Chun Wai

    2016-01-01

    Producing biomimetic extracellular matrix (ECM) is an effective approach to improve biocompatibility of medical devices. In this study, biomimetic ECM nanostructures are constructed through layer-by-layer self-assembling positively charged chitosan (Chi), negatively charged oxidized sodium alginate (OAlg), and positively charged bovine serum albumin (BSA)-based nanoparticles. The BSA-based nanoparticles in the self-assembled films not only result in porous nanostructures similar to natural ECM, but also preserve the activity and realize the sustained release of Bone morphogenetic protein-2 (BMP-2). The results of bone marrow stem cells (BMSCs) culture demonstrate that the penta-peptide glycine-arginine-glycine-aspartate-serine (GRGDS) grafted Chi/OAlg films favor cell adhesion and proliferation. GRGDS and BMP-2 in biomimetic ECM nanostructures synergistically promote BMSC functions and new bone formation. The RGD and BMP incorporated biomimetic ECM coatings could be applied on a variety of biomedical devices to improve the bioactivity and biocompatibility. PMID:27121121

  11. Treatment of critically sized femoral defects with recombinant BMP-2 delivered by a modified mPEG-PLGA biodegradable thermosensitive hydrogel

    OpenAIRE

    Peng, Kuo-Ti; Hsieh, Meng-Yow; Lin, Carl T.; Chen, Chin-Fu; Lee, Mel S.; Huang, Yi-You; CHANG, PEY-JIUM

    2016-01-01

    Background Reconstruction of a segmental fracture with massive bone loss is still a challenge for orthopaedic surgeons. The aim of our study was to develop a suitable biodegradable thermosensitive hydrogel system as a carrier for bone morphogenetic protein (BMP)-2 delivery in the treatment of critical-sized femoral defects. Methods A block copolymer composed of monomethoxypoly(ethylene glycol) (mPEG), poly(lactic-co-glycolic acid) (PLGA) and 2, 2’-Bis (2-oxazolin) (Box) was synthesized by rin...

  12. Extracellular Ca2+ Promotes Odontoblastic Differentiation of Dental Pulp Stem Cells via BMP2-Mediated Smad1/5/8 and Erk1/2 Pathways.

    Science.gov (United States)

    Li, Shiting; Hu, Jing; Zhang, Gang; Qi, Wei; Zhang, Ping; Li, Pengfei; Zeng, Yong; Zhao, Wenfeng; Tan, Yinghui

    2015-09-01

    Ca(2+) is the main element of many pulp capping materials that are used to promote the regeneration of tertiary dentin, but the underlying molecular mechanism is not clear. In this study, we found that Ca(2+) increased the expression of the odontoblastic differentiation marker gene DSPP and promoted odontoblastic differentiation and mineralization of DPSCs, but inhibited ALP activity. Ca(2+) increases the expression of endogenous BMP2, which activates the Smad1/5/8 pathway and promotes the Smad1-Runx2 and Runx2-DSPP interaction in DPSCs. Inhibition of Smad1/5/8 with dorsomorphin partially blocked Runx2 activity; however, inhibition of the BMP2 receptor with Noggin nearly fully suppressed Runx2 activity. These results indicate that Ca(2+) promotes cell differentiation mainly via BMP2-mediated Smad-dependent and Smad-independent pathways. We then determined that the phosphorylation level of Erk1/2, but not JNK or p38, was significantly increased as a result of Ca(2+) stimulation. Blockage of Erk1/2 was found to inhibit Runx2 activity, indicating that Ca(2+) triggers the Erk1/2 pathway, which subsequently regulates Runx2 activity. In addition, inhibition of Erk1/2 differentially attenuated the phosphorylation levels of Smad1/5/8 and Smad2/3. Collectively, this study demonstrates that Ca(2+) activates the BMP2-mediated Smad1/5/8 and Erk1/2 pathways in DPSCs and that Smad1/5/8 and Erk1/2 signaling converge at Runx2 to control the odontoblastic differentiation of DPSCs. PMID:25656933

  13. Effect of recombinant human bone morphogenetic protein 2/polylactide-co-glycolic acid (rhBMP-2/PLGA) with core decompression on repair of rabbit femoral head necrosis

    Institute of Scientific and Technical Information of China (English)

    Zhao-Xun; Pan; Hong-Xin; Zhang; Ye-Xin; Wang; Long-Di; Zhai; Wei; Du

    2014-01-01

    Objective:To observe the effect of recombinant human bone morphogenetic protein 2/polylactide-co-glycolic acid(rhBMP-2/PLGA) with core decompression on repair of rabbit femoral head necrosis.Methods:Bilateral femoral head necrosis models of rabbit were established by steroid injection.A total of 48 rabbits(96 femoral head necrosis) were randomly divided into 4groups:Group A,control group with12 rabbits,24 femoral head necrosis;Group B,treated with rhBMP-2/PLCA implantation after core depression,with 12 rabbits,24 femoral head necrosis;Group C,treated with rhBMP-2 implantation after core depression,with 12 rabbits,24 femoral head necrosis;Croup D treated with core depression group without implantation,with 12 rabbits,24 femoral head necrosis.All animals were sacrificed after 12 weeks.The ability of repairing bone defect was evaluated by X-ray radiograph.Bone mineral density analysis of the defect regions were used to evaluate the level of ossification.The morphologic change and bone formation was assessed by HE staining.The angiogenesis was evaluated by VEGF immunohistochemistry.Results:The osteogenetic ability and quality of femoral head necrosis in group B were better than those of other groups after 12 weeks by X-ray radiograph and morphologic investigation.And the angiogenesis in group B was better than other groups.Group C had similar osteogenetic quality of femoral head necrosis and angiogenesis with group D.Conclusions:The treatment of rhBMP-2/PLCA implantation after core depression can promote the repair of rabbit femoral head necrosis.It is a promising and efficient synthetic bone material to treat the femoral head necrosis.

  14. The Value of SPECT/CT in Monitoring Prefabricated Tissue-Engineered Bone and Orthotopic rhBMP-2 Implants for Mandibular Reconstruction.

    Directory of Open Access Journals (Sweden)

    Miao Zhou

    Full Text Available Bone tissue engineering shows good prospects for mandibular reconstruction. In recent studies, prefabricated tissue-engineered bone (PTEB by recombinant human bone morphogenetic proteins (rhBMPs applied in vivo has found to be an effective alternative for autologous bone grafts. However, the optimal time to transfer PTEB for mandibular reconstruction is still not elucidated. Thus, here in an animal experiment of rhesus monkey, the suitable transferring time for PTEB to reconstruct mandibular defects was evaluated by 99mTc-MDP SPECT/CT, and its value in monitoring orthotopic rhBMP-2 implants for mandibular reconstruction was also evaluated. The result of SPECT/CT showed higher 99mTc-MDP uptake, indicating osteoinductivity, in rhBMP-2 incorporated demineralized freeze-dried bone allograft (DFDBA and coralline hydroxyapatite (CHA implants than those without BMP stimulation. 99mTc-MDP uptake of rhBMP-2 implant peaked at 8 weeks following implantation while CT showed the density of these implants increased after 13 weeks' prefabrication. Histology confirmed that mandibular defects were repaired successfully with PTEB or orthotopically rhBMP-2 incorporated CHA implants, in accordance with SPECT/CT findings. Collectively, data shows 99mTc-MDP SPECT/CT is a sensitive and noninvasive tool to monitor osteoinductivity and bone regeneration of PTEB and orthotopic implants. The PTEB achieved peak osteoinductivity and bone density at 8 to 13 weeks following ectopic implantation, which would serve as a recommendable time frame for its transfer to mandibular reconstruction.

  15. Expression of genes for bone morphogenetic proteins BMP-2, BMP-4 and BMP-6 in various parts of the human skeleton

    Directory of Open Access Journals (Sweden)

    Włodarski Krzysztof

    2007-12-01

    Full Text Available Abstract Background Differences in duration of bone healing in various parts of the human skeleton are common experience for orthopaedic surgeons. The reason for these differences is not obvious and not clear. Methods In this paper we decided to measure by the use of real-time RT-PCR technique the level of expression of genes for some isoforms of bone morphogenetic proteins (BMPs, whose role is proven in bone formation, bone induction and bone turnover. Seven bone samples recovered from various parts of skeletons from six cadavers of young healthy men who died in traffic accidents were collected. Activity of genes for BMP-2, -4 and -6 was measured by the use of fluorescent SYBR Green I. Results It was found that expression of m-RNA for BMP-2 and BMP-4 is higher in trabecular bone in epiphyses of long bones, cranial flat bones and corpus mandibulae then in the compact bone of diaphyses of long bones. In all samples examined the expression of m-RNA for BMP-4 was higher than for BMP-2. Conclusion It was shown that m-RNA for BMP-6 is not expressed in the collected samples at all. It is postulated that differences in the level of activation of genes for BMPs is one of the important factors which determine the differences in duration of bone healing of various parts of the human skeleton.

  16. Novel solvent-free fabrication of biodegradable poly-lactic-glycolic acid (PLGA) capsules for antibiotics and rhBMP-2 delivery.

    Science.gov (United States)

    Liu, Shih-Jung; Chi, Po-Sheng; Lin, Song-Su; Ueng, Steve Wen-Neng; Chan, Err-Cheng; Chen, Jan-Kan

    2007-02-01

    Osteomyelitis has been one of the most common causes of post-operative problems and complications despite the advances in surgical techniques and the availability of newly developed antibiotics. Local antibiotic and growth factor delivery devices for treatment of various surgical infections have been studied recently, especially in the case of orthopedic infections. The report was to develop novel solvent-free biodegradable capsules for antibiotics and growth factors delivery. To fabricate a biodegradable capsule, polylactide-polyglycolide copolymers were pre-mixed with vancomycin. The mixture was then compression molded and sintered to form a cylinder with a cover of 8 mm in diameter. After the addition of 1 and 10 microg recombinant bone morphogenetic protein (rhBMP-2) into the core, an ultrasonic welder was used to seal the capsules. An elution method was employed to characterize the in vitro release characteristics of the antibiotics and the rhBMP-2 over a 30-day period. The HPLC analysis and the bacterial inhibition test showed that biodegradable capsules released high concentrations and activity of vancomycin (well above the minimum inhibition concentration) in vitro for the period of time needed to treat bone infection; i.e. 4-6 weeks. In addition, the results of ELISA and ALP tests also suggested that the capsules released active rhBMP-2 for up to 30 days. By adopting this novel technique, we will be able to fabricate biodegradable capsules of various medicines for long-term drug deliveries. PMID:17008035

  17. Effects of recombinant human Bone Morphogenetic Protein-2 (rhBMP-2) in grade III open tibia fractures treated with unreamed nails-A clinical and health-economic analysis.

    Science.gov (United States)

    Alt, Volker; Borgman, Benny; Eicher, Alexander; Heiss, Christian; Kanakaris, Nikolaos K; Giannoudis, Peter V; Song, Fujian

    2015-11-01

    Recombinant human Bone Morphogenetic Protein-2 (rhBMP-2) is licensed in Europe for open tibia fractures treated with unreamed nails. However, there is limited data available on the specific use of rhBMP-2 in combination with unreamed nails for open tibia fractures. The intention of the current study was to evaluate the medical and health-economic effects of rhBMP-2 in Gustilo-Anderson grade III open tibia fractures treated with unreamed nails based on individual patient data from two previously published studies. Linear regression analysis was performed on raw data of 90 patients that were either treated by standard of care with soft tissue management and unreamed nailing (SOC group) (n=50) or with rhBMP-2 in addition to soft tissue management and unreamed nailing (rhBMP-2 group) (n=40). For all types of revision, a significant lower percentage of patients (27.5%) of the rhBMP-2 group had to be revised compared to 48% of the patients of the SOC group (p=0.04). When only invasive secondary interventions such as bone grafting and nail exchange were considered, there was also a statistically significant reduction in the rhBMP-2 group with a revision rate of 10.0% (4 of 40 patients) compared to the SOC group with a revision rate of 28.0% (14 of 50 patients) (p=0.01). Mean fracture healing time of 228 days in the rhBMP-2 compared to 266 days in the SOC group was not statistically significant (p=0.24). Health-economic analysis based on a societal perspective with calculation of overall treatment costs after initial surgery and including productivity losses revealed savings of €6,239 per patient for Germany and €4,752 for the UK in favour of rhBMP-2 which was mainly driven by reduction of productivity losses. In conclusion, rhBMP-2 reduces secondary interventions in patients with grade III open tibia fractures treated with an unreamed nail and its use leads to financial savings for Germany and the UK from a societal perspective. PMID:26374949

  18. The multifaceted effects of agmatine on functional recovery after spinal cord injury through Modulations of BMP-2/4/7 expressions in neurons and glial cells.

    Directory of Open Access Journals (Sweden)

    Yu Mi Park

    Full Text Available Presently, few treatments for spinal cord injury (SCI are available and none have facilitated neural regeneration and/or significant functional improvement. Agmatine (Agm, a guanidinium compound formed from decarboxylation of L-arginine by arginine decarboxylase, is a neurotransmitter/neuromodulator and been reported to exert neuroprotective effects in central nervous system injury models including SCI. The purpose of this study was to demonstrate the multifaceted effects of Agm on functional recovery and remyelinating events following SCI. Compression SCI in mice was produced by placing a 15 g/mm(2 weight for 1 min at thoracic vertebra (Th 9 segment. Mice that received an intraperitoneal (i.p. injection of Agm (100 mg/kg/day within 1 hour after SCI until 35 days showed improvement in locomotor recovery and bladder function. Emphasis was made on the analysis of remyelination events, neuronal cell preservation and ablation of glial scar area following SCI. Agm treatment significantly inhibited the demyelination events, neuronal loss and glial scar around the lesion site. In light of recent findings that expressions of bone morphogenetic proteins (BMPs are modulated in the neuronal and glial cell population after SCI, we hypothesized whether Agm could modulate BMP- 2/4/7 expressions in neurons, astrocytes, oligodendrocytes and play key role in promoting the neuronal and glial cell survival in the injured spinal cord. The results from computer assisted stereological toolbox analysis (CAST demonstrate that Agm treatment dramatically increased BMP- 2/7 expressions in neurons and oligodendrocytes. On the other hand, BMP- 4 expressions were significantly decreased in astrocytes and oligodendrocytes around the lesion site. Together, our results reveal that Agm treatment improved neurological and histological outcomes, induced oligodendrogenesis, protected neurons, and decreased glial scar formation through modulating the BMP- 2/4/7 expressions following

  19. Generation of an rhBMP-2-loaded beta-tricalcium phosphate/hydrogel composite and evaluation of its efficacy on peri-implant bone formation

    International Nuclear Information System (INIS)

    Dental implant insertion on a site with low bone quality or bone defect should be preceded by a bone graft or artificial bone graft insertion to heal the defect. We generated a beta-tricalcium phosphate (β-TCP) and poloxamer 407-based hydrogel composite and penetration of the β-TCP/hydrogel composite into the peri-implant area of bone was evaluated by porous bone block experiments. The maximum penetration depth for porous bone blocks and dense bone blocks were 524 μm and 464 μm, respectively. We report the in-vivo performance of a composite of β-TCP/hydrogel composite as a carrier of recombinant human bone morphogenetic protein (rhBMP-2), implanted into a rabbit tibial defect model. Three holes drilled into each tibia of eight male rabbits were (1) grafted with dental implant fixtures; (2) filled with β-TCP/hydrogel composite (containing 5 μg of rhBMP-2), followed by grafting of the dental implant fixtures. Four weeks later, bone-implant contact ratio and peri-implant bone formation were analyzed by radiography, micro-CT and histology of undecalcified specimens. The micro-CT results showed a significantly higher level of trabecular thickness and new bone and peri-implant new bone formation in the experimental treatment compared to the control treatment. Histomorphometry revealed a significantly higher bone-implant contact ratio and peri-implant bone formation with the experimental treatment. The use of β-TCP/poloxamer 407 hydrogel composite as a carrier of rhBMP-2 significantly promoted new bone formation around the dental implant fixture and it also improved the quality of the new bone formed in the tibial marrow space. (paper)

  20. The toxic effects of Tris-(2,3-dibromopropyl)isocyanurate(TBC) on genes expression of bmp2b and bmp4 of zebrafish embryos

    Institute of Scientific and Technical Information of China (English)

    JIA Wan-jun

    2016-01-01

    We exposed zebrafish embryos to Tris-(2,3-dibromopropyl)isocyanurate(TBC)at the concentration of 20ppb, 100ppb, 400ppb, 1000ppb for 120h and 0.1%DMSO was set as the control group. Bmp2b and bmp4 were chosen perform RT-PCR to determine their genes expression level. The results showed that, TBC influenced their genes expression level in some extent and it significantly raised the genes expression level at the concentration of 20ppb.

  1. Muscle Activity and Muscle Agrin Regulate the Organization of Cytoskeletal Proteins and Attached Acetylcholine Receptor (Achr) Aggregates in Skeletal Muscle Fibers

    OpenAIRE

    Bezakova, Gabriela; Lømo, Terje

    2001-01-01

    In innervated skeletal muscle fibers, dystrophin and β-dystroglycan form rib-like structures (costameres) that appear as predominantly transverse stripes over Z and M lines. Here, we show that the orientation of these stripes becomes longitudinal in denervated muscles and transverse again in denervated electrically stimulated muscles. Skeletal muscle fibers express nonneural (muscle) agrin whose function is not well understood. In this work, a single application of ≥10 nM purified recombinant...

  2. Heterotopic ossification following single-level anterior cervical discectomy and fusion: results from the prospective, multicenter, historically controlled trial comparing allograft to an optimized dose of rhBMP-2.

    Science.gov (United States)

    Arnold, Paul M; Anderson, Karen K; Selim, Abdulhafez; Dryer, Randall F; Kenneth Burkus, J

    2016-09-01

    OBJECTIVE Heterotopic ossification (HO) has been reported following total hip, knee, cervical, and lumbar arthroplasty, as well as following posterolateral lumbar fusion using recombinant human bone morphogenetic protein-2 (rhBMP-2). Data regarding HO following anterior cervical discectomy and fusion (ACDF) with rhBMP-2 are sparse. A subanalysis was done of the prospective, multicenter, investigational device exemption trial that compared rhBMP-2 on an absorbable collagen sponge (ACS) versus allograft in ACDF for patients with symptomatic single-level cervical degenerative disc disease. METHODS To assess differences in types of HO observed in the treatment groups and effects of HO on functional and efficacy outcomes, clinical outcomes from previous disc replacement studies were compared between patients who received rhBMP-2/ACS versus allograft. Rate, location, grade, and size of ossifications were assessed preoperatively and at 24 months, and correlated with clinical outcomes. RESULTS Heterotopic ossification was primarily anterior in both groups. Preoperatively in both groups, and including osteophytes in the target regions, HO rates were high at 40.9% and 36.9% for the rhBMP-2/ACS and allograft groups, respectively (p = 0.350). At 24 months, the rate of HO in the rhBMP-2/ACS group was higher than in the allograft group (78.6% vs 59.2%, respectively; p pain scores), neurological status, and overall success in patients in the rhBMP-2/ACS group, but not in patients in the allograft group. CONCLUSIONS Implantation of rhBMP-2/ACS at 1.5 mg/ml with polyetheretherketone spacer and titanium plate is effective in inducing fusion and improving pain and function in patients undergoing ACDF for symptomatic single-level cervical degenerative disc disease. At 24 months, the rate and dimensions (length and anteroposterior diameter) of HO were higher in the rhBMP-2/ACS group. At 24 months, range of motion was reduced, with Park Grade 3 HO in both treatment groups. The impact of

  3. Low-power GaAlAs laser irradiation promotes the proliferation and osteogenic differentiation of stem cells via IGF1 and BMP2.

    Directory of Open Access Journals (Sweden)

    Jyun-Yi Wu

    Full Text Available Low-power laser irradiation (LPLI has been found to induce various biological effects and cellular processes. Also, LPLI has been shown to promote fracture repair. Until now, it has been unclear how LPLI promotes bone formation and fracture healing. The aim of this study was to investigate the potential mechanism of LPLI-mediated enhancement of bone formation using mouse bone marrow mesenchymal stem cells (D1 cells. D1 cells were irradiated daily with a gallium-aluminum-arsenide (GaAlAs laser at dose of 0, 1, 2, or 4 J/cm(2. The lactate dehydrogenase (LDH assay showed no cytotoxic effects of LPLI on D1 cells, and instead, LPLI at 4 J/cm(2 significantly promoted D1 cell proliferation. LPLI also enhanced osteogenic differentiation in a dose-dependent manner and moderately increased expression of osteogenic markers. The neutralization experiments indicated that LPLI regulated insulin-like growth factor 1 (IGF1 and bone morphogenetic protein 2 (BMP2 signaling to promote cell proliferation and/or osteogenic differentiation. In conclusion, our study suggests that LPLI may induce IGF1 expression to promote both the proliferation and osteogenic differentiation of D1 cells, whereas it may induce BMP2 expression primarily to enhance osteogenic differentiation.

  4. 辽宁绒山羊BMP-2基因的克隆及序列比较分析%Cloning and Sequence Analyzing of B MP-2 Gene from Liaoning Cashmere Goats

    Institute of Scientific and Technical Information of China (English)

    薛冰; 郭丹; 王春艳; 郑旭; 高月; 张世伟

    2012-01-01

    根据GenBank上绵羊的BMP-2基因序列设计特异性引物,以辽宁绒山羊基因组DNA为模板,利用聚合酶链式反应,成功克隆了常年长绒型和季节长绒型辽宁绒山羊BMP-2部分基因片段,丰富了绒山羊BMP-2基因序列。经与绵羊、牛、鼠、猪和人的BMP-2基因进行的比对结果表明,季节与常年长绒型辽宁绒山羊的BMP-2基因同源片段的同源性达到99.7%,二者与绵羊同源性为98.2%和98.4%;与牛同源性为98.2%和97.9%;与鼠同源性为86.3%和86%;与人同源性为88.1%和88.1%。结果表明,辽宁绒山羊BMP-2基因部分核苷酸序列与其他哺乳动物同源性很高,与绵羊、牛的同源性高达97%以上,这与它们的种属关系相近一致。与人、鼠的同源性也在86%以上,说明BMP-2基因在不同物种之间具有较高的保守性。%According to the BMP-2 gene sequence of sheep on the GenBank, specific primers were designed and perennial and seasonal long-staple Cashmere goat BMP type-2 partial gene fragments were successfully cloned from the Liaoning cashmere goat genomic DNA, using the polymerase chain reaction. With the sheep, cat- tie, rats, pigs and human BMP-2 gene than on the results show that seasonal and perennial long-staple type of Liaoning cashmere goats homologous fragment of BMP-2 homology 99.7%, respeciively homology with the sheep was 98.2% and 98.4%; and bovine homology was 98.2% and 97.9%; and rat homolgy 86.3% and 86%; and human homology was 88.1% and 88.1%. The results showed that BMP-2 in Liaoning Cashmere goat gene partial nucleotide sequence homology with other mammals, which is similar to their relationship of species, and BMP-2 gene were conserved in different species.

  5. A new heterologous fibrin sealant as scaffold to recombinant human bone morphogenetic protein-2 (rhBMP-2) and natural latex proteins for the repair of tibial bone defects.

    Science.gov (United States)

    Machado, Eduardo Gomes; Issa, João Paulo Mardegan; Figueiredo, Fellipe Augusto Tocchini de; Santos, Geovane Ribeiro Dos; Galdeano, Ewerton Alexandre; Alves, Mariana Carla; Chacon, Erivelto Luis; Ferreira Junior, Rui Seabra; Barraviera, Benedito; Cunha, Marcelo Rodrigues da

    2015-04-01

    Tissue engineering has special interest in bone tissue aiming at future medical applications Studies have focused on recombinant human bone morphogenetic protein-2 (rhBMP-2) and natural latex proteins due to the osteogenic properties of rhBMP-2 and the angiogenic characteristic of fraction 1 protein (P-1) extracted from the rubber tree Hevea brasiliensis. Furthermore, heterologous fibrin sealant (FS) has been shown as a promising alternative in regenerative therapies. The aim of this study was to evaluate these substances for the repair of bone defects in rats. A bone defect measuring 3mm in diameter was created in the proximal metaphysis of the left tibia of 60 rats and was implanted with rhBMP-2 or P-1 in combination with a new heterologous FS derived from snake venom. The animals were divided into six groups: control (unfilled bone defect), rhBMP-2 (defect filled with 5μg rhBMP-2), P-1 (defect filled with 5μg P-1), FS (defect filled with 8μg FS), FS/rhBMP-2 (defect filled with 8μg FS and 5μg rhBMP-2), FS/P-1 (defect filled with 8μg FS and 5μg P-1). The animals were sacrificed 2 and 6 weeks after surgery. The newly formed bone projected from the margins of the original bone and exhibited trabecular morphology and a disorganized arrangement of osteocyte lacunae. Immunohistochemical analysis showed intense expression of osteocalcin in all groups. Histometric analysis revealed a significant difference in all groups after 2 weeks (p0.05). A statistically significant difference (p<0.05) was observed in all groups after 6 weeks in relation to the volume of newly formed bone in the surgical area. In conclusion, the new heterologous fibrin sealant was found to be biocompatible and the combination with rhBMP-2 showed the highest osteogenic and osteoconductive capacity for bone healing. These findings suggest a promising application of this combination in the regeneration surgery. PMID:25825118

  6. Combination therapy with BMP-2 and BMSCs enhances bone healing efficacy of PCL scaffold fabricated using the 3D plotting system in a large segmental defect model.

    Science.gov (United States)

    Kang, Sun-Woong; Bae, Ji-Hoon; Park, Su-A; Kim, Wan-Doo; Park, Mi-Su; Ko, You-Jin; Jang, Hyon-Seok; Park, Jung-Ho

    2012-07-01

    The three-dimensional (3D) plotting system is a rapidly-developing scaffold fabrication method for bone tissue engineering. It yields a highly porous and inter-connective structure without the use of cytotoxic solvents. However, the therapeutic effects of a scaffold fabricated using the 3D plotting system in a large segmental defect model have not yet been demonstrated. We have tested two hypotheses: whether the bone healing efficacy of scaffold fabricated using the 3D plotting system would be enhanced by bone marrow-derived mesenchymal stem cell (BMSC) transplantation; and whether the combination of bone morphogenetic protein-2 (BMP-2) administration and BMSC transplantation onto the scaffold would act synergistically to enhance bone regeneration in a large segmental defect model. The use of the combined therapy did increase bone regeneration further as compared to that with monotherapy in large segmental bone defects. PMID:22447098

  7. Dynamic MR imaging: Follow-up study after femoral head core decompression and rhBMP-2 instillation in patients with avascular necrosis of the femoral head

    International Nuclear Information System (INIS)

    Material and Methods: Six patients with avascular necrosis of the femoral head ARCO-stage I- or II-lesions were treated surgically by femoral head core decompression. Three of these patients were additionally treated with rhBMP-2-instillation. The progression or regression could be confirmed by T1- and T2-weighted spinecho-sequences (zero, four, ten, sixteen weeks and 24 months follow up). Results: Corresponding ARCO-classification with partly more sensitive measurement of vitality signs in comparison to the optical X-ray classification. The objective, quantitative measurement of signalintensity post contrast medium reduces the influence of experience and level of education. The dynamic sequences results are reproducable. (orig.)

  8. Characteristics and Stimulation Potential with BMP-2 and BMP-7 of Tenocyte-Like Cells Isolated from the Rotator Cuff of Female Donors

    Science.gov (United States)

    Klatte-Schulz, Franka; Pauly, Stephan; Scheibel, Markus; Greiner, Stefan; Gerhardt, Christian; Hartwig, Jelka; Schmidmaier, Gerhard; Wildemann, Britt

    2013-01-01

    Tendon bone healing of the rotator cuff is often associated with non-healing or recurrent defects, which seems to be influenced by the patient’s age and sex. The present study aims to examine cellular biological characteristics of tenocyte-like cells that may contribute to this impaired rotator cuff healing. Moreover, a therapeutic approach using growth factors could possibly stimulate tendon bone healing. Therefore, our second aim was to identify patient groups who would particularly benefit from growth factor stimulation. Tenocyte-like cells isolated from supraspinatus tendons of female donors younger and older than 65 years of age were characterized with respect to different cellular biological parameters, such as cell density, cell count, marker expression, collagen-I protein synthesis, and stem cell potential. Furthermore, cells of the donor groups were stimulated with BMP-2 and BMP-7 (200 and 1000 ng/ml) in 3D-culture and analyzed for cell count, marker expression and collagen-I protein synthesis. Female donors older than 65 years of age showed significantly decreased cell count and collagen-I protein synthesis compared to cells from donors younger than 65 years. Cellular biological parameters including cell count, collagen-I and –III expression, and collagen-I protein synthesis of cells from both donor groups were stimulated with BMP-2 and BMP-7. The cells from donors older than 65 years revealed a decreased stimulation potential for cell count compared to the younger group. Cells from female donors older than 65 years of age showed inferior cellular biological characteristics. This may be one reason for a weaker healing potential observed in older female patients and should be taken into consideration for tendon bone healing of the rotator cuff. PMID:23825642

  9. Characteristics and stimulation potential with BMP-2 and BMP-7 of tenocyte-like cells isolated from the rotator cuff of female donors.

    Directory of Open Access Journals (Sweden)

    Franka Klatte-Schulz

    Full Text Available Tendon bone healing of the rotator cuff is often associated with non-healing or recurrent defects, which seems to be influenced by the patient's age and sex. The present study aims to examine cellular biological characteristics of tenocyte-like cells that may contribute to this impaired rotator cuff healing. Moreover, a therapeutic approach using growth factors could possibly stimulate tendon bone healing. Therefore, our second aim was to identify patient groups who would particularly benefit from growth factor stimulation. Tenocyte-like cells isolated from supraspinatus tendons of female donors younger and older than 65 years of age were characterized with respect to different cellular biological parameters, such as cell density, cell count, marker expression, collagen-I protein synthesis, and stem cell potential. Furthermore, cells of the donor groups were stimulated with BMP-2 and BMP-7 (200 and 1000 ng/ml in 3D-culture and analyzed for cell count, marker expression and collagen-I protein synthesis. Female donors older than 65 years of age showed significantly decreased cell count and collagen-I protein synthesis compared to cells from donors younger than 65 years. Cellular biological parameters including cell count, collagen-I and -III expression, and collagen-I protein synthesis of cells from both donor groups were stimulated with BMP-2 and BMP-7. The cells from donors older than 65 years revealed a decreased stimulation potential for cell count compared to the younger group. Cells from female donors older than 65 years of age showed inferior cellular biological characteristics. This may be one reason for a weaker healing potential observed in older female patients and should be taken into consideration for tendon bone healing of the rotator cuff.

  10. Effect of recombinant human bone morphogenetic protein 2/poly-lactide-co-glycolic acid (rhBMP-2/PLGA) with core decompression on repair of rabbit femoral head necrosis

    Institute of Scientific and Technical Information of China (English)

    Zhao-Xun Pan; Hong-Xin Zhang; Ye-Xin Wang; Long-Di Zhai; Wei Du

    2014-01-01

    Objective:To observe the effect of recombinant human bone morphogenetic protein 2/poly-lactide-co-glycolic acid (rhBMP-2/PLGA) with core decompression on repair of rabbit femoral head necrosis. Methods: Bilateral femoral head necrosis models of rabbit were established by steroid injection. A total of 48 rabbits (96 femoral head necrosis) were randomly divided into 4 groups: Group A, control group with12 rabbits, 24 femoral head necrosis;Group B, treated with rhBMP-2/PLGA implantation after core depression, with 12 rabbits, 24 femoral head necrosis;Group C, treated with rhBMP-2 implantation after core depression, with 12 rabbits, 24 femoral head necrosis;Group D treated with core depression group without implantation, with 12 rabbits, 24 femoral head necrosis. All animals were sacrificed after 12 weeks. The ability of repairing bone defect was evaluated by X-ray radiograph. Bone mineral density analysis of the defect regions were used to evaluate the level of ossification. The morphologic change and bone formation was assessed by HE staining. The angiogenesis was evaluated by VEGF immunohistochemistry. Results: The osteogenetic ability and quality of femoral head necrosis in group B were better than those of other groups after 12 weeks by X-ray radiograph and morphologic investigation. And the angiogenesis in group B was better than other groups. Group C had similar osteogenetic quality of femoral head necrosis and angiogenesis with group D. Conclusions:The treatment of rhBMP-2/PLGA implantation after core depression can promote the repair of rabbit femoral head necrosis. It is a promising and efficient synthetic bone material to treat the femoral head necrosis.

  11. Histological and radiographic evaluation of the muscle tissue of rats after implantation of bone morphogenic protein (rhBMP-2 in a scaffold of inorganic bone and after stimulation with low-power laser light

    Directory of Open Access Journals (Sweden)

    Bengtson Antonio

    2010-01-01

    Full Text Available Objective: The present study histologically and radiologically evaluates the muscle tissue of rats after implantation of bone morphogenic protein (rhBMP-2 in a natural inorganic bone mineral scaffold from a bull calf femur and irradiation with low-power light laser. Materials and Methods: The right and left hind limbs of 16 rats were shaved and an incision was made in the muscle on the face corresponding to the median portion of the tibia, into which rhBMP-2 in a scaffold of inorganic bone was implanted. Two groups of limbs were formed: control (G1 and laser irradiation (G2. G2 received diode laser light applied in the direction of the implant, at a dose of 8 J/cm2 for three minutes. On the 7th, 21st, 40th and 112th days after implantation, hind limbs of 4 animals were radiographed and their implants removed together with the surrounding tissue for study under the microscope. The histological results were graded as 0=absence, 1=slight presence, 2=representative and 3=very representative, with regard to the following events: formation of osteoid structure, acute inflammation, chronic inflammation, fibrin deposition, neovascularization, foreign-body granuloma and fibrosis. Results: There were no statistically significant differences in these events at each evaluation times, between the two groups (P > 0.05; Mann-Whitney test. Nevertheless, it could be concluded that the natural inorganic bone matrix with rhBMP-2, from the femur of a bull calf, is a biocompatible combination. Conclusions: Under these conditions, the inductive capacity of rhBMP-2 for cell differentiation was inhibited. There was a slight acceleration in tissue healing in the group that received irradiation with low-power laser light.

  12. The effects of a single intravenous injection of novel activin A/BMP-2 (AB204) on toxicity and the respiratory and central nervous systems.

    Science.gov (United States)

    Yoon, Byung-Hak; Lee, Jae Hyup; Na, Kyuheum; Ahn, Chihoon; Cho, Jongho; Ahn, Hyun Chan; Choi, Jungyoun; Oh, Hyosun; Kim, Byong Moon; Choe, Senyon

    2016-07-01

    The purpose of this study was to determine the effects of a single intravenous injection of a novel osteoinductive material, activin A/BMP-2 (AB204), to rodents on toxicity and their respiratory functions and central nervous system (CNS). A single intravenous injection of AB204 was given to Sprague-Dawley (SD) rats in doses of 0, 0.625, 2.5 and 10 mg/kg to observe the mortality rate, the general symptoms for 14 days. The experimental groups were also given 0.2, 0.4 and 0.8 mg/kg of AB204, respectively, and the respiration rate, the tidal volume and the minute volume were measured for 240 min. The experimental groups of imprinting control region (ICR) mice were given a single intravenous injection of 0.2, 0.4 and 0.8 mg/kg of AB204, respectively. Their body temperature was taken and general behaviors were observed to evaluate the effect of AB204 on the CNS for 240 min. The study on toxicity of a single intravenous injection found no death or abnormal symptoms, abnormal findings from autopsy, or abnormal body weight gain or loss in all the experimental groups. No abnormal variation associated with the test substance was observed in the respiration rate, the tidal volume, the minute volume, body temperature or the general behaviors. On the basis of these results, the approximate lethal dose of AB204 for a single intravenous injection exceeds 10 mg/kg for SD rats and a single intravenous injection of ≤0.8 mg/kg AB204 has no effect on their respiratory system for SD rat and no effect on their CNS for ICR mice. PMID:26446865

  13. 糖尿病对大鼠牙槽骨缺损修复中骨形态发生蛋白-2表达影响的研究%Effects of diabetes on expression of BMP-2 during bone healing of alveolar defect in rats

    Institute of Scientific and Technical Information of China (English)

    聂莹; 张志宏; 袁晟; 鲍军燕

    2011-01-01

    Objective To investigate the effects of diabetes on the expression of bone morphogenetic protein - 2 (BMP-2) during the various bone healing periods of alveolar defect. Methods 48 male SD rats were randomly divided into diabetes group ( n = 24) and control group( n=24). Diabetic rats were induced by intraperitoneal injection of streptozotocin (STZ) ,and alveolar defect was created through the diabetic duration time. 6 rats in each group were scarified respectively at the lth ,2th ,4th ,8th week ,then the alveolar bone were processed for histological examination. The expression of BMP-2 in different periods( 1,2,4,8 weeks)of alveolar defect healing of rats was investigated through immunohistochemistry method. The optical density (OD) of BMP-2 was analysed and compared between groups. Results Osteopenia in diabetes group were observed. The OD of BMP - 2 in the control group was statistically greater than that in the test group 1 and 2 weeks after alveolar defect. After 4 and 8 weeks, the expression of BMP-2 in the control group decreased,and no statistical difference was found in BMP -2 expression between these two groups. Conclusions Diabetes may affect the formation of BMP-2 ,leading to a reduction in bone healing. Diabetes is able to affect the differentiation of mesenchymal stem cells,leading to less osseointegration. Therefore, primary stability was decreased.%目的 观察糖尿病(diabetes mellitus,DM)对实验性大鼠牙槽骨缺损修复过程中不同时期骨形态发生蛋白-2(bone morphogenetic protein-2,BMP-2)表达的影响.方法 将48 只雄性SD大鼠随机分为DM组和对照组,每组24 只,DM组大鼠经腹腔注射链脲佐菌素造成DM大鼠模型,建模成功后行大鼠牙槽骨骨缺损制备,2 组均分别于骨缺损制备后1、2、4、8 周各取6 只大鼠处死,取术区组织.苏木精-伊红染色(hematoxylin-eosin staining,HE染色)镜下观察缺损区内新生骨样组织形成情况;用免疫组化法检测术后1、2、4

  14. Autologous serum improves bone formation in a primary stable silica-embedded nanohydroxyapatite bone substitute in combination with mesenchymal stem cells and rhBMP-2 in the sheep model

    Directory of Open Access Journals (Sweden)

    Boos AM

    2014-11-01

    Full Text Available Anja M Boos,1,* Annika Weigand,1,* Gloria Deschler,1 Thomas Gerber,2 Andreas Arkudas,1 Ulrich Kneser,1 Raymund E Horch,1 Justus P Beier11Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg FAU, Erlangen, 2Institute of Physics, University of Rostock, Rostock, Germany *These authors contributed equally to this work Abstract: New therapeutic strategies are required for critical size bone defects, because the gold standard of transplanting autologous bone from an unharmed area of the body often leads to several severe side effects and disadvantages for the patient. For years, tissue engineering approaches have been seeking a stable, axially vascularized transplantable bone replacement suitable for transplantation into the recipient bed with pre-existing insufficient conditions. For this reason, the arteriovenous loop model was developed and various bone substitutes have been vascularized. However, it has not been possible thus far to engineer a primary stable and axially vascularized transplantable bone substitute. For that purpose, a primary stable silica-embedded nanohydroxyapatite (HA bone substitute in combination with blood, bone marrow, expanded, or directly retransplanted mesenchymal stem cells, recombinant human bone morphogenetic protein 2 (rhBMP-2, and different carrier materials (fibrin, cell culture medium, autologous serum was tested subcutaneously for 4 or 12 weeks in the sheep model. Autologous serum lead to an early matrix change during degradation of the bone substitute and formation of new bone tissue. The best results were achieved in the group combining mesenchymal stem cells expanded with 60 µg/mL rhBMP-2 in autologous serum. Better ingrowth of fibrovascular tissue could be detected in the autologous serum group compared with the control (fibrin. Osteoclastic activity indicating an active bone remodeling process was observed after 4 weeks, particularly

  15. Effects of TiO2 sandblasted and acid-etched titanium on expression of bone morphogenetic protein 2 in human osteoblasts%TiO2喷砂酸蚀处理对钛片表面人成骨细胞BMP-2表达水平的影响

    Institute of Scientific and Technical Information of China (English)

    陆斌; 李建武; 郭义; 杨艳

    2013-01-01

    目的 探讨钛片经过TiO2喷砂酸蚀处理后对人成骨细胞系MG63细胞骨形态发生蛋白2(bone morphogenetic protein,BMP-2)表达水平的影响.方法 将钛片分为3组进行处理:机械打磨组、喷砂组及喷砂酸蚀组,分别进行机械打磨、TiO2喷砂和喷砂酸蚀处理.将人成骨细胞系MG63细胞接种于钛片表面,采用实时定量聚合酶链反应(real-time polymerase chain reaction,RT-PCR)、Western blot检测BMP-2 mRNA及蛋白表达水平.结果 喷砂组及喷砂酸蚀组BMP-2 mRNA及蛋白水平增高,与机械打磨组相比差异有统计学意义(P<0.05),而喷砂组与喷砂酸蚀组之间差异无统计学意义(P>0.05).结论 使用经过TiO2喷砂及喷砂酸蚀处理的钛片进行人成骨细胞培养可促进BMP-2表达.%Objective To explore the effect of TiO 2 sandblasted and acid -etched titanium on the expression of bone morphogenetic pro -tein 2 (BMP-2) in human MG63 cells.Methods Titanium discs (15 mm diameter and 1 mm thickness ) were divided into 3 groups: machine polished group , sandblasted group , sandblasted and acid -etched group.Titanium discs were treated with mechanical polishing , TiO2 sandblasting, sandblasting and acid-etching in three groups , respectively.MG63 cells were cultured on the titanium.The mRNA and protein expression of BMP-2 in MG63 cells were analyzed by real-time polymerase chain reaction (RT-PCR) and Western blot.Results The mRNA and protein levels of BMP -2 were significantly higher in sandblasted group and sandblasted and acid -etched group than in machine polished group ( P 0.05 ).Conclusion After sandblasting and acid -etching, titanium could promote the expression of BMP-2 in human osteoblast.

  16. Moderate alterations of the cytoskeleton in human chondrocytes after short-term microgravity produced by parabolic flight maneuvers could be prevented by up-regulation of BMP-2 and SOX-9.

    Science.gov (United States)

    Aleshcheva, Ganna; Wehland, Markus; Sahana, Jayashree; Bauer, Johann; Corydon, Thomas J; Hemmersbach, Ruth; Frett, Timo; Egli, Marcel; Infanger, Manfred; Grosse, Jirka; Grimm, Daniela

    2015-06-01

    Real and simulated microgravity induce a variety of changes in human cells. Most importantly, changes in the cytoskeleton have been noted, and studies on microtubules have shown that they are gravisensitive. This study focuses on the effects of short-term real microgravity on gene expression, protein content, and cytoskeletal structure of human chondrocytes. We cultivated human chondrocytes, took them along a parabolic flight during the 24th Deutsches Zentrum für Luft- und Raumfahrt Parabolic (DLR) Flight Campaign, and fixed them after the 1st and the 31st parabola. Immunofluorescence microscopy revealed no changes after the 1st parabola, but disruptions of β-tubulin, vimentin, and cytokeratin networks after the 31st parabola. No F-actin stress fibers were detected even after 31 parabolas. Furthermore, mRNA and protein quantifications after the 31st parabola showed a clear up-regulation of cytoskeletal genes and proteins. The mRNAs were significantly up-regulated as follows: TUBB, 2-fold; VIM, 1.3-fold; KRT8, 1.8-fold; ACTB, 1.9-fold; ICAM1, 4.8-fold; OPN, 7-fold; ITGA10, 1.5-fold; ITGB1, 1.2-fold; TGFB1, 1.5-fold; CAV1, 2.6-fold; SOX9, 1.7-fold; BMP-2, 5.3-fold. However, SOX5 (-25%) and SOX6 (-28%) gene expression was decreased. Contrary, no significant changes in gene expression levels were observed during vibration and hypergravity experiments. These data suggest that short-term microgravity affects the gene expression of distinct proteins. In contrast to poorly differentiated follicular thyroid cancer cells or human endothelial cells, chondrocytes only exert moderate cytoskeletal alterations. The up-regulation of BMP-2, TGF-β1, and SOX9 in chondrocytes may play a key role in preventing cytoskeletal alterations. PMID:25681461

  17. Administration of BMP2/7 in utero partially reverses Rubinstein-Taybi syndrome–like skeletal defects induced by Pdk1 or Cbp mutations in mice

    OpenAIRE

    Shim, Jae-Hyuck; Greenblatt, Matthew B.; Singh, Anju; Brady, Nicholas; Hu, Dorothy; Drapp, Rebecca; Ogawa, Wataru; Kasuga, Masato; Noda, Tetsuo; Yang, Sang-Hwa; Lee, Sang-Kyou; Rebel, Vivienne I.; Glimcher, Laurie H.

    2011-01-01

    Mutations in the coactivator CREB-binding protein (CBP) are a major cause of the human skeletal dysplasia Rubinstein-Taybi syndrome (RTS); however, the mechanism by which these mutations affect skeletal mineralization and patterning is unknown. Here, we report the identification of 3-phosphoinositide-dependent kinase 1 (PDK1) as a key regulator of CBP activity and demonstrate that its functions map to both osteoprogenitor cells and mature osteoblasts. In osteoblasts, PDK1 activated the CREB/C...

  18. Subcutaneous ectopic osteogenesis induced by porous calcium phosphate cement and gelatin sponge as the carrier of recombinant bone morphogenetic protein-2 in rats:A comparative study%两种材料复合rhBMP-2诱导大鼠皮下异位成骨的比较研究

    Institute of Scientific and Technical Information of China (English)

    李想; 董纪元; 彭江; 汪爱媛; 睢翔; 赵斌; 刘道宏

    2011-01-01

    Objective To analyze the difference in subcutaneous ectopic osteogenesis induced by porous calcium phosphate cement (CPC) and gelatin sponge as a carrier of recombinant bone morphogenetic protein-2 (rhBMP-2). Methods Thirty Sprague Dawley rats with an average body weight of 200g were divided into groups A-D. CPC+rhBMP-2, CPC, gelatin sponge+rhBMP-2, and gelatin sponge were implanted into the rats after anesthesia. Ten rats were killed 2, 4 and 8 weeks after they were fed under sterile environment. Bone tissue samples were collected from the implantation sites. Tissue mineral density (TMD) and trabecular thickness were detected with micro-CT scanner and analyzed with SPSS 1 OX) statistical software. Bone tissue was fixed in 4% paraformaldehyde for 2 days, embedded in paraffin, and cut into sections. The sections were stained with H&E to observe their histological change. Results The tissue mineral density and trabecular thickness of the samples with rhBMP-2 were higher in two experimental groups 2,4 and 8 weeks after implantation, which increased with the prolongation of time (P<0.05). Conclusion Porous CPC can be used as a carrier of rhBMP-2 for osteogenesis.%目的 分析多孔自固化磷酸钙骨水泥(Calcium Phosphate Cement,CPC)和明胶海绵复合重组人骨形态发生蛋白(Recombinantion Humen Bone Morphogenetic Protein-2,rhBMP-2)诱导大鼠皮下异位成骨的区别.方法 平均质量200g SD大鼠30只,麻醉后分别植入A:多孔CPC复合rhBMP-2(2μg);B:多孔CPC;C:明胶海绵复合rhBMP-2(2μg);D:空白明胶海绵,无菌喂养后分别于2、4、8周各处死10只.对植入部位组织取材,分别进行micro-CT扫描,并使用Micview V2.1三维重建处理软件扫及ABA骨形态分析软件检测,记录组织骨密度(Tissue Mineral Density,TMD)及骨小梁厚度(Trabecular Thickness,Tb.Th).运用SPSS10.0统计软件进行统计学分析.后行甲醛固定2周,石蜡包埋切片,HE染色进行组织学观察.结果 在2、4、8周时,加入rhBMP

  19. Time-sequential changes of differentially expressed miRNAs during the process of anterior lumbar interbody fusion using equine bone protein extract, rhBMP-2 and autograft

    Science.gov (United States)

    Chen, Da-Fu; Zhou, Zhi-Yu; Dai, Xue-Jun; Gao, Man-Man; Huang, Bao-Ding; Liang, Tang-Zhao; Shi, Rui; Zou, Li-Jin; Li, Hai-Sheng; Bünger, Cody; Tian, Wei; Zou, Xue-Nong

    2014-03-01

    The precise mechanism of bone regeneration in different bone graft substitutes has been well studied in recent researches. However, miRNAs regulation of the bone formation has been always mysterious. We developed the anterior lumbar interbody fusion (ALIF) model in pigs using equine bone protein extract (BPE), recombinant human bone morphogenetic protein-2 (rhBMP-2) on an absorbable collagen sponge (ACS), and autograft as bone graft substitute, respectively. The miRNA and gene expression profiles of different bone graft materials were examined using microarray technology and data analysis, including self-organizing maps, KEGG pathway and Biological process GO analyses. We then jointly analyzed miRNA and mRNA profiles of the bone fusion tissue at different time points respectively. Results showed that miRNAs, including let-7, miR-129, miR-21, miR-133, miR-140, miR-146, miR-184, and miR-224, were involved in the regulation of the immune and inflammation response, which provided suitable inflammatory microenvironment for bone formation. At late stage, several miRNAs directly regulate SMAD4, Estrogen receptor 1 and 5-hydroxytryptamine (serotonin) receptor 2C for bone formation. It can be concluded that miRNAs play important roles in balancing the inflammation and bone formation.

  20. Allogeneic Platelet Releasate Preparations Derived via a Novel Rapid Thrombin Activation Process Promote Rapid Growth and Increased BMP-2 and BMP-4 Expression in Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Michael McLaughlin

    2016-01-01

    Full Text Available The administration of human adipose-derived stem cells (ASCs represents a promising regenerative therapy for the treatment of orthopedic injuries. While ASCs can be easily isolated from liposuction-derived adipose tissue, most clinical applications will likely require in vitro culture expansion of these cells using nonxenogeneic components. In this study, platelet releasate was generated using a novel rapid thrombin activation method (tPR. ASCs grown in media supplemented with tPR proliferated much faster than ASCs grown in media supplemented with 10% fetal bovine serum. The cells also retained the ability to differentiate along chondrogenic, adipogenic, and osteogenic lineages. The tPR cultured ASCs displayed elevated expression of BMP-4 (5.7 ± 0.97-fold increase and BMP-2 (4.7 ± 1.3-fold increase and decreased expression of PDGF-B (4.0 ± 1.4-fold decrease and FGF-2 (33 ± 9.0-fold decrease. No significant changes in expression were seen with TGF-β and VEGF. This pattern of gene expression was consistent across different allogeneic tPR samples and different ASC lines. The use of allogeneic rapidly activated tPR to culture ASCs is associated with both an increased cell yield and a defined gene expression profile making it an attractive option for cell expansion prior to cell-based therapy for orthopedic applications.

  1. Detection of growth factor binding to gelatin and heparin using a photonic crystal optical biosensor

    International Nuclear Information System (INIS)

    Drug-carrier interactions are important to protein controlled release systems to protect the protein from denaturation and ensure properly timed release. A novel photonic crystal biosensor was used to investigate a gelatin-protein controlled release system to determine the amount of protein bound to the carrier at physiological conditions. The Biomolecular Interaction Detection (BIND) system reflects a narrow band of wavelengths when white light is shone incident to the grating. As mass is deposited onto the surface, the peak wavelength value is shifted due to changes in the optical density of the biosensor. The BIND system was used to detect the binding of growth factors onto acidic gelatin, basic gelatin, and heparin on the sensor surface. Through a series of experiments, including functionalizing the sensor, adjusting the ionic strength of the solution, adjusting the substrate concentration, and minimizing non-specific signal, the adsorption of the gelatins and heparin on the sensor was enhanced. The binding interaction of recombinant human transforming growth factor (rhTGF)-β1 and bone morphogenetic protein (rhBMP)-2 with the two types of gelatin and heparin were investigated. The strength of the interaction between rhTGF-β1 and the substrates is in the following order: heparin > acidic gelatin > basic gelatin. RhBMP-2 bound to the substrates but with less intensity than TGF-β1: heparin > basic gelatin > acidic gelatin. This work provides support for the controlled release mechanism through degradation of the gelatin carrier.

  2. Matrix metalloproteinases (MMPs) and their specific tissue inhibitors (TIMPs) in mature human odontoblasts and pulp tissue:the regulation of expressions of fibrillar collagens, MMPs and TIMPs by growth factors, transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2)

    OpenAIRE

    Palosaari, H. (Heidi)

    2003-01-01

    Abstract Dentin formation in physiological and pathological conditions has been widely studied, but the events and regulation are still not completely understood. Odontoblasts, terminally differentiated post-mitotic cells located in a single cell layer around pulp tissue, synthesize and mineralize dentin organic matrix. Growth factors, such as TGF-β1 and BMP-2, have been implicated in the regulation of the responses of odontoblasts and pulp tissue to external irritation. Matrix metalloprot...

  3. Improvement of sciatic nerve regeneration using laminin-binding human NGF-beta.

    Directory of Open Access Journals (Sweden)

    Wenjie Sun

    Full Text Available BACKGROUND: Sciatic nerve injuries often cause partial or total loss of motor, sensory and autonomic functions due to the axon discontinuity, degeneration, and eventual death which finally result in substantial functional loss and decreased quality of life. Nerve growth factor (NGF plays a critical role in peripheral nerve regeneration. However, the lack of efficient NGF delivery approach limits its clinical applications. We reported here by fusing with the N-terminal domain of agrin (NtA, NGF-beta could target to nerve cells and improve nerve regeneration. METHODS: Laminin-binding assay and sustained release assay of NGF-beta fused with NtA (LBD-NGF from laminin in vitro were carried out. The bioactivity of LBD-NGF on laminin in vitro was also measured. Using the rat sciatic nerve crush injury model, the nerve repair and functional restoration by utilizing LBD-NGF were tested. FINDINGS: LBD-NGF could specifically bind to laminin and maintain NGF activity both in vitro and in vivo. In the rat sciatic nerve crush injury model, we found that LBD-NGF could be retained and concentrated at the nerve injury sites to promote nerve repair and enhance functional restoration following nerve damages. CONCLUSION: Fused with NtA, NGF-beta could bind to laminin specifically. Since laminin is the major component of nerve extracellular matrix, laminin binding NGF could target to nerve cells and improve the repair of peripheral nerve injuries.

  4. LRP4 Is Critical for Neuromuscular Junction Maintenance

    OpenAIRE

    Barik, Arnab; Lu, Yisheng; Sathyamurthy, Anupama; Bowman, Andrew; Shen, Chengyong; Li, Lei(Beijing Institute of Petrochemical Technology, Beijing, 102617, People's Republic of China); Xiong, Wen-Cheng; Mei, Lin

    2014-01-01

    The neuromuscular junction (NMJ) is a synapse between motor neurons and skeletal muscle fibers, and is critical for control of muscle contraction. Its formation requires neuronal agrin that acts by binding to LRP4 to stimulate MuSK. Mutations have been identified in agrin, MuSK, and LRP4 in patients with congenital myasthenic syndrome, and patients with myasthenia gravis develop antibodies against agrin, LRP4, and MuSK. However, it remains unclear whether the agrin signaling pathway is critic...

  5. Restoration of segmental bone defects by using chitosan-coated pressed calcium sulfate pellet com-bined with rhBMP-2%壳聚糖包衣加压硫酸钙片复合重组人骨形态发生蛋白-2修复兔节段性骨缺损

    Institute of Scientific and Technical Information of China (English)

    崔旭; 张伯勋

    2009-01-01

    Objective To compare the effect of calcium sulfate pellets made by different methods in repair of segmental radial defect of rabbits. Methods Eighty white New Zealand rabbits were sub-jected to defects of middle part of the left radial bone and divided into four groups according to repair ma-terials: control group (Group A, implanted with no artificial bone substitute), uncoated pressed calcium sulfate pellets (Group B), coated pressed calcium sulfate pellets (Group C) and coated pressed calcium sulfate pellets combined with rhBMP-2 (Group D). Histologic examination and biological test were done at 4, 8 and 12 weeks after operation. The data were processed with mono-factor variance analysis. Re-sults New bone formation was found on the defected bone in Group D and Group C, with better in Group D. The bone strength test showed that the anti-bending strength was (39.6±1.7) % in Group C and (47.5±2.1) % in Group D, which were higher than (21.3±2.7) % in Group A and (23.6±3.3) % in Group B, with higher anti-bending strength in Group D than that in Group C (F = 125.3 ,P <0.01). Conclusions For restoration of segmental bone defects, chitosan-coated pressed calcium sulfate pellet shows relatively high density and slightly slow resorption, which closely coincides with the growth rate of new bone. The coated pellet combined with rhBMP-2 can enhance its osteogeneais in restoring segmental Done defects.%目的 比较不同方法 制备的硫酸钙片修复兔桡骨节段性骨缺损的效果. 方法 新西兰大白兔80只随机数字表法分为A、B、C、D组,造成左桡骨中段骨缺损,采用三种经不同方法 制备的硫酸钙片修复.A组:空白对照组;B组:加压方法 制备的硫酸钙组;C组:壳聚糖包衣的加压硫酸钙组;D组:壳聚糖包衣的复合重组人骨形态发生蛋白-2(rhBMP-2)加压硫酸钙组.术后4,8,12周进行组织学检查和生物力学测试,实验数据采用单因素方差分析. 结果 D组、C组骨缺损愈合,而

  6. Binding Procurement

    Science.gov (United States)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari

    2007-01-01

    This viewgraph presentation reviews the use of the binding procurement process in purchasing Aerospace Flight Battery Systems. NASA Engineering and Safety Center (NESC) requested NASA Aerospace Flight Battery Systems Working Group to develop a set of guideline requirements document for Binding Procurement Contracts.

  7. Sulfated hyaluronan improves bone regeneration of diabetic rats by binding sclerostin and enhancing osteoblast function.

    Science.gov (United States)

    Picke, Ann-Kristin; Salbach-Hirsch, Juliane; Hintze, Vera; Rother, Sandra; Rauner, Martina; Kascholke, Christian; Möller, Stephanie; Bernhardt, Ricardo; Rammelt, Stefan; Pisabarro, M Teresa; Ruiz-Gómez, Gloria; Schnabelrauch, Matthias; Schulz-Siegmund, Michaela; Hacker, Michael C; Scharnweber, Dieter; Hofbauer, Christine; Hofbauer, Lorenz C

    2016-07-01

    Bone fractures in patients with diabetes mellitus heal poorly and require innovative therapies to support bone regeneration. Here, we assessed whether sulfated hyaluronan included in collagen-based scaffold coatings can improve fracture healing in diabetic rats. Macroporous thermopolymerized lactide-based scaffolds were coated with collagen including non-sulfated or sulfated hyaluronan (HA/sHA3) and inserted into 3 mm femoral defects of non-diabetic and diabetic ZDF rats. After 12 weeks, scaffolds coated with collagen/HA or collagen/sHA3 accelerated bone defect regeneration in diabetic, but not in non-diabetic rats as compared to their non-coated controls. At the tissue level, collagen/sHA3 promoted bone mineralization and decreased the amount of non-mineralized bone matrix. Moreover, collagen/sHA3-coated scaffolds from diabetic rats bound more sclerostin in vivo than the respective controls. Binding assays confirmed a high binding affinity of sHA3 to sclerostin. In vitro, sHA3 induced BMP-2 and lowered the RANKL/OPG expression ratio, regardless of the glucose concentration in osteoblastic cells. Both sHA3 and high glucose concentrations decreased the differentiation of osteoclastic cells. In summary, scaffolds coated with collagen/sHA3 represent a potentially suitable biomaterial to improve bone defect regeneration in diabetic conditions. The underlying mechanism involves improved osteoblast function and binding sclerostin, a potent inhibitor of Wnt signaling and osteoblast function. PMID:27131598

  8. Insulin-like growth factor binding protein-3 affects osteogenic efficacy on dental implants in rat mandible

    Energy Technology Data Exchange (ETDEWEB)

    Bhattarai, Govinda; Lee, Young-Hee [Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of); Lee, Min-Ho [Department of Dental Materials, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of); Park, Il-Song [Division of Advanced Materials Engineering, Research Center for Advanced Materials, Development and Institute of Biodegradable Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Yi, Ho-Keun, E-mail: yihokn@chonbuk.ac.kr [Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of)

    2015-10-01

    Insulin like growth factor binding protein-3 (IGFBP-3) in bone cells and its utilization in dental implants have not been well studied. The aim of this study was to determine the osteogenic efficacy of chitosan gold nanoparticles (Ch-GNPs) conjugated with IGFBP-3 coated titanium (Ti) implants. Ch-GNPs were conjugated with IGFBP-3 plasmid DNA through a coacervation process. Conjugation was cast over Ti surfaces, and cells were seeded on coated surfaces. For in vitro analysis the expression of different proteins was analyzed by immunoblotting. For in vivo analysis, Ch-GNP/IGFBP-3 coated implants were installed in rat mandibles. Four weeks post-implantation, mandibles were examined by microcomputed tomography (μCT), immunohistochemistry, hematoxylin & eosin and tartrate resistance acid phosphatase staining. In vitro overexpressed Ch-GNP/IGFBP-3 coated Ti surfaces was associated with activation of extracellular signal related kinase (ERK), inhibition of the stress activated protein c-Jun N-terminal kinase (JNK) and enhanced bone morphogenetic protein (BMP)-2 and 7 compared to control. Further, in vivo, Ch-GNP/IGFBP-3 coated implants were associated with inhibition of implant induced osteoclastogenesis molecules, receptor activator of nuclear factor kappa-B ligand (RANKL) and enhanced expression of osteogenic molecules including BMP2/7 and osteopontin (OPN). The μCT analysis demonstrated that IGFBP-3 increased the volume of newly formed bone surrounding the implants compared to control (n = 5; p < 0.05). These results support the view that IGFBP-3 overexpression diminishes osteoclastogenesis and enhances osteogenesis of Ti implants, and can serve as a potent molecule for the development of good implantation. - Highlights: • Chitosan gold nanoparticles were conjugated with IGFBP-3 and coated onto surface of the titanium implants for gene delivery to bone. • Implants were inserted in rat mandible for 4 weeks. • Parameters studied: histopathology and radiology.

  9. Insulin-like growth factor binding protein-3 affects osteogenic efficacy on dental implants in rat mandible

    International Nuclear Information System (INIS)

    Insulin like growth factor binding protein-3 (IGFBP-3) in bone cells and its utilization in dental implants have not been well studied. The aim of this study was to determine the osteogenic efficacy of chitosan gold nanoparticles (Ch-GNPs) conjugated with IGFBP-3 coated titanium (Ti) implants. Ch-GNPs were conjugated with IGFBP-3 plasmid DNA through a coacervation process. Conjugation was cast over Ti surfaces, and cells were seeded on coated surfaces. For in vitro analysis the expression of different proteins was analyzed by immunoblotting. For in vivo analysis, Ch-GNP/IGFBP-3 coated implants were installed in rat mandibles. Four weeks post-implantation, mandibles were examined by microcomputed tomography (μCT), immunohistochemistry, hematoxylin & eosin and tartrate resistance acid phosphatase staining. In vitro overexpressed Ch-GNP/IGFBP-3 coated Ti surfaces was associated with activation of extracellular signal related kinase (ERK), inhibition of the stress activated protein c-Jun N-terminal kinase (JNK) and enhanced bone morphogenetic protein (BMP)-2 and 7 compared to control. Further, in vivo, Ch-GNP/IGFBP-3 coated implants were associated with inhibition of implant induced osteoclastogenesis molecules, receptor activator of nuclear factor kappa-B ligand (RANKL) and enhanced expression of osteogenic molecules including BMP2/7 and osteopontin (OPN). The μCT analysis demonstrated that IGFBP-3 increased the volume of newly formed bone surrounding the implants compared to control (n = 5; p < 0.05). These results support the view that IGFBP-3 overexpression diminishes osteoclastogenesis and enhances osteogenesis of Ti implants, and can serve as a potent molecule for the development of good implantation. - Highlights: • Chitosan gold nanoparticles were conjugated with IGFBP-3 and coated onto surface of the titanium implants for gene delivery to bone. • Implants were inserted in rat mandible for 4 weeks. • Parameters studied: histopathology and radiology.

  10. Control of growth factor binding and release in bisphosphonate functionalized hydrogels guides rapid differentiation of precursor cells in vitro.

    Science.gov (United States)

    Kootala, Sujit; Zhang, Yu; Ghalib, Sara; Tolmachev, Vladimir; Hilborn, Jöns; Ossipov, Dmitri A

    2016-02-01

    An in situ cross-linkable hyaluronan hydrogel functionalized with bisphosphonate (BP) groups allows tunable release of bone morphogenetic protein-2 (BMP-2) determined by the amount of BP groups. The high affinity of matrix-anchored BP groups towards BMP-2 permits guided differentiation of entrapped progenitor cells in 3-D cultures. PMID:26610690

  11. Control of growth factor binding and release in bisphosphonate functionalized hydrogels guides rapid diff erentiation of precursor cells in vitro

    OpenAIRE

    Kootala, Sujit; Zhang, Yu; Ghalib, Sara; Tolmachev, Vladmir; Hilborn, Jöns; Ossipov, Dmitri

    2016-01-01

    An in situ cross-linkable hyaluronan hydrogel functionalized with bisphosphonate (BP) groups allows tunable release of bone morphogenetic protein-2 (BMP-2) determined by the amount of BP groups. The high affinity of matrix-anchored BP groups towards BMP-2 permits guided differentiation of entrapped progenitor cells in 3-D cultures.

  12. Total iron binding capacity

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003489.htm Total iron binding capacity To use the sharing features on this page, please enable JavaScript. Total iron binding capacity (TIBC) is a blood test to ...

  13. Plant Hormone Binding Sites

    OpenAIRE

    Napier, Richard

    2004-01-01

    • Aims Receptors for plant hormones are becoming identified with increasing rapidity, although a frustrating number remain unknown. There have also been many more hormone‐binding proteins described than receptors. This Botanical Briefing summarizes what has been discovered about hormone binding sites, their discovery and descriptions, and will not dwell on receptor functions or activities except where these are relevant to understand binding.

  14. Python bindings for libcloudph++

    OpenAIRE

    Jarecka, Dorota; Arabas, Sylwester; Del Vento, Davide

    2015-01-01

    This technical note introduces the Python bindings for libcloudph++. The libcloudph++ is a C++ library of algorithms for representing atmospheric cloud microphysics in numerical models. The bindings expose the complete functionality of the library to the Python users. The bindings are implemented using the Boost.Python C++ library and use NumPy arrays. This note includes listings with Python scripts exemplifying the use of selected library components. An example solution for using the Python ...

  15. DNS & Bind Cookbook

    CERN Document Server

    Liu, Cricket

    2011-01-01

    The DNS & BIND Cookbook presents solutions to the many problems faced by network administrators responsible for a name server. Following O'Reilly's popular problem-and-solution cookbook format, this title is an indispensable companion to DNS & BIND, 4th Edition, the definitive guide to the critical task of name server administration. The cookbook contains dozens of code recipes showing solutions to everyday problems, ranging from simple questions, like, "How do I get BIND?" to more advanced topics like providing name service for IPv6 addresses. It's full of BIND configuration files that yo

  16. Python bindings for libcloudph++

    CERN Document Server

    Jarecka, Dorota; Del Vento, Davide

    2015-01-01

    This technical note introduces the Python bindings for libcloudph++. The libcloudph++ is a C++ library of algorithms for representing atmospheric cloud microphysics in numerical models. The bindings expose the complete functionality of the library to the Python users. The bindings are implemented using the Boost.Python C++ library and use NumPy arrays. This note includes listings with Python scripts exemplifying the use of selected library components. An example solution for using the Python bindings to access libcloudph++ from Fortran is presented.

  17. Melanin-binding radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Packer, S; Fairchild, R G; Watts, K P; Greenberg, D; Hannon, S J

    1980-01-01

    The scope of this paper is limited to an analysis of the factors that are important to the relationship of radiopharmaceuticals to melanin. While the authors do not attempt to deal with differences between melanin-binding vs. melanoma-binding, a notable variance is assumed. (PSB)

  18. Melanin-binding radiopharmaceuticals

    International Nuclear Information System (INIS)

    The scope of this paper is limited to an analysis of the factors that are important to the relationship of radiopharmaceuticals to melanin. While the authors do not attempt to deal with differences between melanin-binding vs. melanoma-binding, a notable variance is assumed

  19. DNS BIND Server Configuration

    Directory of Open Access Journals (Sweden)

    Radu MARSANU

    2011-01-01

    Full Text Available After a brief presentation of the DNS and BIND standard for Unix platforms, the paper presents an application which has a principal objective, the configuring of the DNS BIND 9 server. The general objectives of the application are presented, follow by the description of the details of designing the program.

  20. Proteomic Upregulation of Fatty Acid Synthase and Fatty Acid Binding Protein 5 and Identification of Cancer- and Race-Specific Pathway Associations in Human Prostate Cancer Tissues

    Science.gov (United States)

    Myers, Jennifer S.; von Lersner, Ariana K.; Sang, Qing-Xiang Amy

    2016-01-01

    Protein profiling studies of prostate cancer have been widely used to characterize molecular differences between diseased and non-diseased tissues. When combined with pathway analysis, profiling approaches are able to identify molecular mechanisms of prostate cancer, group patients by cancer subtype, and predict prognosis. This strategy can also be implemented to study prostate cancer in very specific populations, such as African Americans who have higher rates of prostate cancer incidence and mortality than other racial groups in the United States. In this study, age-, stage-, and Gleason score-matched prostate tumor specimen from African American and Caucasian American men, along with non-malignant adjacent prostate tissue from these same patients, were compared. Protein expression changes and altered pathway associations were identified in prostate cancer generally and in African American prostate cancer specifically. In comparing tumor to non-malignant samples, 45 proteins were significantly cancer-associated and 3 proteins were significantly downregulated in tumor samples. Notably, fatty acid synthase (FASN) and epidermal fatty acid-binding protein (FABP5) were upregulated in human prostate cancer tissues, consistent with their known functions in prostate cancer progression. Aldehyde dehydrogenase family 1 member A3 (ALDH1A3) was also upregulated in tumor samples. The Metastasis Associated Protein 3 (MTA3) pathway was significantly enriched in tumor samples compared to non-malignant samples. While the current experiment was unable to detect statistically significant differences in protein expression between African American and Caucasian American samples, differences in overrepresentation and pathway enrichment were found. Structural components (Cytoskeletal Proteins and Extracellular Matrix Protein protein classes, and Biological Adhesion Gene Ontology (GO) annotation) were overrepresented in African American but not Caucasian American tumors. Additionally, 5

  1. SHBG (Sex Hormone Binding Globulin)

    Science.gov (United States)

    ... as: Testosterone-estrogen Binding Globulin; TeBG Formal name: Sex Hormone Binding Globulin Related tests: Testosterone , Free Testosterone, ... I should know? How is it used? The sex hormone binding globulin (SHBG) test may be used ...

  2. Inhibition of selectin binding

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Jon O. (Rodeo, CA); Spevak, Wayne R. (Albany, CA); Dasgupta, Falguni (New Delhi, IN); Bertozzi, Caroline (Albany, CA)

    2001-10-09

    This invention provides compositions for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, these composition scan be used to palliate certain inflammatory and immunological conditions.

  3. Inhibition of selectin binding

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, J.O.; Spevak, W.R.; Dasgupta, F.; Bertozzi, C.

    1999-10-05

    This invention provides a system for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10{sup 6} fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, this system can be used to palliate certain inflammatory and immunological conditions.

  4. Inhibition of selectin binding

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Jon O. (Rodeo, CA); Spevak, Wayne R. (Albany, CA); Dasgupta, Falguni (New Delhi, IN); Bertozzi, Caroline (Albany, CA)

    1999-01-01

    This invention provides compositions for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, these composition scan be used to palliate certain inflammatory and immunological conditions.

  5. Inhibition of selectin binding

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, J.O.; Spevak, W.R.; Dasgupta, F.; Bertozzi, C.

    1999-11-16

    This invention provides compositions for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10{sup 6} fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, these composition scan be used to palliate certain inflammatory and immunological conditions.

  6. Inhibition of selectin binding

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Jon O. (Rodeo, CA); Spevak, Wayne R. (Albany, CA); Dasgupta, Falguni (New Delhi, IN); Bertozzi, Carolyn (Albany, CA)

    1999-10-05

    This invention provides a system for inhibiting the binding between two cells, one expressing P- or L-selectin on the surface and the other expressing the corresponding ligand. A covalently crosslinked lipid composition is prepared having saccharides and acidic group on separate lipids. The composition is then interposed between the cells so as to inhibit binding. Inhibition can be achieved at an effective oligosaccharide concentration as low as 10.sup.6 fold below that of the free saccharide. Since selectins are involved in recruiting cells to sites of injury, this system can be used to palliate certain inflammatory and immunological conditions.

  7. Sequential memory: Binding dynamics

    Science.gov (United States)

    Afraimovich, Valentin; Gong, Xue; Rabinovich, Mikhail

    2015-10-01

    Temporal order memories are critical for everyday animal and human functioning. Experiments and our own experience show that the binding or association of various features of an event together and the maintaining of multimodality events in sequential order are the key components of any sequential memories—episodic, semantic, working, etc. We study a robustness of binding sequential dynamics based on our previously introduced model in the form of generalized Lotka-Volterra equations. In the phase space of the model, there exists a multi-dimensional binding heteroclinic network consisting of saddle equilibrium points and heteroclinic trajectories joining them. We prove here the robustness of the binding sequential dynamics, i.e., the feasibility phenomenon for coupled heteroclinic networks: for each collection of successive heteroclinic trajectories inside the unified networks, there is an open set of initial points such that the trajectory going through each of them follows the prescribed collection staying in a small neighborhood of it. We show also that the symbolic complexity function of the system restricted to this neighborhood is a polynomial of degree L - 1, where L is the number of modalities.

  8. Stimulation of porcine bone marrow stromal cells by hyaluronan, dexamethasone and rhBMP-2

    DEFF Research Database (Denmark)

    Zou, Xuenong; Li, Haisheng; Chen, Li;

    2004-01-01

    In the interest of optimizing osteogenesis in in vitro, the present study sought to determine how porcine bone marrow stromal cell (BMSc) would respond to different concentrations of hyaluronan (HY) and its different combinations with dexamethasone (Dex) and recombinant human bone morphogenic pro...

  9. Bone marrow mesenchymal stem cells, collagen scaffold and BMP-2 for rat spinal fusio

    OpenAIRE

    Arrabal, Pilar M.; de Visser, R; Cifuentes, Manuel; Becerra Ratia, José; Jiménez-Enjuto, E.

    2013-01-01

    The use of autograft for posterolateral spinal fusion, continue being considered the gold standard for the treatment of spine pathologies. However, due to complications such as donor site morbidity, increased operating time, and limited supply, the use of allograft has become an acceptable practice especially in multisegment arthrodesis or in patients with previous graft harvests. Since their use involves the risk of immune response or disease transmission and fusion rates are not as good as ...

  10. Derivation of a novel undifferentiated human foetal phenotype in serum-free cultures with BMP-2

    OpenAIRE

    Mirmalek-Sani, Sayed-Hadi; Stokes, Paula J; Tare, Rahul S; Ralph, Esther J; Inglis, Stefanie; Hanley, Neil A.; Franchesca D. Houghton; Oreffo, Richard OC

    2009-01-01

    Skeletal stem and progenitor populations provide a platform for cell-based tissue regeneration strategies. Optimized conditions for ex vivo expansion will be critical and use of serum-free culture may allow enhanced modelling of differentiation potential. Maintenance of human foetal femur-derived cells in a chemically defined medium (CDM) with activin A and fibroblast growth factor-2 generated a unique undifferentiated cell population in comparison to basal cultures, with significantly reduce...

  11. Iron transferrin regulates hepcidin synthesis in primary hepatocyte culture through hemojuvelin and BMP2/4

    OpenAIRE

    Lin, Lan; Valore, Erika V.; Nemeth, Elizabeta; Goodnough, Julia B; Gabayan, Victoria; Ganz, Tomas

    2007-01-01

    The peptide hormone hepcidin is the principal regulator of systemic iron homeostasis. We examined the pathway by which iron stimulates the production of hepcidin. In humans who ingested 65 mg of iron, the increase in transferrin saturation preceded by hours the increase in urinary hepcidin excretion. Increases in urinary hepcidin concentrations were proportional to the increment in transferrin saturation. Paradoxically, in previous studies in primary hepatocytes and cell lines, hepcidin respo...

  12. Biodegradable Chitosan Nanoparticle Coatings on Titanium for the Delivery of BMP-2

    OpenAIRE

    Nils Poth; Virginia Seiffart; Gerhard Gross; Henning Menzel; Wibke Dempwolf

    2015-01-01

    A simple method for the functionalization of a common implant material (Ti6Al4V) with biodegradable, drug loaded chitosan-tripolyphosphate (CS-TPP) nanoparticles is developed in order to enhance the osseointegration of endoprostheses after revision operations. The chitosan used has a tailored degree of acetylation which allows for a fast biodegradation by lysozyme. The degradability of chitosan is proven via viscometry. Characteristics and degradation of nanoparticles formed with TPP are anal...

  13. DNA-binding residues and binding mode prediction with binding-mechanism concerned models

    OpenAIRE

    Oyang Yen-Jen; Liu Yu-Cheng; Huang Chun-Chin; Huang Yu-Feng; Huang Chien-Kang

    2009-01-01

    Abstract Background Protein-DNA interactions are essential for fundamental biological activities including DNA transcription, replication, packaging, repair and rearrangement. Proteins interacting with DNA can be classified into two categories of binding mechanisms - sequence-specific and non-specific binding. Protein-DNA specific binding provides a mechanism to recognize correct nucleotide base pairs for sequence-specific identification. Protein-DNA non-specific binding shows sequence indepe...

  14. Carboplatin binding to histidine

    International Nuclear Information System (INIS)

    An X-ray crystal structure showing the binding of purely carboplatin to histidine in a model protein has finally been obtained. This required extensive crystallization trials and various novel crystal structure analyses. Carboplatin is a second-generation platinum anticancer agent used for the treatment of a variety of cancers. Previous X-ray crystallographic studies of carboplatin binding to histidine (in hen egg-white lysozyme; HEWL) showed the partial conversion of carboplatin to cisplatin owing to the high NaCl concentration used in the crystallization conditions. HEWL co-crystallizations with carboplatin in NaBr conditions have now been carried out to confirm whether carboplatin converts to the bromine form and whether this takes place in a similar way to the partial conversion of carboplatin to cisplatin observed previously in NaCl conditions. Here, it is reported that a partial chemical transformation takes place but to a transplatin form. Thus, to attempt to resolve purely carboplatin binding at histidine, this study utilized co-crystallization of HEWL with carboplatin without NaCl to eliminate the partial chemical conversion of carboplatin. Tetragonal HEWL crystals co-crystallized with carboplatin were successfully obtained in four different conditions, each at a different pH value. The structural results obtained show carboplatin bound to either one or both of the N atoms of His15 of HEWL, and this particular variation was dependent on the concentration of anions in the crystallization mixture and the elapsed time, as well as the pH used. The structural details of the bound carboplatin molecule also differed between them. Overall, the most detailed crystal structure showed the majority of the carboplatin atoms bound to the platinum centre; however, the four-carbon ring structure of the cyclobutanedicarboxylate moiety (CBDC) remained elusive. The potential impact of the results for the administration of carboplatin as an anticancer agent are described

  15. Carboplatin binding to histidine

    Energy Technology Data Exchange (ETDEWEB)

    Tanley, Simon W. M. [University of Manchester, Brunswick Street, Manchester M13 9PL (United Kingdom); Diederichs, Kay [University of Konstanz, D-78457 Konstanz (Germany); Kroon-Batenburg, Loes M. J. [Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Levy, Colin [University of Manchester, 131 Princess Street, Manchester M1 7DN (United Kingdom); Schreurs, Antoine M. M. [Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Helliwell, John R., E-mail: john.helliwell@manchester.ac.uk [University of Manchester, Brunswick Street, Manchester M13 9PL (United Kingdom)

    2014-08-29

    An X-ray crystal structure showing the binding of purely carboplatin to histidine in a model protein has finally been obtained. This required extensive crystallization trials and various novel crystal structure analyses. Carboplatin is a second-generation platinum anticancer agent used for the treatment of a variety of cancers. Previous X-ray crystallographic studies of carboplatin binding to histidine (in hen egg-white lysozyme; HEWL) showed the partial conversion of carboplatin to cisplatin owing to the high NaCl concentration used in the crystallization conditions. HEWL co-crystallizations with carboplatin in NaBr conditions have now been carried out to confirm whether carboplatin converts to the bromine form and whether this takes place in a similar way to the partial conversion of carboplatin to cisplatin observed previously in NaCl conditions. Here, it is reported that a partial chemical transformation takes place but to a transplatin form. Thus, to attempt to resolve purely carboplatin binding at histidine, this study utilized co-crystallization of HEWL with carboplatin without NaCl to eliminate the partial chemical conversion of carboplatin. Tetragonal HEWL crystals co-crystallized with carboplatin were successfully obtained in four different conditions, each at a different pH value. The structural results obtained show carboplatin bound to either one or both of the N atoms of His15 of HEWL, and this particular variation was dependent on the concentration of anions in the crystallization mixture and the elapsed time, as well as the pH used. The structural details of the bound carboplatin molecule also differed between them. Overall, the most detailed crystal structure showed the majority of the carboplatin atoms bound to the platinum centre; however, the four-carbon ring structure of the cyclobutanedicarboxylate moiety (CBDC) remained elusive. The potential impact of the results for the administration of carboplatin as an anticancer agent are described.

  16. Collagen binding to Staphylococcus aureus

    International Nuclear Information System (INIS)

    Staphylococcus aureus can bind soluble collagen in a specific, saturable manner. We have previously shown that some variability exists in the degree of collagen binding between different strains of heat-killed, formaldehyde-fixed S. aureus which are commercially available as immunologic reagents. The present study demonstrates that live S. aureus of the Cowan 1 strain binds amounts of collagen per organism equivalent to those demonstrated previously in heat-killed, formaldehyde-fixed bacteria but has an affinity over 100 times greater, with Kd values of 9.7 X 10(-11) M and 4.3 X 10(-8) M for live and heat-killed organisms, respectively. Studies were also carried out with S. aureus killed by ionizing radiation, since this method of killing the organism seemed less likely to alter the binding moieties on the surface than did heat killing. Bacteria killed by exposure to gamma radiation bound collagen in a manner essentially indistinguishable from that of live organisms. Binding of collagen to irradiated cells of the Cowan 1 strain was rapid, with equilibrium reached by 30 min at 22 degrees C, and was fully reversible. The binding was not inhibited by fibronectin, fibrinogen, C1q, or immunoglobulin G, suggesting a binding site for collagen distinct from those for these proteins. Collagen binding was virtually eliminated in trypsin-treated organisms, indicating that the binding site has a protein component. Of four strains examined, Cowan 1 and S. aureus ATCC 25923 showed saturable, specific binding, while strains Woods and S4 showed a complete lack of binding. These results suggest that some strains of S. aureus contain high-affinity binding sites for collagen. While the number of binding sites per bacterium varied sixfold in the two collagen-binding strains, the apparent affinity was similar

  17. Melanin binding radiopharmaceuticals

    International Nuclear Information System (INIS)

    We have determined the biodistribution an uptake by the Greene melanoma in the Syrian golden hamster with 21 radiopharmaceuticals. Maximum % uptake and the time at which this occurred are listed. It is essential to know maximum tumor to background ration and the time after injection that this occurs to determine suitability for tumor scanning. The importance of species variation deserves mention. Detection of eye melanoma in humans was quite variable whereas in hamsters it was quite easy to obtain a positive scan with a single pinhole. We then looked at brain uptake in man and found it (the brain scan) to be significant. In addition, we found a high uptake by the lung, something not found in hamsters but not entirely unsuspected of a amine, such as 123I-4,3DMQ. Finally, our clinical experience has shown us some of the vagaries of melanoma-seeking radiopharmaceuticals. This reflects the complexity of melanin and melanin-binding and points out the necessity for a more detailed analysis of the mechanisms involved in melanin binding radionuclides

  18. Quarkonium Binding and Entropic Force

    CERN Document Server

    Satz, Helmut

    2015-01-01

    A Q-Qbar bound state represents a balance between repulsive kinetic and attractive potential energy. In a hot quark-gluon plasma, the interaction potential experiences medium effects. Color screening modifies the attractive binding force between the quarks, while the increase of entropy with Q-Qbar separation gives rise to a growing repulsion. We study the role of these phenomena for in-medium Q-Qbar binding and dissociation. It is found that the relevant potential for Q-Qbar binding is the free energy F; with increasing Q-Qbar separation, further binding through the internal energy U is compensated by repulsive entropic effects.

  19. 基于同位素标记相对和绝对定量技术核因子-KB必需分子结合的小分子多肽改善肿瘤坏死因子-α抑制成骨细胞分化的蛋白质组学研究%Isobaric tags for relative and absolute quantitation-based quantitative protein expression profiling of NEMO-binding domain peptide promotes osteoblast differentiation impaired by tumor necrosis factor alpha

    Institute of Scientific and Technical Information of China (English)

    戚芮榛; 许长鹏; 周一林; 侯毅龙; 冯冬阳; 江艺; 余斌

    2015-01-01

    目的 应用同位素标记相对和绝对定量(iTRAQ)技术观察核因子-κB(NF-κB)必需分子结合的小分子多肽(NBD)干预肿瘤坏死因子-α(TNF-α)刺激下成骨细胞分化过程中蛋白质表达组的变化.方法 肌原C2C12细胞接种于骨形态发生蛋白-2(BMP-2)诱导分化体系中诱导作为分化细胞模型,实验分为3组:对照组(B组)即分化细胞模型未加其他刺激,实验组(BT组)即分化细胞模型添加TNF-α,干预组(BTP组)即分化细胞模型添加TNF-α及NBD多肽,共同孵育分化7d后提取蛋白,以iTRAQ试剂标记后进行质谱检测并以软件分析差异表达的蛋白质.结果 TNF-α明显抑制成骨细胞分化,而NBD多肽可部分改善TNF-α对成骨细胞分化的抑制.iTRAQ试剂标记的B组与B+T组细胞蛋白质表达谱分析筛选出明显差异表达蛋白质点为76个,表达上调的蛋白质点59个,下调的蛋白质点17个;BT组与BTP组细胞蛋白质表达谱分析筛选出明显差异表达蛋白质点为43个,表达上调的蛋白质点25个,下调的蛋白质点18个.其中3组间成骨细胞特异因子(Postn)、ATP酶钙离子运输因子(Atp2a3)、SR依赖蛋白CTD关联因子-1(Scafl)、肌动蛋白-F交联蛋白(Actn2)、ATP合成酶,氢离子转运,线粒体复合体-F1,Delta亚基(Atp5d)、延伸体乙酰转移酶复合体亚基-2(Elp2)、Atp5]、C1型尼曼-匹克疾病(Npc1)等8个蛋白表达出现动态变化,提示上述蛋白可能与炎症刺激成骨分化机制有关,NBD多肽之外尚有其他药物靶点干预炎症对成骨分化的抑制.结论 iTRAQ技术是研究细胞分子蛋白改变的有效的蛋白质组学方法.Postn、Atp2a3、Scaf1、Actn2、Atp5d、Elp2、Atp5l及Npc1可能作为炎症刺激成骨分化机制研究的候选靶标.%Objective To screen for the differentially expressed proteins of NEMO-binding domain peptide promotes osteoblast differentiation impaired by tumor necrosis factor alpha.Methods The myoblast C2C12 cells as

  20. Alcohol Binding to the Odorant Binding Protein LUSH: Multiple Factors Affecting Binding Affinities

    OpenAIRE

    Ader, Lauren; Jones, David N. M.; Lin, Hai

    2010-01-01

    Density function theory (DFT) calculations have been carried out to investigate the binding of alcohols to the odorant binding protein LUSH from Drosophila melanogaster. LUSH is one of the few proteins known to bind to ethanol at physiologically relevant concentrations and where high-resolution structural information is available for the protein bound to alcohol at these concentrations. The structures of the LUSH–alcohol complexes identify a set of specific hydrogen-bonding interactions as cr...

  1. [3]tetrahydrotrazodone binding. Association with serotonin binding sites

    International Nuclear Information System (INIS)

    High (17 nM) and low (603 nM) affinity binding sites for [3]tetrahydrotrazodone ([3] THT), a biologically active analogue of trazodone, have been identified in rat brain membranes. The substrate specificity, concentration, and subcellular and regional distributions of these sites suggest that they may represent a component of the serotonin transmitter system. Pharmacological analysis of [3]THT binding, coupled with brain lesion and drug treatment experiments, revealed that, unlike other antidepressants, [3] THT does not attach to either a biogenic amine transporter or serotonin binding sites. Rather, it would appear that [3]THT may be an antagonist ligand for the serotonin binding site. This probe may prove of value in defining the mechanism of action of trazodone and in further characterizing serotonin receptors

  2. Windows Presentation Foundation & Data Binding

    OpenAIRE

    JANDA, Vilém

    2010-01-01

    The aim of this work is a course in the form of e-learning study materials for the interpretation of technology Data Binding in Windows Presentation Foundation (WPF). In the first, mostly theoretical part will be done a description and interpretation of the elements of technology, focusing on WPF Data Binding. In the second part, is available methodology and training course with their own interpretive audio-visual files for self-study. The lectures are supplemented by solved examples, and exa...

  3. Water binding in legume seeds

    Science.gov (United States)

    Vertucci, C. W.; Leopold, A. C.

    1987-01-01

    The physical status of water in seeds has a pivotal role in determining the physiological reactions that can take place in the dry state. Using water sorption isotherms from cotyledon and axis tissue of five leguminous seeds, the strength of water binding and the numbers of binding sites have been estimated using van't Hoff analyses and the D'Arcy/Watt equation. These parameters of water sorption are calculated for each of the three regions of water binding and for a range of temperatures. Water sorption characteristics are reflective of the chemical composition of the biological materials as well as the temperature at which hydration takes place. Changes in the sorption characteristics with temperature and hydration level may suggest hydration-induced structural changes in cellular components.

  4. Megalin binds and mediates cellular internalization of folate binding protein

    DEFF Research Database (Denmark)

    Birn, Henrik; Zhai, Xiaoyue; Holm, Jan;

    2005-01-01

    to express high levels of megalin, is inhibitable by excess unlabeled FBP and by receptor associated protein, a known inhibitor of binding to megalin. Immortalized rat yolk sac cells, representing an established model for studying megalin-mediated uptake, reveal (125)I-labeled FBP uptake which is...

  5. Computational Prediction of RNA-Binding Proteins and Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-11-01

    Full Text Available Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%–8% of all proteins are RNA-binding proteins (RBPs. Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein–RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein–RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions.

  6. Skyrmions with low binding energies

    Directory of Open Access Journals (Sweden)

    Mike Gillard

    2015-06-01

    Full Text Available Nuclear binding energies are investigated in two variants of the Skyrme model: the first replaces the usual Skyrme term with a term that is sixth order in derivatives, and the second includes a potential that is quartic in the pion fields. Solitons in the first model are shown to deviate significantly from ansätze previously assumed in the literature. The binding energies obtained in both models are lower than those obtained from the standard Skyrme model, and those obtained in the second model are close to the experimental values.

  7. Skyrmions with low binding energies

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, Mike, E-mail: m.n.gillard@leeds.ac.uk; Harland, Derek, E-mail: d.g.harland@leeds.ac.uk; Speight, Martin, E-mail: speight@maths.leeds.ac.uk

    2015-06-15

    Nuclear binding energies are investigated in two variants of the Skyrme model: the first replaces the usual Skyrme term with a term that is sixth order in derivatives, and the second includes a potential that is quartic in the pion fields. Solitons in the first model are shown to deviate significantly from ansätze previously assumed in the literature. The binding energies obtained in both models are lower than those obtained from the standard Skyrme model, and those obtained in the second model are close to the experimental values.

  8. BINDING ISOTHERMS SURFACTANT-PROTEINS

    OpenAIRE

    Elena Irina Moater; Cristiana Radulescu; Ionica Ionita

    2011-01-01

    The interactions between surfactants and proteins shows some similarities with interactions between surfactants and polymers, but the hydrophobic amphoteric nature of proteins and their secondary and tertiary structure components make them different from conventional polymer systems. Many studies from the past about surfactant - proteins bonding used the dialysis techniques. Other techniques used to determine the binding isotherm, included ultrafiltration, ultracentrifugation, potentiometry, ...

  9. Positive Emotion Facilitates Audiovisual Binding.

    Science.gov (United States)

    Kitamura, Miho S; Watanabe, Katsumi; Kitagawa, Norimichi

    2015-01-01

    It has been shown that positive emotions can facilitate integrative and associative information processing in cognitive functions. The present study examined whether emotions in observers can also enhance perceptual integrative processes. We tested 125 participants in total for revealing the effects of emotional states and traits in observers on the multisensory binding between auditory and visual signals. Participants in Experiment 1 observed two identical visual disks moving toward each other, coinciding, and moving away, presented with a brief sound. We found that for participants with lower depressive tendency, induced happy moods increased the width of the temporal binding window of the sound-induced bounce percept in the stream/bounce display, while no effect was found for the participants with higher depressive tendency. In contrast, no effect of mood was observed for a simple audiovisual simultaneity discrimination task in Experiment 2. These results provide the first empirical evidence of a dependency of multisensory binding upon emotional states and traits, revealing that positive emotions can facilitate the multisensory binding processes at a perceptual level. PMID:26834585

  10. Radioligand Binding at Muscarinic Receptors

    Czech Academy of Sciences Publication Activity Database

    El-Fakahany, E. E.; Jakubík, Jan

    New York: Springer, 2016 - (Mysliveček, J.; Jakubík, J.), s. 37-68. (Neuromethods. 107). ISBN 978-1-4939-2857-6 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : muscarinic acetylcholine receptors * radioligand binding Subject RIV: ED - Physiology

  11. Sex hormone binding globulin phenotypes

    DEFF Research Database (Denmark)

    Cornelisse, M M; Bennett, Patrick; Christiansen, M;

    1994-01-01

    Human sex hormone binding globulin (SHBG) is encoded by a normal and a variant allele. The resulting SHBG phenotypes (the homozygous normal SHBG, the heterozygous SHBG and the homozygous variant SHBG phenotype) can be distinguished by their electrophoretic patterns. We developed a novel detection...

  12. Antimicrobial Peptide-Lipid Binding Interactions and Binding Selectivity

    OpenAIRE

    Lad, Mitaben D.; Birembaut, Fabrice; Clifton, Luke A.; Frazier, Richard A.; Webster, John R. P.; Green, Rebecca J.

    2007-01-01

    Surface pressure measurements, external reflection-Fourier transform infrared spectroscopy, and neutron reflectivity have been used to investigate the lipid-binding behavior of three antimicrobial peptides: melittin, magainin II, and cecropin P1. As expected, all three cationic peptides were shown to interact more strongly with the anionic lipid, 1,2 dihexadecanoyl-sn-glycerol-3-(phosphor-rac-(1-glycerol)) (DPPG), compared to the zwitterionic lipid, 1,2 dihexadecanoyl-sn-glycerol-3-phosphocho...

  13. Characteristics of human erythrocyte insulin binding sites.

    OpenAIRE

    Okada, Yoshio

    1981-01-01

    Insulin and human erythrocyte cell membrane interactions were studied with respect to binding and dissociation. The per cent of specific binding of 125I-labeled insulin to erythrocytes was directly proportional to the cell concentration. The optimum pH for binding was 8.1. The initial binding rate was directly proportional to, and the steady state insulin binding was reversely proportional to, the incubation temperature. The per cent of specific binding of 125I-labeled insulin was 12.10 +/- 1...

  14. Dissection of the Critical Binding Determinants of Cellular Retinoic Acid Binding Protein II by Mutagenesis and Fluorescence Binding Assay

    OpenAIRE

    Vasileiou, Chrysoula; Lee, Kin Sing Stephen; Crist, Rachael M.; Vaezeslami, Soheila; Goins, Sarah M.; Geiger, James H.; Borhan, Babak

    2009-01-01

    The binding of retinoic acid to mutants of Cellular Retinoic Acid Binding Protein II (CRABPII) was evaluated to better understand the importance of the direct protein/ligand interactions. The important role of Arg111 for the correct structure and function of the protein was verified and other residues that directly affect retinoic acid binding have been identified. Furthermore, retinoic acid binding to CRABPII mutants that lack all previously identified interacting amino acids was rescued by ...

  15. Probing protein phosphatase substrate binding

    DEFF Research Database (Denmark)

    Højlys-Larsen, Kim B.; Sørensen, Kasper Kildegaard; Jensen, Knud Jørgen; Gammeltoft, Steen

    2012-01-01

    Proteomics and high throughput analysis for systems biology can benefit significantly from solid-phase chemical tools for affinity pull-down of proteins from complex mixtures. Here we report the application of solid-phase synthesis of phosphopeptides for pull-down and analysis of the affinity...... profile of the integrin-linked kinase associated phosphatase (ILKAP), a member of the protein phosphatase 2C (PP2C) family. Phosphatases can potentially dephosphorylate these phosphopeptide substrates but, interestingly, performing the binding studies at 4 °C allowed efficient binding to phosphopeptides......, without the need for phosphopeptide mimics or phosphatase inhibitors. As no proven ILKAP substrates were available, we selected phosphopeptide substrates among known PP2Cδ substrates including the protein kinases: p38, ATM, Chk1, Chk2 and RSK2 and synthesized directly on PEGA solid supports through a BAL...

  16. Optical binding of unlike particles

    Czech Academy of Sciences Publication Activity Database

    Karásek, Vítězslav; Zemánek, Pavel

    Bellingham : SPIE, 2012, 86970T: 1-6. ISBN 978-0-8194-9481-8. [CPS 2012. Czech-Polish-Slovak Optical Conference on Wave and Quantum Aspects of Contemporary Optics /18./. Ostravice (CZ), 03.09.2012-07.09.2012] R&D Projects: GA ČR GPP205/12/P868 Institutional support: RVO:68081731 Keywords : Optical binding * Optical tweezers * self-arrangement * colloids Subject RIV: BH - Optics, Masers, Lasers

  17. Calcium binding by dietary fibre

    International Nuclear Information System (INIS)

    Dietary fibre from plants low in phytate bound calcium in proportion to its uronic-acid content. This binding by the non-cellulosic fraction of fibre reduces the availability of calcium for small-intestinal absorption, but the colonic microbial digestion of uronic acids liberates the calcium. Thus the ability to maintain calcium balance on high-fibre diets may depend on the adaptive capacity on the colon for calcium. (author)

  18. Positive Emotion Facilitates Audiovisual Binding

    OpenAIRE

    Kitamura, Miho S.; Watanabe, Katsumi; Kitagawa, Norimichi

    2016-01-01

    It has been shown that positive emotions can facilitate integrative and associative information processing in cognitive functions. The present study examined whether emotions in observers can also enhance perceptual integrative processes. We tested 125 participants in total for revealing the effects of emotional states and traits in observers on the multisensory binding between auditory and visual signals. Participants in Experiment 1 observed two identical visual disks moving toward each oth...

  19. Binding effects and nuclear shadowing

    OpenAIRE

    Indumathi, D.; Wei ZHU

    1996-01-01

    The effects of nuclear binding on nuclear structure functions have so far been studied mainly at fixed target experiments, and there is currently much interest in obtaining a clearer understanding of this phenomenon. We use an existing dynamical model of nuclear structure functions, that gives good agreement with current data, to study this effect in a kinematical regime (low $x$, high $Q^2$) that can possibly be probed by an upgrade of {\\sc hera} at {\\sc desy} into a nuclear accelerator.

  20. Anion binding in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Feiters, Martin C [Department of Organic Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Meyer-Klaucke, Wolfram [EMBL Hamburg Outstation at DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Kostenko, Alexander V; Soldatov, Alexander V [Faculty of Physics, Southern Federal University, Sorge 5, Rostov-na-Donu, 344090 (Russian Federation); Leblanc, Catherine; Michel, Gurvan; Potin, Philippe [Centre National de la Recherche Scientifique and Universite Pierre et Marie Curie Paris-VI, Station Biologique de Roscoff, Place Georges Teissier, BP 74, F-29682 Roscoff cedex, Bretagne (France); Kuepper, Frithjof C [Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom); Hollenstein, Kaspar; Locher, Kaspar P [Institute of Molecular Biology and Biophysics, ETH Zuerich, Schafmattstrasse 20, Zuerich, 8093 (Switzerland); Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R, E-mail: m.feiters@science.ru.n [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2009-11-15

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L{sub 3} (2p{sub 3/2}) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  1. Anion binding in biological systems

    Science.gov (United States)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  2. Material Binding Peptides for Nanotechnology

    Directory of Open Access Journals (Sweden)

    Urartu Ozgur Safak Seker

    2011-02-01

    Full Text Available Remarkable progress has been made to date in the discovery of material binding peptides and their utilization in nanotechnology, which has brought new challenges and opportunities. Nowadays phage display is a versatile tool, important for the selection of ligands for proteins and peptides. This combinatorial approach has also been adapted over the past decade to select material-specific peptides. Screening and selection of such phage displayed material binding peptides has attracted great interest, in particular because of their use in nanotechnology. Phage display selected peptides are either synthesized independently or expressed on phage coat protein. Selected phage particles are subsequently utilized in the synthesis of nanoparticles, in the assembly of nanostructures on inorganic surfaces, and oriented protein immobilization as fusion partners of proteins. In this paper, we present an overview on the research conducted on this area. In this review we not only focus on the selection process, but also on molecular binding characterization and utilization of peptides as molecular linkers, molecular assemblers and material synthesizers.

  3. Erythropoietin binding protein from mammalian serum

    Energy Technology Data Exchange (ETDEWEB)

    Clemons, G.K.

    1997-04-29

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described. 11 figs.

  4. Erythropoietin binding protein from mammalian serum

    Energy Technology Data Exchange (ETDEWEB)

    Clemons, Gisela K. (Berkeley, CA)

    1997-01-01

    Purified mammalian erythropoietin binding-protein is disclosed, and its isolation, identification, characterization, purification, and immunoassay are described. The erythropoietin binding protein can be used for regulation of erythropoiesis by regulating levels and half-life of erythropoietin. A diagnostic kit for determination of level of erythropoietin binding protein is also described.

  5. Solute-vacancy binding in aluminum

    International Nuclear Information System (INIS)

    Previous efforts to understand solute-vacancy binding in aluminum alloys have been hampered by a scarcity of reliable, quantitative experimental measurements. Here, we report a large database of solute-vacancy binding energies determined from first-principles density functional calculations. The calculated binding energies agree well with accurate measurements where available, and provide an accurate predictor of solute-vacancy binding in other systems. We find: (i) some common solutes in commercial Al alloys (e.g., Cu and Mg) possess either very weak (Cu), or even repulsive (Mg), binding energies. Hence, we assert that some previously reported large binding energies for these solutes are erroneous. (ii) Large binding energies are found for Sn, Cd and In, confirming the proposed mechanism for the reduced natural aging in Al-Cu alloys containing microalloying additions of these solutes. (iii) In addition, we predict that similar reduction in natural aging should occur with additions of Si, Ge and Au. (iv) Even larger binding energies are found for other solutes (e.g., Pb, Bi, Sr, Ba), but these solutes possess essentially no solubility in Al. (v) We have explored the physical effects controlling solute-vacancy binding in Al. We find that there is a strong correlation between binding energy and solute size, with larger solute atoms possessing a stronger binding with vacancies. (vi) Most transition-metal 3d solutes do not bind strongly with vacancies, and some are even energetically strongly repelled from vacancies, particularly for the early 3d solutes, Ti and V

  6. Binding of quasi two-dimensional biexcitons

    DEFF Research Database (Denmark)

    Birkedal, Dan; Singh, J; Vadim, Lyssenko; Hvam, Jørn Märcher

    Summary form only given. In this presentation we report on a determination of the biexciton binding energies in GaAs-AlGaAs quantum wells of different widths and the results of a theoretical calculation of the ratio of the biexciton binding energy to that of the exciton. We determine the binding ...

  7. Bone morphogenetic protein-2 functions as a negative regulator in the differentiation of myoblasts, but not as an inducer for the formations of cartilage and bone in mouse embryonic tongue

    Directory of Open Access Journals (Sweden)

    Suzuki Erika

    2011-07-01

    Full Text Available Abstract Background In vitro studies using the myogenic cell line C2C12 demonstrate that bone morphogenetic protein-2 (BMP-2 converts the developmental pathway of C2C12 from a myogenic cell lineage to an osteoblastic cell lineage. Further, in vivo studies using null mutation mice demonstrate that BMPs inhibit the specification of the developmental fate of myogenic progenitor cells. However, the roles of BMPs in the phases of differentiation and maturation in skeletal muscles have yet to be determined. The present study attempts to define the function of BMP-2 in the final stage of differentiation of mouse tongue myoblast. Results Recombinant BMP-2 inhibited the expressions of markers for the differentiation of skeletal muscle cells, such as myogenin, muscle creatine kinase (MCK, and fast myosin heavy chain (fMyHC, whereas BMP-2 siRNA stimulated such markers. Neither the recombinant BMP-2 nor BMP-2 siRNA altered the expressions of markers for the formation of cartilage and bone, such as osteocalcin, alkaline phosphatase (ALP, collagen II, and collagen X. Further, no formation of cartilage and bone was observed in the recombinant BMP-2-treated tongues based on Alizarin red and Alcian blue stainings. Neither recombinant BMP-2 nor BMP-2 siRNA affected the expression of inhibitor of DNA binding/differentiation 1 (Id1. The ratios of chondrogenic and osteogenic markers relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH, a house keeping gene were approximately 1000-fold lower than those of myogenic markers in the cultured tongue. Conclusions BMP-2 functions as a negative regulator for the final differentiation of tongue myoblasts, but not as an inducer for the formation of cartilage and bone in cultured tongue, probably because the genes related to myogenesis are in an activation mode, while the genes related to chondrogenesis and osteogenesis are in a silencing mode.

  8. Glucocorticoid receptor transformation and DNA binding

    International Nuclear Information System (INIS)

    The overall goal is to probe the mechanism whereby glucocorticoid receptors are transformed from a non-DNA-binding form to their active DNA-binding form. The author has examined the effect of an endogenous inhibitor purified from rat liver cytosol on receptor binding to DNA. The inhibitor binds to transformed receptors in whole cytosol and prevent their binding to DNA. He also examined the role of sulfhydryl groups in determining the DNA binding activity of the transformed receptor and in determining the transformation process. Treatment of rat liver cytosol containing temperature-transformed, [3H]dexamethasone-bound receptors at 00C with the sulfhydryl modifying reagent methyl methanethiosulfonate inhibits the DNA-binding activity of the receptor, and DNA-binding activity is restored after addition of dithiothreitol. In addition, he has examined the relationship between receptor phosphorylation and DNA binding. Untransformed receptor complexes purified from cytosol prepared from mouse L cells grown in medium containing [32P]orthophosphate contain two components, a 100 k-Da and a 90-kDa subunit, both of which are phosphoproteins. On transformation, the receptor dissociates from the 90-kDa protein. Transformation of the complex under cell free conditions does not result in a dephosphorylation of the 100-kDa steroid-binding protein. Transformed receptor that has been bound to DNA and purified by monoclonal antibody is still in a phosphorylated form. These results suggest that dephosphorylation is not required for receptor binding to DNA

  9. Drug binding properties of neonatal albumin

    DEFF Research Database (Denmark)

    Brodersen, R; Honoré, B

    1989-01-01

    Neonatal and adult albumin was isolated by gel chromatography on Sephacryl S-300, from adult and umbilical cord serum, respectively. Binding of monoacetyl-diamino-diphenyl sulfone, warfarin, sulfamethizole, and diazepam was studied by means of equilibrium dialysis and the binding data were analyzed...... by the method of several acceptable fitted curves. It was found that the binding affinity to neonatal albumin is less than to adult albumin for monoacetyl-diamino-diphenyl sulfone and warfarin. Sulfamethizole binding to the neonatal protein is similarly reduced when more than one molecule of the drug...... is bound per albumin molecule, and binding of the first sulfamethizole molecule is possibly reduced as well. Diazepam binds with equal affinity to the fetal and adult proteins. Among the two main albumin drug-binding functions, for warfarin and diazepam, the former is thus compromised in the newborn...

  10. BMP2 sensitizes glioblastoma stem-like cells to Temozolomide by affecting HIF-1α stability and MGMT expression

    OpenAIRE

    Persano, L; Pistollato, F; Rampazzo, E; Della Puppa, A; Abbadi, S; Frasson, C; Volpin, F; S. Indraccolo; Scienza, R; G. Basso

    2012-01-01

    Glioblastoma multiforme (GBM) is the most common brain tumour, characterized by a central and partially necrotic (i.e., hypoxic) core enriched in cancer stem cells (CSCs). We previously showed that the most hypoxic and immature (i.e., CSCs) GBM cells were resistant to Temozolomide (TMZ) in vitro, owing to a particularly high expression of O6-methylguanine-DNA-methyltransferase (MGMT), the most important factor associated to therapy resistance in GBM. Bone morphogenetic proteins (BMPs), and in...

  11. Myocardial Tbx20 regulates early atrioventricular canal formation and endocardial epithelial-mesenchymal transition via Bmp2

    OpenAIRE

    Cai, Xiaoqiang; Nomura-Kitabayashi, Aya; Cai, Weibin; Yan, Jianyun; Christoffels, Vincent M.; Cai, Chen-Leng

    2011-01-01

    During early embryogenesis, the formation of the cardiac atrioventricular canal (AVC) facilitates the transition of the heart from a linear tube into a chambered organ. However, the genetic pathways underlying this developmental process are poorly understood. The T-box transcription factor Tbx20 is expressed predominantly in the AVC of early heart tube. It was shown that Tbx20 activates Nmyc1 and suppresses Tbx2 expression to promote proliferation and specification of the atrial and ventricul...

  12. Evaluation of collagen/heparin coated TCP/HA granules for long-term delivery of BMP-2

    NARCIS (Netherlands)

    Hannink, G.J.; Geutjes, P.J.; Daamen, W.F.; Buma, P.

    2013-01-01

    Bone morphogenetic proteins (BMPs) are the most potent osteoinductive growth factors. However, a delivery system is essential to take advantage of the osteoinductive effect of BMPs. The purpose of this study was to develop a sustained delivery system for recombinant human bone morphogenetic protein-

  13. Gelatin Tight-Coated Poly(lactide-co-glycolide) Scaffold Incorporating rhBMP-2 for Bone Tissue Engineering

    OpenAIRE

    Juan Wang; Dongsong Li; Tianyi Li; Jianxun Ding; Jianguo Liu; Baosheng Li; Xuesi Chen

    2015-01-01

    Surface coating is the simplest surface modification. However, bioactive molecules can not spread well on the commonly used polylactone-type skeletons; thus, the surface coatings of biomolecules are typically unstable due to the weak interaction between the polymer and the bioactive molecules. In this study, a special type of poly(lactide-co-glycolide) (PLGA)-based scaffold with a loosened skeleton was fabricated by phase separation, which allowed gelatin molecules to more readily diffuse th...

  14. Radiographic Assessment of Bone Formation Using rhBMP2 at Maxillary Periapical Surgical Defects: A Case Series.

    Science.gov (United States)

    Kumar, M Siva; Kumar, M Hari; Vishalakshi, K; Sabitha, H

    2016-04-01

    Periapical cysts are the most common inflammatory odontogenic cysts arising from untreated dental caries with pulp necrosis and periapical infection. The choice of treatment is often influenced by various factors like size, extension of the lesion, proximity to vital structures, systemic condition and compliance of the patient too. The treatment protocol for management of periapical cysts is still under discussion and options vary from conservative treatment by means of endodontic technique to surgical treatment like decompression or a marsupialisation or even to enucleation. Large bony defect secondary to periapical surgery compromising the tooth integrity often requires bone graft to enhance bone formation and thus restoring function at the earliest. The present case series included 10 patients who had established periapical pathology secondary to history of trauma on upper anterior teeth as well patients with history of carious teeth with an apparent failure in root canal therapy. All ten patients were treated with cyst enucleation and apiceotomy along with 1.4cc Recombinant Human Bone Morphogenetic Protein-2 soaked Absorbable Collagen Sponge implantation at surgical defect. Radiographs and clinical examinations were done upto 3 months to evaluate healing. Radiographic and clinical assessments revealed bone regeneration and restoration of the maxillary surgical defects in all 10 patients. No evidence of graft failure was noted. The Recombinant Human Bone Morphogenetic Protein-2 soaked Absorbable Collagen Sponge carrier is thus proved to be a viable option for the treatment of maxillary periapical surgical defects. PMID:27190972

  15. BMP2 Genetically Engineered MSCs and EPCs Promote Vascularized Bone Regeneration in Rat Critical-Sized Calvarial Bone Defects

    OpenAIRE

    He, Xiaoning; Dziak, Rosemary; Yuan, Xue; Mao, Keya; Genco, Robert; Swihart, Mark; Sarkar, Debanjan; Li, Chunyi; Wang, Changdong; Lu, Li; Andreadis, Stelios; Yang, Shuying

    2013-01-01

    Current clinical therapies for critical-sized bone defects (CSBDs) remain far from ideal. Previous studies have demonstrated that engineering bone tissue using mesenchymal stem cells (MSCs) is feasible. However, this approach is not effective for CSBDs due to inadequate vascularization. In our previous study, we have developed an injectable and porous nano calcium sulfate/alginate (nCS/A) scaffold and demonstrated that nCS/A composition is biocompatible and has proper biodegradability for bon...

  16. E. coli-Produced BMP-2 as a Chemopreventive Strategy for Colon Cancer : A Proof-of-Concept Study

    NARCIS (Netherlands)

    Yuvaraj, Saravanan; Al-Lahham, Sa'ad H.; Somasundaram, Rajesh; Figaroa, Patrick A.; Peppelenbosch, Maikel P.; Bos, Nicolaas A.

    2012-01-01

    Colon cancer is a serious health problem, and novel preventive and therapeutical avenues are urgently called for. Delivery of proteins with anticancer activity through genetically modified bacteria provides an interesting, potentially specific, economic and effective approach here. Interestingly, bo

  17. Regulation of Axolotl (Ambystoma mexicanum Limb Blastema Cell Proliferation by Nerves and BMP2 in Organotypic Slice Culture.

    Directory of Open Access Journals (Sweden)

    Jeffrey Lehrberg

    Full Text Available We have modified and optimized the technique of organotypic slice culture in order to study the mechanisms regulating growth and pattern formation in regenerating axolotl limb blastemas. Blastema cells maintain many of the behaviors that are characteristic of blastemas in vivo when cultured as slices in vitro, including rates of proliferation that are comparable to what has been reported in vivo. Because the blastema slices can be cultured in basal medium without fetal bovine serum, it was possible to test the response of blastema cells to signaling molecules present in serum, as well as those produced by nerves. We also were able to investigate the response of blastema cells to experimentally regulated changes in BMP signaling. Blastema cells responded to all of these signals by increasing the rate of proliferation and the level of expression of the blastema marker gene, Prrx-1. The organotypic slice culture model provides the opportunity to identify and characterize the spatial and temporal co-regulation of pathways in order to induce and enhance a regenerative response.

  18. Radiographic Assessment of Bone Formation Using rhBMP2 at Maxillary Periapical Surgical Defects: A Case Series

    Science.gov (United States)

    Kumar, M. Hari; Vishalakshi, K.; Sabitha, H.

    2016-01-01

    Periapical cysts are the most common inflammatory odontogenic cysts arising from untreated dental caries with pulp necrosis and periapical infection. The choice of treatment is often influenced by various factors like size, extension of the lesion, proximity to vital structures, systemic condition and compliance of the patient too. The treatment protocol for management of periapical cysts is still under discussion and options vary from conservative treatment by means of endodontic technique to surgical treatment like decompression or a marsupialisation or even to enucleation. Large bony defect secondary to periapical surgery compromising the tooth integrity often requires bone graft to enhance bone formation and thus restoring function at the earliest. The present case series included 10 patients who had established periapical pathology secondary to history of trauma on upper anterior teeth as well patients with history of carious teeth with an apparent failure in root canal therapy. All ten patients were treated with cyst enucleation and apiceotomy along with 1.4cc Recombinant Human Bone Morphogenetic Protein-2 soaked Absorbable Collagen Sponge implantation at surgical defect. Radiographs and clinical examinations were done upto 3 months to evaluate healing. Radiographic and clinical assessments revealed bone regeneration and restoration of the maxillary surgical defects in all 10 patients. No evidence of graft failure was noted. The Recombinant Human Bone Morphogenetic Protein-2 soaked Absorbable Collagen Sponge carrier is thus proved to be a viable option for the treatment of maxillary periapical surgical defects. PMID:27190972

  19. Insulin binding to individual rat skeletal muscles

    International Nuclear Information System (INIS)

    Studies of insulin binding to skeletal muscle, performed using sarcolemmal membrane preparations or whole muscle incubations of mixed muscle or typical red (soleus, psoas) or white [extensor digitorum longus (EDL), gastrocnemius] muscle, have suggested that red muscle binds more insulin than white muscle. We have evaluated this hypothesis using cryostat sections of unfixed tissue to measure insulin binding in a broad range of skeletal muscles; many were of similar fiber-type profiles. Insulin binding per square millimeter of skeletal muscle slice was measured by autoradiography and computer-assisted densitometry. We found a 4.5-fold range in specific insulin tracer binding, with heart and predominantly slow-twitch oxidative muscles (SO) at the high end and the predominantly fast-twitch glycolytic (FG) muscles at the low end of the range. This pattern reflects insulin sensitivity. Evaluation of displacement curves for insulin binding yielded linear Scatchard plots. The dissociation constants varied over a ninefold range (0.26-2.06 nM). Binding capacity varied from 12.2 to 82.7 fmol/mm2. Neither binding parameter was correlated with fiber type or insulin sensitivity; e.g., among three muscles of similar fiber-type profile, the EDL had high numbers of low-affinity binding sites, whereas the quadriceps had low numbers of high-affinity sites. In summary, considerable heterogeneity in insulin binding was found among hindlimb muscles of the rat, which can be attributed to heterogeneity in binding affinities and the numbers of binding sites. It can be concluded that a given fiber type is not uniquely associated with a set of insulin binding parameters that result in high or low binding

  20. Erythropoietin binding sites in human foetal tissues

    Energy Technology Data Exchange (ETDEWEB)

    Pekonen, F.; Rosenloef, K.; Rutanen, E.-M.

    1987-01-01

    Using /sup 125/I labelled recombinant DNA human erythropoietin (EP), we have explored the presence and properties of EP binding sites in foetal human tissues. The EP binding site is present in the foetal liver already during the first trimester of pregnancy. The binding site has a equilibrium association constant of 4.1-6.2 x 10/sup 9/l/mol and is specific for EP. The cross-reactivities of FSH, TSH, hCG, insulin and renin substrate were less than 0.01%. The EP binding capacity of foetal liver was 5.4-16 fmol/mg membrane protein. In foetal lung tissue, a slight EP binding activity was observed, whereas foetal spleen, muscle, brain, thyroid and placental tissues were virtually devoid of EP binding capacity. The same level of binding was reached at 37 deg. C in 1 h and at 4 deg. C in 24 h. The binding was pH-dependent with maximal specific binding at pH 7.7. SDS-PAGE gel electrophoresis analysis of covalently cross-linked /sup 125/I-EP to foetal liver membranes suggested that the EP binding site was composed of two subunits with an apparent mol wt of 41000 and 86000 dalton, respectively.

  1. Binding characteristics of swine erythrocyte insulin receptors

    International Nuclear Information System (INIS)

    Crossbred gilts had 8.8 +/- 1.1% maximum binding of [125I]insulin to insulin receptors on erythrocytes. The number of insulin-binding sites per cell was 137 +/- 19, with a binding affinity ranging from 7.4 X 10(7)M-1 to 11.2 X 10(7)M-1 and mean of 8.8 X 10(7)M-1. Pregnant sows had a significant increase in maximum binding due to an increase in number of receptor sites per cell. Lactating sows fed a high-fiber diet and a low-fiber diet did not develop a significant difference in maximum binding of insulin. Sows fed the low-fiber diet had a significantly higher number of binding sites and a significantly lower binding affinity than did sows fed a high-fiber diet. Receptor-binding affinity was lower in the low-fiber diet group than in cycling gilts, whereas data from sows fed the high-fiber diet did not differ from data for cycling gilts. Data from this study indicated that insulin receptors of swine erythrocytes have binding characteristics similar to those in other species. Pregnancy and diet will alter insulin receptor binding in swine

  2. Erythropoietin binding sites in human foetal tissues

    International Nuclear Information System (INIS)

    Using 125I labelled recombinant DNA human erythropoietin (EP), we have explored the presence and properties of EP binding sites in foetal human tissues. The EP binding site is present in the foetal liver already during the first trimester of pregnancy. The binding site has a equilibrium association constant of 4.1-6.2 x 109l/mol and is specific for EP. The cross-reactivities of FSH, TSH, hCG, insulin and renin substrate were less than 0.01%. The EP binding capacity of foetal liver was 5.4-16 fmol/mg membrane protein. In foetal lung tissue, a slight EP binding activity was observed, whereas foetal spleen, muscle, brain, thyroid and placental tissues were virtually devoid of EP binding capacity. The same level of binding was reached at 37 deg. C in 1 h and at 4 deg. C in 24 h. The binding was pH-dependent with maximal specific binding at pH 7.7. SDS-PAGE gel electrophoresis analysis of covalently cross-linked 125I-EP to foetal liver membranes suggested that the EP binding site was composed of two subunits with an apparent mol wt of 41000 and 86000 dalton, respectively. (author)

  3. Synthetic LPS-Binding Polymer Nanoparticles

    Science.gov (United States)

    Jiang, Tian

    Lipopolysaccharide (LPS), one of the principal components of most gram-negative bacteria's outer membrane, is a type of contaminant that can be frequently found in recombinant DNA products. Because of its strong and even lethal biological effects, selective LPS removal from bioproducts solution is of particular importance in the pharmaceutical and health care industries. In this thesis, for the first time, a proof-of-concept study on preparing LPS-binding hydrogel-like NPs through facile one-step free-radical polymerization was presented. With the incorporation of various hydrophobic (TBAm), cationic (APM, GUA) monomers and cross-linkers (BIS, PEG), a small library of NPs was constructed. Their FITC-LPS binding behaviors were investigated and compared with those of commercially available LPS-binding products. Moreover, the LPS binding selectivity of the NPs was also explored by studying the NPs-BSA interactions. The results showed that all NPs obtained generally presented higher FITC-LPS binding capacity in lower ionic strength buffer than higher ionic strength. However, unlike commercial poly-lysine cellulose and polymyxin B agarose beads' nearly linear increase of FITC-LPS binding with particle concentration, NPs exhibited serious aggregation and the binding quickly saturated or even decreased at high particle concentration. Among various types of NPs, higher FITC-LPS binding capacity was observed for those containing more hydrophobic monomers (TBAm). However, surprisingly, more cationic NPs with higher content of APM exhibited decreased FITC-LPS binding in high ionic strength conditions. Additionally, when new cationic monomer and cross-linker, GUA and PEG, were applied to replace APM and BIS, the obtained NPs showed improved FITC-LPS binding capacity at low NP concentration. But compared with APM- and BIS-containing NPs, the FITC-LPS binding capacity of GUA- and PEG-containing NPs saturated earlier. To investigate the NPs' binding to proteins, we tested the NPs

  4. Methods for Improving Aptamer Binding Affinity

    OpenAIRE

    Hijiri Hasegawa; Nasa Savory; Koichi Abe; Kazunori Ikebukuro

    2016-01-01

    Aptamers are single stranded oligonucleotides that bind a wide range of biological targets. Although aptamers can be isolated from pools of random sequence oligonucleotides using affinity-based selection, aptamers with high affinities are not always obtained. Therefore, further refinement of aptamers is required to achieve desired binding affinities. The optimization of primary sequences and stabilization of aptamer conformations are the main approaches to refining the binding properties of a...

  5. Predicted metal binding sites for phytoremediation

    OpenAIRE

    Sharma, Ashok; Roy, Sudeep; Tripathi, Kumar Parijat; Roy, Pratibha; Mishra, Manoj; Khan, Feroz; Meena, Abha

    2009-01-01

    Metal ion binding domains are found in proteins that mediate transport, buffering or detoxification of metal ions. The objective of the study is to design and analyze metal binding motifs against the genes involved in phytoremediation. This is being done on the basis of certain pre-requisite amino-acid residues known to bind metal ions/metal complexes in medicinal and aromatic plants (MAP's). Earlier work on MAP's have shown that heavy metals accumulated by aromatic and medicinal plants do no...

  6. RNA Binding Specificity of Drosophila Muscleblind†

    OpenAIRE

    Goers, Emily S.; Voelker, Rodger B.; Gates, Devika P.; Berglund, J. Andrew

    2008-01-01

    Members of the muscleblind family of RNA binding proteins found in Drosophila and mammals are key players in both the human disease myotonic dystrophy and the regulation of alternative splicing. Recently, the mammalian muscleblind-like protein, MBNL1, has been shown to have interesting RNA binding properties with both endogenous and disease-related RNA targets. Here we report the characterization of RNA binding properties of the Drosophila muscleblind protein Mbl. Mutagenesis of double-strand...

  7. Exciton Binding Energy of Monolayer WS2

    OpenAIRE

    Bairen Zhu; Xi Chen; Xiaodong Cui

    2015-01-01

    The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach toward measuring the exciton binding energy of monolayer WS2 with linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71eV around K valley in the Brillouin zone. The trion binding energy of 34meV, two-photon absorption cross s...

  8. A computational model for feature binding

    Institute of Scientific and Technical Information of China (English)

    SHI ZhiWei; SHI ZhongZhi; LIU Xi; SHI ZhiPing

    2008-01-01

    The "Binding Problem" is an important problem across many disciplines, including psychology, neuroscience, computational modeling, and even philosophy. In this work, we proposed a novel computational model, Bayesian Linking Field Model, for feature binding in visual perception, by combining the idea of noisy neuron model, Bayesian method, Linking Field Network and competitive mechanism.Simulation Experiments demonstrated that our model perfectly fulfilled the task of feature binding in visual perception and provided us some enlightening idea for future research.

  9. Binding of cryptococcal polysaccharide to Cryptococcus neoformans.

    OpenAIRE

    Kozel, T R; Hermerath, C A

    1984-01-01

    Radioiodinated cryptococcal polysaccharide was used to study binding of the soluble polysaccharide to encapsulated and non-encapsulated cryptoccoci. Binding of polysaccharide to non-encapsulated cryptococci occurred rapidly over a 30-min period and was largely complete after 2 h. Bound, labeled polysaccharide was slowly eluted from Cryptococcus neoformans after the addition of unlabeled polysaccharide, indicating reversibility of binding. Non-encapsulated cryptococci bound polysaccharide in t...

  10. A computational model for feature binding

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The "Binding Problem" is an important problem across many disciplines, including psychology, neuroscience, computational modeling, and even philosophy. In this work, we proposed a novel computational model, Bayesian Linking Field Model, for feature binding in visual perception, by combining the idea of noisy neuron model, Bayesian method, Linking Field Network and competitive mechanism. Simulation Experiments demonstrated that our model perfectly fulfilled the task of feature binding in visual perception and provided us some enlightening idea for future research.

  11. Copper(II) binding properties of hepcidin

    OpenAIRE

    Kulprachakarn, Kanokwan; Chen, Yu-Lin; Kong, Xiaole; Arno, Maria Chiara; Hider, Robert Charles; Srichairatanakool, Somdet; Bansal, Sukhvinder

    2016-01-01

    Hepcidin is a peptide hormone that regulates the homeostasis of iron metabolism. The N-terminal domain of hepcidin is conserved amongst a range of species and is capable of binding CuII and NiII through the amino terminal copper–nickel binding motif (ATCUN). It has been suggested that the binding of copper to hepcidin may have biological relevance. In this study we have investigated the binding of CuII with model peptides containing the ATCUN motif, fluorescently labelled hepcidin and hepcidi...

  12. Advances on Plant Pathogenic Mycotoxin Binding Proteins

    Institute of Scientific and Technical Information of China (English)

    WANG Chao-hua; DONG Jin-gao

    2002-01-01

    Toxin-binding protein is one of the key subjects in plant pathogenic mycotoxin research. In this paper, new advances in toxin-binding proteins of 10 kinds of plant pathogenic mycotoxins belonging to Helminthosporium ,Alternaria ,Fusicoccum ,Verticillium were reviewed, especially the techniques and methods of toxin-binding proteins of HS-toxin, HV-toxin, HMT-toxin, HC-toxin. It was proposed that the isotope-labeling technique and immunological chemistry technique should be combined together in research of toxin-binding protein, which will be significant to study the molecular recognition mechanism between host and pathogenic fungus.

  13. Retinoid-binding proteins: similar protein architectures bind similar ligands via completely different ways.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Zhang

    Full Text Available BACKGROUND: Retinoids are a class of compounds that are chemically related to vitamin A, which is an essential nutrient that plays a key role in vision, cell growth and differentiation. In vivo, retinoids must bind with specific proteins to perform their necessary functions. Plasma retinol-binding protein (RBP and epididymal retinoic acid binding protein (ERABP carry retinoids in bodily fluids, while cellular retinol-binding proteins (CRBPs and cellular retinoic acid-binding proteins (CRABPs carry retinoids within cells. Interestingly, although all of these transport proteins possess similar structures, the modes of binding for the different retinoid ligands with their carrier proteins are different. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we analyzed the various retinoid transport mechanisms using structure and sequence comparisons, binding site analyses and molecular dynamics simulations. Our results show that in the same family of proteins and subcellular location, the orientation of a retinoid molecule within a binding protein is same, whereas when different families of proteins are considered, the orientation of the bound retinoid is completely different. In addition, none of the amino acid residues involved in ligand binding is conserved between the transport proteins. However, for each specific binding protein, the amino acids involved in the ligand binding are conserved. The results of this study allow us to propose a possible transport model for retinoids. CONCLUSIONS/SIGNIFICANCE: Our results reveal the differences in the binding modes between the different retinoid-binding proteins.

  14. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Sigurskjold, B W; Kragelund, B B;

    1996-01-01

    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl-...

  15. Molecularly Responsive Binding through Co-occupation of Binding Space: A Lock-Key Story.

    Science.gov (United States)

    Awino, Joseph K; Hu, Lan; Zhao, Yan

    2016-04-01

    When two guest molecules co-occupy a binding pocket of a water-soluble host, the first guest could be used as a signal molecule to turn on the binding of the second. This type of molecularly responsive binding strongly depends on the size of the two guests and the location of the signal molecule. PMID:27001464

  16. CTCF Binding Polarity Determines Chromatin Looping

    NARCIS (Netherlands)

    de Wit, Elzo; Vos, Erica S M; Holwerda, Sjoerd J B; Valdes-Quezada, Christian; Verstegen, Marjon J A M; Teunissen, Hans; Splinter, Erik; Wijchers, Patrick J; Krijger, Peter H L; de Laat, Wouter

    2015-01-01

    CCCTC-binding factor (CTCF) is an architectural protein involved in the three-dimensional (3D) organization of chromatin. In this study, we assayed the 3D genomic contact profiles of a large number of CTCF binding sites with high-resolution 4C-seq. As recently reported, our data also suggest that ch

  17. Localization-enhanced biexciton binding in semiconductors

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    1999-01-01

    The influence of excitonic localization on the binding energy of biexcitons is investigated for quasi-three-dimensional and quasi-two-dimensional AlxGa1-xAs structures. An increase of the biexciton binding energy is observed for localization energies comparable to or larger than the free biexcito...

  18. Gravitational Binding Energy in Charged Cylindrical Symmetry

    CERN Document Server

    Sharif, M

    2014-01-01

    We consider static cylindrically symmetric charged gravitating object with perfect fluid and investigate the gravitational binding energy. It is found that only the localized part of the mass function provides the gravitational binding energy, whereas the non-localized part generated by the electric coupling does not contribute for such energy.

  19. (TH) diazepam binding to human granulocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bond, P.A.; Cundall, R.L.; Rolfe, B.

    1985-07-08

    (TH)-diazepam binds to sites on human granulocyte membranes, with little or no binding to platelets or lymphocytes. These (TH)-diazepam binding sites are of the peripheral type, being strongly inhibited by R05-4864 (Ki=6.23nM) but only weakly by clonazepam (Ki=14 M). Binding of (TH) diazepam at 0 is saturable, specific and stereoselective. Scatchard analysis indicates a single class of sites with Bmax of 109 +/- 17f moles per mg of protein and K/sub D/ of 3.07 +/- 0.53nM. Hill plots of saturation experiments gave straight lines with a mean Hill coefficient of 1.03 +/- 0.014. Binding is time dependent and reversible and it varies linearly with granulocyte protein concentration over the range 0.025-0.300 mg of protein. 11 references, 3 figures, 1 table.

  20. [3H] diazepam binding to human granulocytes

    International Nuclear Information System (INIS)

    [3H]-diazepam binds to sites on human granulocyte membranes, with little or no binding to platelets or lymphocytes. These [3H]-diazepam binding sites are of the peripheral type, being strongly inhibited by R05-4864 (Ki=6.23nM) but only weakly by clonazepam (Ki=14μM). Binding of [3H] diazepam at 00 is saturable, specific and stereoselective. Scatchard analysis indicates a single class of sites with Bmax of 109 +/- 17f moles per mg of protein and K/sub D/ of 3.07 +/- 0.53nM. Hill plots of saturation experiments gave straight lines with a mean Hill coefficient of 1.03 +/- 0.014. Binding is time dependent and reversible and it varies linearly with granulocyte protein concentration over the range 0.025-0.300 mg of protein. 11 references, 3 figures, 1 table

  1. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    Energy Technology Data Exchange (ETDEWEB)

    Gangi Setty, Thanuja [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Cho, Christine [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Govindappa, Sowmya [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Apicella, Michael A. [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Ramaswamy, S., E-mail: ramas@instem.res.in [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India)

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  2. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    International Nuclear Information System (INIS)

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states

  3. Specific insulin binding in bovine chromaffin cells; demonstration of preferential binding to adrenalin-storing cells

    Energy Technology Data Exchange (ETDEWEB)

    Serck-Hanssen, G.; Soevik, O.

    1987-12-28

    Insulin binding was studied in subpopulations of bovine chromaffin cells enriched in adrenalin-producing cells (A-cells) or noradrenalin-producing cells (NA-cells). Binding of /sup 125/I-insulin was carried out at 15/sup 0/C for 3 hrs in the absence or presence of excess unlabeled hormone. Four fractions of cells were obtained by centrifugation on a stepwise bovine serum albumin gradient. The four fractions were all shown to bind insulin in a specific manner and the highest binding was measured in the cell layers of higher densities, containing mainly A-cells. The difference in binding of insulin to the four subpopulations of chromaffin cells seemed to be related to differences in numbers of receptors as opposed to receptor affinities. The authors conclude that bovine chromaffin cells possess high affinity binding sites for insulin and that these binding sites are mainly confined to A-cells. 24 references, 2 figures, 1 table.

  4. DNA Triplexes That Bind Several Cofactor Molecules.

    Science.gov (United States)

    Vollmer, Sven; Richert, Clemens

    2015-12-14

    Cofactors are critical for energy-consuming processes in the cell. Harnessing such processes for practical applications requires control over the concentration of cofactors. We have recently shown that DNA triplex motifs with a designed binding site can be used to capture and release nucleotides with low micromolar dissociation constants. In order to increase the storage capacity of such triplex motifs, we have explored the limits of ligand binding through designed cavities in the oligopurine tract. Oligonucleotides with up to six non-nucleotide bridges between purines were synthesized and their ability to bind ATP, cAMP or FAD was measured. Triplex motifs with several single-nucleotide binding sites were found to bind purines more tightly than triplexes with one large binding site. The optimized triplex consists of 59 residues and four C3-bridges. It can bind up to four equivalents of ligand with apparent Kd values of 52 µM for ATP, 9 µM for FAD, and 2 µM for cAMP. An immobilized version fuels bioluminescence via release of ATP at body temperature. These results show that motifs for high-density capture, storage and release of energy-rich biomolecules can be constructed from synthetic DNA. PMID:26561335

  5. Copper(II) binding properties of hepcidin.

    Science.gov (United States)

    Kulprachakarn, Kanokwan; Chen, Yu-Lin; Kong, Xiaole; Arno, Maria C; Hider, Robert C; Srichairatanakool, Somdet; Bansal, Sukhvinder S

    2016-06-01

    Hepcidin is a peptide hormone that regulates the homeostasis of iron metabolism. The N-terminal domain of hepcidin is conserved amongst a range of species and is capable of binding Cu(II) and Ni(II) through the amino terminal copper-nickel binding motif (ATCUN). It has been suggested that the binding of copper to hepcidin may have biological relevance. In this study we have investigated the binding of Cu(II) with model peptides containing the ATCUN motif, fluorescently labelled hepcidin and hepcidin using MALDI-TOF mass spectrometry. As with albumin, it was found that tetrapeptide models of hepcidin possessed a higher affinity for Cu(II) than that of native hepcidin. The log K 1 value of hepcidin for Cu(II) was determined as 7.7. Cu(II) binds to albumin more tightly than hepcidin (log K 1 = 12) and in view of the serum concentration difference of albumin and hepcidin, the bulk of kinetically labile Cu(II) present in blood will be bound to albumin. It is estimated that the concentration of Cu(II)-hepcidin will be less than one femtomolar in normal serum and thus the binding of copper to hepcidin is unlikely to play a role in iron homeostasis. As with albumin, small tri and tetra peptides are poor models for the metal binding properties of hepcidin. PMID:26883683

  6. Calmodulin Binding Proteins and Alzheimer's Disease.

    Science.gov (United States)

    O'Day, Danton H; Eshak, Kristeen; Myre, Michael A

    2015-01-01

    The small, calcium-sensor protein, calmodulin, is ubiquitously expressed and central to cell function in all cell types. Here the literature linking calmodulin to Alzheimer's disease is reviewed. Several experimentally-verified calmodulin-binding proteins are involved in the formation of amyloid-β plaques including amyloid-β protein precursor, β-secretase, presenilin-1, and ADAM10. Many others possess potential calmodulin-binding domains that remain to be verified. Three calmodulin binding proteins are associated with the formation of neurofibrillary tangles: two kinases (CaMKII, CDK5) and one protein phosphatase (PP2B or calcineurin). Many of the genes recently identified by genome wide association studies and other studies encode proteins that contain putative calmodulin-binding domains but only a couple (e.g., APOE, BIN1) have been experimentally confirmed as calmodulin binding proteins. At least two receptors involved in calcium metabolism and linked to Alzheimer's disease (mAchR; NMDAR) have also been identified as calmodulin-binding proteins. In addition to this, many proteins that are involved in other cellular events intimately associated with Alzheimer's disease including calcium channel function, cholesterol metabolism, neuroinflammation, endocytosis, cell cycle events, and apoptosis have been tentatively or experimentally verified as calmodulin binding proteins. The use of calmodulin as a potential biomarker and as a therapeutic target is discussed. PMID:25812852

  7. Glycolipid binding preferences of Shiga toxin variants.

    Directory of Open Access Journals (Sweden)

    Sayali S Karve

    Full Text Available The major virulence factor of Shiga toxin producing E. coli, is Shiga toxin (Stx, an AB5 toxin that consists of a ribosomal RNA-cleaving A-subunit surrounded by a pentamer of receptor-binding B subunits. The two major isoforms, Stx1 and Stx2, and Stx2 variants (Stx2a-h significantly differ in toxicity. The exact reason for this toxicity difference is unknown, however different receptor binding preferences are speculated to play a role. Previous studies used enzyme linked immunosorbent assay (ELISA to study binding of Stx1 and Stx2a toxoids to glycolipid receptors. Here, we studied binding of holotoxin and B-subunits of Stx1, Stx2a, Stx2b, Stx2c and Stx2d to glycolipid receptors globotriaosylceramide (Gb3 and globotetraosylceramide (Gb4 in the presence of cell membrane components such as phosphatidylcholine (PC, cholesterol (Ch and other neutral glycolipids. In the absence of PC and Ch, holotoxins of Stx2 variants bound to mixtures of Gb3 with other glycolipids but not to Gb3 or Gb4 alone. Binding of all Stx holotoxins significantly increased in the presence of PC and Ch. Previously, Stx2a has been shown to form a less stable B-pentamer compared to Stx1. However, its effect on glycolipid receptor binding is unknown. In this study, we showed that even in the absence of the A-subunit, the B-subunits of both Stx1 and Stx2a were able to bind to the glycolipids and the more stable B-pentamer formed by Stx1 bound better than the less stable pentamer of Stx2a. B-subunit mutant of Stx1 L41Q, which shows similar stability as Stx2a B-subunits, lacked glycolipid binding, suggesting that pentamerization is more critical for binding of Stx1 than Stx2a.

  8. Binding of uranyl by humic acid

    International Nuclear Information System (INIS)

    The binding of tracer level UO2+2 to a soil humic acid was measured by a solvent extraction technique. The binding is interpreted as involving only the carboxylate groups of the humate and both 1:1 and 1:2 UO2+2:CO2-binding is observed. Estimates based on these values indicate that uranyl complexing by humic and/or fulvic materials is not significant in sea water but may play a role in fresh water systems. Retention of uranyl from ground water by soil humics would be strong. (author)

  9. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    Science.gov (United States)

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  10. Genetics Home Reference: mannose-binding lectin deficiency

    Science.gov (United States)

    ... Health Conditions mannose-binding lectin deficiency mannose-binding lectin deficiency Enable Javascript to view the expand/collapse ... PDF Open All Close All Description Mannose-binding lectin deficiency is a condition that affects the immune ...

  11. Peptide binding specificity of the chaperone calreticulin

    DEFF Research Database (Denmark)

    Sandhu, N.; Duus, K.; Jorgensen, C.S.;

    2007-01-01

    Calreticulin is a molecular chaperone with specificity for polypeptides and N-linked monoglucosylated glycans. In order to determine the specificity of polypeptide binding, the interaction of calreticulin with polypeptides was investigated using synthetic peptides of different length and composit...

  12. Hardware device binding and mutual authentication

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Jason R; Pierson, Lyndon G

    2014-03-04

    Detection and deterrence of device tampering and subversion by substitution may be achieved by including a cryptographic unit within a computing device for binding multiple hardware devices and mutually authenticating the devices. The cryptographic unit includes a physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generates a binding PUF value. The cryptographic unit uses the binding PUF value during an enrollment phase and subsequent authentication phases. During a subsequent authentication phase, the cryptographic unit uses the binding PUF values of the multiple hardware devices to generate a challenge to send to the other device, and to verify a challenge received from the other device to mutually authenticate the hardware devices.

  13. Hydrogen binding in vacancy clusters in platinum

    International Nuclear Information System (INIS)

    The binding of hydrogen in different vacancy complexes in platinum metal was investigated with atomic-scale sensitivity using perturbed angular correlations of gamma rays (PAC). Hydrogen was introduced by cathodic charging. Detrapping was monitored microscopically during desorption at 294 K by changes in site fractions of hydrogen-decorated and undecorated complexes. Analysis of desorption includes effects of retrapping of hydrogen at other sites. Assuming a trap concentration of 10-3, binding enthalpies of 0.23(2), 0.28(1), 0.24(1) and >0.20 eV are obtained for hydrogen atoms in 1V to 4V complexes, respectively. The small differences between the binding enthalpies demonstrate that hydrogen binding is insensitive to the detailed geometrical structure of small vacancy complexes. However, the magnitudes found here are a factor of two smaller than in the literature. (orig.)

  14. System Support for Managing Invalid Bindings

    CERN Document Server

    Das, Lachhman; Shah, Azhar; Khoumbati, Khalil; 10.5121/iju.2011.2303

    2011-01-01

    Context-aware adaptation is a central aspect of pervasive computing applications, enabling them to adapt and perform tasks based on contextual information. One of the aspects of context-aware adaptation is reconfiguration in which bindings are created between application component and remote services in order to realize new behaviour in response to contextual information. Various research efforts provide reconfiguration support and allow the development of adaptive context-aware applications from high-level specifications, but don't consider failure conditions that might arise during execution of such applications, making bindings between application and remote services invalid. To this end, we propose and implement our design approach to reconfiguration to manage invalid bindings. The development and modification of adaptive context-aware applications is a complex task, and an issue of an invalidity of bindings further complicates development efforts. To reduce the development efforts, our approach provides ...

  15. Bone induction at physiological doses of BMP through localization by clay nanoparticle gels.

    Science.gov (United States)

    Gibbs, D M R; Black, C R M; Hulsart-Billstrom, G; Shi, P; Scarpa, E; Oreffo, R O C; Dawson, J I

    2016-08-01

    Bone Morphogenic Protein 2 (BMP2) can induce ectopic bone. This ability, which first motivated the widespread application of BMP2 in fracture healing and spinal arthrodesis has, more recently, been indicated as one of several serious adverse effects associated with the supra-physiological doses of BMP2 relied upon for clinical efficacy. Key to harnessing BMPs and other agents safely and effectively will be the ability to localize activity at a target site at substantially reduced doses. Clay (Laponite) nanoparticles can self assemble into gels under physiological conditions and bind growth factors for enhanced and localized efficacy. Here we show the ability to localize and enhance the activity of BMP2 to achieve ectopic bone formation at doses within the sub-microgram per ml range of concentrations sufficient to induce differentiation of responsive cell populations in vitro and at approximately 3000 fold lower than those employed in clinical practice. PMID:27209259

  16. Binding of heparan sulfate to Staphylococcus aureus.

    OpenAIRE

    Liang, O D; Ascencio, F; Fransson, L A; Wadström, T

    1992-01-01

    Heparan sulfate binds to proteins present on the surface of Staphylococcus aureus cells. Binding of 125I-heparan sulfate to S. aureus was time dependent, saturable, and influenced by pH and ionic strength, and cell-bound 125I-heparan sulfate was displaced by unlabelled heparan sulfate or heparin. Other glycosaminoglycans of comparable size (chondroitin sulfate and dermatan sulfate), highly glycosylated glycoprotein (hog gastric mucin), and some anionic polysaccharides (dextran sulfate and RNA...

  17. DNA-Aptamers Binding Aminoglycoside Antibiotics

    OpenAIRE

    Nadia Nikolaus; Beate Strehlitz

    2014-01-01

    Aptamers are short, single stranded DNA or RNA oligonucleotides that are able to bind specifically and with high affinity to their non-nucleic acid target molecules. This binding reaction enables their application as biorecognition elements in biosensors and assays. As antibiotic residues pose a problem contributing to the emergence of antibiotic-resistant pathogens and thereby reducing the effectiveness of the drug to fight human infections, we selected aptamers targeted against the aminog...

  18. Penicillin-Binding Protein Imaging Probes

    OpenAIRE

    Kocaoglu, Ozden; Carlson, Erin E.

    2013-01-01

    Penicillin-binding proteins (PBPs) are membrane-associated proteins involved in the biosynthesis of peptidoglycan (PG), the main component of bacterial cell walls. These proteins were discovered and named for their affinity to bind the β-lactam antibiotic penicillin. The importance of the PBPs has long been appreciated; however, the apparent functional redundancy of the ~5–15 proteins that most bacteria possess makes determination of their individual roles difficult. Existing techniques to st...

  19. Photonic Binding in Silicon-Colloid Microcavities

    OpenAIRE

    Xifré-Pérez, E.; García de Abajo, Francisco Javier; Fenollosa Esteve, Roberto; Meseguer, Francisco

    2009-01-01

    Photonic binding between two identical silicon-colloid-based microcavities is studied by using a generalized multipolar expansion. In contrast with previous works, we focus on low-order cavity modes that resemble low-energy electronic orbitals. For conservative light intensities, the interaction between cavity modes with moderate Q factors produces extremely large particle acceleration values. Optical forces dominate over vanderWaals, gravity, and Brownian motion, and they show a binding-anti...

  20. Liver Fatty Acid Binding Protein and Obesity

    OpenAIRE

    Atshaves, B.P.; Martin, G G; Hostetler, H.A.; McIntosh, A.L.; Kier, A B; Schroeder, F.

    2010-01-01

    While low levels of unesterified long chain fatty acids (LCFAs) are normal metabolic intermediates of dietary and endogenous fat, LCFAs are also potent regulators of key receptors/enzymes, and at high levels become toxic detergents within the cell. Elevated levels of LCFAs are associated with diabetes, obesity, and metabolic syndrome. Consequently, mammals evolved fatty acid binding proteins (FABPs) that bind/sequester these potentially toxic free fatty acids in the cytosol and present them f...

  1. Radiation damage to DNA-binding proteins

    International Nuclear Information System (INIS)

    The DNA-binding properties of proteins are strongly affected upon irradiation. The tetrameric lactose repressor (a dimer of dimers) losses its ability to bind operator DNA as soon as at least two damages per protomer of each dimer occur. The monomeric MC1 protein losses its ability to bind DNA in two steps : i) at low doses only the specific binding is abolished, whereas the non-specific one is still possible; ii) at high doses all binding vanishes. Moreover, the DNA bending induced by MC1 binding is less pronounced for a protein that underwent the low dose irradiation. When the entire DNA-protein complexes are irradiated, the observed disruption of the complexes is mainly due to the damage of the proteins and not to that of DNA. The doses necessary for complex disruption are higher than those inactivating the free protein. This difference, larger for MC1 than for lactose repressor, is due to the protection of the protein by the bound DNA. The oxidation of the protein side chains that are accessible to the radiation-induced hydroxyl radicals seems to represent the inactivating damage

  2. Impact of receptor clustering on ligand binding

    Directory of Open Access Journals (Sweden)

    Caré Bertrand R

    2011-03-01

    Full Text Available Abstract Background Cellular response to changes in the concentration of different chemical species in the extracellular medium is induced by ligand binding to dedicated transmembrane receptors. Receptor density, distribution, and clustering may be key spatial features that influence effective and proper physical and biochemical cellular responses to many regulatory signals. Classical equations describing this kind of binding kinetics assume the distributions of interacting species to be homogeneous, neglecting by doing so the impact of clustering. As there is experimental evidence that receptors tend to group in clusters inside membrane domains, we investigated the effects of receptor clustering on cellular receptor ligand binding. Results We implemented a model of receptor binding using a Monte-Carlo algorithm to simulate ligand diffusion and binding. In some simple cases, analytic solutions for binding equilibrium of ligand on clusters of receptors are provided, and supported by simulation results. Our simulations show that the so-called "apparent" affinity of the ligand for the receptor decreases with clustering although the microscopic affinity remains constant. Conclusions Changing membrane receptors clustering could be a simple mechanism that allows cells to change and adapt its affinity/sensitivity toward a given stimulus.

  3. The readiness potential reflects intentional binding

    Directory of Open Access Journals (Sweden)

    Han-Gue eJo

    2014-06-01

    Full Text Available When a voluntary action is causally linked with a sensory outcome, the action and its consequent effect are perceived as being closer together in time. This effect is called intentional binding. Although many experiments were conducted on this phenomenon, the underlying neural mechanisms are not well understood. While intentional binding is specific to voluntary action, we presumed that preconscious brain activity (the readiness potential, RP, which occurs before an action is made, might play an important role in this binding effect. In this study, the brain dynamics were recorded with electroencephalography (EEG and analyzed in single-trials in order to estimate whether intentional binding is correlated with the early neural processes. Moreover, we were interested in different behavioral performance between meditators and non-meditators since meditators are expected to be able to keep attention more consistently on a task. Thus, we performed the intentional binding paradigm with twenty mindfulness meditators and compared them to matched controls. Although, we did not observe a group effect on either behavioral data or EEG recordings, we found that self-initiated movements following ongoing negative deflections of slow cortical potentials (SCPs result in a stronger binding effect compared to positive potentials, especially regarding the perceived time of the consequent effect. Our results provide the first direct evidence that the early neural activity within the range of SCPs affects perceived time of a sensory outcome that is caused by intentional action.

  4. DNA-Aptamers Binding Aminoglycoside Antibiotics

    Directory of Open Access Journals (Sweden)

    Nadia Nikolaus

    2014-02-01

    Full Text Available Aptamers are short, single stranded DNA or RNA oligonucleotides that are able to bind specifically and with high affinity to their non-nucleic acid target molecules. This binding reaction enables their application as biorecognition elements in biosensors and assays. As antibiotic residues pose a problem contributing to the emergence of antibiotic-resistant pathogens and thereby reducing the effectiveness of the drug to fight human infections, we selected aptamers targeted against the aminoglycoside antibiotic kanamycin A with the aim of constructing a robust and functional assay that can be used for water analysis. With this work we show that aptamers that were derived from a Capture-SELEX procedure targeting against kanamycin A also display binding to related aminoglycoside antibiotics. The binding patterns differ among all tested aptamers so that there are highly substance specific aptamers and more group specific aptamers binding to a different variety of aminoglycoside antibiotics. Also the region of the aminoglycoside antibiotics responsible for aptamer binding can be estimated. Affinities of the different aptamers for their target substance, kanamycin A, are measured with different approaches and are in the micromolar range. Finally, the proof of principle of an assay for detection of kanamycin A in a real water sample is given.

  5. Protein Dynamics in an RNA Binding Protein

    Science.gov (United States)

    Hall, Kathleen

    2006-03-01

    Using ^15N NMR relaxation measurements, analyzed with the Lipari-Szabo formalism, we have found that the human U1A RNA binding protein has ps-ns motions in those loops that make contact with RNA. Specific mutations can alter the extent and pattern of motions, and those proteins inevitably lose RNA binding affinity. Proteins with enhanced mobility of loops and termini presumably lose affinity due to increased conformational sampling by those parts of the protein that interact directly with RNA. There is an entropic penalty associated with locking down those elements upon RNA binding, in addition to a loss of binding efficiency caused by the increased number of conformations adopted by the protein. However, in addition to local conformational heterogeneity, analysis of molecular dynamics trajectories by Reorientational Eigenmode Dynamics reveals that loops of the wild type protein undergo correlated motions that link distal sites across the binding surface. Mutations that disrupt correlated motions result in weaker RNA binding, implying that there is a network of interactions across the surface of the protein. (KBH was a Postdoctoral Fellow with Al Redfield from 1985-1990). This work was supported by the NIH (to KBH) and NSF (SAS).

  6. The readiness potential reflects intentional binding

    Science.gov (United States)

    Jo, Han-Gue; Wittmann, Marc; Hinterberger, Thilo; Schmidt, Stefan

    2014-01-01

    When a voluntary action is causally linked with a sensory outcome, the action and its consequent effect are perceived as being closer together in time. This effect is called intentional binding. Although many experiments were conducted on this phenomenon, the underlying neural mechanisms are not well understood. While intentional binding is specific to voluntary action, we presumed that preconscious brain activity (the readiness potential, RP), which occurs before an action is made, might play an important role in this binding effect. In this study, the brain dynamics were recorded with electroencephalography (EEG) and analyzed in single-trials in order to estimate whether intentional binding is correlated with the early neural processes. Moreover, we were interested in different behavioral performance between meditators and non-meditators since meditators are expected to be able to keep attention more consistently on a task. Thus, we performed the intentional binding paradigm with 20 mindfulness meditators and compared them to matched controls. Although, we did not observe a group effect on either behavioral data or EEG recordings, we found that self-initiated movements following ongoing negative deflections of slow cortical potentials (SCPs) result in a stronger binding effect compared to positive potentials, especially regarding the perceived time of the consequent effect. Our results provide the first direct evidence that the early neural activity within the range of SCPs affects perceived time of a sensory outcome that is caused by intentional action. PMID:24959135

  7. Theoretical studies of binding of mannose-binding protein to monosaccharides

    Science.gov (United States)

    Aida-Hyugaji, Sachiko; Takano, Keiko; Takada, Toshikazu; Hosoya, Haruo; Kojima, Naoya; Mizuochi, Tsuguo; Inoue, Yasushi

    2004-11-01

    Binding properties of mannose-binding protein (MBP) to monosaccharides are discussed based on ab initio molecular orbital calculations for cluster models constructed. The calculated binding energies indicate that MBP has an affinity for N-acetyl- D-glucosamine, D-mannose, L-fucose, and D-glucose rather than D-galactose and N-acetyl- D-galactosamine, which is consistent with the biochemical experimental results. Electrostatic potential surfaces at the binding site of four monosaccharides having binding properties matched well with that of MBP. A vacant frontier orbital was found to be localized around the binding site of MBP, suggesting that MBP-monosaccharide interaction may occur through electrostatic and orbital interactions.

  8. To Bind or not to Bind: It’s in the Contract

    DEFF Research Database (Denmark)

    Tvarnø, Christina D.

    2016-01-01

    This article discusses the formalization of collaboration through partnering contracts in the construction industry in the USA, Great Britain and Denmark. The article compares the different types of collaborative partnering contracts in the three countries, and provides a conclusion on whether the...... collaborative partnering contract should be binding or non-binding, based on the three empirical contracts analyzed in this article. The partnering contracts in Great Britain and Denmark are legally binding, while in the USA the partnering agreements are non-binding charters or letters of intent. This article...... discusses, in a theoretical perspective, the legal reasoning behind the different partnering approaches, both from a historical and contract law perspective, and furthermore applies a game theoretical approach in evaluating binding versus non-binding partnering contracts. The analysis focuses on private...

  9. Thermodynamic parameters of the binding of retinol to binding proteins and to membranes

    International Nuclear Information System (INIS)

    Retinol (vitamin A alcohol) is a hydrophobic compound and distributes in vivo mainly between binding proteins and cellular membranes. To better clarify the nature of the interactions of retinol with these phases which have a high affinity for it, the thermodynamic parameters of these interactions were studied. The temperature-dependence profiles of the binding of retinol to bovine retinol binding protein, bovine serum albumin, unilamellar vesicles of dioleoylphosphatidylcholine, and plasma membranes from rat liver were determined. It was found that binding of retinol to retinol binding protein is characterized by a large increase in entropy and no change in enthalpy. Binding to albumin is driven by enthalpy and is accompanied by a decrease in entropy. Partitioning of retinal into unilamellar vesicles and into plasma membranes is stabilized both by enthalpic and by entropic components. The implications of these finding are discussed

  10. LRP4 is critical for neuromuscular junction maintenance.

    Science.gov (United States)

    Barik, Arnab; Lu, Yisheng; Sathyamurthy, Anupama; Bowman, Andrew; Shen, Chengyong; Li, Lei; Xiong, Wen-cheng; Mei, Lin

    2014-10-15

    The neuromuscular junction (NMJ) is a synapse between motor neurons and skeletal muscle fibers, and is critical for control of muscle contraction. Its formation requires neuronal agrin that acts by binding to LRP4 to stimulate MuSK. Mutations have been identified in agrin, MuSK, and LRP4 in patients with congenital myasthenic syndrome, and patients with myasthenia gravis develop antibodies against agrin, LRP4, and MuSK. However, it remains unclear whether the agrin signaling pathway is critical for NMJ maintenance because null mutation of any of the three genes is perinatal lethal. In this study, we generated imKO mice, a mutant strain whose LRP4 gene can be deleted in muscles by doxycycline (Dox) treatment. Ablation of the LRP4 gene in adult muscle enabled studies of its role in NMJ maintenance. We demonstrate that Dox treatment of P30 mice reduced muscle strength and compound muscle action potentials. AChR clusters became fragmented with diminished junctional folds and synaptic vesicles. The amplitude and frequency of miniature endplate potentials were reduced, indicating impaired neuromuscular transmission and providing cellular mechanisms of adult LRP4 deficiency. We showed that LRP4 ablation led to the loss of synaptic agrin and the 90 kDa fragments, which occurred ahead of other prejunctional and postjunctional components, suggesting that LRP4 may regulate the stability of synaptic agrin. These observations demonstrate that LRP4 is essential for maintaining the structural and functional integrity of the NMJ and that loss of muscle LRP4 in adulthood alone is sufficient to cause myasthenic symptoms. PMID:25319686

  11. Fucose-binding Lotus tetragonolobus lectin binds to human polymorphonuclear leukocytes and induces a chemotactic response.

    Science.gov (United States)

    VanEpps, D E; Tung, K S

    1977-09-01

    Fucose-binding L. tetragonolobus lectin to the surface of human polymorphonuclear leukocytes (PMN) and induces a chemotactic response. Both surface binding and chemotaxis are inhibited by free fucose but not by fructose, mannose, or galactose. The lectin-binding sites on PMN are unrelated to the A, B, or O blood group antigen. Utilization of this lectin should be a useful tool in isolating PMN membrane components and in analyzing the mechanism of neutrophil chemotaxis. PMID:330752

  12. Effect of solid surface charge on the binding behaviour of a metal-binding peptide

    OpenAIRE

    Donatan, Senem; Sarikaya, Mehmet; TAMERLER, Candan; Urgen, Mustafa

    2012-01-01

    Over the last decade, solid-binding peptides have been increasingly used as molecular building blocks coupling bio- and nanotechnology. Despite considerable research being invested in this field, the effects of many surface-related parameters that define the binding of peptide to solids are still unknown. In the quest to control biological molecules at solid interfaces and, thereby, tailoring the binding characteristics of the peptides, the use of surface charge of the solid surface may proba...

  13. Solution Structure and Backbone Dynamics of Human Liver Fatty Acid Binding Protein: Fatty Acid Binding Revisited

    OpenAIRE

    Cai, Jun; Lücke, Christian; Chen, Zhongjing; Qiao, Ye; Klimtchuk, Elena; Hamilton, James A.

    2012-01-01

    Liver fatty acid binding protein (L-FABP), a cytosolic protein most abundant in liver, is associated with intracellular transport of fatty acids, nuclear signaling, and regulation of intracellular lipolysis. Among the members of the intracellular lipid binding protein family, L-FABP is of particular interest as it can i), bind two fatty acid molecules simultaneously and ii), accommodate a variety of bulkier physiological ligands such as bilirubin and fatty acyl CoA. To better understand the p...

  14. Hemoglobin binding activity and hemoglobin-binding protein of prevotella nigrescens

    OpenAIRE

    Miyashita M; Oishi S; Kiso A; Kikuchi Y; Ueda O; Hirai K; Shibata Y; Fujimura S

    2010-01-01

    Abstract Prevotella nigrescens, lacking siderophores was found to bind to the hemoproteins. The binding was observed also in the envelope which was prepared by sonication of the cell. The binding occurred in the pH-dependent manner; the binding was observed below neutral pHs of the incubation mixtures but only slightly observed in the neutral and alkaline pHs. Furthermore, hemoglobin bound to the envelope was dissociated at high pHs buffers. Maximum amounts of hemoglobin bound to 1 mg envelop...

  15. Crystal Structure of the Botulinum Neurotoxin Type G Binding Domain: Insight into Cell Surface Binding

    Energy Technology Data Exchange (ETDEWEB)

    Stenmark, Pål; Dong, Min; Dupuy, Jérôme; Chapman, Edwin R.; Stevens, Raymond C. (Scripps); (UW)

    2011-11-02

    Botulinum neurotoxins (BoNTs) typically bind the neuronal cell surface via dual interactions with both protein receptors and gangliosides. We present here the 1.9-{angstrom} X-ray structure of the BoNT serotype G (BoNT/G) receptor binding domain (residues 868-1297) and a detailed view of protein receptor and ganglioside binding regions. The ganglioside binding motif (SxWY) has a conserved structure compared to the corresponding regions in BoNT serotype A and BoNT serotype B (BoNT/B), but several features of interactions with the hydrophilic face of the ganglioside are absent at the opposite side of the motif in the BoNT/G ganglioside binding cleft. This may significantly reduce the affinity between BoNT/G and gangliosides. BoNT/G and BoNT/B share the protein receptor synaptotagmin (Syt) I/II. The Syt binding site has a conserved hydrophobic plateau located centrally in the proposed protein receptor binding interface (Tyr1189, Phe1202, Ala1204, Pro1205, and Phe1212). Interestingly, only 5 of 14 residues that are important for binding between Syt-II and BoNT/B are conserved in BoNT/G, suggesting that the means by which BoNT/G and BoNT/B bind Syt diverges more than previously appreciated. Indeed, substitution of Syt-II Phe47 and Phe55 with alanine residues had little effect on the binding of BoNT/G, but strongly reduced the binding of BoNT/B. Furthermore, an extended solvent-exposed hydrophobic loop, located between the Syt binding site and the ganglioside binding cleft, may serve as a third membrane association and binding element to contribute to high-affinity binding to the neuronal membrane. While BoNT/G and BoNT/B are homologous to each other and both utilize Syt-I/Syt-II as their protein receptor, the precise means by which these two toxin serotypes bind to Syt appears surprisingly divergent.

  16. Promoter-distal RNA polymerase II binding discriminates active from inactive CCAAT/ enhancer-binding protein beta binding sites

    Science.gov (United States)

    Savic, Daniel; Roberts, Brian S.; Carleton, Julia B.; Partridge, E. Christopher; White, Michael A.; Cohen, Barak A.; Cooper, Gregory M.; Gertz, Jason; Myers, Richard M.

    2015-01-01

    Transcription factors (TFs) bind to thousands of DNA sequences in mammalian genomes, but most of these binding events appear to have no direct effect on gene expression. It is unclear why only a subset of TF bound sites are actively involved in transcriptional regulation. Moreover, the key genomic features that accurately discriminate between active and inactive TF binding events remain ambiguous. Recent studies have identified promoter-distal RNA polymerase II (RNAP2) binding at enhancer elements, suggesting that these interactions may serve as a marker for active regulatory sequences. Despite these correlative analyses, a thorough functional validation of these genomic co-occupancies is still lacking. To characterize the gene regulatory activity of DNA sequences underlying promoter-distal TF binding events that co-occur with RNAP2 and TF sites devoid of RNAP2 occupancy using a functional reporter assay, we performed cis-regulatory element sequencing (CRE-seq). We tested more than 1000 promoter-distal CCAAT/enhancer-binding protein beta (CEBPB)-bound sites in HepG2 and K562 cells, and found that CEBPB-bound sites co-occurring with RNAP2 were more likely to exhibit enhancer activity. CEBPB-bound sites further maintained substantial cell-type specificity, indicating that local DNA sequence can accurately convey cell-type–specific regulatory information. By comparing our CRE-seq results to a comprehensive set of genome annotations, we identified a variety of genomic features that are strong predictors of regulatory element activity and cell-type–specific activity. Collectively, our functional assay results indicate that RNAP2 occupancy can be used as a key genomic marker that can distinguish active from inactive TF bound sites. PMID:26486725

  17. Binding of Fidarestat Stereoisomers with Aldose Reductase

    Directory of Open Access Journals (Sweden)

    Dae-Sil Lee

    2006-11-01

    Full Text Available The stereospecificity in binding to aldose reductase (ALR2 of two fidarestat {6-fluoro-2',5'-dioxospiro[chroman-4,4'-imidazolidine]-2-carboxamide} stereoisomers [(2S,4Sand (2R,4S] has been investigated by means of molecular dynamics simulations using freeenergy integration techniques. The difference in the free energy of binding was found to be2.0 ± 1.7 kJ/mol in favour of the (2S,4S-form, in agreement with the experimentalinhibition data. The relative mobilities of the fidarestats complexed with ALR2 indicate alarger entropic penalty for hydrophobic binding of (2R,4S-fidarestat compared to (2S,4S-fidarestat, partially explaining its lower binding affinity. The two stereoisomers differmainly in the orientation of the carbamoyl moiety with respect to the active site and rotationof the bond joining the carbamoyl substituent to the ring. The detailed structural andenergetic insights obtained from out simulations allow for a better understanding of thefactors determining stereospecific inhibitor-ALR2 binding in the EPF charges model.

  18. Donkey anaphora is in-scope binding

    Directory of Open Access Journals (Sweden)

    Chris Barker

    2008-05-01

    Full Text Available We propose that the antecedent of a donkey pronoun takes scope over and binds the donkey pronoun, just like any other quantificational antecedent would bind a pronoun. We flesh out this idea in a grammar that compositionally derives the truth conditions of donkey sentences containing conditionals and relative clauses, including those involving modals and proportional quantifiers. For example, an indefinite in the antecedent of a conditional can bind a donkey pronoun in the consequent by taking scope over the entire conditional. Our grammar manages continuations using three independently motivated type-shifters, Lift, Lower, and Bind. Empirical support comes from donkey weak crossover (*He beats it if a farmer owns a donkey: in our system, a quantificational binder need not c-command a pronoun that it binds, but must be evaluated before it, so that donkey weak crossover is just a special case of weak crossover. We compare our approach to situation-based E-type pronoun analyses, as well as to dynamic accounts such as Dynamic Predicate Logic. A new 'tower' notation makes derivations considerably easier to follow and manipulate than some previous grammars based on continuations. http://dx.doi.org/10.3765/sp.1.1 BibTeX info See also the interactive tutorial about the system in this paper

  19. Conformational heterogeneity of the calmodulin binding interface

    Science.gov (United States)

    Shukla, Diwakar; Peck, Ariana; Pande, Vijay S.

    2016-04-01

    Calmodulin (CaM) is a ubiquitous Ca2+ sensor and a crucial signalling hub in many pathways aberrantly activated in disease. However, the mechanistic basis of its ability to bind diverse signalling molecules including G-protein-coupled receptors, ion channels and kinases remains poorly understood. Here we harness the high resolution of molecular dynamics simulations and the analytical power of Markov state models to dissect the molecular underpinnings of CaM binding diversity. Our computational model indicates that in the absence of Ca2+, sub-states in the folded ensemble of CaM's C-terminal domain present chemically and sterically distinct topologies that may facilitate conformational selection. Furthermore, we find that local unfolding is off-pathway for the exchange process relevant for peptide binding, in contrast to prior hypotheses that unfolding might account for binding diversity. Finally, our model predicts a novel binding interface that is well-populated in the Ca2+-bound regime and, thus, a candidate for pharmacological intervention.

  20. Endocytosis of Integrin-Binding Human Picornaviruses

    Directory of Open Access Journals (Sweden)

    Pirjo Merilahti

    2012-01-01

    Full Text Available Picornaviruses that infect humans form one of the largest virus groups with almost three hundred virus types. They include significant enteroviral pathogens such as rhino-, polio-, echo-, and coxsackieviruses and human parechoviruses that cause wide range of disease symptoms. Despite the economic importance of picornaviruses, there are no antivirals. More than ten cellular receptors are known to participate in picornavirus infection, but experimental evidence of their role in cellular infection has been shown for only about twenty picornavirus types. Three enterovirus types and one parechovirus have experimentally been shown to bind and use integrin receptors in cellular infection. These include coxsackievirus A9 (CV-A9, echovirus 9, and human parechovirus 1 that are among the most common and epidemic human picornaviruses and bind to αV-integrins via RGD motif that resides on virus capsid. In contrast, echovirus 1 (E-1 has no RGD and uses integrin α2β1 as cellular receptor. Endocytosis of CV-A9 has recently been shown to occur via a novel Arf6- and dynamin-dependent pathways, while, contrary to collagen binding, E-1 binds inactive β1 integrin and enters via macropinocytosis. In this paper, we review what is known about receptors and endocytosis of integrin-binding human picornaviruses.

  1. Binding of anandamide to bovine serum albumin

    DEFF Research Database (Denmark)

    Bojesen, I.N.; Hansen, Harald S.

    2003-01-01

    The endocannabinoid anandamide is of lipid nature and may thus bind to albumin in the vascular system, as do fatty acids. The knowledge of the free water-phase concentration of anandamide is essential for the investigations of its transfer from the binding protein to cellular membranes, because a...... water-phase shuttle of monomers mediates such transfers. We have used our method based upon the use of albumin-filled red cell ghosts as a dispersed biological "reference binder" to measure the water-phase concentrations of anandamide. These concentrations were measured in buffer (pH 7.3) in equilibrium...... data suggest that BSA has one high-affinity binding site for anandamide at all four temperatures. The free energy of anandamide binding (¿G) is calculated to -43.05 kJ mol with a large enthalpy (¿H ) contribution of -42.09 kJ mol. Anandamide has vasodilator activity, and the binding to albumin may...

  2. Characterization of DNA Binding and Retinoic Acid Binding Properties of Retinoic Acid Receptor

    Science.gov (United States)

    Yang, Na; Schule, Roland; Mangelsdorf, David J.; Evans, Ronald M.

    1991-05-01

    High-level expression of the full-length human retinoic acid receptor (RAR) α and the DNA binding domain of the RAR in Escherichia coli was achieved by using a T7 RNA polymerase-directed expression system. After induction, full-length RAR protein was produced at an estimated level of 20% of the total bacterial proteins. Both intact RAR molecules and the DNA binding domain bind to the cognate DNA response element with high specificity in the absence of retinoic acid. However, this binding is enhanced to a great extent upon the addition of eukaryotic cell extracts. The factor responsible for this enhancement is heat-sensitive and forms a complex with RAR that binds to DNA and exhibits a distinct migration pattern in the gel-mobility-shift assay. The interaction site of the factor with RAR is localized in the 70-amino acid DNA binding region of RAR. The hormone binding ability of the RARα protein was assayed by a charcoal absorption assay and the RAR protein was found to bind to retinoic acid with a K_d of 2.1 x 10-10 M.

  3. Estradiol Binds to Insulin and Insulin Receptor Decreasing Insulin Binding in vitro

    OpenAIRE

    RobertRoot-Bernstein

    2014-01-01

    Rationale: Insulin resistance associated with hyperestrogenemias occurs in gestational diabetes mellitus, polycystic ovary syndrome, ovarian hyperstimulation syndrome, estrogen therapies, metabolic syndrome and obesity. The mechanism by which insulin and estrogen interact is unknown. We hypothesize that estrogen binds directly to insulin and the insulin receptor producing insulin resistance. Objectives: To determine the binding constants of steroid hormones to insulin, the insulin recepto...

  4. The interrelationship between ligand binding and self-association of the folate binding protein

    DEFF Research Database (Denmark)

    Holm, Jan; Schou, Christian; Babol, Linnea N.;

    2011-01-01

    The folate binding protein (FBP) regulates homeostasis and intracellular trafficking of folic acid, a vitamin of decisive importance in cell division and growth. We analyzed whether interrelationship between ligand binding and self-association of FBP plays a significant role in the physiology of...

  5. Natural ligand binding and transfer from liver fatty acid binding protein (LFABP) to membranes.

    Science.gov (United States)

    De Gerónimo, Eduardo; Hagan, Robert M; Wilton, David C; Córsico, Betina

    2010-09-01

    Liver fatty acid-binding protein (LFABP) is distinctive among fatty acid-binding proteins because it binds more than one molecule of long-chain fatty acid and a variety of diverse ligands. Also, the transfer of fluorescent fatty acid analogues to model membranes under physiological ionic strength follows a different mechanism compared to most of the members of this family of intracellular lipid binding proteins. Tryptophan insertion mutants sensitive to ligand binding have allowed us to directly measure the binding affinity, ligand partitioning and transfer to model membranes of natural ligands. Binding of fatty acids shows a cooperative mechanism, while acyl-CoAs binding presents a hyperbolic behavior. Saturated fatty acids seem to have a stronger partition to protein vs. membranes, compared to unsaturated fatty acids. Natural ligand transfer rates are more than 200-fold higher compared to fluorescently-labeled analogues. Interestingly, oleoyl-CoA presents a markedly different transfer behavior compared to the rest of the ligands tested, probably indicating the possibility of specific targeting of ligands to different metabolic fates. PMID:20541621

  6. Asporin competes with decorin for collagen binding, binds calcium and promotes osteoblast collagen mineralization

    DEFF Research Database (Denmark)

    Kalamajski, Sebastian; Aspberg, Anders; Lindblom, Karin;

    2009-01-01

    The interactions of the ECM (extracellular matrix) protein asporin with ECM components have previously not been investigated. Here, we show that asporin binds collagen type I. This binding is inhibited by recombinant asporin fragment LRR (leucine-rich repeat) 10-12 and by full-length decorin, but...... not by biglycan. We demonstrate that the polyaspartate domain binds calcium and regulates hydroxyapatite formation in vitro. In the presence of asporin, the number of collagen nodules, and mRNA of osteoblastic markers Osterix and Runx2, were increased. Moreover, decorin or the collagen-binding asporin...... fragment LRR 10-12 inhibited the pro-osteoblastic activity of full-length asporin. Our results suggest that asporin and decorin compete for binding to collagen and that the polyaspartate in asporin directly regulates collagen mineralization. Therefore asporin has a role in osteoblast-driven collagen...

  7. The receptor binding domain of botulinum neurotoxin serotype C binds phosphoinositides.

    Science.gov (United States)

    Zhang, Yanfeng; Varnum, Susan M

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD(50) of ∼1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a "dual receptor" mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro domain. BoNT/C-HCR was found to bind negatively charged phospholipids, preferentially phosphoinositides in both assays. Interactions with phosphoinositides may facilitate tighter binding between neuronal membranes and BoNT/C. PMID:22120109

  8. Conformation-controlled binding kinetics of antibodies

    Science.gov (United States)

    Galanti, Marta; Fanelli, Duccio; Piazza, Francesco

    2016-01-01

    Antibodies are large, extremely flexible molecules, whose internal dynamics is certainly key to their astounding ability to bind antigens of all sizes, from small hormones to giant viruses. In this paper, we build a shape-based coarse-grained model of IgG molecules and show that it can be used to generate 3D conformations in agreement with single-molecule Cryo-Electron Tomography data. Furthermore, we elaborate a theoretical model that can be solved exactly to compute the binding rate constant of a small antigen to an IgG in a prescribed 3D conformation. Our model shows that the antigen binding process is tightly related to the internal dynamics of the IgG. Our findings pave the way for further investigation of the subtle connection between the dynamics and the function of large, flexible multi-valent molecular machines.

  9. Predicting binding free energies in solution

    CERN Document Server

    Jensen, Jan H

    2015-01-01

    Recent predictions of absolute binding free energies of host-guest complexes in aqueous solution using electronic structure theory have been encouraging for some systems, while other systems remain problematic for others. In paper I summarize some of the many factors that could easily contribute 1-3 kcal/mol errors at 298 K: three-body dispersion effects, molecular symmetry, anharmonicity, spurious imaginary frequencies, insufficient conformational sampling, wrong or changing ionization states, errors in the solvation free energy of ions, and explicit solvent (and ion) effects that are not well-represented by continuum models. While the paper is primarily a synthesis of previously published work there are two new results: the adaptation of Legendre transformed free energies to electronic structure theory and a use of water clusters that maximizes error cancellation in binding free energies computed using explicit solvent molecules. While I focus on binding free energies in aqueous solution the approach also a...

  10. Binding of calcium and carbonate to polyacrylates.

    Science.gov (United States)

    Tribello, Gareth A; Liew, CheeChin; Parrinello, Michele

    2009-05-21

    Polyacrylate molecules can be used to slow the growth of calcium carbonate. However, little is known about the mechanism by which the molecules impede the growth rate. A recent computational study (Bulo et al. Macromolecules 2007, 40, 3437) used metadynamics to investigate the binding of calcium to polyacrylate chains and has thrown some light on the coiling and precipitation of these polymers. We extend these simulations to examine the binding of calcium and carbonate to polyacrylate chains. We show that calcium complexed with both carbonate and polyacrylate is a very stable species. The free energies of calcium-carbonate-polyacrylate complexes, with different polymer configurations, are calculated, and differences in the free energy of the binding of carbonate are shown to be due to differences in the amount of steric hindrance about the calcium, which prevents the approach of the carbonate ion. PMID:19400592

  11. Mercury-binding proteins of Mytilus edulis

    Energy Technology Data Exchange (ETDEWEB)

    Roesijadi, G.; Morris, J. E.; Calabrese, A.

    1981-11-01

    Mytilus edulis possesses low molecular weight, mercury-binding proteins. The predominant protein isolated from gill tissue is enriched in cysteinyl residues (8%) and possesses an amino acid composition similar to cadmium-binding proteins of mussels and oysters. Continuous exposure of mussels to 5 ..mu..g/l mercury results in spillover of mercury from these proteins to high molecular weight proteins. Antibodies to these proteins have been isolated, and development of immunoassays is presently underway. Preliminary studies to determine whether exposure of adult mussels to mercury will result in induction of mercury-binding proteins in offspring suggest that such proteins occur in larvae although additional studies are indicated for a conclusive demonstration.

  12. Binding in short-term visual memory.

    Science.gov (United States)

    Wheeler, Mary E; Treisman, Anne M

    2002-03-01

    The integration of complex information in working memory, and its effect on capacity, shape the limits of conscious cognition. The literature conflicts on whether short-term visual memory represents information as integrated objects. A change-detection paradigm using objects defined by color with location or shape was used to investigate binding in short-term visual memory. Results showed that features from the same dimension compete for capacity, whereas features from different dimensions can be stored in parallel. Binding between these features can occur, but focused attention is required to create and maintain the binding over time, and this integrated format is vulnerable to interference. In the proposed model, working memory capacity is limited both by the independent capacity of simple feature stores and by demands on attention networks that integrate this distributed information into complex but unified thought objects. PMID:11900102

  13. [Water binding of adsorptive immobilized lipases].

    Science.gov (United States)

    Loose, S; Meusel, D; Muschter, A; Ruthe, B

    1990-01-01

    It is supposed that not only the total water content of lipase preparations but more their state of water binding is of technological importance in enzymatic interesterification reactions in systems nearly free from water. The isotherms at 65 degrees C of two microbial lipases immobilized on various adsorbents as well as different adsorbents themselves are shown. The water binding capacity in the range of water content of technological interest decreases from the anion exchange resin Amberlyst A 21 via nonpolar adsorbent Amberlite XAD-2 to kieselguhr Celite 545. It is demonstrated that water binding by lipases is depending on temperature but is also affected by adsorptive immobilization. Adsorptive immobilized lipases show hysteresis, which is very important for preparing a definite water content of the enzyme preparations. PMID:2325750

  14. Receptor binding studies of the living heart

    International Nuclear Information System (INIS)

    Receptors form a class of intrinsic membrane proteins (or glycoproteins) defined by the high affinity and specificity with which they bind ligands. Many receptors are associated directly or indirectly with membrane ion channels that open or close after a conformational change of the receptor induced by the binding of the neurotransmitter. Changes in number and/or affinity of cardiac neurotransmitter receptors have been associated with myocardial ischemia and infarction, congestive heart failure, and cardiomyopathy as well as diabetes or thyroid-induced heart muscle disease. These alterations of cardiac receptors have been demonstrated in vitro on membrane homogenates from samples collected mainly during surgery or postmortem. The disadvantage of these in vitro binding techniques is that receptors lose their natural environment and their relationships with the other components of the tissue

  15. Dendrimers bind antioxidant polyphenols and cisplatin drug.

    Directory of Open Access Journals (Sweden)

    Amine Abderrezak

    Full Text Available Synthetic polymers of a specific shape and size play major role in drug delivery systems. Dendrimers are unique synthetic macromolecules of nanometer dimensions with a highly branched structure and globular shape with potential applications in gene and drug delivery. We examine the interaction of several dendrimers of different compositions mPEG-PAMAM (G3, mPEG-PAMAM (G4 and PAMAM (G4 with hydrophilic and hydrophobic drugs cisplatin, resveratrol, genistein and curcumin at physiological conditions. FTIR and UV-visible spectroscopic methods as well as molecular modeling were used to analyse drug binding mode, the binding constant and the effects of drug complexation on dendrimer stability and conformation. Structural analysis showed that cisplatin binds dendrimers in hydrophilic mode via Pt cation and polymer terminal NH(2 groups, while curcumin, genistein and resveratrol are located mainly in the cavities binding through both hydrophobic and hydrophilic contacts. The overall binding constants of durg-dendrimers are ranging from 10(2 M(-1 to 10(3 M(-1. The affinity of dendrimer binding was PAMAM-G4>mPEG-PAMAM-G4>mPEG-PAMAM-G3, while the order of drug-polymer stability was curcumin>cisplatin>genistein>resveratrol. Molecular modeling showed larger stability for genisten-PAMAM-G4 (ΔG = -4.75 kcal/mol than curcumin-PAMAM-G4 ((ΔG = -4.53 kcal/mol and resveratrol-PAMAM-G4 ((ΔG = -4.39 kcal/mol. Dendrimers might act as carriers to transport hydrophobic and hydrophilic drugs.

  16. Nickel binding sites in histone proteins

    OpenAIRE

    Zoroddu, Maria Antonietta; Peana, Massimiliano Francesco; Solinas, Costantino; Medici, Serenella

    2012-01-01

    Nickel compounds are well known as human carcinogens, though the molecular events that are responsible for this are not well understood. It has been proposed that a crucial element in the mechanism of carcinogenesis is the binding of Ni(II) ions within the cell nucleus. It is known that DNA polymer binds Ni(II) only weakly, leaving the proteins of the cell nucleus as the likely Ni(II) targets. Being histone proteins the most abundant among them, they can be considered the primary sites fo...

  17. Ice-Binding Proteins and Their Function.

    Science.gov (United States)

    Bar Dolev, Maya; Braslavsky, Ido; Davies, Peter L

    2016-06-01

    Ice-binding proteins (IBPs) are a diverse class of proteins that assist organism survival in the presence of ice in cold climates. They have different origins in many organisms, including bacteria, fungi, algae, diatoms, plants, insects, and fish. This review covers the gamut of IBP structures and functions and the common features they use to bind ice. We discuss mechanisms by which IBPs adsorb to ice and interfere with its growth, evidence for their irreversible association with ice, and methods for enhancing the activity of IBPs. The applications of IBPs in the food industry, in cryopreservation, and in other technologies are vast, and we chart out some possibilities. PMID:27145844

  18. On Feature Binding in Space and Time

    OpenAIRE

    Chennu, Srivas

    2008-01-01

    When presented with a yellow Volkswagen and a red Ferrari, how does the brain �gure out which color goes with which car? The binding problem refers to how the visual system pre-consciously combines visual features of objects in the physical world to create coherent mental equivalents in our consciousness. I discuss why feature binding is a problem for our brains despite its seemingly e�ortless resolution in every-day life. Drawing from experimental cognitive psychology, I demonstrate how i...

  19. Binding Energy Distribution Analysis Method: Hamiltonian Replica Exchange with Torsional Flattening for Binding Mode Prediction and Binding Free Energy Estimation.

    Science.gov (United States)

    Mentes, Ahmet; Deng, Nan-Jie; Vijayan, R S K; Xia, Junchao; Gallicchio, Emilio; Levy, Ronald M

    2016-05-10

    Molecular dynamics modeling of complex biological systems is limited by finite simulation time. The simulations are often trapped close to local energy minima separated by high energy barriers. Here, we introduce Hamiltonian replica exchange (H-REMD) with torsional flattening in the Binding Energy Distribution Analysis Method (BEDAM), to reduce energy barriers along torsional degrees of freedom and accelerate sampling of intramolecular degrees of freedom relevant to protein-ligand binding. The method is tested on a standard benchmark (T4 Lysozyme/L99A/p-xylene complex) and on a library of HIV-1 integrase complexes derived from the SAMPL4 blind challenge. We applied the torsional flattening strategy to 26 of the 53 known binders to the HIV Integrase LEDGF site found to have a binding energy landscape funneled toward the crystal structure. We show that our approach samples the conformational space more efficiently than the original method without flattening when starting from a poorly docked pose with incorrect ligand dihedral angle conformations. In these unfavorable cases convergence to a binding pose within 2-3 Å from the crystallographic pose is obtained within a few nanoseconds of the Hamiltonian replica exchange simulation. We found that torsional flattening is insufficient in cases where trapping is due to factors other than torsional energy, such as the formation of incorrect intramolecular hydrogen bonds and stacking. Work is in progress to generalize the approach to handle these cases and thereby make it more widely applicable. PMID:27070865

  20. Studies on folate binding and a radioassay for serum and whole blood folate using goat milk as binding agent

    International Nuclear Information System (INIS)

    Preparations of cow, goat, buffalo, and human milk in addition to pig plasma were tested for folate binding properties. Of these, only pig plasma and goat milk showed sufficient binding to enable use as binding agents in a radioassay for serum and whole blood folate. The binding of folate by cow mild preparations in particular was found to be very poor. (orig.)

  1. Estradiol Binds to Insulin and Insulin Receptor Decreasing Insulin Binding in vitro

    Directory of Open Access Journals (Sweden)

    RobertRoot-Bernstein

    2014-07-01

    Methods: Ultraviolet spectroscopy, capillary electrophoresis and NMR demonstrated estrogen binding to insulin and its receptor. Horse-radish peroxidase-linked insulin was used in an ELISA-like procedure to measure the effect of estradiol on binding of insulin to its receptor. Measurements: Binding constants for estrogens to insulin and the insulin receptor were determined by concentration-dependent spectral shifts. The effect of estradiol on insulin-HRP binding to its receptor was determined by shifts in the insulin binding curve. Main Results: Estradiol bound to insulin with a Kd of 12 x 10-9 M and to the insulin receptor with a Kd of 24 x 10-9 M, while other hormones had significantly less affinity. 200 nM estradiol shifted the binding curve of insulin to its receptor 0.8 log units to the right. Conclusions: Estradiol concentrations in many hyperestrogenemic syndromes are sufficient to interfere with insulin binding to its receptor producing significant insulin resistance.

  2. Cross-Modal Binding in Developmental Dyslexia

    Science.gov (United States)

    Jones, Manon W.; Branigan, Holly P.; Parra, Mario A.; Logie, Robert H.

    2013-01-01

    The ability to learn visual-phonological associations is a unique predictor of word reading, and individuals with developmental dyslexia show impaired ability in learning these associations. In this study, we compared developmentally dyslexic and nondyslexic adults on their ability to form cross-modal associations (or "bindings") based…

  3. Tension-induced binding of semiflexible biopolymers

    CERN Document Server

    Benetatos, Panayotis; Zippelius, Annette

    2014-01-01

    We investigate theoretically the effect of polymer tension on the collective behavior of reversibly binding cross-links. For this purpose, we employ a model of two weakly bending wormlike chains aligned in parallel by a tensile force, with a sequence of inter-chain binding sites regularly spaced along the contours. Reversible cross-links attach and detach at the sites with an affinity controlled by a chemical potential. In a mean-field approach, we calculate the free energy of the system and find the emergence of a free-energy barrier which controls the reversible (un)binding. The tension affects the conformational entropy of the chains which competes with the binding energy of the cross-links. This competition gives rise to a sudden increase in the fraction of bound sites as the tension increases. We show that this transition is related to the cross-over between weak and strong localization of a directed polymer in a pinning potential. The cross-over to the strongly bound state can be interpreted as a mechan...

  4. The Double Bind: The next Generation

    Science.gov (United States)

    Malcom, Lindsey E.; Malcom, Shirley M.

    2011-01-01

    In this foreword, Shirley Malcom and Lindsey Malcom speak to the history and current status of women of color in science, technology, engineering, and mathematics (STEM) fields. As the author of the seminal report "The Double Bind: The Price of Being a Minority Woman in Science", Shirley Malcom is uniquely poised to give us an insightful…

  5. Binding properties of Treponema denticola lipooligosaccharide

    Directory of Open Access Journals (Sweden)

    Daniel Grenier

    2013-09-01

    Full Text Available Background and objective: The cell-surface lipooligosaccharide (LOS of Treponema denticola possesses several biological properties. The aim of this study was to investigate the binding properties of T. denticola LOS to extracellular matrix (ECM proteins, mucosal cells, and oral bacteria. Design: LOS was isolated from T. denticola and labeled with tritium. Tritium-labeled LOS was placed in ECM protein-, epithelial cell-, fibroblast-, or bacterium-coated wells of a 96-well microplate. Following incubation, unattached LOS was removed by extensive washing, and the amount of bound LOS was determined by measuring the radioactivity in the wells. Peptostreptococcus micros coated with LOS was used to stimulate fibroblasts, and the secretion of interleukin-6 (IL-6 and interleukin-8 (IL-8 by the fibroblasts was determined by ELISA. Results: T. denticola LOS had a high affinity for laminin. It also bound to gingival epithelial cells and fibroblasts. Soluble CD14 significantly increased the binding of LOS to fibroblasts. More LOS bound to P. micros than the other oral bacterial species tested. Stimulating fibroblasts with LOS-coated P. micros induced the secretion of IL-6 and IL-8. Conclusions: Our study provided evidence that T. denticola LOS possesses the capacity to bind to ECM proteins, mucosal cells, and oral bacteria. In addition, LOS binding to bacteria may increase their pro-inflammatory potential.

  6. The Case against Binding Interest Arbitration.

    Science.gov (United States)

    Ecker, Charles I.

    1984-01-01

    The author contends that districts should reject binding interest arbitration as a means of resolving an impasse in contract negotiations, charging that it hampers good faith bargaining, adversely affects fiscal and operational management of the school system, and diminishes the governing role of the board of education. (MJL)

  7. Oxytocin binding sites in bovine mammary tissue

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin.

    1989-01-01

    Oxytocin binding sites were identified and characterized in bovine mammary tissue. ({sup 3}H)-oxytocin binding reached equilibrium by 50 min at 20{degree}C and by 8 hr at 4{degree}C. The half-time of displacement at 20{degree}C was approximately 1 hr. Thyrotropin releasing hormone, adrenocorticotropin, angiotensin I, angiotensin II, pentagastrin, bradykinin, xenopsin and L-valyl-histidyl-L-leucyl-L-threonyl-L-prolyl-L-valyl-L-glutamyl-L-lysine were not competitive. In the presence of 10 nM LiCl, addition of oxytocin to dispersed bovine mammary cells, in which phosphatidylinositol was pre-labelled, caused a time and dose-dependent increase in radioactive inositiol monophosphate incorporation. The possibility that there are distinct vasopressin receptors in bovine mammary tissue was investigated. ({sup 3}H)-vasopressin binding reached equilibrium by 40 min at 20{degree}. The half-time of displacement at 20{degree}C was approximately 1 hr. The ability of the peptides to inhibit ({sup 3}H)-vasopressin binding was: (Thr{sup 4},Gly{sup 7})-oxytocin > Arg{sup 8}-vasopressin > (lys{sup 8})-vasopressin > (Deamino{sup 1},D-arg{sup 8})-vasopressin > oxytocin > d (CH{sub 2}){sub 5}Tyr(Me)AVP.

  8. Non-binding relationship between visual features

    Directory of Open Access Journals (Sweden)

    Dragan Rangelov

    2014-10-01

    Full Text Available The answer as to how visual attributes processed in different brain loci at different speeds are bound together to give us our unitary experience of the visual world remains unknown. In this study we investigated whether bound representations arise, as commonly assumed, through physiological interactions between cells in the visual areas. In a focal attentional task in which correct responses from either bound or unbound representations were possible, participants discriminated the colour or orientation of briefly presented single bars. On the assumption that representations of the two attributes are bound, the accuracy of reporting the colour and orientation should co-vary. By contrast, if the attributes are not mandatorily bound, the accuracy of reporting the two attributes should be independent. The results of our psychophysical studies reported here supported the latter, non-binding, relationship between visual features, suggesting that binding does not necessarily occur even under focal attention. We propose a task-contingent binding mechanism, postulating that binding occurs at late, post-perceptual, stages through the intervention of memory.

  9. ALG-2, a multifunctional calcium binding protein?

    DEFF Research Database (Denmark)

    Tarabykina, Svetlana; Mollerup, Jens; Winding Gojkovic, P.;

    2004-01-01

    ALG-2 was originally discovered as a pro-apoptotic protein in a genetic screen. Due to its ability to bind calcium with high affinity it was postulated to provide a link between the known effect of calcium in programmed cell death and the molecular death execution machinery. This review article...

  10. Treponema pallidum Fibronectin-Binding Proteins

    OpenAIRE

    Cameron, Caroline E.; Brown, Elizabeth L.; Kuroiwa, Janelle M. Y.; Schnapp, Lynn M.; Brouwer, Nathan L.

    2004-01-01

    Putative adhesins were predicted by computer analysis of the Treponema pallidum genome. Two treponemal proteins, Tp0155 and Tp0483, demonstrated specific attachment to fibronectin, blocked bacterial adherence to fibronectin-coated slides, and supported attachment of fibronectin-producing mammalian cells. These results suggest Tp0155 and Tp0483 are fibronectin-binding proteins mediating T. pallidum-host interactions.

  11. Inhibition of histone binding by supramolecular hosts

    Science.gov (United States)

    Allen, Hillary F.; Daze, Kevin D.; Shimbo, Takashi; Lai, Anne; Musselman, Catherine A.; Sims, Jennifer K.; Wade, Paul A.; Hof†, Fraser; Kutateladze, Tatiana G.

    2015-01-01

    The tandem PHD (plant homeodomain) fingers of the CHD4 (chromodomain helicase DNA-binding protein 4) ATPase are epigenetic readers that bind either unmodified histone H3 tails or H3K9me3 (histone H3 trimethylated at Lys9). This dual function is necessary for the transcriptional and chromatin remodelling activities of the NuRD (nucleosome remodelling and deacetylase) complex. In the present paper, we show that calixarene-based supramolecular hosts disrupt binding of the CHD4 PHD2 finger to H3K9me3, but do not affect the interaction of this protein with the H3K9me0 (unmodified histone H3) tail. A similar inhibitory effect, observed for the association of chromodomain of HP1γ (heterochromatin protein 1γ) with H3K9me3, points to a general mechanism of methyl-lysine caging by calixarenes and suggests a high potential for these compounds in biochemical applications. Immunofluorescence analysis reveals that the supramolecular agents induce changes in chromatin organization that are consistent with their binding to and disruption of H3K9me3 sites in living cells. The results of the present study suggest that the aromatic macrocyclic hosts can be used as a powerful new tool for characterizing methylation-driven epigenetic mechanisms. PMID:24576085

  12. Binding dynamics of single-stranded DNA binding proteins to fluctuating bubbles in breathing DNA

    International Nuclear Information System (INIS)

    We investigate the dynamics of a single local denaturation zone in a DNA molecule, a so-called DNA bubble, in the presence of single-stranded DNA binding proteins (SSBs). In particular, we develop a dynamical description of the process in terms of a two-dimensional master equation for the time evolution of the probability distribution of having a bubble of size m with n bound SSBs, for the case when m and n are the slowest variables in the system. We derive explicit expressions for the equilibrium statistical weights for a given m and n, which depend on the statistical weight u associated with breaking a base-pair interaction, the loop closure exponent c, the cooperativity parameter σ0, the SSB size λ, and binding strength κ. These statistical weights determine, through the detailed balance condition, the transfer coefficient in the master equation. For the case of slow and fast binding dynamics the problem can be reduced to one-dimensional master equations. In the latter case, we perform explicitly the adiabatic elimination of the fast variable n. Furthermore, we find that for the case that the loop closure is neglected and the binding dynamics is vanishing (but with arbitrary σ0) the eigenvalues and the eigenvectors of the master equation can be obtained analytically, using an orthogonal polynomial approach. We solve the general case numerically (i.e., including SSB binding and the loop closure) as a function of statistical weight u, binding protein size λ, and binding strength κ, and compare to the fast and slow binding limits. In particular, we find that the presence of SSBs in general increases the relaxation time, compared to the case when no binding proteins are present. By tuning the parameters, we can drive the system from regular bubble fluctuation in the absence of SSBs to full denaturation, reflecting experimental and in vivo situations

  13. Characterization of (3H)-nicotine binding in rodent brain and comparison with the binding of other labelled nicotinic ligands

    International Nuclear Information System (INIS)

    In an investigation of the receptor through which nicotine exerts its central actions, radioactively labelled nicotine was used in biochemical in vitro binding studies. Tritium-labelled nicotine (tritium-NIC) binding to mouse hippocampus was studied and the effect of temperature on the binding was analyzed by saturation-binding experiments. The specific tritium-NIC binding was found to be approximately four times higher at 4 C than at 25 C

  14. Yeast TATA-binding protein TFIID binds to TATA elements with both consensus and nonconsensus DNA sequences.

    OpenAIRE

    S. Hahn; Buratowski, S.; Sharp, P A; Guarente, L

    1989-01-01

    The DNA binding properties of the yeast TATA element-binding protein TFIID were investigated. The affinity (apparent equilibrium dissociation constant) of TFIID for the adenovirus major late promoter consensus TATA element is 2 x 10(-9) M, a value similar to the affinity of gene-specific regulatory proteins for their binding sites. TFIID binding is highly specific and recognizes nonspecific sites with approximately 10(5)-fold lower affinity. Despite this specificity, TFIID also binds with hig...

  15. Acyl-CoA-binding protein/diazepam-binding inhibitor gene and pseudogenes

    DEFF Research Database (Denmark)

    Mandrup, S; Hummel, R; Ravn, S;

    1992-01-01

    Acyl-CoA-binding protein (ACBP) is a 10 kDa protein isolated from bovine liver by virtue of its ability to bind and induce the synthesis of medium-chain acyl-CoA esters. Surprisingly, it turned out to be identical to a protein named diazepam-binding Inhibitor (DBI) claimed to be an endogenous...... remarkable correspondence between the structural modules of ACBP/DBI as determined by 1H nuclear magnetic resonance spectroscopy and the exon-intron architecture of the ACBP/DBI gene. Detailed analyses of transcription of the ACBP/DBI gene in brain and liver were performed to map transcription initiation...

  16. Automatic Binding Time Analysis for a Typed Lambda-Calculus

    DEFF Research Database (Denmark)

    Nielson, Hanne Riis; Nielson, Flemming

    1988-01-01

    A binding time analysis imposes a distinction between the computations to be performed early (e.g. at compile-time) and those to be performed late (e.g. at run-time). For the lambda-calculus this distinction is formalized by a two-level lambda-calculus. The authors present an algorithm for static...... analysis of the binding times of a typed lambda-calculus with products, sums, lists and general recursive types. Given partial information about the binding times of some of the subexpressions it will complete that information such that (i) early bindings may be turned into late bindings but not vice versa......, (ii) the resulting two-level lambda-expression reflects our intuition about binding times, e.g. that early bindings are performed before late bindings, and (iii) as few changes as possible have been made compared with the initial binding information. The results can be applied in the implementation...

  17. Effects of ATP on calcium binding to synaptic plasma membrane

    International Nuclear Information System (INIS)

    The release of labeled norepinephrine from preloaded synaptosomes requires the presence of potassium and calcium. ATP-dependent binding of calcium to synaptic plasma membranes (SPM) may provide a means of maintaining the cation in a readily available pool for the triggering of transmitter release. A high Ca-binding capacity was demonstrated in SPM. The Km for calcium is 5.5 X 10(-5) M. The dependence of the system on the gamma phosphate of ATP was demonstrated by an increase in Ca-binding with increasing ATP concentration and by competitive inhibition of binding by ADP and AMP. Magnesium is also required for ATP-dependent Ca-binding. The optimum pH for the Ca binding was 7.0. Pretreatment of SPM with phospholipase A2 lowered the binding capacity. Sulfhydryl groups are also critical for ATP-dependent Ca binding to occur. A model for ATP-dependent Ca-binding was proposed

  18. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites

    DEFF Research Database (Denmark)

    Dupont, Daniel Miotto; Thuesen, Cathrine K; Bøtkjær, Kenneth A;

    2015-01-01

    Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless......, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126) with...... therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA). We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A) controlling uPA activities. One of the aptamers (upanap-126) binds to...

  19. Oligomerization of mannan-binding lectin dictates binding properties and complement activation

    DEFF Research Database (Denmark)

    Kjaer, Troels R; Jensen, Lisbeth; Hansen, Annette;

    2016-01-01

    altered self-surfaces. Associated with the collagen-like stems of these PRMs are three mannan-binding lectin (MBL)-associated serine proteases (MASPs) and two MBL-associated proteins (MAps). The most studied of the PRMs, MBL, is present in serum mainly as trimeric and tetrameric oligomers of the...... structural subunit. We hypothesized that oligomerization of MBL may influence both the potential to bind to microorganisms and the interaction with the MASPs and MAps, thus influencing the ability to initiate complement activation. When testing binding at 37°C, we found higher binding of tetrameric MBL to...... Staphylococcus aureus (S. aureus) than trimeric and dimeric MBL. In serum, we found that tetrameric MBL was the main oligomeric form present in complexes with the MASPs and MAp44. Such preference was confirmed using purified forms of recombinant MBL (rMBL) oligomers, where tetrameric rMBL interacted stronger...

  20. Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein

    DEFF Research Database (Denmark)

    Rolf, B; Oudenampsen-Krüger, E; Börchers, T;

    1995-01-01

    The coding part of the cDNA for bovine liver-type fatty acid binding protein (L-FABP) has been amplified by RT-PCR, cloned and used for the construction of an Escherichia coli (E. coli) expression system. The recombinant protein made up to 25% of the soluble E. coli proteins and could be isolated...... by a simple two step protocol combining ion exchange chromatography and gel filtration. Dissociation constants for binding of oleic acid, arachidonic acid, oleoyl-CoA, lysophosphatidic acid and the peroxisomal proliferator bezafibrate to L-FABP have been determined by titration calorimetry. All ligands were...... bound in a 2:1 stoichiometry, the dissociation constants for the first ligand bound were all in the micro molar range. Oleic acid was bound with the highest affinity and a Kd of 0.26 microM. Furthermore, binding of cholesterol to L-FABP was investigated with the Lipidex assay, a liposome binding assay...

  1. The inhibition of anti-DNA binding to DNA by nucleic acid binding polymers.

    Directory of Open Access Journals (Sweden)

    Nancy A Stearns

    Full Text Available Antibodies to DNA (anti-DNA are the serological hallmark of systemic lupus erythematosus (SLE and can mediate disease pathogenesis by the formation of immune complexes. Since blocking immune complex formation can attenuate disease manifestations, the effects of nucleic acid binding polymers (NABPs on anti-DNA binding in vitro were investigated. The compounds tested included polyamidoamine dendrimer, 1,4-diaminobutane core, generation 3.0 (PAMAM-G3, hexadimethrine bromide, and a β-cylodextrin-containing polycation. As shown with plasma from patients with SLE, NABPs can inhibit anti-DNA antibody binding in ELISA assays. The inhibition was specific since the NABPs did not affect binding to tetanus toxoid or the Sm protein, another lupus autoantigen. Furthermore, the polymers could displace antibody from preformed complexes. Together, these results indicate that NABPs can inhibit the formation of immune complexes and may represent a new approach to treatment.

  2. A simple ligand-binding assay for thyroxine-binding globulin on reusable Sephadex columns

    International Nuclear Information System (INIS)

    A method for the assay of thyroxine-binding globulin on reusable Sephadex G-25 columns is described. It depends upon elution by diluted iodothyronine-free serum of protein-bound [125I]thyroxine from the columns under conditions where binding to thyroxine-binding prealbumin and albumin are abolished. It is simple, rapid and precise, and permits determinations inlarge numbers of samples. Values (mg/l; mean +- S.D.) were: normals 31.6+-5.4, hyperthyroid 28.3+-4.8, hypothyroid 40.6+-7.5, oral contraceptives 40.1+-6.8, pregnant 50.3+-5.4, cirrhotics 20.7+-4.3. Concentrations were reduced in serum heated at 56degC, while the uptake of [125I]triiodothyronine was increased. There was a significant negative correlation between thyroxine-binding globulin concentration and triiodothyronine uptake in the heated serum samples and in euthyroid subjects

  3. Relating the shape of protein binding sites to binding affinity profiles: is there an association?

    Directory of Open Access Journals (Sweden)

    Bitter István

    2010-10-01

    Full Text Available Abstract Background Various pattern-based methods exist that use in vitro or in silico affinity profiles for classification and functional examination of proteins. Nevertheless, the connection between the protein affinity profiles and the structural characteristics of the binding sites is still unclear. Our aim was to investigate the association between virtual drug screening results (calculated binding free energy values and the geometry of protein binding sites. Molecular Affinity Fingerprints (MAFs were determined for 154 proteins based on their molecular docking energy results for 1,255 FDA-approved drugs. Protein binding site geometries were characterized by 420 PocketPicker descriptors. The basic underlying component structure of MAFs and binding site geometries, respectively, were examined by principal component analysis; association between principal components extracted from these two sets of variables was then investigated by canonical correlation and redundancy analyses. Results PCA analysis of the MAF variables provided 30 factors which explained 71.4% of the total variance of the energy values while 13 factors were obtained from the PocketPicker descriptors which cumulatively explained 94.1% of the total variance. Canonical correlation analysis resulted in 3 statistically significant canonical factor pairs with correlation values of 0.87, 0.84 and 0.77, respectively. Redundancy analysis indicated that PocketPicker descriptor factors explain 6.9% of the variance of the MAF factor set while MAF factors explain 15.9% of the total variance of PocketPicker descriptor factors. Based on the salient structures of the factor pairs, we identified a clear-cut association between the shape and bulkiness of the drug molecules and the protein binding site descriptors. Conclusions This is the first study to investigate complex multivariate associations between affinity profiles and the geometric properties of protein binding sites. We found that

  4. Evidence for an intrinsic binding force between dodecaborate dianions and receptors with hydrophobic binding pockets.

    Science.gov (United States)

    Warneke, Jonas; Jenne, Carsten; Bernarding, Johannes; Azov, Vladimir A; Plaumann, Markus

    2016-05-01

    A gas phase binding study revealed strong intrinsic intermolecular interactions between dianionic halogenated closo-dodecaborates [B12X12](2-) and several neutral organic receptors. Oxidation of a tetrathiafulvalene host allowed switching between two host-guest binding modes in a supramolecular complex. Complexes of β-cyclodextrin with [B12F12](2-) show remarkable stability in the gas phase and were successfully tested as carriers for the delivery of boron clusters into cancer cells. PMID:27087168

  5. Binding of fluorescent lanthanides to rat liver mitochondrial membranes and calcium ion-binding proteins.

    Science.gov (United States)

    Mikkelsen, R B; Wallach, D F

    1976-05-21

    (1) Tb3+ binding to mitochondrial membranes can be monitored by enhanced ion fluorescence at 545 nm with excitation at 285 nm. At low protein concentrations (less than 30 mug/ml) no inner filter effects are observed. (2) This binding is localized at the external surface of the inner membrane and is unaffected by inhibitors of respiration or oxidative phosphorylation. (3) A soluble Ca2+ binding protein isolated according to Lehninger, A.L. ((1971) Biochem. Biophys. Res. Commun. 42, 312-317) also binds Tb3+ with enhanced ion fluorescence upon excitation at 285 nm. The excitation spectrum of the isolated protein and of the intact mitochondria are indicative of an aromatic amino acid at the cation binding site. (4) Further characterization of the Tb3+-protein interaction revealed that there is more than one binding site per protein molecule and that these sites are clustered (less than 20 A). Neuraminidase treatment or organic solvent extraction of the protein did not affect fluorescent Tb3+ binding. (5) pH dependency studies of Tb3+ binding to the isolated protein or intact mitochondria demonstrated the importance of an ionizable group of pK greater than 6. At pH less than 7.5 the amount of Tb3+ bound to the isolated protein decreased with increase in pH as monitored by Tb3+ fluorescence. With intact mitochondria the opposite occurred with a large increase in Tb3+ fluorescence at higher pH. This increase was not observed when the mitochondria were preincubated with antimycin A and rotenone. PMID:6061

  6. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    Directory of Open Access Journals (Sweden)

    Bolton Michael J

    2011-11-01

    Full Text Available Abstract Background The HIV surface glycoprotein gp120 (SU, gp120 and the Plasmodium vivax Duffy binding protein (PvDBP bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM. Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infection of erythrocytes and DBP binding to the Duffy Antigen Receptor for Chemokines (DARC. A peptide including the HBM of PvDBP had similar affinity for heparin as RANTES and V3 loop peptides, and could be specifically inhibited from heparin binding by the same polyanions that inhibit DBP binding to DARC. However, some V3 peptides can competitively inhibit RANTES binding to heparin, but not the PvDBP HBM peptide. Three other members of the DBP family have an HBM sequence that is necessary for erythrocyte binding, however only the protein which binds to DARC, the P. knowlesi alpha protein, is inhibited by heparin from binding to erythrocytes. Heparitinase digestion does not affect the binding of DBP to erythrocytes. Conclusion The HBMs of DBPs that bind to DARC have similar heparin binding affinities as some V3 loop peptides and chemokines, are responsible for specific sulfated polysaccharide inhibition of parasite binding and invasion of red blood cells, and are more likely to bind to negative charges on the receptor than cell surface glycosaminoglycans.

  7. A thermodynamic signature for drug-DNA binding mode.

    Science.gov (United States)

    Chaires, Jonathan B

    2006-09-01

    A number of small molecules bind directly and selectively to DNA, acting as chemotherapeutic agents by inhibiting replication, transcription or topoisomerase activity. Two common binding modes for these small molecules are intercalation or groove-binding. Intercalation results from insertion of a planar aromatic substituent between DNA base pairs, with concomitant unwinding and lengthening of the DNA helix. Groove binding, in contrast, does not perturb the duplex structure to any great extent. Groove-binders are typically crescent-shaped, and fit snugly into the minor groove with little distortion of the DNA structure. Recent calorimetric studies have determined the enthalpic and entropic contributions to the DNA binding of representative DNA binding compounds. Analysis of such thermodynamic data culled from the literature reveals distinctive thermodynamic signatures for groove-binding and intercalating compounds. Plots of the binding enthalpy (DeltaH) against binding entropy (-TDeltaS) for 26 drug-DNA interactions reveal that groove-binding interactions are clustered in a region of the graph with favorable entropy contributions to the free energy, while intercalators are clustered in a region with unfavorable entropy but favorable enthalpy contributions. Groove-binding is predominantly entropically driven, while intercalation in enthalpically driven. The molecular basis of the contrasting thermodynamic signatures for the two binding modes is by no means clear, but the pattern should be of use in categorizing new DNA binding agents. PMID:16730635

  8. Simultaneous optimal experimental design for in vitro binding parameter estimation.

    Science.gov (United States)

    Ernest, C Steven; Karlsson, Mats O; Hooker, Andrew C

    2013-10-01

    Simultaneous optimization of in vitro ligand binding studies using an optimal design software package that can incorporate multiple design variables through non-linear mixed effect models and provide a general optimized design regardless of the binding site capacity and relative binding rates for a two binding system. Experimental design optimization was employed with D- and ED-optimality using PopED 2.8 including commonly encountered factors during experimentation (residual error, between experiment variability and non-specific binding) for in vitro ligand binding experiments: association, dissociation, equilibrium and non-specific binding experiments. Moreover, a method for optimizing several design parameters (ligand concentrations, measurement times and total number of samples) was examined. With changes in relative binding site density and relative binding rates, different measurement times and ligand concentrations were needed to provide precise estimation of binding parameters. However, using optimized design variables, significant reductions in number of samples provided as good or better precision of the parameter estimates compared to the original extensive sampling design. Employing ED-optimality led to a general experimental design regardless of the relative binding site density and relative binding rates. Precision of the parameter estimates were as good as the extensive sampling design for most parameters and better for the poorly estimated parameters. Optimized designs for in vitro ligand binding studies provided robust parameter estimation while allowing more efficient and cost effective experimentation by reducing the measurement times and separate ligand concentrations required and in some cases, the total number of samples. PMID:23943088

  9. Extraembryonic signals under the control of MGA, Max, and Smad4 are required for dorsoventral patterning.

    Science.gov (United States)

    Sun, Yuhua; Tseng, Wei-Chia; Fan, Xiang; Ball, Rebecca; Dougan, Scott T

    2014-02-10

    In vertebrates, extraembryonic tissues can act as signaling centers that impose a reproducible pattern of cell types upon the embryo. Here, we show that the zebrafish yolk syncytial layer (YSL) secretes a ventralizing signal during gastrulation. This activity is mediated by Bmp2b/Swirl (Swr) expressed under the control of Max's giant associated protein (MGA) and its binding partners, Max and Smad4. MGA coimmunoprecipitates with both Max and Smad4 in embryo extracts, and the three proteins form a complex in vitro. Furthermore, all three proteins bind to a DNA fragment upstream of the bmp2b transcription start site. Targeted depletion of MGA, its binding partners, or Bmp2b/Swr from the YSL reduces BMP signaling throughout the embryo, resulting in a mildly dorsalized phenotype. We conclude that MGA, Max, and Smad4 act in the extraembryonic YSL to initiate a positive feedback loop of Bmp signaling within the embryo. PMID:24525188

  10. Antibodies against the calcium-binding protein

    International Nuclear Information System (INIS)

    Plant microsomes contain a protein clearly related to a calcium-binding protein, calsequestrin, originally found in the sarcoplasmic reticulum of muscle cells, responsible for the rapid release and uptake of Ca2+ within the cells. The location and role of calsequestrin in plant cells is unknown. To generate monoclonal antibodies specific to plant calsequestrin, mice were immunized with a microsomal fraction from cultured cells of Streptanthus tortuosus (Brassicaceae). Two clones cross-reacted with one protein band with a molecular weight equal to that of calsequestrin (57 kilodaltons) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. This band is able to bind 45Ca2+ and can be recognized by a polyclonal antibody against the canine cardiac muscle calsequestrin. Rabbit skeletal muscle calsequestrin cross-reacted with the plant monoclonal antibodies. The plant monoclonal antibodies generated here are specific to calsequestrin protein

  11. tPA-binding RNA Aptamers

    DEFF Research Database (Denmark)

    Bjerregaard, Nils

    2015-01-01

    -density lipoprotein receptor Related Protein-1 (LRP-1). Here, we describe the selection and characterisation of structured RNA ligands (“RNA aptamers”) to tPA, K18 and K32. Both aptamers were truncated to minimal 32-nucleotide constructs (v2) with improved or unchanged activities, and were shown to bind tPA with low...... nanomolar affinities and efficiently inhibit tPA-LRP-1 binding and LRP-1 mediated cellular endocytosis. Both aptamers minimally affected the fibrinolytic properties of tPA despite efficiently inhibiting plasminogen activation stimulated by a soluble fibrin fragment. K18v2 additionally inhibited plasminogen......, and upon conjugation to serum albumin. K18v2 was able to inhibit tPA-induced fibrinogen depletion in vitro, which may provide additional benefits in stroke treatment. A conjugate of both aptamers separated by a linker encompassed the activities of both constituent sequences, and additionally possessed...

  12. Autologous antibodies that bind neuroblastoma cells.

    Science.gov (United States)

    Sun, Yujing; Sholler, Giselle S; Shukla, Girja S; Pero, Stephanie C; Carman, Chelsea L; Zhao, Ping; Krag, David N

    2015-11-01

    Antibody therapy of neuroblastoma is promising and our goal is to derive antibodies from patients with neuroblastoma for developing new therapeutic antibodies. The feasibility of using residual bone marrow obtained for clinical indications as a source of tumor cells and a source of antibodies was assessed. From marrow samples, neuroblastoma cells were recovered, grown in cell culture and also implanted into mice to create xenografts. Mononuclear cells from the marrow were used as a source to generate phage display antibody libraries and also hybridomas. Growth of neuroblastoma patient cells was possible both in vitro and as xenografts. Antibodies from the phage libraries and from the monoclonal hybridomas bound autologous neuroblastoma cells with some selectivity. It appears feasible to recover neuroblastoma cells from residual marrow specimens and to generate human antibodies that bind autologous neuroblastoma cells. Expansion of this approach is underway to collect more specimens, optimize methods to generate antibodies, and to evaluate the bioactivity of neuroblastoma-binding antibodies. PMID:26210205

  13. Insulin-induced lipid binding to hemoglobin

    Directory of Open Access Journals (Sweden)

    VESNA NIKETIC

    2003-01-01

    Full Text Available Under hypoglycemic conditions, concomitant hyperinsulinism causes an apparent modification of hemoglobin (Hb which is manifested by its aggregation (Niketi} et al., Clin. Chim. Acta 197 (1991 47. In the present work the causes and mechanisms underlying this Hb modification were studied. Hemoglobin isolated from normal erythrocytes incubated with insulin was analyzed by applying 31P-spectrometry and lipid extraction and analysis. To study the dynamics of the plasma membrane during hyperinsulinism, a fluorescent lipid-analog was applied. In the presence of insulin, phosphatidylserine (PS, phosphatidylethanolamine (PE and cholesterol were found to bind to Hb. Lipid binding resulted in Hb aggregation, a condition that can be reproduced when phospholipids are incubated with Hb in vitro. Using a fluorescent lipid-analog, it was also shown that exposing erythrocytes to supraphysiological concentrations of insulin in vitro resulted in the internalization of lipids. The results presented in this work may have relevance to cases of diabetes mellitus and hypoglycemia.

  14. Lectin binding in normal donkey eyeball

    Directory of Open Access Journals (Sweden)

    Khaled Aly

    2013-10-01

    Full Text Available In the present study, the distribution of various sugar residues in the eyeball tissues of sexually mature donkey was examined by employing fluorescein isothiocyanate-conjugated lectins. Our results revealed the presence of mannose (labeled by lectins ConA, galactose (labeled by PNA, GSAI, ECA, GalNAc (labeled by SBA, VVA, and GlcNAc (labeled by WGA residues in the donkey ocular tissues. The epithelium and stroma of the ocular tissues were labeled with mannose (ConA and GlcNAc (WGA binding lectins. Binding sites for WGA and PNA to the rod and cone cells of the retina were evident. The lectins Con A, WGA and GSAI are bound strongly to the endothelium of blood vessels and to smooth muscle cells of the iris. In conclusion, the findings of the present study clearly indicate that the donkey eyeball contains a wide range of glycoconjugates (bearing mannosyl, galactosyl and glucosly residues, and it lacks fucosyl residues.

  15. Odorant-binding proteins in insects.

    Science.gov (United States)

    Zhou, Jing-Jiang

    2010-01-01

    Our understanding of the molecular and biochemical mechanisms that mediate chemoreception in insects has been greatly improved after the discovery of olfactory and taste receptor proteins. However, after 50 years of the discovery of first insect sex pheromone from the silkmoth Bombyx mori, it is still unclear how hydrophobic compounds reach the dendrites of sensory neurons in vivo across aqueous space and interact with the sensory receptors. The presence of soluble polypeptides in high concentration in the lymph of chemosensilla still poses unanswered questions. More than two decades after their discovery and despite the wealth of structural and biochemical information available, the physiological function of odorant-binding proteins (OBPs) is not well understood. Here, I review the structural properties of different subclasses of insect OBPs and their binding to pheromones and other small ligands. Finally, I discuss current ideas and models on the role of such proteins in insect chemoreception. PMID:20831949

  16. Tight-binding treatment of conjugated polymers

    DEFF Research Database (Denmark)

    Lynge, Thomas Bastholm

    This PhD thesis concerns conjugated polymers which constitute a constantly growing research area. Today, among other things, conjugated polymers play a role in plastic based solar cells, photodetectors and light emitting diodes, and even today such plastic-based components constitute an alternative...... of tomorrow. This thesis specifically treats the three conjugated polymers trans-polyacetylene (tPA), poly(para-phenylene) (PPP) and poly(para-phe\\-nylene vinylene) (PPV). The present results, which are derived within the tight-binding model, are divided into two parts. In one part, analytic results...... are derived for the optical properties of the polymers expressed in terms of the optical susceptibility both in the presence and in the absence of a static electric field. In the other part, the cumputationally efficient Density Functional-based Tight-Binding (DFTB) model is applied to the description...

  17. Quantifying drug-protein binding in vivo

    International Nuclear Information System (INIS)

    Accelerator mass spectrometry (AMS) provides precise quantitation of isotope labeled compounds that are bound to biological macromolecules such as DNA or proteins. The sensitivity is high enough to allow for sub-pharmacological (''micro-'') dosing to determine macromolecular targets without inducing toxicities or altering the system under study, whether it is healthy or diseased. We demonstrated an application of AMS in quantifying the physiologic effects of one dosed chemical compound upon the binding level of another compound in vivo at sub-toxic doses [4].We are using tissues left from this study to develop protocols for quantifying specific binding to isolated and identified proteins. We also developed a new technique to quantify nanogram to milligram amounts of isolated protein at precisions that are comparable to those for quantifying the bound compound by AMS

  18. In vivo binding of retinol to chromatin

    International Nuclear Information System (INIS)

    The authors have previously shown that exposure of responding cells to vitamin A leads to profound modifications of chromatin structure as revealed by an increased susceptibility to DNase I digestion, modified patterns of histone acetylation, and impaired synthesis of a nonhistone chromosomal protein. The present results show that these effects are most probably due to the direct interaction between retinol and chromatin, and analysis of mononucleosomes and higher oligomers obtained from retinol-treated cells shows that retinol is indeed tightly bound to chromatin. Enzymatic digestions of vitamin A containing nucleosomes with proteinase K, phospholipase C, and phospholipase A2 support a model where the final binding of retinol to chromatin is mediated by a lipoprotein: the recognition of the binding sites on DNA being dictated by the proteic component while the hydrophobic retinol is solubilized in the fatty acid moiety

  19. Comparison of Transcription Factor Binding Site Models

    KAUST Repository

    Bhuyan, Sharifulislam

    2012-05-01

    Modeling of transcription factor binding sites (TFBSs) and TFBS prediction on genomic sequences are important steps to elucidate transcription regulatory mechanism. Dependency of transcription regulation on a great number of factors such as chemical specificity, molecular structure, genomic and epigenetic characteristics, long distance interaction, makes this a challenging problem. Different experimental procedures generate evidence that DNA-binding domains of transcription factors show considerable DNA sequence specificity. Probabilistic modeling of TFBSs has been moderately successful in identifying patterns from a family of sequences. In this study, we compare performances of different probabilistic models and try to estimate their efficacy over experimental TFBSs data. We build a pipeline to calculate sensitivity and specificity from aligned TFBS sequences for several probabilistic models, such as Markov chains, hidden Markov models, Bayesian networks. Our work, containing relevant statistics and evaluation for the models, can help researchers to choose the most appropriate model for the problem at hand.

  20. The Actin Binding Protein Adseverin Regulates Osteoclastogenesis

    OpenAIRE

    Hassanpour, Siavash; Jiang, Hongwei; Wang, Yongqiang; Kuiper, Johannes W. P.; Glogauer, Michael

    2014-01-01

    Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesi...

  1. Microtubule binding distinguishes dystrophin from utrophin

    OpenAIRE

    Belanto, Joseph J.; Mader, Tara L.; Eckhoff, Michael D.; Strandjord, Dana M.; Banks, Glen B.; Gardner, Melissa K.; Lowe, Dawn A.; Ervasti, James M.

    2014-01-01

    Our in vitro analyses reveal that dystrophin, the protein absent in Duchenne muscular dystrophy patients, binds microtubules with high affinity and pauses microtubule polymerization, whereas utrophin, the autosomal homologue of dystrophin thought to mirror many known functions of dystrophin, has no activity in either assay. We also report that transgenic utrophin overexpression does not correct subsarcolemmal microtubule lattice disorganization, physical inactivity after mild exercise, or los...

  2. Binding of episodic memories in the rat

    OpenAIRE

    Crystal, Jonathon D; Smith, Alexandra E.

    2014-01-01

    People remember an event as a coherent scene [1-4]. Memory of such an episode is thought to reflect binding of a fully integrated representation, rather than memory of unconnected features [4-7]. However, it is not known if rodents form bound representations. Here we show that rats remember episodes as bound representations. Rats were presented with multiple features of unique episodes at memory encoding: what (food flavor), where (maze location), source (self-generated food seeking–running t...

  3. Copper Binding in the Prion Protein†

    OpenAIRE

    Millhauser, Glenn L.

    2004-01-01

    A conformational change of the prion protein is responsible for a class of neurodegenerative diseases called the transmissible spongiform encephalopathies that include mad cow disease and the human afflictions kuru and Creutzfeldt–Jakob disease. Despite the attention given to these diseases, the normal function of the prion protein in healthy tissue is unknown. Research over the past few years, however, demonstrates that the prion protein is a copper binding protein with high selectivity for ...

  4. Optical sorting due to optical binding

    Czech Academy of Sciences Publication Activity Database

    Karásek, Vítězslav; Zemánek, Pavel

    Bellingham: SPIE, 2013, 881027:1-8. ISSN 0277-786X. [Optical Trapping and Optical Micromanipulation /10./. San Diego (US), 25.08.2013-29.08.2013] R&D Projects: GA ČR GPP205/12/P868 Institutional support: RVO:68081731 Keywords : optical binding * optical sorting * particles * optical trapping * bessel beam s * code division multiplexing * numerical simuklations Subject RIV: BH - Optics, Masers, Laser s

  5. Brain hyaluronan binding protein inhibits tumor growth

    Institute of Scientific and Technical Information of China (English)

    高锋; 曹曼林; 王蕾

    2004-01-01

    Background Great efforts have been made to search for the angiogenic inhibitors in avascular tissues. Several proteins isolated from cartilage have been proved to have anti-angiogenic or anti-tumour effects. Because cartilage contains a great amount of hyaluronic acid (HA) oligosaccharides and abundant HA binding proteins (HABP), therefore, we speculated that HABP might be one of the factors regulating vascularization in cartilage or anti-angiogenesis in tumours. The purpose of this research was to evaluale the effects of hyaluronan binding protein on inhibiting tumour growth both in vivo and vitro. Methods A unique protein termed human brain hyaluronan (HA) binding protein (b-HABP) was cloned from human brain cDNA library. MDA-435 human breast cancer cell line was chosen as a transfectant. The in vitro underlying mechanisms were investigated by determining the possibilities of MDA-435/b-HABP colony formation on soft agar, the effects of the transfectant on the proliferation of endothelial cells and the expression levels of caspase 3 and FasL from MDA-435/b-HABP. The in vivo study included tumour growth on the chorioallantoic membrane (CAM) of chicken embryos and nude mice. Results Colony formation assay revealed that the colonies formed by MDA-435/b-HABP were greatly reduced compared to mock transfectants. The conditioned media from MDA-435/b-HABP inhibited the growth of endothelial cells in culture. Caspase 3 and FasL expressions were induced by MDA-435/b-HABP. The size of tumours of MDA-435/b-HABP in both CAM and nude mice was much smaller than that of MDA-435 alone. Conclusions Human brain hyaluronan binding protein (b-HABP) may represent a new kind of naturally existing anti-tumour substance. This brain-derived glycoprotein may block tumour growth by inducing apoptosis of cancer cells or by decreasing angiogenesis in tumour tissue via inhibiting proliferation of endothelial cells.

  6. Binding of Actinobacillus pleuropneumoniae to Phosphatidylethanolamine

    OpenAIRE

    Jeannotte, Marie-Eve; Abul-Milh, Maan; Dubreuil, J. Daniel; Jacques, Mario

    2003-01-01

    The gram-negative bacterium Actinobacillus pleuropneumoniae is the causative agent of porcine fibrinohemorrhagic necrotizing pleuropneumonia, a disease that causes important economic losses to the swine industry worldwide. In general, the initial step of bacterial colonization is attachment to host cells. The purpose of the present study was to evaluate the binding of A. pleuropneumoniae serotype 1 to phospholipids, which are the major constituents of biological membranes. Phospholipids serve...

  7. Tight Binding Models in Cold Atoms Physics

    Science.gov (United States)

    Zakrzewski, J.

    2007-05-01

    Cold atomic gases placed in optical lattice potentials offer a unique tool to study simple tight binding models. Both the standard cases known from the condensed matter theory as well as novel situations may be addressed. Cold atoms setting allows for a precise control of parameters of the systems discussed, stimulating new questions and problems. The attempts to treat disorder in a controlled fashion are addressed in detail.

  8. Superconductivity in tight-binding approximation

    International Nuclear Information System (INIS)

    An interpretation of Barisic's relation for transition elements between the d-electron contribution to the cohesive energy and the local atomic parameter eta is presented. This relation is extended to a lattice with more than one atom per unit cell in the tight- binding approximation of rigid ions. It is conjectured that Barisic's relation is correct to first order approximation for transition metal alloys, provided the phonon induced d-d coupling is the dominant mechanism for superconductivity

  9. Alternative polyadenylation and RNA-binding proteins.

    Science.gov (United States)

    Erson-Bensan, Ayse Elif

    2016-08-01

    Our understanding of the extent of microRNA-based gene regulation has expanded in an impressive pace over the past decade. Now, we are beginning to better appreciate the role of 3'-UTR (untranslated region) cis-elements which harbor not only microRNA but also RNA-binding protein (RBP) binding sites that have significant effect on the stability and translational rate of mRNAs. To add further complexity, alternative polyadenylation (APA) emerges as a widespread mechanism to regulate gene expression by producing shorter or longer mRNA isoforms that differ in the length of their 3'-UTRs or even coding sequences. Resulting shorter mRNA isoforms generally lack cis-elements where trans-acting factors bind, and hence are differentially regulated compared with the longer isoforms. This review focuses on the RBPs involved in APA regulation and their action mechanisms on APA-generated isoforms. A better understanding of the complex interactions between APA and RBPs is promising for mechanistic and clinical implications including biomarker discovery and new therapeutic approaches. PMID:27208003

  10. SUMO-1 possesses DNA binding activity

    Directory of Open Access Journals (Sweden)

    Wieruszeski Jean-Michel

    2010-05-01

    Full Text Available Abstract Background Conjugation of small ubiquitin-related modifiers (SUMOs is a frequent post-translational modification of proteins. SUMOs can also temporally associate with protein-targets via SUMO binding motifs (SBMs. Protein sumoylation has been identified as an important regulatory mechanism especially in the regulation of transcription and the maintenance of genome stability. The precise molecular mechanisms by which SUMO conjugation and association act are, however, not understood. Findings Using NMR spectroscopy and protein-DNA cross-linking experiments, we demonstrate here that SUMO-1 can specifically interact with dsDNA in a sequence-independent fashion. We also show that SUMO-1 binding to DNA can compete with other protein-DNA interactions at the example of the regulatory domain of Thymine-DNA Glycosylase and, based on these competition studies, estimate the DNA binding constant of SUMO1 in the range 1 mM. Conclusion This finding provides an important insight into how SUMO-1 might exert its activity. SUMO-1 might play a general role in destabilizing DNA bound protein complexes thereby operating in a bottle-opener way of fashion, explaining its pivotal role in regulating the activity of many central transcription and DNA repair complexes.

  11. Binding Energy and Equilibrium of Compact Objects

    Directory of Open Access Journals (Sweden)

    Germano M.

    2014-04-01

    Full Text Available The theoretical analysis of the existence of a limit mass for compact astronomic ob- jects requires the solution of the Einstein’s equations of g eneral relativity together with an appropriate equation of state. Analytical solutions exi st in some special cases like the spherically symmetric static object without energy sou rces that is here considered. Solutions, i.e. the spacetime metrics, can have a singular m athematical form (the so called Schwarzschild metric due to Hilbert or a nonsingula r form (original work of Schwarzschild. The former predicts a limit mass and, conse quently, the existence of black holes above this limit. Here it is shown that, the origi nal Schwarzschild met- ric permits compact objects, without mass limit, having rea sonable values for central density and pressure. The lack of a limit mass is also demonst rated analytically just imposing reasonable conditions on the energy-matter densi ty, of positivity and decreas- ing with radius. Finally the ratio between proper mass and to tal mass tends to 2 for high values of mass so that the binding energy reaches the lim it m (total mass seen by a distant observer. As it is known the negative binding energ y reduces the gravitational mass of the object; the limit of m for the binding energy provides a mechanism for stable equilibrium of any amount of mass to contrast the gravitatio nal collapse.

  12. The aesthetic experience of 'contour binding'.

    Science.gov (United States)

    Casco, Clara; Guzzon, Daniela

    2008-01-01

    To find the diagnostic spatial frequency information in different painting styles (cubism, impressionism and realism), we have compared sensitivity (d') in distinguishing signal (subject of the painting) from noise with normal, high-pass and low-pass filtered images at long (150 ms) and short (30 ms) exposure. We found that for cubist-style images, d' increases with high-pass filtering compared with normal and low-pass filtered images, but decreases with low-pass filtering compared with normal images. These results indicate that channels with high spatial resolution provide the diagnostic information to solve the binding problem. Sensitivity for images in impressionist style was instead reduced by both low- and high-pass filtering. This indicates that both high and low spatial frequency channels play a role in solving the binding problem, suggesting the involvement of large collator units that group the response of small channels tuned to the same orientation. The difference between realism, which shows higher sensitivity for low-frequency filtering at short durations and cubism in which the binding problem is solved by high spatial frequency channels, has a corresponding difference in aesthetic judgment: the probability of judging a painting as 'intriguing' is larger with low-pass filtering than with high-pass filtering in realism, while the opposite is true for cubism. This suggests that the aesthetic experience is available during early processing of an image, and could preferentially influence high-level categorization of the subject of a painting. PMID:18534105

  13. STUDY OF ESTROGEN BINDING SITE ON HUMAN EJACULATED SPERMATOZOA

    Institute of Scientific and Technical Information of China (English)

    CHUJin-Shong; WANGYi-Fei

    1989-01-01

    The specific estrogen binding site for 17β-estradiol has been investigated on human spermatozoa by electron microscopec autoradiography. The results show that the binding sites were distributed over the surface of human spermatozoa: acrosomal cap, equatorial

  14. Streptococcal IgA-binding proteins bind in the Calpha 2-Calpha 3 interdomain region and inhibit binding of IgA to human CD89.

    Science.gov (United States)

    Pleass, R J; Areschoug, T; Lindahl, G; Woof, J M

    2001-03-16

    Certain pathogenic bacteria express surface proteins that bind to the Fc part of human IgA or IgG. These bacterial proteins are important as immunochemical tools and model systems, but their biological function is still unclear. Here, we describe studies of three streptococcal proteins that bind IgA: the Sir22 and Arp4 proteins of Streptococcus pyogenes and the unrelated beta protein of group B streptococcus. Analysis of IgA domain swap and point mutants indicated that two loops at the Calpha2/Calpha3 domain interface are critical for binding of the streptococcal proteins. This region is also used in binding the human IgA receptor CD89, an important mediator of IgA effector function. In agreement with this finding, the three IgA-binding proteins and a 50-residue IgA-binding peptide derived from Sir22 blocked the ability of IgA to bind CD89. Further, the Arp4 protein inhibited the ability of IgA to trigger a neutrophil respiratory burst via CD89. Thus, we have identified residues on IgA-Fc that play a key role in binding of different streptococcal IgA-binding proteins, and we have identified a mechanism by which a bacterial IgA-binding protein may interfere with IgA effector function. PMID:11096107

  15. Architecture of the sugar binding sites in carbohydrate binding proteins--a computer modeling study.

    Science.gov (United States)

    Rao, V S; Lam, K; Qasba, P K

    1998-11-01

    Different sugars, Gal, GalNAc and Man were docked at the monosaccharide binding sites of Erythrina corallodenron (EcorL), peanut lectin (PNA), Lathyrus ochrus (LOLI), and pea lectin (PSL). To study the lectin-carbohydrate interactions, in the complexes, the hydroxymethyl group in Man and Gal favors, gg and gt conformations respectively, and is the dominant recognition determination. The monosaccharide binding site in lectins that are specific to Gal/GalNAc is wider due to the additional amino acid residues in loop D as compared to that in lectins specific to Man/Glc, and affects the hydrogen bonds of the sugar involving residues from loop D, but not its orientation in the binding site. The invariant amino acid residues Asp from loop A, and Asn and an aromatic residue (Phe or Tyr) in loop C provides the basic architecture to recognize the common features in C4 epimers. The invariant Gly in loop B together with one or two residues in the variable region of loop D/A holds the sugar tightly at both ends. Loss of any one of these hydrogen bonds leads to weak interaction. While the subtle variations in the sequence and conformation of peptide fragment that resulted due to the size and location of gaps present in amino acid sequence in the neighborhood of the sugar binding site of loop D/A seems to discriminate the binding of sugars which differ at C4 atom (galacto and gluco configurations). The variations at loop B are important in discriminating Gal and GalNAc binding. The present study thus provides a structural basis for the observed specificities of legume lectins which uses the same four invariant residues for binding. These studies also bring out the information that is important for the design/engineering of proteins with the desired carbohydrate specificity. PMID:9849627

  16. The RNA binding domain of Pumilio antagonizes poly-adenosine binding protein and accelerates deadenylation.

    Science.gov (United States)

    Weidmann, Chase A; Raynard, Nathan A; Blewett, Nathan H; Van Etten, Jamie; Goldstrohm, Aaron C

    2014-08-01

    PUF proteins are potent repressors that serve important roles in stem cell maintenance, neurological processes, and embryonic development. These functions are driven by PUF protein recognition of specific binding sites within the 3' untranslated regions of target mRNAs. In this study, we investigated mechanisms of repression by the founding PUF, Drosophila Pumilio, and its human orthologs. Here, we evaluated a previously proposed model wherein the Pumilio RNA binding domain (RBD) binds Argonaute, which in turn blocks the translational activity of the eukaryotic elongation factor 1A. Surprisingly, we found that Argonautes are not necessary for repression elicited by Drosophila and human PUFs in vivo. A second model proposed that the RBD of Pumilio represses by recruiting deadenylases to shorten the mRNA's polyadenosine tail. Indeed, the RBD binds to the Pop2 deadenylase and accelerates deadenylation; however, this activity is not crucial for regulation. Rather, we determined that the poly(A) is necessary for repression by the RBD. Our results reveal that poly(A)-dependent repression by the RBD requires the poly(A) binding protein, pAbp. Furthermore, we show that repression by the human PUM2 RBD requires the pAbp ortholog, PABPC1. Pumilio associates with pAbp but does not disrupt binding of pAbp to the mRNA. Taken together, our data support a model wherein the Pumilio RBD antagonizes the ability of pAbp to promote translation. Thus, the conserved function of the PUF RBD is to bind specific mRNAs, antagonize pAbp function, and promote deadenylation. PMID:24942623

  17. AB-Bind: Antibody binding mutational database for computational affinity predictions.

    Science.gov (United States)

    Sirin, Sarah; Apgar, James R; Bennett, Eric M; Keating, Amy E

    2016-02-01

    Antibodies (Abs) are a crucial component of the immune system and are often used as diagnostic and therapeutic agents. The need for high-affinity and high-specificity antibodies in research and medicine is driving the development of computational tools for accelerating antibody design and discovery. We report a diverse set of antibody binding data with accompanying structures that can be used to evaluate methods for modeling antibody interactions. Our Antibody-Bind (AB-Bind) database includes 1101 mutants with experimentally determined changes in binding free energies (ΔΔG) across 32 complexes. Using the AB-Bind data set, we evaluated the performance of protein scoring potentials in their ability to predict changes in binding free energies upon mutagenesis. Numerical correlations between computed and observed ΔΔG values were low (r = 0.16-0.45), but the potentials exhibited predictive power for classifying variants as improved vs weakened binders. Performance was evaluated using the area under the curve (AUC) for receiver operator characteristic (ROC) curves; the highest AUC values for 527 mutants with |ΔΔG| > 1.0 kcal/mol were 0.81, 0.87, and 0.88 using STATIUM, FoldX, and Discovery Studio scoring potentials, respectively. Some methods could also enrich for variants with improved binding affinity; FoldX and Discovery Studio were able to correctly rank 42% and 30%, respectively, of the 80 most improved binders (those with ΔΔG < -1.0 kcal/mol) in the top 5% of the database. This modest predictive performance has value but demonstrates the continuing need to develop and improve protein energy functions for affinity prediction. PMID:26473627

  18. Cellular studies of binding, internalization and retention of a radiolabeled EGFR-binding affibody molecule

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, Erika [Rudbeck Laboratory, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences, Uppsala University, SE-751 85 Uppsala (Sweden)], E-mail: erika.nordberg@bms.uu.se; Friedman, Mikaela [Department of Molecular Biotechnology, AlbaNova University Center, Kungl Tekniska Hoegskolan (KTH), SE-106 91 Stockholm (Sweden); Goestring, Lovisa [Rudbeck Laboratory, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences, Uppsala University, SE-751 85 Uppsala (Sweden); Affibody AB, PO Box 20137, SE-161 02 Bromma (Sweden); Adams, Gregory P. [Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111 (United States); Brismar, Hjalmar [Department of Cell Physics, AlbaNova University Center, Kungl Tekniska Hoegskolan (KTH), SE-106 91 Stockholm (Sweden); Nilsson, Fredrik Y. [Rudbeck Laboratory, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences, Uppsala University, SE-751 85 Uppsala (Sweden); Affibody AB, PO Box 20137, SE-161 02 Bromma (Sweden); Stahl, Stefan [Department of Molecular Biotechnology, AlbaNova University Center, Kungl Tekniska Hoegskolan (KTH), SE-106 91 Stockholm (Sweden); Glimelius, Bengt [Rudbeck Laboratory, Oncology, Radiology and Clinical Immunology, Uppsala University, SE-751 85 Uppsala (Sweden); Carlsson, Joergen [Rudbeck Laboratory, Department of Oncology, Radiology and Clinical Immunology, Biomedical Radiation Sciences, Uppsala University, SE-751 85 Uppsala (Sweden)

    2007-08-15

    Introduction: The cellular binding and processing of an epidermal growth factor receptor (EGFR) targeting affibody molecule, (Z{sub EGFR:955}){sub 2}, was studied. This new and small molecule is aimed for applications in nuclear medicine. The natural ligand epidermal growth factor (EGF) and the antibody cetuximab were studied for comparison. Methods: All experiments were made with cultured A431 squamous carcinoma cells. Receptor specificity, binding time patterns, retention and preliminary receptor binding site localization studies were all made after {sup 125}I labeling. Internalization was studied using Oregon Green 488, Alexa Fluor 488 and CypHer5E markers. Results: [{sup 125}I](Z{sub EGFR:955}){sub 2} and [{sup 125}I]cetuximab gave a maximum cellular uptake of {sup 125}I within 4 to 8 h of incubation, while [{sup 125}I]EGF gave a maximum uptake already after 2 h. The retention studies showed that the cell-associated fraction of {sup 125}I after 48 h of incubation was {approx}20% when delivered as [{sup 125}I](Z{sub EGFR:955}){sub 2} and {approx}25% when delivered as [{sup 125}I]cetuximab. [{sup 125}I]EGF-mediated delivery gave a faster {sup 125}I release, where almost all cell-associated radioactivity had disappeared within 24 h. All three substances were internalized as demonstrated with confocal microscopy. Competitive binding studies showed that both EGF and cetuximab inhibited binding of (Z{sub EGFR:955}){sub 2} and indicated that the three substances competed for an overlapping binding site. Conclusion: The results gave information on cellular processing of radionuclides when delivered with (Z{sub EGFR:955}){sub 2} in comparison to delivery with EGF and cetuximab. Competition assays suggested that [{sup 125}I](Z{sub EGFR:955}){sub 2} bind to Domain III of EGFR. The affibody molecule (Z{sub EGFR:955}){sub 2} can be a candidate for EGFR imaging applications in nuclear medicine.

  19. Biophysical characterization of DNA binding from single molecule force measurements

    OpenAIRE

    Chaurasiya, Kathy R.; Paramanathan, Thayaparan; McCauley, Micah J.; Williams, Mark C.

    2010-01-01

    Single molecule force spectroscopy is a powerful method that uses the mechanical properties of DNA to explore DNA interactions. Here we describe how DNA stretching experiments quantitatively characterize the DNA binding of small molecules and proteins. Small molecules exhibit diverse DNA binding modes, including binding into the major and minor grooves and intercalation between base pairs of double-stranded DNA (dsDNA). Histones bind and package dsDNA, while other nuclear proteins such as hig...

  20. Allosteric, chiral-selective drug binding to DNA

    OpenAIRE

    Qu, Xiaogang; Trent, John O.; Fokt, Izabela; Priebe, Waldemar; Chaires, Jonathan B.

    2000-01-01

    The binding interactions of (−)-daunorubicin (WP900), a newly synthesized enantiomer of the anticancer drug (+)-daunorubicin, with right- and left-handed DNA, have been studied quantitatively by equilibrium dialysis, fluorescence spectroscopy, and circular dichroism. (+)-Daunorubicin binds selectively to right-handed DNA, whereas the enantiomeric WP900 ligand binds selectively to left-handed DNA. Further, binding of the enantiomeric pair to DNA is clearly chirally ...

  1. The hepcidin-binding site on ferroportin is evolutionarily conserved

    OpenAIRE

    De Domenico, Ivana; Nemeth, Elizabeta; Nelson, Jenifer M.; Phillips, John D.; Ajioka, Richard S.; Kay, Michael S.; Kushner, James P.; Ganz, Tomas; Ward, Diane M.; Kaplan, Jerry

    2008-01-01

    Mammalian iron homeostasis is regulated by the interaction of the liver-produced peptide hepcidin and its receptor, the iron transporter ferroportin. Hepcidin binds to ferroportin resulting in degradation of ferroportin and decreased cellular iron export. We identify the hepcidin-binding domain (HBD) on ferroportin and show that a synthetic 19 amino acid peptide corresponding to the HBD recapitulates the characteristics and specificity of hepcidin binding to cell surface ferroportin. The bind...

  2. A streptavidin mutant with altered ligand-binding specificity

    OpenAIRE

    Reznik, Gabriel O.; Vajda, Sandor; Sano, Takeshi; Cantor, Charles R.

    1998-01-01

    The biotin-binding site of streptavidin was modified to alter its ligand-binding specificity. In natural streptavidin, the side chains of N23 and S27 make two of the three hydrogen bonds with the ureido oxygen of biotin. These two residues were mutated to severely weaken biotin binding while attempting to maintain the affinity for two biotin analogs, 2-iminobiotin and diaminobiotin. Redesigning of the biotin-binding site used the difference in local electrostatic charge distribution between b...

  3. Specific receptor binding of staphylococcal enterotoxins by murine splenic lymphocytes.

    OpenAIRE

    Buxser, S; Bonventre, P F; Archer, D L

    1981-01-01

    We describe a reliable assay to measure the specific binding of 125I-labeled staphylococcal enterotoxin A (SEA) by murine spleen cells. Toxin binding by lymphocytes was specific in that it was inhibited by unlabeled SEA but not by unrelated proteins. The biological activity of SEA (T-lymphocyte mitogenesis) correlated with toxin binding to splenic lymphocytes. In the presence of high concentrations of [125I]SEA, specific binding increased rapidly and approached saturation after 2 h. Toxin bin...

  4. Biomimetic supramolecular metallohosts for binding and activation of dioxygen

    NARCIS (Netherlands)

    Sprakel, Vera Stefanie Irene

    2004-01-01

    Host-guest chemistry involves the binding of a specific substrate in a receptor via molecular recognition based on supramolecular interactions. Metal-containing derivatives of receptors for the selective supramolecular binding of dihydroxybenzene substrates, which receptors model oxygen binding enz

  5. Rapid determination of thyroxine binding proteins of human serum

    Directory of Open Access Journals (Sweden)

    Arima,Terukatsu

    1976-02-01

    Full Text Available A simple method is described for determing thyroxine binding proteins in human serum by electrophoresis at pH 8.6, using cellulose acetate membrane as the supporting medium. The procedure had high reliability in sera of normal subjects, pregnant women and patients with decreased thyroxine binding capacity of thyroxine binding globulin.

  6. A structural classification of substrate-binding proteins

    NARCIS (Netherlands)

    Berntsson, Ronnie P. -A.; Smits, Sander H. J.; Schmitt, Lutz; Slotboom, Dirk-Jan; Poolman, Bert; Rydström, Jan

    2010-01-01

    Substrate-binding proteins (SBP) are associated with a wide variety of protein complexes. The proteins are part of ATP-binding cassette transporters for substrate uptake, ion gradient driven transporters, DNA-binding proteins, as well as channels and receptors from both pro-and eukaryotes. A wealth

  7. Landscape of protein-small ligand binding modes.

    Science.gov (United States)

    Kasahara, Kota; Kinoshita, Kengo

    2016-09-01

    Elucidating the mechanisms of specific small-molecule (ligand) recognition by proteins is a long-standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein-ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all-against-all comparison of 20,040 protein-ligand complexes provided the landscape of the protein-ligand binding modes and its relationships with protein- and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R(2)  = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein-ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them. PMID:27327045

  8. Thioredoxin binding site of phosphoribulokinase overlaps the catalytic site

    International Nuclear Information System (INIS)

    The ATP-regulatory binding site of phosphoribulokinase was studied using bromoacetylethanolamine phosphate (BrAcNHEtOP). BrAcNHEtOP binds to the active-regulatory binding site of the protein. Following trypsin degradation of the labeled protein, fragments were separated by HPLC and sequenced. (DT)

  9. Binding of Intrinsic and Extrinsic Features in Working Memory

    Science.gov (United States)

    Ecker, Ullrich K. H.; Maybery, Murray; Zimmer, Hubert D.

    2013-01-01

    There is ongoing debate concerning the mechanisms of feature binding in working memory. In particular, there is controversy regarding the extent to which these binding processes are automatic. The present article demonstrates that binding mechanisms differ depending on whether the to-be-integrated features are perceived as forming a coherent…

  10. Identification of Treponema pallidum penicillin-binding proteins.

    OpenAIRE

    Cunningham, T M; Miller, J N; Lovett, M A

    1987-01-01

    Penicillin-binding proteins of 180, 89, 80, 68, 61, 41, and 38 kilodaltons were identified in Treponema pallidum (Nichols) by their covalent binding of [35S]benzylpenicillin. Penicillin-binding proteins are localized in the plasma membranes of many bacterial species and may serve as useful markers for determining plasma membrane intactness in T. pallidum fractionation studies.

  11. Modelling the binding affinity of steroids to zebrafish sex hormone-binding globulin.

    Science.gov (United States)

    Saxena, A K; Devillers, J; Pery, A R R; Beaudouin, R; Balaramnavar, V M; Ahmed, S

    2014-01-01

    The circulating endogenous steroids are transported in the bloodstream. These are bound to a highly specific sex hormone-binding globulin (SHBG) and in lower affinity to proteins such as the corticosteroid-binding protein and albumin in vertebrates, including fish. It is generally believed that the glycoprotein SHBG protects these steroids from rapid metabolic degradation and thus intervenes in its availability at the target tissues. Endocrine disrupters binding to SHBG affect the normal activity of natural steroids. Since xenobiotics are primarily released in the aquatic environment, there is a need to evaluate the binding affinity of xenosteroid mimics on fish SHBG, especially in zebrafish (Danio rerio), a small freshwater fish originating in India and widely employed in ecotoxicology, toxicology, and genetics. In this context, a zebrafish SHBG (zfSHBG) homology model was developed using the human SHBG (hSHBG) receptor structure as template. It was shown that interactions with amino acids Ser-36, Asp-59 and Thr-54 were important for binding affinity. A ligand-based pharmacophore model was also developed for both zfSHBG and hSHBG inhibitors that differentiated binders from non-binders, but also demonstrated structural requirements for zfSHBG and hSHBG ligands. The study provides insights into the mechanism of action of endocrine disruptors in zebrafish as well as providing a useful tool for identifying anthropogenic compounds inhibiting zfSHBG. PMID:24874994

  12. The Receptor Binding Domain of Botulinum Neurotoxin Stereotype C Binds Phosphoinositides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanfeng; Varnum, Susan M.

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD50 of {approx} 1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a 'dual receptor' mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Here, using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro. BoNT/C-HCR was found to bind negatively charged phospholipids, preferentially phosphoinositides. Additional interactions to phosphoinositides may help BoNT/C bind membrane more tightly and transduct signals for subsequent steps of intoxication. Our results provide new insights into the mechanisms of host cell membrane recognition by BoNTs.

  13. 14C-glucose binding assay of the glucose transporter binding sites in muscular cell membrane

    International Nuclear Information System (INIS)

    A method of determining the binding sites of glucose transporter in rat muscular cell membrane was introduced. The crude products of cell membrane form the skeletal muscle of control and insulin treated rats were prepared, and then fractionated in sucrose gradient. Both plasma membrane and microsome membrane were incubated with D-[U-14C] glucose respectively for the measurement of radioactivity and Scatchard plot analysis. It was found that the binding sites of glucose transporter in plasma membrane and intracellular membrane were 5.6 nmol 14C-glucose/mg protein and 8.7 nmol 14C-glucose-mg protein respectively at basic state. Insulin treatment in experimental groups caused approximately 146% increase in plasma membrane fraction and 88% decrease in intracellular membrane fraction. Moreover, the kinetic data of Scatchard plot curve were similar to those of the [3H]-cytochalasin B binding assay. D-[U-14C] glucose binding assay of glucose transporter binding sites in muscular cell membrane is simple, easy and practicable. The D-[U-14C] glucose is commercially available

  14. Tetrapyrrole binding affinity of the murine and human p22HBP heme-binding proteins.

    Science.gov (United States)

    Micaelo, Nuno M; Macedo, Anjos L; Goodfellow, Brian J; Félix, Vítor

    2010-11-01

    We present the first systematic molecular modeling study of the binding properties of murine (mHBP) and human (hHBP) p22HBP protein (heme-binding protein) with four tetrapyrrole ring systems belonging to the heme biosynthetic pathway: iron protoporphyrin IX (HEMIN), protoporphyrin IX (PPIX), coproporphyrin III (CPIII), coproporphyrin I (CPI). The relative binding affinities predicted by our computational study were found to be similar to those observed experimentally, providing a first rational structural analysis of the molecular recognition mechanism, by p22HBP, toward a number of different tetrapyrrole ligands. To probe the structure of these p22HBP protein complexes, docking, molecular dynamics and MM-PBSA methodologies supported by experimental NMR ring current shift data have been employed. The tetrapyrroles studied were found to bind murine p22HBP with the following binding affinity order: HEMIN> PPIX> CPIII> CPI, which ranged from -22.2 to -6.1 kcal/mol. In general, the protein-tetrapyrrole complexes are stabilized by non-bonded interactions between the tetrapyrrole propionate groups and basic residues of the protein, and by the preferential solvation of the complex compared to the unbound components. PMID:20800521

  15. Codeine-binding RNA aptamers and rapid determination of their binding constants using a direct coupling surface plasmon resonance assay

    OpenAIRE

    Win, Maung Nyan; Klein, Joshua S.; Smolke, Christina D.

    2006-01-01

    RNA aptamers that bind the opium alkaloid codeine were generated using an iterative in vitro selection process. The binding properties of these aptamers, including equilibrium and kinetic rate constants, were determined through a rapid, high-throughput approach using surface plasmon resonance (SPR) analysis to measure real-time binding. The approach involves direct coupling of the target small molecule onto a sensor chip without utilization of a carrier protein. Two highest binding aptamer se...

  16. Zooming into the binding groove of HLA molecules : which positions and which substitutions change peptide binding most?

    NARCIS (Netherlands)

    van Deutekom, Hanneke W M; Kesmir, C.

    2015-01-01

    Human leukocyte antigen (HLA) genes are the most polymorphic genes in the human genome. Almost all polymorphic residues are located in the peptide-binding groove, resulting in different peptide-binding preferences. Whether a single amino acid change can alter the peptide-binding repertoire of an HLA

  17. Coenzyme A Binding to the Aminoglycoside Acetyltransferase (3)-IIIb Increases Conformational Sampling of Antibiotic Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaohu [ORNL; Norris, Adrianne [University of Tennessee, Knoxville (UTK); Baudry, Jerome Y [ORNL; Serpersu, Engin H [University of Tennessee, Knoxville (UTK)

    2011-01-01

    NMR spectroscopy experiments and molecular dynamics simulations were performed to describe the dynamic properties of the aminoglycoside acetyltransferase (3)-IIIb (AAC) in its apo and coenzyme A (CoASH) bound forms. The {sup 15}N-{sup 1}H HSQC spectra indicate a partial structural change and coupling of the CoASH binding site with another region in the protein upon the CoASH titration into the apo enzyme. Molecular dynamics simulations indicate a significant structural and dynamic variation of the long loop in the antibiotic binding domain in the form of a relatively slow (250 ns), concerted opening motion in the CoASH enzyme complex and that binding of the CoASH increases the structural flexibility of the loop, leading to an interchange between several similar equally populated conformations.

  18. Progesterone Binding and Inhibition of Growth in Trichophyton mentagrophytes

    OpenAIRE

    1986-01-01

    Specific binding of [3H]progesterone to cytosol of Trichophyton mentagrophytes was demonstrated. Scatchard analysis of [3H]progesterone binding showed a single class of binding sites with a dissociation constant of 9.5 X 10(-8) [corrected] +/- 2.4 X 10(-8) M (standard deviation) and a maximal binding capacity of 4,979 +/- 3,489 fmol/mg of cytosol protein. Deoxycorticosterone and dihydrotestosterone competitively inhibited binding by 50% at molar ratios of 10:1 and 20:1, respectively. Other st...

  19. Binding of collagen to Staphylococcus aureus Cowan 1.

    OpenAIRE

    Speziale, P; Raucci, G; Visai, L.; Switalski, L M; Timpl, R; Höök, M

    1986-01-01

    Collagen binds to a receptor protein present on the surfaces of Staphylococcus aureus cells. Binding of 125I-labeled type II collagen to its bacterial receptor is reversible, and Scatchard plot analysis indicates the presence of one class of receptor that occurs on an average of 3 X 10(4) copies per cell and binds type II collagen with a Kd of 10(-7) M. Studies on the specificity of collagen cell binding indicate that the receptor does not recognize noncollagenous proteins but binds all of th...

  20. Human pentraxin 3 binds to the complement regulator c4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Anne Braunschweig

    Full Text Available The long pentraxin 3 (PTX3 is a soluble recognition molecule with multiple functions including innate immune defense against certain microbes and the clearance of apoptotic cells. PTX3 interacts with recognition molecules of the classical and lectin complement pathways and thus initiates complement activation. In addition, binding of PTX3 to the alternative complement pathway regulator factor H was shown. Here, we show that PTX3 binds to the classical and lectin pathway regulator C4b-binding protein (C4BP. A PTX3-binding site was identified within short consensus repeats 1-3 of the C4BP α-chain. PTX3 did not interfere with the cofactor activity of C4BP in the fluid phase and C4BP maintained its complement regulatory activity when bound to PTX3 on surfaces. While C4BP and factor H did not compete for PTX3 binding, the interaction of C4BP with PTX3 was inhibited by C1q and by L-ficolin. PTX3 bound to human fibroblast- and endothelial cell-derived extracellular matrices and recruited functionally active C4BP to these surfaces. Whereas PTX3 enhanced the activation of the classical/lectin pathway and caused enhanced C3 deposition on extracellular matrix, deposition of terminal pathway components and the generation of the inflammatory mediator C5a were not increased. Furthermore, PTX3 enhanced the binding of C4BP to late apoptotic cells, which resulted in an increased rate of inactivation of cell surface bound C4b and a reduction in the deposition of C5b-9. Thus, in addition to complement activators, PTX3 interacts with complement inhibitors including C4BP. This balanced interaction on extracellular matrix and on apoptotic cells may prevent excessive local complement activation that would otherwise lead to inflammation and host tissue damage.

  1. Glycan masking of Plasmodium vivax Duffy Binding Protein for probing protein binding function and vaccine development.

    Directory of Open Access Journals (Sweden)

    Sowmya Sampath

    Full Text Available Glycan masking is an emerging vaccine design strategy to focus antibody responses to specific epitopes, but it has mostly been evaluated on the already heavily glycosylated HIV gp120 envelope glycoprotein. Here this approach was used to investigate the binding interaction of Plasmodium vivax Duffy Binding Protein (PvDBP and the Duffy Antigen Receptor for Chemokines (DARC and to evaluate if glycan-masked PvDBPII immunogens would focus the antibody response on key interaction surfaces. Four variants of PVDBPII were generated and probed for function and immunogenicity. Whereas two PvDBPII glycosylation variants with increased glycan surface coverage distant from predicted interaction sites had equivalent binding activity to wild-type protein, one of them elicited slightly better DARC-binding-inhibitory activity than wild-type immunogen. Conversely, the addition of an N-glycosylation site adjacent to a predicted PvDBP interaction site both abolished its interaction with DARC and resulted in weaker inhibitory antibody responses. PvDBP is composed of three subdomains and is thought to function as a dimer; a meta-analysis of published PvDBP mutants and the new DBPII glycosylation variants indicates that critical DARC binding residues are concentrated at the dimer interface and along a relatively flat surface spanning portions of two subdomains. Our findings suggest that DARC-binding-inhibitory antibody epitope(s lie close to the predicted DARC interaction site, and that addition of N-glycan sites distant from this site may augment inhibitory antibodies. Thus, glycan resurfacing is an attractive and feasible tool to investigate protein structure-function, and glycan-masked PvDBPII immunogens might contribute to P. vivax vaccine development.

  2. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites.

    Directory of Open Access Journals (Sweden)

    Daniel M Dupont

    Full Text Available Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126 with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA. We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A controlling uPA activities. One of the aptamers (upanap-126 binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12 binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site.

  3. Liver fatty acid-binding protein binds monoacylglycerol in vitro and in mouse liver cytosol.

    Science.gov (United States)

    Lagakos, William S; Guan, Xudong; Ho, Shiu-Ying; Sawicki, Luciana Rodriguez; Corsico, Betina; Kodukula, Sarala; Murota, Kaeko; Stark, Ruth E; Storch, Judith

    2013-07-01

    Liver fatty acid-binding protein (LFABP; FABP1) is expressed both in liver and intestinal mucosa. Mice null for LFABP were recently shown to have altered metabolism of not only fatty acids but also monoacylglycerol, the two major products of dietary triacylglycerol hydrolysis (Lagakos, W. S., Gajda, A. M., Agellon, L., Binas, B., Choi, V., Mandap, B., Russnak, T., Zhou, Y. X., and Storch, J. (2011) Am. J. Physiol. Gastrointest. Liver Physiol. 300, G803-G814). Nevertheless, the binding and transport of monoacylglycerol (MG) by LFABP are uncertain, with conflicting reports in the literature as to whether this single chain amphiphile is in fact bound by LFABP. In the present studies, gel filtration chromatography of liver cytosol from LFABP(-/-) mice shows the absence of the low molecular weight peak of radiolabeled monoolein present in the fractions that contain LFABP in cytosol from wild type mice, indicating that LFABP binds sn-2 MG in vivo. Furthermore, solution-state NMR spectroscopy demonstrates two molecules of sn-2 monoolein bound in the LFABP binding pocket in positions similar to those found for oleate binding. Equilibrium binding affinities are ∼2-fold lower for MG compared with fatty acid. Finally, kinetic studies examining the transfer of a fluorescent MG analog show that the rate of transfer of MG is 7-fold faster from LFABP to phospholipid membranes than from membranes to membranes and occurs by an aqueous diffusion mechanism. These results provide strong support for monoacylglycerol as a physiological ligand for LFABP and further suggest that LFABP functions in the efficient intracellular transport of MG. PMID:23658011

  4. Liver Fatty Acid-binding Protein Binds Monoacylglycerol in Vitro and in Mouse Liver Cytosol*

    Science.gov (United States)

    Lagakos, William S.; Guan, Xudong; Ho, Shiu-Ying; Sawicki, Luciana Rodriguez; Corsico, Betina; Kodukula, Sarala; Murota, Kaeko; Stark, Ruth E.; Storch, Judith

    2013-01-01

    Liver fatty acid-binding protein (LFABP; FABP1) is expressed both in liver and intestinal mucosa. Mice null for LFABP were recently shown to have altered metabolism of not only fatty acids but also monoacylglycerol, the two major products of dietary triacylglycerol hydrolysis (Lagakos, W. S., Gajda, A. M., Agellon, L., Binas, B., Choi, V., Mandap, B., Russnak, T., Zhou, Y. X., and Storch, J. (2011) Am. J. Physiol. Gastrointest. Liver Physiol. 300, G803–G814). Nevertheless, the binding and transport of monoacylglycerol (MG) by LFABP are uncertain, with conflicting reports in the literature as to whether this single chain amphiphile is in fact bound by LFABP. In the present studies, gel filtration chromatography of liver cytosol from LFABP−/− mice shows the absence of the low molecular weight peak of radiolabeled monoolein present in the fractions that contain LFABP in cytosol from wild type mice, indicating that LFABP binds sn-2 MG in vivo. Furthermore, solution-state NMR spectroscopy demonstrates two molecules of sn-2 monoolein bound in the LFABP binding pocket in positions similar to those found for oleate binding. Equilibrium binding affinities are ∼2-fold lower for MG compared with fatty acid. Finally, kinetic studies examining the transfer of a fluorescent MG analog show that the rate of transfer of MG is 7-fold faster from LFABP to phospholipid membranes than from membranes to membranes and occurs by an aqueous diffusion mechanism. These results provide strong support for monoacylglycerol as a physiological ligand for LFABP and further suggest that LFABP functions in the efficient intracellular transport of MG. PMID:23658011

  5. Thyroxine binding to serum thyronine-binding globulin in thyroidectomized adult and normal neonatal rats

    International Nuclear Information System (INIS)

    The amount of tracer [125I]T4 bound to serum thyronine-binding globulin (TBG) was measured by polyacrylamide gel electrophoresis in adult thyroidectomized (TX) rats and normal 1-day to 4-week-old rat puts. Thyroidectomy was associated with the appearance of significant amounts of [125I]T4 binding to serum TBG in lean rats, but not in obese Zucker rats. Treatment of the TX rats in vivo with replacement doses of T4 prevented this increase in TBG binding, but enrichment of serum from TX rats with T4 did not. Significant amounts of tracer [125I]T4 binding to TBG was present in serum from 1- to 3-week-old normal rat pups, but not in 1-day- or 4-week-old pups. There were significantly higher levels of TBG binding of [125I]T4 in serum from 2-week-old rat pups raised in litters of 16 pups compared to those raised in litters of 4 pups. All manipulations that result in the appearance of TBG in rat serum also result in either weight loss or a slowing in the rate of growth, suggesting that the appearance of TBG in rat serum has a nutritional component. This possibility is further supported by the observations that increases in TBG binding of [125I]T4 are not found in obese Zucker rats fed a low protein-high carbohydrate diet for 14 days or fasted for 7 days, or after thyroidectomy, perhaps owing to the large stores of fuel in the obese rat

  6. Metal ion binding to iron oxides

    Science.gov (United States)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  7. DNA and RNA Quadruplex-Binding Proteins

    Directory of Open Access Journals (Sweden)

    Václav Brázda

    2014-09-01

    Full Text Available Four-stranded DNA structures were structurally characterized in vitro by NMR, X-ray and Circular Dichroism spectroscopy in detail. Among the different types of quadruplexes (i-Motifs, minor groove quadruplexes, G-quadruplexes, etc., the best described are G-quadruplexes which are featured by Hoogsteen base-paring. Sequences with the potential to form quadruplexes are widely present in genome of all organisms. They are found often in repetitive sequences such as telomeric ones, and also in promoter regions and 5' non-coding sequences. Recently, many proteins with binding affinity to G-quadruplexes have been identified. One of the initially portrayed G-rich regions, the human telomeric sequence (TTAGGGn, is recognized by many proteins which can modulate telomerase activity. Sequences with the potential to form G-quadruplexes are often located in promoter regions of various oncogenes. The NHE III1 region of the c-MYC promoter has been shown to interact with nucleolin protein as well as other G-quadruplex-binding proteins. A number of G-rich sequences are also present in promoter region of estrogen receptor alpha. In addition to DNA quadruplexes, RNA quadruplexes, which are critical in translational regulation, have also been predicted and observed. For example, the RNA quadruplex formation in telomere-repeat-containing RNA is involved in interaction with TRF2 (telomere repeat binding factor 2 and plays key role in telomere regulation. All these fundamental examples suggest the importance of quadruplex structures in cell processes and their understanding may provide better insight into aging and disease development.

  8. Triazatriangulene as binding group for molecular electronics

    DEFF Research Database (Denmark)

    Wei, Zhongming; Wang, Xintai; Borges, Anders;

    2014-01-01

    The triazatriangulene (TATA) ring system was investigated as a binding group for tunnel junctions of molecular wires on gold surfaces. Self-assembled monolayers (SAMs) of TATA platforms with three different lengths of phenylene wires were fabricated, and their electrical conductance was recorded by...... platform displays a contact resistance only slightly larger than the thiols. This surprising finding has not been reported before and was analyzed by theoretical computations of the transmission functions of the TATA anchored molecular wires. The relatively low contact resistance of the TATA platform along...

  9. Defining Starch Binding by Glucan Phosphatases

    DEFF Research Database (Denmark)

    Auger, Kyle; Raththagala, Madushi; Wilkens, Casper;

    2015-01-01

    Starch is a vital energy molecule in plants that has a wide variety of uses in industry, such as feedstock for biomaterial processing and biofuel production. Plants employ a three enzyme cyclic process utilizing kinases, amylases, and phosphatases to degrade starch in a diurnal manner. Starch is...... comprised of the branched glucan amylopectin and the more linear glucan amylose. Our lab has determined the first structures of these glucan phosphatases and we have defined their enzymatic action. Despite this progress, we lacked a means to quickly and efficiently quantify starch binding to glucan...

  10. Systematic Calculations of Total Atomic Binding Energies

    International Nuclear Information System (INIS)

    We have calculated total atomic binding energies of 3- to 91-electron ions of all atoms with Z=3 to 118, in the Dirac-Fock model, for applications to atomic mass determination from highly-charged ions. In this process we have determined the ground-state configuration of many ions for which it was not known. We also provide total electronic correlation including Breit correlation for iso-electronic series of beryllium, neon, magnesium and argon, using the multiconfiguration Dirac-Fock approach.

  11. Particles in motion driven by optical binding

    Czech Academy of Sciences Publication Activity Database

    Karásek, Vítězslav; Zemánek, Pavel

    Bellingham : SPIE, 2014, 944103:1-6. ISBN 9781628415568. ISSN 0277-786X. [Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics /19./. Jelenia Góra (PL), 08.09.2014-12.09.2014] R&D Projects: GA ČR GAP205/11/1687; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : optical binding * particles * scattering * optical micromanipulation * code division multiplexing * laser s Subject RIV: BH - Optics , Masers, Laser s

  12. Where metal ions bind in proteins.

    OpenAIRE

    Yamashita, M M; Wesson, L.; Eisenman, G.; Eisenberg, D.

    1990-01-01

    The environments of metal ions (Li+, Na+, K+, Ag+, Cs+, Mg2+, Ca2+, Mn2+, Cu2+, Zn2+) in proteins and other metal-host molecules have been examined. Regardless of the metal and its precise pattern of ligation to the protein, there is a common qualitative feature to the binding site: the metal is ligated by a shell of hydrophilic atomic groups (containing oxygen, nitrogen, or sulfur atoms) and this hydrophilic shell is embedded within a larger shell of hydrophobic atomic groups (containing car...

  13. Receptor binding studies of soft anticholinergic agents

    OpenAIRE

    Huang, Fenglei; Buchwald, Peter; Browne, Clinton E.; Farag, Hassan H.; Wu, Wnei-Mei; Ji, Fubao; Hochhaus, Guenther; Bodor, Nicholas

    2001-01-01

    Receptor binding studies were performed on 24 soft anticholinergic agents and 5 conventional anticholinergic agents using 4 cloned human muscarinic receptor subtypes. The measured pKi values of the soft anticholinergic agents ranged from 6.5 to 9.5, with the majority being in the range of 7.5 to 8.5. Strong correlation was observed between the pKis determined here and the pA2 values measured earlier in guinea pig ileum contraction assays. The corresponding correlation coefficients (r2) were 0...

  14. DNS and BIND on IPv6

    CERN Document Server

    Liu, Cricket

    2011-01-01

    If you're preparing to roll out IPv6 on your network, this concise book provides the essentials you need to support this protocol with DNS. You'll learn how DNS was extended to accommodate IPv6 addresses, and how you can configure a BIND name server to run on the network. This book also features methods for troubleshooting problems with IPv6 forward- and reverse-mapping, and techniques for helping islands of IPv6 clients communicate with IPv4 resources. Topics include: DNS and IPv6-Learn the structure and representation of IPv6 addresses, and the syntaxes of AAAA and PTR records in the ip6.a

  15. The metal binding properties of kraft lignin

    OpenAIRE

    Waltersson, Johanna

    2009-01-01

    There is a strong driving force to increase the competitiveness of the pulping industry by finding new business opportunities. In this context full utilisation of the wood raw material used in conventional pulping mills is of vital importance. One focus area is to increase the utilisation areas of lignin. LignoBoost is a new method to obtain kraft lignin of high purity. The aim of the project was to investigate and increase the ability of LignoBoost kraft lignins to bind metals in aqueous sol...

  16. Binding of Glutamate to the Umami Receptor

    OpenAIRE

    Lopez Cacales, J.; Oliviera Costa, S.; de Groot, B.; Walters, D

    2010-01-01

    Abstract The umami taste receptor is a heterodimer composed of two members of the T1R taste receptor family: T1R1 and T1R3. It detects glutamate in humans, and is a more general amino acid detector in other species. We have constructed homology models of the ligand binding domains of the human umami receptor (based on crystallographic structures of the metabotropic glutamate receptor of the central nervous system). We have carried out molecular dynamics simulations of the ligand bi...

  17. Binding of Actinomyces naeslundii to glycosphingolipids.

    OpenAIRE

    Brennan, M J; Joralmon, R A; Cisar, J O; Sandberg, A L

    1987-01-01

    The type 2 fimbrial lectin of Actinomyces naeslundii WVU45 mediated the binding of this bacterium to glycosphingolipids chromatographed on thin-layer silica gel plates. Radioiodinated bacteria attached to GM1, GD1b, and globoside. After chromatograms were treated with sialidase, the bacteria also bound to GD1a and GT1b. The actinomyces lectin apparently recognized the Gal beta 3GalNAc termini of these gangliosides and the GalNAc beta 3Gal terminus of globoside, suggesting that glycolipids con...

  18. The complex interplay between ligand binding and conformational structure of the folate binding protein (folate receptor)

    DEFF Research Database (Denmark)

    Holm, Jan; Bruun, Susanne Wrang; Hansen, Steen I.

    2015-01-01

    folate, probably due to shielding of binding sites between interacting hydrophobic patches. Titration with folate removes apo-monomers, favoring dissociation of self-associated apo-FBP into apo-monomers. Folate anchors to FBP through a network of hydrogen bonds and hydrophobic interactions, and the...... binding induces a conformational change with formation of hydrophilic and stable holo-FBP. Holo-FBP exhibits a ligand-mediated concentration-dependent self-association into multimers of great thermal and chemical stability due to strong intermolecular forces. Both ligand and FBP are thus protected against...

  19. Binding characterization, synthesis and biological evaluation of RXRα antagonists targeting the coactivator binding site.

    Science.gov (United States)

    Xu, Dingyu; Guo, Shangjie; Chen, Ziwen; Bao, Yuzhou; Huang, Fengyu; Xu, Dan; Zhang, Xindao; Zeng, Zhiping; Zhou, Hu; Zhang, Xiaokun; Su, Ying

    2016-08-15

    Previously we identified the first retinoid X receptor-alpha (RXRα) modulators that regulate the RXRα biological function via binding to the coregulator-binding site. Here we report the characterization of the interactions between the hit molecule and RXRα through computational modeling, mutagenesis, SAR and biological evaluation. In addition, we reported studies of additional new compounds and identified a molecule that mediated the NF-κB pathway by inhibiting the TNFα-induced IκBα degradation and p65 nuclear translocation. PMID:27450787

  20. The species-specific RNA polymerase I transcription factor SL-1 binds to upstream binding factor.

    OpenAIRE

    Hempel, W M; Cavanaugh, A H; Hannan, R D; Taylor, L.; Rothblum, L I

    1996-01-01

    Transcription of the 45S rRNA genes is carried out by RNA polymerase I and at least two trans-acting factors, upstream binding factor (UBF) and SL-1. We have examined the hypothesis that SL-1 and UBF interact. Coimmunoprecipitation studies using an antibody to UBF demonstrated that TATA-binding protein, a subunit of SL-1, associates with UBF in the absence of DNA. Inclusion of the detergents sodium dodecyl sulfate and deoxycholate disrupted this interaction. In addition, partially purified UB...

  1. A unique bivalent binding and inhibition mechanism by the yatapoxvirus interleukin 18 binding protein.

    Directory of Open Access Journals (Sweden)

    Brian Krumm

    Full Text Available Interleukin 18 (IL18 is a cytokine that plays an important role in inflammation as well as host defense against microbes. Mammals encode a soluble inhibitor of IL18 termed IL18 binding protein (IL18BP that modulates IL18 activity through a negative feedback mechanism. Many poxviruses encode homologous IL18BPs, which contribute to virulence. Previous structural and functional studies on IL18 and IL18BPs revealed an essential binding hot spot involving a lysine on IL18 and two aromatic residues on IL18BPs. The aromatic residues are conserved among the very diverse mammalian and poxviruses IL18BPs with the notable exception of yatapoxvirus IL18BPs, which lack a critical phenylalanine residue. To understand the mechanism by which yatapoxvirus IL18BPs neutralize IL18, we solved the crystal structure of the Yaba-Like Disease Virus (YLDV IL18BP and IL18 complex at 1.75 Å resolution. YLDV-IL18BP forms a disulfide bonded homo-dimer engaging IL18 in a 2∶2 stoichiometry, in contrast to the 1∶1 complex of ectromelia virus (ECTV IL18BP and IL18. Disruption of the dimer interface resulted in a functional monomer, however with a 3-fold decrease in binding affinity. The overall architecture of the YLDV-IL18BP:IL18 complex is similar to that observed in the ECTV-IL18BP:IL18 complex, despite lacking the critical lysine-phenylalanine interaction. Through structural and mutagenesis studies, contact residues that are unique to the YLDV-IL18BP:IL18 binding interface were identified, including Q67, P116 of YLDV-IL18BP and Y1, S105 and D110 of IL18. Overall, our studies show that YLDV-IL18BP is unique among the diverse family of mammalian and poxvirus IL-18BPs in that it uses a bivalent binding mode and a unique set of interacting residues for binding IL18. However, despite this extensive divergence, YLDV-IL18BP binds to the same surface of IL18 used by other IL18BPs, suggesting that all IL18BPs use a conserved inhibitory mechanism by blocking a putative receptor-binding

  2. Specific albumin binding to microvascular endothelium in culture

    International Nuclear Information System (INIS)

    The specific binding of rat serum albumin (RSA) to confluent microvascular endothelial cells in culture derived from the vasculature of the rat epididymal fat pad was studied at 4 degree C by radioassay and immunocytochemistry. Radioiodinated RSA (125I-RSA) binding to the cells reached equilibrium at ∼ 20 min incubation. Albumin binding was a slowly saturating function over concentrations ranging from 0.01 to 50 mg/ml. Specific RSA binding with a moderate apparent affinity constant of 1.0 mg/ml and with a maximum binding concentration of 90 ng/cm2 was immunolocalized with anti-RSA antibody to the outer (free) side of the enothelium. Scatchard analysis of the binding yielded a nonlinear binding curve with a concave-upward shape. Dissociation rate analysis supports negative cooperativity of albumin binding, but multiple binding sites may also be present. Albumin binding fulfilled many requirements for ligand specificity including saturability, reversibility, competibility, and dependence on both cell type and cell number. The results are discussed in terms of past in situ investigations on the localization of albumin binding to vascular endothelium and its effect on transendothelial molecular transport

  3. Structural Analysis of Botulinum Neurotoxin Type G Receptor Binding

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, John; Karalewitz, Andrew; Benefield, Desire A.; Mushrush, Darren J.; Pruitt, Rory N.; Spiller, Benjamin W.; Barbieri, Joseph T.; Lacy, D. Borden (Vanderbilt); (MCW)

    2010-10-19

    Botulinum neurotoxin (BoNT) binds peripheral neurons at the neuromuscular junction through a dual-receptor mechanism that includes interactions with ganglioside and protein receptors. The receptor identities vary depending on BoNT serotype (A-G). BoNT/B and BoNT/G bind the luminal domains of synaptotagmin I and II, homologous synaptic vesicle proteins. We observe conditions under which BoNT/B binds both Syt isoforms, but BoNT/G binds only SytI. Both serotypes bind ganglioside G{sub T1b}. The BoNT/G receptor-binding domain crystal structure provides a context for examining these binding interactions and a platform for understanding the physiological relevance of different Syt receptor isoforms in vivo.

  4. Cooperative binding modes of Cu(II) in prion protein

    Science.gov (United States)

    Hodak, Miroslav; Chisnell, Robin; Lu, Wenchang; Bernholc, Jerry

    2007-03-01

    The misfolding of the prion protein, PrP, is responsible for a group of neurodegenerative diseases including mad cow disease and Creutzfeldt-Jakob disease. It is known that the PrP can efficiently bind copper ions; four high-affinity binding sites located in the octarepeat region of PrP are now well known. Recent experiments suggest that at low copper concentrations new binding modes, in which one copper ion is shared between two or more binding sites, are possible. Using our hybrid Thomas-Fermi/DFT computational scheme, which is well suited for simulations of biomolecules in solution, we investigate the geometries and energetics of two, three and four binding sites cooperatively binding one copper ion. These geometries are then used as inputs for classical molecular dynamics simulations. We find that copper binding affects the secondary structure of the PrP and that it stabilizes the unstructured (unfolded) part of the protein.

  5. A structure-based model for predicting serum albumin binding.

    Directory of Open Access Journals (Sweden)

    Katrina W Lexa

    Full Text Available One of the many factors involved in determining the distribution and metabolism of a compound is the strength of its binding to human serum albumin. While experimental and QSAR approaches for determining binding to albumin exist, various factors limit their ability to provide accurate binding affinity for novel compounds. Thus, to complement the existing tools, we have developed a structure-based model of serum albumin binding. Our approach for predicting binding incorporated the inherent flexibility and promiscuity known to exist for albumin. We found that a weighted combination of the predicted logP and docking score most accurately distinguished between binders and nonbinders. This model was successfully used to predict serum albumin binding in a large test set of therapeutics that had experimental binding data.

  6. Binding of Diphtheria Toxin to Phospholipids in Liposomes

    Science.gov (United States)

    Alving, Carl R.; Iglewski, Barbara H.; Urban, Katharine A.; Moss, Joel; Richards, Roberta L.; Sadoff, Jerald C.

    1980-04-01

    Diphtheria toxin bound to the phosphate portion of some, but not all, phospholipids in liposomes. Liposomes consisting of dimyristoyl phosphatidylcholine and cholesterol did not bind toxin. Addition of 20 mol% (compared to dimyristoyl phosphatidylcholine) of dipalmitoyl phosphatidic acid, dicetyl phosphate, phosphatidylinositol phosphate, cardiolipin, or phosphatidylserine in the liposomes resulted in substantial binding of toxin. Inclusion of phosphatidylinositol in dimyristol phosphatidylcholine / cholesterol liposomes did not result in toxin binding. The calcium salt of dipalmitoyl phosphatidic acid was more effective than the sodium salt, and the highest level of binding occurred with liposomes consisting only of dipalmitoyl phosphatidic acid (calcium salt) and cholesterol. Binding of toxin to liposomes was dependent on pH, and the pattern of pH dependence varied with liposomes having different compositions. Incubation of diphtheria toxin with liposomes containing dicetyl phosphate resulted in maximal binding at pH 3.6, whereas binding to liposomes containing phosphatidylinositol phosphate was maximal above pH 7. Toxin did not bind to liposomes containing 20 mol% of a free fatty acid (palmitic acid) or a sulfated lipid (3-sulfogalactosylceramide). Toxin binding to dicetyl phosphate or phosphatidylinositol phosphate was inhibited by UTP, ATP, phosphocholine, or p-nitrophenyl phosphate, but not by uracil. We conclude that (a) diphtheria toxin binds specifically to the phosphate portion of certain phospholipids, (b) binding to phospholipids in liposomes is dependent on pH, but is not due only to electrostatic interaction, and (c) binding may be strongly influenced by the composition of adjacent phospholipids that do not bind toxin. We propose that a minor membrane phospholipid (such as phosphatidylinositol phosphate or phosphatidic acid), or that some other phosphorylated membrane molecule (such as a phosphoprotein) may be important in the initial binding of

  7. An aprotinin binding site localized in the hormone binding domain of the estrogen receptor from calf uterus.

    Science.gov (United States)

    Nigro, V; Medici, N; Abbondanza, C; Minucci, S; Moncharmont, B; Molinari, A M; Puca, G A

    1990-07-31

    It has been proposed that the estrogen receptor bears proteolytic activity responsible for its own transformation. This activity was inhibited by aprotinin. Incubation of transformed ER with aprotinin modified the proteolytic digestion of the hormone binding subunit by proteinase K. The smallest hormone-binding fragment of the ER, obtained by tryptic digestion, was still able to bind to aprotinin. These results suggest that aprotinin interacts with ER and the hormone-binding domain of ER is endowed with a specific aprotinin-binding site. PMID:1696480

  8. Knowledge-based fragment binding prediction.

    Science.gov (United States)

    Tang, Grace W; Altman, Russ B

    2014-04-01

    Target-based drug discovery must assess many drug-like compounds for potential activity. Focusing on low-molecular-weight compounds (fragments) can dramatically reduce the chemical search space. However, approaches for determining protein-fragment interactions have limitations. Experimental assays are time-consuming, expensive, and not always applicable. At the same time, computational approaches using physics-based methods have limited accuracy. With increasing high-resolution structural data for protein-ligand complexes, there is now an opportunity for data-driven approaches to fragment binding prediction. We present FragFEATURE, a machine learning approach to predict small molecule fragments preferred by a target protein structure. We first create a knowledge base of protein structural environments annotated with the small molecule substructures they bind. These substructures have low-molecular weight and serve as a proxy for fragments. FragFEATURE then compares the structural environments within a target protein to those in the knowledge base to retrieve statistically preferred fragments. It merges information across diverse ligands with shared substructures to generate predictions. Our results demonstrate FragFEATURE's ability to rediscover fragments corresponding to the ligand bound with 74% precision and 82% recall on average. For many protein targets, it identifies high scoring fragments that are substructures of known inhibitors. FragFEATURE thus predicts fragments that can serve as inputs to fragment-based drug design or serve as refinement criteria for creating target-specific compound libraries for experimental or computational screening. PMID:24762971

  9. Xylanase inhibitors bind to nonstarch polysaccharides.

    Science.gov (United States)

    Fierens, Ellen; Gebruers, Kurt; Courtin, Christophe M; Delcour, Jan A

    2008-01-23

    This study is an in-depth investigation of the interaction between polysaccharides and the proteinaceous xylanase inhibitors, Triticum aestivum xylanase inhibitor (TAXI), xylanase inhibitor protein (XIP), and thaumatin-like xylanase inhibitor (TLXI). The binding affinities of all three known types of xylanase inhibitors from wheat are studied by measuring the residual xylanase inhibition activity after incubation of the inhibitors in the presence of different polysaccharides, such as beta-glucans and (arabino)xylans. The binding affinities of all three xylanase inhibitors for (arabino)xylans increased with a decreasing arabinose/xylose ratio (A/X ratio). This phenomenon was observed both with water-extractable and water-unextractable (arabino)xylans. The inhibitors also interacted with different soluble and insoluble beta-glucans. None of the inhibitors tested had the ability to hydrolyze the polysaccharides investigated. The present findings contribute to the unraveling of the function of xylanase inhibitors in nature and to the prediction of the effect of added xylanases in cereal-based biotechnological processes, such as bread making and gluten-starch separation. PMID:18092758

  10. Reflection-Based Python-C++ Bindings

    International Nuclear Information System (INIS)

    Python is a flexible, powerful, high-level language with excellent interactive and introspective capabilities and a very clean syntax. As such, it can be a very effective tool for driving physics analysis. Python is designed to be extensible in low-level C-like languages, and its use as a scientific steering language has become quite widespread. To this end, existing and custom-written C or C++ libraries are bound to the Python environment as so-called extension modules. A number of tools for easing the process of creating such bindings exist, such as SWIG and Boost. Python. Yet, the process still requires a considerable amount of effort and expertise. The C++ language has few built-in introspective capabilities, but tools such as LCGDict and CINT add this by providing so-called dictionaries: libraries that contain information about the names, entry points, argument types, etc. of other libraries. The reflection information from these dictionaries can be used for the creation of bindings and so the process can be fully automated, as dictionaries are already provided for many end-user libraries for other purposes, such as object persistency. PyLCGDict is a Python extension module that uses LCG dictionaries, as PyROOT uses CINT reflection information, to allow /cwPython users to access C++ libraries with essentially no preparation on the users' behalf. In addition, and in a similar way, PyROOT gives ROOT users access to Python libraries

  11. Specific binding assay technique; standardization of reagent

    International Nuclear Information System (INIS)

    The standardization of a labelled constituent, such as anti-IgE, for use in a specific binding assay method is disclosed. A labelled ligand, such as IgE, is standardized against a ligand reference substance, such as WHO standard IgE, to determine the weight of IgE protein represented by the labelled ligand. Anti-light chain antibodies are contacted with varying concentrations of the labelled ligand. The ligand is then contacted with the labelled constituent which is then quantitated in relation to the amount of ligand protein present. The preparation of 131I-labelled IgE is described. Also disclosed is an improved specific binding assay test method for determining the potency of an allergen extract in serum from an allergic individual. The improvement involved using a parallel model system of a second complex which consisted of anti-light chain antibodies, labelled ligand and the standardized labelled constituent (anti-IgE). The amount of standardized labelled constituent bound to the ligand in the first complex was determined, as described above, and the weight of ligand inhibited by addition of soluble allergen was then used as a measure of the potency of the allergen extract. (author)

  12. Grafting of protein-protein binding sites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A strategy for grafting protein-protein binding sites is described. Firstly, key interaction residues at the interface of ligand protein to be grafted are identified and suitable positions in scaffold protein for grafting these key residues are sought. Secondly, the scaffold proteins are superposed onto the ligand protein based on the corresponding Ca and Cb atoms. The complementarity between the scaffold protein and the receptor protein is evaluated and only matches with high score are accepted. The relative position between scaffold and receptor proteins is adjusted so that the interface has a reasonable packing density. Then the scaffold protein is mutated to corresponding residues in ligand protein at each candidate position. And the residues having bad steric contacts with the receptor proteins, or buried charged residues not involved in the formation of any salt bridge are mutated. Finally, the mutated scaffold protein in complex with receptor protein is co-minimized by Charmm. In addition, we deduce a scoring function to evaluate the affinity between mutated scaffold protein and receptor protein by statistical analysis of rigid binding data sets.

  13. Ligand binding studies in the mouse olfactory bulb: identification and characterisation of a L-[3H]carnosine binding site

    International Nuclear Information System (INIS)

    Binding sites for the dipeptide L-carnosine (β-alanyl-t-histidine) have been detected in membranes prepared from mouse olfactory bulbs. The binding of L-[3H]- carnosine was saturable, reversible and stereospecific and had a Ksub(d) of about 770 nM. The stereospecific binding of L-carnosine represented about 30% of the totoal binding at pH 6.8, and decreased markedly with increasing pH. Binding was stimulated by calcium, unaffected by zinc, magnesium or manganese and inhibted by sodium and potassium. Carnosine binding was sensitive to trypsin and phospholipases A and C, but not to neuraminidase. Nystatin and filipin, which interact with membrane lipids, also interfered with binding. Some peptide analogues of carnosine were potent inhibitors of binding, but a variety of drugs serving as potent inhibitors in other binding systems had no effect on carnosine binding. Carnosine binding to mouse olfactory bulb membranes was 15-fold higher than that seen in membranes prepared from cerebral hemispheres, 5-fold higher than in cerebellum membranes and 3-fold higher than in membranes from spinal medulla and the olfactory tubercle-lateral olfactory tract area. (Auth.)

  14. Characterization of nicotine binding in mouse brain and comparison with the binding of alpha-bungarotoxin and quinuclidinyl benzilate

    International Nuclear Information System (INIS)

    The binding of [3H]nicotine to mouse brain has been measured and subsequently compared with the binding of [125I]alpha-bungarotoxin (alpha-BTX) and L-[3H]quinuclidinyl benzilate (QNB). The binding of nicotine was saturable, reversible, and stereospecific. The average KD and Bmax were 59 nM and 88 fmoles/mg of protein, respectively. Although the rates of association and dissociation of nicotine were temperature-dependent, the incubation temperature had no effect on either KD or Bmax. When measured at 20 degrees or 37 degrees, nicotine appeared to bind to a single class of binding sites, but a second, very low-affinity, binding site was observed at 4 degrees. Nicotine binding was unaffected by the addition of NaCl, KCl, CaCl2, or MgSO4 to the incubation medium. Nicotinic cholinergic agonists were potent inhibitors of nicotine binding; however, nicotinic antagonists were poor inhibitors. The regional distribution of binding was not uniform: midbrain and striatum contained the highest number of receptors, whereas cerebellum had the fewest. Differences in site densities, regional distribution, inhibitor potencies, and thermal denaturation indicated that nicotine binding was not the same as either QNB or alpha-BTX binding, and therefore that receptors for nicotine may represent a unique population of cholinergic receptors

  15. Binding modes of thrombin binding aptamers investigated by simulations and experiments

    Science.gov (United States)

    Trapaidze, A.; Bancaud, A.; Brut, M.

    2015-01-01

    Thrombin binding aptamers HD1 and HD22 are the most studied aptamers, both for therapeutic and sensing purposes. Yet, there is still no commercialized aptamer-based sensor device for thrombin detection, suggesting that the binding modes of these aptamers remain to be precisely described. Here, we investigate thrombin-aptamer interactions with molecular dynamics simulations, and show that the different solved structures of HD1-thrombin complex are energetically similar and consequently possibly co-existing. Conversely, HD22 folding is much more stable, and its binding energy with thrombin is significantly larger than that of HD1 complexes. These results are confronted to experiments, which consist in monitoring aggregation of aptamer-functionalized gold nanoparticles triggered by thrombin. HD1 alone, but not HD22, can trigger aggregation, meaning that this aptamer has multiple sites of interactions with thrombin. Furthermore, pre-incubation of HD22 with thrombin impedes HD1 aggregation, suggesting that HD1 and HD22 have competing affinities for the same binding site. Altogether, this study shows that the characterization of aptamer-thrombin interactions by structural and kinetic experiments joined to simulations is necessary for the development of biosensors.

  16. The RNA binding domain of Pumilio antagonizes poly-adenosine binding protein and accelerates deadenylation

    OpenAIRE

    Weidmann, Chase A.; Raynard, Nathan A.; Blewett, Nathan H.; Van Etten, Jamie; Goldstrohm, Aaron C.

    2014-01-01

    This article analyzes the mechanism by which Pumilio represses the translation of its targets. The results show, rather surprisingly, that promotion of deadenylation is not required for expression. Instead, Pumilio interacts with poly(A) binding protein and somehow interferes with its activity.

  17. Structure of the RNA-Binding Domain of Telomerase: Implications For RNA Recognition and Binding

    Energy Technology Data Exchange (ETDEWEB)

    Rouda,S.; Skordalakes, E.

    2007-01-01

    Telomerase, a ribonucleoprotein complex, replicates the linear ends of eukaryotic chromosomes, thus taking care of the 'end of replication problem.' TERT contains an essential and universally conserved domain (TRBD) that makes extensive contacts with the RNA (TER) component of the holoenzyme, and this interaction is thought to facilitate TERT/TER assembly and repeat-addition processivity. Here, we present a high-resolution structure of TRBD from Tetrahymena thermophila. The nearly all-helical structure comprises a nucleic acid-binding fold suitable for TER binding. An extended pocket on the surface of the protein, formed by two conserved motifs (CP and T motifs) comprises TRBD's RNA-binding pocket. The width and the chemical nature of this pocket suggest that it binds both single- and double-stranded RNA, possibly stem I, and the template boundary element (TBE). Moreover, the structure provides clues into the role of this domain in TERT/TER stabilization and telomerase repeat-addition processivity.

  18. Cooperative binding of copper(I) to the metal binding domains in Menkes disease protein

    DEFF Research Database (Denmark)

    Jensen, P Y; Bonander, N; Møller, L B;

    1999-01-01

    We have optimised the overexpression and purification of the N-terminal end of the Menkes disease protein expressed in Escherichia coli, containing one, two and six metal binding domains (MBD), respectively. The domain(s) have been characterised using circular dichroism (CD) and fluorescence spec...

  19. The TRPV5/6 calcium channels contain multiple calmodulin binding sites with differential binding properties.

    NARCIS (Netherlands)

    Kovalevskaya, N.V.; Bokhovchuk, F.M.; Vuister, G.W.

    2012-01-01

    The epithelial Ca(2+) channels TRPV5/6 (transient receptor potential vanilloid 5/6) are thoroughly regulated in order to fine-tune the amount of Ca(2+) reabsorption. Calmodulin has been shown to be involved into calcium-dependent inactivation of TRPV5/6 channels by binding directly to the distal C-t

  20. Palmitate and stearate binding to human serum albumin. Determination of relative binding constants

    DEFF Research Database (Denmark)

    Vorum, H; Fisker, K; Honoré, B

    1997-01-01

    Multiple binding equilibria of two apparently insoluble ligands, palmitate and stearate, to defatted human serum albumin were studied in a 66 mM sodium phosphate buffer (pH 7.4) at 37 degrees C, by determination of dialytic exchange rates of ligands among identical equilibrium solutions. The expe...