WorldWideScience

Sample records for agriculture soil conservation

  1. Conservation agriculture & soil health: The US perspective

    OpenAIRE

    Idol, Travis

    2012-01-01

    The purpose of this presentation was to give a history and current status of soil conservation and conservation agriculture. It discusses soil quality indicators and gave recommendations for policies and practices, including adoption of conservation agriculture production systems that can help conserve soil and maintain agricultural productivity, especially on degraded farmland. LTRA-11 (CAPS among tribal societies in India and Nepal)

  2. Conservation agriculture effects on soil pore characteristics

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Abdollahi, Lotfollah

    Conservation tillage in combination with crop rotation, residue management and cover crops are key components of conservation agriculture. A positive long-term effect of applying all components of conservation agriculture on soil structural quality is expected. However, there is a lack...... ploughing to a depth of 20 cm (MP), harrowing to a depth of 8-10 cm (H) and direct drilling (D). Minimally disturbed core samples were taken at 4-8, 12-16 and 18-27 cm depths 11 years after experimental start. Water retention characteristics were measured for a range of matric potential ranging from -10...... air permeability and pore continuity index. Generally, residue input, especially when combined with direct drilling at the Foulum site, decreased bulk density and the volume of blocked air porosity, and increased air-filled porosity, volumetric water content, air permeability and gas diffusivity. Our...

  3. Soil carbon and soil respiration in conservation agriculture with vegetables in Siem Reap, Cambodia

    Science.gov (United States)

    A balance between food production and environmental protection is required to sustainably feed a growing population. The resource saving concept of conservation agriculture aims to achieve this balance through implementing simultaneously three conservation practices; no-till, continuous soil cover, ...

  4. Knowledge, conservation and sustainable use of soil: agricultural chemistry aspects

    Directory of Open Access Journals (Sweden)

    Paola Adamo

    2011-02-01

    Full Text Available Soil is an environmental resource and plays ecological, social and economic functions which are fundamental for the life. To guarantee its availability to future generations, soil resource needs sustainable management. The CEC Thematic Strategy for Soil Protection identifies a series of soil degradation processes or threats, which must be identified and combated. These include erosion, decline in organic matter, local and diffuse contamination, sealing, compaction, decline in biodiversity, salinisation, floods and landslides. With respect to management of contamination with potentially toxic elements, an approach based on the identification and quantification of the various forms or, at least, the main pools, in which contaminants occur in soil, is envisaged. The residence time of an element in soil depends, indeed, by the mobility of its predominant forms. Speciation studies provide information on the mobility and biological availability of contaminants, and seek to assess not simply the contamination level, but rather the risk/toxicity of a polluted soil and to predict its reduction after application of remediation techniques. Soil degradation is often associated with a decrease in the organic matter content, mainly caused by soil use change and global warming. Improving the accumulation of organic matter in soil or contrasting its reduction has positive effects on soil and water quality, crop yields, biodiversity and climate leading to a reduction of green-house gas emissions from soil to the atmosphere. In order to obtain a real accumulation of organic matter in soil, it is not sufficient to temporarily increase its total content, but it is necessary to favour the main processes which govern organic matter stabilization. This requires an approach at both molecular and multidisciplinary level. The reforestation of agricultural and highly degraded soils or conservative agronomic practices, such as the use of humified compounds characterized by

  5. Knowledge, conservation and sustainable use of soil: agricultural chemistry aspects

    Directory of Open Access Journals (Sweden)

    Paola Adamo

    2009-10-01

    Full Text Available Soil is an environmental resource and plays ecological, social and economic functions which are fundamental for the life. To guarantee its availability to future generations, soil resource needs sustainable management. The CEC Thematic Strategy for Soil Protection identifies a series of soil degradation processes or threats, which must be identified and combated. These include erosion, decline in organic matter, local and diffuse contamination, sealing, compaction, decline in biodiversity, salinisation, floods and landslides. With respect to management of contamination with potentially toxic elements, an approach based on the identification and quantification of the various forms or, at least, the main pools, in which contaminants occur in soil, is envisaged. The residence time of an element in soil depends, indeed, by the mobility of its predominant forms. Speciation studies provide information on the mobility and biological availability of contaminants, and seek to assess not simply the contamination level, but rather the risk/toxicity of a polluted soil and to predict its reduction after application of remediation techniques. Soil degradation is often associated with a decrease in the organic matter content, mainly caused by soil use change and global warming. Improving the accumulation of organic matter in soil or contrasting its reduction has positive effects on soil and water quality, crop yields, biodiversity and climate leading to a reduction of green-house gas emissions from soil to the atmosphere. In order to obtain a real accumulation of organic matter in soil, it is not sufficient to temporarily increase its total content, but it is necessary to favour the main processes which govern organic matter stabilization. This requires an approach at both molecular and multidisciplinary level. The reforestation of agricultural and highly degraded soils or conservative agronomic practices, such as the use of humified compounds characterized by

  6. Multiple equilibria, soil conservation investments and the resilience of agricultural systems

    NARCIS (Netherlands)

    Antle, J.M.; Stoorvogel, J.J.; Valdivia, R.O.

    2006-01-01

    This paper provides a new explanation for the persistent land degradation in some parts of the world, despite the availability of seemingly effective soil conservation technologies.We demonstrate that soil conservation technologies may induce agricultural systems to exhibit equilibria characterized

  7. Impact of Soil Conservation Policies on Carbon Sequestration in Agricultural Soils of the Central United States (The)

    OpenAIRE

    Mitchell, Paul D.; P. G. Lakshminarayan; Toshitsugu Otake; Babcock, Bruce A.

    1996-01-01

    To evaluate the impact of conservation policies on soil organic carbon in agricultural soils, the authors link information from the 1992 National Resources Inventory (NRI) database and the extensive physical data on soils and climate from the SOILS5 database. These data serve as input for a biophysical process model calibrated for the conditions prevalent in the study region. Results indicate that reducing soil erosion, rather than removing land from agricultural production, is the most effec...

  8. Beyond conservation agriculture

    NARCIS (Netherlands)

    Giller, K.E.; Andersson, J.A.; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard

    2015-01-01

    Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and s

  9. Conservation agriculture increases soil organic carbon and residual water content in upland crop production systems

    Directory of Open Access Journals (Sweden)

    Victor B. Ella

    2016-01-01

    Full Text Available Conservation agriculture involves minimum soil disturbance, continuous ground cover, and diversified crop rotations or mixtures. Conservation agriculture production systems (CAPS have the potential to improve soil quality if appropriate cropping systems are developed. In this study, five CAPS including different cropping patterns and cover crops under two fertility levels, and a plow-based system as control, were studied in a typical upland agricultural area in northern Mindanao in the Philippines. Results showed that soil organic carbon (SOC at 0- 5-cm depth for all CAPS treatments generally increased with time while SOC under the plow-based system tended to decline over time for both the high (120, 60 and 60 kg N P K ha-1 and moderate (60-30-30 kg N P K ha-1 fertility levels. The cropping system with maize + Stylosanthes guianensis in the first year followed by Stylosanthes guianensis and fallow in the second year, and the cassava + Stylosanthes guianensis exhibited the highest rate of SOC increase for high and moderate fertility levels, respectively. After one, two, and three cropping seasons, plots under CAPS had significantly higher soil residual water content (RWC than under plow-based systems. Results of this study suggest that conservation agriculture has a positive impact on soil quality, while till systems negatively impact soil characteristics.

  10. Sustainable management and conservation of biota in agricultural soils of the Republic of Moldova

    OpenAIRE

    Senicovscaia, Irina

    2012-01-01

    In present research the ways and methods of the sustainable management and conservation of the soil biota in the modern agricultural ecosystems of the Republic of Moldova are considered. The database of invertebrates, microorganisms and enzymatic activities of different zonal soils in the long-term field experiments has been developed and constantly is updated with a view to the operative evaluation of the degradation processes and ecological effectiveness of the land management. The current ...

  11. Modeling the impact of conservation agriculture on crop production and soil properties in Mediterranean climate

    Science.gov (United States)

    Moussadek, Rachid; Mrabet, Rachid; Dahan, Rachid; Laghrour, Malika; Lembiad, Ibtissam; ElMourid, Mohamed

    2015-04-01

    In Morocco, rainfed agriculture is practiced in the majority of agricultural land. However, the intensive land use coupled to the irregular rainfall constitutes a serious threat that affect country's food security. Conservation agriculture (CA) represents a promising alternative to produce more and sustainably. In fact, the direct seeding showed high yield in arid regions of Morocco but its extending to other more humid agro-ecological zones (rainfall > 350mm) remains scarce. In order to promote CA in Morocco, differents trials have been installed in central plateau of Morocco, to compare CA to conventional tillage (CT). The yields of the main practiced crops (wheat, lentil and checkpea) under CA and CT were analyzed and compared in the 3 soils types (Vertisol, Cambisol and Calcisol). Also, we studied the effect of CA on soil organic matter (SOM) and soil losses (SL) in the 3 different sites. The APSIM model was used to model the long term impact of CA compared to CT. The results obtained in this research have shown favorable effects of CA on crop production, SOM and soil erosion. Key words: Conservation agriculture, yield, soil properties, modeling, APSIM, Morocco.

  12. Conservation agriculture and ecosystem services

    OpenAIRE

    Dillaha, Theo A.; Cheryl B. Heatwole Shenk; Moore, Keith M.

    2010-01-01

    Conservation agriculture has many agricultural and food security benefits. In addition, conservation agriculture has potential on- and off-site ecosystem service benefits that are the focus of this paper. Ecosystem services provided by conservation agriculture fall into three main categories: provisioning services such as increased food production; regulating services such as carbon sequestration and climate regulation, reducing losses of soil, pesticides, nutrients and other potential contam...

  13. Effects of Conservation Agriculture on Soil Physical Properties and Yield of Lentil in Northern Syria

    Science.gov (United States)

    Wahbi, Ammar; Miwak, Hisham; Singh, Raphy

    2014-05-01

    Conservation agriculture (CA) aims to achieve sustainable and profitable agriculture and subsequently improve livelihoods of farmers based on three main components, i.e. minimum or no tillage, retention of crop residues and use of crop rotation. However, to promote CA in semi-arid areas where precipitation is erratic, low, and falls over short periods in winter, its effects on soil and crop yield have to be investigated. The present study was conducted at the main research station of the International Center for Agricultural Research in the Dry Areas (ICARDA), Syria, during the agricultural season of 2010-2011, in the frame of a long term trial (2003-2011), where two treatments; i.e. conservation versus conventional agriculture (replicated twice), and six varieties of lentil (early, medium and late maturity genotypes; 2 each), selected from 100 varieties, were used. Soil samples were taken (before planting and after harvesting), to determine soil bulk density, particle density and total porosity. Aggregate stability was also determined using dry and wet sieving methods for the 0-15 cm soil depth, and the effective diameter of the aggregate was calculated for both treatments of conservation agriculture (CA) and conventional tillage (CT). Soil moisture was monitored in the top soil layer (0-15 cm) using Time Domain Reflectometry (TDR) on a weekly or two weekly-intervals. Soil moisture release curve was done for disturbed, 2 mm dry sieved soil at 0-15, 15-30, 30-45 and 45-60 cm depth using pressure plate chamber. Dry plant production (oven dry at 70°C) was estimated at the harvesting stage, and then threshed to estimate grain yield. CA showed higher (p = 0.001) soil moisture values than CT. The difference in volumetric soil moisture content between CA and CT during the studied period ranged from 20 to 30 %. Volumetric water content was higher for, CA compared with CT, at a given soil water potential especially at the lower pressure; this observation was consistent

  14. Effects of Conservation Agriculture and Fertilization on Soil Microbial Diversity and Activity

    Directory of Open Access Journals (Sweden)

    Johan Habig

    2015-07-01

    Full Text Available Soil microbial communities perform critical functions in ecosystem processes. These functions can be used to assess the impact of agricultural practices on sustainable crop production. In this five-year study, the effect of various agricultural practices on soil microbial diversity and activity was investigated in a summer rainfall area under South African dryland conditions. Microbial diversity and activity were measured in the 0–15 cm layer of a field trial consisting of two fertilizer levels, three cropping systems, and two tillage systems. Using the Shannon–Weaver and Evenness diversity indices, soil microbial species richness and abundance were measured. Microbial enzymatic activities: β-glucosidase, phosphatase and urease, were used to evaluate ecosystem functioning. Cluster analysis revealed a shift in soil microbial community diversity and activity over time. Microbial diversity and activity were higher under no-till than conventional tillage. Fertilizer levels seemed to play a minor role in determining microbial diversity and activity, whereas the cropping systems played a more important role in determining the activity of soil microbial communities. Conservation agriculture yielded the highest soil microbial diversity and activity in diversified cropping systems under no-till.

  15. Tailoring conservation agriculture technologies to West Africa semi-arid zones: Building on traditional local practices for soil restoration

    NARCIS (Netherlands)

    Lahmar, R.; Bationo, B.A.; Lamso, N.D.; Guéro, Y.; Tittonell, P.A.

    2012-01-01

    Low inherent fertility of tropical soils and degradation, nutrient deficiency and water stress are the key factors that hamper rainfed agriculture in semi-arid West Africa. Conservation Agriculture (CA) is currently promoted in the region as a technology to reduce soil degradation, mitigate the effe

  16. Beyond Conservation Agriculture

    Directory of Open Access Journals (Sweden)

    Ken E Giller

    2015-10-01

    Full Text Available Global support for Conservation Agriculture (CA as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance, soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals and biotechnology. Over the past ten years CA has been promoted among smallholder farmers in the (sub- tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture.

  17. Beyond conservation agriculture

    Science.gov (United States)

    Giller, Ken E.; Andersson, Jens A.; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard

    2015-01-01

    Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture. PMID:26579139

  18. Conservation Agriculture and Soil Carbon Sequestration; Between Myth and Farmer Reality

    International Nuclear Information System (INIS)

    Improving food security, environmental preservation and enhancing livelihood should be the main targets of the innovators of today's farming systems. Conservation agriculture (CA), based on minimum tillage, crop residue retention and crop rotations, has been proposed as an alternative system combining benefits for the farmer with advantages for the society. This paper reviews the potential impact of CA on C sequestration by synthesizing the knowledge of carbon and nitrogen cycling in agriculture, summarizing the influence of tillage, residue management and crop rotation on soil organic carbon stocks and compiling the existing case study information. To evaluate the C sequestration capacity of farming practices, their influence on emissions from farming activities should be considered together with their influence on soil C stocks. The largest contribution of CA to reducing emissions from farming activities is made by the reduction of tillage operations. The soil C case study results are not conclusive. In 7 of the 78 cases withheld, the soil C stock was lower in zero compared to conventional tillage, in 40 cases it was higher and in 31 of the cases there was no significant difference. The mechanisms that govern the balance between increased or no sequestration after conversion to zero tillage are not clear, although some factors that play a role can be distinguished e.g. root development and rhizodeposits, baseline soil C content, bulk density and porosity, climate, landscape position and erosion/deposition history. Altering crop rotation can influence soil C stocks by changing quantity and quality of organic matter input. More research is needed, especially in the tropical areas where good quantitative information is lacking. However, even if C sequestration is questionable in some areas and cropping systems, CA remains an important technology that improves soil processes, controls soil erosion and reduces tillage-related production costs. (author)

  19. Can conservation agriculture reduce the impact of soil erosion in northern Tunisia ?

    Science.gov (United States)

    Bahri, Haithem; Annabi, Mohamed; Chibani, Roukaya; Cheick M'Hamed, Hatem; Hermessi, Taoufik

    2016-04-01

    Mediterranean countries are prone to soil erosion, therefore Tunisia, with Mediterranean climate, is threatened by water erosion phenomena. In fact, 3 million ha of land is threatened by erosion, and 50% is seriously affected. Soils under conservation agriculture (CA) have high water infiltration capacities reducing significantly surface runoff and thus soil erosion. This improves the quality of surface water, reduces pollution from soil erosion, and enhances groundwater resources. CA is characterized by three interlinked principles, namely continuous minimum mechanical soil disturbance, permanent organic soil cover and diversification of crop species grown in sequence or associations. Soil aggregate stability was used as an indicator of soil susceptibility to water erosion. Since 1999, In Tunisia CA has been introduced in rainfed cereal areas in order to move towards more sustainable agricultural systems. CA areas increased from 52 ha in 1999 to 15000 ha in 2015. The objective of this paper is to study the effect of CA on soil erosion in northern Tunisia. Soil samples were collected at 10 cm of depth from 6 farmers' fields in northern Tunisia. Conventional tillage (CT), CA during less than 5 years (CA5 years) have been practiced in each farmers field experiment of wheat crop. Soil aggregate stability was evaluated according to the method described by Le Bissonnais (1996), results were expressed as a mean weight diameter (MWD); higher values of MWD indicate higher aggregate stability. Total organic carbon (TOC) was determined using the wet oxidation method of Walkley-Black. A significant increase in SOC content was observed in CA>5years (1.64 %) compared to CT (0.97 %). This result highlights the importance of CA to improve soil fertility. For aggregate stability, a net increase was observed in CA compared to CT. After 5 years of CA the MWD was increased by 16% (MWD=1.8 mm for CT and MWD=2.1 mm for CAconversion. A positive correlation was observed between aggregate

  20. Can conservation agriculture reduce the impact of soil erosion in northern Tunisia ?

    Science.gov (United States)

    Bahri, Haithem; Annabi, Mohamed; Chibani, Roukaya; Cheick M'Hamed, Hatem; Hermessi, Taoufik

    2016-04-01

    Mediterranean countries are prone to soil erosion, therefore Tunisia, with Mediterranean climate, is threatened by water erosion phenomena. In fact, 3 million ha of land is threatened by erosion, and 50% is seriously affected. Soils under conservation agriculture (CA) have high water infiltration capacities reducing significantly surface runoff and thus soil erosion. This improves the quality of surface water, reduces pollution from soil erosion, and enhances groundwater resources. CA is characterized by three interlinked principles, namely continuous minimum mechanical soil disturbance, permanent organic soil cover and diversification of crop species grown in sequence or associations. Soil aggregate stability was used as an indicator of soil susceptibility to water erosion. Since 1999, In Tunisia CA has been introduced in rainfed cereal areas in order to move towards more sustainable agricultural systems. CA areas increased from 52 ha in 1999 to 15000 ha in 2015. The objective of this paper is to study the effect of CA on soil erosion in northern Tunisia. Soil samples were collected at 10 cm of depth from 6 farmers' fields in northern Tunisia. Conventional tillage (CT), CA during less than 5 years (CA5 years) have been practiced in each farmers field experiment of wheat crop. Soil aggregate stability was evaluated according to the method described by Le Bissonnais (1996), results were expressed as a mean weight diameter (MWD); higher values of MWD indicate higher aggregate stability. Total organic carbon (TOC) was determined using the wet oxidation method of Walkley-Black. A significant increase in SOC content was observed in CA>5years (1.64 %) compared to CT (0.97 %). This result highlights the importance of CA to improve soil fertility. For aggregate stability, a net increase was observed in CA compared to CT. After 5 years of CA the MWD was increased by 16% (MWD=1.8 mm for CT and MWD=2.1 mm for CA<5years). No improvement of aggregate stability level was

  1. Soil conservation under climate change: use of recovery biomasses on agricultural soil subjected to the passage of agricultural machinery

    Science.gov (United States)

    Bergonzoli, S.; Beni, C.; Servadio, P.

    2012-04-01

    Biomass administration is a good practice to preserve the soil fertility in climate change conditions. A test regarding the use of compost derived by wine distillation residues was conducted in the coastal area sited west of Rome, on a sandy soil in continuous cropping with carrot, two cycles per year, with a consequent deep environmental impact. The soil was fertilized with different systems: T = unfertilized soil; F = fertigation 200 kg N ha-1; FC = fertigation 100 kg N ha-1 plus half agronomic dose of compost 4 t ha-1; C2 = double compost dose 16 t ha-1; C4 = quadruple compost dose 32 t ha-1. The functional qualities of the soil, subjected to the passage of agricultural machineries, were determined through the following parameters: bulk density, shear strength, water infiltration rate, organic matter and nitrogen content, cation exchange capacity. At the summer harvest, yield of carrots, their sugar content, firmness and nutrients concentration were determined. The plots only amended (C2 and C4), compared to other treatments, presented lower bulk density (1.36 and 1.28 Mg m-3 respectively), higher shear strength (9 and 8 kPa respectively), as well as increased hydraulic conductivity. In these treatments (C2 and C4), in addition, occurred a higher content of organic matter (0.95 and 1.07% respectively) and nitrogen (0.11 and 0.12% respectively) and increased CEC (541 and 556 respectively) respect to the T treatment that was 521 meq 100g-1. In plots T and F, the organic matter content was reduced at the end of the field test. The yield of carrots increased in FC, C2, and C4, compared to the other treatments. In plots C4, however, morphological changes were induced in approximately 30% of tap-roots, due to the excessive compost dose. In treatments C2 and C4 was observed a reduction of the concentration of Na in the roots, as opposed to the higher concentration of Ca and K and trace elements. The administration of compost has also induced the increase of soluble

  2. Effectiveness of conservation agriculture practices on soil erosion processes in semi-arid areas of Zimbabwe

    Science.gov (United States)

    Chikwari, Emmanuel; Mhaka, Luke; Gwandu, Tariro; Chipangura, Tafadzwa; Misi Manyanga, Amos; Sabastian Matsenyengwa, Nyasha; Rabesiranana, Naivo; Mabit, Lionel

    2016-04-01

    - The application of fallout radionuclides (FRNs) in soil erosion and redistribution studies has gained popularity since the late 1980s. In Zimbabwe, soil erosion research was mostly based on conventional methods which included the use of erosion plots for quantitative measurements and erosion models for predicting soil losses. Only limited investigation to explore the possibility of using Caesium-137 (Cs-137) has been reported in the early 1990s for undisturbed and cultivated lands in Zimbabwe. In this study, the Cs-137 technique was applied to assess the impact of soil conservation practices on soil losses and to develop strategies and support effective policies that help farmers in Zimbabwe for sustainable land management. The study was carried out at the Makoholi research station 30 km north of the Masvingo region which is located 260 km south of Harare. The area is semi-arid and the study site comprises coarse loamy sands, gleyic lixisols. The conservation agriculture (CA) practices used within the area since 1988 include (i) direct seeding (DS) with mulch, (ii) CA basins with mulch, and (iii) 18 years direct seeding, left fallow for seven years and turned into conventional tillage since 2012 (DS/F/C). The Cs-137 reference inventory was established at 214 ± 16 Bq/m2. The mean inventories for DS, CA basins and DS/F/C were 195, 190 and 214 Bq/m2 respectively. Using the conversion Mass Balance Model 2 on the Cs-137 data obtained along transects for each of the practices, gross erosion rates were found to be 7.5, 7.3 and 2.6 t/ha/yr for direct seeding, CA basins and the DS/F/C while the net erosion rates were found to be 3.8, 4.6 and 0 t/ha/yr respectively. Sediment delivery ratios were 50%, 63% and 2% in the respective order. These preliminary results showed the effectiveness of DS over CA basins in erosion control. The efficiency of fallowing in controlling excessive soil loss was significant in the plot that started as DS for 18 years but left fallow for 7

  3. Conservation agriculture practices to enhance soil organic in Lombardy plain (Northern Italy)

    Science.gov (United States)

    Perego, Alessia; Giussani, Andrea; Corsi, Stefano; Tosini, Andrea; Acutis, Marco

    2016-04-01

    It has been demonstrated that conservation agriculture (CA) determines a long-term increase in soil organic carbon (SOC) stock in cropland. The present study aimed to estimate the amount of SOC stored in soil of Lombardy plain (Northern Italy) following the change from tillage agriculture (TA) to CA by using crop ARMOSA crop over 23 years (1989-2011). The territorial analysis was performed at agrarian region scale (AR) after identification of the representative crops rotation and soil types. The land use information were data available at cadastral scale and referred to 5 years (from 2007 to 2011). The meteorological data (i.e. maximum and minimum temperature, precipitation) were measured at 14 monitoring stations. Solar radiation was estimated using the equation of the Bristow and Campbell model (1994). A spatial interpolation method was used to extend the meteorological data throughout the entire plain of the region by employing Thiessen polygon method; the meteorological data of the polygon were assigned to each AR. ARMOSA was parameterized to simulate the two tillage systems. For TA and CA scenario the depth of tillage was limited to 35 and 10 cm, respectively; crop residual incorporation was not simulated under CA. In TA scenario, we used the parameters calibrated and validated by Perego et al.(2013) on a wide dataset collected at six monitoring sites in Lombardy plain. In CA, the rate of C decomposition of humified organic C was assumed to be smaller by 30% in no-tillage than in TA (Oorts et al., 2007). The model results showed a significant improve of SOC (pJournal of Agrometeorology 3:23-38.

  4. Conservation agriculture practices to enhance soil organic in Lombardy plain (Northern Italy)

    Science.gov (United States)

    Perego, Alessia; Giussani, Andrea; Corsi, Stefano; Tosini, Andrea; Acutis, Marco

    2016-04-01

    It has been demonstrated that conservation agriculture (CA) determines a long-term increase in soil organic carbon (SOC) stock in cropland. The present study aimed to estimate the amount of SOC stored in soil of Lombardy plain (Northern Italy) following the change from tillage agriculture (TA) to CA by using crop ARMOSA crop over 23 years (1989-2011). The territorial analysis was performed at agrarian region scale (AR) after identification of the representative crops rotation and soil types. The land use information were data available at cadastral scale and referred to 5 years (from 2007 to 2011). The meteorological data (i.e. maximum and minimum temperature, precipitation) were measured at 14 monitoring stations. Solar radiation was estimated using the equation of the Bristow and Campbell model (1994). A spatial interpolation method was used to extend the meteorological data throughout the entire plain of the region by employing Thiessen polygon method; the meteorological data of the polygon were assigned to each AR. ARMOSA was parameterized to simulate the two tillage systems. For TA and CA scenario the depth of tillage was limited to 35 and 10 cm, respectively; crop residual incorporation was not simulated under CA. In TA scenario, we used the parameters calibrated and validated by Perego et al.(2013) on a wide dataset collected at six monitoring sites in Lombardy plain. In CA, the rate of C decomposition of humified organic C was assumed to be smaller by 30% in no-tillage than in TA (Oorts et al., 2007). The model results showed a significant improve of SOC (p<0.01) from TA to CA under all the crop rotations with a potential SOC sequestration ranged from 0.1 to 0.48 t C ha-1 y-1. While soil type did not affect significantly the SOC sequestration, crop residue determined relevant increases in SOC. That was particularly evident in grain maize monoculture with or without cover crop. References: Oorts K., Garnier P., Findeling A., Mary B., Richard G., Nicolardot B

  5. Initial results on soil quality; SANREM-CRSP conservation agriculture for food security in the Philippines

    OpenAIRE

    Ella, Victor B.

    2011-01-01

    This electronic presentation described initial results uncovered by farmer-managed and researcher-managed Conservation Agriculture trials in Claveria, Misamis Oriental, Philippines, completed by SANREM CRSP Long Term Research Activity 12.

  6. Large-Scale Agricultural Management and Soil Meso- and Macrofauna Conservation in the Argentine Pampas

    Directory of Open Access Journals (Sweden)

    José Camilo Bedano

    2016-07-01

    Full Text Available Soil is the most basic resource for sustainable agricultural production; it promotes water quality, is a key component of the biogeochemical cycles and hosts a huge diversity of organisms. However, we are not paying enough attention to soil degradation produced by land use. Modern agriculture has been successful in increasing yields but has also caused extensive environmental damage, particularly soil degradation. In the Argentine Pampas, agriculturization reached a peak with the generalized use of the no-till technological package: genetically modified soybeans tolerant to glyphosate, no-till, glyphosate, and inorganic fertilizers. This phenomenon has been widely spread in the country; the no-till package has been applied in large areas and has been used by tenants in a 60%–70% of cultivated lands. Thus, those who were involved in developing management practices may not be the same as those who will face degradation issues related to those practices. Indeed, most evidence reviewed in this paper suggests that the most widely distributed practices in the Pampas region are actually producing severe soil degradation. Biological degradation is particularly important because soil biota is involved in numerous soil processes on which soil functioning relies, affecting soil fertility and productivity. For example, soil meso- and macrofauna are especially important in nutrient cycling and in soil structure formation and maintenance, and they are key components of the network that links microbial process to the scale of fields and landscapes where ecosystem services are produced. However, the knowledge of the impact of different agricultural managements on soil meso- and macrofauna in Pampas agroecosystems is far from conclusive at this stage. The reason for this lack of definite conclusions is that this area has been given less attention than in other parts of the world; the response of soil fauna to agricultural practices is complex and taxa

  7. The assessment of soil conservation technologies for sustainable agricultural production. Report of the FAO/IAEA consultants meeting. Working material

    International Nuclear Information System (INIS)

    A Consultants' Meeting on 'The assessment of soil conservation technologies for sustainable agricultural production' was held in Vienna at the IAEA Headquarters from May 28-30, 2001. The consultants' presentations reviewed recent advances in the use of fallout radionuclides to measure soil erosion as well as approaches and technologies applied for soil conservation worldwide. Also, activities and experiences of FAO and UNEP in the field of land degradation, soil conservation and related issues were presented. Based on the information provided by the Scientific Secretary, a full project proposal was prepared during the second part of the Consultants' Meeting. The consultants also provided recommendations on the formulation and implementation of a future CRP on the subject

  8. Evaluation of the Soil Conservation Service curve number methodology using data from agricultural plots

    Science.gov (United States)

    Lal, Mohan; Mishra, S. K.; Pandey, Ashish; Pandey, R. P.; Meena, P. K.; Chaudhary, Anubhav; Jha, Ranjit Kumar; Shreevastava, Ajit Kumar; Kumar, Yogendra

    2016-08-01

    The Soil Conservation Service curve number (SCS-CN) method, also known as the Natural Resources Conservation Service curve number (NRCS-CN) method, is popular for computing the volume of direct surface runoff for a given rainfall event. The performance of the SCS-CN method, based on large rainfall (P) and runoff (Q) datasets of United States watersheds, is evaluated using a large dataset of natural storm events from 27 agricultural plots in India. On the whole, the CN estimates from the National Engineering Handbook (chapter 4) tables do not match those derived from the observed P and Q datasets. As a result, the runoff prediction using former CNs was poor for the data of 22 (out of 24) plots. However, the match was little better for higher CN values, consistent with the general notion that the existing SCS-CN method performs better for high rainfall-runoff (high CN) events. Infiltration capacity (fc) was the main explanatory variable for runoff (or CN) production in study plots as it exhibited the expected inverse relationship between CN and fc. The plot-data optimization yielded initial abstraction coefficient (λ) values from 0 to 0.659 for the ordered dataset and 0 to 0.208 for the natural dataset (with 0 as the most frequent value). Mean and median λ values were, respectively, 0.030 and 0 for the natural rainfall-runoff dataset and 0.108 and 0 for the ordered rainfall-runoff dataset. Runoff estimation was very sensitive to λ and it improved consistently as λ changed from 0.2 to 0.03.

  9. Measuring, understanding and implementing (or at least trying) soil and water conservation in agricultural areas in Mediterranean conditions

    Science.gov (United States)

    Gómez, Jose Alfonso; Burguet, María; Castillo, Carlos; de Luna, Elena; Guzmán, Gema; Lora, Ángel; Lorite, Ignacio; Mora, José; Pérez, Rafael; Soriano, María A.; Taguas, Encarnación V.

    2015-04-01

    Understanding soil erosion processes is the first step for designing and implementing effective soil conservation strategies. In agricultural areas, spatially in arid and semiarid conditions, water conservation is interlinked with soil conservation, and usually need to be addressed simultaneously to achieve success in their use by farmers. This is so for different reasons, but usually because some reduction in runoff is required to prevent soil erosion or to the need to design soil conservation systems that do maintain a favourable water balance for the crop to prevent yield reductions. The team presenting this communication works around both issues in Southern Spain, interconnecting several lines of research with the final objective of contribute to reverse some severe issues relating soil conservation in agricultural areas, mostly on tree crops (olives and vineyards). One of these lines is long-term experiments measuring, runoff and sediment losses at plot and small catchment scale. In these experiments we test the effect of different soil management alternatives on soil and water conservation. We also measured the evolution of soil properties and, in some cases, the evolution of soil moisture as well as nutrient and carbon losses with runoff and sediment. We also tests in these experiments new cover crops, from species better adapted to the rainfall regime of the region to mixes with several species to increase biodiversity. We complement these studies with surveys of soil properties in commercial farms. I some of these farms we follow the introduction by farmers of the cover crop strategies previously developed in our experimental fields. These data are invaluable to elaborate, calibrate and validate different runoff generation, water balance, and water erosion models and hillslope and small catchment scale. This allows us to elaborate regional analysis of the effect of different strategies to soil and water conservation in olive growing areas, and to refine

  10. Integrated soil, water and nutrient management in conservation agriculture. Report of the FAO/IAEA consultants' meeting. Working material

    International Nuclear Information System (INIS)

    The Consultants' Meeting (CM) was organized in close consultation with the Land and Water Development Division (AGL) of FAO. Five Consultants from Australia, Brazil, India, Kenya, and the USA, and two IAEA staff participated in the CM. The objectives of the CM were: (i) To review current knowledge concerning the optimal management of external inputs and natural resources under conservation agriculture (CA) practice (ii) To define research priorities in conservation agriculture (iii) To define the role of nuclear techniques in research in conservation agriculture (iv) To draft a Project Document for an FAO/IAEA Co-ordinated Research Project (CRP) in Conservation Agriculture (2005-2009). The Scientific Secretary opened the CM and provided an overview of the activities within the Soil and Water Management and Crop Nutrition (SWMCN) Sub-programme. The Consultants and the IAEA staff member made oral presentations. The Consultants from Australia and the USA each made two presentations. The Consultants' provided overviews of past and current work on zero- vs. conventional tillage, in particular carbon and nutrient (N and P) dynamics, water balance and soil physical properties. The Consultants identified research priorities within CA and the role of nuclear techniques in research on CA. Conclusions and Recommendations were formulated, and a proposal for a new Co-ordinated Research Project (CRP) on CA was drafted

  11. Conservation agriculture and tillage effects on soil organic matter and residual moisture content in selected upland crop production systems in the Philippines

    OpenAIRE

    Ella, Victor B.; Manuel R. Reyes; Padre, R.; Mercado, Agustin R., Jr.

    2014-01-01

    This presentation describes a study to analyze the influence of conservation agriculture and tillage on soil organic matter and residual moisture content in selected upland crop production systems in the Philippines LTRA-12 (Conservation agriculture for food security in Cambodia and the Philippines)

  12. Urban conservation agriculture with vegetables

    OpenAIRE

    D.I.A. Edralin; Kieu, L.N.; TRAN, D; Creason, S.; Manuel R. Reyes

    2014-01-01

    This poster describes the implementation of a project to promote vegetable gardening with conservation agriculture in urban schools. LTRA-12 (Conservation agriculture for food security in Cambodia and the Philippines)

  13. Effects of Zero Tillage (No-Till) Conservation Agriculture on soil physical and biological properties and their contributions to sustainability

    Science.gov (United States)

    Landers, John N.; Rass, Gerard; de Freitas, Pedro L.; Basch, Gottlieb; González Sanchez, Emilio J.; Tabaglio, Vincenzo; Kassan, Amir; Derpsch, Rolf; Friedrich, Theodor; Giupponi, Luca

    2013-04-01

    Not cultivating soil, rotating crops over the years, and leaving crop residues on the surface in the practice of zero tillage/conservation agriculture (ZT/CA) reverses the historically accelerating degradation of soil organic matter (SOM) and soil structure, while increasing soil biological activity by a factor of 2 to 4. The results of this are many: (a) not cultivating reduces soil compaction, leaving old root holes to facilitate internal drainage, averts the pulverization of soil aggregates and formation of pans, reduces draft power for planting and gives shelter, winter food and nesting sites for fauna, (b) crop residues on the surface practically eliminate wind and water erosion, reduce soil moisture loss through the mulch effect, slow spring warm-up (possibly offset by a lower specific heat demand with less water retention in surface soil) and act as a reserve of organically-compounded nutrients (as they decompose to humus), (c) more SOM means higher available water and nutrient retention, higher biological activity year round (enhancing biological controls), higher levels of water-stable aggregates and a positive carbon sink in incremental SOM. The positive impacts for society are: (i) more and cheaper food, (ii) reduced flood and drought-induced famine risks, (iii) a positive carbon sink in SOM and possible reductions in NO2 emissions, (iv) cleaner water and greater aquifer recharge due to reduced runoff, (v) cleaner air through effective elimination of dust as a product of cultivation (vi) less water pollution and greater aquifer recharge from reduced rainfall runoff, (vii) farm diesel consumption halved, (viii) reduced demand for (tropical) de-forestation, by permitting crop expansion on steeper lands, (ix) increased wildlife populations (skylarks, plovers, partridge and peccaries) and (x) an improved conservation mindset in farmers. It is notable that, in spite of successful practitioners in all European countries, mainstream adoption is still to come

  14. Food, soil, and agriculture

    International Nuclear Information System (INIS)

    The growing pressures on the world's land resources will result in problems requiring a major research effort.The first group of problems relates to increased soil degradation. The research to alleviate this will have to incorporate not only physical and biological solutions, but also pay much more attention to the socio-economic context in which the conservation programmes need to succeed.The second major area for research on land resource is to make better use of low-capacity or problem soils.This could be by reducing the existing limitations, such as changing physical or chemical characteristics of the soil, or by developing plants and production techniques which reduce the detrimental effects of constraints. Example of these are acidity, salinity, and aluminium toxicity. Finally the broadest and more important area is that of research to enable more intensive use of better-quality land. Research topics here may relate to optimal plant nutrient management, soil moisture management, and developing cultivation techniques with minimum commercial energy requirements. Making plants more productive will involve research aimed at increasing photosynthetic efficiency, nitrogen fixation, disease and pest resistance, improved weed control, and bio-engineering to adjust plant types to maximize production potentials. Improved rotational systems for the achievement of many of the above goals will become increasingly important, as the potential problems or inappropriate cultivation practices become evident. In conclusion, food supplies of the world could meet the rapidly rising demands that are made on them, if agriculture receives sufficient attention and resources. Even with most modern development, land remains the base for agriculture, and optimal use of the world's land resources is thus crucial for future agricultural production

  15. Agroecology-based aggradation-conservation agriculture (ABACO): Targeting innovations to combat soil degradation and food insecurity in semi-arid Africa

    NARCIS (Netherlands)

    Tittonell, P.A.; Scopel, E.; Andrieu, N.; Posthumus, H.; Mapfumo, P.; Corbeels, M.; Halsema, van G.E.; Lahmar, R.; Lugandu, S.; Rakotoarisoa, J.; Mtambanengwe, F.; Pound, B.; Chikowo, R.; Naudin, K.; Triomphe, B.; Mkomwa, S.

    2012-01-01

    Smallholder farmers in semi-arid Africa are in an increasingly vulnerable position due to the direct and indirect effects of climate change, demographic pressure and resource degradation. Conservation agriculture (CA) is promoted as an alternative to restore soil productivity through increased water

  16. Malawi - Conservation Agriculture

    Data.gov (United States)

    Millenium Challenge Corporation — The randomized control trial impact evaluation tests different strategies for communicating information about agricultural technologies to smallholder maize farmers...

  17. Conservation Agriculture in Europe

    Directory of Open Access Journals (Sweden)

    Á. Kertész

    2014-03-01

    Yield performance and stability, operating costs, environmental policies and programs of the Common Agricultural Policy (CAP, and climate change will likely be the major driving forces defining the direction and for the extension of CA in Europe. The role of agriculture in climate change mitigation in the EU is discussed in the paper.

  18. Creative Soil Conservation

    Science.gov (United States)

    Smith, Martha

    2010-01-01

    Take plant lessons outdoors with this engaging and inquiry-based activity in which third-grade students learn how to apply soil conservation methods to growing plants. They also collect data and draw conclusions about the effectiveness of their method of soil conservation. An added benefit to this activity is that the third-grade students played…

  19. Conservation agriculture among small scale farmers in semi-arid region of Kenya does improve soil biological quality and soil organic carbon

    Science.gov (United States)

    Waweru, Geofrey; Okoba, Barrack; Cornelis, Wim

    2016-04-01

    The low food production in Sub-Saharan Africa (SSA) has been attributed to declining soil quality. This is due to soil degradation and fertility depletion resulting from unsustainable conventional farming practices such as continuous tillage, crop residue burning and mono cropping. To overcome these challenges, conservation agriculture (CA) is actively promoted. However, little has been done in evaluating the effect of each of the three principles of CA namely: minimum soil disturbance, maximum surface cover and diversified/crop rotation on soil quality in SSA. A study was conducted for three years from 2012 to 2015 in Laikipia East sub county in Kenya to evaluate the effect of tillage, surface cover and intercropping on a wide variety of physical, chemical and biological soil quality indicators, crop parameters and the field-water balance. This abstract reports on soil microbial biomass carbon (SMBC) and soil organic carbon (SOC). The experimental set up was a split plot design with tillage as main treatment (conventional till (CT), no-till (NT) and no-till with herbicide (NTH)), and intercropping and surface cover as sub treatment (intercropping maize with: beans, MB; beans and leucaena, MBL; beans and maize residues at 1.5 Mg ha-1 MBMu, and dolichos, MD). NT had significantly higher SMBC by 66 and 31% compared with CT and NTH respectively. SOC was significantly higher in NTH than CT and NT by 15 and 4%, respectively. Intercropping and mulching had significant effect on SMBC and SOC. MBMu resulted in higher SMBC by 31, 38 and 43%, and SOC by 9, 20 and 22% as compared with MBL, MD and MB, respectively. SMBC and SOC were significantly affected by the interaction between tillage, intercropping and soil cover with NTMBMu and NTHMBMu having the highest SMBC and SOC, respectively. We conclude that indeed tillage, intercropping and mulching substantially affect SMBC and SOC. On the individual components of CA, tillage and surface cover had the highest effect on SMBC and

  20. Dynamics of soil carbon, nitrogen and soil respiration in farmer’s field with conservation agriculture Siem Reap, Cambodia

    Science.gov (United States)

    The years of intensive tillage in many countries, including Cambodia, have caused significant decline in agriculture’s natural resources that could threaten the future of agricultural production and sustainability worldwide. Long-term tillage system and site-specific crop management can affect chang...

  1. Integrating Agriculture and Conservation

    Science.gov (United States)

    Vandever, Mark W.

    2010-01-01

    The USGS produces the needed science-based information to guide management actions and policy decisions that support wildlife habitat and other environmental services compatible with USDA conservation goals and farm operations. The Policy Analysis and Science Assistance Branch of the Fort Collins Science Center (FORT) has conducted research involving a national landowner survey and numerous short- and long-term evaluations regarding vegetation responses to land management practices. This research helps land and resource managers to make informed decisions and resolve resource management conflicts.

  2. Plant-conservative agriculture of acid and degraded Raña-grassland enhances diversity of the common soil mites (Oribatida

    Directory of Open Access Journals (Sweden)

    Juan Jorrín

    2016-03-01

    Full Text Available The seminatural prairie of the Raña of Cañamero (Spain is a degraded and unproductive agrosystem with acid and stony soils, and low coverage of xerophytic grasses. In a project about secondary reconversion of the raña-prairie to a more productive cropland, an experimental field (EF was established to assess the effect on plot-productivity of the interaction between correction of soil pH (liming with three cropping systems: a no-tilled and annually fertilized and improved prairies, and a conventionally-tilled forage crop. The EF model of management was designed as plant-conservative, because no herbicide was applied after seeding to preserve the post-emergence of wild herbs and the natural grass diversity of the prairie. Between 2008 and 2012, we analysed the effect of managing factors (initial conventional-tillage, fertilization, liming and cropping and agricultural predictors (pH, C:N ratio, soil bulk density and herbaceous biomass on the alpha(α-diversity of one of the major group of soil animals, the oribatids. In relation to the raña-prairie, all EF-plots improved their soil bulk density (ρs and herbaceous biomass (t/ha, and enhanced desirable α-diversity values (richness, abundance and community equity. We conclude that the plant-conservative model: i do not affect statistically the species richness of the prairie; ii the desirable α-diversity responses are negatively correlated with soil bulk density and positively with herbaceous biomass, and iii the low input or minimum intervention model, of an initial and conventional till and annual fertilisation, is the threshold and optimal model of agricultural management to improving oribatids diversity of the raña-soil.

  3. Management and conservation of acid soils in the savannahs of Latin America: Lessons from the agricultural development of the Brazilian cerrados

    International Nuclear Information System (INIS)

    Acid-soil savannahs represent most of the remaining land suitable for agricultural development in the world. Considered as marginal lands, they are of low inherent productivity for agriculture, and susceptible to rapid degradation. The vast Brazilian 'cerrados' were opened up some 30 years ago, and today they supply a considerable portion of the country's agricultural commodities. Monocultures of grain crops and pastures are proving to be unsustainable under today's conditions, and alternative production systems are being developed and implemented that incorporate improved production technologies and conservation of the natural resources. No-till, minimum tillage and integrated crop-livestock systems are proving to be successful in terms of farmer adoption. However, there is a need to elucidate the principles and functioning of these systems in order to assess their suitability for long-term sustainability of marginal savannah lands. The challenges that remain to ensure that these lands are developed in a sustainable manner include social, cultural and economic aspects, a favourable policy environment and a clearer understanding of sustainability and its measurement. In this article we review the lessons learned from the cerrados experience. Future research should include the development of new crop options with tolerance of acid soils, a better understanding of water and nutrient cycles, the development of principles of soil organic matter and crop-residue management, and the biological management of soil fertility. (author)

  4. Effectiveness of Conservation Measures in Reducing Runoff and Soil Loss Under Different Magnitude-Frequency Storms at Plot and Catchment Scales in the Semi-arid Agricultural Landscape

    Science.gov (United States)

    Zhu, T. X.

    2016-03-01

    In this study, multi-year stormflow data collected at both catchment and plot scales on an event basis were used to evaluate the efficiency of conservation. At the catchment scale, soil loss from YDG, an agricultural catchment with no conservation measures, was compared with that from CZG, an agricultural catchment with an implementation of a range of conservation measures. With an increase of storm recurrence intervals in the order of 20 years, the mean event sediment yield was 639, 1721, 5779, 15191, 19627, and 47924 t/km2 in YDG, and was 244, 767, 3077, 4679, 8388, and 15868 t/km2 in CZG, which represented a reduction effectiveness of 61.8, 55.4, 46.7, 69.2, 57.2, and 66.8 %, respectively. Storm events with recurrence intervals greater than 2 years contributed about two-thirds of the total runoff and sediment in both YDG and CZG catchments. At the plot scale, soil loss from one cultivated slopeland was compared with that from five conservation plots. The mean event soil loss was 1622 t/km2 on the cultivated slopeland, in comparison to 27.7 t/km2 on the woodland plot, 213 t/km2 on the grassland plot, 467 t/km2 on the alfalfa plot, 236 t/km2 on the terraceland plot, and 642 t/km2 on the earthbank plot. Soil loss per unit area from all the plots was significantly less than that from the catchments for storms of all categories of recurrence intervals.

  5. Effectiveness of Conservation Measures in Reducing Runoff and Soil Loss Under Different Magnitude-Frequency Storms at Plot and Catchment Scales in the Semi-arid Agricultural Landscape.

    Science.gov (United States)

    Zhu, T X

    2016-03-01

    In this study, multi-year stormflow data collected at both catchment and plot scales on an event basis were used to evaluate the efficiency of conservation. At the catchment scale, soil loss from YDG, an agricultural catchment with no conservation measures, was compared with that from CZG, an agricultural catchment with an implementation of a range of conservation measures. With an increase of storm recurrence intervals in the order of 20 years, the mean event sediment yield was 639, 1721, 5779, 15191, 19627, and 47924 t/km(2) in YDG, and was 244, 767, 3077, 4679, 8388, and 15868 t/km(2) in CZG, which represented a reduction effectiveness of 61.8, 55.4, 46.7, 69.2, 57.2, and 66.8 %, respectively. Storm events with recurrence intervals greater than 2 years contributed about two-thirds of the total runoff and sediment in both YDG and CZG catchments. At the plot scale, soil loss from one cultivated slopeland was compared with that from five conservation plots. The mean event soil loss was 1622 t/km(2) on the cultivated slopeland, in comparison to 27.7 t/km(2) on the woodland plot, 213 t/km(2) on the grassland plot, 467 t/km(2) on the alfalfa plot, 236 t/km(2) on the terraceland plot, and 642 t/km(2) on the earthbank plot. Soil loss per unit area from all the plots was significantly less than that from the catchments for storms of all categories of recurrence intervals.

  6. Compaction properties of agricultural soils

    OpenAIRE

    TANG, Anh Minh; CUI, Yu Jun; Eslami, Javad; DEFOSSEZ BERTHOUD, Pauline

    2007-01-01

    The compaction of field soils due to repeated rolling of agricultural vehicles is one of the main reasons for the agricultural soil degradation. A good understanding of the compaction properties of these soils is essential for an optimum organisation of agricultural activities, and therefore for environmental protection in terms of nitrate migrations. In the present work, the compaction properties of agricultural soils from four sites in France are studied after experimental data ...

  7. Developing conservation agriculture production systems: An analysis of local networks

    OpenAIRE

    Swenson, S.; Moore, Keith M.

    2009-01-01

    Conservation agriculture (CA) has been trumpeted as the solution for reducing soil degradation and increasing agricultural productivity around the world. Some farmland settings, such as in Brazil and the United States, have established substantial hectarage in conservation agriculture production systems (CAPS) establishment, while other locations, such as in Africa, have little permanent adoption of CA practices. A close review of the literature on adoption of CA technologies indicates that s...

  8. Exploring Alternative Solutions Regarding Conservation Agriculture

    OpenAIRE

    Reza Movahedi; Hadi Fathi; Mousa Aazami; Somaye Latifi

    2011-01-01

    Problem statement: Studies show that no effective measures have been taken towards conservative agriculture in Iran. Social, economical and technical agricultural factors and conditions need to be provided to meet conservation agriculture at the farm, regional and national level. Accordingly, this research aimed at exploring some solutions to protect and conserve agriculture. Approach: To achieve this, of all 100 populations, included both 80 faculty members of college of agriculture at Bu-Al...

  9. Developing Conservation Agriculture Production Systems in the Philippines

    OpenAIRE

    Mercado, Agustin R., Jr.; Arcinal, Gil A.; Edralin, Don Immanuel; Ella, Victor B.; Manuel R. Reyes

    2014-01-01

    Conservation agriculture with trees (CAT) offers solution to this pressing problem through following 5 key principles: Minimum soil disturbance, continuous mulch, maintaining diverse crop species, integrated pests and nutrient management. CAT is very important in soil and water conservation, enhancing agri-diversity, improving farm carbon sequestration potential, maximization of land area usage in the Philippines as well as the reversal of soil degradation thus improving food and nutritional ...

  10. Exploring Alternative Solutions Regarding Conservation Agriculture

    Directory of Open Access Journals (Sweden)

    Reza Movahedi

    2011-01-01

    Full Text Available Problem statement: Studies show that no effective measures have been taken towards conservative agriculture in Iran. Social, economical and technical agricultural factors and conditions need to be provided to meet conservation agriculture at the farm, regional and national level. Accordingly, this research aimed at exploring some solutions to protect and conserve agriculture. Approach: To achieve this, of all 100 populations, included both 80 faculty members of college of agriculture at Bu-Ali-Sina University and 20 subject matter specialists in Hamedan's State Agricultural Organization, 35 people were selected based on the criterion type of purposeful sampling. Data were gathered through interviews. Content analysis method was used to analyze textual data. Results: Results of this study showed that the building awareness and culture along with factors such as proper conservation agriculture practices, effective planning and management and attention to agro-ecological issues are basic factors to promote conservation agriculture in the surveyed area. Conclusions/Recommendations: Lack of awareness and knowledge of farmers and people towards conservation agriculture, no adoption of conservation agriculture by farmers and lack of education and training services for conservation agriculture were the most important issues that found in this research about conservation agriculture. Therefore, support the creating of cooperatives to provide necessary services for implementing conservation agriculture practices is definitely recommended.

  11. Conservation agriculture in urban deserts

    OpenAIRE

    D.I.A. Edralin; Hok, L.; LeNgoc, K.; Williams, M.; Gayle, G.; Raczkowski, C.W.; Manuel R. Reyes

    2012-01-01

    Limited access to nutritious and affordable food is experienced by 23 million people in the US as they live in 'food desserts' making them food and health insecure. Resources such as land, water, labor and capital are used not in the context of sustainability making the problem more severe. Urban conservation agriculture will be an ‘oasis’ or a sustainable solution to this problem on food desserts and unsustainable resource use. A part of a human disturbed landscape, a turf grass lawn, was co...

  12. Management and conservation of acid soils in the Savannahs of Latin America: Lessons from the agricultural development of the Brazilian cerrados

    International Nuclear Information System (INIS)

    Full text: Acid-soil savannahs represent most of the remaining land suitable for agricultural development in the world. They are considered to be marginal lands as they have low inherent productivity for agriculture and are susceptible to rapid degradation. In Latin America the majority of these lands are found in the Brazilian 'cerrados' or savannahs. They were opened up for agriculture some 30 years ago and today they supply a considerable portion of the country's agricultural produce. The development pathway in the cerrados has shifted from extensive grazing on native grasslands to improved pastures and annual monocrops. More recently no-tillage systems have been introduced along with perennial crops and integrated crop-pasture systems. Monocultures of either grain crops or pastures have proved to be unsustainable under today's conditions and alternative production systems are being developed and implemented that incorporate improved production technologies and conservation of the natural resources. No-till, minimum till and integrated crop-livestock systems are proving to be successful in terms of farmer adoption. A number of variations in no-till systems have been developed mainly by farmers in response to climate and/or soil conditions. No-till systems are more productive and economical and are perceived to be more sustainable. However there is a need to elucidate the principles and functioning of these systems in order to assess their suitability for long-term sustainability of the marginal savannah lands. The challenges that remain to ensure that these lands are developed in a more sustainable manner include social, cultural and economic aspects, a favourable policy environment and a clearer understanding of sustainability, its measurement and how farmers perceive this concept. In this article we review the lessons learned from the 'cerrados' experience including the scientific breakthroughs made. The relevance of these lessons to other tropical acid soil

  13. Effects of conservation practices on fishes, amphibians, and reptiles within agricultural streams and wetlands

    Science.gov (United States)

    Conservation practices have been traditionally used to manage soil and water resources to improve agricultural production, and now include methods to reduce the environmental impacts of agriculture on streams and wetlands. These practices have been regularly implemented within agricultural watershed...

  14. Developing conservation agriculture with trees learning center in the Philippines

    OpenAIRE

    Mercado, Agustin R., Jr.; Ella, Victor B.; Javier, E.; Manuel R. Reyes

    2013-01-01

    This poster presented crop production in a conservation agriculture with tree (CAT) system in the upland area in Claveria, Misamis, Philippines. CAT is very important in soil and water conservation, enhancing agri-diversity, improving farm carbon sequestration potential, maximization of land area usage in the Philippines as well as the reversal of soil degradation thus improving food and nutritional security of the upland dwellers.

  15. Agricultural intensification escalates future conservation costs.

    Science.gov (United States)

    Phelps, Jacob; Carrasco, Luis Roman; Webb, Edward L; Koh, Lian Pin; Pascual, Unai

    2013-05-01

    The supposition that agricultural intensification results in land sparing for conservation has become central to policy formulations across the tropics. However, underlying assumptions remain uncertain and have been little explored in the context of conservation incentive schemes such as policies for Reducing Emissions from Deforestation and forest Degradation, conservation, sustainable management, and enhancement of carbon stocks (REDD+). Incipient REDD+ forest carbon policies in a number of countries propose agricultural intensification measures to replace extensive "slash-and-burn" farming systems. These may result in conservation in some contexts, but will also increase future agricultural land rents as productivity increases, creating new incentives for agricultural expansion and deforestation. While robust governance can help to ensure land sparing, we propose that conservation incentives will also have to increase over time, tracking future agricultural land rents, which might lead to runaway conservation costs. We present a conceptual framework that depicts these relationships, supported by an illustrative model of the intensification of key crops in the Democratic Republic of Congo, a leading REDD+ country. A von Thünen land rent model is combined with geographic information systems mapping to demonstrate how agricultural intensification could influence future conservation costs. Once postintensification agricultural land rents are considered, the cost of reducing forest sector emissions could significantly exceed current and projected carbon credit prices. Our analysis highlights the importance of considering escalating conservation costs from agricultural intensification when designing conservation initiatives. PMID:23589860

  16. Soil moisture: Some fundamentals. [agriculture - soil mechanics

    Science.gov (United States)

    Milstead, B. W.

    1975-01-01

    A brief tutorial on soil moisture, as it applies to agriculture, is presented. Information was taken from books and papers considered freshman college level material, and is an attempt to briefly present the basic concept of soil moisture and a minimal understanding of how water interacts with soil.

  17. Household adoption behaviour and agricultural sustainability in the northeastern mountains of Tanzania : the case of soil conservation in the North Pare and West Usambara Mountains

    NARCIS (Netherlands)

    Semgalawe, Z.M.

    1998-01-01

    The northeastern mountains make up the major part of agricultural land in Tanzania. These areas have been experiencing rapid population growth, leading to increased demand for food, fuelwood and agricultural land. Most parts of the slopes have been experiencing declining soil fertility and severe so

  18. Developing sustainable conservation agriculture for smallholder farmers in Southern Africa

    OpenAIRE

    Eash, Neal S.; Walker, Forbes; Thierfelder, Christian; Marake, Makoala V.; Wilcox, M; Lambert, D; Basson, A.

    2012-01-01

    Metadata only record This presentation was given at the Soil Science Society of America annual meeting on October 22nd, 2012 in Cincinnati, Ohio at 11:10 in the morning. Conservation agricultural practices were used in Southern Africa's cropping system to improve soil nutrient, improve food security, sequester carbon, and mitigate green house gases. LTRA-9 (Developing sustainable CAPS for smallholder farmers in Southern Africa)

  19. Soil erosion, fertility and water conservation factors in agricultural activities in Kenya: A look at problems and efforts being made to solve them using radioisotope techniques

    International Nuclear Information System (INIS)

    Inadequate nutrient supply is the major factor limiting production in the adequately rainfed region of Kenya around Lake Victoria. Phosphorus is particularly deficient and its availability difficult to determine. Soil P availability and optimum fertilizer P placement is being determined with 32P. Serious soil erosion problems have been reduced by establishing tea on the steep slopes. The uneven rainfall distribution on the lowlands results in serious soil and water conservation problems. Residue management and terracing have provided erosion protection. Neutron probes have been used to measure water conservation. Stress tolerant crops such as an early maturing maize have proven useful. The role of International Organizations in supporting the research activities is acknowledged

  20. Professional Alliance for Conservation Agriculture website

    OpenAIRE

    Professional Alliance for Conservation Agriculture

    2009-01-01

    Metadata only record The Professional Alliance for Conservation Agriculture (PACA) is a platform that has emerged from concerns surrounding agriculture given the increasing importance and diminishing interest. Recent deliberations surrounding food security, diversion of croplands for other applications, and the subsequent ecological impact are all adding to heightening worry for farmers and policy makers alike.(excerpt from website)

  1. Soil compaction and soil tillage - studies in agricultural soil mechanics

    OpenAIRE

    Keller, Thomas

    2004-01-01

    This thesis deals with various aspects of soil compaction due to agricultural field traffic, the draught force requirement of tillage implements and soil structures produced by tillage. Several field experiments were carried out to study the mechanical impact of agricultural machines. It was shown that the stress interaction from the different wheels in dual and tandem wheel configurations is small and these wheels can be considered separate wheels with regard to soil stress. Hence, soil stre...

  2. Soil erosion and agricultural sustainability

    OpenAIRE

    Montgomery, David R.

    2007-01-01

    Data drawn from a global compilation of studies quantitatively confirm the long-articulated contention that erosion rates from conventionally plowed agricultural fields average 1–2 orders of magnitude greater than rates of soil production, erosion under native vegetation, and long-term geological erosion. The general equivalence of the latter indicates that, considered globally, hillslope soil production and erosion evolve to balance geologic and climate forcing, whereas conventional plow-bas...

  3. Sustainable agriculture and soil conservation

    DEFF Research Database (Denmark)

    Olsen, Preben; Dubgaard, Alex

    water plains, moraine plateaus as well as erosion valleys were formed by melt water. In general, the landscape is characterised by a moraine plateau with an average altitude of 50-60 m above sea level, in some areas reaching an altitude of 100 m. Two valleys, formed by the rivers Nørreå and Gudenå...

  4. Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts . A review

    OpenAIRE

    Triomphe, Bernard; Affholder, François; Da Silva, Fernando Antonio Macena; Corbeels, Marc; Xavier, José Humberto Valadares; Lahmar, Rabah; Recous, Sylvie; BERNOUX, MARTIAL,; Blanchart, Eric; Mendes, Ieda de Carvalho; de Tourdonnet, Stephane

    2013-01-01

    Nowadays, in a context of climate change, economical uncertainties and social pressure to mitigate agriculture externalities, farmers have to adopt new cropping systems to achieve a sustainable and cost-effective grain production. Conservation agriculture consists of a range of cropping systems based on a combination of three main principles: (1) soil tillage reduction, (2) soil protection by organic residues and (3) diversification in crop rotation. Conservation agriculture has been promoted...

  5. Conservation agriculture is shaped through advisory schemes

    OpenAIRE

    Brives, Hélène; Riousset, Pauline; de Tourdonnet, Stephane

    2012-01-01

    This communication challenges the idea that participatory extension methods are required to develop more sustainable forms of agriculture. It is based on a comparison of two case studies presenting how Conservation Agriculture is promoted by a French agribusiness company. In one case a participatory extension scheme is organized when in the second case CA is promoted through technology transfer. The paper explores how do CA practices evolve when developed through participatory and non partici...

  6. 保护性耕作对农田土壤有机碳及农业生产力的影响%Effects of Conservation Tillage on Soil Organic Carbon and Agricultural Productivity

    Institute of Scientific and Technical Information of China (English)

    王岩松; 李梦迪; 朱连奇

    2016-01-01

    Farmland soil organic carbon pool is the carbon pool affected by human mostly, its recovery has important significance on soil quality enhancement, food security guarantee, water conservation and CO2 emission decrease. Conservation tillage has significant effect on the decrease of water and soil loss, the increase of soil organic carbon and the increase of crop yield. The authors summarized the influence of conservation tillage on soil organic carbon and soil physical and chemical properties, discussed its effect on agricultural productivity, put forward improvement suggestions based on the problems existing in the conservation tillage, and provided scientific basis for reasonable cultivation measures and agricultural management.%农田土壤有机碳库作为陆地生态系统中受人类影响最大的碳库,其恢复对于增强土壤质量,保障粮食安全,涵养水源,减少大气CO2排放具有重要意义.保护性耕作对减少水土流失,增加土壤有机碳、增加农作物产量等方面有显著效果.笔者综述了保护性耕作对农田土壤有机碳及土壤理化性质的影响,探讨了保护性耕作对农业生产力的影响,对保护性耕作存在的问题提出了改进建议,为合理制订耕作措施和农业生产管理措施提供了科学依据.

  7. Conservation Tillage Impacts on Soil Quality

    Science.gov (United States)

    Hake, K.

    2012-04-01

    As recent as the 1970's in University lecture halls cotton production was vilified for being "hard on the soil". This stigma is still perpetuated today in the popular press, deserving a close scrutiny of its origin and its reality as soil quality is an essential but unappreciated component of cotton's unique tolerance to heat and drought. The objective of expanding food, feed and fiber production to meet the global demand, during forecast climate disruption requires that scientists improve both the above and below ground components of agriculture. The latter has been termed the "final frontier" for its inaccessibility and complexity. The shift to conservation tillage in the U.S.A. over the previous three decades has been dramatic in multiple crops. Cotton and its major rotation crops (corn, soybean, and wheat) can be grown for multiple years without tillage using herbicides instead to control weeds. Although pesticide resistant insects and weeds (especially to Bt proteins and glyphosate) are a threat to Integrated Pest Management and conservation tillage that need vigilance and proactive management, the role of modern production tools in meeting agricultural objectives to feed and clothe the world is huge. The impact of these tools on soil quality will be reviewed. In addition ongoing research efforts to create production practices to further improve soil quality and meet the growing challenges of heat and drought will be reviewed.

  8. Conservation Agriculture Practices and Adoption by Smallholder Farmers in Zimbabwe

    OpenAIRE

    Mazvimavi, Kizito; Ndlovu, Patrick V.; Nyathi, Putso; Minde, Isaac J.

    2010-01-01

    This study is based on a panel survey interviewing 416 farmers practising conservation agriculture for at least five cropping seasons. Farmers obtained higher yields on conservation agriculture plots than on nonconservation agriculture ones. The mean maize yield on conservation agriculture was 1546 kg/ha compared to 970 kg/ha for non-conventional draft tillage plots across all 15 districts. However, the contribution of conservation agriculture to total household food security requirements was...

  9. Rethinking soil and water conservation in a changing society : A case study in eastern Burkina Faso

    NARCIS (Netherlands)

    Mazzucato, V.M.; Niemeijer, D.

    2000-01-01

    Soil and water conservation is at the top of development agendas in Africa. Virtually every project related to agriculture or the environment has a soil and water conservation component to it and environmental protection plans are being drawn up by African governments in which soil and water conserv

  10. No-tillage and conservation agriculture: A progress report

    OpenAIRE

    Derpsch, R.

    2008-01-01

    Metadata only record This report describes the mindset change that needs to take place in order to shift from conventional farming to conservation agriculture. The author starts with a brief history of reduced tillage and no-tillage farming systems and the move toward conservation agriculture. Constraints and limitations of the adoption of conservation agriculture are explained, along with examples of how they have been overcome. Information regarding the status of conservation agriculture...

  11. Practicing Conservation Agriculture to mitigate and adapt to Climate Change in Jordan.

    Science.gov (United States)

    Khresat, Saeb

    2016-04-01

    Climate change scenarios indicate that Jordan and the Middle East could suffer from reduced agricultural productivity and water availability among other negative impacts. Based on the projection models for the area, average temperature in Jordan is projected to increase between 1.2 and 1.6 °C by 2050. Projections for precipitation trends are projected to decrease by 16% by the year 2050. Evaporation is likely to increase due to higher temperatures. This is likely to increase the incidence of drought potential since precipitation is projected to decrease. The dominant form of agriculture system in Jordan is based on intensive tillage. This form of tillage has resulted in large losses of organic soil carbon, weaker soil structure, and cause compaction. It has negative effects on soil aeration, root development and water infiltration among other factors. There is a need to transform farming practices to conservation agriculture to sequester carbon so that climate change mitigation becomes an inherent property of future farming systems. Conservation Agriculture, a system avoiding or minimizing soil disturbance, combined with soil cover and crop diversification, is considered to be a sustainable production system that can also sequester carbon unlike tillage agriculture. Conservation agriculture promotes minimal disturbance of the soil by tillage (zero tillage), balanced application of chemical inputs and careful management of residues and wastes. This study was conducted to develop a clear understanding of the impacts and benefits of the two most common types of agriculture, traditional tillage agriculture and conservation agriculture with respect to their effects on land productivity and on soil carbon pools. The study results indicated that conservation agriculture contributed to the reduction of the farming systems' greenhouse gas emissions and enhance its role as carbon sinks. Also, it was found that by shifting to conservation agriculture labor cost needed for

  12. Integrating agricultural expansion into conservation biogeography: conflicts and priorities

    Directory of Open Access Journals (Sweden)

    Ricardo Dobrovolski

    2014-06-01

    Full Text Available Increasing food production without compromising biodiversity is one of the great challenges for humanity. The aims of my thesis were to define spatial priorities for biodiversity conservation and to evaluate conservation conflicts considering agricultural expansion in the 21st century. I also tested the effect of globalizing conservation efforts on both food production and biodiversity conservation. I found spatial conflicts between biodiversity conservation and agricultural expansion. However, incorporating agricultural expansion data into the spatial prioritization process can significantly alleviate conservation conflicts, by reducing spatial correlation between the areas under high impact of agriculture and the priority areas for conservation. Moreover, developing conservation blueprints at the global scale, instead of the usual approach based on national boundaries, can benefit both food production and biodiversity. Based on these findings I conclude that the incorporation of agricultural expansion as a key component for defining global conservation strategies should be added to the list of solutions for our cultivated planet.

  13. Conservation Agriculture in Lesotho: Residue Use Patterns Among CA adopters vs. Non-Adopters

    OpenAIRE

    Wilcox, M.D.; Bisangwa, E.; Lambert, Dayton M.; Marake, Makoala V.; Walker, F.R.; Eash, Neal S.; Moore, Keith M.; Park, W M

    2012-01-01

    Recent efforts by the Government of Lesotho, non-government organizations (NGOs), and international attention have focused on developing conservation agriculture (CA) practices adapted to the cultural, economic, and agro-ecological conditions in Lesotho. Understanding the influence of the introduction of CA technologies on soil erosion, yields, labor allocation and gender roles is of critical importance for successfully deploying sustainable agriculture technologies.

  14. Alternative Land Management Strategies and Their Impact on Soil Conservation

    Directory of Open Access Journals (Sweden)

    Tiziano Gomiero

    2013-08-01

    Full Text Available Soil conservation is threatened by a number of factors, namely the effects of intensive agricultural practices, the increasing pressure for food production linked to the increasing human population, the consumption patterns in developed and emerging economies, and the conversion of agriculture from the production of commodities (which is itself a goal in need of discussion to the production of biofuels. The extent of human pressure and the effects of conflicting land use systems need to be addressed. Alternative and conservative agricultural practices need to be explored and widely adopted in order to preserve the soil fertility, assessing their pros and cons. In this paper, the main potential alternative practices are reviewed, focusing in particular on organic farming. It is also argued that in order to better plan to preserve soil health a strategy considering the whole food system is required.

  15. The conundrum of conservation agriculture and livelihoods in Southern Africa

    NARCIS (Netherlands)

    Nkala, P.; Mango, N.; Corbeels, M.; Veldwisch, G.J.A.; Huising, J.

    2011-01-01

    Low crop productivity, food insecurity, hunger and malnutrition; inadequate farming knowledge and skills, implements and inputs are characteristic of smallholder agriculture in Southern Africa. Many researchers argue that conservation agriculture can guarantee higher crop productivity, food security

  16. Data on four criteria for targeting the placement of conservation buffers in agricultural landscapes

    OpenAIRE

    Qiu, Zeyuan; Dosskey, Michael G.; Kang, Yang

    2016-01-01

    Four criteria are generally used to prioritize agricultural lands for placing conservation buffers. The criteria include soil erodibility, hydrological sensitivity, wildlife habitat, and impervious surface rate that capture conservation buffers’ benefits in reducing soil erosion, controlling runoff generation, enhancing wildlife habitat, and mitigating stormwater impacts, respectively. This article describes the data used to derive the values of those attributes and a scheme to classify the v...

  17. Remote sensing techniques for the detection of soil erosion and the identification of soil conservation practices

    Science.gov (United States)

    Pelletier, R. E.; Griffin, R. H.

    1985-01-01

    The following paper is a summary of a number of techniques initiated under the AgRISTARS (Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing) project for the detection of soil degradation caused by water erosion and the identification of soil conservation practices for resource inventories. Discussed are methods to utilize a geographic information system to determine potential soil erosion through a USLE (Universal Soil Loss Equation) model; application of the Kauth-Thomas Transform to detect present erosional status; and the identification of conservation practices through visual interpretation and a variety of enhancement procedures applied to digital remotely sensed data.

  18. Data on four criteria for targeting the placement of conservation buffers in agricultural landscapes

    Directory of Open Access Journals (Sweden)

    Zeyuan Qiu

    2016-06-01

    Full Text Available Four criteria are generally used to prioritize agricultural lands for placing conservation buffers. The criteria include soil erodibility, hydrological sensitivity, wildlife habitat, and impervious surface rate that capture conservation buffers’ benefits in reducing soil erosion, controlling runoff generation, enhancing wildlife habitat, and mitigating stormwater impacts, respectively. This article describes the data used to derive the values of those attributes and a scheme to classify the values in multi-criteria analysis of conservation buffer placement in “Choosing between alternative placement strategies for conservation buffers using borda count” [1].

  19. Data on four criteria for targeting the placement of conservation buffers in agricultural landscapes.

    Science.gov (United States)

    Qiu, Zeyuan; Dosskey, Michael G; Kang, Yang

    2016-06-01

    Four criteria are generally used to prioritize agricultural lands for placing conservation buffers. The criteria include soil erodibility, hydrological sensitivity, wildlife habitat, and impervious surface rate that capture conservation buffers' benefits in reducing soil erosion, controlling runoff generation, enhancing wildlife habitat, and mitigating stormwater impacts, respectively. This article describes the data used to derive the values of those attributes and a scheme to classify the values in multi-criteria analysis of conservation buffer placement in "Choosing between alternative placement strategies for conservation buffers using borda count" [1]. PMID:27222843

  20. A VSA-based strategy for placing conservation buffers in agricultural watersheds.

    Science.gov (United States)

    Qiu, Zeyuan

    2003-09-01

    Conservation buffers have the potential to reduce agricultural nonpoint source pollution and improve terrestrial wildlife habitat, landscape biodiversity, flood control, recreation, and aesthetics. Conservation buffers, streamside areas and riparian wetlands are being used or have been proposed to control agricultural nonpoint source pollution. This paper proposes an innovative strategy for placing conservation buffers based on the able source area (VSA) hydrology. VSAs are small, variable but predictable portion of a watershed that regularly contributes to runoff generation. The VSA-based strategy involves the following three steps: first, identifying VSAs in landscapes based on natural characteristics such as hydrology, land use/cover, topography and soils; second, targeting areas within VSAs for conservation buffers; third, refining the size and location of conservation buffers based on other factors such as weather, environmental objectives, available funding and other best management practices. Building conservation buffers in VSAs allows agricultural runoff to more uniformly enter buffers and stay there longer, which increases the buffer's capacity to remove sediments and nutrients. A field-scale example is presented to demonstrate the effectiveness and cost-effectiveness of the within-VSA conservation buffer scenario relative to a typical edge-of-field buffer scenario. The results enhance the understanding of hydrological processes and interactions between agricultural lands and conservation buffers in agricultural landscapes, and provide practical guidance for land resource managers and conservationists who use conservation buffers to improve water quality and amenity values of agricultural landscape.

  1. Bentazone adsorption and desorption on agricultural soils

    OpenAIRE

    Boivin, A.; Cherrier, R.; Schiavon, M

    2005-01-01

    Herbicide fate and transport in soils greatly depend upon adsorption-desorption processes. Batch adsorption and desorption experiments were performed with the herbicide bentazone using 13 contrasted agricultural soil samples. Bentazone was found to be weakly sorbed by the different soils, showing average Freundlich adsorption coefficients (Kf) value of 1.4 ± 2.3 mg1 - nf Lnf kg-1. Soil organic matter content did not have a significant effect on bentazone sorption (r2 = 0.12), whereas natural ...

  2. Effects of Conventional and Conservation Tillage on Soil Hydraulic Properties of a Silty-loamy Soil

    DEFF Research Database (Denmark)

    Wahl, Niels Arne; Bens, O.; Buczko, U.;

    2004-01-01

    Infiltration into soils is strongly correlated with macroporosity. Under agricultural land use, the properties of the macropore network are governed by the applied management and tillage system. On an experimental site with a silt loam soil partly under conventional and conservation tillage...... a penetration depth of only 50 cm was recorded on the conventionally tilled plot. For both tillage treatments, infiltration rates were lower in the topsoil than in soil depths >30 cm. The conservation tillage plot showed higher infiltration rates at 50 and 90 cm soil depth than the conventional tilled plot....... For both tillage systems, the visual recording of stained and unstained macropores (1 mm) resulted in macropore densities ranging between 100 and 1,000 macropores/m, with the highest numbers in the topsoil and a gradual decrease with soil depth. At the conservation tillage plot, below 20 cm soil depth...

  3. Soil conservation through sediment trapping: a review

    NARCIS (Netherlands)

    Getahun, M.M.; Keesstra, S.D.; Stroosnijder, L.; Baartman, J.E.M.; Maroulis, J.

    2015-01-01

    Preventing the off-site effects of soil erosion is an essential part of good catchment management. Most efforts are in the form of on-site soil and water conservation measures. However, sediment trapping can be an alternative (additional) measure to prevent the negative off-site effects of soil eros

  4. Ancient Agricultural Terraces and the Soil Erosion Paradox

    Science.gov (United States)

    Brown, Tony

    2015-04-01

    Geoarchaeology lies at the heart of debates about societal stability and change. Geomorphological research has been used as a foundation for simplistic models of resource depletion based almost entirely on the comparison of soil erosion rates with long-term so- called 'geological' rates. However, the neo-catastrophic collapse of complex agricultural societies is rare, and where it is convincing demonstrated it is even more rarely monocausal. Indeed many societies appear to have continued agricultural exploitation of climatically marginal lands for far longer than soil depletion estimates would forecast. One reason may be that this soil depletion approach has grossly simplified soil creation through weathering, and neglected how past agriculture also affected the soil creation rate (especially on some lithologies) and how soil was conserved (terraces) and utilised even after transport. However, we now have we know have some potentially valuable new tools, including mineral magnetics and cosmogenic nuclides, which can be used to estimate changing soil weathering rates. This approach will be discussed with examples from both the temperate and Mediterranean climatic zones and in relation to causative models of change in complex agricultural societies.

  5. Conservation agriculture for food security in the Philippines

    OpenAIRE

    University of the Philippines - Los Baños

    2010-01-01

    This brochure describes the project to promote Conservation Agriculture as a technologically-feasible, economically-viable, environmentally-sustainable and gender-responsive production system that will contribute to food security of small farm communities in the Philippines. LTRA-12 (Conservation agriculture for food security in Cambodia and the Philippines)

  6. Carbon Sequestration in Agricultural Soils

    OpenAIRE

    World Bank

    2009-01-01

    The purpose of this report is to improve the knowledge base for facilitating investments in land management technologies that sequester soil organic carbon. While there are many studies on soil carbon sequestration, there is no single unifying volume that synthesizes knowledge on the impact of different land management practices on soil carbon sequestration rates across the world. A meta-a...

  7. Integrating Green Fiscal Reforms into the Agricultural Transformation Agenda: Panacea for Boosting Soil Enrichment and Water Conservation for Sustainable Food Production in Nigeria

    OpenAIRE

    Okojie, L.O.; Sanusi, R.A.; A. R. Popoola

    2015-01-01

    Nigeria had a booming agricultural industry and prominent world market shares in many of its commodities at independence. With the continuous decline in these, the Agricultural Transformation Agenda (ATA) has been floated to promote twelve commodities in production along their value chains. Various innovations and expected benefits feature in the programme. The cultivation methods and other activities within the nodes of the value chains do not however specify green growth strategy promoted b...

  8. Influencia de la agricultura de conservación en la temperatura del suelo y su relación con las poblaciones microbianas Influence of conservation agriculture over soil temperature and the relation with microbial populations

    Directory of Open Access Journals (Sweden)

    A. Muñoz

    2009-01-01

    óptimos de temperatura para el crecimiento microbiano en los manejos de agricultura de conservación.The temperature of the soil is a key factor in the growth of the maize, a sensible culture to the temperature variations, with high optimal temperature for germination of the seed, growth of plant and fruition. The conservation agriculture tends to diminish the temperature of the soil, due to the stubbles that are left in surface, in whose decomposition the microorganisms of the soil play a fundamental role, and to the associated increase of humidity this type of management. For a suitable management of soils under conservation agriculture is recommendable the study of the temperature and the microbial populations in the surface horizon. For these reasons, the objective of this study has been to make a comparative study of the oscillations of temperature in different managements from agriculture of conservation as opposed to the obtained with a conventional management, and to determine how affect these variations of temperature to the microbial populations associated to the rhizosphere of the culture. Field experiences have been made in four different managements under a same soil, located in contiguous subparcels; one of direct seeding (DS, two of direct seeding with cover (DSC with different antiquity from implantation and a conventional tillage (CT. It has been made an exhaustive measurement of the temperature of the soil during three years and a monitoring of the evolution of the microbial populations. The analysis of the results allows to conclude that during the period of culture takes place a diminution of the temperature in SD and SDC with respect to LC, with smaller oscillations of temperature for the conservation agriculture. In addition, an increase in the microbial populations associated to SD and SDC with respect to LC is observed, that would indicate the existence of optimal intervals of temperature for the microbial growth in the managements of

  9. Gliocladium and Trichoderma in agricultural soil

    Institute of Scientific and Technical Information of China (English)

    LIANG Chen; LI Bao-du; LU Guo-zhong

    2004-01-01

    @@ Gliocladium and Trichoderma are common fungi in agricultural soil. Several species of them were isolated and identified, great diversity was displayed in different agricultural soils of different crops,agricultural climate zones, different seasons, depths, different treated soybean cyst nematode soil,healthy and diseased crop soil. Among five crops soil samples, wheat and corn soil were found to possess the largest number of Gliocladium and Trichoderma separately. Gliocladium and Trichoderma of three major crops showed consistent changing patterns with seasonal variation. Corn soil displayed distinct vertical distribution of Trichoderna. There is a different distribution of the two fungi in diseased and healthy plant soil. Among the various isolated methods, diluted plate method is the best for isolating Gliocladium, and Trichoderma could be found in plant residue method and be tolerant to steam for two minutes. In the soybean cyst nematode soil mycobiota, the frequency of Gliocladium is higher than that of the others fungi, and Trichoderma may have the role of bioremediation in herbicide treated soil. Similarly, Gliocladium occurred frequently in different climate zones.

  10. Impact of Soil Conservation Measures on Erosion Control and Soil Quality

    International Nuclear Information System (INIS)

    This publication summarises the lessons learnt from a FAO/IAEA coordinated research project on the impact of soil conservation measures on erosion control and soil quality over a five-year period across a wide geographic area and range of environments. It demonstrates the new trends in the use of fallout radionuclide-based techniques as powerful tools to assess the effectiveness of soil conservation measures. As a comprehensive reference material it will support IAEA Member States in the use of these techniques to identify practices that can enhance sustainable agriculture and minimize land degradation.

  11. Agricultural Land Use and Conservation Options

    OpenAIRE

    Zander, P.

    2003-01-01

    The thesis presents the modeling system MODAM (Multi-Objective Decision support tool for Agroecosystem Management) which was developed at the Centre for Agricultural Landscape and Land Use Research (ZALF) Müncheberg. The aim of the development of MODAM is to foster sustainable development of agricultural landscapes by decision support at farm and at policy level. Therefore, indicators assessing the environmental performance of agricultural activities are included in an economic farm decision ...

  12. Soil biodiversity for agricultural sustainability

    NARCIS (Netherlands)

    Brussaard, L.; Ruiter, de P.C.; Brown, G.G.

    2007-01-01

    We critically highlight some evidence for the importance of soil biodiversity to sustaining (agro-)ecosystem functioning and explore directions for future research. We first deal with resistance and resilience against abiotic disturbance and stress. There is evidence that soil biodiversity does conf

  13. Plant-conservative agriculture of acid and degraded Raña-grassland enhances diversity of the common soil mites (Oribatida)

    OpenAIRE

    Juan Jorrín; Pedro González-Fernández

    2016-01-01

    The seminatural prairie of the Raña of Cañamero (Spain) is a degraded and unproductive agrosystem with acid and stony soils, and low coverage of xerophytic grasses. In a project about secondary reconversion of the raña-prairie to a more productive cropland, an experimental field (EF) was established to assess the effect on plot-productivity of the interaction between correction of soil pH (liming) with three cropping systems: a no-tilled and annually fertilized and improved prairies, and a co...

  14. Soil Conservation and Sediment Control in Europe

    Institute of Scientific and Technical Information of China (English)

    Anton Charles Imeson

    2010-01-01

    The objective of this paper is to provide an overview of soil conservation and sediment control in Europe from the perspectives of policy makers seeking solutions to current problems of soil loss and flooding. Data and information are derived from detailed reports written in support of the European Soils Directive, that addressed the threats facing European soils and from workshops organised to identify best practices and achieve sustainable land use in different EU countries. These were organised by the SCAPE (Strategies for Soil Conservation and Protection in Europe) supporting action. Regarding technical measures used to limit erosion and restore ecosystems, there is much similarity between Europe and China. The main soil and land degradation problems that soil conservation practitioners and scientists have to address are caused by land use and management impacts that have proved difficult or impossible to resist because of political conditions. The political leadership that regarded soil conservation and sediment control, as a cornerstone of sustainable economic development, which seemed to be present eight years, is urgently required once more.

  15. Conservation agriculture, a sustainable production alternative for the (sub)tropical highlands : toward an integrated evaluation of the system

    OpenAIRE

    Govaerts, Bram

    2007-01-01

    (Sub)tropical highlands of the world are densely populated and intensively cropped. Agricultural sustainability problems resulting from soil erosion and fertility decline have arisen throughout this agro-ecological zone. Major changes are needed in land, livestock and water management in line with traditional lifestyles and customs to remedy the agricultural system. Can conservation agriculture, based on three basic principles (1) minimal soil movement, (2) retention of rational amounts of cr...

  16. Conservation agriculture in Lesotho: The drivers of adoption and the role of extension

    OpenAIRE

    Bisangwa, E.; Wilcox, M.D.; Lambert, Dayton M.; Marake, Makoala V.; Walker, F.R.; Eash, Neal S.; Park, W M

    2012-01-01

    Recent efforts by the Government of Lesotho, non-government organizations (NGOs), and international attention have focused on developing conservation agriculture (CA) practices adapted to the cultural, economic, and agro-ecological conditions. In particular, understanding the influence of the introduction of CA technologies on soil erosion, yields, labor allocation and gender roles is of critical importance for developing sustainable agriculture technologies. This research is a collaborative ...

  17. Microbial Community Structure and Enzyme Activities in Semiarid Agricultural Soils

    Science.gov (United States)

    Acosta-Martinez, V. A.; Zobeck, T. M.; Gill, T. E.; Kennedy, A. C.

    2002-12-01

    The effect of agricultural management practices on the microbial community structure and enzyme activities of semiarid soils of different textures in the Southern High Plains of Texas were investigated. The soils (sandy clay loam, fine sandy loam and loam) were under continuous cotton (Gossypium hirsutum L.) or in rotations with peanut (Arachis hypogaea L.), sorghum (Sorghum bicolor L.) or wheat (Triticum aestivum L.), and had different water management (irrigated or dryland) and tillage (conservation or conventional). Microbial community structure was investigated using fatty acid methyl ester (FAME) analysis by gas chromatography and enzyme activities, involved in C, N, P and S cycling of soils, were measured (mg product released per kg soil per h). The activities of b-glucosidase, b-glucosaminidase, alkaline phosphatase, and arylsulfatase were significantly (Pconservation tillage in comparison to continuous cotton under conventional tillage. Principal component analysis showed FAME profiles of these soils separated distinctly along PC1 (20 %) and PC2 (13 %) due to their differences in soil texture and management. No significant differences were detected in FAME profiles due to management practices for the same soils in this sampling period. Enzyme activities provide early indications of the benefits in microbial populations and activities and soil organic matter under crop rotations and conservation tillage in comparison to the typical practices in semiarid regions of continuous cotton and conventional tillage.

  18. Social and economic factors for adoption of soil and water conservation in West Usambara highlands, Tanzania

    NARCIS (Netherlands)

    Tenge, A.J.M.; Graaff, de J.; Hella, J.P.

    2004-01-01

    Accelerated soil erosion is one of the major constraints to agricultural production in many parts of the Tanzanian highlands. Although several soil and water conservation technologies have been developed and promoted, the adoption of many recommended measures is minimal and soil erosion continues to

  19. Strategies for Water-soil Conservation and Sustainable Agriculture of Southern Hilly and Mountainous Regions%南方丘陵山地水土保持与循环农业发展策略研究

    Institute of Scientific and Technical Information of China (English)

    黄颖; 罗旭辉; 钟珍梅; 曾玉荣; 翁伯琦

    2015-01-01

    As one of the most severely eroded areas in China,the hilly and mountainous regions of southern China faces an unprecedented challenge in water-soil conservation.This article shows the current situation of the serious soil erosion and degradation of the red soil lands in the regions,as well as the efforts in the past to remedy and prevent further deterioration.Based on the information,4 potentially applicable approaches for the development of a sustainable agriculture were drawn.They included (1 ) the " Theme Agriculture" that focuses on the local specialties taking the over-all planning for the regions into consideration,(2)the" Three-dimensional Agriculture"that maximize the utilization of all available resources,(3 )the " Recycling Agriculture" that surrounds the generation and utilization of methane gas,and (4)the " Tourism Agriculture" that combines leisure and ecology-oriented activities.For execution,the following measures were recommended:(1)mapping strategies to fit for the local conditions,(2 ) streamlining organizational structures to facilitate efficient operations, (3 ) encouraging cooperation between research institutions and industrial entities to foster innovation,(4)upgrading management to fully capitalize investments,and (5)providing trainings to enhance employee quality.%从南方丘陵山地水土流失现状分析入手,阐述南方丘陵红壤侵蚀退化地的水土流失特征与主要防控成效,总结4种具有示范推广意义的治理型循环农业开发模式:(1)以合理统筹兼顾为主线的特色农业开发模式;(2)以资源合理配置为核心的立体农业开发模式;(3)以沼气综合利用为纽带的循环农业开发模式;(4)以拓展生态旅游为特色的观光农业开发模式,并据此提出与南方山区农村社会、经济、生态的实际情况相适应的乡村循环农业发展对策:一是结合区域实际,制定山区科学发展规划;二是优化产业结构,

  20. Tailoring conservation agriculture to the needs of small farmers in developing countries: An analysis of issues

    OpenAIRE

    Wall, P.C.

    2007-01-01

    Metadata only record The defining characteristics of conservation agriculture (CA) are retention of crop residues on the soil surface and minimized soil disturbance. A major barrier to adoption of CA is the extensive prerequisite knowledge required for successful implementation. Other factors inhibiting the spread of CA among small scale farmers are the prevalence of crop-livestock systems, which often depend upon crop residues for animal feed; limited access to markets, capital or credit;...

  1. Adoption and extent of conservation agriculture practices among smallholder farmers in Malawi

    OpenAIRE

    Ngwira, Robert Amos; Johnsen, Fred Håkon; Aune, Jens Bernt; Mekuria, Mulugetta; Thierfelder, Christian

    2014-01-01

    Understanding factors affecting farmers' adoption of improved technologies is critical to success of conservation agriculture (CA) program implementation. This study, which explored the factors that determine adoption and extent of farmers' use of the three principles of CA (i.e., minimum soil disturbance, permanent soil cover with crop residues, and crop rotations), was conducted in 10 target communities in 8 extension planning areas in Malawi. The primary data was collected using structured...

  2. Soil governance in the agricultural landscapes of New South Wales, Australia

    OpenAIRE

    Webb, Ashley A; Kelly, Georgina L; Warwick J Dougherty

    2015-01-01

    Soil is a valuable natural resource. In the state of New South Wales, Australia, the governance of soil has evolved since Federation in 1901. Following rapid agricultural development, and in the face of widespread soil degradation, the establishment of the Soil Conservation Service marked a turning point in the management of soil. Throughout the 20th century, advances in knowledge were translated into evolving governance frameworks that were largely reactionary but saw progressive reforms suc...

  3. A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions

    NARCIS (Netherlands)

    Rusinamhodzi, L.; Corbeels, M.; Wijk, van M.T.; Rufino, M.C.; Nyamangara, J.; Giller, K.E.

    2011-01-01

    Conservation agriculture involves reduced tillage, permanent soil cover and crop rotations to enhance soil fertility and to supply food from a dwindling land resource. Recently, conservation agriculture has been promoted in Southern Africa, mainly for maize-based farming systems. However, maize yiel

  4. Integrating Green Fiscal Reforms into the Agricultural Transformation Agenda: Panacea for Boosting Soil Enrichment and Water Conservation for Sustainable Food Production in Nigeria

    Directory of Open Access Journals (Sweden)

    L. O. Okojie

    2015-06-01

    Full Text Available Nigeria had a booming agricultural industry and prominent world market shares in many of its commodities at independence. With the continuous decline in these, the Agricultural Transformation Agenda (ATA has been floated to promote twelve commodities in production along their value chains. Various innovations and expected benefits feature in the programme. The cultivation methods and other activities within the nodes of the value chains do not however specify green growth strategy promoted by green fiscal reform policies. This implies the shortchanging of green growth strategy in the national development process and so the compromising of sustainability. This paper valued the environmental services loss resulting from deforestation associated with “slash and burn” arable crop expansion and the benefits of “green grabbing” - the deliberate appropriation of nature in the ATA. The profitability of food crop production with and without green fiscal reform policies integration was also assessed. Sampling procedures that included the stratified, simple random and purposive sampling were used at various stages depending on the objective. Primary data were collected through structured questionnaire. The analytical tools adopted were the Contingent Valuation Method (CVM of the referendum type, on-day site travel cost method and the budgetary analysis. Results showed that 66.37% forest land use changes occurred in a seven year periods for arable food crops expansion. The environmental services loss as depicted by the Willingness To Pay (WTP was averagely N0.60billion/year. The stock recreation value derived from “green grabbing” for the same period with 5% of the Nigerian population of 150 million visiting the Obudu Mountain Resort (OMR for recreational purposes considered was N4.41 x 1012 million. The recreation use benefits of the OMR based on the Marshalian consumer surplus computation was slightly higher for the same period. Profitability

  5. The role of soil quality and soil conservation for private gardening in South-West Germany

    Science.gov (United States)

    Teuber, Sandra; Kühn, Peter; Scholten, Thomas

    2016-04-01

    In the past centuries, agriculture played a major role in the economy of Germany, and private gardening was common practice. With the shift from agriculture to (service-) industry, less people work in their own garden for subsistence purposes and thus are no longer in direct contact with soil. However, the "Kleingarten"- and "Schrebergarten"-movements still exist in Germany, within which gardeners use soil to provide themselves with fruit and vegetables. The gardeners spend their leisure time cultivating the soil, planting, and harvesting. We ask as to whether these gardeners have a specific relation to soil quality and soil conservation, and what it is they associate with soil. Moreover, how do they use soil? Is soil quality assessed prior to planting? How do private gardeners conserve their soil? Interviewer-administered questionnaires were carried out in the respective gardens. Additionally, management practices were observed, and the fertility of the topsoil was measured. The research area is located in South-West Germany between the Black Forest and the Swabian Jura in a rural district. However, the "Kleingärten" investigated belong to the regional centre there and thus developed in an urban context. The theoretical framework of the SFB 1070 ResourceCultures was used for the study. A small portion of the surveyed private gardeners used simple box kits to analyse soil quality. However, the majority relied on experience and traditional knowledge to determine their management practices. This behaviour complicates the establishment of up-to-date knowledge about sustainable soil use like no-till and raised vegetable beds. Many surveyed persons have an agricultural background inasmuch as their (grand-) parents were farmers or at least owned a garden. Soil conservation practices are common, like the use of green manure to prevent the soil from drying out and supplementing soil with compost. Soil pollution is related to the use of chemical fertilizers which many

  6. The magnetic susceptibility of European agricultural soils

    Science.gov (United States)

    Fabian, K.; Reimann, C.

    2012-04-01

    The GEMAS (Geochemical mapping of agricultural soils) project, a cooperation project between EuroGeoSurveys and Eurometaux, aims at providing soil quality data for Europe. Samples of arable soil were taken during 2008 at an average density of 1 site/2500 km2 covering the member states of the European Union (except Malta and Romania) and several neighbouring countries (e.g., Norway, Serbia, Ukraine). While the primary aim of the GEMAS project is to produce REACH (Registration, Evaluation and Authorisation of CHemicals - EC, 2006) consistent soil geochemistry data at the continental scale, the data set is also optimally apt to provide the first continental scale overview of magnetic properties in European soils. Soil samples from the upper 20 cm were taken as composites from 5 sites spread over a ca. 100 m2 area in a large agricultural field (Ap-sample). The samples were air dried and sieved to pass a 2 mm nylon screen. Weight normalized magnetic susceptibility of these dried samples was measured using a Sapphire Instruments SI2B susceptibility meter with dynamic background removal. The here presented maps of magnetic susceptibility in relation to geochemical composition and geological structures for the first time allow to outline the large scale influence of tectonics and climate on magnetic mineral concentration in European soils. The data set also provides the background variability for regional studies aiming to relate magnetic susceptibility of soils to local contamination sources.

  7. Agricultural Land Use and Conservation Options

    NARCIS (Netherlands)

    Zander, P.

    2003-01-01

    The thesis presents the modeling system MODAM (Multi-Objective Decision support tool for Agroecosystem Management) which was developed at the Centre for Agricultural Landscape and Land Use Research (ZALF) Müncheberg. The aim of the development of MODAM is to foster sustainable development o

  8. The impact of marketing systems on soil sustainability of agriculture in developing countries : a method and an application

    NARCIS (Netherlands)

    Castaño, J.; Meulenberg, M.T.G.; Tilburg, van A.

    2005-01-01

    This article is concerned with soil-sustainability problems of agriculture in developing countries, in particular with soil erosion. The aim of our study is to develop a comprehensive model that explains the adoption of sustainable agricultural practices with respect to soil conservation. Our approa

  9. Impact of soil conservation on crop production in the Northern Ethiopian Highlands:

    OpenAIRE

    Kassie, Menale; Pender, John; Yesuf, Mahmud; Kohlin, Gunnar; Bluffstone, Randy; Mulugeta, Elias

    2007-01-01

    "Land degradation, in the form of soil erosion and nutrient depletion, threatens food security and the sustainability of agricultural production in many developing countries. Governments and development agencies have invested substantial resources in promoting soil conservation practices, in an effort to improve environmental conditions and reduce poverty. However, very limited rigorous empirical work has examined the economics of adopting soil conservation technology. This paper investigates...

  10. Life cycle assessment to evaluate the environmental impact of biochar implementation in conservation agriculture in Zambia.

    Science.gov (United States)

    Sparrevik, Magnus; Field, John L; Martinsen, Vegard; Breedveld, Gijs D; Cornelissen, Gerard

    2013-02-01

    Biochar amendment to soil is a potential technology for carbon storage and climate change mitigation. It may, in addition, be a valuable soil fertility enhancer for agricultural purposes in sandy and/or weathered soils. A life cycle assessment including ecological, health and resource impacts has been conducted for field sites in Zambia to evaluate the overall impacts of biochar for agricultural use. The life cycle impacts from conservation farming using cultivation growth basins and precision fertilization with and without biochar addition were in the present study compared to conventional agricultural methods. Three different biochar production methods were evaluated: traditional earth-mound kilns, improved retort kilns, and micro top-lit updraft (TLUD) gasifier stoves. The results confirm that the use of biochar in conservation farming is beneficial for climate change mitigation purposes. However, when including health impacts from particle emissions originating from biochar production, conservation farming plus biochar from earth-mound kilns generally results in a larger negative effect over the whole life cycle than conservation farming without biochar addition. The use of cleaner technologies such as retort kilns or TLUDs can overcome this problem, mainly because fewer particles and less volatile organic compounds, methane and carbon monoxide are emitted. These results emphasize the need for a holistic view on biochar use in agricultural systems. Of special importance is the biochar production technique which has to be evaluated from both environmental/climate, health and social perspectives.

  11. Transport of agricultural contaminants through karst soil

    Science.gov (United States)

    Karst landscapes are common in many agricultural regions in the US. Well-developed karst landscapes are characterized by shallow soils, sinkholes, sinking streams, underground conduits, and springs. In these landscapes surface runoff is minimal and most recharge enters the subsurface relatively quic...

  12. Properties of 21 Urban Agricultural Soils in Seoul, Korea

    Science.gov (United States)

    Kim, J.; Kim, H. S.; Kim, J. W.

    2012-04-01

    The number of urban agriculture practitioners has been increasing rapidly in Korea like many other urbanized countries recently. The Korean government enacted a law for promoting urban agriculture in 2011. However, urban soil environment can be potential sources of many toxic contaminants including heavy metals making people concern about the safety of the agricultural products from the urban agriculture. The accumulation of heavy metals in soil and plant by overuse of compost from animal waste was one of the raised concerns. This study was carried out to find out properties and total and phytoavailable (1.0 M NH4NO3 extractable) contents of heavy metals (Cd, Pb, Cu, Zn) in 21 urban agricultural soils in Seoul. On the average, the investigated urban soils showed pH1:5 6.89, EC1:5 0.14 dS m-1, organic mater 2.22%, available P2O5 139 mg kg-1, cation exchange capacity (CEC) 11.36 cmolc kg-1 and total nitrogen 0.15%. The average exchangeable-Ca, -Mg, -K and -Na of the 21 samples were 6.71, 1.44, 1.06 and 0.30 cmol+ kg-1, respectively. Total heavy metal concentrations (Cd 0.97-3.17 mg kg-1, average 1.89 mg kg-1; Pb 8.10-46.27 mg kg-1, average 19.96 mg kg-1; Cu 8.97-133.40 mg kg-1, average 38.37 mg kg-1; and Zn 38.97-180.06 mg kg-1, average 97.73 mg kg-1) in urban agricultural soils were lower than those of the warning standard in the area 1 according to the Soil Environmental Conservation Act of Korea. Phytoavailable-Cu, -Pb, and -Zn concentrations of the samples showed 0.02-0.28, N.D-0.09 and 0.01-0.43 mg kg-1, respectively. Phytoavailable-Cd was not detected. The average phytoavailable-Cu concentration from this study was similar to that from the previous phytoavailable-Cu of the highly contaminated soils from nearby abandoned mines, which might be resulted from overuse of compost from animal waste. Results showed a necessity of long-term monitoring of soils for sustainable urban agriculture in Korea.

  13. Sorption of phenanthrene in agricultural soils

    DEFF Research Database (Denmark)

    Soares, António Carlos Alves; Minh, Luong Nhat; Vendelboe, Anders Lindblad;

    , PAHs tend to sorb to the organic carbon (OC) in the soil. This study aims to understand the contribution to phenanthrene sorption of various soils fractions such as organic carbon, clay, silt and sand. In 24 hours equilibrium sorption experiments, we determined the phenanthrene partition coefficient...... models of Abdul et al. and Karickhoff et al. These two models were documented useful to predict maximum and minimum Koc for agricultural topsoils, for example in regard to predicting long-term PAH leaching from cultivated areas. Furthermore, we suggest a new Koc model in between Abdul and Karickhoff......, KD for more than one hundred Danish and European agricultural top and sub soils (122 topsoils and 28 subsoils) as well as the normalized distribution coefficient of the organic carbon content (KOC), through single point isotherm measurements. Possible effect of clay-complexed organic carbon...

  14. Weed Management in Zimbabwean Smallholder Conservation Agriculture Farming Sector

    Directory of Open Access Journals (Sweden)

    Tarirai Muoni

    2014-03-01

    Full Text Available Weed management is one of the major constraints in the Zimbabwe smallholder farming sector contributing to smallholder poor yields, hence there is need to identify cropping systems that have potential to reduce weed pressure while improving crop yields. Conservation agriculture has been suggested as one of these farming systems. The implementation of CA three key principles reduces weed pressure even when the use of herbicides is minimised. Crops included in crop rotations, intercropping or relay cropping may have faster growth rate than weeds hence, have a comparative advantage over weeds. Maintenance of permanent soil cover through crop residues impedes weed germination thereby reducing weed population. Elimination of ploughing also reduces the chances of bringing buried weed seeds to the surface where their chances for germination are high. Hence, some seeds lose viability thus reducing weed density. Weed seeds accumulate at the surface, when allowed to set seed, increasing their exposure to predation resulting in reduction of weed density over time. The use of herbicides ensures that the fields are weed free as the season’s progress thus ensuring better yields at the end of each growing season. Hence, weeds are reduced in CA systems over time despite the weeding option used.

  15. Soil Management Effects on Gas Fluxes from an Organic Soil Agricultural System

    Science.gov (United States)

    Jennewein, S. P.; Bhadha, J. H.; Lang, T. A.; Singh, M.; Daroub, S. H.; McCray, M.

    2015-12-01

    The role of soil management on gas flux isn't well understood for Histosols of the Everglades Agricultural Area (EAA) of southern Florida. The region is responsible for roughly half of sugarcane (Saccharum spp. hybrids) production in the USA along with supplying winter vegetable crops to the eastern USA. Future productivity in the EAA is jeopardized by soil subsidence resulting from oxidation of organic matter. Establishing the role of tillage, water-table depth, nitrogen fertilizer, and soil depth on gas flux will help determine how effective various managements are on conserving soil. Ongoing lysimeter and field studies examined effects of management practices (water-table, tillage, and nitrogen fertilizer), and soil depth on, gas emission and microbial biomass. The trials were set in Belle Glade, FL, on Lauderhill muck (Lithic Haplosaprists). Results to be presented include soil microbial biomass and soil gas (CO2, CH4, and N2O) flux. This study provides insight into management effectiveness and agriculture sustainability on shallow muck soils of the EAA and will help farmers mitigate problems associated with soil subsidence and seasonally high water-tables.

  16. Conservation of soil moisture in deep tillage rigosol under wheat and maize

    Directory of Open Access Journals (Sweden)

    Tapanarova Angelina

    2005-01-01

    Full Text Available At the experimental field "Radmilovac" of the Faculty of Agriculture of the University of Belgrade the study of the conservation of soil moisture in deep tillage Rigosol was carried out. The so called type of soil Rigosol was covered by wheat and maize. The Rigosol was formed by special treatment of the parent soil the Eutric Cambisol. The researches have been conducted during the most important phenophases of the crop growth, including formation of kernels, flowering, fertilization, grain filling and maturity. Special attention was paid to the measurements of soil moisture in the period when crop water requirements are the greatest. The conservation of the soil moisture was observed along the vertical profiles of soil. The following parameters were monitored: time intervals without rainfall, precipitation rate and the rate of crop phenophase development. Very favorable soil moisture conservation was observed, both for wheat and maize covered soil. The greatest content of soil moisture was measured at the depths from 10 to 30 cm, in the zone of crop roots. As the consequence, the favorable conditions for crop growth and yields were observed. Deep tillage of soil had positive effects on homogeneous distribution of soil moisture along the vertical profile, independently of the crop type. It was shown that the Rigosol ensures better conservation of the soil moisture than the parent soil (Eutric Cambisol, if all agriculture measures are applied in the proper time.

  17. The conundrum of conservation agriculture and livelihoods in Southern Africa

    OpenAIRE

    Nkala, P.; Mango, N.; Corbeels, M.; Veldwisch, G.J.A.; J. Huising

    2011-01-01

    Low crop productivity, food insecurity, hunger and malnutrition; inadequate farming knowledge and skills, implements and inputs are characteristic of smallholder agriculture in Southern Africa. Many researchers argue that conservation agriculture can guarantee higher crop productivity, food security, improved livelihoods and environmental protection, better than the unsustainable traditional systems of slash and burn practices. In this paper, we present the results of a meta-analysis of over ...

  18. Phosphorus accumulation and spatial distribution in agricultural soils in Denmark

    DEFF Research Database (Denmark)

    Rubæk, Gitte Holton; Kristensen, Kristian; Olesen, S E;

    2013-01-01

    Over the past century, phosphorus (P) has accumulated in Danish agricultural soils. We examined the soil P content and the degree of P saturation in acid oxalate (DPS) in 337 agricultural soil profiles and 32 soil profiles from deciduous forests sampled at 0–0.25, 0.25–0.50, 0.50–0.75 and 0...

  19. Terraced agriculture protects soil from erosion: Case studies in Madagascar

    Science.gov (United States)

    Rabesiranana, Naivo; Rasolonirina, Martin; Fanantenansoa Solonjara, Asivelo; Nomenjanahary Ravoson, Heritiana; Mabit, Lionel

    2016-04-01

    - Soil degradation is a major concern in Madagascar but quantitative information is not widely available. Due to its impact on the sustainability of agricultural production, there is a clear need to acquire data on the extent and magnitude of soil erosion/sedimentation under various agricultural practices in order to promote effective conservation strategies. Caesium-137 and 210Pbex fallout radionuclides (FRNs) possess particular characteristics that make them effective soil tracers for erosion studies. After fallout, 137Cs and 210Pbex are rapidly adsorbed onto fine soil particles. But to date, combined use of these FRNs has never been used to document soil erosion in Madagascar. The study area is located 40 km east of Antananarivo, in Madagascar highlands. Two adjacent cultivated fields have been selected (i.e. a sloped field and a terraced field) as well as an undisturbed reference site in the vicinity of these agricultural fields. Soil samples were collected along downslope transects using motorized corer. The 137Cs and 210Pb gamma analysis were performed at the Institut National des Sciences et Techniques Nucléaires (INSTN-Madagascar) using a high resolution and low background N-type HPGe detector. Results showed that at the terraced field, 137Cs and 210Pbex inventories reached 145 Bq/m2 to 280 Bq/m2 and 2141 Bq/m2 to 4253 Bq/m2, respectively. At the sloped field, the 137Cs and 210Pbex inventories values ranged from 110 Bq/m2 to 280 Bq/m2 and from 2026 Bq/m2 to 4110 Bq/m2, respectively. The net soil erosion determined for the sloped field were 9.6 t/ha/y and 7.2 t/ha/y for 137Cs and 210Pbex methods, respectively. In contrast, at the terraced field, the net soil erosion rates reached only 3.4 t/ha/y and 3.8 t/ha/y, respectively. The preliminary results of this research highlighted that terraced agricultural practice provides an efficient solution to protect soil resources of the Malagasy highlands.

  20. Agriculture on Mars: Soils for Plant Growth

    Science.gov (United States)

    Ming, D. W.

    2016-01-01

    Robotic rovers and landers have enabled the mineralogical, chemical, and physical characterization of loose, unconsolidated materials on the surface of Mars. Planetary scientists refer to the regolith material as "soil." NASA is currently planning to send humans to Mars in the mid 2030s. Early missions may rely on the use of onsite resources to enable exploration and self-sufficient outposts on Mars. The martian "soil" and surface environment contain all essential plant growth elements. The study of martian surface materials and how they might react as agricultural soils opens a new frontier for researchers in the soil science community. Other potential applications for surface "soils" include (i) sources for extraction of essential plant-growth nutrients, (ii) sources of O2, H2, CO2, and H2O, (iii) substrates for microbial populations in the degradation of wastes, and (iv) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. There are many challenges that will have to be addressed by soil scientists prior to human exploration over the next two decades.

  1. Laggards or Leaders: Conservers of Traditional Agricultural Knowledge in Bolivia

    Science.gov (United States)

    Gilles, Jere L.; Thomas, Justin L.; Valdivia, Corinne; Yucra, Edwin S.

    2013-01-01

    Many sustainable agricultural practices are based on local and traditional farming knowledge. This article examines the conservation and loss of three traditional practices in the Bolivian Altiplano that agronomic research has shown increase the resiliency of small farmers in the face of climate-related risks. These practices are the use of…

  2. Knowledge needs, available practices, and future challenges in agricultural soils

    Science.gov (United States)

    Key, Georgina; Whitfield, Mike G.; Cooper, Julia; De Vries, Franciska T.; Collison, Martin; Dedousis, Thanasis; Heathcote, Richard; Roth, Brendan; Mohammed, Shamal; Molyneux, Andrew; Van der Putten, Wim H.; Dicks, Lynn V.; Sutherland, William J.; Bardgett, Richard D.

    2016-10-01

    The goal of this study is to clarify research needs and identify effective practices for enhancing soil health. This was done by a synopsis of soil literature that specifically tests practices designed to maintain or enhance elements of soil health. Using an expert panel of soil scientists and practitioners, we then assessed the evidence in the soil synopsis to highlight practices beneficial to soil health, practices considered detrimental, and practices that need further investigation. A partial Spearman's correlation was used to analyse the panel's responses. We found that increased certainty in scientific evidence led to practices being considered to be more effective due to them being empirically justified. This suggests that for practices to be considered effective and put into practice, a substantial body of research is needed to support the effectiveness of the practice. This is further supported by the high proportion of practices (33 %), such as changing the timing of ploughing or amending the soil with crops grown as green manures, that experts felt had unknown effectiveness, usually due to insufficiently robust evidence. Only 7 of the 27 reviewed practices were considered to be beneficial, or likely to be beneficial in enhancing soil health. These included the use of (1) integrated nutrient management (organic and inorganic amendments); (2) cover crops; (3) crop rotations; (4) intercropping between crop rows or underneath the main crop; (5) formulated chemical compounds (such as nitrification inhibitors); (6) control of traffic and traffic timing; and (7) reducing grazing intensity. Our assessment, which uses the Delphi technique, is increasingly used to improve decision-making in conservation and agricultural policy, identified practices that can be put into practice to benefit soil health. Moreover, it has enabled us to identify practices that need further research and a need for increased communication between researchers, policy-makers, and

  3. An integrative approach for introducing conservation agricultural practices to tribal societies in India

    OpenAIRE

    Halbrendt, Jacqueline; Lai, Cynthia; Chan-Halbrendt, Catherine; Idol, Travis; Ray, Chittaranjan; Evensen, Carl; Roul, Pravat K.

    2011-01-01

    Small-holder farms in rural India struggle with reduced maize yields due to traditional farming methods. The introduction of modern conservation agriculture practices can provide higher yields and household income while boosting soil productivity. This poster abstract presents the results of CAPS implementation on experimental plots in tribal villages located in the Indian state of Odessa. LTRA-11 (CAPS among tribal societies in India and Nepal)

  4. An integrated social and ecological modeling framework—impacts of agricultural conservation practices on water quality

    OpenAIRE

    Irem Daloğlu; Joan Iverson. Nassauer; Rick Riolo; Donald Scavia

    2014-01-01

    We present a modeling framework that synthesizes social, economic, and ecological aspects of landscape change to evaluate how different agricultural policy and land tenure scenarios and land management preferences affect landscape pattern and downstream water quality. We linked a stylized agent-based model (ABM) of farmers’ conservation practice adoption decisions with a water quality model, the Soil and Water Assessment Tool (SWAT), to simulate the water quality effects of changing land tenu...

  5. Influence of sustainable management on aggregate stability and soil organic matter on agricultural soil of southern Spain

    Science.gov (United States)

    Morugan-Coronado, Alicia; Arcenegui, Victoria; Mataix-Solera, Jorge; Gomez-Lucas, Ignacio; Garcia-Orenes, Fuensanta

    2016-04-01

    Intensive agriculture has increased crop yields but also posed severe environmental problems. Unsustainable land management such as excessive tillage can lead to a loss of soil fertility and a drastic reduction in the aggregate stability and soil organic matter content. However sustainable agriculture can keep good crop yields with minimal impact on ecological factors conserving the soil quality and its ecosystem services. Sustainable agriculture management promotes the maintenance of soil organic matter levels providing plant nutrients through the microbial decomposition of organic materials. Also this management has a positive effect on soil structure with the improvement of stability of aggregates. The resistance of soil aggregates to the slaking and dispersive effects of water (aggregate stability) is important for maintaining the structure in arable soils. Our purpose was to investigate and compare the effects of sustainable agricultural practices versus intensive agriculture on aggregate stability and soil organic matter. Three agricultural areas are being monitored in the southern of Spain, two of them with citrus orchards (AL) and (FE) and one with grapevine(PA). In all of them two agricultural treatments are being developed, organic with no-tillage management(O) and inorganic fertilization with herbicide application and intensive tillage (I). The sustainable agricultural management (manure, no tillage and vegetation cover) contributed to the improve of soil conditions, increasing organic matter and aggregate stability. Meanwhile, herbicide treatment and intensive tillage with inorganic fertilization managements resulted in the decreasing of aggregate stability and low levels of soil organic carbon. Soil organic matter content is generally low in all unsustainable treatments plots and tends to decline in aggregate stability and soil physical condition. In both treatments the crop yield are comparable.

  6. Approximating Phosphorus Leaching from Agricultural Organic Soils by Soil Testing.

    Science.gov (United States)

    Zheng, Z M; Zhang, T Q; Kessel, C; Tan, C S; O'Halloran, I P; Wang, Y T; Speranzini, D; Van Eerd, L L

    2015-11-01

    Phosphorus applied to soils in excess of crop requirement could create situations favorable to P enrichment in subsurface flow that contributes to eutrophication of surface water. This pathway of P loss can be more severe in muck (i.e., organic) soils where agricultural production is intensive. This study evaluated the suitability of various environmental and agronomic soil P tests initially designed for mineral soils to predict dissolved reactive P (DRP) in subsurface flow from organic soils. Intact soil columns were collected from 44 muck soils in Ontario to provide a wide range of soil test P levels. A lysimeter leaching study was conducted by evenly adding water in an amount equivalent to 5 mm of rainfall. The leachate DRP concentration was linearly related to soil water-extractable P and CaCl-extractable P with values of 0.90 and 0.93, respectively, and to Bray-1 P and FeO-impregnated filter paper extractable P in a split-line model with a change point. Mehlich-3 P and Olsen P, a method recommended for agronomic P calibration in Ontario, were not related to leachate DRP concentration. All P sorption index (PSI) based degree of P saturation (DPS) values were closely related to leachate DRP in split-line models, with the DPS indices expressed as Bray-1 P/PSI and FeO-P/PSI having the highest correlation with leachate DRP concentration. Because it is desirable from practical and economic standpoints that the environmental risk assessment shares the same soil test with agronomic P calibration, the two PSI-based DPS indices as presented can be considered as environmental risk indicators of DRP subsurface loss from organic soils. PMID:26641339

  7. The use of stable isotopes for the assessment and optimisation of conservation agriculture

    International Nuclear Information System (INIS)

    FAO is engaged in the development of methodologies and tools to analyse win-win options for small farmers aiming at preventing land degradation, enhancing soil fertility, land productivity and carbon sequestration, which contribute to mitigating atmospheric CO2 levels. The conversion from conventional tillage to no-tillage (zero tillage)/conservation agriculture has been suggested as one possible win-win option. Nuclear techniques in particular stable isotopes are extremely useful in the analysis and assessment of the nutrient, water and carbon, inflows and outflows of such complex farming systems. With international networks of experienced scientists and the capacity to train and develop further expertise, the FAO/IAEA is in a unique position to coordinate a global research programme to assess and optimise conservation agriculture systems. A preliminary SWOT analysis was done to explore the issues of undertaking a CRP in this area. The Soils Unit in the FAO/IAEA Laboratory, Seibersdorf, has a range of backup services to offer the CRP, including, quality assurance, isotope analysis and training. In addition the Unit has over 30 years institutional experience of conducting isotope experiments in developing countries. The Unit has conducted extensive research in the areas of: inorganic fertilizer usage, biological nitrogen fixation, measurement of plant N uptake from organic residues, measurement of soil water, and more recently in the areas of: below ground N, carbon cycling, using of the isotopes of water. A number of methods and techniques, which could potentially be used to study conservation agriculture practices will be presented

  8. The American Land. Its History, Soil, Water, Wildlife, Agricultural Land Planning, and Land Problems of Today and Tomorrow.

    Science.gov (United States)

    Soil Conservation Service (USDA), Washington, DC.

    Presented in this booklet is the commentary for "The American Land," a television series prepared by the Soil Conservation Service and the Graduate School, United States Department of Agriculture, in cooperation with WETA - TV, Washington, D.C. It explores the resource of land in America, its history, soil, water, wildlife, agricultural land…

  9. Soil Organic Carbon dynamics in agricultural soils of Veneto Region

    Science.gov (United States)

    Bampa, F. B.; Morari, F. M.; Hiederer, R. H.; Toth, G. T.; Giandon, P. G.; Vinci, I. V.; Montanarella, L. M.; Nocita, M.

    2012-04-01

    One of the eight soil threats expressed in the European Commission's Thematic Strategy for Soil Protection (COM (2006)231 final) it's the decline in Soil Organic Matter (SOM). His preservation is recognized as with the objective to ensure that the soils of Europe remain healthy and capable of supporting human activities and ecosystems. One of the key goals of the strategy is to maintain and improve Soil Organic Carbon (SOC) levels. As climate change is identified as a common element in many of the soil threats, the European Commission (EC) intends to assess the actual contribution of the soil protection to climate change mitigation and the effects of climate change on the possible depletion of SOM. A substantial proportion of European land is occupied by agriculture, and consequently plays a crucial role in maintaining natural resources. Organic carbon preservation and sequestration in the EU's agricultural soils could have some potential to mitigate the effects of climate change, particularly linked to preventing certain land use changes and maintaining SOC stocks. The objective of this study is to assess the SOC dynamics in agricultural soils (cropland and grassland) at regional scale, focusing on changes due to land use. A sub-objective would be the evaluation of the most used land management practices and their effect on SOC content. This assessment aims to determine the geographical distribution of the potential GHG mitigation options, focusing on hot spots in the EU, where mitigation actions would be particularly efficient and is linked with the on-going work in the JRC SOIL Action. The pilot area is Veneto Region. The data available are coming from different sources, timing and involve different variables as: soil texture, climate, soil disturbance, managements and nutrients. The first source of data is the LUCAS project (Land Use/Land Cover Area Frame statistical Survey). Started in 2001, the LUCAS project aims to monitor changes in land cover/use and

  10. Report of the Public's Comments on the RCA Draft Documents, January-March 1980. [Soil and Water Resources Conservation Act].

    Science.gov (United States)

    Department of Agriculture, Washington, DC.

    The Soil and Water Resources Conservation Act of 1977 (RCA) directed the United States Department of Agriculture (USDA) to assess the country's nonfederal soil and water resources and to develop a program to conserve these and related natural resources. During this process, the USDA prepared and circulated for public comment a draft appraisal,…

  11. Conservation of soil moisture in deep tillage rigosol under wheat and maize

    OpenAIRE

    Tapanarova Angelina

    2005-01-01

    At the experimental field "Radmilovac" of the Faculty of Agriculture of the University of Belgrade the study of the conservation of soil moisture in deep tillage Rigosol was carried out. The so called type of soil Rigosol was covered by wheat and maize. The Rigosol was formed by special treatment of the parent soil the Eutric Cambisol. The researches have been conducted during the most important phenophases of the crop growth, including formation of kernels, flowering, fertilization, grain fi...

  12. Soil physical properties on Venezuelan steeplands: Applications to soil conservation planning

    International Nuclear Information System (INIS)

    This paper presents a framework to support decision making for soil conservation on Venezuelan steeplands. The general approach is based on the evaluation of two important land qualities: soil productivity and soil erosion risk, both closely related to soil physical properties. Soil productivity can be estimated from soil characteristics such as soil air-water relationships, soil impedances and soil fertility. On the other hand, soil erosion risk depends basically on soil hydrologic properties, rainfall aggressiveness and terrain slope. Two indexes are obtained from soil and land characteristics: soil productivity index (PI) and erosion risk index (ERI), each one evaluates the respective land quality. Subsequently, a matrix with these two qualities shows different land classes as well as soil conservation priorities, conservation requirements and proposed land uses. The paper shows also some applications of the soil productivity index as an approach to evaluate soil loss tolerance for soil conservation programs on tropical steeplands. (author)

  13. Biodiversity, Urban Areas, and Agriculture: Locating Priority Ecoregions for Conservation

    OpenAIRE

    Marc Imhoff; Taylor Ricketts

    2003-01-01

    Urbanization and agriculture are two of the most important threats to biodiversity worldwide. The intensities of these land-use phenomena, however, as well as levels of biodiversity itself, differ widely among regions. Thus, there is a need to develop a quick but rigorous method of identifying where high levels of human threats and biodiversity coincide. These areas are clear priorities for biodiversity conservation. In this study, we combine distribution data for eight major plant and animal...

  14. Socio-economic analysis of conservation agriculture in southern Africa

    OpenAIRE

    Food and Agriculture Organization of the United Nations.‏ United Nations Development Programme

    2011-01-01

    Southern Africa, a region little affected by the Green Revolution and likely to suffer severe detrimental impacts from climate change, faces pervasive poverty, hunger, and environmental degradation. Conservation agriculture may be a sustainable and effective way to resolve these issues, but stakeholders need accessible and solid evidence of its effectiveness. The purpose of this report is to analyze the impact of CA on the Southern Africans countries of South Africa, Zambia, and Zimbabwe thro...

  15. Soil conservation through sediment trapping: A review

    Science.gov (United States)

    Mekonnen, Mulatie; Keesstra, Saskia; Baartman, Jantiene; Maroulis, Jerry; Stroosnijder, Leo

    2014-05-01

    Preventing the off-site effects of soil erosion is an essential part of good catchment management. Most efforts are in the form of on-site soil and water conservation measures. However, sediment trapping (ST) can be an alternative (or additional) measure to prevent the negative off-site effects of soil erosion. Therefore, not all efforts should focus solely on on-site soil conservation, but also on the safe routing of sediment-laden flows and on creating sites and conditions where sediment can be trapped, preferably in a cost effective or even profitable way. ST can be applied on-site (in-field) and off-site and involves both vegetative and structural measures. The main vegetative measures include grass strips, tree or bush buffers, grassed waterways and restoration of the waterways and their riparian zone; while structural measures include terraces, ponds and check dams. This paper provides a review of studies that have assessed the sediment trapping efficacy (STE) of such vegetative and structural measures. Vegetation type and integration of two or more measures (vegetative as well as structural) are important factors influencing STE. In this review, the STE of most measures was evaluated either individually or in such combinations. In real landscape situations, it is not only important to select the most efficient erosion control measures, but also to determine their optimum location in the catchment. Hence, there is a need for research that shows a more integrated determination of STE at the catchment scale. If integrated measures are implemented at the most appropriate spatial locations within a catchment where they can disconnect landscape units from each other, they will decrease runoff velocity and sediment transport and, subsequently, reduce downstream flooding and sedimentation problems. KEY WORDS: Integrated sediment trapping, sediment trapping efficacy, vegetative, structural, on-site and off-site measures.

  16. Guidelines for Using Fallout Radionuclides to Assess Erosion and Effectiveness of Soil Conservation Strategies

    International Nuclear Information System (INIS)

    Soil degradation currently affects 1.9 billion hectares of agricultural land worldwide, and the area of degraded land is increasing rapidly at a rate of 5 to 7 million hectares each year. Most of this degradation is caused by inappropriate and poor land management practices in agriculture and livestock production. Among all degradation processes, including soil acidification, salinization and nutrient mining, soil erosion is by far the most common type of land degradation, accounting for 84% of affected areas, with more than three quarters of the affected surface land area located in developing countries. Current concerns about the impacts of soil erosion on crop productivity and the environment, as well as the deployment of effective soil conservation measures, have generated an urgent need to obtain reliable quantitative data on the extent and actual rates of soil erosion to underpin sustainable soil conservation strategies. The quest for new approaches for assessing soil erosion to complement conventional methods has led to the development of methodologies based on the use of fallout radionuclides (FRNs) as soil erosion tracers. With increasing attention being paid to land degradation worldwide, this publication explains and demonstrates FRN based methods to trace soil movement and to assess soil erosion at different spatial and temporal scales, and to evaluate the effectiveness of soil conservation strategies to ensure sustainable land management in agricultural systems. This publication summarizes the experiences and knowledge gained since the end of the 1990s in the use of FRNs by the IAEA and by scientists from both developed and developing countries involved in IAEA research networks. This publication provides guidance in the application of FRNs to stakeholders involved in sustainable agricultural development

  17. Biodiversity, Urban Areas, and Agriculture: Locating Priority Ecoregions for Conservation

    Directory of Open Access Journals (Sweden)

    Marc Imhoff

    2003-12-01

    Full Text Available Urbanization and agriculture are two of the most important threats to biodiversity worldwide. The intensities of these land-use phenomena, however, as well as levels of biodiversity itself, differ widely among regions. Thus, there is a need to develop a quick but rigorous method of identifying where high levels of human threats and biodiversity coincide. These areas are clear priorities for biodiversity conservation. In this study, we combine distribution data for eight major plant and animal taxa (comprising over 20,000 species with remotely sensed measures of urban and agricultural land use to assess conservation priorities among 76 terrestrial ecoregions in North America. We combine the species data into overall indices of richness and endemism. We then plot each of these indices against the percent cover of urban and agricultural land in each ecoregion, resulting in four separate comparisons. For each comparison, ecoregions that fall above the 66th quantile on both axes are identified as priorities for conservation. These analyses yield four “priority sets” of 6–16 ecoregions (8–21% of the total number where high levels of biodiversity and human land use coincide. These ecoregions tend to be concentrated in the southeastern United States, California, and, to a lesser extent, the Atlantic coast, southern Texas, and the U.S. Midwest. Importantly, several ecoregions are members of more than one priority set and two ecoregions are members of all four sets. Across all 76 ecoregions, urban cover is positively correlated with both species richness and endemism. Conservation efforts in densely populated areas therefore may be equally important (if not more so as preserving remote parks in relatively pristine regions.

  18. Soil Properties in Natural Forest Destruction and Conversion to Agricultural Land,in Gunung Leuser National Park, North Sumatera Province

    OpenAIRE

    Basuki Wasis

    2012-01-01

    Destruction of the Gunung Leuser National Park area of North Sumatera Province through land clearing and land cover change from natural forest to agricultural land. Less attention to land use and ecosystem carrying capacity of the soil can cause soil degradation and destruction of flora, fauna, and wildlife habitat destruction. Environmental damage will result in a national park wild life will come out of the conservation area and would damage the agricultural community. Soil sampling conduct...

  19. Projection of aggregate and farm benefits of conservation agriculture productions systems using economic surplus analysis and linear programing in Nepal

    OpenAIRE

    Paudel, B.; Chan-Halbrendt, Catherine; Nguema, A.; Norton, George W.; Tamang, Bishal B.; T.J.K. Radovich; Crow, S.; Halbrendt, Jacqueline

    2013-01-01

    Traditional agriculture in central mid hills of Nepal is characterized by cultivation of sloping lands, resulting in lower productivity and soil loss. The Sustainable Management of Agro-ecological Resources in Tribal Societies (SMARTS) project applied a participatory agro-ecological research framework to develop improved conservation agriculture practices system (CAPS) to contribute to sustainable livelihood of marginalized tribal farmers. This paper used economic surplus analysis at macro le...

  20. Water-conserving Potential for Agriculture in the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    To satisfy the water demand for Tarim Basin's economic development in the year 2000, about 33.4×108 m3 water needs to be further tapped. Acco rding t o the analysis of the current status of water utilization, it is pointed out th at, to achieve such economic objectives, the policy of emphasizing both water ex ploitation and water conservation with the preference given to conservation meas ures must be followed. For this end, the potentials of exploring new additional sources and strengthening water conservation have been well analyzed, along with the calculation and tech-economic-assessment of some related parameters like the canal transmission efficiency in water delivery systems and the water irrigation effi ciency in the field. The results indicate the potentials of water resource expan sion and conservation are 34×108 m3 and 57×108 m3, respectively. Bas ed on such rese arch outputs, a water conservation program has been developed for the Tarim Basi n, to provide important references and policy recommendations for the decision- makers in Xinjiang agricultural department to implement water utilization measur es.

  1. CLASSIFICATION OF AGRICULTURAL LAND SOILS A DATA MINING APPROACH

    Directory of Open Access Journals (Sweden)

    Ramesh Vamanan

    2011-01-01

    Full Text Available The problem of the knowledge acquisition and efficient knowledge exploitation is very popular also in agriculture area. One of the methods for knowledge acquisition from the existing agricultural databases is the methods of classification. In agricultural decision making process, weather and soil characteristics are play an important role. This research aimed to assess the various lassification techniques of data mining and apply them to a soil science database to establish if meaningful relationships can be found. A large data set of soil database is extracted from the Soil Science & Agricultural department, Kanchipuram and National Informatics Centre, Tamil Nadu. The application of data mining techniques has never been conducted for Tamil Nadu soil data sets. The research compares the different classifiers and the outcome of this research could improve the management and systems of soil uses throughout a large number of fields that include agriculture, horticulture, environmental and land use management.

  2. Soil Properties in Natural Forest Destruction and Conversion to Agricultural Land,in Gunung Leuser National Park, North Sumatera Province

    Directory of Open Access Journals (Sweden)

    Basuki Wasis

    2012-12-01

    Full Text Available Destruction of the Gunung Leuser National Park area of North Sumatera Province through land clearing and land cover change from natural forest to agricultural land. Less attention to land use and ecosystem carrying capacity of the soil can cause soil degradation and destruction of flora, fauna, and wildlife habitat destruction. Environmental damage will result in a national park wild life will come out of the conservation area and would damage the agricultural community. Soil sampling conducted in purposive sampling in natural forest and agricultural areas.  Observation suggest that damage to the natural forest vegetation has caused the soil is not protected so that erosion has occurred. Destruction of natural forest into agricultural are as has caused damage to soil physical properties, soil chemical properties, and biological soil properties significantly. Forms of soil degradation caused by the destruction of natural forests, which is an increase in soil density (density Limbak by 103%, a decrease of 93% organic C and soil nitrogen decreased by 81%. The main factors causing soil degradation is the reduction of organic matter and soil erosion due to loss of natural forest vegetation.  Criteria for soil degradation in Governance Regulation Number 150/2000 can be used to determine the extent of soil degradation in natural forest ecosystems.Keywords: Gunung Leuser National Park, natural forest, agricultural land, land damage, soil properties

  3. The times they are changing: soil and water conservation in the 21st century

    Science.gov (United States)

    Changing climate, increased bio-energy demands, and population growth are anticipated to have significant impacts on soil and water conservation in agricultural watersheds in the United States. Only by looking beyond the traditional approaches of the last century and embracing an expanded view of so...

  4. CLASSIFICATION OF AGRICULTURAL LAND SOILS A DATA MINING APPROACH

    OpenAIRE

    Ramesh Vamanan; K. Ramar

    2011-01-01

    The problem of the knowledge acquisition and efficient knowledge exploitation is very popular also in agriculture area. One of the methods for knowledge acquisition from the existing agricultural databases is the methods of classification. In agricultural decision making process, weather and soil characteristics are play an important role. This research aimed to assess the various lassification techniques of data mining and apply them to a soil science database to establish if meaningful rel...

  5. Soil management and conservation for small farms: Strategies and methods of introduction, technologies and equipment

    OpenAIRE

    Hercilio de Freitas, V.

    2000-01-01

    This report is intended for development practitioners, extensionists and leaders or pioneers in farming communities, to inform them about the experiences and initiatives of farming communities in conservation agriculture in Santa Catarina State, Brazil. On the basis of several local initiatives, inventions and developments, there have been widespread improvements in soil management in various parts of the State, resulting in lower costs and improved returns, combined with conservation and imp...

  6. Sorption behavior of 137Cs in Japanese agricultural soils

    International Nuclear Information System (INIS)

    We investigated sorption behavior of Cs in Japanese agricultural soils with taking into account effects of chemical properties, soil organic matter, and competitive ions. Measurements of the soil-soil solution distribution coefficients (Kds) of Cs for 112 agricultural soil samples (50 paddy soil and 62 upland soil samples) collected throughout Japan were carried out using the batch sorption test. Then, for 22 selected agricultural soil samples, sequential extraction methods were carried out for determination of Ca-exchangeable and pyrophosphate-extractable fraction. K concentrations in these fractions were also measured. The Kds for all soil samples ranged from 270 to 35730 L kg-1 and upland soil samples had higher Kds than paddy soil samples (p ds. Therefore, Cs may be more mobile in soils due to application of fertilizers such as lime. In addition, when estimating the competitive ion effect on Cs sorption in soils, more attention should be paid to non-ion-exchange sites for Cs sorption on soil organic matter because soil organic matter could provide sorption sites for Cs besides ion-exchange site. (author)

  7. Conservation agriculture for smallholder farms in Eastern Uganda and Western Kenya

    OpenAIRE

    Norton, James; Omondi, E.; Norton, U.; Ngosia, D.S.; Odhiambo, J.A. (Jack A.); Okeyo, J.; Okalebo, J. R.; Oluko, P.S.

    2012-01-01

    Metadata only record Soil quality and crop yield parameters resulting from conservation agriculture practices were evaluated in on-station and on-farm studies established in two highland sites and two lowland sites in the Mount Elgon region of western Kenya and eastern Uganda. Each of the four study areas consists of an on-station and four on-farm sites, each with of three tillage practices (conventional moldboard, no-till, and minimum till); two levels of nitrogen fertilizer (60 Kg N Ha-1...

  8. An integrated GIS/remote sensing data base in North Cache soil conservation district, Utah: A pilot project for the Utah Department of Agriculture's RIMS (Resource Inventory and Monitoring System)

    Science.gov (United States)

    Wheeler, D. J.; Ridd, M. K.; Merola, J. A.

    1984-01-01

    A basic geographic information system (GIS) for the North Cache Soil Conservation District (SCD) was sought for selected resource problems. Since the resource management issues in the North Cache SCD are very complex, it is not feasible in the initial phase to generate all the physical, socioeconomic, and political baseline data needed for resolving all management issues. A selection of critical varables becomes essential. Thus, there are foud specific objectives: (1) assess resource management needs and determine which resource factors ae most fundamental for building a beginning data base; (2) evaluate the variety of data gathering and analysis techniques for the resource factors selected; (3) incorporate the resulting data into a useful and efficient digital data base; and (4) demonstrate the application of the data base to selected real world resoource management issues.

  9. Engaging Stakeholders To Define Feasible and Desirable Agricultural Conservation in Western Lake Erie Watersheds.

    Science.gov (United States)

    Kalcic, Margaret McCahon; Kirchhoff, Christine; Bosch, Nathan; Muenich, Rebecca Logsdon; Murray, Michael; Griffith Gardner, Jacob; Scavia, Donald

    2016-08-01

    Widespread adoption of agricultural conservation measures in Lake Erie's Maumee River watershed may be required to reduce phosphorus loading that drives harmful algal blooms and hypoxia. We engaged agricultural and conservation stakeholders through a survey and workshops to determine which conservation practices to evaluate. We investigated feasible and desirable conservation practices using the Soil and Water Assessment Tool calibrated for streamflow, sediment, and nutrient loading near the Maumee River outlet. We found subsurface placement of phosphorus applications to be the individual practice most influential on March-July dissolved reactive phosphorus (DRP) loading from row croplands. Perennial cover crops and vegetated filter strips were most effective for reducing seasonal total phosphorus (TP) loading. We found that practices effective for reducing TP and DRP load were not always mutually beneficial, culminating in trade-offs among multiple Lake Erie phosphorus management goals. Adoption of practices at levels considered feasible to stakeholders led to nearly reaching TP targets for western Lake Erie on average years; however, adoption of practices at a rate that goes beyond what is currently considered feasible will likely be required to reach the DRP target. PMID:27336855

  10. Adoption intensity of soil and water conservation practices by smallholders: evidence from Northern Ghana

    Directory of Open Access Journals (Sweden)

    Paul Kwame Nkegbe

    2014-08-01

    Full Text Available Soil and water conservation practices are being promoted in Ghana as a way of sustainably managing the environment to support agricultural production. Despite the important role the adoption of the practices plays in conserving the environment, very few studies have been conducted to analyse the factors influencing their intensive adoption. This study analyses the determinants of intensity of adoption of soil and water conservation practices using data from a cross-section of smallholder producers in Northern Ghana. Count data models are used for the analysis. The empirical results show that access to information, social capital, per capita landholding and wealth play an important role in smallholder producers’ decision to intensively adopt soil and water conservation practices.

  11. Conservation Agriculture for combating land degradation in Central Asia: a synthesis

    Directory of Open Access Journals (Sweden)

    J.P.A. Lamers

    2016-04-01

    Full Text Available This manuscript reviews scientific findings on agricultural systems, associated land degradation and selected remedies such as Conservation Agricultural (CA practices to counterbalance these. In particular, this review addresses the research findings onCA practices conducted in the rainfed and irrigated systems in Central Asia. The arid and semi-arid croplands in this region are vulnerable to different types of soil and environmental degradation, and particularly to degradation caused by intensive tillage, irrigation water mismanagement, and cropping practices, especially in the Aral Sea Basin. Overall, the evidence shows that various CA elements, such as permanent beds, seems to be technically suitable for the major cropping systems and despite the heterogeneous conditions in the region. CA practices can contribute to combating on-going land degradation. No-till seeding along with the maintenance of a permanent soil coverage e.g. by residue retention, reduces wind and water erosion, increases water infiltration and storage which can reduce crop water stress, improve soil quality and increase soil organic matter. Further, CA practices can lead to similar or even higher crop yields while reducing production resource needs and costs considerably, including fuel, seeds, agrochemicals, water and labour. Nevertheless, the growing research evidence on the productivity, economic and environmental benefits that can be harnessed with CA, still is from a limited number of studies and hence more research at local scale is needed.

  12. Pore Size Distribution as a Soil Physical Quality Index for Agricultural and Pasture Soils in Northeastern Iran

    Institute of Scientific and Technical Information of China (English)

    H.SHAHAB, H.EMAMI; G.H.HAGHNIA; A.KARIMI

    2013-01-01

    Assessment of soil quality is important for optimum production and natural resources conservation.Agricultural and pasture soil qualities of Deh-Sorkh region located at south of Mashhad,northeastern Iran were assessed using the integrated quality index (IQI) and Nemero quality index (NQI) models in combination with two datasets,i.e.,total data set (TDS) and minimum data set (MDS).In this study 6 soil properties considered as MDS were selected out of 18 properties as TDS using principle component analysis.Soil samples were divided into 3 groups based on optimum ranges of 8 soil physical quality indicators.Soil samples with the most indicators at optimum range were selected as group 1 and the samples having fewer indicators at optimum range were located in groups 2 and 3.Optimum ranges of soil pore size distribution functions were also determined as soil physical quality indices based on 8 soil physical quality indicators.Pore size distribution curves of group 1 were considered as the optimum pore size functions.The results showed that relatively high organic carbon contents could improve pore size distribution.Mean comparisons of soil physical quality indicators demonstrated that mean weight diameter of wet aggregates,structural stability index,the slope of moisture retention curve at inflection point,and plant available water content in agricultural land use decreased significantly in relation to pasture land use.In addition,the results demonstrated that the studied MDS could be a suitable representative of TDS.78% of pasture soils had the optimum pore size distribution functions,while this parameter for agricultural soils was only 13%.In general,the soils of the studied region showed high limitations for plant growth according to the studied indicators.

  13. Agriculture Canada Central Saskatchewan Vector Soils Data

    Science.gov (United States)

    Knapp, David; Hall, Forrest G. (Editor); Rostad, Harold

    2000-01-01

    This data set consists of GIS layers that describe the soils of the BOREAS SSA. These original data layers were submitted as vector data in ARC/INFO EXPORT format. These data also include the soil name and soil layer files, which provide additional information about the soils. There are three sets of attributes that include information on the primary, secondary, and tertiary soil type within each polygon. Thus, there is a total of nine main attributes in this data set.

  14. Effect of restoring soil hydrological poperties on water conservation

    NARCIS (Netherlands)

    Moore, D.; Kostka, S.J.; Boerth, T.J.; Franklin, M.A.; Ritsema, C.J.; Dekker, L.W.; Oostindie, K.; Stoof, C.R.; Park, D.M.

    2008-01-01

    Water repellency in soil is more wide spread than previously thought ¿ and has a significant impact on irrigation efficiency and water conservation. Soil water repellency has been identified in many soil types under a wide array of climatic conditions world wide. Consequences include increased runof

  15. Identifying Potential Recommendation Domains for Conservation Agriculture in Ethiopia, Kenya, and Malawi

    Science.gov (United States)

    Tesfaye, Kindie; Jaleta, Moti; Jena, Pradyot; Mutenje, Munyaradzi

    2015-02-01

    Conservation agriculture (CA) is being promoted as an option for reducing soil degradation, conserving water, enhancing crop productivity, and maintaining yield stability. However, CA is a knowledge- and technology-intensive practice, and may not be feasible or may not perform better than conventional agriculture under all conditions and farming systems. Using high resolution (≈1 km2) biophysical and socioeconomic geospatial data, this study identified potential recommendation domains (RDs) for CA in Ethiopia, Kenya, and Malawi. The biophysical variables used were soil texture, surface slope, and rainfall while the socioeconomic variables were market access and human and livestock population densities. Based on feasibility and comparative performance of CA over conventional agriculture, the biophysical and socioeconomic factors were first used to classify cultivated areas into three biophysical and three socioeconomic potential domains, respectively. Combinations of biophysical and socioeconomic domains were then used to develop potential RDs for CA based on adoption potential within the cultivated areas. About 39, 12, and 5 % of the cultivated areas showed high biophysical and socioeconomic potential while 50, 39, and 21 % of the cultivated areas showed high biophysical and medium socioeconomic potential for CA in Malawi, Kenya, and Ethiopia, respectively. The results indicate considerable acreages of land with high CA adoption potential in the mixed crop-livestock systems of the studied countries. However, there are large differences among countries depending on biophysical and socio-economic conditions. The information generated in this study could be used for targeting CA and prioritizing CA-related agricultural research and investment priorities in the three countries.

  16. You can’t eat your mulch and have it too : cropping system design and tradeoffs around biomass use for Conservation Agriculture in Cameroon and Madagascar

    NARCIS (Netherlands)

    Naudin, K.

    2012-01-01

    Conservation agriculture is defined by three main principles: minimum soil   disturbance, permanent soil cover and crop rotations. CA is promoted as a   promising technology for Africa, but to date, only a small area under CA fully   complies with the above three princi

  17. Modelling seasonal variations of natural radionuclides in agricultural soils

    Directory of Open Access Journals (Sweden)

    Guagliardi I.

    2013-04-01

    Full Text Available Estimating activity of natural radionuclides in agricultural soil is very important for the protection of public health because the released radioactivity can enter the food chain. Radioactivity measurements were carried out in two different dates (winter and summer in agricultural soil using a GRM-260 gamma-ray spectrometer. The study area (100 m x 100 m was an olive orchard in southern Italy. Measurements were carried out at 361 locations in January and July 2011. At the same locations, soil water content was measured to take into account the effect of soil moisture on radioactivity. A multi-Gaussian approach was used to explore and map the activity of naturally occurring radionuclides and soil water content for both seasons of measurements. The minimum radioactivity values were recorded in winter and the maximum values in summer, probably as a consequence of changes in weather and soil conditions (rainfall, soil moisture, temperature.

  18. Assessment of the microbiological activity in agricultural and urban soils

    Directory of Open Access Journals (Sweden)

    DEC DOROTA

    2014-12-01

    Full Text Available The aim of this study was to evaluate the enzymatic soil and the number of selected microorganisms in urban soil, which are located in the lane of the reconstructed road and compare it with a soil cultivated for agricultural purposes. The conducted analysis showed significant differences between the results of the soil taken from the roadway and the soil cultivated from agricultural purposes. The C:N ratio in soils of the roadway (from 24 to 31 indicated that they were degraded and heavily degraded soils. Urban soils had a neutral pH. The activity of dehydrogenase (1.93–6.95 μg TPF g−1·h−1, acid phosphatase (2.42–4.92 mM pNP·g−1·h−1 and alkaline phosphatase (2.34–4.80 mM pNP·g−1·h−1 in urban soils were low. In agricultural soils the acid phosphatase enzyme levels ranged 6.32–8.04 mM pNP·g−1·h−1, and alkaline phosphatase were 7.26–9.16 mM pNP·g−1·h−1. In urban soil samples collected along the roadway, a significant correlation between potassium and dehydrogenase activity, and between the C:N ratio and the activity of acid phosphatase was found.

  19. Modelling seasonal variations of natural radionuclides in agricultural soils

    OpenAIRE

    Guagliardi I.; Buttafuoco G; Ricca N.; Cipriani M. G.; Civitelli D.; Froio R.; Gabriele A. L.; De, Rosa R.

    2013-01-01

    Estimating activity of natural radionuclides in agricultural soil is very important for the protection of public health because the released radioactivity can enter the food chain. Radioactivity measurements were carried out in two different dates (winter and summer) in agricultural soil using a GRM-260 gamma-ray spectrometer. The study area (100 m x 100 m) was an olive orchard in southern Italy. Measurements were carried out at 361 locations in January and July 2011. At the same locations, s...

  20. GEMAS: unmixing magnetic properties of European agricultural soil

    OpenAIRE

    Fabian, Karl; Reimann, Clemens; Kuzina, Dilyara; Kosareva, Lina; Fattakhova, Leysan; Nurgaliev, Danis; Flight, Dee; Johnson, Christopher; Scheib, Andreas

    2016-01-01

    High resolution magnetic measurements provide new methods for world-wide characterization and monitoring of agricultural soil which is essential for quantifying geologic and human impact on the critical zone environment and consequences of climatic change, for planning economic and ecological land use, and for forensic applications. Hysteresis measurements of all Ap samples from the GEMAS survey yield a comprehensive overview of mineral magnetic properties in European agricultural soil on a c...

  1. The Brief Introduction to the Sino-US Joint Centers for Soil and Water Conservation and Environmental Protection

    Institute of Scientific and Technical Information of China (English)

    LI Jing; LI Rui; ZHENG Fen-li

    2004-01-01

    Erosion and transport of soil has worldwide implications for agriculture, landscape stability, climate, natural hazards, and clean, renewable resources of water and air. Assured access to clean water and a healthy and safe environment requires an ethic of conservation and protection. The minimum scale in which these principles apply successfully is basin wide. These are the fundamental concerns of the Sino-US Centers for Soil and Water Conservation and Environmental Protection.

  2. Biological responses of agricultural soils to fly-ash amendment.

    Science.gov (United States)

    Singh, Rajeev Pratap; Sharma, Bhavisha; Sarkar, Abhijit; Sengupta, Chandan; Singh, Pooja; Ibrahim, Mahamad Hakimi

    2014-01-01

    The volume of solid waste produced in the world is increasing annually, and disposing of such wastes is a growing problem. Fly ash (FA) is a form of solid waste that is derived from the combustion of coal. Research has shown that fly ash may be disposed of by using it to amend agricultural soils. This review addresses the feasibility of amending agricultural field soils with fly ash for the purpose of improvings oil health and enhancing the production of agricultural crops. The current annual production of major coal combustion residues (CCRs) is estimated to be -600 million worldwide, of which about 500 million t (70-80%) is FA (Ahmaruzzaman 2010). More than 112 million t of FA is generated annually in India alone, and projections show that the production (including both FA and bottom ash) may exceed 170 million t per annum by 2015 (Pandey et al. 2009; Pandey and Singh 20 I 0). Managing this industrial by-product is a big challenge, because more is produced each year, and disposal poses a growing environmental problem.Studies on FA clearly shows that its application as an amendment to agricultural soils can significantly improve soil quality, and produce higher soil fertility. What FA application method is best and what level of application is appropriate for any one soil depends on the following factors: type of soil treated, crop grown, the prevailing agro climatic condition and the character of the FA used. Although utilizing FA in agricultural soils may help address solid waste disposal problems and may enhance agricultural production, its use has potential adverse effects also. In particular, using it in agriculture may enhance amounts of radionuclides and heavy metals that reach soils, and may therefore increase organism exposures in some instances. PMID:24984834

  3. Organic matter matters for ice nuclei of agricultural soil origin

    Directory of Open Access Journals (Sweden)

    Y. Tobo

    2014-04-01

    Full Text Available Heterogeneous ice nucleation is a~crucial process for forming ice-containing clouds and subsequent ice-induced precipitation. The importance for ice nucleation of airborne desert soil dusts composed predominantly of minerals is relatively well understood. On the other hand, the potential influence of agricultural soil dusts on ice nucleation has been poorly recognized, despite recent estimates that they may account for up to ∼25% of the global atmospheric dust load. We have conducted freezing experiments with various dusts, including agricultural soil dusts derived from the largest dust source region in North America. Here we show evidence for the significant role of soil organic matter (SOM in particles acting as ice nuclei (IN under mixed-phase cloud conditions. We find that the ice nucleating ability of the agricultural soil dusts is similar to that of desert soil dusts, but is reduced to almost the same level as that of clay minerals (e.g., kaolinite after either H2O2 digestion or dry heating to 300 °C. In addition, based on chemical composition analysis, we show that organic-rich particles are more important than mineral particles for the ice nucleating ability of the agricultural soil dusts at temperatures warmer than about −36 °C. Finally, we suggest that such organic-rich particles of agricultural origin (namely, SOM particles may contribute significantly to the ubiquity of organic-rich IN in the global atmosphere.

  4. Pesticide use and biodiversity conservation in the Amazonian agricultural frontier

    NARCIS (Netherlands)

    Schiesari, L.; Waichman, A.; Brock, T.C.M.; Adams, C.; Grillitsch, B.

    2013-01-01

    Agricultural frontiers are dynamic environments characterized by the conversion of native habitats to agriculture. Because they are currently concentrated in diverse tropical habitats, agricultural frontiers are areas where the largest number of species is exposed to hazardous land management practi

  5. Oxidation of humic substances supports denitrification reactions in agricultural soils.

    Science.gov (United States)

    van Trump, J. I.; Coates, J. D.

    2007-12-01

    , nitrite, Fe(II), and humic-born hydroquinones. All data were analyzed with respect to dilution factors obtained through analysis of a conservative bromide tracer present in electron donor medium. Addition of oxidized HS, reduced HS, and acetate all resulted in significant loss of nitrate from the columns. Significant nitrite accumulation was not observed. Of all the electron donor treatments, reduced HS, enriched for hydroquinone-containing functional moieties, supported the greatest degree of denitrification. The participation of excess hydroquinones in denitrification accounted for approximately 104% of the difference in nitrate reduction between reduced and oxidized HS treatments. This electron balance allowed for assignment of respiratory activity due to hydroquinone oxidation, rather than degradation of humic substances or associated electron-donating compounds. These results suggest that denitrification reactions catalyzed by microbial oxidation of reduced HS may be prevalent in agricultural soils. Likewise, these results demonstrate for the first time that respiratory behavior due to hydroquinone oxidation, as well as impact upon local geochemistry, can be analyzed in complex flow-through model systems.

  6. Agricultural Commercialisation, Diversification, and Conservation of Renewable Resources in Northern Thailand Highlands

    Directory of Open Access Journals (Sweden)

    Guy Trébuil

    2013-02-01

    Full Text Available The process of commercialisation-diversification in the highlands of upper northern Thailand and the accompanying dismissal of self-subsistence are documented based on the findings from seven case studies carried out in different agricultural and social situations during the past decade. The characteristics of the key driving forces powering this agrarian transition such as rapid economic growth, decrease in the share of labour employed in the agriculture, urbanization and changes in food consumption patterns, and improved communication infrastructures, are presented in the Thai context. The environmental impact of these profound agrarian transformations on the degradation of key renewable resources, particularly soil erosion, is assessed. Their socio-economic consequences on an extensive differentiation among farming households and equity issues are also discussed. Finally the authors draw several lessons from this Thai experience that illustrate the very strong adaptive capacity of small highland farmers. They could be useful in similar agro-ecological zones of neighbouring countries that are presently experiencing the same kind of agricultural transition in the Montane Mainland Southeast Asia ecoregion. Particularly, the article underlines the need for more holistic and integrated approaches to agricultural development and the management of renewable resources in highland agro-ecosystems to alleviate poverty while conserving the resource base.

  7. CHARACTERIZATION OF SOME IMPORTANT AGRICULTURAL SOILS UNDER OLIVE TREES

    Directory of Open Access Journals (Sweden)

    CUMHUR AYDINALP

    2004-10-01

    Full Text Available Olive production is important and intensive agricultural activity in this region. Generally, olive trees occur coastal side of the region under brown forest soils. Ten olive tree plantations were selected in this research. The some important physical, chemical and morphological properties were investigated and classifi ed according to USDA Soil Taxonomy as Typic Xerochrepts.

  8. CHARACTERIZATION OF SOME IMPORTANT AGRICULTURAL SOILS UNDER OLIVE TREES

    OpenAIRE

    CUMHUR AYDINALP; MALCOLM CRESSER; Colin MCCLEAN

    2004-01-01

    Olive production is important and intensive agricultural activity in this region. Generally, olive trees occur coastal side of the region under brown forest soils. Ten olive tree plantations were selected in this research. The some important physical, chemical and morphological properties were investigated and classifi ed according to USDA Soil Taxonomy as Typic Xerochrepts.

  9. Selenium speciation and extractability in Dutch agricultural soils

    NARCIS (Netherlands)

    Supriatin, Supriatin; Weng, Liping; Comans, Rob N.J.

    2015-01-01

    The study aimed to understand selenium (Se) speciation and extractability in Dutch agricultural soils. Top soil samples were taken from 42 grassland fields and 41 arable land fields in the Netherlands. Total Se contents measured in aqua regia were between 0.12 and 1.97mgkg-1(on average

  10. Soil Quality Impacts of Current South American Agricultural Practices

    Directory of Open Access Journals (Sweden)

    Ana B. Wingeyer

    2015-02-01

    Full Text Available Increasing global demand for oil seeds and cereals during the past 50 years has caused an expansion in the cultivated areas and resulted in major soil management and crop production changes throughout Bolivia, Paraguay, Uruguay, Argentina and southern Brazil. Unprecedented adoption of no-tillage as well as improved soil fertility and plant genetics have increased yields, but the use of purchased inputs, monocropping i.e., continuous soybean (Glycine max (L. Merr., and marginal land cultivation have also increased. These changes have significantly altered the global food and feed supply role of these countries, but they have also resulted in various levels of soil degradation through wind and water erosion, soil compaction, soil organic matter (SOM depletion, and nutrient losses. Sustainability is dependent upon local interactions between soil, climate, landscape characteristics, and production systems. This review examines the region’s current soil and crop conditions and summarizes several research studies designed to reduce or prevent soil degradation. Although the region has both environmental and soil resources that can sustain current agricultural production levels, increasing population, greater urbanization, and more available income will continue to increase the pressure on South American croplands. A better understanding of regional soil differences and quantifying potential consequences of current production practices on various soil resources is needed to ensure that scientific, educational, and regulatory programs result in land management recommendations that support intensification of agriculture without additional soil degradation or other unintended environmental consequences.

  11. Soil Type Identification Using Remotely Sensed Data for Agricultural Purpose

    Science.gov (United States)

    Jiji, G. Wiselin; Nadar, Pallavi

    2016-09-01

    Soil assessment plays important role in making decisions for Agriculture. In this paper, an approach by integrating the image processing and pattern recognition techniques to find the type of soil has been presented. The soil from the area of interest is selected and soil indices are extracted as features. Indexing technique is used for faster retrieval. The efficiency of the proposed system is proved using sensitivity, specificity, precision and recall. Our empirical evaluation has a superior retrieval performance over the performance of other works. This work is of great use to the farmers, who need to identify their field's soil type.

  12. Conservation agriculture practices in rainfed uplands of India improve maize-based system productivity and profitability

    Directory of Open Access Journals (Sweden)

    Aliza Pradhan

    2016-07-01

    Full Text Available Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift towards more sustainable cropping systems such as conservation agriculture production systems (CAPS may help in maintaining soil quality as well as improving crop production and farmer’s net economic benefit. This research assessed the effects over three years (2011-2014 of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation i.e. minimum tillage, maize-cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e. conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs.

  13. Conservation Agriculture Practices in Rainfed Uplands of India Improve Maize-Based System Productivity and Profitability.

    Science.gov (United States)

    Pradhan, Aliza; Idol, Travis; Roul, Pravat K

    2016-01-01

    Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer's net economic benefit. This research assessed the effects over 3 years (2011-2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize-cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs.

  14. Conservation Agriculture Practices in Rainfed Uplands of India Improve Maize-Based System Productivity and Profitability.

    Science.gov (United States)

    Pradhan, Aliza; Idol, Travis; Roul, Pravat K

    2016-01-01

    Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer's net economic benefit. This research assessed the effects over 3 years (2011-2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize-cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs. PMID:27471508

  15. Agricultural Waste Management Systems on Agricultural Land in the Conterminous United States, 1992: National Resource Inventory Conservation Practice 312

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the estimated percentage of the 1-km grid cell that is covered by or subject to the agricultural conservation practice (CP312),...

  16. Is it appropriate to support the farmers for adopting conservation agriculture? Economic and environmental impact assessment

    Directory of Open Access Journals (Sweden)

    Antonio Troccoli

    2015-12-01

    Full Text Available Conservation agriculture (CA in the last decades has been spread in several parts of the world, especially in South and North America and Australia. In Italy, however, its adoption is often restrained by the risk to have a reduction in crop production in the early years of transition from conventional (CT to CA. To quantify sufficient financial support to promote no-tillage and CA, a mini-review about main effects of CA was conducted. The effect on crop yield, soil fertility - especially as it is influenced by the chemical, physical and microbiological factors - on soil compaction, the economic balance of the farm and the cost of equipment for direct seeding, the influence of environment on soil erosion, water retention, emissions of greenhouse gases, and carbon sequestration are briefly treated. The paper reports findings from national and international scientific literature and some results from long-term experiments conducted in Southern Italy. The main conclusions are about the reduction of yield in the first years of transition from CT to CA (from -5 to -10%, an improvement of soil fertility (soil organic carbon increases in the upper layers, reduction of management cost (less machinery operations, improvement of soil C sequestration (in specific conditions, a reduction of greenhouse gases emission and soil erosion risk. The paper provides the scientific basis in order to justify and quantify the amount to be paid to the farmers who decide to adopt the model of CA, oriented to protect the agro-ecosystem and to promote the principle of subsidiarity. Finally, a proposal of public subsidy in cash and for machinery purchase has been described.

  17. Sorption of Phenanthrene on Agricultural Soils

    DEFF Research Database (Denmark)

    Soares, Antonio Alves; Møldrup, Per; Minh, Luong Nhat;

    2013-01-01

    low organic porous media such as urban soils and groundwater sediments, but less attention has been given to cultivated soils. In this study, the phenanthrene partition coefficient, KD (liter per kilogram), was measured on 143 cultivated Danish soils (115 topsoils, 0–0.25-m soil depth and 28 subsoils......, 0.25–1-m depth) by the single-point adsorption method. The organic carbon partition coefficient, KOC (liter per kilogram) for topsoils was found generally to fall between the KOC values estimated by the two most frequently used models for PAH partitioning, the Abdul et al. (Hazardous Waste...

  18. Nitrate Sorption in an Agricultural Soil Profile

    Directory of Open Access Journals (Sweden)

    Wissem Hamdi

    2013-01-01

    Full Text Available Increasing concentrations of in surface water and groundwater can cause ecological and public health effects and has come under increased scrutiny by both environmental scientists and regulatory agencies. For many regions though, including the Sahel of Tunisia, little is known about the sorption capacity of soils. In this project we measured sorption by a profile of an iso-humic soil from Chott Meriem, Tunisia. Soil samples were collected from four soil depths (0–25, 25–60, 60–90, and 90–120 cm on 1 June 2011, and their sorption capacity was determined using batch experiments under laboratory conditions. The effects of contact time, the initial concentration, and the soil-solution ratio on sorption were investigated. In general, the results suggested that was weakly retained by the Chott Meriem soil profile. The quantity of sorption increased with depth, contact time, initial concentration, and soil-solution ratios. To evaluate the sorption capacities of the soil samples at concentrations ranging between 25 and 150 mg L−1 experimental data were fitted to both Freundlich and Langmuir isotherm sorption models. The results indicated that Freundlich model was better for describing sorption in this soil profile.

  19. Soil and Water Conservation Districts of New Mexico

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The New Mexico Soil and Water Conservation District (SWCD) shapefile includes forty-seven boudaries which cover each SWCD throughout the State.

  20. Proximal soil sensors and geostatistical tools in precision agriculture applications

    OpenAIRE

    Shaddad, Sameh

    2014-01-01

    Recognition of spatial variability is very important in precision agriculture applications. The use of proximal soil sensors and geostatistical techniques is highly recommended worldwide to detect spatial variation not only in fields but also within-field (micro-scale). This study involves, as a first step, the use of visible and near infrared (vis-NIR) spectroscopy to estimate soil key properties (6) and obtain high resolution maps that allow us to model the spatial variability in the soil. ...

  1. The impact of agricultural soil erosion on biogeochemical cycling

    OpenAIRE

    Quinton, John N.; Govers, Gerard; Van Oost, Kristof; Bardgett, Richard D.

    2010-01-01

    Soils are the main terrestrial reservoir of nutrients, such as nitrogen and phosphorus, and of organic carbon. Synthesizing earlier studies, we find that the mobilization and deposition of agricultural soils can significantly alter nutrient and carbon cycling. Specifically, erosion can result in lateral fluxes of nitrogen and phosphorus that are similar in magnitude to those induced by fertilizer application and crop removal. Furthermore, the translocation and burial of soil reduces decomposi...

  2. Potential of conservation agriculture practices (CAPs) in enhancing food security of tribal people in central mid-hills of Nepal

    OpenAIRE

    Paudel, B.; T.J.K. Radovich; Halbrendt, Jacqueline; Thapa, K

    2012-01-01

    Traditional agriculture in central mid hills of Nepal is characterized by cultivation of steep sloping lands, resulting lower productivity, degradation of soil health and reduction of livelihood options. The Sustainable Management of Agro-ecological Resources in Tribal Societies (SMARTS) project applied a participatory agro-ecological framework to develop improved conservation practices (CAPs) to contribute to sustainable livelihood of Chepang tribal people in central Nepal. CAPs were identif...

  3. Agricultural practices that store organic carbon in soils: is it only a matter of inputs ?

    Science.gov (United States)

    Chenu, Claire; Cardinael, Rémi; Autret, Bénédicte; Chevallier, Tiphaine; Girardin, Cyril; Mary, Bruno

    2016-04-01

    Increasing the world soils carbon stocks by a factor of 4 per mil annually would compensate the annual net increase of CO2 concentration in the atmosphere. This statement is the core of an initiative launched by the French government at the recent COP21, followed by many countries and international bodies, which attracts political attention to the storage potential of C in soils. Compared to forest and pasture soils, agricultural soils have a higher C storage potential, because they are often characterized by low C contents, and increasing their C content is associated with benefits in terms of soil properties and ecosystem services. Here we quantified, under temperate conditions, the additional C storage related to the implementation of two set of practices that are recognized to be in the framework of agroecology: conservation tillage on the one hand and agroforestry on the other hand. These studies were based on long-term experiments, a 16-years comparison on cropping systems on luvisols in the Paris area and a 18-year-old silvoarable agroforestry trial, on fluvisols in southern France, the main crops being cereals in both cases. C stocks were measured on an equivalent soil mass basis. Both systems allowed for a net storage of C in soils, which are, for the equivalent of the 0-30 cm tilled layer, of 0.55 ± 0.16 t ha- 1 yr- 1 for conservation agriculture (i.e. no tillage with permanent soil coverage with an associated plant, fescue or alfalfa) and of 0.25 ± 0.03 t ha-1 yr-1 for the agroforestry system. These results are in line with estimates proposed in a recent French national assessment concerning the potential of agricultural practices to reduce greenhouse gas emissions. Compared to recent literature, they further show that practices that increase C inputs to soil through additional biomass production would be more effective to store C in soil (tree rows, cover crops in conservation agriculture) than practices, such as no-tillage, that are assumed to reduce

  4. Soil Salinity Changes in the Jordan Valley Potentially Threaten Sustainable Irrigated Agriculture

    Institute of Scientific and Technical Information of China (English)

    T.G.AMMARI; R.TAHHAN; S.ABUBAKER; Y.AL-ZU'BI; A.TAHBOUB; R.TA'ANY; S.ABU-ROMMAN

    2013-01-01

    The integrated effect of irrigation and agricultural practices on soil salinity in the Jordan Valley (JV),where over 60% of Jordan's agricultural produce is grown,was investigated in this study during 2009 2010.Due to the differences in agricultural operations,cropping patterns,irrigation management,and weather conditions,206 top-and sub-soil samples were taken every 1 to 3 km from representative farms along a north-south (N-S) transect with 1 to 2 km lateral extents.Soil electrical conductivity of saturated extract (ECse),Ca,Mg,K,Na,Cl,and Na adsorption ratio (SAR) were determined in saturated paste extracts.Results indicated that about 63% of soils in the JV are indeed saline,out of which almost 46% are moderately to strongly saline.Along the N-S transect of the JV,ECse increased from 4.5 to 14.1 dS m-1 in top-soil samples.Similar increase was observed for the sub-soil samples.The major chemical components of soil salinity; i.e.,Ca,Mg,and C1,also showed a similar increase along the N-S transect of the valley.Moreover,compared to previous field sampling,results showed that changes in soil salinity in the JV were dramatic.In addition,it was found that C1 imposed an existing and potential threat to sensitive crops in 60% of the soils in the JV,where C1 concentrations were greater than 710 mg L-1.Under the prevalent arid Mediterranean conditions,improving the management of irrigation water,crops,and nutrient inputs and increasing water and fertilizer use efficiencies should be indispensable to conserve and sustain the already fragile agricultural soils in the JV.

  5. Soil governance in the agricultural landscapes of New South Wales, Australia

    Directory of Open Access Journals (Sweden)

    Ashley A Webb

    2015-03-01

    Full Text Available Soil is a valuable natural resource. In the state of New South Wales, Australia, the governance of soil has evolved since Federation in 1901. Following rapid agricultural development, and in the face of widespread soil degradation, the establishment of the Soil Conservation Service marked a turning point in the management of soil. Throughout the 20th century, advances in knowledge were translated into evolving governance frameworks that were largely reactionary but saw progressive reforms such as water pollution legislation and case studies of catchment-scale land and vegetation management. In the 21st century, significant reforms have embedded sustainable use of agricultural soils within catchment- and landscape-scale legislative and institutional frameworks. What is clear, however, is that a multitude of governance strategies and models are utilised in NSW. No single governance model is applicable to all situations because it is necessary to combine elements of several different mechanisms or instruments to achieve the most desired outcomes. Where an industry, such as the sugar industry, has taken ownership of an issue such as acid sulfate soil management, self-regulation has proven to be extremely effective. In the case of co-managing agricultural soils with other landuses, such as mining, petroleum exploration and urban development, regulation, compliance and enforcement mechanisms have been preferred. Institutional arrangements in the form of independent commissioners have also played a role. At the landscape or total catchment level, it is clear that a mix of mechanisms is required. Fundamental, however, to the successful evolution of soil governance is strategic investment in soil research and development that informs the ongoing productive use of agricultural landscapes while preventing land degradation or adverse environmental effects.

  6. Conservation Tillage Systems on Agricultural Land in the Conterminous United States, 1992: National Resource Inventory Conservation Practice 329

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the estimated percentage of the 1-km grid cell that is covered by or subject to the agricultural conservation practice (CP329 ),...

  7. Monitoring soil moisture dynamics via ground-penetrating radar survey of agriculture fields after irrigation

    Science.gov (United States)

    Muro, G.

    2015-12-01

    It is possible to examine the quality of ground-penetrating radar (GPR) as a measure of soil moisture content in the shallow vadose zone, where roots are most abundant and water conservation best management practices are critical in active agricultural fields. By analyzing temporal samplings of 100 Mhz reflection profiles and common-midpoint (CMP) soundings over a full growing season, the variability of vertical soil moisture distribution directly after irrigation events are characterized throughout the lifecycle of a production crop. Reflection profiles produce high-resolution travel time data and summed results of CMP sounding data provide sampling depth estimates for the weak, but coherent reflections amid strong point scatterers. The high ratio of clay in the soil limits the resolution of downward propagation of infiltrating moisture after irrigation; synthetic data analysis compared against soil moisture lysimeter logs throughout the profile allow identification of the discrete soil moisture content variation in the measured GPR data. The nature of short duration irrigation events, evapotranspiration, and drainage behavior in relation to root depths observed in the GPR temporal data allow further examination and comparison with the variable saturation model HYDRUS-1D. After retrieving soil hydraulic properties derived from laboratory measured soil samples and simplified assumptions about boundary conditions, the project aims to achieve good agreement between simulated and measured soil moisture profiles without the need for excessive model calibration for GPR-derived soil moisture estimates in an agricultural setting.

  8. Soil biota and agriculture production in conventional and organic farming

    Science.gov (United States)

    Schrama, Maarten; de Haan, Joj; Carvalho, Sabrina; Kroonen, Mark; Verstegen, Harry; Van der Putten, Wim

    2015-04-01

    Sustainable food production for a growing world population requires a healthy soil that can buffer environmental extremes and minimize its losses. There are currently two views on how to achieve this: by intensifying conventional agriculture or by developing organically based agriculture. It has been established that yields of conventional agriculture can be 20% higher than of organic agriculture. However, high yields of intensified conventional agriculture trade off with loss of soil biodiversity, leaching of nutrients, and other unwanted ecosystem dis-services. One of the key explanations for the loss of nutrients and GHG from intensive agriculture is that it results in high dynamics of nutrient losses, and policy has aimed at reducing temporal variation. However, little is known about how different agricultural practices affect spatial variation, and it is unknown how soil fauna acts this. In this study we compare the spatial and temporal variation of physical, chemical and biological parameters in a long term (13-year) field experiment with two conventional farming systems (low and medium organic matter input) and one organic farming system (high organic matter input) and we evaluate the impact on ecosystem services that these farming systems provide. Soil chemical (N availability, N mineralization, pH) and soil biological parameters (nematode abundance, bacterial and fungal biomass) show considerably higher spatial variation under conventional farming than under organic farming. Higher variation in soil chemical and biological parameters coincides with the presence of 'leaky' spots (high nitrate leaching) in conventional farming systems, which shift unpredictably over the course of one season. Although variation in soil physical factors (soil organic matter, soil aggregation, soil moisture) was similar between treatments, but averages were higher under organic farming, indicating more buffered conditions for nutrient cycling. All these changes coincide with

  9. Phenylurea herbicide sorption to biochars and agricultural soil.

    Science.gov (United States)

    Wang, Daoyuan; Mukome, Fungai N D; Yan, Denghua; Wang, Hao; Scow, Kate M; Parikh, Sanjai J

    2015-01-01

    Biochar is increasingly been used as a soil amendment to improve water-holding capacity, reduce nutrient leaching, increase soil pH, and also as a means to reduce contamination through sorption of heavy metals or organic pollutants. The sorption behavior of three phenylurea herbicides (monuron, diuron and linuron) on five biochars (Enhanced Biochar, Hog Waste, Turkey Litter, Walnut Shell and Wood Feedstock) and an agricultural soil (Yolo silt loam) was investigated using a batch equilibration method. Sorption isotherms of herbicides to biochars were well described by the Freundlich model (R(2) = 0.93-0.97). The adsorption KF values ranged from 6.94 to 1306.95 mg kg(-1) and indicated the sorption of herbicides in the biochars and Yolo soil was in the sequence of linuron > diuron > monuron and walnut shell biochar > wood feedstock biochar > turkey litter biochar > enhanced biochar > hog waste biochar > Yolo soil. These data show that sorption of herbicides to biochar can have both positive (reduced off-site transport) and negative (reduced herbicide efficacy) implications and specific biochar properties, such as H/C ratio and surface area, should be considered together with soil type, agriculture chemical and climate condition in biochar application to agricultural soil to optimize the system for both agricultural and environmental benefits. PMID:26065514

  10. About soil cover heterogeneity of agricultural research stations' experimental fields

    Science.gov (United States)

    Rannik, Kaire; Kõlli, Raimo; Kukk, Liia

    2013-04-01

    Depending on local pedo-ecological conditions (topography, (geo) diversity of soil parent material, meteorological conditions) the patterns of soil cover and plant cover determined by soils are very diverse. Formed in the course of soil-plant mutual relationship, the natural ecosystems are always influenced to certain extent by the other local soil forming conditions or they are site specific. The agricultural land use or the formation of agro-ecosystems depends foremost on the suitability of soils for the cultivation of feed and food crops. As a rule, the most fertile or the best soils of the area, which do not present any or present as little as possible constraints for agricultural land use, are selected for this purpose. Compared with conventional field soils, the requirements for the experimental fields' soil cover quality are much higher. Experimental area soils and soil cover composition should correspond to local pedo-ecological conditions and, in addition to that, represent the soil types dominating in the region, whereas the fields should be as homogeneous as possible. The soil cover heterogeneity of seven arable land blocks of three research stations (Jõgeva, Kuusiku and Olustvere) was studied 1) by examining the large scale (1:10 000) digital soil map (available via the internet), and 2) by field researches using the transect method. The stages of soils litho-genetic and moisture heterogeneities were estimated by using the Estonian normal soils matrix, however, the heterogeneity of top- and subsoil texture by using the soil texture matrix. The quality and variability of experimental fields' soils humus status, was studied more thoroughly from the aspect of humus concentration (g kg-1), humus cover thickness (cm) and humus stocks (Mg ha-1). The soil cover of Jõgeva experimental area, which presents an accumulative drumlin landscape (formed during the last glacial period), consist from loamy Luvisols and associated to this Cambisols. In Kuusiku area

  11. Barriers to Uptake of Conservation Agriculture in southern Africa: Multi-level Analyses from Malawi

    Science.gov (United States)

    Dougill, Andrew; Stringer, Lindsay; Whitfield, Stephen; Wood, Ben; Chinseu, Edna

    2015-04-01

    Conservation agriculture is a key set of actions within the growing body of climate-smart agriculture activities being advocated and rolled out across much of the developing world. Conservation agriculture has purported benefits for environmental quality, food security and the sustained delivery of ecosystem services. In this paper, new multi-level analyses are presented, assessing the current barriers to adoption of conservation agriculture practices in Malawi. Despite significant donor initiatives that have targeted conservation agriculture projects, uptake rates remain low. This paper synthesises studies from across 3 levels in Malawi: i.) national level- drawing on policy analysis, interviews and a multi-stakeholder workshop; ii.) district level - via assessments of development plans and District Office and extension service support, and; iii) local level - through data gained during community / household level studies in Dedza District that have gained significant donor support for conservation agriculture as a component of climate smart agriculture initiatives. The national level multi-stakeholder Conservation Agriculture workshop identified three areas requiring collaborative research and outlined routes for the empowerment of the National Conservation Agriculture Task Force to advance uptake of conservation agriculture and deliver associated benefits in terms of agricultural development, climate adaptation and mitigation. District level analyses highlight that whilst District Development Plans are now checked against climate change adaptation and mitigation criteria, capacity and knowledge limitations exist at the District level, preventing project interventions from being successfully up-scaled. Community level assessments highlight the need for increased community participation at the project-design phase and identify a pressing requirement for conservation agriculture planning processes (in particular those driven by investments in climate

  12. Replenishing Humic Acids in Agricultural Soils

    Directory of Open Access Journals (Sweden)

    Michael Susic

    2016-09-01

    Full Text Available For many decades, it was commonly believed that humic acids were formed in soils by the microbial conversion of plant lignins. However, an experiment to test whether these humic acids were formed prior to plant matter reaching the soil was never reported until the late 1980s (and then only as a side issue, even though humic acids were first isolated and reported in 1786. This was a serious omission, and led to a poor understanding of how the humic acid content of soils could be maintained or increased for optimum fertility. In this study, commercial sugar cane mulch and kelp extracts were extracted with alkali and analyzed for humic acid content. Humic acids in the extracts were positively identified by fluorescence spectrophotometry, and this demonstrated that humic acids are formed in senescent plant and algal matter before they reach the soil, where they are then strongly bound to the soil and are also resistant to microbial metabolism. Humic acids are removed from soils by wind and water erosion, and by water leaching, which means that they must be regularly replenished. This study shows that soils can be replenished or fortified with humic acids simply by recycling plant and algal matter, or by adding outside sources of decomposed plant or algal matter such as composts, mulch, peat, and lignite coals.

  13. Soil and Water Conservation Plan: Farm plan no. Delair Unit

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Soil and Water Conservation Plan for the Delair Unit of Great River NWR provides a description of each of the different soil types found on the Unit. A map is...

  14. Lunar base agriculture: Soils for plant growth

    Science.gov (United States)

    Ming, Douglas W. (Editor); Henninger, Donald L. (Editor)

    1989-01-01

    This work provides information on research and experimentation concerning various aspects of food production in space and particularly on the moon. Options for human settlement of the moon and Mars and strategies for a lunar base are discussed. The lunar environment, including the mineralogical and chemical properties of lunar regolith are investigated and chemical and physical considerations for a lunar-derived soil are considered. It is noted that biological considerations for such a soil include controlled-environment crop production, both hydroponic and lunar regolith-based; microorganisms and the growth of higher plants in lunar-derived soils; and the role of microbes to condition lunar regolith for plant cultivation. Current research in the controlled ecological life support system (CELSS) project is presented in detail and future research areas, such as the growth of higher research plants in CELSS are considered. Optimum plant and microbiological considerations for lunar derived soils are examined.

  15. An assessment of alternative agricultural management practice impacts on soil carbon in the corn belt

    Energy Technology Data Exchange (ETDEWEB)

    Barnwell, T.O. Jr.; Jackson, R.B.; Mulkey, L.A. [Environmental Research Laboratory, Athens, GA (United States)

    1993-12-31

    This impact of alternative management practices on agricultural soil C is estimated by a soil C mass balance modeling study that incorporates policy considerations in the analysis. A literature review of soil C modeling and impacts of management practices has been completed. The models selected for use and/or modification to meet the needs of representing soil C cycles in agroecosystems and impacts of management practices are CENTURY and DNDC. These models share a common ability to examine the impacts of alternative management practices on soil organic C, and are readily accessible. An important aspect of this effort is the development of the modeling framework and methodology that define the agricultural production systems and scenarios (i.e., crop-soil-climate combinations) to be assessed in terms of national policy, the integration of the model needs with available databases, and the operational mechanics of evaluating C sequestration potential with the integrated model/database system. We are working closely with EPA`s Office of Policy and Program Evaluation to define a reasonable set of policy alternatives for this assessment focusing on policy that might be affected through a revised Farm Bill, such as incentives to selectively promote conservation tillage, crop rotations, and/or good stewardship of the conservation reserve. Policy alternatives are translated into basic data for use in soil C models through economic models. These data, including such elements as agricultural practices, fertilization rates, and production levels are used in the soil C models to produce net carbon changes on a per unit area basis. The unit-area emissions are combined with areal-extent data in a GIS to produce an estimate of total carbon and nitrogen changes and thus estimate greenhouse benefits.

  16. Farmers’ Sustainable Strategies for Soil Conservation on Sloping Arable Lands in the Upper Yangtze River Basin, China

    OpenAIRE

    Qiang Tang; Chansheng He; Xiubin He; Yuhai Bao; Ronghua Zhong; Anbang Wen

    2014-01-01

    The Upper Yangtze River Basin comprises a densely-populated agricultural region with mountainous and hilly landforms. Intensive cultivation has been extended onto steep hillslopes, which constitute the principal source area for sediment production. Soil conservation on sloping arable lands is thus of utmost priority for persisting sustainable agricultural production and maintaining sound ecosystem services. Although there have been many soil conservation techniques, either promoted by the gov...

  17. Enzyme activities in agricultural soils fumigated with methyl bromide alternatives

    OpenAIRE

    Klose, Susanne; Ajwa, H A

    2004-01-01

    Pre-plant fumigation of agricultural soils with a combination of methyl bromide (MeBr) and chloropicrin (CP) to control nematodes, soil-borne pathogens and weeds has been a common practice in strawberry (Fragaria X ananassa Duchesne) production since the 1960s. MeBr will be phased out by 2005, but little is known about the impacts of alternative fumigants on soil microbial processes. We investigated the response of microbial biomass and enzyme activities in soils fumigated over two years with...

  18. The Living Soil: Exploring Soil Science and Sustainable Agriculture with Your Guide, The Earthworm. Unit I.

    Science.gov (United States)

    Weber, Eldon C.; And Others

    This instructional packet introduces students to soil biology, ecology, and specific farming practices that promote sustainable agriculture. It helps students to discover the role of earthworms in improving the environment of all other soil-inhabiting organisms and in making the soil more fertile. The activities (classroom as well as outdoor)…

  19. Supporting food security in the 21st century through resource-conserving increases in agricultural production

    Directory of Open Access Journals (Sweden)

    Uphoff Norman

    2012-12-01

    Full Text Available Abstract The Green Revolution was accomplished under a set of demographic, economic, climatic and other conditions in the 20th century that have been changing and will surely be different and more difficult in the decades ahead. The suitability and sustainability of any given agricultural technology depends on factors like resource availability and productivity, energy costs, and environmental constraints. The achievements of Green Revolution technologies in the 1960s and 1970s came at a critical time of impending food shortages, and the world’s people would be worse off without them. However, the rate of yield improvement for cereal production has been slowing since the mid-1980s. Looking ahead at the foreseeable circumstances under which 21st century agricultural producers must try to assure food security, there will be need for technologies that are less dependent on resources that are becoming relatively scarcer, like arable land and water, or becoming relatively more costly, like energy and petrochemical-based inputs. This paper considers agroecologically-based innovations that reduce farmers’ dependence on external inputs, relying more on endogenous processes and existing potentials in plants and soil systems. Such resource-conserving production represents a different approach to meeting food security goals. While these innovations are not yet fully understood and are still being researched, there are good agronomic reasons to account for their effectiveness, and scientific validations are accumulating. Enough successes have been recorded from making changes in the management of plants, soil, water and nutrients that more attention from researchers, policy-makers and practitioners is warranted, especially given the need to adapt to, and to mitigate the effects of, climate change. The same agroecological concepts and management methods that are enhancing factor productivity in rice production are giving similar results with other crops

  20. Proteomics of Durum Wheat Grain during Transition to Conservation Agriculture.

    Science.gov (United States)

    Visioli, Giovanna; Galieni, Angelica; Stagnari, Fabio; Bonas, Urbana; Speca, Stefano; Faccini, Andrea; Pisante, Michele; Marmiroli, Nelson

    2016-01-01

    Nitrogen management in combination with sustainable agronomic techniques can have a great impact on the wheat grain proteome influencing its technological quality. In this study, proteomic analyses were used to document changes in the proportion of prolamins in mature grains of the newly released Italian durum wheat cv Achille. Such an approach was applied to wheat fertilized with urea (UREA) and calcium nitrate (NITRATE), during the transition to no-till Conservation Agriculture (CA) practice in a Mediterranean environment. Results obtained in a two-years field experiment study suggest low molecular weight glutenins (LMW-GS) as the fraction particularly inducible regardless of the N-form. Quantitative analyses of LMW-GS by 2D-GE followed by protein identification by LC-ESI-MS/MS showed that the stable increase was principally due to C-type LMW-GS. The highest accumulation resulted from a physiologically healthier state of plants treated with UREA and NITRATE. Proteomic analysis on the total protein fraction during the active phase of grain filling was also performed. For both N treatments, but at different extent, an up-regulation of different classes of proteins was observed: i) enzymes involved in glycolysis and citric acid cycles which contribute to an enhanced source of energy and carbohydrates, ii) stress proteins like heat shock proteins (HSPs) and antioxidant enzymes, such as peroxidases and superoxide dismutase which protect the grain from abiotic stress during starch and storage protein synthesis. In conclusion N inputs, which combined rate with N form gave high yield and improved quality traits in the selected durum wheat cultivar. The specific up-regulation of some HSPs, antioxidant enzymes and defense proteins in the early stages of grain development and physiological indicators related to fitness traits, could be useful bio-indicators, for wheat genotype screening under more sustainable agronomic conditions, like transition phase to no-till CA in

  1. Management and conservation of tropical acid soils for sustainable crop production. Proceedings of a consultants meeting

    International Nuclear Information System (INIS)

    Forests of the tropics are invaluable ecosystems of global, regional and local importance, particularly in terms of protection and conservation of biodiversity and water resources. The indiscriminate conversion of tropical forests into agricultural land as a result of intense human activities - logging and modem shifting cultivation - continues to cause soil erosion and degradation. However, the acid savannahs of the world, such as the cerrado of Brazil, the Llanos in Venezuela and Colombia, the savannahs of Africa, and the largely anthropic savannahs of tropical Asia, encompass vast areas of potentially arable land. The acid soils of the savannahs are mostly considered marginal because of low inherent fertility and susceptibility to rapid degradation. These constraints for agricultural development are exacerbated by the poverty of new settlers who try to cultivate such areas after deforestation. Low- or minimum-input systems are not sustainable on these tropical acid soils but, with sufficient investment and adequate technologies, they can be highly productive. Thus, there is a need to develop management practices for sustainable agricultural production systems on such savannah acid soils. The Soil and Water Management and Crop Nutrition Sub-programme of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture strongly supports an integrated approach to soil, water and nutrient management within cropping systems. In this context, nuclear and related techniques can be used to better understand the processes and factors influencing the productivity of agricultural production systems, and improve them through the use of better soil, water and nutrient management practices. A panel of experts actively engaged in field projects on acid soils of savannah agro-ecosystems in the humid and sub-humid tropics convened in March 1999 in Vienna to review and discuss recent research progress, along the following main lines of investigation: (i) utilization of

  2. Geogenic and agricultural controls on the geochemical composition of European agricultural soils

    Science.gov (United States)

    Mol, Gerben; Saaltink, Remon; Griffioen, Jasper; Birke, Manfred

    2014-05-01

    Purpose: Concern about the environmental impact of agriculture caused by intensification is growing as large amounts of nutrients and contaminants are introduced into the environment. The aim of this paper is to identify the geogenic and agricultural controls on the elemental composition of European, grazing and agricultural soils. Materials and methods: Robust factor analysis was applied to data series for Al,B,Ca, Cd,Co, Cu, Fe, K, Mg,Mn, Na,Ni, P, S, Se, Sr, U, Zn (ICP-MS) and SiO2, K2O, Na2O, Fe2O3, Al2O3 (XRF) based on the European GEMAS dataset. In addition, the following general soil properties were included: clay content, pH, chemical index of alteration (CIA), loss on ignition (LOI), cation exchange capacity (CEC), total organic carbon (TOC) and total carbon and total sulfur. Furthermore, this dataset was coupled to a dataset containing information of historic P2O5 fertilization across Europe. Also, a mass balance was carried out for Cd, Cu and Zn to determine if concentrations of these elements found in the soils have their origin in historic P2O5 fertilization. Results and discussion: Seven geogenic factors and one agricultural factor were found of which four prominent ones (all geogenic): chemical weathering, reactive iron-aluminum oxide minerals, clay minerals and carbonate minerals. Results for grazing and agricultural soils were near identical, which further proofs the prominence of geogenic controls on the total elemental composition. When the cumulative amount of P2O5 fertilization was considered, no extra agriculture-related factors became visible. The mass balance confirms these observations. Conclusion: Overall, the geological controls are more important for the total soil chemistry in agricultural and grazing land soils than the anthropogenic controls.

  3. Modern trends in the development of agriculture and demands on plant breeding and soil management

    Directory of Open Access Journals (Sweden)

    Kovačević Dušan

    2012-01-01

    Full Text Available Agriculture is usually developed as much and just society where there is a branch of the economy. Today, there are different directions from industry agriculture to many concepts based on ecological principles. Future of agriculture development in the XXI century will imply sustainable agriculture as the alternative to the industrial agriculture. Conventional agriculture as an intensive one has a duty to ensure maximum production in terms of quantity and quality with the low cost. For this purpose we have many cultural practices, sometimes in addition to the expected positive but sometimes with many unexpected long-term negative effects in agroecosystems. Organic agriculture is one of the most interesting current trends in agriculture completely based on strong ecological principles and the absence of application of agrochemicals (pesticides, fertilizers, hormones, GMO, etc. Organic agriculture is a holistic way of farming: besides production of goods of high quality (better flavor, high content dry matter, vitamins, antioxidants; conservation of the natural resources (soil, water and richness of biodiversity.

  4. Sorption and transport of atrazine in an agricultural soil

    Science.gov (United States)

    Hakan Akyol, Nihat

    2014-05-01

    Sorption and transport of atrazine in an agricultural soil Atrazine is one of the most commonly used herbicides in large quantity worldwide. The objective of this study was to perform some batch and column experiments to examine the transport of atrazine in an agricultural soil from Turkey. Batch experiments indicated that sorption isotherm was nonlinear with a freundlich isotherm over a range of concentration (0.2-10 mg/L) examined. Column experiments showed that transport of atrazine in the soil was moderately retarded compared to non-reactive tracer (R = 2.9-4.0). The degree of retardation decreased with increasing atrazine concentration and residance time had negligable impact on degree of sorption. Flow interruption tests in the column experiments indicated that the rate-limited desorption of atrazine mainly controlled the non-ideal transport of atrazine due to the presence of organic matter fraction (0.83 %) in the soil. Sorption and desorption behavior of atrazine in such soils could have important impacts for risk assessment of atrazine-contaminated soil and should be taken into account in the regulation, management, and remediation of atrazine-contaminated sites. Keywords: Atrazine, Agricultural soil, Batch, Column, Desorption, Rate-limited desorption, Sorption, Transport.

  5. Aerobic Methanotrophs in Natural and Agricultural Soils of European Russia

    Directory of Open Access Journals (Sweden)

    Irina Kravchenko

    2013-07-01

    Full Text Available Human activities such as land management and global warming have great impact on the environment. Among changes associated with the global warming, rising methane emission is a serious concern. Therefore, we assessed methane oxidation activity and diversity of aerobic methanotrophic bacteria in eight soil types (both unmanaged and agricultural distributed across the European part of Russia. Using a culture-independent approach targeting pmoA gene, we provide the first baseline data on the diversity of methanotrophs inhabiting most typical soil types. The analysis of pmoA clone libraries showed that methanotrophic populations in unmanaged soils are less diverse than in agricultural areas. These clone sequences were placed in three groups of, so far, uncultured methanotrophs: USC-gamma, cluster I, and pmoA/amoA cluster, which are believed to be responsible for atmospheric methane oxidation in upland soils. Agricultural soils harbored methanotrophs related to genera Methylosinus, Methylocystis, Methylomicrobium, Methylobacter, and Methylocaldum. Despite higher numbers of detected molecular operational taxonomic units (MOTUs, managed soils showed decreased methane oxidation rates as observed in both in situ and laboratory experiments. Our results also suggest that soil restoration may have a positive effect on methane consumption by terrestrial ecosystems.

  6. 75 FR 77821 - Agricultural Water Enhancement Program and Cooperative Conservation Partnership Initiative

    Science.gov (United States)

    2010-12-14

    ... agreements with the Natural Resources Conservation Service (NRCS) through either the Agricultural Water... concerns to be addressed, and specifically what water conservation resource issues and water quality... long-term conservation of surface and ground water or water quality improvement and related...

  7. Glyphosate resistant weeds - a threat to conservation agriculture

    Science.gov (United States)

    Glyphosate-resistant weeds are now present throughout the Southeast. Hundreds of thousands of conservation tillage cotton acres, some currently under USDA Natural Resources Conservation Service (NRCS) conservation program contracts, are at risk of being converted to higher-intensity tillage systems....

  8. SOIL EROSION AND CONSERVATION IN ROMANIA - SOME FIGURES, FACTS AND ITS IMPACT ON ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Sevastel Mircea

    2010-01-01

    Full Text Available Being a common and finite resource, soil - as a natural and very complex ecosystem, is essential to human society. Inseveral regions of Europe, including Romania too, soil resources are degraded due to different causes, or, sometimes,irreversibly lost, mainly due to erosion, decline in organic matter or contamination. As regard to soil erosion only, inRomania, about 42% of the total agricultural lands are affected by water erosion in different forms and intensities.Soil degradation has negative impacts on other areas also, not only in-site but also off-site, areas which are alsoconsidered of common interest for the people (e.g. air and water quality, biodiversity and climate change. Costs torestore such a damages and environmental quality in general may be very high and thus preferable to be avoided.To maintain and/or improve a good quality of the soils for a long period of time, there needed to be implemented inRomania , as much as possible, some agri-environmental schemes, according to the current EU models and policies, inparticular, through the Common Agricultural Policy (CAP.The paper briefly presents and analyzes such agri-environmental schemes developed for the agricultural lands from thehilly areas in Romania that is very affected by water erosion and landslides – the Curvature zone of Sub-Carpathians.The schemes, developed within the Research Station for Soil Erosion and Conservation Aldeni-Buzau, which belongs tothe University of Agricultural Sciences in Bucharest, is based on friendly agricultural practices to be implemented onagricultural lands located on slopes. Also, the new conceptual European model, known as Driving Forces-Pressures-State-Impacts-Responces (DPSIR, adapted for the soil erosion impact assesment on environment, will be herepresented, in order to be promoted and used on a large scale in Romania as well.

  9. Soil CO2 emissions in terms of irrigation management in an agricultural soil

    Science.gov (United States)

    Zornoza, Raúl; Acosta, José A.; María de la Rosa, José; Faz, Ángel; Domingo, Rafael; Pérez-Pastor, Alejandro; Ángeles Muñoz, María

    2014-05-01

    Irrigation water restrictions in the Mediterranean area are reaching worrying proportions and represent a serious threat to traditional crops and encourage the movement of people who choose to work in other activities. This situation has created a growing interest in water conservation, particularly among practitioners of irrigated agriculture, the main recipient of water resources (>80%). For these and other reasons, the scientific and technical irrigation scheduling of water use to maintain and even improve harvest yield and quality has been and will remain a major challenge for irrigated agriculture. Apart from environmental and economic benefits by water savings, deficit irrigation may contribute to reduce soil CO2 emissions and enhance C sequestration in soils. The reduction of soil moisture levels decreases microbial activity, with the resulting slowing down of organic matter mineralization. Besides, the application of water by irrigation may increment the precipitation rate of carbonates, favoring the storage of C, but depending on the source of calcium or bicarbonate, the net reaction can be either storage or release of C. Thus, the objective of this study was to assess if deficit irrigation, besides contributing to water savings, can reduce soil CO2 emissions and favor the accumulation of C in soils in stable forms. The experiment was carried out along 2012 in a commercial orchard from southeast Spain cultivated with nectarine trees (Prunus persica cv. 'Viowhite'). The irrigation system was drip localized. Three irrigation treatments were assayed: a control (CT), irrigated to satisfy the total hydric needs of the crop; a first deficit irrigation (DI1), irrigated as CT except for postharvest period (16 June - 28 October) were 50% of CT was applied; and a second deficit irrigation (DI2), irrigated as DI1, except for two periods in which irrigation was suppressed (16 June-6 July and 21 July-17 August). Each treatment was setup in triplicate, randomly

  10. NUMERICAL SIMULATION OF AN AGRICULTURAL SOIL SHEAR STRESS TEST

    Directory of Open Access Journals (Sweden)

    Andrea Formato

    2007-03-01

    Full Text Available In this work a numerical simulation of agricultural soil shear stress tests was performed through soil shear strength data detected by a soil shearometer. We used a soil shearometer available on the market to measure soil shear stress and constructed special equipment that enabled automated detection of soil shear stress. It was connected to an acquisition data system that displayed and recorded soil shear stress during the full field tests. A soil shearometer unit was used to the in situ measurements of soil shear stress in full field conditions for different types of soils located on the right side of the Sele river, at a distance of about 1 km from each other, along the perpendicular to the Sele river in the direction of the sea. Full field tests using the shearometer unit were performed alongside considered soil characteristic parameter data collection. These parameter values derived from hydrostatic compression and triaxial tests performed on considered soil samples and repeated 4 times and we noticed that the difference between the maximum and minimum values detected for every set of performed tests never exceeded 4%. Full field shear tests were simulated by the Abaqus program code considering three different material models of soils normally used in the literature, the Mohr-Coulomb, Drucker-Prager and Cam-Clay models. We then compared all data outcomes obtained by numerical simulations with those from the experimental tests. We also discussed any further simulation data results obtained with different material models and selected the best material model for each considered soil to be used in tyre/soil contact simulation or in soil compaction studies.

  11. Substantial dust loss of bioavailable phosphorus from agricultural soils

    Science.gov (United States)

    Katra, Itzhak; Gross, Avner; Swet, Nitzan; Tanner, Smadar; Krasnov, Helena; Angert, Alon

    2016-04-01

    Phosphorus (P) is an essential element in terrestrial ecosystems. Knowledge on the role of dust in the biogeochemical cycling of phosphorus is very limited with no quantitative information on aeolian (by wind) P fluxes from soils. The aim of this study is to focus on P cycling via dust emissions under common land-use practices in an arid environment by integration of sample analyses and aeolian experiments. The experiments indicate significant P fluxes by PM10 dust due to agricultural land use. Even in a single wind-dust event at moderate velocity (7.0 m s-1), P flux in conventional agricultural fields can reach 1.83 kg km-2, that accumulates to a considerable amount per year at a regional scale. The results highlight a negative yearly balance in P content (up to hundreds kg km-2) in all agricultural soils, and thus more P nutrition is required to maintain efficient yield production. In grazing areas where no P nutrition is applied, the soil degradation process can lead to desertification. Emission of P from soil dust sources has significant implications for soil nutrient resources and management strategies in agricultural regions as well as for loading to the atmosphere and global biogeochemical cycles.

  12. Substantial dust loss of bioavailable phosphorus from agricultural soils

    Science.gov (United States)

    Katra, Itzhak; Gross, Avner; Swet, Nitzan; Tanner, Smadar; Krasnov, Helena; Angert, Alon

    2016-04-01

    Phosphorus (P) is an essential element in terrestrial ecosystems. Knowledge on the role of dust in the biogeochemical cycling of phosphorus is very limited with no quantitative information on aeolian (by wind) P fluxes from soils. The aim of this study is to focus on P cycling via dust emissions under common land-use practices in an arid environment by integration of sample analyses and aeolian experiments. The experiments indicate significant P fluxes by PM10 dust due to agricultural land use. Even in a single wind-dust event at moderate velocity (7.0 m s‑1), P flux in conventional agricultural fields can reach 1.83 kg km‑2, that accumulates to a considerable amount per year at a regional scale. The results highlight a negative yearly balance in P content (up to hundreds kg km‑2) in all agricultural soils, and thus more P nutrition is required to maintain efficient yield production. In grazing areas where no P nutrition is applied, the soil degradation process can lead to desertification. Emission of P from soil dust sources has significant implications for soil nutrient resources and management strategies in agricultural regions as well as for loading to the atmosphere and global biogeochemical cycles.

  13. Agricultural intensification exacerbates spillover effects on soil biogeochemistry in adjacent forest remnants.

    Directory of Open Access Journals (Sweden)

    Raphael K Didham

    Full Text Available Land-use intensification is a central element in proposed strategies to address global food security. One rationale for accepting the negative consequences of land-use intensification for farmland biodiversity is that it could 'spare' further expansion of agriculture into remaining natural habitats. However, in many regions of the world the only natural habitats that can be spared are fragments within landscapes dominated by agriculture. Therefore, land-sparing arguments hinge on land-use intensification having low spillover effects into adjacent protected areas, otherwise net conservation gains will diminish with increasing intensification. We test, for the first time, whether the degree of spillover from farmland into adjacent natural habitats scales in magnitude with increasing land-use intensity. We identified a continuous land-use intensity gradient across pastoral farming systems in New Zealand (based on 13 components of farmer input and soil biogeochemistry variables, and measured cumulative off-site spillover effects of fertilisers and livestock on soil biogeochemistry in 21 adjacent forest remnants. Ten of 11 measured soil properties differed significantly between remnants and intact-forest reference sites, for both fenced and unfenced remnants, at both edge and interior. For seven variables, the magnitude of effects scaled significantly with magnitude of surrounding land-use intensity, through complex interactions with fencing and edge effects. In particular, total C, total N, δ15N, total P and heavy-metal contaminants of phosphate fertilizers (Cd and U increased significantly within remnants in response to increasing land-use intensity, and these effects were exacerbated in unfenced relative to fenced remnants. This suggests movement of livestock into surrounding natural habitats is a significant component of agricultural spillover, but pervasive changes in soil biogeochemistry still occur through nutrient spillover channels alone

  14. Agriculture, forestry, range, and soils, chapter 2, part C

    Science.gov (United States)

    1975-01-01

    The feasibility of using microwave systems in agriculture, forestry, range, and soil moisture measurements was studied. Theory and preliminary results show the feasibility of measuring moisture status in the soil. For vegetational resources, crop identification for inventory and for yield and production estimates is most feasible. Apart from moisture- and water-related phenomena, microwave systems are also used to record structural and spatial data related to crops and forests.

  15. Soil microbial communities as suitable bioindicators of trace metal pollution in agricultural volcanic soils

    Science.gov (United States)

    Parelho, Carolina; dos Santos Rodrigues, Armindo; do Carmo Barreto, Maria; Gonçalo Ferreira, Nuno; Garcia, Patrícia

    2015-04-01

    Summary: The biological, chemical and physical properties of soil confer unique characteristics that enhance or influence its overall biodiversity. The adaptive character of soil microbial communities (SMCs) to metal pollution allows discriminating soil health, since changes in microbial populations and activities may function as excellent indicators of soil pollutants. Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals (TM). In our previous works, we identified priority TM affecting agricultural Andosols under different agricultural land uses. Within this particular context, the objectives of this study were to (i) assess the effect of soil TM pollution in different agricultural systems (conventional, traditional and organic) on the following soil properties: microbial biomass carbon, basal soil respiration, metabolic quotient, enzymatic activities (β-glucosidase, acid phosphatase and dehydrogenase) and RNA to DNA ratio; and (ii) evaluate the impact of TM in the soil ecosystem using the integrated biomarker response (IBR) based on a set of biochemical responses of SMCs. This multi-biomarker approach will support the development of the "Trace Metal Footprint" for different agricultural land uses in volcanic soils. Methods: The study was conducted in S. Miguel Island (Azores, Portugal). Microbial biomass carbon was measured by chloroform-fumigation-incubation-assay (Vance et al., 1987). Basal respiration was determined by the Jenkinson & Powlson (1976) technique. Metabolic quotient was calculated as the ratio of basal respiration to microbial biomass C (Sparkling & West, 1988). The enzymatic activities of β-glucosidase and acid phosphatase were determined by the Dick et al. (1996) method and dehydrogenase activity by the Rossel et al. (1997) method. The RNA and DNA were co-extracted from the same

  16. Mapping Spatial Moisture Content of Unsaturated Agricultural Soils with Ground-Penetrating Radar

    Science.gov (United States)

    Shamir, O.; Goldshleger, N.; Basson, U.; Reshef, M.

    2016-06-01

    Soil subsurface moisture content, especially in the root zone, is important for evaluation the influence of soil moisture to agricultural crops. Conservative monitoring by point-measurement methods is time-consuming and expensive. In this paper we represent an active remote-sensing tool for subsurface spatial imaging and analysis of electromagnetic physical properties, mostly water content, by ground-penetrating radar (GPR) reflection. Combined with laboratory methods, this technique enables real-time and highly accurate evaluations of soils' physical qualities in the field. To calculate subsurface moisture content, a model based on the soil texture, porosity, saturation, organic matter and effective electrical conductivity is required. We developed an innovative method that make it possible measures spatial subsurface moisture content up to a depth of 1.5 m in agricultural soils and applied it to two different unsaturated soil types from agricultural fields in Israel: loess soil type (Calcic haploxeralf), common in rural areas of southern Israel with about 30% clay, 30% silt and 40% sand, and hamra soil type (Typic rhodoxeralf), common in rural areas of central Israel with about 10% clay, 5% silt and 85% sand. Combined field and laboratory measurements and model development gave efficient determinations of spatial moisture content in these fields. The environmentally friendly GPR system enabled non-destructive testing. The developed method for measuring moisture content in the laboratory enabled highly accurate interpretation and physical computing. Spatial soil moisture content to 1.5 m depth was determined with 1-5% accuracy, making our method useful for the design of irrigation plans for different interfaces.

  17. Quantifying the erosion effect on current carbon budget of European agricultural soils at high spatial resolution.

    Science.gov (United States)

    Lugato, Emanuele; Paustian, Keith; Panagos, Panos; Jones, Arwyn; Borrelli, Pasquale

    2016-05-01

    The idea of offsetting anthropogenic CO2 emissions by increasing global soil organic carbon (SOC), as recently proposed by French authorities ahead of COP21 in the 'four per mil' initiative, is notable. However, a high uncertainty still exits on land C balance components. In particular, the role of erosion in the global C cycle is not totally disentangled, leading to disagreement whether this process induces lands to be a source or sink of CO2. To investigate this issue, we coupled soil erosion into a biogeochemistry model, running at 1 km(2) resolution across the agricultural soils of the European Union (EU). Based on data-driven assumptions, the simulation took into account also soil deposition within grid cells and the potential C export to riverine systems, in a way to be conservative in a mass balance. We estimated that 143 of 187 Mha have C erosion rates 0.45 Mg C ha(-1) yr(-1). In comparison with a baseline without erosion, the model suggested an erosion-induced sink of atmospheric C consistent with previous empirical-based studies. Integrating all C fluxes for the EU agricultural soils, we estimated a net C loss or gain of -2.28 and +0.79 Tg yr(-1) of CO2 eq, respectively, depending on the value for the short-term enhancement of soil C mineralization due to soil disruption and displacement/transport with erosion. We concluded that erosion fluxes were in the same order of current carbon gains from improved management. Even if erosion could potentially induce a sink for atmospheric CO2, strong agricultural policies are needed to prevent or reduce soil erosion, in order to maintain soil health and productivity. PMID:26679897

  18. MAPPING SPATIAL MOISTURE CONTENT OF UNSATURATED AGRICULTURAL SOILS WITH GROUND-PENETRATING RADAR

    Directory of Open Access Journals (Sweden)

    O. Shamir

    2016-06-01

    Full Text Available Soil subsurface moisture content, especially in the root zone, is important for evaluation the influence of soil moisture to agricultural crops. Conservative monitoring by point-measurement methods is time-consuming and expensive. In this paper we represent an active remote-sensing tool for subsurface spatial imaging and analysis of electromagnetic physical properties, mostly water content, by ground-penetrating radar (GPR reflection. Combined with laboratory methods, this technique enables real-time and highly accurate evaluations of soils' physical qualities in the field. To calculate subsurface moisture content, a model based on the soil texture, porosity, saturation, organic matter and effective electrical conductivity is required. We developed an innovative method that make it possible measures spatial subsurface moisture content up to a depth of 1.5 m in agricultural soils and applied it to two different unsaturated soil types from agricultural fields in Israel: loess soil type (Calcic haploxeralf, common in rural areas of southern Israel with about 30% clay, 30% silt and 40% sand, and hamra soil type (Typic rhodoxeralf, common in rural areas of central Israel with about 10% clay, 5% silt and 85% sand. Combined field and laboratory measurements and model development gave efficient determinations of spatial moisture content in these fields. The environmentally friendly GPR system enabled non-destructive testing. The developed method for measuring moisture content in the laboratory enabled highly accurate interpretation and physical computing. Spatial soil moisture content to 1.5 m depth was determined with 1–5% accuracy, making our method useful for the design of irrigation plans for different interfaces.

  19. Greenhouse gas emissions under conservation agriculture compared to traditional cultivation of maize in the central highlands of Mexico

    International Nuclear Information System (INIS)

    In 1991, the ‘International Maize and Wheat Improvement Center’ (CIMMYT) started a field experiment in the rain fed Mexican highlands to investigate conservation agriculture (CA) as a sustainable alternative for conventional maize production practices (CT). CT techniques, characterized by deep tillage, monoculture and crop residue removal, have deteriorated soil fertility and reduced yields. CA, which combines minimum tillage, crop rotations and residue retention, restores soil fertility and increases yields. Soil organic matter increases in CA compared to CT, but increases in greenhouse gas emissions (GHG) in CA might offset the gains obtained to mitigate global warming. Therefore, CO2, CH4 and N2O emissions, soil temperature, C and water content were monitored in CA and CT treatments in 2010–2011. The cumulative GHG emitted were similar for CA and CT in both years, but the C content in the 0–60 cm layer was higher in CA (117.7 Mg C ha−1) than in CT (69.7 Mg C ha−1). The net global warming potential (GWP) of CA (considering soil C sequestration, GHG emissions, fuel use, and fertilizer and seeds production) was − 7729 kg CO2 ha−1 y−1 in 2008–2009 and − 7892 kg CO2 ha−1 y−1 in 2010–2011, whereas that of CT was 1327 and 1156 kg CO2 ha−1 y−1. It was found that the contribution of CA to GWP was small compared to that of CT. - Highlights: ► Conservation agriculture (CA) and conventional agriculture (CT) systems ► Greenhouse gasses emitted were similar from CA and CT. ► C content in the 0–60 cm layer was much higher in CA than in CT. ► The net global warming potential of CA was negative, but positive in CT. ► C sequestered in soil is far more important than GHG emitted.

  20. Exclusion of agricultural lands in spatial conservation prioritization strategies: consequences for biodiversity and ecosystem service representation.

    Science.gov (United States)

    Durán, América P; Duffy, James P; Gaston, Kevin J

    2014-10-01

    Agroecosystems have traditionally been considered incompatible with biological conservation goals, and often been excluded from spatial conservation prioritization strategies. The consequences for the representativeness of identified priority areas have been little explored. Here, we evaluate these for biodiversity and carbon storage representation when agricultural land areas are excluded from a spatial prioritization strategy for South America. Comparing different prioritization approaches, we also assess how the spatial overlap of priority areas changes. The exclusion of agricultural lands was detrimental to biodiversity representation, indicating that priority areas for agricultural production overlap with areas of relatively high occurrence of species. By contrast, exclusion of agricultural lands benefits representation of carbon storage within priority areas, as lands of high value for agriculture and carbon storage overlap little. When agricultural lands were included and equally weighted with biodiversity and carbon storage, a balanced representation resulted. Our findings suggest that with appropriate management, South American agroecosystems can significantly contribute to biodiversity conservation.

  1. Assessing different agricultural managements with the use of soil quality indices in a Mediteranean calcareous soil

    Science.gov (United States)

    Morugán-Coronado, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Vicky; Cerdà, Artemi

    2013-04-01

    Soil erosion is a major problem in the Mediterranean region due to the arid conditions and torrential rainfalls, which contribute to the degradation of agricultural land. New strategies must be developed to reduce soil losses and recover or maintain soil functionality in order to achieve a sustainable agriculture. An experiment was designed to evaluate the effect of different agricultural management on soil properties and soil quality. Ten different treatments (contact herbicide, systemic herbicide, ploughing, Oat mulch non-plough, Oats mulch plough, leguminous plant, straw rice mulch, chipped pruned branches, residual-herbicide and agro geo-textile, and three control plots including no tillage or control and long agricultural abandonment (shrub on marls and shrub on limestone) were established in 'El Teularet experimental station' located in the Sierra de Enguera (Valencia, Spain). The soil is a Typic Xerorthent developed over Cretaceous marls in an old agricultural terrace. The agricultural management can modify the soil equilibrium and affect its quality. In this work two soil quality indices (models) developed by Zornoza et al. (2007) are used to evaluate the effects of the different agricultural management along 4 years. The models were developed studying different soil properties in undisturbed forest soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. Model 1, that explained 92% of the variance in soil organic carbon (SOC) showed that the SOC can be calculated by the linear combination of 6 physical, chemical and biochemical properties (acid phosphatase, water holding capacity (WHC), electrical conductivity (EC), available phosphorus (P), cation exchange capacity (CEC) and aggregate stability (AS). Model 2 explains 89% of the SOC variance, which can be calculated by means of 7 chemical and biochemical properties (urease, phosphatase, and ß-glucosidase activities, pH, EC, P and CEC). We use the

  2. Mulch tillage for conserving soil water

    Science.gov (United States)

    Mulching is the practice of maintaining organic or inorganic materials on or applying them to the soil surface. It is an ancient practice, but through the years clean tillage that incorporated crop residues and also controlled weeds became the norm. Frequent and deep tillage often was promoted to co...

  3. Effectiveness of sloping agricultural land technology on soil fertility status of mid-hills in Nepal

    Institute of Scientific and Technical Information of China (English)

    Kiran Lamichhane

    2013-01-01

    Hedgerows with intercropping systems were established at the ICIMOD test and demonstration site at Godawari to assess the effective-ness of Sloping Agricultural Land Technology (SALT) in reducing run-off water volume, controlling soil loss, increasing crop production, and improving soil fertility in the mid-hills of Nepal. Runoff water volume (1996-2002), soil loss (1996-2002) and maize yield (1995-2001), and soil fertility-related parameters were assessed on SALT models with three factors:the type of nitrogen-fixing plant, the farmers’ practice, and fertilizer use. Results showed a significant effect of Alnus nepalensis and/or Indigofera dosua on runoff water volume, soil loss, crop produc-tion, soil water retention, and soil nutrients (NPK). Farmers’ practice and fertilization did not play a significant role in reducing runoff water and soil loss. However, farmers’ practice significantly increased crop produc-tion. Therefore, integrating soil conservation approaches on SALT sys-tems enhances stable economic output to hills and mountain farmers.

  4. Is current biochar soil study addressing global soil constraints for sustainable agriculture?

    Science.gov (United States)

    Pan, Genxing; Zhang, Dengxiao; Yan, Ming; Niu, Yaru; Liu, Xiaoyu; van Zwieten, Lukas; Chen, De; Bian, Rongjun; Cheng, Kun; Li, Lianqing; Joseph, Stephen; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Crowley, David; Filley, Timothy

    2016-04-01

    Global soil degradation has been increasingly threatened sustainability of world agriculture. Use of biochar from bio-wastes has been proposed as a global option for its great potential in tackling soil degradation and mitigating climate change in agriculture. For last 10 years, there have been greatly increasing interests in application of charred biomass, more recently termed biochar, as a soil amendment for addressing soil constraints for sustainable agriculture. Biochar soil studies could deliver reliable information for appropriate application of biochar to soils where for sustainable agriculture has been challenged. Here we review the literature of 798 publications reporting biochar soil studies by August, 2015 to address potential gaps in understanding of biochar's role in agriculture. We have found some substantial biases and gaps inherent in the current biochar studies. 1) The majority of published studies were from developed regions where the soils are less constrained and were much more frequent in laboratory and glasshouse pot experiments than field studies under realistic agriculture. 2) The published biochar soil studies have used more often small kiln or lab prepared biochar than commercial scale biochars, more often wood and municipal waste derived biochars than crop straw biochars. Overall, the lack of long-term well designed field studies using biochar produced in commercial processes may have limited our current understanding of biochar's potential to enhance global crop production and climate change mitigation. We have also recommended a global alliance between longer-term research experiments and biochar production facilities to foster the uptake of this important technology at a global scale. Keywords: biochar, soil study, literature review, research gap, global perspective, quantitative assessment, sustainable agriculture

  5. The Analysis on the Influence of Water Conservancy Investment on Agricultural Economic Growth: An Empirical Study Based on the Boom Period of Shandong Agriculture

    Institute of Scientific and Technical Information of China (English)

    Jinping; CAO; Zhe; FENG; Jilian; HU

    2014-01-01

    This paper uses econometric methods to carry out a Granger causality test on the construction of water conservancy infrastructure construction and agricultural economic growth in the boom period(1981- 2002) of Shandong agriculture. Empirical results indicate that there exists two-way Granger causality between Shandong water conservancy infrastructure construction and Shandong agricultural economic growth.Therefore,water conservancy infrastructure construction has a significant influence on agricultural economic growth in Shandong.

  6. Guiding soil conservation strategy in headwater mediterranean catchments

    Science.gov (United States)

    Ben Slimane, Abir; Raclot, Damien; Evrard, Olivier; Sanaa, Mustapha; Lefèvre, Irène; Le Bissonnais, Yves

    2016-04-01

    Reservoir siltation due to water erosion is an important environmental issue in Mediterranean countries where storage of clear surface water is crucial for their economic and agricultural development. In order to reduce water erosion, this study aimed to design a methodology for guiding the implementation of efficient conservation strategies by identifying the dominant sediment sources in Mediterranean context. To this end, a fingerprinting method was combined with long-term field monitoring of catchment sediment yield in five headwater catchments (0.1-10 km2) equipped with a small reservoir between 1990 and 1995. The five catchments were chosen to cover the large diversity of environmental conditions found along the Tunisian Ridge and in the Cape Bon region. The fingerprinting techniques based on measurements of cesium-137 and Total Organic Carbon within the catchments and in reservoir sediment deposits successfully identified the contribution of rill/interrill and gully/channel erosion to sediment yield at the outlet of five small headwater catchments during the last 15-20 years. Results showed the very large variability of erosion processes among the selected catchments, with rill/interrill erosion contributions to sediment accumulated in outlet reservoirs ranging from 20 to 80%. Overall, rill/interrill erosion was the dominant process controlling reservoir siltation in three catchments whereas gully/channel erosion dominated in the other two catchments. This demonstrates that the dominant erosion process in the Mediterranean regions highly depends on the local environmental context. The lowest rill/interrill erosion contribution (2.2 Mg ha-1 yr-1) in the five catchments remained significantly higher than the tolerable soil loss indicating the severe levels reached by soil erosion along the Tunisian Ridge and in the Cape Bon region. This study also showed that although the implementation of improved topsoil management measures greatly reduced rill

  7. Adopted Engineering and Agronomic Conservation Measures of Agricultural Land Use in Lafia L. G. A. Nasarawa State of Nigeria

    Directory of Open Access Journals (Sweden)

    Jonathan Kuje Yohanna

    2012-06-01

    Full Text Available The study examined agricultural land use and adopted conservation measures in Lafia local government Area of Nasarawa state. The data were collected by oral interview and structured questionnaire. Two hundred farmers were randomly selected across the local government area. The field survey revealed that 42% of the farmers are at the range of 35-45 years of age. 60% of the farmers within the study area don’t practice irrigation farming. The results also showed that 58% of the farmers have attended post primary school. 66% of the land area is relatively flat thereby leading to moderate erosion. 88% of the farmers used local methods of cultivation leading to small area (1-4ha of land being cultivated per a farmer. 44% of the farmers experienced sheet erosion on their farm lands leading to 40% of low yield. 22% of the farmers practiced most of the conservation practices on the land to minimize soil degradation and nutrient restoration. 40% of farmers surveyed encountered problem of high cost of labour and 46% of them obtained loan from the agricultural bank to solve some of the problems encountered. It is therefore recommended among other things that agricultural land use should be studied and conservation methods should be adopted to increase agricultural production in the study area.

  8. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    Science.gov (United States)

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  9. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    Science.gov (United States)

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen. PMID:27127923

  10. Chemistry of subsurface drain discharge from an agricultural polder soil

    NARCIS (Netherlands)

    Hesterberg, D.; Vos, de B.; Raats, P.A.C.

    2006-01-01

    Protecting groundwater and surface water quality in drained agricultural lands is aided by an understanding of soil physical and chemical processes affecting leaching of plant nutrients and other chemical constituents, and discharge from subsurface drains. Our objectives were to determine which chem

  11. Carbon sequestration in the agricultural soils of Europe

    NARCIS (Netherlands)

    Freibauer, A.; Rounsevell, M.D.A.; Smith, P.; Verhagen, A.

    2004-01-01

    In this review, technical and economically viable potentials for carbon sequestration in the agricultural soils of Europe by 2008¿2012 are analysed against a business-as-usual scenario. We provide a quantitative estimation of the carbon absorption potential per hectare and the surface of agricultura

  12. Deforestation, forest fallowing, and soil conservation in shifting cultivation

    OpenAIRE

    2013-01-01

    To design effective policies for rainforest conservation in shifting cultivation systems, it is crucial to have a better understanding of shifting cultivators f decision making. This paper develops a unified dynamic farm model of shifting cultivation, addressing two lacunae in extant theoretical works: taking into account differences between primary and secondary forests and potential roles of on-farm soil conservation. The model unifies shifting cultivator fs decisions about primary-forest c...

  13. Economic Modelling of Soil Conservation: An Endogenous Growth Approach

    OpenAIRE

    Kwan Soo Kim

    1998-01-01

    This paper ï¬ rst develops the model, based on endogenous growth argument, in which environmental quality is included as input and thus makes possible the explanation of issues related to resource allocation and its impacts on the environment. Second, it analyzes the relationship between land market performance and underinvestment by incorporating information about soil quality into the analytical framework It extends existing literature on the economic modelling of soil conservation in sever...

  14. Mechanisms of Soil Aggregates Stability in Purple Paddy Soil under Conservation Tillage of Sichuan Basin, China

    OpenAIRE

    Tang, Xiaohong; Luo, Youjin; Lv, Jiake; Wei, Chaofu

    2011-01-01

    Part 1: Decision Support Systems, Intelligent Systems and Artificial Intelligence Applications International audience Ridge culture is a special conservation tillage method, but the long-term influence of this tillage system on soil aggregate-size stability in paddy fields is largely unknown in southwest of china. The objectives of this paper are to evaluate soil aggregates stability and to determine the relationship between SOC and soil aggregate stability. Soil samples at 0-20 cm laye...

  15. Caring for the land : best practice in soil and water conservation in Beressa watershed, highlands of Ethiopia

    NARCIS (Netherlands)

    Amsalu Taye, A.

    2006-01-01

    Land degradation in the form of soil erosion and nutrient loss is a major constraint to farming activities and agricultural development in the highlands of Ethiopia. Though large-scale conservation projects have been initiated and carried out by the government during the past few decades, the conser

  16. Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in Argentine Pampas.

    Directory of Open Access Journals (Sweden)

    Belén Carbonetto

    Full Text Available Agriculture is facing a major challenge nowadays: to increase crop production for food and energy while preserving ecosystem functioning and soil quality. Argentine Pampas is one of the main world producers of crops and one of the main adopters of conservation agriculture. Changes in soil chemical and physical properties of Pampas soils due to different tillage systems have been deeply studied. Still, not much evidence has been reported on the effects of agricultural practices on Pampas soil microbiomes. The aim of our study was to investigate the effects of agricultural land use on community structure, composition and metabolic profiles on soil microbiomes of Argentine Pampas. We also compared the effects associated to conventional practices with the effects of no-tillage systems. Our results confirmed the impact on microbiome structure and composition due to agricultural practices. The phyla Verrucomicrobia, Plactomycetes, Actinobacteria, and Chloroflexi were more abundant in non cultivated soils while Gemmatimonadetes, Nitrospirae and WS3 were more abundant in cultivated soils. Effects on metabolic metagenomic profiles were also observed. The relative abundance of genes assigned to transcription, protein modification, nucleotide transport and metabolism, wall and membrane biogenesis and intracellular trafficking and secretion were higher in cultivated fertilized soils than in non cultivated soils. We also observed significant differences in microbiome structure and taxonomic composition between soils under conventional and no-tillage systems. Overall, our results suggest that agronomical land use and the type of tillage system have induced microbiomes to shift their life-history strategies. Microbiomes of cultivated fertilized soils (i.e. higher nutrient amendment presented tendencies to copiotrophy while microbiomes of non cultivated homogenous soils appeared to have a more oligotrophic life-style. Additionally, we propose that conventional

  17. Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in Argentine Pampas.

    Science.gov (United States)

    Carbonetto, Belén; Rascovan, Nicolás; Álvarez, Roberto; Mentaberry, Alejandro; Vázquez, Martin P

    2014-01-01

    Agriculture is facing a major challenge nowadays: to increase crop production for food and energy while preserving ecosystem functioning and soil quality. Argentine Pampas is one of the main world producers of crops and one of the main adopters of conservation agriculture. Changes in soil chemical and physical properties of Pampas soils due to different tillage systems have been deeply studied. Still, not much evidence has been reported on the effects of agricultural practices on Pampas soil microbiomes. The aim of our study was to investigate the effects of agricultural land use on community structure, composition and metabolic profiles on soil microbiomes of Argentine Pampas. We also compared the effects associated to conventional practices with the effects of no-tillage systems. Our results confirmed the impact on microbiome structure and composition due to agricultural practices. The phyla Verrucomicrobia, Plactomycetes, Actinobacteria, and Chloroflexi were more abundant in non cultivated soils while Gemmatimonadetes, Nitrospirae and WS3 were more abundant in cultivated soils. Effects on metabolic metagenomic profiles were also observed. The relative abundance of genes assigned to transcription, protein modification, nucleotide transport and metabolism, wall and membrane biogenesis and intracellular trafficking and secretion were higher in cultivated fertilized soils than in non cultivated soils. We also observed significant differences in microbiome structure and taxonomic composition between soils under conventional and no-tillage systems. Overall, our results suggest that agronomical land use and the type of tillage system have induced microbiomes to shift their life-history strategies. Microbiomes of cultivated fertilized soils (i.e. higher nutrient amendment) presented tendencies to copiotrophy while microbiomes of non cultivated homogenous soils appeared to have a more oligotrophic life-style. Additionally, we propose that conventional tillage systems may

  18. Fate of the antiretroviral drug tenofovir in agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Chapman, Ralph; Lapen, David R.; Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON, N5V 4T3 (Canada)

    2010-10-15

    Tenofovir (9-(R)-(2-phosphonylmethoxypropyl)-adenine) is an antiretroviral drug widely used for the treatment of human immunodeficiency virus (HIV-1) and Hepatitis B virus (HBV) infections. Tenofovir is extensively and rapidly excreted unchanged in the urine. In the expectation that tenofovir could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in selected agricultural soils. Less than 10% of [adenine-8-{sup 14}C]-tenofovir added to soils varying widely in texture (sand, loam, clay loam) was mineralized in a 2-month incubation under laboratory conditions. Tenofovir was less readily extractable from clay soils than from a loam or a sandy loam soil. Radioactive residues of tenofovir were removed from the soil extractable fraction with DT{sub 50}s ranging from 24 {+-} 2 to 67 + 22 days (first order kinetic model) or 44 + 9 to 127 + 55 days (zero order model). No extractable transformation products were detectable by HPLC. Tenofovir mineralization in the loam soil increased with temperature (range 4 {sup o}C to 30 {sup o}C), and did not occur in autoclaved soil, suggesting a microbial basis. Mineralization rates increased with soil moisture content, ranging from air-dried to saturated. In summary, tenofovir was relatively persistent in soils, there were no extractable transformation products detected, and the response of [adenine-8-{sup 14}C]-tenofovir mineralization to soil temperature and heat sterilization indicated that the molecule was biodegraded by aerobic microorganisms. Sorption isotherms with dewatered biosolids suggested that tenofovir residues could potentially partition into the particulate fraction during sewage treatment.

  19. SUSTAINABILITY EFFECTS OF Crotalaria juncea L. AND Crotalaria spectabilis ROTH ON SOIL FERTILITY AND SOIL CONSERVATION

    Science.gov (United States)

    László, Márton, ,, Dr.

    2010-05-01

    Sustainable agriculture is defined as the successful management of resources for agriculture to satisfy changing human needs while maintaining or enhancing the quality of the environment and conserving natural resources. A sustained increase of agricultural production becomes a great possibility for international community. In this process a green manure crops application for example crotalaria get a new chance for improvement process on soil fertility and soil conservation. Field experiment was carried out on a calcareous chernozem soil (Experiment station Nagyhörcsök of RISSAC-HAS) in partly of experiment series (3 years) at Hungary in 1998. The soil with about 20% clay, 3% humus, 5% CaCO3 in its ploughed layer. To ensure a sufficient macro and micronutrient supply in the whole experiment, 100 kg N, 100 kg P2O5 and 100 kg K2O were given hectare. The Crotalaria juncea L. and Crotalaria spectabilis ROTH were applied with 2 replications. Each plot has an area of 45 m2 with 230-230 individual plants. In vegetation grown period were measured green and dry matter yield. The soil and plant samples were analysed for the macro and microelements contents. The main results achieved in 1998 are summarized as follows: 1. The green matter yield at before flowering reached 63.8 t ha-1 in case of Crotalaria juncea L. 2. Total dry matter yield at harvest (without roots) fluctuated between 9.6 and 17.0 t ha-1, depending on the crotalaria species. 3. The average of element concentration (including stems, leaves of Crotalaria juncea L. and Crotalaria spectabilis ROTH) before flowering reached to 3.2 % N, 2.3 % Ca, 1.3 % K, 0.39 % Mg, 0.22 % P and 0.24 % S. The content of Al and Fe total 14 - 25, while that of Sr, Mn, Na, B and Ba 2 - 6 ppm in dry matter. The Zn, Cu, Mo, Cr, Se, Ni, As, Pb, Cd and Co concentration did not reach here the value of 1 ppm. 4. The average of biological activated element uptake (including stems, leaves of Crotalaria juncea L. and Crotalaria spectabilis

  20. Water and Agricultural-Chemical Transport in a Midwestern, Tile-Drained Watershed: Implications for Conservation Practices

    Science.gov (United States)

    Baker, Nancy T.; Stone, Wesley W.; Frey, Jeffrey W.; Wilson, John T.

    2007-01-01

    The study of agricultural chemicals is one of five national priority topics being addressed by the National Water-Quality Assessment (NAWQA) Program in its second decade of studies, which began in 2001. Seven watersheds across the Nation were selected for the NAWQA agricultural-chemical topical study. The watersheds selected represent a range of agricultural settings - with varying crop types and agricultural practices related to tillage, irrigation, artificial drainage, and chemical use - as well as a range of landscapes with different geology, soils, topography, climate, and hydrology (Capel and others, 2004). Chemicals selected for study include nutrients (nitrogen and phosphorus) and about 50 commonly used pesticides. This study design leads to an improved understanding of many factors that can affect the movement of water and chemicals in different agricultural settings. Information from these studies will help with decision making related to chemical use, conservation, and other farming practices that are used to reduce runoff of agricultural chemicals and sediment from fields (Capel and others, 2004). This Fact Sheet highlights the results of the NAWQA agricultural chemical study in the Leary Weber Ditch Watershed in Hancock County, Indiana. This watershed was selected to represent a tile-drained, corn and soybean, humid area typical in the Midwest.

  1. Long-term fate of nitrate fertilizer in agricultural soils.

    Science.gov (United States)

    Sebilo, Mathieu; Mayer, Bernhard; Nicolardot, Bernard; Pinay, Gilles; Mariotti, André

    2013-11-01

    Increasing diffuse nitrate loading of surface waters and groundwater has emerged as a major problem in many agricultural areas of the world, resulting in contamination of drinking water resources in aquifers as well as eutrophication of freshwaters and coastal marine ecosystems. Although empirical correlations between application rates of N fertilizers to agricultural soils and nitrate contamination of adjacent hydrological systems have been demonstrated, the transit times of fertilizer N in the pedosphere-hydrosphere system are poorly understood. We investigated the fate of isotopically labeled nitrogen fertilizers in a three-decade-long in situ tracer experiment that quantified not only fertilizer N uptake by plants and retention in soils, but also determined to which extent and over which time periods fertilizer N stored in soil organic matter is rereleased for either uptake in crops or export into the hydrosphere. We found that 61-65% of the applied fertilizers N were taken up by plants, whereas 12-15% of the labeled fertilizer N were still residing in the soil organic matter more than a quarter century after tracer application. Between 8-12% of the applied fertilizer had leaked toward the hydrosphere during the 30-y observation period. We predict that additional exports of (15)N-labeled nitrate from the tracer application in 1982 toward the hydrosphere will continue for at least another five decades. Therefore, attempts to reduce agricultural nitrate contamination of aquatic systems must consider the long-term legacy of past applications of synthetic fertilizers in agricultural systems and the nitrogen retention capacity of agricultural soils.

  2. Observation of soil moisture variability in agricultural and grassland field soils using a wireless sensor network

    Science.gov (United States)

    Priesack, Eckart; Schuh, Max

    2014-05-01

    Soil moisture dynamics is a key factor of energy and matter exchange between land surface and atmosphere. Therefore long-term observation of temporal and spatial soil moisture variability is important in studying impacts of climate change on terrestrial ecosystems and their possible feedbacks to the atmosphere. Within the framework of the network of terrestrial environmental observatories TERENO we installed at the research farm Scheyern in soils of two fields (of ca. 5 ha size each) the SoilNet wireless sensor network (Biogena et al. 2010). The SoilNet in Scheyern consists of 94 sensor units, 45 for the agricultural field site and 49 for the grassland site. Each sensor unit comprises 6 SPADE sensors, two sensors placed at the depths 10, 30 and 50 cm. The SPADE sensor (sceme.de GmbH, Horn-Bad Meinberg Germany) consists of a TDT sensor to estimate volumetric soil water content from soil electrical permittivity by sending an electromagnetic signal and measuring its propagation time, which depends on the soil dielectric properties and hence on soil water content. Additionally the SPADE sensor contains a temperature sensor (DS18B20). First results obtained from the SoilNet measurements at both fields sites will be presented and discussed. The observed high temporal and spatial variability will be analysed and related to agricultural management and basic soil properties (bulk density, soil texture, organic matter content and soil hydraulic characteristics).

  3. Measuring the Contribution of Agricultural Conservation Practices to Observed Trends and Recent Condition in Water Quality Indicators in Ohio, USA.

    Science.gov (United States)

    Miltner, Robert J

    2015-11-01

    Over the last three decades, significant investments made to upgrade wastewater infrastructure and manage pollution from diffuse sources have resulted in measurably improved water quality and biological conditions in Ohio's rivers and streams. Conservation measures to reduce soil loss appear to have contributed significantly to the improvement witnessed over the last two decades and should therefore be continued. Within the most recent timeframe examined, little difference was found in either total phosphorus or suspended sediment concentration in relation to conservation measures, indicating that the environmental benefits of measures targeting soil loss may be approaching an asymptote. Conservation measures targeting livestock and forage management, however, appear to have reduced nitrogen concentrations within the recent time frame. An examination of the interrelationships between habitat quality, conservation measures, and land use indicated that water quality was generally mediated by interactions with stream habitat quality. However, the positive effect of habitat quality was reduced in catchments draining fine-textured soils. The implication of these latter two findings suggest that proscriptively adding natural function to the large network of ditched and maintained conveyances draining agricultural lands would substantially improve water quality, but management at the field level is necessary to minimize phosphorus losses. PMID:26641334

  4. Achieving production and conservation simultaneously in tropical agricultural landscapes

    DEFF Research Database (Denmark)

    Renwick, Anna R.; Vickery, Juliet A.; Potts, Simon G.;

    2014-01-01

    Increasing population size and demand for food in the developing world is driving the intensification of agriculture, often threatening the biodiversity within the farmland itself and in the surrounding landscape. This paper quantifies bird and tree species richness, tree carbon and farmer's gross...... for the rural populations, and ensuring ‘sustained agricultural growth’ within such systems while minimising negative impacts on biodiversity and other key ecosystem services will be a major future challenge....

  5. Strategies to develop and evaluate soil conservation measures for complex mountainous farmland in South Korea

    Science.gov (United States)

    Arnhold, S.; Huwe, B.

    2012-04-01

    Soil erosion by water can generate serious damages in mountainous ecosystems by the irreversible loss of soil productivity and the degradation of surface water quality. A substantial impact on the quantity of erosion and the amount of transported soil has the local land management. The application of best management practices in regions affected by high soil erosion is the major goal of conservation planning. Management practices include tillage operations and crop cultivation on farmland, but also landscape structuring by field margins, forest patches and riparian areas. Developing proper management strategies for a certain area require careful planning, because they are often associated with high costs and use restrictions for the local people. Different potential control measures are not only strongly variable in their effectiveness, but in certain cases they can even produce higher erosion rates. Therefore effective conservation planning requires individual treatments depending on the local conditions, and it should consider all important factors controlling the impact of each management measure. Objective of this work is to derive possible management measures for mountainous farmland areas in the watershed of the Soyang Lake in South Korea, which are characterized by intense agriculture and heavy monsoonal rain events during the summer months. The complex topography and heterogeneous soil and land use conditions of those areas play a primary role in soil erosion processes and require special consideration for developing conservation measures. The complexity of factors governing erosion processes and the difficulties of evaluating erosion control measures are described on the basis of recent studies focusing on local farmland management and its effect on erosion in this region. We present the types of data bases, which are needed to develop erosion control measures and show different methods, which can be applied to obtain those information. Possible strategies

  6. ORGANIZATIONAL AND ECONOMIC BASES OF ENERGY CONSERVATION IN AGRICULTURE

    Directory of Open Access Journals (Sweden)

    N. Lisjutchenko

    2012-04-01

    Full Text Available Russian agricultural production at current stage is very energy intensive. At the cost of agricultural production overall cost of energy resources is growing: in 2000 was 36.5 billion rubles, 2008 - 92 billion rubles, 2009 - 110.6 billion rubles, and in 2010 rose to 119.8 billion rubles, or increased by 3.3 times. The analysis of consumption of the main energy sources for the period from 1990 to 2010 showed a decrease in general and the specific consumption of diesel fuel, gasoline and electricity by 5-7 times. Reducing energy consumption is explained as a forced saving resources because of lack of funds for the acquisition and implementation of agricultural enterprises of energy and resource saving measures (resource-saving technologies in the production process, motor fuel, biofuels and alternative energy sources. To solve this problem State and business in a matter of priority should be to build an effective system of innovation development for agriculture, promote the participation of agricultural science and education system in this process, modernize the domestic agricultural machinery, engineering and technology infrastructure.

  7. An overview of Conservation Agriculture in the dry Mediterranean environments with a special focus on Syria and Lebanon

    Directory of Open Access Journals (Sweden)

    B. Hansmann

    2016-02-01

    Full Text Available Conservation Agriculture (CA, comprising minimum or no mechanical soil disturbance through no-till seeding, organic soil mulch cover, and crop diversification is now practiced on some 157 million ha worldwide, corresponding to about 11% of the global cropped land. CA adoption in the Middle-East is low compared to other regions. Lack of knowledge on CA practices and systems discourages farmers from giving up ploughing. The main reason why farmers in the Middle-East have begun to apply the no-till system has been the cost reduction in fuel, labor and machinery required for land preparation. Soil and water conservation concerns do not appear to be the main drivers in the Middle-Eastern farmers’ decision to adopt or not to adopt CA. The adoption and uptake of CA by Middle Eastern farmers has been slow but it is nonetheless occurring gradually. Collection of information and research parameters related to agricultural practices are needed for designing a suitable soil and water conservation program for sustainable production intensification. Governmental policy encouraging the adoption and spread of CA systems in the Middle-East region is certainly a necessary condition for uptake. The objective of this article is to review the current status of adoption and spread of CA in the Middle-East, focusing mainly on Syria and Lebanon, and the potential beneficial consequences that can be harnessed through CA systems under rainfed conditions in both countries. The benefits include: higher factor productivity, yield and income; improved soil properties; climate change adaptation, including reduced vulnerability to the erratic rainfall distribution; and reduction in machinery, fuel and labor costs.

  8. Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China

    International Nuclear Information System (INIS)

    The distribution of six priority phthalic acid esters (PAEs) in suburban farmland, vegetable, orchard and wasteland soils of Tianjin were obtained with gas chromatography-mass spectrometer analysis in 2009. Results showed that total PAEs varied from 0.05 to 10.4 μg g−1, with the median value as 0.32 μg g−1. Di-(2-ethylhexyl) phthalate and di-n-butyl phthalate are most abundant species. PAEs concentrations for the four types of soils exhibited decreasing order as vegetable soil > wasteland soil > farmland soil > orchard soil. PAEs exhibited elevated levels in more developed regions when compared with other studies. The agricultural plastic film could elevate the PAEs contents in soils. Principal component analysis indicated the emission from cosmetics and personal care products and plasticizers were important sources for PAEs in suburban soils in Tianjin. The higher PAEs contents in wasteland soils from suburban area should be paid more attention owing to large amounts of solid wastes appeared with the ongoing urbanization. - Highlights: ► PAEs levels in four types of soils in suburban area of Tianjin were studied. ► Vegetable soil and wasteland soil exhibited higher PAEs concentrations. ► PAEs in wasteland soils from suburban area of cities in China should be paid attention. - (1) Vegetable soil and wasteland soil exhibited higher PAEs concentrations; (2) PAEs in wasteland soils from suburban area of cities in China should be paid attention.

  9. You can’t eat your mulch and have it too : cropping system design and tradeoffs around biomass use for Conservation Agriculture in Cameroon and Madagascar

    OpenAIRE

    Naudin, K.

    2012-01-01

    Conservation agriculture is defined by three main principles: minimum soil   disturbance, permanent soil cover and crop rotations. CA is promoted as a   promising technology for Africa, but to date, only a small area under CA fully   complies with the above three principles. CA has both short and long term   effects on crop productivity and sustainability through the modification of various   agroecological functions. These functions are relat...

  10. Agricultural use of soil, consequences in soil organic matter and hydraulic conductivity compared with natural vegetation in central Spain

    Science.gov (United States)

    Vega, Verónica; Carral, Pilar; Alvarez, Ana Maria; Marques, Maria Jose

    2014-05-01

    When ecosystems are under pressure due to high temperatures and water scarcity, the use of land for agriculture can be a handicap for soil and water conservation. The interactions between plants and soils are site-specific. This study provides information about the influence of the preence vs. The absence of vegetation on soil in a semi-arid area of the sout-east of Madrid (Spain, in the Tagus River basin. In this area soil materials are developed over a calcareous-evaporitic lithology. Soils can be classified as Calcisols, having horizons of accumulation with powdered limestone and irregular nodules of calcium carbonate. They can be defined as Haplic Cambisols and Leptic Calcisols (WRB 2006-FAO). The area is mainly used for rainfed agriculture, olive groves, vineyards and cereals. There are some patches of bushes (Quercus sp.) and grasses (Stipa tenacissima L.) although only found on the top of the hills. This study analyses the differences found in soils having three different covers: Quercus coccifera, Stipa tenacissima and lack of vegetation. This last condition was found in the areas between cultivated olive trees. Soil organic matter, porosity and hydraulic conductivity are key properties of soil to understand its ability to adapt to climate or land use changes. In order to measure the influence of different soil covers, four replicates of soil were sampled in each condition at two soil depth, (0-10 cm and 10-20 cm). Hydraulic conductivity was measured in each soil condition and replicate using a Mini-disk® infiltrometer. There were no differences between the two depths sampled. Similarly, there were no changes in electric conductivity (average 0.1±0.03 dS m-1); pH (8.7±0.2) or calcium carbonate content (43±20 %). Nevertheless, significant differences (p>0.001) were found in soil organic matter. The maximum was found in soils under Quercus (4.7±0.5 %), followed by Stipa (2.2±1.1 %). The soil without vegetation in the areas between olive trees had only 0

  11. Strategies for soil-based precision agriculture in cotton

    Science.gov (United States)

    Neely, Haly L.; Morgan, Cristine L. S.; Stanislav, Scott; Rouze, Gregory; Shi, Yeyin; Thomasson, J. Alex; Valasek, John; Olsenholler, Jeff

    2016-05-01

    The goal of precision agriculture is to increase crop yield while maximizing the use efficiency of farm resources. In this application, UAV-based systems are presenting agricultural researchers with an opportunity to study crop response to environmental and management factors in real-time without disturbing the crop. The spatial variability soil properties, which drive crop yield and quality, cannot be changed and thus keen agronomic choices with soil variability in mind have the potential to increase profits. Additionally, measuring crop stress over time and in response to management and environmental conditions may enable agronomists and plant breeders to make more informed decisions about variety selection than the traditional end-of-season yield and quality measurements. In a previous study, seed-cotton yield was measured over 4 years and compared with soil variability as mapped by a proximal soil sensor. It was found that soil properties had a significant effect on seed-cotton yield and the effect was not consistent across years due to different precipitation conditions. However, when seed-cotton yield was compared to the normalized difference vegetation index (NDVI), as measured using a multispectral camera from a UAV, predictions improved. Further improvement was seen when soil-only pixels were removed from the analysis. On-going studies are using UAV-based data to uncover the thresholds for stress and yield potential. Long-term goals of this research include detecting stress before yield is reduced and selecting better adapted varieties.

  12. Adsorption and degradation of five selected antibiotics in agricultural soil.

    Science.gov (United States)

    Pan, Min; Chu, L M

    2016-03-01

    Large quantities of antibiotics are being added to agricultural fields worldwide through the application of wastewater, manures and biosolids, resulting in antibiotic contamination and elevated environmental risks in terrestrial environments. Most studies on the environmental fate of antibiotics focus on aquatic environments or wastewater treatment plants. Little is known about the behavior of antibiotics at environmentally relevant concentrations in agricultural soil. In this study we evaluated the adsorption and degradation of five different antibiotics (tetracycline, sulfamethazine, norfloxacin, erythromycin, and chloramphenicol) in sterilized and non-sterilized agricultural soils under aerobic and anaerobic conditions. Adsorption was highest for tetracycline (Kd, 1093 L/kg), while that for sulfamethazine was negligible (Kd, 1.365 L/kg). All five antibiotics were susceptible to microbial degradation under aerobic conditions, with half-lives ranging from 2.9 to 43.3 d in non-sterilized soil and 40.8 to 86.6 d in sterilized soil. Degradation occurred at a higher rate under aerobic conditions but was relatively persistent under anaerobic conditions. For all the antibiotics, a higher initial concentration was found to slow down degradation and prolong persistence in soil. The degradation behavior of the antibiotics varied in relation to their physicochemical properties as well as the microbial activities and aeration of the recipient soil. The poor adsorption and relative persistence of sulfamethazine under both aerobic and anaerobic conditions suggest that it may pose a higher risk to groundwater quality. An equation was proposed to predict the fate of antibiotics in soil under different field conditions, and assess their risks to the environment.

  13. Historic Assessment of Agricultural Impacts on Soil and Soil Organic Carbon Erosion in an Ohio Watershed

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Yueli (Other); Lal, Rattan (Other); Izaurralde, R Cesar C.(BATTELLE (PACIFIC NW LAB)); Ritchie, Jerry (Other); Owens, Lloyd (Other); Hothem, Daniel (Other)

    2002-02-01

    Agricultural management affects soil and soil organic carbon (SOC) erosion. The effect was assessed for a watershed (o.79 ha, 10% slope steepness, 132 m slope length) at the North Appalachian Experimental Watershed research station near Coshocton, Ohio, from 1951 to 1998

  14. Soil solution Ni concentrations over which Kd is constant in Japanese agricultural soils

    International Nuclear Information System (INIS)

    The soil-soil solution distribution coefficient (Kd) is one of the most important parameters required by the models used for radioactive waste disposal environmental impact assessment. The models are generally based on the assumption that Kd is independent of the element concentration in soil solution. However, at high soil solution concentrations, this assumption is not valid. Since the sorption of most radionuclides in soil is influenced by their stable isotope concentrations, it is necessary to consider if the range in the naturally occurring stable isotope concentrations in the soil solution is within the range over which Kd is valid. The objective of this study was to determine if the Kd for nickel (Ni) can be assumed to be constant over the ranges of stable Ni concentration in five main Japanese agricultural soil types. To obtain Ni sorption isotherms for five Japanese soils, two types of batch sorption tests were carried out using radioactive 63Ni as a tracer. The concentration at which the relationship between soil and soil solution concentration became nonlinear was determined using the two types of sorption isotherms: the Langmuir and Henry isotherms. The result showed that the Ni concentration in the soil solution at which the assumption of a constant Kd becomes valid is at least ten times higher than the natural Ni concentrations in solutions of Japanese agricultural soils. This value is sufficient to treat Kd for Ni as constant for environmental impact assessment models for the disposal of radioactive waste. (author)

  15. Effects of Governance on Availability of Land for Agriculture and Conservation in Brazil.

    Science.gov (United States)

    Sparovek, Gerd; Barretto, Alberto Giaroli de Oliveira Pereira; Matsumoto, Marcelo; Berndes, Göran

    2015-09-01

    The 2012 revision of the Brazilian Forest Act changed the relative importance of private and public governance for nature conservation and agricultural production. We present a spatially explicit land-use model for Brazilian agricultural production and nature conservation that considers the spatial distribution of agricultural land suitability, technological and management options, legal command, and control frameworks including the Atlantic Forest Law, the revised Forest Act, and the Amazonian land-titling, "Terra Legal," and also market-driven land use regulations. The model is used to analyze land use allocation under three scenarios with varying priorities among agricultural production and environmental protection objectives. In all scenarios, the legal command and control frameworks were the most important determinants of conservation outcomes, protecting at least 80% of the existing natural vegetation. Situations where such frameworks are not expected to be effective can be identified and targeted for additional conservation (beyond legal requirements) through voluntary actions or self-regulation in response to markets. All scenarios allow for a substantial increase in crop production, using an area 1.5-2.7 times the current cropland area, with much of new cropland occurring on current pastureland. Current public arrangements that promote conservation can, in conjunction with voluntary schemes on private lands where conversion to agriculture is favored, provide important additional nature conservation without conflicting with national agricultural production objectives. PMID:26241204

  16. Effectiveness and Efficacy of Soil Conservation Practices in Potato Production

    Science.gov (United States)

    Potato production systems in the Northeast U.S. are characterized by intensive tillage, minimal ground cover, low crop residue return, and steep slopes. Soil conservation can be especially challenging after potato harvest. We used rainfall simulators in the greenhouse and field to assess sediment ...

  17. Statement on the Tianshui Experimental Site of Soil and Water Conservation in 1940s

    Institute of Scientific and Technical Information of China (English)

    Hongwei; YANG

    2013-01-01

    The Tianshui Experimental Site of Soil and Water Conservation was set up in 1942.Then the first construction publicized the thinking of soil and water conservation,and popularized the technologies of soil and water conservation and related plants.Their efforts established the foundation of the science of soil and water conservation with the first high-tech and high quality R&D team,and pushed the research of soil and water conservation building on the stage of systematization.All of this provided rare good scientific data and theoretical support for the soil and water conservation and the development of the regional economy in Northwest China.

  18. Identifying forest ecosystem regions for agricultural use and conservation

    Directory of Open Access Journals (Sweden)

    Chinsu Lin

    2016-02-01

    Full Text Available ABSTRACT Balancing agricultural needs with the need to protect biodiverse environments presents a challenge to forestry management. An imbalance in resource production and ecosystem regulation often leads to degradation or deforestation such as when excessive cultivation damages forest biodiversity. Lack of information on geospatial biodiversity may hamper forest ecosystems. In particular, this may be an issue in areas where there is a strong need to reassign land to food production. It is essential to identify and protect those parts of the forest that are key to its preservation. This paper presents a strategy for choosing suitable areas for agricultural management based on a geospatial variation of Shannon's vegetation diversity index (SHDI. This index offers a method for selecting areas with low levels of biodiversity and carbon stock accumulation ability, thereby reducing the negative environmental impact of converting forest land to agricultural use. The natural forest ecosystem of the controversial 1997 Ex-Mega Rice Project (EMRP in Indonesia is used as an example. Results showed that the geospatial pattern of biodiversity can be accurately derived using kriging analysis and then effectively applied to the delineation of agricultural production areas using an ecological threshold of SHDI. A prediction model that integrates a number of species and families and average annual rainfall was developed by principal component regression (PCR to obtain a geospatial distribution map of biodiversity. Species richness was found to be an appropriate indicator of SHDI and able to assist in the identification of areas for agricultural use and natural forest management.

  19. Behavior of bensulfuron-methyl in an agricultural alkaline soil.

    Science.gov (United States)

    Delgado-Moreno, L; Sánchez, L; Castillo, A; Pot, V; Peña, A

    2007-01-01

    A field experiment to determine the available bensulfuron-methyl (BSM) in the upper soil layer was conducted in an agricultural area in the South of Spain. To facilitate herbicide analysis, two application rates were employed, 200 g ha(-1) and 5 kg ha(-1). Samples of upper soil and soil solution were collected. Soil solution was sampled by means of metallic samplers, placed at a depth of 35 cm. In the plots receiving the lower dose ceramic suction, porous cups were also installed. Results from soil solution samples showed that the maximum BSM concentration was found after 8-10 days for the high irrigation supply (945 mm) and after 18-25 days for the lower irrigation regime (405 mm). The mathematical model FOCUSPELMO 1.1.1 was applied to interpret the data obtained in the field experiments. In general, there was a reasonable agreement between experimental and simulated data for soil samples, although the model did not acceptably predict herbicide concentrations in water soil samples. Ceramic cups sampled a higher soil water volume and more frequently than did the metallic samplers. However some variable results were attributed to preferential flow. PMID:17454376

  20. Epigeic soil arthropod abundance under different agricultural land uses

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Bote, J. L.; Romero, A. J.

    2012-11-01

    The study of soil arthropods can provide valuable information how ecosystems respond to different management practices. The objective was to assess the total abundance, richness, and composition of epiedaphic arthropods in different agrosystems from southwestern Spain. Six sites with different agricultural uses were selected: olive grove, vineyards, olive grove with vineyards, wheat fields, fallows (150-300 m long), and abandoned vineyards. Crops were managed in extensive. Field margins were used as reference habitats. At the seven sites a total of 30 pitfall traps were arranged in a 10 × 3 grid. Traps were arranged to short (SD, 1 m), medium (MD, 6 m) and large (LD, 11 m) distance to the field margins in the middle of selected plots. Pitfall traps captured a total of 11,992 edaphic arthropods belonging to 11 different taxa. Soil fauna was numerically dominated by Formicidae (26.60%), Coleoptera (19.77%), and Aranae (16.76%). The higher number of soil arthropods were captured in the field margins followed by the abandoned vineyard. Significant differences were found between sites for total abundance, and zones. However, no significant differences for total abundance were found between months (April-July). Richness and diversity was highest in field margins and abandoned vineyards. Significant differences were found for these variables between sites. Our results suggest that agricultural intensification affects soil arthropods in Tierra de Barros area, a taxonomic group with an important role in the functioning of agricultural ecosystems. (Author) 32 refs.

  1. Using Agricultural Residue Biochar to Improve Soil Quality of Desert Soils

    Directory of Open Access Journals (Sweden)

    Yunhe Zhang

    2016-03-01

    Full Text Available A laboratory study was conducted to test the effects of biochars made from different feedstocks on soil quality indicators of arid soils. Biochars were produced from four locally-available agricultural residues: pecan shells, pecan orchard prunings, cotton gin trash, and yard waste, using a lab-scale pyrolyzer operated at 450 °C under a nitrogen environment and slow pyrolysis conditions. Two local arid soils used for crop production, a sandy loam and a clay loam, were amended with these biochars at a rate of 45 Mg·ha−1 and incubated for three weeks in a growth chamber. The soils were analyzed for multiple soil quality indicators including soil organic matter content, pH, electrical conductivity (EC, and available nutrients. Results showed that amendment with cotton gin trash biochar has the greatest impact on both soils, significantly increasing SOM and plant nutrient (P, K, Ca, Mn contents, as well as increasing the electrical conductivity, which creates concerns about soil salinity. Other biochar treatments significantly elevated soil salinity in clay loam soil, except for pecan shell biochar amended soil, which was not statistically different in EC from the control treatment. Generally, the effects of the biochar amendments were minimal for many soil measurements and varied with soil texture. Effects of biochars on soil salinity and pH/nutrient availability will be important considerations for research on biochar application to arid soils.

  2. Application of soil quality indices to assess the status of agricultural soils irrigated with treated wastewaters

    Directory of Open Access Journals (Sweden)

    A. Morugán-Coronado

    2013-03-01

    Full Text Available The supply of water is limited in some parts of the Mediterranean region, such as southeastern Spain. The use of treated wastewater for the irrigation of agricultural soils is an alternative to using better-quality water, especially in semi-arid regions. On the other hand, this practice can modify some soil properties, change their relationships and influence soil quality. In this work two soil quality indices were used to evaluate the effects of irrigation with treated wastewater in soils. The indices were developed studying different soil properties in undisturbed soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. These indices represent the balance reached among properties in "steady state" soils. This study was carried out in four study sites from SE Spain irrigated with wastewater, including four study sites. The results showed slight changes in some soil properties as a consequence of irrigation with wastewater, the obtained levels not being dangerous for agricultural soils, and in some cases they could be considered as positive from an agronomical point of view. In one of the study sites, and as a consequence of the low quality wastewater used, a relevant increase in soil organic matter content was observed, as well as modifications in most of the soil properties. The application of soil quality indices indicated that all the soils of study sites are in a state of disequilibrium regarding the relationships between properties independent of the type of water used. However, there were no relevant differences in the soil quality indices between soils irrigated with wastewater with respect to their control sites for all except one of the sites, which corresponds to the site where low quality wastewater was used.

  3. Aerosol emissions from biochar-amended agricultural soils

    Science.gov (United States)

    Ravi, S.; Sharratt, B. S.; Li, J. J.; Olshvevski, S.; Meng, Z.; Zhang, J.

    2015-12-01

    Agricultural production is a major contributor to anthropogenic greenhouse gas emissions and associated global warming. In this regard, novel carbon sequestration strategies such as large-scale biochar application may provide sustainable pathways to increase the terrestrial storage of carbon in agricultural areas. Biochar has a long residence time in the soil and hence understanding the soil properties affected by biochar addition needs to be investigated to identify the tradeoffs and synergies of large-scale biochar application. Even though several studies have investigated the impacts of biochar application on a variety of soil properties, very few studies have investigated the impacts on soil erosion, in particular wind (aeolian) erosion and subsequent particulate emissions. Using a combination of wind tunnel studies and laboratory experiments, we investigated the dust emission potential of biochar-amended agricultural soils. We amended biochar (unsieved or sieved to appropriate particle size; application rates ranging from 1 - 5 % of the soil by weight) to three soil types (sand, sandy loam, and silt loam) and estimated the changes in threshold shear velocity for wind erosion and dust emission potential in comparison to control soils. Our experiments demonstrate that emissions of fine biochar particles may result from two mechanisms (a) very fine biochar particles (suspension size) that are entrained into the air stream when the wind velocity exceeds the threshold, and (b) production of fine biochar particles originating from the abrasion by quartz grains. The results indicate that biochar application significantly increased particulate emissions and more interestingly, the rate of increase was found to be higher in the intermediate range of biochar application. As fine biochar particles effectively adsorb/trap contaminants and pathogens from the soil, the preferential erosion of fine biochar particles by wind may lead to concentration of contaminants in the

  4. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    Science.gov (United States)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more

  5. Effects of agricultural conservation practices on oxbow lake watersheds in the Mississippi River alluvial plain

    Science.gov (United States)

    Globally, agricultural lands are considered to major sources of nonpoint source pollutants such as sediment, pesticides and nutrients in the United States. While conservation practices have been tested for their effectiveness in reducing agricultural related pollutants on test plot scales, they typ...

  6. Department of Energy programs and objectives: energy conservation in agricultural production

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    This document describes the current Department of Energy agriculture research program as it relates to the research recommendations submitted by a 1976 workshop on energy conservation in agricultural production. In-depth discussions on fertilizers, irrigation, crop drying, fuel substitution, crop and animal production systems, greenhouses, materials handling, and transport systems are included. (MCW)

  7. Genotoxicity of agricultural soils in the vicinity of industrial area.

    Science.gov (United States)

    Ansari, Mohd Ikram; Malik, Abdul

    2009-03-17

    Soil samples from agricultural fields (cultivated) in the vicinity of industrial area of Ghaziabad City (India) were collected. In this city, wastewater coming from both industrial and domestic sources and without any treatment is used to irrigate the food crops. This practice has been polluting the soil and pollutants might reach the food chain. Gas chromatographic analysis show the presence of certain organochlorine (DDE, DDT, dieldrin, aldrin and endosulfan) and organophosphorus (dimethoate, malathion, methylparathion and chlorpyrifos) pesticides in soil samples. Samples were extracted using different solvents, i.e. methanol, chloroform, acetonitrile, hexane and acetone (all were HPLC-grade, SRL, India), and the extracts were assayed for genotoxic potential using Ames Salmonella/microsome test, DNA repair defective mutants and bacteriophage lambda systems. TA98 and TA100 were found to be the most sensitive strains to all the soil extracts tested. Methanol extracts exhibited a maximum mutagenicity with TA98 strain {540 (-S9) and 638 (+S9) revertants/g of soil} and 938 (-S9) and 1008 (+S9) revertants/g of soil with TA100 strain. The damage in the DNA repair defective mutants was found maximum with methanolic extract followed by acetonitrile, chloroform, hexane and acetone at the dose level of 40 microl/ml culture after 6h of treatment. The survival was 25, 30, 32, 33 and 35% in polA strain after 6h of treatment when tested with wastewater irrigated soil extracts of methanol, acetonitrile, chloroform, hexane and acetone, respectively. A significant decrease in the plaque forming units of bacteriophage lambda was also observed when treated with 40 microl of test samples. Present results showed that methanolic extracts of soil were more toxic than other soil extracts. The soil is accumulating a large number of pollutants due to wastewater irrigation and this practice of accumulation has an impact on soil health.

  8. Differentiating causes for erosion at the catchment scale: do soil conservation measures mitigate weather dynamics?

    Science.gov (United States)

    Barneveld, Robert; Greipsland, Inga

    2016-04-01

    The efficacy of most measures to control soil loss is well established at the field or plot scale. Less well documented are the changes in hydrological behaviour and sediment production at the scale of the (small) catchment. In Norway, incentives to reduce tillage have been in place for over decades. However, even long time (20 years) discharge monitoring of a series of small catchments does not show a clear effect of the application of conservation measures. This research hypothesizes that the effect of weather conditions for a 4.2 km2 catchment in southeastern Norway outweighs the effect of conservation measures in the time series on runoff and sediment load. To test this, it was assumed that trends and changes in soil loss E over time are the product of an agromic index C, precipitation P and rainfall erosivity R. The values of C were calculated based on extensive farm records, covering every tillage operation for every field in the catchment for the period of investigation. Runoff and sediment load records were used to parameterise and test different correlative models. In order to quantify the effect of topography on the degree to which conservations measures reduce soil loss at catchment level, a spatially distributed connectivity index was calculated and multiplied with C. Calculations were carried out for a 10 year period, in monthly time steps. The following statistical models proved the most promising to correlate sediment load to precipitation and agronomic practice. Et=a \\cdot Ptb \\cdot Pt-1c \\cdot Ctd Et=a \\cdot Rtb \\cdot Pt-1c \\cdot Ctd where Pt-1c, the precipition in the prior month, is a proxy indicator for antecedent moisture conditions. The results show that precipitation dynamics outweigh the effect of soil conservation measures for this typical agricultural catchment. It also shows that the inclusion of a hydrological connectivity index improves the quantification of the effect of soil conservation measures on the catchment scale.

  9. Knowledge, conservation and sustainable use of soil: physic and morphological aspects

    Directory of Open Access Journals (Sweden)

    Marcello Pagliai

    2009-10-01

    Full Text Available The main aspects of environmental degradation can be ascribed to soil (erosion, soil compaction, soil crusting, deterioration of soil structure, flooding, losses of organic matter, salinisation, onsite and offsite damages, etc. following the impact of human activities. Since agricultural conventional production systems have resulted in excessive erosion and soil degradation, there is need to control and fight such degradation. Scientific results have clearly showed that the agricultural management systems can play an important role in preventing soil degradation provide that appropriate management practices are adopted. Long-term field experiments in different types of soils have shown that alternative tillage systems, like minimum tillage, ripper subsoiling, etc., improve the soil structural quality. The continuous conventional tillage causes a decrease of soil organic matter content that is associated to a decrease of aggregate stability, leading, as a consequence, to the formation of surface crusts, with an increase of runoff and erosion risks. Other aspects of very dangerous soil degradation (erosion in the hilly environments are represented by land levelling and scraping. After levelling, slopes being prepared for plantation (in particularly vineyard are almost always characterised by the presence of large amounts of incoherent earth materials accumulated with scraper. In this vulnerable condition, a few summer storms can easily cause soil losses exceeding 500 Mg ha-1y-1. Moreover, the land levelling and the following soil loss causes drastic alteration of the landscape and loss of the cultural value of soil. Subsoil compaction is strongly under evaluated, even though the presence of a ploughpan at the lower limit of cultivation is largely widespread in the alluvial soils of the plains cultivated by monoculture and it is responsible of the frequent flooding of such plains in occasion of heavy rains concentrated in a short time (rainstorm

  10. Transmission of vertical soil stress under agricultural tyres

    DEFF Research Database (Denmark)

    Keller, Thomas; Berli, M.; Ruiz, S.;

    2014-01-01

    The transmission of stress induced by agricultural machinery within an agricultural soil is typically modelled on the basis of the theory of stress transmission in elastic media, usually in the semi-empirical form that includes the “concentration factor” (v). The aim of this paper was to measure...... the elasticity theory-based classical solution of Boussinesq (1885) is satisfied. We noted that the estimated v was strongly dependent on (i) the reliability of stress measurements, and (ii) the upper stress boundary condition used for simulations. Finite element simulations indicated that the transmission...... stress transmission could be well predicted according to the theory of elasticity for the conditions investigated....

  11. GEMAS: Unmixing magnetic properties of European agricultural soil

    Science.gov (United States)

    Fabian, Karl; Reimann, Clemens; Kuzina, Dilyara; Kosareva, Lina; Fattakhova, Leysan; Nurgaliev, Danis

    2016-04-01

    High resolution magnetic measurements provide new methods for world-wide characterization and monitoring of agricultural soil which is essential for quantifying geologic and human impact on the critical zone environment and consequences of climatic change, for planning economic and ecological land use, and for forensic applications. Hysteresis measurements of all Ap samples from the GEMAS survey yield a comprehensive overview of mineral magnetic properties in European agricultural soil on a continental scale. Low (460 Hz), and high frequency (4600 Hz) magnetic susceptibility k were measured using a Bartington MS2B sensor. Hysteresis properties were determined by a J-coercivity spectrometer, built at the paleomagnetic laboratory of Kazan University, providing for each sample a modified hysteresis loop, backfield curve, acquisition curve of isothermal remanent magnetization, and a viscous IRM decay spectrum. Each measurement set is obtained in a single run from zero field up to 1.5 T and back to -1.5 T. The resulting data are used to create the first continental-scale maps of magnetic soil parameters. Because the GEMAS geochemical atlas contains a comprehensive set of geochemical data for the same soil samples, the new data can be used to map magnetic parameters in relation to chemical and geological parameters. The data set also provides a unique opportunity to analyze the magnetic mineral fraction of the soil samples by unmixing their IRM acquisition curves. The endmember coefficients are interpreted by linear inversion for other magnetic, physical and chemical properties which results in an unprecedented and detailed view of the mineral magnetic composition of European agricultural soils.

  12. Greenhouse gas fluxes from agricultural soils of Kenya and Tanzania

    Science.gov (United States)

    Rosenstock, Todd S.; Mpanda, Mathew; Pelster, David E.; Butterbach-Bahl, Klaus; Rufino, Mariana C.; Thiong'o, Margaret; Mutuo, Paul; Abwanda, Sheila; Rioux, Janie; Kimaro, Anthony A.; Neufeldt, Henry

    2016-06-01

    Knowledge of greenhouse gas (GHG) fluxes in soils is a prerequisite to constrain national, continental, and global GHG budgets. However, data characterizing fluxes from agricultural soils of Africa are markedly limited. We measured carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) fluxes at 10 farmer-managed sites of six crop types for 1 year in Kenya and Tanzania using static chambers and gas chromatography. Cumulative emissions ranged between 3.5-15.9 Mg CO2-C ha-1 yr-1, 0.4-3.9 kg N2O-N ha-1 yr-1, and -1.2-10.1 kg CH4-C ha-1 yr-1, depending on crop type, environmental conditions, and management. Manure inputs increased CO2 (p = 0.03), but not N2O or CH4, emissions. Soil cultivation had no discernable effect on emissions of any of the three gases. Fluxes of CO2 and N2O were 54-208% greater (p < 0.05) during the wet versus the dry seasons for some, but not all, crop types. The heterogeneity and seasonality of fluxes suggest that the available data describing soil fluxes in Africa, based on measurements of limited duration of only a few crop types and agroecological zones, are inadequate to use as a basis for estimating the impact of agricultural soils on GHG budgets. A targeted effort to understand the magnitude and mechanisms underlying African agricultural soil fluxes is necessary to accurately estimate the influence of this source on the global climate system and for determining mitigation strategies.

  13. GEMAS: Mineral magnetic properties of European agricultural soils

    Science.gov (United States)

    Kuzina, Dilyara; Kosareva, Lina; Fattakhova, Leysan; Fabian, Karl; Nourgaliev, Danis; Reimann, Clemens

    2015-04-01

    The GEMAS survey of European agricultural soil provides a unique opportunity to create the first comprehensive overview of mineral magnetic properties in agricultural soil on a continental scale. Samples from the upper 20 cm were taken in large agricultural fields (Ap-sample) at a density of 1 site/2500 km2. After air drying and sieving to characterizing the individual soil samples, the new data allow to study magnetic parameters in relation to chemical and geological parameters. The results show a clear large scale spatial distribution with e.g. broad distinct lows of k over sandy sediments of the last glaciation in central northern Europe and other sedimentary basins. More localized positive k anomalies occur near young volcanism, or old basalts exposed on the surface. On the other hand, frequency dependence of k displays a much more scattered behavior, indicating either high noise level, or large local variability. Clearly distinguishable, small-scale patterns in the randomized data set indicate that the latter is more likely. This indicates that local influences on soil magnetic properties, including anthropogenic effects, may be easier detected by frequency dependence than by k itself, which is largely controlled by geological and climatic background variability. Mapping the isothermal mineral magnetic properties shows again a clear relation to large scale European geology. Thereby, the GEMAS data set of magnetic parameters provides a continent wide reference of the natural background in Ap soil. For the first time the geological background variability of magnetic minerals for national and local soil studies is defined at the European scale.

  14. Application of soil quality indices to assess the status of agricultural soils irrigated with treated wastewaters

    Directory of Open Access Journals (Sweden)

    A. Morugán-Coronado

    2012-12-01

    Full Text Available The supply of water is limited in some parts of the Mediterranean region, such as southeastern Spain. The use of treated wastewater for the irrigation of agricultural soils is an alternative to using better-quality water, especially in semi-arid regions. On the other hand, this practice can modify some soil properties, change their relationships, the equilibrium reached and influence soil quality. In this work two soil quality indices were used to evaluate the effects of irrigation with treated wastewater in soils. The indices were developed studying different soil properties in undisturbed soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. This study was carried out in three areas of Alicante Province (SE Spain irrigated with wastewater, including four study sites. The results showed slight changes in some soil properties as a consequence of irrigation with wastewater, the obtained levels not being dangerous for agricultural soils, and in some cases they could be considered as positive from an agronomical point of view. In one of the study sites, and as a consequence of the low quality wastewater used, a relevant increase in soil organic matter content was observed, as well as modifications in most of the soil properties. The application of soil quality indices indicated that all the soils of study sites are in a state of disequilibrium regarding the relationships between properties independent of the type of water used. However, there were no relevant differences in the soil quality indices between soils irrigated with wastewater with respect to their control sites for all except one of the sites, which corresponds to the site where low quality wastewater was used.

  15. Soil Conservation Techniques for Hillside Farms. A Guide for Peace Corps Volunteers. Appropriate Technologies for Development. Peace Corps Information Collection & Exchange Reprint Series No. R-62.

    Science.gov (United States)

    Crozier, Carl

    This guide provides agricultural extensionists with basic information that will help them design plans for the conservation of soils and the management of water runoff in specific agricultural plots. It is based on experiences with small hillside farms in Honduras and takes into account the resources and constraints commonly encountered there.…

  16. Effect of sludges on bacteria in agricultural soil

    DEFF Research Database (Denmark)

    Kuntz, Jérôme; Nassr-Amellal, Najat; Lollier, Marc;

    2008-01-01

    in the laboratory conditions probably due to the favorable conditions of mineralization. The results observed with soil amended with the same sludges and cultivated or not with carrots in outdoor lysimeters were similar to those observed in the laboratory experiments. Thus, this bioassay allowed predicting......The effect of composted (CS), digested (DS) and liquid raw (LRS) sludges unspiked or spiked with benzo[a]pyrene(BaPYR), dibuthyl phthalate (DBP) or nonyl phenol (NP) on the structure of the bacterial communities of an agricultural soil was estimated by using thermal temporal gel electrophoresis...

  17. Changes in soil fungal communities across a landscape of agricultural soil land-uses

    Science.gov (United States)

    Berthrong, S. T.; Buckley, D. H.; Drinkwater, L. E.

    2012-12-01

    Agricultural management is a major driver of changes in soils and their resident microbial communities, but we do not yet have a clear picture of how agriculture affects soil fungi. This is an important gap in our knowledge since fungi play an important role in many soil processes. Previous research has suggested that organic management practices can lead to an increase in soil fungal community diversity, which could have impacts on soil processes and alter the long term trajectory of soil quality in agricultural systems. Also, the relationship between management effects, biogeography, and soil fungi is not clear. The biogeography of macroscopic species is well described by taxa-area relationships and distance decay models, and recent research has suggested that certain subsets of fungi (e.g. AMF, litter sapotrophs) demonstrate similar patterns. However there is little information on how soil fungi as a whole are distributed across a landscape with soils under different managements. The goal of this project was to examine how different management practices alter soil fungal communities across a landscape of agricultural fields in upstate NY. We asked several specific questions: 1) Do different types of agricultural land-uses lead to divergent or convergent communities of soil fungi? 2) If soil type is held constant, do soil fungal communities diverge with geographic distance? 3) What are the major fungal groups that change in response to soil management, and are they cosmopolitan or endemic across the landscape? We studied these questions across agricultural fields in upstate NY that ranged from conventional corn, organic grains/corn, and long-term pasture. We sampled four fields (conventional, 10 and 20 year organic, and pasture) that had identical soils types and ranged from 100 m to 4 km apart. We utilized a multiplexed pyrosequencing approach on genomic DNA to analyze the structure of the soils' fungal communities. This approach allowed us to study soil fungi

  18. Leaching effect on arsenic mobility in agricultural soils.

    Science.gov (United States)

    Dousova, Barbora; Buzek, Frantisek; Lhotka, Miloslav; Krejcova, Stanislava; Boubinova, Radka

    2016-04-15

    The stability of soil arsenic during long-term leaching was studied in four soils from an agricultural area. Two identical columns simulating soil profiles of three layers were leached with As-free natural rainwater (flow (μgg(-1)day(-1)) showed a comparable run for all soils, with the peak corresponding to maximum As release in the first leaching stage, and then with a tendency to equilibrate. The amount of released As was controlled by the saturated hydraulic conductivity Ksat and free Fe oxides, and the kinetics of the leaching process correlated with the content of organic matter (OM). An overall stability and accumulation of soil arsenic were mostly affected by soil properties (Ksat, particle size, clay fraction), while the chemical composition (Fe, OM content) and surface properties (specific surface area SBET, theoretical adsorption capacity Qt) were of marginal significance. The distribution of As forms was performed by sequential extraction (SEP), which indicated negligible transformation (<12%) of As species in upper soil layers. PMID:26785213

  19. A planning approach for agricultural watersheds using precision conservation

    Science.gov (United States)

    This brief article, written for a non-technical audience, discusses a recently-developed approach for watershed planning and nutrient reduction. The approach can help local stakeholders identify conservation practices that are locally preferred and determine how those practices can be distributed ac...

  20. Soil and water conservation on Central American hillsides: if more technologies is the answer, what is the question?

    Directory of Open Access Journals (Sweden)

    Jon Hellin

    2016-05-01

    Full Text Available Climate change is likely to lead to increased water scarcity in the coming decades and to changes in patterns of precipitation. The result will be more short-term crop failures and long-term production declines. Improved soil management is key to climate change adaptation and mitigation efforts. There is growing interest in the promotion of climate smart agricultural practices. Many of these are the same practices that were promoted in the 1980s and 1990s under the guise of soil and water conservation. Farmer non-adoption of soil conservation technologies was rife and suggests that different approaches are needed today. Much can be learnt from these past endeavors to ensure that current efforts are better designed and implemented. We use the example of Central America to highlight some of these lessons and suggest alternative ways forward. Technology per se is not the limiting factor; many suitable technologies and practices are extant. What is required is a more nuanced approach to soil conservation efforts. There is a need to focus less on capturing soil once it has been eroded, via the use of cross-slope soil conservation practices, and more on improving soil quality of the soil that remains through improved soil cover. It is also critical to understand farming systems as a whole i.e. the full range of interlinked activities and the multiplicity of goals that farm households pursue. Furthermore, it is important to engage farmers as active players in conservation efforts rather than passive adopters of technologies, and to adopt a board value chain approach and engage a plethora of value chain actors (researchers, extension agents, equipment manufacturers, input suppliers, farmers, traders, and processors in an agricultural innovation system.

  1. Aerobic Methanotrophs in Natural and Agricultural Soils of European Russia

    OpenAIRE

    Irina Kravchenko; Andrey Yurkov; Anna Kizilova

    2013-01-01

    Human activities such as land management and global warming have great impact on the environment. Among changes associated with the global warming, rising methane emission is a serious concern. Therefore, we assessed methane oxidation activity and diversity of aerobic methanotrophic bacteria in eight soil types (both unmanaged and agricultural) distributed across the European part of Russia. Using a culture-independent approach targeting pmoA gene, we provide the first baseline data on the di...

  2. Softwood biochar as a soil amendment material for boreal agriculture

    OpenAIRE

    Tammeorg, Priit

    2014-01-01

    Biochar is a porous carbonaceous solid material produced by pyrolysis. Application of biochar is considered as an efficient way of carbon (C) sequestration since the C in biochar is relatively resistant to microbial degradation. Furthermore, previous research in (sub-) tropical conditions suggests that it may enhance soil fertility and the yields of agricultural crops. To target the lack of knowledge about the effects of biochar in the boreal zone, softwood biochar was added to two boreal soi...

  3. NEW TRENDS IN AGRICULTURE - CROP SYSTEMS WITHOUT SOIL

    Directory of Open Access Journals (Sweden)

    Ioan GRAD

    2014-04-01

    Full Text Available The paper studied new system of agriculture - crop systems without soil. The culture systems without soil can be called also the hydroponic systems and now in Romania are not used only sporadically. In other countries (USA, Japan, the Netherlands, France, UK, Denmark, Israel, Australia, etc.. they represent the modern crop technology, widely applied to vegetables, fruits, fodder, medicinal plants and flowers by the experts in this area. In the world, today there are millions of hectares hydroponics, most of the vegetables, herbs, fruits of hypermarkets are coming from the culture systems without soil. The process consists of growing plants in nutrient solutions (not in the ground, resorting to an complex equipment, depending on the specifics of each crop, so that the system can be applied only in the large farms, in the greenhouses, and not in the individual households. These types of culture systems have a number of advantages and disadvantages also. Even if today's culture systems without soil seem to be the most modern and surprising technology applied in plant growth, the principle is very old. Based on him were built The Suspended Gardens of the Semiramis from Babylon, in the seventh century BC, thanks to him, the population from the Peru”s highlands cultivates vegetables on surfaces covered with water or mud. The peasant households in China, even today use the millenary techniques of the crops on gravel. .This hydroponic agriculture system is a way of followed for Romanian agriculture too, despite its high cost, because it is very productive, ecological, can cover, by products, all market demands and it answer, increasingly, constraints of urban life. The concept of hydroponics agriculture is known and appreciated in Romania also, but more at the theory level.

  4. Autotrophic growth of nitrifying community in an agricultural soil

    OpenAIRE

    Xia, Weiwei; Zhang, Caixia; Zeng,Xiaowei; Feng, Youzhi; Weng, Jiahua; Lin, Xiangui; Zhu, Jianguo; Xiong, Zhengqin; Xu, Jian; Cai, Zucong; Jia, Zhongjun

    2011-01-01

    The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated t...

  5. Environmental fate of double-stranded RNA in agricultural soils.

    Directory of Open Access Journals (Sweden)

    Samuel Dubelman

    Full Text Available A laboratory soil degradation study was conducted to determine the biodegradation potential of a DvSnf7 dsRNA transcript derived from a Monsanto genetically modified (GM maize product that confers resistance to corn rootworm (CRW; Diabrotica spp.. This study provides new information to improve the environmental assessment of dsRNAs that become pesticidal through an RNAi process. Three agricultural soils differing in their physicochemical characteristics were obtained from the U.S., Illinois (IL; silt loam, Missouri (MO; loamy sand and North Dakota (ND; clay loam, and exposed to the target dsRNA by incorporating insect-protected maize biomass and purified (in vitro-transcribed DvSnf7 RNA into soil. The GM and control (non-GM maize materials were added to each soil and incubated at ca. 22 °C for 48 hours (h. Samples were collected at 12 time intervals during the incubation period, extracted, and analyzed using QuantiGene molecular analysis and insect bioassay methods. The DT50 (half-life values for DvSnf7 RNA in IL, MO, and ND soils were 19, 28, and 15 h based on QuantiGene, and 18, 29, and 14 h based on insect bioassay, respectively. Furthermore, the DT90 (time to 90% degradation values for DvSnf7 RNA in all three soils were <35 h. These results indicate that DvSnf7 RNA was degraded and biological activity was undetectable within approximately 2 days after application to soil, regardless of texture, pH, clay content and other soil differences. Furthermore, soil-incorporated DvSnf7 RNA was non-detectable in soil after 48 h, as measured by QuantiGene, at levels ranging more than two orders of magnitude (0.3, 1.5, 7.5 and 37.5 µg RNA/g soil. Results from this study indicate that the DvSnf7 dsRNA is unlikely to persist or accumulate in the environment. Furthermore, the rapid degradation of DvSnf7 dsRNA provides a basis to define relevant exposure scenarios for future RNA-based agricultural products.

  6. Agriculture

    International Nuclear Information System (INIS)

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on agriculture describes how climate change will affect primary agriculture production in Canada with particular focus on potential adaptation options, and vulnerability of agriculture at the farm level. Agriculture is a vital part of the Canadian economy, although only 7 per cent of Canada's land mass is used for agricultural purposes due to the limitations of climate and soils. Most parts of Canada are expected to experience warmer conditions, longer frost-free seasons and increased evapotranspiration. The impacts of these changes on agriculture will vary depending on precipitation changes, soil conditions, and land use. Northern regions may benefit from longer farming seasons, but poor soil conditions will limit the northward expansion of agricultural crops. Some of the negative impacts associated with climate change on agriculture include increased droughts, changes in pest and pathogen outbreaks, and moisture stress. In general, it is expected that the positive and negative impacts of climate change would offset each other. 74 refs., 2 tabs., 1 fig

  7. Ottawa National Wildlife Refuge : Soil and Moisture Conservation Plan : 1972 Calendar Year

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is the Ottawa National Wildlife Refuge Soil and Moisture Conservation Plan. The Soil and Moisture Conservation Plan outlines the relationship between refuge...

  8. Effects of 24 Years of Conservation Tillage Systems on Soil Organic Carbon and Soil Productivity

    OpenAIRE

    Olson, Kenneth R.; Stephen A. Ebelhar; James M. Lang

    2013-01-01

    The 24-year study was conducted in southern Illinois (USA) on land similar to that being removed from Conservation Reserve Program (CRP) to evaluate the effects of conservation tillage systems on: (1) amount and rates of soil organic carbon (SOC) storage and retention, (2) the long-term corn and soybean yields, and (3) maintenance and restoration of soil productivity of previously eroded soils. The no-till (NT) plots did store and retain 7.8 Mg C ha−1 more and chisel plow (CP) −1.6 Mg C ha−1 ...

  9. Farmers’ Sustainable Strategies for Soil Conservation on Sloping Arable Lands in the Upper Yangtze River Basin, China

    Directory of Open Access Journals (Sweden)

    Qiang Tang

    2014-07-01

    Full Text Available The Upper Yangtze River Basin comprises a densely-populated agricultural region with mountainous and hilly landforms. Intensive cultivation has been extended onto steep hillslopes, which constitute the principal source area for sediment production. Soil conservation on sloping arable lands is thus of utmost priority for persisting sustainable agricultural production and maintaining sound ecosystem services. Although there have been many soil conservation techniques, either promoted by the government or adopted by local farmers, the practiced area was very limited relative to the total area affected by soil erosion. This paper attempts to introduce four popular soil conservation measures on sloping arable lands in this region to enhance a broader scale of implementation, including hedgerow buffers, level trenches, sloping terraces and limited downslope tillage. These practices, although developed from local farmers’ indigenous knowledge for productive purposes, have well conformed to our contemporary understanding of soil erosion processes on sloping landscape affected by human disturbances, were of sound suitability to regional manual tillage agriculture and more trade-off-efficient on rill prevention, runoff harvest and nutrient management.

  10. Integrated soil improvement and agricultural development: why current policy approaches fail

    NARCIS (Netherlands)

    Koning, N.B.J.; Heerink, N.B.M.; Kauffman, S.

    1997-01-01

    Integrated soil management is an essential condition for agricultural development in West Africa. Such an approach combines improved soil hydraulic measures, organic fertility measures, and inorganic fertilizers and soil amendments. The synergetic effects which result from this combination are indis

  11. A review of soil conservation in the Sudan (1940-1979)

    International Nuclear Information System (INIS)

    Soil Conservation in the Sudan started in the late thirties, and in 1942 a Soil Conservation Committee was set up to report on Soil Conservation Situation. Later a Soil Conservation Section was set which developed into a department taking the responsibility of drinking water points distribution and soil and water management in rural areas. In 1974 a desert encroachment project was proposed to cover most affected areas with the help of F.A.O. Soil Conservation is an important problem in Sudan and much work is needed to tackle this problem. The application of radioisotope and radio-tracer techniques are also needed for tackling this problem. (author)

  12. Single application of Sewage Sludge to an Alluvial Agricultural Soil - impacts on Soil Quality

    Science.gov (United States)

    Suhadolc, M.; Graham, D. B.; Hagn, A.; Doerfler, U.; Schloter, M.; Schroll, R.; Munch, J. C.; Lobnik, F.

    2009-04-01

    Limited information exists on the effects of sewage sludge on soil quality with regard to their ability to maintain soil functions. We studied effects of sewage sludge amendment on soil chemical properties, microbial community structure and microbial degradation of the herbicide glyphosate. Three months soil column leaching experiment has been conducted using alluvial soils (Eutric Fluvisol) with no prior history of sludge application. The soil was loamy with pH 7,4 and organic matter content of 3,5%. Soil material in the upper 2 cm of columns was mixed with dehydrated sewage sludge which was applied in amounts corresponding to the standards governing the use of sewage sludge for agricultural land. Sludge did increase some nutrients (total N, NH4+, available P and K, organic carbon) and some heavy metals contents (Zn, Cu, Pb) in soil. However, upper limits for heavy metals in agricultural soils were not exceeded. Results of heavy metal availability in soil determined by sequential extraction will be also presented. Restriction fragment length polymorphism (RFLP) analyses of 16s/18s rDNA, using universal fungal and bacterial primers, revealed clear shifts in bacterial and fungal community structure in the upper 2 cm of soils after amendment. Fungal fingerprints showed greater short term effects of sewage sludge, whereas sewage sludge seems to have prolonged effects on soil bacteria. Furthermore, sewage sludge amendment significantly increased glyphosate degradation from 21.6±1% to 33.6±1% over a 2 months period. The most probable reasons for shifts in microbial community structure and increased degradation of glyphosate are beneficial alterations to the physical-chemical characteristics of the soil. Negative effects of potentially toxic substances present in the sewage sludge on soil microbial community functioning were not observed with the methods used in our study.

  13. Conservation challenge at the agricultural frontier: deforestation, fire, and land use dynamics in Mato Grosso

    Directory of Open Access Journals (Sweden)

    Ruth S. DeFries

    2007-06-01

    Full Text Available Achieving conservation objectives within the rapidly changing agricultural frontier in Mato Grosso State requires tradeoffs between production and preservation. We provide a description of deforestation, fire, and land use dynamics during 2000-2005 to consider a range of strategies for conservation planning. Long-term conservation of Cerrado, transition forest, and Amazon biomes in the state can benefit from direct consideration of landscape structure, duration of post-clearing land use, and the mosaic of land uses surrounding potential conservation corridors or reserve areas. Although the creation of new protected areas may not be feasible, since few large, uninterrupted forest areas exist within the state, some conservation objectives can be met through greater coordination of the legal reserve system among property owners. We present three examples of landscape-level prioritization based on existing Forest Code regulations stipulating 80% forest reserves on private property. Through a state mediated system, property owners could augment existing reserve areas on their property through purchase of lands in: 1 buffers surrounding existing conservation units and indigenous reserves; 2 small watersheds with little or no deforestation; 3 forest patches with high connectivity within specified mosaics of different land uses. Any final approach for property-level coordination will depend on the specific conservation goals (e.g., river corridors, bird habitat, or plant biodiversity, but we provide a framework for developing and implementing a conservation plan at the agricultural frontier. Tradeoffs in both conservation value and productive use are required to achieve coordinated conservation at scale.

  14. Value of Available Global Soil Moisture Products for Agricultural Monitoring

    Science.gov (United States)

    Mladenova, Iliana; Bolten, John; Crow, Wade; de Jeu, Richard

    2016-04-01

    The first operationally derived and publicly distributed global soil moil moisture product was initiated with the launch of the Advanced Scanning Microwave Mission on the NASA's Earth Observing System Aqua satellite (AMSR-E). AMSR-E failed in late 2011, but its legacy is continued by AMSR2, launched in 2012 on the JAXA Global Change Observation Mission-Water (GCOM-W) mission. AMSR is a multi-frequency dual-polarization instrument, where the lowest two frequencies (C- and X-band) were used for soil moisture retrieval. Theoretical research and small-/field-scale airborne campaigns, however, have demonstrated that soil moisture would be best monitored using L-band-based observations. This consequently led to the development and launch of the first L-band-based mission-the ESA's Soil Moisture Ocean Salinity (SMOS) mission (2009). In early 2015 NASA launched the second L-band-based mission, the Soil Moisture Active Passive (SMAP). These satellite-based soil moisture products have been demonstrated to be invaluable sources of information for mapping water stress areas, crop monitoring and yield forecasting. Thus, a number of agricultural agencies routinely utilize and rely on global soil moisture products for improving their decision making activities, determining global crop production and crop prices, identifying food restricted areas, etc. The basic premise of applying soil moisture observations for vegetation monitoring is that the change in soil moisture conditions will precede the change in vegetation status, suggesting that soil moisture can be used as an early indicator of expected crop condition change. Here this relationship was evaluated across multiple microwave frequencies by examining the lag rank cross-correlation coefficient between the soil moisture observations and the Normalized Difference Vegetation Index (NDVI). A main goal of our analysis is to evaluate and inter-compare the value of the different soil moisture products derived using L-band (SMOS

  15. From participation to adoption: Comparing the effectiveness of soil conservation programs in the Peruvian Andes

    NARCIS (Netherlands)

    Posthumus, H.; Gardebroek, C.; Ruben, R.

    2010-01-01

    Many efforts are made to promote soil conservation in developing countries. This paper compares the effect of two programs promoting soil conservation in Peru on the adoption decision of households. One program applies a top-down approach with soil conservation as its core activity. The other progra

  16. 26 CFR 1.175-2 - Definition of soil and water conservation expenditures.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Definition of soil and water conservation... (continued) § 1.175-2 Definition of soil and water conservation expenditures. (a) Expenditures treated as a... of soil or water conservation in respect of land used in farming, or for the prevention of erosion...

  17. 26 CFR 1.175-1 - Soil and water conservation expenditures; in general.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Soil and water conservation expenditures; in... (continued) § 1.175-1 Soil and water conservation expenditures; in general. Under section 175, a farmer may deduct his soil or water conservation expenditures which do not give rise to a deduction for...

  18. Modeling soil conservation, water conservation and their tradeoffs: A case study in Beijing

    Institute of Scientific and Technical Information of China (English)

    Yang Bai; Zhiyun Ouyang; Hua Zheng; Xiaoma Li; Changwei Zhuang; Bo Jiang

    2012-01-01

    Natural ecosystems provide society with important goods and services.With the rapid increase in human populations and excessive utilization of natural resources,humans frequently enhance the production of some services at the expense of the others.Although the need for tradeoffs between conservation and development is urgent,the lack of efficient methods to assess such tradeoffs has impeded progress.Three land use strategy scenarios(development scenario,plan trend scenario and conservation scenario)were created to forecast potential changes in ecosystem services from 2007 to 2050 in Beijing,China.GIS-based techniques were used to map spatial and temporal distribution and changes in ecosystem services for each scenario.The provision of ecosystem services differed spatially,with significant changes being associated with different scenarios.Scenario analysis of water yield(as average annual yield)and soil retention(as retention rate per unit area)for the period 2007 to 2050 indicated that the highest values for these parameters were predicted for the forest habitat under all three scenarios.Annual yield/retention of forest,shrub,and grassland ranked the highest in the conservation scenario.Total water yield and soil retention increased in the conservation scenario and declined dramatically in the other two scenarios,especially the development scenario.The conservation scenario was the optimal land use strategy,resulting in the highest soil retention and water yield.Our study suggests that the evaluation and visualization of ecosystem services can effectively assist in understanding the tradeoffs between conservation and development.Results of this study have implications for planning and monitoring future management of natural capital and ecosystem services,which can be integrated into land use decision-making.

  19. New findings and setting the research agenda for soil and water conservation for sustainable land management

    Science.gov (United States)

    Keesstra, Saskia; Argaman, Eli; Gomez, Jose Alfonso; Quinton, John

    2014-05-01

    The session on soil and water conservation for sustainable land management provides insights into the current research producing viable measures for sustainable land management and enhancing the lands role as provider of ecosystem services. The insights into degradation processes are essential for designing and implementing feasible measures to mitigate against degradation of the land resource and adapt to the changing environment. Land degradation occurs due to multiple pressures on the land, such as population growth, land-use and land-cover changes, climate change and over exploitation of resources, often resulting in soil erosion due to water and wind, which occurs in many parts of the world. Understanding the processes of soil erosion by wind and water and the social and economic constraints faced by farmers forms an essential component of integrated land development projects. Soil and water conservation measures are only viable and sustainable if local environmental and socio-economic conditions are taken into account and proper enabling conditions and policies can be achieved. Land degradation increasingly occurs because land use, and farming systems are subject to rapid environmental and socio-economic changes without implementation of appropriate soil and water conservation technologies. Land use and its management are thus inextricably bound up with development; farmers must adapt in order to sustain the quality of their, and their families, lives. In broader perspective, soil and water conservation is needed as regulating ecosystem service and as a tool to enhance food security and biodiversity. Since land degradation occurs in many parts of the world and threatens food production and environmental stability it affects those countries with poorer soils and resilience in the agriculture sector first. Often these are the least developed countries. Therefore the work from researchers from developing countries together with knowledge from other disciplines

  20. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors.

    Science.gov (United States)

    Alvarenga, Paula; Mourinha, Clarisse; Farto, Márcia; Santos, Teresa; Palma, Patrícia; Sengo, Joana; Morais, Marie-Christine; Cunha-Queda, Cristina

    2015-06-01

    Nine different samples of sewage sludges, composts and other representative organic wastes, with potential interest to be used as agricultural soil amendments, were characterized: municipal sewage sludge (SS1 and SS2), agro industrial sludge (AIS), municipal slaughterhouse sludge (MSS), mixed municipal solid waste compost (MMSWC), agricultural wastes compost (AWC), compost produced from agricultural wastes and sewage sludge (AWSSC), pig slurry digestate (PSD) and paper mill wastes (PMW). The characterization was made considering their: (i) physicochemical parameters, (ii) total and bioavailable heavy metals (Cd, Cr, Cu, Ni, Pb, Zn and Hg), (iii) organic contaminants, (iv) pathogenic microorganisms and (v) stability and phytotoxicity indicators. All the sludges, municipal or other, comply with the requirements of the legislation regarding the possibility of their application to agricultural soil (with the exception of SS2, due to its pathogenic microorganisms content), with a content of organic matter and nutrients that make them interesting to be applied to soil. The composts presented, in general, some constraints regarding their application to soil, and their impairment was due to the existence of heavy metal concentrations exceeding the proposed limit of the draft European legislation. As a consequence, with the exception of AWSSC, most compost samples were not able to meet these quality criteria, which are more conservative for compost than for sewage sludge. From the results, the composting of sewage sludge is recommended as a way to turn a less stabilized waste into a material that is no longer classified as a waste and, judging by the results of this work, with lower heavy metal content than the other composted materials, and without sanitation problems.

  1. Soil Respiration in Different Agricultural and Natural Ecosystems in an Arid Region

    OpenAIRE

    Liming Lai; Xuechun Zhao; Lianhe Jiang; Yongji Wang; Liangguo Luo; Yuanrun Zheng; Xi Chen; Rimmington, Glyn M.

    2012-01-01

    The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal ...

  2. Current political commitments’ challenges for ex situ conservation of plant genetic resources for food and agriculture

    Directory of Open Access Journals (Sweden)

    Maria-Mihaela ANTOFIE

    2011-11-01

    Full Text Available This article is an overview regarding capacity building needs for supporting political commitments’ implementation and furthermore, the development of new political, technical and scientific measures for ensuring the proper conservation of biodiversity and considering in a cost-effective way ex situ conservation tools and methods. Domesticated and wild species, threatened and not threatened native species belonging to the natural capital, due to anthropic pressure and climate change may be drastically affected for their status of conservation in their ecosystems of origin. Thus, ex situ conservation is important to be taken into consideration for ensuring the proper conservation of native species. Still, ex situ conservation is a tool which is in use for many activities for many years such as: research, trade, industry, medicine, pharmaceuticals and agriculture. Romania needs to further develop its specific legislation framework in specific domains such as trade of exotic and native threatened species as well as for other domains such as zoos and aquaria, seeds exchange between botanical gardens, bioprospecting, wild threatened species rescue, capture and reintroduction, collection, access for benefit sharing. Also for agriculture should be developed ex situ conservationmeasures closely connected with breeding programmes dedicated to plant genetic resources for food and agriculture (i.e. gene banks conservation, breeding programmes, on farm conservation. Only by harmonizing at the legal level, based on science, all these specific domains, extremely sensitive, dealing with ex situ conservation it will be possible in the future to secure food and ecosanogenesis ensuring the appropriate status of in situ conservation of biodiversity as a whole. As it is not possible to apply conservation measures, either in situ either ex situ either both, to all species it is appropriate to further develop strategic tools for prioritizing our efforts in a cost

  3. [Characteristics of soil nematode community of different agricultural areas in Jiangsu Province, China].

    Science.gov (United States)

    Jiao, Jia-guo; Liu, Bei-bei; Mao, Miao; Ye, Cheng-long; Yu, Li; Hu, Feng

    2015-11-01

    This paper investigated the genus diversity of soil nematodes of different agricultural areas in Jiangsu Province, analyzed the relationship between soil nematodes and soil environmental factors, and discussed the roles of soil nematodes as biological indicators of soil health. The results showed that, a total of 41 nematode genera were found in all six agricultural areas, belonging to 19 families, 7 orders, 2 classes. The numbers and community compositions of nematodes were obviously influenced by soil texture, fertilization and tillage practices. In all six agricultural areas, the numbers of nematodes in coastal agricultural area (400 individuals per 100 g dry soil) were significantly larger than that in Xuhuai, Ningzhenyang, and riverside agricultural areas. While the smallest number of nematodes was found in Yanjiang agricultural area (232 individuals per 100 g dry soil), which might be due to the differences in soil texture, annual rainfall and annual air temperature and other factors. The dominant genera of nematodes were similar in the adjacent agricultural areas. Correlation analysis showed that there was a significant positive correlation between the number of soil nematodes and levels of soil nutrients (soil organic matter, total nitrogen, available nitrogen, available potassium and available phosphorus). Redundancy analysis (RDA) indicated the total nitrogen, available potassium and pH obviously affected some soil nematode genera. The analysis of spatial distribution characteristics of soil nematode community in farmland of Jiangsu Province could provide data for health assessment of agricultural ecosystems. PMID:26915207

  4. Agricultural soil moisture experiment, Colby, Kansas 1978: Measured and predicted hydrological properties of the soil

    Science.gov (United States)

    Arya, L. M. (Principal Investigator)

    1980-01-01

    Predictive procedures for developing soil hydrologic properties (i.e., relationships of soil water pressure and hydraulic conductivity to soil water content) are presented. Three models of the soil water pressure-water content relationship and one model of the hydraulic conductivity-water content relationship are discussed. Input requirements for the models are indicated, and computational procedures are outlined. Computed hydrologic properties for Keith silt loam, a soil typer near Colby, Kansas, on which the 1978 Agricultural Soil Moisture Experiment was conducted, are presented. A comparison of computed results with experimental data in the dry range shows that analytical models utilizing a few basic hydrophysical parameters can produce satisfactory data for large-scale applications.

  5. Use of treated wastewater in agriculture: effects on soil environment

    Science.gov (United States)

    Levy, Guy J.; Lado, Marcos

    2014-05-01

    Disposal of treated sewage, both from industrial and domestic origin (herein referred to as treated wastewater [TWW]), is often considered as an environmental hazard. However, in areas afflicted by water scarcity, especially in semi-arid and arid regions, where the future of irrigated agriculture (which produces approximately one third of crop yield and half the return from global crop production) is threatened by existing or expected shortage of fresh water, the use of TWW offers a highly effective and sustainable strategy to exploit a water resource. However, application of TWW to the soil is not free of risks both to organisms (e.g., crops, microbiota) and to the soil. Potential risks may include reduction in biological activity (including crop yield) due to elevated salinity and specific ion toxicity, migration of pollutants towards surface- and ground-water, and deterioration of soil structure. In recent years, new evidence about the possible negative impact of long-term irrigation with TWW on soil structure and physical and chemo-physical properties has emerged, thus putting the sustainability of irrigation with TWW in question. In this presentation, some aspects of the effects of long-term irrigation with TWW on soil properties are shown.

  6. Iodine transfer from agricultural soils to edible part of crops

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, S.; Tagami, K. [National Institute of Radiological Sciences, Chiba (Japan). Office of Biospheric Assessment for Waste Disposal

    2011-07-01

    Information about the distribution and cycling of stable iodine (I) in the environment is useful for dose estimation from its long-lived radioiodisotope, {sup 129}I, which is one of the most critical radionuclides to be managed for the safe disposal of nuclear fuel waste. The soil-to-plant transfer factor (TF) is an important parameter to predict internal radiation exposure pathways through the food chains using mathematical models. Therefore, we have measured stable I and bromine (Br) for comparison, in 142 crop samples and associated agricultural field soil samples collected throughout Japan. The crops were classified into eight groups, i.e. leafy vegetables, white part of leeks, fruit vegetables, tubers, root crops, legumes, wheat and barley (WB), and rice. The results showed that Br and I concentrations were higher in upland field soil samples than in paddy field soil samples. However, when we compared TF values of WB and brown rice, no statistical difference was observed. The highest geometric mean of TF for I, 1.4 x 10{sup -2}, was obtained for leafy vegetables and fruit vegetables and that for Br, 1.5, was for fruit vegetables. TF for I was much lower than Br, as reported previously, maybe due to their different chemical forms in soil and uptake behaviors by plant roots. (orig.)

  7. The economics of soil C sequestration and agricultural emissions abatement

    Science.gov (United States)

    Alexander, P.; Paustian, K.; Smith, P.; Moran, D.

    2015-04-01

    Carbon is a critical component of soil vitality and is crucial to our ability to produce food. Carbon sequestered in soils also provides a further regulating ecosystem service, valued as the avoided damage from global climate change. We consider the demand and supply attributes that underpin and constrain the emergence of a market value for this vital global ecosystem service: markets being what economists regard as the most efficient institutions for allocating scarce resources to the supply and consumption of valuable goods. This paper considers how a potentially large global supply of soil carbon sequestration is reduced by economic and behavioural constraints that impinge on the emergence of markets, and alternative public policies that can efficiently transact demand for the service from private and public sector agents. In essence, this is a case of significant market failure. In the design of alternative policy options, we consider whether soil carbon mitigation is actually cost-effective relative to other measures in agriculture and elsewhere in the economy, and the nature of behavioural incentives that hinder policy options. We suggest that reducing the cost and uncertainties of mitigation through soil-based measures is crucial for improving uptake. Monitoring and auditing processes will also be required to eventually facilitate wide-scale adoption of these measures.

  8. An inventory of trace elements inputs to French agricultural soils.

    Science.gov (United States)

    Belon, E; Boisson, M; Deportes, I Z; Eglin, T K; Feix, I; Bispo, A O; Galsomies, L; Leblond, S; Guellier, C R

    2012-11-15

    The inputs of ten trace elements (As, Cd, Cu, Cr, Hg, Mo, Ni, Pb, Se, Zn) to French agricultural soils have been assessed. The six main sources considered were: pesticides, mineral fertilizers, animal manure, liming materials, sludge and composts and atmospheric deposition. Data were collected to compute inputs at both national and regional (departmental) scales. The inventory methodology is based on two principles: data are traceable and easy to update. At a national scale, the inventory showed that trace elements inputs can be ranked: Zn≫Cu≫Cr>Pb>Ni>As=Mo>Se>Cd>Hg. Animal manure, mineral fertilizers and pesticides are the predominant sources of TEs. These results are globally in agreement with literature data though atmospheric deposition is shown to be lower than in more industrial countries such as China and United Kingdom where similar surveys were conducted. The inputs of trace elements vary strongly between regions in relation with agricultural activities. This inventory (and the related database) provides basis for developing and monitoring policies to control and reduce trace elements contamination of agricultural soils at both national and regional (departmental) scales.

  9. Utilization of Agricultural Wastes in Stabilization of Landfill Soil

    Directory of Open Access Journals (Sweden)

    Nidzam Rahmat Mohamad

    2014-01-01

    Full Text Available Palm Oil Fuel Ash (POFA and Rice Husk Ash (RHA are local agricultural waste material from Palm Oil Industry and from Paddy Industry in Malaysia. Currently, the disposal of these ashes from a burning process is a problem to both industries, and hence leads to environmental pollution. The main aim of this research was to investigate the potential of utilizing POFA and RHA as sustainable stabilizer material as partial replacement of traditional one which is lime and Portland Cement (PC. Laboratory investigations were carried out to establish the potential utilization of Malaysian Agricultural wastes POFA and RHA in stabilizing Teluk Kapas Landfill soil. Landfill soil on its own and combination with laterite clay soil were stabilized using POFA or RHA either on its own or in combination with Lime or Portland Cement (PC. The traditional stabilizers of lime or Portland Cement (PC were used as controls. Compacted cylinder test specimens were made at typical stabilizer contents and moist cured for up to 60 days prior to testing for compressive and water absorption tests. The results obtained showed that landfill soil combined with laterite clay (50:50 stabilized with 20% RHA:PC (50:50and POFA: PC (50:50 recorded the highest values of compressive strength compared to the other compositions of stabilizers and soils. However, when the amount of POFA and RHA increased in the system the compressive strength values of the samples tends to increase. These results suggest technological, economic as well as environmental advantages of using POFA and RHA and similar industrial by-products to achieve sustainable infrastructure development with near zero industrial waste.

  10. Project AProWa: a national view on managing trade-offs between agricultural production and conservation of aquatic ecosystems

    Science.gov (United States)

    Dietzel, Anne; Rahn, Eric; Stamm, Christian

    2014-05-01

    Swiss agriculture is legally committed to fulfill several, partially conflicting goals such as agricultural production on the one hand and the conservation of natural resources on the other hand. In the context of the research project AProWa ("Agricultural Production and Water"), the relationships between the production aspect and the conservation of aquatic ecosystems is analyzed with a holistic approach. Agricultural production and the protection of water resources have high potential for conflicts: Farmers use ground and surface water to irrigate their fields. On the other hand, drainage systems enable the production on otherwise unfavorably wet soils. These in turn often affect ground water recharge and divert precipitation directly into surface waters, which changes their hydrological regime. Typically, drainage systems also elevate the input of nutrients and pesticides into the water bodies. In general, applied fertilizers, plant protection products, veterinary drugs and phytohormones of cultivated plants are introduced into the ground and surface waters through different processes such as drift, leaching, runoff, preferential flow or erosion. They influence the nutrient cycles and ecological health of aquatic systems. The nutrient and pesticide loss processes themselves can be altered by tillage operations and other agricultural practices. Furthermore, the competition for space can lead to additional conflicts between agriculture and the protection of aquatic ecosystems. For example, channelized or otherwise morphologically changed rivers do not have a natural discharge pattern and are often not suitable for the local flora and fauna; but naturally meandering rivers need space that cannot be used for agriculture. In a highly industrialized and densely populated country like Switzerland, all these potential conflicts are of importance. Although it is typically seen as a water-rich country, local and seasonal overexploitation of rivers through water extraction

  11. Searsville Sediment Experiment: What is the ideal agricultural soil?

    Science.gov (United States)

    Leal, J.; Lo, D.; Patel, N.; Gu, S.

    2014-12-01

    The purpose of this experiment is to decide whether or not the sediment located within Searsville Dam at the Jasper Ridge Biological Preserve is well suited for agricultural soil. By utilizing various combinations of sediment, farm soil, compost, and horse manure to grow basil plants, we underwent an exploratory study in order to better understand what type of materials and nutrients plants can best thrive within. Our general experiment protocol includes watering the crops with irrigation every day while young, and then limiting that water exposure to only Mondays, Wednesdays, and Fridays as they become more established. The basil is growing in pots filled with the different amounts of material, and are arranged randomly to prevent certain plants from getting more sunlight than others. The whole experiment plot is covered with a thin white fabric and secured with bricks and wood to keep out pests in the garden. In order to observe trends in the basil development, plant height and leaf number is recorded once every week. During the third week of the study we performed soil texture tests, and within the fourth week we calculated pH data. We discovered that the sediment our project focuses upon is 10-18% clay and 50% sand which categorizes it as loam, and the Stanford farm soil that serves as our control group contains 20-26% clay and 30% sand so it is a silt loam material. The pH tests also showed an average of 7.45 for sediment, 7.3 for farm soil, 7.85 for compost, and 7.65 for horse manure. By looking at all of the data recorded over the five-week time period, we have so far noticed that the 50% sediment and 50% horse manure combination consistently has the best height increase as well as leaf size and content. The 50% sediment and 50% compost mixture has also performed well in those terms, and is therefore a possibility for the best agricultural soil. However, future lab work conducted by Stanford students to examine the nutrient content of the basil tissue, along

  12. Conditions for the adoption of conservation agriculture in Central Morocco: an approach based on Bayesian network modelling

    Directory of Open Access Journals (Sweden)

    Laura Bonzanigo

    2016-03-01

    Full Text Available Research in Central Morocco, proves that conservation agriculture increases yields, reduces labour requirements, and erosion, and improves soil fertility. However, after nearly two decades of demonstration and advocacy, adoption is still limited. This paper investigates the critical constraints and potential opportunities for the adoption of conservation agriculture for different typologies of farms. We measured the possible pathways of adoption via a Bayesian decision network (BDN. BDNs allow the inclusion of stakeholders’ knowledge where data is scant, whilst at the same time they are supported by a robust mathematical background. We first developed a conceptual map of the elements affecting the decision about tillage, which we refined in a workshop with farmers and researchers from the Settat area. We then involved experts in the elicitation of conditional probabilities tables, to quantify the cascade of causal links that determine (or not the adoption. Via BDNs, we could categorise under which specific technical and socio-economic conditions no tillage agriculture is best suited to which farmers. We, by identifying the main constraints and running sensitivity analyses, were able to convey clear messages on how policy- makers may facilitate the conversion. As new evidence is collected, the BDN can be updated to obtain evidence more targeted and fine tuned to the adoption contexts.

  13. Greenhouse gas emissions under conservation agriculture compared to traditional cultivation of maize in the central highlands of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Dendooven, Luc, E-mail: dendooven@me.com [Laboratory of Soil Ecology, ABACUS, Cinvestav, Avenida Instituto Politecnico Nacional 2508, C.P. 07360 Mexico, D.F. (Mexico); Gutierrez-Oliva, Vicente F. [Laboratory of Plant Biotechnology, Instituto Tecnologico de Tuxtla-Gutierrez, Tuxtla-Gutierrez, Chiapas (Mexico); Patino-Zuniga, Leonardo [Laboratory of Soil Ecology, ABACUS, Cinvestav, Avenida Instituto Politecnico Nacional 2508, C.P. 07360 Mexico, D.F. (Mexico); Ramirez-Villanueva, Daniel A. [Departamento de Microbiologia, Escuela Nacional de Ciencias Biologicas-IPN, Av. Prolongacion de Carpio y Plan de Ayala, C.P. 11340 Mexico, D.F. (Mexico); Verhulst, Nele [International Maize and Wheat Improvement Centre (CIMMYT), Apdo. Postal 6-641, 06600, Mexico D.F. (Mexico); Luna-Guido, Marco; Marsch, Rodolfo [Laboratory of Soil Ecology, ABACUS, Cinvestav, Avenida Instituto Politecnico Nacional 2508, C.P. 07360 Mexico, D.F. (Mexico); Montes-Molina, Joaquin; Gutierrez-Miceli, Federico A. [Laboratory of Plant Biotechnology, Instituto Tecnologico de Tuxtla-Gutierrez, Tuxtla-Gutierrez, Chiapas (Mexico); Vasquez-Murrieta, Soledad [Departamento de Microbiologia, Escuela Nacional de Ciencias Biologicas-IPN, Av. Prolongacion de Carpio y Plan de Ayala, C.P. 11340 Mexico, D.F. (Mexico); Govaerts, Bram [International Maize and Wheat Improvement Centre (CIMMYT), Apdo. Postal 6-641, 06600, Mexico D.F. (Mexico)

    2012-08-01

    In 1991, the 'International Maize and Wheat Improvement Center' (CIMMYT) started a field experiment in the rain fed Mexican highlands to investigate conservation agriculture (CA) as a sustainable alternative for conventional maize production practices (CT). CT techniques, characterized by deep tillage, monoculture and crop residue removal, have deteriorated soil fertility and reduced yields. CA, which combines minimum tillage, crop rotations and residue retention, restores soil fertility and increases yields. Soil organic matter increases in CA compared to CT, but increases in greenhouse gas emissions (GHG) in CA might offset the gains obtained to mitigate global warming. Therefore, CO{sub 2}, CH{sub 4} and N{sub 2}O emissions, soil temperature, C and water content were monitored in CA and CT treatments in 2010-2011. The cumulative GHG emitted were similar for CA and CT in both years, but the C content in the 0-60 cm layer was higher in CA (117.7 Mg C ha{sup -1}) than in CT (69.7 Mg C ha{sup -1}). The net global warming potential (GWP) of CA (considering soil C sequestration, GHG emissions, fuel use, and fertilizer and seeds production) was - 7729 kg CO{sub 2} ha{sup -1} y{sup -1} in 2008-2009 and - 7892 kg CO{sub 2} ha{sup -1} y{sup -1} in 2010-2011, whereas that of CT was 1327 and 1156 kg CO{sub 2} ha{sup -1} y{sup -1}. It was found that the contribution of CA to GWP was small compared to that of CT. - Highlights: Black-Right-Pointing-Pointer Conservation agriculture (CA) and conventional agriculture (CT) systems Black-Right-Pointing-Pointer Greenhouse gasses emitted were similar from CA and CT. Black-Right-Pointing-Pointer C content in the 0-60 cm layer was much higher in CA than in CT. Black-Right-Pointing-Pointer The net global warming potential of CA was negative, but positive in CT. Black-Right-Pointing-Pointer C sequestered in soil is far more important than GHG emitted.

  14. Challenges for Low-Carbon Agriculture and Forest Conservation in Brazil

    OpenAIRE

    Britaldo Soares Filho; Letícia Lima; Maria Bowman; Letícia Viana

    2012-01-01

    This paper discusses the feedbacks between climate change, deforestation, and agricultural expansion and presents scenarios of agricultural demand and forest conservation and restoration policies in Brazil. In addition, it discusses the implications of these scenarios for food and befoul supply, the provision of ecosystem services, and climate change mitigation. Modeling these scenarios provides an integrated assessment of plausible pathways for achieving the goals of the National Climate Cha...

  15. Conservation agriculture for small holder rainfed farming: Opportunities and constraints of new mechanized seeding systems

    OpenAIRE

    Johansen, C; Haque, M.E.; R. W. Bell; Thierfelder, Christian; Esdaile, R.J.

    2012-01-01

    In the past, development and dissemination of conservation agriculture technologies, such as mechanized seeders and herbicides, has suited large-scale agricultural operations. Recent innovations specifically designed for smallholders have been developed in Brazil and introduced in Africa. These include animal-drawn rippers and direct seeders, which have produced equal yields to conventional tillage and seed broadcasting. However, more research is needed concerning weed management and place-ba...

  16. Management and Area-wide Evaluation of Water Conservation Zones in Agricultural Catchments for Biomass Production, Water Quality and Food Security

    International Nuclear Information System (INIS)

    Global land and water resources are under threat from both the agricultural and urban development to meet increased demand for food and from the resulting degradation of the environment. Poor crop yields due to water stress is one of the main reasons for the prevailing hunger and rural poverty in parts of the world. The Green Revolution of the 1960s and 1970s particularly in Latin America and Asia resulted in increased agricultural production and depended partly on water management. In the future, most food will still need to come from rain-fed agriculture. Water conservation zones in agricultural catchments, particularly in rainfed areas, play an important role in the capture and storage of water and nutrients from farmlands and wider catchments, and help improve crop production in times of need in these areas. Water conservation zones are considered to be an important part of water resource management strategies that have been developed to prevent reservoir siltation, reduce water quality degradation, mitigate flooding, enhance groundwater recharge and provide water for farming. In addition to making crop production possible in dry areas, water conservation zones minimize soil erosion, improve soil moisture status through capillary rise and enhance soil fertility and quality. These water conservation zones include natural and constructed wetlands (including riparian wetlands), farm ponds and riparian buffer zones. The management of water conservation zones has been a challenge due to the poor understanding of the relationship between upstream land use and the functions of these zones and their internal dynamics. Knowledge of sources and sinks of water and redefining water and nutrient budgets for water conservation zones are important for optimizing the capture, storage and use of water and nutrients in agricultural landscapes. The overall objective of this coordinated research project (CRP) was to assess and enhance ecosystem services provided by wetlands, ponds

  17. Soil respiration in different agricultural and natural ecosystems in an arid region.

    Directory of Open Access Journals (Sweden)

    Liming Lai

    Full Text Available The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2 absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2 emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.

  18. Effects of extreme drought on agriculture soil and sustainability of different drought soil

    Directory of Open Access Journals (Sweden)

    S. M. Geng

    2014-01-01

    Full Text Available Content of microbial biomass carbon was selected as indicator for identifying effects of extreme drought on agriculture soil ecosystem. Through a series of prototype observation experiments, changing tendencies of microbial biomass carbon content and the proportion of microbial biomass carbon in soil organic carbon were identified. The optimum mass water content of soil for microbial biomass carbon was 19.5% and the demarcation point of microbial biomass carbon to drought was 14.3%, which could be used to demonstrate alters and degradation of soil ecosystem as well as the irrigation requirement of crops. We evaluated sustainability of different drought soil ecosystems after experiencing rainstorm with rehabilitation. The results suggested that soil ecosystem which was interfered by moderate drought could recover and its tolerance to drought was improved, as well as its function and activity. Soil ecosystem could barely recover from severe drought and could not adapt to severe drought stress. Soil ecosystem could not restore from extreme drought within a few days, the function and structure were damaged. We came to the conclusion that mass water content of soil should kept above 10% to avoid destroying function and structure while soil ecosystem would better be watered when mass water content was lower than 14.3% in order to maintain high productivity.

  19. Grasslands, wetlands, and agriculture: the fate of land expiring from the Conservation Reserve Program in the Midwestern United States

    Science.gov (United States)

    Morefield, Philip E.; LeDuc, Stephen D.; Clark, Christopher M.; Iovanna, Richard

    2016-09-01

    The Conservation Reserve Program (CRP) is the largest agricultural land-retirement program in the United States, providing many environmental benefits, including wildlife habitat and improved air, water, and soil quality. Since 2007, however, CRP area has declined by over 25% nationally with much of this land returning to agriculture. Despite this trend, it is unclear what types of CRP land are being converted, to what crops, and where. All of these specific factors greatly affect environmental impacts. To answer these questions, we quantified shifts in expiring CRP parcels to five major crop-types (corn, soy, winter and spring wheat, and sorghum) in a 12-state, Midwestern region of the United States using a US Department of Agriculture (USDA), field-level CRP database and USDA’s Cropland Data Layer. For the years 2010 through 2013, we estimate almost 30%, or more than 530 000 ha, of expiring CRP land returned to the production of these five crops in our study area, with soy and corn accounting for the vast majority of these shifts. Grasslands were the largest type of CRP land converted (360 000 ha), followed by specifically designated wildlife habitat (76 000 ha), and wetland areas (53 000 ha). These wetland areas were not just wetlands themselves, but also a mix of land covers enhancing or protecting wetland ecosystem services (e.g., wetland buffers). Areas in the Dakotas, Nebraska, and southern Iowa were hotspots of change, with the highest areas of CRP land moving back to agriculture. By contrast, we estimate only a small amount (∼3%) of the expiring land shifted into similar, non-CRP land-retirement or easement programs. Reconciling needs for food, feed, fuel, and healthy ecosystems is an immense challenge for farmers, conservationists, and state and federal agencies. Reduced enrollment and the turnover of CRP land from conservation to agriculture raises questions about sustaining ecosystem services in this region.

  20. Soils under conservation agriculture with vegetables in Siem Reap, Cambodia

    Science.gov (United States)

    Smallholder vegetable farmers in Siem Reap, Cambodia experienced declining crop productivity. It could be a result of a mixture of factors such as nutrient and pest problems and extreme weather events such as droughts and/or heavy rains. The no-till, continuous mulch and diverse species principles o...

  1. Modelling agricultural suitability along soil transects under current conditions and improved scenario of soil factors

    Science.gov (United States)

    Abd-Elmabod, Sameh K.; Jordán, Antonio; Fleskens, Luuk; van der Ploeg, Martine; Muñoz-Rojas, Miriam; Anaya-Romero, María; van der Salm, Renée J.; De la Rosa, Diego

    2015-04-01

    Agricultural land suitability analysis and improvement of soils by addressing major limitations may be a strategy for climate change adaptation. This study aims to investigate the influence of topography and variability of soil factors on the suitability of 12 annual, semiannual and perennial Mediterranean crops in the province of Seville (southern Spain). In order to represent the variability in elevation, lithology and soil, two latitudinal and longitudinal (S-N and W-E) soil transects (TA and TB) were considered including 63 representative points at regular 4 km intervals. These points were represented by 41 soil profiles from the SDBm soil database -Seville. Almagra model, a component of the agro-ecological decision support system MicroLEIS, was used to assess soil suitability. Results were grouped into five soil suitability classes: S1-optimum, S2-high, S3-moderate, S4-marginal and S5-not suitable. Each class was divided in subclasses according to the main soil limiting factors: depth (p), texture (t), drainage (d), carbonate content (c), salinity (s), sodium saturation (a), and the degree of development of the soil profile (g). This research also aimed to maximize soil potential by improving limiting factors d, c, s and a after soil restoration. Therefore, management techniques were also considered as possible scenarios in this study. The results of the evaluation showed that soil suitability ranged between S1 and S5p - S5s along of the transects. In the northern extreme of transect TA, high content of gravels and coarse texture are limiting factors (soils are classified as S4t) In contrast, the limiting factor in the eastern extreme of transect TB is the shallow useful depth (S5p subclass). The absence of calcium carbonate becomes a limiting factor in some parts of TA. In contrast, the excessive content of calcium carbonate appeared to be a limiting factor for crops in some intermediate points of TB transect. For both transects, soil salinity is the main

  2. The Subtropical Grasslands LTAR: balancing agricultural production and conservation goals

    Science.gov (United States)

    Gomez-Casanovas, N.; Boughton, E.; Bernacchi, C.; DeLucia, E. H.; Sparks, J. P.; Silveira, M.; Boughton, R. K.; Swain, H.

    2015-12-01

    Subtropical grazing lands of peninsular Florida have been shaped by a long evolutionary history of lightning ignited fire followed by flooding resulting in a vast treeless prairie region in south-central Florida. In these grassland ecosystems fire return intervals are between 1-3 years. Beginning in the 1500's, Andalusian cattle began grazing in this region and the cattle industry began in earnest in the late 1800s/early 1900s. Today, Florida's prairie region is largely occupied by cow/calf ranch operations and also occupies the Northern Everglades watershed where water quality/quantity issues are at the forefront of environmental concerns. Florida ranches are characterized by a gradient of management intensities, ranging from sown pastures (most intensively managed) to semi-native pastures with a mix of introduced and native grasses, and rangeland (least managed ecosystem). Located at Archbold Biological Station, MacArthur Agro-ecology Research Center, and University of Florida Range Cattle Research Center (www.maerc.org; www.rcrec-ona.ifas.ufl.edu), a primary goal of the Subtropical Grasslands US Department of Agriculture Long-term Agro-Ecosystem Research LTAR is to balance intensification of sown pastures while enhancing management of native systems in a way that maximizes other ecosystem services (regulating, supporting, cultural, biodiversity). Here, we describe our proposed experimental design to compare ecosystem delivery from conventional and aspirational management regimes in sown pastures and native systems. Aspirational management goals are to (i) maximize productivity in sown pastures with a neutral effect on other ecosystem services, and (ii) manage native systems in a way that maximizes regulating, supporting, and biodiversity ecosystem services by utilizing patch burn grazing. Ultimately, we will determine if enhanced production in sown pasture under the aspirational management system can offset any reduction in productivity in semi

  3. Soil biota community structure and abundance under agricultural intensification and extensification

    NARCIS (Netherlands)

    Postma-Blaauw, M.B.; Goede, de R.G.M.; Bloem, J.; Faber, J.H.; Brussaard, L.

    2010-01-01

    Understanding the impacts of agricultural intensification and extensification on soil biota communities is useful in order to preserve and restore biological diversity in agricultural soils and enhance the role of soil biota in agroecosystem functioning. Over four consecutive years, we investigated

  4. Using changes in agricultural utility to quantify future climate-induced risk to conservation.

    Science.gov (United States)

    Estes, Lyndon D; Paroz, Lydie-Line; Bradley, Bethany A; Green, Jonathan M H; Hole, David G; Holness, Stephen; Ziv, Guy; Oppenheimer, Michael G; Wilcove, David S

    2014-04-01

    Much of the biodiversity-related climate change impacts research has focused on the direct effects to species and ecosystems. Far less attention has been paid to the potential ecological consequences of human efforts to address the effects of climate change, which may equal or exceed the direct effects of climate change on biodiversity. One of the most significant human responses is likely to be mediated through changes in the agricultural utility of land. As farmers adapt their practices to changing climates, they may increase pressure on some areas that are important to conserve (conservation lands) whereas lessening it on others. We quantified how the agricultural utility of South African conservation lands may be altered by climate change. We assumed that the probability of an area being farmed is linked to the economic benefits of doing so, using land productivity values to represent production benefit and topographic ruggedness as a proxy for costs associated with mechanical workability. We computed current and future values of maize and wheat production in key conservation lands using the DSSAT4.5 model and 36 crop-climate response scenarios. Most conservation lands had, and were predicted to continue to have, low agricultural utility because of their location in rugged terrain. However, several areas were predicted to maintain or gain high agricultural utility and may therefore be at risk of near-term or future conversion to cropland. Conversely, some areas were predicted to decrease in agricultural utility and may therefore prove easier to protect from conversion. Our study provides an approximate but readily transferable method for incorporating potential human responses to climate change into conservation planning. PMID:24372589

  5. Forest Hydrology, Soil Conservation and Green Barriers in Canary Islands

    Directory of Open Access Journals (Sweden)

    Juan Carlos SANTAMARTA-CEREZAL

    2012-11-01

    Full Text Available In volcanic islands, the rainfall regime and its torrential nature, together with the steep slopes and the soil types present are considered to be some of the main factors affecting forest hydrology and soil conservation. In such environments, rain regime is generally irregular and characterized by short and intense rainfalls, which could cause destructive flows at times, followed by long periods of rain absence. The volcanic nature of these islands have as a direct resultant steep slopes which influences the runoff volume and speed, as well as the amount of topsoil susceptible to be detached and transported downstream. The soil type also affects the susceptibility to erosion processes. Andisols are the most typical soil on volcanic islands. Their particularities derive their mineral constituents, called short-range-order products, which provide these soils with an increased structural stability, which in turn reduces their susceptibility to erosion. However, the land use changes and the environmental factors such as rain regime and steep slopes may be determinant factor in destabilizing these soils and ultimately a cause for soil erosion and runoffs, which become a threat to the population downstream. Green barriers have been traditionally used to prevent or reduce these processes, also to enhance the dew effect and the fog water collection, and as a firebreak which acts as a barrier to slow or stop the progress of a wildfire. Wooded species present and subsequently their performance have a major influence on their effectiveness. The use of this natural erosion and fire control methods on volcanic islands is discussed in this paper.

  6. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Science.gov (United States)

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row

  7. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    Directory of Open Access Journals (Sweden)

    Moslem Ladoni

    Full Text Available Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover and non-leguminous (winter rye cover crops on potentially mineralizable N (PMN and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management

  8. Future trends in soil cadmium concentration under current cadmium fluxes to European agricultural soils.

    Science.gov (United States)

    Six, L; Smolders, E

    2014-07-01

    The gradual increase of soil cadmium concentrations in European soils during the 20th century has prompted environmental legislation to limit soil cadmium (Cd) accumulation. Mass balances (input-output) reflecting the period 1980-1995 predicted larger Cd inputs via phosphate (P) fertilizers and atmospheric deposition than outputs via crop uptake and leaching. This study updates the Cd mass balance for the agricultural top soils of EU-27+Norway (EU-27+1). Over the past 15 years, the use of P fertilizers in the EU-27+1 has decreased by 40%. The current mean atmospheric deposition of Cd in EU is 0.35 g Cd ha(-1) yr(-1), this is strikingly smaller than values used in the previous EU mass balances (~3 g Cd ha(-1) yr(-1)). Leaching of Cd was estimated with most recent data of soil solution Cd concentrations in 151 soils, which cover the range of European soil properties. No significant time trends were found in the data of net applications of Cd via manure, compost, sludge and lime, all being small sources of Cd at a large scale. Modelling of the future long-term changes in soil Cd concentrations in agricultural top soils under cereal or potato culture predicts soil Cd concentrations to decrease by 15% over the next 100 years in an average scenario, with decreasing trends in some scenarios being more prevalent than increasing trends in other scenarios. These Cd balances have reverted from the general positive balances estimated 10 or more years ago. Uncertainty analysis suggests that leaching is the most uncertain relative to other fluxes.

  9. Varietal trial of Sorghum (Sorghum bicolor L.)for Conservation Agriculture Production Systems

    OpenAIRE

    Mercado, Agustin R., Jr.; Arcinal, Gil A.; Bensive Gabitano; Manuel R. Reyes

    2014-01-01

    Sorghum is being cultivated all over the world mainly as feed for animals and in some areas it is used for human consumption and in a variety of industrial application like paper making and used as adhesives. The poster describes a trial of sorghum as a replacement for hybrid maize in conservation agriculture production systems.

  10. Integrated Water-Less Management of Night Soil for Depollution of Water Resources and Water Conservation

    Directory of Open Access Journals (Sweden)

    Pramod R. Chaudhari

    2016-05-01

    Full Text Available Use of water for flushing night soil and enormous sewage disposal are responsible for pollution and depletion of fresh water resources in India and other countries. The review of traditional methods in the world provides idea of zero-waste discharge residential units. Experiences and research in India, China, Japan, America and Sweden has indicated feasibility of waterless management of night soil, composting and use of biofertilizer product in agriculture. A novel idea of ecological management of night soil and urine is presented in which night soil may be conditioned for transportation and treatment by adding suitable waste product(s from industry and other sources. Different night soil treatment methods are reviewed and emphasized the need for further research on whole cycle of ecological management or sustainable sanitation depending on local conditions. The benefits of this system are zero sewage discharge, reuse of waste as resource, recovery of nutrients in waste as fertilizer, production of fuel gas and reduction of pathogens in biofertilizer. This will help in water conservation and regenerating the quality and quantity of river flow for use as water ways and irrigation and to improve the public health. Potential technical intervention and research needs are discussed in this article

  11. Soil respiration characteristics in different land uses and response of soil organic carbon to biochar addition in high-latitude agricultural area.

    Science.gov (United States)

    Ouyang, Wei; Geng, Xiaojun; Huang, Wejia; Hao, Fanghua; Zhao, Jinbo

    2016-02-01

    The farmland tillage practices changed the soil chemical properties, which also impacted the soil respiration (R s ) process and the soil carbon conservation. Originally, the farmland in northeast China had high soil carbon content, which was decreased in the recent decades due to the tillage practices. To better understand the R s dynamics in different land use types and its relationship with soil carbon loss, soil samples at two layers (0-15 and 15-30 cm) were analyzed for organic carbon (OC), total nitrogen (TN), total phosphorus (TP), total carbon (TC), available nitrogen (AN), available phosphorus (AP), soil particle size distribution, as well as the R s rate. The R s rate of the paddy land was 0.22 (at 0-15 cm) and 3.01 (at 15-30 cm) times of the upland. The average concentrations of OC and clay content in cultivated areas were much lower than in non-cultivated areas. The partial least squares analysis suggested that the TC and TN were significantly related to the R s process in cultivated soils. The upland soil was further used to test soil CO2 emission response at different biochar addition levels during 70-days incubation. The measurement in the limited incubation period demonstrated that the addition of biochar improved the soil C content because it had high concentration of pyrogenic C, which was resistant to mineralization. The analysis showed that biochar addition can promote soil OC by mitigating carbon dioxide (CO2) emission. The biochar addition achieved the best performance for the soil carbon conservation in high-latitude agricultural area due to the originally high carbon content.

  12. The effects of forward speed and depth of conservation tillage on soil bulk density

    Directory of Open Access Journals (Sweden)

    A Mahmoudi

    2015-09-01

    Full Text Available Introduction: In recent years, production techniques and equipment have been developed for conservation of tillage systems that have been adopted by many farmers. With proper management, overall yield averages for conventional and reduced tillage systems are nearly identical. Sometimes, field operations can be combined by connecting two or more implements. Combined operations reduce both fuel consumption, and time and labor requirements by eliminating at least one individual trip over the field. Light tillage, spraying, or fertilizing operations can be combined with either primary or secondary tillage or planting operations. Tillage helps seed growth and germination through providing appropriate conditions for soil to absorb sufficient temperature and humidity. Moreover, it helps easier development of root through reducing soil penetration resistance. Tillage is a time-consuming and expensive procedure. With the application of agricultural operations, we can save substantial amounts of fuel, time and energy consumption. Conservation tillage loosens the soil without turning, but by remaining the plant left overs, stems and roots. Bulk density reflects the soil’s ability to function for structural support, water and solute movement, and soil aeration. Bulk densities above thresholds indicate impaired function. Bulk density is also used to convert between weight and volume of soil. It is used to express soil physical, chemical and biological measurements on a volumetric basis for soil quality assessment and comparisons between management systems. This increases the validity of comparisons by removing the error associated with differences in soil density at the time of sampling. The aim of conservation tillage is to fix the soil structure. This investigation was carried out considering the advantages of conservation tillage and less scientific research works on imported conservation tillage devices and those which are made inside the country

  13. A Web-based spatial decision supporting system for land management and soil conservation

    Science.gov (United States)

    Terribile, F.; Agrillo, A.; Bonfante, A.; Buscemi, G.; Colandrea, M.; D'Antonio, A.; De Mascellis, R.; De Michele, C.; Langella, G.; Manna, P.; Marotta, L.; Mileti, F. A.; Minieri, L.; Orefice, N.; Valentini, S.; Vingiani, S.; Basile, A.

    2015-07-01

    Today it is evident that there are many contrasting demands on our landscape (e.g. food security, more sustainable agriculture, higher income in rural areas, etc.) as well as many land degradation problems. It has been proved that providing operational answers to these demands and problems is extremely difficult. Here we aim to demonstrate that a spatial decision support system based on geospatial cyberinfrastructure (GCI) can address all of the above, so producing a smart system for supporting decision making for agriculture, forestry, and urban planning with respect to the landscape. In this paper, we discuss methods and results of a special kind of GCI architecture, one that is highly focused on land management and soil conservation. The system allows us to obtain dynamic, multidisciplinary, multiscale, and multifunctional answers to agriculture, forestry, and urban planning issues through the Web. The system has been applied to and tested in an area of about 20 000 ha in the south of Italy, within the framework of a European LIFE+ project (SOILCONSWEB). The paper reports - as a case study - results from two different applications dealing with agriculture (olive growth tool) and environmental protection (soil capability to protect groundwater). Developed with the help of end users, the system is starting to be adopted by local communities. The system indirectly explores a change of paradigm for soil and landscape scientists. Indeed, the potential benefit is shown of overcoming current disciplinary fragmentation over landscape issues by offering - through a smart Web-based system - truly integrated geospatial knowledge that may be directly and freely used by any end user (www.landconsultingweb.eu). This may help bridge the last very important divide between scientists working on the landscape and end users.

  14. A web based spatial decision supporting system for land management and soil conservation

    Science.gov (United States)

    Terribile, F.; Agrillo, A.; Bonfante, A.; Buscemi, G.; Colandrea, M.; D'Antonio, A.; De Mascellis, R.; De Michele, C.; Langella, G.; Manna, P.; Marotta, L.; Mileti, F. A.; Minieri, L.; Orefice, N.; Valentini, S.; Vingiani, S.; Basile, A.

    2015-02-01

    Today it is evident that there are many contrasting demands on our landscape (e.g. food security, more sustainable agriculture, higher income in rural areas, etc.) but also many land degradation problems. It has been proved that providing operational answers to these demands and problems is extremely difficult. Here we aim to demonstrate that a Spatial Decision Support System based on geospatial cyber-infrastructure (GCI) can embody all of the above, so producing a smart system for supporting decision making for agriculture, forestry and urban planning with respect to the landscape. In this paper, we discuss methods and results of a special kind of GCI architecture, one that is highly focused on soil and land conservation (SOILCONSWEB-LIFE+ project). The system allows us to obtain dynamic, multidisciplinary, multiscale, and multifunctional answers to agriculture, forestry and urban planning issues through the web. The system has been applied to and tested in an area of about 20 000 ha in the South of Italy, within the framework of a European LIFE+ project. The paper reports - as a case study - results from two different applications dealing with agriculture (olive growth tool) and environmental protection (soil capability to protect groundwater). Developed with the help of end users, the system is starting to be adopted by local communities. The system indirectly explores a change of paradigm for soil and landscape scientists. Indeed, the potential benefit is shown of overcoming current disciplinary fragmentation over landscape issues by offering - through a smart web based system - truly integrated geospatial knowledge that may be directly and freely used by any end user (http://www.landconsultingweb.eu). This may help bridge the last much important divide between scientists working on the landscape and end users.

  15. A web based spatial decision supporting system for land management and soil conservation

    Directory of Open Access Journals (Sweden)

    F. Terribile

    2015-02-01

    Full Text Available Today it is evident that there are many contrasting demands on our landscape (e.g. food security, more sustainable agriculture, higher income in rural areas, etc. but also many land degradation problems. It has been proved that providing operational answers to these demands and problems is extremely difficult. Here we aim to demonstrate that a Spatial Decision Support System based on geospatial cyber-infrastructure (GCI can embody all of the above, so producing a smart system for supporting decision making for agriculture, forestry and urban planning with respect to the landscape. In this paper, we discuss methods and results of a special kind of GCI architecture, one that is highly focused on soil and land conservation (SOILCONSWEB-LIFE+ project. The system allows us to obtain dynamic, multidisciplinary, multiscale, and multifunctional answers to agriculture, forestry and urban planning issues through the web. The system has been applied to and tested in an area of about 20 000 ha in the South of Italy, within the framework of a European LIFE+ project. The paper reports – as a case study – results from two different applications dealing with agriculture (olive growth tool and environmental protection (soil capability to protect groundwater. Developed with the help of end users, the system is starting to be adopted by local communities. The system indirectly explores a change of paradigm for soil and landscape scientists. Indeed, the potential benefit is shown of overcoming current disciplinary fragmentation over landscape issues by offering – through a smart web based system – truly integrated geospatial knowledge that may be directly and freely used by any end user (http://www.landconsultingweb.eu. This may help bridge the last much important divide between scientists working on the landscape and end users.

  16. Estimating annual soil carbon loss in agricultural peatland soils using a nitrogen budget approach.

    Directory of Open Access Journals (Sweden)

    Emilie R Kirk

    Full Text Available Around the world, peatland degradation and soil subsidence is occurring where these soils have been converted to agriculture. Since initial drainage in the mid-1800s, continuous farming of such soils in the California Sacramento-San Joaquin Delta (the Delta has led to subsidence of up to 8 meters in places, primarily due to soil organic matter (SOM oxidation and physical compaction. Rice (Oryza sativa production has been proposed as an alternative cropping system to limit SOM oxidation. Preliminary research on these soils revealed high N uptake by rice in N fertilizer omission plots, which we hypothesized was the result of SOM oxidation releasing N. Testing this hypothesis, we developed a novel N budgeting approach to assess annual soil C and N loss based on plant N uptake and fallow season N mineralization. Through field experiments examining N dynamics during growing season and winter fallow periods, a complete annual N budget was developed. Soil C loss was calculated from SOM-N mineralization using the soil C:N ratio. Surface water and crop residue were negligible in the total N uptake budget (3 - 4 % combined. Shallow groundwater contributed 24 - 33 %, likely representing subsurface SOM-N mineralization. Assuming 6 and 25 kg N ha-1 from atmospheric deposition and biological N2 fixation, respectively, our results suggest 77 - 81 % of plant N uptake (129 - 149 kg N ha-1 was supplied by SOM mineralization. Considering a range of N uptake efficiency from 50 - 70 %, estimated net C loss ranged from 1149 - 2473 kg C ha-1. These findings suggest that rice systems, as currently managed, reduce the rate of C loss from organic delta soils relative to other agricultural practices.

  17. Economic Potential of Greenhouse Gas Emission Reductions: Comparative Role for Soil Sequestration in Agriculture and Forestry

    OpenAIRE

    McCarl, Bruce A.; U. Schneider; Murray, B.; Williams, J; Sands, R.

    2001-01-01

    The authors use the Agricultural Sector Model to analyze the economic potential of soil carbon sequestration as one of several agricultural greenhouse gas emission mitigation strategies, including afforestation. For low incentives on carbon emission savings, agricultural soil carbon sequestration is the most cost-efficient strategy. As incentive levels increase above $50 per ton of carbon equivalent, afforestation and biofuel production become the key strategies, while the role of soil carbon...

  18. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application

    NARCIS (Netherlands)

    Ho, A.; Reim, A.; Kim, S.Y.; Meima-Franke, M.; Termorshuizen, Aad J; De Boer, W.; Van der Putten, W.H.; Bodelier, P.L.E.

    2015-01-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing and even

  19. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application

    NARCIS (Netherlands)

    Ho, A.; Reim, A.; Kim, S.; Meima-Franke, M.; Termorshuizen, A.; Boer, de W.; Putten, van der W.H.; Bodelier, P.

    2015-01-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and eve

  20. Use of Trichoderma spp.on soil microbiology improvement for organic agriculture in Costa Rica

    Institute of Scientific and Technical Information of China (English)

    Miguel Obregón-Gómez

    2004-01-01

    @@ The soil is a complex system where processes have direct influence on crop nutrition and plant health.Unfortunately, most of the agricultural soil management practices, compact them producing poor oxygenation, low benefic microorganism populations and metabolic disorders in plants.

  1. Soil organic carbon fractionation for improving agricultural soil quality diagnosis in different management practices.

    Science.gov (United States)

    Trigalet, Sylvain; Chartin, Caroline; Kruger, Inken; Carnol, Monique; Van Oost, Kristof; van Wesemael, Bas

    2016-04-01

    Preserving ecosystem functions of soil organic matter (SOM) in soils is a key challenge. The need for an efficient diagnosis of SOM state in agricultural soils is a priority in order to facilitate the detection of changes in soil quality as a result of changes in management practices. The nature of SOM is complex and cannot readily be monitored due to the heterogeneity of its components. Assessment of the SOM level dynamics, typically characterized as the bulk soil organic carbon (SOC), can be refined by taking into account carbon pools with different turnover rates and stability. Fractionating bulk SOC in meaningful soil organic fractions helps to better diagnose SOC status. By separating carbon associated with clay and fine silt particles (stable carbon with slow turnover rate) and carbon non-associated with this fraction (labile and intermediate carbon with higher turnover rates), effects of management can be detected more efficiently at different spatial and temporal scales. Until now, most work on SOC fractionation has focused on small spatial scales along management or time gradients. The present case study focuses on SOC fractionation applied in order to refine the interpretation of organic matter turnover and SOC sequestration for regional units in Wallonia with comparable climate, management and, to a certain extent, soil conditions. In each unit, random samples from specific land uses are analyzed in order to assess the Normal Operative Ranges (NOR) of SOC fraction contents for each unit and land use combination. Thus, SOC levels of the different fractions of a specific field in a given unit can be compared to its corresponding NOR. It will help to better diagnose agricultural soil quality in terms of organic carbon compared to a bulk SOC diagnosis.

  2. Agricultural soils – a fundamental common good in urban areas: a strategy for recovering their identity'

    OpenAIRE

    Freire, Maria; Ramos, Isabel

    2014-01-01

    Good agricultural soils are a scarce and exhaustible resource, essential for providing regular food production to societies and to the idea of sustainability. The protection of these soils is particularly important in Mediterranean landscapes, where there are strong natural and cultural contrasts and the fertility of land is based mostly on human activity. In Portugal, law protects soils since the early 1970s and in 1982 good agricultural soils were classified and safeguarded by law as Nat...

  3. Can conservation trump impacts of climate change on soil erosion? An assessment from winter wheat cropland in the Southern Great Plains of the United States

    Directory of Open Access Journals (Sweden)

    Jurgen D. Garbrecht

    2015-12-01

    Full Text Available With the need to increase crop production to meet the needs of a growing population, protecting the productivity of our soil resource is essential. However, conservationists are concerned that conservation practices that were effective in the past may no longer be effective in the future under projected climate change. In winter wheat cropland in the Southern Great Plains of the U.S., increased precipitation intensity and increased aridity associated with warmer temperatures may pose increased risks of soil erosion from vulnerable soils and landscapes. This investigation was undertaken to determine which conservation practices would be necessary and sufficient to hold annual soil erosion by water under a high greenhouse gas emission scenario at or below the present soil erosion levels. Advances in and benefits of agricultural soil and water conservation over the last century in the United States are briefly reviewed, and challenges and climate uncertainties confronting resource conservation in this century are addressed. The Water Erosion Prediction Project (WEPP computer model was used to estimate future soil erosion by water from winter wheat cropland in Central Oklahoma and for 10 projected climates and 7 alternative conservation practices. A comparison with soil erosion values under current climate conditions and conventional tillage operations showed that, on average, a switch from conventional to conservation tillage would be sufficient to offset the average increase in soil erosion by water under most projected climates. More effective conservation practices, such as conservation tillage with a summer cover crop would be required to control soil erosion associated with the most severe climate projections. It was concluded that a broad range of conservation tools are available to agriculture to offset projected future increases in soil erosion by water even under assumed worst case climate change scenarios in Central Oklahoma. The problem

  4. Heavy metal contamination and source in arid agricultural soil in central Gansu Province, China

    Institute of Scientific and Technical Information of China (English)

    LI Yu; GOU Xin; WANG Gang; ZHANG Qiang; SU Qiong; XIAO Guoju

    2008-01-01

    Concentrations of copper (Cu), lead (Pb), chromium (Cr), mercury (Hg), and arsenic (As) were measured in arid agricultural and irrigated agricultural soils collected in Daba Village, Shajiawuan Village, Gangou Village and Sifangwu Village, located in central Gansu Province, China. Concentrations except Hg and Pb were lower than the background values in grey calcareous soil in the selected arid agricultural soils. Pb concentration exceeded the threshold of arid agricultural soils in China by 72. 46%. These results showed that there was indeed serious pollution with Pb, a slight pollution problem for other selected metals in the irrigated agricultural soils in Daba Village. Principal component analysis (PCA) was used to assess the soil data, applying varimax rotation with Kaiser Normalization. The result showed that the irrigated factor, agricultural factor and anthropogenic factor all contributed to the relations between selected chemical properties. The main factor of accumulation of Cu, Pb, Cr, Hg and As was lithological factor in arid agricultural areas. There is a striking dissimilarity of origin of Cu, Pb, Cr, Hg and As in agricultural soil between the irrigate agriculture and arid agriculture.

  5. PHYSICO-CHEMICAL ASSESSMENT OF AGRICULTURAL POLLUTION ON GROUNDWATER AND SOIL QUALITY IN AN AGRICULTURAL FARM (NORTH EASTERN MOROCCO

    Directory of Open Access Journals (Sweden)

    S. Fetouani

    2013-11-01

    Full Text Available To ensure sustainable food security, Morocco gives priority to agricultural and rural development by promoting investment in agricultural sector and use of intensification factors to improve incomes in rural areas. The Triffa irrigated perimeter is one of the oldest and the most productive in the country thanks to the Mohammed the V dam activity and the beginning of agricultural development intensification. Although this intensification has a positive effect on agricultural yields, it has negative impacts on soil and generatesgroundwater quality degradation. Indeed, recent studies performed in this area by us and Bendra (Fetouani et al., 2008; Bendra et al, 2012 have mentioned the existence of salinity problems, nitric groundwater pollution and soils salinization. This degradation is caused essentially by intensive use of agrochemicals, including nitrogen fertilizers and pesticides, and non-control of irrigation and cultivated plots drainage. However, a degradation of groundwater and soil quality is not without risk to Human health. Having a global vision about situation of groundwater and soil quality in the Triffa plain we have decided to deepen this theme to a local scale and to study in details the impact of intensive agriculture on groundwater and soil quality in a farm, located in the centre of the Triffa plain.To sum up the results of this study the state of soil quality in the farm is not alarming. However, the groundwater quality is mainly dramatic, because it is a receptacle of all the nutrients applied on the surface, especially nitrates.

  6. Influence of Conservation Tillage on Soil Aggregates Features in North China Plain

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Tillage greatly influences the aggregation and stability of soil aggregates. This study investigated the effects of conservation tillage on soil aggregate characteristics. During a four-year study period (2001-2005), soils were sampled from no-tillage (NT), rotary tillage (RT), and conventional tillage (moldboard tillage, CT) plots at the Luancheng Agriculture and Ecology Experimental Station in Hebei Province, China, and the amount, size distribution, and fractal dimension of the aggregates were examined by dry and wet sieving methods. The results indicated that NT significantly increased the topsoil (0-5 cm) bulk density (BD), while RT maintained a lower BD as CT. Dry sieving results showed that NT had higher macro-aggregate content (R0.25), and a larger mean weight diameter (MWD) and geometric mean diameter (GMD) than other treatments in the 0-10 cm layer, while RT showed no difference from CT. In wet sieving, results showed that most of the aggregates were unstable, and the MWD and GMD of water-table aggregates showed the trend of NT > RT > CT. At 0-5 cm layer, the fractal dimension (D) of water-stable aggregates under NT was lower than it was under RT and CT. At 5-10 em, RT yielded the highest D, and showed stability. After four years, NT increased the aggregation and the stability of soil aggregates; while due to intense disturbance, the aggregation and stability of the upper layer (0-10 cm) under RT and CT decreased.

  7. 77 FR 12234 - Changes in Hydric Soils Database Selection Criteria

    Science.gov (United States)

    2012-02-29

    .... Department of Agriculture, Soil Conservation Service, June 1991 (see also 60 FR 10349). These changes do not... Agriculture, Soil Conservation Service, June 1991 (see also 60 FR 10349). These changes do not cause any...; ] DEPARTMENT OF AGRICULTURE Natural Resources Conservation Service Changes in Hydric Soils Database...

  8. Regional estimates of ecological services derived from U.S. Department of Agriculture conservation programs in the Mississippi Alluvial Valley

    Science.gov (United States)

    Faulkner, Stephen P.; Baldwin, Michael J.; Barrow, Wylie C.; Waddle, Hardin; Keeland, Bobby D.; Walls, Susan C.; James, Dale; Moorman, Tom

    2010-01-01

    The Mississippi Alluvial Valley (MAV) is the Nation?s largest floodplain and this once predominantly forested ecosystem provided significant habitat for a diverse flora and fauna, sequestered carbon in trees and soil, and stored floodwater, sediments, and nutrients within the floodplain. This landscape has been substantially altered by the conversion of nearly 75% of the riparian forests, predominantly to agricultural cropland, with significant loss and degradation of important ecosystem services. Large-scale efforts have been employed to restore the forest and wetland resources and the U.S. Department of Agriculture (USDA) Wetlands Reserve Program (WRP) and Conservation Reserve Program (CRP) represent some of the most extensive restoration programs in the MAV. The objective of the WRP is to restore and protect the functions and values of wetlands in agricultural landscapes with an emphasis on habitat for migratory birds and wetland-dependent wildlife, protection and improvement of water quality, flood attenuation, ground water recharge, protection of native flora and fauna, and educational and scientific scholarship.

  9. Construction and Application of Soil Erosion Control and Circular Agriculture Mode in Hilly Red Soil of Southern China

    Institute of Scientific and Technical Information of China (English)

    Boqi WENG; Zhenmei ZHONG; Xuhui LUO; Zhaoyang YING; Yixiang WANG; Jing YE

    2012-01-01

    Abstract [Objective] The paper was to construct agriculture mode in hilly red [Method] The cause of soil soil of southern China, erosion in hilly red so soil erosion control and circular and analyze its application effort. of southern China and the rea- son for long-term treatment without remarkable effort were analyzed. On this basis, the key technology, economic benefit, ecological service function and carbon se- questration sink enhancement effect of various modes were further analyzed. [Result] The basic idea for comprehensive control of hilly soil erosion in southern China was as follows: the control of soil erosion was combined with modern agricultural produc- tion, in order to build "fruit (tea)-grass-livestock-methane" circular agriculture mode with comprehensive control of soil erosion; application effect analysis showed that the establishment of circular agriculture mode in southern hilly area to control soil erosion ~lad remarkable effect, which could simultaneously meet the coordinated de- velopment of ecological, economic and social benefits. [Conclusion] This study estab- lished an effective mode suitable for soil erosion control and agricultural protection development in southern red soil mountain, which could drive the sustainable devel- opment of ecological restoration of mountainous area and rural agricultural economy.

  10. Effects of agricultural intensification in the tropics on soil carbon losses and soil fertility

    Science.gov (United States)

    Guillaume, Thomas; Buttler, Alexandre; Kuzyakov, Yakov

    2016-04-01

    Tropical forest conversion to agricultural land leads to strong decrease of soil organic carbon (SOC). Nonetheless, the impacts of SOC losses on soil fertility remain unclear. We quantified SOC losses in forest, oil palm plantations, extensive rubber plantations and rubber monocultures on Sumatra Island (Indonesia). Furthermore, we assessed the response of biological (basal respiration, microbial biomass, acid phosphatase) and chemical fertility indicators (light fraction of OM, DOC, total N, available P) to SOC losses. We used a new approach based on (non-)linear regressions between SOC losses and the indicators, normalized to natural ecosystem values, to assess the sensitivity or resistance of fertility indicators to SOC losses. Carbon contents in the Ah horizon under oil palm and intensive rubber plantations were strongly reduced: up to 70% and 62%, respectively. The decrease was lower under extensive rubber (41%). The negative impact of land-use changes on all measured indicators increased in the following sequence: extensive rubber agricultural intensification. Therefore, this method is appropriate to evaluate the environmental impacts associated with various scenarios of agricultural intensification in tropical regions, but needs also to be tested in different tropical climate and soil (mineral vs organic) conditions.

  11. Effects of agricultural intensification in the tropics on soil carbon losses and soil fertility

    Science.gov (United States)

    Guillaume, Thomas; Buttler, Alexandre; Kuzyakov, Yakov

    2016-04-01

    Tropical forest conversion to agricultural land leads to strong decrease of soil organic carbon (SOC). Nonetheless, the impacts of SOC losses on soil fertility remain unclear. We quantified SOC losses in forest, oil palm plantations, extensive rubber plantations and rubber monocultures on Sumatra Island (Indonesia). Furthermore, we assessed the response of biological (basal respiration, microbial biomass, acid phosphatase) and chemical fertility indicators (light fraction of OM, DOC, total N, available P) to SOC losses. We used a new approach based on (non-)linear regressions between SOC losses and the indicators, normalized to natural ecosystem values, to assess the sensitivity or resistance of fertility indicators to SOC losses. Carbon contents in the Ah horizon under oil palm and intensive rubber plantations were strongly reduced: up to 70% and 62%, respectively. The decrease was lower under extensive rubber (41%). The negative impact of land-use changes on all measured indicators increased in the following sequence: extensive rubber changes and consequently, can be used to assess their resistance to agricultural intensification. Therefore, this method is appropriate to evaluate the environmental impacts associated with various scenarios of agricultural intensification in tropical regions, but needs also to be tested in different tropical climate and soil (mineral vs organic) conditions.

  12. Potential of Biological Agents in Decontamination of Agricultural Soil.

    Science.gov (United States)

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation. PMID:27293964

  13. Potential of Biological Agents in Decontamination of Agricultural Soil

    Science.gov (United States)

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation. PMID:27293964

  14. Potential of Biological Agents in Decontamination of Agricultural Soil

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif Javaid

    2016-01-01

    Full Text Available Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation.

  15. Analysis of Coupling between Soil and Water Conservation and Economic-social Development

    Institute of Scientific and Technical Information of China (English)

    Sun Xihua; Zhang Daimin; Wan Han; Chen Tingting; Yan Fujiang

    2009-01-01

    The coupling relation exists in water and soil conservation and economic-social development.The article analyses the relation of soil and water conservation and economic-social development stages as well as the coupling analytical method.Then calculates the expecting income by dispersing Markov decision and calculates the correlation coefficient and the relationship degree.The article obtains the relationship of soil and water conservation investments and all kinds of incomes.Finally,it analyzes the important meaning in socio-economic development of water and soil conservation.

  16. Application of food industry waste to agricultural soils mitigates green house gas emissions.

    Science.gov (United States)

    Rashid, M T; Voroney, R P; Khalid, M

    2010-01-01

    Application of organic waste materials such as food processing and serving industry cooking oil waste (OFW) can recycle soil nitrate nitrogen (NO(3)-N), which is otherwise prone to leaching after the harvest of crop. Nitrogen (N) recycling will not only reduce the amount of N fertilizer application for corn crop production but is also expected to mitigate green house gas (GHG) emissions by saving energy to be used for the production of the same amount of industrial fertilizer N required for the growth of corn crop. Application of OFW at 10Mg solid ha(-1)y(-1) conserved 68 kg N ha(-1)y(-1) which ultimately saved 134 L diesel ha(-1)y(-1), which would otherwise be used for the production of fertilizer N as urea. Average fossil energy substitution value (FESV) of N conserved/recycled was calculated to be 93 US$ ha(-1)y(-1), which is about 13 million US$y(-1). Potential amount of GHG mitigation through the application of OFW to agricultural soils in Canada is estimated to be 57 Gg CO(2)Eq y(-1).

  17. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents

    Science.gov (United States)

    Karup, Dan; Moldrup, Per; Paradelo, Marcos; Katuwal, Sheela; Norgaard, Trine; Greve, Mogens H.; de Jonge, Lis W.

    2016-09-01

    Solute transport through the soil matrix is non-uniform and greatly affected by soil texture, soil structure, and macropore networks. Attempts have been made in previous studies to use infiltration experiments to identify the degree of preferential flow, but these attempts have often been based on small datasets or data collected from literature with differing initial and boundary conditions. This study examined the relationship between tracer breakthrough characteristics, soil hydraulic properties, and basic soil properties. From six agricultural fields in Denmark, 193 intact surface soil columns 20 cm in height and 20 cm in diameter were collected. The soils exhibited a wide range in texture, with clay and organic carbon (OC) contents ranging from 0.03 to 0.41 and 0.01 to 0.08 kg kg- 1, respectively. All experiments were carried out under the same initial and boundary conditions using tritium as a conservative tracer. The breakthrough characteristics ranged from being near normally distributed to gradually skewed to the right along with an increase in the content of the mineral fines (particles ≤ 50 μm). The results showed that the mineral fines content was strongly correlated to functional soil structure and the derived tracer breakthrough curves (BTCs), whereas the OC content appeared less important for the shape of the BTC. Organic carbon was believed to support the stability of the soil structure rather than the actual formation of macropores causing preferential flow. The arrival times of 5% and up to 50% of the tracer mass were found to be strongly correlated with volumetric fines content. Predicted tracer concentration breakthrough points as a function of time up to 50% of applied tracer mass could be well fitted to an analytical solution to the classical advection-dispersion equation. Both cumulative tracer mass and concentration as a function of time were well predicted from the simple inputs of bulk density, clay and silt contents, and applied tracer

  18. Use of advanced information technologies for water conservation on salt-affected soils

    Science.gov (United States)

    Water conservation on arid and semi-arid soils must be done with constant and careful consideration of the distribution of salinity across the landscape and through the soil profile. Soil salinity can be managed through leaching and the application of various soil amendments. The field-scale manag...

  19. An examination of soil and water conservation practices in the paddy fields of Guilan province, Iran.

    Science.gov (United States)

    Ashoori, Daryoush; Bagheri, Asghar; Allahyari, Mohammad S; Al-Rimawi, Ahmad S

    2016-06-01

    This study examined the use of soil and water conservation (SWC) practices among rice farmers in Iran. A random sample of 400 rice paddy farmers in the Foumanat plain of Guilan province, who use SWC measures, was drawn from a population of 52 thousand farmers. A two-part questionnaire was used to examine the level of utilization of SWC practices and to profile paddy farmers. Internal consistency was demonstrated with a coefficient alpha of 0.76, and the content and face validity of the instrument was confirmed by a panel of soil and water experts. Descriptive and analytical statistics were used to analyze the data. Results of ANOVA indicated that the mean levels of SWC practices vary considerably at the 0.01 level of significance by groups of age, education, non-agricultural income, production costs, yield, cultivated paddies and distance from home to the farm or to the main road. Similarly, significant differences were observed by groups of family size, rice production, ownership of livestock and profits from rice production at 0.05 level. The levels of experience in agriculture and ownership of poultry were found to have no significant effects on SWC practices. PMID:27276379

  20. Environmental change: prospects for conservation and agriculture in a southwest Australia biodiversity hotspot

    Directory of Open Access Journals (Sweden)

    Neil E. Pettit

    2015-09-01

    Full Text Available Accelerating environmental change is perhaps the greatest challenge for natural resource management; successful strategies need to be effective for decades to come. Our objective is to identify opportunities that new environmental conditions may provide for conservation, restoration, and resource use in a globally recognized biodiversity hotspot in southwestern Australia. We describe a variety of changes to key taxonomic groups and system-scale characteristics as a consequence of environmental change (climate and land use, and outline strategies for conserving and restoring important ecological and agricultural characteristics. Opportunities for conservation and economic adaptation are substantial because of gradients in rainfall, temperature, and land use, extensive areas of remnant native vegetation, the ability to reduce and ameliorate areas affected by secondary salinization, and the existence of large national parks and an extensive network of nature reserves. Opportunities presented by the predicted environmental changes encompass agricultural as well as natural ecosystems. These may include expansion of aquaculture, transformation of agricultural systems to adapt to drier autumns and winters, and potential increases in spring and summer rain, carbon-offset plantings, and improving the network of conservation reserves. A central management dilemma is whether restoration/preservation efforts should have a commercial or biodiversity focus, and how they could be integrated. Although the grand challenge is conserving, protecting, restoring, and managing for a future environment, one that balances economic, social, and environmental values, the ultimate goal is to establish a regional culture that values the unique regional environment and balances the utilization of natural resources against protecting remaining natural ecosystems.

  1. What are the effects of agricultural management on soil organic carbon (SOC) stocks?

    DEFF Research Database (Denmark)

    Söderström, Bo; Hedlund, Katarina; Jackson, Louise E.;

    2014-01-01

    the physical and biological properties of the soil. Intensification of agriculture and land-use change from grasslands to croplands are generally known to deplete SOC stocks. The depletion is exacerbated through agricultural practices with low return of organic material and various mechanisms......Changes in soil organic carbon (SOC) stocks significantly influence the atmospheric C concentration. Agricultural management practices that increase SOC stocks thus may have profound effects on climate mitigation. Additional benefits include higher soil fertility since increased SOC stocks improve...... not only nationally in Sweden, but also internationally, for promoting long-term sustainable management of soils and mitigating climate change....

  2. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application.

    Science.gov (United States)

    Ho, Adrian; Reim, Andreas; Kim, Sang Yoon; Meima-Franke, Marion; Termorshuizen, Aad; de Boer, Wietse; van der Putten, Wim H; Bodelier, Paul L E

    2015-10-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over 2 months. Unexpectedly, after amendments with specific residues, we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotroph population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus may facilitate methane oxidation in the agricultural soils. While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that methane oxidation rate can be stimulated, leading to higher soil methane uptake. Hence, even if agriculture exerts an adverse impact on soil methane uptake, implementing carefully designed management strategies (e.g. repeated application of specific residues) may

  3. Soils - SOILS_STATSGO_IN: Soil Associations in Indiana (U.S. Dept. of Agriculture, 1:250,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Natural Resources Conservation Service, STATSGO metadata reports- "This data set is a digital general soil association map developed by the National Cooperative...

  4. Soil Tillage Conservation and its Effect on Erosion Control, Water Management and Carbon Sequestration

    Directory of Open Access Journals (Sweden)

    MORARU Paula Ioana

    2010-12-01

    Full Text Available Nowadays, internationally is unanimous accepted the fact that global climatic changes are the results of humanintervention in the bio-geo-chemical water and material cycle, and the sequestration of carbon in soil is considered animportant intervention to limit these changes. Carbon sequestration in soil is net advantageous, improving theproductivity and sustainability. The more the organic content in soil is higher the better soil aggregation is. The soilwithout organic content is compact. This reduces its capacity to infiltrate water, nutrients solubility and productivity,and that way it reduces the soil capacity for carbon sequestration. Also it raises soil vulnerability to erosion throughwater and wind. Presently a change it is necessary concerning the concept of conservation practices and a newapproach regarding the control of erosion. The real conservation of soil must be expanded beyond the traditionalunderstanding of soil erosion. The real soil conservation is represented by carbon management. We need to focus toanother level concerning conservation by focusing on the soil quality. Carbon management is necessary for a complexof matters including soil, water management, field productivity, biological fuel and climatic change. Profound researchis necessary in order to establish the carbon sequestration practices and their implementation impact. Soil oxygen andcarbon dioxide concentration dynamics can be continuously monitored in the present using new generation of sensorsavailable. Systems for soil gas measurements offer crucial information regarding production, consume, and transport ofgas, with major implications in quantitative and qualitative evaluation of soil respiration and soil aeration.

  5. Multivariate-Statistical Assessment of Heavy Metals for Agricultural Soils in Northern China

    OpenAIRE

    Pingguo Yang; Miao Yang; Renzhao Mao; Hongbo Shao

    2014-01-01

    The study evaluated eight heavy metals content and soil pollution from agricultural soils in northern China. Multivariate and geostatistical analysis approaches were used to determine the anthropogenic and natural contribution of soil heavy metal concentrations. Single pollution index and integrated pollution index could be used to evaluate soil heavy metal risk. The results show that the first factor explains 27.3% of the eight soil heavy metals with strong positive loadings on Cu, Zn, and C...

  6. Evaluation on Heavy Metal Pollution of Soil in Pollution-free Agricultural Product Bases in Guangxi

    Institute of Scientific and Technical Information of China (English)

    Minjun; DENG; Yan; LUO

    2014-01-01

    Using data of 6 pollution-free agricultural product bases in Guangxi Zhuang Autonomous Region,this paper analyzed content of heavy metals,including arsenic(As),mercury(Hg),lead(Pb),cadmium(Cd),and chromium(Cr) in soil.After Pb,Cd,Cr,Hg and As content in soil is determined,it evaluated the pollution of soil using single factor pollution index method and Nemerow synthetic pollution index method in combination with evaluation standard of heavy metals in soil and grading standard for soil pollution.Analysis results indicate that As,Hg,Pb,Cd,Cr content is different in pollution-free agricultural product bases,but all conform to related standards and there is no standard exceeding problem.It is concluded that the quality of soil in pollution-free agricultural product bases is excellent,not polluted and completely meet requirements of evaluation standards,and suitable for developing pollution-free agricultural products.

  7. Linking trace metals and agricultural land use in volcanic soils--a multivariate approach.

    Science.gov (United States)

    Parelho, C; Rodrigues, A S; Cruz, J V; Garcia, P

    2014-10-15

    The concern about the environmental impacts caused by agriculture intensification is growing as large amounts of nutrients and contaminants are introduced into soil ecosystems. Volcanic soils are unique naturally fertile resources extensively used for agricultural purposes, with particular physical and chemical properties that may result in possible accumulation of toxic substances, such as metals. Within this particular geological context, the present study aims to evaluate the impact of different agricultural systems (conventional, traditional and organic) in trace metal (TM) soil pollution and define the tracers for each one. Physicochemical properties and TM contents in agricultural topsoils were determined. Enrichment Factors (EF) were calculated to distinguish geogenic and anthropogenic contribution to TM contents in agricultural soils. An ensemble of multivariate statistical analyses (PCA and FDA) was performed to reduce the multidimensional space of variables and samples, thus defining a set of TM as tracers of distinct agricultural farming systems. Results show that agricultural soils have low organic matter content (30%); in addition, electric conductivity in conventional farming soils is higher (262.3 ± 162.6 μS cm(-1)) while pH is lower (5.8 ± 0.3). Regarding metal inputs, V, Ba and Hg soil contents are mainly of geogenic origin, while Li, P, K, Cr, Mn, Ni, Cu, Zn, As, Mo, Cd and Pb result primarily from anthropogenic inputs. Li revealed to be a tracer of agricultural pollution in conventional farming soils, whereas V allowed the discrimination of traditional farming soils. This study points to agriculture as a diffuse source of anthropogenic TM soil pollution and is the first step to identify priority chemicals affecting agricultural Andosols. PMID:25093299

  8. Conservation program works as an alternative irrigation districts in sustainable water management of agricultural use

    Directory of Open Access Journals (Sweden)

    Víctor Manuel Peinado Guevara

    2012-05-01

    Full Text Available Water scarcity is an issue of worldwide concern since it is already having an impact on social development. Mexico is not an exception to this problem because in several regions of the country are great difficulties in supplying water, primarily for agricultural use. In Sinaloa, it had been mentioned repeatedly by the media that in the Irrigation District 063, located in the northern of the state, there are problems of water scarcity, and yet there still exist difficulties in conserving the resource. More than 49% of the water used for agriculture is wasted. To resolve this problem, producers and government agencies spend significant resources for investment in water conservation. However, the results have not been entirely satisfactory because the waste is high, a situation that motivates them to study more deeply the main weaknesses that affect sustainable resource use. Farmer’s participation in the administration of water infrastructure is important, as well as providing financial resources for the conservation of water system; and participation in activities of construction and repaired of water infrastructure. Farmer’s should also plan and design strategies for water conservation. This situation requires an appropriate level of technology and intellectual, rather than local producers and thus no complicated sustainable resource management. That is what local producers don’t have and therefore it complicates the sustainable management of the resource.

  9. Non-growing season nitrous oxide fluxes from agricultural soils

    Science.gov (United States)

    Kariyapperuma Athukoralage, Kumudinie

    A two-year field experiment was conducted at the Arkell Research Station, Ontario, Canada to evaluate composting as a mitigation strategy for greenhouse gases (GHGs). The objectives were to quantify and compare non-growing season nitrous oxide (N2O) fluxes from agricultural soils after fall manure application of composted and untreated liquid swine manure. Nitrous oxide fluxes were measured using a micrometeorological method. Compared to untreated liquid swine manure (LSM), composted swine manure (CSM) resulted in 57% reduction of soil N2O emissions during February to April in 2005, but emissions during the same period in 2006 were not affected by treatments. This effect was related to fall and winter weather conditions with the significant reduction occurring in the year when soil freezing was more pronounced. The DNDC (DeNitrification-DeComposition) model was tested against data measured during the non-growing seasons from 2000 to 2004, for farming with conventional management at the Elora Research Station, Ontario, Canada. The objective was to assess the ability of the DNDC model to simulate non-growing season N2O fluxes from soils in southwestern Ontario. Comparison between model-simulated and measured data indicated that background fluxes were relatively well predicted. The spring thaw N2O flux event was correctly timed by the DNDC model, but was smaller than the measured spring thaw event. Though there was no N2O emission event measured in early May, the DNDC model predicted a large event, simultaneous with the physical release of predicted ice-trapped N2O. Removing the large and late predicted emission peak and increasing the contribution of newly produced N2O due to denitrification to the early spring thaw event were proposed. Three data sets from studies conducted in Ontario, Canada were used to estimate and compare the overall GHG (N2O and methane) emissions from LSM and CSM. Compared to LSM storage, the composting process reduced GHG emissions by 35% (CO

  10. Effects of 24 Years of Conservation Tillage Systems on Soil Organic Carbon and Soil Productivity

    Directory of Open Access Journals (Sweden)

    Kenneth R. Olson

    2013-01-01

    Full Text Available The 24-year study was conducted in southern Illinois (USA on land similar to that being removed from Conservation Reserve Program (CRP to evaluate the effects of conservation tillage systems on: (1 amount and rates of soil organic carbon (SOC storage and retention, (2 the long-term corn and soybean yields, and (3 maintenance and restoration of soil productivity of previously eroded soils. The no-till (NT plots did store and retain 7.8 Mg C ha−1 more and chisel plow (CP −1.6 Mg C ha−1 less SOC in the soil than moldboard plow (MP during the 24 years. However, no SOC sequestration occurred in the sloping and eroding NT, CP, and MP plots since the SOC level of the plot area was greater at the start of the experiment than at the end. The NT plots actually lost a total of −1.2 Mg C ha−1, the CP lost −9.9 Mg C ha−1, and the MP lost −8.2 Mg C ha−1 during the 24-year study. The long-term productivity of NT compared favorably with that of MP and CP systems.

  11. Comparison among monitoring strategies to assess water flow dynamic and soil hydraulic properties in agricultural soils

    Directory of Open Access Journals (Sweden)

    Javier Valdes-Abellan

    2015-03-01

    Full Text Available Abstract Irrigated agriculture is usually performed in semi-arid regions despite scarcity of water resources. Therefore, optimal irrigation management by monitoring the soil is essential, and assessing soil hydraulic properties and water flow dynamics is presented as a first measure. For this purpose, the control of volumetric water content, θ, and pressure head, h, is required. This study adopted two types of monitoring strategies in the same experimental plot to control θ and h in the vadose zone: i non-automatic and more time-consuming; ii automatic connected to a datalogger. Water flux was modelled with Hydrus-1D using the data collected from both acquisition strategies independently (3820 daily values for the automatic; less than 1000 for the non-automatic. Goodness-of-fit results reported a better adjustment in case of automatic sensors. Both model outputs adequately predicted the general trend of θ and h, but with slight differences in computed annual drainage (711 mm and 774 mm. Soil hydraulic properties were inversely estimated from both data acquisition systems. Major differences were obtained in the saturated volumetric water content, θs, and the n and α van Genuchten model shape parameters. Saturated hydraulic conductivity, Ks, shown lower variability with a coefficient of variation range from 0.13 to 0.24 for the soil layers defined. Soil hydraulic properties were better assessed through automatic data acquisition as data variability was lower and accuracy was higher.

  12. Proximal Soil Sensing – A Contribution for Species Habitat Distribution Modelling of Earthworms in Agricultural Soils?

    Science.gov (United States)

    Schirrmann, Michael; Joschko, Monika; Gebbers, Robin; Kramer, Eckart; Zörner, Mirjam; Barkusky, Dietmar; Timmer, Jens

    2016-01-01

    Background Earthworms are important for maintaining soil ecosystem functioning and serve as indicators of soil fertility. However, detection of earthworms is time-consuming, which hinders the assessment of earthworm abundances with high sampling density over entire fields. Recent developments of mobile terrestrial sensor platforms for proximal soil sensing (PSS) provided new tools for collecting dense spatial information of soils using various sensing principles. Yet, the potential of PSS for assessing earthworm habitats is largely unexplored. This study investigates whether PSS data contribute to the spatial prediction of earthworm abundances in species distribution models of agricultural soils. Methodology/Principal Findings Proximal soil sensing data, e.g., soil electrical conductivity (EC), pH, and near infrared absorbance (NIR), were collected in real-time in a field with two management strategies (reduced tillage / conventional tillage) and sandy to loam soils. PSS was related to observations from a long-term (11 years) earthworm observation study conducted at 42 plots. Earthworms were sampled from 0.5 x 0.5 x 0.2 m³ soil blocks and identified to species level. Sensor data were highly correlated with earthworm abundances observed in reduced tillage but less correlated with earthworm abundances observed in conventional tillage. This may indicate that management influences the sensor-earthworm relationship. Generalized additive models and state-space models showed that modelling based on data fusion from EC, pH, and NIR sensors produced better results than modelling without sensor data or data from just a single sensor. Regarding the individual earthworm species, particular sensor combinations were more appropriate than others due to the different habitat requirements of the earthworms. Earthworm species with soil-specific habitat preferences were spatially predicted with higher accuracy by PSS than more ubiquitous species. Conclusions/Significance Our

  13. Nitrogen fertilisation of durum wheat: a case study in Mediterranean area during transition to conservation agriculture

    Directory of Open Access Journals (Sweden)

    Angelica Galieni

    2016-03-01

    Full Text Available Nitrogen (N nutrition plays a key role for high yields and quality in durum wheat (Triticum turgidum L. subsp. durum (Desf. Husn; in Mediterranean environments, data regarding N fertilisation management during the transition phase to conservation agriculture (CA are limited. The aim of this work was to study the effects of N fertiliser forms and rates on yield and some quality traits of durum wheat, during the transition period to CA in Mediterranean areas; moreover, indication on the recommendable N form/rate combinations have been given. Field trials were carried out in south of Italy, during the first two years of transition to CA (from 2010 to 2012 in a durum wheat-based rotation. Following a split-plot design arranged on a randomised complete blocks with three replications, two N forms (main plots - urea and calcium nitrate - and four N rates (sub-plots - 50, 100, 150 and 200 kg N ha–1 - plus an un-fertilised Control, were compared. The following parameters were analysed: grain yield, N-input efficiency, grains protein concentration (GPC, total gluten, gluten fractions and minerals concentration in kernels. Calcium nitrate gave the highest yield (4.48 t ha–1, as predicted by the quadratic model, at 146 kg N ha–1, on average. This was particularly noticeable in 2012, when the distribution of rainfall and temperatures regimes as well as residues’ status could have favoured such N-form. These results were confirmed by the observed higher values of all indices describing N-input efficiency. High GPC values (14.8% were predicted at slightly higher N-rates (173 kg N ha–1, averaging both N forms. In particular, gluten proteins and glutenin/gliadin ratio accrued as the N doses increased, reaching the highest values at 150 kg N ha–1, also positively affecting the quality of durum wheat flour. Iron and zinc concentrations were noticeably increased (38% and 37% on average by N supply, probably due to the enhanced water use efficiency under

  14. Comparison of the Alkali Marsh Soil and Agriculture Soil on Nutrient Retentionin Western Jilin, China

    Institute of Scientific and Technical Information of China (English)

    XU Xiao-feng; SONG Chang-chun; SONG Xia; YAN Bai-xing; WANG Yi-yong; WANG Guo-ping; ZHANG Yu-xia

    2003-01-01

    An intact alkali marsh soil (MS) core and an agriculture soil (AS) core were studied by the simulated test in order to get the comparison of the nutrients retention in alkali MS and AS. The soil cores extracted from the Xiang hai Wetland, western Jilin Province, China, were leached with solution contained carbon, nitrogen and phosphorus.Then the effluent water from the outlets of soil core with different depths was measured, including chemical oxygen demand (COD), total phosphorus (TP), phosphate (PO3-4 - P) and nitrogen existed as nitrate (NO-3 - N), nitrite (NO-2 - N) and ammonia nitrogen (NH+4 - N) and the total nitrogen (TN) in the effluent water. COD and TP are decreased with the depth, the changing trends of TN, NO-3 - N and NH+4 - N contents are similar to COD and TP,whereas NO-2 - N in both MS and AS effluent have a little transition at 40cm depth. It is similar efficiency of MS to AS in significantly cutting down COD, TP, PO3-4 - P, TN, NO-3 - N, NH+4 - N and NO-2 - N in nutrient water.The function of MS would be same efficiency of the nutrients retention as the AS. Although the SOM and pH have some impacts on nutrients retention in the soil, the MS with higher soil organic matter (SOM) and pH have the same effluent water as the AS with the lower SOM and pH at the depth of 60 cm, the bottom of the soil cores.

  15. Capacitive Sensors and Breakthrough Curves in Automated Irrigation for Water and Soil Conservation

    Science.gov (United States)

    Fahmy Hussein, Mohamed

    2016-04-01

    Shortness of water resources is the dominant criterion that dampens agricultural expansion in Egypt. Ten times population increase was recorded versus twice increase in the cultivated area during the last 100 years. Significant increase in freshwater supply is not expected in the near future. Consequently, a great deal of water-conservation is required to ameliorate water-use efficiency and to protect soils against sodicity under the prevailing arid-zone conditions. Modern irrigation (pivot, drip and sprinkling) was introduced during the last three decades in newly cultivated lands. However, this was done without automated watering. Moreover, dynamic chemical profile data is lacking in the cultivated lands. These current water conditions are behind this work. Two experimental procedures were used for a conjunctive goal of water and soil conservation. The first procedure used the resonance of analog-oscillators (relative permittivity sensors) based on capacitive Frequency Domain Reflectometry, FDR. Commercially available FDR sensors were calibrated for three soil textures, and solenoids were used to automatically turn on and off irrigation pipes in three experimental plots (via low power AC latching-valves on relay solid-state boards connected to sensors; the valve got closed when soil became sufficiently moist near saturation and opened before reaching wilting point as the relay contacts were defined by variable-resistor on board after sensor calibration). This article reports the results of sensor mV readings versus soil-moisture in the linear parts of calibration diagrams, for known moisture contents from wilting point to saturation, fitted as "power-law of dielectric mixing". The results showed close to optimum watering at soil-surface in the nursery beds when the sensors were sampled every 10 minutes to update the relays. This work is planned to extend to different sensors and drippers for soils with field crops / fruit trees to account for aspects of concern

  16. Climatic and agricultural drivers of soil erosion in Africa

    Science.gov (United States)

    Irvine, Brian; Kirkby, Mike; Fleskens, Luuk

    2015-04-01

    Soil erosion was the most frequently identified driver of land degradation across a selection of global research sites within the DESIRE-EU project. The PESERA model was adopted in the project to upscale field results and consider the potential biophysical impact both with and without stakeholder selected sustainable land management (SLM) technologies in place. The PESERA model was combined with the DESMICE economic model and focussed on forecasting the regional effects of combating desertification both in environmental and socio-economical terms. The PESERA-DESMICE approach is further developed in the WAHARA project to consider the potential of a range of water harvesting technologies to improve biophysical conditions. Modelling in the WAHARA project considers detail of water harvesting technologies at the study site scale through to a coarser application at the continental scale with the latter being informed by the detail provided by study site observations an approach adopted in DESIRE-EU. The PESERA-DESMICE approach considers the difference between a baseline scenario and a (water harvesting) technology scenario at both scales in terms of productivity, financial viability and scope for reducing erosion risk. This paper considers the continental scale and focuses on estimating the impact of in-situ water harvesting technologies across Africa under current and future agricultural and climate pressure. PESERA is adopted in this continental application as it implicitly considers the impact of land-use and climate and can be readily amended to simulate in-situ WHT. Input data for PESERA; land use, management (crop type and planting dates), soil data and topography are derived from global data resources. Climate data for present and future scenarios are available through the QUEST-GSI initiative, where future scenarios are based on the outputs of seven GCM's.

  17. Comparative analysis of different measurement techniques for characterizing soil surface roughness in agricultural soils

    Science.gov (United States)

    Martinez-Agirre, Alex; Álvarez-Mozos, Jesús; Valle, José Manuel; Rodríguez, Álvaro; Giménez, Rafael

    2016-04-01

    Soil surface roughness can be defined as the variation in soil surface elevations, and as such, it is a key element in hydrology and soil erosion processes. In agricultural soils, roughness is mainly an anthropic factor determined by the type of tillage and management. Roughness is also a property with a high spatial variability, since the same type of tillage can result in surfaces with different roughness depending on the physical characteristics of the soil and atmospheric conditions. In order to quantify roughness and to parameterize its role in different processes, different measurement techniques have been used and several parameters have been proposed in the literature. The objective of this work is to evaluate different measurement techniques and assess their accuracy and suitability for quantifying surface roughness in agricultural soils. With this aim, a comparative analysis of three roughness measurement techniques has been carried out; (1) laser profilometer, (2) convergent photogrammetry and (3) terrestrial laser scanner. Roughness measurements were done in 3 experimental plots (5x5 meters) with different tillage treatments (representing different roughness conditions) obtained with typical agricultural tools. The laser profilometer registered vertically the distance from a reference bar down to the surface. It had a vertical accuracy of 1.25 mm, a sampling interval of 5 mm and a total length profile of 5 m. Eight profiles were taken per plot, four in parallel to tillage direction and four in perpendicular. Convergent photogrammetry consisted of 20-30 images taken per plot from a height of 5-10 m above ground (using an elevation platform), leading to point clouds of ~25 million points per plot. Terrestrial laser scanner measurements were taken from the four sides of each plot at a measurement height of ~1.75 m above ground. After orientating and corregistering the four scans, point clouds of ~60 million points were obtained per plot. The comparative

  18. Increasing Efficiency of Water Use in Agriculture through Management of Soil Water Repellency to Optimize Soil and Water Productivity

    Science.gov (United States)

    Moore, Demie; Kostka, Stan; McMillan, Mica; Gadd, Nick

    2010-05-01

    Water's ability to infiltrate and disperse in soils, and soil's ability to receive, transport, retain, filter and release water are important factors in the efficient use of water in agriculture. Deteriorating soil conditions, including development of soil water repellency, negatively impact hydrological processes and, consequently, the efficiency of rainfall and irrigation. Soil water repellency is increasingly being identified in diverse soils and cropping systems. Recently research has been conducted on the use of novel soil surfactants (co-formulations of alkyl polyglycoside and block copolymer surfactants) to avoid or overcome soil water repellency and enhance water distribution in soils. Results indicate that this is an effective and affordable approach to maintaining or restoring soil and water productivity in irrigated cropping systems. Results from studies conducted in Australia and the United States to determine how this technology modifies soil hydrological behavior and crop yields will be presented. A range of soils and various crops, including potatoes, corn, apples and grapes, were included. Several rates were compared to controls for effect on soil moisture levels, soil water distribution, and crop yield. An economic analysis was also conducted in some trials. Treatments improved rootzone water status, significantly increased crop yield and quality, and in some cases allowed significant reductions in water requirements. Where assessed, a positive economic return was generated. This technology holds promise as a strategy for increasing efficiency of water use in agriculture.

  19. Degradation of zearalenone and ochratoxin A in three Danish agricultural soils

    DEFF Research Database (Denmark)

    Mortensen, G.K.; Strobel, B.W.; Hansen, H.C.B.

    2006-01-01

    Degradation of two mycotoxins: zearalenone (ZON) produced by species of Fusarium and ochratoxin A (OTA) produced by species of Penicillium were followed in pot experiments using agricultural topsoils from Danish experimental farms: a sandy soil, a sandy clay soil and a gyttja soil with a high...

  20. Terra Pretas: Charcoal Amendments Influence on Relict Soils and Modern Agriculture

    Science.gov (United States)

    Ricigliano, Kristin

    2011-01-01

    Most soils found in the Amazon region are characterized by highly weathered profiles that are incapable of longterm agricultural production. However, small patches of highly fertile relict soil referred to as Terra Pretas, are also found in the Amazon region, and have maintained their integrity for thousands of years. These soils were…

  1. Detecting buried archaeological soils with TGA in an agricultural terrace setting in Northern Calabria, Italy

    Science.gov (United States)

    Koster, K.; Guttmann-Bond, E.; Kluiving, S.; van Leusen, M.

    2012-04-01

    Agricultural terraces are geomorphologic features created by humans. These structures protect farming land by reducing soil erosion, they collect water in their hydrological infrastructure, and preserve crops and vegetation. Their construction could however negatively affect underlying soils and archaeology present in those soils. However, if a terrace is constructed on a hill slope without destroying the underlying soil, the agricultural terrace could create a stable environment in regard to erosion, and preserve the underlying soil and potential archaeological remains in it. In order to detect soils within agricultural terraces in Northern-Calabria, Italy, Thermogravimetric Analysis (TGA) was performed on exposures of four agricultural terraces, two agricultural fields in a non-terraced setting and five natural geomorphological features. Results are the detection of a buried soil horizon which contains archaeological remains dating from the Hellenistic period 60 cm below the surface of an agricultural terrace, and a buried soil horizon which contains archaeological remains dating from the Hellenistic period at the interface of an agricultural field and a river valley. Both soil horizons were indentified by an increase in organic components, and a decrease in calcium carbonates relative to their surrounding context. Conclusions are that the construction of agricultural terraces and fields does not necessarily lead to the destruction of underlying soils. This could open new doors for archaeological field investigations in agricultural areas in southern Italy. This study was conducted as part of the Raganello Archaeological Project of the Groningen Institute of Archaeology, Rijks Universiteit Groningen, in collaboration with the Institute for Geo- and Bioarchaeology at the VU University Amsterdam.

  2. Tillage for soil and water conservation in the semi-arid tropics

    OpenAIRE

    Hoogmoed, W. B.

    1999-01-01

    Soil tillage is the manipulation of soil which is generally considered as necessary to obtain optimum growth conditions for a crop. In the same time the resulting modification of soil structure has serious implications for the behaviour of the soil to erosive forces by water and wind. In Chapter 1 an introduction is given to the most important aspects: the objectives of tillage, the conflicting requirements set to tillage, the characteristics of soil and water conservation in the semi-arid tr...

  3. Variations in the bioavailability of polycyclic aromatic hydrocarbons in industrial and agricultural soils after bioremediation.

    Science.gov (United States)

    Guo, Meixia; Gong, Zongqiang; Allinson, Graeme; Tai, Peidong; Miao, Renhui; Li, Xiaojun; Jia, Chunyun; Zhuang, Jie

    2016-02-01

    The aim of this study was to demonstrate the variations in bioavailability remaining in industrial and agricultural soils contaminated by polycyclic aromatic hydrocarbons (PAHs) after bioremediation. After inoculation of Mycobacterium sp. and Mucor sp., PAH biodegradation was tested on a manufactured gas plant (MGP) soil and an agricultural soil. PAH bioavailability was assessed before and after biodegradation using solid-phase extraction (Tenax-TA extraction) and solid-phase micro-extraction (SPME) to represent bioaccessibility and chemical activity of PAHs, respectively. Only 3- and 4-ring PAHs were noticeably biodegradable in the MGP soil. PAH biodegradation in the agricultural soil was different from that in the MGP soil. The rapidly desorbing fractions (F(rap)) extracted by Tenax-TA and the freely dissolved concentrations of 3- and 4-ring PAHs determined by SPME from the MGP soil decreased after 30 days biodegradation; those values of the 5- and 6-ring PAHs changed to a lesser degree. For the agricultural soil, the F(rap) values of the 3- and 4-ring PAHs also decreased after the biodegradation experiment. The Tenax-TA extraction and the SPME have the potential to assess variations in the bioavailability of PAHs and the degree of biodegradation in contaminated MGP soils. In addition, Tenax-TA extraction is more sensitive than SPME when used in the agricultural soil.

  4. Effects of agricultural practices of three crops on the soil communities under Mediterranean conditions: field evaluation.

    Science.gov (United States)

    Leitão, Sara; José Cerejeira, Maria; Abreu, Manuela; Sousa, José Paulo

    2014-05-01

    Sustainable agricultural production relies on soil communities as the main actors in key soil processes necessary to maintain sustainable soil functioning. Soil biodiversity influences soil physical and chemical characteristics and thus the sustainability of crop and agro-ecosystems functioning. Agricultural practices (e.g.: soil tillage, pesticides and fertilizer applications, irrigation) may affects negatively or positively soil biodiversity and abundances by modifying the relationships between organisms in the soil ecosystem. The present study aimed to study the influence of agricultural practices of three crops (potato, onion and maize) under Mediterranean climate conditions on soil macro- and mesofauna during their entire crop cycles. Effects on soil communities were assessed at a higher tier of environmental risk assessment comprising field testing of indigenous edaphic communities in a selected study-site located in a major agriculture region of Central Portugal, Ribatejo e Oeste, neighbouring protected wetlands. A reference site near the agricultural field site was selected as a Control site to compare the terrestrial communities' composition and variation along the crop cycle. The field soil and Control site soil are sandy loam soils. Crops irrigation was performed by center-pivot (automated sprinkler that rotates in a half a circle area) and by sprinklers. Soil macro- and mesofauna were collected at both sites (field and Control) using two methodologies through pitfall trapping and soil sampling. The community of soil macro- and mesofauna of the three crops field varied versus control site along the crops cycles. Main differences were due to arachnids, coleopterans, ants and adult Diptera presence and abundance. The feeding activity of soil fauna between control site and crop areas varied only for potato and onion crops vs. control site but not among crops. Concentration of pesticides residues in soil did not cause apparent negative effects on the soil

  5. Soil type as factor controlling the effects of forest transformation to agricultural use in soil aggregation and related properties

    Science.gov (United States)

    Chrenková, Katarína; Mataix-Solera, Jorge; Dlapa, Pavel; Arcenegui, Victoria

    2014-05-01

    The stability of aggregates has an important role in soil functioning and its behavior to avoid erosion and degradation, the ability to transfer liquids and gases, which are important features for crop production and ecosystem health (Tisdall and Oades, 1982). It's also a property that is highly influenced by land use and management (Angers et al., 1993). The stability of aggregates provides key information about the capacity of soil functions that defines the soil quality. This study has aimed to identify the long-term effects of forest transformation on agricultural use on soil structure and related properties. For the research was chosen seven localities in the Alicante Province (E Spain) with different soil types in all cases to compare how the land use changes can affect as a function of soil type and characteristics. In every site, samples were collected from agricultural land use (dry crops with tillage management), and in forest areas close to them with similar soil type that are used as references. On the samples, selected physical and chemical properties were analyzed such as Soil aggregate stability (AS), Organic matter (OM), Mean weight diameter (MWD) of aggregates and Water repellency (WR). As expected, in all cases the AS was significant lower in agricultural sites than in forest. But in some cases the differences were much higher than in others. In forest sites the AS varied between 46 to 82% while in agricultural sites ranged between 14 to 45%. The results showed strong positive correlation of AS with OM. The lowest initial values of AS were found in wettable sandy soils. The agricultural land use lead to relative decrease in AS by 39 to 79% compared to forest soils, indicating that some soils are much more vulnerable to land use than others. These differences can be explained mainly because intrinsic soil properties, such as OM content, texture, and WR. Particularly, the decrease in OM content and absence of WR are responsible for the decrease in

  6. Analysis of soil and crop properties for precision agriculture for winter wheat

    OpenAIRE

    Vrindts, Els; Reyniers, Marieke; Darius, Paul; De Baerdemaeker, Jos; Gilot, Marc; Sadaoui, Youssef; Frankinet, Marc; Hanquet, Bernard; Destain, Marie-France

    2003-01-01

    In a precision farming research project financed by the Belgian Ministry of Small Trade and Agriculture, the methods of precision agriculture are tested on grain fields with a view of implementation of precision agriculture methods in Belgian field agriculture. The project encompasses methods for automatic information gathering on soil and crop and analysis of this data for management of within-field variability. Automatic information capturing is combined with traditional data sources of soi...

  7. Effects of soil stripping and dressing for decontamination of radioactive materials on soil fertility of agricultural land

    International Nuclear Information System (INIS)

    Farms that were highly contaminated with radioactive materials following the Tokyo Electric Power Company (TEPCO) Fukushima Daiichi nuclear power plant accident were decontaminated by removing topsoil and subsequently dressing with fresh soil. We investigated the chemical properties of soils following such decontamination on farms in Iitate village, Fukushima. The nitrogen content of dressed soil was considerably lower than that of the subsoil that was not stripped for decontamination, as a result of which the amount of dressed soil greatly affected the soil fertility of decontaminated farms. The potassium (K) content of soil differs markedly depending on the type of soil dressing material used; accordingly, the type of soil dressing material affected the soil K content on decontaminated farms. On most of the decontaminated farms where sandy soils were used as the soil dressing material, soil exchangeable K contents were less than 25 mg K2O/100 g, which is the criterion value for inhibiting cesium absorption in rice and soybean cultivation. However, even in the soil dressing material from agricultural land, soil K content after soil dressing was generally lower than that before soil dressing. During fallow management and at the restart of cultivation on decontaminated farms, it is important to know in advance the chemical properties of soil and take the necessary measures based on this information. (author)

  8. Mapping soil fractal dimension in agricultural fields with GPR

    Directory of Open Access Journals (Sweden)

    K. Oleschko

    2008-09-01

    Full Text Available We documented that the mapping of the fractal dimension of the backscattered Ground Penetrating Radar traces (Fractal Dimension Mapping, FDM accomplished over heterogeneous agricultural fields gives statistically sound combined information about the spatial distribution of Andosol' dielectric permittivity, volumetric and gravimetric water content, bulk density, and mechanical resistance under seven different management systems. The roughness of the recorded traces was measured in terms of a single number H, the Hurst exponent, which integrates the competitive effects of volumetric water content, pore topology and mechanical resistance in space and time. We showed the suitability to combine the GPR traces fractal analysis with routine geostatistics (kriging in order to map the spatial variation of soil properties by nondestructive techniques and to quantify precisely the differences under contrasting tillage systems. Three experimental plots with zero tillage and 33, 66 and 100% of crop residues imprinted the highest roughness to GPR wiggle traces (mean HR/S=0.15, significantly different to Andosol under conventional tillage (HR/S=0.47.

  9. Conserving energy in smallholder agriculture. A multi-objective programming case-study of northwest India

    Energy Technology Data Exchange (ETDEWEB)

    Thankappan, Samarthia [Centre for Business Relationships, Accountability, Sustainability and Society, Cardiff University, CF10 3AT (United Kingdom); Midmore, Peter [School of Management and Business, The University of Wales Aberystwyth, SY23 3DD (United Kingdom); Jenkins, Tim [Institute of Rural Studies, The University of Wales Aberystwyth, SY23 3AL (United Kingdom)

    2006-02-15

    In semi-arid conditions in Northwest India, smallholder agriculture has made increasing use of subsidised mechanisation and energy inputs to reduce short-term risks. However, detrimental environmental consequences have occurred, not least a rapidly falling water table, and energy-intensive production is threatened by the prospect of increasing scarcity and expense of energy supplies, especially as urban demands are forecast to grow rapidly. This paper describes the energy flows through four subsystems of smallholder agricultural villages: the crop system; non-crop land uses; livestock systems; and households. It employs a multi-objective programming model to demonstrate choices available for maximands either of net solar energy capture or financial surpluses. Applied to three villages selected to represent major settlement types in the Saurashtra region of Gujarat, the results demonstrate that both energy conservation and financial performance can be improved. Although these results need qualifying because of the reductionist, linear character of the model used, they do provide important insights into the cultural role of mechanisation and the influence of traditional agricultural practices. They also underline the need for local energy conservation strategies as part of an overall approach to improved self-determination in progress towards rural sustainability. (author)

  10. Conserving energy in smallholder agriculture. A multi-objective programming case-study of northwest India

    International Nuclear Information System (INIS)

    In semi-arid conditions in Northwest India, smallholder agriculture has made increasing use of subsidised mechanisation and energy inputs to reduce short-term risks. However, detrimental environmental consequences have occurred, not least a rapidly falling water table, and energy-intensive production is threatened by the prospect of increasing scarcity and expense of energy supplies, especially as urban demands are forecast to grow rapidly. This paper describes the energy flows through four subsystems of smallholder agricultural villages: the crop system; non-crop land uses; livestock systems; and households. It employs a multi-objective programming model to demonstrate choices available for maximands either of net solar energy capture or financial surpluses. Applied to three villages selected to represent major settlement types in the Saurashtra region of Gujarat, the results demonstrate that both energy conservation and financial performance can be improved. Although these results need qualifying because of the reductionist, linear character of the model used, they do provide important insights into the cultural role of mechanisation and the influence of traditional agricultural practices. They also underline the need for local energy conservation strategies as part of an overall approach to improved self-determination in progress towards rural sustainability. (author)

  11. Estimations of soil fertility in physically degraded agricultural soils through selective accounting of fine earth and gravel fractions

    Science.gov (United States)

    Nagaraja, Mavinakoppa S.; Bhardwaj, Ajay Kumar; Prabhakara Reddy, G. V.; Srinivasamurthy, Chilakunda A.; Kumar, Sandeep

    2016-06-01

    Soil fertility and organic carbon (C) stock estimations are crucial to soil management, especially that of degraded soils, for productive agricultural use and in soil C sequestration studies. Currently, estimations based on generalized soil mass (hectare furrow basis) or bulk density are used which may be suitable for normal agricultural soils, but not for degraded soils. In this study, soil organic C, available nitrogen (N), available phosphorus (P2O5) and available potassium (K2O), and their stocks were estimated using three methods: (i) generalized soil mass (GSM, 2 million kg ha-1 furrow soil), (ii) bulk-density-based soil mass (BDSM) and (iii) the proportion of fine earth volume (FEV) method, for soils sampled from physically degraded lands in the eastern dry zone of Karnataka State in India. Comparative analyses using these methods revealed that the soil organic C, N, P2O and K2O stocks determined by using BDSM were higher than those determined by the GSM method. The soil organic C values were the lowest in the FEV method. The GSM method overestimated soil organic C, N, P2O and K2O by 9.3-72.1, 9.5-72.3, 7.1-66.6 and 9.2-72.3 %, respectively, compared to FEV-based estimations for physically degraded soils. The differences among the three methods of estimation were lower in soils with low gravel content and increased with an increase in gravel volume. There was overestimation of soil organic C and soil fertility with GSM and BDSM methods. A reassessment of methods of estimation was, therefore, attempted to provide fair estimates for land development projects in degraded lands.

  12. LANDSCAPE FEATURES OF EXISTENCE OF SOIL EROSION ON AGRICULTURAL LANDS IN THE BRYANSK REGION IN THE TRANSFORMATION OF CLIMATE

    Directory of Open Access Journals (Sweden)

    Demikhov V. T.

    2016-03-01

    Full Text Available The article has considered the influence of modern climate changes on the intensity of erosion processes within the boundaries of the basic landscapes of the region. It has given the results of the spatial distribution of the rainfalls. The most noticeable climate changes of the Bryansk region are reflected in the decrease in the activity of erosion during snowmelt due to the lower amounts of snow and soil frost depth. In the area, the dynamics of rainfall does not detect a single trend. The processes of erosion and deflation are studied in the relationship, the manifestation of these processes on the territory of the Bryansk region. It has published the results of the risk analysis of erosion and deflation on forest soils of the region and justified the application of G. V. Bastrakov’s method for modeling erosion-resistant agricultural landscapes. This approach has a number of advantages over the other known methods. In our case, regardless of soil and climatic and geomorphological conditions, the challenge is to ensure such events in which erosion resistance of the land will not be below a critical value. The research results are the initial data in designing soil conservation activities on the territory of the Bryansk region. The obtained data of the erosive properties of soils from climatic changes enable the study and forecasting of the development of agricultural landscapes of the region in the medium term

  13. Irrigation Land Leveling on Agricultural Land in the Conterminous United States, 1992: National Resource Inventory Conservation Practice 464

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the estimated percentage of the 1-km grid cell that is covered by or subject to the agricultural conservation practice (CP464), Irrigation...

  14. Subsurface Drains on Agricultural Land in the Conterminous United States, 1992: National Resource Inventory Conservation Practice 606

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the estimated percentage of the 1-km grid cell that is covered by or subject to the agricultural conservation practice (CP606), Subsurface...

  15. Contour Farming on Agricultural Land in the Conterminous United States, 1992: National Resource Inventory Conservation Practice 330

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the estimated percentage of the 1-km grid cell that is covered by or subject to the agricultural conservation practice (CP330), Contour...

  16. Terrace Farming on Agricultural Land in the Conterminous United States, 1992: National Resource Inventory Conservation Practice 600

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the estimated percentage of the 1-km grid cell that is covered by or subject to the agricultural conservation practice (CP600), Terrace...

  17. Gravity and Pressure Irrigation on Agricultural Land in the Conterminous United States, 1992: National Resource Inventory Conservation Practice IT03

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the estimated percentage of the 1-km grid cell that is covered by or subject to the agricultural conservation practice (CPIT03), Gravity...

  18. Pressure Irrigation on Agricultural Land in the Conterminous United States, 1992: National Resource Inventory Conservation Practice IT02

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the estimated percentage of the 1-km grid cell that is covered by or subject to the agricultural conservation practice (CPIT02), Pressure...

  19. Irrigation Water Conveyance by Pipelines on Agricultural Land in the Conterminous United States, 1992: National Resource Inventory Conservation Practice 430

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the estimated percentage of the 1-km grid cell that is covered by or subject to the agricultural conservation practice (CP430), Irrigation...

  20. Irrigation System by Tailwater Recovery on Agricultural Land in the Conterminous United States, 1992: National Resource Inventory Conservation Practice 447

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the estimated percentage of the 1-km grid cell that is covered by or subject to the agricultural conservation practice (CP447), Irrigation...

  1. Irrigation Canals or Laterals on Agricultural Land in the Conterminous United States, 1992: National Resource Inventory Conservation Practice 320

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the estimated percentage of the 1-km grid cell that is covered by or subject to the agricultural conservation practice (CP320), Irrigation...

  2. Irrigation Water Management Recovery on Agricultural Land in the Conterminous United States, 1992: National Resource Inventory Conservation Practice 449

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the estimated percentage of the 1-km grid cell that is covered by or subject to the agricultural conservation practice (CP449), Irrigation...

  3. Surface Drainage, Field Ditches on Agricultural Land in the Conterminous United States, 1992: National Resource Inventory Conservation Practice 607

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the estimated percentage of the 1-km grid cell that is covered by or subject to the agricultural conservation practice (CP607), Surface...

  4. Effects of conservation tillage on water infiltration in two soils in south-eastern Australia

    OpenAIRE

    Bissett, M.J.; G.J. O'Leary

    1996-01-01

    Metadata only record This paper reports on a study in Southeast Australia comparing water infiltration on two soil types (gray cracking clay and sandy loam) under two tillage systems - conservation tillage (zero and sub-soil, residues retained) and conventional tillage (frequently tined tillage, no surface residues). The objective of the study is to determine if conservation tillage increases the water infiltration rate on two different soils, with the hope of better explaining the mechani...

  5. Fate of phthalates and BPA in agricultural and non-agricultural soils of the Paris area (France).

    Science.gov (United States)

    Tran, Bich Chau; Teil, Marie-Jeanne; Blanchard, Martine; Alliot, Fabrice; Chevreuil, Marc

    2015-07-01

    This study (i) investigated the concentration levels of nine phthalates and bisphenol A (BPA) in sludge samples originating from a French wastewater treatment plant (WWTP), (ii) studied the distribution of target compounds according to soil depth and calculated their half-lives, and (iii) compared the contamination level of the agricultural soil with those of soils with other land uses. The sludge contamination levels varied from a few hundred nanograms per gram dry weight (dw) for diethyl phthalate (DEP), di-iso-butyl phthalate (DiBP), di-n-butyl phthalate (DnBP), and butyl-benzyl phthalate (BBP) to a few micrograms per gram dw for diethylhexyl phthalate (DEHP), di-iso-nonyl phthalate (DiNP), and di-iso-decyl phthalate (DiDP). After sludge application, an 8-fold increase for DEHP level and a 3-fold increase for BPA level occurred in the surface horizon of the soil. The mean distribution of phthalates according to the depth showed a positive gradient for the low molecular weight compounds and inversely, a negative gradient for the highest ones. The half-lives in the 0-20-cm soil horizon were 64 days for DEHP and 36 days for BPA. A predictive environmental concentration (PEC) of 0.3 μg g(-1) dw was estimated for DEHP, while the experimental value was 0.16 μg g(-1) dw, suggesting degradation processes in soil and/or formation of non-extractable residues. Comparisons of contamination levels for soils from different origins (urban, rural, agricultural, and forest) showed that the urban soil remained the most contaminated one, prior to the agricultural soil after treatment.

  6. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability.

    Science.gov (United States)

    Bender, S Franz; Wagg, Cameron; van der Heijden, Marcel G A

    2016-06-01

    Soil organisms are an integral component of ecosystems, but their activities receive little recognition in agricultural management strategies. Here we synthesize the potential of soil organisms to enhance ecosystem service delivery and demonstrate that soil biodiversity promotes multiple ecosystem functions simultaneously (i.e., ecosystem multifunctionality). We apply the concept of ecological intensification to soils and we develop strategies for targeted exploitation of soil biological traits. We compile promising approaches to enhance agricultural sustainability through the promotion of soil biodiversity and targeted management of soil community composition. We present soil ecological engineering as a concept to generate human land-use systems, which can serve immediate human needs while minimizing environmental impacts. PMID:26993667

  7. Measuring Soil Water Potential for Water Management in Agriculture: A Review

    Directory of Open Access Journals (Sweden)

    Marco Bittelli

    2010-05-01

    Full Text Available Soil water potential is a soil property affecting a large variety of bio-physical processes, such as seed germination, plant growth and plant nutrition. Gradients in soil water potential are the driving forces of water movement, affecting water infiltration, redistribution, percolation, evaporation and plants’ transpiration. The total soil water potential is given by the sum of gravity, matric, osmotic and hydrostatic potential. The quantification of the soil water potential is necessary for a variety of applications both in agricultural and horticultural systems such as optimization of irrigation volumes and fertilization. In recent decades, a large number of experimental methods have been developed to measure the soil water potential, and a large body of knowledge is now available on theory and applications. In this review, the main techniques used to measure the soil water potential are discussed. Subsequently, some examples are provided where the measurement of soil water potential is utilized for a sustainable use of water resources in agriculture.

  8. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia

    Science.gov (United States)

    Cornelissen, Gerard; Martinsen, Vegard; Shitumbanuma, Victor; Alling, Vanja; Breedveld, Gijs D.; Rutherford, David W.; Sparrevik, Magnus; Hale, Sarah E.; Obia, Alfred; Mulder, Jan

    2013-01-01

    Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF) is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06) and 352% ± 139% (p = 0.1) of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site) with growth of 142% ± 42% (p > 0.2) and 131% ± 62% (p > 0.2) of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC), no significant effects on maize yields were observed (p > 0.2). In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination of an

  9. Biochar Effect on Maize Yield and Soil Characteristics in Five Conservation Farming Sites in Zambia

    Directory of Open Access Journals (Sweden)

    Alfred Obia

    2013-04-01

    Full Text Available Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06 and 352% ± 139% (p = 0.1 of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site with growth of 142% ± 42% (p > 0.2 and 131% ± 62% (p > 0.2 of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC, no significant effects on maize yields were observed (p > 0.2. In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination

  10. Assessing and monitoring soil quality at agricultural waste disposal areas-Soil Indicators

    Science.gov (United States)

    Doula, Maria; Kavvadias, Victor; Sarris, Apostolos; Lolos, Polykarpos; Liakopoulou, Nektaria; Hliaoutakis, Aggelos; Kydonakis, Aris

    2014-05-01

    The necessity of elaborating indicators is one of the priorities identified by the United Nations Convention to Combat Desertification (UNCCD). The establishment of an indicator monitoring system for environmental purposes is dependent on the geographical scale. Some indicators such as rain seasonality or drainage density are useful over large areas, but others such as soil depth, vegetation cover type, and land ownership are only applicable locally. In order to practically enhance the sustainability of land management, research on using indicators for assessing land degradation risk must initially focus at local level because management decisions by individual land users are taken at this level. Soils that accept wastes disposal, apart from progressive degradation, may cause serious problems to the surrounding environment (humans, animals, plants, water systems, etc.), and thus, soil quality should be necessarily monitored. Therefore, quality indicators, representative of the specific waste type, should be established and monitored periodically. Since waste composition is dependent on their origin, specific indicators for each waste type should be established. Considering agricultural wastes, such a specification, however, could be difficult, since almost all agricultural wastes are characterized by increased concentrations of the same elements, namely, phosphorous, nitrogen, potassium, sulfur, etc.; contain large amounts of organic matter; and have very high values of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and electrical conductivity. Two LIFE projects, namely AgroStrat and PROSODOL are focused on the identification of soil indicators for the assessment of soil quality at areas where pistachio wastes and olive mill wastes are disposed, respectively. Many soil samples were collected periodically for 2 years during PROSODOL and one year during AgroStrat (this project is in progress) from waste disposal areas and analyzed for 23 parameters

  11. Relationship between light and heavy fractions of organic matter for several agricultural soils in China

    Institute of Scientific and Technical Information of China (English)

    YIN Yun-feng; CAI Zu-cong; LU Jia-long

    2005-01-01

    Although numerous studies about the nature and turnover of soil organic matter(SOM) in light and heavy fractions( LFOM and HFOM, respectively) have been made, little information is available in relation to the relationship between LFOM and HFOM, and no attempts have been made to quantify a general relationship between LFOM and HFOM for agricultural soils under field condition. Our hypothesis is there may be an inherent relationship between LFOM and HFOM for agricultural soils under certain unaltered management practices for a long period, to this end, we therefore studied typically soils taken from different parts in China by using a simple density fractionation procedure. The results indicated that LFOM was positively correlated with LFOM/HFOM ratio for three typical soils. This information will be of particular use not only in deepening our understanding of the dynamics of SOM fractions but also in evaluating the potential of agricultural soils to sequestrate C under different management practices in a long term.

  12. What are the effects of agricultural management on soil organic carbon in boreo-temperate systems?

    DEFF Research Database (Denmark)

    Haddaway, Neal R.; Hedlund, Katarina; Jackson, Louise E.;

    2015-01-01

    Background Soils contain the largest stock of organic carbon (C) in terrestrial ecosystems and changes in soil C stocks may significantly affect atmospheric CO2. A significant part of soil C is present in cultivated soils that occupy about 35 % of the global land surface. Agricultural intensifica...... management on SOC in arable systems of the warm temperate and snow climate zones (subset of temperate and continental climates: Köppen–Geiger Classification)....

  13. Evaluation on Heavy Metal Pollution of Soil in Pollution-free Agricultural Product Bases in Guangxi

    OpenAIRE

    DENG, Minjun; Luo, Yan

    2014-01-01

    Using data of 6 pollution-free agricultural product bases in Guangxi Zhuang Autonomous Region, this paper analyzed content of heavy metals, including arsenic (As), mercury (Hg), lead (Pb), cadmium (Cd), and chromium (Cr) in soil. After Pb, Cd, Cr, Hg and As content in soil is determined, it evaluated the pollution of soil using single factor pollution index method and Nemerow synthetic pollution index method in combination with evaluation standard of heavy metals in soil and grading standard ...

  14. Distribution of tetraether lipids in agricultural soils – differentiation between paddy and upland management

    OpenAIRE

    C. Mueller-Niggemann; S.R. Utami; Marxen, A.; Mangelsdorf, K.; T. Bauersachs; Schwark, L.

    2015-01-01

    Insufficient knowledge of the composition and variation of isoprenoid and branched glycerol dialkyl glycerol tetraethers (GDGTs) in agricultural soils exists, despite of the potential effect of different management types (e.g. soil/water and redox conditions, cultivated plants) on GDGT distribution. Here, we determined the influence of different soil management types on the GDGT composition in paddy (flooded) and adjacent upland (non-flooded) soils, and if available also forest, bu...

  15. Comparison of soil microbial respiration and carbon turnover under perennial and annual biofuel crops in two agricultural soils

    Science.gov (United States)

    Szymanski, L. M.; Marin-Spiotta, E.; Sanford, G. R.; Jackson, R. D.; Heckman, K. A.

    2015-12-01

    Bioenergy crops have the potential to provide a low carbon-intensive alternative to fossil fuels. More than a century of agricultural research has shown that conventional cropping systems can reduce soil organic matter (SOM) reservoirs, which cause long-term soil nutrient loss and C release to the atmosphere. In the face of climate change and other human disruptions to biogeochemical cycles, identifying biofuel crops that can maintain or enhance soil resources is desirable for the sustainable production of bioenergy. The objective of our study was to compare the effects of four biofuel crop treatments on SOM dynamics in two agricultural soils: Mollisols at Arlington Agricultural Research Station in Wisconsin and Alfisols at Kellogg Biological Station in Michigan, USA. We used fresh soils collected in 2013 and archived soils from 2008 to measure the effects of five years of crop management. Using a one-year long laboratory soil incubation coupled with a regression model and radiocarbon measurements, we separated soils into three SOM pools and their corresponding C turnover times. We found that the active pool, or biologically available C, was more sensitive to management and is an earlier indicator of changes to soil C dynamics than bulk soil C measurements. There was no effect of treatment on the active pool size at either site; however, the percent C in the active pool decreased, regardless of crop type, in surface soils with high clay content. At depth, the response of the slow pool differed between annual and perennial cropping systems. The distribution of C among SOM fractions varied between the two soil types, with greater C content associated with the active fraction in the coarser textured-soil and greater C content associated with the slow-cycling fraction in the soils with high clay content. These results suggest that the effects of bioenergy crops on soil resources will vary geographically, with implications for the carbon-cost of biocrop production.

  16. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils.

    Science.gov (United States)

    Jansa, Jan; Erb, Angela; Oberholzer, Hans-Rudolf; Smilauer, Petr; Egli, Simon

    2014-04-01

    Arbuscular mycorrhizal fungi (AMF) are ubiquitous soil fungi, forming mutualistic symbiosis with a majority of terrestrial plant species. They are abundant in nearly all soils, less diverse than soil prokaryotes and other intensively studied soil organisms and thus are promising candidates for universal indicators of land management legacies and soil quality degradation. However, insufficient data on how the composition of indigenous AMF varies along soil and landscape gradients have hampered the definition of baselines and effect thresholds to date. Here, indigenous AMF communities in 154 agricultural soils collected across Switzerland were profiled by quantitative real-time PCR with taxon-specific markers for six widespread AMF species. To identify the key determinants of AMF community composition, the profiles were related to soil properties, land management and site geography. Our results indicate a number of well-supported dependencies between abundances of certain AMF taxa and soil properties such as pH, soil fertility and texture, and a surprising lack of effect of available soil phosphorus on the AMF community profiles. Site geography, especially the altitude and large geographical distance, strongly affected AMF communities. Unexpected was the apparent lack of a strong land management effect on the AMF communities as compared to the other predictors, which could be due to the rarity of highly intensive and unsustainable land management in Swiss agriculture. In spite of the extensive coverage of large geographical and soil gradients, we did not identify any taxon suitable as an indicator of land use among the six taxa we studied.

  17. Development of a New Zealand SedNet model for assessment of catchment-wide soil-conservation works

    Science.gov (United States)

    Dymond, John R.; Herzig, Alexander; Basher, Les; Betts, Harley D.; Marden, Mike; Phillips, Chris J.; Ausseil, Anne-Gaelle E.; Palmer, David J.; Clark, Maree; Roygard, Jon

    2016-03-01

    Much hill country in New Zealand has been converted from indigenous forest to pastoral agriculture, resulting in increased soil erosion. Following a severe storm that hit the Manawatu-Wanaganui region in 2004 and caused 62,000 landslides, the Horizons Regional Council have implemented the Sustainable Land Use Initiative (SLUI), a programme of widespread soil conservation. We have developed a New Zealand version (SedNetNZ) of the Australian SedNet model to evaluate the impact of the SLUI programme in the 5850 km2 Manawatu catchment. SedNetNZ spatially distributes budgets of fine sediment in the landscape. It incorporates landslide, gully, earthflow erosion, surficial erosion, bank erosion, and flood-plain deposition, the important forms of soil erosion in New Zealand. Modelled suspended sediment loads compared well with measured suspended sediment loads with an R2 value of 0.85 after log transformation. A sensitivity analysis gave the uncertainty of estimated suspended sediment loads to be approximately plus or minus 50% (at the 95% confidence level). It is expected that by 2040, suspended sediment loads in targeted water management zones will decrease by about 40%. The expected decrease for the whole catchment is 34%. The expected reduction is due to maturity of tree planting on land at risk to soil erosion. The 34% reduction represents an annual rate of return of 20% on 20 million NZ of investment on soil conservation works through avoided damage to property and infrastructure and avoided clean-up costs.

  18. Constructing community fuzzy cognitive maps to promote adoption of conservation agricultural production practices

    OpenAIRE

    Halbrendt, Jacqueline; Chan-Halbrendt, Catherine; Shariq, L.; Gray, S.; Lai, Cynthia

    2011-01-01

    FCM was used to identify and map the factors involved in decision-making regarding the adoption of conservation agricultural practices in three villages in Central Nepal. Face-to-face interviews with farmers were conducted to develop an initial list of relevant factors, followed by extensive surveys conducted with both farmers and in-country NGO staff and researchers to develop the “mental models” used by these groups to guide decision-making. Mental models of the groups were quantitatively c...

  19. Quantification of parameters controlling the carbon stocks in German agricultural soils

    Science.gov (United States)

    Vos, Cora; Don, Axel; Freibauer, Annette; Heidkamp, Arne; Prietz, Roland

    2016-04-01

    Within the framework of UNFCCC, Germany is obligated to report on its greenhouse gas emissions from soils. This also includes the emissions in the agricultural sector. Changes in soil carbon stocks are a major source of CO2 that need to be reported. Until now there are only regional inventories of the soil carbon stocks in the agricultural sector while for the forestry sector a repeated national inventory exists. In order to report on changes in soil carbon stocks in agricultural soils, a consistent, representative and quantitative dataset of agricultural soil properties, especially on carbon stocks and management data is necessary. In the course of the German Agricultural Soil Inventory 3109 agricultural sites are examined. Up to January 2016, 2450 sites were sampled. The sites are sampled in five depth increments and all samples are analyzed in the same laboratory. Of the sampled sites the laboratory analyses are completed for 1312 sites. The samples of all depth increments were analyzed for their texture, bulk density, pH, electric conductivity, stone and root content, organic and inorganic carbon content and nitrogen content. The data are coupled with management data covering the past ten years and with climate data. They are analyzed with multivariate statistical techniques (e.g. mixed effects models, additive models, random forest) to quantify the parameters that control the carbon stocks in German agricultural soils. First descriptive results show that the mean soil carbon stocks down to a depth of 100 cm are 126.1 t ha-1 (range 8.9-1158.9 t ha-1). The mean stocks only for croplands are 102.6 t ha-1 (range 8.9-1158.9 t ha-1), while for grasslands the mean stock is 184.1 t ha-1 (range 19.4-937.8 t ha-1). In total the soil scientists found a surprisingly high proportion of disturbed and unusual soil profiles, indicating intensive human modifications of agricultural soils through e.g. deep ploughing. The data set of the German Agricultural Soil Inventory is the

  20. Quantification of parameters controlling the carbon stocks in German agricultural soils

    Science.gov (United States)

    Vos, Cora; Don, Axel; Freibauer, Annette; Heidkamp, Arne; Prietz, Roland

    2016-04-01

    Within the framework of UNFCCC, Germany is obligated to report on its greenhouse gas emissions from soils. This also includes the emissions in the agricultural sector. Changes in soil carbon stocks are a major source of CO2 that need to be reported. Until now there are only regional inventories of the soil carbon stocks in the agricultural sector while for the forestry sector a repeated national inventory exists. In order to report on changes in soil carbon stocks in agricultural soils, a consistent, representative and quantitative dataset of agricultural soil properties, especially on carbon stocks and management data is necessary. In the course of the German Agricultural Soil Inventory 3109 agricultural sites are examined. Up to January 2016, 2450 sites were sampled. The sites are sampled in five depth increments and all samples are analyzed in the same laboratory. Of the sampled sites the laboratory analyses are completed for 1312 sites. The samples of all depth increments were analyzed for their texture, bulk density, pH, electric conductivity, stone and root content, organic and inorganic carbon content and nitrogen content. The data are coupled with management data covering the past ten years and with climate data. They are analyzed with multivariate statistical techniques (e.g. mixed effects models, additive models, random forest) to quantify the parameters that control the carbon stocks in German agricultural soils. First descriptive results show that the mean soil carbon stocks down to a depth of 100 cm are 126.1 t ha‑1 (range 8.9-1158.9 t ha‑1). The mean stocks only for croplands are 102.6 t ha‑1 (range 8.9-1158.9 t ha‑1), while for grasslands the mean stock is 184.1 t ha‑1 (range 19.4-937.8 t ha‑1). In total the soil scientists found a surprisingly high proportion of disturbed and unusual soil profiles, indicating intensive human modifications of agricultural soils through e.g. deep ploughing. The data set of the German Agricultural Soil

  1. Bacterial indicator of agricultural management for soil under no-till crop production.

    Directory of Open Access Journals (Sweden)

    Eva L M Figuerola

    Full Text Available The rise in the world demand for food poses a challenge to our ability to sustain soil fertility and sustainability. The increasing use of no-till agriculture, adopted in many areas of the world as an alternative to conventional farming, may contribute to reduce the erosion of soils and the increase in the soil carbon pool. However, the advantages of no-till agriculture are jeopardized when its use is linked to the expansion of crop monoculture. The aim of this study was to survey bacterial communities to find indicators of soil quality related to contrasting agriculture management in soils under no-till farming. Four sites in production agriculture, with different soil properties, situated across a west-east transect in the most productive region in the Argentinean pampas, were taken as the basis for replication. Working definitions of Good no-till Agricultural Practices (GAP and Poor no-till Agricultural Practices (PAP were adopted for two distinct scenarios in terms of crop rotation, fertilization, agrochemicals use and pest control. Non-cultivated soils nearby the agricultural sites were taken as additional control treatments. Tag-encoded pyrosequencing was used to deeply sample the 16S rRNA gene from bacteria residing in soils corresponding to the three treatments at the four locations. Although bacterial communities as a whole appeared to be structured chiefly by a marked biogeographic provincialism, the distribution of a few taxa was shaped as well by environmental conditions related to agricultural management practices. A statistically supported approach was used to define candidates for management-indicator organisms, subsequently validated using quantitative PCR. We suggest that the ratio between the normalized abundance of a selected group of bacteria within the GP1 group of the phylum Acidobacteria and the genus Rubellimicrobium of the Alphaproteobacteria may serve as a potential management-indicator to discriminate between

  2. A conservation ontology and knowledge base to support delivery of technical assistance to agricultural producers in the united states

    Science.gov (United States)

    Information systems supporting the delivery of conservation technical assistance by the United States Department of Agriculture (USDA) to agricultural producers on working lands have become increasingly complex over the past 25 years. They are constrained by inconsistent coordination of domain knowl...

  3. Sulphur biochemistry in agricultural managed soils using 34S

    International Nuclear Information System (INIS)

    To gain a better understanding of sulphur transformation within soil, stable sulphur and oxygen isotopes were used. Four soils with different histories of fertilizing were studied under field conditions to observe the influence of fertilizing on the isotopic composition of different sulphur forms in soils. In laboratory experiments the behaviour of these soils observed under sulphur deficiency and sulphate fertilization conditions was investigated. The natural sulphur isotopic composition of inorganic sulphate in the four soils shows a difference with respect to organic sulphur in soil and precipitation sulphate which is attributed to fractionation during transformation processes. Mineralization was recognized as a biochemical process which affects the 18O content of sulphate. The irrigation experiment showed that sulphate is mineralized at different rates, depending upon the content of soil organic matter (SOM). Whereas in soils with high SOM mineralization is the predominant mechanism, in soils with low SOM sulphate can be immobilized. (author). 11 refs, 2 figs, 2 tabs

  4. Assessment and mapping of environmental quality in agricultural soils of Zhejiang Province,China

    Institute of Scientific and Technical Information of China (English)

    CHENG Jie-liang; SHI Zhou; ZHU You-wei

    2007-01-01

    Heavy metal concentrations in agricultural soils of Zhejiang Province were monitored to indicate the status of heavy metal contamination and assess environmental quality of agricultural soils. A total of 908 soil samples were collected from 38 counties in Zhejiang Province and eight heavy metal (Cd, Cr, Pb, Hg, Cu, Zn, Ni and As) concentrations had been evaluated in agricultural soil. It was found 775 samples were unpolluted and 133 samples were slightly polluted and more respectively, that is about 14.65% agricultural soil samples had the heavy metal concentration above the threshold level in this province by means of Nemerow's synthetical pollution index method according to the second grade of Standards for Soil Environmental Quality of China (GB15618-1995). Contamination of Cd was the highest, followed by Pb, As and Hg were lower correspondingly. Moreover, Inverse Distance Weighted (IDW) interpolation method was used to make an assessment map of soil environmental quality based on the Nemerow's pollution index and the soil environmental quality was categorized into five grades. Moreover, ten indices were calculated as input parameters for Principal Component Analysis (PCA) and the principal components (PCs) were created to compare environmental quality of different soils and regions. The results revealed that environmental quality of tea soils was better than that of paddy soils, vegetable soils and fruit soils. This study indicated that GIS combined with multivariate statistical approaches proved to be effective and powerful tool in the mapping of soil contaminations distribution and the assessment of soil environmental quality on provincial scale, which is benefited to environmental protection and management decision-making by local government.

  5. Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils.

    Science.gov (United States)

    Yu, Xiang-Yang; Mu, Chang-Li; Gu, Cheng; Liu, Cun; Liu, Xian-Jin

    2011-11-01

    Pyrolysis of vegetative biomass into biochar and application of the more stable form of carbon to soil have been shown to be effective in reducing the emission of greenhouse gases, improving soil fertility, and sequestering soil contaminants. However, there is still lack of information about the impact of biochar amendment in agricultural soils on the sorption and environmental fate of pesticides. In this study, we investigated the sorption and dissipation of a neonicotinoid insecticide acetamiprid in three typical Chinese agricultural soils, which were amended by a red gum wood (Eucalyptus spp.) derived biochar. Our results showed that the amendment of biochar (0.5% (w/w)) to the soils could significantly increase the sorption of acetamiprid, but the magnitudes of enhancement were varied. Contributions of 0.5% newly-added biochar to the overall sorption of acetamiprid were 52.3%, 27.4% and 11.6% for red soil, paddy soil and black soil, respectively. The dissipation of acetamiprid in soils amended with biochar was retarded compared to that in soils without biochar amendment. Similar to the sorption experiment, in soil with higher content of organic matter, the retardation of biochar on the dissipation of acetamiprid was lower than that with lower content of organic matter. The different effects of biochar in agricultural soils may attribute to the interaction of soil components with biochar, which would block the pore or compete for binding site of biochar. Aging effect of biochar application in agricultural soils and field experiments need to be further investigated. PMID:21862101

  6. Phytoremediation of soil polluted by nickel using agricultural crops.

    Science.gov (United States)

    Giordani, Cesare; Cecchi, Stefano; Zanchi, Camillo

    2005-11-01

    Soil pollution due to heavy metals is widespread; on the world scale, it involves about 235 million hectares. The objectives of this research were to establish the uptake efficiency of nickel by some agricultural crops. In addition, we wanted to establish also in which part of plants the metal is stored for an eventual use of biomass or for recycling the metal. The experiments included seven herbaceous crops such as: barley (Hordeum vulgaris), cabbage (Brassica juncea), spinach (Spinacea oleracea), sorghum (Sorgum vulgare), bean (Phaseolus vulgaris), tomato (Solanum lycopersicum), and ricinus (Ricinus communis). We used three levels of treatment (150, 300, and 600 ppm) and one control. At the end of the biological cycle of the crops, the different parts of plants, i.e., roots, stems, leaves, fruits, or seeds, were separately collected, oven dried, weighed, milled, and separately analysed. The leaves and stems of spinach showed a very good nickel storage capacity. The ricinus too proved to be a very good nickel storer. The ability of spinach and ricinus to store nickel was observed also in the leaves of cabbage, even if with a lower storage capacity. The bean, barley, and tomato, in decreasing order of uptake and storage capacity, showed a high concentration of nickel in leaves and stems, whereas the sorghum evidenced a lesser capacity to uptake and store nickel in leaves and stems. The bean was the most efficient in storing nickel in fruits or grains. Tomato, sorghum, and barley have shown a storage capacity notably less than bean. The bean appeared to be the most efficient in accumulating nickel in the roots, followed in decreasing order by sorghum, ricinus, and tomato. With regard to the removal of nickel, spinach was the most efficient as it contains the highest level of this metal per gram of dry matter. The ricinus, cabbage, bean, sorghum, barley, and tomato evidenced a progressively decreasing efficiency in the removal of nickel.

  7. Biodegradability of pharmaceutical compounds in agricultural soils irrigated with treated wastewater

    International Nuclear Information System (INIS)

    Pharmaceutical compounds (PCs) are introduced into agricultural soils via irrigation with treated wastewater (TWW). Our data show that carbamazepine, lamotrigine, caffeine, metoprolol, sulfamethoxazole and sildenafil are persistent in soils when introduced via TWW. However, other PCs, namely diclofenac, ibuprofen, bezafibrate, gemfibrozil and naproxen were not detected in soils when introduced via TWW. This is likely due to rapid degradation as confirmed in our microcosm studies where they exhibited half-lives (t1/2) between 0.2–9.5 days when soils were spiked at 50 ng/g soil and between 3 and 68 days when soils were spiked at 5000 ng/g soil. The degradation rate and extent of PCs observed in microcosm studies were similar in soils that had been previously irrigated with TWW or fresh water. This suggests that pre-exposure of the soils to PCs via irrigation with TWW does not enhance their biodegradation. This suggests that PCs are probably degraded in soils via co-metabolism. Highlights: • Some pharmaceuticals are highly persistent in arable soils. • Weak acid pharmaceuticals are readily degradable in agricultural soils. • Irrigation with treated wastewater does not enhance degradation of pharmaceuticals. • Degradation of pharmaceuticals in soil is probably occurred via co-metabolism. -- Some pharmaceutical compounds are persistent in arable soils when introduced via irrigation with treated wastewater

  8. A study on scheme of soil and water conservation regionalization in China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yan; WANG Zhiguo; SUN Baoping; ZHANG Chao; JI Qiang; FENG Lei; SHI Mingchang

    2013-01-01

    Regionalization of soil and water conservation is a base for the planning of soil and water conservation in China.It can provide scientific basis for constructing healthy eco-environment and regional management and development.It makes a brief review of related regionalization of study and makes clear the concept of regionalization of soil and water conservation.In this paper,based on synthetical analysis of the characteristics of eco-environments of China,the principles,indices and nomenclature of the regionalization of soil and water conservation are proposed.Through the construction of the regionalization of soil and water conservation collaboration platform and data reporting system,combined with existing soil and water conservation research,this paper uses the top-down and bottom-up and the combination of qualitative and quantitative methods to build soil and water conservation regionalization preliminary scheme,with 8 regions,41 sub-regions and 117 sections divided in China.

  9. Response of Soil Properties and Microbial Communities to Agriculture: Implications for Primary Productivity and Soil Health Indicators.

    Science.gov (United States)

    Trivedi, Pankaj; Delgado-Baquerizo, Manuel; Anderson, Ian C; Singh, Brajesh K

    2016-01-01

    Agricultural intensification is placing tremendous pressure on the soil's capacity to maintain its functions leading to large-scale ecosystem degradation and loss of productivity in the long term. Therefore, there is an urgent need to find early indicators of soil health degradation in response to agricultural management. In recent years, major advances in soil meta-genomic and spatial studies on microbial communities and community-level molecular characteristics can now be exploited as 'biomarker' indicators of ecosystem processes for monitoring and managing sustainable soil health under global change. However, a continental scale, cross biome approach assessing soil microbial communities and their functional potential to identify the unifying principles governing the susceptibility of soil biodiversity to land conversion is lacking. We conducted a meta-analysis from a dataset generated from 102 peer-reviewed publications as well as unpublished data to explore how properties directly linked to soil nutritional health (total C and N; C:N ratio), primary productivity (NPP) and microbial diversity and composition (relative abundance of major bacterial phyla determined by next generation sequencing techniques) are affected in response to agricultural management across the main biomes of Earth (arid, continental, temperate and tropical). In our analysis, we found strong statistical trends in the relative abundance of several bacterial phyla in agricultural (e.g., Actinobacteria and Chloroflexi) and natural (Acidobacteria, Proteobacteria, and Cyanobacteria) systems across all regions and these trends correlated well with many soil properties. However, main effects of agriculture on soil properties and productivity were biome-dependent. Our meta-analysis provides evidence on the predictable nature of the microbial community responses to vegetation type. This knowledge can be exploited in future for developing a new set of indicators for primary productivity and soil

  10. Soil biota community structure and abundance under agricultural intensification and extensification.

    Science.gov (United States)

    Postma-Blaauw, Maria B; de Goede, Ron G M; Bloem, Jaap; Faber, Jack H; Brussaard, Lijbert

    2010-02-01

    Understanding the impacts of agricultural intensification and extensification on soil biota communities is useful in order to preserve and restore biological diversity in agricultural soils and enhance the role of soil biota in agroecosystem functioning. Over four consecutive years, we investigated the effects of agricultural intensification and extensification (including conversion of grassland to arable land and vice versa, increased and decreased levels of mineral fertilization, and monoculture compared to crop rotation) on major soil biota group abundances and functional diversity. We integrated and compared effects across taxonomic levels to identify sensitive species groups. Conversion of grassland to arable land negatively affected both abundances and functional diversity of soil biota. Further intensification of the cropping system by increased fertilization and reduced crop diversity exerted smaller and differential effects on different soil biota groups. Agricultural intensification affected abundances of taxonomic groups with larger body size (earthworms, enchytraeids, microarthropods, and nematodes) more negatively than smaller-sized taxonomic groups (protozoans, bacteria, and fungi). Also functional group diversity and composition were more negatively affected in larger-sized soil biota (earthworms, predatory mites) than in smaller-sized soil biota (nematodes). Furthermore, larger soil biota appeared to be primarily affected by short-term consequences of conversion (disturbance, loss of habitat), whereas smaller soil biota were predominantly affected by long-term consequences (probably loss of organic matter). Reestablishment of grassland resulted in increased abundances of soil biota groups, but since not all groups increased in the same measure, the community structure was not completely restored. We concluded that larger-sized soil biota are more sensitive to agricultural intensification than smaller-sized soil biota. Furthermore, since larger

  11. EnviroAtlas - Percent Agriculture on Hydric Soil for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains data on Agricultural Land Coverage on Hydric Soils for each Watershed Boundary Dataset (WBD) 12-Digit Hydrologic Unit Code...

  12. Impact of an intensive management on soil biochemical and biological properties in an agricultural soil of Southern Italy

    Science.gov (United States)

    Scotti, R.; D'Ascoli, R.; Rao, M. A.; Marzaioli, R.; Rutigliano, F. A.; Gianfreda, L.

    2009-04-01

    An intensive management of agricultural soils is widely carried out to increase vegetation productivity. Nevertheless, the large use of machineries, chemical fertilizers and pesticides can often cause, in time, a substantial decline in soil fertility by affecting soil physical and chemical properties and, in turn, growth and activity of soil microbial community. In fact, alteration in soil structure, nutrient losses and, in particular, changes in quality and quantity of soil organic matter are some of the principal soil degradation processes deriving from an intensive agricultural management that can affect, in different ways, soil biochemical and biological properties. The aim of this research was to assess the impact of intensive management on agricultural soils by measuring soil physical, chemical and biochemical/biological properties. The use of appropriate indicators as quantitative tools could allow to assess soil quality. Moreover, although soil physical and chemical properties have received great attention, soil biochemical/biological properties, such as enzyme activities and microbial biomass, functionally related properties involved in the nutrient cycles, can be considered as sensitive indicators of soil quality and health changes because, they show a faster turn over compared to soil organic matter. Our attention was focused on the Plane of Sele river (Campania region, Italy), an area characterized by an intensive agriculture and greenhouse cultures. Twenty-five farms were chosen, with the aid of regional soil map, in order to get soils with different physical and chemical properties. As common trait, the selected farms, all with greenhouse cultures, used no organic amendments but only mineral compounds to fertilize soils. Moreover, to better understand the impact of intensive agricultural practices on soil of each farm, control soils from orchards or uncultivated plots were chosen. In each farm soil samples were collected in three different plots

  13. Improved Biodegradation of 1,2,4-Trichlorobenzene by Adapted Microorganisms in Agricultural Soil and in Soil Suspension Cultures

    Institute of Scientific and Technical Information of China (English)

    SONG Yang; WANG Fang; F. O. KENGARA; BIAN Yong-Rong; YANG Xing-Lun; LIU Cui-Ying; JIANG Xin

    2011-01-01

    Inoculating soil with an adapted microbial community is a more effective bioaugrnentation approach than inoculation with pure strains in bioremediation.However,information on the potential of different inocula from sites with varying contamination levels and pollution histories in soil remediation is lacking.The objective of the study was to investigate the potential of adapted microorganisms in soil inocula,with different contamination levels and pollution histories,to degrade 1,2,4-trichlorobenzene (1,2,4-TCB).Three different soils from chlorobenzene-contaminated sites were inoculated into agricultural soils and soil suspension cultures spiked with 1,2,4-TCB.The results showed that 36.52% of the initially applied 1,2,4-TCB was present in the non-inoculated soil,whereas about 19.00% of 1,2,4-TCB was present in the agricultural soils inoculated with contaminated soils after 28 days of incubation.The soils inoculated with adapted microbial biomass (in the soil inocula) showed higher respiration and lower 1,2,4-TCB volatilization than the non-inoculated soils,suggesting the existence of 1,2,4-TCB adapted degraders in the contaminated soils used for inoculation.It was further confirmed in the contaminated soil suspension cultures that the concentration of inorganic chloride ions increased continuously over the entire experimental period.Higher contamination of the inocula led not only to higher degradation potential but also to higher residue formation.However,even inocula of low-level contamination were effective in enhancing the degradation of 1,2,4-TCB.Therefore,applying adapted microorganisms in the form of soil inocula,especially with lower contamination levels,could be an effective and environment-friendly strategy for soil remediation.

  14. Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering

    International Nuclear Information System (INIS)

    The biogeochemistry and bioavailability of cadmium, released during sphalerite weathering in soils, were investigated under contrasting agricultural scenarios to assess health risks associated with sphalerite dust transport to productive soils from mining. Laboratory experiments (365 d) on temperate and sub-tropical soils amended with sphalerite (−1). Wheat grown in spiked temperate soil accumulated ≈38% (29 μmol kg−1) of the liberated Cd, exceeding food safety limits. In contrast, rice grown in flooded sub-tropical soil accumulated far less Cd (0.60 μmol kg−1) due to neutral soil pH and Cd bioavailability was possibly also controlled by secondary sulfide formation. The results demonstrate long-term release of Cd to soil porewaters during sphalerite weathering. Under oxic conditions, Cd may be sufficiently bioavailable to contaminate crops destined for human consumption; however flooded rice production limits the impact of sphalerite contamination. -- Highlights: • Sphalerite containing cadmium presents a hazard when present in agricultural soils. • Sphalerite dissolution was slow (0.6–1.2% y−1) but constant in contrasting soils. • Cadmium was released during dissolution and was bioavailable to wheat and rice. • Wheat grains accumulated potentially harmful cadmium concentrations. • Flooded paddy (reducing) soils reduced cadmium bioavailability to rice. -- Sphalerite dissolves steadily in oxic agricultural soils and can release highly bioavailable Cd, which may contaminate food crops destined for human consumption

  15. Biochar amendment and greenhouse gas emissions from agricultural soils

    OpenAIRE

    Case, Sean

    2013-01-01

    The aim of this study was to investigate the effects of biochar amendment on soil greenhouse gas (GHG) emissions and to elucidate the mechanisms behind these effects. I investigated the suppression of soil carbon dioxide (CO2) and nitrous oxide (N2O) emissions in a bioenergy and arable crop soil, at a range of temperatures and with or without wetting/drying cycles. More detailed investigation on the underlying mechanisms focused on soil N2O emissions. I tested how biochar alter...

  16. Conservation of invertebrates' biodiversity in soils of the Republic of Moldova

    OpenAIRE

    Senicovscaia, Irina

    2013-01-01

    The role of invertebrates and their contribution in functioning of soils is considered. The edaphic fauna of zonal untouched soils in natural ecosystems located in the different zones of the Republic of Moldova has been investigated. Soils of the natural ecosystems are the habitat and the source of the conservation and reproduction of the edaphic fauna. They represent themselves the standards of the biodiversity for soil invertebrates. The database of the invertebrates’ diversity of virgin an...

  17. Assessing the habitat conservation status by soil parameters and plant ecoindicators

    OpenAIRE

    Sicuriello F; De Nicola C; Dowgiallo G; Testi A

    2014-01-01

    The aim of this study is to evaluate the conservation status of a Natural Reserve through an integrated approach analysing simultaneously soils, lithotypes, land forms, edaphic parameters and plant species. In focusing the relationships between soil and vegetation, plant ecoindicators, expressed by i) the Ellenberg bioindication model and by ii) the Hemeroby Index, and soil measured parameters were utilized.Vegetation and soil data have been collected simultaneously through thirty vegetation ...

  18. Estimation of PCB content in agricultural soils associated with long-term fertilization with organic waste.

    Science.gov (United States)

    Antolín-Rodríguez, Juan M; Sánchez-Báscones, Mercedes; Martín-Ramos, Pablo; Bravo-Sánchez, Carmen T; Martín-Gil, Jesús

    2016-06-01

    Polychlorinated biphenyl (PCB) pollution related to the use of organic waste as fertilizers in agricultural soils is a cause of major concern. In the study presented herein, PCB concentration was studied through a field trial conducted in two agricultural soils in the province of Palencia (Spain) over a 4-year period, assessing the impact of irrigation and of different types of organic waste materials. The amounts of organic waste added to the soil were calculated according to the nitrogen needs of the crop, and the concentration of PCBs was determined before and after the application of the organic waste. The resulting persistence of the total PCB content in the agricultural soils, compared with the PCB concentration in the original soils, ranged from 27% to 90%, with the lowest value corresponding to irrigated soils treated with municipal solid waste compost (MSWC) and the highest value to non-irrigated soils treated with composted sewage sludge (CSS). An estimate of the PCB content in agricultural soils after the application of organic waste materials until year 2050 was obtained, resulting in a value below 5 ng·g(-1), considered a background value for soils in sites far away from potential pollution sources. PMID:26983809

  19. Organic matter composition of soil macropore surfaces under different agricultural management practices

    Science.gov (United States)

    Glæsner, Nadia; Leue, Marin; Magid, Jacob; Gerke, Horst H.

    2016-04-01

    Understanding the heterogeneous nature of soil, i.e. properties and processes occurring specifically at local scales is essential for best managing our soil resources for agricultural production. Examination of intact soil structures in order to obtain an increased understanding of how soil systems operate from small to large scale represents a large gap within soil science research. Dissolved chemicals, nutrients and particles are transported through the disturbed plow layer of agricultural soil, where after flow through the lower soil layers occur by preferential flow via macropores. Rapid movement of water through macropores limit the contact between the preferentially moving water and the surrounding soil matrix, therefore contact and exchange of solutes in the water is largely restricted to the surface area of the macropores. Organomineral complex coated surfaces control sorption and exchange properties of solutes, as well as availability of essential nutrients to plant roots and to the preferentially flowing water. DRIFT (Diffuse Reflectance infrared Fourier Transform) Mapping has been developed to examine composition of organic matter coated macropores. In this study macropore surfaces structures will be determined for organic matter composition using DRIFT from a long-term field experiment on waste application to agricultural soil (CRUCIAL, close to Copenhagen, Denmark). Parcels with 5 treatments; accelerated household waste, accelerated sewage sludge, accelerated cattle manure, NPK and unfertilized, will be examined in order to study whether agricultural management have an impact on the organic matter composition of intact structures.

  20. Estimation of PCB content in agricultural soils associated with long-term fertilization with organic waste.

    Science.gov (United States)

    Antolín-Rodríguez, Juan M; Sánchez-Báscones, Mercedes; Martín-Ramos, Pablo; Bravo-Sánchez, Carmen T; Martín-Gil, Jesús

    2016-06-01

    Polychlorinated biphenyl (PCB) pollution related to the use of organic waste as fertilizers in agricultural soils is a cause of major concern. In the study presented herein, PCB concentration was studied through a field trial conducted in two agricultural soils in the province of Palencia (Spain) over a 4-year period, assessing the impact of irrigation and of different types of organic waste materials. The amounts of organic waste added to the soil were calculated according to the nitrogen needs of the crop, and the concentration of PCBs was determined before and after the application of the organic waste. The resulting persistence of the total PCB content in the agricultural soils, compared with the PCB concentration in the original soils, ranged from 27% to 90%, with the lowest value corresponding to irrigated soils treated with municipal solid waste compost (MSWC) and the highest value to non-irrigated soils treated with composted sewage sludge (CSS). An estimate of the PCB content in agricultural soils after the application of organic waste materials until year 2050 was obtained, resulting in a value below 5 ng·g(-1), considered a background value for soils in sites far away from potential pollution sources.

  1. BEHAVIOR OF THE NON-SELECTIVE HERBICIDE GLYPHOSATE IN AGRICULTURAL SOIL

    OpenAIRE

    Abdul Jabbar Al-Rajab; Othman M. Hakami

    2014-01-01

    Glyphosate [N-phosphonomethyl]glycine is a systematic, non-selective, organophosphorus herbicide used worldwide in agriculture and industrial zones. Following its application, residues of glyphosate can threaten soil or aquatic organisms in adjacent water. In this study, we followed the degradation, stabilization, remobilization and leaching of 14C-glyphosate in three agricultural soils in laboratory incubations and in lysimeters under field condition...

  2. Study on the Value of Forest to Conserve Soil and Water in Beijing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Forest has a strongfunction in storing water, conserving soil and protecting farmland. In the study, based on fleld management and survey, these effects of forest in Beijing were determined and quantified. According to the principles and methodology of environment economics, the values of forest to conserve soil and water were accounted. The result shows that the total value of forest to conserve soil and water in Beijing is as much as 1129.58×10~8 yuan, in which the value of water storage is 1107.92×10...

  3. The non-steroidal anti-inflammatory drug diclofenac is readily biodegradable in agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne [Agriculture and Agri-Food Canada, London, ON, Canada N5V 4T3 (Canada); Lapen, David R. [Agriculture and Agri-Food Canada, Ottawa ON, Canada K1A 0C6 (Canada); Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON, Canada N5V 4T3 (Canada)

    2010-12-01

    Diclofenac, 2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetic acid, is an important non-steroidal anti-inflammatory drug widely used for human and animals to reduce inflammation and pain. Diclofenac could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in agricultural soils incubated in the laboratory. {sup 14}C-Diclofenac was rapidly mineralized without a lag when added to soils varying widely in texture (sandy loam, loam, clay loam). Over a range of temperature and moisture conditions extractable {sup 14}C-diclofenac residues decreased with half lives < 5 days. No extractable transformation products were detectable by HPLC. Diclofenac mineralization in the loam soil was abolished by heat sterilization. Addition of biosolids to sterile or non-sterile soil did not accelerate the dissipation of diclofenac. These findings indicate that diclofenac is readily biodegradable in agricultural soils.

  4. Mineralization of soil organic matter in biochar amended agricultural landscape

    Science.gov (United States)

    Chintala, R.; Clay, D. E.; Schumacher, T. E.; Kumar, S.; Malo, D. D.

    2015-12-01

    Pyrogenic biochar materials have been identified as a promising soil amendment to enhance climate resilience, increase soil carbon recalcitrance and achieve sustainable crop production. A three year field study was initiated in 2013 to study the impact of biochar on soil carbon and nitrogen storage on an eroded Maddock soil series - Sandy, Mixed, Frigid Entic Hapludolls) and deposition Brookings clay loam (Fine-Silty, Mixed, Superactive, Frigid Pachic Hapludolls) landscape positions. Three biochars produced from corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.) were incorporated at 9.75 Mg ha-1 rate (≈7.5 cm soil depth and 1.3 g/cm3 soil bulk density) with a rototiller. The changes in chemical fractionation of soil carbon (soluble C, acid hydrolyzable C, total C, and δ13 C) and nitrogen (soluble N, acid hydrolyzable N, total N, and δ14 N) were monitored for two soil depths (0-7.5 and 7.5 - 15 cm). Soluble and acid hydrolyzable fractions of soil C and N were influenced by soil series and were not significantly affected by incorporation of biochars. Based on soil and plant samples to be collected in the fall of 2015, C and N budgets are being developed using isotopic and non-isotopic techniques. Laboratory studies showed that the mean residence time for biochars used in this study ranged from 400 to 666 years. Laboratory and field studies will be compared in the presentation.

  5. Antimicrobial resistance among Pseudomonas spp. and the Bacillus cereus group isolated from Danish agricultural soil

    DEFF Research Database (Denmark)

    Jensen, Lars Bogø; Baloda, S.; Boye, Mette;

    2001-01-01

    From four Danish pig farms, bacteria of Pseudomonas spp. and the Bacillus cereus group were isolated from soil and susceptibility towards selected antimicrobials was tested. From each farm, soil samples representing soil just before and after spread of animal waste and undisturbed agricultural soil......, when possible, were collected. Soil from a well-characterized Danish farm soil (Hojbakkegaard) was collected for comparison. The Psudomonas spp. and B. cereus were chosen as representative for Gram-negative and Gram-positive indigenous soil bacteria to test the effect of spread of animal waste...... on selection of resistance among soil bacteria. No variations in resistance levels were observed between farms; but when the four differently treated soils were compared, resistance was seen for carbadox, chloramphenicol, nalidixan (nalidixic acid), nitrofurantoin, streptomycin and tetracycline for Pseudomonas...

  6. Soil organic carbon as a factor in passive microwave retrievals of soil water content over agricultural croplands

    Science.gov (United States)

    Manns, Hida R.; Berg, Aaron A.; Colliander, Andreas

    2015-09-01

    Remote sensing has the potential to deliver global soil water content (SWC) on vast scales with frequent revisit times for progress in the fields of climate, weather forecasting, agriculture and hydrology. Although surface roughness, vegetation and soil texture have been established as sources of variability in passive microwave interpretation, soil organic carbon (SOC) has not typically been considered as a factor that affects SWC estimation during field sampling campaigns. SOC was observed along with soil texture and bulk density during the Soil Moisture Active Passive Validation Experiment in 2012 (SMAPVEX12), the Soil Moisture Active Passive (SMAP) satellite algorithm development field sampling campaign held June 6 to July 19 in Southern Manitoba, Canada. Aerial measurements from the PALS (Passive Active L-band System) instrument were recorded over agricultural fields and forest areas from aircraft while SWC was measured simultaneously on the ground with resistance probes on 17 sampling dates. Additionally, fields were sampled for surface roughness, vegetation growth and water content, soil and vegetation temperature and soil physical characteristics. A soil core was collected on each field each sampling time to assess bulk density, soil particle size and SOC. SOC accounted for more variability in the anomalies between PALS and ground sampled SWC than sand, clay or bulk density, although all soil variables explained significant variability. With analysis by partial least squares multiple regression over 11 sampling dates and 39 fields where both ground and PALS data were well represented, only SOC contributed significantly to the regression of SWC beyond the variance all soil variables had in common. The significance of SOC in the relative SWC anomalies was highest in very wet and very dry conditions and in loam soil over all sampling dates, while bulk density was more significant in sand soils. This analysis suggests SOC is a simple variable that incorporates

  7. Multivariate regulation of soil CO2 and N2 O pulse emissions from agricultural soils.

    Science.gov (United States)

    Liang, Liyin L; Grantz, David A; Jenerette, G Darrel

    2016-03-01

    Climate and land-use models project increasing occurrence of high temperature and water deficit in both agricultural production systems and terrestrial ecosystems. Episodic soil wetting and subsequent drying may increase the occurrence and magnitude of pulsed biogeochemical activity, affecting carbon (C) and nitrogen (N) cycles and influencing greenhouse gas (GHG) emissions. In this study, we provide the first data to explore the responses of carbon dioxide (CO2 ) and nitrous oxide (N2 O) fluxes to (i) temperature, (ii) soil water content as percent water holding capacity (%WHC), (iii) substrate availability throughout, and (iv) multiple soil drying and rewetting (DW) events. Each of these factors and their interactions exerted effects on GHG emissions over a range of four (CO2 ) and six (N2 O) orders of magnitude. Maximal CO2 and N2 O fluxes were observed in environments combining intermediate %WHC, elevated temperature, and sufficient substrate availability. Amendments of C and N and their interactions significantly affected CO2 and N2 O fluxes and altered their temperature sensitivities (Q10 ) over successive DW cycles. C amendments significantly enhanced CO2 flux, reduced N2 O flux, and decreased the Q10 of both. N amendments had no effect on CO2 flux and increased N2 O flux, while significantly depressing the Q10 for CO2 , and having no effect on the Q10 for N2 O. The dynamics across DW cycles could be attributed to changes in soil microbial communities as the different responses to wetting events in specific group of microorganisms, to the altered substrate availabilities, or to both. The complex interactions among parameters influencing trace gas fluxes should be incorporated into next generation earth system models to improve estimation of GHG emissions. PMID:26470015

  8. Lead in urban soils - A real or perceived concern for urban agriculture?

    Science.gov (United States)

    Urban agriculture is growing in cities across the U.S. and it has the potential to provide multiple benefits including increased food security. Concerns about soil contamination in urban areas can be an impediment to urban agriculture. Lead is the most common contaminant in urban areas. A review ...

  9. Conservation of Agroecosystem through Utilization of Parasitoid Diversity: Lesson for Promoting Sustainable Agriculture and Ecosystem Health

    Directory of Open Access Journals (Sweden)

    DAMAYANTI BUCHORI

    2008-12-01

    Full Text Available For many years, agricultural intensification and exploitation has resulted in biodiversity loss and threaten ecosystem functioning. Developing strategies to bridge human needs and ecosystem health for harmonization of ecosystem is a major concern for ecologist and agriculturist. The lack of information on species diversity of natural enemies and how to utilize them with integration of habitat management that can renovate ecological process was the main obstacle. Parasitoids, a group of natural enemies, play a very important role in regulating insect pest population. During the last ten years, we have been working on exploration of parasitoid species richness, how to use it to restore ecosystem functions, and identifying key factors influencing host-parasitoid interaction. Here, we propose a model of habitat management that is capable of maintaining agricultural biodiversity and ecosystem functions. We present data on parasitoid species richness and distribution in Java and Sumatera, their population structure and its impact toward biological control, relationship between habitat complexes and parasitoid community, spatial and temporal dynamic of parasitoid diversity, and food web in agricultural landscape. Implications of our findings toward conservation of agroecosystem are discussed.

  10. Low-intensity agricultural landscapes in Transylvania support high butterfly diversity: implications for conservation.

    Science.gov (United States)

    Loos, Jacqueline; Dorresteijn, Ine; Hanspach, Jan; Fust, Pascal; Rakosy, László; Fischer, Joern

    2014-01-01

    European farmland biodiversity is declining due to land use changes towards agricultural intensification or abandonment. Some Eastern European farming systems have sustained traditional forms of use, resulting in high levels of biodiversity. However, global markets and international policies now imply rapid and major changes to these systems. To effectively protect farmland biodiversity, understanding landscape features which underpin species diversity is crucial. Focusing on butterflies, we addressed this question for a cultural-historic landscape in Southern Transylvania, Romania. Following a natural experiment, we randomly selected 120 survey sites in farmland, 60 each in grassland and arable land. We surveyed butterfly species richness and abundance by walking transects with four repeats in summer 2012. We analysed species composition using Detrended Correspondence Analysis. We modelled species richness, richness of functional groups, and abundance of selected species in response to topography, woody vegetation cover and heterogeneity at three spatial scales, using generalised linear mixed effects models. Species composition widely overlapped in grassland and arable land. Composition changed along gradients of heterogeneity at local and context scales, and of woody vegetation cover at context and landscape scales. The effect of local heterogeneity on species richness was positive in arable land, but negative in grassland. Plant species richness, and structural and topographic conditions at multiple scales explained species richness, richness of functional groups and species abundances. Our study revealed high conservation value of both grassland and arable land in low-intensity Eastern European farmland. Besides grassland, also heterogeneous arable land provides important habitat for butterflies. While butterfly diversity in arable land benefits from heterogeneity by small-scale structures, grasslands should be protected from fragmentation to provide

  11. Assessing strategies to reconcile agriculture and bird conservation in the temperate grasslands of South America.

    Science.gov (United States)

    Dotta, G; Phalan, B; Silva, T W; Green, R; Balmford, A

    2016-06-01

    Globally, agriculture is the greatest source of threat to biodiversity, through both ongoing conversion of natural habitat and intensification of existing farmland. Land sparing and land sharing have been suggested as alternative approaches to reconcile this threat with the need for land to produce food. To examine which approach holds most promise for grassland species, we examined how bird population densities changed with farm yield (production per unit area) in the Campos of Brazil and Uruguay. We obtained information on biodiversity and crop yields from 24 sites that differed in agricultural yield. Density-yield functions were fitted for 121 bird species to describe the response of population densities to increasing farm yield, measured in terms of both food energy and profit. We categorized individual species according to how their population changed across the yield gradient as being positively or negatively affected by farming and according to whether the species' total population size was greater under land-sparing, land-sharing, or an intermediate strategy. Irrespective of the yield, most species were negatively affected by farming. Increasing yields reduced densities of approximately 80% of bird species. We estimated land sparing would result in larger populations than other sorts of strategies for 67% to 70% of negatively affected species, given current production levels, including three threatened species. This suggests that increasing yields in some areas while reducing grazing to low levels elsewhere may be the best option for bird conservation in these grasslands. Implementing such an approach would require conservation and production policies to be explicitly linked to support yield increases in farmed areas and concurrently guarantee that larger areas of lightly grazed natural grasslands are set aside for conservation. PMID:26400720

  12. Low-intensity agricultural landscapes in Transylvania support high butterfly diversity: implications for conservation.

    Directory of Open Access Journals (Sweden)

    Jacqueline Loos

    Full Text Available European farmland biodiversity is declining due to land use changes towards agricultural intensification or abandonment. Some Eastern European farming systems have sustained traditional forms of use, resulting in high levels of biodiversity. However, global markets and international policies now imply rapid and major changes to these systems. To effectively protect farmland biodiversity, understanding landscape features which underpin species diversity is crucial. Focusing on butterflies, we addressed this question for a cultural-historic landscape in Southern Transylvania, Romania. Following a natural experiment, we randomly selected 120 survey sites in farmland, 60 each in grassland and arable land. We surveyed butterfly species richness and abundance by walking transects with four repeats in summer 2012. We analysed species composition using Detrended Correspondence Analysis. We modelled species richness, richness of functional groups, and abundance of selected species in response to topography, woody vegetation cover and heterogeneity at three spatial scales, using generalised linear mixed effects models. Species composition widely overlapped in grassland and arable land. Composition changed along gradients of heterogeneity at local and context scales, and of woody vegetation cover at context and landscape scales. The effect of local heterogeneity on species richness was positive in arable land, but negative in grassland. Plant species richness, and structural and topographic conditions at multiple scales explained species richness, richness of functional groups and species abundances. Our study revealed high conservation value of both grassland and arable land in low-intensity Eastern European farmland. Besides grassland, also heterogeneous arable land provides important habitat for butterflies. While butterfly diversity in arable land benefits from heterogeneity by small-scale structures, grasslands should be protected from fragmentation

  13. Integrated assessment of conservation opportunities in the irrigated agriculture sector of the Pacific Northwest Region

    Energy Technology Data Exchange (ETDEWEB)

    Harrer, B.J.; Lezberg, A.J.; Wilfert, G.L.

    1985-02-01

    This report documents research to identify the potential energy savings and cost per kWh saved for implementing currently available energy conservation measures in the irrigated agriculture sector of the Pacific Northwest. A computer model that simulates the energy consumption process of irrigation systems and estimates the levelized costs of undertaking conservation investments is the primary analytical tool used in this research. Using engineering and economic input parameters for the various conservation measures that could potentially be implemented in irrigated agriculture, the Irrigation Sector Energy Planning (ISEP) model generates estimates of energy savings and cost per kWh saved for the measures. All parameters input to the ISEP model are based upon empirical field data. Results provided by the ISEP model indicate tht by the year 2003 a total of approximately 158.6 average MW of energy could potentially be saved in the Pacific Northwest irrigation sector on all sprinkler-irrigated acres. Approximately 130.4 average MW can be saved on acres currently by sprinkler, while an additional 28.2 average MW could be saved on new acres that are forecast to come under irrigation in the next 20 years. The largest share of the total savings (47%) is estimated to come from the use of low-pressure irrigation. Over 60% of the total potential savings 158.6 average MW is estimated to be available for a cost per kWh saved of 20 mills or less and over 75% could be achieved for a cost of 30 mills or less. Savings from low-pressure irrigation and the redesign of fittings and mainlines will normally cost less than 20 mills per kWh saved. Almost all of the savings that are estimated to cost more than 30 mills per kWh saved to obtain are savings from improved irrigation scheduling on irrigated acres that use surface water and have low average pumping lifts.

  14. Managing soil organic carbon in agriculture: the net effect on greenhouse gas emissions

    OpenAIRE

    Marland, Gregg; West, Tristram O.; Schlamadinger, Bernhard; Canella, Lorenza

    2011-01-01

    A change in agricultural practice can increase carbon sequestration in agricultural soils. To know the net effect on greenhouse gas emissions to the atmosphere, however, we consider associated changes in CO2 emissions resulting from the consumption of fossil fuels, emissions of other greenhouse gases and effects on land productivity and crop yield. We also consider how these factors will evolve over time. A change from conventional tillage to no-till agriculture, based on data for average pra...

  15. Soil micronutrients at the plot scale under agricultural and forest soil uses

    Science.gov (United States)

    da Silva Días, Rosane; Vidal Vázquez, Eva; dos Santos Batista Bonini, Carolina; Marasca, Indiamara; Paz-Ferreiro, Jorge

    2013-04-01

    Land use practices affect soil properties and nutrient supply. Very limited data are available on the heavy metal extractability in northwest Spain. The aim of this study is to analyze long-term effects of land use on the supply, variability and spatial distribution of soil nutrients, which was undertaken by comparison of a forest and a cultivated stand, rich in organic matter content. The study was carried out in an acid, rich in organic matter soil developed over sediments at the province of Lugo, northwestern of Spain. Adjacent plots with were marked on regular square grids with 2-m spacing. Fe, Mn, Zn and Cu were extracted both by Mehlich-3 and DTPA solutions and determined by ICP-MS. General soil chemical and physical properties were routinely analyzed. In arable land microelement concentration ranges were as follows: Fe (100 and 135 mg/Kg), Mn (7.6 and 21.5 mg/Kg), Zn (0.6 and 3.7 mg/Kg), Cu (0.2 and 0.7 mg/Kg). In forest land, these ranges were: Fe (62 and 309 mg/Kg), Mn (0.2 and 2.1 mg/Kg), Zn (0.2 and 2.9 mg/Kg), Cu (0.1 and 0.2 mg/Kg), Microelement concentrations extracted both with DTPA and Mehlich-3 were higher in the cultivated than in the forest stand, being Fe-DTPA the exception. Coefficients of variation were higher for the microelement content of the soil under forest. Principal component analysis was performed to evaluate associations between extractable microelements and general physico-chemical properties. At the study scale, nutrient management is the main factor affecting the agricultural site, whereas soil-plant interactions are probably driving the higher variation within the forest site. Patterns of spatial variability of the study nutrients at the small plot scale were assessed by geostatistical techniques. Results are discussed in the frame of organic matter decline with conventional tillage and sustainable land use.

  16. Performance of Wheat Varieties (Triticum aestivum L. under Conservation Tillage Practices in Organic Agriculture

    Directory of Open Access Journals (Sweden)

    Dimitrios BILALIS

    2011-11-01

    Full Text Available Field experiments were conducted to determine the effects of tillage systems and varieties on growth, yield and quality of wheat crop (Triticum aestivum L.. The experiments conducted at two sites were laid out in a split-plot design with four replicates, three main plots [conventional tillage (CT, no-tillage (NT and minimum tillage (MT] and four sub-plots (�Siette�, �Panifor�, �Myrto�, �Estero�. The soil porosity and total nitrogen were higher in soils subjected to conservation tillage systems (NT and MT than under conventional tillage. There were no differences in root growth neither between the tillage systems nor among the varieties. Yield was influenced by the tillage system and variety. The highest grain yield (421-459 kg ha-1 was found under the CT system with �Siette�, �Myrto� and �Estero� varieties. In contrast, the highest grain yield was observed under conservation tillage (NT and MT with �Panifor� variety. There were no significant differences between the tillage systems concerning the protein content and Zeleny value. In contrast, the highest Hagberg falling number was found with MT. Zeleny value was positively and significantly correlated with protein content. High flour quality, as demonstrated by high protein content and Zeleny value, and low Hagberg falling number, was produced in the �Estero� variety.

  17. A virtual, interactive and dynamic excursion in Google Earth on soil management and conservation (AgroGeovid)

    Science.gov (United States)

    Vanwalleghem, Tom; Giráldez, Juan Vicente

    2013-04-01

    Many courses on natural resources require hands-on practical knowledge and experience that students traditionally could only acquire by expensive and time-consuming field excursions. New technologies and social media however provide an interesting alternative to train students and help them improve their practical knowledge. AgroGeovid is a virtual excursion, based on Google Earth, Youtube, Facebook and Twitter that is aimed at agricultural engineering students, but equally useful for any student interested in soil management and conservation, e.g. geography, geology and environmental resources. Agrogeovid provides the framework for teachers and students to upload geotagged photos, comments and discussions. After the initial startup phase, where the teacher uploaded material on e.g. soil erosion phenomena, soil conservation structures and different soil management strategies under different agronomic systems, students contributed with their own material gathered throughout the academic year. All students decided to contribute via Facebook, in stead of Twitter, which was not known to most of them. The final result was a visual and dynamic tool which students could use to train and perfect skills adopted in the classroom using case-studies and examples from their immediate environment.

  18. Soil organic carbon contents of agricultural land in the Netherlands between 1984 and 2004

    NARCIS (Netherlands)

    Reijneveld, J.A.; Wensem, van J.; Oenema, O.

    2009-01-01

    There is some debate about the likelihood that soil organic carbon (SOC) contents of agricultural land decreases because of global warming and governmental restrictions on animal manure application rates in some countries. Here, we report on changes in the mean SOC contents of the top soils (0-5 cm)

  19. Relative skills of soil moisture and vegetation optical depth retrievals for agricultural drought monitoring

    Science.gov (United States)

    Soil moisture condition is an important indicator for agricultural drought monitoring. Through the Land Parameter Retrieval Model (LPRM), vegetation optical depth (VOD) as well as surface soil moisture (SM) can be retrieved simultaneously from brightness temperature observations from the Advanced Mi...

  20. Valuing Supporting Soil Ecosystem Services in Agriculture: A Natural Capital Approach

    NARCIS (Netherlands)

    Brady, M.V.; Hedlund, K.; Cong, R.G.; Hemerik, L.; Hotes, S.; Machado, S.; Mattson, L.; Schulz, E.; Thomsen, I.K.

    2015-01-01

    Soil biodiversity through its delivery of ecosystem functions and attendant supporting ecosystem services—benefits soil organisms generate for farmers—underpins agricultural production. Yet lack of practical methods to value the long-term effects of current farming practices results, inevitably, in

  1. A note on soil depth, failing markets and agricultural pricing

    NARCIS (Netherlands)

    Bulte, E; van Soest, D

    1999-01-01

    Due to implementation of Structural Adjustment Programs, prices of agricultural products have increased in many developing countries. From an environmental point of view, it is an open question whether these price increases stimulate sustainable agriculture. In the context of a simple model that inc

  2. Influence of some agricultural practices on the soil acidification in acid precipitation areas

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Both acid precipitation and unreasonable agricultural practices are notorious artificial factors resulting in soil acidification. To sort out reasonable agricultural practices favorable to abating soil acidification, the task of this study was directed to a long-term field trial in Chongqing, during which chemical fertilizer, organic fertilizer were applied to different crop rotations and the soil pH value was measured. The results indicated that all treatments decreased pH value in the 0 to 20 cm soil layer after ten years. Problems were more serious when chlorine-containing fertilizer, excessive chemical fertilizer and mixed fertilizer were applied. It is demonstrated that balance rates of N, P and K fertilizers, application of muck in field are advantageous to abating soil acidification. Oil plants affect soil acidification more than cereal in different crop rotation.

  3. Soil and Moisture Conservation Practice Report for Long Island Refuges Fiscal Year 1972

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Soil and moisture conservation practices were carried out on four Long Island Refuges during fiscal year 1972. This report outlines the reasoning behind the changes...

  4. Conservation of soil organic carbon, biodiversity and the provision of other ecosystem services along climatic gradients in West Africa

    Science.gov (United States)

    Marks, E.; Aflakpui, G. K. S.; Nkem, J.; Poch, R. M.; Khouma, M.; Kokou, K.; Sagoe, R.; Sebastiã, M.-T.

    2009-08-01

    Terrestrial carbon resources are major drivers of development in West Africa. The distribution of these resources co-varies with ecosystem type and rainfall along a strong Northeast-Southwest climatic gradient. Soil organic carbon, a strong indicator of soil quality, has been severely depleted in some areas by human activities, which leads to issues of soil erosion and desertification, but this trend can be altered with appropriate management. There is significant potential to enhance existing soil carbon stores in West Africa, with benefits at the global and local scale, for atmospheric CO2 mitigation as well as supporting and provisioning ecosystem services. Three key factors impacting carbon stocks are addressed in this review: climate, biotic factors, and human activities. Climate risks must be considered in a framework of global change, especially in West Africa, where landscape managers have few resources available to adapt to climatic perturbations. Among biotic factors, biodiversity conservation paired with carbon conservation may provide a pathway to sustainable development, and biodiversity conservation is also a global priority with local benefits for ecosystem resilience, biomass productivity, and provisioning services such as foodstuffs. Finally, human management has largely been responsible for reduced carbon stocks, but this trend can be reversed through the implementation of appropriate carbon conservation strategies in the agricultural sector, as shown by multiple studies. Owing to the strong regional climatic gradient, country-level initiatives will need to consider carbon sequestration approaches for multiple ecosystem types. Given the diversity of environments, global policies must be adapted and strategies developed at the national or sub-national levels to improve carbon storage above and belowground. Initiatives of this sort must act locally at farmer scale, and focus on ecosystem services rather than on carbon sequestration solely.

  5. Conservation of soil organic carbon, biodiversity and the provision of other ecosystem services along climatic gradients in West Africa

    Directory of Open Access Journals (Sweden)

    E. Marks

    2008-11-01

    Full Text Available Terrestrial carbon resources are major drivers of development in West Africa. The distribution of these resources co-varies with ecosystem type and rainfall along a strong Northeast-Southwest climatic gradient. Soil organic carbon, a strong indicator of soil quality, has been severely depleted in some areas by human activities, which leads to issues of soil erosion and desertification, but this trend can be altered via appropriate management. There is significant potential to enhance existing soil carbon stores in West Africa, with benefits at the global and local scales, for atmospheric CO2 mitigation and supporting, and provisioning ecosystem services, respectively. Three key factors impacting carbon stocks are addressed in this review: climate, biotic factors, and human activities. Climate risks must be considered in a framework of global change, especially in West Africa, where landscape managers have few resources available to adapt to climatic perturbations. Among biotic factors, biodiversity conservation paired with carbon conservation may provide a pathway to sustainable development, as evidence suggests that both may be inter-linked, and biodiversity conservation is also a global priority with local benefits for ecosystem resilience, biomass productivity, and provisioning services such as foodstuffs. Finally, human management has largely been responsible for reduced carbon stocks, but this trend can be reversed through the implementation of appropriate carbon conservation strategies in the agricultural sector, as shown by multiple studies. Owing to the strong regional climatic gradient, country-level initiatives will need to consider carbon sequestration approaches for multiple ecosystem types. Given the diversity of environments, global policies must be adapted and strategised at the national or sub-national levels to improve C storage above and belowground. Initiatives of this sort must act locally at farmer scale, and

  6. Organic Phosphorus Characterisation in Agricultural Soils by Enzyme Addition Assays

    Science.gov (United States)

    Jarosch, Klaus; Frossard, Emmanuel; Bünemann, Else K.

    2013-04-01

    Phosphorus (P) is a non-renewable resource and it is a building block of many molecules indispensable for life. Up to 80 per cent of total soil P can be in organic form. Hydrolysability and thereby availability to plants and microorganisms differ strongly among the multitude of chemical forms of soil organic P. A recent approach to characterise organic P classes is the addition of specific enzymes which hydrolyse organic P to inorganic orthophosphate, making it detectable by colorimetry. Based on the substrate specificity of the added enzymes, conclusions about the hydrolysed forms of organic P can then be made. The aim of this study was to determine the applicability of enzyme addition assays for the characterisation of organic P species in soil:water suspensions of soils with differing properties. To this end, ten different soil samples originating from four continents, with variable pH (in water) values (4.2-8.0), land management (grassland or cropped land) and P fertilization intensity were analysed. Three different enzymes were used (acid phosphatase, nuclease and phytase). Acid phosphatase alone or in combination with nuclease was applied to determine the content of P in simple monoesters (monoester-like P) and P in DNA (DNA-like P), while P hydrolysed from myo-inositol hexakisphosphate (Ins6P-like P) was calculated from P release after incubation with phytase minus P release by acid phosphatase. To reduce sorption of inorganic P on soil particles of the suspension, especially in highly weathered soils, soil specific EDTA additions were determined in extensive pre-tests. The results of these pre-tests showed that recoveries of at least 30 per cent could be achieved in all soils. Thus, detection of even small organic P pools, such as DNA-like P, was possible in all soils if a suitable EDTA concentration was chosen. The enzyme addition assays provided information about the hydrolysable quantities of the different classes of soil organic P compounds as affected

  7. Effects of Surfactants on Cryptosporidium parvum Mobility in Agricultural Soils from Illinois and Utah

    Science.gov (United States)

    Darnault, C. J.; Koken, E.; Jacobson, A. R.; Powelson, D.

    2011-12-01

    The occurence of the parasitic protozoan Cryptosporidium parvum in rural and agricultural watersheds due to agricultural activities and wildlife is inevitable. Understanding the behavior of C. parvum oocysts in the environment is critical for the protection of public health and the environment. To better understand the mechanisms by which the pathogen moves through soils and contaminates water resources, we study their mobility under conditions representative of real-world scenarios, where both C. parvum and chemicals that affect their fate are present in soils. Surfactants occur widely in soils due to agricultural practices such as wastewater irrigation and the application of pesticides or soil wetting agents. They affect water tension and, consequently, soil infiltration processes and the air-water interfaces in soil pores where C. parvum may be retained. We investigate the effects of surfactants on the mobility of C. parvum oocysts in agricultural soils from Illinois and Utah under unsaturated flow conditions. As it is critical to examine C. parvum in natural settings, we also developed a quantification method using RT-PCR for monitoring C. parvum oocysts in environmental soil and water samples. We optimized physico-chemical parameters to disrupt C. parvum oocysts and extract their DNA, and developed isolation methods to separate C. parvum oocysts from colloids in natural soil samples. The results of this research will lead to the development of an accurate and sensitive molecular method for the monitoring of C. parvum oocysts in environmental soil and water samples, and will further our understanding of the mechanisms controlling the behavior of C. parvum oocysts in soils, in particular the role of vadose zone processes, sorption to soil and surfactants.

  8. Profiling nematode communities in unmanaged flowerbed and agricultural field soils in Japan by DNA barcode sequencing.

    Directory of Open Access Journals (Sweden)

    Hisashi Morise

    Full Text Available Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU rDNA fragments were directly amplified from each of 68 (flowerbed samples and 48 (field samples isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs, indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis.

  9. Bioremediation of a crude-oil polluted agricultural-soil at Port Harcourt, Nigeria.

    OpenAIRE

    Ayotamuno, M. J.; Kogbara, R. B.; Ogaji, S. O. T.; Probert, S. D.

    2006-01-01

    A combination of treatments, consisting of the application of fertilizers and oxygen exposure, was evaluated in situ during a period of six weeks. Conditions of a major spill were simulated by sprinkling crude-oil on experimental cells containing agricultural soil. The remedial treatments were then applied and the soil characteristics analyzed after set periods. Soil physicochemical parameters, such as moisture content, pH value, electrical conductivity as well as organic-carbon and total-nit...

  10. Profiling Nematode Communities in Unmanaged Flowerbed and Agricultural Field Soils in Japan by DNA Barcode Sequencing

    Science.gov (United States)

    Morise, Hisashi; Miyazaki, Erika; Yoshimitsu, Shoko; Eki, Toshihiko

    2012-01-01

    Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU) rDNA fragments were directly amplified from each of 68 (flowerbed samples) and 48 (field samples) isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs) were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs) were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds) in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI) gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs), indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis. PMID:23284767

  11. Ammonia-Oxidizer Communities in an Agricultural Soil treated with Contrasting Nitrogen Sources.

    OpenAIRE

    Mussie Y. Habteselassie; Li eXu; Norton, Jeanette M.

    2013-01-01

    The community of ammonia-oxidizing prokaryotes was examined in an agricultural soil treated for 6 seasons with contrasting nitrogen (N) sources. Molecular tools based on the gene encoding ammonia monooxygenase were used to characterize the ammonia oxidizer communities and their abundance. Soil DNA was extracted from soils sampled from silage corn plots that received no additional N (control), dairy waste compost (DC), liquid dairy waste (LW), and ammonium sulfate (AS) treatments at approxima...

  12. Soil and water conservation for sustainable land management: where do we stand ?

    Science.gov (United States)

    Govers, Gerard

    2014-05-01

    Although soil and water conservation efforts date back to the 1930's in the USA, the implementation of appropriate conservation measures and land management strategies is still lagging in many areas in the world. The reasons for this are, without any doubt, manifold and range from an inadequate understanding of the problem, over the insufficient understanding of the effectiveness of measures and a lack of insight into the benefits of sustainable strategies, to an lack of sensitivity for the impact of certain strategies on local social and economic systems. In this paper we will not attempt to present a general overview of the state of knowledge in this wide domain, but rather focus on the identification of major bottlenecks that impede or slow down the application of sustainable conservation technology, whereby we will focus on soil degradation as a main problem. Moving towards more sustainable soil conservation and land management strategies requires progress on the following issues: - We need accurate data on the extent of problems of land degradation It may sound surprising that several decades of research have not delivered those data, but recent research conclusively shows that, for many areas, our estimates of erosion rates are far off and sometimes our perception is plain wrong. This has detrimental consequences as funds are inefficiently used and, on the long term, stakeholders will invariably lose interest. Various strategies may be used to improve the quality of the data that we used. - We need good insight in the effectiveness of different measures. A major issue here is the scale of assessment: the classical tools used to assess the effectiveness of measures are sometimes not suitable and may lead to both underestimation and overestimation of effectiveness. Furthermore, perceptions of effectiveness may have been shaped by experiences that are decades old, while agricultural technology has moved on. - We need a correct assessments of the co-benefits we

  13. Four decades of post-agricultural forest development have caused major redistributions of soil phosphorus fractions

    DEFF Research Database (Denmark)

    Schrijver, An De; Vesterdal, Lars; Hansen, Karin Irene;

    2012-01-01

    Fertilisation of agricultural land causes an accumulation of nutrients in the top soil layer, among which phosphorus (P) is particularly persistent. Changing land use from farmland to forest affects soil properties, but changes in P pools have rarely been studied despite their importance to forest...... ecosystem development. Here, we describe the redistributions of the P pools in a four-decadal chronosequence of post-agricultural common oak (Quercus robur L.) forests in Belgium and Denmark. The aim was to assess whether forest age causes a repartitioning of P throughout the various soil P pools (labile P...

  14. Agricultural soils decontamination techniques: methods and results of tests realized near Chernobyl

    International Nuclear Information System (INIS)

    After a major nuclear accident, decontamination of agricultural soils would be necessary in order to reclaim the land. Specific techniques were studied in the framework of the European program for Rehabilitation of Soils and Surfaces after an Accident (RESSAC). Different ways to remove the top layer of soils are described, and especially the use of Decontaminating Vegetal Network (D.V.N.) combined with spraying of organic polymers. Real scale tests in the 30 km zone around the Chernobyl nuclear power plant showed that it is possible to achieve an excellent decontamination of agricultural fields (decontamination factor greater than 95%. (author)

  15. Soil types and limiting factors in agricultural production in the San Fernando district, Tamaulipas, Mexico

    International Nuclear Information System (INIS)

    The limiting factors in agricultural production, defined as those properties and characteristics of the geographical environment that influence the development of crops, can be diverse and are grouped with the physical environment of soil. They are the result of soil characteristics and soil degradation processes by anthropogenic influence. Due to the above, the objective of this study was to identify and surveying the limitative factors to agricultural production, as well as to define its ability land use capacity in San Fernando district, Tamaulipas. (Author) 7 refs.

  16. Value of Soil Organic Carbon in Agricultural Lands

    Energy Technology Data Exchange (ETDEWEB)

    Wander, M.; Nissen, T. [Department of Natural Resources and Environmental Sciences, University of Illinois, 1102 S. Goodwin Ave. Urbana IL 61801 (United States)

    2004-10-01

    Immediate efforts to increase soil carbon sequestration and minimize terrestrial greenhouse gas emissions are needed to mitigate global warming. Whether or not terrestrial stocks become sinks or net sources of C over the next century will depend upon how fast and at what level we are able to stabilize carbon dioxide levels. The cost of soil C sequestration is at present relatively low compared to other C emission reduction technologies making soil C sinks an important short-term solution to be used while competing technologies are developed. However, efforts to use C sequestration in soils as CO2 emissions offsets have faced numerous challenges. Difficulties associated with C stock validation (direct measurement) and the impermanence and saturability of soil C reservoirs raise concerns over whether soil C reservoirs are good long-term investments. Pragmatism has led to the development of indirect inventorying of the C reserves held at national and regional scales. Such indirect accounting systems will advance as validation methods are refined and as process models improve their ability to accurately predict how existing soil condition and specific land management practices will influence soil C storage and NO2 and CH4 emissions. Improved documentation of the value of environmental services and sustained productive potential derived from optimized land use and associated increases in soil quality will also add to the estimated value of soil C sinks. Policies must evolve simultaneously with the theoretical and technical tools needed to promote optimization of land use practices to mitigate climate change now and to minimize future contributions of soil C to atmospheric CO2.

  17. Arbuscular mycorrhizal fungi in soil and roots respond differently to phosphorus inputs in an intensively managed calcareous agricultural soil.

    Science.gov (United States)

    Liu, Wei; Zhang, Yunlong; Jiang, Shanshan; Deng, Yan; Christie, Peter; Murray, Philip J; Li, Xiaolin; Zhang, Junling

    2016-01-01

    Understanding the diversity and community structure of arbuscular mycorrhizal fungi (AMF) is important for potentially optimizing their role in mining phosphorus (P) in agricultural ecosystems. Here, we conduct a comprehensive study to investigate the vertical distribution of AMF in a calcareous field and their temporal structure in maize-roots with fertilizer P application over a three-year period. The results showed that soil available-P response to P fertilization but maize yields did not. Phosphorus fertilization had no-significant effect on richness of AMF except at greater soil-depths. High P-supply reduced root colonization while optimum-P tended to increase colonization and fungal richness on all sampling occasions. Crop phenology might override P-supply in determining the community composition of active root inhabiting fungi. Significant differences in the community structure of soil AMF were observed between the controls and P treatments in surface soil and the community shift was attributable mainly to available-P, N/P and pH. Vertical distribution was related mainly to soil electrical conductivity and Na content. Our results indicate that the structure of AMF community assemblages is correlated with P fertilization, soil depth and crop phenology. Importantly, phosphorus management must be integrated with other agricultural-practices to ensure the sustainability of agricultural production in salinized soils. PMID:27102357

  18. Conservation implications of amphibian habitat relationships within channelized agricultural headwater streams in the midwestern United States

    Science.gov (United States)

    The widespread use of stream channelization and subsurface tile drainage for removing water from agricultural fields has led to the development of numerous channelized agricultural headwater streams within agricultural watersheds of the Midwestern United States. Channelized agricultural headwater s...

  19. Distribution coefficient and transfer factor of stable iodine in agricultural soils in Aomori, Japan

    International Nuclear Information System (INIS)

    Soil-to-solution distribution coefficient (Kd) and soil-to-plant transfer factor (TF) were determined for agricultural soils and selected plants in Aomori Prefecture, Japan, by means of analysis of stable I in soil and plant samples. The concentration of I in the soil samples varied between 0.52 and 82.8 mg kg-1 (geometric mean of 4.4 mg kg-1). The Kd, which was defined as the ratio of I concentration in soil to that in water extracted from the soil, was 1.5 x 103 in geometric mean (L/kg). The TF value was defined as the ratio of I concentration in plant to that in soil. Geometric means of the TF on dry weight base obtained in this study were 3.2 x 10-2 for komatsuna, 2.0 x 10-2 for Japanese radish and 2.3 x 10-2 for pasture grass. (author)

  20. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    Science.gov (United States)

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-11-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality.

  1. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region.

    Science.gov (United States)

    Oikawa, P Y; Ge, C; Wang, J; Eberwein, J R; Liang, L L; Allsman, L A; Grantz, D A; Jenerette, G D

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality.

  2. Implications Of Soil Resistivity Measurements Using The Electrical Resistivity Method A Case Study Of A Maize Farm Under Different Soil Preparation Modes At KNUST Agricultural Research Station Kumasi

    Directory of Open Access Journals (Sweden)

    Jakalia

    2015-01-01

    Full Text Available Abstract Continuous vertical electrical sounding CVES technique was used to investigate the soil moisture content of a maize farm at the Kwame Nkrumah University of Science and Technology KNUST Agricultural Research Station ARS Kumasi Ghana. The soils of the maize farm were categorized into four different land preparation modes ploughed-harrowed ploughed hoed and no-till plot. Time-lapse measurements with CVES was carried out using the multi-electrode Wenner array to investigate soil moisture variation with the help of the ABEM Terrameter SAS 4000 resistivity meter. The results showed a heterogeneous distribution of soil moisture content both spatially and temporally. Most of the water available for plants uptake was within a depth of 0.20 0.40 m which coincided with the root zones of the maize crops. In addition the no-till plot was found to conserve more moisture during dry weather conditions than the rest of the plots. The research shows that CVES technique is applicable in monitoring shallow soil water content in the field and the results obtained could be used to optimize irrigation scheduling and to assess the potential for variable-rate irrigation.

  3. Implications of Using Thermal Desorption to Remediate Contaminated Agricultural Soil: Physical Characteristics and Hydraulic Processes.

    Science.gov (United States)

    O'Brien, Peter L; DeSutter, Thomas M; Casey, Francis X M; Derby, Nathan E; Wick, Abbey F

    2016-07-01

    Given the recent increase in crude oil production in regions with predominantly agricultural economies, the determination of methods that remediate oil contamination and allow for the land to return to crop production is increasingly relevant. Ex situ thermal desorption (TD) is a technique used to remediate crude oil pollution that allows for reuse of treated soil, but the properties of that treated soil are unknown. The objectives of this research were to characterize TD-treated soil and to describe implications in using TD to remediate agricultural soil. Native, noncontaminated topsoil and subsoil adjacent to an active remediation site were separately subjected to TD treatment at 350°C. Soil physical characteristics and hydraulic processes associated with agricultural productivity were assessed in the TD-treated samples and compared with untreated samples. Soil organic carbon decreased more than 25% in both the TD-treated topsoil and the subsoil, and total aggregation decreased by 20% in the topsoil but was unaffected in the subsoil. The alteration in these physical characteristics explains a 400% increase in saturated hydraulic conductivity in treated samples as well as a decrease in water retention at both field capacity and permanent wilting point. The changes in soil properties identified in this study suggest that TD-treated soils may still be suitable for sustaining vegetation, although likely at a slightly diminished capacity when directly compared with untreated soils. PMID:27380094

  4. Geogenic and agricultural controls on the geochemical composition of European agricultural soils

    NARCIS (Netherlands)

    Mol, Gerben; Saaltink, Rémon; Griffioen, Jasper; Birke, Manfred

    2014-01-01

    Purpose: Concern about the environmental impact of agriculture caused by intensification is growing as large amounts of nutrients and contaminants are introduced into the environment. The aim of this paper is to identify the geogenic and agricultural controls on the elemental composition of European

  5. Geogenic and agricultural controls on the geochemical composition of European agricultural soils

    NARCIS (Netherlands)

    Saaltink, R.; Griffioen, J.; Mol, G.; Birke, M.

    2014-01-01

    Purpose Concern about the environmental impact of agriculture caused by intensification is growing as large amounts of nutrients and contaminants are introduced into the environment. The aim of this paper is to identify the geogenic and agricultural controls on the elemental composition of European,

  6. Sorption and desorption of indaziflam degradates in several agricultural soils

    Science.gov (United States)

    Processes regulating pesticide fate in the environment are influenced by the physicochemical properties of pesticides and soils. Sorption-desorption are important processes as they regulate movement of pesticides in soil. Although sorption-desorption is widely studied for herbicides, studies involvi...

  7. Wintertime CO2 exchange in a boreal agricultural peat soil

    International Nuclear Information System (INIS)

    We measured the carbon dioxide (CO2) exchange with the eddy covariance (EC) method through three winters above a cultivated peat soil. During the first winter, the soil was ploughed, while for the next two winters it was grass-covered. On a weekly timescale, the emission was controlled by the soil temperature, whereas the vegetation had no clear impact. The deeper soil temperatures better correlated with the CO2 efflux, especially in frozen soil. The correlation with the air temperature was poor. After a mid-winter snowmelt, decreased CO2 efflux rates were temporarily detected, probably resulting from a lowered diffusion of CO2 from the soil air into the atmosphere. Moderate soil-thaw CO2 pulses were observed in the springs of 2001 and 2003. CO2 emission rates measured with the EC method were found to be significantly lower as compared to those measured with the chamber method. The cumulative CO2 emission between December and mid-March ranged from 80 to 178 g/m2 during three winters, correlating positively with air and soil temperatures and the number of snow-free days during that period. The projected increase in the air temperature related to global warming would boost the wintertime CO2 efflux at our site by 30-200% (35-114 g/m2), depending on the selected emission scenario

  8. Sorption and desorption of indaziflam degradates in several agricultural soils

    Directory of Open Access Journals (Sweden)

    Diego Gonçalves Alonso

    2016-04-01

    Full Text Available ABSTRACT Processes regulating pesticide fate in the environment are influenced by the physicochemical properties of pesticides and soils. Sorption and desorption are important processes as they regulate the movement of pesticides in soil. Although sorption-desorption is widely studied for herbicides, studies involving their metabolites in soil are scarce. Sorption and desorption of indaziflam metabolites (indaziflam-triazinediamine (FDAT, indaziflam-triazine-indanone (ITI and indaziflam-carboxilic acid (ICA were investigated in six Brazilian (BRA soils and three United States (USA soils with different physicochemical properties. The Freundlich equation described sorption of the metabolites for all soils (R2 > 0.98; 1/n ~ 1. Sorption order (Kf was ITI > ICA > FDAT. Mean values of Kf,oc were 453, 289, and 81 (BRA and 444, 48, and 48 (USA for metabolites ITI, ICA, and FDAT respectively. Desorption was hysteretic for all metabolites in all soils. These results suggest that these metabolites fall in the classification range of mobile to moderately mobile in soils.

  9. Testing the validity of a Cd soil quality standard in representative Mediterranean agricultural soils under an accumulator crop

    Energy Technology Data Exchange (ETDEWEB)

    Recatala, L., E-mail: luis.recatala@uv.es [Departamento de Planificacion Territorial, Centro de Investigaciones sobre Desertificacion-CIDE (CSIC-Universitat de Valencia-Generalitat Valenciana), Cami de la Marjal S/N, 46470 Albal (Valencia) (Spain); Sanchez, J. [Departamento de Planificacion Territorial, Centro de Investigaciones sobre Desertificacion-CIDE (CSIC-Universitat de Valencia-Generalitat Valenciana), Cami de la Marjal S/N, 46470 Albal (Valencia) (Spain); Arbelo, C. [Departamento de Edafologia y Geologia, Facultad de Biologia, Universidad de La Laguna, 38206 La Laguna (Tenerife), Islas Canarias (Spain); Sacristan, D. [Departamento de Planificacion Territorial, Centro de Investigaciones sobre Desertificacion-CIDE (CSIC-Universitat de Valencia-Generalitat Valenciana), Cami de la Marjal S/N, 46470 Albal (Valencia) (Spain)

    2010-12-01

    The validity of a quality standard for cadmium (Cd) in representative agricultural Mediterranean soils under an accumulator crop (Lactuca sativa L.) is evaluated in this work considering both its effect on the crop growth (biomass production) and the metal accumulation in the edible part of the plant. Four soils with different properties relevant to regulate the behaviour of heavy metals were selected from the Valencian Region, a representative area of the European Mediterranean Region. For all soils, the effective concentration of added Cd causing 50% inhibition (EC{sub 50}) on the biomass production was much higher than the minimum legal concentration used to declare soils as contaminated by cadmium, i.e. 100 times the baseline value for Cd, in Spain (Spanish Royal Decree 9/2005). As expected, Cd toxicity in the crop was higher in the soils having less carbonate content. On the other hand, for all soils, from the second dose on, which represents 10-times the baseline value for Cd, the metal content in crops exceeded the maximum level established for leaf crops by the European legislation (Regulation EC no. 466/2001). Soil salinity and coarse textures make the accumulation of Cd in the edible part of the plant easier. Therefore, the legal baseline soil cadmium content established by the Spanish legislation seems not valid neither from the point of view of the effect on the crop growth nor from the point of view of the metal accumulation in the edible part of the plant. In order to realistically declare contaminated soils by heavy metals, soil quality standards should be proposed taking into account the soil properties. Further research in other agricultural areas of the region would improve the basis for proposing adequate soil quality standards for heavy metals as highlighted by the European Thematic Strategy for Soil Protection.

  10. Optimization in the utility maximization framework for conservation planning: a comparison of solution procedures in a study of multifunctional agriculture

    Science.gov (United States)

    Kreitler, Jason R.; Stoms, David M.; Davis, Frank W.

    2014-01-01

    Quantitative methods of spatial conservation prioritization have traditionally been applied to issues in conservation biology and reserve design, though their use in other types of natural resource management is growing. The utility maximization problem is one form of a covering problem where multiple criteria can represent the expected social benefits of conservation action. This approach allows flexibility with a problem formulation that is more general than typical reserve design problems, though the solution methods are very similar. However, few studies have addressed optimization in utility maximization problems for conservation planning, and the effect of solution procedure is largely unquantified. Therefore, this study mapped five criteria describing elements of multifunctional agriculture to determine a hypothetical conservation resource allocation plan for agricultural land conservation in the Central Valley of CA, USA. We compared solution procedures within the utility maximization framework to determine the difference between an open source integer programming approach and a greedy heuristic, and find gains from optimization of up to 12%. We also model land availability for conservation action as a stochastic process and determine the decline in total utility compared to the globally optimal set using both solution algorithms. Our results are comparable to other studies illustrating the benefits of optimization for different conservation planning problems, and highlight the importance of maximizing the effectiveness of limited funding for conservation and natural resource management.

  11. Soil processes as a guiding principle in precision agriculture

    NARCIS (Netherlands)

    Alphen, van J.

    2002-01-01

    The fact that conventional agricultural practices have many detrimental effects is widely acknowledged (Rabbinge, 1997). To mitigate these effects, Dutch policy makers have implemented environmental laws that are essentially based on characteristic indicators for groundwater quality. This has result

  12. Which Factors Determine Metal Accumulation in Agricultural Soils in the Severely Human-Coupled Ecosystem?

    Science.gov (United States)

    Xu, Li; Cao, Shanshan; Wang, Jihua; Lu, Anxiang

    2016-01-01

    Agricultural soil is typically an important component of urban ecosystems, contributing directly or indirectly to the general quality of human life. To understand which factors influence metal accumulation in agricultural soils in urban ecosystems is becoming increasingly important. Land use, soil type and urbanization indicators all account for considerable differences in metal accumulation in agricultural soils, and the interactions between these factors on metal concentrations were also examined. Results showed that Zn, Cu, and Cd concentrations varied significantly among different land use types. Concentrations of all metals, except for Cd, were higher in calcareous cinnamon soil than in fluvo-aquic soil. Expansion distance and road density were adopted as urbanization indicators, and distance from the urban center was significantly negatively correlated with concentrations of Hg, and negatively correlated with concentrations of Zn, and road density was positively correlated with Cd concentrations. Multivariate analysis of variance indicated that Hg concentration was significantly influenced by the four-way interaction among all factors. The results in this study provide basic data to support the management of agricultural soils and to help policy makers to plan ahead in Beijing. PMID:27196922

  13. Soil-water salinity pollution: extent, management and potential impacts on agricultural sustain ability

    International Nuclear Information System (INIS)

    One of the significant environmental hazards of irrigated agriculture is the accumulation of salts in the soil. The presence of large quantities of certain soluble salts badly affects the physical, chemical, biological and fertility characteristics of the soils. This pollution of soil salinity and its toxic degradation directly affects plants, hence impacting the air filters of nature. The soil and water salinity has adversely reduced the yield of our major agricultural crops to an extent that agricultural sustainability is being threatened. Salinity has also dwindled the survival of marine life, livestock, in addition to damaging of construction works. The problem can be estimated from the fact that out of 16.2 m.ha of irrigated land of Pakistan, 6.3 . ha are salt affected in the Indus Plain. The state of water pollution can further be assessed from the fact that presently about 106 MAF of water is diverted from the rivers into the canals of the Indus Plain which contains 28 MT of salts. Due to soil and water pollution more than 40,000 ha of good irrigated land goes out of cultivation every year. This it has drastically reduced the potential of our agricultural lands. Hence, an estimated annual loss of Rs. 14,000 million has been reported due to this soil-water salinity pollution in Pakistan. Some management options to mitigate the soil - water salinity pollution are proposed. (author)

  14. ECONOMIC IMPACT OF BIODIVERSITY CONSERVATION IN AGRICULTURE EXPLOATATION IN SOUTH OF ROMANIA

    Directory of Open Access Journals (Sweden)

    Anisoara CHIHAIA

    2012-01-01

    Full Text Available Biodiversity, as variation of life form on Earth is the base of agriculture, in each of its fields, from the food to the services provided by ecosystems, the main streams and links of production. Standards or requirements that farmers must meet to be eligible for subsidies contribute to maintain biodiversity. The purpose of this paper is to estimate the costs needed to implement environmental standards and their implications for farm rentability. This study was made in farms with different size in the south part of Romania. Even if it can be seen a increase of production expenses which lead to a light decrease of farms profitability, the long-term benefit of biodiversity conservation is considerably.

  15. L’Agriculture de Conservation et sa diffusion en France et dans le monde

    OpenAIRE

    Laurent, François

    2015-01-01

    L’Agriculture de Conservation est un système s’inscrivant dans la démarche de l’agroécologie, fondé sur le non-labour, la couverture permanente du sol par des végétaux et des rotations longues et diversifiées. Le système vise à améliorer la productivité sur le long terme en respectant les services écosystémiques générés par l’activité biologique du sol et la matière organique qu’il contient. Les techniques de non-labour se sont développées sur le continent américain et en Australie. Elles pre...

  16. Motivating farmers for soil and water conservation: A promising strategy from the Bolivian mountain valleys

    NARCIS (Netherlands)

    Kessler, A.

    2007-01-01

    Successful examples of strategies that motivate farmers for the large-scale execution of soil and water conservation (SWC) practices are scarce. This paper presents a promising strategy for changing mostly passive Bolivian Andes farmers into active participators in natural resources conservation. In

  17. Soil Incubation Study to Assess the