WorldWideScience

Sample records for agricultural system simulation

  1. Simulation and optimization of agricultural product supply chain system based on Witness

    Directory of Open Access Journals (Sweden)

    Jiandong Liu

    2017-03-01

    Full Text Available Researches on agricultural product supply chain have important implications for improving the efficiency of agricultural products circulation, strengthening the construction of agricultural market system, promoting agricultural modernization and solving the three rural issues. Agricultural product supply chain system has begun to be optimized through simulation technique. In this paper, agricultural product supply chain system is reasonably simplified and assumed. A simulation model was developed by using the simulation software Wit-ness to study agricultural product supply chain. Through the analysis of the simulation output data, improvement suggestions were also proposed as follows: improving the organization degree of agricultural products, improving the agricultural products processing, establishing strategic partnership and scientifically developing agricultural products logistics.

  2. [Development of APSIM (agricultural production systems simulator) and its application].

    Science.gov (United States)

    Shen, Yuying; Nan, Zhibiao; Bellotti, Bill; Robertson, Michael; Chen, Wen; Shao, Xinqing

    2002-08-01

    Soil-crop simulator model is an effective tool for providing decision on agricultural management. APSIM (Agricultural Production Systems Simulator) was developed to simulate the biophysical process in farming system, and particularly in the economic and ecological features of the systems under climatic risk. The current literatures revealed that APSIM could be applied in wide zone, including temperate continental, temperate maritime, sub-tropic and arid climate, and Mediterranean climates, with the soil type of clay, duplex soil, vertisol, silt sandy, silt loam and silt clay loam. More than 20 crops have been simulated well. APSIM is powerful on describing crop structure, crop sequence, yield prediction, and quality control as well as erosion estimation under different planting pattern.

  3. Modeling and simulation of the agricultural sprayer boom leveling system

    KAUST Repository

    Sun, Jian

    2011-01-01

    According to the agricultural precision requirements, the distance from sprayer nozzles to the corps should be kept between 50 cm to 70 cm. The sprayer boom also needs to be kept parallel to the field during the application process. Thus we can guarantee the quality of the chemical droplets distribution on the crops. In this paper we design a sprayer boom leveling system for agricultural sprayer vehicles combined with a four-rod linkage self-leveling suspension and electro-hydraulic auto-leveling system. The dynamic analysis shows that the suspension can realize an excellent self-leveling in a comparative small inclination range. In addition we build compensation controller for the electro-hydraulic system based on the mathematical model. With simulations we can optimize the performance of this controller to make sure a fast leveling response to the inclined sprayer boom. © 2011 IEEE.

  4. Simulation and controller design for an agricultural sprayer boom leveling system

    KAUST Repository

    Sun, Jian

    2011-01-01

    According to the agricultural precision requirements, the distance from sprayer nozzles to the corps should be kept between 50 cm to 70 cm. The sprayer boom also needs to be kept parallel to the field during the operation process. Thus we can guarantee the quality of the chemical droplets distribution on the crops. In this paper we introduced a sprayer boom leveling system for agricultural sprayer vehicles with electro-hydraulic auto-leveling system. The suitable hydraulic actuating cylinder and valve were selected according to the specific systemic specifications. Furthermore, a compensation controller for the electro-hydraulic system was designed based on the mathematical model. With simulations we can optimize the performance of this controller to make sure a fast leveling response to the inclined sprayer boom. © 2011 IEEE.

  5. Simulation and assessment of agricultural biomass supply chain systems

    Directory of Open Access Journals (Sweden)

    D. Pavlou

    2017-05-01

    Full Text Available Agricultural biomass supply chain consists of a number of interacted sequential operations affected by various variables, such as weather conditions, machinery systems, and biomass features. These facts make the process of biomass supply chain as a complex system that requires computational tools, e.g. simulation and mathematical models, for their assessment and analysis. A biomass supply chain simulation model developed on the ExtendSim 8 simulation environment is presented in this paper. A number of sequential operations are applied in order biomass to be mowed, harvested, and transported to a biorefinery facility. Different operational scenarios regarding the travel distance between field and biorefinery facility, number of machines, and capacity of machines are analyzed showing how different parameters affect the processes within biomass supply chain in terms of time and cost. The results shown that parameters such as area of the field, travel distance, number of available machines, capacity of the machines, etc. should be taken into account in order a less time and/ or cost consuming machinery combination to be selected.

  6. Modelling and Simulation of a Hydrostatic Steering System for Agricultural Tractors

    Directory of Open Access Journals (Sweden)

    Barbara Zardin

    2018-01-01

    Full Text Available The steering system of a vehicle impacts on the vehicle performance, safety and on the driver’s comfort. Moreover, in off-road vehicles using hydrostatic steering systems, the energy dissipation also becomes a critical issue. These aspects push and motivate innovation, research and analysis in the field of agricultural tractors. This paper proposes the modelling and analysis of a hydrostatic steering system for an agricultural tractor to calculate the performance of the system and determine the influence of its main design parameters. The focus here is on the driver’s steering feel, which can improve the driver’s behavior reducing unnecessary steering corrections during the working conditions. The hydrostatic steering system is quite complex and involves a hydraulic circuit and a mechanical mechanism to transmit the steering to the vehicle tires. The detailed lumped parameters model here proposed allows to simulate the dynamic behavior of the steering system and to both enhance the understanding of the system and to improve the design through parameters sensitivity analysis.

  7. [Applicability of agricultural production systems simulator (APSIM) in simulating the production and water use of wheat-maize continuous cropping system in North China Plain].

    Science.gov (United States)

    Wang, Lin; Zheng, You-fei; Yu, Qiang; Wang, En-li

    2007-11-01

    The Agricultural Production Systems Simulator (APSIM) was applied to simulate the 1999-2001 field experimental data and the 2002-2003 water use data at the Yucheng Experiment Station under Chinese Ecosystem Research Network, aimed to verify the applicability of the model to the wheat-summer maize continuous cropping system in North China Plain. The results showed that the average errors of the simulations of leaf area index (LAI), biomass, and soil moisture content in 1999-2000 and 2000-2001 field experiments were 27.61%, 24.59% and 7.68%, and 32.65%, 35.95% and 10.26%, respectively, and those of LAI and biomass on the soils with high and low moisture content in 2002-2003 were 26.65% and 14.52%, and 23.91% and 27.93%, respectively. The simulations of LAI and biomass accorded well with the measured values, with the coefficients of determination being > 0.85 in 1999-2000 and 2002-2003, and 0.78 in 2000-2001, indicating that APSIM had a good applicability in modeling the crop biomass and soil moisture content in the continuous cropping system, but the simulation error of LAI was a little larger.

  8. Brief history of agricultural systems modeling.

    Science.gov (United States)

    Jones, James W; Antle, John M; Basso, Bruno; Boote, Kenneth J; Conant, Richard T; Foster, Ian; Godfray, H Charles J; Herrero, Mario; Howitt, Richard E; Janssen, Sander; Keating, Brian A; Munoz-Carpena, Rafael; Porter, Cheryl H; Rosenzweig, Cynthia; Wheeler, Tim R

    2017-07-01

    Agricultural systems science generates knowledge that allows researchers to consider complex problems or take informed agricultural decisions. The rich history of this science exemplifies the diversity of systems and scales over which they operate and have been studied. Modeling, an essential tool in agricultural systems science, has been accomplished by scientists from a wide range of disciplines, who have contributed concepts and tools over more than six decades. As agricultural scientists now consider the "next generation" models, data, and knowledge products needed to meet the increasingly complex systems problems faced by society, it is important to take stock of this history and its lessons to ensure that we avoid re-invention and strive to consider all dimensions of associated challenges. To this end, we summarize here the history of agricultural systems modeling and identify lessons learned that can help guide the design and development of next generation of agricultural system tools and methods. A number of past events combined with overall technological progress in other fields have strongly contributed to the evolution of agricultural system modeling, including development of process-based bio-physical models of crops and livestock, statistical models based on historical observations, and economic optimization and simulation models at household and regional to global scales. Characteristics of agricultural systems models have varied widely depending on the systems involved, their scales, and the wide range of purposes that motivated their development and use by researchers in different disciplines. Recent trends in broader collaboration across institutions, across disciplines, and between the public and private sectors suggest that the stage is set for the major advances in agricultural systems science that are needed for the next generation of models, databases, knowledge products and decision support systems. The lessons from history should be

  9. Advanced Agriculture system

    Directory of Open Access Journals (Sweden)

    Shrinivas R. Zanwar

    2012-05-01

    Full Text Available This article addresses the advanced system which improves agriculture processes like cultivation on ploughed land, based on robotic platform. We have developed a robotic vehicle having four wheels and steered by DC motor. The advanced autonomous system architecture gives us the opportunity to develop a complete new range of agricultural equipment based on small smart machines. The machine will cultivate the farm by considering particular rows and specific column at fixed distance depending on crop. The obstacle detection problem will also be considered, sensed by infrared sensor. The whole algorithm, calculation, processing, monitoring are designed with motors & sensor interfaced with microcontroller. The result obtained through example activation unit is also presented. The dc motor simulation with feedforward and feedback technique shows precise output. With the help of two examples, a DC motor and a magnetic levitation system, the use of MATLAB and Simulink for modeling, analysis and control is designed.

  10. A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana.

    Science.gov (United States)

    Kotir, Julius H; Smith, Carl; Brown, Greg; Marshall, Nadine; Johnstone, Ron

    2016-12-15

    In a rapidly changing water resources system, dynamic models based on the notion of systems thinking can serve as useful analytical tools for scientists and policy-makers to study changes in key system variables over time. In this paper, an integrated system dynamics simulation model was developed using a system dynamics modelling approach to examine the feedback processes and interaction between the population, the water resource, and the agricultural production sub-sectors of the Volta River Basin in West Africa. The objective of the model is to provide a learning tool for policy-makers to improve their understanding of the long-term dynamic behaviour of the basin, and as a decision support tool for exploring plausible policy scenarios necessary for sustainable water resource management and agricultural development. Structural and behavioural pattern tests, and statistical test were used to evaluate and validate the performance of the model. The results showed that the simulated outputs agreed well with the observed reality of the system. A sensitivity analysis also indicated that the model is reliable and robust to uncertainties in the major parameters. Results of the business as usual scenario showed that total population, agricultural, domestic, and industrial water demands will continue to increase over the simulated period. Besides business as usual, three additional policy scenarios were simulated to assess their impact on water demands, crop yield, and net-farm income. These were the development of the water infrastructure (scenario 1), cropland expansion (scenario 2) and dry conditions (scenario 3). The results showed that scenario 1 would provide the maximum benefit to people living in the basin. Overall, the model results could help inform planning and investment decisions within the basin to enhance food security, livelihoods development, socio-economic growth, and sustainable management of natural resources. Copyright © 2016 Elsevier B.V. All

  11. The System Dynamics Model for Development of Organic Agriculture

    Science.gov (United States)

    Rozman, Črtomir; Škraba, Andrej; Kljajić, Miroljub; Pažek, Karmen; Bavec, Martina; Bavec, Franci

    2008-10-01

    Organic agriculture is the highest environmentally valuable agricultural system, and has strategic importance at national level that goes beyond the interests of agricultural sector. In this paper we address development of organic farming simulation model based on a system dynamics methodology (SD). The system incorporates relevant variables, which affect the development of the organic farming. The group decision support system (GDSS) was used in order to identify most relevant variables for construction of causal loop diagram and further model development. The model seeks answers to strategic questions related to the level of organically utilized area, levels of production and crop selection in a long term dynamic context and will be used for simulation of different policy scenarios for organic farming and their impact on economic and environmental parameters of organic production at an aggregate level.

  12. A California Statewide App to Simulate Fate of Nitrate in Irrigated Agricultural System

    Science.gov (United States)

    Diamantopoulos, E.; Walkinshaw, M.; Harter, T.; O'Geen, A. T.

    2017-12-01

    Groundwater resources are very important for California's economic development and environmental sustainability. Nitrate is by far the most widespread anthropogenic groundwater pollutant in California's mostly alluvial groundwater basins. Major sources are synthetic fertilizer and dairy manure, but also septic systems and urban wastewater effluent. Here, we evaluate agricultural soils in California according to their risk for nitrate leaching. We conducted over 1 million numerical simulations taking into account the effect of climate, crop type, irrigation and fertilization management scenarios across all 4,568 agricultural soil profiles occurring in California. The assessment was done solving 1-D Richards equation and the advection-dispersion equation numerically. This study is focused on the complex water and nitrate dynamics occurring at the shallow vadose zone (rootzone). The results of this study allow the construction of state-wide maps which can be used for the identification of high-risk regions and the design of agricultural nutrient management policy. We investigate how pollution risk can be minimized by adopting simple irrigation and fertilization methods. Furthermore, we show that these methods are more effective for the most permeable soil profiles along with high demanding crops in terms of fertilization amount and irrigation water. We also present how seasonal (winter) climate conditions contribute on nitrate leaching.

  13. CONCEPTUAL MODEL OF INFORMATION SYSTEM OF THE AGRICULTURAL ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Uladzimir Buts

    2017-02-01

    Full Text Available Abstract. Research subject represented by the theoretical and practical issues use of information resources in the agricultural business. Research aim is to formation of a conceptual model of information system of agricultural enterprises according to the requirements of sustainable development. Research methods. The work is prepared on basis of several scientific methods and approaches including monographic, analytical, computational and constructive methods of mathematical and structural logic simulation of information systems. Research results. Based on the assessment of the results of research information systems in agribusiness, as reflected in the theoretical review, the author designed principles of the information system for the agricultural enterprise for sustainable development of agribusiness. Sphere of application of the research results. State and regional authorities of economic regulation. Agricultural enterprises and farmers.

  14. The Food and Agricultural Policy Simulator

    OpenAIRE

    Salathe, Larry E.; Price, J. Michael; Gadson, Kenneth E.

    1982-01-01

    This article describes the structure and dynamic properties of the Food and Agricultural Policy Simulator (FAPSIM), an annual econometric model of the US agricultural sector F APSIM estimates a simultaneous price-quantity equilibrium solution for a set of individual commodity models developed for beef, pork, dairy, chickens, eggs, turkeys, corn, oats, barley, gram sorghum, wheat, soybeans, and cotton F APSIM also endogenously determines farm production expenses, cash receipts, net farm Income...

  15. Simulating Salt Movement using a Coupled Salinity Transport Model in a Variably Saturated Agricultural Groundwater System

    Science.gov (United States)

    Tavakoli Kivi, S.; Bailey, R. T.; Gates, T. K.

    2017-12-01

    Salinization is one of the major concerns in irrigated agricultural fields. Increasing salinity concentrations are due principally to a high water table that results from excessive irrigation, canal seepage, and a lack of efficient drainage systems, and lead to decreasing crop yield. High groundwater salinity loading to nearby river systems also impacts downstream areas, with saline river water diverted for application on irrigated fields. To assess the different strategies for salt remediation, we present a reactive transport model (UZF-RT3D) coupled with a salinity equilibrium chemistry module for simulating the fate and transport of salt ions in a variably-saturated agricultural groundwater system. The developed model accounts not for advection, dispersion, nitrogen and sulfur cycling, oxidation-reduction, sorption, complexation, ion exchange, and precipitation/dissolution of salt minerals. The model is applied to a 500 km2 region within the Lower Arkansas River Valley (LARV) in southeastern Colorado, an area acutely affected by salinization in the past few decades. The model is tested against salt ion concentrations in the saturated zone, total dissolved solid concentrations in the unsaturated zone, and salt groundwater loading to the Arkansas River. The model now can be used to investigate salinity remediation strategies.

  16. Simulating US Agriculture in a Modern Dust Bowl Drought

    Science.gov (United States)

    Glotter, Michael; Elliott, Joshua

    2016-01-01

    Drought-induced agricultural loss is one of the most costly impacts of extreme weather, and without mitigation, climate change is likely to increase the severity and frequency of future droughts. The Dust Bowl of the 1930s was the driest and hottest for agriculture in modern US history. Improvements in farming practices have increased productivity, but yields today are still tightly linked to climate variation and the impacts of a 1930s-type drought on current and future agricultural systems remain unclear. Simulations of biophysical process and empirical models suggest that Dust-Bowl-type droughts today would have unprecedented consequences, with yield losses approx.50% larger than the severe drought of 2012. Damages at these extremes are highly sensitive to temperature, worsening by approx.25% with each degree centigrade of warming. We find that high temperatures can be more damaging than rainfall deficit, and, without adaptation, warmer mid-century temperatures with even average precipitation could lead to maize losses equivalent to the Dust Bowl drought. Warmer temperatures alongside consecutive droughts could make up to 85% of rain-fed maize at risk of changes that may persist for decades. Understanding the interactions of weather extremes and a changing agricultural system is therefore critical to effectively respond to, and minimize, the impacts of the next extreme drought event.

  17. Evolution Model and Simulation of Profit Model of Agricultural Products Logistics Financing

    Science.gov (United States)

    Yang, Bo; Wu, Yan

    2018-03-01

    Agricultural products logistics financial warehousing business mainly involves agricultural production and processing enterprises, third-party logistics enterprises and financial institutions tripartite, to enable the three parties to achieve win-win situation, the article first gives the replication dynamics and evolutionary stability strategy between the three parties in business participation, and then use NetLogo simulation platform, using the overall modeling and simulation method of Multi-Agent, established the evolutionary game simulation model, and run the model under different revenue parameters, finally, analyzed the simulation results. To achieve the agricultural products logistics financial financing warehouse business to participate in tripartite mutually beneficial win-win situation, thus promoting the smooth flow of agricultural products logistics business.

  18. A simulation-based interval two-stage stochastic model for agricultural nonpoint source pollution control through land retirement

    International Nuclear Information System (INIS)

    Luo, B.; Li, J.B.; Huang, G.H.; Li, H.L.

    2006-01-01

    This study presents a simulation-based interval two-stage stochastic programming (SITSP) model for agricultural nonpoint source (NPS) pollution control through land retirement under uncertain conditions. The modeling framework was established by the development of an interval two-stage stochastic program, with its random parameters being provided by the statistical analysis of the simulation outcomes of a distributed water quality approach. The developed model can deal with the tradeoff between agricultural revenue and 'off-site' water quality concern under random effluent discharge for a land retirement scheme through minimizing the expected value of long-term total economic and environmental cost. In addition, the uncertainties presented as interval numbers in the agriculture-water system can be effectively quantified with the interval programming. By subdividing the whole agricultural watershed into different zones, the most pollution-related sensitive cropland can be identified and an optimal land retirement scheme can be obtained through the modeling approach. The developed method was applied to the Swift Current Creek watershed in Canada for soil erosion control through land retirement. The Hydrological Simulation Program-FORTRAN (HSPF) was used to simulate the sediment information for this case study. Obtained results indicate that the total economic and environmental cost of the entire agriculture-water system can be limited within an interval value for the optimal land retirement schemes. Meanwhile, a best and worst land retirement scheme was obtained for the study watershed under various uncertainties

  19. Evaluating the APEX model for simulating streamflow and water quality on ten agricultural watersheds in the U.S.

    Science.gov (United States)

    Simulation models are increasingly used to assess water quality constituent losses from agricultural systems. Mis-use often gives irrelevant or erroneous answers. The Agricultural Policy Environmental Extender (APEX) model is emerging as one of the premier modeling tools for fields, farms, and agr...

  20. Integrated Model of Bioenergy and Agriculture System

    DEFF Research Database (Denmark)

    Sigurjonsson, Hafthor Ægir; Elmegaard, Brian; Clausen, Lasse Røngaard

    2015-01-01

    Due to increased burden on the environment caused by human activities, focus on industrial ecology designs are gaining more attention. In that perspective an environ- mentally effective integration of bionergy and agriculture systems has significant potential. This work introduces a modeling...... of the overall model. C- TOOL and Yasso07 are used in the carbon balance of agri- culture, Dynamic Network Analysis is used for the energy simulation and Brightway2 is used to build a Life Cycle Inventory compatible database and processes it for vari- ous impacts assessment methods. The model is success- fully...... approach that builds on Life Cycle Inventory and carries out Life Cycle Impact Assessment for a con- sequential Life Cycle Assessment on integrated bioenergy and agriculture systems. The model framework is built in Python which connects various freely available soft- ware that handle different aspects...

  1. Application of fuzzy inference system to increase efficiency of management decision-making in agricultural enterprises

    OpenAIRE

    Balanovskаya, Tetiana Ivanovna; Boretska, Zoreslava Petrovna

    2014-01-01

    Application of fuzzy inference system to increase efficiency of management decision- making in agricultural enterprises. Theoretical and methodological issues, practical recommendations on improvement of management decision-making in agricultural enterprises to increase their competitiveness have been intensified and developed in the article. A simulation example of a quality management system for agricultural products on the basis of the theory of fuzzy sets and fuzzy logic has been proposed...

  2. Laser-based agriculture system

    KAUST Repository

    Ooi, Boon S.

    2016-03-31

    A system and method are provided for indoor agriculture using at least one growth chamber illuminated by laser light. In an example embodiment of the agriculture system, a growth chamber is provided having one or more walls defining an interior portion of the growth chamber. The agriculture system may include a removable tray disposed within the interior portion of the growth chamber. The agriculture system also includes a light source, which may be disposed outside the growth chamber. The one or more walls may include at least one aperture. The light source is configured to illuminate at least a part of the interior portion of the growth chamber. In embodiments in which the light source is disposed outside the growth chamber, the light source is configured to transmit the laser light to the interior portion of the growth chamber via the at least one aperture.

  3. Laser-based agriculture system

    KAUST Repository

    Ooi, Boon S.; Wong, Aloysius Tze; Ng, Tien Khee

    2016-01-01

    A system and method are provided for indoor agriculture using at least one growth chamber illuminated by laser light. In an example embodiment of the agriculture system, a growth chamber is provided having one or more walls defining an interior portion of the growth chamber. The agriculture system may include a removable tray disposed within the interior portion of the growth chamber. The agriculture system also includes a light source, which may be disposed outside the growth chamber. The one or more walls may include at least one aperture. The light source is configured to illuminate at least a part of the interior portion of the growth chamber. In embodiments in which the light source is disposed outside the growth chamber, the light source is configured to transmit the laser light to the interior portion of the growth chamber via the at least one aperture.

  4. Simulating the reactive transport of nitrogen species in a regional irrigated agricultural groundwater system

    Science.gov (United States)

    Bailey, R. T.; Gates, T. K.

    2011-12-01

    The fate and transport of nitrogen (N) species in irrigated agricultural groundwater systems is governed by irrigation patterns, cultivation practices, aquifer-surface water exchanges, and chemical reactions such as oxidation-reduction, volatilization, and sorption, as well as the presence of dissolved oxygen (O2). We present results of applying the newly-developed numerical model RT3D-AG to a 50,400-ha regional study site within the Lower Arkansas River Valley in southeastern Colorado, where elevated concentrations of NO3 have been observed in both groundwater and surface water during the recent decade. Furthermore, NO3 has a strong influence on the fate and transport of other contaminants in the aquifer system such as selenium (Se) through inhibition of reduction of dissolved Se as well as oxidation of precipitate Se from outcropped and bedrock shale. RT3D-AG, developed by appending the multi-species reactive transport finite-difference model RT3D with modular packages that account for variably-saturated transport, the cycling of carbon (C) and N, and the fate and transport of O2 within the soil and aquifer system, simulates organic C and organic N decomposition and mineralization, oxidation-reduction reactions, and sorption. System sources/sinks consist of applied fertilizer and manure; crop uptake of ammonium (NH4) and NO3 during the growing season; mass of O2, NO3, and NH4 associated with irrigation water and canal seepage; mass of O2, NO3, and NH4 transferred to canals and the Arkansas River from the aquifer; and dead root mass and after-harvest stover mass incorporated into the soil organic matter at the end of the growing season. Chemical reactions are simulated using first-order Monod kinetics, wherein the rate of reaction is dependent on the concentration of the reactants as well as temperature and water content of the soil. Fertilizer and manure application timing and loading, mass of seasonal crop uptake, and end-of-season root mass and stover mass are

  5. Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture

    International Nuclear Information System (INIS)

    Weindl, Isabelle; Lotze-Campen, Hermann; Popp, Alexander; Müller, Christoph; Schmitz, Christoph; Rolinski, Susanne; Havlík, Petr; Herrero, Mario

    2015-01-01

    Livestock farming is the world’s largest land use sector and utilizes around 60% of the global biomass harvest. Over the coming decades, climate change will affect the natural resource base of livestock production, especially the productivity of rangeland and feed crops. Based on a comprehensive impact modeling chain, we assess implications of different climate projections for agricultural production costs and land use change and explore the effectiveness of livestock system transitions as an adaptation strategy. Simulated climate impacts on crop yields and rangeland productivity generate adaptation costs amounting to 3% of total agricultural production costs in 2045 (i.e. 145 billion US$). Shifts in livestock production towards mixed crop-livestock systems represent a resource- and cost-efficient adaptation option, reducing agricultural adaptation costs to 0.3% of total production costs and simultaneously abating deforestation by about 76 million ha globally. The relatively positive climate impacts on grass yields compared with crop yields favor grazing systems inter alia in South Asia and North America. Incomplete transitions in production systems already have a strong adaptive and cost reducing effect: a 50% shift to mixed systems lowers agricultural adaptation costs to 0.8%. General responses of production costs to system transitions are robust across different global climate and crop models as well as regarding assumptions on CO 2 fertilization, but simulated values show a large variation. In the face of these uncertainties, public policy support for transforming livestock production systems provides an important lever to improve agricultural resource management and lower adaptation costs, possibly even contributing to emission reduction. (letter)

  6. Desert agricultural terrace systems at EBA Jawa (Jordan) - Layout, water availability and efficiency

    Science.gov (United States)

    Meister, Julia; Krause, Jan; Müller-Neuhof, Bernd; Portillo, Marta; Reimann, Tony; Schütt, Brigitta

    2016-04-01

    Located in the arid basalt desert of northeastern Jordan, the Early Bronze Age (EBA) settlement of Jawa is by far the largest and best preserved archaeological EBA site in the region. Recent surveys in the close vicinity revealed well-preserved remains of three abandoned agricultural terrace systems. In the presented study these archaeological features are documented by detailed mapping and the analysis of the sediment records in a multi-proxy approach. To study the chronology of the terrace systems optically stimulated luminescence (OSL) is used. In order to evaluate the efficiency of the water management techniques and its impact on harvest yields, a crop simulation model (CropSyst) under today's climatic conditions is applied, simulating crop yields with and without (runoff) irrigation. In order to do so, a runoff time series for each agricultural terrace system and its catchment is generated, applying the SCS runoff curve number method (CN) based on rainfall and soil data. Covering a total area of 38 ha, irrigated terrace agriculture was practiced on slopes, small plateaus, and valleys in the close vicinity of Jawa. Floodwater from nearby wadis or runoff from adjacent slopes was collected and diverted via surface canals. The terraced fields were arranged in cascades, allowing effective water exploitation through a system of risers, canals and spillways. The examined terrace profiles show similar stratigraphic sequences of mixed unstratified fine sediments that are composed of small-scale relocated sediments with local origin. The accumulation of these fines is associated with the construction of agricultural terraces, forcing infiltration and storage of the water within the terraces. Two OSL ages of terrace fills indicate that the construction of these terrace systems started as early as 5300 ± 300 a, which fits well to the beginning of the occupation phase of Jawa at around 3.500 calBC, thus making them to the oldest examples of its kind in the Middle East

  7. Support of the operation of an agricultural biogas plants with dynamic simulation; Unterstuetzung des Betriebs einer landwirtschaftlichen Biogasanlage mit dynamischer Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Seick, Ingolf; Gebhardt, Sebastian [Hochschule Magdeburg-Stendal, Magdeburg (Germany). Fachbereich Wasser- und Kreislaufwirtschaft; Tschepetzki, Ralf [ifak system GmbH, Magdeburg (Germany)

    2012-07-01

    Mathematical models for the dynamic simulation can be useful for agricultural biogas plants, but are not state of the art. Presented in the following text is a dynamic simulation model of a typical plant. This is based on the Anaerobic Digestion Model No. 1 (ADM1) and parameterized and compared with relevant system data. The results were incorporated into the development of a system for the direct, model-based operational support of biogas plants. Integrated is an operation diary for data acquisition and a simulation system. It supports the biogas plant operation through analysis and evaluation of complex biological processes, forecasting (e.g. the gas yield) and optimization of biology in conjunction with the process technology. Based on the above biogas plant, a practical method and exemplary results of an automatic model adjustment will be shown and example forecasts for the stabilization of the biological process are presented. (orig.)

  8. Sustainable intensification in agricultural systems.

    Science.gov (United States)

    Pretty, Jules; Bharucha, Zareen Pervez

    2014-12-01

    Agricultural systems are amended ecosystems with a variety of properties. Modern agroecosystems have tended towards high through-flow systems, with energy supplied by fossil fuels directed out of the system (either deliberately for harvests or accidentally through side effects). In the coming decades, resource constraints over water, soil, biodiversity and land will affect agricultural systems. Sustainable agroecosystems are those tending to have a positive impact on natural, social and human capital, while unsustainable systems feed back to deplete these assets, leaving fewer for the future. Sustainable intensification (SI) is defined as a process or system where agricultural yields are increased without adverse environmental impact and without the conversion of additional non-agricultural land. The concept does not articulate or privilege any particular vision or method of agricultural production. Rather, it emphasizes ends rather than means, and does not pre-determine technologies, species mix or particular design components. The combination of the terms 'sustainable' and 'intensification' is an attempt to indicate that desirable outcomes around both more food and improved environmental goods and services could be achieved by a variety of means. Nonetheless, it remains controversial to some. This review analyses recent evidence of the impacts of SI in both developing and industrialized countries, and demonstrates that both yield and natural capital dividends can occur. The review begins with analysis of the emergence of combined agricultural-environmental systems, the environmental and social outcomes of recent agricultural revolutions, and analyses the challenges for food production this century as populations grow and consumption patterns change. Emergent criticisms are highlighted, and the positive impacts of SI on food outputs and renewable capital assets detailed. It concludes with observations on policies and incentives necessary for the wider adoption of

  9. EXPERT SYSTEMS - DEVELOPMENT OF AGRICULTURAL INSURANCE TOOL

    Directory of Open Access Journals (Sweden)

    NAN Anca-Petruţa

    2013-07-01

    Full Text Available Because of the fact that specialty agricultural assistance is not always available when the farmers need it, we identified expert systems as a strong instrument with an extended potential in agriculture. This started to grow in scale recently, including all socially-economic activity fields, having the role of collecting data regarding different aspects from human experts with the purpose of assisting the user in the necessary steps for solving problems, at the performance level of the expert, making his acquired knowledge and experience available. We opted for a general presentation of the expert systems as well as their necessity, because, the solution to develop the agricultural system can come from artificial intelligence by implementing the expert systems in the field of agricultural insurance, promoting existing insurance products, farmers finding options in depending on their necessities and possibilities. The objective of this article consists of collecting data about different aspects about specific areas of interest of agricultural insurance, preparing the database, a conceptual presentation of a pilot version which will become constantly richer depending on the answers received from agricultural producers, with the clearest exposure of knowledgebase possible. We can justify picking this theme with the fact that even while agricultural insurance plays a very important role in agricultural development, the registered result got from them are modest, reason why solutions need to be found in the scope of developing the agricultural sector. The importance of this consists in the proposal of an immediate viable solution to correspond with the current necessities of agricultural producers and in the proposal of an innovative solution, namely the implementation of expert system in agricultural insurance as a way of promoting insurance products. Our research, even though it treats the subject at an conceptual level, it wants to undertake an

  10. Diffuse nitrogen loss simulation and impact assessment of stereoscopic agriculture pattern by integrated water system model and consideration of multiple existence forms

    Science.gov (United States)

    Zhang, Yongyong; Gao, Yang; Yu, Qiang

    2017-09-01

    Agricultural nitrogen loss becomes an increasingly important source of water quality deterioration and eutrophication, even threatens water safety for humanity. Nitrogen dynamic mechanism is still too complicated to be well captured at watershed scale due to its multiple existence forms and instability, disturbance of agricultural management practices. Stereoscopic agriculture is a novel agricultural planting pattern to efficiently use local natural resources (e.g., water, land, sunshine, heat and fertilizer). It is widely promoted as a high yield system and can obtain considerable economic benefits, particularly in China. However, its environmental quality implication is not clear. In our study, Qianyanzhou station is famous for its stereoscopic agriculture pattern of Southern China, and an experimental watershed was selected as our study area. Regional characteristics of runoff and nitrogen losses were simulated by an integrated water system model (HEQM) with multi-objective calibration, and multiple agriculture practices were assessed to find the effective approach for the reduction of diffuse nitrogen losses. Results showed that daily variations of runoff and nitrogen forms were well reproduced throughout watershed, i.e., satisfactory performances for ammonium and nitrate nitrogen (NH4-N and NO3-N) loads, good performances for runoff and organic nitrogen (ON) load, and very good performance for total nitrogen (TN) load. The average loss coefficient was 62.74 kg/ha for NH4-N, 0.98 kg/ha for NO3-N, 0.0004 kg/ha for ON and 63.80 kg/ha for TN. The dominating form of nitrogen losses was NH4-N due to the applied fertilizers, and the most dramatic zones aggregated in the middle and downstream regions covered by paddy and orange orchard. In order to control diffuse nitrogen losses, the most effective practices for Qianyanzhou stereoscopic agriculture pattern were to reduce farmland planting scale in the valley by afforestation, particularly for orchard in the

  11. Sustainable intensification in agricultural systems

    Science.gov (United States)

    Pretty, Jules; Bharucha, Zareen Pervez

    2014-01-01

    Background Agricultural systems are amended ecosystems with a variety of properties. Modern agroecosystems have tended towards high through-flow systems, with energy supplied by fossil fuels directed out of the system (either deliberately for harvests or accidentally through side effects). In the coming decades, resource constraints over water, soil, biodiversity and land will affect agricultural systems. Sustainable agroecosystems are those tending to have a positive impact on natural, social and human capital, while unsustainable systems feed back to deplete these assets, leaving fewer for the future. Sustainable intensification (SI) is defined as a process or system where agricultural yields are increased without adverse environmental impact and without the conversion of additional non-agricultural land. The concept does not articulate or privilege any particular vision or method of agricultural production. Rather, it emphasizes ends rather than means, and does not pre-determine technologies, species mix or particular design components. The combination of the terms ‘sustainable’ and ‘intensification’ is an attempt to indicate that desirable outcomes around both more food and improved environmental goods and services could be achieved by a variety of means. Nonetheless, it remains controversial to some. Scope and Conclusions This review analyses recent evidence of the impacts of SI in both developing and industrialized countries, and demonstrates that both yield and natural capital dividends can occur. The review begins with analysis of the emergence of combined agricultural–environmental systems, the environmental and social outcomes of recent agricultural revolutions, and analyses the challenges for food production this century as populations grow and consumption patterns change. Emergent criticisms are highlighted, and the positive impacts of SI on food outputs and renewable capital assets detailed. It concludes with observations on policies and

  12. Toward a New Generation of Agricultural System Data, Models, and Knowledge Products: State of Agricultural Systems Science

    Science.gov (United States)

    Jones, James W.; Antle, John M.; Basso, Bruno; Boote, Kenneth J.; Conant, Richard T.; Foster, Ian; Godfray, H. Charles J.; Herrero, Mario; Howitt, Richard E.; Janssen, Sander; hide

    2016-01-01

    We review the current state of agricultural systems science, focusing in particular on the capabilities and limitations of agricultural systems models. We discuss the state of models relative to five different Use Cases spanning field, farm, landscape, regional, and global spatial scales and engaging questions in past, current, and future time periods. Contributions from multiple disciplines have made major advances relevant to a wide range of agricultural system model applications at various spatial and temporal scales. Although current agricultural systems models have features that are needed for the Use Cases, we found that all of them have limitations and need to be improved. We identified common limitations across all Use Cases, namely 1) a scarcity of data for developing, evaluating, and applying agricultural system models and 2) inadequate knowledge systems that effectively communicate model results to society. We argue that these limitations are greater obstacles to progress than gaps in conceptual theory or available methods for using system models. New initiatives on open data show promise for addressing the data problem, but there also needs to be a cultural change among agricultural researchers to ensure that data for addressing the range of Use Cases are available for future model improvements and applications. We conclude that multiple platforms and multiple models are needed for model applications for different purposes. The Use Cases provide a useful framework for considering capabilities and limitations of existing models and data.

  13. Data Entities and Information System Matrix for Integrated Agriculture Information System (IAIS)

    Science.gov (United States)

    Budi Santoso, Halim; Delima, Rosa

    2018-03-01

    Integrated Agriculture Information System is a system that is developed to process data, information, and knowledge in Agriculture sector. Integrated Agriculture Information System brings valuable information for farmers: (1) Fertilizer price; (2) Agriculture technique and practise; (3) Pest management; (4) Cultivation; (5) Irrigation; (6) Post harvest processing; (7) Innovation in agriculture processing. Integrated Agriculture Information System contains 9 subsystems. To bring an integrated information to the user and stakeholder, it needs an integrated database approach. Thus, researchers describes data entity and its matrix relate to subsystem in Integrated Agriculture Information System (IAIS). As a result, there are 47 data entities as entities in single and integrated database.

  14. PATHWAY: a simulation model of radionuclide-transport through agricultural food chains

    International Nuclear Information System (INIS)

    Kirchner, T.B.; Whicker, F.W.; Otis, M.D.

    1982-01-01

    PATHWAY simulates the transport of radionuclides from fallout through an agricultural ecosystem. The agro-ecosystem is subdivided into several land management units, each of which is used either for grazing animals, for growing hay, or for growing food crops. The model simulates the transport of radionuclides by both discrete events and continuous, time-dependent processes. The discrete events include tillage of soil, harvest and storage of crops,and deposition of fallout. The continuous processes include the transport of radionuclides due to resuspension, weathering, rain splash, percolation, leaching, adsorption and desorption of radionuclides in the soil, root uptake, foliar absorption, growth and senescence of vegetation, and the ingestion assimilation, and excretion of radionuclides by animals. Preliminary validation studies indicate that the model dynamics and simulated values of radionuclide concentrations in several agricultural products agree well with measured values when the model is driven with site specific data on deposition from world-wide fallout

  15. NUMERICAL SIMULATION OF AN AGRICULTURAL SOIL SHEAR STRESS TEST

    Directory of Open Access Journals (Sweden)

    Andrea Formato

    2007-03-01

    Full Text Available In this work a numerical simulation of agricultural soil shear stress tests was performed through soil shear strength data detected by a soil shearometer. We used a soil shearometer available on the market to measure soil shear stress and constructed special equipment that enabled automated detection of soil shear stress. It was connected to an acquisition data system that displayed and recorded soil shear stress during the full field tests. A soil shearometer unit was used to the in situ measurements of soil shear stress in full field conditions for different types of soils located on the right side of the Sele river, at a distance of about 1 km from each other, along the perpendicular to the Sele river in the direction of the sea. Full field tests using the shearometer unit were performed alongside considered soil characteristic parameter data collection. These parameter values derived from hydrostatic compression and triaxial tests performed on considered soil samples and repeated 4 times and we noticed that the difference between the maximum and minimum values detected for every set of performed tests never exceeded 4%. Full field shear tests were simulated by the Abaqus program code considering three different material models of soils normally used in the literature, the Mohr-Coulomb, Drucker-Prager and Cam-Clay models. We then compared all data outcomes obtained by numerical simulations with those from the experimental tests. We also discussed any further simulation data results obtained with different material models and selected the best material model for each considered soil to be used in tyre/soil contact simulation or in soil compaction studies.

  16. Managing adaptively for multifunctionality in agricultural systems.

    Science.gov (United States)

    Hodbod, Jennifer; Barreteau, Olivier; Allen, Craig; Magda, Danièle

    2016-12-01

    The critical importance of agricultural systems for food security and as a dominant global landcover requires management that considers the full dimensions of system functions at appropriate scales, i.e. multifunctionality. We propose that adaptive management is the most suitable management approach for such goals, given its ability to reduce uncertainty over time and support multiple objectives within a system, for multiple actors. As such, adaptive management may be the most appropriate method for sustainably intensifying production whilst increasing the quantity and quality of ecosystem services. However, the current assessment of performance of agricultural systems doesn't reward ecosystem service provision. Therefore, we present an overview of the ecosystem functions agricultural systems should and could provide, coupled with a revised definition for assessing the performance of agricultural systems from a multifunctional perspective that, when all satisfied, would create adaptive agricultural systems that can increase production whilst ensuring food security and the quantity and quality of ecosystem services. The outcome of this high level of performance is the capacity to respond to multiple shocks without collapse, equity and triple bottom line sustainability. Through the assessment of case studies, we find that alternatives to industrialized agricultural systems incorporate more functional goals, but that there are mixed findings as to whether these goals translate into positive measurable outcomes. We suggest that an adaptive management perspective would support the implementation of a systematic analysis of the social, ecological and economic trade-offs occurring within such systems, particularly between ecosystem services and functions, in order to provide suitable and comparable assessments. We also identify indicators to monitor performance at multiple scales in agricultural systems which can be used within an adaptive management framework to increase

  17. Managing adaptively for multifunctionality in agricultural systems

    Science.gov (United States)

    Hodbod, Jennifer; Barreteau, Olivier; Allen, Craig R.; Magda, Danièle

    2016-01-01

    The critical importance of agricultural systems for food security and as a dominant global landcover requires management that considers the full dimensions of system functions at appropriate scales, i.e. multifunctionality. We propose that adaptive management is the most suitable management approach for such goals, given its ability to reduce uncertainty over time and support multiple objectives within a system, for multiple actors. As such, adaptive management may be the most appropriate method for sustainably intensifying production whilst increasing the quantity and quality of ecosystem services. However, the current assessment of performance of agricultural systems doesn’t reward ecosystem service provision. Therefore, we present an overview of the ecosystem functions agricultural systems should and could provide, coupled with a revised definition for assessing the performance of agricultural systems from a multifunctional perspective that, when all satisfied, would create adaptive agricultural systems that can increase production whilst ensuring food security and the quantity and quality of ecosystem services. The outcome of this high level of performance is the capacity to respond to multiple shocks without collapse, equity and triple bottom line sustainability. Through the assessment of case studies, we find that alternatives to industrialized agricultural systems incorporate more functional goals, but that there are mixed findings as to whether these goals translate into positive measurable outcomes. We suggest that an adaptive management perspective would support the implementation of a systematic analysis of the social, ecological and economic trade-offs occurring within such systems, particularly between ecosystem services and functions, in order to provide suitable and comparable assessments. We also identify indicators to monitor performance at multiple scales in agricultural systems which can be used within an adaptive management framework to

  18. SUSTAINABLE FARMS: INTEGRATION OF AGRICULTURAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Manolo Muñoz-Espinosa

    2016-08-01

    Full Text Available The inappropriate use of agrochemicals and technologies in farming systems can cause an accelerated deterioration of agricultural and soil pollution. Thus, agriculture and livestock are becoming an environmental problem in the world, which implies the need to assess the efficiency of agricultural production systems related to sustainability. The traditional peasant system is apparently unsustainable, while farm with an integral production approach have better opportunities for development over time as they tend to sustainability. This type of farms incorporate productive alternatives that improve as a whole, the system and the livelihood of the peasants. The trends towards sustainability of farms are mainly due to a better land use. As well as, implementing systems adapted to each soil and production type to ensure profitability and persistence, achieving the highest possible agricultural productivity. The urgency to produce food for a growing population is almost a paradigm that reinforces the imperative for maximum yield per unit area, and creates a vision of the rural world aimed at increasing profit at the expense of the attributes and core values of livelihood in rural areas. It can be concluded that the integrated farming articulate various subsystems, which working together could allow higher sustainability of agricultural production practices, environmentally friendly, safeguarding the food sovereignty of the population and improving the quality of life of farmers

  19. Reforming the Public Agricultural Extension System in China ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Reforming the Public Agricultural Extension System in China : Supporting Rural Innovation. The public agricultural extension system has played a critical role in Chinese agricultural development over the past few decades. There is growing evidence that since the mid-1990s the system has failed to provide new and ...

  20. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice

    Science.gov (United States)

    Clark, Michael; Tilman, David

    2017-06-01

    Global agricultural feeds over 7 billion people, but is also a leading cause of environmental degradation. Understanding how alternative agricultural production systems, agricultural input efficiency, and food choice drive environmental degradation is necessary for reducing agriculture’s environmental impacts. A meta-analysis of life cycle assessments that includes 742 agricultural systems and over 90 unique foods produced primarily in high-input systems shows that, per unit of food, organic systems require more land, cause more eutrophication, use less energy, but emit similar greenhouse gas emissions (GHGs) as conventional systems; that grass-fed beef requires more land and emits similar GHG emissions as grain-feed beef; and that low-input aquaculture and non-trawling fisheries have much lower GHG emissions than trawling fisheries. In addition, our analyses show that increasing agricultural input efficiency (the amount of food produced per input of fertilizer or feed) would have environmental benefits for both crop and livestock systems. Further, for all environmental indicators and nutritional units examined, plant-based foods have the lowest environmental impacts; eggs, dairy, pork, poultry, non-trawling fisheries, and non-recirculating aquaculture have intermediate impacts; and ruminant meat has impacts ∼100 times those of plant-based foods. Our analyses show that dietary shifts towards low-impact foods and increases in agricultural input use efficiency would offer larger environmental benefits than would switches from conventional agricultural systems to alternatives such as organic agriculture or grass-fed beef.

  1. A process-based agricultural model for the irrigated agriculture sector in Alberta, Canada

    Science.gov (United States)

    Ammar, M. E.; Davies, E. G.

    2015-12-01

    Connections between land and water, irrigation, agricultural productivity and profitability, policy alternatives, and climate change and variability are complex, poorly understood, and unpredictable. Policy assessment for agriculture presents a large potential for development of broad-based simulation models that can aid assessment and quantification of policy alternatives over longer temporal scales. The Canadian irrigated agriculture sector is concentrated in Alberta, where it represents two thirds of the irrigated land-base in Canada and is the largest consumer of surface water. Despite interest in irrigation expansion, its potential in Alberta is uncertain given a constrained water supply, significant social and economic development and increasing demands for both land and water, and climate change. This paper therefore introduces a system dynamics model as a decision support tool to provide insights into irrigation expansion in Alberta, and into trade-offs and risks associated with that expansion. It is intended to be used by a wide variety of users including researchers, policy analysts and planners, and irrigation managers. A process-based cropping system approach is at the core of the model and uses a water-driven crop growth mechanism described by AquaCrop. The tool goes beyond a representation of crop phenology and cropping systems by permitting assessment and quantification of the broader, long-term consequences of agricultural policies for Alberta's irrigation sector. It also encourages collaboration and provides a degree of transparency that gives confidence in simulation results. The paper focuses on the agricultural component of the systems model, describing the process involved; soil water and nutrients balance, crop growth, and water, temperature, salinity, and nutrients stresses, and how other disciplines can be integrated to account for the effects of interactions and feedbacks in the whole system. In later stages, other components such as

  2. Towards Conservation Agriculture systems in Moldova

    Directory of Open Access Journals (Sweden)

    Boris Boincean

    2016-10-01

    Full Text Available As the world population and food production demands rise, keeping agricultural soils and landscapes healthy and productive are of paramount importance to sustaining local and global food security and the flow of ecosystem services to society. The global population, expected to reach 9.7 billion people by 2050, will put additional pressure on the available land area and resources for agricultural production. Sustainable production intensification for food security is a major challenge to both industrialized and developing countries. The paper focuses on the results from long-term multi-factorial experiments involving tillage practices, crop rotations and fertilization to study the interactions amongst the treatments in the context of sustainable production intensification. The paper discusses the results in relation to reported performance of crops and soil quality in Conservation Agriculture systems that are based on no or minimum soil disturbance (no-till seeding and weeding, maintenance of soil mulch cover with crop biomass and cover crops, and diversified cropping s involving annuals and perennials. Conservation Agriculture also emphasizes the necessity of an agro-ecosystems approach to the management of agricultural land for sustainable production intensification, as well as to the site-specificity of agricultural production. Arguments in favor of avoiding the use of soil tillage are discussed together with agro-ecological principles for sustainable intensification of agriculture. More interdisciplinary systems research is required to support the transformation of agriculture from the conventional tillage agriculture to a more sustainable agriculture based on the principles and practices of Conservation Agriculture, along with other complementary practices of integrated crop, nutrient, water, pest, energy and farm power management.

  3. Triggering system innovation in agricultural innovation systems

    NARCIS (Netherlands)

    Turner, James A.; Williams, Tracy; Nicholas, Graeme; Foote, Jeff; Rijswijk, Kelly; Barnard, Tim; Beechener, Sam; Horita, Akiko

    2017-01-01

    This article describes a process for stimulating engagement among change agents to develop a shared understanding of systemic problems in the agricultural innovation system (AIS), challenge prevalent institutional logics and identify actions they might undertake to stimulate system innovation.

  4. REMOTE CONTROLLING OF AN AGRICULTURAL PUMP SYSTEM BASED ON THE DUAL TONE MULTI-FREQUENCY (DTMF TECHNIQUE

    Directory of Open Access Journals (Sweden)

    BEZA N. GETU

    2015-10-01

    Full Text Available In modern days, as a result of advances in technology, human beings are interested to remotely control different systems and applications. In this work, telephone signalling technique using Dual Tone Multi-Frequency (DTMF signalling, is used to control switching of electrical loads such as agricultural pumps located in remote areas. A DTMF tone command sent from a transmitting fixed or mobile phone terminal will be used to SWITCH ON/OFF the motors used to pump water for agricultural fields. A processing electronic system at the receiving side is designed to interpret the tone commands and sends an appropriate signal to the motor driving circuit to complete the pump switching states. In the design methodology, it is possible to control several water pumps distributed in a certain agricultural site, however, in this work we considered four pumps and the paper presents the complete electronic design and simulation results at the different stages of the design. The electronic design is based on discrete passive and active electronic components and the system is tested and simulated using Multism program. The results of the simulation show that the design is capable of controlling the switching state of the motors. For a certain DTMF command, it is possible to switch ON/OFF a specific motor pump or all of the four motors.

  5. ENHANCEMENT OF THE CREDIT GRANTING SYSTEM OF AGRICULTURAL PRODUCERS

    Directory of Open Access Journals (Sweden)

    Yuliya Evgenievna Klishina

    2015-08-01

    Full Text Available The credit granting system of agricultural enterprises which developed now doesn’t promote development of agricultural production in spite of the facts that are accepted and are financed by the state of the development program of agrarian and industrial complex in various directions. Financial credit relations in the sphere of agrarian and industrial complex are in a stage of formation and have no system nature, in them features of agricultural production are insufficiently considered.In article the directions of development of credit support of agricultural industry, participation of the state in system of agricultural crediting are considered, offers on forming of a three-level credit granting system of agricultural industry which is urged to provide availability of credit resources to all categories of agricultural producers are made.

  6. A Simulation Software for the Analysis of Cropping Systems in Livestock Farms

    Directory of Open Access Journals (Sweden)

    Tommaso Maggiore

    2011-02-01

    Full Text Available Simulation models can support quantitative and integrated analyses of agricultural systems. In this paper we describe VA.TE., a computer program developed to support the preparation and evaluation of nitrogen fertilising plans for livestock farms in the Lombardy region (northern Italy. The program integrates the cropping systems simulation model CropSyst with several regional agricultural databases, and provides the users with a simple framework for applying the model and interpreting results. VA.TE. makes good use of available data, integrating into a single relational database existing information about soils, climate, farms, animal breeds, crops and crop managements, and providing estimates of missing input variables. A simulation engine manages the entire simulation process: choice of farms to be simulated, model parameterisation, creation of model inputs, simulation of scenarios and analysis of model outputs. The program permits to apply at farm scale a model originally designed for the lower scale of homogeneous land parcel. It manages alternative simulation scenarios for each farm, helping to identify solutions to combine low nitrate losses and satisfactory crop yields. Example simulation results for three farms located on different soils and having varying levels of nitrogen surplus show that the integrated system (model + database can manage various simulations automatically, and that strategies to improve N management can be refined by analysing the simulated amounts and temporal patterns of nitrogen leaching.We conclude by discussing the issues regarding the integration of existing regional databases with simulation models.

  7. A Simulation Software for the Analysis of Cropping Systems in Livestock Farms

    Directory of Open Access Journals (Sweden)

    Luca Bechini

    2008-09-01

    Full Text Available Simulation models can support quantitative and integrated analyses of agricultural systems. In this paper we describe VA.TE., a computer program developed to support the preparation and evaluation of nitrogen fertilising plans for livestock farms in the Lombardy region (northern Italy. The program integrates the cropping systems simulation model CropSyst with several regional agricultural databases, and provides the users with a simple framework for applying the model and interpreting results. VA.TE. makes good use of available data, integrating into a single relational database existing information about soils, climate, farms, animal breeds, crops and crop managements, and providing estimates of missing input variables. A simulation engine manages the entire simulation process: choice of farms to be simulated, model parameterisation, creation of model inputs, simulation of scenarios and analysis of model outputs. The program permits to apply at farm scale a model originally designed for the lower scale of homogeneous land parcel. It manages alternative simulation scenarios for each farm, helping to identify solutions to combine low nitrate losses and satisfactory crop yields. Example simulation results for three farms located on different soils and having varying levels of nitrogen surplus show that the integrated system (model + database can manage various simulations automatically, and that strategies to improve N management can be refined by analysing the simulated amounts and temporal patterns of nitrogen leaching.We conclude by discussing the issues regarding the integration of existing regional databases with simulation models.

  8. Systemic problems hampering innovation in the New Zealand agricultural innovation system

    NARCIS (Netherlands)

    Turner, J.A.; Rijswijk, K.; Williams, T.; Klerkx, L.W.A.; Barnard, T.

    2014-01-01

    This study identifies systemic problems in the New Zealand Agricultural Innovation System (AIS) that affect the ability of participants in the agricultural sectors to co-develop technologies. We integrate structural and functional streams of innovation system enquiry, gathering data through 30

  9. The farming system component of European agricultural landscapes

    DEFF Research Database (Denmark)

    Andersen, Erling

    2017-01-01

    Agricultural landscapes are the outcome of combined natural and human factors over time. This paper explores the scope of perceiving the agricultural landscapes of the European Union (EU) as distinct patterns of farming systems and landscape elements in homogeneous biophysical and administrative...... landscapes evolve from the praxis of the farmers and takes into account the scale, intensity and specialisation of the agricultural production. From farming system design point of view, the approach can be used to integrate the landscape in the design process. From a policy point of view, the approach offers...... endowments. The focus is on the farming systems component of the agricultural landscapes by applying a typology to the sample farms of the Farm Accountancy Data Network and scaling up the results to the landscape level for the territory of the EU. The farming system approach emphasises that agricultural...

  10. Evaluation of Three Models for Simulating Pesticide Runoff from Irrigated Agricultural Fields.

    Science.gov (United States)

    Zhang, Xuyang; Goh, Kean S

    2015-11-01

    Three models were evaluated for their accuracy in simulating pesticide runoff at the edge of agricultural fields: Pesticide Root Zone Model (PRZM), Root Zone Water Quality Model (RZWQM), and OpusCZ. Modeling results on runoff volume, sediment erosion, and pesticide loss were compared with measurements taken from field studies. Models were also compared on their theoretical foundations and ease of use. For runoff events generated by sprinkler irrigation and rainfall, all models performed equally well with small errors in simulating water, sediment, and pesticide runoff. The mean absolute percentage errors (MAPEs) were between 3 and 161%. For flood irrigation, OpusCZ simulated runoff and pesticide mass with the highest accuracy, followed by RZWQM and PRZM, likely owning to its unique hydrological algorithm for runoff simulations during flood irrigation. Simulation results from cold model runs by OpusCZ and RZWQM using measured values for model inputs matched closely to the observed values. The MAPE ranged from 28 to 384 and 42 to 168% for OpusCZ and RZWQM, respectively. These satisfactory model outputs showed the models' abilities in mimicking reality. Theoretical evaluations indicated that OpusCZ and RZWQM use mechanistic approaches for hydrology simulation, output data on a subdaily time-step, and were able to simulate management practices and subsurface flow via tile drainage. In contrast, PRZM operates at daily time-step and simulates surface runoff using the USDA Soil Conservation Service's curve number method. Among the three models, OpusCZ and RZWQM were suitable for simulating pesticide runoff in semiarid areas where agriculture is heavily dependent on irrigation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Implementation of AN Agricultural Environmental Information System (aeis) for the Sanjiang Plain, Ne-China

    Science.gov (United States)

    Zhao, Q.; Brocks, S.; Lenz-Wiedemann, V.; Miao, Y.; Jiang, R.; Chen, X.; Zhang, F.; Bareth, G.

    2012-07-01

    The Sino-German Project between the China Agricultural University and the University of Cologne, Germany, focuses on regional agro-ecosystem modelling. One major focus of the cooperation activity is the establishment of joint rice field experiment research in Jiansanjiang, located in the Sanjiang Plain (Heilongjiang Province, north-eastern part of China), to investigate the different agricultural practices and their impact on yield and environment. An additional task is to set-up an Agricultural Environmental Information System (AEIS) for the Sanjiang Plain (SJP), which covers more than 100 000 km2. Research groups from Geography (e.g. GIS & Remote Sensing) and Plant Nutrition (e.g. Precision Agriculture) are involved in the project. The major aim of the AEIS for the SJP is to provide information about (i) agriculture in the region, (ii) the impact of agricultural practices on the environment, and (iii) simulation scenarios for sustainable strategies. Consequently, the AEIS for the SJP provides information for decision support and therefore could be regarded as a Spatial Decision Support System (SDSS), too. The investigation of agricultural and environmental issues has a spatial context, which requires the management, handling, and analysis of spatial data. The use of GIS enables the capture, storage, analysis and presentation of spatial data. Therefore, GIS is the major tool for the set-up of the AEIS for the SJP. This contribution presents the results of linking agricultural statistics with GIS to provide information about agriculture in the SJP and discusses the benefits of this method as well as the integration of methods to produce new data.

  12. Emergy Evaluations of Denmark and Danish Agriculture. Assessing the Limits of Agricultural Systems to Power Society

    Energy Technology Data Exchange (ETDEWEB)

    Haden, Andrew C [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Rural Development Studies

    2003-03-01

    As the process of industrialization has run its course over the twentieth century, the relative importance of agriculture as an economic activity and a means of cultural sustenance for nations has declined dramatically. In this thesis, a historical ecological-economic perspective offers insights into both the causes and effects of Danish agriculture's decline in economic importance relative to the economy of Denmark as a whole. Emergy evaluations were made of the national economy and agricultural subsystem of Denmark for the years 1936, 1970 and 1999. Emergy is defined as all the available energy that was used in the work of making a product and expressed in units of one type of energy. In total, six separate emergy analyses were performed. By quantifying the emergy requirements of both a national agricultural system and the economy within which this system is nested, the analysis highlights the changing relationship of these two systems over a temporal scale of 63 years. The ecological sustainability of the studied systems is assessed through the calculation of emergy-based indices and ratios. In accordance with emergy theory, ecological sustainability is considered to be a function of the dependence of a system on renewable emergy, the degree to which the system depends on imported emergy, and the overall load that the system places on the environment. The analysis indicates that as the national economy of Denmark evolved to rely more on the use of nonrenewable emergy and on emergy appropriated through trade to stimulate economic activity and to generate wealth, its sustainability declined, and the importance of the Danish agricultural system to the national economy subsided. While the total amount of emergy supporting the economy of Denmark over the period studied increased substantially, the total emergy supporting agriculture remained relatively constant. Furthermore, though the emergy signature and thermodynamic efficiencies of Danish agricultural production

  13. A seasonal agricultural drought forecast system for food-insecure regions of East Africa

    Science.gov (United States)

    Shukla, Shraddhanand; McNally, Amy; Husak, Gregory; Funk, Christopher C.

    2014-01-01

     The increasing food and water demands of East Africa's growing population are stressing the region's inconsistent water resources and rain-fed agriculture. More accurate seasonal agricultural drought forecasts for this region can inform better water and agricultural management decisions, support optimal allocation of the region's water resources, and mitigate socio-economic losses incurred by droughts and floods. Here we describe the development and implementation of a seasonal agricultural drought forecast system for East Africa (EA) that provides decision support for the Famine Early Warning Systems Network's science team. We evaluate this forecast system for a region of equatorial EA (2° S to 8° N, and 36° to 46° E) for the March-April-May growing season. This domain encompasses one of the most food insecure, climatically variable and socio-economically vulnerable regions in EA, and potentially the world: this region has experienced famine as recently as 2011. To assess the agricultural outlook for the upcoming season our forecast system simulates soil moisture (SM) scenarios using the Variable Infiltration Capacity (VIC) hydrologic model forced with climate scenarios for the upcoming season. First, to show that the VIC model is appropriate for this application we forced the model with high quality atmospheric observations and found that the resulting SM values were consistent with the Food and Agriculture Organization's (FAO's) Water Requirement Satisfaction Index (WRSI), an index used by FEWS NET to estimate crop yields. Next we tested our forecasting system with hindcast runs (1993–2012). We found that initializing SM forecasts with start-of-season (5 March) SM conditions resulted in useful SM forecast skill (> 0.5 correlation) at 1-month, and in some cases at 3 month lead times. Similarly, when the forecast was initialized with mid-season (i.e. 5 April) SM conditions the skill until the end-of-season improved. This shows that early-season rainfall

  14. Assessing resilience of agricultural system of Dhaka, Bangladesh

    OpenAIRE

    Rashid, Farhana

    2016-01-01

    Due to rapid urbanization agricultural lands in metropolitan areas are shrinking.  As a result our cities are getting more dependent on distant places for food, which is making the food system vulnerable. In the context of rapid urbanization and climate change a resilient agricultural system of Dhaka could be one of the key to ensure a sustainable future. To investigatethe impact of urbanization and climate change on the resilience of the agricultural system of Dhaka a resilience assessment o...

  15. Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: a review.

    Science.gov (United States)

    Norton, Tomás; Sun, Da-Wen; Grant, Jim; Fallon, Richard; Dodd, Vincent

    2007-09-01

    The application of computational fluid dynamics (CFD) in the agricultural industry is becoming ever more important. Over the years, the versatility, accuracy and user-friendliness offered by CFD has led to its increased take-up by the agricultural engineering community. Now CFD is regularly employed to solve environmental problems of greenhouses and animal production facilities. However, due to a combination of increased computer efficacy and advanced numerical techniques, the realism of these simulations has only been enhanced in recent years. This study provides a state-of-the-art review of CFD, its current applications in the design of ventilation systems for agricultural production systems, and the outstanding challenging issues that confront CFD modellers. The current status of greenhouse CFD modelling was found to be at a higher standard than that of animal housing, owing to the incorporation of user-defined routines that simulate crop biological responses as a function of local environmental conditions. Nevertheless, the most recent animal housing simulations have addressed this issue and in turn have become more physically realistic.

  16. Modeling and simulation of the agricultural sprayer boom leveling system

    KAUST Repository

    Sun, Jian; Miao, Yubin

    2011-01-01

    According to the agricultural precision requirements, the distance from sprayer nozzles to the corps should be kept between 50 cm to 70 cm. The sprayer boom also needs to be kept parallel to the field during the application process. Thus we can

  17. Case study of developing an integrated water and nitrogen scheme for agricultural systems on the North China Plain

    Science.gov (United States)

    Liu, Y.; Tao, F.; Luo, Y.; Ma, J.

    2013-12-01

    Appropriate irrigation and nitrogen fertilization, along with suitable crop management strategies, are essential prerequisites for optimum yields in agricultural systems. This research attempts to provide a scientific basis for sustainable agricultural production management for the North China Plain and other semi-arid regions. Based on a series of 72 treatments over 2003-2008, an optimized water and nitrogen scheme for winter wheat/summer maize cropping system was developed. Integrated systems incorporating 120 mm of water with 80 kg N ha-1 N fertilizer were used to simulate winter wheat yields in Hebei and 120 mm of water with 120 kg N ha-1 were used to simulate winter wheat yields in Shandong and Henan provinces in 2000-2007. Similarly, integrated treatments of 40 kg N ha-1 N fertilizer were used to simulate summer maize yields in Hebei, and 80 kg N ha-1 was used to simulate summer maize yields in Shandong and Henan provinces in 2000-2007. Under the optimized scheme, 341.74 107 mm ha-1 of water and 575.79 104 Mg of urea fertilizer could be saved per year under the wheat/maize rotation system. Despite slight drops in the yields of wheat and maize in some areas, water and fertilizer saving has tremendous long-term eco-environmental benefits.

  18. Systemic perspectives on scaling agricultural innovations. A review

    NARCIS (Netherlands)

    Wigboldus, Seerp; Klerkx, Laurens; Leeuwis, Cees; Schut, Marc; Muilerman, Sander; Jochemsen, Henk

    2016-01-01

    Agricultural production involves the scaling of agricultural innovations such as disease-resistant and drought-tolerant maize varieties, zero-tillage techniques, permaculture cultivation practices based on perennial crops and automated milking systems. Scaling agricultural innovations should take

  19. Implications of the Abolition of Milk Quota System for Polish AgricultureSimulation Results Based on the AG MEMOD Model

    Directory of Open Access Journals (Sweden)

    Mariusz Hamulczuk

    2009-09-01

    Full Text Available The objective of the study was to asses the economics effects of the dairy policy reform sanctioned by CAP Health Check on the agricultural market in Poland. The paper presents a theoretical study of the production control program as well as a model based quantitative analysis of the implications of the reform on the agricultural markets. The partial equilibrium model AGMEMOD was used for simulation. The results obtained indicate that the expansion and subsequently the elimination of milk quota system lead to the growth of milk production and consumption in Poland which confirms the hypothesis derived from theoretical study. As a consequence, the growth of the production of most of dairy products and the decrease of their prices is expected. As the growth of dairy consumption is smaller than the growth of milk production the increase of self-sufficiency in the dairy market is predicted. The comparison of the scale of price adjustment resulting from the dairy reform to the market price changes observed recently leads to the conclusion that global market factors will probably be more important for the future development of milk production and prices in Poland than the milk quota abolition. Nevertheless, the reform constitutes a significant change in business conditions for producers and consumers of milk and dairy products. As a consequence, milk production will become more market based, as far as market prices, production costs and milk yields are concerned. Simulation results from the AGMEMOD model confirm the opinion brought by other authors that the abolition of milk quotas will lead to the decline of dairy farmer income. The main beneficiaries of the reform would become the consumers who could take advantage of the decline in prices of the dairy products.

  20. Finite Element Simulation of Total Nitrogen Transport in Riparian Buffer in an Agricultural Watershed

    Directory of Open Access Journals (Sweden)

    Xiaosheng Lin

    2016-03-01

    Full Text Available Riparian buffers can influence water quality in downstream lakes or rivers by buffering non-point source pollution in upstream agricultural fields. With increasing nitrogen (N pollution in small agricultural watersheds, a major function of riparian buffers is to retain N in the soil. A series of field experiments were conducted to monitor pollutant transport in riparian buffers of small watersheds, while numerical model-based analysis is scarce. In this study, we set up a field experiment to monitor the retention rates of total N in different widths of buffer strips and used a finite element model (HYDRUS 2D/3D to simulate the total N transport in the riparian buffer of an agricultural non-point source polluted area in the Liaohe River basin. The field experiment retention rates for total N were 19.4%, 26.6%, 29.5%, and 42.9% in 1,3,4, and 6m-wide buffer strips, respectively. Throughout the simulation period, the concentration of total N of the 1mwide buffer strip reached a maximum of 1.27 mg/cm3 at 30 min, decreasing before leveling off. The concentration of total N about the 3mwide buffer strip consistently increased, with a maximum of 1.05 mg/cm3 observed at 60 min. Under rainfall infiltration, the buffer strips of different widths showed a retention effect on total N transport, and the optimum effect was simulated in the 6mwide buffer strip. A comparison between measured and simulated data revealed that finite element simulation could simulate N transport in the soil of riparian buffer strips.

  1. Emergy Evaluations of Denmark and Danish Agriculture. Assessing the Limits of Agricultural Systems to Power Society

    Energy Technology Data Exchange (ETDEWEB)

    Haden, Andrew C. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Rural Development Studies

    2003-03-01

    As the process of industrialization has run its course over the twentieth century, the relative importance of agriculture as an economic activity and a means of cultural sustenance for nations has declined dramatically. In this thesis, a historical ecological-economic perspective offers insights into both the causes and effects of Danish agriculture's decline in economic importance relative to the economy of Denmark as a whole. Emergy evaluations were made of the national economy and agricultural subsystem of Denmark for the years 1936, 1970 and 1999. Emergy is defined as all the available energy that was used in the work of making a product and expressed in units of one type of energy. In total, six separate emergy analyses were performed. By quantifying the emergy requirements of both a national agricultural system and the economy within which this system is nested, the analysis highlights the changing relationship of these two systems over a temporal scale of 63 years. The ecological sustainability of the studied systems is assessed through the calculation of emergy-based indices and ratios. In accordance with emergy theory, ecological sustainability is considered to be a function of the dependence of a system on renewable emergy, the degree to which the system depends on imported emergy, and the overall load that the system places on the environment. The analysis indicates that as the national economy of Denmark evolved to rely more on the use of nonrenewable emergy and on emergy appropriated through trade to stimulate economic activity and to generate wealth, its sustainability declined, and the importance of the Danish agricultural system to the national economy subsided. While the total amount of emergy supporting the economy of Denmark over the period studied increased substantially, the total emergy supporting agriculture remained relatively constant. Furthermore, though the emergy signature and thermodynamic efficiencies of Danish agricultural

  2. A simulation test of the impact on soil moisture by agricultural ...

    African Journals Online (AJOL)

    To study the impact by agricultural machinery on changes in soil moisture, we used a simulated test method employing round iron plate based on the ground pressure ratio between the front and rear wheels of wheeled tractors and crawler tractors. We conducted soil compactions with five pressure loads (35, 98, 118, 196 ...

  3. FUNCTIONING OF THE SYSTEM OF LOCAL AGRICULTURAL MARKETS: INSTITUTIONAL ASPECTS

    Directory of Open Access Journals (Sweden)

    Yurij Prudnikov

    2016-11-01

    Full Text Available The purpose of this article is the generalization and systematisation of features of modern institutional support for functioning and development of a system of local agricultural markets. The methodology of research is formed on the basis of systematic approach to the studying socio-economic phenomena and processes that are taking place in a process of functioning and development of the system of local agricultural markets. Research results – based on the system analysis there are substantiated features of functioning and development of the system of local agricultural markets from the point of view of its institutional support. The stated is done with the purpose of determination of practicability, goal orientation, volumes, purpose and tasks of government intervention into the process of functioning and development of the system of local agricultural markets. Applying a general scheme of system analysis to the system of management of local agricultural markets and taking into account that the management system consists of two subsystems – management and controlled, in the context of this research there is made characteristics of the system in the form of answers to a specified list of questions. The essence of developed theoretical and methodological approach lies in the development of legitimate answers to four key questions peculiar and relevantly placed for each stage of research: 1 determination of elements of internal and external environments, which are included to the system of local agricultural markets; 2 characteristics of relations and connections among revealed system elements; 3 a process of functioning of the system of local agricultural markets as itself; 4 features of development of the system of local agricultural markets. Developed measures of regulatory nature aimed at overcoming identified disadvantages and development of the system of local agricultural markets are directed to the satisfaction of needs of target

  4. Environmental marketing within organic agriculture system management

    OpenAIRE

    O. Shkuratov; V. Kyporenko

    2015-01-01

    This paper deals with economic content of environmental marketing in the management system organic agriculture that allows operators of organic market to effectively plan the production of organic agricultural products and ensure the optimal balance between social and economic indicators throughout the life cycle of the product. Structural-logical scheme on the formation of environmentally oriented motivation of organic agricultural products consumer behavior has been grounded.

  5. Modeling and analysing storage systems in agricultural biomass supply chain for cellulosic ethanol production

    International Nuclear Information System (INIS)

    Ebadian, Mahmood; Sowlati, Taraneh; Sokhansanj, Shahab; Townley-Smith, Lawrence; Stumborg, Mark

    2013-01-01

    Highlights: ► Studied the agricultural biomass supply chain for cellulosic ethanol production. ► Evaluated the impact of storage systems on different supply chain actors. ► Developed a combined simulation/optimization model to evaluate storage systems. ► Compared two satellite storage systems with roadside storage in terms of costs and emitted CO 2 . ► SS would lead to a more cost-efficient supply chain compared to roadside storage. -- Abstract: In this paper, a combined simulation/optimization model is developed to better understand and evaluate the impact of the storage systems on the costs incurred by each actor in the agricultural biomass supply chain including farmers, hauling contractors and the cellulosic ethanol plant. The optimization model prescribes the optimum number and location of farms and storages. It also determines the supply radius, the number of farms required to secure the annual supply of biomass and also the assignment of farms to storage locations. Given the specific design of the supply chain determined by the optimization model, the simulation model determines the number of required machines for each operation, their daily working schedule and utilization rates, along with the capacities of storages. To evaluate the impact of the storage systems on the delivered costs, three storage systems are molded and compared: roadside storage (RS) system and two satellite storage (SS) systems including SS with fixed hauling distance (SF) and SS with variable hauling distance (SV). In all storage systems, it is assumed the loading equipment is dedicated to storage locations. The obtained results from a real case study provide detailed cost figures for each storage system since the developed model analyses the supply chain on an hourly basis and considers time-dependence and stochasticity of the supply chain. Comparison of the storage systems shows SV would outperform SF and RS by reducing the total delivered cost by 8% and 6%, respectively

  6. A Korean radioecology model to simulate radionuclide behavior in agricultural ecosystems following a nuclear emergency and its application to countermeasures

    International Nuclear Information System (INIS)

    Hwang, W.T.; Suh, K.S.; Kim, E.H.; Han, M.H.; Lee, H.S.; Lee, C.W.

    2003-01-01

    A Korean radioecology model to simulate radionuclide behavior in agricultural ecosystems has been developed as a module for evaluating the ingestion dose in a Korean real-time dose assessment system FADAS, which evaluates the comprehensive radiological consequences in an accidental release of radionuclides to the environment. Using the predictive results of a Korean radioecology model, a methodology for the optimization of countermeasures has been designed based on a cost-benefit analysis. In this manuscript, a Korean radioecology model including agricultural countermeasures was introduced, and discussed with the sample calculations for the postulated accidental release of radionuclides to the environment. (author)

  7. Vulnerability of Agriculture to Climate Change as Revealed by Relationships between Simulated Crop Yield and Climate Change Indices

    Science.gov (United States)

    King, A. W.; Absar, S. M.; Nair, S.; Preston, B. L.

    2012-12-01

    The vulnerability of agriculture is among the leading concerns surrounding climate change. Agricultural production is influenced by drought and other extremes in weather and climate. In regions of subsistence farming, worst case reductions in yield lead to malnutrition and famine. Reduced surplus contributes to poverty in agrarian economies. In more economically diverse and industrialized regions, variations in agricultural yield can influence the regional economy through market mechanisms. The latter grows in importance as agriculture increasingly services the energy market in addition to markets for food and fiber. Agriculture is historically a highly adaptive enterprise and will respond to future changes in climate with a variety of adaptive mechanisms. Nonetheless, the risk, if not expectation, of increases in climate extremes and hazards exceeding historical experience motivates scientifically based anticipatory assessment of the vulnerability of agriculture to climate change. We investigate the sensitivity component of that vulnerability using EPIC, a well established field-scale model of cropping systems that includes the simulation of economic yield. The core of our analysis is the relationship between simulated yield and various indices of climate change, including the CCI/CLIVAR/JCOM ETCCDI indices, calculated from weather inputs to the model. We complement this core with analysis using the DSSAT cropping system model and exploration of relationships between historical yield statistics and climate indices calculated from weather records. Our analyses are for sites in the Southeast/Gulf Coast region of the United States. We do find "tight" monotonic relationships between annual yield and climate for some indices, especially those associated with available water. More commonly, however, we find an increase in the variability of yield as the index value becomes more extreme. Our findings contribute to understanding the sensitivity of crop yield as part of

  8. Natuculture Systems: Addressing Students' STEM and Agriculture Knowledge

    Science.gov (United States)

    Joyce, Alexander Augusto

    The purpose of this study was to assess the inclusion of a Natuculture systems learning experience into selected high school STEM courses to determine high school students' interests in majoring in STEM and for pursuing careers in agricultural sciences. Natuculture is defined as "any human-made system that mimics nature in human-disturbed landscapes". The research occurred at an urban area high school located in the Piedmont region of North Carolina. Fifty-three students in grades 9-12 participated during an academic semester learning experience which included planting, maintenance, & harvesting for an oasissofa. Data was collected using a questionnaire and reflective journals to gather students' attitudes towards agriculture and science and knowledge towards agriculture. Results showed that while the experiences did not improve students' interest in pursuing careers in agricultural sciences, overall, they did increase their knowledge of concepts related to agriculture. It was concluded that students benefit from experiential learning experiences. Based on the study, it is recommended that future research follow up with students to learn of their educational and career choices in agriculture and future learning experiences include curricula that integrates agricultural topics with STEM courses.

  9. Integrating the pastoral component in agricultural systems

    Directory of Open Access Journals (Sweden)

    Paulo César de Faccio Carvalho

    2018-03-01

    Full Text Available ABSTRACT This paper aims to discuss the impact of the introduction of pastures and grazing animals in agricultural systems. For the purposes of this manuscript, we focus on within-farm integrated crop-livestock systems (ICLS, typical of Southern Brazil. These ICLS are designed to create and enhance the synergisms and emergent properties have arisen from agricultural areas where livestock activities are integrated with crops. We show that the introduction of the crop component will affect less the preceding condition than the introduction of the livestock component. While the introduction of crops in pastoral systems represents increasing diversity of the plant component, the introduction of animals would represent the entry of new flows and interactions within the system. Thus, given the new complexity levels achieved from the introduction of grazing, the probability of arising emergent properties is theoretically much higher. However, grazing management is vital in determining the success or failure of such initiative. The grazing intensity practiced during the pasture phase would affect the canopy structure and the forage availability to animals. In adequate and moderate grazing intensities, it is possible to affirm that livestock combined with crops (ICLS has a potential positive impact. As important as the improvements that grazing animals can generate to the soil-plant components, the economic resilience remarkably increases when pasture rotations are introduced compared with purely agriculture systems, particularly in climate-risk situations. Thus, the integration of the pastoral component can enhance the sustainable intensification of food production, but it modifies simple, pure agricultural systems into more complex and knowledge-demanding production systems.

  10. Agricultural greenhouse with storage of sensible and latent heat in the soil. Modeling and simulation of thermal and hydric transfer. Experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Al Cheikh Kassem, N.; Miriel, J.; Roux, A. [Institut National des Sciences Appliquees (INSA), 35 - Rennes (France)

    1993-12-31

    This work presents a simulation model of sensible and latent heat storage in the soil of an agricultural greenhouse. Results recorded by the laboratory device of grounded storage and thermo-physic parameter values of soil experimentally obtained by a three rod thermal shock probe are used for checking the simulation model and thus assessing the performance of such a system and the coupling between the greenhouse and the storage. (Authors). 3 refs., 6 figs.

  11. Soil Microbial Activity in Conventional and Organic Agricultural Systems

    Directory of Open Access Journals (Sweden)

    Romero F.V. Carneiro

    2009-06-01

    Full Text Available The aim of this study was to evaluate microbial activity in soils under conventional and organic agricultural system management regimes. Soil samples were collected from plots under conventional management (CNV, organic management (ORG and native vegetation (AVN. Soil microbial activity and biomass was significantly greater in ORG compared with CNV. Soil bulk density decreased three years after adoption of organic system. Soil organic carbon (SOC was higher in the ORG than in the CNV. The soil under organic agricultural system presents higher microbial activity and biomass and lower bulk density than the conventional agricultural system.

  12. Simulated effects of surface coal mining and agriculture on dissolved solids in the Redwater River, east-central Montana

    Science.gov (United States)

    Ferreira, R.F.; Lambing, J.H.

    1985-01-01

    Dissolved solids concentrations in five reaches of the Redwater River in east-central Montana were simulated to evaluate the effects of surface coal mining and agriculture. A mass-balance model of streamflow and dissolved solids load developed for the Tongue River in southeastern Montana was modified and applied to the Redwater River. Mined acreages, dissolved solids concentrations in mined spoils, and irrigated acreage can be varied in the model to study relative changes in the dissolved solids concentration in consecutive reaches of the river. Because of extreme variability and a limited amount of data, the model was not consecutively validated. Simulated mean and median monthly mean streamflows and consistently larger than those calculated from streamflow records. Simulated mean and median monthly mean dissolved solids loads also are consistently larger than regression-derived values. These discrepancies probably result from extremely variable streamflow, overestimates of streamflow from ungaged tributaries, and weak correlations between streamflow and dissolved solids concentrations. The largest increases in simulated dissolved solids concentrations from mining and agriculture occur from September through January because of smaller streamflows and dissolved solids loads. Different combinations of agriculture and mining under mean flow conditions resulted in cumulative percentage increases of dissolved solids concentrations of less than 5% for mining and less than 2% for agriculture. (USGS)

  13. Simulated carbon emissions from land-use change are substantially enhanced by accounting for agricultural management

    DEFF Research Database (Denmark)

    Pugh, T. A. M.; Arneth, A.; Olin, S.

    2015-01-01

    quantified at the global scale. Here we assess the effect of representing agricultural land management in a dynamic global vegetation model. Accounting for harvest, grazing and tillage resulted in cumulative E LUC since 1850 ca. 70% larger than in simulations ignoring these processes, but also changed...... processes are not well defined, particularly the role of emissions from land-use change (E LUC) versus the biospheric carbon uptake (S L; S T = S L − E LUC). One key aspect of the interplay of E LUC and S L is the role of agricultural processes in land-use change emissions, which has not yet been clearly...... the timescale over which these emissions occurred and led to underestimations of the carbon sequestered by possible future reforestation actions. The vast majority of Earth system models in the recent IPCC Fifth Assessment Report omit these processes, suggesting either an overestimation in their present...

  14. Rethinking Study and Management of Agricultural Systems for Policy Design

    Directory of Open Access Journals (Sweden)

    Johann Baumgärtner

    2013-09-01

    Full Text Available There is a concern that agriculture will no longer be able to meet, on a global scale, the growing demand for food. Facing such a challenge requires new patterns of thinking in the context of complexity and sustainability sciences. This paper, focused on the social dimension of the study and management of agricultural systems, suggests that rethinking the study of agricultural systems entails analyzing them as complex socio-ecological systems, as well as considering the differing thinking patterns of diverse stakeholders. The intersubjective nature of knowledge, as studied by different philosophical schools, needs to be better integrated into the study and management of agricultural systems than it is done so far, forcing us to accept that there are no simplistic solutions, and to seek a better understanding of the social dimension of agriculture. Different agriculture related problems require different policy and institutional approaches. Finally, the intersubjective nature of knowledge asks for the visualization of different framings and the power relations taking place in the decision-making process. Rethinking management of agricultural systems implies that policy making should be shaped by different principles: learning, flexibility, adaptation, scale-matching, participation, diversity enhancement and precaution hold the promise to significantly improve current standard management procedures.

  15. AGRICULTURAL TAX SYSTEM IN POLAND AND DIRECTIONS OF THE CHANGES

    Directory of Open Access Journals (Sweden)

    Marzena Malewska

    2014-03-01

    Full Text Available A research problem taken in the article is a question, whether legal solutions applied in the Polish system of the taxation of agriculture have an appropriate shape and whether this system is optimal? If not, what are possible options of changes and whether the in-come tax is good for agricultural activities. A method of analysis of secondary sources was used in order to solve the research problem. Required data was taken from the base of the Główny Urząd Statystyczny and scientific publications of the publishing universi-ty. In the article were formulated the following hypotheses: 1.\tThe system of the taxation of agriculture is different than other existing Polish law and it is regarded as unfair in relation to other social groups. 2.\tChanging the tax system in agriculture is necessary and would lead to positive chang-es in the structure of agriculture. 3.\tThe reform of the taxation system of agricultural production is in many aspects neces-sary and beneficial, but it should nevertheless take into account the specificities of the agricultural activity. 4.\tThe introduction of the income tax has its bad side and carries the disadvantages for both farmers and municipalities.

  16. Simulation and controller design for an agricultural sprayer boom leveling system

    KAUST Repository

    Sun, Jian; Miao, Yubin

    2011-01-01

    According to the agricultural precision requirements, the distance from sprayer nozzles to the corps should be kept between 50 cm to 70 cm. The sprayer boom also needs to be kept parallel to the field during the operation process. Thus we can

  17. The resilience of integrated agricultural systems to climate change

    NARCIS (Netherlands)

    Dias Bernardes Gil, Juliana; Cohn, Avery S.; Duncan, John; Newton, Peter; Vermeulen, Sonja

    2017-01-01

    We reviewed studies addressing the extent to which more integrated agricultural systems (IAS) have been found to be more resilient to climate variability and climate change than more specialized agricultural systems. We found limited literature directly addressing the topic, necessitating the use of

  18. Affordances of agricultural systems analysis tools

    NARCIS (Netherlands)

    Ditzler, Lenora; Klerkx, Laurens; Chan-Dentoni, Jacqueline; Posthumus, Helena; Krupnik, Timothy J.; Ridaura, Santiago López; Andersson, Jens A.; Baudron, Frédéric; Groot, Jeroen C.J.

    2018-01-01

    The increasingly complex challenges facing agricultural systems require problem-solving processes and systems analysis (SA) tools that engage multiple actors across disciplines. In this article, we employ the theory of affordances to unravel what tools may furnish users, and how those affordances

  19. Simulating land management options to reduce nitrate pollution in an agricultural watershed dominated by an alluvial aquifer.

    Science.gov (United States)

    Cerro, Itsasne; Antigüedad, Iñaki; Srinavasan, Raghavan; Sauvage, Sabine; Volk, Martin; Sanchez-Perez, José Miguel

    2014-01-01

    The study area (Alegria watershed, Basque Country, Northern Spain) considered here is influenced by an important alluvial aquifer that plays a significant role in nitrate pollution from agricultural land use and management practices. Nitrates are transported primarily from the soil to the river through the alluvial aquifer. The agricultural activity covers 75% of the watershed and is located in a nitrate-vulnerable zone. The main objective of the study was to find land management options for water pollution abatement by using model systems. In a first step, the SWAT model was applied to simulate discharge and nitrate load in stream flow at the outlet of the catchment for the period between October 2009 and June 2011. The LOADEST program was used to estimate the daily nitrate load from measured nitrate concentration. We achieved satisfactory simulation results for discharge and nitrate loads at monthly and daily time steps. The results revealed clear variations in the seasons: higher nitrate loads were achieved for winter (20,000 kg mo NO-N), and lower nitrate loads were simulated for the summer (model was used to evaluate the long-term effects of best management practices (BMPs) for a 50-yr period by maintaining actual agricultural practices, reducing fertilizer application by 20%, splitting applications (same total N but applied over the growing period), and reducing 20% of the applied fertilizer amount and splitting the fertilizer doses. The BMPs were evaluated on the basis of local experience and farmer interaction. Results showed that reducing fertilizer amounts by 20% could lead to a reduction of 50% of the number of days exceeding the nitrate concentration limit value (50 mg L) set by the European Water Framework Directive. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Systems in peril: Climate change, agriculture and biodiversity in Australia

    International Nuclear Information System (INIS)

    Cocklin, Chris; Dibden, Jacqui

    2009-01-01

    This paper reflects on the interplay amongst three closely linked systems - climate, agriculture and biodiversity - in the Australian context. The advance of a European style of agriculture has imperilled Australian biodiversity. The loss and degradation of biodiversity has, in turn, had negative consequences for agriculture. Climate change is imposing new pressures on both agriculture and biodiversity. From a policy and management perspective, though, it is possible to envisage mitigation and adaptation responses that would alleviate pressures on all three systems (climate, agriculture, biodiversity). In this way, the paper seeks to make explicit the important connections between science and policy. The paper outlines the distinctive features of both biodiversity and agriculture in the Australian context. The discussion then addresses the impacts of agriculture on biodiversity, followed by an overview of how climate change is impacting on both of these systems. The final section of the paper offers some commentary on current policy and management strategies that are targeted at mitigating the loss of biodiversity and which may also have benefits in terms of climate change.

  1. Next Generation Agricultural System Data, Models and Knowledge Products: Introduction

    Science.gov (United States)

    Antle, John M.; Jones, James W.; Rosenzweig, Cynthia E.

    2016-01-01

    Agricultural system models have become important tools to provide predictive and assessment capability to a growing array of decision-makers in the private and public sectors. Despite ongoing research and model improvements, many of the agricultural models today are direct descendants of research investments initially made 30-40 years ago, and many of the major advances in data, information and communication technology (ICT) of the past decade have not been fully exploited. The purpose of this Special Issue of Agricultural Systems is to lay the foundation for the next generation of agricultural systems data, models and knowledge products. The Special Issue is based on a 'NextGen' study led by the Agricultural Model Intercomparison and Improvement Project (AgMIP) with support from the Bill and Melinda Gates Foundation.

  2. Simulation modelling in agriculture: General considerations. | R.I. ...

    African Journals Online (AJOL)

    A computer simulation model is a detailed working hypothesis about a given system. The computer does all the necessary arithmetic when the hypothesis is invoked to predict the future behaviour of the simulated system under given conditions.A general pragmatic approach to model building is discussed; techniques are ...

  3. International Journal of Tropical Agriculture and Food Systems

    African Journals Online (AJOL)

    ... and Food Systems (IJOTAFS) publishes high-quality peer reviewed articles, in English, in all areas of agriculture and food production and processing including tree production, pesticide science, post harvest biology and technology, seed science, irrigation, agricultural engineering, water resources management, marine ...

  4. Modelling the impacts of pests and diseases on agricultural systems.

    Science.gov (United States)

    Donatelli, M; Magarey, R D; Bregaglio, S; Willocquet, L; Whish, J P M; Savary, S

    2017-07-01

    The improvement and application of pest and disease models to analyse and predict yield losses including those due to climate change is still a challenge for the scientific community. Applied modelling of crop diseases and pests has mostly targeted the development of support capabilities to schedule scouting or pesticide applications. There is a need for research to both broaden the scope and evaluate the capabilities of pest and disease models. Key research questions not only involve the assessment of the potential effects of climate change on known pathosystems, but also on new pathogens which could alter the (still incompletely documented) impacts of pests and diseases on agricultural systems. Yield loss data collected in various current environments may no longer represent a adequate reference to develop tactical, decision-oriented, models for plant diseases and pests and their impacts, because of the ongoing changes in climate patterns. Process-based agricultural simulation modelling, on the other hand, appears to represent a viable methodology to estimate the impacts of these potential effects. A new generation of tools based on state-of-the-art knowledge and technologies is needed to allow systems analysis including key processes and their dynamics over appropriate suitable range of environmental variables. This paper offers a brief overview of the current state of development in coupling pest and disease models to crop models, and discusses technical and scientific challenges. We propose a five-stage roadmap to improve the simulation of the impacts caused by plant diseases and pests; i) improve the quality and availability of data for model inputs; ii) improve the quality and availability of data for model evaluation; iii) improve the integration with crop models; iv) improve the processes for model evaluation; and v) develop a community of plant pest and disease modelers.

  5. 76 FR 29083 - Agriculture Priorities and Allocations System

    Science.gov (United States)

    2011-05-19

    ... Vol. 76 Thursday, No. 97 May 19, 2011 Part III Department of Agriculture Farm Service Agency 7 CFR Part 789 Agriculture Priorities and Allocations System; Proposed Rule #0;#0;Federal Register / Vol. 76 , No. 97 / Thursday, May 19, 2011 / Proposed Rules#0;#0; [[Page 29084

  6. Ecosystem Services from Edible Insects in Agricultural Systems: A Review

    Directory of Open Access Journals (Sweden)

    Charlotte L. R. Payne

    2017-02-01

    Full Text Available Many of the most nutritionally and economically important edible insects are those that are harvested from existing agricultural systems. Current strategies of agricultural intensification focus predominantly on increasing crop yields, with no or little consideration of the repercussions this may have for the additional harvest and ecology of accompanying food insects. Yet such insects provide many valuable ecosystem services, and their sustainable management could be crucial to ensuring future food security. This review considers the multiple ecosystem services provided by edible insects in existing agricultural systems worldwide. Directly and indirectly, edible insects contribute to all four categories of ecosystem services as outlined by the Millennium Ecosystem Services definition: provisioning, regulating, maintaining, and cultural services. They are also responsible for ecosystem disservices, most notably significant crop damage. We argue that it is crucial for decision-makers to evaluate the costs and benefits of the presence of food insects in agricultural systems. We recommend that a key priority for further research is the quantification of the economic and environmental contribution of services and disservices from edible insects in agricultural systems.

  7. Ecosystem Services from Edible Insects in Agricultural Systems: A Review

    Science.gov (United States)

    Payne, Charlotte L. R.; Van Itterbeeck, Joost

    2017-01-01

    Many of the most nutritionally and economically important edible insects are those that are harvested from existing agricultural systems. Current strategies of agricultural intensification focus predominantly on increasing crop yields, with no or little consideration of the repercussions this may have for the additional harvest and ecology of accompanying food insects. Yet such insects provide many valuable ecosystem services, and their sustainable management could be crucial to ensuring future food security. This review considers the multiple ecosystem services provided by edible insects in existing agricultural systems worldwide. Directly and indirectly, edible insects contribute to all four categories of ecosystem services as outlined by the Millennium Ecosystem Services definition: provisioning, regulating, maintaining, and cultural services. They are also responsible for ecosystem disservices, most notably significant crop damage. We argue that it is crucial for decision-makers to evaluate the costs and benefits of the presence of food insects in agricultural systems. We recommend that a key priority for further research is the quantification of the economic and environmental contribution of services and disservices from edible insects in agricultural systems. PMID:28218635

  8. Ecosystem Services from Edible Insects in Agricultural Systems: A Review.

    Science.gov (United States)

    Payne, Charlotte L R; Van Itterbeeck, Joost

    2017-02-17

    Many of the most nutritionally and economically important edible insects are those that are harvested from existing agricultural systems. Current strategies of agricultural intensification focus predominantly on increasing crop yields, with no or little consideration of the repercussions this may have for the additional harvest and ecology of accompanying food insects. Yet such insects provide many valuable ecosystem services, and their sustainable management could be crucial to ensuring future food security. This review considers the multiple ecosystem services provided by edible insects in existing agricultural systems worldwide. Directly and indirectly, edible insects contribute to all four categories of ecosystem services as outlined by the Millennium Ecosystem Services definition: provisioning, regulating, maintaining, and cultural services. They are also responsible for ecosystem disservices, most notably significant crop damage. We argue that it is crucial for decision-makers to evaluate the costs and benefits of the presence of food insects in agricultural systems. We recommend that a key priority for further research is the quantification of the economic and environmental contribution of services and disservices from edible insects in agricultural systems.

  9. Sustainable Uses of FGD Gypsum in Agricultural Systems: Introduction.

    Science.gov (United States)

    Watts, Dexter B; Dick, Warren A

    2014-01-01

    Interest in using gypsum as a management tool to improve crop yields and soil and water quality has recently increased. Abundant supply and availability of flue gas desulfurization (FGD) gypsum, a by-product of scrubbing sulfur from combustion gases at coal-fired power plants, in major agricultural producing regions within the last two decades has attributed to this interest. Currently, published data on the long-term sustainability of FGD gypsum use in agricultural systems is limited. This has led to organization of the American Society of Agronomy's Community "By-product Gypsum Uses in Agriculture" and a special collection of nine technical research articles on various issues related to FGD gypsum uses in agricultural systems. A brief review of FGD gypsum, rationale for the special collection, overviews of articles, knowledge gaps, and future research directions are presented in this introductory paper. The nine articles are focused in three general areas: (i) mercury and other trace element impacts, (ii) water quality impacts, and (iii) agronomic responses and soil physical changes. While this is not an exhaustive review of the topic, results indicate that FGD gypsum use in sustainable agricultural production systems is promising. The environmental impacts of FGD gypsum are mostly positive, with only a few negative results observed, even when applied at rates representing cumulative 80-year applications. Thus, FGD gypsum, if properly managed, seems to represent an important potential input into agricultural systems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Quality assurance of weather data for agricultural system model input

    Science.gov (United States)

    It is well known that crop production and hydrologic variation on watersheds is weather related. Rarely, however, is meteorological data quality checks reported for agricultural systems model research. We present quality assurance procedures for agricultural system model weather data input. Problems...

  11. Exploring agricultural production systems and their fundamental components with system dynamics modeling

    Science.gov (United States)

    Agricultural production in the United States is undergoing marked changes due to rapid shifts in consumer demands, input costs, and concerns for food safety and environmental impact. Agricultural production systems are comprised of multidimensional components and drivers that interact in complex wa...

  12. NEW TRENDS IN AGRICULTURE - CROP SYSTEMS WITHOUT SOIL

    Directory of Open Access Journals (Sweden)

    Ioan GRAD

    2014-04-01

    Full Text Available The paper studied new system of agriculture - crop systems without soil. The culture systems without soil can be called also the hydroponic systems and now in Romania are not used only sporadically. In other countries (USA, Japan, the Netherlands, France, UK, Denmark, Israel, Australia, etc.. they represent the modern crop technology, widely applied to vegetables, fruits, fodder, medicinal plants and flowers by the experts in this area. In the world, today there are millions of hectares hydroponics, most of the vegetables, herbs, fruits of hypermarkets are coming from the culture systems without soil. The process consists of growing plants in nutrient solutions (not in the ground, resorting to an complex equipment, depending on the specifics of each crop, so that the system can be applied only in the large farms, in the greenhouses, and not in the individual households. These types of culture systems have a number of advantages and disadvantages also. Even if today's culture systems without soil seem to be the most modern and surprising technology applied in plant growth, the principle is very old. Based on him were built The Suspended Gardens of the Semiramis from Babylon, in the seventh century BC, thanks to him, the population from the Peru”s highlands cultivates vegetables on surfaces covered with water or mud. The peasant households in China, even today use the millenary techniques of the crops on gravel. .This hydroponic agriculture system is a way of followed for Romanian agriculture too, despite its high cost, because it is very productive, ecological, can cover, by products, all market demands and it answer, increasingly, constraints of urban life. The concept of hydroponics agriculture is known and appreciated in Romania also, but more at the theory level.

  13. Development and research program for a soil-based bioregenerative agriculture system to feed a four person crew at a Mars base

    Science.gov (United States)

    Silverstone, S.; Nelson, M.; Alling, A.; Allen, J.

    For humans to survive during long-term missions on the Martian surface, bioregenerative life support systems including food production will decrease requirements for launch of Earth supplies, and increase mission safety. It is proposed that the development of ``modular biospheres''- closed system units that can be air-locked together and which contain soil-based bioregenerative agriculture, horticulture, with a wetland wastewater treatment system is an approach for Mars habitation scenarios. Based on previous work done in long-term life support at Biosphere 2 and other closed ecological systems, this consortium proposes a research and development program called Mars On Earth™ which will simulate a life support system designed for a four person crew. The structure will consist of /6 × 110 square meter modular agricultural units designed to produce a nutritionally adequate diet for 4 people, recycling all air, water and waste, while utilizing a soil created by the organic enrichment and modification of Mars simulant soils. Further research needs are discussed, such as determining optimal light levels for growth of the necessary range of crops, energy trade-offs for agriculture (e.g. light intensity vs. required area), capabilities of Martian soils and their need for enrichment and elimination of oxides, strategies for use of human waste products, and maintaining atmospheric balance between people, plants and soils.

  14. Development and research program for a soil-based bioregenerative agriculture system to feed a four person crew at a Mars base.

    Science.gov (United States)

    Silverstone, S; Nelson, M; Alling, A; Allen, J

    2003-01-01

    For humans to survive during long-term missions on the Martian surface, bioregenerative life support systems including food production will decrease requirements for launch of Earth supplies, and increase mission safety. It is proposed that the development of "modular biospheres"--closed system units that can be air-locked together and which contain soil-based bioregenerative agriculture, horticulture, with a wetland wastewater treatment system is an approach for Mars habitation scenarios. Based on previous work done in long-term life support at Biosphere 2 and other closed ecological systems, this consortium proposes a research and development program called Mars On Earth(TM) which will simulate a life support system designed for a four person crew. The structure will consist of 6 x 110 square meter modular agricultural units designed to produce a nutritionally adequate diet for 4 people, recycling all air, water and waste, while utilizing a soil created by the organic enrichment and modification of Mars simulant soils. Further research needs are discussed, such as determining optimal light levels for growth of the necessary range of crops, energy trade-offs for agriculture (e.g. light intensity vs. required area), capabilities of Martian soils and their need for enrichment and elimination of oxides, strategies for use of human waste products, and maintaining atmospheric balance between people, plants and soils. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  15. Machine-Vision Systems Selection for Agricultural Vehicles: A Guide

    Directory of Open Access Journals (Sweden)

    Gonzalo Pajares

    2016-11-01

    Full Text Available Machine vision systems are becoming increasingly common onboard agricultural vehicles (autonomous and non-autonomous for different tasks. This paper provides guidelines for selecting machine-vision systems for optimum performance, considering the adverse conditions on these outdoor environments with high variability on the illumination, irregular terrain conditions or different plant growth states, among others. In this regard, three main topics have been conveniently addressed for the best selection: (a spectral bands (visible and infrared; (b imaging sensors and optical systems (including intrinsic parameters and (c geometric visual system arrangement (considering extrinsic parameters and stereovision systems. A general overview, with detailed description and technical support, is provided for each topic with illustrative examples focused on specific applications in agriculture, although they could be applied in different contexts other than agricultural. A case study is provided as a result of research in the RHEA (Robot Fleets for Highly Effective Agriculture and Forestry Management project for effective weed control in maize fields (wide-rows crops, funded by the European Union, where the machine vision system onboard the autonomous vehicles was the most important part of the full perception system, where machine vision was the most relevant. Details and results about crop row detection, weed patches identification, autonomous vehicle guidance and obstacle detection are provided together with a review of methods and approaches on these topics.

  16. Development of Bioelectrochemical Systems to Promote Sustainable Agriculture

    Directory of Open Access Journals (Sweden)

    Xiaojin Li

    2015-06-01

    Full Text Available Bioelectrochemical systems (BES are a newly emerged technology for energy-efficient water and wastewater treatment. Much effort as well as significant progress has been made in advancing this technology towards practical applications treating various types of waste. However, BES application for agriculture has not been well explored. Herein, studies of BES related to agriculture are reviewed and the potential applications of BES for promoting sustainable agriculture are discussed. BES may be applied to treat the waste/wastewater from agricultural production, minimizing contaminants, producing bioenergy, and recovering useful nutrients. BES can also be used to supply irrigation water via desalinating brackish water or producing reclaimed water from wastewater. The energy generated in BES can be used as a power source for wireless sensors monitoring the key parameters for agricultural activities. The importance of BES to sustainable agriculture should be recognized, and future development of this technology should identify proper application niches with technological advancement.

  17. Life cycle assessment of agricultural biogas production systems

    Energy Technology Data Exchange (ETDEWEB)

    Lansche, J.; Muller, J. [Hohenheim Univ., Stuttgart (Germany). Inst. of Agricultural Engineering, Tropical and Subtropical Group

    2010-07-01

    Agricultural activities are large contributors to anthropogenic greenhouse gas emissions. This paper discussed the effectiveness of reducing agricultural emissions by using liquid manure to produce biogas. When using this technique, greenhouse gas emissions from manure storage are avoided and renewable energy is generated as heat and electricity in combined heat and power plants. The purpose of this study was to evaluate the environmental impacts of biogas production systems based on the methods of life cycle assessment. The traditional use of agricultural manures was compared with conventional energy production. The Gabi 4.3 software was used to create a model to evaluate the biogas production systems according to their environmental impact. In addition to the global warming potential, other impact categories were also used to evaluate the effects of the systems in eutrophication and acidification. It was concluded that environmental benefits can be obtained in terms of greenhouse gas emissions compared to electricity production from biogas with the typical German marginal electricity mix.

  18. Systems Biology for Smart Crops and Agricultural Innovation: Filling the Gaps between Genotype and Phenotype for Complex Traits Linked with Robust Agricultural Productivity and Sustainability

    Science.gov (United States)

    Pathak, Rajesh Kumar; Gupta, Sanjay Mohan; Gaur, Vikram Singh; Pandey, Dinesh

    2015-01-01

    Abstract In recent years, rapid developments in several omics platforms and next generation sequencing technology have generated a huge amount of biological data about plants. Systems biology aims to develop and use well-organized and efficient algorithms, data structure, visualization, and communication tools for the integration of these biological data with the goal of computational modeling and simulation. It studies crop plant systems by systematically perturbing them, checking the gene, protein, and informational pathway responses; integrating these data; and finally, formulating mathematical models that describe the structure of system and its response to individual perturbations. Consequently, systems biology approaches, such as integrative and predictive ones, hold immense potential in understanding of molecular mechanism of agriculturally important complex traits linked to agricultural productivity. This has led to identification of some key genes and proteins involved in networks of pathways involved in input use efficiency, biotic and abiotic stress resistance, photosynthesis efficiency, root, stem and leaf architecture, and nutrient mobilization. The developments in the above fields have made it possible to design smart crops with superior agronomic traits through genetic manipulation of key candidate genes. PMID:26484978

  19. Searching for solutions to mitigate greenhouse gas emissions by agricultural policy decisions--Application of system dynamics modeling for the case of Latvia.

    Science.gov (United States)

    Dace, Elina; Muizniece, Indra; Blumberga, Andra; Kaczala, Fabio

    2015-09-15

    European Union (EU) Member States have agreed to limit their greenhouse gas (GHG) emissions from sectors not covered by the EU Emissions Trading Scheme (non-ETS). That includes also emissions from agricultural sector. Although the Intergovernmental Panel on Climate Change (IPCC) has established a methodology for assessment of GHG emissions from agriculture, the forecasting options are limited, especially when policies and their interaction with the agricultural system are tested. Therefore, an advanced tool, a system dynamics model, was developed that enables assessment of effects various decisions and measures have on agricultural GHG emissions. The model is based on the IPCC guidelines and includes the main elements of an agricultural system, i.e. land management, livestock farming, soil fertilization and crop production, as well as feedback mechanisms between the elements. The case of Latvia is selected for simulations, as agriculture generates 22% of the total anthropogenic GHG emissions in the country. The results demonstrate that there are very limited options for GHG mitigation in the agricultural sector. Thereby, reaching the non-ETS GHG emission targets will be very challenging for Latvia, as the level of agricultural GHG emissions will be exceeded considerably above the target levels. Thus, other non-ETS sectors will have to reduce their emissions drastically to "neutralize" the agricultural sector's emissions for reaching the EU's common ambition to move towards low-carbon economy. The developed model may serve as a decision support tool for impact assessment of various measures and decisions on the agricultural system's GHG emissions. Although the model is applied to the case of Latvia, the elements and structure of the model developed are similar to agricultural systems in many countries. By changing numeric values of certain parameters, the model can be applied to analyze decisions and measures in other countries. Copyright © 2015 Elsevier B.V. All

  20. Leaf chlorophyll constraint on model simulated gross primary productivity in agricultural systems

    KAUST Repository

    Houborg, Rasmus

    2015-05-05

    Leaf chlorophyll content (Chll) may serve as an observational proxy for the maximum rate of carboxylation (Vmax), which describes leaf photosynthetic capacity and represents the single most important control on modeled leaf photosynthesis within most Terrestrial Biosphere Models (TBMs). The parameterization of Vmax is associated with great uncertainty as it can vary significantly between plants and in response to changes in leaf nitrogen (N) availability, plant phenology and environmental conditions. Houborg et al. (2013) outlined a semi-mechanistic relationship between V max 25 (Vmax normalized to 25 °C) and Chll based on inter-linkages between V max 25 , Rubisco enzyme kinetics, N and Chll. Here, these relationships are parameterized for a wider range of important agricultural crops and embedded within the leaf photosynthesis-conductance scheme of the Community Land Model (CLM), bypassing the questionable use of temporally invariant and broadly defined plant functional type (PFT) specific V max 25 values. In this study, the new Chll constrained version of CLM is refined with an updated parameterization scheme for specific application to soybean and maize. The benefit of using in-situ measured and satellite retrieved Chll for constraining model simulations of Gross Primary Productivity (GPP) is evaluated over fields in central Nebraska, U.S.A between 2001 and 2005. Landsat-based Chll time-series records derived from the Regularized Canopy Reflectance model (REGFLEC) are used as forcing to the CLM. Validation of simulated GPP against 15 site-years of flux tower observations demonstrate the utility of Chll as a model constraint, with the coefficient of efficiency increasing from 0.91 to 0.94 and from 0.87 to 0.91 for maize and soybean, respectively. Model performances particularly improve during the late reproductive and senescence stage, where the largest temporal variations in Chll (averaging 35–55 μg cm−2 for maize and 20–35 μg cm−2 for soybean) are

  1. Agricultural biogas systems. Quality and security

    International Nuclear Information System (INIS)

    Serafimova, K.

    2007-01-01

    This article takes a look at agricultural biogas installations and how improved basic conditions and incentives offered by industry and commerce are showing initial effects. The author is of the opinion that more dynamics in the market are necessary in order to allow contributions to be made to the protection of the climate whilst creating value locally at the same time. The article reviews the current market situation and examines questions which are to be answered in the quality assurance area for agricultural biogas systems in Switzerland. Co-fermentation is proposed as a standard technology. Market development, plant locations and plant management aspects are discussed.

  2. Resolving Multi-Stakeholder Robustness Asymmetries in Coupled Agricultural and Urban Systems

    Science.gov (United States)

    Li, Yu; Giuliani, Matteo; Castelletti, Andrea; Reed, Patrick

    2016-04-01

    current Lake Como system management as well as of possible adaptation options (e.g., improved irrigation efficiency or changes in the dam operating rules). Numerical results show that crops prices and costs are the main drivers of the simulated system failures when evaluated in terms of system-level expected profitability. Analysis conducted at the farmer-agent scale highlights alternatively that temperature and inflows are the critical drivers leading to failures. Finally, we show that the robustness of the considered adaptation options varies spatially, strongly influenced by stakeholders' context, the metrics used to define success, and the assumed preferences for reservoir operations in balancing urban flooding and agricultural productivity.

  3. Phosphorus modeling in tile drained agricultural systems using APEX

    Science.gov (United States)

    Phosphorus losses through tile drained systems in agricultural landscapes may be causing the persistent eutrophication problems observed in surface water. The purpose of this paper is to evaluate the state of the science in the Agricultural Policy/Environmental eXtender (APEX) model related to surf...

  4. Energy for agriculture. A computerized information retrieval system

    Energy Technology Data Exchange (ETDEWEB)

    Stout, B.A.; Myers, C.A. (comps.)

    1979-12-01

    Energy may come from the sun or the earth or be the product of plant materials or agricultural wastes. Whatever its source, energy is indispensable to our way of life, beginning with the production, processing, and distribution of abundant, high quality food and fiber supplies. This specialized bibliography on the subject of energy for agriculture contains 2613 citations to the literature for 1973 through May 1979. Originally issued by Michigan State University (MSU), it is being reprinted and distributed by the U.S. Department of Agriculture. The literature citations will be incorporated into AGRICOLA (Agricultural On-Line Access), the comprehensive bibliographic data base maintained by Technical Information Systems (TIS), a component of USDA's Science and Education Administration (SEA). The citations and the listing of research projects will be combined with other relevant references to provide a continuously updated source of information on energy programs in the agricultural field. No abstracts are included.

  5. Simulating the impact of water storage on agricultural intensification and deforestation in Northern Thailand

    Science.gov (United States)

    Gower, D.; Zeng, Z.; Caylor, K. K.; Wood, E. F.

    2017-12-01

    In the Nan province of Thailand, agriculture provides a livelihood for much of the population. In the province's lowlands, farmers grow rice, typically with access to irrigation from rivers draining the surrounding mountains. In the uplands, farmers grow rainfed maize, with very little irrigation. Soil erosion from these slopes quickly leads to soil degradation, decreasing yields and forcing farmers to cut down forests to create new farmland. Over the past decades, this practice has led to extensive deforestation throughout the uplands, including within the province's national parks. In response to these issues, the local administration has proposed building upland reservoirs that will provide farmers with greater access to irrigation water and allow them to intensify agricultural production, thus decreasing the need to expand into forested areas. Concerns have been raised, however, about the benefits of such plans as water may need to be pumped uphill from the reservoirs in some cases and soil erosion will remain a problem on the steepest slopes. Such concerns must be investigated before implementation to avoid wasting money on fruitless interventions. This project addresses the above concerns using an agent-based model (ABM) to simulate agricultural production and farmer decision-making in an upland catchment of the Nan province. Here we use HydroBlocks, a field scale land surface model, to simulate soil moisture and runoff at daily-30m resolution. These hydrological variables are integrated in an ABM framework to simulate agricultural production, reservoir capacity and farmer decision-making. As part of the framework, farmers may irrigate their crops using reservoir water but must pay pumping costs that depend on the location of their fields relative to the reservoir. At the end of each growing season, farmers sell their produce and may choose to plant the same crop on the same land, plant a different crop or clear more land for more crops. These decisions

  6. Searching for solutions to mitigate greenhouse gas emissions by agricultural policy decisions — Application of system dynamics modeling for the case of Latvia

    International Nuclear Information System (INIS)

    Dace, Elina; Muizniece, Indra; Blumberga, Andra; Kaczala, Fabio

    2015-01-01

    European Union (EU) Member States have agreed to limit their greenhouse gas (GHG) emissions from sectors not covered by the EU Emissions Trading Scheme (non-ETS). That includes also emissions from agricultural sector. Although the Intergovernmental Panel on Climate Change (IPCC) has established a methodology for assessment of GHG emissions from agriculture, the forecasting options are limited, especially when policies and their interaction with the agricultural system are tested. Therefore, an advanced tool, a system dynamics model, was developed that enables assessment of effects various decisions and measures have on agricultural GHG emissions. The model is based on the IPCC guidelines and includes the main elements of an agricultural system, i.e. land management, livestock farming, soil fertilization and crop production, as well as feedback mechanisms between the elements. The case of Latvia is selected for simulations, as agriculture generates 22% of the total anthropogenic GHG emissions in the country. The results demonstrate that there are very limited options for GHG mitigation in the agricultural sector. Thereby, reaching the non-ETS GHG emission targets will be very challenging for Latvia, as the level of agricultural GHG emissions will be exceeded considerably above the target levels. Thus, other non-ETS sectors will have to reduce their emissions drastically to “neutralize” the agricultural sector's emissions for reaching the EU's common ambition to move towards low-carbon economy. The developed model may serve as a decision support tool for impact assessment of various measures and decisions on the agricultural system's GHG emissions. Although the model is applied to the case of Latvia, the elements and structure of the model developed are similar to agricultural systems in many countries. By changing numeric values of certain parameters, the model can be applied to analyze decisions and measures in other countries. - Highlights:

  7. Searching for solutions to mitigate greenhouse gas emissions by agricultural policy decisions — Application of system dynamics modeling for the case of Latvia

    Energy Technology Data Exchange (ETDEWEB)

    Dace, Elina, E-mail: elina.dace@rtu.lv [Institute of Energy Systems and Environment, Riga Technical University, Azenes 12/1, Riga LV1048 (Latvia); Muizniece, Indra; Blumberga, Andra [Institute of Energy Systems and Environment, Riga Technical University, Azenes 12/1, Riga LV1048 (Latvia); Kaczala, Fabio [Department of Biology and Environmental Science, Faculty of Health & Life Sciences, Linnaeus University, SE-39182 Kalmar (Sweden)

    2015-09-15

    European Union (EU) Member States have agreed to limit their greenhouse gas (GHG) emissions from sectors not covered by the EU Emissions Trading Scheme (non-ETS). That includes also emissions from agricultural sector. Although the Intergovernmental Panel on Climate Change (IPCC) has established a methodology for assessment of GHG emissions from agriculture, the forecasting options are limited, especially when policies and their interaction with the agricultural system are tested. Therefore, an advanced tool, a system dynamics model, was developed that enables assessment of effects various decisions and measures have on agricultural GHG emissions. The model is based on the IPCC guidelines and includes the main elements of an agricultural system, i.e. land management, livestock farming, soil fertilization and crop production, as well as feedback mechanisms between the elements. The case of Latvia is selected for simulations, as agriculture generates 22% of the total anthropogenic GHG emissions in the country. The results demonstrate that there are very limited options for GHG mitigation in the agricultural sector. Thereby, reaching the non-ETS GHG emission targets will be very challenging for Latvia, as the level of agricultural GHG emissions will be exceeded considerably above the target levels. Thus, other non-ETS sectors will have to reduce their emissions drastically to “neutralize” the agricultural sector's emissions for reaching the EU's common ambition to move towards low-carbon economy. The developed model may serve as a decision support tool for impact assessment of various measures and decisions on the agricultural system's GHG emissions. Although the model is applied to the case of Latvia, the elements and structure of the model developed are similar to agricultural systems in many countries. By changing numeric values of certain parameters, the model can be applied to analyze decisions and measures in other countries. - Highlights:

  8. Chemical and biological characterization of products of incomplete combustion from the simulated field burning of agricultural plastic.

    Science.gov (United States)

    Linak, W P; Ryan, J V; Perry, E; Williams, R W; DeMarini, D M

    1989-06-01

    Chemical and biological analyses were performed to characterize products of incomplete combustion emitted during the simulated open field burning of agricultural plastic. A small utility shed equipped with an air delivery system was used to simulate pile burning and forced-air-curtain incineration of a nonhalogenated agricultural plastic that reportedly consisted of polyethylene and carbon black. Emissions were analyzed for combustion gases; volatile, semi-volatile, and particulate organics; and toxic and mutagenic properties. Emission samples, as well as samples of the used (possibly pesticide-contaminated) plastic, were analyzed for the presence of several pesticides to which the plastic may have been exposed. Although a variety of alkanes, alkenes, and aromatic and polycyclic aromatic hydrocarbon (PAH) compounds were identified in the volatile, semi-volatile, and particulate fractions of these emissions, a substantial fraction of higher molecular weight organic material was not identified. No pesticides were identified in either combustion emission samples or dichloromethane washes of the used plastic. When mutagenicity was evaluated by exposing Salmonella bacteria (Ames assay) to whole vapor and vapor/particulate emissions, no toxic or mutagenic effects were observed. However, organic extracts of the particulate samples were moderately mutagenic. This mutagenicity compares approximately to that measured from residential wood heating on a revertant per unit heat release basis. Compared to pile burning, forced air slightly decreased the time necessary to burn a charge of plastic. There was not a substantial difference, however, in the variety or concentrations of organic compounds identified in samples from these two burn conditions. This study highlights the benefits of a combined chemical/biological approach to the characterization of complex, multi-component combustion emissions. These results may not reflect those of other types of plastic that may be used

  9. VIC-CropSyst-v2: A regional-scale modeling platform to simulate the nexus of climate, hydrology, cropping systems, and human decisions

    Science.gov (United States)

    Malek, Keyvan; Stöckle, Claudio; Chinnayakanahalli, Kiran; Nelson, Roger; Liu, Mingliang; Rajagopalan, Kirti; Barik, Muhammad; Adam, Jennifer C.

    2017-08-01

    Food supply is affected by a complex nexus of land, atmosphere, and human processes, including short- and long-term stressors (e.g., drought and climate change, respectively). A simulation platform that captures these complex elements can be used to inform policy and best management practices to promote sustainable agriculture. We have developed a tightly coupled framework using the macroscale variable infiltration capacity (VIC) hydrologic model and the CropSyst agricultural model. A mechanistic irrigation module was also developed for inclusion in this framework. Because VIC-CropSyst combines two widely used and mechanistic models (for crop phenology, growth, management, and macroscale hydrology), it can provide realistic and hydrologically consistent simulations of water availability, crop water requirements for irrigation, and agricultural productivity for both irrigated and dryland systems. This allows VIC-CropSyst to provide managers and decision makers with reliable information on regional water stresses and their impacts on food production. Additionally, VIC-CropSyst is being used in conjunction with socioeconomic models, river system models, and atmospheric models to simulate feedback processes between regional water availability, agricultural water management decisions, and land-atmosphere interactions. The performance of VIC-CropSyst was evaluated on both regional (over the US Pacific Northwest) and point scales. Point-scale evaluation involved using two flux tower sites located in agricultural fields in the US (Nebraska and Illinois). The agreement between recorded and simulated evapotranspiration (ET), applied irrigation water, soil moisture, leaf area index (LAI), and yield indicated that, although the model is intended to work on regional scales, it also captures field-scale processes in agricultural areas.

  10. Sensitivity of an Integrated Mesoscale Atmosphere and Agriculture Land Modeling System (WRF/CMAQ-EPIC) to MODIS Vegetation and Lightning Assimilation

    Science.gov (United States)

    Ran, L.; Cooter, E. J.; Gilliam, R. C.; Foroutan, H.; Kang, D.; Appel, W.; Wong, D. C.; Pleim, J. E.; Benson, V.; Pouliot, G.

    2017-12-01

    The combined meteorology and air quality modeling system composed of the Weather Research and Forecast (WRF) model and Community Multiscale Air Quality (CMAQ) model is an important decision support tool that is used in research and regulatory decisions related to emissions, meteorology, climate, and chemical transport. The Environmental Policy Integrated Climate (EPIC) is a cropping model which has long been used in a range of applications related to soil erosion, crop productivity, climate change, and water quality around the world. We have integrated WRF/CMAQ with EPIC using the Fertilizer Emission Scenario Tool for CMAQ (FEST-C) to estimate daily soil N information with fertilization for CMAQ bi-directional ammonia flux modeling. Driven by the weather and N deposition from WRF/CMAQ, FEST-C EPIC simulations are conducted on 22 different agricultural production systems ranging from managed grass lands (e.g. hay and alfalfa) to crop lands (e.g. corn grain and soybean) with rainfed and irrigated information across any defined conterminous United States (U.S.) CMAQ domain and grid resolution. In recent years, this integrated system has been enhanced and applied in many different air quality and ecosystem assessment projects related to land-water-atmosphere interactions. These enhancements have advanced this system to become a valuable tool for integrated assessments of air, land and water quality in light of social drivers and human and ecological outcomes. This presentation will focus on evaluating the sensitivity of precipitation and N deposition in the integrated system to MODIS vegetation input and lightning assimilation and their impacts on agricultural production and fertilization. We will describe the integrated modeling system and evaluate simulated precipitation and N deposition along with other weather information (e.g. temperature, humidity) for 2011 over the conterminous U.S. at 12 km grids from a coupled WRF/CMAQ with MODIS and lightning assimilation

  11. Beyond agricultural innovation systems? Exploring an agricultural innovation ecosystems approach for niche design and development in sustainability transitions

    NARCIS (Netherlands)

    Pigford, Ashlee Ann E.; Hickey, Gordon M.; Klerkx, Laurens

    2018-01-01

    Well-designed and supported innovation niches may facilitate transitions towards sustainable agricultural futures, which may follow different approaches and paradigms such as agroecology, local place-based food systems, vertical farming, bioeconomy, urban agriculture, and smart farming or digital

  12. Design of agricultural product quality safety retrospective supervision system of Jiangsu province

    Science.gov (United States)

    Wang, Kun

    2017-08-01

    In store and supermarkets to consumers can trace back agricultural products through the electronic province card to query their origin, planting, processing, packaging, testing and other important information and found that the problems. Quality and safety issues can identify the responsibility of the problem. This paper designs a retroactive supervision system for the quality and safety of agricultural products in Jiangsu Province. Based on the analysis of agricultural production and business process, the goal of Jiangsu agricultural product quality safety traceability system construction is established, and the specific functional requirements and non-functioning requirements of the retroactive system are analyzed, and the target is specified for the specific construction of the retroactive system. The design of the quality and safety traceability system in Jiangsu province contains the design of the overall design, the trace code design and the system function module.

  13. Systems assessment of water savings impact of controlled environment agriculture (CEA) utilizing wirelessly networked Sense•Decide•Act•Communicate (SDAC) systems.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Jonathan T.; Baynes, Edward E., Jr.; Aguirre,Carlos (University of Texas at El Paso, El Paso, TX); Jordan, Jon (University of Arizona, Tucson, AZ); Giacomelli, Gene (University of Arizona, Tucson, AZ); Waggoner, Justin (New Mexico State University, Las Cruces, NM); Loest, Clint (New Mexico State University, Las Cruces, NM); Szumel, Leo; Nakaoka, Tyler; Pate, Ronald C.; Berry, Nina M.; Pohl, Phillip Isabio; Aguirre, Francisco Luis (Invernaderos y Maquinaria Aguirre, Cd., Aldama, Chihuahua, Mexico); Aguilar, Jose (University of Texas at El Paso, El Paso, TX); Gupta, Vipin P.; Ochoa, Juan (University of Texas at El Paso, El Paso, TX); Davis, Jesse Zehring; Ramos, Damian (University of Texas at El Paso, El Paso, TX)

    2005-02-01

    Reducing agricultural water use in arid regions while maintaining or improving economic productivity of the agriculture sector is a major challenge. Controlled environment agriculture (CEA, or, greenhouse agriculture) affords advantages in direct resource use (less land and water required) and productivity (i.e., much higher product yield and quality per unit of resources used) relative to conventional open-field practices. These advantages come at the price of higher operating complexity and costs per acre. The challenge is to implement and apply CEA such that the productivity and resource use advantages will sufficiently outweigh the higher operating costs to provide for overall benefit and viability. This project undertook an investigation of CEA for livestock forage production as a water-saving alternative to open-field forage production in arid regions. Forage production is a large consumer of fresh water in many arid regions of the world, including the southwestern U.S. and northern Mexico. With increasing competition among uses (agriculture, municipalities, industry, recreation, ecosystems, etc.) for limited fresh water supplies, agricultural practice alternatives that can potentially maintain or enhance productivity while reducing water use warrant consideration. The project established a pilot forage production greenhouse facility in southern New Mexico based on a relatively modest and passive (no active heating or cooling) system design pioneered in Chihuahua, Mexico. Experimental operations were initiated in August 2004 and carried over into early-FY05 to collect data and make initial assessments of operational and technical system performance, assess forage nutrition content and suitability for livestock, identify areas needing improvement, and make initial assessment of overall feasibility. The effort was supported through the joint leveraging of late-start FY04 LDRD funds and bundled CY2004 project funding from the New Mexico Small Business Technical

  14. Innovation of Supervision System for Quality and Safety of Edible Agricultural Products

    Institute of Scientific and Technical Information of China (English)

    Xingxing; MEI; Zhongchao; FENG

    2014-01-01

    This paper elaborated multidimensional characteristics of quality and safety of agricultural products,introduced current situation of quality and safety supervision of edible agricultural products in China,analyzed existing problems of quality and safety supervision system and corresponding reasons,and finally came up with recommendations for innovation of supervision system for quality and safety of agricultural products.

  15. FSSIM, a bio-economic farm model for simulating the response of EU farming systems to agricultural and environmental policies

    NARCIS (Netherlands)

    Louhichi, K.; Kanellopoulos, A.; Janssen, S.J.C.; Flichman, G.; Blanco, M.; Hengsdijk, H.; Heckelei, T.; Berentsen, P.; Oude Lansink, A.G.J.M.; Ittersum, van M.K.

    2010-01-01

    The disciplinary nature of most existing farm models as well as the issue specific orientation of most of the studies in agricultural systems research are main reasons for the limited use and re-use of bio-economic modelling for the ex-ante integrated assessment of policy decisions. The objective of

  16. Evaluation System for Pesticides (ESPE). 1. Agricultural pesticides

    NARCIS (Netherlands)

    Emans HJB; Beek MA; Linders JBHJ

    1992-01-01

    In this report a risk assessment or evaluation system for agricultural pesticides is presented, which estimates the hazards for man and environment resulting from the use of these pesticides. The evaluation system has also been placed within the context of the Uniform System for the Evaluation of

  17. Agricultural livelihoods in coastal Bangladesh under climate and environmental change--a model framework.

    Science.gov (United States)

    Lázár, Attila N; Clarke, Derek; Adams, Helen; Akanda, Abdur Razzaque; Szabo, Sylvia; Nicholls, Robert J; Matthews, Zoe; Begum, Dilruba; Saleh, Abul Fazal M; Abedin, Md Anwarul; Payo, Andres; Streatfield, Peter Kim; Hutton, Craig; Mondal, M Shahjahan; Moslehuddin, Abu Zofar Md

    2015-06-01

    Coastal Bangladesh experiences significant poverty and hazards today and is highly vulnerable to climate and environmental change over the coming decades. Coastal stakeholders are demanding information to assist in the decision making processes, including simulation models to explore how different interventions, under different plausible future socio-economic and environmental scenarios, could alleviate environmental risks and promote development. Many existing simulation models neglect the complex interdependencies between the socio-economic and environmental system of coastal Bangladesh. Here an integrated approach has been proposed to develop a simulation model to support agriculture and poverty-based analysis and decision-making in coastal Bangladesh. In particular, we show how a simulation model of farmer's livelihoods at the household level can be achieved. An extended version of the FAO's CROPWAT agriculture model has been integrated with a downscaled regional demography model to simulate net agriculture profit. This is used together with a household income-expenses balance and a loans logical tree to simulate the evolution of food security indicators and poverty levels. Modelling identifies salinity and temperature stress as limiting factors to crop productivity and fertilisation due to atmospheric carbon dioxide concentrations as a reinforcing factor. The crop simulation results compare well with expected outcomes but also reveal some unexpected behaviours. For example, under current model assumptions, temperature is more important than salinity for crop production. The agriculture-based livelihood and poverty simulations highlight the critical significance of debt through informal and formal loans set at such levels as to persistently undermine the well-being of agriculture-dependent households. Simulations also indicate that progressive approaches to agriculture (i.e. diversification) might not provide the clear economic benefit from the perspective of

  18. Solar Simulator

    Science.gov (United States)

    1981-01-01

    Oriel Corporation's simulators have a high pressure xenon lamp whose reflected light is processed by an optical system to produce a uniform solar beam. Because of many different types of applications, the simulators must be adjustable to replicate many different areas of the solar radiation spectrum. Simulators are laboratory tools for such purposes as testing and calibrating solar cells, or other solar energy systems, testing dyes, paints and pigments, pharmaceuticals and cosmetic preparations, plant and animal studies, food and agriculture studies and oceanographic research.

  19. Application of the WEPS and SWEEP models to non-agricultural disturbed lands

    Directory of Open Access Journals (Sweden)

    J. Tatarko

    2016-12-01

    Full Text Available Wind erosion not only affects agricultural productivity but also soil, air, and water quality. Dust and specifically particulate matter ≤10 μm (PM-10 has adverse effects on respiratory health and also reduces visibility along roadways, resulting in auto accidents. The Wind Erosion Prediction System (WEPS was developed by the USDA-Agricultural Research Service to simulate wind erosion and provide for conservation planning on cultivated agricultural lands. A companion product, known as the Single-Event Wind Erosion Evaluation Program (SWEEP, has also been developed which consists of the stand-alone WEPS erosion submodel combined with a graphical interface to simulate soil loss from single (i.e., daily wind storm events. In addition to agricultural lands, wind driven dust emissions also occur from other anthropogenic sources such as construction sites, mined and reclaimed areas, landfills, and other disturbed lands. Although developed for agricultural fields, WEPS and SWEEP are useful tools for simulating erosion by wind for non-agricultural lands where typical agricultural practices are not employed. On disturbed lands, WEPS can be applied for simulating long-term (i.e., multi-year erosion control strategies. SWEEP on the other hand was developed specifically for disturbed lands and can simulate potential soil loss for site- and date-specific planned surface conditions and control practices. This paper presents novel applications of WEPS and SWEEP for developing erosion control strategies on non-agricultural disturbed lands. Erosion control planning with WEPS and SWEEP using water and other dust suppressants, wind barriers, straw mulch, re-vegetation, and other management practices is demonstrated herein through the use of comparative simulation scenarios. The scenarios confirm the efficacy of the WEPS and SWEEP models as valuable tools for supporting the design of erosion control plans for disturbed lands that are not only cost-effective but

  20. Application of the WEPS and SWEEP models to non-agricultural disturbed lands.

    Science.gov (United States)

    Tatarko, J; van Donk, S J; Ascough, J C; Walker, D G

    2016-12-01

    Wind erosion not only affects agricultural productivity but also soil, air, and water quality. Dust and specifically particulate matter ≤10 μm (PM-10) has adverse effects on respiratory health and also reduces visibility along roadways, resulting in auto accidents. The Wind Erosion Prediction System (WEPS) was developed by the USDA-Agricultural Research Service to simulate wind erosion and provide for conservation planning on cultivated agricultural lands. A companion product, known as the Single-Event Wind Erosion Evaluation Program (SWEEP), has also been developed which consists of the stand-alone WEPS erosion submodel combined with a graphical interface to simulate soil loss from single (i.e., daily) wind storm events. In addition to agricultural lands, wind driven dust emissions also occur from other anthropogenic sources such as construction sites, mined and reclaimed areas, landfills, and other disturbed lands. Although developed for agricultural fields, WEPS and SWEEP are useful tools for simulating erosion by wind for non-agricultural lands where typical agricultural practices are not employed. On disturbed lands, WEPS can be applied for simulating long-term (i.e., multi-year) erosion control strategies. SWEEP on the other hand was developed specifically for disturbed lands and can simulate potential soil loss for site- and date-specific planned surface conditions and control practices. This paper presents novel applications of WEPS and SWEEP for developing erosion control strategies on non-agricultural disturbed lands. Erosion control planning with WEPS and SWEEP using water and other dust suppressants, wind barriers, straw mulch, re-vegetation, and other management practices is demonstrated herein through the use of comparative simulation scenarios. The scenarios confirm the efficacy of the WEPS and SWEEP models as valuable tools for supporting the design of erosion control plans for disturbed lands that are not only cost-effective but also incorporate

  1. Application of Solar Photovoltaic Water Pumping System in Hainan Agriculture

    Institute of Scientific and Technical Information of China (English)

    Xiangchun; YU; Qingqing; LIN; Xuedong; ZHOU; Zhibin; YANG

    2013-01-01

    With radical socio-economic development and strengthening of regulation of agricultural industrial structure in Hainan Province,fresh water resource becomes increasingly insufficient.Existing water-saving facilities and measures are unable to promote sustainable and stable development of local economy.This needs modern irrigation method.Solar photovoltaic water pumping system is necessary and feasible in Hainan agriculture,and will have directive significance for Hainan Province developing photovoltaic agriculture.

  2. Construction of a risk assessment system for chemical residues in agricultural products.

    Science.gov (United States)

    Choi, Shinai; Hong, Jiyeon; Lee, Dayeon; Paik, Minkyoung

    2014-01-01

    Continuous monitoring of chemical residues in agricultural and food products has been performed by various government bodies in South Korea. These bodies have made attempts to systematically manage this information by creating a monitoring database system as well as a system based on these data with which to assess the health risk of chemical residues in agricultural products. Meanwhile, a database system is being constructed consisting of information about monitoring and, following this, a demand for convenience has led to the need for an evaluation tool to be constructed with the data processing system. Also, in order to create a systematic and effective tool for the risk assessment of chemical residues in foods and agricultural products, various evaluation models are being developed, both domestically and abroad. Overseas, systems such as Dietary Exposure Evaluation Model: Food Commodity Intake Database and Cumulative and Aggregate Risk Evaluation System are being used; these use the US Environmental Protection Agency as a focus, while the EU has developed Pesticide Residue Intake Model for assessments of pesticide exposure through food intake. Following this, the National Academy of Agricultural Science (NAAS) created the Agricultural Products Risk Assessment System (APRAS) which supports the use and storage of monitoring information and risk assessments. APRAS efficiently manages the monitoring data produced by NAAS and creates an extraction feature included in the database system. Also, the database system in APRAS consists of a monitoring database system held by the NAAS and food consumption database system. Food consumption data is based on Korea National Health and Nutrition Examination Survey. This system is aimed at exposure and risk assessments for chemical residues in agricultural products with regards to different exposure scenarios.

  3. Groundwater nitrate concentration evolution under climate change and agricultural adaptation scenarios: Prince Edward Island, Canada

    Science.gov (United States)

    Paradis, Daniel; Vigneault, Harold; Lefebvre, René; Savard, Martine M.; Ballard, Jean-Marc; Qian, Budong

    2016-03-01

    Nitrate (N-NO3) concentration in groundwater, the sole source of potable water in Prince Edward Island (PEI, Canada), currently exceeds the 10 mg L-1 (N-NO3) health threshold for drinking water in 6 % of domestic wells. Increasing climatic and socio-economic pressures on PEI agriculture may further deteriorate groundwater quality. This study assesses how groundwater nitrate concentration could evolve due to the forecasted climate change and its related potential changes in agricultural practices. For this purpose, a tridimensional numerical groundwater flow and mass transport model was developed for the aquifer system of the entire Island (5660 km2). A number of different groundwater flow and mass transport simulations were made to evaluate the potential impact of the projected climate change and agricultural adaptation. According to the simulations for year 2050, N-NO3 concentration would increase due to two main causes: (1) the progressive attainment of steady-state conditions related to present-day nitrogen loadings, and (2) the increase in nitrogen loadings due to changes in agricultural practices provoked by future climatic conditions. The combined effects of equilibration with loadings, climate and agricultural adaptation would lead to a 25 to 32 % increase in N-NO3 concentration over the Island aquifer system. The change in groundwater recharge regime induced by climate change (with current agricultural practices) would only contribute 0 to 6 % of that increase for the various climate scenarios. Moreover, simulated trends in groundwater N-NO3 concentration suggest that an increased number of domestic wells (more than doubling) would exceed the nitrate drinking water criteria. This study underlines the need to develop and apply better agricultural management practices to ensure sustainability of long-term groundwater resources. The simulations also show that observable benefits from positive changes in agricultural practices would be delayed in time due to

  4. The slash-and-burn agriculture: a system in transformation

    Directory of Open Access Journals (Sweden)

    Nelson Novaes Pedroso Júnior

    2008-08-01

    Full Text Available Slash-and-burn agriculture has been practiced for thousands of years in the forests around the world, especially in the tropics, where it provides for the livelihood of countless poor rural populations. Characterized by an array of techniques based on crop diversification and shifting land use, this cultivation system has on the utilization of forest decomposing vegetation´s energetic capital its main asset. Many studies claim that slash-and-burn agriculture is sustainable only when performed under conditions of low human demographic density and maintenance or even increase of local biodiversity. However, it is growing in the academic literature, as well as in development debates, the concern regarding the role that this system has been playing in the deforestation of the planet´s tropical forests. This process appears to be closely linked to changes in land use patterns (agricultural intensification and urban and rural demographic growth. On the thread of these concerns, this article presents a critical review of the international and national academic literature on slash-and-burn agriculture. Thus, this review intend to draw a broad scenario of the current academic debate on this issue, as well as to identify the main alternatives strategies proposed to maintain or replace this cultivation system.

  5. Bioenergy from Low-Intensity Agricultural Systems: An Energy Efficiency Analysis

    Directory of Open Access Journals (Sweden)

    Oludunsin Arodudu

    2016-12-01

    Full Text Available In light of possible future restrictions on the use of fossil fuel, due to climate change obligations and continuous depletion of global fossil fuel reserves, the search for alternative renewable energy sources is expected to be an issue of great concern for policy stakeholders. This study assessed the feasibility of bioenergy production under relatively low-intensity conservative, eco-agricultural settings (as opposed to those produced under high-intensity, fossil fuel based industrialized agriculture. Estimates of the net energy gain (NEG and the energy return on energy invested (EROEI obtained from a life cycle inventory of the energy inputs and outputs involved reveal that the energy efficiency of bioenergy produced in low-intensity eco-agricultural systems could be as much as much as 448.5–488.3 GJ·ha−1 of NEG and an EROEI of 5.4–5.9 for maize ethanol production systems, and as much as 155.0–283.9 GJ·ha−1 of NEG and an EROEI of 14.7–22.4 for maize biogas production systems. This is substantially higher than for industrialized agriculture with a NEG of 2.8–52.5 GJ·ha−1 and an EROEI of 1.2–1.7 for maize ethanol production systems, as well as a NEG of 59.3–188.7 GJ·ha−1 and an EROEI of 2.2–10.2 for maize biogas production systems. Bioenergy produced in low-intensity eco-agricultural systems could therefore be an important source of energy with immense net benefits for local and regional end-users, provided a more efficient use of the co-products is ensured.

  6. motorable roads and transportation system in the agricultural zones

    African Journals Online (AJOL)

    sustain the traditional farming system. ... Consequently, people have to travel to work, to play, to buy and sell, to obtain professional services, to socialize and to convey agricultural products from one place to another. Road is an asset to ..... Cleaver, K.M (1993) A Strategy to Develop Agriculture in Sub-Saharan African and a.

  7. Interactive Dynamic-System Simulation

    CERN Document Server

    Korn, Granino A

    2010-01-01

    Showing you how to use personal computers for modeling and simulation, Interactive Dynamic-System Simulation, Second Edition provides a practical tutorial on interactive dynamic-system modeling and simulation. It discusses how to effectively simulate dynamical systems, such as aerospace vehicles, power plants, chemical processes, control systems, and physiological systems. Written by a pioneer in simulation, the book introduces dynamic-system models and explains how software for solving differential equations works. After demonstrating real simulation programs with simple examples, the author

  8. Climate change induced transformations of agricultural systems: insights from a global model

    Science.gov (United States)

    Leclère, D.; Havlík, P.; Fuss, S.; Schmid, E.; Mosnier, A.; Walsh, B.; Valin, H.; Herrero, M.; Khabarov, N.; Obersteiner, M.

    2014-12-01

    Climate change might impact crop yields considerably and anticipated transformations of agricultural systems are needed in the coming decades to sustain affordable food provision. However, decision-making on transformational shifts in agricultural systems is plagued by uncertainties concerning the nature and geography of climate change, its impacts, and adequate responses. Locking agricultural systems into inadequate transformations costly to adjust is a significant risk and this acts as an incentive to delay action. It is crucial to gain insight into how much transformation is required from agricultural systems, how robust such strategies are, and how we can defuse the associated challenge for decision-making. While implementing a definition related to large changes in resource use into a global impact assessment modelling framework, we find transformational adaptations to be required of agricultural systems in most regions by 2050s in order to cope with climate change. However, these transformations widely differ across climate change scenarios: uncertainties in large-scale development of irrigation span in all continents from 2030s on, and affect two-thirds of regions by 2050s. Meanwhile, significant but uncertain reduction of major agricultural areas affects the Northern Hemisphere’s temperate latitudes, while increases to non-agricultural zones could be large but uncertain in one-third of regions. To help reducing the associated challenge for decision-making, we propose a methodology exploring which, when, where and why transformations could be required and uncertain, by means of scenario analysis.

  9. Climate change induced transformations of agricultural systems: insights from a global model

    International Nuclear Information System (INIS)

    Leclère, D; Havlík, P; Mosnier, A; Walsh, B; Valin, H; Khabarov, N; Obersteiner, M; Fuss, S; Schmid, E; Herrero, M

    2014-01-01

    Climate change might impact crop yields considerably and anticipated transformations of agricultural systems are needed in the coming decades to sustain affordable food provision. However, decision-making on transformational shifts in agricultural systems is plagued by uncertainties concerning the nature and geography of climate change, its impacts, and adequate responses. Locking agricultural systems into inadequate transformations costly to adjust is a significant risk and this acts as an incentive to delay action. It is crucial to gain insight into how much transformation is required from agricultural systems, how robust such strategies are, and how we can defuse the associated challenge for decision-making. While implementing a definition related to large changes in resource use into a global impact assessment modelling framework, we find transformational adaptations to be required of agricultural systems in most regions by 2050s in order to cope with climate change. However, these transformations widely differ across climate change scenarios: uncertainties in large-scale development of irrigation span in all continents from 2030s on, and affect two-thirds of regions by 2050s. Meanwhile, significant but uncertain reduction of major agricultural areas affects the Northern Hemisphere’s temperate latitudes, while increases to non-agricultural zones could be large but uncertain in one-third of regions. To help reducing the associated challenge for decision-making, we propose a methodology exploring which, when, where and why transformations could be required and uncertain, by means of scenario analysis. (letter)

  10. Mapping organizational linkages in the agricultural innovation system of Azerbaijan

    NARCIS (Netherlands)

    Temel, T.

    2004-01-01

    This study describes the evolving context and organisational linkages in the agricultural innovation system of Azerbaijan and suggests ways to promote effective organisational ties for the development, distribution and use of new or improved information and knowledge related to agriculture.

  11. Remote sensing with simulated unmanned aircraft imagery for precision agriculture applications

    Science.gov (United States)

    Hunt, E. Raymond; Daughtry, Craig S.T.; Mirsky, Steven B.; Hively, W. Dean

    2014-01-01

    An important application of unmanned aircraft systems (UAS) may be remote-sensing for precision agriculture, because of its ability to acquire images with very small pixel sizes from low altitude flights. The objective of this study was to compare information obtained from two different pixel sizes, one about a meter (the size of a small vegetation plot) and one about a millimeter. Cereal rye (Secale cereale) was planted at the Beltsville Agricultural Research Center for a winter cover crop with fall and spring fertilizer applications, which produced differences in biomass and leaf chlorophyll content. UAS imagery was simulated by placing a Fuji IS-Pro UVIR digital camera at 3-m height looking nadir. An external UV-IR cut filter was used to acquire true-color images; an external red cut filter was used to obtain color-infrared-like images with bands at near-infrared, green, and blue wavelengths. Plot-scale Green Normalized Difference Vegetation Index was correlated with dry aboveground biomass ( ${mbi {r}} = 0.58$ ), whereas the Triangular Greenness Index (TGI) was not correlated with chlorophyll content. We used the SamplePoint program to select 100 pixels systematically; we visually identified the cover type and acquired the digital numbers. The number of rye pixels in each image was better correlated with biomass ( ${mbi {r}} = 0.73$ ), and the average TGI from only leaf pixels was negatively correlated with chlorophyll content ( ${mbi {r}} = -0.72$ ). Thus, better information for crop requirements may be obtained using very small pixel sizes, but new algorithms based on computer vision are needed for analysis. It may not be necessary to geospatially register large numbers of photographs with very small pixel sizes. Instead, images could be analyzed as single plots along field transects.

  12. CQESTR Simulation of Soil Organic Matter Dynamics in Long-term Agricultural Experiments across USA

    Science.gov (United States)

    Gollany, H.; Liang, Y.; Albrecht, S.; Rickman, R.; Follett, R.; Wilhelm, W.; Novak, J.

    2009-04-01

    Soil organic matter (SOM) has important chemical (supplies nutrients, buffers and adsorbs harmful chemical compounds), biological (supports the growth of microorganisms and micro fauna), and physical (improves soil structure and soil tilth, stores water, and reduces surface crusting, water runoff) functions. The loss of 20 to 50% of soil organic carbon (SOC) from USA soils after converting native prairie or forest to production agriculture is well documented. Sustainable management practices for SOC is critical for maintaining soil productivity and responsible utilization of crop residues. As crop residues are targeted for additional uses (e.g., cellulosic ethanol feedstock) developing C models that predict change in SOM over time with change in management becomes increasingly important. CQESTR, pronounced "sequester," is a process-based C balance model that relates organic residue additions, crop management and soil tillage to SOM accretion or loss. The model works on daily time-steps and can perform long-term (100-year) simulations. Soil organic matter change is computed by maintaining a soil C budget for additions, such as crop residue or added amendments like manure, and organic C losses through microbial decomposition. Our objective was to simulate SOM changes in agricultural soils under a range of soil parent materials, climate and management systems using the CQESTR model. Long-term experiments (e.g. Champaign, IL, >100 yrs; Columbia, MO, >100 yrs; Lincoln, NE, 20 yrs) under various tillage practices, organic amendments, crop rotations, and crop residue removal treatments were selected for their documented history of the long-term effects of management practice on SOM dynamics. Simulated and observed values from the sites were significantly related (r2 = 94%, P management issue. CQESTR successfully simulated a substantial decline in SOM with 90% of crop residue removal for 50 years under various rotations at Columbia, MO and Champaign, IL. An increase in SOM

  13. Representing Water Scarcity in Future Agricultural Assessments

    Science.gov (United States)

    Winter, Jonathan M.; Lopez, Jose R.; Ruane, Alexander C.; Young, Charles A.; Scanlon, Bridget R.; Rosenzweig, Cynthia

    2017-01-01

    Globally, irrigated agriculture is both essential for food production and the largest user of water. A major challenge for hydrologic and agricultural research communities is assessing the sustainability of irrigated croplands under climate variability and change. Simulations of irrigated croplands generally lack key interactions between water supply, water distribution, and agricultural water demand. In this article, we explore the critical interface between water resources and agriculture by motivating, developing, and illustrating the application of an integrated modeling framework to advance simulations of irrigated croplands. We motivate the framework by examining historical dynamics of irrigation water withdrawals in the United States and quantitatively reviewing previous modeling studies of irrigated croplands with a focus on representations of water supply, agricultural water demand, and impacts on crop yields when water demand exceeds water supply. We then describe the integrated modeling framework for simulating irrigated croplands, which links trends and scenarios with water supply, water allocation, and agricultural water demand. Finally, we provide examples of efforts that leverage the framework to improve simulations of irrigated croplands as well as identify opportunities for interventions that increase agricultural productivity, resiliency, and sustainability.

  14. Photovoltaic systems in agriculture

    International Nuclear Information System (INIS)

    Corba, Z.; Katic, V.; Milicevic, D.

    2009-01-01

    This paper presents the possibility of using one of the renewable energy resources in agriculture. Specifically, the paper shows the possibility of converting solar energy into electricity through photovoltaic panels. The paper includes the analysis of the energy potential of solar radiation in the AP Vojvodina (Serbia). The results of the analysis can be used for the design of photovoltaic energy systems. The amount of solar energy on the territory of the province is compared with the same data from some European countries, in order to obtain a clear picture of the possibilities of utilization of this type of renewable sources. Three examples of possible application of photovoltaic systems are presented. The first relates to the consumer who is away from the electric distribution network - photovoltaic system in island mode. The remaining two examples relate to the application of photovoltaic power sources in manufacturing plants, flowers or vegetables. Applying photovoltaic source of electrical energy to power pumps for irrigation is highlighted

  15. VIC–CropSyst-v2: A regional-scale modeling platform to simulate the nexus of climate, hydrology, cropping systems, and human decisions

    Directory of Open Access Journals (Sweden)

    K. Malek

    2017-08-01

    Full Text Available Food supply is affected by a complex nexus of land, atmosphere, and human processes, including short- and long-term stressors (e.g., drought and climate change, respectively. A simulation platform that captures these complex elements can be used to inform policy and best management practices to promote sustainable agriculture. We have developed a tightly coupled framework using the macroscale variable infiltration capacity (VIC hydrologic model and the CropSyst agricultural model. A mechanistic irrigation module was also developed for inclusion in this framework. Because VIC–CropSyst combines two widely used and mechanistic models (for crop phenology, growth, management, and macroscale hydrology, it can provide realistic and hydrologically consistent simulations of water availability, crop water requirements for irrigation, and agricultural productivity for both irrigated and dryland systems. This allows VIC–CropSyst to provide managers and decision makers with reliable information on regional water stresses and their impacts on food production. Additionally, VIC–CropSyst is being used in conjunction with socioeconomic models, river system models, and atmospheric models to simulate feedback processes between regional water availability, agricultural water management decisions, and land–atmosphere interactions. The performance of VIC–CropSyst was evaluated on both regional (over the US Pacific Northwest and point scales. Point-scale evaluation involved using two flux tower sites located in agricultural fields in the US (Nebraska and Illinois. The agreement between recorded and simulated evapotranspiration (ET, applied irrigation water, soil moisture, leaf area index (LAI, and yield indicated that, although the model is intended to work on regional scales, it also captures field-scale processes in agricultural areas.

  16. Design of Agricultural Cleaner Production Technology System

    OpenAIRE

    Hu, Jun-mei; Wang, Xin-jie

    2009-01-01

    Based on the introduction of agricultural cleaner production, technology system design of planting cleaner production is discussed from five aspects of water-saving irrigation technology, fertilization technology, diseases and insects control technology, straw comprehensive utilization technology and plastic film pollution control technology. Cleaner production technology system of livestock and poultry raise is constructed from the aspects of source control technology, reduction technique in...

  17. Analysis And Assistant Planning System Ofregional Agricultural Economic Inform

    Science.gov (United States)

    Han, Jie; Zhang, Junfeng

    For the common problems existed in regional development and planning, we try to design a decision support system for assisting regional agricultural development and alignment as a decision-making tool for local government and decision maker. The analysis methods of forecast, comparative advantage, liner programming and statistical analysis are adopted. According to comparative advantage theory, the regional advantage can be determined by calculating and comparing yield advantage index (YAI), Scale advantage index (SAI), Complicated advantage index (CAI). Combining with GIS, agricultural data are presented as a form of graph such as area, bar and pie to uncover the principle and trend for decision-making which can't be found in data table. This system provides assistant decisions for agricultural structure adjustment, agro-forestry development and planning, and can be integrated to information technologies such as RS, AI and so on.

  18. DESIGN OF INFORMATION MANAGEMENT SYSTEM OF VERTICALLY INTEGRATED AGRICULTURAL HOLDINGS

    Directory of Open Access Journals (Sweden)

    Александр Витальевич ШМАТКО

    2015-05-01

    Full Text Available The paper deals with an approach to the design and development of information systems for the management and optimization of the organizational structure of vertically integrated agricultural holdings. A review of the problems of building and improving the organizational structure of vertically integrated agricultural holding is made. A method of constructing a discrete model management structure agricultural holding, which minimizes the costs associated with attracting applicants to work, is proposed.

  19. A Modernized System for Agricultural Monitoring for Food Security in Tanzania

    Science.gov (United States)

    Dempewolf, J.; Nakalembe, C. L.; Becker-Reshef, I.; Justice, C. J.; Tumbo, S.; Mbilinyi, B.; Maurice, S.; Mtalo, M.

    2016-12-01

    Accurate and timely information on agriculture, particularly in many countries dominated by complex smallholder, subsistence agricultural systems is often difficult to obtain or not available. This includes up-to-date information during the growing season on crop type, crop area and crop condition such as developmental stage, damage from pests and diseases, drought or flooding. These data are critical for government decision making on production forecasts, planning for commodity market transactions, food aid delivery, responding to disease outbreaks and for implementing agricultural extension and development efforts. In Tanzania we have been working closely with the National Food Security Division (NFSD) at the Ministry of Agriculture, Livestock and Fisheries (MALF) on designing and implementing an advanced agricultural monitoring system, utilizing satellite remote sensing, smart phone and internet technologies. Together with our local implementing partner, the Sokoine University of Agriculture we trained a large number of agricultural extension agents in different regions of Tanzania to deliver field data in near-realtime. Using our collaborative internet portal (Crop Monitor) the team of analysts compiles pertinent information on current crop and weather conditions from throughout the country in a standardized, consistent manner. Using the portal traditionally collected data are combined with electronically collected field data and MODIS satellite image time series from GLAM East-Africa (Global Agricultural Monitoring System, customized for stakeholders in East Africa). The main outcome of this work has been the compilation of the National Food Security Bulletin for Tanzania with plans for a public release and the intention for it to become the main avenue to dispense current updates and analysis on agriculture in the country. The same information is also a potential contribution to the international Early Warning Crop Monitor, which currently covers Tanzania

  20. Simulating the Effects of Agricultural Management on Water Quality Dynamics in Rice Paddies for Sustainable Rice Production—Model Development and Validation

    Directory of Open Access Journals (Sweden)

    Soon-Kun Choi

    2017-11-01

    Full Text Available The Agricultural Policy/Environmental eXtender (APEX model is widely used for evaluating agricultural conservation efforts and their effects on soil and water. A key component of APEX application in Korea is simulating the water quality impacts of rice paddies because rice agriculture claims the largest cropland area in the country. In this study, a computational module called APEX-Paddy (National Academy of Agricultural Sciences, Wanju, Korea is developed to simulate water quality with considering pertinent paddy management practices, such as puddling and flood irrigation management. Data collected at two experimental paddy sites in Korea were used to calibrate and validate the model. Results indicate that APEX-Paddy performs well in predicting runoff discharge rate and nitrogen yield while the original APEX highly overestimates runoff rates and nitrogen yields on large storm events. With APEX-Paddy, simulated and observed flow and mineral nitrogen yield (QN are found to be highly correlated after calibration (Nash & Sutcliffe Efficiency (NSE = 0.87 and Percent Bias (PBIAS = −14.6% for flow; NSE = 0.68 and PBIAS = 2.1% for QN. Consequently, the APEX-Paddy showed a greater accuracy in flow and QN prediction than the original APEX modeling practice using the SCS-CN (Soil Conservation Service-Curve Number method.

  1. Evaluation of the APEX Model to Simulate Runoff Quality from Agricultural Fields in the Southern Region of the United States.

    Science.gov (United States)

    Ramirez-Avila, John J; Radcliffe, David E; Osmond, Deanna; Bolster, Carl; Sharpley, Andrew; Ortega-Achury, Sandra L; Forsberg, Adam; Oldham, J Larry

    2017-11-01

    The Agricultural Policy Environmental eXtender (APEX) model has been widely applied to assess phosphorus (P) loss in runoff water and has been proposed as a model to support practical decisions regarding agricultural P management, as well as a model to evaluate tools such as the P Index. The aim of this study is to evaluate the performance of APEX to simulate P losses from agricultural systems to determine its potential use for refinement or replacement of the P Index in the southern region of the United States. Uncalibrated and calibrated APEX model predictions were compared against measured water quality data from row crop fields in North Carolina and Mississippi and pasture fields in Arkansas and Georgia. Calibrated models satisfactorily predicted event-based surface runoff volumes at all sites (Nash-Sutcliffe efficiency [NSE] > 0.47, |percent bias [PBIAS]| < 34) except Arkansas (NSE < 0.11, |PBIAS| < 50) but did not satisfactory simulate sediment, dissolved P, or total P losses in runoff water. The APEX model tended to underestimate dissolved and total P losses from fields where manure was surface applied. The model also overestimated sediments and total P loads during irrigation events. We conclude that the capability of APEX to predict sediment and P losses is limited, and consequently so is the potential for using APEX to make P management recommendations to improve P Indices in the southern United States. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. The problem of sustainability within the complexity of agricultural production systems

    International Nuclear Information System (INIS)

    Cotes Torres, Alejandro; Cotes Torres, Jose Miguel

    2005-01-01

    The problem of sustainability is a topic that since the end of the XX century has been worrying more the different sectors of society; becoming one of the topics of greatest interest for managers, consumers, academics and investigators that conform the different agricultural food chains of the world. This paper presents from the general systems theory point of view some elements of critical reflection, approaching the problem of sustainability from the complexity of agricultural production systems, beginning with the original philosophical conception of agricultural and ending by outlining some considerations that should be kept in mind for the development of scientific and technological advances concordant with the agricultural food chain needs of the XX century; which permit an orientation of not only work by profession is who lead the processes of animal and vegetable production, but also creates a sense of pertinence in all of the participants in the chain, highlighting the importance of studying by means of systemic thought, agronomy and animal science, as disciplines that approach to complexities of agriculture which is the angular stone of civilization, such as we know it at the moment

  3. Integrating NASA Earth Science Enterprise (ESE) Data Into Global Agricultural Decision Support Systems

    Science.gov (United States)

    Teng, W.; Kempler, S.; Chiu, L.; Doraiswamy, P.; Liu, Z.; Milich, L.; Tetrault, R.

    2003-12-01

    Monitoring global agricultural crop conditions during the growing season and estimating potential seasonal production are critically important for market development of U.S. agricultural products and for global food security. Two major operational users of satellite remote sensing for global crop monitoring are the USDA Foreign Agricultural Service (FAS) and the U.N. World Food Programme (WFP). The primary goal of FAS is to improve foreign market access for U.S. agricultural products. The WFP uses food to meet emergency needs and to support economic and social development. Both use global agricultural decision support systems that can integrate and synthesize a variety of data sources to provide accurate and timely information on global crop conditions. The Goddard Space Flight Center Earth Sciences Distributed Active Archive Center (GES DAAC) has begun a project to provide operational solutions to FAS and WFP, by fully leveraging results from previous work, as well as from existing capabilities of the users. The GES DAAC has effectively used its recently developed prototype TRMM Online Visualization and Analysis System (TOVAS) to provide ESE data and information to the WFP for its agricultural drought monitoring efforts. This prototype system will be evolved into an Agricultural Information System (AIS), which will operationally provide ESE and other data products (e.g., rainfall, land productivity) and services, to be integrated into and thus enhance the existing GIS-based, decision support systems of FAS and WFP. Agriculture-oriented, ESE data products (e.g., MODIS-based, crop condition assessment product; TRMM derived, drought index product) will be input to a crop growth model in collaboration with the USDA Agricultural Research Service, to generate crop condition and yield prediction maps. The AIS will have the capability for remotely accessing distributed data, by being compliant with community-based interoperability standards, enabling easy access to

  4. Changing World, Unchanging Accounting? Cost Systems for Hungarian Agricultural Companies

    OpenAIRE

    Zoltán Musinszki

    2011-01-01

    The literature of agricultural cost accounting has defined the definition of cost centres and cost bearers, the contents of the accounts, the procedures and methods for cost accounting and unit cost calculation without any significant changes for decades now. Do the agricultural companies set up and operate their own cost allocation and unit cost calculation systems on procedures made for state owned farms and cooperatives, or do they align their cost system with the challenges of our times? ...

  5. Nanoagroparticles emerging trends and future prospect in modern agriculture system.

    Science.gov (United States)

    Baker, Syed; Volova, Tatiana; Prudnikova, Svetlana V; Satish, S; Prasad M N, Nagendra

    2017-07-01

    Increment of technical knowledge has remarkably uplifted logical thinking among scientific communities to shape the theoretical concepts into near product-oriented research. The concept of nanotechnology has overwhelmed almost all forms of lives and has traded its applications in myriad fields. Despite rapid expansion of nanotechnology, sustainable competitions still do exist in the field of agriculture. In current scenario, agriculture is a manifestation demand to provide adequate nutrition for relentless growing global population. It is estimated that nearly one-third of the global crop production is destroyed annually. The loss owes to various stresses such as pest infestation, microbial pathogens, weeds, natural calamities, lack of soil fertility and much more. In order to overcome these limitations, various technological strategies are implemented but a majority of these have their own repercussions. Hence there is a scrawling progress on the evaluation of nanoparticles into agriculture sector which can reform the modern agricultural system. Applications of these nanomaterials can add tremendous value in the current scenario of a global food scarcity. Nanotechnology can address the adverse effects posed by the abundant use of chemical agrochemicals which are reported to cause biomagnification in an ecosystem. Based on these facts and consideration, present review envisages on nanoparticles as nanoherbicides, nanopesticides, onsite detection agro-pathogens and nanoparticles in post harvest management. The review also elucidates on the importance of nanoparticles in soil fertility, irrigation management and its influence on improving crop yield. With scanty reports available on nanotechnology in agriculture system, present review attributes toward developing nanoagroparticles as the future prospect which can give new facelift for existing agriculture system. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Nitrogen and phosphorus removed from a subsurface flow multi-stage filtration system purifying agricultural runoff.

    Science.gov (United States)

    Zhao, Yaqi; Huang, Lei; Chen, Yucheng

    2018-07-01

    Agricultural nonpoint source pollution has been increasingly serious in China since the 1990s. The main causes were excessive inputs of nitrogen fertilizer and pesticides. A multi-stage filtration system was built to test the purification efficiencies and removal characteristics of nitrogen and phosphorus when treating agricultural runoff. Simulated runoff pollution was prepared by using river water as source water based on the monitoring of local agricultural runoff. Experimental study had been performed from September to November 2013, adopting 12 h for flooding and 12 h for drying. The results showed that the system was made adaptive to variation of inflow quality and quantity, and had good removal for dissolved total nitrogen, total nitrogen, dissolved total phosphorus (DTP), and total phosphorus, and the average removal rate was 27%, 36%, 32%, and 48%, respectively. Except nitrate ([Formula: see text]), other forms of nitrogen and phosphorus all decreased with the increase of stages. Nitrogen was removed mainly in particle form the first stage, and mostly removed in dissolved form the second and third stage. Phosphorus was removed mainly in particulate during the first two stages, but the removal of particulate phosphorus and DTP were almost the same in the last stage. An approximate logarithmic relationship between removal loading and influent loading to nitrogen and phosphorus was noted in the experimental system, and the correlation coefficient was 0.78-0.94. [Formula: see text]: ammonium; [Formula: see text]: nitrite; [Formula: see text]: nitrate; DTN: dissolved total nitrogen; TN: total nitrogen; DTP: dissolved total phosphorus; TP: total phosphorus; PN: particulate nitrogen; PP: particulate phosphorus.

  7. Development of a Global Agricultural Hotspot Detection and Early Warning System

    Science.gov (United States)

    Lemoine, G.; Rembold, F.; Urbano, F.; Csak, G.

    2015-12-01

    The number of web based platforms for crop monitoring has grown rapidly over the last years and anomaly maps and time profiles of remote sensing derived indicators can be accessed online thanks to a number of web based portals. However, while these systems make available a large amount of crop monitoring data to the agriculture and food security analysts, there is no global platform which provides agricultural production hotspot warning in a highly automatic and timely manner. Therefore a web based system providing timely warning evidence as maps and short narratives is currently under development by the Joint Research Centre. The system (called "HotSpot Detection System of Agriculture Production Anomalies", HSDS) will focus on water limited agricultural systems worldwide. The automatic analysis of relevant meteorological and vegetation indicators at selected administrative units (Gaul 1 level) will trigger warning messages for the areas where anomalous conditions are observed. The level of warning (ranging from "watch" to "alert") will depend on the nature and number of indicators for which an anomaly is detected. Information regarding the extent of the agricultural areas concerned by the anomaly and the progress of the agricultural season will complement the warning label. In addition, we are testing supplementary detailed information from other sources for the areas triggering a warning. These regard the automatic web-based and food security-tailored analysis of media (using the JRC Media Monitor semantic search engine) and the automatic detection of active crop area using Sentinel 1, upcoming Sentinel-2 and Landsat 8 imagery processed in Google Earth Engine. The basic processing will be fully automated and updated every 10 days exploiting low resolution rainfall estimates and satellite vegetation indices. Maps, trend graphs and statistics accompanied by short narratives edited by a team of crop monitoring experts, will be made available on the website on a

  8. Development of an Integrated Wastewater Treatment System/water reuse/agriculture model

    Science.gov (United States)

    Fox, C. H.; Schuler, A.

    2017-12-01

    Factors like increasing population, urbanization, and climate change have made the management of water resources a challenge for municipalities. By understanding wastewater recycling for agriculture in arid regions, we can expand the supply of water to agriculture and reduce energy use at wastewater treatment plants (WWTPs). This can improve management decisions between WWTPs and water managers. The objective of this research is to develop a prototype integrated model of the wastewater treatment system and nearby agricultural areas linked by water and nutrients, using the Albuquerque Southeast Eastern Reclamation Facility (SWRF) and downstream agricultural system as a case study. Little work has been done to understand how such treatment technology decisions affect the potential for water ruse, nutrient recovery in agriculture, overall energy consumption and agriculture production and water quality. A holistic approach to understanding synergies and tradeoffs between treatment, reuse, and agriculture is needed. For example, critical wastewater treatment process decisions include options to nitrify (oxidize ammonia), which requires large amounts of energy, to operate at low dissolved oxygen concentrations, which requires much less energy, whether to recover nitrogen and phosphorus, chemically in biosolids, or in reuse water for agriculture, whether to generate energy from anaerobic digestion, and whether to develop infrastructure for agricultural reuse. The research first includes quantifying existing and feasible agricultural sites suitable for irrigation by reuse wastewater as well as existing infrastructure such as irrigation canals and piping by using GIS databases. Second, a nutrient and water requirement for common New Mexico crop is being determined. Third, a wastewater treatment model will be utilized to quantify energy usage and nutrient removal under various scenarios. Different agricultural reuse sensors and treatment technologies will be explored. The

  9. Simulation of radionuclide transport in U.S. agriculture

    International Nuclear Information System (INIS)

    Sharp, R.D.; Baes, C.F. III.

    1982-01-01

    Because of the recent concern about the impact of energy technologies on man and related health effects, there has emerged a need for models to calculate or predict the effects of radionuclides on man. A general overview is presented of a model that calculates the ingrowth of radionuclides into man's food chain. The FORTRAN IV computer program TERRA, Transport of Environmentally Released Radionuclides in Agriculture, simulates the build-up of radionuclides in soil, four plant food compartments, in meat and milk from beef, and in the livestock food compartments that cause radionuclide build-up in milk and meat from beef. A large data set of spatially oriented parameters has been developed in conjunction with TERRA. This direct-access data set is called SITE, Specific Information on the Terrestrial Environment, and contains 35 parameters for each of 3525 half-degree longitude-latitude cells which define the lower 48 states. TERRA and SITE are used together as a package for determining radionuclide concentrations in man's food anywhere within the conterminous 48 states due to atmospheric releases

  10. Agriculture production as a major driver of the Earth system exceeding planetary boundaries

    Directory of Open Access Journals (Sweden)

    Bruce M. Campbell

    2017-12-01

    Full Text Available We explore the role of agriculture in destabilizing the Earth system at the planetary scale, through examining nine planetary boundaries, or "safe limits": land-system change, freshwater use, biogeochemical flows, biosphere integrity, climate change, ocean acidification, stratospheric ozone depletion, atmospheric aerosol loading, and introduction of novel entities. Two planetary boundaries have been fully transgressed, i.e., are at high risk, biosphere integrity and biogeochemical flows, and agriculture has been the major driver of the transgression. Three are in a zone of uncertainty i.e., at increasing risk, with agriculture the major driver of two of those, land-system change and freshwater use, and a significant contributor to the third, climate change. Agriculture is also a significant or major contributor to change for many of those planetary boundaries still in the safe zone. To reduce the role of agriculture in transgressing planetary boundaries, many interventions will be needed, including those in broader food systems.

  11. A Spatial Data Model Desing For The Management Of Agricultural Data (Farmer, Agricultural Land And Agricultural Production)

    Science.gov (United States)

    Taşkanat, Talha; İbrahim İnan, Halil

    2016-04-01

    Since the beginning of the 2000s, it has been conducted many projects such as Agricultural Sector Integrated Management Information System, Agriculture Information System, Agricultural Production Registry System and Farmer Registry System by the Turkish Ministry of Food, Agriculture and Livestock and the Turkish Statistical Institute in order to establish and manage better agricultural policy and produce better agricultural statistics in Turkey. Yet, it has not been carried out any study for the structuring of a system which can meet the requirements of different institutions and organizations that need similar agricultural data. It has been tried to meet required data only within the frame of the legal regulations from present systems. Whereas the developments in GIS (Geographical Information Systems) and standardization, and Turkey National GIS enterprise in this context necessitate to meet the demands of organizations that use the similar data commonly and to act in terms of a data model logic. In this study, 38 institutions or organization which produce and use agricultural data were detected, that and thanks to survey and interviews undertaken, their needs were tried to be determined. In this study which is financially supported by TUBITAK, it was worked out relationship between farmer, agricultural land and agricultural production data and all of the institutions and organizations in Turkey and in this context, it was worked upon the best detailed and effective possible data model. In the model design, UML which provides object-oriented design was used. In the data model, for the management of spatial data, sub-parcel data model was used. Thanks to this data model, declared and undeclared areas can be detected spatially, and thus declarations can be associated to sub-parcels. Within this framework, it will be able to developed agricultural policies as a result of acquiring more extensive, accurate, spatially manageable and easily updatable farmer and

  12. Sustainable Water Management in Urban, Agricultural, and Natural Systems

    Directory of Open Access Journals (Sweden)

    Tess Russo

    2014-12-01

    Full Text Available Sustainable water management (SWM requires allocating between competing water sector demands, and balancing the financial and social resources required to support necessary water systems. The objective of this review is to assess SWM in three sectors: urban, agricultural, and natural systems. This review explores the following questions: (1 How is SWM defined and evaluated? (2 What are the challenges associated with sustainable development in each sector? (3 What are the areas of greatest potential improvement in urban and agricultural water management systems? And (4 What role does country development status have in SWM practices? The methods for evaluating water management practices range from relatively simple indicator methods to integration of multiple models, depending on the complexity of the problem and resources of the investigators. The two key findings and recommendations for meeting SWM objectives are: (1 all forms of water must be considered usable, and reusable, water resources; and (2 increasing agricultural crop water production represents the largest opportunity for reducing total water consumption, and will be required to meet global food security needs. The level of regional development should not dictate sustainability objectives, however local infrastructure conditions and financial capabilities should inform the details of water system design and evaluation.

  13. Sustainable Urban Agriculture in Ghana: What Governance System Works?

    Directory of Open Access Journals (Sweden)

    Eileen Bogweh Nchanji

    2017-11-01

    Full Text Available Urban farming takes advantage of its proximity to market, transport and other urban infrastructure to provide food for the city and sustain the livelihoods of urban and peri-urban dwellers. It is an agricultural activity which employs more than 50% of the local urban population with positive and negative impacts on local and national development. Urban agriculture is an informal activity not supported by law but in practice is regulated to a certain extent by state institutions, traditional rulers, farmers and national and international non-governmental organisations. Tamale’s rapid population growth, exacerbated by the unplanned development system and institutional conflicts, are factors contributing to the present bottlenecks in the urban agricultural system. In this paper, these bottlenecks are conceptualised as problems of governance. These issues will be illustrated using ethnographic data from land sales, crop-livestock competition, waste-water irrigation, and markets. I will explain how conflicts which arise from these different situations are resolved through the interactions of various governance systems. Informal governance arrangements are widespread, but neither they nor formal systems are always successful in resolving governance issues. A participatory governance does not seem possible due to actors’ divergent interests. A governance solution for this sector is not yet apparent, contributing to food and nutritional insecurity.

  14. Comparison of Management-Operational Efficiency of Agricultural Machinery Operating Systems (Case Study Alborz Province

    Directory of Open Access Journals (Sweden)

    A Omidi

    2017-10-01

    Full Text Available Introduction Measuring the efficiency of operating systems in comparison with the methods of comparing the performance of systems explains the various dimensions of issues such as, the lack of full use of agricultural machinery capacity, improper selection of machine, incorrect use of machinery, ownership, etc.. Any improvement in operating system conditions reduces costs,, consumption of inputs, increases the efficiency of production factors and consequently reduces the price and increases agricultural profitability. The main objective of this research is to compare the operational-management efficiency of operating systems in Alborz province and comparison of managerial and operational efficiency of agricultural machinery farming systems by calculating the efficiency of its major components in agricultural machinery farming systems including efficiency, social, economic, technical-operational and managerial and ranking them in order to understand the optimal model of agricultural machinery systems. Materials and Methods This research is a survey study.The study population was beneficiaries of agricultural machinery in the Alborz province which in the multi-stage random sample was determined. Alborz province has 31,438 agricultural operations, of which 543 are exploited agricultural machinery. Cochran formula was used to determine sample size. Since, Cronbach's alpha coefficient greater than 0.7 was obtained by questionnaire, the reliability of the questionnaires was assessed as desirable. To calculate the efficiency the component data were extracted from 4 specialized questionnaires after the initial examination and encoding, then they were analyzed using the software SPSS, MCDM Engine. TOPSIS techniques were used for ranking managerial performance operating system for operating agricultural machinery Alborz province. Results and Discussion The results showed that social efficiency of dedicated-professional operation with an average of 6.6 had

  15. Impact of an increasing supply of bioenergy sources on the sustainability of agricul-tural enterprises, evaluated with the Criteria System for Sustainable Agriculture (CSSA); Folgenabschaetzung einer zunehmenden Bereitstellung von Bioenergietraegern auf die Nachhaltigkeit landwirtschaftlicher Unternehmen, bewertet mit dem Kriteriensystem Nachhaltige Landwirtschaft (KSNL)

    Energy Technology Data Exchange (ETDEWEB)

    Breitschuh, Thorsten; Eckert, Hans; Maier, Uta; Gernand, Ulrich; Mueller, Anja [Thueringer Landesanstalt fuer Landwirtschaft (TLL), Jena (Germany); Verband fuer Agrarforschung und Bildung Thueringen e.V., Jena (Germany)

    2009-07-15

    The report investigates how an increasing supply of bioenergy sources affects the sustainability situation of farms at different sites and with different structures. The ''Criteria System for Sustainable Agriculture'' (CSSA) was used as analysis and assessment criteria system. The CSSA is based on 34 selected criteria in the field of economy, environment and social conditions. Each criterion indicates a defined pres-sure or state and evaluates the results on the basis of defined tolerance ranges. In the study short-term scenarios of an increasing provision of bioenergy based on real data from agricultural farms were evaluated with the CSSA system. Altogether, 30 scenarios were analysed. As a result the most sustainable scenario for the supply of bioenergy was identified for each farm considered. Using this approach, the most important adaptation reactions of agricultural enterprises were determined and evaluated. Potential applications of the explained procedure are the ex-ante simulation and ex- ante evaluation of agricultural processes and the creation and evaluation of sup-port programmes. (orig.)

  16. Reducing agricultural greenhouse gas emissions: role of biotechnology, organic systems, and consumer behavior

    Science.gov (United States)

    All agricultural systems have environmental and societal costs and benefits that should be objectively quantified before recommending specific management practices. Agricultural biotechnology, which takes advantage of genetically engineered organisms (GEOs), along with organic cropping systems, econ...

  17. Impact of Future Climate Change on Wheat Production: A Simulated Case for China’s Wheat System

    OpenAIRE

    Dengpan Xiao; Huizi Bai; De Li Liu

    2018-01-01

    With regard to global climate change due to increasing concentration in greenhouse gases, particularly carbon dioxide (CO2), it is important to examine its potential impact on crop development and production. We used statistically-downscaled climate data from 28 Global Climate Models (GCMs) and the Agricultural Production Systems sIMulator (APSIM)–Wheat model to simulate the impact of future climate change on wheat production. Two future scenarios (RCP4.5 and RCP8.5) were used for atmos...

  18. Market assessment of photovoltaic power systems for agricultural applications in the Philippines

    Science.gov (United States)

    Cabraal, R. A.; Delasanta, D.; Burrill, G.

    1981-01-01

    The market potential in the Philippines for stand alone photovoltaic (P/V) systems in agriculture was assessed. Applications include: irrigation, postharvest operation, food and fiber processing and storage, and livestock and fisheries operations. Power and energy use profiles for many applications as well as assessments of business, government and financial climate for P/V sales are described. Many characteristics of the Philippine agriculture and energy sector favorably influence the use of P/V systems. However, serious and significant barriers prevent achieving the technically feasible, cost competitive market for P/V systems in the agricultural sector. The reason for the small market is the limited availability capital for financing P/V systems. It is suggested that innovative financing schemes and promotional campaigns should be devised.

  19. Market assessment of photovoltaic power systems for agricultural applications in the Philippines

    Science.gov (United States)

    Cabraal, R. A.; Delasanta, D.; Burrill, G.

    1981-04-01

    The market potential in the Philippines for stand alone photovoltaic (P/V) systems in agriculture was assessed. Applications include: irrigation, postharvest operation, food and fiber processing and storage, and livestock and fisheries operations. Power and energy use profiles for many applications as well as assessments of business, government and financial climate for P/V sales are described. Many characteristics of the Philippine agriculture and energy sector favorably influence the use of P/V systems. However, serious and significant barriers prevent achieving the technically feasible, cost competitive market for P/V systems in the agricultural sector. The reason for the small market is the limited availability capital for financing P/V systems. It is suggested that innovative financing schemes and promotional campaigns should be devised.

  20. Online hyperspectral imaging system for evaluating quality of agricultural products

    Science.gov (United States)

    Mo, Changyeun; Kim, Giyoung; Lim, Jongguk

    2017-06-01

    The consumption of fresh-cut agricultural produce in Korea has been growing. The browning of fresh-cut vegetables that occurs during storage and foreign substances such as worms and slugs are some of the main causes of consumers' concerns with respect to safety and hygiene. The purpose of this study is to develop an on-line system for evaluating quality of agricultural products using hyperspectral imaging technology. The online evaluation system with single visible-near infrared hyperspectral camera in the range of 400 nm to 1000 nm that can assess quality of both surfaces of agricultural products such as fresh-cut lettuce was designed. Algorithms to detect browning surface were developed for this system. The optimal wavebands for discriminating between browning and sound lettuce as well as between browning lettuce and the conveyor belt were investigated using the correlation analysis and the one-way analysis of variance method. The imaging algorithms to discriminate the browning lettuces were developed using the optimal wavebands. The ratio image (RI) algorithm of the 533 nm and 697 nm images (RI533/697) for abaxial surface lettuce and the ratio image algorithm (RI533/697) and subtraction image (SI) algorithm (SI538-697) for adaxial surface lettuce had the highest classification accuracies. The classification accuracy of browning and sound lettuce was 100.0% and above 96.0%, respectively, for the both surfaces. The overall results show that the online hyperspectral imaging system could potentially be used to assess quality of agricultural products.

  1. Construction of Network Management Information System of Agricultural Products Supply Chain Based on 3PLs

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The necessity to construct the network management information system of 3PLs agricultural supply chain is analyzed,showing that 3PLs can improve the overall competitive advantage of agricultural supply chain.3PLs changes the homogeneity management into specialized management of logistics service and achieves the alliance of the subjects at different nodes of agricultural products supply chain.Network management information system structure of agricultural products supply chain based on 3PLs is constructed,including the four layers (the network communication layer,the hardware and software environment layer,the database layer,and the application layer) and 7 function modules (centralized control,transportation process management,material and vehicle scheduling,customer relationship,storage management,customer inquiry,and financial management).Framework for the network management information system of agricultural products supply chain based on 3PLs is put forward.The management of 3PLs mainly includes purchasing management,supplier relationship management,planning management,customer relationship management,storage management and distribution management.Thus,a management system of internal and external integrated agricultural enterprises is obtained.The network management information system of agricultural products supply chain based on 3PLs has realized the effective sharing of enterprise information of agricultural products supply chain at different nodes,establishing a long-term partnership revolving around the 3PLs core enterprise,as well as a supply chain with stable relationship based on the supply chain network system,so as to improve the circulation efficiency of agricultural products,and to explore the sales market for agricultural products.

  2. Integrated Systems Mitigate Land Degradation and Improve Agricultural System Sustainability

    Science.gov (United States)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Brevik, Eric

    2017-04-01

    Rain-fed agricultural production supported by exogenous inputs is not sustainable because a continuous influx of expensive inputs (fertilizer, chemicals, fossil fuel, labor, tillage, and other) is required. Alternatives to traditional management allow natural occurring dynamic soil processes to provide the necessary microbial activity that supports nutrient cycling in balance with nature. Research designed to investigate the potential for integrated systems to replace expensive inputs has shown that healthy soils rich in soil organic matter (SOM) are the foundation upon which microbial nutrient cycling can reduce and eventually replace expensive fertilizer. No-till seed placement technology effectively replaces multiple-pass cultivation conserving stored soil water in semi-arid farming systems. In multi-crop rotations, cool- and warm-season crops are grown in sequence to meet goals of the integrated farming and ranching system, and each crop in the rotation complements the subsequent crop by supplying a continuous flow of essential SOM for soil nutrient cycling. Grazing animals serve an essential role in the system's sustainability as non-mechanized animal harvesters that reduce fossil fuel consumption and labor, and animal waste contributes soil nutrients to the system. Integrated systems' complementarity has contributed to greater soil nutrient cycling and crop yields, fertilizer reduction or elimination, greater yearling steer grazing net return, reduced cow wintering costs grazing crop residues, increased wildlife sightings, and reduced environmental footprint. Therefore, integrating crop and animal systems can reverse soil quality decline and adopting non-traditional procedures has resulted in a wider array of opportunities for sustainable agriculture and profitability.

  3. A Food Systems Approach To Healthy Food And Agriculture Policy.

    Science.gov (United States)

    Neff, Roni A; Merrigan, Kathleen; Wallinga, David

    2015-11-01

    Food has become a prominent focus of US public health policy. The emphasis has been almost exclusively on what Americans eat, not what is grown or how it is grown. A field of research, policy, and practice activities addresses the food-health-agriculture nexus, yet the work is still often considered "alternative" to the mainstream. This article outlines the diverse ways in which agriculture affects public health. It then describes three policy issues: farm-to-school programming, sustainability recommendations in the Dietary Guidelines for Americans, and antibiotic use in animal agriculture. These issues illustrate the progress, challenges, and public health benefits of taking a food systems approach that brings together the food, agriculture, and public health fields. Project HOPE—The People-to-People Health Foundation, Inc.

  4. Reduction of solids and nutrient loss from agricultural land by tailwater recovery systems

    Science.gov (United States)

    Omer, A.R.; Miranda, Leandro E.; Moore, M. T.; Krutz, L. J.; Prince Czarnecki, J. M.; Kröger, R.; Baker, B. H.; Hogue, J.; Allen, P. J.

    2018-01-01

    Best management practices are being implemented throughout the Lower Mississippi River Alluvial Valley with the aim of alleviating pressures placed on downstream aquatic systems by sediment and nutrient losses from agricultural land; however, research evaluating the performance of tailwater recovery (TWR) systems, an increasingly important practice, is limited. This study evaluated the ability of TWR systems to retain sediment and nutrients draining from agricultural landscapes. Composite flow-based samples were collected during flow events (precipitation or irrigation) over a two-year period in six TWR systems. Performance was evaluated by comparing concentrations and loads in water entering TWR systems (i.e., runoff or influent) from agricultural fields to water overflow exiting TWR systems (effluent). Tailwater recovery systems did not reduce concentrations of solids and nutrients, but did reduce loads of solids, phosphorus (P), and nitrogen (N) by 43%, 32%, and 44%, respectively. Annual mean load reductions were 1,142 kg solids, 0.7 kg of P, and 3.8 kg of N. Performance of TWR systems was influenced by effluent volume, system fullness, time since the previous event, and capacity of the TWR system. Mechanistically, TWR systems retain runoff on the agricultural landscape, thereby reducing the amount of sediment and nutrients entering downstream waterbodies. System performance can be improved through manipulation of influential parameters.

  5. The economics of hybrid power systems for sustainable desert agriculture in Egypt

    DEFF Research Database (Denmark)

    Kamel, S.M.; Dahl, C.

    2005-01-01

    Egypt has embarked on an ambitious desert land reclamation program in order to increase total food production. Energy planners for these desert agriculture locations have chosen diesel generation power technology because minimization of the initial capital cost of a power supply system is their top...... priority. This heavy reliance on diesel generation has negative effects on the surrounding environment including soil, groundwater, and air pollution. Although good solar and wind resource prospects exist for the use of cleaner hybrid power systems in certain desert locations, little research has been done...... to investigate the economic potential of such systems in Egypt’s desert agriculture sector. Using optimization software, we assess the economics of hybrid power systems versus the present diesel generation technology in a remote agricultural development area. We also consider the emission reduction advantages...

  6. [Integrated evaluation of circular agriculture system: a life cycle perspective].

    Science.gov (United States)

    Liang, Long; Chen, Yuan-Quan; Gao, Wang-Sheng

    2010-11-01

    For the point of view that recycling economy system is one of ways to achieve the low-carbon economy, we have made an evaluation on a typical circular agriculture duck industry in Hunan Province, China, through improving the framework of life cycle assessment (LCA). The analysis indicated that the consumption of non-renewable resources, land and water were 48.629 MJ, 2.36 m2 and 1 321.41 kg, while the potential greenhouse gas (GHGs), acidification, eutrophication, human toxicity, freshwater ecotoxicity and terrestrial ecotoxicity were 11 543.26 g (CO2 eq), 52.36g (SO2eq), 25.83g (PO4eq), 1.26, 60.74 and 24.65 g (1,4-DCBeq), respectively. The potential damage of aquatic eutrophication, freshwater ecotoxicity and terrestrial ecotoxicity was more serious than that of GHGs. Main results were following: i. the circular agricultural chain promoted the principle of "moderate circulation", which based on the traditional production methods; ii. circular agriculture could not blindly pursue low carbon development. Instead, soil and biological carbon sequestration should be considered, in addition to reducing carbon emissions; iii. circular economy and circular agriculture should take other potential environmental impacts into account such as acidification, eutrophication and ecotoxicity,with the exception to carbon emissions,to developed integrated system assessment; iv. LCA could provide a comprehensive assessment of circular agriculture, and it was worth of further study.

  7. THE NEED TO IMPROVE PRACTICAL INFORMATION SYSTEM IN AGRICULTURE AND SPECIALIZED INDUSTRY

    Directory of Open Access Journals (Sweden)

    Romeo Cătălin CREŢU

    2015-04-01

    Full Text Available In Romania, the establishment of the market economy has required the elaboration and implementation of agricultural, alimentary and nutritional policies, based on scientific criteria, to ensure that the structure of Romanian agriculture would come close to that of the European Union agriculture. Agricultural policy needs to be coherent, flexible and directed towards the economic, social and environmental protection performance. Worldwide practice shows that empiric experience of economic agents does not suffice, but requires plenty of scientific knowledge. The hereby study undertakes to carry out a radiography of the production potential of agricultural operations in Romania and to demonstrate the need for improving practical information systems in agriculture and specialized industry.

  8. Security Information System Digital Simulation

    OpenAIRE

    Tao Kuang; Shanhong Zhu

    2015-01-01

    The study built a simulation model for the study of food security information system relay protection. MATLAB-based simulation technology can support the analysis and design of food security information systems. As an example, the food security information system fault simulation, zero-sequence current protection simulation and transformer differential protection simulation are presented in this study. The case studies show that the simulation of food security information system relay protect...

  9. Use of a simulation system tool at the logistic of a sugarcane company

    Directory of Open Access Journals (Sweden)

    Guilherme Péres Facchioli

    2015-08-01

    Full Text Available It’s known that Goiás has been in a large growing of exportation, by the agricultural and livestock products. In this sense, companies must be aware of their logistics costs, which consume an estimable share of the total. So, it’s crucial to them have an efficient management’s system of the supply chain. On this, the paper shown based by a computational simulation system tool, the gains made by the sugar and alcohol company, when practices are adopted to coordinate its flow of matter and information.

  10. Proposed improvement of the Accounting System of Non-Agricultural Cooperatives

    Directory of Open Access Journals (Sweden)

    Yamira Mirabal González

    2017-12-01

    Full Text Available The improvement of the accounting system of the cooperatives should contribute to the consolidation of the cooperative role as a way of economic and social development, in the sphere of agricultural production, and in other sectors of the economy, raising the levels of efficiency and economic efficiency, productive and social. The research is aimed at: Perfecting the accounting system of the non-agricultural cooperative "Café Pinar", based on a set of tools for each of the subsystems that comprise it, which contributes to the improvement of the accounting information generated as part of its management process. The results of the research focus on: the theoretical and methodological foundations of Accounting and Accounting Systems, the results of the diagnosis of the Accounting System of the non-agricultural Cooperative "Café Pinar" and the tools for each of the subsystems that make up the Accounting system of the cooperative. In the development of the research, theoretical methods such as the historical and the logical ones were applied, among these the systemic, the modeling and the axiomatic-deductive. In addition to empirical methods such as scientific observation and measurement. Based on the diagnosis made, the existing deficiencies in the Accounting System of the cooperative object of study were determined. On this basis, the proposal was made to improve its Accounting System that will contribute to the improvement of the accounting information that the cooperative generates as part of its management.

  11. The use of surrogates for an optimal management of coupled groundwater-agriculture hydrosystems

    Science.gov (United States)

    Grundmann, J.; Schütze, N.; Brettschneider, M.; Schmitz, G. H.; Lennartz, F.

    2012-04-01

    For ensuring an optimal sustainable water resources management in arid coastal environments, we develop a new simulation based integrated water management system. It aims at achieving best possible solutions for groundwater withdrawals for agricultural and municipal water use including saline water management together with a substantial increase of the water use efficiency in irrigated agriculture. To achieve a robust and fast operation of the management system regarding water quality and water quantity we develop appropriate surrogate models by combining physically based process modelling with methods of artificial intelligence. Thereby we use an artificial neural network for modelling the aquifer response, inclusive the seawater interface, which was trained on a scenario database generated by a numerical density depended groundwater flow model. For simulating the behaviour of high productive agricultural farms crop water production functions are generated by means of soil-vegetation-atmosphere-transport (SVAT)-models, adapted to the regional climate conditions, and a novel evolutionary optimisation algorithm for optimal irrigation scheduling and control. We apply both surrogates exemplarily within a simulation based optimisation environment using the characteristics of the south Batinah region in the Sultanate of Oman which is affected by saltwater intrusion into the coastal aquifer due to excessive groundwater withdrawal for irrigated agriculture. We demonstrate the effectiveness of our methodology for the evaluation and optimisation of different irrigation practices, cropping pattern and resulting abstraction scenarios. Due to contradicting objectives like profit-oriented agriculture vs. aquifer sustainability a multi-criterial optimisation is performed.

  12. Impacts of Stratospheric Black Carbon on Agriculture

    Science.gov (United States)

    Xia, L.; Robock, A.; Elliott, J. W.

    2017-12-01

    A regional nuclear war between India and Pakistan could inject 5 Tg of soot into the stratosphere, which would absorb sunlight, decrease global surface temperature by about 1°C for 5-10 years and have major impacts on precipitation and the amount of solar radiation reaching Earth's surface. Using two global gridded crop models forced by one global climate model simulation, we investigate the impacts on agricultural productivity in various nations. The crop model in the Community Land Model 4.5 (CLM-crop4.5) and the parallel Decision Support System for Agricultural Technology (pDSSAT) in the parallel System for Integrating Impact Models and Sectors are participating in the Global Gridded Crop Model Intercomparison. We force these two crop models with output from the Whole Atmospheric Community Climate Model to characterize the global agricultural impact from climate changes due to a regional nuclear war. Crops in CLM-crop4.5 include maize, rice, soybean, cotton and sugarcane, and crops in pDSSAT include maize, rice, soybean and wheat. Although the two crop models require a different time frequency of weather input, we downscale the climate model output to provide consistent temperature, precipitation and solar radiation inputs. In general, CLM-crop4.5 simulates a larger global average reduction of maize and soybean production relative to pDSSAT. Global rice production shows negligible change with climate anomalies from a regional nuclear war. Cotton and sugarcane benefit from a regional nuclear war from CLM-crop4.5 simulation, and global wheat production would decrease significantly in the pDSSAT simulation. The regional crop yield responses to a regional nuclear conflict are different for each crop, and we present the changes in production on a national basis. These models do not include the crop responses to changes in ozone, ultraviolet radiation, or diffuse radiation, and we would like to encourage more modelers to improve crop models to account for those

  13. Clever farmers give gas: model solutions for agricultural biogas systems. Results from the BMVEL (Federal Ministry for Consumers' Protection, Nutrition and Agriculture) model project 2004/2005: Moel solutions for environment-friendly and economical energy utilization with agricultural biogas systems

    International Nuclear Information System (INIS)

    Niebaum, A.; Jaeger, P.

    2005-01-01

    With the examples of biogas system concepts from practical agriculture, farmers, consultants, representatives of authorities and all those interested in biogas are shown successful and proved solutions concepts of generating energy from biogas. The project included agricultural enterprises with biogas systems who have implemented a biologically and technically efficient biomass utilization, who have optimized their operations by means of the biogas system, who have integrated their biogas system in their operational concept and who were able to harmonize the objectives of using a biogas system with the environment and the regional specificities

  14. Simulation-based optimization framework for reuse of agricultural drainage water in irrigation.

    Science.gov (United States)

    Allam, A; Tawfik, A; Yoshimura, C; Fleifle, A

    2016-05-01

    A simulation-based optimization framework for agricultural drainage water (ADW) reuse has been developed through the integration of a water quality model (QUAL2Kw) and a genetic algorithm. This framework was applied to the Gharbia drain in the Nile Delta, Egypt, in summer and winter 2012. First, the water quantity and quality of the drain was simulated using the QUAL2Kw model. Second, uncertainty analysis and sensitivity analysis based on Monte Carlo simulation were performed to assess QUAL2Kw's performance and to identify the most critical variables for determination of water quality, respectively. Finally, a genetic algorithm was applied to maximize the total reuse quantity from seven reuse locations with the condition not to violate the standards for using mixed water in irrigation. The water quality simulations showed that organic matter concentrations are critical management variables in the Gharbia drain. The uncertainty analysis showed the reliability of QUAL2Kw to simulate water quality and quantity along the drain. Furthermore, the sensitivity analysis showed that the 5-day biochemical oxygen demand, chemical oxygen demand, total dissolved solids, total nitrogen and total phosphorous are highly sensitive to point source flow and quality. Additionally, the optimization results revealed that the reuse quantities of ADW can reach 36.3% and 40.4% of the available ADW in the drain during summer and winter, respectively. These quantities meet 30.8% and 29.1% of the drainage basin requirements for fresh irrigation water in the respective seasons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Assessment of alternative land management practices using hydrological simulation and a decision support tool: Arborea agricultural region, Sardinia

    Directory of Open Access Journals (Sweden)

    P. Cau

    2007-11-01

    Full Text Available Quantifying the impact of land use on water supply and quality is a primary focus of environmental management. In this work we apply a semidistributed hydrological model (SWAT to predict the impact of different land management practices on water and agricultural chemical yield over a long period of time for a study site situated in the Arborea region of central Sardinia, Italy. The physical processes associated with water movement, crop growth, and nutrient cycling are directly modeled by SWAT. The model simulations are used to identify indicators that reflect critical processes related to the integrity and sustainability of the ecosystem. Specifically we focus on stream quality and quantity indicators associated with anthropogenic and natural sources of pollution. A multicriteria decision support system is then used to develop the analysis matrix where water quality and quantity indicators for the rivers, lagoons, and soil are combined with socio-economic variables. The DSS is used to assess four options involving alternative watersheds designated for intensive agriculture and dairy farming and the use or not of treated wastewater for irrigation. Our analysis suggests that of the four options, the most widely acceptable consists in the transfer of intensive agricultural practices to the larger watershed, which is less vulnerable, in tandem with wastewater reuse, which rates highly due to water scarcity in this region of the Mediterranean. More generally, the work demonstrates how both qualitative and quantitative methods and information can assist decision making in complex settings.

  16. Application of Solar Photovoltaic Water Pumping System in Hainan Agriculture

    OpenAIRE

    Yu, Xiangchun; Lin, Qingqing; Zhou, Xuedong; Yang, Zhibin

    2013-01-01

    With radical socio-economic development and strengthening of regulation of agricultural industrial structure in Hainan Province, fresh water resource becomes increasingly insufficient. Existing water-saving facilities and measures are unable to promote sustainable and stable development of local economy. This needs modern irrigation method. Solar photovoltaic water pumping system is necessary and feasible in Hainan agriculture, and will have directive significance for Hainan Province developi...

  17. Policy options and system supplies on socialization standard management of city agricultural laborers

    Institute of Scientific and Technical Information of China (English)

    SUN Yujuan

    2007-01-01

    It is a social system engineering to solve problems of city agricultural laborers, inevitably concerning series of social phenomenon and the social issues of the city and countryside relations, the government function, the city management, the fair efficiency, the population flows, the labor employment, the social security, and so on. Furthermore, it also involves the profoundly political and economic system reforms, the transformation of government functions, the system perfection, legal administration, the social stability in China. The city government, as the direct superintendent of the agricultural laborers, should adopt the conception of the system engineering to construct anew mechanism of the city agricultural laborers socialization standard management, which has a profound theoretical and practical significance.

  18. Simulated carbon emissions from land-use change are substantially enhanced by accounting for agricultural management

    International Nuclear Information System (INIS)

    Pugh, T A M; Arneth, A; Bayer, A D; Olin, S; Lindeskog, M; Schurgers, G; Ahlström, A; Klein Goldewijk, K

    2015-01-01

    It is over three decades since a large terrestrial carbon sink (S T ) was first reported. The magnitude of the net sink is now relatively well known, and its importance for dampening atmospheric CO 2 accumulation, and hence climate change, widely recognised. But the contributions of underlying processes are not well defined, particularly the role of emissions from land-use change (E LUC ) versus the biospheric carbon uptake (S L ; S T  = S L  − E LUC ). One key aspect of the interplay of E LUC and S L is the role of agricultural processes in land-use change emissions, which has not yet been clearly quantified at the global scale. Here we assess the effect of representing agricultural land management in a dynamic global vegetation model. Accounting for harvest, grazing and tillage resulted in cumulative E LUC since 1850 ca. 70% larger than in simulations ignoring these processes, but also changed the timescale over which these emissions occurred and led to underestimations of the carbon sequestered by possible future reforestation actions. The vast majority of Earth system models in the recent IPCC Fifth Assessment Report omit these processes, suggesting either an overestimation in their present-day S T , or an underestimation of S L , of up to 1.0 Pg C a −1 . Management processes influencing crop productivity per se are important for food supply, but were found to have little influence on E LUC . (letter)

  19. Agricultural policy schemes

    DEFF Research Database (Denmark)

    Hansen, Henning Otte

    2016-01-01

    Agricultural support is a very important element in agricultural policy in many countries. Agricultural support is basically an instrument to meet the overall objectives of the agricultural policy – objectives set by society. There are a great number of instruments and ways of intervention...... in agricultural policy and they have different functions and impacts. Market price support and deficiency payments are two very important instruments in agricultural policy; however, they belong to two different support regimes or support systems. Market price support operates in the so-called high price system...

  20. Sustainability Assessment of the Agricultural and Energy Systems of Senegal

    Directory of Open Access Journals (Sweden)

    Kyrke Gaudreau

    2015-04-01

    Full Text Available To improve decision-making, sustainability-based approaches to assessment of options and undertakings demand that we move beyond narrowly defined considerations to address the full suite of requirements for progress towards sustainability. This paper reports on a sustainability assessment exercise that originally focused on burning agricultural residues, primarily peanut shells, for cooking applications in Senegal. The scope of assessment had to be expanded to address the agricultural and energy systems of Senegal, when closer examination revealed a complex set of energy and agricultural system interactions that could undermine the anticipated positive effects of initiatives centred primarily on peanut residue cookstoves. The case highlights the need to be open to expanding the scope of assessment to address underlying and/or unexpected issues that cannot be addressed appropriately at the project scale. In particular, the case illustrates how the assessment of an energy system may serve as an entry point into a deeper exploration of the context in which the energy system is embedded. The analysis also illustrates a situation in which different paths that may be followed, each with its own degree of uncertainty, path dependence, feasibility, fairness, cultural sensitivity, trade-off acceptability and possibilities for public judgement of overall desirability.

  1. Numerical modeling of the agricultural-hydrologic system in Punjab, India

    Science.gov (United States)

    Nyblade, M.; Russo, T. A.; Zikatanov, L.; Zipp, K.

    2017-12-01

    The goal of food security for India's growing population is threatened by the decline in freshwater resources due to unsustainable water use for irrigation. The issue is acute in parts of Punjab, India, where small landholders produce a major quantity of India's food with declining groundwater resources. To further complicate this problem, other regions of the state are experiencing groundwater logging and salinization, and are reliant on canal systems for fresh water delivery. Due to the lack of water use records, groundwater consumption for this study is estimated with available data on crop yields, climate, and total canal water delivery. The hydrologic and agricultural systems are modeled using appropriate numerical methods and software. This is a state-wide hydrologic numerical model of Punjab that accounts for multiple aquifer layers, agricultural water demands, and interactions between the surface canal system and groundwater. To more accurately represent the drivers of agricultural production and therefore water use, we couple an economic crop optimization model with the hydrologic model. These tools will be used to assess and optimize crop choice scenarios based on farmer income, food production, and hydrologic system constraints. The results of these combined models can be used to further understand the hydrologic system response to government crop procurement policies and climate change, and to assess the effectiveness of possible water conservation solutions.

  2. Ecosystem Services from Edible Insects in Agricultural Systems: A Review

    OpenAIRE

    Payne, Charlotte L. R.; Van Itterbeeck, Joost

    2017-01-01

    Many of the most nutritionally and economically important edible insects are those that are harvested from existing agricultural systems. Current strategies of agricultural intensification focus predominantly on increasing crop yields, with no or little consideration of the repercussions this may have for the additional harvest and ecology of accompanying food insects. Yet such insects provide many valuable ecosystem services, and their sustainable management could be crucial to ensuring futu...

  3. Actor Network Theory Approach and its Application in Investigating Agricultural Climate Information System

    Directory of Open Access Journals (Sweden)

    Maryam Sharifzadeh

    2013-03-01

    Full Text Available Actor network theory as a qualitative approach to study complex social factors and process of socio-technical interaction provides new concepts and ideas to understand socio-technical nature of information systems. From the actor network theory viewpoint, agricultural climate information system is a network consisting of actors, actions and information related processes (production, transformation, storage, retrieval, integration, diffusion and utilization, control and management, and system mechanisms (interfaces and networks. Analysis of such systemsembody the identification of basic components and structure of the system (nodes –thedifferent sources of information production, extension, and users, and the understanding of how successfully the system works (interaction and links – in order to promote climate knowledge content and improve system performance to reach agricultural development. The present research attempted to introduce actor network theory as research framework based on network view of agricultural climate information system.

  4. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system.

    Science.gov (United States)

    Xie, Jian; Hu, Liangliang; Tang, Jianjun; Wu, Xue; Li, Nana; Yuan, Yongge; Yang, Haishui; Zhang, Jiaen; Luo, Shiming; Chen, Xin

    2011-12-13

    For centuries, traditional agricultural systems have contributed to food and livelihood security throughout the world. Recognizing the ecological legacy in the traditional agricultural systems may help us develop novel sustainable agriculture. We examine how rice-fish coculture (RF), which has been designated a "globally important agricultural heritage system," has been maintained for over 1,200 y in south China. A field survey demonstrated that although rice yield and rice-yield stability are similar in RF and rice monoculture (RM), RF requires 68% less pesticide and 24% less chemical fertilizer than RM. A field experiment confirmed this result. We documented that a mutually beneficial relationship between rice and fish develops in RF: Fish reduce rice pests and rice favors fish by moderating the water environment. This positive relationship between rice and fish reduces the need for pesticides in RF. Our results also indicate a complementary use of nitrogen (N) between rice and fish in RF, resulting in low N fertilizer application and low N release into the environment. These findings provide unique insights into how positive interactions and complementary use of resource between species generate emergent ecosystem properties and how modern agricultural systems might be improved by exploiting synergies between species.

  5. Impact of Automation on Drivers' Performance in Agricultural Semi-Autonomous Vehicles.

    Science.gov (United States)

    Bashiri, B; Mann, D D

    2015-04-01

    Drivers' inadequate mental workload has been reported as one of the negative effects of driving assistant systems and in-vehicle automation. The increasing trend of automation in agricultural vehicles raises some concerns about drivers' mental workload in such vehicles. Thus, a human factors perspective is needed to identify the consequences of such automated systems. In this simulator study, the effects of vehicle steering task automation (VSTA) and implement control and monitoring task automation (ICMTA) were investigated using a tractor-air seeder system as a case study. Two performance parameters (reaction time and accuracy of actions) were measured to assess drivers' perceived mental workload. Experiments were conducted using the tractor driving simulator (TDS) located in the Agricultural Ergonomics Laboratory at the University of Manitoba. Study participants were university students with tractor driving experience. According to the results, reaction time and number of errors made by drivers both decreased as the automation level increased. Correlations were found among performance parameters and subjective mental workload reported by the drivers.

  6. Making Agricultural Innovation Systems (AIS Work for Development in Tropical Countries

    Directory of Open Access Journals (Sweden)

    Philipp Aerni

    2015-01-01

    Full Text Available Agricultural innovation in low-income tropical countries contributes to a more effective and sustainable use of natural resources and reduces hunger and poverty through economic development in rural areas. Yet, despite numerous recent public and private initiatives to develop capacities for agricultural innovation, such initiatives are often not well aligned with national efforts to revive existing Agricultural Innovation Systems (AIS. In an effort to improve coordination and responsiveness of Capacity Development (CD initiatives, the G20 Agriculture Ministers requested the Food and Agriculture Organization of the United Nations (FAO to lead the development of a Tropical Agricultural Platform (TAP, which is designed to improve coherence and coordination of CD for agricultural innovation in the tropics. This paper presents a summary of the results obtained from three regional needs assessments undertaken by TAP and its partners. The surveyed tropical regions were Southeast Asia, Sub-Saharan Africa and Central America. The findings reveal a mismatch in all three regions between the external supply of primarily individual CD and the actual demand for institutional CD. The misalignment might be addressed by strengthening south-south and triangular collaboration and by improving the institutional capacities that would render national AIS more demand-oriented and responsive to the needs of smallholders in domestic agriculture.

  7. Agricultural injuries in Korea and errors in systems of safety

    Directory of Open Access Journals (Sweden)

    Hyocher Kim

    2016-07-01

    It was found that most agricultural injuries were caused by a complex layer of root causes which were classified as errors in the systems of safety. This result indicates that not only training and personal protective equipment, but also regulation of safety design, mitigation devices, inspection/maintenance of workplaces, and other factors play an important role in preventing agricultural injuries. The identification of errors will help farmers to implement easily an effective prevention programme.

  8. Leader-Follower Tracking System for Agricultural Vehicles: Fusion of Laser and Odometry Positioning Using Extended Kalman Filter

    Directory of Open Access Journals (Sweden)

    Zhang Lin Huan

    2015-03-01

    Full Text Available The aim of this research was to develop a safe human-driven and autonomous leader-follower tracking system for an autonomous tractor. To enable the tracking system, a laser range finder (LRF-based landmark detection system was designed to observe the relative position between a leader and a follower used in agricultural operations. The virtual follower-based formation-tracking algorithm was developed to minimize tracking errors and ensure safety. An extended Kalman filter (EKF was implemented for fusing LRF and odometry position to ensure stability of tracking in noisy farmland conditions. Simulations were conducted for tracking the leader in small and large sinusoidal curved paths. Simulated results verified high accuracy of formation tracking, stable velocity, and regulated steering angle of the follower. The tracking method confirmed the follower could follow the leader with a required formation safely and steadily in noisy conditions. The EKF helped to improve observation accuracy, velocity, and steering angle stability of the follower. As a result of the improved accuracy of observation and motion action, the tracking performance for lateral, longitudinal, and heading were also improved after the EKF was implemented in the tracking system.

  9. A Community Livelihood Approach to Agricultural Heritage System Conservation and Tourism Development: Xuanhua Grape Garden Urban Agricultural Heritage Site, Hebei Province of China

    Directory of Open Access Journals (Sweden)

    Mingming Su

    2018-01-01

    Full Text Available The designation, conservation and tourism development of agricultural heritage systems, which are embedded with intricate human–nature relations, could significantly influence community livelihoods. Therefore, a livelihood approach is critical for agricultural heritage conservation and the sustainability of the hosting community. Taking Guanhou Village, Xuanhua Grape Garden Urban Agricultural Heritage Site as an example, this study examines impacts of heritage conservation and tourism on the community livelihood system and its implications for community livelihood sustainability. A sustainable livelihood framework is adopted to guide the analysis. Face-to-face in-depth interviews were conducted with management officials, village leaders and village residents. The research identified the importance of Globally Important Agricultural Heritage Systems (GIAHS designation on raising government support and public awareness on conservation. Tourism emerges as an alternative livelihood to some residents which exerts positive economic influence. However, tourism participation is currently at a low level which restricted the distribution of benefits. The sustainability of local rural livelihood is at risk due to the rapid urbanization, the decline of human resources and the insufficient integration of traditional agriculture with tourism. Practical implications were discussed to enhance local participation and tourism contribution to GIAHS conservation.

  10. Designing a Model for Integration of Information and Communication Technologies (ICTs) in the Iranian Agricultural Research System

    Science.gov (United States)

    Sharifzadeh, Aboulqasem; Abdollahzadeh, Gholam Hossein; Sharifi, Mahnoosh

    2009-01-01

    Capacity Development is needed in the Iranian Agricultural System. Integrating Information and Communication Technologies (ICTs) in the agricultural research system is an appropriate capacity development mechanism. The appropriate application of ICTs and information such as a National Agricultural Information System requires a systemically…

  11. Innovative simulation systems

    CERN Document Server

    Jędrasiak, Karol

    2016-01-01

    This monograph provides comprehensive guidelines on the current and future trends of innovative simulation systems. In particular, their important components, such as augmented reality and unmanned vehicles are presented. The book consists of three parts. Each part presents good practices, new methods, concepts of systems and new algorithms. Presented challenges and solutions are the results of research and conducted by the contributing authors. The book describes and evaluates the current state of knowledge in the field of innovative simulation systems. Throughout the chapters there are presented current issues and concepts of systems, technology, equipment, tools, research challenges and current, past and future applications of simulation systems. The book is addressed to a wide audience: academic staff, representatives of research institutions, employees of companies and government agencies as well as students and graduates of technical universities in the country and abroad. The book can be a valuable sou...

  12. Climate-Agriculture-Modeling and Decision Tool for Disease (CAMDT-Disease) for seasonal climate forecast-based crop disease risk management in agriculture

    Science.gov (United States)

    Kim, K. H.; Lee, S.; Han, E.; Ines, A. V. M.

    2017-12-01

    Climate-Agriculture-Modeling and Decision Tool (CAMDT) is a decision support system (DSS) tool that aims to facilitate translations of probabilistic seasonal climate forecasts (SCF) to crop responses such as yield and water stress. Since CAMDT is a software framework connecting different models and algorithms with SCF information, it can be easily customized for different types of agriculture models. In this study, we replaced the DSSAT-CSM-Rice model originally incorporated in CAMDT with a generic epidemiological model, EPIRICE, to generate a seasonal pest outlook. The resulting CAMDT-Disease generates potential risks for selected fungal, viral, and bacterial diseases of rice over the next months by translating SCFs into agriculturally-relevant risk information. The integrated modeling procedure of CAMDT-Disease first disaggregates a given SCF using temporal downscaling methods (predictWTD or FResampler1), runs EPIRICE with the downscaled weather inputs, and finally visualizes the EPIRICE outputs as disease risk compared to that of the previous year and the 30-year-climatological average. In addition, the easy-to-use graphical user interface adopted from CAMDT allows users to simulate "what-if" scenarios of disease risks over different planting dates with given SCFs. Our future work includes the simulation of the effect of crop disease on yields through the disease simulation models with the DSSAT-CSM-Rice model, as disease remains one of the most critical yield-reducing factors in the field.

  13. Web-based information system design of agricultural management towards self-sufficiency local food in North Aceh

    Science.gov (United States)

    Salahuddin; Husaini; Anwar

    2018-01-01

    The agricultural sector, especially food crops and horticulture, is one of the sectors driving regional economic pillars in Aceh Utara Regency of Aceh Province. Some agricultural products and food crops that become excellent products in North Aceh regency are: rice, corn, peanuts, long beans, cassava and soybeans. The Local Government of North Aceh Regency has not been optimal in empowering and maximizing the potential of agriculture resources. One of the obstacles is caused by the North Aceh Regency Government does not have an adequate database and web information system/GIS (Geographic Information System) for data management of agricultural centre in North Aceh Regency. This research is expected to assist local government of North Aceh Regency in managing agriculture sector to realize local food independence the region in supporting national food security program. The method in this research is using waterfall method for designing and making information system by conducting sequential process starting from data collection stage, requirement analysis, design, coding, testing and implementation system. The result of this research is a web-based information system for the management of agriculture superior agricultural product centre in North Aceh. This application provides information mapping the location of agricultural superior product producers and mapping of potential locations for the development of certain commodities in North Aceh Regency region in realizing food self-sufficiency in the region.

  14. Conceptual Design of a Medium-Sized Combined Smart Photovoltaic - Agriculture System - Case Study in Malaysia

    Directory of Open Access Journals (Sweden)

    Djojodihardjo Harijono

    2016-01-01

    Full Text Available With the backdrop of sustainable environment, Photo-Voltaic Power System linked to Climate-Smart Agriculture may offer solutions for Sustainable Energy, Climate Change mitigation and Sustainable Agriculture. An overview of the scope, extent and options of such combined - Co-Located PV Agricultural System appropriate for South East Asian setting, in particular, Malaysia and Indonesia is elaborated, for preliminary insight on steps and choices that have to be taken in undertaking such venture. Possible photovoltaic (PV system installation and estimate the cost, performance, and site impacts of different PV options are discussed. Technical, financing and procedural aspects that could assist in the implementation of a Co-located PV system at the site should then be studied for decision options. A brief Framework for Conceptual Design of Co-Located PV-Agricultural System Plant is outlined.

  15. 3-D Imaging Systems for Agricultural Applications—A Review

    Directory of Open Access Journals (Sweden)

    Manuel Vázquez-Arellano

    2016-04-01

    Full Text Available Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture.

  16. An Exploration of the Formal Agricultural Education System in Trinidad and Tobago

    Science.gov (United States)

    Hurst, Sara D.; Conner, Nathan W.; Stripling, Christopher T.; Blythe, Jessica; Giorgi, Aaron; Rubenstein, Eric D.; Futrell, Angel; Jenkins, Jenny; Roberts, T. Grady

    2015-01-01

    A team of nine researchers from the United States spent 10 days exploring the formal agricultural education system in Trinidad and Tobago from primary education through postgraduate education. Data were collected from interviews and observations from students, teachers/instructors, and agricultural producers. The team concluded that (a) the people…

  17. Simulating soil C stability with mechanistic systems models: a multisite comparison of measured fractions and modelled pools

    Science.gov (United States)

    Robertson, Andy; Schipanski, Meagan; Sherrod, Lucretia; Ma, Liwang; Ahuja, Lajpat; McNamara, Niall; Smith, Pete; Davies, Christian

    2016-04-01

    Agriculture, covering more than 30% of global land area, has an exciting opportunity to help combat climate change by effectively managing its soil to promote increased C sequestration. Further, newly sequestered soil carbon (C) through agriculture needs to be stored in more stable forms in order to have a lasting impact on reducing atmospheric CO2 concentrations. While land uses in different climates and soils require different management strategies, the fundamental mechanisms that regulate C sequestration and stabilisation remain the same. These mechanisms are used by a number of different systems models to simulate C dynamics, and thus assess the impacts of change in management or climate. To evaluate the accuracy of these model simulations, our research uses a multidirectional approach to compare C stocks of physicochemical soil fractions collected at two long-term agricultural sites. Carbon stocks for a number of soil fractions were measured at two sites (Lincoln, UK; Colorado, USA) over 8 and 12 years, respectively. Both sites represent managed agricultural land but have notably different climates and levels of disturbance. The measured soil fractions act as proxies for varying degrees of stability, with C contained within these fractions relatable to the C simulated within the soil pools of mechanistic systems models1. Using stable isotope techniques at the UK site, specific turnover times of C within the different fractions were determined and compared with those simulated in the pools of 3 different models of varying complexity (RothC, DayCent and RZWQM2). Further, C dynamics and N-mineralisation rates of the measured fractions at the US site were assessed and compared to results of the same three models. The UK site saw a significant increase in C stocks within the most stable fractions, with topsoil (0-30cm) sequestration rates of just over 0.3 tC ha-1 yr-1 after only 8 years. Further, the sum of all fractions reported C sequestration rates of nearly 1

  18. Rainwater Management Model Development for Agriculture in the Savu Island Semi-Arid Region

    Directory of Open Access Journals (Sweden)

    Susilawati C.L.

    2012-01-01

    Full Text Available Savu Island is a semiarid region with few rainfalls. The meager annual rainfall of about 1,000-1,500 mm that lasts for three to five months tends to cause draught. To cope with this situation, the Author tries to develop a rainwater management model located in Daieko village. This model constitutes an infrastructure that consists of check dam series which are constructed by simulating a computerized model of decision supporting system called “Rainwater Management for Agriculture Decision Support System (RMA-DSS model” in the research location of Daieko village. Employing a simulated RMA-DSS model; the locations for check-dam series, and dug-wells can be determined, the size of potential irrigable lands can be determined based on water balance analysis of water samples taken from simulated check dams and inundated lands. Through this model the sufficiency of water supply for agricultural purposes and the land size for cultivation area can be predicted with a high degree of certainty.

  19. Adaptation Options for Land Drainage Systems Towards Sustainable Agriculture and Environment: A Czech Perspective

    Science.gov (United States)

    Kulhavý, Zbyněk; Fučík, Petr

    2015-04-01

    In this paper, issues of agricultural drainage systems are introduced and discussed from the views of their former, current and future roles and functioning in the Czech Republic (CR). A methodologically disparate survey was done on thirty-nine model localities in CR with different intensity and state of land drainage systems, aimed at description of commonly occurred problems and possible adaptations of agricultural drainage as perceived by farmers, land owners, landscape managers or by protective water management. The survey was focused on technical state of drainage, fragmentation of land ownership within drained areas as well as on possible conflicts between agricultural and environmental interests in a landscape. Achieved results confirmed that there is obviously an increasing need to reassess some functions of prevailingly single-purpose agricultural drainage systems. Drainage intensity and detected unfavourable technical state of drainage systems as well as the risks connected with the anticipated climate change from the view of possible water scarcity claims for a complex solution. An array of adaptation options for agricultural drainage systems is presented, aiming at enhancement of water retention time and improvement of water quality. It encompasses additional flow-controlling measures on tiles or ditches, or facilities for making selected parts of a drainage system inoperable in order to retain or slow down the drainage runoff, to establish water accumulation zones and to enhance water self-cleaning processes. However, it was revealed that the question of landowner parcels fragmentation on drained land in CR would dramatically complicate design and realization of these measures. Presented solutions and findings are propounded with a respect to contemporary and future state policies and international strategies for sustainable agriculture, water management and environment.

  20. ADVANTAGES OF AN INFORMATION SYSTEM MONITORING AND STOCKS AGRICULTURAL PRICES. CASE STUDY – ROSIM

    Directory of Open Access Journals (Sweden)

    Elena COFAS

    2013-01-01

    Full Text Available Abstract agricultural policy in our country is based on information dispersed, especially because there is no centralized monitoring system, who to provide reliable information, while the agricultural and food market is experiencing a general feeling of instability - basically, it consists of channels and a dysfunctional organizational structure, based on communication systems do not operate in real time.. An integrated on-line monitoring of prices of agricultural products is of great interest due to the integration of computer technology (communications and agricultural sciences, based on specific concepts: client / server architecture, the integrated platform software, decision support, database distributed relational distance communication through the web, object oriented programming, mathematical modeling, interactivity etc..

  1. Software engineering techniques applied to agricultural systems an object-oriented and UML approach

    CERN Document Server

    Papajorgji, Petraq J

    2014-01-01

    Software Engineering Techniques Applied to Agricultural Systems presents cutting-edge software engineering techniques for designing and implementing better agricultural software systems based on the object-oriented paradigm and the Unified Modeling Language (UML). The focus is on the presentation of  rigorous step-by-step approaches for modeling flexible agricultural and environmental systems, starting with a conceptual diagram representing elements of the system and their relationships. Furthermore, diagrams such as sequential and collaboration diagrams are used to explain the dynamic and static aspects of the software system.    This second edition includes: a new chapter on Object Constraint Language (OCL), a new section dedicated to the Model-VIEW-Controller (MVC) design pattern, new chapters presenting details of two MDA-based tools – the Virtual Enterprise and Olivia Nova, and a new chapter with exercises on conceptual modeling.  It may be highly useful to undergraduate and graduate students as t...

  2. Calibration of an agricultural-hydrological model (RZWQM2) using surrogate global optimization

    Science.gov (United States)

    Xi, Maolong; Lu, Dan; Gui, Dongwei; Qi, Zhiming; Zhang, Guannan

    2017-01-01

    Robust calibration of an agricultural-hydrological model is critical for simulating crop yield and water quality and making reasonable agricultural management. However, calibration of the agricultural-hydrological system models is challenging because of model complexity, the existence of strong parameter correlation, and significant computational requirements. Therefore, only a limited number of simulations can be allowed in any attempt to find a near-optimal solution within an affordable time, which greatly restricts the successful application of the model. The goal of this study is to locate the optimal solution of the Root Zone Water Quality Model (RZWQM2) given a limited simulation time, so as to improve the model simulation and help make rational and effective agricultural-hydrological decisions. To this end, we propose a computationally efficient global optimization procedure using sparse-grid based surrogates. We first used advanced sparse grid (SG) interpolation to construct a surrogate system of the actual RZWQM2, and then we calibrate the surrogate model using the global optimization algorithm, Quantum-behaved Particle Swarm Optimization (QPSO). As the surrogate model is a polynomial with fast evaluation, it can be efficiently evaluated with a sufficiently large number of times during the optimization, which facilitates the global search. We calibrate seven model parameters against five years of yield, drain flow, and NO3-N loss data from a subsurface-drained corn-soybean field in Iowa. Results indicate that an accurate surrogate model can be created for the RZWQM2 with a relatively small number of SG points (i.e., RZWQM2 runs). Compared to the conventional QPSO algorithm, our surrogate-based optimization method can achieve a smaller objective function value and better calibration performance using a fewer number of expensive RZWQM2 executions, which greatly improves computational efficiency.

  3. Digital simulation of power electronic systems

    International Nuclear Information System (INIS)

    Mehring, P.; Jentsch, W.; John, G.; Kraemer, D.

    1981-01-01

    The following paper contains the final report on the NETSIM-Project. The purpose of this project is to develop a special digital simulation system, which could serve as a base for routine application of simulation in planning and development of power electronic systems. The project is realized in two steps. First a basic network analysis system is established. With this system the basic models and methods in treating power electronic networks could be probed. The resulting system is then integrated into a general digital simulation system for continous systems (CSSL-System). This integrated simulation system allows for convenient modeling and simulation of power electronic systems. (orig.) [de

  4. [Energy flow characteristics of the compound agriculture-fruit farming system in Xipo Village, Shaanxi, Northwest China].

    Science.gov (United States)

    Wu, Fa-Qi; Zhu, Li; Wang, Hong-Hong

    2014-01-01

    Taking the crop-fruit farming system in Xipo Village in Chunhua, Shaanxi Province as a case, the energy flow path, input and output structure, and the indices of energy cycle for the agriculture, fruit, stockbreeding and human subsystems were compared between 2008 and 2010. Results showed that during the study period the total investment to the agriculture-fruit farming system (CAF) decreased by 1.6%, while the total output increased by 56.7%, which led to a 59.4% increase of the output/input ratio. Energy output/input ratio of the agriculture, fruit, stockbreeding, human subsystems increased by 36.6%, 21.0%, 10.0% and 3.8%, respectively. The Xipo Village still needed to stabilize the agriculture, develop stockbreeding and strengthen fruit to upgrade the compound agriculture-fruit farming system.

  5. AgIIS, Agricultural Irrigation Imaging System, design and application

    Science.gov (United States)

    Haberland, Julio Andres

    Remote sensing is a tool that is increasingly used in agriculture for crop management purposes. A ground-based remote sensing data acquisition system was designed, constructed, and implemented to collect high spatial and temporal resolution data in irrigated agriculture. The system was composed of a rail that mounts on a linear move irrigation machine, and a small cart that runs back and forth on the rail. The cart was equipped with a sensors package that measured reflectance in four discrete wavelengths (550 nm, 660 nm, 720 nm, and 810 nm, all 10 nm bandwidth) and an infrared thermometer. A global positioning system and triggers on the rail indicated cart position. The data was postprocessed in order to generate vegetation maps, N and water status maps and other indices relevant for site-specific crop management. A geographic information system (GIS) was used to generate images of the field on any desired day. The system was named AgIIS (A&barbelow;gricultural I&barbelow;rrigation I&barbelow;maging S&barbelow;ystem). This ground based remote sensing acquisition system was developed at the Agricultural and Biosystems Engineering Department at the University of Arizona in conjunction with the U.S. Water Conservation Laboratory in Phoenix, as part of a cooperative study primarily funded by the Idaho National Environmental and Engineering Laboratory. A second phase of the study utilized data acquired with AgIIS during the 1999 cotton growing season to model petiole nitrate (PNO3 -) and total leaf N. A latin square experimental design with optimal and low water and optimal and low N was used to evaluate N status under water and no water stress conditions. Multivariable models were generated with neural networks (NN) and multilinear regression (MLR). Single variable models were generated from chlorophyll meter readings (SPAD) and from the Canopy Chlorophyll Content Index (CCCI). All models were evaluated against observed PNO3- and total leaf N levels. The NN models

  6. Restrictive Factors and Output Forecast of Green Development of Agricultural Industry Based on Gray System

    Science.gov (United States)

    Sun, Fengru

    2018-01-01

    This paper analyzes the characteristics of agricultural products from the perspective of agricultural production, farmers’ income, adjustment of agricultural structure and environmental improvement, and analyzes the characteristics of agricultural products in LanZhou area. Through data mining and empirical analysis, the regional agriculture (1) forecasting model of gray system with dynamic data processing, combined with the output data of lily in 2004-2003, the yield prediction is predicted and the fitting state is good and the error is small. Finally, combined with the relevant characteristics of the local characteristics of the agricultural industry to make reference, by changing the characteristics of agricultural production as the center of the mindset, and agricultural industrialization and organic combination, take the characteristics of efficient industrialization of agricultural products.

  7. State of science of phosphorus modeling in tile drained agricultural systems using APEX

    Science.gov (United States)

    Phosphorus losses through tile drained systems in agricultural landscapes may be causing the persistent eutrophication problems observed in surface water. The purpose of this paper is to evaluate the state of the science in the Agricultural Policy/Environmental eXtender (APEX) model related to surf...

  8. Building an agricultural research for development system in Africa.

    OpenAIRE

    Mbabu, Adiel; Ochieng, Cosmas C.M.

    2006-01-01

    This paper discusses how impact-oriented agricultural research for development systems in Africa can be better organized and managed. Specifically, the paper puts forth the argument that achieving the development targets set by African leaders and the international community, for example, through the Millennium Development Goals, will be extremely difficult without a satisfactory re-orientation of the organization and management of African research for development systems. Such a re-orientati...

  9. Towards Better Simulation of US Maize Yield Responses to Climate in the Community Earth System Model

    Science.gov (United States)

    Peng, B.; Guan, K.; Chen, M.; Lawrence, D. M.; Jin, Z.; Bernacchi, C.; Ainsworth, E. A.; DeLucia, E. H.; Lombardozzi, D. L.; Lu, Y.

    2017-12-01

    Global food security is undergoing continuing pressure from increased population and climate change despites the potential advancement in breeding and management technologies. Earth system models (ESMs) are essential tools to study the impacts of historical and future climate on regional and global food production, as well as to assess the effectiveness of possible adaptations and their potential feedback to climate. Here we developed an improved maize representation within the Community Earth System Model (CESM) by combining the strengths of both the Community Land Model version 4.5 (CLM4.5) and the Agricultural Production Systems sIMulator (APSIM) models. Specifically, we modified the maize planting scheme, incorporated the phenology scheme adopted from the APSIM model, added a new carbon allocation scheme into CLM4.5, and improved the estimation of canopy structure parameters including leaf area index (LAI) and canopy height. Unique features of the new model (CLM-APSIM) include more detailed phenology stages, an explicit implementation of the impacts of various abiotic environmental stresses (including nitrogen, water, temperature and heat stresses) on maize phenology and carbon allocation, as well as an explicit simulation of grain number and grain size. We conducted a regional simulation of this new model over the US Corn Belt during 1990 to 2010. The simulated maize yield as well as its responses to climate (growing season mean temperature and precipitation) are benchmarked with data from UADA NASS statistics. Our results show that the CLM-APSIM model outperforms the CLM4.5 in simulating county-level maize yield production and reproduces more realistic yield responses to climate variations than CLM4.5. However, some critical processes (such as crop failure due to frost and inundation and suboptimal growth condition due to biotic stresses) are still missing in both CLM-APSIM and CLM4.5, making the simulated yield responses to climate slightly deviate from the

  10. Simulator configuration management system

    International Nuclear Information System (INIS)

    Faulent, J.; Brooks, J.G.

    1990-01-01

    The proposed revisions to ANS 3.5-1985 (Section 5) require Utilities to establish a simulator Configuration Management System (CMS). The proposed CMS must be capable of: Establishing and maintaining a simulator design database. Identifying and documenting differences between the simulator and its reference plant. Tracking the resolution of identified differences. Recording data to support simulator certification, testing and maintenance. This paper discusses a CMS capable of meeting the proposed requirements contained in ANS 3.5. The system will utilize a personal computer and a relational database management software to construct a simulator design database. The database will contain records to all reference nuclear plant data used in designing the simulator, as well as records identifying all the software, hardware and documentation making up the simulator. Using the relational powers of the database management software, reports will be generated identifying the impact of reference plant changes on the operation of the simulator. These reports can then be evaluated in terms of training needs to determine if changes are required for the simulator. If a change is authorized, the CMS will track the change through to its resolution and then incorporate the change into the simulator design database

  11. Use of Phosphorus Isotopes for Improving Phosphorus Management in Agricultural Systems

    International Nuclear Information System (INIS)

    2016-10-01

    Phosphorus is an essential element in plant, human and animal nutrition. Soils with low levels of phosphorus are widespread in many regions of the world, and the deficiency limits plant growth and reduces crop production and food quality. This publication provides comprehensive and up to date information on several topics related to phosphorus in soil–plant systems, in agricultural systems and in the environment. It presents the theoretical background as well as practical information on how to use nuclear and radioisotope tracer techniques in both laboratory and greenhouse experiments to assess soil phosphorus forms and plant-available soil phosphorus pools, and to understand the cycling processes in soil–plant systems. The publication focuses on practical applications of radiotracer techniques and can serve as resource material for research projects on improving sustainable phosphorus management in agricultural systems and as practical guidance on the use of phosphate isotopes in soil–plant research

  12. TMDL implementation in agricultural landscapes: a communicative and systemic approach.

    Science.gov (United States)

    Jordan, Nicholas R; Slotterback, Carissa Schively; Cadieux, Kirsten Valentine; Mulla, David J; Pitt, David G; Olabisi, Laura Schmitt; Kim, Jin-Oh

    2011-07-01

    Increasingly, total maximum daily load (TMDL) limits are being defined for agricultural watersheds. Reductions in non-point source pollution are often needed to meet TMDL limits, and improvements in management of annual crops appear insufficient to achieve the necessary reductions. Increased adoption of perennial crops and other changes in agricultural land use also appear necessary, but face major barriers. We outline a novel strategy that aims to create new economic opportunities for land-owners and other stakeholders and thereby to attract their voluntary participation in land-use change needed to meet TMDLs. Our strategy has two key elements. First, focused efforts are needed to create new economic enterprises that capitalize on the productive potential of multifunctional agriculture (MFA). MFA seeks to produce a wide range of goods and ecosystem services by well-designed deployment of annual and perennial crops across agricultural landscapes and watersheds; new revenue from MFA may substantially finance land-use change needed to meet TMDLs. Second, efforts to capitalize on MFA should use a novel methodology, the Communicative/Systemic Approach (C/SA). C/SA uses an integrative GIS-based spatial modeling framework for systematically assessing tradeoffs and synergies in design and evaluation of multifunctional agricultural landscapes, closely linked to deliberation and design processes by which multiple stakeholders can collaboratively create appropriate and acceptable MFA landscape designs. We anticipate that application of C/SA will strongly accelerate TMDL implementation, by aligning the interests of multiple stakeholders whose active support is needed to change agricultural land use and thereby meet TMDL goals.

  13. Simulation and validation of concentrated subsurface lateral flow paths in an agricultural landscape

    Science.gov (United States)

    Zhu, Q.; Lin, H. S.

    2009-08-01

    The importance of soil water flow paths to the transport of nutrients and contaminants has long been recognized. However, effective means of detecting concentrated subsurface flow paths in a large landscape are still lacking. The flow direction and accumulation algorithm based on single-direction flow algorithm (D8) in GIS hydrologic modeling is a cost-effective way to simulate potential concentrated flow paths over a large area once relevant data are collected. This study tested the D8 algorithm for simulating concentrated lateral flow paths at three interfaces in soil profiles in a 19.5-ha agricultural landscape in central Pennsylvania, USA. These interfaces were (1) the interface between surface plowed layers of Ap1 and Ap2 horizons, (2) the interface with subsoil water-restricting clay layer where clay content increased to over 40%, and (3) the soil-bedrock interface. The simulated flow paths were validated through soil hydrologic monitoring, geophysical surveys, and observable soil morphological features. The results confirmed that concentrated subsurface lateral flow occurred at the interfaces with the clay layer and the underlying bedrock. At these two interfaces, the soils on the simulated flow paths were closer to saturation and showed more temporally unstable moisture dynamics than those off the simulated flow paths. Apparent electrical conductivity in the soil on the simulated flow paths was elevated and temporally unstable as compared to those outside the simulated paths. The soil cores collected from the simulated flow paths showed significantly higher Mn content at these interfaces than those away from the simulated paths. These results suggest that (1) the D8 algorithm is useful in simulating possible concentrated subsurface lateral flow paths if used with appropriate threshold value of contributing area and sufficiently detailed digital elevation model (DEM); (2) repeated electromagnetic surveys can reflect the temporal change of soil water storage

  14. Integrating Water Supply Constraints into Irrigated Agricultural Simulations of California

    Science.gov (United States)

    Winter, Jonathan M.; Young, Charles A.; Mehta, Vishal K.; Ruane, Alex C.; Azarderakhsh, Marzieh; Davitt, Aaron; McDonald, Kyle; Haden, Van R.; Rosenzweig, Cynthia E.

    2017-01-01

    Simulations of irrigated croplands generally lack key interactions between water demand from plants and water supply from irrigation systems. We coupled the Water Evaluation and Planning system (WEAP) and Decision Support System for Agrotechnology Transfer (DSSAT) to link regional water supplies and management with field-level water demand and crop growth. WEAP-DSSAT was deployed and evaluated over Yolo County in California for corn, rice, and wheat. WEAP-DSSAT is able to reproduce the results of DSSAT under well-watered conditions and reasonably simulate observed mean yields, but has difficulty capturing yield interannual variability. Constraining irrigation supply to surface water alone reduces yields for all three crops during the 1987-1992 drought. Corn yields are reduced proportionally with water allocation, rice yield reductions are more binary based on sufficient water for flooding, and wheat yields are least sensitive to irrigation constraints as winter wheat is grown during the wet season.

  15. Energy Management Strategy for a Bioethanol Isolated Hybrid System: Simulations and Experiments

    Directory of Open Access Journals (Sweden)

    Pablo Gabriel Rullo

    2018-05-01

    Full Text Available Renewable energy sources have significant advantages both from the environmental and the economic point of view. Additionally, renewable energy sources can contribute significantly to the development of isolated areas that currently have no connection to the electricity supply network. In order to make efficient use of these energy sources, it is necessary to develop appropriate energy management strategies. This work presents an energy management strategy for an isolated hybrid renewable energy system with hydrogen production from bioethanol reforming. The system is based on wind-solar energy, batteries and a bioethanol reformer, which produces hydrogen to feed a fuel cell system. Bioethanol can contribute to the development of isolated areas with surplus agricultural production, which can be used to produce bioethanol. The energy management strategy takes the form of a state machine and tries to maximize autonomy time while minimizing recharging time. The proposed rule-based strategy has been validated both by simulation and experimentally in a scale laboratory station. Both tests have shown the viability of the proposed strategy complying with the specifications imposed and a good agreement between experimental and simulation results.

  16. AGRICULTURE AND AGRICULTURAL COOPERATIVES IN JAPAN - A MODEL FOR COOPERATIVIZATION OF AGRICULTURE FROM ROMANIA

    Directory of Open Access Journals (Sweden)

    Remus Gherman

    2016-10-01

    Full Text Available Japan's agriculture provides only a part from the population's needs, in caloric terms Japan must impute 60% of foods. Arable land are few, but are worked very performant, rice being the main crop together with cotton, citrus, sugarcane, wheat, potato, soybean, sugar beet, other vegetables. Widely is practiced sericulture and fisheries, Japan being one of the leading producers of silk from the world and having over 600 ports specialized for fishing. Japanese agriculture has remained behind the industry and services, this trend being manifested after the very high economic growth from 1960-1970. The main focus of the movements from the Japanese cooperative system is represented by the creation of large specialized farms through the replacing of the traditional ones. The most important task of agricultural cooperatives from Japan is meeting the consumption needs of its members. Integrated leadership of Japanese cooperatives of farmers act at all levels, primary, at prefecture level and at national level. Contractual relationships play a decisive role in the integration of Japanese farmers. In Japan there are about 840 agricultural cooperatives very well organized with a balanced planning and efficiently conducted, agricultural cooperative MIKABI being the most developed, mainly focused on the production of mandarins. In Japan there are three large distribution centers of agricultural products, 29 distribution markets controlled by the prefecture and 1,000 local markets. Organization of cooperatives is the pyramid system on three levels: local, prefecture and national (National Federation of Agricultural Cooperatives.

  17. Development of a global Agricultural Stress Index System (ASIS) based on remote sensing data

    Science.gov (United States)

    Van Hoolst, R.

    2016-12-01

    According to the 2012 IPCC SREX report, extreme drought events are projected to become more frequent and intense in several regions of the world. Wide and timely monitoring systems are required to mitigate the impact of agricultural drought. Therefore, FAO's Global Information and Early Warning System (GIEWS) and the Climate, Energy and Tenure Division (NRC) have established the `Agricultural Stress Index System' (ASIS). The ASIS is a remote sensing application that provides early warnings of agricultural drought at a global scale. The ASIS has first been designed and described by Rojas et al. (2011). This study focused on the African continent and was based on the back processing of low resolution data of the NOAA-satellites. In the current setup, developed by VITO (Flemish Institute for Technological Research), the system operates in Near Real Time using data from the METOP-AVHRR sensor. The Agricultural Stress Index (ASI) is the percentage of agricultural area affected by drought in the course of the growing season within a given administrative unit. The start and end of the growing season are derived per pixel from the long term NDVI average of SPOT-VEGETATION. The Global Administrative Unit Layer (GAUL) defines the administrative boundaries at level 0, 1 and 2. A global cropland and grassland map eliminates non-agricultural areas. Temperature and NDVI anomalies are used as drought indicators and calculated at a per pixel base. The ASIS aggregates this information and produces every dekad global maps to highlight hotspots of drought stress. New developments are ongoing to strengthen the ASIS to produce country specific outputs, improve existing drought indicators and estimate production deficits using a probabilistic approach.

  18. Mapping of Biophysical Parameters of Rice Agriculture System from Hyperspectral Imagery

    Science.gov (United States)

    Moharana, Shreedevi; Duta, Subashisa

    2017-04-01

    Chlorophyll, nitrogen and leaf water content are the most essential parameters for paddy crop growth. Ground hyperspectral observations were collected at canopy level during critical growth period of rice by using hand held Spectroradiometer. Chemical analysis was carried out to quantify the total chlorophyll, nitrogen and leaf water content. By exploiting the in-situ hyperspectral measurements, regression models were established between each of the crop growth parameters and the spectral indices specifically designed for chlorophyll, nitrogen and water stress. Narrow band vegetation index models were developed for mapping these parameters from Hyperion imagery in an agriculture system. It was inferred that the modified simple ratio (SR) and leaf nitrogen concentration (LNC) predictive index models, which followed a linear and nonlinear relationship respectively, produced satisfactory results in predicting rice nitrogen content from hyperspectral imagery. The presently developed model was compared with other models proposed by researchers. It was ascertained that, nitrogen content varied widely from 1-4 percentage and only 2-3 percentage for paddy crop using present modified index models and well-known predicted Tian et al. (2011) model respectively. The modified present LNC index model performed better than the established Tian et al. (2011) model as far as the estimated nitrogen content from Hyperion imagery was concerned. Moreover, within the observed chlorophyll range attained from the rice genotypes cultivated in the studied rice agriculture system, the index models (LNC, OASVI, Gitelson, mSR and MTCI) accomplished satisfactory results in the spatial distribution of rice chlorophyll content from Hyperion imagery. Spatial distribution of total chlorophyll content widely varied from 1.77-5.81 mg/g (LNC), 3.0-13 mg/g (OASVI) and 2.90-5.40 mg/g (MTCI). Following the similar guideline, it was found that normalized difference water index (NDWI) and normalized

  19. Diesel Consumption of Agriculture in China

    Directory of Open Access Journals (Sweden)

    Shusen Gui

    2012-12-01

    Full Text Available As agricultural mechanization accelerates the development of agriculture in China, to control the growth of the resulting energy consumption of mechanized agriculture without negatively affecting economic development has become a major challenge. A systematic analysis of the factors (total power, unit diesel consumption, etc. influencing diesel consumption using the SECA model, combined with simulations on agricultural diesel flows in China between 1996 and 2010 is performed in this work. Seven agricultural subsectors, fifteen categories of agricultural machinery and five farm operations are considered. The results show that farming and transportation are the two largest diesel consumers, accounting for 86.23% of the total diesel consumption in agriculture in 2010. Technological progress has led to a decrease in the unit diesel consumption and an increase in the unit productivity of all machinery, and there is still much potential for future progress. Additionally, the annual average working hours have decreased rapidly for most agricultural machinery, thereby influencing the development of mechanized agriculture.

  20. Simulating the future of agricultural land use in the Netherlands

    NARCIS (Netherlands)

    Koomen, E.; Kuhlman, T.; Groen, J; Bouwman, A.

    2005-01-01

    The agricultural sector in the Netherlands has lost much of its importance over the last 50 years in terms of the number of people involved and its relative contribution to the economy - even though production is still increasing. Yet, the area under agricultural use has changed relatively little:

  1. Sensitivity Analysis in Agent-Based Models of Socio-Ecological Systems: An Example in Agricultural Land Conservation for Lake Water Quality Improvement

    Science.gov (United States)

    Ligmann-Zielinska, A.; Kramer, D. B.; Spence Cheruvelil, K.; Soranno, P.

    2012-12-01

    Socio-ecological systems are dynamic and nonlinear. To account for this complexity, we employ agent-based models (ABMs) to study macro-scale phenomena resulting from micro-scale interactions among system components. Because ABMs typically have many parameters, it is challenging to identify which parameters contribute to the emerging macro-scale patterns. In this paper, we address the following question: What is the extent of participation in agricultural land conservation programs given heterogeneous landscape, economic, social, and individual decision making criteria in complex lakesheds? To answer this question, we: [1] built an ABM for our model system; [2] simulated land use change resulting from agent decision making, [3] estimated the uncertainty of the model output, decomposed it and apportioned it to each of the parameters in the model. Our model system is a freshwater socio-ecological system - that of farmland and lake water quality within a region containing a large number of lakes and high proportions of agricultural lands. Our study focuses on examining how agricultural land conversion from active to fallow reduces freshwater nutrient loading and improves water quality. Consequently, our ABM is composed of farmer agents who make decisions related to participation in a government-sponsored Conservation Reserve Program (CRP) managed by the Farm Service Agency (FSA). We also include an FSA agent, who selects enrollment offers made by farmers and announces the signup results leading to land use change. The model is executed in a Monte Carlo simulation framework to generate a distribution of maps of fallow lands that are used for calculating nutrient loading to lakes. What follows is a variance-based sensitivity analysis of the results. We compute sensitivity indices for individual parameters and their combinations, allowing for identification of the most influential as well as the insignificant inputs. In the case study, we observe that farmland

  2. Vulnerability of Rehabilitated Agricultural Production Systems to Invasion by Nontarget Plant Species

    Science.gov (United States)

    Baer, Sara G.; Engle, David M.; Knops, Johannes M. H.; Langeland, Kenneth A.; Maxwell, Bruce D.; Menalled, Fabian D.; Symstad, Amy J.

    2009-02-01

    Vast areas of arable land have been retired from crop production and “rehabilitated” to improved system states through landowner incentive programs in the United States (e.g., Conservation and Wetland Reserve Programs), as well as Europe (i.e., Agri-Environment Schemes). Our review of studies conducted on invasion of rehabilitated agricultural production systems by nontarget species elucidates several factors that may increase the vulnerability of these systems to invasion. These systems often exist in highly fragmented and agriculturally dominated landscapes, where propagule sources of target species for colonization may be limited, and are established under conditions where legacies of past disturbance persist and prevent target species from persisting. Furthermore, rehabilitation approaches often do not include or successfully attain all target species or historical ecological processes (e.g., hydrology, grazing, and/or fire cycles) key to resisting invasion. Uncertainty surrounds ways in which nontarget species may compromise long term goals of improving biodiversity and ecosystem services through rehabilitation efforts on former agricultural production lands. This review demonstrates that more studies are needed on the extent and ecological impacts of nontarget species as related to the goals of rehabilitation efforts to secure current and future environmental benefits arising from this widespread conservation practice.

  3. Research on Supply Chain Coordination of Fresh Agricultural Products under Agricultural Insurance

    Directory of Open Access Journals (Sweden)

    Zhang Pei

    2017-01-01

    Full Text Available Based on the fact that the current fresh agricultural products are susceptible to natural risks and the coordination of supply chain is poor, This paper constructs the supply chain profit model under the two models of natural risk and agricultural insurance, Firstly, studying the coordination function of the supply chain system under Two-part Tariff; Then discussing the setting and claiming mechanism of agricultural insurance, compares the influence of agricultural insurance on supply chain profit and supply chain coordination; Finally, giving an example to validate the model results and give decision - making opinions. Research shows that the supply chain of fresh agricultural products can coordinated under Two-part Tariff, but the supply chain cooperation is poor in the natural risk , need to further stabilize and optimize the supply chain; When the risk factor is less than the non-participation insurance coefficient, not to participate in agricultural insurance is conducive to maintaining the coordination of the supply chain system; When the risk coefficient exceeds the non-participation insurance coefficient, the introduction of agricultural insurance can not only effectively manage the natural risks, but also help to improve the coordination of the supply chain system.

  4. The Role of Aerospace Technology in Agriculture. The 1977 Summer Faculty Fellowship Program in Engineering Systems Design

    Science.gov (United States)

    1977-01-01

    Possibilities were examined for improving agricultural productivity through the application of aerospace technology. An overview of agriculture and of the problems of feeding a growing world population are presented. The present state of agriculture, of plant and animal culture, and agri-business are reviewed. Also analyzed are the various systems for remote sensing, particularly applications to agriculture. The report recommends additional research and technology in the areas of aerial application of chemicals, of remote sensing systems, of weather and climate investigations, and of air vehicle design. Also considered in detail are the social, legal, economic, and political results of intensification of technical applications to agriculture.

  5. Rainwater harvesting and management in rainfed agricultural systems in Sub-Saharan Africa - A review

    NARCIS (Netherlands)

    Biazin, B.; Sterk, G.; Temesgen, M.; Abdulkedir, A.; Stroosnijder, L.

    2012-01-01

    Agricultural water scarcity in the predominantly rainfed agricultural system of sub-Saharan Africa (SSA) is more related to the variability of rainfall and excessive non-productive losses, than the total annual precipitation in the growing season. Less than 15% of the terrestrial precipitation

  6. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency

    Science.gov (United States)

    Lun, Fei; Liu, Junguo; Ciais, Philippe; Nesme, Thomas; Chang, Jinfeng; Wang, Rong; Goll, Daniel; Sardans, Jordi; Peñuelas, Josep; Obersteiner, Michael

    2018-01-01

    The application of phosphorus (P) fertilizer to agricultural soils increased by 3.2 % annually from 2002 to 2010. We quantified in detail the P inputs and outputs of cropland and pasture and the P fluxes through human and livestock consumers of agricultural products on global, regional, and national scales from 2002 to 2010. Globally, half of the total P inputs into agricultural systems accumulated in agricultural soils during this period, with the rest lost to bodies of water through complex flows. Global P accumulation in agricultural soil increased from 2002 to 2010 despite decreases in 2008 and 2009, and the P accumulation occurred primarily in cropland. Despite the global increase in soil P, 32 % of the world's cropland and 43 % of the pasture had soil P deficits. Increasing soil P deficits were found for African cropland vs. increasing P accumulation in eastern Asia. European and North American pasture had a soil P deficit because the continuous removal of biomass P by grazing exceeded P inputs. International trade played a significant role in P redistribution among countries through the flows of P in fertilizer and food among countries. Based on country-scale budgets and trends we propose policy options to potentially mitigate regional P imbalances in agricultural soils, particularly by optimizing the use of phosphate fertilizer and the recycling of waste P. The trend of the increasing consumption of livestock products will require more P inputs to the agricultural system, implying a low P-use efficiency and aggravating P-stock scarcity in the future. The global and regional phosphorus budgets and their PUEs in agricultural systems are publicly available at https://doi.pangaea.de/10.1594/PANGAEA.875296.

  7. An environmental impact assessment system for agricultural R and D

    International Nuclear Information System (INIS)

    Rodrigues, Geraldo Stachetti; Campanhola, Clayton; Kitamura, Paulo Choji

    2003-01-01

    A strategic planning process has been implemented at the Brazilian Agricultural Research Agency (Embrapa) to introduce sustainable agriculture concepts in all steps of Research and Development (R and D). An essential part of the devised mission statement called for the impact assessment of all technology innovation resulting from R and D, under field conditions (ex-post). However, methods for impact assessment of technology innovations at the farmstead level appropriate for the institutional context were lacking. The environmental impact assessment (EIA) system (AMBITEC-AGRO) developed to attend that demand is composed by a set of weighing matrices constructed in an electronic spreadsheet. Impact indicators are evaluated in the field in an interview/survey, and weighed according to their spatial scale and importance toward effecting environmental impacts. The results of these weighing procedures are expressed graphically in the assessment spreadsheets. Finally, the indicator evaluations are composed into an Environmental Impact Index for the agricultural technology innovation

  8. An AgMIP framework for improved agricultural representation in integrated assessment models

    Science.gov (United States)

    Ruane, Alex C.; Rosenzweig, Cynthia; Asseng, Senthold; Boote, Kenneth J.; Elliott, Joshua; Ewert, Frank; Jones, James W.; Martre, Pierre; McDermid, Sonali P.; Müller, Christoph; Snyder, Abigail; Thorburn, Peter J.

    2017-12-01

    Integrated assessment models (IAMs) hold great potential to assess how future agricultural systems will be shaped by socioeconomic development, technological innovation, and changing climate conditions. By coupling with climate and crop model emulators, IAMs have the potential to resolve important agricultural feedback loops and identify unintended consequences of socioeconomic development for agricultural systems. Here we propose a framework to develop robust representation of agricultural system responses within IAMs, linking downstream applications with model development and the coordinated evaluation of key climate responses from local to global scales. We survey the strengths and weaknesses of protocol-based assessments linked to the Agricultural Model Intercomparison and Improvement Project (AgMIP), each utilizing multiple sites and models to evaluate crop response to core climate changes including shifts in carbon dioxide concentration, temperature, and water availability, with some studies further exploring how climate responses are affected by nitrogen levels and adaptation in farm systems. Site-based studies with carefully calibrated models encompass the largest number of activities; however they are limited in their ability to capture the full range of global agricultural system diversity. Representative site networks provide more targeted response information than broadly-sampled networks, with limitations stemming from difficulties in covering the diversity of farming systems. Global gridded crop models provide comprehensive coverage, although with large challenges for calibration and quality control of inputs. Diversity in climate responses underscores that crop model emulators must distinguish between regions and farming system while recognizing model uncertainty. Finally, to bridge the gap between bottom-up and top-down approaches we recommend the deployment of a hybrid climate response system employing a representative network of sites to bias

  9. A Risk-Based Interval Two-Stage Programming Model for Agricultural System Management under Uncertainty

    Directory of Open Access Journals (Sweden)

    Ye Xu

    2016-01-01

    Full Text Available Nonpoint source (NPS pollution caused by agricultural activities is main reason that water quality in watershed becomes worse, even leading to deterioration. Moreover, pollution control is accompanied with revenue’s fall for agricultural system. How to design and generate a cost-effective and environmentally friendly agricultural production pattern is a critical issue for local managers. In this study, a risk-based interval two-stage programming model (RBITSP was developed. Compared to general ITSP model, significant contribution made by RBITSP model was that it emphasized importance of financial risk under various probabilistic levels, rather than only being concentrated on expected economic benefit, where risk is expressed as the probability of not meeting target profit under each individual scenario realization. This way effectively avoided solutions’ inaccuracy caused by traditional expected objective function and generated a variety of solutions through adjusting weight coefficients, which reflected trade-off between system economy and reliability. A case study of agricultural production management with the Tai Lake watershed was used to demonstrate superiority of proposed model. Obtained results could be a base for designing land-structure adjustment patterns and farmland retirement schemes and realizing balance of system benefit, system-failure risk, and water-body protection.

  10. Simulation bounds for system availability

    International Nuclear Information System (INIS)

    Tietjen, G.L.; Waller, R.A.

    1976-01-01

    System availability is a dominant factor in the practicality of nuclear power electrical generating plants. A proposed model for obtaining either lower bounds or interval estimates on availability uses observed data on ''n'' failure-to-repair cycles of the system to estimate the parameters in the time-to-failure and time-to-repair models. These estimates are then used in simulating failure/repair cycles of the system. The availability estimate is obtained for each of 5000 samples of ''n'' failure/repair cycles to form a distribution of estimates. Specific percentile points of those simulated distributions are selected as lower simulation bounds or simulation interval bounds for the system availability. The method is illustrated with operational data from two nuclear plants for which an exponential time-to-failure and a lognormal time-to-repair are assumed

  11. Simulation of radionuclide transfer in agricultural food chains

    International Nuclear Information System (INIS)

    Matthies, M.; Eisfeld, K.; Mueller, H.; Paretzke, H.G.; Proehl, G.; Wirth, E.

    1982-12-01

    Radioactive releases from nuclear facilities could pose longterm potential hazards to man if radionuclides enter food chains leading to man. The aim of the study was to develop radioecological and dosimetric models for the assessments of the activity intake by man via ingestion and the resulting radiation exposure for members of the population, in particular after accidental releases from fuel reprocessing plants and related installations. A dynamic compartment model for the transfer of radionuclides through agricultural food chains has been developed. Special emphasis is given to the time dependence and the biological and site specific variability of the various transfer and accumulation processes. Agricultural practices representative for Western Europe have been taken into consideration for food production (grain, potatoes, vegetables, beef and pork, milk). For the most relevant long-lived radionuclides a short-term initial deposition of 1 Ci/km 2 on agricultural areas at different months has been assumed and the time dependent transport through various food chains has been assessed. As a main result great differences have been calculated for the various months of releases because of plant foliar uptake and translocation into edible parts of the plants during the vegetation cycle. The potential activity intake over 50 years for the various nuclides and the resulting radiation exposure is dominated by the first two years after the release if no food restrictions are assumed. (orig./MG) [de

  12. The economic impacts of climate change on the Chilean agricultural sector: A non-linear agricultural supply model

    Directory of Open Access Journals (Sweden)

    Roberto Ponce

    2014-12-01

    Full Text Available Agriculture could be one of the most vulnerable economic sectors to the impacts of climate change in the coming decades, with impacts threatening agricultural production in general and food security in particular. Within this context, climate change will impose a challenge to policy makers, especially in those countries that based their development on primary sectors. In this paper we present a non-linear agricultural supply model for the analysis of the economic impacts of changes in crop yields due to climate change. The model accounts for uncertainty through the use of Monte Carlo simulations about crop yields. According to our results, climate change impacts on the Chilean agricultural sector are widespread, with considerable distributional consequences across regions, and with fruits producers being worst-off than crops producers. In general, the results reported here are consistent with those reported by previous studies showing large economic impacts on the northern zone. However, our model does not simulate remarkable economic consequences at the country level as previous studies did.

  13. Development of AC-DC power system simulator

    International Nuclear Information System (INIS)

    Ichikawa, Tatsumi; Ueda, Kiyotaka; Inoue, Toshio

    1984-01-01

    A modeling and realization technique is described for realtime plant dynamics simulation of nuclear power generating unit in AC-DC power system simulator. Dynamic behavior of reactor system and steam system is important for investigation a further adequate unit control and protection system to system faults in AC and DC power system. Each unit of two nuclear power generating unit in the power system simulator consists of micro generator, DC motors, flywheels and process computer. The DC motor and flywheel simulates dynamic characteristics of steam turbine, and process computer simulates plant dynamics by digital simulation. We have realized real-time plant dynamics simulation by utilizing a high speed process I/O and a high speed digital differential analyzing processor (DDA) in which we builted a newly developed simple plant model. (author)

  14. Assessing water pollution level and gray water footprint of anthropogenic nitrogen in agricultural system

    Science.gov (United States)

    Huang, Guorui; Chen, Han; Yu, Chaoqing

    2017-04-01

    Water pollution has become a global problem which is one of the most critical issues of today's water treatment. At a spatial resolution of 10km, we use the DeNitrification-DeComposition (DNDC) model to simulate the biogeochemical processes for major cropping systems from 1955 to 2014, estimate the anthropogenic nitrogen loads to fresh, and calculate the resultant grey water footprints and N-related water pollution level in China. The accumulated annual Nitrogen loads to fresh from agricultural system is 0.38Tg in 1955 and 4.42Tg in 2014, while the grey water footprints vary from 1.53 billion m3 to 17.67 billion m3, respectively. N loads in north of China contributes much more on the N leaching because of the high fertilizer but in south of China, it is mainly focused on the N runoff because of the heavy rain. There are more than 25% of grids with WPL>1 (exceed the water capacity of assimilation), which is mainly located on the North China Plain.

  15. Development of the simulation monitoring system

    International Nuclear Information System (INIS)

    Kato, Katsumi; Watanabe, Tadashi; Kume, Etsuo

    2001-01-01

    Large-scale simulation technique is studied at the Center for Promotion of Computational Science and Engineering for the computational science research in nuclear fields. Visualization and animation processing techniques are developed for efficient understanding of simulation results. The development of the simulation monitoring system, which is used for real-time visualization of ongoing simulations or for successive visualization of calculated results, is described in this report. The standard visualization tool AVS5 or AVS/EXPRESS is used for the simulation monitoring system, and thus, this system can be utilized in various computer environments. (author)

  16. Co-Adapting Water Demand and Supply to Changing Climate in Agricultural Water Systems, A Case Study in Northern Italy

    Science.gov (United States)

    Giuliani, M.; Li, Y.; Mainardi, M.; Arias Munoz, C.; Castelletti, A.; Gandolfi, C.

    2013-12-01

    Exponentially growing water demands and increasing uncertainties in the hydrologic cycle due to changes in climate and land use will challenge water resources planning and management in the next decade. Improving agricultural productivity is particularly critical, being this sector the one characterized by the highest water demand. Moreover, to meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades, even though water availability is expected to decrease due to climate change impacts. Agricultural systems are called to adapt their strategies (e.g., changing crop patterns and the corresponding water demand, or maximizing the efficiency in the water supply modifying irrigation scheduling and adopting high efficiency irrigation techniques) in order to re-optimize the use of limited water resources. Although many studies have assessed climate change impacts on agricultural practices and water management, most of them assume few scenarios of water demand or water supply separately, while an analysis of their reciprocal feedbacks is still missing. Moreover, current practices are generally established according to historical agreements and normative constraints and, in the absence of dramatic failures, the shift toward more efficient water management is not easily achievable. In this work, we propose to activate an information loop between farmers and water managers to improve the effectiveness of agricultural water management practices by matching the needs of the farmers with the design of water supply strategies. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). A distributed-parameter, dynamic model of the system allows to simulate crop growth and the final yield over a range of hydro-climatic conditions, irrigation strategies and water-related stresses. The spatial component of the

  17. An overview of the design and analysis of simulation experiments for sensitivity analysis

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2005-01-01

    Sensitivity analysis may serve validation, optimization, and risk analysis of simulation models. This review surveys 'classic' and 'modern' designs for experiments with simulation models. Classic designs were developed for real, non-simulated systems in agriculture, engineering, etc. These designs

  18. Agriculture and greenhouse effect: economic regulation of cross impacts and combination of agricultural and environmental policies - analysis for the France and extension to the european union. Economic analysis of the interactions agriculture- greenhouse effect

    International Nuclear Information System (INIS)

    Jayet, P.A.

    2002-09-01

    The objectives of the research program are: the impacts evaluation of a double relation climate - agriculture on the agricultural production and the greenhouse gases emission; the compatibility of agricultural policies and environmental policies of the sector. Simulations are realized at a regional scale with a coupling of economical and biophysical models (manure spreading, cultivation yield). (A.L.B.)

  19. Evaluation of Projected Agricultural Climate Risk over the Contiguous US

    Science.gov (United States)

    Zhu, X.; Troy, T. J.; Devineni, N.

    2017-12-01

    Food demands are rising due to an increasing population with changing food preferences, which places pressure on agricultural production. Additionally, climate extremes have recently highlighted the vulnerability of our agricultural system to climate variability. This study seeks to fill two important gaps in current knowledge: how does the widespread response of irrigated crops differ from rainfed and how can we best account for uncertainty in yield responses. We developed a stochastic approach to evaluate climate risk quantitatively to better understand the historical impacts of climate change and estimate the future impacts it may bring about to agricultural system. Our model consists of Bayesian regression, distribution fitting, and Monte Carlo simulation to simulate rainfed and irrigated crop yields at the US county level. The model was fit using historical data for 1970-2010 and was then applied over different climate regions in the contiguous US using the CMIP5 climate projections. The relative importance of many major growing season climate indices, such as consecutive dry days without rainfall or heavy precipitation, was evaluated to determine what climate indices play a role in affecting future crop yields. The statistical modeling framework also evaluated the impact of irrigation by using county-level irrigated and rainfed yields separately. Furthermore, the projected years with negative yield anomalies were specifically evaluated in terms of magnitude, trend and potential climate drivers. This framework provides estimates of the agricultural climate risk for the 21st century that account for the full uncertainty of climate occurrences, range of crop response, and spatial correlation in climate. The results of this study can contribute to decision making about crop choice and water use in an uncertain future climate.

  20. Resilience of Socio-Hydrological Systems in Canadian Prairies to Agricultural Drainage: Policy Analysis and Modelling Approach

    Science.gov (United States)

    Wheater, H. S.; Xu, L.; Gober, P.; Pomeroy, J. W.; Wong, J.

    2017-12-01

    Extensive agricultural drainage of lakes and wetlands in the Canadian Prairies has led to benefits for agricultural production, but has had a substantial influence on hydrological regimes and wetland extent. There is need for the potential impacts of current policy in changing the socio-hydrological resilience of prairie wetland basins in response to agricultural drainage to be examined. Whilst wetland drainage can increase agricultural productivity, it can also reduce stocks of natural capital and decrease ecosystem services, such as pollutant retention, habitat for waterfowls, carbon sequestration, and downstream flood attenuation. Effective policies that balance drainage benefits and negative externalities have to consider pricing. This is explored here using the Cold Regions Hydrological Model for hydrological simulations and the Inclusive Wealth approach for modelling in support of cost-benefit analysis. Inclusive wealth aggregates the value of natural, human, and technological assets used to produce social welfare. A shadow price, defined as the marginal change in social value for a marginal change in the current stock quantity, is used to valuate assets that contribute to social welfare. The shadow price of each asset is estimated by taking into account the social and economic benefits and external losses of wetland services caused by wetland drainage. The coupled model was applied to the Smith Creek Research Basin in south-eastern Saskatchewan, Canada where wetland drainage has caused major alterations of the hydrological regime including increased peak flows, discharge volumes and duration of streamflow. Changes in depressional storage in wetlands was used to calculate the corresponding changes of inclusive wealth over a 30-year period under the impacts from the limitation proposed in the Agricultural Water Management Strategy of Saskatchewan. The adjusted societal values of drainage demonstrate the dynamics between changes in hydrological conditions of

  1. Simulating Changes in Land-Atmosphere Interactions From Expanding Agriculture and Irrigation in India and the Potential Impacts on the Indian Monsoon.

    Science.gov (United States)

    Douglas, E. M.; Beltran-Przekurat, A.; Niyogi, D.; Pielke, R. A.

    2006-05-01

    With over 57 million hectares under irrigation in 2002, India has the largest irrigated agricultural area on the planet. Between 80 and 90% of India's water use goes to support irrigated agriculture. The Indian monsoon belt is a home to a large part of the world's population and agriculture is the major land-use activity in the region. Previous results showed that annual vapor fluxes in India have increased by 17% (340 km3) over that which would be expected from a natural (non-agricultural) land cover. Two-thirds of this increase was attributed to irrigated agriculture. The largest increases in vapor and latent heat fluxes occurred where both cropland and irrigated lands were the predominant contemporary land cover classes (particularly northwest and north-central India). Our current study builds upon this work by evaluating possible changes in near-surface energy fluxes and regional atmospheric circulation patterns resulting from the expansion of irrigated agriculture on the Indian sub-continent using a regional atmospheric model RAMS. We investigate three separate land- use scenarios: Scenario 1, with a potential (pre-agricultural) land cover, Scenario 2: the potential land-cover overlain by cropland and Scenario 3: potential land-cover overlain by cropland and irrigated area. We will assess the impact of agricultural land-cover conversion and intensive irrigation on water and energy fluxes between the land and the atmosphere and how these flux changes may affect regional weather patterns. The simulation period covers July 16-20, 2002 which allow us to assess potential impacts of land-cover changes on the onset of the Indian Monsoon.

  2. Issues in visual support to real-time space system simulation solved in the Systems Engineering Simulator

    Science.gov (United States)

    Yuen, Vincent K.

    1989-01-01

    The Systems Engineering Simulator has addressed the major issues in providing visual data to its real-time man-in-the-loop simulations. Out-the-window views and CCTV views are provided by three scene systems to give the astronauts their real-world views. To expand the window coverage for the Space Station Freedom workstation a rotating optics system is used to provide the widest field of view possible. To provide video signals to as many viewpoints as possible, windows and CCTVs, with a limited amount of hardware, a video distribution system has been developed to time-share the video channels among viewpoints at the selection of the simulation users. These solutions have provided the visual simulation facility for real-time man-in-the-loop simulations for the NASA space program.

  3. An Overview of the Design and Analysis of Simulation Experiments for Sensitivity Analysis

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2004-01-01

    Sensitivity analysis may serve validation, optimization, and risk analysis of simulation models.This review surveys classic and modern designs for experiments with simulation models.Classic designs were developed for real, non-simulated systems in agriculture, engineering, etc.These designs assume a

  4. Modeling the cadmium balance in Australian agricultural systems in view of potential impacts on food and water quality

    International Nuclear Information System (INIS)

    Vries, W. de; McLaughlin, M.J.

    2013-01-01

    The historical build up and future cadmium (Cd) concentrations in top soils and in crops of four Australian agricultural systems are predicted with a mass balance model, focusing on the period 1900–2100. The systems include a rotation of dryland cereals, a rotation of sugarcane and peanuts/soybean, intensive dairy production and intensive horticulture. The input of Cd to soil is calculated from fertilizer application and atmospheric deposition and also examines options including biosolid and animal manure application in the sugarcane rotation and dryland cereal production systems. Cadmium output from the soil is calculated from leaching to deeper horizons and removal with the harvested crop or with livestock products. Parameter values for all Cd fluxes were based on a number of measurements on Australian soil–plant systems. In the period 1900–2000, soil Cd concentrations were predicted to increase on average between 0.21 mg kg −1 in dryland cereals, 0.42 mg kg −1 in intensive agriculture and 0.68 mg kg −1 in dairy production, which are within the range of measured increases in soils in these systems. Predicted soil concentrations exceed critical soil Cd concentrations, based on food quality criteria for Cd in crops during the simulation period in clay-rich soils under dairy production and intensive horticulture. Predicted dissolved Cd concentrations in soil pore water exceed a ground water quality criterion of 2 μg l −1 in light textured soils, except for the sugarcane rotation due to large water leaching fluxes. Results suggest that the present fertilizer Cd inputs in Australia are in excess of the long-term critical loads in heavy-textured soils for dryland cereals and that all other systems are at low risk. Calculated critical Cd/P ratios in P fertilizers vary from 1000 mg Cd kg P −1 for the different soil, crop and environmental conditions applied. - Highlights: • Cadmium concentrations in soils and plants are predicted with a mass balance

  5. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency

    Directory of Open Access Journals (Sweden)

    F. Lun

    2018-01-01

    Full Text Available The application of phosphorus (P fertilizer to agricultural soils increased by 3.2 % annually from 2002 to 2010. We quantified in detail the P inputs and outputs of cropland and pasture and the P fluxes through human and livestock consumers of agricultural products on global, regional, and national scales from 2002 to 2010. Globally, half of the total P inputs into agricultural systems accumulated in agricultural soils during this period, with the rest lost to bodies of water through complex flows. Global P accumulation in agricultural soil increased from 2002 to 2010 despite decreases in 2008 and 2009, and the P accumulation occurred primarily in cropland. Despite the global increase in soil P, 32 % of the world's cropland and 43 % of the pasture had soil P deficits. Increasing soil P deficits were found for African cropland vs. increasing P accumulation in eastern Asia. European and North American pasture had a soil P deficit because the continuous removal of biomass P by grazing exceeded P inputs. International trade played a significant role in P redistribution among countries through the flows of P in fertilizer and food among countries. Based on country-scale budgets and trends we propose policy options to potentially mitigate regional P imbalances in agricultural soils, particularly by optimizing the use of phosphate fertilizer and the recycling of waste P. The trend of the increasing consumption of livestock products will require more P inputs to the agricultural system, implying a low P-use efficiency and aggravating P-stock scarcity in the future. The global and regional phosphorus budgets and their PUEs in agricultural systems are publicly available at https://doi.pangaea.de/10.1594/PANGAEA.875296.

  6. Simulation of agricultural non-point source pollution in Xichuan by using SWAT model

    Science.gov (United States)

    Xing, Linan; Zuo, Jiane; Liu, Fenglin; Zhang, Xiaohui; Cao, Qiguang

    2018-02-01

    This paper evaluated the applicability of using SWAT to access agricultural non-point source pollution in Xichuan area. In order to build the model, DEM, soil sort and land use map, climate monitoring data were collected as basic database. The SWAT model was calibrated and validated for the SWAT was carried out using streamflow, suspended solids, total phosphorus and total nitrogen records from 2009 to 2011. Errors, coefficient of determination and Nash-Sutcliffe coefficient were considered to evaluate the applicability. The coefficient of determination were 0.96, 0.66, 0.55 and 0.66 for streamflow, SS, TN, and TP, respectively. Nash-Sutcliffe coefficient were 0.93, 0.5, 0.52 and 0.63, respectively. The results all meet the requirements. It suggested that the SWAT model can simulate the study area.

  7. Simulated multipolarized MAPSAR images to distinguish agricultural crops

    Directory of Open Access Journals (Sweden)

    Wagner Fernando Silva

    2012-06-01

    Full Text Available Many researchers have shown the potential of Synthetic Aperture Radar (SAR images for agricultural applications, particularly for monitoring regions with limitations in terms of acquiring cloud free optical images. Recently, Brazil and Germany began a feasibility study on the construction of an orbital L-band SAR sensor referred to as MAPSAR (Multi-Application Purpose SAR. This sensor provides L-band images in three spatial resolutions and polarimetric, interferometric and stereoscopic capabilities. Thus, studies are needed to evaluate the potential of future MAPSAR images. The objective of this study was to evaluate multipolarized MAPSAR images simulated by the airborne SAR-R99B sensor to distinguish coffee, cotton and pasture fields in Brazil. Discrimination among crops was evaluated through graphical and cluster analysis of mean backscatter values, considering single, dual and triple polarizations. Planting row direction of coffee influenced the backscatter and was divided into two classes: parallel and perpendicular to the sensor look direction. Single polarizations had poor ability to discriminate the crops. The overall accuracies were less than 59 %, but the understanding of the microwave interaction with the crops could be explored. Combinations of two polarizations could differentiate various fields of crops, highlighting the combination VV-HV that reached 78 % overall accuracy. The use of three polarizations resulted in 85.4 % overall accuracy, indicating that the classes pasture and parallel coffee were fully discriminated from the other classes. These results confirmed the potential of multipolarized MAPSAR images to distinguish the studied crops and showed considerable improvement in the accuracy of the results when the number of polarizations was increased.

  8. The Australian Computational Earth Systems Simulator

    Science.gov (United States)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic

  9. Guidelines on nitrogen management in agricultural systems

    International Nuclear Information System (INIS)

    2008-01-01

    This publication deals with the topic of nitrogen management in agro-ecosystems. Nitrogen (N) is an essential plant nutrient, and N deficiency severely restricts crop yields in most cultivated soils. Therefore, substantial N inputs are required for optimum plant growth and adequate food, feed and fibre production. Developing countries use more than 55 million metric tons (t) of N fertilizers at an estimated value of US $16 billion annually, of which approximately 2 million t are used in Africa, 5 in Latin America and 50 in Asia. It is estimated that adequate production of food (in particular cereals) for present and future populations will not be achieved without external inputs of fertilizer N. However, management practices involving fertilizer N should be efficient in order to optimize crop production while minimizing adverse effects on the environment. Moreover, the use of alternative N sources such as organic residues and biological nitrogen fixation should be increased within the context of integrated soil fertility management to ensure food security in areas of the world where fertilizer N is too expensive or simply not available. At present, legumes such as soybean, common bean, groundnuts, chickpeas, cowpeas, etc., are fixing approximately 11 million t of N in developing countries. This publication covers, concisely and comprehensively, key topics dealing with the utilization of all sources of N in farming systems, in particular to demonstrate to scientists in developing countries how isotopic tracer technologies can be used in research to improve overall N use efficiency in agricultural systems while increasing crop yields in a sustainable manner, i.e. conserving the natural resource base and protecting the environment. It is a timely publication; increasing attention is being paid to N management in food production, energy consumption and environmental protection. The subject matter is covered in four chapters, starting with an introduction to N

  10. Governance of Aquatic Agricultural Systems: Analyzing Representation, Power, and Accountability

    Directory of Open Access Journals (Sweden)

    Blake D. Ratner

    2013-12-01

    Full Text Available Aquatic agricultural systems in developing countries face increasing competition from multiple stakeholders over rights to access and use natural resources, land, water, wetlands, and fisheries, essential to rural livelihoods. A key implication is the need to strengthen governance to enable equitable decision making amidst competition that spans sectors and scales, building capacities for resilience, and for transformations in institutions that perpetuate poverty. In this paper we provide a simple framework to analyze the governance context for aquatic agricultural system development focused on three dimensions: stakeholder representation, distribution of power, and mechanisms of accountability. Case studies from Cambodia, Bangladesh, Malawi/Mozambique, and Solomon Islands illustrate the application of these concepts to fisheries and aquaculture livelihoods in the broader context of intersectoral and cross-scale governance interactions. Comparing these cases, we demonstrate how assessing governance dimensions yields practical insights into opportunities for transforming the institutions that constrain resilience in local livelihoods.

  11. FPGA-accelerated simulation of computer systems

    CERN Document Server

    Angepat, Hari; Chung, Eric S; Hoe, James C; Chung, Eric S

    2014-01-01

    To date, the most common form of simulators of computer systems are software-based running on standard computers. One promising approach to improve simulation performance is to apply hardware, specifically reconfigurable hardware in the form of field programmable gate arrays (FPGAs). This manuscript describes various approaches of using FPGAs to accelerate software-implemented simulation of computer systems and selected simulators that incorporate those techniques. More precisely, we describe a simulation architecture taxonomy that incorporates a simulation architecture specifically designed f

  12. Adaptation, Spatial Heterogeneity, and the Vulnerability of Agricultural Systems to Climate Change and CO2 Fertilization: An Integrated Assessment Approach

    International Nuclear Information System (INIS)

    Antle, J.M.; Capalbo, S.M.; Elliott, E.T.; Paustian, K.H.

    2004-01-01

    In this paper we develop economic measures of vulnerability to climate change with and without adaptation in agricultural production systems. We implement these measures using coupled, site-specific ecosystem and economic simulation models. This modeling approach has two key features needed to study the response of agricultural production systems to climate change: it represents adaptation as an endogenous, non-marginal economic response to climate change; and it provides the capability to represent the spatial variability in bio-physical and economic conditions that interact with adaptive responses. We apply this approach to the dryland grain production systems of the Northern Plains region of the United States. The results support the hypothesis that the most adverse impacts on net returns distributions tend to occur in the areas with the poorest resource endowments and when mitigating effects of CO2 fertilization and adaptation are absent. We find that relative and absolute measures of vulnerability depend on complex interactions between climate change, CO2 level, adaptation, and economic conditions such as relative output prices. The relationship between relative vulnerability and resource endowments varies with assumptions about climate change, adaptation, and economic conditions. Vulnerability measured with respect to an absolute threshold is inversely related to resource endowments in all cases investigated

  13. Simulation of warehousing and distribution systems

    Directory of Open Access Journals (Sweden)

    Drago Pupavac

    2005-08-01

    Full Text Available The modern world abounds in simulation models. Thousands of organizations use simulation models to solve business problems. Problems in micro logistics systems are a very important segment of the business problems that can be solved by a simulation method. In most cases logistics simulation models should be developed with a purpose to evaluate the performance of individual value-adding indirect resources of logistics system, their possibilities and operational advantages as well as the flow of logistics entities between the plants, warehouses, and customers. Accordingly, this scientific paper elaborates concisely the theoretical characteristics of simulation models and the domains in which the simulation approach is best suited in logistics. Special attention is paid to simulation modeling of warehousing and distribution subsystems of logistic system and there is an example of spreadsheet application in the function of simulated demand for goods from warehouse. Apart from simulation model induction and deduction methods, the description method and a method of information modeling are applied.

  14. Multi-agent systems simulation and applications

    CERN Document Server

    Uhrmacher, Adelinde M

    2009-01-01

    Methodological Guidelines for Modeling and Developing MAS-Based SimulationsThe intersection of agents, modeling, simulation, and application domains has been the subject of active research for over two decades. Although agents and simulation have been used effectively in a variety of application domains, much of the supporting research remains scattered in the literature, too often leaving scientists to develop multi-agent system (MAS) models and simulations from scratch. Multi-Agent Systems: Simulation and Applications provides an overdue review of the wide ranging facets of MAS simulation, i

  15. Study on High energy efficiency photovoltaic facility agricultural system in tropical area of China

    Directory of Open Access Journals (Sweden)

    Ge Zhiwu

    2018-01-01

    Full Text Available The photovoltaic facility agriculture is developing rapidly in recent years, but there are many problems brought out, even in some important demonstration projects, due to the lack of standards. In order to solve some of these problems, we set up a photovoltaic facilities agricultural system in Guilinyang University City, Haikou, China and make an in-depth study on the photovoltaic facility agricultural system and its related problems. In this paper we disclose some of the experimental results. We plant corianders under two kinds of solar cell panels and general double glass assembly already sold on the market. Experiments showed that the square format cell panels are much better than row type, and the next one is general double glass assembly sold on the market, the last is the case without any shelter. 30 days after planting, the height of coriander plants are 50mm, 30mm, 23mm and 20mm correspondingly. The two typical solar cell panels have gaps between cells, and can save much more energy and improve power generation efficiency, we arrange the panels at optimum tilted angle, and design the system as open structure to save more energy. The photovoltaic facilities agricultural system we set up in Guilinyang University City can achieve much high solar energy efficiency than others and has broad application prospects.

  16. HVDC System Characteristics and Simulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.I.; Han, B.M.; Jang, G.S. [Electric Enginnering and Science Research Institute, Seoul (Korea)

    2001-07-01

    This report deals with the AC-DC power system simulation method by PSS/E and EUROSTAG for the development of a strategy for the reliable operation of the Cheju-Haenam interconnected system. The simulation using both programs is performed to analyze HVDC simulation models. In addition, the control characteristics of the Cheju-Haenam HVDC system as well as Cheju AC system characteristics are described in this work. (author). 104 figs., 8 tabs.

  17. Potential economic benefits of adapting agricultural production systems to future climate change

    Science.gov (United States)

    Fagre, Daniel B.; Pederson, Gregory; Bengtson, Lindsey E.; Prato, Tony; Qui, Zeyuan; Williams, Jimmie R.

    2010-01-01

    Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960–2005) and future climate period (2006–2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO2 emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting

  18. Potential Economic Benefits of Adapting Agricultural Production Systems to Future Climate Change

    Science.gov (United States)

    Prato, Tony; Zeyuan, Qiu; Pederson, Gregory; Fagre, Dan; Bengtson, Lindsey E.; Williams, Jimmy R.

    2010-03-01

    Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960-2005) and future climate period (2006-2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO2 emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting APSs to

  19. Potential economic benefits of adapting agricultural production systems to future climate change.

    Science.gov (United States)

    Prato, Tony; Zeyuan, Qiu; Pederson, Gregory; Fagre, Dan; Bengtson, Lindsey E; Williams, Jimmy R

    2010-03-01

    Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960-2005) and future climate period (2006-2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO(2) emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting APSs

  20. Design of Embedded System and Data Communication for an Agricultural Autonomous Vehicle

    DEFF Research Database (Denmark)

    Nielsen, Jens F. Dalsgaard; Nielsen, Kirsten Mølgaard; Bendtsen, Jan Dimon

    2005-01-01

    This paper describes an implemented design of an autonomous vehicle used in precision agriculture for weed and crop map construction with special focus on the onboard controlsystem, the embedded system and the datacommunication system. The vehicle is four wheel driven and four wheel steered (eight...

  1. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology.

    Science.gov (United States)

    Holaskova, Edita; Galuszka, Petr; Frebort, Ivo; Oz, M Tufan

    2015-11-01

    Antimicrobial peptides (AMPs) are vital components of the innate immune system of nearly all living organisms. They generally act in the first line of defense against various pathogenic bacteria, parasites, enveloped viruses and fungi. These low molecular mass peptides are considered prospective therapeutic agents due to their broad-spectrum rapid activity, low cytotoxicity to mammalian cells and unique mode of action which hinders emergence of pathogen resistance. In addition to medical use, AMPs can also be employed for development of innovative approaches for plant protection in agriculture. Conferred disease resistance by AMPs might help us surmount losses in yield, quality and safety of agricultural products due to plant pathogens. Heterologous expression in plant-based systems, also called plant molecular farming, offers cost-effective large-scale production which is regarded as one of the most important factors for clinical or agricultural use of AMPs. This review presents various types of AMPs as well as plant-based platforms ranging from cell suspensions to whole plants employed for peptide production. Although AMP production in plants holds great promises for medicine and agriculture, specific technical limitations regarding product yield, function and stability still remain. Additionally, establishment of particular stable expression systems employing plants or plant tissues generally requires extended time scale for platform development compared to certain other heterologous systems. Therefore, fast and promising tools for evaluation of plant-based expression strategies and assessment of function and stability of the heterologously produced AMPs are critical for molecular farming and plant protection. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. New Research in Organic Agriculture

    DEFF Research Database (Denmark)

    1996-01-01

    The book is the proceedings from the bi-annual international scientific conference on organic agriculture. The chapters are: - plant and soil interactions, - animal production systems, - traditional knowledge in sustainable agriculture, - research, education and extension in sustainable agricultu......, - environmental impact and nature, - potentials of organic farming, - community, consumer and market, and - policy and financial strategies.......The book is the proceedings from the bi-annual international scientific conference on organic agriculture. The chapters are: - plant and soil interactions, - animal production systems, - traditional knowledge in sustainable agriculture, - research, education and extension in sustainable agriculture...

  3. Module-based Simulation System for efficient development of nuclear simulation programs

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Wakabayashi, Jiro

    1990-01-01

    Module-based Simulation System (MSS) has been developed to realize a new software environment enabling versatile dynamic simulation of a complex nuclear power plant system flexibly. Described in the paper are (i) fundamental methods utilized in MMS and its software systemization, (ii) development of human interface system to help users in generating integrated simulation programs automatically, and (iii) development of an intelligent user support system for helping users in the two phases of automatical semantic diagnosis and consultation to automatic input data setup for the MSS-generated programs. (author)

  4. Filtration Systems Design for Universal Oils in Agricultural Tractors

    Directory of Open Access Journals (Sweden)

    R. Majdan

    2017-12-01

    Full Text Available Three filtration systems using the tractor hydraulic circuit were proposed and verified during the tractors operation. Using the tractor-implement hydraulic system and filter body with accessories the universally useful filtration systems were designed. The designed filtration systems are the second stage of universal oil filtration whereas the first stage is the standard tractor filter. The decrease in the content of iron reached the values 25.53 %, 32.95 % and 41.55 % and the average decrease in oil contamination characterized by average value of decrease in content of iron, copper and silicium reached values 24.3 %, 24.7 % and 35.53 % in dependence on the filtration system and an oil contamination level. The decrease in contamination level verified the ability of designed filtration systems for agricultural tractors.

  5. Simulating neural systems with Xyce.

    Energy Technology Data Exchange (ETDEWEB)

    Schiek, Richard Louis; Thornquist, Heidi K.; Mei, Ting; Warrender, Christina E.; Aimone, James Bradley; Teeter, Corinne; Duda, Alex M.

    2012-12-01

    Sandias parallel circuit simulator, Xyce, can address large scale neuron simulations in a new way extending the range within which one can perform high-fidelity, multi-compartment neuron simulations. This report documents the implementation of neuron devices in Xyce, their use in simulation and analysis of neuron systems.

  6. China's WTO commitments in agriculture and impacts of potential OECD agricultural trade liberalizations

    DEFF Research Database (Denmark)

    Yu, Wusheng; Frandsen, Søren E.

    2005-01-01

    general equilibrium simulation results show that China’s WTO commitments will lead to increased agricultural imports and slightly declined outputs in China. The resulting efficiency gains will be negated by terms-of-trade losses, leading to quantitatively small welfare impacts. Furthermore, sectoral...... results depend critically on correctly representing the more complex policy measures, such as the tariff rate quotas. The negative output effects on Chinese agriculture can be alleviated/reversed if the rich OECD countries commit to reform their agriculture policies. The present paper concludes that trade...... liberalization should be carried out in both developing and developed countries. Reforming the latter will be particularly helpful in easing the problems facing those developing countries that are carrying out ambitious trade reforms....

  7. Diagnosing Management of Agricultural Research and Technology Development under the Agricultural Innovation Framework

    Directory of Open Access Journals (Sweden)

    2014-06-01

    Full Text Available This study aimed at identifying and analyzing issues and challenges on the agricultural research and technology development under the national innovation framework. The survey consisted of two groups: agricultural researchers of Agriculture-Research and Education Organization and all faculty members of public agricultural faculties of Ministry of Scientific, Research and Technology. Using Cochran sampling formula and multi-stage sampling method, 188 researchers and 205 faculty members were selected in order to fill in the survey questionnaire. Using the SPSS, collected data analyzed based on explanatory factor analysis. Totally, factor analysis of three sets of issues and challenges on the agricultural research and technology development under the national innovation framework led to extract 13 factors, including agricultural structure and policy, infrastructure and resources of agricultural development, supportive services for agricultural development (level of agricultural development, investment and capacity building in research and technology, management of research and technology development, research and technology productivity, research culture, networks for research and technology development (level of national innovation system, agricultural research policy, impacts and effectiveness of agricultural research and technology development, integrated management of research and technology, institutional development for agricultural research and technology and systematic synergy of agricultural research and higher education (level of agricultural innovation system. Totally, these three sets of factors explained 64%, 75% and 73% of the total variances. Finally, using conceptual clustering for the extracted factors, a conceptual model of issues and challenges of agricultural research and technology development under the national innovation framework was presented.

  8. Distributed simulation of large computer systems

    International Nuclear Information System (INIS)

    Marzolla, M.

    2001-01-01

    Sequential simulation of large complex physical systems is often regarded as a computationally expensive task. In order to speed-up complex discrete-event simulations, the paradigm of Parallel and Distributed Discrete Event Simulation (PDES) has been introduced since the late 70s. The authors analyze the applicability of PDES to the modeling and analysis of large computer system; such systems are increasingly common in the area of High Energy and Nuclear Physics, because many modern experiments make use of large 'compute farms'. Some feasibility tests have been performed on a prototype distributed simulator

  9. Evolution of the knowledge system for agricultural development in the Yaqui Valley, Sonora, Mexico.

    Science.gov (United States)

    McCullough, Ellen B; Matson, Pamela A

    2016-04-26

    Knowledge systems-networks of linked actors, organizations, and objects that perform a number of knowledge-related functions that link knowledge and know how with action-have played a key role in fostering agricultural development over the last 50 years. We examine the evolution of the knowledge system of the Yaqui Valley, Mexico, a region often described as the home of the green revolution for wheat, tracing changes in the functions of critical knowledge system participants, information flows, and research priorities. Most of the knowledge system's key players have been in place for many decades, although their roles have changed in response to exogenous and endogenous shocks and trends (e.g., drought, policy shifts, and price trends). The system has been agile and able to respond to challenges, in part because of the diversity of players (evolving roles of actors spanning research-decision maker boundaries) and also because of the strong and consistent role of innovative farmers. Although the agricultural research agenda in the Valley is primarily controlled from within the agricultural sector, outside voices have become an important influence in broadening development- and production-oriented perspectives to sustainability perspectives.

  10. A simulation of soil water content based on remote sensing in a semi-arid Mediterranean agricultural landscape

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, N.; Martinez-Fernandez, J.; Rodriguez-Ruiz, M.; Torres, E.; Calera, A.

    2012-11-01

    This paper shows the application of a water balance based on remote sensing that integrated a Landsat 5 series from 2009 in an area of 1,300 km{sup 2} in the Duero Basin (Spain). The objective was to simulate the daily soil water content (SWC), actual evapotranspiration, deep percolation and irrigation rates. The accuracy of the application is tested in a semi-arid Mediterranean agricultural landscape with crops over natural conditions. The results of the simulated SWC were compared against 19 in situ stations of the Soil Moisture Measurement Stations Network (REMEDHUS), in order to check the feasibility and accuracy of the application. The theoretical basis of the application was the FAO56 calculation assisted by remotely sensed imagery. The basal crop coefficient (Kcb), as well as other parameters of the calculation came from the remote reflectance of the images. This approach was implemented in the computerized tool HIDROMORE+, which integrates various spatial databases. The comparison of simulated and observed values (at different depths and different land uses) showed a good global agreement for the area (R{sup 2} = 0.92, RMSE = 0.031 m{sup 3} m{sup -}3, and bias = -0.027 m{sup 3} m{sup -}3). The land uses better described were rainfed cereals (R2 = 0.86, RMSE = 0.030 m{sup 3} m{sup -}3, and bias = -0.025 m{sup 3} m{sup -}3) and vineyards (R{sup 2} = 0.86, RMSE = 0.016 m{sup 3} m{sup -}3, and bias = -0.013 m{sup 3} m{sup -}3). In general, an underestimation of the soil water content is noticed, more pronounced into the root zone than at surface layer. The final aim was to convert the application into a hydrological tool available for agricultural water management. (Author) 42 refs.

  11. 12 CFR 617.7620 - What should the System institution do when it decides to sell acquired agricultural real estate...

    Science.gov (United States)

    2010-01-01

    ... decides to sell acquired agricultural real estate at a public auction? 617.7620 Section 617.7620 Banks and... What should the System institution do when it decides to sell acquired agricultural real estate at a public auction? System institutions electing to sell or lease acquired agricultural real estate or a...

  12. Benchmarking a Soil Moisture Data Assimilation System for Agricultural Drought Monitoring

    Science.gov (United States)

    Hun, Eunjin; Crow, Wade T.; Holmes, Thomas; Bolten, John

    2014-01-01

    Despite considerable interest in the application of land surface data assimilation systems (LDAS) for agricultural drought applications, relatively little is known about the large-scale performance of such systems and, thus, the optimal methodological approach for implementing them. To address this need, this paper evaluates an LDAS for agricultural drought monitoring by benchmarking individual components of the system (i.e., a satellite soil moisture retrieval algorithm, a soil water balance model and a sequential data assimilation filter) against a series of linear models which perform the same function (i.e., have the same basic inputoutput structure) as the full system component. Benchmarking is based on the calculation of the lagged rank cross-correlation between the normalized difference vegetation index (NDVI) and soil moisture estimates acquired for various components of the system. Lagged soil moistureNDVI correlations obtained using individual LDAS components versus their linear analogs reveal the degree to which non-linearities andor complexities contained within each component actually contribute to the performance of the LDAS system as a whole. Here, a particular system based on surface soil moisture retrievals from the Land Parameter Retrieval Model (LPRM), a two-layer Palmer soil water balance model and an Ensemble Kalman filter (EnKF) is benchmarked. Results suggest significant room for improvement in each component of the system.

  13. Adaptation of knowledge systems to changes in agriculture and society: The case of the Netherlands

    NARCIS (Netherlands)

    Spiertz, J.H.J.; Kropff, M.J.

    2011-01-01

    Agricultural sciences developed in Europe from the middle of the 19th century onwards. In the Netherlands, a national agricultural research and education system was established in 1876. Initially, the emphasis was strongly on education and applied research. The higher professional school for

  14. "Agricultural budget" and the competitiveness of the Polish agriculture

    OpenAIRE

    Lenkiewicz, Stanisław; Rokicki, Bartłomiej

    2014-01-01

    The aim of the publication is to assess the impact of public support on the functioning of the Polish agriculture. In order to achieve this aim the publication includes an analysis of the system of direct payments and rural development policy instruments planned to be implemented in Poland within the CAP 2014-2020. The study also presents an analysis of regional diversity of the Polish agriculture and an assessment of the scale of agricultural investment made in recent years in all the Polish...

  15. Modeling and simulation of large HVDC systems

    Energy Technology Data Exchange (ETDEWEB)

    Jin, H.; Sood, V.K.

    1993-01-01

    This paper addresses the complexity and the amount of work in preparing simulation data and in implementing various converter control schemes and the excessive simulation time involved in modelling and simulation of large HVDC systems. The Power Electronic Circuit Analysis program (PECAN) is used to address these problems and a large HVDC system with two dc links is simulated using PECAN. A benchmark HVDC system is studied to compare the simulation results with those from other packages. The simulation time and results are provided in the paper.

  16. The Climate-Agriculture-Modeling and Decision Tool (CAMDT) for Climate Risk Management in Agriculture

    Science.gov (United States)

    Ines, A. V. M.; Han, E.; Baethgen, W.

    2017-12-01

    Advances in seasonal climate forecasts (SCFs) during the past decades have brought great potential to improve agricultural climate risk managements associated with inter-annual climate variability. In spite of popular uses of crop simulation models in addressing climate risk problems, the models cannot readily take seasonal climate predictions issued in the format of tercile probabilities of most likely rainfall categories (i.e, below-, near- and above-normal). When a skillful SCF is linked with the crop simulation models, the informative climate information can be further translated into actionable agronomic terms and thus better support strategic and tactical decisions. In other words, crop modeling connected with a given SCF allows to simulate "what-if" scenarios with different crop choices or management practices and better inform the decision makers. In this paper, we present a decision support tool, called CAMDT (Climate Agriculture Modeling and Decision Tool), which seamlessly integrates probabilistic SCFs to DSSAT-CSM-Rice model to guide decision-makers in adopting appropriate crop and agricultural water management practices for given climatic conditions. The CAMDT has a functionality to disaggregate a probabilistic SCF into daily weather realizations (either a parametric or non-parametric disaggregation method) and to run DSSAT-CSM-Rice with the disaggregated weather realizations. The convenient graphical user-interface allows easy implementation of several "what-if" scenarios for non-technical users and visualize the results of the scenario runs. In addition, the CAMDT also translates crop model outputs to economic terms once the user provides expected crop price and cost. The CAMDT is a practical tool for real-world applications, specifically for agricultural climate risk management in the Bicol region, Philippines, having a great flexibility for being adapted to other crops or regions in the world. CAMDT GitHub: https://github.com/Agro-Climate/CAMDT

  17. A Multiprocessor Operating System Simulator

    Science.gov (United States)

    Johnston, Gary M.; Campbell, Roy H.

    1988-01-01

    This paper describes a multiprocessor operating system simulator that was developed by the authors in the Fall semester of 1987. The simulator was built in response to the need to provide students with an environment in which to build and test operating system concepts as part of the coursework of a third-year undergraduate operating systems course. Written in C++, the simulator uses the co-routine style task package that is distributed with the AT&T C++ Translator to provide a hierarchy of classes that represents a broad range of operating system software and hardware components. The class hierarchy closely follows that of the 'Choices' family of operating systems for loosely- and tightly-coupled multiprocessors. During an operating system course, these classes are refined and specialized by students in homework assignments to facilitate experimentation with different aspects of operating system design and policy decisions. The current implementation runs on the IBM RT PC under 4.3bsd UNIX.

  18. Improvements to information management systems simulator

    Science.gov (United States)

    Bilek, R. W.

    1972-01-01

    The performance of personnel in the augmentation and improvement of the interactive IMSIM information management simulation model is summarized. With this augmented model, NASA now has even greater capabilities for the simulation of computer system configurations, data processing loads imposed on these configurations, and executive software to control system operations. Through these simulations, NASA has an extremely cost effective capability for the design and analysis of computer-based data management systems.

  19. Building a parallel file system simulator

    International Nuclear Information System (INIS)

    Molina-Estolano, E; Maltzahn, C; Brandt, S A; Bent, J

    2009-01-01

    Parallel file systems are gaining in popularity in high-end computing centers as well as commercial data centers. High-end computing systems are expected to scale exponentially and to pose new challenges to their storage scalability in terms of cost and power. To address these challenges scientists and file system designers will need a thorough understanding of the design space of parallel file systems. Yet there exist few systematic studies of parallel file system behavior at petabyte- and exabyte scale. An important reason is the significant cost of getting access to large-scale hardware to test parallel file systems. To contribute to this understanding we are building a parallel file system simulator that can simulate parallel file systems at very large scale. Our goal is to simulate petabyte-scale parallel file systems on a small cluster or even a single machine in reasonable time and fidelity. With this simulator, file system experts will be able to tune existing file systems for specific workloads, scientists and file system deployment engineers will be able to better communicate workload requirements, file system designers and researchers will be able to try out design alternatives and innovations at scale, and instructors will be able to study very large-scale parallel file system behavior in the class room. In this paper we describe our approach and provide preliminary results that are encouraging both in terms of fidelity and simulation scalability.

  20. Vegetated Treatment Systems for Removing Contaminants Associated with Surface Water Toxicity in Agriculture and Urban Runoff.

    Science.gov (United States)

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Cahn, Michael

    2017-05-15

    Urban stormwater and agriculture irrigation runoff contain a complex mixture of contaminants that are often toxic to adjacent receiving waters. Runoff may be treated with simple systems designed to promote sorption of contaminants to vegetation and soils and promote infiltration. Two example systems are described: a bioswale treatment system for urban stormwater treatment, and a vegetated drainage ditch for treating agriculture irrigation runoff. Both have similar attributes that reduce contaminant loading in runoff: vegetation that results in sorption of the contaminants to the soil and plant surfaces, and water infiltration. These systems may also include the integration of granulated activated carbon as a polishing step to remove residual contaminants. Implementation of these systems in agriculture and urban watersheds requires system monitoring to verify treatment efficacy. This includes chemical monitoring for specific contaminants responsible for toxicity. The current paper emphasizes monitoring of current use pesticides since these are responsible for surface water toxicity to aquatic invertebrates.

  1. Typologies and Spatialization of Agricultural Production Systems in Rondônia, Brazil: Linking Land Use, Socioeconomics and Territorial Configuration

    Directory of Open Access Journals (Sweden)

    Cláudio Almeida

    2016-06-01

    Full Text Available The current Amazon landscape consists of heterogeneous mosaics formed by interactions between the original forest and productive activities. Recognizing and quantifying the characteristics of these landscapes is essential for understanding agricultural production chains, assessing the impact of policies, and in planning future actions. Our main objective was to construct the regionalization of agricultural production for Rondônia State (Brazilian Amazon at the municipal level. We adopted a decision tree approach, using land use maps derived from remote sensing data (PRODES and TerraClass combined with socioeconomic data. The decision trees allowed us to allocate municipalities to one of five agricultural production systems: (i coexistence of livestock production and intensive agriculture; (ii semi-intensive beef and milk production; (iii semi-intensive beef production; (iv intensive beef and milk production, and; (v intensive beef production. These production systems are, respectively, linked to mechanized agriculture (i, traditional cattle farming with low management, with (ii or without (iii a significant presence of dairy farming, and to more intensive livestock farming with (iv or without (v a significant presence of dairy farming. The municipalities and associated production systems were then characterized using a wide variety of quantitative metrics grouped into four dimensions: (i agricultural production; (ii economics; (iii territorial configuration, and; (iv social characteristics. We found that production systems linked to mechanized agriculture predominate in the south of the state, while intensive farming is mainly found in the center of the state. Semi-intensive livestock farming is mainly located close to the southwest frontier and in the north of the state, where human occupation of the territory is not fully consolidated. This distributional pattern reflects the origins of the agricultural production system of Rond

  2. PARAMETRIZATION OF INNER STRUCTURE OF AGRICULTURAL SYSTEMS ON THE BASIS OF MAXIMAL YIELDS ISOLINES (ISOCARPS

    Directory of Open Access Journals (Sweden)

    K KUDRNA

    2004-07-01

    Full Text Available On the basis of analysis of yield time series from a ten-year period, isolines of maximal yields of crops (isocarps have been constructed, homogenized yield zones have been determined, and inner structures of the agricultural system have been calculated. The algorithm of a normal and an optimal structure calculation have been used, and differences in the structure of the agricultural system have been determined for every defi ned zone.

  3. Conservationist Systems, one environmental alternative for the agriculture of the Northeastern Andes of Colombia

    International Nuclear Information System (INIS)

    Villamizar Moreno, J.

    1999-01-01

    The article shows the results of a proposal of alternative handling of the agriculture ecosystem tobacco-bean-maize, main agricultural activity of the Northeastern Andes of Colombia. This system is the base of the economic and alimentary security and the main factor of degradation of the natural resources of the region. The work looks for to develop the diversified rotations, as essential component of biological diversity, the reduced works as strategy of protection of the soil and the promotion of the agriculture ecology like new model of agricultural development. The results of the work show that the high volume of organic residuals coming from the rotation tobacco bean maize, become compost in the field and the reduction of the farm, they promote the stability of the productive components of the soils and their agricultural yields. The biggest levels of organic matter and of total porosity, generated by the biggest biological activity, they indicate that the technological alternatives of the proposal slow the effects of the degradation originated by the conventional agriculture. These alternatives can be included in the regional programs of agricultural production, like solution principle and as strategy for the sustainable development of the region

  4. Agricultural policy and childhood obesity: a food systems and public health commentary.

    Science.gov (United States)

    Wallinga, David

    2010-01-01

    For thirty-five years, U.S. agriculture has operated under a "cheap food" policy that spurred production of a few commodity crops, not fruit or vegetables, and thus of the calories from them. A key driver of childhood obesity is the consumption of excess calories, many from inexpensive, nutrient-poor snacks, sweets, and sweetened beverages made with fats and sugars derived from these policy-supported crops. Limiting or eliminating farm subsidies to commodity farmers is wrongly perceived as a quick fix to a complex agricultural system, evolved over decades, that promotes obesity. Yet this paper does set forth a series of policy recommendations that could help, including managing commodity crop oversupply and supporting farmers who produce more fruit and vegetables to build a healthier, more balanced agricultural policy.

  5. Operating system for a real-time multiprocessor propulsion system simulator

    Science.gov (United States)

    Cole, G. L.

    1984-01-01

    The success of the Real Time Multiprocessor Operating System (RTMPOS) in the development and evaluation of experimental hardware and software systems for real time interactive simulation of air breathing propulsion systems was evaluated. The Real Time Multiprocessor Operating System (RTMPOS) provides the user with a versatile, interactive means for loading, running, debugging and obtaining results from a multiprocessor based simulator. A front end processor (FEP) serves as the simulator controller and interface between the user and the simulator. These functions are facilitated by the RTMPOS which resides on the FEP. The RTMPOS acts in conjunction with the FEP's manufacturer supplied disk operating system that provides typical utilities like an assembler, linkage editor, text editor, file handling services, etc. Once a simulation is formulated, the RTMPOS provides for engineering level, run time operations such as loading, modifying and specifying computation flow of programs, simulator mode control, data handling and run time monitoring. Run time monitoring is a powerful feature of RTMPOS that allows the user to record all actions taken during a simulation session and to receive advisories from the simulator via the FEP. The RTMPOS is programmed mainly in PASCAL along with some assembly language routines. The RTMPOS software is easily modified to be applicable to hardware from different manufacturers.

  6. Soil chemical sensor and precision agricultural chemical delivery system and method

    Science.gov (United States)

    Colburn, Jr., John W.

    1991-01-01

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken.

  7. Agriculture production as a major driver of the earth system exceeding planetary boundaries

    DEFF Research Database (Denmark)

    Campbell, Bruce Morgan; Beare, Douglas J.; Bennett, Elena M.

    2017-01-01

    We explore the role of agriculture in destabilizing the Earth system at the planetary scale, through examining nine planetary boundaries, or “safe limits”: land-system change, freshwater use, biogeochemical flows, biosphere integrity, climate change, ocean acidification, stratospheric ozone...

  8. Agricultural Extension, Collective Action and Innovation Systems: Lessons on Network Brokering from Peru and Mexico

    Science.gov (United States)

    Hellin, Jon

    2012-01-01

    Purpose: New approaches to extension service delivery are needed that stimulate increased agricultural production, contribute to collective action and which also foster the emergence of agricultural innovation systems. Research in Peru and Mexico explores some of these new approaches. Design/methodology/approach: In both countries, a qualitative…

  9. The effect of simulated acid rain on the stabilization of cadmium in contaminated agricultural soils treated with stabilizing agents.

    Science.gov (United States)

    Zhu, Hao; Wu, Chunfa; Wang, Jun; Zhang, Xumei

    2018-04-16

    Stabilization technology is one of widely used remediation technologies for cadmium (Cd)-contaminated agricultural soils, but stabilized Cd in soil may be activated again when external conditions such as acid rain occurred. Therefore, it is necessary to study the effect of acid rain on the performance of different stabilizing agents on Cd-polluted agriculture soils. In this study, Cd-contaminated soils were treated with mono-calcium phosphate (MCP), mono-ammonium phosphate (MAP), and artificial zeolite (AZ) respectively and incubated 3 months. These treatments were followed by two types of simulated acid rain (sulfuric acid rain and mixed acid rain) with three levels of acidity (pH = 3.0, 4.0, and 5.6). The chemical forms of Cd in the soils were determined by Tessier's sequential extraction procedure, and the leaching toxicities of Cd in the soils were assessed by toxicity characteristic leaching procedure (TCLP). The results show that the three stabilizing agents could decrease the mobility of Cd in soil to some degree with or without simulated acid rain (SAR) treatment. The stabilization performances followed the order of AZ stabilized soil, and both anion composition and pH of acid rain were two important factors that influenced the stabilization effect of Cd.

  10. Development of a dynamic food chain model DYNACON and its application to Korean agricultural conditions

    International Nuclear Information System (INIS)

    Hwang, Won Tae; Cho, Gyuseong; Han, Moon Hee

    1998-01-01

    A dynamic food chain model DYNACON was developed to simulate the radionuclide transfer on agricultural ecosystems. DYNACON estimates the radioactivity in each compartment of food chains for three radionuclides, nine plant species and five animal products as a function of the deposition date. A number of the parameter values used in this study are representative of Korean agricultural conditions. The model was expressed by coupled differential equations and the radioactivity in each compartment was solved as a function of time following an acute deposition. Although DYNACON is structurally based on existing models, it was designed in order to simulate more realistic radionuclide behavior in Korean agricultural conditions and to save computation time. It was found that the radioactivity in foodstuffs depends strongly on the date of deposition. A comparative study between DYNACON and an equilibrium model showed good agreement for depositions that occur during the growing season of plants. DYNACON is going to be implemented in a Korean real-time dose assessment system FADAS. (author)

  11. Using rainfall simulations to understand the relationship between precipitation, soil crust and infiltration in four agricultural soils

    Science.gov (United States)

    Angulo-Martinez, Marta; Alastrué, Juan; Moret-Fernández, David; Beguería, Santiago; López, Mariví; Navas, Ana

    2017-04-01

    Rainfall simulation experiments were carried out in order to study soil crust formation and its relation with soil infiltration parameters—sorptivity (S) and hydraulic conductivity (K)—on four common agricultural soils with contrasted properties; namely, Cambisol, Gypsisol, Solonchak, and Solonetz. Three different rainfall simulations, replicated three times each of them, were performed over the soils. Prior to rainfall simulations all soils were mechanically tilled with a rototiller to create similar soil surface conditions and homogeneous soils. Rainfall simulation parameters were monitored in real time by a Thies Laser Precipitation Monitor, allowing a complete characterization of simulated rainfall microphysics (drop size and velocity distributions) and integrated variables (accumulated rainfall, intensity and kinetic energy). Once soils dried after the simulations, soil penetration resistance was measured and soil hydraulic parameters, S and K, were estimated using the disc infiltrometry technique. There was little variation in rainfall parameters among simulations. Mean intensity and mean median diameter (D50) varied in simulations 1 ( 0.5 bar), 2 ( 0.8 bar) and 3 ( 1.2 bar) from 26.5 mm h-1 and 0.43 mm (s1) to 40.5 mm h-1 and 0.54 mm (s2) and 41.1 mm h-1 and 0.56 mm for (s3), respectively. Crust formation by soil was explained by D50 and subsequently by the total precipitation amount and the percentage of silt and clay in soil, being Cambisol and Gypsisol the soils that showed more increase in penetration resistance by simulation. All soils showed similar S values by simulations which were explained by rainfall intensity. Different patterns of K were shown by the four soils, which were explained by the combined effect of D50 and intensity, together with soil physico-chemical properties. This study highlights the importance of monitoring all precipitation parameters to determine their effect on different soil processes.

  12. LandCaRe DSS--an interactive decision support system for climate change impact assessment and the analysis of potential agricultural land use adaptation strategies.

    Science.gov (United States)

    Wenkel, Karl-Otto; Berg, Michael; Mirschel, Wilfried; Wieland, Ralf; Nendel, Claas; Köstner, Barbara

    2013-09-01

    Decision support to develop viable climate change adaptation strategies for agriculture and regional land use management encompasses a wide range of options and issues. Up to now, only a few suitable tools and methods have existed for farmers and regional stakeholders that support the process of decision-making in this field. The interactive model-based spatial information and decision support system LandCaRe DSS attempts to close the existing methodical gap. This system supports interactive spatial scenario simulations, multi-ensemble and multi-model simulations at the regional scale, as well as the complex impact assessment of potential land use adaptation strategies at the local scale. The system is connected to a local geo-database and via the internet to a climate data server. LandCaRe DSS uses a multitude of scale-specific ecological impact models, which are linked in various ways. At the local scale (farm scale), biophysical models are directly coupled with a farm economy calculator. New or alternative simulation models can easily be added, thanks to the innovative architecture and design of the DSS. Scenario simulations can be conducted with a reasonable amount of effort. The interactive LandCaRe DSS prototype also offers a variety of data analysis and visualisation tools, a help system for users and a farmer information system for climate adaptation in agriculture. This paper presents the theoretical background, the conceptual framework, and the structure and methodology behind LandCaRe DSS. Scenario studies at the regional and local scale for the two Eastern German regions of Uckermark (dry lowlands, 2600 km(2)) and Weißeritz (humid mountain area, 400 km(2)) were conducted in close cooperation with stakeholders to test the functionality of the DSS prototype. The system is gradually being transformed into a web version (http://www.landcare-dss.de) to ensure the broadest possible distribution of LandCaRe DSS to the public. The system will be continuously

  13. Climate Changes and Their Impact on Agricultural Market Systems: Examples from Nepal

    Directory of Open Access Journals (Sweden)

    Andrea Karin Barrueto

    2017-11-01

    Full Text Available Global climate models foresee changes in temperature and precipitation regimes that shift regional climate zones and influence the viability of agricultural market systems. Understanding the influence of climate change on the different sub-sectors and functions of a market system is crucial to increasing the systems’ climate resilience and to ensuring the long-term viability of the sectors. Our research applies a new approach to climate change analysis to better understand the influence of climate change on each step of an agricultural market system—on its core (processing units, storage facilities and sales and support functions (sapling supply, research, insurance and agricultural policy. We use spatial climate analyses to investigate current and projected changes in climate for different regions in Nepal. We then analyse the risks and vulnerabilities of the sub-sectors banana, charcoal, coffee, macadamia, orange, vegetables and walnut. Our results show that temperatures and precipitation levels will change differently depending on the climatic regions, and that climate change elicits different responses from the market functions both between and within each of the different sub-sectors. We conclude that climate-related interventions in market systems must account for each different market function’s specific response and exposure to climate change, in order to select adaptation measures that ensure long-term climate resilience.

  14. PROBLEM-SOLVING METHODS OF PROJECT MANAGEMENT OF TECHNICAL DEVELOPMENT FOR AGRICULTURAL PRODUCERS

    Directory of Open Access Journals (Sweden)

    Александр Васильевич СИДОРЧУК

    2015-05-01

    Full Text Available There have been proposed projects of technical development for agricultural producers. The conclusions about system features research projects that underlie the problem-solving methods of project management, have been made. There have been proved these projects (systems that can be simulated with the help of the research and formalization of many events. These events are components of the seven main factors of the agricultural production. The conclusion about the using the research method of the probabilistic nature events in the field of the crops projects with the help of the statistical and imitational models, have been developed. There have been considered the relation between the forecasting of functional marks of the technological systems and the estimation of their cost. And there have been found the optimum correspondence between parameters of the technical supply and planned features of the crops projects.

  15. Development of space simulation / net-laboratory system

    Science.gov (United States)

    Usui, H.; Matsumoto, H.; Ogino, T.; Fujimoto, M.; Omura, Y.; Okada, M.; Ueda, H. O.; Murata, T.; Kamide, Y.; Shinagawa, H.; Watanabe, S.; Machida, S.; Hada, T.

    A research project for the development of space simulation / net-laboratory system was approved by Japan Science and Technology Corporation (JST) in the category of Research and Development for Applying Advanced Computational Science and Technology(ACT-JST) in 2000. This research project, which continues for three years, is a collaboration with an astrophysical simulation group as well as other space simulation groups which use MHD and hybrid models. In this project, we develop a proto type of unique simulation system which enables us to perform simulation runs by providing or selecting plasma parameters through Web-based interface on the internet. We are also developing an on-line database system for space simulation from which we will be able to search and extract various information such as simulation method and program, manuals, and typical simulation results in graphic or ascii format. This unique system will help the simulation beginners to start simulation study without much difficulty or effort, and contribute to the promotion of simulation studies in the STP field. In this presentation, we will report the overview and the current status of the project.

  16. Simulator testing system (STS)

    International Nuclear Information System (INIS)

    Miller, V.N.

    1990-01-01

    In recent years there has been a greater demand placed on the capabilities and time usage of real-time nuclear plant simulators due to NRC, INPO and utilities requirements. The requirements applied to certification, new simulators, upgrades, modifications, and maintenance of the simulators vary; however, they all require the capabilities of the simulator to be tested whether it is for NRC 10CFR55.45b requirements, ATP testing of new simulators, ATP testing of upgrades with or without panels, adding software/hardware due to plant modifications, or analyzing software/hardware problems on the simulator. This paper describes the Simulator Testing System (STS) which addresses each one of these requirements placed on simulators. Special attention will be given to ATP testing of upgrades without the use of control room panels. The capabilities and applications of the four parts of STS which are the Display Control Software (DCS), Procedure Control Software (PCS), Display Generator Software (DGS) and the Procedure Generator Software (PGS) will be reviewed

  17. System-of-Systems Approach for Integrated Energy Systems Modeling and Simulation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Saurabh; Ruth, Mark; Pratt, Annabelle; Lunacek, Monte; Krishnamurthy, Dheepak; Jones, Wesley

    2015-08-21

    Today’s electricity grid is the most complex system ever built—and the future grid is likely to be even more complex because it will incorporate distributed energy resources (DERs) such as wind, solar, and various other sources of generation and energy storage. The complexity is further augmented by the possible evolution to new retail market structures that provide incentives to owners of DERs to support the grid. To understand and test new retail market structures and technologies such as DERs, demand-response equipment, and energy management systems while providing reliable electricity to all customers, an Integrated Energy System Model (IESM) is being developed at NREL. The IESM is composed of a power flow simulator (GridLAB-D), home energy management systems implemented using GAMS/Pyomo, a market layer, and hardware-in-the-loop simulation (testing appliances such as HVAC, dishwasher, etc.). The IESM is a system-of-systems (SoS) simulator wherein the constituent systems are brought together in a virtual testbed. We will describe an SoS approach for developing a distributed simulation environment. We will elaborate on the methodology and the control mechanisms used in the co-simulation illustrated by a case study.

  18. Description of the grout system dynamic simulation

    International Nuclear Information System (INIS)

    Zimmerman, B.D.

    1993-07-01

    The grout system dynamic computer simulation was created to allow investigation of the ability of the grouting system to meet established milestones, for various assumed system configurations and parameters. The simulation simulates the movement of tank waste through the system versus time, from initial storage tanks, through feed tanks and the grout plant, then finally to a grout vault. The simulation properly accounts for the following (1) time required to perform various actions or processes, (2) delays involved in gaining regulatory approval, (3) random system component failures, (4) limitations on equipment capacities, (5) available parallel components, and (6) different possible strategies for vault filling. The user is allowed to set a variety of system parameters for each simulation run. Currently, the output of a run primarily consists of a plot of projected grouting campaigns completed versus time, for comparison with milestones. Other outputs involving any model component can also be quickly created or deleted as desired. In particular, sensitivity runs where the effect of varying a model parameter (flow rates, delay times, number of feed tanks available, etc.) on the ability of the system to meet milestones can be made easily. The grout system simulation was implemented using the ITHINK* simulation language for Macintosh** computers

  19. Which Advisory System to Support Innovation in Conservation Agriculture? The Case of Madagascar's Lake Alaotra

    Science.gov (United States)

    Faure, Guy; Penot, Eric; Rakotondravelo, Jean Chrysostome; Ramahatoraka, Haja Andrisoa; Dugue, Patrick; Toillier, Aurelie

    2013-01-01

    Purpose: To promote sustainable agriculture, various development projects are encouraging farmers around Madagascar's Lake Alaotra to adopt conservation agriculture techniques. This article's objective is to analyze the capacity of a project-funded advisory system to accompany such an innovation and to design and implement an advisory method aimed…

  20. Challenges of agricultural monitoring: integration of the Open Farm Management Information System into GEOSS and Digital Earth

    Science.gov (United States)

    Řezník, T.; Kepka, M.; Charvát, K.; Charvát, K., Jr.; Horáková, S.; Lukas, V.

    2016-04-01

    From a global perspective, agriculture is the single largest user of freshwater resources, each country using an average of 70% of all its surface water supplies. An essential proportion of agricultural water is recycled back to surface water and/or groundwater. Agriculture and water pollution is therefore the subject of (inter)national legislation, such as the Clean Water Act in the United States of America, the European Water Framework Directive, and the Law of the People's Republic of China on the Prevention and Control of Water Pollution. Regular monitoring by means of sensor networks is needed in order to provide evidence of water pollution in agriculture. This paper describes the benefits of, and open issues stemming from, regular sensor monitoring provided by an Open Farm Management Information System. Emphasis is placed on descriptions of the processes and functionalities available to users, the underlying open data model, and definitions of open and lightweight application programming interfaces for the efficient management of collected (spatial) data. The presented Open Farm Management Information System has already been successfully registered under Phase 8 of the Global Earth Observation System of Systems (GEOSS) Architecture Implementation Pilot in order to support the wide variety of demands that are primarily aimed at agriculture pollution monitoring. The final part of the paper deals with the integration of the Open Farm Management Information System into the Digital Earth framework.

  1. Profitability Analysis for Agricultural Investment Projects

    Directory of Open Access Journals (Sweden)

    Florina Oana VIRLANUTA

    2011-11-01

    Full Text Available In agriculture production is based on a process both economically as well as the biological one, the work results are influenced, more than any branch of economic, natural and climatic conditions are subject to higher risk and permanently. Due to the features of production in agriculture, we believe that it is necessary such as performance agricultural units to be assessed under a system of specific indicators. The correct assessment units are closely related agricultural economic-financial investment in agriculture. In the following we present and analyze a complex system of specific performance indicators of the extremely for assessing agricultural units.

  2. Simulation for a Coevolved System-of-Systems Meta-Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Muller, George; Dagli, Cihan

    2016-08-15

    This paper describes a simulation of a system-of-systems for counter-smuggling. The simulation is described and results are provided. The results demonstrate the applicability of the agent based modeling paradigm to understand key factors influencing SoS performance.

  3. Seeing GMOs from a Systems Perspective: The Need for Comparative Cartographies of Agri/Cultures for Sustainability Assessment

    Directory of Open Access Journals (Sweden)

    Amaranta Herrero

    2015-08-01

    Full Text Available Over the past twenty years, agricultural biotechnologies have generated chronically unresolved political controversies. The standard tool of risk assessment has proven to be highly limited in its ability to address the panoply of concerns that exist about these hybrid techno/organisms. It has also failed to account for both the conceptual and material networks of relations agricultural biotechnologies require, create and/or perform. This paper takes as a starting point that agricultural biotechnologies cannot be usefully assessed as isolated technological entities but need to be evaluated within the context of the broader socio-ecological system that they embody and engender. The paper then explores, compares and contrasts some of the methodological tools available for advancing this systems-based perspective. The article concludes by outlining a new synthesis approach of comparative cartographies of agri/cultures generated through multi-sited ethnographic case-studies, which is proposed as a way to generate system maps and enable the comparison of genetically modified (GM food with both conventional and alternative agri-food networks for sustainability assessment. The paper aims to make a unique theoretical and methodological contribution by advancing a systems-based approach to conceptualising and assessing genetically modified organisms (GMOs and proposing a synthesised methodology for mapping networks of relations across different agri/cultures.

  4. Benchmarking the performance of a land data assimilation system for agricultural drought monitoring

    Science.gov (United States)

    The application of land data assimilation systems to operational agricultural drought monitoring requires the development of (at least) three separate system sub-components: 1) a retrieval model to invert satellite-derived observations into soil moisture estimates, 2) a prognostic soil water balance...

  5. Using system dynamics simulation for assessment of hydropower system safety

    Science.gov (United States)

    King, L. M.; Simonovic, S. P.; Hartford, D. N. D.

    2017-08-01

    Hydropower infrastructure systems are complex, high consequence structures which must be operated safely to avoid catastrophic impacts to human life, the environment, and the economy. Dam safety practitioners must have an in-depth understanding of how these systems function under various operating conditions in order to ensure the appropriate measures are taken to reduce system vulnerability. Simulation of system operating conditions allows modelers to investigate system performance from the beginning of an undesirable event to full system recovery. System dynamics simulation facilitates the modeling of dynamic interactions among complex arrangements of system components, providing outputs of system performance that can be used to quantify safety. This paper presents the framework for a modeling approach that can be used to simulate a range of potential operating conditions for a hydropower infrastructure system. Details of the generic hydropower infrastructure system simulation model are provided. A case study is used to evaluate system outcomes in response to a particular earthquake scenario, with two system safety performance measures shown. Results indicate that the simulation model is able to estimate potential measures of system safety which relate to flow conveyance and flow retention. A comparison of operational and upgrade strategies is shown to demonstrate the utility of the model for comparing various operational response strategies, capital upgrade alternatives, and maintenance regimes. Results show that seismic upgrades to the spillway gates provide the largest improvement in system performance for the system and scenario of interest.

  6. Systems of innovation and agricultural productivity in African ...

    African Journals Online (AJOL)

    Journal of Agricultural Research and Development ... dominated by the narrow approach of employing technology transfer and adoption theory. ... are relevant in studying innovative practices that result in sustainable agricultural productivity.

  7. Modeling the cadmium balance in Australian agricultural systems in view of potential impacts on food and water quality

    Energy Technology Data Exchange (ETDEWEB)

    Vries, W. de, E-mail: wim.devries@wur.nl [Alterra-Wageningen University and Research Centre, PO Box 47, 6700 AA Wageningen (Netherlands); Environmental Systems Analysis Group, Wageningen University, PO Box 47, 6700 AA Wageningen (Netherlands); McLaughlin, M.J. [CSIRO Sustainable Agriculture Flagship, CSIRO Land and Water, PMB 2, Glen Osmond, South Australia 5064 (Australia); University of Adelaide, PMB 1, Glen Osmond, South Australia 5064 (Australia)

    2013-09-01

    The historical build up and future cadmium (Cd) concentrations in top soils and in crops of four Australian agricultural systems are predicted with a mass balance model, focusing on the period 1900–2100. The systems include a rotation of dryland cereals, a rotation of sugarcane and peanuts/soybean, intensive dairy production and intensive horticulture. The input of Cd to soil is calculated from fertilizer application and atmospheric deposition and also examines options including biosolid and animal manure application in the sugarcane rotation and dryland cereal production systems. Cadmium output from the soil is calculated from leaching to deeper horizons and removal with the harvested crop or with livestock products. Parameter values for all Cd fluxes were based on a number of measurements on Australian soil–plant systems. In the period 1900–2000, soil Cd concentrations were predicted to increase on average between 0.21 mg kg{sup −1} in dryland cereals, 0.42 mg kg{sup −1} in intensive agriculture and 0.68 mg kg{sup −1} in dairy production, which are within the range of measured increases in soils in these systems. Predicted soil concentrations exceed critical soil Cd concentrations, based on food quality criteria for Cd in crops during the simulation period in clay-rich soils under dairy production and intensive horticulture. Predicted dissolved Cd concentrations in soil pore water exceed a ground water quality criterion of 2 μg l{sup −1} in light textured soils, except for the sugarcane rotation due to large water leaching fluxes. Results suggest that the present fertilizer Cd inputs in Australia are in excess of the long-term critical loads in heavy-textured soils for dryland cereals and that all other systems are at low risk. Calculated critical Cd/P ratios in P fertilizers vary from < 50 to > 1000 mg Cd kg P{sup −1} for the different soil, crop and environmental conditions applied. - Highlights: • Cadmium concentrations in soils and plants

  8. Development of a real-time hydrological cycle - rice growth coupled simulation system as a tool for farmers' decision making in an ungauged basin in Cambodia for the better agricultural water resources management

    Science.gov (United States)

    Tsujimoto, K.; Ohta, T.; Yasukawa, M.; Koike, T.; Kitsuregawa, M.; Homma, K.

    2013-12-01

    The entire country of Cambodia depends on agriculture for its economy. Rice is the staple food, making it the major agricultural product (roughly 80% of total national production). The target area of this study is western Cambodia, where rice production is the greatest in the country and most land is rainfed. Since most farmers rely only on their (non-science-based) experience, they would not adjust to changing rainfall and degraded water resources under climate change, so food security in the region would be seriously threatened (Monichoth et al., 2013). Under this condition, irrigation master plans are being considered by several ODA projects. This study aims to contribute to the design of such irrigation plans through the development of a real-time hydrological cycle - rice growth coupled simulation system. The purpose of the development of this system is to support decision making 1) for determining the necessary agricultural water resources and 2) for allocating limited water resources to various sectors. Rice growing condition as affected by water stress due to the water shortage is supposed to be shown for both of the cases with and without irrigation for several rainfall patterns. A dynamically coupled model of a distributed hydrological model (WEB-DHM., Wang et al., 2009) and a rice growth model (SIMRIW-rainfed, Homma et al., 2009) has been developed with a simple irrigation model. The target basin, a small basin in western Cambodia, is basically an ungauged basin and the model was validated by soil moisture, LAI, dry matter production of the rice crop, and rice yield, using both intensive field observation and satellite observations. Calibrating hourly satellite precipitation dataset (GSMaP/NRT) using ground rain gauges, hydrological cycle (soil moisture at three layers, river discharge, irrigatable water amount, water level of each paddy field, water demand of each paddy field, etc.) and rice growth (LAI, developmental index of the rice crop, dry matter

  9. Agricultural production and stability of settlement systems in Upper Mesopotamia during the Early Bronze Age (third millennium BCE)

    Science.gov (United States)

    Kalayci, Tuna

    This study investigates the relationship between rainfall variation and rain-fed agricultural production in Upper Mesopotamia with a specific focus on Early Bronze Age urban settlements. In return, the variation in production is used to explore stability of urban settlement systems. The organization of the flow of agricultural goods is the key to sustaining the total settlement system. The vulnerability of a settlement system increases due to the increased demand for more output from agricultural lands. This demand is the key for the success of urbanization project. However, without estimating how many foodstuffs were available at the end of a production cycle, further discussions on the forces that shaped and sustained urban settlement systems will be lacking. While large scale fluctuations in the flow of agricultural products between settlements are not the only determinants of hierarchical structures, the total available agricultural yield for each urban settlement in a hierarchy must have influenced settlement relations. As for the methodology, first, Early Bronze Age precipitation levels are estimated by using modern day associations between the eastern Mediterranean coastal areas and the inner regions of Upper Mesopotamia. Next, these levels are integrated into a remote-sensing based biological growth model. Also, a CORONA satellite imagery based archaeological survey is conducted in order to map the Early Bronze Age settlement system in its entirety as well as the ancient markers of agricultural intensification. Finally, ancient agricultural production landscapes are modeled in a GIS. The study takes a critical position towards the traditionally held assumption that large urban settlements (cities) in Upper Mesopotamia were in a state of constant demand for food. The results from this study also suggest that when variations in ancient precipitation levels are translated into the variations in production levels, the impact of climatic aridification on ancient

  10. Agriculture and greenhouse effect: economic regulation of cross impacts and combination of agricultural and environmental policies - analysis for the France and extension to the european union. Economic analysis of the interactions agriculture- greenhouse effect; Agriculture et effet de serre: regulation economique des impacts croises et combinaison des politiques agricole et environnementale - Analyse pour la France et extension pour l'Union Europeenne. Analyse economique des interactions agriculture - effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Jayet, P.A

    2002-09-15

    The objectives of the research program are: the impacts evaluation of a double relation climate - agriculture on the agricultural production and the greenhouse gases emission; the compatibility of agricultural policies and environmental policies of the sector. Simulations are realized at a regional scale with a coupling of economical and biophysical models (manure spreading, cultivation yield). (A.L.B.)

  11. A Remote Sensing Approach for Regional-Scale Mapping of Agricultural Land-Use Systems Based on NDVI Time Series

    Directory of Open Access Journals (Sweden)

    Beatriz Bellón

    2017-06-01

    Full Text Available In response to the need for generic remote sensing tools to support large-scale agricultural monitoring, we present a new approach for regional-scale mapping of agricultural land-use systems (ALUS based on object-based Normalized Difference Vegetation Index (NDVI time series analysis. The approach consists of two main steps. First, to obtain relatively homogeneous land units in terms of phenological patterns, a principal component analysis (PCA is applied to an annual MODIS NDVI time series, and an automatic segmentation is performed on the resulting high-order principal component images. Second, the resulting land units are classified into the crop agriculture domain or the livestock domain based on their land-cover characteristics. The crop agriculture domain land units are further classified into different cropping systems based on the correspondence of their NDVI temporal profiles with the phenological patterns associated with the cropping systems of the study area. A map of the main ALUS of the Brazilian state of Tocantins was produced for the 2013–2014 growing season with the new approach, and a significant coherence was observed between the spatial distribution of the cropping systems in the final ALUS map and in a reference map extracted from the official agricultural statistics of the Brazilian Institute of Geography and Statistics (IBGE. This study shows the potential of remote sensing techniques to provide valuable baseline spatial information for supporting agricultural monitoring and for large-scale land-use systems analysis.

  12. Agricultural Innovation Systems (AIS): A Study of Stakeholders and Their Relations in System of Rice Intensification (SRI)

    Science.gov (United States)

    Suchiradipta, Bhattacharjee; Raj, Saravanan

    2015-01-01

    Purpose: This paper identifies the stakeholders of System of Rice Intensification (SRI), their roles and actions and the supporting and enabling environment of innovation in the state as the elements of the Agricultural Innovation Systems (AIS) in SRI in Tripura state of India and studies the relationship matrix among the stakeholders.…

  13. Design and Simulation of Dairy Farm Photovoltaic System for a Rural Area in Tlemcen, Algeria

    Directory of Open Access Journals (Sweden)

    Soufi Aicha

    2016-07-01

    Full Text Available The use of renewable energy in agriculture is a research knows that considerable development in the last decade. In this paper we scrutinized optimal sizing of solar array and battery in a stand-alone photovoltaic (SPV system to provide the required electricity for a dairy cow farm located in Terny Beni hdiel in Tlemcen, Algeria. Solar radiation data measured in an hourly time-series format are used based on 22 years. Average between 1983 and 2005. The PVSYST software tool was used for simulation of the system. The study is addressed to loads in the small dairy farm with energy consumption levels of around 121 kWh per day. The stand-alone PV system consists of a Solar panel, DC-DC Converter, Maximum Power Point Tracker, DC/AC Inverter, and Battery.

  14. Evaluation system for pesticides (ESPE) 2. Non-agricultural pesticides. To be incorporated into the Uniform System for the Evaluation of Substances (USES)

    NARCIS (Netherlands)

    Luttik R; Emans HJB; Poel P van der; Linders JBHJ

    1993-01-01

    After the presentation of the Evaluation System for Pesticides (ESPE) 1. Agricultural pesticides (Emans et al. 1992) this present report is describing the logical successor ESPE 2: non-agricultural pesticides. Starting with an extensive emission analysis of the different types

  15. Trends in Nonfatal Agricultural Injury in Maine and New Hampshire: Results From a Low-Cost Passive Surveillance System.

    Science.gov (United States)

    Scott, Erika; Bell, Erin; Hirabayashi, Liane; Krupa, Nicole; Jenkins, Paul

    2017-01-01

    Agriculture is a dangerous industry, and although data on fatal injuries exist, less is known about nonfatal injuries. The purpose of this study is to describe trends in agricultural morbidity in Maine and New Hampshire from 2008 to 2010 using a newly established passive surveillance system. This passive system is supplied by injury cases gathered from prehospital care reports and hospital data. Demographics and specifics of the event were recorded for each incident case. The average age of injured people in Maine and New Hampshire was 41.7. Women constituted 43.8% of all agricultural injuries. Machinery- (n = 303) and animal- (n = 523) related injuries accounted for most agricultural incidents. Of all injured women, over 60% sustained injuries due to animal-related causes. Agricultural injuries were spread across the two states, with clustering in southern New Hampshire and south central Maine, with additional injuries in the Aroostook County area, which is located in the northeast part of the state. Seasonal variation in agricultural injuries was evident with peaks in the summer months. There was some overlap between the agricultural and logging industry for tree-related work. Our methods are able to capture traumatic injury in agriculture in sufficient detail to prioritize interventions and to evaluate outcomes. The system is low-cost and has the potential to be sustained over a long period. Differences in rates of animal- and machinery-related injuries suggest the need for state-specific safety prioritization.

  16. Simulation of an advanced small aperture track system

    Science.gov (United States)

    Williams, Tommy J.; Crockett, Gregg A.; Brunson, Richard L.; Beatty, Brad; Zahirniak, Daniel R.; Deuto, Bernard G.

    2001-08-01

    Simulation development for EO Systems has progressed to new levels with the advent of COTS software tools such as Matlab/Simulink. These tools allow rapid reuse of simulation library routines. We have applied these tools to newly emerging Acquisition Tracking and Pointing (ATP) systems using many routines developed through a legacy to High Energy Laser programs such as AirBorne Laser, Space Based Laser, Tactical High Energy Laser, and The Air Force Research Laboratory projects associated with the Starfire Optical Range. The simulation architecture allows ease in testing various track algorithms under simulated scenes with the ability to rapidly vary system hardware parameters such as track sensor and track loop control systems. The atmospheric turbulence environment and associated optical distortion is simulated to high fidelity levels through the application of an atmospheric phase screen model to produce scintillation of the laser illuminator uplink. The particular ATP system simulated is a small transportable system for tracking satellites in a daytime environment and projects a low power laser and receives laser return from retro-reflector equipped satellites. The primary application of the ATP system (and therefore the simulation) is the determination of the illuminator beam profile, jitter, and scintillation of the low power laser at the satellite. The ATP system will serve as a test bed for satellite tracking in a high background during daytime. Of particular interest in this simulation is the ability to emulate the hardware modelogic within the simulation to test and refine system states and mode change decisions. Additionally, the simulation allows data from the hardware system tests to be imported into Matlab and to thereby drive the simulation or to be easily compared to simulation results.

  17. Social capital, agricultural innovation and the evaluation of agricultural development initiatives

    NARCIS (Netherlands)

    Rijn, van F.C.

    2014-01-01

    In this thesis, I show that social capital has an important role in the evaluation of development initiatives targeting agricultural innovation. Social capital and agricultural innovation are naturally linked from an innovation system perspective in which innovations result from the integration

  18. Visual software system for memory interleaving simulation

    Directory of Open Access Journals (Sweden)

    Milenković Katarina

    2017-01-01

    Full Text Available This paper describes the visual software system for memory interleaving simulation (VSMIS, implemented for the purpose of the course Computer Architecture and Organization 1, at the School of Electrical Engineering, University of Belgrade. The simulator enables students to expand their knowledge through practical work in the laboratory, as well as through independent work at home. VSMIS gives users the possibility to initialize parts of the system and to control simulation steps. The user has the ability to monitor simulation through graphical representation. It is possible to navigate through the entire hierarchy of the system using simple navigation. During the simulation the user can observe and set the values of the memory location. At any time, the user can reset the simulation of the system and observe it for different memory states; in addition, it is possible to save the current state of the simulation and continue with the execution of the simulation later. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III44009

  19. The role of a fish pond in optimizing nutrient flows in integrated agriculture-aquaculture farming systems

    NARCIS (Netherlands)

    Nhan, D.K.

    2007-01-01

    In the Mekong delta, the Vietnamese government promoted integrated agriculture-aquaculture (IAA) farming systems as an example of sustainable agriculture. An important advantage of IAA-farming is the nutrient linkage between the pond and terrestrial components within a farm, which allows to

  20. Economic risk assessment of drought impacts on irrigated agriculture

    Science.gov (United States)

    Lopez-Nicolas, A.; Pulido-Velazquez, M.; Macian-Sorribes, H.

    2017-07-01

    In this paper we present an innovative framework for an economic risk analysis of drought impacts on irrigated agriculture. It consists on the integration of three components: stochastic time series modelling for prediction of inflows and future reservoir storages at the beginning of the irrigation season; statistical regression for the evaluation of water deliveries based on projected inflows and storages; and econometric modelling for economic assessment of the production value of agriculture based on irrigation water deliveries and crop prices. Therefore, the effect of the price volatility can be isolated from the losses due to water scarcity in the assessment of the drought impacts. Monte Carlo simulations are applied to generate probability functions of inflows, which are translated into probabilities of storages, deliveries, and finally, production value of agriculture. The framework also allows the assessment of the value of mitigation measures as reduction of economic losses during droughts. The approach was applied to the Jucar river basin, a complex system affected by multiannual severe droughts, with irrigated agriculture as the main consumptive demand. Probability distributions of deliveries and production value were obtained for each irrigation season. In the majority of the irrigation districts, drought causes a significant economic impact. The increase of crop prices can partially offset the losses from the reduction of production due to water scarcity in some districts. Emergency wells contribute to mitigating the droughts' impacts on the Jucar river system.

  1. ROBOSIM, a simulator for robotic systems

    Science.gov (United States)

    Hinman, Elaine M.; Fernandez, Ken; Cook, George E.

    1991-01-01

    ROBOSIM, a simulator for robotic systems, was developed by NASA to aid in the rapid prototyping of automation. ROBOSIM has allowed the development of improved robotic systems concepts for both earth-based and proposed on-orbit applications while significantly reducing development costs. In a cooperative effort with an area university, ROBOSIM was further developed for use in the classroom as a safe and cost-effective way of allowing students to study robotic systems. Students have used ROBOSIM to study existing robotic systems and systems which they have designed in the classroom. Since an advanced simulator/trainer of this type is beneficial not only to NASA projects and programs but industry and academia as well, NASA is in the process of developing this technology for wider public use. An update on the simulators's new application areas, the improvements made to the simulator's design, and current efforts to ensure the timely transfer of this technology are presented.

  2. Simulation of Wireless Digital Communication Systems

    Directory of Open Access Journals (Sweden)

    A. Mohammed

    2004-12-01

    Full Text Available Due to the explosive demands for high speed wireless services, suchas wireless Internet, email and cellular video conferencing, digitalwireless communications has become one of the most exciting researchtopics in electrical and electronic engineering field. The never-endingdemand for such personal and multimedia services, however, demandstechnologies operating at higher data rates and broader bandwidths. Inaddition, the complexity of wireless communication and signalprocessing systems has grown considerably during the past decade.Therefore, powerful computer­aided techniques are required for theprocess of modeling, designing, analyzing and evaluating theperformance of digital wireless communication systems. In this paper wediscuss the basic propagation mechanisms affecting the performance ofwireless communication systems, and present a simple, powerful andefficient way to simulate digital wireless communication systems usingMatlab. The simulated results are compared with the theoreticalanalysis to validate the simulator. The simulator is useful inevaluating the performance of wireless multimedia services and theassociated signal processing structures and algorithms for current andnext generation wireless mobile communication systems.

  3. Experience and Enlightenment of Dutch Agricultural Research and Technology

    OpenAIRE

    Liu Zhen, Zhen; Hu, D.

    2011-01-01

    This study analyzes the achievements of agricultural science and technology, the reform of agricultural research system and technology transfer system of agricultural in the Netherlands. With case studies, it tries to find the mode of Dutch agricultural research and technology transfer system, and aims to provide suggestions to optimize agricultural research and technology transfer system in China.

  4. Simulation of Darlington shutdown and regulation systems

    International Nuclear Information System (INIS)

    1986-10-01

    This report describes the development of a simulation of the Darlington Nuclear Generating Station shutdown and regulating systems, DARSIM. The DARSIM program simulates the spatial neutron dynamics, the regulation of the reactor power, and Shutdown System 1, SDS1, and Shutdown System 2, SDS2, software. The DARSIM program operates in the interactive simulation (INSIM) program environment

  5. Smart systems integration and simulation

    CERN Document Server

    Poncino, Massimo; Pravadelli, Graziano

    2016-01-01

    This book-presents new methods and tools for the integration and simulation of smart devices. The design approach described in this book explicitly accounts for integration of Smart Systems components and subsystems as a specific constraint. It includes methodologies and EDA tools to enable multi-disciplinary and multi-scale modeling and design, simulation of multi-domain systems, subsystems and components at all levels of abstraction, system integration and exploration for optimization of functional and non-functional metrics. By covering theoretical and practical aspects of smart device design, this book targets people who are working and studying on hardware/software modelling, component integration and simulation under different positions (system integrators, designers, developers, researchers, teachers, students etc.). In particular, it is a good introduction to people who have interest in managing heterogeneous components in an efficient and effective way on different domains and different abstraction l...

  6. Climate Change and Agricultural Vulnerability

    International Nuclear Information System (INIS)

    Fischer, G.; Shah, M.; Van Velthuizen, H.

    2002-08-01

    After the introduction Chapter 2 presents details of the ecological-economic analysis based on the FAO/IIASA agro-ecological zones (AEZ) approach for evaluation of biophysical limitations and agricultural production potentials, and IIASA's Basic Linked System (BLS) for analyzing the world's food economy and trade system. The BLS is a global general equilibrium model system for analyzing agricultural policies and food system prospects in an international setting. BLS views national agricultural systems as embedded in national economies, which interact with each other through trade at the international level. The combination of AEZ and BLS provides an integrated ecological-economic framework for the assessment of the impact of climate change. We consider climate scenarios based on experiments with four General Circulation Models (GCM), and we assess the four basic socioeconomic development pathways and emission scenarios as formulated by the Intergovernmental Panel on Climate Change (IPCC) in its Third Assessment Report. Chapter 3 presents the main AEZ results of the impact of climate change on agriculture. Results comprise environmental constraints to crop agriculture; climate variability and the variability of rain-fed cereal production; changes in potential agricultural land; changes in crop-production patterns; and the impact of climate change on cereal-production potential. Chapter 4 discusses the AEZ-BLS integrated ecological-economic analysis of climate change on the world food system. This includes quantification of scale and location of hunger, international agricultural trade, prices, production, land use, etc. It assesses trends in food production, trade, and consumption, and the impact on poverty and hunger of alternative development pathways and varying levels of climate change. Chapter 5 presents the main conclusions and policy implications of this study

  7. Adapting Agricultural Production Systems to Climate Change—What’s the Use of Models?

    Directory of Open Access Journals (Sweden)

    Annelie Holzkämper

    2017-10-01

    Full Text Available Climate change poses a challenge to agricultural production and its impacts vary depending on regional focus and on the type of production system. To avoid production losses and make use of emerging potentials, adaptations in agricultural management will inevitably be required. Adaptation responses can broadly be distinguished into (1 short-term incremental responses that farmers often choose autonomously in response to observed changes and based on local knowledge and experiences, and (2 long-term transformative responses that require strategic planning, and which are usually implemented at a larger spatial scale. Models can be used to support decision making at both response levels; thereby, different features of models prove more or less valuable depending on the type of adaptation response. This paper presents a systematic literature review on the state-of-the-art in modelling for adaptation planning in agricultural production systems, investigating the question of which model types can be distinguished and how these types differ in the way they support decision making in agricultural adaptation planning. Five types of models are distinguished: (1 empirical crop models; (2 regional suitability models; (3 biophysical models; (4 meta-models; and (5 decision models. The potential and limitations of these model types for providing decision-support to short- and long-term adaptation planning are discussed. The risk of maladaptation—adaptation that implies negative consequences either in the long term or in a wider context—is identified as a key challenge of adaptation planning that needs more attention. Maladaptation is not only a risk of decision making in the face of incomplete knowledge of future climate impacts on the agricultural production system; but it can also be a threat if the connectedness of the agroecosystem is not sufficiently acknowledged when management adaptations are implemented. Future research supporting climate change

  8. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems

    OpenAIRE

    Ladoni, Moslem; Kravchenko, Alexandra N.; Robertson, G. Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on poten...

  9. A System of Integrated Indicators for Socio-Environmental Assessment and Eco-Certification in Agriculture – Ambitec-Agro

    OpenAIRE

    Rubens Caldeira Monteiro; Geraldo Stachetti Rodrigues

    2006-01-01

    The Brazilian Agricultural Research Agency (Embrapa) has proposed a “System for Environmental Impact Assessment of Agricultural Technology Innovations” (Ambitec-Agro) for the appraisal of research projects and technology innovations in the institutional context of R&D. A derived system, directed at eco-certification of rural activities (Eco-cert.Rural), has been proposed in order to extend the environmental assessment practice to rural activities. The Ambitec-Agro System comprises a set of we...

  10. Design and implementation of a GPS guidance system for agricultural tractors using augmented reality technology.

    Science.gov (United States)

    Santana-Fernández, Javier; Gómez-Gil, Jaime; del-Pozo-San-Cirilo, Laura

    2010-01-01

    Current commercial tractor guidance systems present to the driver information to perform agricultural tasks in the best way. This information generally includes a treated zones map referenced to the tractor's position. Unlike actual guidance systems where the tractor driver must mentally associate treated zone maps and the plot layout, this paper presents a guidance system that using Augmented Reality (AR) technology, allows the tractor driver to see the real plot though eye monitor glasses with the treated zones in a different color. The paper includes a description of the system hardware and software, a real test done with image captures seen by the tractor driver, and a discussion predicting that the historical evolution of guidance systems could involve the use of AR technology in the agricultural guidance and monitoring systems.

  11. Design and Implementation of a GPS Guidance System for Agricultural Tractors Using Augmented Reality Technology

    Directory of Open Access Journals (Sweden)

    Laura del-Pozo-San-Cirilo

    2010-11-01

    Full Text Available Current commercial tractor guidance systems present to the driver information to perform agricultural tasks in the best way. This information generally includes a treated zones map referenced to the tractor’s position. Unlike actual guidance systems where the tractor driver must mentally associate treated zone maps and the plot layout, this paper presents a guidance system that using Augmented Reality (AR technology, allows the tractor driver to see the real plot though eye monitor glasses with the treated zones in a different color. The paper includes a description of the system hardware and software, a real test done with image captures seen by the tractor driver, and a discussion predicting that the historical evolution of guidance systems could involve the use of AR technology in the agricultural guidance and monitoring systems.

  12. Abatement costs of soil conservation in China's Loess Plateau: balancing income with conservation in an agricultural system.

    Science.gov (United States)

    Hou, Lingling; Hoag, Dana L K; Keske, Catherine M H

    2015-02-01

    This study proposes the use of marginal abatement cost curves to calculate environmental damages of agricultural systems in China's Loess Plateau. Total system costs and revenues, management characteristics and pollution attributes are imputed into a directional output distance function, which is then used to determine shadow prices and abatement cost curves for soil and nitrogen loss. Marginal abatement costs curves are an effective way to compare economic and conservation tradeoffs when field-specific data are scarce. The results show that sustainable agricultural practices can balance soil conservation and agricultural production; land need not be retired, as is current policy. Published by Elsevier Ltd.

  13. An interactive beam position monitor system simulator

    International Nuclear Information System (INIS)

    Ryan, W.A.; Shea, T.J.

    1993-03-01

    A system simulator has been implemented to aid the development of the RHIC position monitor system. Based on the LabVIEW software package by National Instruments, this simulator allows engineers and technicians to interactively explore the parameter space of a system during the design phase. Adjustable parameters are divided into three categories: beam, pickup, and electronics. The simulator uses these parameters in simple formulas to produce results in both time-domain and frequencydomain. During the prototyping phase, these simulated results can be compared to test data acquired with the same software package. The RHIC position monitor system is presented as an example, but the software is applicable to several other systems as well

  14. Development of Simulator for High-Speed Elevator System

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Hyung Min; Kim, Sung Jun; Sul, Seung Ki; Seok, Ki Riong [Seoul National University, Seoul(Korea); Kwon, Tae Seok [Hanyang University, Seoul(Korea); Kim, Ki Su [Konkuk University, Seoul(Korea); Shim, Young Seok [Inha University, incheon(Korea)

    2002-02-01

    This paper describes the dynamic load simulator for high-speed elevator system, which can emulate 3-mass system as well as equivalent 1-mass system 1-mass system. In order to implement the equivalent inertia of entire elevator system, the conventional simulators have generally utilized the mechanical inertia(flywheel) with large radius, which makes the entire system large and heavy. In addition, the mechanical inertia should be replaced each time in order to test another elevator system. In this paper, the dynamic load simulation methods using electrical inertia are presented so that the volume and weight of simulator system are greatly reduced and the adjustment of inertia value can be achieved easily by software. Experimental results show the feasibility of this simulator system. (author). 5 refs., 7 figs., 2 tabs.

  15. The role of a fish pond in optimizing nutrient flows in integrated agriculture-aquaculture farming systems

    OpenAIRE

    Nhan, D.K.

    2007-01-01

    In the Mekong delta, the Vietnamese government promoted integrated agriculture-aquaculture (IAA) farming systems as an example of sustainable agriculture. An important advantage of IAA-farming is the nutrient linkage between the pond and terrestrial components within a farm, which allows to improve resource use efficiency and income while reducing environmental impacts. This study monitored and analyzed water use in and nutrient flows through ponds that are part of an IAA-farming system. Th...

  16. Development and utilization of simulator training replay system

    International Nuclear Information System (INIS)

    Suzuki, Koichi; Noji, Kunio

    1998-01-01

    The BWR Operator Training Center Corporation (BTC) has introduced an advanced training system called the Simulator Training Replay System. The intention of introducing this system is to enhance the effectiveness of simulator training synthetically by means of; (i) sufficient analytical pre- and post-studies in the classroom, thus, enabling instructors to use the classroom as a means of explanation and discussion with an optimized system which is closely correlated with the full-scope simulator and (ii) sufficient practical operation training using a full-scope simulator without excessive suppression of time. With this system, operational data and video images during simulator training can be reproduced in the classroom. Instructors use this system with their trainees before and after simulator training for pre- and post-studies in the classroom. (author)

  17. Interactive Simulations of Biohybrid Systems

    Directory of Open Access Journals (Sweden)

    Sebastian Albrecht von Mammen

    2017-10-01

    Full Text Available In this article, we present approaches to interactive simulations of biohybrid systems. These simulations are comprised of two major computational components: (1 agent-based developmental models that retrace organismal growth and unfolding of technical scaffoldings and (2 interfaces to explore these models interactively. Simulations of biohybrid systems allow us to fast forward and experience their evolution over time based on our design decisions involving the choice, configuration and initial states of the deployed biological and robotic actors as well as their interplay with the environment. We briefly introduce the concept of swarm grammars, an agent-based extension of L-systems for retracing growth processes and structural artifacts. Next, we review an early augmented reality prototype for designing and projecting biohybrid system simulations into real space. In addition to models that retrace plant behaviors, we specify swarm grammar agents to braid structures in a self-organizing manner. Based on this model, both robotic and plant-driven braiding processes can be experienced and explored in virtual worlds. We present an according user interface for use in virtual reality. As we present interactive models concerning rather diverse description levels, we only ensured their principal capacity for interaction but did not consider efficiency analyzes beyond prototypic operation. We conclude this article with an outlook on future works on melding reality and virtuality to drive the design and deployment of biohybrid systems.

  18. Leaf chlorophyll constraint on model simulated gross primary productivity in agricultural systems

    KAUST Repository

    Houborg, Rasmus; McCabe, Matthew; Cescatti, Alessandro; Gitelson, Anatoly A.

    2015-01-01

    The benefit of using in-situ measured and satellite retrieved Chll for constraining model simulations of Gross Primary Productivity (GPP) is evaluated over fields in central Nebraska, U.S.A between 2001 and 2005. Landsat-based Chll time-series records derived from the Regularized Canopy Reflectance model (REGFLEC) are used as forcing to the CLM. Validation of simulated GPP against 15 site-years of flux tower observations demonstrate the utility of Chll as a model constraint, with the coefficient of efficiency increasing from 0.91 to 0.94 and from 0.87 to 0.91 for maize and soybean, respectively. Model performances particularly improve during the late reproductive and senescence stage, where the largest temporal variations in Chll (averaging 35–55 μg cm−2 for maize and 20–35 μg cm−2 for soybean) are observed. While prolonged periods of vegetation stress did not occur over the studied fields, given the usefulness of Chll as an indicator of plant health, enhanced GPP predictabilities should be expected in fields exposed to longer periods of moisture and nutrient stress. While the results support the use of Chll as an observational proxy for V max 25 , future work needs to be directed towards improving the Chll retrieval accuracy from space observations and developing consistent and physically realistic modeling schemes that can be parameterized with acceptable accuracy over spatial and temporal domains.

  19. UAV Flight Control Based on RTX System Simulation Platform

    Directory of Open Access Journals (Sweden)

    Xiaojun Duan

    2014-03-01

    Full Text Available This paper proposes RTX and Matlab UAV flight control system simulation platform based on the advantages and disadvantages of Windows and real-time system RTX. In the simulation platform, we set the RTW toolbox configuration and modify grt_main.c in order to make simulation platform endowed with online parameter adjustment, fault injection. Meanwhile, we develop the interface of the system simulation platform by CVI, thus it makes effective and has good prospects in application. In order to improve the real-time performance of simulation system, the current computer of real-time simulation mostly use real-time operating system to solve simulation model, as well as dual- framework containing in Host and target machine. The system is complex, high cost, and generally used for the control and half of practical system simulation. For the control system designers, they expect to design control law at a computer with Windows-based environment and conduct real-time simulation. This paper proposes simulation platform for UAV flight control system based on RTX and Matlab for this demand.

  20. Using CASE-technologies in the simulation of business organization in the agricultural sector

    OpenAIRE

    Karpov, Valery; Mozzherina, Nadezhda; Andreeva, Elena

    2009-01-01

    In this paper we propose the organization of the structural analysis of the business processes of small businesses and agricultural cooperatives agricultural sector. The content of the business processes in these economic entities at the time of the study, an assessment is the effectiveness of their interactions revealed negative aspects, offers an effective organizational structure that combines business processes entrepreneurs and agricultural cooperatives.

  1. Participatory ergonomics simulation of hospital work systems: The influence of simulation media on simulation outcome

    DEFF Research Database (Denmark)

    Andersen, Simone Nyholm; Broberg, Ole

    2015-01-01

    of tool operation support ergonomics identification and evaluation related to the work system entities space and technologies & tools. The table-top models’ high fidelity of function relations and affordance of a helicopter view support ergonomics identification and evaluation related to the entity......Current application of work system simulation in participatory ergonomics (PE) design includes a variety of different simulation media. However, the actual influence of the media attributes on the simulation outcome has received less attention. This study investigates two simulation media: full......-scale mock-ups and table-top models. The aim is to compare, how the media attributes of fidelity and affordance influence the ergonomics identification and evaluation in PE design of hospital work systems. The results illustrate, how the full-scale mock-ups’ high fidelity of room layout and affordance...

  2. Radio/antenna mounting system for wireless networking under row-crop agriculture conditions

    Science.gov (United States)

    Interest in and deployment of wireless monitoring systems is increasing in many diverse environments, including row-crop agricultural fields. While many studies have been undertaken to evaluate various aspects of wireless monitoring and networking, such as electronic hardware components, data-colle...

  3. Agricultural Water Use under Global Change

    Science.gov (United States)

    Zhu, T.; Ringler, C.; Rosegrant, M. W.

    2008-12-01

    Irrigation is by far the single largest user of water in the world and is projected to remain so in the foreseeable future. Globally, irrigated agricultural land comprises less than twenty percent of total cropland but produces about forty percent of the world's food. Increasing world population will require more food and this will lead to more irrigation in many areas. As demands increase and water becomes an increasingly scarce resource, agriculture's competition for water with other economic sectors will be intensified. This water picture is expected to become even more complex as climate change will impose substantial impacts on water availability and demand, in particular for agriculture. To better understand future water demand and supply under global change, including changes in demographic, economic and technological dimensions, the water simulation module of IMPACT, a global water and food projection model developed at the International Food Policy Research Institute, is used to analyze future water demand and supply in agricultural and several non-agricultural sectors using downscaled GCM scenarios, based on water availability simulation done with a recently developed semi-distributed global hydrological model. Risk analysis is conducted to identify countries and regions where future water supply reliability for irrigation is low, and food security may be threatened in the presence of climate change. Gridded shadow values of irrigation water are derived for global cropland based on an optimization framework, and they are used to illustrate potential irrigation development by incorporating gridded water availability and existing global map of irrigation areas.

  4. Simulating The Change In Agricultural Fruit Patterns In The Context of River Basin Modelling

    Science.gov (United States)

    Kloecking, B.; Laue, K.; Stroebl, B.

    A new concept has been developed for the integrated analysis of impacts of Global Change and direct human activities on the environment and the society in mesoscale river basins. The main steps of this approach are: (1) Developing a set of regional scenarios of change considering expected changes in climate, economic, demographic and social development, (2) Identification of indicators of sustainability for the impact assessment, (3) Impact analysis of the defined scenarios of development, (4) Evalu- ation of the different scenarios on the basis of the impact analysis to elaborate new stategies in regional development. All steps include consultations with actors and stakeholders. The concept is applied in the western part of Thuringia (7.500 km2), covering the basin of the Unstrut river. This part of the German Elbe river basin is highly suited for food production under the present conditions. Therefore it is a good site for vulnerability studies focused on agriculture. The development of agricultural land-use scenarios for the Unstrut region will be done in form of a bottom-up approach based on adaptation reactions of example farms within the expected boundary condi- tions such as the global food markets and other global economic trends as well as in- ternational agreements. Representing the present conditions in Thuringia, a referential land-use scenario was developed, assuming a complete realisation of the AGENDA 2000 resolutions. Impacts of changed land use in combination with climate change scenarios on plant production and on availability and quality of water are been inves- tigated with the help of a spatial distributed river basin model. A GIS-based approach was developed to locate the spatially not explicit land use scenarios. This approach allows to reproduce the agricultural fruit patterns of a region in a river basin model without taking into account the real field boundaries. First simulation results for the referential climate and land-use scenario

  5. Assess and control global change in agriculture through ecosystem models integrated in geographic information systems

    International Nuclear Information System (INIS)

    Ponti, Luigi; Gutierrez, Andrew Paul; Iannetta, Massimo

    2015-01-01

    ENEA has created, in collaboration with the University of California at Berkeley, the Global Change Biology project that, for the first time, has made available in Europe a technology that can be It used to interpret and effectively manage change Global agriculture. The aim of the project was to provide tools to summarize, manage and analyze data Ecological on the effects of global change in agricultural systems, using traditional Mediterranean crops (Eg. Vineyards and olive) as model systems (http: // cordis.europa.eu/project/rcn/89728_en.html). [it

  6. Systemic problems affecting co-innovation in the New Zealand Agricultural Innovation System: Identification of blocking mechanisms and underlying institutional logics

    NARCIS (Netherlands)

    Turner, J.A.; Klerkx, L.W.A.; Rijswijk, Kelly; Williams, T.; Barnard, T.

    2016-01-01

    This study identifies systemic problems in the New Zealand Agricultural Innovation System (AIS) in rela-tion to the AIS capacity to enact a co-innovation approach, in which all relevant actors in the agriculturalsector contribute to combined technological, social and institutional change. Systemic

  7. Using Indigenous Knowledge in Traditional Agricultural Systems for ...

    African Journals Online (AJOL)

    This article discusses the role of indigenous knowledge in traditional agriculture and its potential in contributing to food security, poverty and hunger eradication, and increased employment in South Africa. It is noted that indigenous knowledge can inform rural agricultural production, storage, processing, marketing, and food

  8. Prospective analysis agriculture energy 2030. Agriculture and the challenges of energy - Synthesis

    International Nuclear Information System (INIS)

    Vert, Julien; Portet, Fabienne; Even, Marie-Aude; Herault, Bruno; Laisney, Celine; Mahe, Thuriane

    2010-01-01

    The present overview document contains the main results of the Agriculture Energy 2030 prospective study, based on the work of the group led by the CEP [Centre d'etudes et de prospective/Centre for studies and strategic foresight] at the Ministry of Agriculture, Food, Fisheries, Rural Affairs and Spatial Planning. Energy in agriculture is all too often seen as a purely cyclical problem whereas it is a major issue for the future due to its economic consequences for agricultural holdings, its links with environmental and climatic issues, and its influence on food supply chains and spatial planning. Based on the scenario method, this analysis initially involved describing the whole range of links between agriculture and energy in France and organising them into a system of variables before going on to draw up an inventory of the knowledge available. Starting out from this diagnostic approach, the group constructed four scenarios over the period to 2030: 'Regionalization and sobriety to confront the crisis', 'Twin track agriculture and energy realism', 'Health Agriculture with no major energy constraints' and 'Ecological agriculture and energy savings'. These scenarios do not form an exhaustive panorama of all possible developments of the agriculture-energy system - they are rather formalised images of what the future might hold. However, quantification and comparison of the scenarios has led to the identification of major room for progress in energy efficiency in French farming. By helping gain greater awareness of future difficulties and issues or, conversely, opportunities to be grasped, these scenarios provided input for the strategic analysis phase, the concluding stage of this exercise, and the identification of general objectives and levers for public action. (authors)

  9. Differences in Fish, Amphibian, and Reptile Communities Within Wetlands Created by an Agricultural Water Recycling System in Northwestern Ohio

    Science.gov (United States)

    Establishment of a water recycling system known as the wetland-reservoir subirrigation system (WRSIS) results in the creation of wetlands adjacent to agricultural fields. Each WRSIS consists of one wetland designed to process agricultural chemicals (WRSIS wetlands) and one wetland to store subirriga...

  10. Agricultural marketing systems and sustainability : study of small scale Andean hillside farms

    NARCIS (Netherlands)

    Castaño, J.

    2001-01-01

    A better understanding of the way in which marketing systems can contribute to the adoption of sustainable agricultural practices (ASAP) on small-farms constitutes the aim of this study. In particular, the study examines the contribution of vertical

  11. Water Energy Simulation Toolset

    Energy Technology Data Exchange (ETDEWEB)

    2017-05-17

    The Water-Energy Simulation Toolset (WEST) is an interactive simulation model that helps visualize impacts of different stakeholders on water quantity and quality of a watershed. The case study is applied for the Snake River Basin with the fictional name Cutthroat River Basin. There are four groups of stakeholders of interest: hydropower, agriculture, flood control, and environmental protection. Currently, the quality component depicts nitrogen-nitrate contaminant. Users can easily interact with the model by changing certain inputs (climate change, fertilizer inputs, etc.) to observe the change over the entire system. Users can also change certain parameters to test their management policy.

  12. Simulation of Optimal Decision-Making Under the Impacts of Climate Change.

    Science.gov (United States)

    Møller, Lea Ravnkilde; Drews, Martin; Larsen, Morten Andreas Dahl

    2017-07-01

    Climate change causes transformations to the conditions of existing agricultural practices appointing farmers to continuously evaluate their agricultural strategies, e.g., towards optimising revenue. In this light, this paper presents a framework for applying Bayesian updating to simulate decision-making, reaction patterns and updating of beliefs among farmers in a developing country, when faced with the complexity of adapting agricultural systems to climate change. We apply the approach to a case study from Ghana, where farmers seek to decide on the most profitable of three agricultural systems (dryland crops, irrigated crops and livestock) by a continuous updating of beliefs relative to realised trajectories of climate (change), represented by projections of temperature and precipitation. The climate data is based on combinations of output from three global/regional climate model combinations and two future scenarios (RCP4.5 and RCP8.5) representing moderate and unsubstantial greenhouse gas reduction policies, respectively. The results indicate that the climate scenario (input) holds a significant influence on the development of beliefs, net revenues and thereby optimal farming practices. Further, despite uncertainties in the underlying net revenue functions, the study shows that when the beliefs of the farmer (decision-maker) opposes the development of the realised climate, the Bayesian methodology allows for simulating an adjustment of such beliefs, when improved information becomes available. The framework can, therefore, help facilitating the optimal choice between agricultural systems considering the influence of climate change.

  13. Experience and Enlightenment of Dutch Agricultural Research and Technology

    NARCIS (Netherlands)

    Liu Zhen, Zhen; Hu, D.

    2011-01-01

    This study analyzes the achievements of agricultural science and technology, the reform of agricultural research system and technology transfer system of agricultural in the Netherlands. With case studies, it tries to find the mode of Dutch agricultural research and technology transfer system, and

  14. How Could Agricultural Land Systems Contribute to Raise Food Production Under Global Change?

    Institute of Scientific and Technical Information of China (English)

    WU Wen-bin; YU Qiang-yi; Verburg H Peter; YOU Liang-zhi; YANG Peng; TANG Hua-jun

    2014-01-01

    To feed the increasing world population, more food needs to be produced from agricultural land systems. Solutions to produce more food with fewer resources while minimizing adverse environmental and ecological consequences require sustainable agricultural land use practices as supplementary to advanced biotechnology and agronomy. This review paper, from a land system perspective, systematically proposed and analyzed three interactive strategies that could possibly raise future food production under global change. By reviewing the current literatures, we suggest that cropland expansion is less possible amid iferce land competition, and it is likely to do less in increasing food production. Moreover, properly allocating crops in space and time is a practical way to ensure food production. Climate change, dietary shifts, and other socio-economic drivers, which would shape the demand and supply side of food systems, should be taken into consideration during the decision-making on rational land management in respect of sustainable crop choice and allocation. And ifnally, crop-speciifc agricultural intensiifcation would play a bigger role in raising future food production either by increasing the yield per unit area of individual crops or by increasing the number of crops sown on a particular area of land. Yet, only when it is done sustainably is this a much more effective strategy to maximize food production by closing yield and harvest gaps.

  15. Modeling interactions of agriculture and groundwater nitrate contaminants: application of The STICS-Eau-Dyssée coupled models over the Seine River Basin

    Science.gov (United States)

    Tavakoly, A. A.; Habets, F.; Saleh, F.; Yang, Z. L.

    2017-12-01

    Human activities such as the cultivation of N-fixing crops, burning of fossil fuels, discharging of industrial and domestic effluents, and extensive usage of fertilizers have recently accelerated the nitrogen loading to watersheds worldwide. Increasing nitrate concentration in surface water and groundwater is a major concern in watersheds with extensive agricultural activities. Nutrient enrichment is one of the major environmental problems in the French coastal zone. To understand and predict interactions between agriculture, surface water and groundwater nitrate contaminants, this study presents a modeling framework that couples the agronomic STICS model with Eau-Dyssée, a distributed hydrologic modeling system to simulate groundwater-surface water interaction. The coupled system is implemented on the Seine River Basin with an area of 88,000 km2 to compute daily nitrate contaminants. Representing a sophisticated hydrosystem with several aquifers and including the megalopolis of Paris, the Seine River Basin is well-known as one of the most productive agricultural areas in France. The STICS-EauDyssée framework is evaluated for a long-term simulation covering 39 years (1971-2010). Model results show that the simulated nitrate highly depends on the inflow produced by surface and subsurface waters. Daily simulation shows that the model captures the seasonal variation of observations and that the overall long-term simulation of nitrate contaminant is satisfactory at the regional scale.

  16. Development and Implementation of Production Area of Agricultural Product Data Collection System Based on Embedded System

    Science.gov (United States)

    Xi, Lei; Guo, Wei; Che, Yinchao; Zhang, Hao; Wang, Qiang; Ma, Xinming

    To solve problems in detecting the origin of agricultural products, this paper brings about an embedded data-based terminal, applies middleware thinking, and provides reusable long-range two-way data exchange module between business equipment and data acquisition systems. The system is constructed by data collection node and data center nodes. Data collection nodes taking embedded data terminal NetBoxII as the core, consisting of data acquisition interface layer, controlling information layer and data exchange layer, completing the data reading of different front-end acquisition equipments, and packing the data TCP to realize the data exchange between data center nodes according to the physical link (GPRS / CDMA / Ethernet). Data center node consists of the data exchange layer, the data persistence layer, and the business interface layer, which make the data collecting durable, and provide standardized data for business systems based on mapping relationship of collected data and business data. Relying on public communications networks, application of the system could establish the road of flow of information between the scene of origin certification and management center, and could realize the real-time collection, storage and processing between data of origin certification scene and databases of certification organization, and could achieve needs of long-range detection of agricultural origin.

  17. Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture

    International Nuclear Information System (INIS)

    Binder, Claudia R.; Feola, Giuseppe; Steinberger, Julia K.

    2010-01-01

    This paper develops a framework for evaluating sustainability assessment methods by separately analyzing their normative, systemic and procedural dimensions as suggested by Wiek and Binder [Wiek, A, Binder, C. Solution spaces for decision-making - a sustainability assessment tool for city-regions. Environ Impact Asses Rev 2005, 25: 589-608.]. The framework is then used to characterize indicator-based sustainability assessment methods in agriculture. For a long time, sustainability assessment in agriculture has focused mostly on environmental and technical issues, thus neglecting the economic and, above all, the social aspects of sustainability, the multi-functionality of agriculture and the applicability of the results. In response to these shortcomings, several integrative sustainability assessment methods have been developed for the agricultural sector. This paper reviews seven of these that represent the diversity of tools developed in this area. The reviewed assessment methods can be categorized into three types: (i) top-down farm assessment methods; (ii) top-down regional assessment methods with some stakeholder participation; (iii) bottom-up, integrated participatory or transdisciplinary methods with stakeholder participation throughout the process. The results readily show the trade-offs encountered when selecting an assessment method. A clear, standardized, top-down procedure allows for potentially benchmarking and comparing results across regions and sites. However, this comes at the cost of system specificity. As the top-down methods often have low stakeholder involvement, the application and implementation of the results might be difficult. Our analysis suggests that to include the aspects mentioned above in agricultural sustainability assessment, the bottom-up, integrated participatory or transdisciplinary methods are the most suitable ones.

  18. Design of penicillin fermentation process simulation system

    Science.gov (United States)

    Qi, Xiaoyu; Yuan, Zhonghu; Qi, Xiaoxuan; Zhang, Wenqi

    2011-10-01

    Real-time monitoring for batch process attracts increasing attention. It can ensure safety and provide products with consistent quality. The design of simulation system of batch process fault diagnosis is of great significance. In this paper, penicillin fermentation, a typical non-linear, dynamic, multi-stage batch production process, is taken as the research object. A visual human-machine interactive simulation software system based on Windows operation system is developed. The simulation system can provide an effective platform for the research of batch process fault diagnosis.

  19. High-Resolution Biogeochemical Simulation Identifies Practical Opportunities for Bioenergy Landscape Intensification Across Diverse US Agricultural Regions

    Science.gov (United States)

    Field, J.; Adler, P. R.; Evans, S.; Paustian, K.; Marx, E.; Easter, M.

    2015-12-01

    The sustainability of biofuel expansion is strongly dependent on the environmental footprint of feedstock production, including both direct impacts within feedstock-producing areas and potential leakage effects due to disruption of existing food, feed, or fiber production. Assessing and minimizing these impacts requires novel methods compared to traditional supply chain lifecycle assessment. When properly validated and applied at appropriate spatial resolutions, biogeochemical process models are useful for simulating how the productivity and soil greenhouse gas fluxes of cultivating both conventional crops and advanced feedstock crops respond across gradients of land quality and management intensity. In this work we use the DayCent model to assess the biogeochemical impacts of agricultural residue collection, establishment of perennial grasses on marginal cropland or conservation easements, and intensification of existing cropping at high spatial resolution across several real-world case study landscapes in diverse US agricultural regions. We integrate the resulting estimates of productivity, soil carbon changes, and nitrous oxide emissions with crop production budgets and lifecycle inventories, and perform a basic optimization to generate landscape cost/GHG frontiers and determine the most practical opportunities for low-impact feedstock provisioning. The optimization is constrained to assess the minimum combined impacts of residue collection, land use change, and intensification of existing agriculture necessary for the landscape to supply a commercial-scale biorefinery while maintaining exiting food, feed, and fiber production levels. These techniques can be used to assess how different feedstock provisioning strategies perform on both economic and environmental criteria, and sensitivity of performance to environmental and land use factors. The included figure shows an example feedstock cost-GHG mitigation tradeoff frontier for a commercial-scale cellulosic

  20. ABS-SmartComAgri: An Agent-Based Simulator of Smart Communication Protocols in Wireless Sensor Networks for Debugging in Precision Agriculture.

    Science.gov (United States)

    García-Magariño, Iván; Lacuesta, Raquel; Lloret, Jaime

    2018-03-27

    Smart communication protocols are becoming a key mechanism for improving communication performance in networks such as wireless sensor networks. However, the literature lacks mechanisms for simulating smart communication protocols in precision agriculture for decreasing production costs. In this context, the current work presents an agent-based simulator of smart communication protocols for efficiently managing pesticides. The simulator considers the needs of electric power, crop health, percentage of alive bugs and pesticide consumption. The current approach is illustrated with three different communication protocols respectively called (a) broadcast, (b) neighbor and (c) low-cost neighbor. The low-cost neighbor protocol obtained a statistically-significant reduction in the need of electric power over the neighbor protocol, with a very large difference according to the common interpretations about the Cohen's d effect size. The presented simulator is called ABS-SmartComAgri and is freely distributed as open-source from a public research data repository. It ensures the reproducibility of experiments and allows other researchers to extend the current approach.

  1. Microcanonical simulation of Ising systems

    International Nuclear Information System (INIS)

    Bhanot, G.; Neuberger, H.

    1984-01-01

    Numerical simulations of the microcanonical ensemble for Ising systems are described. We explain how to write very fast algorithms for such simulations, relate correlations measured in the microcanonical ensemble to those in the canonical ensemble and discuss criteria for convergence and ergodicity. (orig.)

  2. An Innovation Systems Perspectives on Tertiary-Level Agricultural ...

    African Journals Online (AJOL)

    This paper examines how tertiary-level agricultural education in sub-Saharan Africa can contribute to agricultural development beyond its current role as a source of technical training. The paper draws on data and information gathered from semistructured key informant interviews conducted in late 2006 in and around Addis ...

  3. Key attributes of agricultural innovations in semi-arid smallholder farming systems in south-west Zimbabwe

    Science.gov (United States)

    Mutsvangwa-Sammie, Eness P.; Manzungu, Emmanuel; Siziba, Shephard

    2018-06-01

    In Sub-Sahara Africa, which includes Zimbabwe, about 80% of the population depends on agriculture for subsistence, employment and income. Agricultural production and productivity are, however, low. This has been attributed to a lack of appropriate innovations despite the huge investments that have been made to promote 'innovations' as a means to safeguarding agriculture-based livelihoods, which raises the question of how innovations are conceptualized, designed and implemented. This paper explores the key attributes of agricultural innovations by assessing how innovations are conceptualized, designed and implemented in semi-arid smallholder farming systems in south-west Zimbabwe. The study gathered information from 13 key informants and a household survey of 239 farmer households from Gwanda and Insiza districts. Results showed a multiplicity of understandings of agricultural innovations among different stakeholders. However, novelty/newness, utility and adaptability were identified as the major attributes. In general, farmers characterized agricultural innovations as 'something new and mostly introduced by NGOs' but did not associate them with the key attributes of utility and adaptability. More crop-related innovations were identified despite the area being suitable for livestock production. The paper concludes that, rather than view the multiple and sometimes competing understandings of agricultural innovations as undesirable, this should be used to promote context specific innovations which stand a better chance of enhancing agriculture-based livelihoods.

  4. Assessment of CREAMS [Chemicals, Runoff, and Erosion from Agricultural Management Systems] and ERHYM-II [Ekalaka Rangeland Hydrology and Yield Model] computer models for simulating soil water movement on the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Laundre, J.W.

    1990-05-01

    The major goal of radioactive waste management is long-term containment of radioactive waste. Long-term containment is dependent on understanding water movement on, into, and through trench caps. Several computer simulation models are available for predicting water movement. Of the several computer models available, CREAMS (Chemicals, Runoff, and Erosion from Agricultural Management Systems) and ERHYM-II (Ekalaka Rangeland Hydrology and Yield Model) were tested for use on the Idaho National Engineering Laboratory (INEL). The models were calibrated, tested for sensitivity, and used to evaluate some basic trench cap designs. Each model was used to postdict soil moisture, evapotranspiration, and runoff of two watersheds for which such data were already available. Sensitivity of the models was tested by adjusting various input parameters from high to low values and then comparing model outputs to those generated from average values. Ten input parameters of the CREAMS model were tested for sensitivity. 17 refs., 23 figs., 20 tabs

  5. Agricultural intensification in Nepal, with particular reference to systems of rice intensification

    NARCIS (Netherlands)

    Uprety, Rajendra

    2016-01-01

    This thesis deals with agricultural intensification in Nepal. The initial focus of the study was the System of Rice Intensification (SRI), as introduced in Nepal from 2001. The multiple factors affecting SRI adoption, modification and dissemination together with the option to apply SRI in

  6. Sequential use of the STICS crop model and of the MACRO pesticide fate model to simulate pesticides leaching in cropping systems.

    Science.gov (United States)

    Lammoglia, Sabine-Karen; Moeys, Julien; Barriuso, Enrique; Larsbo, Mats; Marín-Benito, Jesús-María; Justes, Eric; Alletto, Lionel; Ubertosi, Marjorie; Nicolardot, Bernard; Munier-Jolain, Nicolas; Mamy, Laure

    2017-03-01

    The current challenge in sustainable agriculture is to introduce new cropping systems to reduce pesticides use in order to reduce ground and surface water contamination. However, it is difficult to carry out in situ experiments to assess the environmental impacts of pesticide use for all possible combinations of climate, crop, and soils; therefore, in silico tools are necessary. The objective of this work was to assess pesticides leaching in cropping systems coupling the performances of a crop model (STICS) and of a pesticide fate model (MACRO). STICS-MACRO has the advantage of being able to simulate pesticides fate in complex cropping systems and to consider some agricultural practices such as fertilization, mulch, or crop residues management, which cannot be accounted for with MACRO. The performance of STICS-MACRO was tested, without calibration, from measurements done in two French experimental sites with contrasted soil and climate properties. The prediction of water percolation and pesticides concentrations with STICS-MACRO was satisfactory, but it varied with the pedoclimatic context. The performance of STICS-MACRO was shown to be similar or better than that of MACRO. The improvement of the simulation of crop growth allowed better estimate of crop transpiration therefore of water balance. It also allowed better estimate of pesticide interception by the crop which was found to be crucial for the prediction of pesticides concentrations in water. STICS-MACRO is a new promising tool to improve the assessment of the environmental risks of pesticides used in cropping systems.

  7. The rise of Brazilian agriculture

    DEFF Research Database (Denmark)

    Jensen, Hans Grinsted; Vink, Nick; Sandrey, Ron

    2014-01-01

    of Brazilian agricultural policies, namely farmer support, the research and technology transfer system and land issues. The implications for South African agriculture can be summarized as the recognition that history, geography, the development path and agricultural policies all matter. The article......The purpose of this article is to explore some of the possible lessons for South African agriculture from the Brazilian experience. To this end, the article discusses the performance of Brazilian agriculture in terms of land and labour use, production, and exports. This is followed by aspects...... then identifies five important lessons for agricultural development in South Africa....

  8. Development of intelligent interface for simulation execution by module-based simulation system

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Mizutani, Naoki; Shimoda, Hiroshi; Wakabayashi, Jiro

    1988-01-01

    An intelligent user support for the two phases of simulation execution was newly developed for Module-based Simulation System (MSS). The MSS has been in development as a flexible simulation environment to improve software productivity in complex, large-scale dynamic simulation of nuclear power plant. The AI programing by Smalltalk-80 was applied to materialize the two user-interface programs for (i) semantic diagnosis of the simulation program generated automatically by MSS, and (ii) consultation system by which user can set up consistent numerical input data files necessary for executing a MSS-generated program. Frame theory was utilized in those interface programs to represent the four knowledge bases, which are (i) usage information on module library in MSS and MSS-generated program, and (ii) expertise knowledge on nuclear power plant analysis such as material properties and reactor system configuration. Capabilities of those interface programs were confirmed by some example practice on LMFBR reactor dynamic calculation, and it was demonstrated that the knowledge-based systemization was effective to improve software work environment. (author)

  9. Simulating 60 Co gamma irradiation systems

    International Nuclear Information System (INIS)

    Omi, Nelson M.; Rela, Paulo R.

    2000-01-01

    The use of Cadgamma, a software dedicated to simulate 60 Co gamma irradiation systems, can lead to an optimized process and simulating, in a few hours, many configurations setups for the irradiation elements. The software can also simulate changes in the path of the product and the influence of any steady body like the support of the product support and source shoulders. These simulations minimize the number of dose mapping tests in industrial applications and allow the study of unusual setups. Cadgamma was developed at IPEN to simulate it is multipurpose 60 Co irradiation system, under construction and planned to be operating by the second half of 2001. The software was used on project stage and will help to optimize the irradiation process for each product to be treated. (author)

  10. MHSS: a material handling system simulator

    Energy Technology Data Exchange (ETDEWEB)

    Pomernacki, L.; Hollstien, R.B.

    1976-04-07

    A Material Handling System Simulator (MHSS) program is described that provides specialized functional blocks for modeling and simulation of nuclear material handling systems. Models of nuclear fuel fabrication plants may be built using functional blocks that simulate material receiving, storage, transport, inventory, processing, and shipping operations as well as the control and reporting tasks of operators or on-line computers. Blocks are also provided that allow the user to observe and gather statistical information on the dynamic behavior of simulated plants over single or replicated runs. Although it is currently being developed for the nuclear materials handling application, MHSS can be adapted to other industries in which material accountability is important. In this paper, emphasis is on the simulation methodology of the MHSS program with application to the nuclear material safeguards problem. (auth)

  11. Cosimulation of embedded system using RTOS software simulator

    Science.gov (United States)

    Wang, Shihao; Duan, Zhigang; Liu, Mingye

    2003-09-01

    Embedded system design often employs co-simulation to verify system's function; one efficient verification tool of software is Instruction Set Simulator (ISS). As a full functional model of target CPU, ISS interprets instruction of embedded software step by step, which usually is time-consuming since it simulates at low-level. Hence ISS often becomes the bottleneck of co-simulation in a complicated system. In this paper, a new software verification tools, the RTOS software simulator (RSS) was presented. The mechanism of its operation was described in a full details. In RSS method, RTOS API is extended and hardware simulator driver is adopted to deal with data-exchange and synchronism between the two simulators.

  12. Immune system simulation online

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Lund, Ole; Castiglione, Filippo

    2011-01-01

    MOTIVATION: The recognition of antigenic peptides is a major event of an immune response. In current mesoscopic-scale simulators of the immune system, this crucial step has been modeled in a very approximated way. RESULTS: We have equipped an agent-based model of the immune system with immuno...

  13. Structural Conditions for Collaboration and Learning in Innovation Networks: Using an Innovation System Performance Lens to Analyse Agricultural Knowledge Systems

    NARCIS (Netherlands)

    Hermans, F.; Klerkx, L.W.A.; Roep, D.

    2015-01-01

    Purpose: We investigate how the structural conditions of eight different European agricultural innovation systems can facilitate or hinder collaboration and social learning in multidisciplinary innovation networks. Methodology: We have adapted the Innovation System Failure Matrix to investigate the

  14. Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards

    Science.gov (United States)

    Ham, H. J.; Lee, S.; Choi, S. H.; Yun, W. S.

    2015-12-01

    Agricultural Fragility Estimates Subjected to Volcanic Ash Fall Hazards Hee Jung Ham1, Seung-Hun Choi1, Woo-Seok Yun1, Sungsu Lee2 1Department of Architectural Engineering, Kangwon National University, Korea 2Division of Civil Engineering, Chungbuk National University, Korea ABSTRACT In this study, fragility functions are developed to estimate expected volcanic ash damages of the agricultural sector in Korea. The fragility functions are derived from two approaches: 1) empirical approach based on field observations of impacts to agriculture from the 2006 eruption of Merapi volcano in Indonesia and 2) the FOSM (first-order second-moment) analytical approach based on distribution and thickness of volcanic ash observed from the 1980 eruption of Mt. Saint Helens and agricultural facility specifications in Korea. Fragility function to each agricultural commodity class is presented by a cumulative distribution function of the generalized extreme value distribution. Different functions are developed to estimate production losses from outdoor and greenhouse farming. Seasonal climate influences vulnerability of each agricultural crop and is found to be a crucial component in determining fragility of agricultural commodities to an ash fall. In the study, the seasonality coefficient is established as a multiplier of fragility function to consider the seasonal vulnerability. Yields of the different agricultural commodities are obtained from Korean Statistical Information Service to create a baseline for future agricultural volcanic loss estimation. Numerically simulated examples of scenario ash fall events at Mt. Baekdu volcano are utilized to illustrate the application of the developed fragility functions. Acknowledgements This research was supported by a grant 'Development of Advanced Volcanic Disaster Response System considering Potential Volcanic Risk around Korea' [MPSS-NH-2015-81] from the Natural Hazard Mitigation Research Group, Ministry of Public Safety and Security of

  15. Integrated agriculture-aquaculture systems in the Mekong Delta, Vietnam: an analysis of recent trends

    NARCIS (Netherlands)

    Thanh Phong, Le; Udo, H.M.J.; Mensvoort, van M.E.F.; Bosma, R.H.; Quang Tri, Le; Nhan, D.K.; Zijpp, van der A.J.

    2008-01-01

    In order to explain the trends in the development and farm attributes of Integrated Agriculture-Aquaculture (IAA) systems in the Mekong Delta of Vietnam, a participatory community appraisal and two surveys are carried out in three districts with contrasting fish culture input systems. The first

  16. A Cryogenic Fluid System Simulation in Support of Integrated Systems Health Management

    Science.gov (United States)

    Barber, John P.; Johnston, Kyle B.; Daigle, Matthew

    2013-01-01

    Simulations serve as important tools throughout the design and operation of engineering systems. In the context of sys-tems health management, simulations serve many uses. For one, the underlying physical models can be used by model-based health management tools to develop diagnostic and prognostic models. These simulations should incorporate both nominal and faulty behavior with the ability to inject various faults into the system. Such simulations can there-fore be used for operator training, for both nominal and faulty situations, as well as for developing and prototyping health management algorithms. In this paper, we describe a methodology for building such simulations. We discuss the design decisions and tools used to build a simulation of a cryogenic fluid test bed, and how it serves as a core technology for systems health management development and maturation.

  17. A DSS for sustainable development and environmental protection of agricultural regions.

    Science.gov (United States)

    Manos, Basil D; Papathanasiou, Jason; Bournaris, Thomas; Voudouris, Kostas

    2010-05-01

    This paper presents a decision support system (DSS) for sustainable development and environmental protection of agricultural regions developed in the framework of the Interreg-Archimed project entitled WaterMap (development and utilization of vulnerability maps for the monitoring and management of groundwater resources in the ARCHIMED areas). Its aim is to optimize the production plan of an agricultural region taking in account the available resources, the environmental parameters, and the vulnerability map of the region. The DSS is based on an optimization multicriteria model. The spatial integration of vulnerability maps in the DSS enables regional authorities to design policies for optimal agricultural development and groundwater protection from the agricultural land uses. The DSS can further be used to simulate different scenarios and policies by the local stakeholders due to changes on different social, economic, and environmental parameters. In this way, they can achieve alternative production plans and agricultural land uses as well as to estimate economic, social, and environmental impacts of different policies. The DSS is computerized and supported by a set of relational databases. The corresponding software has been developed in a Microsoft Windows XP platform, using Microsoft Visual Basic, Microsoft Access, and the LINDO library. For demonstration reasons, the paper includes an application of the DSS in a region of Northern Greece.

  18. The Use of an e-Learning System for Agricultural Extension: A Case Study of the Rural Development Administration, Korea

    Science.gov (United States)

    Park, Duk-Byeong; Cho, Yong-Been; Lee, Minsoo

    2007-01-01

    The study explores the e-learning system of the Computer-Based Agricultural Extension Program (CBAES) and examines the differences in user satisfaction and preferences between the two systems for Agricultural Education and Extension at the Rural Development Administration (RDA) in Korea. It also describes the architecture, services, user…

  19. Current state of the employee performance appraisal system in agricultural organizations in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Kateřina Venclová

    2013-01-01

    Full Text Available Employee performance appraisal is one of the most important human resource management tools. The first part of the article concentrates on the theoretical background. The second part evaluates the results of the quantitative survey. The aim of the article is to evaluate the use of formal appraisal of employees in agricultural organizations in the Czech Republic and to test dependencies between selected qualitative characteristics. The results of the survey show that only 12.3% of agricultural organizations (n = 332 use formal appraisal of employees. They also confirm that the application of the formal appraisal of employees in agricultural organizations depends on the size of the agricultural organization (p-value 0.006, Phi coefficient 0.151 and the existence of a personnel department (p-value 0.000, Phi coefficient 0.210. 49.1% of agricultural organizations did not consider formal appraisal important. Only 5.8% of agricultural organizations that do not use any system of formal employee performance appraisal plan its implementation, despite the fact that currently people are considered to be the most important strategic asset of any organization for achieving a competitive advantage.

  20. Electromechanical motion systems design and simulation

    CERN Document Server

    Moritz, Frederick G

    2013-01-01

    An introductory reference covering the devices, simulations and limitations in the control of servo systems Linking theoretical material with real-world applications, this book provides a valuable introduction to motion system design. The book begins with an overview of classic theory, its advantages and limitations, before showing how classic limitations can be overcome with complete system simulation. The ability to efficiently vary system parameters (such as inertia, friction, dead-band, damping), and quickly determine their effect on performance, stability, efficiency, is also described. T

  1. System Simulation by Recursive Feedback: Coupling a Set of Stand-Alone Subsystem Simulations

    Science.gov (United States)

    Nixon, D. D.

    2001-01-01

    Conventional construction of digital dynamic system simulations often involves collecting differential equations that model each subsystem, arran g them to a standard form, and obtaining their numerical gin solution as a single coupled, total-system simultaneous set. Simulation by numerical coupling of independent stand-alone subsimulations is a fundamentally different approach that is attractive because, among other things, the architecture naturally facilitates high fidelity, broad scope, and discipline independence. Recursive feedback is defined and discussed as a candidate approach to multidiscipline dynamic system simulation by numerical coupling of self-contained, single-discipline subsystem simulations. A satellite motion example containing three subsystems (orbit dynamics, attitude dynamics, and aerodynamics) has been defined and constructed using this approach. Conventional solution methods are used in the subsystem simulations. Distributed and centralized implementations of coupling have been considered. Numerical results are evaluated by direct comparison with a standard total-system, simultaneous-solution approach.

  2. Agricultural Education from a Knowledge Systems Perspective: From Teaching to Facilitating Joint Inquiry and Learning.

    Science.gov (United States)

    Engel, Paul G. H.; van den Bor, Wout

    1995-01-01

    Application of a knowledge and information systems perspective shows how agricultural innovation can be enhanced through networking. In the Netherlands, a number of alternative systems of inquiry and learning are infused with this perspective: participatory technology development, participatory rural appraisal, soft systems methodology, and rapid…

  3. Assessing the Agricultural Vulnerability for India under Changing Climate

    Science.gov (United States)

    Sharma, Tarul; Vardhan Murari, Harsha; Karmakar, Subhankar; Ghosh, Subimal; Singh, Jitendra

    2016-04-01

    Global climate change has proven to show majorly negative impacts for the far future. These negative impacts adversely affect almost all the fields including agriculture, water resources, tourism, and marine ecosystem. Among these, the effects on agriculture are considered to be of prime importance since its regional impacts can directly affect the global food security. Under such lines, it becomes essential to understand how climate change directs agricultural production for a region along with its vulnerability. In India, rice and wheat are considered as major staple diet and hence understanding its production loss/gain due to regional vulnerability to climate change becomes necessary. Here, an attempt has been made to understand the agricultural vulnerability for rice and wheat, considering yield as a function of temperature and precipitation during growing period. In order to accomplish this objective, the ratio of actual to potential evapo-transpiration has been considered which serves as a reliable indicator; with more this ratio towards unity, less vulnerable will be the region. The current objective needs an integration of climatic, hydrological and agricultural parameters; that can be achieved by simulating a climate data driven hydrologic (Variable Infiltration Capacity, VIC) model and a crop (Decision Support System for Agrotechnology Transfer, DSSAT) model. The proposed framework is an attempt to derive a crop vulnerability map that can facilitate in strategizing adaption practices which can reduce the adverse impacts of climate change in future.

  4. Multiphysics simulation electromechanical system applications and optimization

    CERN Document Server

    Dede, Ercan M; Nomura, Tsuyoshi

    2014-01-01

    This book highlights a unique combination of numerical tools and strategies for handling the challenges of multiphysics simulation, with a specific focus on electromechanical systems as the target application. Features: introduces the concept of design via simulation, along with the role of multiphysics simulation in today's engineering environment; discusses the importance of structural optimization techniques in the design and development of electromechanical systems; provides an overview of the physics commonly involved with electromechanical systems for applications such as electronics, ma

  5. 12 CFR 617.7610 - What should the System institution do when it decides to sell acquired agricultural real estate?

    Science.gov (United States)

    2010-01-01

    ... decides to sell acquired agricultural real estate? 617.7610 Section 617.7610 Banks and Banking FARM CREDIT... institution do when it decides to sell acquired agricultural real estate? (a) Notify the previous owner, (1) Within 15 days of the System institution's decision to sell acquired agricultural real estate, it must...

  6. Power system restoration: planning and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hazarika, D. [Assam Engineering Coll., Dept. of Electrical Engineering, Assam (India); Sinha, A.K. [Inidan Inst. of Technology, Dept. of Electrical Engineering, Kharagpur (India)

    2003-03-01

    This paper describes a restoration guidance simulator, which allows power system operator/planner to simulate and plan restoration events in an interactive mode. The simulator provides a list of restoration events according to the priority based on some restoration rules and list of priority loads. It also provides in an interactive mode the list of events, which becomes possible as the system grows during restoration. Further, the selected event is validated through a load flow and other analytical tools to show the consequences of implementing the planned event. (Author)

  7. Simulated vs. empirical weather responsiveness of crop yields: US evidence and implications for the agricultural impacts of climate change

    Science.gov (United States)

    Mistry, Malcolm N.; Wing, Ian Sue; De Cian, Enrica

    2017-07-01

    Global gridded crop models (GGCMs) are the workhorse of assessments of the agricultural impacts of climate change. Yet the changes in crop yields projected by different models in response to the same meteorological forcing can differ substantially. Through an inter-method comparison, we provide a first glimpse into the origins and implications of this divergence—both among GGCMs and between GGCMs and historical observations. We examine yields of rainfed maize, wheat, and soybeans simulated by six GGCMs as part of the Inter-Sectoral Impact Model Intercomparison Project-Fast Track (ISIMIP-FT) exercise, comparing 1981-2004 hindcast yields over the coterminous United States (US) against US Department of Agriculture (USDA) time series for about 1000 counties. Leveraging the empirical climate change impacts literature, we estimate reduced-form econometric models of crop yield responses to temperature and precipitation exposures for both GGCMs and observations. We find that up to 60% of the variance in both simulated and observed yields is attributable to weather variation. A majority of the GGCMs have difficulty reproducing the observed distribution of percentage yield anomalies, and exhibit aggregate responses that show yields to be more weather-sensitive than in the observational record over the predominant range of temperature and precipitation conditions. This disparity is largely attributable to heterogeneity in GGCMs’ responses, as opposed to uncertainty in historical weather forcings, and is responsible for widely divergent impacts of climate on future crop yields.

  8. Stratospheric sulfate geoengineering impacts on global agriculture

    Science.gov (United States)

    Xia, L.; Robock, A.; Lawrence, P.; Lombardozzi, D.

    2015-12-01

    Stratospheric sulfate geoengineering has been proposed to reduce the impacts of anthropogenic climate change. If it is ever used, it would change agricultural production, and so is one of the future climate scenarios for the third phase of the Global Gridded Crop Model Intercomparison. As an example of those impacts, we use the Community Land Model (CLM-crop 4.5) to simulate how climate changes from the G4 geoengineering scenario from the Geoengineering Modeling Intercomparison Project. The G4 geoengineering scenario specifies, in combination with RCP4.5 forcing, starting in 2020 daily injections of a constant amount of SO2 at a rate of 5 Tg SO2 per year at one point on the Equator into the lower stratosphere. Eight climate modeling groups have completed G4 simulations. We use the crop model to simulate the impacts of climate change (temperature, precipitation, and solar radiation) on the global agriculture system for five crops - rice, maize, soybeans, cotton, and sugarcane. In general, without irrigation, compared with the reference run (RCP4.5), global production of cotton, rice and sugarcane would increase significantly due to the cooling effect. Maize and soybeans show different regional responses. In tropical regions, maize and soybean have a higher yield in G4 compared with RCP4.5, while in the temperate regions they have a lower yield under a geoengineered climate. Impacts on specific countries in terms of different crop production depend on their locations. For example, the United States and Argentina show soybean production reduction of about 15% under G4 compared to RCP4.5, while Brazil increases soybean production by about 10%.

  9. Towards a new generation of agricultural system data, models and knowledge products: Information and communication technology.

    Science.gov (United States)

    Janssen, Sander J C; Porter, Cheryl H; Moore, Andrew D; Athanasiadis, Ioannis N; Foster, Ian; Jones, James W; Antle, John M

    2017-07-01

    Agricultural modeling has long suffered from fragmentation in model implementation. Many models are developed, there is much redundancy, models are often poorly coupled, model component re-use is rare, and it is frequently difficult to apply models to generate real solutions for the agricultural sector. To improve this situation, we argue that an open, self-sustained, and committed community is required to co-develop agricultural models and associated data and tools as a common resource. Such a community can benefit from recent developments in information and communications technology (ICT). We examine how such developments can be leveraged to design and implement the next generation of data, models, and decision support tools for agricultural production systems. Our objective is to assess relevant technologies for their maturity, expected development, and potential to benefit the agricultural modeling community. The technologies considered encompass methods for collaborative development and for involving stakeholders and users in development in a transdisciplinary manner. Our qualitative evaluation suggests that as an overall research challenge, the interoperability of data sources, modular granular open models, reference data sets for applications and specific user requirements analysis methodologies need to be addressed to allow agricultural modeling to enter in the big data era. This will enable much higher analytical capacities and the integrated use of new data sources. Overall agricultural systems modeling needs to rapidly adopt and absorb state-of-the-art data and ICT technologies with a focus on the needs of beneficiaries and on facilitating those who develop applications of their models. This adoption requires the widespread uptake of a set of best practices as standard operating procedures.

  10. Electrical power system integrated thermal/electrical system simulation

    International Nuclear Information System (INIS)

    Freeman, W.E.

    1992-01-01

    This paper adds thermal properties to previously developed electrical Saber templates and incorporates these templates into a functional Electrical Power Subsystem (EPS) simulation. These combined electrical and thermal templates enable the complete and realistic simulation of a vehicle EPS on-orbit. Applications include on-orbit energy balance determinations for system load changes, initial array and battery EPS sizing for new EPS development, and array and battery technology trade studies. This effort proves the versatility of the Saber simulation program in handling varied and complex simulations accurately and in a reasonable amount of computer time. 9 refs

  11. Evaluating the Sensitivity of Agricultural Model Performance to Different Climate Inputs: Supplemental Material

    Science.gov (United States)

    Glotter, Michael J.; Ruane, Alex C.; Moyer, Elisabeth J.; Elliott, Joshua W.

    2015-01-01

    Projections of future food production necessarily rely on models, which must themselves be validated through historical assessments comparing modeled and observed yields. Reliable historical validation requires both accurate agricultural models and accurate climate inputs. Problems with either may compromise the validation exercise. Previous studies have compared the effects of different climate inputs on agricultural projections but either incompletely or without a ground truth of observed yields that would allow distinguishing errors due to climate inputs from those intrinsic to the crop model. This study is a systematic evaluation of the reliability of a widely used crop model for simulating U.S. maize yields when driven by multiple observational data products. The parallelized Decision Support System for Agrotechnology Transfer (pDSSAT) is driven with climate inputs from multiple sources reanalysis, reanalysis that is bias corrected with observed climate, and a control dataset and compared with observed historical yields. The simulations show that model output is more accurate when driven by any observation-based precipitation product than when driven by non-bias-corrected reanalysis. The simulations also suggest, in contrast to previous studies, that biased precipitation distribution is significant for yields only in arid regions. Some issues persist for all choices of climate inputs: crop yields appear to be oversensitive to precipitation fluctuations but under sensitive to floods and heat waves. These results suggest that the most important issue for agricultural projections may be not climate inputs but structural limitations in the crop models themselves.

  12. Participatory ergonomics simulation of hospital work systems: The influence of simulation media on simulation outcome.

    Science.gov (United States)

    Andersen, Simone Nyholm; Broberg, Ole

    2015-11-01

    Current application of work system simulation in participatory ergonomics (PE) design includes a variety of different simulation media. However, the actual influence of the media attributes on the simulation outcome has received less attention. This study investigates two simulation media: full-scale mock-ups and table-top models. The aim is to compare, how the media attributes of fidelity and affordance influence the ergonomics identification and evaluation in PE design of hospital work systems. The results illustrate, how the full-scale mock-ups' high fidelity of room layout and affordance of tool operation support ergonomics identification and evaluation related to the work system entities space and technologies & tools. The table-top models' high fidelity of function relations and affordance of a helicopter view support ergonomics identification and evaluation related to the entity organization. Furthermore, the study addresses the form of the identified and evaluated conditions, being either identified challenges or tangible design criteria. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  13. Professional risk of developing diseases of the peripheral nervous system in tractor drivers – machine operators of agricultural production

    Directory of Open Access Journals (Sweden)

    G.A. Bezrukova

    2015-09-01

    Full Text Available Based on the results of the hygienic assessment of working conditions in the domestic agricultural machinery of old and new models when performing the main types of seasonal agricultural work during the annual production cycle and analysis of accumulated occupational diseases’ nosology structure in agricultural workers of the Saratov region over the period from 2004 to 2014, the estimation of professional risk diseases of the peripheral nervous system in tractor drivers – machine operators of agricultural production is given. Professional risk assessment carried out under the procedure set forth in P2.2.1766-03 has shown that the category of a priori risk to their health during an annual production cycle ranged from high to very high (unbearable. It was revealed that the most important factors shaping the harmful working conditions when working on agricultural machinery that can act as a trigger in the formation of vertebral diseases of the peripheral nervous system, are general and local vibration, adverse micro-climatic conditions, long uncomfortable static working posture and physical stress. The risk of diseases in the peripheral uneven system in machine operators of agriculture was attributed to the high risk category with an index of professional diseases (IPD equal to 0,5 %.

  14. Climate-smart agriculture for food security

    Science.gov (United States)

    Lipper, Leslie; Thornton, Philip; Campbell, Bruce M.; Baedeker, Tobias; Braimoh, Ademola; Bwalya, Martin; Caron, Patrick; Cattaneo, Andrea; Garrity, Dennis; Henry, Kevin; Hottle, Ryan; Jackson, Louise; Jarvis, Andrew; Kossam, Fred; Mann, Wendy; McCarthy, Nancy; Meybeck, Alexandre; Neufeldt, Henry; Remington, Tom; Sen, Pham Thi; Sessa, Reuben; Shula, Reynolds; Tibu, Austin; Torquebiau, Emmanuel F.

    2014-12-01

    Climate-smart agriculture (CSA) is an approach for transforming and reorienting agricultural systems to support food security under the new realities of climate change. Widespread changes in rainfall and temperature patterns threaten agricultural production and increase the vulnerability of people dependent on agriculture for their livelihoods, which includes most of the world's poor. Climate change disrupts food markets, posing population-wide risks to food supply. Threats can be reduced by increasing the adaptive capacity of farmers as well as increasing resilience and resource use efficiency in agricultural production systems. CSA promotes coordinated actions by farmers, researchers, private sector, civil society and policymakers towards climate-resilient pathways through four main action areas: (1) building evidence; (2) increasing local institutional effectiveness; (3) fostering coherence between climate and agricultural policies; and (4) linking climate and agricultural financing. CSA differs from 'business-as-usual' approaches by emphasizing the capacity to implement flexible, context-specific solutions, supported by innovative policy and financing actions.

  15. Water balance analysis for efficient water allocation in agriculture. A case study: Balta Brailei, Romania

    Science.gov (United States)

    Chitu, Zenaida; Villani, Giulia; Tomei, Fausto; Minciuna, Marian; Aldea, Adrian; Dumitrescu, Alexandru; Trifu, Cristina; Neagu, Dumitru

    2017-04-01

    Balta Brailei is one of the largest agriculture area in the Danube floodplain, located in SE of Romania. An impressive irrigation system, that covered about 53.500 ha and transferred water from the Danube River, was carried out in the period 1960-1980. Even if the water resources for agriculture in this area cover in most of the cases the volumes required by irrigation water users, the irrigation infrastructure issues as the position of the pumping stations against the river levels hinder the use of the water during low flows periods. An efficient optimization of water allocation in agriculture could avoid periods with water deficit in the irrigation systems. Hydrological processes are essentials in describing the mass and energy exchanges in the atmosphere-plant-soil system. Furthermore, the hydrological regime in this area is very dynamic with many feedback mechanisms between the various parts of the surface and subsurface water regimes. Agricultural crops depend on capillary rise from the shallow groundwater table and irrigation. For an effective optimization of irrigation water in Balta Brailei, we propose to analyse the water balance taking into consideration the water movement into the root zone and the influence of the Danube river, irrigation channel system and the shallow aquifer by combining the soil water balance model CRITERIA and GMS hydrogeological model. CRITERIA model is used for simulating water movement into the soil, while GMS model is used for simulating the shallow groundwater level variation. The understanding of the complex feedbacks between atmosphere, crops and the various parts of the surface and subsurface water regimes in the Balta Brailei will bring more insights for predicting crop water need and water resources for irrigation and it will represent the basis for implementing Moses Platform in this specific area. Moses Platform is a GIS based system devoted to water procurement and management agencies to facilitate planning of

  16. Efficiency of Different Integrated Agriculture Aquaculture Systems in the Red River Delta of Vietnam

    Directory of Open Access Journals (Sweden)

    Nguyen Van Huong

    2018-02-01

    Full Text Available Integrated Agriculture Aquaculture (IAA is characteristic with diversity of small-scale production systems in the Red River Delta, Vietnam where most integrated aquaculture systems are closely associated to the VAC model, an ecosystem production that three components: garden (V, pond (A and livestock pen (C are integrated. These VAC systems effectively use all the available land, air, water and solar energy resources, and also effectively recycle by-products and waste for providing diversified agricultural products to meet the complex nutritional demands of rural communities. The IAA systems are dynamic, diverse and subject to economic and environmental changes. By investigating 167 aquaculture households, the traditional VAC, New VAC, Animal Fish (AF and Commercial Fish (FS systems are identified as four existing IAA systems. This paper presents the main characteristics and economic efficiency of these IAA systems. The study’s results indicate clear evidence that the traditional VAC system and New VAC system are the most efficient and effective models. The findings of this study have shed light on the important role of integrated aquaculture systems to food security and economic development of households and local communities. The VAC systems are likely to propose for improving household food security and developing the local economy.

  17. A Qualitative Study of Agricultural Literacy in Urban Youth: What Do Elementary Students Understand about the Agri-Food System?

    Science.gov (United States)

    Hess, Alexander J.; Trexler, Cary J.

    2011-01-01

    Agricultural literacy of K-12 students is a national priority for both scientific and agricultural education professional organizations. Development of curricula to address this priority has not been informed by research on what K-12 students understand about the agri-food system. While students' knowledge of food and fiber system facts have been…

  18. Simulation of the Energy Saver refrigeration system

    International Nuclear Information System (INIS)

    Barton, H.R. Jr.; Nicholls, J.E.; Mulholland, G.T.

    1981-10-01

    The helium refrigeration for the Energy Saver is supplied by a Central Helium Liquefier and 24 Satellite Refrigerators installed over a 1-1/4 square mile area. An interactive, software simulator has been developed to calculate the refrigeration available from the cryogenic system over a wide range of operating conditions. The refrigeration system simulator incorporates models of the components which have been developed to quantitatively describe changes in system performance. The simulator output is presented in a real-time display which has been used to search for the optimal operating conditions of the Satellite-Central system, to examine the effect of an extended range of operating parameters and to identify equipment modifications which would improve the system performance

  19. Home ranges of brown hares in a natural salt marsh: comparisons with agricultural systems

    NARCIS (Netherlands)

    Kunst, P.; Wal, van der R.; Wieren, van S.E.

    2001-01-01

    This is the first study on spatial behaviour of brown hares Lepus europaeus Pallas, 1778 based on radio-telemetry in a natural system, which we contrast with data from agricultural systems. Radio tracking took place in a Dutch salt marsh over a 10-month period, with intensive tracking sessions

  20. Home ranges of brown hares in a natural salt marsh : comparisons with agricultural systems

    NARCIS (Netherlands)

    Kunst, PJG; van der Wal, R; van Wieren, Sip

    This is the first study on spatial behaviour of brown hares Lepus europaeus Pallas, 1778 based on radio-telemetry in a natural system, which we contrast with data from agricultural systems. Radio tracking took place in a Dutch salt marsh over a 10-month period, with intensive tracking sessions

  1. Blockchain: The Evolutionary Next Step for ICT E-Agriculture

    Directory of Open Access Journals (Sweden)

    Yu-Pin Lin

    2017-07-01

    Full Text Available Blockchain technology, while still challenged with key limitations, is a transformative Information and Communications Technology (ICT that has changed our notion of trust. Improved efficiencies for agricultural sustainable development has been demonstrated when ICT-enabled farms have access to knowledge banks and other digital resources. UN FAO-recommended ICT e-agricultural infrastructure components are a confluence of ICT and blockchain technology requirements. When ICT e-agricultural systems with blockchain infrastructure are immutable and distributed ledger systems for record management, baseline agricultural environmental data integrity is safeguarded for those who participate in transparent data management. This paper reviewed blockchain-based concepts associated with ICT-based technology. Moreover, a model ICT e-agriculture system with a blockchain infrastructure is proposed for use at the local and regional scale. To determine context specific technical and social requirements of blockchain technology for ICT e-agriculture systems, an evaluation tool is presented. The proposed system and tool can be evaluated and applied to further developments of e-agriculture systems.

  2. Some new directions in system transient simulation

    International Nuclear Information System (INIS)

    Ransom, V.H.

    1986-01-01

    The current research in system transient simulation at the Idaho National Engineering Laboratory (INEL) is summarized in this paper and three new directions that are emerging from this work are discussed. The new directions are: development of an Advanced Thermal Hydraulic Energy Network Analyzer (ATHENA) having new modeling capability, use of expert systems for enhancing simulation methods, and the trend to individual workstations for simulation

  3. Automatically Maintain Climatic Conditions inside Agricultural Greenhouses

    Directory of Open Access Journals (Sweden)

    Ali Jasim Ramadhan

    2016-11-01

    Full Text Available In this work, a novel system is designed to remote monitor / automatic control of the temperature, humidity and soil moisture of the agricultural greenhouses. In the proposed system, the author used the mentioned sensors for monitoring the climatic conditions of the agricultural greenhouses; and the system makes a controlling process to fix the required parameters for plant growth by running / stopping the fan, air exchanger and irrigation devices when any changes happened in these parameters. The presented system is based on XBee protocol in the implemented wireless sensor star topology network (WSN to monitor the agricultural greenhouses in real time, and used the GSM and Internet technologies to monitor the agricultural greenhouses from anywhere.

  4. Computational simulation of concurrent engineering for aerospace propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1992-01-01

    Results are summarized of an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulations methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties - fundamental in developing such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering for propulsion systems and systems in general. Benefits and facets needing early attention in the development are outlined.

  5. Computational simulation for concurrent engineering of aerospace propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  6. Practical integrated simulation systems for coupled numerical simulations in parallel

    Energy Technology Data Exchange (ETDEWEB)

    Osamu, Hazama; Zhihong, Guo [Japan Atomic Energy Research Inst., Centre for Promotion of Computational Science and Engineering, Tokyo (Japan)

    2003-07-01

    In order for the numerical simulations to reflect 'real-world' phenomena and occurrences, incorporation of multidisciplinary and multi-physics simulations considering various physical models and factors are becoming essential. However, there still exist many obstacles which inhibit such numerical simulations. For example, it is still difficult in many instances to develop satisfactory software packages which allow for such coupled simulations and such simulations will require more computational resources. A precise multi-physics simulation today will require parallel processing which again makes it a complicated process. Under the international cooperative efforts between CCSE/JAERI and Fraunhofer SCAI, a German institute, a library called the MpCCI, or Mesh-based Parallel Code Coupling Interface, has been implemented together with a library called STAMPI to couple two existing codes to develop an 'integrated numerical simulation system' intended for meta-computing environments. (authors)

  7. A system for automatic evaluation of simulation software

    Science.gov (United States)

    Ryan, J. P.; Hodges, B. C.

    1976-01-01

    Within the field of computer software, simulation and verification are complementary processes. Simulation methods can be used to verify software by performing variable range analysis. More general verification procedures, such as those described in this paper, can be implicitly, viewed as attempts at modeling the end-product software. From software requirement methodology, each component of the verification system has some element of simulation to it. Conversely, general verification procedures can be used to analyze simulation software. A dynamic analyzer is described which can be used to obtain properly scaled variables for an analog simulation, which is first digitally simulated. In a similar way, it is thought that the other system components and indeed the whole system itself have the potential of being effectively used in a simulation environment.

  8. Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: A case study

    International Nuclear Information System (INIS)

    Cheng, Weixiao; Li, Jianan; Wu, Ying; Xu, Like; Su, Chao; Qian, Yanyun; Zhu, Yong-Guan; Chen, Hong

    2016-01-01

    Highlights: • TetQ had the highest relative abundance and tetG was the most persistent gene. • The anaerobic digestion has no effective removal of most ARGs. • The abundance of ARGs in soils and fishpond was higher than that of control system. • Positive correlations were observed between the total ARGs and TN, TP and TOC. - Abstract: This study aims to determine abundance and persistence of antibiotics and antibiotic resistance genes (ARGs) in eco-agricultural system (EAS), which starts from swine feces to anaerobic digestion products, then application of anaerobic digestion solid residue (ADSR) and anaerobic digestion liquid residue (ADLR) to the soil to grow ryegrass, one of swine feed. Oxytetracycline had the highest concentration in manure reaching up to 138.7 mg/kg. Most of antibiotics could be effectively eliminated by anaerobic digestion and removal rates ranged from 11% to 86%. ARGs abundance fluctuated within EAS. TetQ had the highest relative abundance and the relative abundance of tetG had the least variation within the system, which indicates that tetG is persistent in the agricultural environment and requires more attention. Compared to the relative abundance in manure, tetC and tetM increased in biogas residue while three ribosomal protection proteins genes (tetO, tetQ, tetW) decreased (p 0.05). Most ARGs in downstream components (soils and fishpond) of EAS showed significantly higher relative abundance than the control agricultural system (p < 0.05), except for tetG and sulI.

  9. JACOS: AI-based simulation system for man-machine system behavior in NPP

    International Nuclear Information System (INIS)

    Yoshida, Kazuo; Yokobayashi, Masao; Tanabe, Fumiya; Komiya, Akitoshi

    2001-08-01

    A prototype of a computer simulation system named JACOS (JAERI COgnitive Simulation system) has been developed at JAERI (Japan Atomic Energy Research Institute) to simulate the man-machine system behavior in which both the cognitive behavior of a human operator and the plant behavior affect each other. The objectives of this system development is to provide man-machine system analysts with detailed information on the cognitive process of an operator and the plant behavior affected by operator's actions in accidental situations of a nuclear power plant. The simulation system consists of an operator model and a plant model which are coupled dynamically. The operator model simulates an operator's cognitive behavior in accidental situations based on the decision ladder model of Rasmussen, and is implemented using the AI-techniques of the distributed cooperative inference method with the so-called blackboard architecture. Rule-based behavior is simulated using knowledge representation with If-Then type of rules. Knowledge-based behavior is simulated using knowledge representation with MFM (Multilevel Flow Modeling) and qualitative reasoning method. Cognitive characteristics of attentional narrowing, limitation of short-term memory, and knowledge recalling from long-term memory are also taken into account. The plant model of a 3-loop PWR is also developed using a best estimate thermal-hydraulic analysis code RELAP5/MOD2. This report is prepared as User's Manual for JACOS. The first chapter of this report describes both operator and plant models in detail. The second chapter includes instructive descriptions for program installation, building of a knowledge base for operator model, execution of simulation and analysis of simulation results. The examples of simulation with JACOS are shown in the third chapter. (author)

  10. Modeling and simulation of discrete event systems

    CERN Document Server

    Choi, Byoung Kyu

    2013-01-01

    Computer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems. Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on

  11. Systematic modelling and simulation of refrigeration systems

    DEFF Research Database (Denmark)

    Rasmussen, Bjarne D.; Jakobsen, Arne

    1998-01-01

    The task of developing a simulation model of a refrigeration system can be very difficult and time consuming. In order for this process to be effective, a systematic method for developing the system model is required. This method should aim at guiding the developer to clarify the purpose...... of the simulation, to select appropriate component models and to set up the equations in a well-arranged way. In this paper the outline of such a method is proposed and examples showing the use of this method for simulation of refrigeration systems are given....

  12. Designing and Testing a UAV Mapping System for Agricultural Field Surveying

    Directory of Open Access Journals (Sweden)

    Martin Peter Christiansen

    2017-11-01

    Full Text Available A Light Detection and Ranging (LiDAR sensor mounted on an Unmanned Aerial Vehicle (UAV can map the overflown environment in point clouds. Mapped canopy heights allow for the estimation of crop biomass in agriculture. The work presented in this paper contributes to sensory UAV setup design for mapping and textual analysis of agricultural fields. LiDAR data are combined with data from Global Navigation Satellite System (GNSS and Inertial Measurement Unit (IMU sensors to conduct environment mapping for point clouds. The proposed method facilitates LiDAR recordings in an experimental winter wheat field. Crop height estimates ranging from 0.35–0.58 m are correlated to the applied nitrogen treatments of 0–300 kg N ha . The LiDAR point clouds are recorded, mapped, and analysed using the functionalities of the Robot Operating System (ROS and the Point Cloud Library (PCL. Crop volume estimation is based on a voxel grid with a spatial resolution of 0.04 × 0.04 × 0.001 m. Two different flight patterns are evaluated at an altitude of 6 m to determine the impacts of the mapped LiDAR measurements on crop volume estimations.

  13. Designing and Testing a UAV Mapping System for Agricultural Field Surveying.

    Science.gov (United States)

    Christiansen, Martin Peter; Laursen, Morten Stigaard; Jørgensen, Rasmus Nyholm; Skovsen, Søren; Gislum, René

    2017-11-23

    A Light Detection and Ranging (LiDAR) sensor mounted on an Unmanned Aerial Vehicle (UAV) can map the overflown environment in point clouds. Mapped canopy heights allow for the estimation of crop biomass in agriculture. The work presented in this paper contributes to sensory UAV setup design for mapping and textual analysis of agricultural fields. LiDAR data are combined with data from Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU) sensors to conduct environment mapping for point clouds. The proposed method facilitates LiDAR recordings in an experimental winter wheat field. Crop height estimates ranging from 0.35-0.58 m are correlated to the applied nitrogen treatments of 0-300 kg N ha . The LiDAR point clouds are recorded, mapped, and analysed using the functionalities of the Robot Operating System (ROS) and the Point Cloud Library (PCL). Crop volume estimation is based on a voxel grid with a spatial resolution of 0.04 × 0.04 × 0.001 m. Two different flight patterns are evaluated at an altitude of 6 m to determine the impacts of the mapped LiDAR measurements on crop volume estimations.

  14. Healthcare system simulation using Witness

    International Nuclear Information System (INIS)

    Khakdaman, Masoud; Zeinahvazi, Milad; Zohoori, Bahareh; Nasiri, Fardokht; Wong, Kuan Yew

    2013-01-01

    Simulation techniques have a proven track record in manufacturing industry as well as other areas such as healthcare system improvement. In this study, simulation model of a health center in Malaysia is developed through the application of WITNESS simulation software which has shown its flexibility and capability in manufacturing industry. Modelling procedure is started through process mapping and data collection and continued with model development, verification, validation and experimentation. At the end, final results and possible future improvements are demonstrated.

  15. Simulation Based Optimization for World Line Card Production System

    Directory of Open Access Journals (Sweden)

    Sinan APAK

    2012-07-01

    Full Text Available Simulation based decision support system is one of the commonly used tool to examine complex production systems. The simulation approach provides process modules which can be adjusted with certain parameters by using data relatively easily obtainable in production process. World Line Card production system simulation is developed to evaluate the optimality of existing production line via using discrete event simulation model with variaty of alternative proposals. The current production system is analysed by a simulation model emphasizing the bottlenecks and the poorly utilized production line. Our analysis identified some improvements and efficient solutions for the existing system.

  16. Simulations of floor cooling system capacity

    International Nuclear Information System (INIS)

    Odyjas, Andrzej; Górka, Andrzej

    2013-01-01

    Floor cooling system capacity depends on its physical and operative parameters. Using numerical simulations, it appears that cooling capacity of the system largely depends on the type of cooling loads occurring in the room. In the case of convective cooling loads capacity of the system is small. However, when radiation flux falls directly on the floor the system significantly increases productivity. The article describes the results of numerical simulations which allow to determine system capacity in steady thermal conditions, depending on the type of physical parameters of the system and the type of cooling load occurring in the room. Moreover, the paper sets out the limits of system capacity while maintaining a minimum temperature of the floor surface equal to 20 °C. The results are helpful for designing system capacity in different type of cooling loads and show maximum system capacity in acceptable thermal comfort condition. -- Highlights: ► We have developed numerical model for simulation of floor cooling system. ► We have described floor system capacity depending on its physical parameters. ► We have described floor system capacity depending on type of cooling loads. ► The most important in the obtained cooling capacities is the type of cooling loads. ► The paper sets out the possible maximum cooling floor system capacity

  17. OpenDanubia - An integrated, modular simulation system to support regional water resource management

    Science.gov (United States)

    Muerth, M.; Waldmann, D.; Heinzeller, C.; Hennicker, R.; Mauser, W.

    2012-04-01

    The already completed, multi-disciplinary research project GLOWA-Danube has developed a regional scale, integrated modeling system, which was successfully applied on the 77,000 km2 Upper Danube basin to investigate the impact of Global Change on both the natural and anthropogenic water cycle. At the end of the last project phase, the integrated modeling system was transferred into the open source project OpenDanubia, which now provides both the core system as well as all major model components to the general public. First, this will enable decision makers from government, business and management to use OpenDanubia as a tool for proactive management of water resources in the context of global change. Secondly, the model framework to support integrated simulations and all simulation models developed for OpenDanubia in the scope of GLOWA-Danube are further available for future developments and research questions. OpenDanubia allows for the investigation of water-related scenarios considering different ecological and economic aspects to support both scientists and policy makers to design policies for sustainable environmental management. OpenDanubia is designed as a framework-based, distributed system. The model system couples spatially distributed physical and socio-economic process during run-time, taking into account their mutual influence. To simulate the potential future impacts of Global Change on agriculture, industrial production, water supply, households and tourism businesses, so-called deep actor models are implemented in OpenDanubia. All important water-related fluxes and storages in the natural environment are implemented in OpenDanubia as spatially explicit, process-based modules. This includes the land surface water and energy balance, dynamic plant water uptake, ground water recharge and flow as well as river routing and reservoirs. Although the complete system is relatively demanding on data requirements and hardware requirements, the modular structure

  18. Impact of EU agricultural policy on developing countries

    DEFF Research Database (Denmark)

    Boysen, Ole; Jensen, Hans Grinsted; Matthews, Alan

    2016-01-01

    Despite substantial reforms, the EU’s Common Agricultural Policy (CAP) is still criticised for its detrimental effects on developing countries. This paper provides updated evidence on the impact of the CAP on one developing country, Uganda. It goes beyond estimating macro-level economic effects...... by analysing the impacts on poverty. The policy simulation results show that eliminating EU agricultural support would have marginal but nonetheless positive impacts on the Ugandan economy and its poverty indicators. From the perspective of the EU’s commitment to policy coherence for development, this supports...... the view that further reducing EU Agricultural support would be positive for development....

  19. Modeling applications for precision agriculture in the California Central Valley

    Science.gov (United States)

    Marklein, A. R.; Riley, W. J.; Grant, R. F.; Mezbahuddin, S.; Mekonnen, Z. A.; Liu, Y.; Ying, S.

    2017-12-01

    Drought in California has increased the motivation to develop precision agriculture, which uses observations to make site-specific management decisions throughout the growing season. In agricultural systems that are prone to drought, these efforts often focus on irrigation efficiency. Recent improvements in soil sensor technology allow the monitoring of plant and soil status in real-time, which can then inform models aimed at improving irrigation management. But even on farms with resources to deploy soil sensors across the landscape, leveraging that sensor data to design an efficient irrigation scheme remains a challenge. We conduct a modeling experiment aimed at simulating precision agriculture to address several questions: (1) how, when, and where does irrigation lead to optimal yield? and (2) What are the impacts of different precision irrigation schemes on yields, soil organic carbon (SOC), and total water use? We use the ecosys model to simulate precision agriculture in a conventional tomato-corn rotation in the California Central Valley with varying soil water content thresholds for irrigation and soil water sensor depths. This model is ideal for our question because it includes explicit process-based functions for the plant growth, plant water use, soil hydrology, and SOC, and has been tested extensively in agricultural ecosystems. Low irrigation thresholds allows the soil to become drier before irrigating compared to high irrigation thresholds; as such, we found that the high irrigation thresholds use more irrigation over the course of the season, have higher yields, and have lower water use efficiency. The irrigation threshold did not affect SOC. Yields and water use are highest at sensor depths of 0.5 to 0.15 m, but water use efficiency was also lowest at these depths. We found SOC to be significantly affected by sensor depth, with the highest SOC at the shallowest sensor depths. These results will help regulate irrigation water while maintaining yield

  20. Agricultural and Social Resiliency of Small-Scale Agriculture to Economic and Climatic Shocks: A Comparison of Subsistence versus Market-Based Agricultural Approaches in Rural Guatemala

    Science.gov (United States)

    Malard, J. J.; Melgar-Quiñonez, H.; Pineda, P.; Gálvez, J.; Adamowski, J. F.

    2014-12-01

    Agricultural production is heavily dependent not only on climate but also on markets as well as on the social and community systems managing the agroecosystem. In addition, the ultimate goal of agricultural production, human food security, is also affected not only by net agricultural production but also by similar economic and social factors. These complex feedbacks assume a particular importance in the case of smallholder farms in the tropics, where alternative rural development policies have led to different and contrasting agricultural management systems. Current approaches at comparing such systems generally study their environmental, economic or social components in isolation, potentially missing important interconnections. This research uses a participatory systems dynamics modelling (SDM) framework to compare two small-scale agricultural approaches in rural Guatemala which differ in their social, economic and ecosystem management decisions. The first case study community, in Quiché, has adopted a subsistence-based system that aims to use low levels of outside inputs to produce food for their own consumption, while the second, in Sololá, has opted for market-based agriculture that uses high input levels to obtain marketable crops in order to assure income for the purchase of food and other necessities. Each of these systems has its respective vulnerabilities; while the Sololá community suffers from more environmental degradation issues (soils and pests), the Quiché community, given lower monetary incomes, is more vulnerable to events whose responses require a significant monetary expenditure. Through the SDM approach, we incorporate local stakeholder knowledge of the respective systems, including biophysical and socioeconomic variables, into a joint biophysical and socioeconomic model for each community. These models then allow for the comparison of the resilience of both types of socio-agroecosystems in the face of climatic, economic and biological

  1. Simulation-based optimization of thermal systems

    International Nuclear Information System (INIS)

    Jaluria, Yogesh

    2009-01-01

    This paper considers the design and optimization of thermal systems on the basis of the mathematical and numerical modeling of the system. Many complexities are often encountered in practical thermal processes and systems, making the modeling challenging and involved. These include property variations, complicated regions, combined transport mechanisms, chemical reactions, and intricate boundary conditions. The paper briefly presents approaches that may be used to accurately simulate these systems. Validation of the numerical model is a particularly critical aspect and is discussed. It is important to couple the modeling with the system performance, design, control and optimization. This aspect, which has often been ignored in the literature, is considered in this paper. Design of thermal systems based on concurrent simulation and experimentation is also discussed in terms of dynamic data-driven optimization methods. Optimization of the system and of the operating conditions is needed to minimize costs and improve product quality and system performance. Different optimization strategies that are currently used for thermal systems are outlined, focusing on new and emerging strategies. Of particular interest is multi-objective optimization, since most thermal systems involve several important objective functions, such as heat transfer rate and pressure in electronic cooling systems. A few practical thermal systems are considered in greater detail to illustrate these approaches and to present typical simulation, design and optimization results

  2. Agricultural Productivity Forecasts for Improved Drought Monitoring

    Science.gov (United States)

    Limaye, Ashutosh; McNider, Richard; Moss, Donald; Alhamdan, Mohammad

    2010-01-01

    Water stresses on agricultural crops during critical phases of crop phenology (such as grain filling) has higher impact on the eventual yield than at other times of crop growth. Therefore farmers are more concerned about water stresses in the context of crop phenology than the meteorological droughts. However the drought estimates currently produced do not account for the crop phenology. US Department of Agriculture (USDA) and National Oceanic and Atmospheric Administration (NOAA) have developed a drought monitoring decision support tool: The U.S. Drought Monitor, which currently uses meteorological droughts to delineate and categorize drought severity. Output from the Drought Monitor is used by the States to make disaster declarations. More importantly, USDA uses the Drought Monitor to make estimates of crop yield to help the commodities market. Accurate estimation of corn yield is especially critical given the recent trend towards diversion of corn to produce ethanol. Ethanol is fast becoming a standard 10% ethanol additive to petroleum products, the largest traded commodity. Thus the impact of large-scale drought will have dramatic impact on the petroleum prices as well as on food prices. USDA's World Agricultural Outlook Board (WAOB) serves as a focal point for economic intelligence and the commodity outlook for U.S. WAOB depends on Drought Monitor and has emphatically stated that accurate and timely data are needed in operational agrometeorological services to generate reliable projections for agricultural decision makers. Thus, improvements in the prediction of drought will reflect in early and accurate assessment of crop yields, which in turn will improve commodity projections. We have developed a drought assessment tool, which accounts for the water stress in the context of crop phenology. The crop modeling component is done using various crop modules within Decision Support System for Agrotechnology Transfer (DSSAT). DSSAT is an agricultural crop

  3. Climate-agriculture interactions and needs for policy making

    Science.gov (United States)

    Phillips, J. G.

    2010-12-01

    Research exploring climate change interactions with agriculture has evolved from simplistic “delta T” simulation experiments with crop models to work highlighting the importance of climate variability and extreme events, which characterized the negative impacts possible if no adaptation occurred. There soon followed consideration of socioeconomic factors allowing for adaptive strategies that are likely to mitigate the worst case outcomes originally projected. At the same time, improved understanding of biophysical feedbacks has led to a greater recognition of the role that agriculture plays in modifying climate, with a great deal of attention recently paid to strategies to enhance carbon sequestration in agricultural systems. Advances in models of biogeochemical cycling applied to agronomic systems have allowed for new insights into greenhouse gas emissions and sinks associated with current, conventional farming systems. Yet this work is still relatively simplistic in that it seldom addresses interactions between climate dynamics, adoption of mitigation strategies, and feedbacks to the climate system and the surrounding environment. In order for agricultural policy to be developed that provides incentives for appropriate adaptation and mitigation strategies over the next 50 years, a systems approach needs to be utilized that addresses feedbacks and interactions at field, farm and regional scales in a broader environmental context. Interactions between carbon and climate constraints on the one hand, and environmental impacts related to water, nutrient runoff, and pest control all imply a transformation of farming practices that is as of yet not well defined. Little attention has been paid to studying the implications of “alternative” farming strategies such as organic systems, intensive rotational grazing of livestock, or increases in the perennial component of farmscapes, all of which may be necessary responses to energy and other environmental constraints

  4. Theory and Simulation of Multicomponent Osmotic Systems.

    Science.gov (United States)

    Karunaweera, Sadish; Gee, Moon Bae; Weerasinghe, Samantha; Smith, Paul E

    2012-05-28

    Most cellular processes occur in systems containing a variety of components many of which are open to material exchange. However, computer simulations of biological systems are almost exclusively performed in systems closed to material exchange. In principle, the behavior of biomolecules in open and closed systems will be different. Here, we provide a rigorous framework for the analysis of experimental and simulation data concerning open and closed multicomponent systems using the Kirkwood-Buff (KB) theory of solutions. The results are illustrated using computer simulations for various concentrations of the solutes Gly, Gly(2) and Gly(3) in both open and closed systems, and in the absence or presence of NaCl as a cosolvent. In addition, KB theory is used to help rationalize the aggregation properties of the solutes. Here one observes that the picture of solute association described by the KB integrals, which are directly related to the solution thermodynamics, and that provided by more physical clustering approaches are different. It is argued that the combination of KB theory and simulation data provides a simple and powerful tool for the analysis of complex multicomponent open and closed systems.

  5. Geomorphological characterization of conservation agriculture

    Science.gov (United States)

    Tarolli, Paolo; Cecchin, Marco; Prosdocimi, Massimo; Masin, Roberta

    2017-04-01

    characterise the surface morphology. For each of derived Digital Elevation Model, seven morphometric indexes, such as slope, curvature, flow direction, contributing area, roughness, and connectivity was calculated. We showed then the variations of the morphology in the areas converted to the conservation agriculture, and, consequently, a possible modification of processes such as erosion and runoff. The results suggested that the agricultural surfaces interested by no-tillage practices are different from those tilled with conventional systems. The topography is rougher, with chaotic flow directions, and more concave areas, thus resulting in potential water storages, mitigating the intensity of soil erosion and runoff processes. On the other hand, the topography of traditional tillage area is more regular and smooth, with flow directions that tend to follow the same direction on the surface. These results are a novelty in the Earth Science and Agronomy: we demonstrated and quantified, from the geomorphological point of view, the potential role of conservative agriculture in mitigating, not only land degradation phenomena, but also the distribution of pollutants, and rainfall-runoff processes. References Prosdocimi, M., Tarolli, P., Cerdà, A. (2016). Mulching practice for reducing soil water erosion: A review. Earth-Science Reviews, 161, 191-203. Prosdocimi, M., Burguet, M., Di Prima, S., Sofia, G., Terol, E, Rodrigo Comino J., Cerdà, A., Tarolli, P. (2017). Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards. Science of the Total Environment, 574, 204-215. Tarolli, P., Sofia G. (2016). Human topographic signatures and derived geomorphic processes across landscapes, Geomorphology, 255, 140-161.

  6. Marketing margins and agricultural technology in Mozambique

    DEFF Research Database (Denmark)

    Arndt, Channing; Jensen, Henning Tarp; Robinson, Sherman

    2000-01-01

    of improved agricultural technology and lower marketing margins yield welfare gains across the economy. In addition, a combined scenario reveals significant synergy effects, as gains exceed the sum of gains from the individual scenarios. Relative welfare improvements are higher for poor rural households......Improvements in agricultural productivity and reductions in marketing costs in Mozambique are analysed using a computable general equilibrium (CGE) model. The model incorporates detailed marketing margins and separates household demand for marketed and home-produced goods. Individual simulations...

  7. JACOS: AI-based simulation system for man-machine system behavior in NPP

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kazuo; Yokobayashi, Masao; Tanabe, Fumiya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kawase, Katsumi [CSK Corp., Tokyo (Japan); Komiya, Akitoshi [Computer Associated Laboratory, Inc., Hitachinaka, Ibaraki (Japan)

    2001-08-01

    A prototype of a computer simulation system named JACOS (JAERI COgnitive Simulation system) has been developed at JAERI (Japan Atomic Energy Research Institute) to simulate the man-machine system behavior in which both the cognitive behavior of a human operator and the plant behavior affect each other. The objectives of this system development is to provide man-machine system analysts with detailed information on the cognitive process of an operator and the plant behavior affected by operator's actions in accidental situations of a nuclear power plant. The simulation system consists of an operator model and a plant model which are coupled dynamically. The operator model simulates an operator's cognitive behavior in accidental situations based on the decision ladder model of Rasmussen, and is implemented using the AI-techniques of the distributed cooperative inference method with the so-called blackboard architecture. Rule-based behavior is simulated using knowledge representation with If-Then type of rules. Knowledge-based behavior is simulated using knowledge representation with MFM (Multilevel Flow Modeling) and qualitative reasoning method. Cognitive characteristics of attentional narrowing, limitation of short-term memory, and knowledge recalling from long-term memory are also taken into account. The plant model of a 3-loop PWR is also developed using a best estimate thermal-hydraulic analysis code RELAP5/MOD2. This report is prepared as User's Manual for JACOS. The first chapter of this report describes both operator and plant models in detail. The second chapter includes instructive descriptions for program installation, building of a knowledge base for operator model, execution of simulation and analysis of simulation results. The examples of simulation with JACOS are shown in the third chapter. (author)

  8. Development of methods for remediation of artificial polluted soils and improvement of soils for ecologically clean agricultural production systems

    International Nuclear Information System (INIS)

    Bogachev, V.; Adrianova, G.; Zaitzev, V.; Kalinin, V.; Kovalenko, E.; Makeev, A.; Malikova, L.; Popov, Yu.; Savenkov, A.; Shnyakina, V.

    1996-01-01

    The purpose of the research: Development of methods for the remediation of artificial polluted soils and the improvement of polluted lands to ecologically clean agricultural production.The following tasks will be implemented in this project to achieve viable practical solutions: - To determine the priority pollutants, their ecological pathways, and sources of origin. - To form a supervised environmental monitoring data bank throughout the various geo system conditions. - To evaluate the degree of the bio geo system pollution and the influence on the health of the local human populations. - To establish agricultural plant tolerance levels to the priority pollutants. - To calculate the standard concentrations of the priority pollutants for main agricultural plant groups. - To develop a soil remediation methodology incorporating the structural, functional geo system features. - To establish a territory zone division methodology in consideration of the degree of component pollution, plant tolerance to pollutants, plant production conditions, and human health. - Scientific grounding of the soil remediation proposals and agricultural plant material introductions with soil pollution levels and relative plant tolerances to pollutants. Technological Means, Methods, and Approaches Final proposed solutions will be based upon geo system and ecosystem approaches and methodologies. The complex ecological valuation methods of the polluted territories will be used in this investigation. Also, laboratory culture in vitro, application work, and multi-factor field experiments will be conducted. The results will be statistically analyzed using appropriate methods. Expected Results Complex biogeochemical artificial province assessment according to primary pollutant concentrations. Development of agricultural plant tolerance levels relative to the priority pollutants. Assessment of newly introduced plant materials that may possess variable levels of pollution tolerance. Remediation

  9. PERFORMANCE OF ECOLOGICAL AGRICULTURE IN ROMANIA

    Directory of Open Access Journals (Sweden)

    CIPRIAN APOSTOL

    2014-08-01

    Full Text Available The term ecological agriculture has been attributed by the European Union of Romania to define this system of agriculture and is similar with terms organic agriculture or biological agriculture, which are used in other member states. One of the main goals of ecological agriculture is the production of agricultural and food products fresh and genuine through processes created to respect nature and its systems. Thus, it prohibits the use of genetically modified organisms, fertilizers and synthetic pesticides, stimulators and growth regulators, hormones, antibiotics for livestock and the use of synthetic chemical fertilizers, drastic interventions on the soil, the introduction of genetically modified organisms, in the case of the cultivated soil. The study aims to highlight the main features of ecological agriculture and its impact on the national economy. Through a descriptive and comparative analysis of specific indicators are surprising the main aspects of ecological agriculture performance in Romania and are identified investment opportunities in this sector of the national economy. Following this study, it was found that ecological agriculture in Romania is quite performant and recorded a continuous development, but mainly in the production, not in the processing and trading of natural products, which is why investment in these areas would be welcome.

  10. Grand canonical simulations of hard-disk systems by simulated tempering

    DEFF Research Database (Denmark)

    Döge, G.; Mecke, K.; Møller, Jesper

    2004-01-01

    The melting transition of hard disks in two dimensions is still an unsolved problem and improved simulation algorithms may be helpful for its investigation. We suggest the application of simulating tempering for grand canonical hard-disk systems as an efficient alternative to the commonly......-used Monte Carlo algorithms for canonical systems. This approach allows the direct study of the packing fraction as a function of the chemical potential even in the vicinity of the melting transition. Furthermore, estimates of several spatial characteristics including pair correlation function are studied...

  11. Conversational module-based simulation system as a human interface to versatile dynamic simulation of nuclear power plant

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Nakaya, K.; Wakabayashi, J.

    1986-01-01

    A new conversational simulation system is proposed which aims at effective re-utilization of software resources as module database, and conducting versatile simulations easily by automatic module integration with the help of user-friendly interfaces. The whole simulation system is composed of the four parts: master module library and pre-compiler system as the core system, while module database management system and simulation execution support system for the user interfaces. Basic methods employed in the system are mentioned with their knowledge representation and the relationship with the human information processing. An example practice of an LMFBR reactor dynamic simulation by the system demonstrated its capability to integrate a large simulation program and the related input/output files automatically by a single user

  12. An improvement of agricultural equipment manufacturing by using lean techniques : A case study of agricultural machinery company

    Directory of Open Access Journals (Sweden)

    Nattariya Pakdeepunya

    2015-06-01

    Full Text Available The objective of this research was to study and improve the manufacturing process of agricultural equipment to reduce wastes by using the LEAN tools: a case study of agricultural machinery company. This study found that the main wastes were inefficiency of transportation and working process. The Systematic Layout Planning Pattern (SLP had been applied. Moreover, the principles of ECRS, the change in input factors (a number of employees, together with simulation and the Analysis Hierarchy Process (AHP were also used to determine the appropriate plant layout alternatives by considering the factors such as the productivity, materials handling distance, facilities utilization, and space utilization. The result shared that the best suitable layout is the layout No. 1. Then more improvement the layout No. 1 with the ECRS and the change of input factors (the amount of employees ,it was found that increased productivity by 16.10%, increased facilities utilization by 15.73% and decreased materials handling distance by 48.12%. Furthermore, the number of employees and the average time of workpiece in system could be reduced from 7 to 6 persons, and 54.41 minutes to 45.65 minutes respectively.

  13. Adapting the innovation systems approach to agricultural development in Vietnam

    DEFF Research Database (Denmark)

    Friederichsen, Rupert; Thai, Thi Minh; Neef, Andreas

    2013-01-01

    into the still-dominant transfer of technology model. We show how extensionists draw selectively on these diverse discourses to foster interaction with outsiders and clients, and bolster their livelihood strategies. We conclude that the conceptual framework suggested by the innovation systems (IS) approach......Competing models of innovation informing agricultural extension, such as transfer of technology, participatory extension and technology development, and innovation systems have been proposed over the last decades. These approaches are often presented as antagonistic or even mutually exclusive....... This article shows how practitioners in a rural innovation system draw on different aspects of all three models, while creating a distinct local practice and discourse. We revisit and deepen the critique of Vietnam’s “model” approach to upland rural development, voiced a decade ago in this journal. Our...

  14. Rainwater harvesting and management in rainfed agricultural systems in sub-Saharan Africa - A review

    Science.gov (United States)

    Biazin, Birhanu; Sterk, Geert; Temesgen, Melesse; Abdulkedir, Abdu; Stroosnijder, Leo

    Agricultural water scarcity in the predominantly rainfed agricultural system of sub-Saharan Africa (SSA) is more related to the variability of rainfall and excessive non-productive losses, than the total annual precipitation in the growing season. Less than 15% of the terrestrial precipitation takes the form of productive ‘green’ transpiration. Hence, rainwater harvesting and management (RWHM) technologies hold a significant potential for improving rainwater-use efficiency and sustaining rainfed agriculture in the region. This paper outlines the various RWHM techniques being practiced in SSA, and reviews recent research results on the performance of selected practices. So far, micro-catchment and in situ rainwater harvesting techniques are more common than rainwater irrigation techniques from macro-catchment systems. Depending on rainfall patterns and local soil characteristics, appropriate application of in situ and micro-catchment techniques could improve the soil water content of the rooting zone by up to 30%. Up to sixfold crop yields have been obtained through combinations of rainwater harvesting and fertiliser use, as compared to traditional practices. Supplemental irrigation of rainfed agriculture through rainwater harvesting not only reduces the risk of total crop failure due to dry spells, but also substantially improves water and crop productivity. Depending on the type of crop and the seasonal rainfall pattern, the application of RWHM techniques makes net profits more possible, compared to the meagre profit or net loss of existing systems. Implementation of rainwater harvesting may allow cereal-based smallholder farmers to shift to diversified crops, hence improving household food security, dietary status, and economic return. The much needed green revolution and adaptations to climate change in SSA should blend rainwater harvesting ideals with agronomic principles. More efforts are needed to improve the indigenous practices, and to disseminate best

  15. Testing cooperative systems with the MARS simulator

    NARCIS (Netherlands)

    Netten, B.D.; Wedemeijer, H.

    2010-01-01

    The complexity of cooperative systems makes the use of high fidelity simulation essential in the development and testing of cooperative applications and their interactions with other cooperative systems. In SAFESPOT a simulator test bench is setup to test the safety margin applications running on

  16. A High-Throughput, High-Accuracy System-Level Simulation Framework for System on Chips

    Directory of Open Access Journals (Sweden)

    Guanyi Sun

    2011-01-01

    Full Text Available Today's System-on-Chips (SoCs design is extremely challenging because it involves complicated design tradeoffs and heterogeneous design expertise. To explore the large solution space, system architects have to rely on system-level simulators to identify an optimized SoC architecture. In this paper, we propose a system-level simulation framework, System Performance Simulation Implementation Mechanism, or SPSIM. Based on SystemC TLM2.0, the framework consists of an executable SoC model, a simulation tool chain, and a modeling methodology. Compared with the large body of existing research in this area, this work is aimed at delivering a high simulation throughput and, at the same time, guaranteeing a high accuracy on real industrial applications. Integrating the leading TLM techniques, our simulator can attain a simulation speed that is not slower than that of the hardware execution by a factor of 35 on a set of real-world applications. SPSIM incorporates effective timing models, which can achieve a high accuracy after hardware-based calibration. Experimental results on a set of mobile applications proved that the difference between the simulated and measured results of timing performance is within 10%, which in the past can only be attained by cycle-accurate models.

  17. DNA - A Thermal Energy System Simulator

    DEFF Research Database (Denmark)

    2008-01-01

    DNA is a general energy system simulator for both steady-state and dynamic simulation. The program includes a * component model library * thermodynamic state models for fluids and solid fuels and * standard numerical solvers for differential and algebraic equation systems and is free and portable...... (open source, open use, standard FORTRAN77). DNA is text-based using whichever editor, you like best. It has been integerated with the emacs editor. This is usually available on unix-like systems. for windows we recommend the Installation instructions for windows: First install emacs and then run...... the DNA installer...

  18. Forages and Pastures Symposium: assessing drought vulnerability of agricultural production systems in context of the 2012 drought.

    Science.gov (United States)

    Kellner, O; Niyogi, D

    2014-07-01

    Weather and climate events and agronomic enterprise are coupled via crop phenology and yield, which is temperature and precipitation dependent. Additional coupling between weather and climate and agronomic enterprise occurs through agricultural practices such as tillage, irrigation, erosion, livestock management, and forage. Thus, the relationship between precipitation, temperature, and yield is coupled to the relationship between temperature, precipitation, and drought. Unraveling the different meteorological and climatological patterns by comparing different growing seasons provides insight into how drought conditions develop and what agricultural producers can do to mitigate and adapt to drought conditions. The 2012 drought in the United States greatly impacted the agricultural sector of the economy. With comparable severity and spatial extent of the droughts of the 1930s, 1950s, and 1980s, the 2012 drought impacted much of the U.S. crop and livestock producers via decreased forage and feed. This brief summary of drought impacts to agricultural production systems includes 1) the basics of drought; 2) the meteorology and climatology involved in forecasting, predicting, and monitoring drought with attribution of the 2012 drought explored in detail; and 3) comparative analysis completed between the 2011 and 2012 growing season. This synthesis highlights the complex nature of drought in agriculture production systems as producers prepare for future climate variability.

  19. System and Field Devices (non Nuclear) in Agriculture Research in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Shyful Azizi Abdul Rahman; Abdul Rahim Harun

    2015-01-01

    Research to improve productivity on an ongoing basis in the agricultural sector is essential to ensure and guarantee the country's food security. Malaysian Nuclear Agency, agricultural research had begun in 1981 in which the focus of research is related to mutation breeding, irradiation and the use of isotopes in the study of plant nutrition. Although projects agricultural research carried out based on nuclear technology, other information relating to agricultural research such as agronomy, plant physiology, meteorology and ecology, soil characteristics and water is essential to obtain the understanding and research results that are relevant and significant. Data acquisition for other aspects also need a system and a modern and efficient equipment, in accordance with current technological developments. This paper describes the use, function and capabilities of the existing field equipment available in Agrotechnology and Biosciences Division, Malaysian Nuclear Agency in acquiring data related to weather, measurement and control of ground water, soil nutrients assessment and monitoring of plant physiology. The latest technological developments in sensor technology, computer technology and communication is very helpful in getting data more easily, quickly and accurately. Equipment and the data obtained is also likely to be used by researchers in other fields in Nuclear Malaysia. (author)

  20. Comparing supply-side specifications in models of global agriculture and the food system

    NARCIS (Netherlands)

    Robinson, S.; Meijl, van J.C.M.; Willenbockel, D.; Valin, H.; Fujimori, S.; Masui, T.; Sands, R.; Wise, M.; Calvin, K.V.; Mason d'Croz, D.; Tabeau, A.A.; Kavallari, A.; Schmitz, C.; Dietrich, J.P.; Lampe, von M.

    2014-01-01

    This article compares the theoretical and functional specification of production in partial equilibrium (PE) and computable general equilibrium (CGE) models of the global agricultural and food system included in the AgMIP model comparison study. The two model families differ in their scope—partial

  1. Transmission of vertical soil stress under agricultural tyres

    DEFF Research Database (Denmark)

    Keller, Thomas; Berli, M.; Ruiz, S.

    2014-01-01

    and simulate soil stress under defined loads. Stress in the soil profile at 0.3, 0.5 and 0.7 m depth was measured during wheeling at a water content close to field capacity on five soils (13–66% clay). Stress transmission was then simulated with a semi-analytical model, using vertical stress at 0.1 m depth......The transmission of stress induced by agricultural machinery within an agricultural soil is typically modelled on the basis of the theory of stress transmission in elastic media, usually in the semi-empirical form that includes the “concentration factor” (v). The aim of this paper was to measure...... estimated from tyre characteristics as the upper boundary condition, and v was obtained at minimum deviation between measurements and simulations. For the five soils, we obtained an average v of 3.5 (for stress transmitting from 0.1 to 0.7 m depth). This was only slightly different from v = 3 for which...

  2. Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Weixiao; Li, Jianan; Wu, Ying; Xu, Like; Su, Chao; Qian, Yanyun [Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhu, Yong-Guan [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Chen, Hong, E-mail: chen_hong@zju.edu.cn [Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2016-03-05

    Highlights: • TetQ had the highest relative abundance and tetG was the most persistent gene. • The anaerobic digestion has no effective removal of most ARGs. • The abundance of ARGs in soils and fishpond was higher than that of control system. • Positive correlations were observed between the total ARGs and TN, TP and TOC. - Abstract: This study aims to determine abundance and persistence of antibiotics and antibiotic resistance genes (ARGs) in eco-agricultural system (EAS), which starts from swine feces to anaerobic digestion products, then application of anaerobic digestion solid residue (ADSR) and anaerobic digestion liquid residue (ADLR) to the soil to grow ryegrass, one of swine feed. Oxytetracycline had the highest concentration in manure reaching up to 138.7 mg/kg. Most of antibiotics could be effectively eliminated by anaerobic digestion and removal rates ranged from 11% to 86%. ARGs abundance fluctuated within EAS. TetQ had the highest relative abundance and the relative abundance of tetG had the least variation within the system, which indicates that tetG is persistent in the agricultural environment and requires more attention. Compared to the relative abundance in manure, tetC and tetM increased in biogas residue while three ribosomal protection proteins genes (tetO, tetQ, tetW) decreased (p < 0.05), with other genes showing no significant change after anaerobic fermentation (p > 0.05). Most ARGs in downstream components (soils and fishpond) of EAS showed significantly higher relative abundance than the control agricultural system (p < 0.05), except for tetG and sulI.

  3. A View on Future Building System Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2011-04-01

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  4. Construction of the real patient simulator system.

    Science.gov (United States)

    Chan, Richard; Sun, C T

    2012-05-01

    Simulation for perfusion education has been used for at least the past 25 years. The earlier models were either electronic (computer games) or fluid dynamic models and provided invaluable adjuncts to perfusion training and education. In 2009, the *North Shore-LIJ Health System at Great Neck, New York, opened an innovative "Bioskill Center" dedicated to simulated virtual reality advanced hands-on surgical training as well as perfusion simulation. Professional cardiac surgical organizations now show great interest in using simulation for training and recertification. Simulation will continue to be the direction for future perfusion training and education. This manuscript introduces a cost-effective system developed from discarded perfusion products and it is not intended to detail the actual lengthy process of its construction.

  5. PROCAMS - A second generation multispectral-multitemporal data processing system for agricultural mensuration

    Science.gov (United States)

    Erickson, J. D.; Nalepka, R. F.

    1976-01-01

    PROCAMS (Prototype Classification and Mensuration System) has been designed for the classification and mensuration of agricultural crops (specifically small grains including wheat, rye, oats, and barley) through the use of data provided by Landsat. The system includes signature extension as a major feature and incorporates multitemporal as well as early season unitemporal approaches for using multiple training sites. Also addressed are partial cloud cover and cloud shadows, bad data points and lines, as well as changing sun angle and atmospheric state variations.

  6. Operating system for a real-time multiprocessor propulsion system simulator. User's manual

    Science.gov (United States)

    Cole, G. L.

    1985-01-01

    The NASA Lewis Research Center is developing and evaluating experimental hardware and software systems to help meet future needs for real-time, high-fidelity simulations of air-breathing propulsion systems. Specifically, the real-time multiprocessor simulator project focuses on the use of multiple microprocessors to achieve the required computing speed and accuracy at relatively low cost. Operating systems for such hardware configurations are generally not available. A real time multiprocessor operating system (RTMPOS) that supports a variety of multiprocessor configurations was developed at Lewis. With some modification, RTMPOS can also support various microprocessors. RTMPOS, by means of menus and prompts, provides the user with a versatile, user-friendly environment for interactively loading, running, and obtaining results from a multiprocessor-based simulator. The menu functions are described and an example simulation session is included to demonstrate the steps required to go from the simulation loading phase to the execution phase.

  7. Slab cooling system design using computer simulation

    NARCIS (Netherlands)

    Lain, M.; Zmrhal, V.; Drkal, F.; Hensen, J.L.M.

    2007-01-01

    For a new technical library building in Prague computer simulations were carried out to help design of slab cooling system and optimize capacity of chillers. In the paper is presented concept of new technical library HVAC system, the model of the building, results of the energy simulations for

  8. Remote collaboration system based on large scale simulation

    International Nuclear Information System (INIS)

    Kishimoto, Yasuaki; Sugahara, Akihiro; Li, J.Q.

    2008-01-01

    Large scale simulation using super-computer, which generally requires long CPU time and produces large amount of data, has been extensively studied as a third pillar in various advanced science fields in parallel to theory and experiment. Such a simulation is expected to lead new scientific discoveries through elucidation of various complex phenomena, which are hardly identified only by conventional theoretical and experimental approaches. In order to assist such large simulation studies for which many collaborators working at geographically different places participate and contribute, we have developed a unique remote collaboration system, referred to as SIMON (simulation monitoring system), which is based on client-server system control introducing an idea of up-date processing, contrary to that of widely used post-processing. As a key ingredient, we have developed a trigger method, which transmits various requests for the up-date processing from the simulation (client) running on a super-computer to a workstation (server). Namely, the simulation running on a super-computer actively controls the timing of up-date processing. The server that has received the requests from the ongoing simulation such as data transfer, data analyses, and visualizations, etc. starts operations according to the requests during the simulation. The server makes the latest results available to web browsers, so that the collaborators can monitor the results at any place and time in the world. By applying the system to a specific simulation project of laser-matter interaction, we have confirmed that the system works well and plays an important role as a collaboration platform on which many collaborators work with one another

  9. How to design a targeted agricultural subsidy system: efficiency or equity?

    Science.gov (United States)

    Cong, Rong-Gang; Brady, Mark

    2012-01-01

    In this paper we appraise current agricultural subsidy policy in the EU. Several sources of its inefficiency are identified: it is inefficient for supporting farmers' incomes or guaranteeing food security, and irrational transfer payments decoupled from actual performance that may be negative for environmental protection, social cohesion, etc. Based on a simplified economic model, we prove that there is "reverse redistribution" in the current tax-subsidy system, which cannot be avoided. To find a possible way to distribute subsidies more efficiently and equitably, several alternative subsidy systems (the pure loan, the harvest tax and the income contingent loan) are presented and examined.

  10. Modelling carbon dioxide emissions from agricultural soils in Canada.

    Science.gov (United States)

    Yadav, Dhananjay; Wang, Junye

    2017-11-01

    Agricultural soils are a leading source of atmospheric greenhouse gas (GHG) emissions and are major contributors to global climate change. Carbon dioxide (CO 2 ) makes up 20% of the total GHG emitted from agricultural soil. Therefore, an evaluation of CO 2 emissions from agricultural soil is necessary in order to make mitigation strategies for environmental efficiency and economic planning possible. However, quantification of CO 2 emissions through experimental methods is constrained due to the large time and labour requirements for analysis. Therefore, a modelling approach is needed to achieve this objective. In this paper, the DeNitrification-DeComposition (DNDC), a process-based model, was modified to predict CO 2 emissions for Canada from regional conditions. The modified DNDC model was applied at three experimental sites in the province of Saskatchewan. The results indicate that the simulations of the modified DNDC model are in good agreement with observations. The agricultural management of fertilization and irrigation were evaluated using scenario analysis. The simulated total annual CO 2 flux changed on average by ±13% and ±1% following a ±50% variance of the total amount of N applied by fertilising and the total amount of water through irrigation applications, respectively. Therefore, careful management of irrigation and applications of fertiliser can help to reduce CO 2 emissions from the agricultural sector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Simulating Effects of Long Term Use of Wastewater on Farmers Health Using System Dynamics Modeling (Case Study: Varamin Plain

    Directory of Open Access Journals (Sweden)

    Hamzehali Alizadeh

    2017-06-01

    Full Text Available Introduction: Agricultural activity in Varamin plain has been faced with many challenges in recent years, due to vicinity to Tehran the capital of Iran (competition for Latian dam reservoir, and competition with Tehran south network in allocation of Mamlou dam reservoir and treated wastewater of south wastewater treatment plant. Mamlou and Latian dam reservoirs, due to increase of population and industry sectors, allocated to urban utilization of Tehran. Based on national policy, the treated wastewater should be replaced with Latian dam reservoir water to supply water demand of agricultural sector. High volume transmission of wastewater to Varamin plain, will be have economical, environmental, and social effects. Several factors effect on wastewater management and success of utilization plans and any change in these factors may have various feedbacks on the other elements of wastewater use system. Hence, development of a model with capability of simulation of all factors, aspects and interactions that affect wastewater utilization is very necessary. The main objective of present study was development of water integrated model to study long-term effects of irrigation with Tehran treated wastewater, using system dynamics modeling (SD approach. Materials and Methods: Varamin Plain is one of the most important agricultural production centers of the country due to nearness to the large consumer market of Tehran and having fertile soil and knowledge of agriculture. The total agricultural irrigated land in Varamin Plain is 53486 hectares containing 17274 hectares of barley, 16926 hectares of wheat, 3866 hectares of tomato, 3521 hectares of vegetables, 3556 hectares of alfalfa, 2518 hectares of silage maize, 1771 hectares of melon, 1642 hectares of cotton, 1121 hectares of cucumber and 1291 hectares of other crops. In 2006 the irrigation requirement of the crop pattern was about 690 MCM and the actual agriculture water consumption was about 620 MCM

  12. Current subsidies in the agricultural sector of the global trade system

    Directory of Open Access Journals (Sweden)

    Ganna Voronina

    2006-03-01

    Full Text Available This article focuses on the provisions of the WTO agreements regulating the use of subsidies in the agricultural sector by the member-states. It analyzes current practices of the WTO member-states’ in subsidizing their agricultural production. It also outlines the main trends in improving the practices of subsidizing agricultural producers in the leading countries of the world. The article also describes the major coalitions within the WTO that actively participate in the development and improvement of international trade rules in agricultural produce. In the current context whereby Ukraine seeks WTO accession, the structure of domestic measures in support of agriculture pursuant to the requirements of this international organization is given special attention. The article also considers the prospects for further liberalization of international trade in agricultural produce.

  13. Grassland production under global change scenarios for New Zealand pastoral agriculture

    Science.gov (United States)

    Keller, E. D.; Baisden, W. T.; Timar, L.; Mullan, B.; Clark, A.

    2014-10-01

    We adapt and integrate the Biome-BGC and Land Use in Rural New Zealand models to simulate pastoral agriculture and to make land-use change, intensification of agricultural activity and climate change scenario projections of New Zealand's pasture production at time slices centred on 2020, 2050 and 2100, with comparison to a present-day baseline. Biome-BGC model parameters are optimised for pasture production in both dairy and sheep/beef farm systems, representing a new application of the Biome-BGC model. Results show up to a 10% increase in New Zealand's national pasture production in 2020 under intensification and a 1-2% increase by 2050 from economic factors driving land-use change. Climate change scenarios using statistically downscaled global climate models (GCMs) from the IPCC Fourth Assessment Report also show national increases of 1-2% in 2050, with significant regional variations. Projected out to 2100, however, these scenarios are more sensitive to the type of pasture system and the severity of warming: dairy systems show an increase in production of 4% under mild change but a decline of 1% under a more extreme case, whereas sheep/beef production declines in both cases by 3 and 13%, respectively. Our results suggest that high-fertility systems such as dairying could be more resilient under future change, with dairy production increasing or only slightly declining in all of our scenarios. These are the first national-scale estimates using a model to evaluate the joint effects of climate change, CO2 fertilisation and N-cycle feedbacks on New Zealand's unique pastoral production systems that dominate the nation's agriculture and economy. Model results emphasise that CO2 fertilisation and N-cycle feedback effects are responsible for meaningful differences in agricultural systems. More broadly, we demonstrate that our model output enables analysis of decoupled land-use change scenarios: the Biome-BGC data products at a national or regional level can be re

  14. The simulation of CAMAC system based on Windows API

    International Nuclear Information System (INIS)

    Li Lei; Song Yushou; Xi Yinyin; Yan Qiang; Liu Huilan; Li Taosheng

    2012-01-01

    Based on Windows API, a kind of design method to simulate the CAMAC System, which is commonly used in nuclear physics experiments, is developed. Using C++ object-oriented programming, the simulation is carried out in the environment of Visual Studio 2010 and the interfaces, the data-way, the control commands and the modules are simulated with the functions either user-defined or from Windows API. Applying this method, the amplifier plug AMP575A produced by ORTEC is simulated and performance experiments are studied for this simulation module. The results indicate that the simulation module can fulfill the function of pole-zero adjustment, which means this method is competent for the simulation of CAMAC System. Compared with the simulation based on LabVIEW, this way is more flexible and closer to the bottom of the system. All the works above have found a path to making the virtual instrument platform based on CAMAC system. (authors)

  15. Agro-Forestry system in West Africa: integrating a green solution to cope with soil depletion towards agricultural sustainability

    Science.gov (United States)

    Monteiro, Filipa; Vidigal, Patricia; Romeiras, Maria Manuel; Ribeiro, Ana; Abreu, Maria Manuela; Viegas, Wanda; Catarino, Luís

    2017-04-01

    During the last decades, agriculture in West Africa has been marked by dramatic shifts with the coverage of single crops, increasing pressure over the available arable land. Yet, West African countries are still striving to achieve sustainable production at an increased scale for global market needs. Market-driven rapid intensification is often a major cause for cropland area expansion at the expense of deforestation and soil degradation, especially to export commodities in times of high prices. Cashew (Anacardium occidentale L.) is nowadays an important export-oriented crop, being produced under intensive cultivation regimes in several tropical regions. Particularly, among the main cashew production areas, West Africa is the most recent and dynamic in the world, accounting for 45% of the world cashew nuts production in 2015. Considering its global market values, several developing countries rely on cashew nuts as national economy revenues, namely in Guinea-Bissau. Considering the intensive regime of cashew production in Guinea-Bissau, and as widely recognized, intensive agriculture linked with extensification can negatively impact ecosystems, affecting natural resources availability, soil erosion and arability compromised by excessive salinity. Ultimately this will result in the disruption of carbon - nitrogen cycle, important to the agricultural ecosystem sustainability. As such, tree intercropped with legumes as cover crops, offers a sustainable management of the land area, thus creating substantial benefits both economically and environmentally, as it enhances diversification of products outputs and proving to be more sustainable than forestry and/or agricultural monocultures. Soil fertility improvement is a key entry point for achieving food security, and also increment agriculture commodities of the agro-system. Without using inorganic fertilizers, the green solution for improving soil management is to incorporate adapted multi-purpose legumes as cover crops

  16. ANALYSIS OF THE POSSIBILITY OF USING SOLAR ENERGY TO POWER SELECTED MEASURING DRIVES IN AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Jan Marian Kolano

    2017-01-01

    Full Text Available Mankind’s misgivings caused by the depletion of fossil fuels have accelerated research on obtaining energy from unconventional sources. One such source is the Sun. The present article reviews the possibility of using solar energy, converted in batteries of photovoltaic cells into electricity, in agriculture and farming. It should also be emphasized that it is energy friendly to the environment, whose acquisition on agricultural land, which often lacks access to the power grid, is now legitimate and profitable. This study presents the results of computer simulations in tabular and graphical form, using the PVSYST program, for a pasture water pumping system for watering grazing cattle.

  17. Nitrogen in Agricultural Systems: Implications for Conservation Policy

    OpenAIRE

    Ribaudo, Marc; Delgado, Jorge; Hansen, LeRoy T.; Livingston, Michael J.; Mosheim, Roberto; Williamson, James M.

    2011-01-01

    Nitrogen is an important agricultural input that is critical for crop production. However, the introduction of large amounts of nitrogen into the environment has a number of undesirable impacts on water, terrestrial, and atmospheric resources. This report explores the use of nitrogen in U.S. agriculture and assesses changes in nutrient management by farmers that may improve nitrogen use effi ciency. It also reviews a number of policy approaches for improving nitrogen management and identifi e...

  18. Simulation-based disassembly systems design

    Science.gov (United States)

    Ohlendorf, Martin; Herrmann, Christoph; Hesselbach, Juergen

    2004-02-01

    Recycling of Waste of Electrical and Electronic Equipment (WEEE) is a matter of actual concern, driven by economic, ecological and legislative reasons. Here, disassembly as the first step of the treatment process plays a key role. To achieve sustainable progress in WEEE disassembly, the key is not to limit analysis and planning to merely disassembly processes in a narrow sense, but to consider entire disassembly plants including additional aspects such as internal logistics, storage, sorting etc. as well. In this regard, the paper presents ways of designing, dimensioning, structuring and modeling different disassembly systems. Goal is to achieve efficient and economic disassembly systems that allow recycling processes complying with legal requirements. Moreover, advantages of applying simulation software tools that are widespread and successfully utilized in conventional industry sectors are addressed. They support systematic disassembly planning by means of simulation experiments including consecutive efficiency evaluation. Consequently, anticipatory recycling planning considering various scenarios is enabled and decisions about which types of disassembly systems evidence appropriateness for specific circumstances such as product spectrum, throughput, disassembly depth etc. is supported. Furthermore, integration of simulation based disassembly planning in a holistic concept with configuration of interfaces and data utilization including cost aspects is described.

  19. Simulation system architecture design for generic communications link

    Science.gov (United States)

    Tsang, Chit-Sang; Ratliff, Jim

    1986-01-01

    This paper addresses a computer simulation system architecture design for generic digital communications systems. It addresses the issues of an overall system architecture in order to achieve a user-friendly, efficient, and yet easily implementable simulation system. The system block diagram and its individual functional components are described in detail. Software implementation is discussed with the VAX/VMS operating system used as a target environment.

  20. Java simulations of embedded control systems.

    Science.gov (United States)

    Farias, Gonzalo; Cervin, Anton; Arzén, Karl-Erik; Dormido, Sebastián; Esquembre, Francisco

    2010-01-01

    This paper introduces a new Open Source Java library suited for the simulation of embedded control systems. The library is based on the ideas and architecture of TrueTime, a toolbox of Matlab devoted to this topic, and allows Java programmers to simulate the performance of control processes which run in a real time environment. Such simulations can improve considerably the learning and design of multitasking real-time systems. The choice of Java increases considerably the usability of our library, because many educators program already in this language. But also because the library can be easily used by Easy Java Simulations (EJS), a popular modeling and authoring tool that is increasingly used in the field of Control Education. EJS allows instructors, students, and researchers with less programming capabilities to create advanced interactive simulations in Java. The paper describes the ideas, implementation, and sample use of the new library both for pure Java programmers and for EJS users. The JTT library and some examples are online available on http://lab.dia.uned.es/jtt.

  1. Simulation of the lateral pole-impact on a crash simulation system; Simulation des seitlichen Pfahlaufpralls auf einer Katapultanlage

    Energy Technology Data Exchange (ETDEWEB)

    Hoegner, C.; Gajewski, M.; Zippel, I. [ACTS GmbH und Co. KG, Sailauf (Germany)

    2001-07-01

    The test set-up for the simulation of a lateral pole impact has the following characteristics: - Simulation of pole impact procedures Euro-NCAP and others - Very realistic reproduction of the deformation performance of side panels (with simulated or original part assemblies) - Consideration of the dynamic displacement of the cant rail - Seat displacement and deformation - Realistic depiction of the vehicle displacement (i.e. car-to-pole) - Test velocity: up to 50 km/h - Intrusion: up to 550 mm (more also possible on demand) - Pole diameter 254 mm (variable). This test system design results in variable set-up possibilities: - Test-set up possible from very simple (on the basis of simulation data without real parts) to very complex (use of side panels and interior door trim) - Support of different protection systems (window bag and side bag) - A maximum of two occupants feasible (set up weight max. 300 kg) - Optimal camera perspectives, stationary or onboard - Front as well as rear side impact simulation possible - Front-rear interaction of protection systems feasible (two dummies). A test system has been realised with which the complex process in a lateral pole impact can be simulated with excellent approximation and with relatively simple means. Due to the avoidance of point validation this methodology can be ideally implemented for development tests. (orig.)

  2. System modeling and simulation at EBR-II

    International Nuclear Information System (INIS)

    Dean, E.M.; Lehto, W.K.; Larson, H.A.

    1986-01-01

    The codes being developed and verified using EBR-II data are the NATDEMO, DSNP and CSYRED. NATDEMO is a variation of the Westinghouse DEMO code coupled to the NATCON code previously used to simulate perturbations of reactor flow and inlet temperature and loss-of-flow transients leading to natural convection in EBR-II. CSYRED uses the Continuous System Modeling Program (CSMP) to simulate the EBR-II core, including power, temperature, control-rod movement reactivity effects and flow and is used primarily to model reactivity induced power transients. The Dynamic Simulator for Nuclear Power Plants (DSNP) allows a whole plant, thermal-hydraulic simulation using specific component and system models called from libraries. It has been used to simulate flow coastdown transients, reactivity insertion events and balance-of-plant perturbations

  3. Simulating charge transport in flexible systems

    Directory of Open Access Journals (Sweden)

    Timothy Clark

    2015-12-01

    Full Text Available Systems in which movements occur on two significantly different time domains, such as organic electronic components with flexible molecules, require different simulation techniques for the two time scales. In the case of molecular electronics, charge transport is complicated by the several different mechanisms (and theoretical models that apply in different cases. We cannot yet combine time scales of molecular and electronic movement in simulations of real systems. This review describes our progress towards this goal.

  4. Agriculture: Agriculture and Air Quality

    Science.gov (United States)

    Information on air emissions from agricultural practices, types of agricultural burning, air programs that may apply to agriculture, reporting requirements, and links to state and other federal air-quality information.

  5. Simulation of stand alone PV system; Dokuritsugata taiyoko hatsuden system no simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, H; Ogawa, H; Sekii, Y [Chiba Institute of Technology, Chiba (Japan); Tsuda, I; Nozaki, K [Electrotechnical Laboratory, Tsukuba (Japan); Kurokawa, K [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1996-10-27

    In order to evaluate the simulation results of a photovoltaic power generation system, an operation simulation was carried out using the actual measured data of a stand alone PV system in Miyakojima, Okinawa Prefecture, so as to make a comparison with the actual operation data. The electric power was supplied to 250 houses and primary/junior high schools in the surrounding villages, which had an average demand load of approximately 90kw and the maximum of approximately 200kw. The power was supplied through the PV power generation in the duration of the sunshine, with an excess power charged in storage batteries and then supplied from the batteries at night. The array capacity was made 750kWp, the output current and storage batteries being characteristic type with an actual efficiency curve used for the inverter. The weather data used were the actual inclined insolation quantity and the outside air temperature data for a period of one month of November. The power charged in excess of 100% in the batteries was termed as an overflow power. With the charging condition 30% or less, a diesel generator was run for a rated operation for one hour, the power of which was termed as a backup power. As a result, the simulation was found nearly in agreement with the actual measurements. 5 refs., 7 figs., 2 tabs.

  6. Growth, yield, plant quality and nutrition of basil (Ocimum basilicum L. under soilless agricultural systems

    Directory of Open Access Journals (Sweden)

    Subhrajit Saha

    2016-12-01

    Full Text Available Traditional agricultural systems are challenged by globally declining resources resulting from climate change and growing population. Alternative agricultural practices such as aquaponics (includes crop plant and aquatic species and hydroponics (includes crop plant only have the potential to generate high yield per unit area using limited land, water, and no soil. A soilless agricultural study was conducted at the Georgia Southern University, Statesboro, GA, USA from August to November, 2015. The growth, yield, quality, and nutrition of basil (Ocimum basilicum L. cultivar Aroma 2, were compared between aquaponic and hydroponic systems using crayfish (Procambarus spp. as the aquatic species. Non-circulating floating raft systems were designed using 95 L polyethylene tanks. Equal amounts of start-up fertilizer dose were applied to both systems. The objective was to understand how the additional nutritional dynamics associated with crayfish influence the basil crop. Both fresh and dry basil plant weights were collected after harvest, followed by leaf nutrient analysis. Leaf chlorophyll content, water pH, nitrogen and temperature were measured periodically. Aquaponic basil (AqB showed 14%, 56%, and 65% more height, fresh weight, and dry weight, respectively, compared to hydroponic basil (HyB. It is logical to assume that crayfish waste (excreta and unconsumed feed has supplied the additional nutrients to AqB, resulting in greater growth and yield. The chlorophyll content (plant quality or leaf nutrients, however, did not differ between AqB and HyB. Further research is needed to investigate aquaponic crayfish yield, overall nutritional dynamics, cost-benefit ratio, and other plant characteristics under soilless systems.

  7. Market assessment of photovoltaic power systems for agricultural applications worldwide

    Science.gov (United States)

    Cabraal, A.; Delasanta, D.; Rosen, J.; Nolfi, J.; Ulmer, R.

    1981-11-01

    Agricultural sector PV market assessments conducted in the Phillippines, Nigeria, Mexico, Morocco, and Colombia are extrapolated worldwide. The types of applications evaluated are those requiring less than 15 kW of power and operate in a stand alone mode. The major conclusions were as follows: PV will be competitive in applications requiring 2 to 3 kW of power prior to 1983; by 1986 PV system competitiveness will extend to applications requiring 4 to 6 kW of power, due to capital constraints, the private sector market may be restricted to applications requiring less than about 2 kW of power; the ultimate purchase of larger systems will be governments, either through direct purchase or loans from development banks. Though fragmented, a significant agriculture sector market for PV exists; however, the market for PV in telecommunications, signalling, rural services, and TV will be larger. Major market related factors influencing the potential for U.S. PV Sales are: lack of awareness; high first costs; shortage of long term capital; competition from German, French and Japanese companies who have government support; and low fuel prices in capital surplus countries. Strategies that may aid in overcoming some of these problems are: setting up of a trade association aimed at overcoming problems due to lack of awareness, innovative financing schemes such as lease arrangements, and designing products to match current user needs as opposed to attempting to change consumer behavior.

  8. Using AgMIP Regional Integrated Assessment Methods to Evaluate Vulnerability, Resilience and Adaptive Capacity for Climate Smart Agricultural Systems

    NARCIS (Netherlands)

    Antle, John M.; Homann-Kee Tui, S.; Descheemaeker, K.K.E.; Masikati, Patricia; Valdivia, Roberto O.

    2018-01-01

    The predicted effects of climate change call for a multi-dimensional method to assess the performance of various agricultural systems across economic, environmental and social dimensions. Climate smart agriculture (CSA) recognizes that the three goals of climate adaptation, mitigation and resilience

  9. Visualization system on the earth simulator user's guide

    International Nuclear Information System (INIS)

    Muramatsu, Kazuhiro; Sai, Kazunori

    2002-08-01

    A visualization system on the Earth Simulator is developed. The system enables users to see a graphic representation of simulation results on a client terminal simultaneously with them being computed on the Earth Simulator. Moreover, the system makes it possible to change parameters of the calculation and its visualization in the middle of calculation. The graphical user interface (GUI) of the system is constructed on a Java applet. Consequently, the client only needs a web browser, so it is independent of operating systems. The system consists of a server function, post-processing function and client function. The server and post-processing functions work on the Earth Simulator, and the client function works on the client terminal. The server function employs a library style format so that users can easily invoke real-time visualization functions by applying their code. The post-processing function employs a library style format and moreover provides a load module. This report describes mainly the usage of the server and post-processing functions. (author)

  10. Conservation Agriculture Practices in Rainfed Uplands of India Improve Maize-Based System Productivity and Profitability

    Science.gov (United States)

    Pradhan, Aliza; Idol, Travis; Roul, Pravat K.

    2016-01-01

    Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer’s net economic benefit. This research assessed the effects over 3 years (2011–2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize–cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs. PMID:27471508

  11. Conservation agriculture practices in rainfed uplands of India improve maize-based system productivity and profitability

    Directory of Open Access Journals (Sweden)

    Aliza Pradhan

    2016-07-01

    Full Text Available Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift towards more sustainable cropping systems such as conservation agriculture production systems (CAPS may help in maintaining soil quality as well as improving crop production and farmer’s net economic benefit. This research assessed the effects over three years (2011-2014 of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation i.e. minimum tillage, maize-cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e. conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs.

  12. Conservation Agriculture Practices in Rainfed Uplands of India Improve Maize-Based System Productivity and Profitability.

    Science.gov (United States)

    Pradhan, Aliza; Idol, Travis; Roul, Pravat K

    2016-01-01

    Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer's net economic benefit. This research assessed the effects over 3 years (2011-2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize-cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs.

  13. Evaluating Greenhouse Gas Emissions Reporting Systems for Agricultural Waste Burning Using MODIS Active Fires

    Science.gov (United States)

    Lin, H.; Jin, Y.; Giglio, L.; Foley, J. A.; Randerson, J. T.

    2010-12-01

    Fires in agricultural ecosystems emit greenhouse gases and aerosols that influence climate on multiple spatial and temporal scales. Annex 1 countries of the United Nations Framework Convention on Climate Change (UNFCCC), many of which ratified the Kyoto Protocol, are required to report emissions of CO2, CH4 and N2O from these fires annually. We evaluated several aspects of this reporting system, including the optimality of the crops targeted by the UNFCCC globally and within Annex 1 countries and the consistency of emissions reporting among countries. We also evaluated the success of the individual countries in capturing interannual variability and long-term trends in agricultural fire activity. We combined global crop maps with Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) active fire detections. At a global scale, we recommend adding ground nuts, cocoa, cotton and oil palm, and removing potato, oats, pulse other and rye from the UNFCCC list of 14 crops. This leads to an overall increase of 6% of the active fires covered by the reporting system. Optimization led to a different recommended list for Annex 1 countries. Extending emissions reporting to all Annex 1 countries (from the current set of 19 countries) would increase the efficacy of the reporting system from 10% to 20%, and further including several non-Annex 1 countries (Argentina, Brazil, China, India, Indonesia, Thailand, Kazakhstan, Mexico and Nigeria) would capture over 58% of active fires in croplands worldwide. Analyses of interannual trends from the U.S. and Australia showed the importance of both intensity of fire use and crop production in controlling year-to-year variations in agricultural fire emissions. Remote sensing provides an efficient tool for an independent assessment of current UNFCCC emissions reporting system; and, if combined with census data, field experiments and expert opinion, has the potential for improving the robustness of the next generation inventory

  14. Simulation Of Aqua-Ammonia Refrigeration System Using The Cape-Open To Cape-Open COCO Simulator

    Directory of Open Access Journals (Sweden)

    Janavi Gohil

    2017-03-01

    Full Text Available In this paper we have simulated a flow sheet of aqua ammonia refrigeration system using Cape Open simulator. The main aim of writing this paper is to compare the results obtained from thermodynamic simulation of aqua ammonia refrigeration system and the results obtained from the flow sheet simulation in Cape-Open to Cape-Open COCO simulator. The corresponding COP values obtained from both the sources are calculated and compared. With the error being very minute the calculations using simulator prove to be more efficient and timesaving when compared to the results obtained by calculations done using tedious thermodynamic simulations and constant mass balance for different process conditions.

  15. Overview of HVAC system simulation

    NARCIS (Netherlands)

    Trcka, M.; Hensen, J.L.M.

    2010-01-01

    The paper gives an overview of heating, ventilation and air-conditioning (HVAC) system modeling and simulation. The categorization of tools for HVAC system design and analysis with respect to which problems they are meant to deal with is introduced. Each categorization is explained and example tools

  16. Socially optimal drainage system and agricultural biodiversity: a case study for Finnish landscape.

    Science.gov (United States)

    Saikkonen, Liisa; Herzon, Irina; Ollikainen, Markku; Lankoski, Jussi

    2014-12-15

    This paper examines the socially optimal drainage choice (surface/subsurface) for agricultural crop cultivation in a landscape with different land qualities (fertilities) when private profits and nutrient runoff damages are taken into account. We also study the measurable social costs to increase biodiversity by surface drainage when the locations of the surface-drained areas in a landscape affect the provided biodiversity. We develop a general theoretical model and apply it to empirical data from Finnish agriculture. We find that for low land qualities the measurable social returns are higher to surface drainage than to subsurface drainage, and that the profitability of subsurface drainage increases along with land quality. The measurable social costs to increase biodiversity by surface drainage under low land qualities are negative. For higher land qualities, these costs depend on the land quality and on the biodiversity impacts. Biodiversity conservation plans for agricultural landscapes should focus on supporting surface drainage systems in areas where the measurable social costs to increase biodiversity are negative or lowest. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Pollutant swapping: greenhouse gas emissions from wetland systems constructed to mitigate agricultural pollution

    Science.gov (United States)

    Freer, Adam; Quinton, John; Surridge, Ben; McNamara, Niall

    2014-05-01

    Diffuse (non-point) water pollution from agricultural land continues to challenge water quality management, requiring the adoption of new land management practices. The use of constructed agricultural wetlands is one such practice, designed to trap multiple pollutants mobilised by rainfall prior to them reaching receiving water. Through capturing and storing pollutants in bottom sediments, it could be hypothesised that the abundance of nutrients stored in the anoxic conditions commonly found in these zones may lead to pollutant swapping. Under these circumstances, trapped material may undergo biogeochemical cycling to change chemical or physical form and thereby become more problematic or mobile within the environment. Thus, constructed agricultural wetlands designed to mitigate against one form of pollution may in fact offset the created benefits by 'swapping' this pollution into other forms and pathways, such as through release to the atmosphere. Pollutant swapping to the atmosphere has been noted in analogous wetland systems designed to treat municipal and industrial wastewaters, with significant fluxes of CO2, CH4 and N2O being recorded in some cases. However the small size, low level of engineering and variable nutrient/sediment inputs which are features of constructed agricultural wetlands, means that this knowledge is not directly transferable. Therefore, more information is required when assessing whether a wetland's potential to act as hotspot for pollution swapping outweighs its potential to act as a mitigation tool for surface water pollution. Here we present results from an on-going monitoring study at a trial agricultural wetland located in small a mixed-use catchment in Cumbria, UK. Estimates were made of CH4, CO2 and N2O flux from the wetland surface using adapted floating static chambers, which were then directly compared with fluxes from an undisturbed riparian zone. Results indicate that while greenhouse gas flux from the wetland may be

  18. Quantum Dot Systems: a versatile platform for quantum simulations

    International Nuclear Information System (INIS)

    Barthelemy, Pierre; Vandersypen, Lieven M.K.

    2013-01-01

    Quantum mechanics often results in extremely complex phenomena, especially when the quantum system under consideration is composed of many interacting particles. The states of these many-body systems live in a space so large that classical numerical calculations cannot compute them. Quantum simulations can be used to overcome this problem: complex quantum problems can be solved by studying experimentally an artificial quantum system operated to simulate the desired hamiltonian. Quantum dot systems have shown to be widely tunable quantum systems, that can be efficiently controlled electrically. This tunability and the versatility of their design makes them very promising quantum simulators. This paper reviews the progress towards digital quantum simulations with individually controlled quantum dots, as well as the analog quantum simulations that have been performed with these systems. The possibility to use large arrays of quantum dots to simulate the low-temperature Hubbard model is also discussed. The main issues along that path are presented and new ideas to overcome them are proposed. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Methods for geographical mapping of agricultural activities and the related environmental impact

    DEFF Research Database (Denmark)

    Dalgaard, Tommy; Jensen, Jørgen Dejgaard

    2011-01-01

    This study presents a three-step methodology to generate, map and simulate indicators of agricultural activity for use in landscape-scale analyses. Step one is the farm data set up combining digital agricultural registers and national statistics. Step two is the geographical mapping based discrete...

  20. Research on the Legal Regulation of Market Access for Agricultural Products in China

    Institute of Scientific and Technical Information of China (Eng