WorldWideScience

Sample records for agricultural drainage water

  1. Sorbents for phosphate removal from agricultural drainage water

    DEFF Research Database (Denmark)

    Lyngsie, Gry

    drains comprising P sorbing materials (PSM) may be a more efficient and cost-effective way to improve water quality. Several materials have been proposed as PSMs for use for cleaning agricultural drainage water. The objective of the present study was to provide data on sorption behavior among a variety...... of PSMs in order to select a material that can quickly remove P from runoff water at both base and peak flow. This was done by screening 15 “local” PSMs’ for their ability to sorb and retain low orthophosphate concentrations (0-161 µM) at short equilibration time (...-through cells. Further, in order to improve our understanding of phosphate sorption reactions and kinetics for different types of commercial available PSMs, three different types were studied by means of isothermal titration calorimetry, sorption isotherms, sequential extractions and SEM-EDS. In conclusion...

  2. Agricultural Drainage Well Intakes

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Locations of surface intakes for registered agriculture drainage wells according to the database maintained by IDALS. Surface intakes were located from their...

  3. Reuse/disposal of agricultural drainage water with high levels of salinity and toxic trace elements in central California.

    Science.gov (United States)

    Agricultural drainage waters in the western San Joaquin Valley of Central California contain high levels of salts, boron (B) and selenium (Se). Discharge of the drainage water directly into the Kesterson Reservoir in 1980's was hazardous to plants and wildlife. To investigate the plausibility of usi...

  4. Simulation-based optimization framework for reuse of agricultural drainage water in irrigation.

    Science.gov (United States)

    Allam, A; Tawfik, A; Yoshimura, C; Fleifle, A

    2016-05-01

    A simulation-based optimization framework for agricultural drainage water (ADW) reuse has been developed through the integration of a water quality model (QUAL2Kw) and a genetic algorithm. This framework was applied to the Gharbia drain in the Nile Delta, Egypt, in summer and winter 2012. First, the water quantity and quality of the drain was simulated using the QUAL2Kw model. Second, uncertainty analysis and sensitivity analysis based on Monte Carlo simulation were performed to assess QUAL2Kw's performance and to identify the most critical variables for determination of water quality, respectively. Finally, a genetic algorithm was applied to maximize the total reuse quantity from seven reuse locations with the condition not to violate the standards for using mixed water in irrigation. The water quality simulations showed that organic matter concentrations are critical management variables in the Gharbia drain. The uncertainty analysis showed the reliability of QUAL2Kw to simulate water quality and quantity along the drain. Furthermore, the sensitivity analysis showed that the 5-day biochemical oxygen demand, chemical oxygen demand, total dissolved solids, total nitrogen and total phosphorous are highly sensitive to point source flow and quality. Additionally, the optimization results revealed that the reuse quantities of ADW can reach 36.3% and 40.4% of the available ADW in the drain during summer and winter, respectively. These quantities meet 30.8% and 29.1% of the drainage basin requirements for fresh irrigation water in the respective seasons.

  5. Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff.

    Science.gov (United States)

    Ghane, Ehsan; Ranaivoson, Andry Z; Feyereisen, Gary W; Rosen, Carl J; Moncrief, John F

    2016-01-01

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both.

  6. Comparing two surface flow wetlands for removal of nutrients in agricultural drainage water

    DEFF Research Database (Denmark)

    Hoffmann, Carl Christian; Kjærgaard, Charlotte; Levesen, Bo

    In Denmark there is a growing interest for using constructed wetlands as a mean for removal of nutrients from agricultural run-off, such as drainage ditches and tile drainage systems. We have studied two surface flow constructed wetlands from district Vejle, Jutland, Denmark. The Vicarage Wetland...

  7. Evaluation of water quality management problems caused by agricultural drainage water entering Modoc national wildlife refuge and the Ash Creek wildlife management area

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The objective of this investigation was to determine water quality problems or potential problems caused by agricultural drainage water entering the Modoc National...

  8. Determination of commonly used polar herbicides in agricultural drainage waters in Australia by HPLC.

    Science.gov (United States)

    Tran, Anh T K; Hyne, Ross V; Doble, Philip

    2007-03-01

    The present study describes the application of different extraction techniques for the preconcentration of ten commonly found acidic and non-acidic polar herbicides (2,4-D, atrazine, bensulfuron-methyl, clomazone, dicamba, diuron, MCPA, metolachlor, simazine and triclopyr) in the aqueous environment. Liquid-liquid extraction (LLE) with dichloromethane, solid-phase extraction (SPE) using Oasis HLB cartridges or SBD-XC Empore disks were compared for extraction efficiency of these herbicides in different matrices, especially water samples from contaminated agricultural drainage water containing high concentrations of particulate matter. Herbicides were separated and quantified by high performance liquid chromatography (HPLC) with an ultraviolet detector. SPE using SDB-XC Empore disks was applied to determine target herbicides in the Murrumbidgee Irrigation Area (NSW, Australia) during a two-week survey from October 2005 to November 2005. The daily aqueous concentrations of herbicides from 24-h composite samples detected at two sites increased after run-off from a storm event and were in the range of: 0.1-17.8 microg l(-1), < 0.1-0.9 microg l(-1) and 0.2-17.8 microg l(-1) at site 1; < 0.1-3.5 microg l(-1), < 0.1-0.2 microg l(-1) and < 0.2-3.2 microg l(-1) at site 2 for simazine, atrazine and diuron, respectively.

  9. Performance evaluation of agricultural drainage water using modeling and statistical approaches

    Directory of Open Access Journals (Sweden)

    Mahmoud Nasr

    2016-06-01

    Full Text Available This study assessed spatial variations in physical and chemical properties of an agricultural drain near Borg El-Arab city, Alexandria, Egypt. Pearson’s correlation coefficient indicated that salinity had strong correlations with total dissolved solids (TDS (r 0.999, p < 0.001 and Cl− (r 0.807, p 0.016, whereas, pH was considerably affected by temperature (r 0.674, p 0.067, oxidation reduction potential (ORP (r 0.866, p 0.006 and NO3− (r 0.731, p 0.039. Those results were further confirmed by applying an adaptive neuro-fuzzy inference system and regression models. Moreover, principal component analysis (PCA indicated that PC1 explained 41.1% of the total variance, and had high loadings of TDS (0.46, salinity (0.46 and Cl− (0.48. Additionally, PC2 accounted for 35.2% of the total variance, and had high loadings of pH (0.53, temperature (0.48, ORP (0.40 and NO3− (0.47. The present study revealed that artificial intelligence and PCA could be used to effectively reduce the number of physicochemical parameters that may assist in the description of drainage water quality. It is recommended that the current status of the drain is suitable for reuse in irrigation purposes except at few locations containing high salinity.

  10. Dielectric spectroscopic studies on the water hyacinth plant collected from agriculture drainage

    Science.gov (United States)

    Mahani, Ragab; Atia, Fatma; Al Neklawy, Mohammed M.; Fahem, Amin

    2016-06-01

    The present paper aims to investigate the sensitivity of dielectric spectroscopy to changes in concentrations of pollutants (heavy metals and metal oxides) uptake by the water hyacinth plant collected from agriculture wastewater drainage. The measurements were carried out on the dried root and shoot plant parts before and after subjecting to different microwave heating powers for different times. Dielectric properties of the untreated root were investigated at temperature range (30-90 °C). X-ray fluorescence spectroscopy (XRF) results showed that the concentration of metals and metals oxides are higher in plant root than in plant shoot. Accordingly, the obtained dielectric properties were found to depend on the applied electric field frequency, magnitude of heating power as well as concentrations of pollutants. Analysis of experimental data represented by the imaginary part of the dielectric modulus M″ (ω) revealed to the presence of three different relaxation processes. The lower frequency relaxation process was associated to charge carriers conduction whereas those appeared at higher frequencies were associated to different types of interfacial polarization. The plant ability for removing heavy metals and metal oxides from the aquatic environments would be enhanced upon subjecting to microwave heating power with 400 W for 30 min.

  11. Location of Agricultural Drainage Pipes and Assessment of Agricultural Drainage Pipe Conditions Using Ground Penetrating Radar

    Science.gov (United States)

    Methods are needed to not only locate buried agricultural drainage pipe, but to also determine if the pipes are functioning properly with respect to water delivery. The primary focus of this research project was to confirm the ability of ground penetrating radar (GPR) to locate buried drainage pipe ...

  12. Field experiments of Controlled Drainage of agricultural clay soils show positive effects on water quantity (retention, runoff) and water quality (nitrate leaching).

    Science.gov (United States)

    schipper, peter; stuyt, lodewijk; straat, van der, andre; schans, van der, martin

    2014-05-01

    Despite best management practices, agriculture is still facing major challenges to reduce nutrients leaching to the aquatic environment. In deltas, most of total nutrient losses from artificially drained agricultural soils are discharged via drains. Controlled drainage is a promising measure to prevent drainage of valuable nutrients, improve water quality and agricultural yield and adapt to climate change (reduce peak runoff, manage water scarcity and drought). In The Netherlands, this technique has attracted much attention by water managers and farmers alike, yet field studies to determine the expected (positive) effects for Dutch conditions were scarce. Recently, a field experiment was set up on clay soils. Research questions were: how does controlled, subsurface drainage perform on clay soils? Will deeper tile drains function just as well? What are the effects on drain water quality (especially with respect to nitrogen and salt) and crop yield? An agricultural field on clay soils was used to test different tile drainage configurations. Four types of tile drainage systems were installed, all in duplicate: eight plots in total. Each plot has its own outlet to a control box, where equipment was installed to control drain discharge and to measure the flow, concentrations of macro-ions, pH, nitrogen, N-isotopes and heavy metals. In each plot, groundwater observation wells and suction cups are installed in the saturated and vadose zones, at different depths, and crop yield is determined. Four plots discharge into a hydrologic isolated ditch, enabling the determination of water- and nutrient balances. Automatic drain water samplers and innovative nitrate sensors were installed in four plots. These enable identification and unravelling so-called first flush effects (changes in concentrations after a storm event). Water-, chloride- and nitrogen balances have been set up, and the interaction between groundwater and surface water has been quantified. The hydrological

  13. Assessment of agricultural drainage water quality for safe reuse in irrigation applications-a case study in Borg El-Arab, Alexandria

    Institute of Scientific and Technical Information of China (English)

    Mahmoud Nasr; Hoda Farouk Zahran

    2015-01-01

    Objective:To demonstrate the technical feasibility of the reuse of agricultural drainage water for irrigation. Methods: The agricultural drainage water near Banjar El-Sokar, Borg El-Arab City, Alexandria, Egypt was collected. The measured heavy metals in the drainage water were compared with the permissible levels stated in environmental regulations, Law No. 48 of 1982 concerning the protection of the Nile River and waterways from pollution. Results: Heavy metals and trace elements were detected in this agricultural drainage water as following: Al (1.64 mg/L), Ca (175.00 mg/L), Cd (1.87 mg/L), Co (2.23 mg/L), Cu (1.71 mg/L), Fe (1.64 mg/L), K (20.50 mg/L), and Pb (2.81 mg/L). According to allowable limits, item such as Fe is lower than permissible level of 3.00 mg/L, while Pb and Cu are higher than 0.10 mg/L and 1.00 mg/L, respectively. Conclusions: Vegetables irrigated with such drainage water are not safe for human and animal consumption. Accordingly, the study suggests and recommeds remediation of drainage water using physical, chemical and/or biological methods.

  14. Assessment of agricultural drainage water quality for safe reuse in irrigation applications-a case study in Borg El-Arab, Alexandria

    Directory of Open Access Journals (Sweden)

    Mahmoud Nasr

    2015-03-01

    Full Text Available Objective: To demonstrate the technical feasibility of the reuse of agricultural drainage water for irrigation. Methods: The agricultural drainage water near Banjar El-Sokar, Borg El-Arab City, Alexandria, Egypt was collected. The measured heavy metals in the drainage water were compared with the permissible levels stated in environmental regulations, Law No. 48 of 1982 concerning the protection of the Nile River and waterways from pollution. Results: Heavy metals and trace elements were detected in this agricultural drainage water as following: Al (1.64 mg/L, Ca (175.00 mg/L, Cd (1.87 mg/L, Co (2.23 mg/L, Cu (1.71 mg/L, Fe (1.64 mg/L, K (20.50 mg/L, and Pb (2.81 mg/L. According to allowable limits, item such as Fe is lower than permissible level of 3.00 mg/L, while Pb and Cu are higher than 0.10 mg/L and 1.00 mg/L, respectively. Conclusions: Vegetables irrigated with such drainage water are not safe for human and animal consumption. Accordingly, the study suggests and recommeds remediation of drainage water using physical, chemical and/or biological methods.

  15. Determination of sulfadiazine in phosphate- and DOC-rich agricultural drainage water using solid-phase extraction followed by liquid chromatography-tandem mass spectrometry

    DEFF Research Database (Denmark)

    Bouyou, P.A. Léon; Weisser, Johan Juhl; Strobel, Bjarne W.

    2014-01-01

    Trace levels of the veterinary antibiotic compound sulfadiazine (SDZ) can be determined in agricultural drainage water samples with this new method. Optimized sample pretreatment and solid-phase extraction was combined with liquid chromatography coupled to tandem mass spectrometry (SPE LC...... obtained ranged from 104 to 109 % (relative standard deviation 2.8–5.2 %). The new methods enable determination of the veterinary antibiotic compound SDZ in agricultural drainage water from field experiments and monitoring schemes for phosphate- and dissolved organic carbon (DOC)-rich water samples......-MS/MS) using positive electrospray ionization. The linear dynamic range for the LC-MS/MS was assessed from 5 μg/L to 25 mg/L with a 15-point calibration curve displaying a coefficient of correlation r 2 = 0.9915. Agricultural drainage water spiked at a concentration of 25 ng/L gave recoveries between 63 and 98...

  16. Drainage filter technologies to mitigate site-specific phosphorus losses in agricultural drainage discharge

    DEFF Research Database (Denmark)

    Kjærgaard, Charlotte; Heckrath, Goswin Johann; Canga, Eriona;

    Losses of phosphorus (P) in drainage waters contribute an estimated 33% to the total agricultural P load in Denmark. Mitigating agricultural P losses is challenging, as critical P losses comprise only a very small fraction of actual soil P contents and are not directly related to fertilizer P input...... in drainage. The Danish “SUPREME-TECH” project (2010-2016) (www.supreme-tech.dk) aims at providing the scientific basis for developing cost-effective filter technologies for P in agricultural drainage waters. The project studies different approaches of implementing filter technologies including drainage well...... the occurrence of surface-induced precipitation processes. The P-retention efficiency of granular drainage filters and constructed wetlands was compared for treating drainage water, and a subcatchment analysis illustrated the potential of implementing such measures....

  17. Surface Water & Surface Drainage

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set contains boundaries for all surface water and surface drainage for the state of New Mexico. It is in a vector digital data structure digitized from a...

  18. Hydrologic and water-quality data in selected agricultural drainages in Beaufort and Hyde Counties, North Carolina, 1990-92

    Science.gov (United States)

    Treece, M.W.

    1993-01-01

    An investigation was begun in 1988 to: (1) quantify nutrient, sediment, and freshwater loadings in canals that collect drainage from cropland field ditches; (2) determine the effects of tide gates and flashboard risers on these loadings and on receiving water quality; and (3) characterize the effects of drainage on the salinity regime of a tidal creek. Data were collected in three canals in Hyde County, two canals in Beaufort County, and in Campbell Creek, which receives drainage directly from the Beaufort County canals. A tide gate was placed in one of the Hyde County canals near the beginning of the investigation. In August 1990 following more than 2 years of data collection, control structures were placed in the remaining two Hyde County canals. Flashboard risers were installed in the Beaufort County canals in April 1991. Hydrologic and water quality data are presented for each of the study sites for the period of October 1990 through May 1992. Following a description of the study sites and data collection methods, data are presented for the five drainage canals and Campbell Creek. The data collected included: (1) daily values of accumulated precipitation; (2) water level statistics; (3) daily mean values of discharge in the canals; (4) biweekly water quality measurements and sample analyses; (5) storm-event water quality measurements and sample analyses; (6) continuous records of specific conductance in the canals; (7) vertical profiles of salinity in Campbell Creek; and (8) daily mean values of salinity at five sites at Campbell Creek.

  19. Agricultural drainage: Towards an integrated approach

    NARCIS (Netherlands)

    Abdeldayem, S.; Hoevenaars, J.; Mollinga, P.P.; Scheuman, W.; Slootweg, R.; Steenbergen, van F.

    2005-01-01

    Drainage needs to reclaim its rightful position as an indispensable element in the integrated management of land and water. An integrated approach to drainage can be developed by means of systematic mapping of the functions of natural resources systems (goods and services) and the values attributed

  20. Influence of Physical Habitat and Agricultural Contaminants on Fishes within Agricultural Drainage Ditches

    Science.gov (United States)

    Agricultural drainage ditches are used within agricultural watersheds for the removal of excess water from agricultural fields. These headwater streams have been constructed or modified so they possess an enlarged trapezoidal cross-section, straightened channels, and riparian zones lacking woody veg...

  1. Selecting the drainage method for agricultural land

    NARCIS (Netherlands)

    Bos, M.G.

    2001-01-01

    To facilitate crop growth excess water should be drained from the rooting zone to allow root development of the crop and from the soil surface to facilitate access to the field. Basically, there are three drainage methods from which the designer can select being; surface drains, pumped tube wells an

  2. A synthesis and comparative evaluation of drainage water management

    Science.gov (United States)

    Viable large-scale crop production in the United States requires artificial drainage in humid and poorly drained agricultural regions. Excess water removal is generally achieved by installing tile drains that export water to open ditches that eventually flow into streams. Drainage water management...

  3. Continuous Passive Sampling of Solutes from Agricultural Subsurface Drainage Tubes

    Science.gov (United States)

    Lindblad Vendelboe, Anders; de Jonge, Hubert; Rozemeijer, Joachim; Wollesen de Jonge, Lis

    2015-04-01

    Agricultural subsurface tube drain systems play an important role in water and solute transport. One study, focusing on lowland agricultural catchments, showed that subsurface tube drainage contributed up to 80% of the annual discharge and 90% of the annual NO3 load from agricultural fields to the receiving water bodies. Knowledge of e.g. nutrient loads and drainage volumes, based on measurements and modelling, are important for adequate water quality management. Despite the importance of tube drain transport of solutes, monitoring data are scarce. This scarcity is a result of the existing monitoring techniques for flow and contaminant load from tube drains being expensive and labor-extensive. The study presented here aimed at developing a cheap, simple, and robust method to monitor solute loads from tube drains. The method is based on the newly developed Flowcap, which can be attached to existing tube drain outlets and can measure total flow, contaminant load and flow-averaged concentrations of solutes in the drainage. The Flowcap builds on the existing Sorbicell principle, a passive sampling system that measures average concentrations over longer periods of time (days to months) for various compounds. The Sorbicell consists of two compartments permeable to water. One compartment contains an adsorbent and one contains a tracer. When water passes through the Sorbicell the compound of interest is absorbed while a tracer is released. Using the tracer loss to calculate the volume of water that has passed the Sorbicell it is possible to calculate the average concentration of the compound. When mounting Sorbicells in the Flowcap, a flow-proportional part of the drainage is sampled from the main stream. To accommodate the wide range of drainage flow rates two Flowcaps with different capacities were tested in the laboratory: one with a capacity of 25 L min-1 (Q25) and one with a capacity of 256 L min-1 (Q256). In addition, Sorbicells with two different hydraulic

  4. Ecology and management of agricultural drainage ditches: a literature review

    Science.gov (United States)

    Agricultural drainage ditches are headwater streams that have been modified or constructed for agricultural drainage, and are often used in conjunction with tile drains. These modified streams are a common landscape feature in Ohio, and constitute 25% of stream habitat within the state. Management o...

  5. Adaptation Options for Land Drainage Systems Towards Sustainable Agriculture and Environment: A Czech Perspective

    Science.gov (United States)

    Kulhavý, Zbyněk; Fučík, Petr

    2015-04-01

    In this paper, issues of agricultural drainage systems are introduced and discussed from the views of their former, current and future roles and functioning in the Czech Republic (CR). A methodologically disparate survey was done on thirty-nine model localities in CR with different intensity and state of land drainage systems, aimed at description of commonly occurred problems and possible adaptations of agricultural drainage as perceived by farmers, land owners, landscape managers or by protective water management. The survey was focused on technical state of drainage, fragmentation of land ownership within drained areas as well as on possible conflicts between agricultural and environmental interests in a landscape. Achieved results confirmed that there is obviously an increasing need to reassess some functions of prevailingly single-purpose agricultural drainage systems. Drainage intensity and detected unfavourable technical state of drainage systems as well as the risks connected with the anticipated climate change from the view of possible water scarcity claims for a complex solution. An array of adaptation options for agricultural drainage systems is presented, aiming at enhancement of water retention time and improvement of water quality. It encompasses additional flow-controlling measures on tiles or ditches, or facilities for making selected parts of a drainage system inoperable in order to retain or slow down the drainage runoff, to establish water accumulation zones and to enhance water self-cleaning processes. However, it was revealed that the question of landowner parcels fragmentation on drained land in CR would dramatically complicate design and realization of these measures. Presented solutions and findings are propounded with a respect to contemporary and future state policies and international strategies for sustainable agriculture, water management and environment.

  6. Condensed research overview of agricultural drainage pipe detection and assessment using ground penetrating radar

    Science.gov (United States)

    Agricultural subsurface drainage practices are employed in many places throughout the world to remove excess water from soil, thereby improving crop production. In order to improve and evaluate the efficiency of these subsurface drainage systems, non-destructive methods are needed to not only locate...

  7. Effects of ecological factors on the survival and physiology of Ralstonia solanacearum biovar 2 in agricultural drainage water

    NARCIS (Netherlands)

    Elsas, van J.D.; Kastelein, P.; Vries, de P.M.; Overbeek, van L.S.

    2001-01-01

    The fate of Ralstonia solanacearum bv. 2, the causative agent of brown rot in potato, in aquatic habitats of temperate climate regions is still poorly understood. In this study, the population dynamics and the physiological response of R. solanacearum bv. 2 were tested in sterile pure water and in a

  8. Determining potential for microbial atrazine degradation in agricultural drainage ditches

    Science.gov (United States)

    Passage of agricultural runoff through vegetated drainage ditches has been shown to reduce the amount of pesticides, such as atrazine, exiting agricultural watersheds. Previous studies found that microbial communities in soil from fields treated with atrazine display enhanced rates of atrazine degr...

  9. Effects of exposure to agricultural drainage ditch water on survivorship, distribution, and abundnance of riffle beetles (Coleoptera: Elmidae) in headwater streams of the Cedar Creek watershed, Indiana

    Science.gov (United States)

    Riffle Beetles (Coleoptera: Elmidae) require very good water quality, mature streams with riffle habitat, and high dissolved oxygen content. As such, they prove to be good indicators of ecological health in agricultural headwater streams. We conducted static renewal aquatic bioassays using water fro...

  10. Determining potential for microbial atrazine degradation in agricultural drainage ditches.

    Science.gov (United States)

    Tyler, Heather L; Khalid, Sheza; Jackson, Colin R; Moore, Matthew T

    2013-01-01

    Passage of agricultural runoff through vegetated drainage ditches has been shown to reduce the amount of pesticides, such as atrazine, exiting out of agricultural watersheds. Previous studies have found that microbial communities in soil from fields treated with atrazine display enhanced rates of atrazine degradation. However, no studies have examined the potential for atrazine degradation in ditches used to drain these lands. The purpose of the current study was to determine the potential of the drainage ditch soil microbial community for atrazine degradation. Soil samples were collected from fields and adjacent drainage ditches and from nonagricultural land with no previous exposure to atrazine. Polymerase chain reaction analysis indicated widespread presence of atrazine degradation genes in fields and ditches. Potential for degradation was determined by following the decrease of atrazine in spiked soil samples over a 28-d incubation period. Greater than 95% of atrazine was degraded in field and ditch soils, whereas only 68.5 ± 1.3% was degraded in the nonagricultural control. Comparison with autoclaved soil samples indicated the primary mechanism of atrazine degradation in agricultural soils was microbially mediated, whereas its breakdown in nonagricultural soil appeared to be the byproduct of abiotic processes. Therefore, microbial communities in drainage ditch sediments have the potential to play a role in atrazine removal from agricultural runoff by breaking down atrazine deposited in sediments and limiting the amount of this herbicide carried into downstream ecosystems.

  11. Internal hydraulics of an agricultural drainage denitrification bioreactor

    Science.gov (United States)

    Denitrification bioreactors to reduce the amount of nitrate-nitrogen in agricultural drainage are now being deployed across the U.S. Midwest. However, there are still many unknowns regarding internal hydraulic-driven processes in these "black box" engineered treatment systems. To improve this unders...

  12. Temporal abiotic variability structures invertebrate communities in agricultural drainage ditches

    NARCIS (Netherlands)

    Whatley, M.H.; Vonk, J.A.; van der Geest, H.G.; Admiraal, W.

    2015-01-01

    Abiotic variability is known to structure lotic invertebrate communities, yet its influence on lentic invertebrates is not clear. This study tests the hypothesis that variability of nutrients and macro-ions are structuring invertebrate communities in agricultural drainage ditches. This was determine

  13. Estimation of agricultural pesticide use in drainage basins using land cover maps and county pesticide data

    Science.gov (United States)

    Nakagaki, Naomi; Wolock, David M.

    2005-01-01

    A geographic information system (GIS) was used to estimate agricultural pesticide use in the drainage basins of streams that are studied as part of the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program. Drainage basin pesticide use estimates were computed by intersecting digital maps of drainage basin boundaries with an enhanced version of the National Land Cover Data 1992 combined with estimates of 1992 agricultural pesticide use in each United States county. This report presents the methods used to quantify agricultural pesticide use in drainage basins using a GIS and includes the estimates of atrazine use applied to row crops, small-grain crops, and fallow lands in 150 watersheds in the conterminous United States. Basin atrazine use estimates are presented to compare and analyze the results that were derived from 30-meter and 1-kilometer resolution land cover and county pesticide use data, and drainage basin boundaries at various grid cell resolutions. Comparisons of the basin atrazine use estimates derived from watershed boundaries, county pesticide use, and land cover data sets at different resolutions, indicated that overall differences were minor. The largest potential for differences in basin pesticide use estimates between those derived from the 30-meter and 1-kilometer resolution enhanced National Land Cover Data 1992 exists wherever there are abrupt agricultural land cover changes along the basin divide. Despite the limitations of the drainage basin pesticide use data described in this report, the basin estimates provide consistent and comparable indicators of agricultural pesticide application in surface-water drainage basins studied in the NAWQA Program.

  14. Constructed wetlands targeting nitrogen removal in agricultural drainage discharge – a subcatchment scale mitigation strategy

    DEFF Research Database (Denmark)

    Kjærgaard, Charlotte; Hoffmann, Carl Christian; Bruun, Jacob Druedahl

    nutrient loads from farmland in Denmark. Tile drains and ditches connecting fields to receiving waters thus acting as subsurface highways for nitrogen (N) as well as other agricultural contaminants. Drainage losses of nutrients contribute to estimated 45-60% of total N losses. Hence, for a large number...

  15. Separation of drainage runoff during rainfall-runoff episodes using the stable isotope method and drainage water temperature

    Science.gov (United States)

    Zajíček, Antonín; Kvítek, Tomáš; Pomije, Tomáš

    2014-05-01

    Stabile isotopes of 2H 18O and drainage water temperature were used as natural tracers for separation rainfall-runoff event hydrograph on several tile drained catchments located in Bohemian-Moravian Highland, Czech Republic. Small agricultural catchments with drainage systems built in slopes are typical for foothill areas in the Czech and Moravian highland. Often without permanent surface runoff, the drainage systems represent an important portion of runoff and nitrogen leaching out of the catchment. The knowledge of the drainage runoff formation and the origin of its components are prerequisites for formulation of measures leading to improvement of the drainage water quality and reduction of nutrient leaching from the drained catchments. The results have proved presence of event water in the drainage runoff during rainfall-runoff events. The proportion of event water observed in the drainage runoff varied between 15 - 60 % in the summer events and 0 - 50 % in winter events, while the sudden water temperature change was between 0,1 - 4,2 °C (2 - 35 %). The comparison of isotope separation of the drainage runoff and monitoring the drainage water temperature have demonstrated that in all cases of event water detected in the runoff, a rapid change in the drainage water temperature was observed as well. The portion of event water in the runoff grows with the growing change in water temperature. Using component mixing model, it was demonstrated that water temperature can be successfully used at least as a qualitative and with some degree of inaccuracy as a quantitative tracer as well. The drawback of the non-conservative character of this tracer is compensated by both its economic and technical accessibility. The separation results also resemble results of separations at small streams. Together with a similarly high speed of the discharge reaction to beginning of precipitation, it is obvious that the mechanism of surface runoff formation and drainage runoff formation

  16. Subsurface drainage volume reduction with drainage water management: Case studies in Ohio, USA

    Science.gov (United States)

    One of the main contributors to poor water quality in the Mississippi River and aeral increase in the hypoxic zone in the Gulf of Mexico is intensive drainage of the cropland within the watershed. Controlled drainage has been demonstrated as an approach to curb totla drainage outflow and nutrient di...

  17. Achieving Long-Term Protection of Water Quality of Grand Lake St. Marys Through Implementation of Conservation Practices and Control of Phosphorus Input from Agricultural Drainage

    Science.gov (United States)

    Grand Lake St. Marys (GLSM), a 13,000 acre lake in northwestern Ohio, is experiencing toxic levels of algal blooms resulting primarily from phosphorus input from agricultural runoff. The algal blooms are so severe that the Ohio Department of Natural Resources advised against any...

  18. Biotransformation and accumulation of selenium inside organisms in an engineered aquatic ecosystem designed for bioremediation of Se from agriculture drainage water and brine shrimp production

    Science.gov (United States)

    Excessive selenium (Se) in soils and waters present in the westside of central California was determined to be responsible for ecotoxicities observed in water fowl frequenting large bodies of water, i.e., evaporation ponds. In order to monitor the fate and potentially design an aquatic Se remediatio...

  19. Transport of tylosin and tylosin-resistance genes in subsurface drainage water from manured fields

    Science.gov (United States)

    Animal agriculture appears to contribute to the spread of antibiotic resistance genes, but few studies have quantified gene transport in agricultural fields. The transport of tylosin, tylosin-resistance genes (erm B, F, A) and tylosin-resistant Enterococcus were measured in tile drainage water from ...

  20. Biodiversity value of agricultural drainage ditches; a comparative analysis of the aquatic invertebrate fauna of ditches and small lakes.

    NARCIS (Netherlands)

    Verdonschot, R.C.M.; Keizer-Vlek, H.E.; Verdonschot, P.F.M.

    2011-01-01

    1. Drainage ditches are a common aquatic habitat in the lowland agricultural landscape of north-western Europe. The invertebrate fauna of these waters is poorly known compared with that of the semi-natural wetland fragments found in this region. While most wetlands are designated as nature reserves,

  1. Drainage water management effects on tile dicharge and water quality

    Science.gov (United States)

    Drainage water management (DWM) has received considerable attention as a potential best management practice for improving water quality in tile drained landscapes. However, only a limited number of studies have documented the effectiveness of DWM in mitigating nitrogen (N) and phosphorus (P) loads. ...

  2. Reducing nitrate loss in tile drainage water with cover crops and water-table management systems.

    Science.gov (United States)

    Drury, C F; Tan, C S; Welacky, T W; Reynolds, W D; Zhang, T Q; Oloya, T O; McLaughlin, N B; Gaynor, J D

    2014-03-01

    Nitrate lost from agricultural soils is an economic cost to producers, an environmental concern when it enters rivers and lakes, and a health risk when it enters wells and aquifers used for drinking water. Planting a winter wheat cover crop (CC) and/or use of controlled tile drainage-subirrigation (CDS) may reduce losses of nitrate (NO) relative to no cover crop (NCC) and/or traditional unrestricted tile drainage (UTD). A 6-yr (1999-2005) corn-soybean study was conducted to determine the effectiveness of CC+CDS, CC+UTD, NCC+CDS, and NCC+UTD treatments for reducing NO loss. Flow volume and NO concentration in surface runoff and tile drainage were measured continuously, and CC reduced the 5-yr flow-weighted mean (FWM) NO concentration in tile drainage water by 21 to 38% and cumulative NO loss by 14 to 16% relative to NCC. Controlled tile drainage-subirrigation reduced FWM NO concentration by 15 to 33% and cumulative NO loss by 38 to 39% relative to UTD. When CC and CDS were combined, 5-yr cumulative FWM NO concentrations and loss in tile drainage were decreased by 47% (from 9.45 to 4.99 mg N L and from 102 to 53.6 kg N ha) relative to NCC+UTD. The reductions in runoff and concomitant increases in tile drainage under CC occurred primarily because of increases in near-surface soil hydraulic conductivity. Cover crops increased corn grain yields by 4 to 7% in 2004 increased 3-yr average soybean yields by 8 to 15%, whereas CDS did not affect corn or soybean yields over the 6 yr. The combined use of a cover crop and water-table management system was highly effective for reducing NO loss from cool, humid agricultural soils.

  3. Cost-Effectiveness Analysis of Surface Flow Constructed Wetlands (SFCW) for Nutrient Reduction in Drainage Discharge from Agricultural Fields in Denmark

    DEFF Research Database (Denmark)

    Gachango, Florence Gathoni; Pedersen, S M; Kjærgaard, Charlotte

    2015-01-01

    Constructed wetlands have been proposed as cost-effective and more targeted technologies in the reduction of nitrogen and phosphorous water pollution in drainage losses from agricultural fields in Denmark. Using two pig farms and one dairy farm situated in a pumped lowland catchment as case studies...... could be a better optimal nutrients reduction measure in drainage catchments characterized with higher nutrient loads....

  4. Reuse of drainage water model : calculation method of drainage water and watertable depth

    NARCIS (Netherlands)

    Roest, C.W.J.; Rijtema, P.E.; Abdel Khalik, M.A.

    1986-01-01

    The main objective of the project is to assist the Ministry of Irrigation in Egypt in the planning of future watermanagement strategies incorporating reuse of drainage water practices. In order to achieve this main objective a comprehensive measurement programme has been initiated and a mathematical

  5. Practical Significance of Basin Water Market Construction on Agricultural Production

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    On the basis of introducing the concept of water market and the water market research in cluding both domestic market and foreign market,the system design features of water market are analyzed.The features include the prior distribution of agricultural water right,the close construction of market structure,reasonable price of water obtaining right and water pollution-discharge right and scientific stipulation of total volume of water use and total volume of pollution drainage.The practical significances of basin water market construction on Chinese agricultural production are revealed,which clover safeguarding the safety of agricultural water;effectively alleviating agricultural drought;saving the agricultural production water and improving the quality of agricultural products.

  6. Water Drainage from Unsaturated Soils in a Centrifuge Permeameter

    Science.gov (United States)

    Ornelas, G.; McCartney, J.; Zhang, M.

    2013-12-01

    This study involves an analysis of water drainage from an initially saturated silt layer in a centrifuge permeameter to evaluate the hydraulic properties of the soil layer in unsaturated conditions up to the point where the water phase becomes discontinuous. These properties include the soil water retention curve (SWRC) and the hydraulic conductivity function (HCF). The hydraulic properties of unsaturated silt are used in soil-atmosphere interaction models that take into account the role of infiltration and evaporation of water from soils due to atmospheric interaction. These models are often applied in slope stability analyses, landfill cover design, aquifer recharge analyses, and agricultural engineering. The hydraulic properties are also relevant to recent research concerning geothermal heating and cooling, as they can be used to assess the insulating effects of soil around underground heat exchangers. This study employs a high-speed geotechnical centrifuge to increase the self-weight of a compacted silt specimen atop a filter plate. Under a centrifuge acceleration of N times earth's gravity, the concept of geometric similitude indicates that the water flow process in a small-scale soil layer will be similar to those in a soil layer in the field that is N times thicker. The centrifuge acceleration also results in an increase in the hydraulic gradient across the silt specimen, which causes water to flow out of the pores following Darcy's law. The drainage test was performed until the rate of liquid water flow out of the soil layer slowed to a negligible level, which corresponds to the transition point at which further water flow can only occur due to water vapor diffusion following Fick's law. The data from the drainage test in the centrifuge were used to determine the SWRC and HCF at different depths in the silt specimen, which compared well with similar properties defined using other laboratory tests. The transition point at which liquid water flow stopped (and

  7. Socially optimal drainage system and agricultural biodiversity: a case study for Finnish landscape.

    Science.gov (United States)

    Saikkonen, Liisa; Herzon, Irina; Ollikainen, Markku; Lankoski, Jussi

    2014-12-15

    This paper examines the socially optimal drainage choice (surface/subsurface) for agricultural crop cultivation in a landscape with different land qualities (fertilities) when private profits and nutrient runoff damages are taken into account. We also study the measurable social costs to increase biodiversity by surface drainage when the locations of the surface-drained areas in a landscape affect the provided biodiversity. We develop a general theoretical model and apply it to empirical data from Finnish agriculture. We find that for low land qualities the measurable social returns are higher to surface drainage than to subsurface drainage, and that the profitability of subsurface drainage increases along with land quality. The measurable social costs to increase biodiversity by surface drainage under low land qualities are negative. For higher land qualities, these costs depend on the land quality and on the biodiversity impacts. Biodiversity conservation plans for agricultural landscapes should focus on supporting surface drainage systems in areas where the measurable social costs to increase biodiversity are negative or lowest.

  8. The impact of irrigation on the quality of drainage water in a new irrigation district

    Directory of Open Access Journals (Sweden)

    J.M. Villar Mir

    2015-10-01

    Full Text Available The water quality of two agricultural drainage systems was monitored over two irrigation seasons in order to determine the sustainability of a new area of irrigated land (the Algerri-Balager irrigation district located in the northeast of Spain. The average electrical conductivity of the drainage water was around 4 dS·m-1, and the waters were enriched with boron, phosphorous and nitrate. Drainage represented 17% of total applied irrigation water (measured leached fraction and is considered necessary to minimize the risk of soil salinization in semiarid environments. The most common ions in the drainage waters were magnesium, sulphate, and calcium and others related with dissolved soil minerals present in the area. The presence of Fe, Cu, Mn, Zn and pesticides was negligible. The information provided by this research was very useful for the irrigation district, and it’s transferable to other irrigation districts, as it could help to improve agricultural practices and be used to control the quality and quantity of irrigation drainage.

  9. 农田排水沟水体与底泥中盐分迁移研究%Salinity Variation in Water and the Sediments of Drainage Ditches in a Saline Agricultural Environment

    Institute of Scientific and Technical Information of China (English)

    潘延鑫; 罗纨; 贾忠华; 李进; 陈远

    2012-01-01

    Based on salinity monitoring of water and sediments in drainage ditches in the Lubotan reclamation area of Shaanxi,China,the pattern and distribution of salinity in drainage ditches were studied in this paper.The results showed that salts were partially stored in the underlying sediments,but mostly transported to the downstream along the ditches.The salinity variation was mainly caused by the advection and hydrodynamic dispersion from the freshwater entering the ditch system in the end of irrigation events.The observed salinity of the ditch sediment was negatively correlated to the volume of water in the ditch,while the salinity of water body was positively correlated to the water volume(r=0.93).The change in water volume in drainage ditches was the major driving force for salinity variation in the ditch system.%基于陕西卤泊滩农田排水沟底泥盐分年内跟踪监测数据,探讨试验区排水沟底泥盐分的迁移特性和分布情况。研究结果表明:当前条件下研究区排水沟底泥盐分沿着水流汇集的方向和底泥层深度方向均有一定的累积,对流和水动力弥散是排水沟底泥盐分运动的主要机制;沟底泥盐分含量与水体水量呈负相关关系,而与水体盐分含量呈良好的正相关关系,且相关系数达到0.93;水体水量的变化是引起其本身和底泥盐分含量变化的主要因素。

  10. Nitrate removal from agricultural drainage ditch sediments with amendments of organic carbon: Potential for an innovative best management practice

    Science.gov (United States)

    Faust, Derek R.; Kröger, Robert; Miranda, Leandro E.; Rush, Scott A.

    2016-01-01

    Agricultural fertilizer applications have resulted in loading of nutrients to agricultural drainage ditches in the Lower Mississippi Alluvial Valley. The purpose of this study was to determine effects of dissolved organic carbon (DOC) and particulate organic carbon (POC) amendments on nitrate-nitrogen (NO3−-N) removal from overlying water, pore water, and sediment of an agricultural drainage ditch. Two experiments were conducted. In experiment 1, control (i.e., no amendment), DOC, and POC treatments were applied in laboratory microcosms for time intervals of 3, 7, 14, and 28 days. In experiment 2, control, DOC, and POC treatments were applied in microcosms at C/N ratios of 5:1, 10:1, 15:1, and 20:1. There were statistically significant effects of organic carbon amendments in experiment 1 (F2,71 = 27.1, P removal varied from 60 to 100 % in overlying water among all treatments. The lowest NO3−-N removals in experiment 1 were observed in the control at 14 and 28 days, which were significantly less than in DOC and POC 14- and 28-day treatments. In experiment 2, significantly less NO3−-N was removed in overlying water of the control compared to DOC and POC treatments at all C/N ratios. Amendments of DOC and POC made to drainage ditch sediment: (1) increased NO3−-N removal, especially over longer time intervals (14 to 28 days); (2) increased NO3−-N removal, regardless of C/N ratio; and (3) NO3−-N removal was best at a 5:1 C/N ratio. This study provides support for continued investigation on the use of organic carbon amendments as a best management practice for NO3−-N removal in agricultural drainage ditches.

  11. Monitoring and remediation technologies of organochlorine pesticides in drainage water

    Directory of Open Access Journals (Sweden)

    Ismail Ahmed

    2015-03-01

    Full Text Available This study was carried out to monitor the presence of organochlorine in drainage water in Kafr-El-Sheikh Governorate, Egypt. Furthermore, to evaluate the efficiencies of different remediation techniques (advanced oxidation processes [AOPs] and bioremediation for removing the most frequently detected compound (lindane in drainage water. The results showed the presence of several organochlorine pesticides in all sampling sites. Lindane was detected with high frequency relative to other detected organochlorine in drainage water. Nano photo-Fenton like reagent was the most effective treatment for lindane removal in drainage water. Bioremediation of lindane by effective microorganisms (EMs removed 100% of the lindane initial concentration. There is no remaining toxicity in lindane contaminated-water after remediation on treated rats relative to control with respect to histopathological changes in liver and kidney. Advanced oxidation processes especially with nanomaterials and bioremediation using effective microorganisms can be regarded as safe and effective remediation technologies of lindane in water.

  12. Sr isotope study in the drainage water in semi-arid irrigation district, Adana, Turley

    Science.gov (United States)

    Kume, T.; Akca, E.; Nakano, T.; Nagano, T.; Kapur, S.; Watanabe, T.

    2009-12-01

    The management of drainage water from irrigated lands is an important issue not only for agricultural planning but also for environmental conservation. In arid and semi-arid regions, drainage water is reused as irrigation water due to lack of enough fresh irrigation water and irrigation schemes. The drainage water reuse should be undertaken only if long-term deleterious effects on soil properties can be avoided. In addition to salt concentration, the origin of salts of drainage water should be examined to avoid agricultural and environmental pollution. The Lower Seyhan Irrigation Project (LSIP), Adana, Turkey, faces to the Mediterranean. In the LSIP, intensive irrigated agriculture has conducted since 1960s. Recently, total amount of applied irrigation water has been increased along with expansion of agricultural area and fertilizer input is also increasing. Some part of the southern lowest fields is under sea level. Soil salinization and shallow groundwater have been observed in the lowest part due to irrigation water seepage from upper stream and insufficient drainage. Moreover, agricultural drainage water has been used for irrigation water there, so that the salt is a mixture of several components. Therefore, geo-chemical measurements are indispensable to clarify the source of salt. In this study, we focused on the isotopic and chemical compositions of agricultural drain water of three main drainage canals in the LSIP. Seasonal changes in drainage features were examined using 87Sr/86Sr ratio (Sr isotope ratio) and major cation data. The abundances of possible end components were determined using mixing model. The result of measurements showed that there was a good relationship between 87Sr/86Sr values and reciprocal values of Sr concentration, while drain water quality clearly differed between summer and winter. This means Sr of drain water consists of several origins. The relationship and other data showed that Sr of drain water was a mixture of three

  13. VALUE CHAIN ANALYSIS FOR LIVESTOCK FEED PRODUCTION USING SALINE IRRIGATION DRAINAGE WATER IN TURKMENISTAN

    Directory of Open Access Journals (Sweden)

    Stanley JOHNSON

    2013-01-01

    Full Text Available Irrigation return flows increase the salt concentrations of receiving water bodies and cause water logging which affect agricultural productivity in Turkmenistan. Flooding irrigation drainage water using on natural pastures has also had adverse effects on the long-term productivity of desert ranges. This study examines the economics of halophytes as feed for sheep using saline irrigation water from drainage collector systems on a representative farm. Cost-benefit and rate of return analyses show that the project is economically feasible for reused water with 1400 mg/l mineralization levels or less. At higher mineral concentrations in water, or in more saline soils, bioremediation through halophyte fodder production can be profitably implemented if new market incentives exist. Value chain analysis is applied to evaluate alternative incentive systems for sheep operations based on saline water irrigated halophyte fodder production.

  14. Influence of alternative and conventional farming practices on subsurface drainage and water quality.

    Science.gov (United States)

    Oquist, K A; Strock, J S; Mulla, D J

    2007-01-01

    Agricultural runoff contributes nutrients to nonpoint-source pollution of surface waters. This study was conducted to investigate the potential use of alternative farming practices to improve water quality. The study examined the effects of both alternative and conventional farming practices on subsurface drainage and nitrogen and phosphorus loss through subsurface drainage from glacial till soils (i.e., Calciaquolls, Endoaquolls, Eutrudepts, Hapludolls) in southwest Minnesota. Alternative farming practices included organic management practices, species biodiversity, and/or practices that include reduced inputs of synthetic fertilizer and pesticides. Conventional farming practices include corn-soybean (Zea mays L.-Glycine max L., respectively) rotations and their associated recommended fertilizer rates as well as pesticide usage. Precipitation was highly variable during the 3-yr study period including a below-average year (2003), an average year (2002), and an above-average year (2004). Results indicate that alternative farming practices reduced subsurface drainage discharge by 41% compared with conventional practices. Flow-weighted mean nitrate-nitrogen (nitrate N) concentrations during tile flow were 8.2 and 17.2 mg L(-1) under alternative and conventional farming practices, respectively. Alternative farming practices reduced nitrate N losses by between 59 and 62% in 2002 and 2004 compared with conventional practices. Ammonium-nitrogen (ammonium N), orthophosphorus, and total phosphorus losses in subsurface drainage were very low and did not pose a substantial risk of pollution. Results suggest that alternative farming practices have the potential to reduce agricultural impacts on water quality.

  15. Pilot-Scale Selenium Bioremediation of San Joaquin Drainage Water with Thauera selenatis

    Science.gov (United States)

    Cantafio, A. W.; Hagen, K. D.; Lewis, G. E.; Bledsoe, T. L.; Nunan, K. M.; Macy, J. M.

    1996-01-01

    This report describes a simple method for the bioremediation of selenium from agricultural drainage water. A medium-packed pilot-scale biological reactor system, inoculated with the selenate-respiring bacterium Thauera selenatis, was constructed at the Panoche Water District, San Joaquin Valley, Calif. The reactor was used to treat drainage water (7.6 liters/min) containing both selenium and nitrate. Acetate (5 mM) was the carbon source-electron donor reactor feed. Selenium oxyanion concentrations (selenate plus selenite) in the drainage water were reduced by 98%, to an average of 12 (plusmn) 9 (mu)g/liter. Frequently (47% of the sampling days), reactor effluent concentrations of less than 5 (mu)g/liter were achieved. Denitrification was also observed in this system; nitrate and nitrite concentrations in the drainage water were reduced to 0.1 and 0.01 mM, respectively (98% reduction). Analysis of the reactor effluent showed that 91 to 96% of the total selenium recovered was elemental selenium; 97.9% of this elemental selenium could be removed with Nalmet 8072, a new, commercially available precipitant-coagulant. Widespread use of this system (in the Grasslands Water District) could reduce the amount of selenium deposited in the San Joaquin River from 7,000 to 140 lb (ca. 3,000 to 60 kg)/year. PMID:16535401

  16. The feasibility of applying immature yard-waste compost to remove nitrate from agricultural drainage effluents: A preliminary assessment

    Science.gov (United States)

    Tsui, L.; Krapac, I.G.; Roy, W.R.

    2007-01-01

    Nitrate is a major agricultural pollutant found in drainage waters. Immature yard-waste compost was selected as a filter media to study its feasibility for removing nitrate from drainage water. Different operation parameters were tested to examine the denitrification efficiency, including the amounts of compost packed in columns, the flow rate, and the compost storage periods. The experimental results suggested that hydraulic retention time was the major factor to determine the extent of nitrate removal, although the amount of compost packed could also contribute to the nitrate removal efficiency. The effluent nitrate concentration increased as the flow rate decreased, and the compost column reduced nitrate concentrations from 20 mg/L to less than 5 mg/L within 1.5 h. The solution pH increased at the onset of experiment because of denitrification, but stabilized at a pH of about 7.8, suggesting that the compost had a buffering capacity to maintain a suitable pH for denitrification. Storing compost under air-dried conditions may diminish the extent nitrate removed initially, but the effects were not apparent after longer applications. It appeared that immature yard-waste compost may be a suitable material to remove nitrate from tile drainage water because of its relatively large organic carbon content, high microbial activity, and buffering capacity. ?? 2006 Elsevier B.V. All rights reserved.

  17. Long-term monitoring of nitrate transport to drainage from three agricultural clayey till fields

    DEFF Research Database (Denmark)

    Ernstsen, Vibeke; Olsen, Preben; Rosenbom, Annette E.

    2015-01-01

    quality of the aquatic environment and the provision of food from highly efficient agriculture in line with the EU’s Wa-ter Framework Directive and Nitrates Directive, field-scale knowledge is essential for introducing water management ac-tions on-field or off-field and producing an optimal differen-tiated N...... precipitation, high concen-tration of nitrate-N, and short-term low intensity drainage at air temperatures often below 5 ◦C; (ii) medium net precip-itation, medium concentration of nitrate-N, and short-term medium-intensity drainage at air temperatures often above 5 ◦C; and (iii) high net precipitation, low...... concentration of nitrate-N and long-term high intensity drainage at air tem-peratures above 5 ◦C. For each type, on-field water manage-ment actions, such as the selection of crop types and in-troduction of catch crops, appeared relevant, whereas off-field actions only seemed relevant for the latter two field types...

  18. Agricultural uses of thermal waters

    Energy Technology Data Exchange (ETDEWEB)

    Caglar, K.O.

    1973-01-01

    Hot and cold mineral waters are used in two ways in agriculture: one for irrigation and other as a heat resource. Irrigation is widely applied in Turkey when the chemical composition of water is found suitable for the purpose. However as a heat resource it is almost never used. Studies showed that the hot waters of Turkey have 4665 billion kcal (equivalent of 450 thousand tons) which means green-houses can be established over an area about 4665 decar for growing vegetable and fruits. The approximate income of the green houses is estimated millions of Turkish lira.

  19. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge

    Science.gov (United States)

    Sibrell, Philip L.; Montgomery, Gary A.; Ritenour, Kelsey L.; Tucker, Travis W.

    2009-01-01

    Excess phosphorus in wastewaters promotes eutrophication in receiving waterways. A??cost-effective method for the removal of phosphorus from water would significantly reduce the impact of such wastewaters on the environment. Acid mine drainage sludge is a waste product produced by the neutralization of acid mine drainage, and consists mainly of the same metal hydroxides used in traditional wastewater treatment for the removal of phosphorus. In this paper, we describe a method for the drying and pelletization of acid mine drainage sludge that results in a particulate media, which we have termed Ferroxysorb, for the removal of phosphorus from wastewater in an efficient packed bed contactor. Adsorption capacities are high, and kinetics rapid, such that a contact time of less than 5 min is sufficient for removal of 60-90% of the phosphorus, depending on the feed concentration and time in service. In addition, the adsorption capacity of the Ferroxysorb media was increased dramatically by using two columns in an alternating sequence so that each sludge bed receives alternating rest and adsorption cycles. A stripping procedure based on treatment with dilute sodium hydroxide was also developed that allows for recovery of the P from the media, with the possibility of generating a marketable fertilizer product. These results indicate that acid mine drainage sludges - hitherto thought of as undesirable wastes - can be used to remove phosphorus from wastewater, thus offsetting a portion of acid mine drainage treatment costs while at the same time improving water quality in sensitive watersheds.

  20. Agriculture, irrigation, and drainage on the west side of the San Joaquin Valley, California: Unified perspective on hydrogeology, geochemistry and management

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, T.N.; Quinn, N.W.T.

    1996-03-01

    The purpose of this report is to provide a broad understanding of water-related issues of agriculture and drainage on the west side of the San Joaquin Valley. To this end, an attempt is made to review available literature on land and water resources of the San Joaquin Valley and to generate a process-oriented framework within which the various physical-, chemical-, biological- and economic components of the system and their interactions are placed in mutual perspective.

  1. Using Campylobacter spp. and Escherichia coli data and Bayesian microbial risk assessment to examine public health risks in agricultural watersheds under tile drainage management.

    Science.gov (United States)

    Schmidt, P J; Pintar, K D M; Fazil, A M; Flemming, C A; Lanthier, M; Laprade, N; Sunohara, M D; Simhon, A; Thomas, J L; Topp, E; Wilkes, G; Lapen, D R

    2013-06-15

    Human campylobacteriosis is the leading bacterial gastrointestinal illness in Canada; environmental transmission has been implicated in addition to transmission via consumption of contaminated food. Information about Campylobacter spp. occurrence at the watershed scale will enhance our understanding of the associated public health risks and the efficacy of source water protection strategies. The overriding purpose of this study is to provide a quantitative framework to assess and compare the relative public health significance of watershed microbial water quality associated with agricultural BMPs. A microbial monitoring program was expanded from fecal indicator analyses and Campylobacter spp. presence/absence tests to the development of a novel, 11-tube most probable number (MPN) method that targeted Campylobacter jejuni, Campylobacter coli, and Campylobacter lari. These three types of data were used to make inferences about theoretical risks in a watershed in which controlled tile drainage is widely practiced, an adjacent watershed with conventional (uncontrolled) tile drainage, and reference sites elsewhere in the same river basin. E. coli concentrations (MPN and plate count) in the controlled tile drainage watershed were statistically higher (2008-11), relative to the uncontrolled tile drainage watershed, but yearly variation was high as well. Escherichia coli loading for years 2008-11 combined were statistically higher in the controlled watershed, relative to the uncontrolled tile drainage watershed, but Campylobacter spp. loads for 2010-11 were generally higher for the uncontrolled tile drainage watershed (but not statistically significant). Using MPN data and a Bayesian modelling approach, higher mean Campylobacter spp. concentrations were found in the controlled tile drainage watershed relative to the uncontrolled tile drainage watershed (2010, 2011). A second-order quantitative microbial risk assessment (QMRA) was used, in a relative way, to identify

  2. Hydrological Response to ~30 years of Agricultural Surface Water Management

    Directory of Open Access Journals (Sweden)

    Giulia Sofia

    2017-01-01

    Full Text Available Amongst human practices, agricultural surface-water management systems represent some of the largest integrated engineering works that shaped floodplains during history, directly or indirectly affecting the landscape. As a result of changes in agricultural practices and land use, many drainage networks have changed producing a greater exposure to flooding with a broad range of impacts on society, also because of climate inputs coupling with the human drivers. This research focuses on three main questions: which kind of land use changes related to the agricultural practices have been observed in the most recent years (~30 years? How does the influence on the watershed response to land use and land cover changes depend on the rainfall event characteristics and soil conditions, and what is their related significance? The investigation presented in this work includes modelling the water infiltration due to the soil properties and analysing the distributed water storage offered by the agricultural drainage system in a study area in Veneto (north-eastern Italy. The results show that economic changes control the development of agro-industrial landscapes, with effects on the hydrological response. Key elements that can enhance or reduce differences are the antecedent soil conditions and the climate characteristics. Criticalities should be expected for intense and irregular rainfall events, and for events that recurrently happen. Agricultural areas might be perceived to be of low priority when it comes to public funding of flood protection, compared to the priority given to urban ones. These outcomes highlight the importance of understanding how agricultural practices can be the driver of or can be used to avoid, or at least mitigate, flooding. The proposed methods can be valuable tools in evaluating the costs and benefits of the management of water in agriculture to inform better policy decision-making.

  3. Cost-Effectiveness Analysis of Surface Flow Constructed Wetlands (SFCW) for Nutrient Reduction in Drainage Discharge from Agricultural Fields in Denmark.

    Science.gov (United States)

    Gachango, F G; Pedersen, S M; Kjaergaard, C

    2015-12-01

    Constructed wetlands have been proposed as cost-effective and more targeted technologies in the reduction of nitrogen and phosphorous water pollution in drainage losses from agricultural fields in Denmark. Using two pig farms and one dairy farm situated in a pumped lowland catchment as case studies, this paper explores the feasibility of implementing surface flow constructed wetlands (SFCW) based on their cost effectiveness. Sensitivity analysis is conducted by varying the cost elements of the wetlands in order to establish the most cost-effective scenario and a comparison with the existing nutrients reduction measures carried out. The analyses show that the cost effectiveness of the SFCW is higher in the drainage catchments with higher nutrient loads. The range of the cost effectiveness ratio on nitrogen reduction differs distinctively with that of catch crop measure. The study concludes that SFCW could be a better optimal nutrients reduction measure in drainage catchments characterized with higher nutrient loads.

  4. Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: Acid mine drainage versus neutral mine drainage

    Science.gov (United States)

    Heikkinen, P.M.; Raisanen, M.L.; Johnson, R.H.

    2009-01-01

    Seepage water and drainage water geochemistry (pH, EC, O2, redox, alkalinity, dissolved cations and trace metals, major anions, total element concentrations) were studied at two active sulphide mine tailings impoundments in Finland (the Hitura Ni mine and Luikonlahti Cu mine/talc processing plant). The data were used to assess the factors influencing tailings seepage quality and to identify constraints for water treatment. Changes in seepage water quality after equilibration with atmospheric conditions were evaluated based on geochemical modelling. At Luikonlahti, annual and seasonal changes were also studied. Seepage quality was largely influenced by the tailings mineralogy, and the serpentine-rich, low sulphide Hitura tailings produced neutral mine drainage with high Ni. In contrast, drainage from the high sulphide, multi-metal tailings of Luikonlahti represented typical acid mine drainage with elevated contents of Zn, Ni, Cu, and Co. Other factors affecting the seepage quality included weathering of the tailings along the seepage flow path, process water input, local hydrological settings, and structural changes in the tailings impoundment. Geochemical modelling showed that pH increased and some heavy metals were adsorbed to Fe precipitates after net alkaline waters equilibrated with the atmosphere. In the net acidic waters, pH decreased and no adsorption occurred. A combination of aerobic and anaerobic treatments is proposed for Hitura seepages to decrease the sulphate and metal loading. For Luikonlahti, prolonged monitoring of the seepage quality is suggested instead of treatment, since the water quality is still adjusting to recent modifications to the tailings impoundment.

  5. Nitrogen surface water retention in the Baltic Sea drainage basin

    Directory of Open Access Journals (Sweden)

    P. Stålnacke

    2014-09-01

    Full Text Available In this paper, we estimate the surface water retention of nitrogen (N in all the 117 drainage basins to the Baltic Sea with the use of a statistical model (MESAW for source apportionment of riverine loads of pollutants. Our results show that the MESAW model was able to estimate the N load at the river mouth of 88 Baltic Sea rivers, for which we had observed data, with a sufficient degree of precision and accuracy. The estimated retention parameters were also statistically significant. Our results show that around 380 000 t of N are annually retained in surface waters draining to the Baltic Sea. The total annual riverine load from the 117 basins to the Baltic Sea was estimated to 570 000 t of N, giving a total surface water N retention of around 40%. In terms of absolute retention values, three major river basins account for 50% of the total retention in the 117 basins; i.e. around 104 000 t of N is retained in Neva, 55 000 t in Vistula and 32 000 t in Oder. The largest retention was found in river basins with a high percentage of lakes as indicated by a strong relationship between N retention (% and share of lake area in the river drainage areas. For example in Göta älv, we estimated a total N retention of 72%, whereof 67% of the retention occurred in the lakes of that drainage area (Lake Vänern primarily. The obtained results will hopefully enable the Helsinki Commission (HELCOM to refine the nutrient load targets in the Baltic Sea Action Plan (BSAP, as well as to better identify cost-efficient measures to reduce nutrient loadings to the Baltic Sea.

  6. Characterising and classifying agricultural drainage channels for sediment and phosphorus management

    Science.gov (United States)

    Shore, Mairead; Jordan, Phil; Mellander, Per-Erik; Quinn, Mary Kelly; Daly, Karen; Sims, James Tom; Melland, Alice

    2016-04-01

    In agricultural landscapes, surface ditches and streams can significantly influence the attenuation and transfer of sediment and phosphorus (P) from upstream sources to receiving water-bodies. The sediment attenuation and/or transfer capacity of these features depends on channel physical characteristics. This is similar for P, in addition to the sediment physico-chemical characteristics. Therefore, a greater understanding of (i) channel physical characteristics and (ii) the associated sediment physico-chemical characteristics could be used to develop channel-specific management strategies for the reduction of downstream sediment and P transfers. Using a detailed field survey of surface channel networks in a well-drained arable and a poorly-drained grassland catchment (both c.10km2), this study (i) characterised all ditches and streams in both catchments, (ii) investigated the physico-chemical characteristics of sediments in a subset of ditches, (iii) classified all channels into four classes of fine sediment retention and/or transfer likelihood based on a comparison of physical characteristics (slope and drainage area) with observations of fine sediment accumulation and (iv) considered P management strategies that are suited to each class. Mehlich3-Al/P and Mehlich3-Ca/P contents of ditch sediments in the well (non-calcareous) and poorly (calcareous) drained catchments, respectively, indicated potential for soluble P retention (above thresholds of 11.7 and 74, respectively). In general, ditches with low slopes had the greatest potential to retain fine sediment and associated particulate P. As sediments in these catchments are likely to primarily adsorb, rather than release soluble P, these flat ditches are also likely to reduce soluble P loading downstream. Ditches with moderate-high slopes had the greatest potential to mobilise fine sediment and associated P during event flows. Ditch dimensions were not closely related to their indicative flow volumes and were

  7. Integration of Drainage, Water Quality and Flood Management in Rural, Urban and Lowland Areas

    NARCIS (Netherlands)

    Vlotman, W.F.; Wong, T.; Schultz, E.

    2007-01-01

    Managing drainage in rural and peri-urban environments has become an essential part of integrated water management. Drainage has become a science of control, storage and (re)use while meeting triple bottom-line requirements (environment, social and economic assessments). Controlled drainage in rural

  8. Risk management in agricultural water use

    OpenAIRE

    Tychon, Bernard; Balaghi, Riad; Jlibene, Mohammed

    2002-01-01

    Water availability for agricultural activities will decrease in the twenty-first century. As a consequence, agricultural water management will have to improve in order to meet two challenges: satisfy the needs of an increasing world population; and alleviate the climate change impacts. One way to improve agricultural water management consists of including the ‘risk’ notion as much as possible at the different decision levels of: farmers, farmer corporations and states or associations of st...

  9. Nitrate-nitrogen losses through subsurface drainage under various agricultural land covers.

    Science.gov (United States)

    Qi, Zhiming; Helmers, Matthew J; Christianson, Reid D; Pederson, Carl H

    2011-01-01

    Nitrate-nitrogen (NO₃-N) loading to surface water bodies from subsurface drainage is an environmental concern in the midwestern United States. The objective of this study was to investigate the effect of various land covers on NO₃-N loss through subsurface drainage. Land-cover treatments included (i) conventional corn ( L.) (C) and soybean [ (L.) Merr.] (S); (ii) winter rye ( L.) cover crop before corn (rC) and before soybean (rS); (iii) kura clover ( M. Bieb.) as a living mulch for corn (kC); and (iv) perennial forage of orchardgrass ( L.) mixed with clovers (PF). In spring, total N uptake by aboveground biomass of rye in rC, rye in rS, kura clover in kC, and grasses in PF were 14.2, 31.8, 87.0, and 46.3 kg N ha, respectively. Effect of land covers on subsurface drainage was not significant. The NO₃-N loss was significantly lower for kC and PF than C and S treatments (p cover crop did not reduce NO₃-N loss, but NO₃-N concentration was significantly reduced in rC during March to June and in rS during July to November (p cover crop on NO-N loss reduction needs further investigation under conditions of different N rates, wider weather patterns, and fall tillage.

  10. The Role of County Surveyors and County Drainage Boards in Addressing Water Quality

    Science.gov (United States)

    Dunn, Mike; Mullendore, Nathan; de Jalon, Silvestre Garcia; Prokopy, Linda Stalker

    2016-06-01

    Water quality problems stemming from the Midwestern U.S. agricultural landscape have been widely recognized and documented. The Midwestern state of Indiana contains tens of thousands of miles of regulated drains that represent biotic communities that comprise the headwaters of the state's many rivers and creeks. Traditional management, however, reduces these waterways to their most basic function as conveyances, ignoring their role in the ecosystem as hosts for biotic and abiotic processes that actively regulate the fate and transport of nutrients and farm chemicals. Novel techniques and practices such as the two-stage ditch, denitrifying bioreactor, and constructed wetlands represent promising alternatives to traditional management approaches, yet many of these tools remain underutilized. To date, conservation efforts and research have focused on increasing the voluntary adoption of practices among agricultural producers. Comparatively little attention has been paid to the roles of the drainage professionals responsible for the management of waterways and regulated drains. To address this gap, we draw on survey responses from 39 county surveyors and 85 drainage board members operating in Indiana. By examining the backgrounds, attitudes, and actions of these individuals, we consider their role in advocating and implementing novel conservation practices.

  11. Organic matter removal from saline agricultural drainage wastewater using a moving bed biofilm reactor.

    Science.gov (United States)

    Ateia, Mohamed; Nasr, Mahmoud; Yoshimura, Chihiro; Fujii, Manabu

    2015-01-01

    We investigated the effect of salinity on the removal of organics and ammonium from agricultural drainage wastewater (ADW) using moving bed biofilm reactors (MBBRs). Under the typical salinity level of ADW (total dissolved solids (TDS) concentration up to 2.5 g·L(-1)), microorganisms were acclimated for 40 days on plastic carriers and a stable slime layer of attached biofilm was formed. Next, six batch mode MBBRs were set up and run under different salinity conditions (0.2-20 g-TDS·L(-1)). The removal efficiency of chemical oxygen demand (COD) and ammonium-nitrogen (NH4-N) in 6 hours decreased from 98 and 68% to 64 and 21% with increasing salt concentrations from 2.5 to 20 g-TDS·L(-1), respectively. In addition, at decreasing salt levels of 0.2 g-TDS·L(-1), both COD removal and nitrification were slightly lowered. Kinetic analysis indicated that the first-order reaction rate constant (k1) and specific substrate utilization rate (U) with respect to the COD removal remained relatively constant (10.9-11.0 d(-1) and 13.1-16.1 g-COD-removed.g-biomass(-1)·d(-1), respectively) at the salinity range of 2.5-5.0 g-TDS·L(-1). In this study, the treated wastewater met the standard criteria of organic concentration for reuse in agricultural purposes, and the system performance remained relatively constant at the salinity range of typical ADW.

  12. Optimum combination of water drainage, water supply and eco-environment protection in coal-accumulated basin of North China

    Institute of Scientific and Technical Information of China (English)

    武强; 董东林; 石占华; 武雄; 孙卫东; 叶责钧; 李树文; 刘金韬

    2000-01-01

    The conflict among water drainage, water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China. Efficient solutions to the conflict are to maintain long-term dynamic balance between input and output of the ground water basins, and to try to improve resourcification of the mine water. All solutions must guarantee the eco-environment quality. This paper presents a new idea of optimum combination of water drainage, water supply and eco-environment protection so as to solve the problem of unstable mine water supply, which is caused by the changeable water drainage for the whole combination system. Both the management of hydraulic techniques and constraints in economy, society, ecology, environment, industrial structural adjustments and sustainable developments have been taken into account. Since the traditional and separate management of different departments of water drainage,

  13. The results of the electrochemical clearning of drainage waters

    Science.gov (United States)

    Kabannik, Vasilina; Saeva, Olga

    2010-05-01

    There is a problem of industrial drains clearing in various branches, but especially sharply in a metal manufacture that is caused by great volumes of the wastewater containing high residual concentration of heavy metals. It is necessary to pay attention to solids in wastes. In a long-term interaction with oxygen of air and natural deposits the acid drainage is often formed and takes out a number of elements with different classes of toxicity to superficial and underground waters. Therefore search of an extraction possibilities for toxic components for a eliminate of their further migration is the big deal. Belov Zink Plant located in the Kemerovo region. During sixty years the factory stably made up to 10 000 tons of zinc annually and in passing up to 30 000 tons H2SO4 processing a blende concentrate. Now the factory has stopped the activity, however, in territory have remained uncontrolledly stored about one million tons of the wastes, presented by slags and ashes. Visually clinker represent coarse-grained sands of the typical slag containing 0.7-15% Zn, 0.3-8.5% Cu, 0.03-0.7% Pb and 2-400 g/t Cd. Besides in tailings the sub-standard sulfuric acid [Bortnikova, etc., 2006] are merged. Acid (рН=3.5) and highsaline waters of a drainage stream with significant concentration sulfate-ion (up to 20 g/l), copper (up to 6 g/l) and zinc (up to 4 g/l), that allows to consider as macrocomponents. A wide number of microcells in drains exceeds maximum concentration limit (MPC) of chemical substances in objects of drinking and community use. The basic chemical forms of present metals (Al, Mn, Zn, Fe, Co, Ni, Pb, Cu) are aquo-ions and sulphatic complexes. Earlier in our laboratory searching of a way of a toxic components concentration downturn in drains of Belov plant - sorptive clearing by natural clays [Gaskova, Kabannik, 2009] and sedimentation of toxic elements on carbonate barrier [Yurkevich, etc., 2008] were done, however the desirable result by virtue of that this

  14. Drainage water management effects on tile discharge and water quality

    Science.gov (United States)

    Nitrogen (N) fluxes from tile drained watersheds have been implicated in water quality studies of the Mississippi River Basin, but the contribution of tile drains to N export in headwater watersheds is not well understood. The objective of this study was to ascertain seasonal and annual contribution...

  15. Is tile drainage water representative of root zone leaching of pesticides?

    Science.gov (United States)

    Jacobsen, Ole H; Kjaer, Jeanne

    2007-05-01

    Given the methods presently available, determination of flux-averaged concentrations of pesticides in structured soils is always a compromise. Most of the available methods entail major uncertainties and limitations. Tile drainage monitoring has several advantages, but the extent to which it is representative of overall leaching has been questioned because it comprises a mixture of water of different origins. This literature review evaluates whether drainage water pesticide concentrations are representative of root zone leaching of pesticides. As there are no reports quantifying the extent to which the flux-averaged concentration of pesticides in drainage water differs from that found between the drains, evidence-based conclusions cannot be drawn. Nevertheless, the existing literature does suggest that the concentration in drainage water does not always correspond to the concentration at drain depth between the drains; depending on the conditions pertaining, the concentrations may be higher or lower. As to whether the flux-averaged concentration of pesticides in drainage water is representative of the interdrain concentration at drain depth it is concluded that (1) the representativeness of drainage water concentrations can be questioned on very well-drained soils and on poorly drained soils with little capacity for lateral transport beneath the plough layer, (2) the conditions provided by relatively porous soils and moderate climatic conditions are conducive to the drainage water concentration being representative and (3) drainage water will be more representative in the case of weakly sorbed pesticides than for strongly sorbed pesticides. Used critically, it is thus believed that drainage water concentrations can serve to characterize the flux-averaged concentration of pesticides at drain depth. However, the use of drainage water for determining average concentrations necessitates thorough investigation and interpretation of precipitation, percolation, drain

  16. Electrocoagulation treatment of peat bog drainage water containing humic substances.

    Science.gov (United States)

    Kuokkanen, V; Kuokkanen, T; Rämö, J; Lassi, U

    2015-08-01

    Electrocoagulation (EC) treatment of 100 mg/L synthetic wastewater (SWW) containing humic acids was optimized (achieving 90% CODMn and 80% DOC removal efficiencies), after which real peat bog drainage waters (PBDWs) from three northern Finnish peat bogs were also treated. High pollutant removal efficiencies were achieved: Ptot, TS, and color could be removed completely, while Ntot, CODMn, and DOC/TOC removal efficiencies were in the range of 33-41%, 75-90%, and 62-75%, respectively. Al and Fe performed similarly as the anode material. Large scale experiments (1 m(3)) using cold (T = 10-11 °C) PBDWs were also conducted successfully, with optimal treatment times of 60-120 min (applying current densities of 60-75 A/m(2)). Residual values of Al and Fe (complete removal) were lower than their initial values in the EC-treated PBDWs. Electricity consumption and operational costs in optimum conditions were found to be low and similar for all the waters studied: 0.94 kWh/m(3) and 0.15 €/m(3) for SWW and 0.35-0.70 kWh/m(3) and 0.06-0.12 €/m(3) for the PBDWs (large-scale). Thus, e.g. solar cells could be considered as a power source for this EC application. In conclusion, EC treatment of PBDW containing humic substances was shown to be feasible.

  17. America's water: Agricultural water demands and the response of groundwater

    Science.gov (United States)

    Ho, M.; Parthasarathy, V.; Etienne, E.; Russo, T. A.; Devineni, N.; Lall, U.

    2016-07-01

    Agricultural, industrial, and urban water use in the conterminous United States (CONUS) is highly dependent on groundwater that is largely drawn from nonsurficial wells (>30 m). We use a Demand-Sensitive Drought Index to examine the impacts of agricultural water needs, driven by low precipitation, high agricultural water demand, or a combination of both, on the temporal variability of depth to groundwater across the CONUS. We characterize the relationship between changes in groundwater levels, agricultural water deficits relative to precipitation during the growing season, and winter precipitation. We find that declines in groundwater levels in the High Plains aquifer and around the Mississippi River Valley are driven by groundwater withdrawals used to supplement agricultural water demands. Reductions in agricultural water demands for crops do not, however, lead to immediate recovery of groundwater levels due to the demand for groundwater in other sectors in regions such as Utah, Maryland, and Texas.

  18. Effect of Drainage Ditch Layout on Nitrogen Loss by Runoff from an Agricultural Watershed

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhan-Yu; KONG Li-Li; ZHU Lei; R.M.MWIYA

    2013-01-01

    A comparison experiment was performed,by designing one field ditch (D1 treatment),two field ditches (D2 treatment),three field ditches (D3 treatment),and no field ditch (CK treatment),in an upland of a small agricultural watershed in Nanjing-Zhenjiang hilly regions to observe the farmland surface runoff and N loss characteristics under the different layouts of field ditch.As the layout density of field ditch increased,the drainage effect was improved,the timing of the runoff peak was advanced,and also the peak flow was augmented.At the same time,both the concentration and accumulated transfer flux of total nitrogen (TN) were improved,and thereinto the accumulated transfer fluxes of TN under D3,D2 and D1 treatments were increased by 1.46,1.34 and 1.16 times,respectively,than that under CK treatment.However,the accumulated transfer fluxes of nitrate-nitrogen (NO3--N) and ammonium-nitrogen (NH4+-N) under D3,D2 and D1 treatments were reduced by 33.9%,21.4% and 8.6%,and 35.8%,24.7% and 12.2%,respectively,compared with those under CK treatment.Under CK treatment,the NO3--N and NH4+-N concentrations were more sensitive to rainfall intensity than the TN concentration.There were significant linear relationships between the transfer fluxes of TN,NO3--N and NH4+-N and the runoff flux,with the correlation coefficients of 0.942,0.899 and 0.912,respectively.In addition,this correlation was also influenced by the layout density of field ditch.Therefore,the environmental effect should be taken into account when designing and constructing field ditches.Especially in the regions of severe fertilizer loss,the approaches of properly increasing the drainage area and decreasing the layout density of field ditch could be adopted under the precondition of avoiding crops from waterlogging.

  19. Performance Evaluation of Automated Passive Capillary Sampler for Estimating Water Drainage in the Vadose Zone

    Science.gov (United States)

    Passive capillary samplers (PCAPs) are widely used to monitor, measure and sample drainage water under saturated and unsaturated soil conditions in the vadose zone. The objective of this study was to evaluate the performance and accuracy of automated passive capillary sampler for estimating drainage...

  20. Influence of instream habitat and water chemistry on amphibians within channelized agricultural headwater streams

    Science.gov (United States)

    The widespread use of stream channelization and subsurface tile drainage for draining agricultural fields has led to the development of numerous channelized agricultural headwater streams within agricultural watersheds of the Midwestern United States, Canada, and Europe. Channelized agricultural he...

  1. Phosphorus removal by the multipond system sediments receiving agricultural drainage in a headstream watershed

    Institute of Scientific and Technical Information of China (English)

    FU Qiang; YIN Cheng-qing; MA Yun

    2005-01-01

    Wetland systems in headstream watersheds are important to control the nonpoint source pollutant phosphorus. Experiments were conducted using intact sediment-water columns obtained from the multipond system in Liuchahe watershed of Chaohu Lake to determine its capacity to retain P. It was found that pond sediments had strong P retention ability. For the Hill pond, Village pond and Rice pond, their retention coefficient(A) were 288.3, 279.2 and 260.8 L/m2 , respectively. The equilibrium P concentration(EPCw) were 0.016, 0.028 and 0.018 mg/L, respectively. The Hill pond indicated the highest P retention ability. P retained in the pond sediments indicated high stable degree. P removal from the overlying water column into the pond sediments followed a first-order kinetic model. Under the experimental hydrological conditions, the retention time had a positive correlation with the P loading. The multipond system could provide enough retention time to retain P in drainage runoffs. At the P levels evaluated, the sediments of the multipond system are effective sinks to retainP from nonpoint source runoffs.

  2. Information technology and innovative drainage management practices for selenium load reduction from irrigated agriculture to provide stakeholder assurances and meet contaminant mass loading policy objectives

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T.

    2009-10-15

    Many perceive the implementation of environmental regulatory policy, especially concerning non-point source pollution from irrigated agriculture, as being less efficient in the United States than in many other countries. This is partly a result of the stakeholder involvement process but is also a reflection of the inability to make effective use of Environmental Decision Support Systems (EDSS) to facilitate technical information exchange with stakeholders and to provide a forum for innovative ideas for controlling non-point source pollutant loading. This paper describes one of the success stories where a standardized Environmental Protection Agency (EPA) methodology was modified to better suit regulation of a trace element in agricultural subsurface drainage and information technology was developed to help guide stakeholders, provide assurances to the public and encourage innovation while improving compliance with State water quality objectives. The geographic focus of the paper is the western San Joaquin Valley where, in 1985, evapoconcentration of selenium in agricultural subsurface drainage water, diverted into large ponds within a federal wildlife refuge, caused teratogenecity in waterfowl embryos and in other sensitive wildlife species. The fallout from this environmental disaster was a concerted attempt by State and Federal water agencies to regulate non-point source loads of the trace element selenium. The complexity of selenium hydrogeochemistry, the difficulty and expense of selenium concentration monitoring and political discord between agricultural and environmental interests created challenges to the regulation process. Innovative policy and institutional constructs, supported by environmental monitoring and the web-based data management and dissemination systems, provided essential decision support, created opportunities for adaptive management and ultimately contributed to project success. The paper provides a retrospective on the contentious planning

  3. Design and performance of materials for subsurface drainage systems in agriculture

    NARCIS (Netherlands)

    Stuyt, L.C.P.M.; Dierickx, W.

    2006-01-01

    During the second half of the 20th century, numerous land drainage systems using new materials for the drain channels that often function inadequately due to biochemical and mechanical clogging, were developed. The design of drainpipes and envelope materials used for these land drainage systems was

  4. Agricultural Water Pricing: United States

    OpenAIRE

    2010-01-01

    In summary, irrigation costs and prices are rising in most regions of the United States, due to a combination of increasing scarcity, changes in public preferences regarding water allocation among competing uses, increasing budget scrutiny in the national and state legislatures, rising energy prices, and increasing awareness of climate change and the potential implications for rainfall and the availability of surface water resources. These issues likely will continue encouraging public offici...

  5. Water and solute balances as a basis for sustainable irrigation agriculture

    Science.gov (United States)

    Pla-Sentís, Ildefonso

    2015-04-01

    The growing development of irrigated agriculture is necessary for the sustainable production of the food required by the increasing World's population. Such development is limited by the increasing scarcity and low quality of the available water resources and by the competitive use of the water for other purposes. There are also increasing problems of contamination of surface and ground waters to be used for other purposes by the drainage effluents of irrigated lands. Irrigation and drainage may cause drastic changes in the regime and balance of water and solutes (salts, sodium, contaminants) in the soil profile, resulting in problems of water supply to crops and problems of salinization, sodification and contamination of soils and ground waters. This is affected by climate, crops, soils, ground water depth, irrigation and groundwater composition, and by irrigation and drainage management. In order to predict and prevent such problems for a sustainable irrigated agriculture and increased efficiency in water use, under each particular set of conditions, there have to be considered both the hydrological, physical and chemical processes determining such water and solute balances in the soil profile. In this contribution there are proposed the new versions of two modeling approaches (SOMORE and SALSODIMAR) to predict those balances and to guide irrigation water use and management, integrating the different factors involved in such processes. Examples of their application under Mediterranean and tropical climate conditions are also presented.

  6. Field test results for nitrogen removal by the constructed wetland component of an agricultural water recycling system

    Science.gov (United States)

    Wetland Reservoir Subirrigation Systems (WRSIS) are innovative agricultural water recycling systems that can provide economic and environmental benefits. A constructed wetland is a main component of WRSIS, and an important function of this constructed wetland is drainage water treatment of nitrog...

  7. Climate policy implications for agricultural water demand

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Vaibhav [Joint Global Change Research Inst., College Park, MD (United States); Hejazi, Mohamad I. [Joint Global Change Research Inst., College Park, MD (United States); Edmonds, James A. [Joint Global Change Research Inst., College Park, MD (United States); Clarke, Leon E. [Joint Global Change Research Inst., College Park, MD (United States); Kyle, G. Page [Joint Global Change Research Inst., College Park, MD (United States); Davies, Evan [Univ. of Alberta, Edmonton, AB (Canada); Wise, Marshall A. [Joint Global Change Research Inst., College Park, MD (United States); Calvin, Katherine V. [Joint Global Change Research Inst., College Park, MD (United States)

    2013-03-01

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved

  8. Modelling microbiological water quality in the Seine river drainage network: past, present and future situations

    Directory of Open Access Journals (Sweden)

    P. Servais

    2007-05-01

    Full Text Available The Seine river watershed is characterized by a high population density and intense agricultural activities. Data show low microbiological water quality in the main rivers (Seine, Marne, Oise of the watershed. Today, there is an increasing pressure from different social groups to restore microbiological water quality in order to both increase the safety of drinking water production and to restore the possible use of these rivers for bathing and rowing activities, as they were in the past. A model, appended to the hydro-ecological SENEQUE/Riverstrahler model describing the functioning of large river systems, was developed to describe the dynamics of faecal coliforms (FC, the most usual faecal contamination indicator. The model is able to calculate the distribution of FC abundance in the whole drainage network resulting from land use and wastewater management in the watershed. The model was validated by comparing calculated FC concentrations with available field data for some well-documented situations in different river stretches of the Seine drainage network. Once validated, the model was used to test various predictive scenarios, as, for example, the impact of the modifications in wastewater treatment planned at the 2012 horizon in the Seine watershed in the scope of the implementation of the European Water Framework Directive. The model was also used to investigate past situations. In particular, the variations of the microbiological water quality in the Parisian area due to population increase and modifications in wastewater management were estimated over the last century. It was shown that the present standards for bathing and other aquatic recreational activities are not met in the large tributaries upstream from Paris since the middle of the 1950's, and at least since the middle of the XIXth century in the main branch of the Seine river downstream from Paris. Efforts carried out for improving urban wastewater treatment in terms or

  9. Modelling microbiological water quality in the Seine river drainage network: past, present and future situations

    Directory of Open Access Journals (Sweden)

    P. Servais

    2007-09-01

    Full Text Available The Seine river watershed is characterized by a high population density and intense agricultural activities. Data show low microbiological water quality in the main rivers (Seine, Marne, Oise of the watershed. Today, there is an increasing pressure from different social groups to restore microbiological water quality in order to both increase the safety of drinking water production and to restore the possible use of these rivers for bathing and rowing activities, as they were in the past. A model, appended to the hydro-ecological SENEQUE/Riverstrahler model describing the functioning of large river systems, was developed to describe the dynamics of faecal coliforms (FC, the most usual faecal contamination indicator. The model is able to calculate the distribution of FC concentrations in the whole drainage network resulting from land use and wastewater management in the watershed. The model was validated by comparing calculated FC concentrations with available field data for some well-documented situations in different river stretches of the Seine drainage network. Once validated, the model was used to test various predictive scenarios, as, for example, the impact of the modifications in wastewater treatment planned at the 2012 horizon in the Seine watershed in the scope of the implementation of the european water framework directive. The model was also used to investigate past situations. In particular, the variations of the microbiological water quality in the Parisian area due to population increase and modifications in wastewater management were estimated over the last century. It was shown that the present standards for bathing and other aquatic recreational activities are not met in the large tributaries upstream from Paris since the middle of the 1950's, and at least since the middle of the XIXth century in the main branch of the Seine river downstream from Paris. Efforts carried out for improving urban wastewater treatment in terms

  10. Modelling microbiological water quality in the Seine river drainage network: past, present and future situations

    Science.gov (United States)

    Servais, P.; Billen, G.; Goncalves, A.; Garcia-Armisen, T.

    2007-09-01

    The Seine river watershed is characterized by a high population density and intense agricultural activities. Data show low microbiological water quality in the main rivers (Seine, Marne, Oise) of the watershed. Today, there is an increasing pressure from different social groups to restore microbiological water quality in order to both increase the safety of drinking water production and to restore the possible use of these rivers for bathing and rowing activities, as they were in the past. A model, appended to the hydro-ecological SENEQUE/Riverstrahler model describing the functioning of large river systems, was developed to describe the dynamics of faecal coliforms (FC), the most usual faecal contamination indicator. The model is able to calculate the distribution of FC concentrations in the whole drainage network resulting from land use and wastewater management in the watershed. The model was validated by comparing calculated FC concentrations with available field data for some well-documented situations in different river stretches of the Seine drainage network. Once validated, the model was used to test various predictive scenarios, as, for example, the impact of the modifications in wastewater treatment planned at the 2012 horizon in the Seine watershed in the scope of the implementation of the european water framework directive. The model was also used to investigate past situations. In particular, the variations of the microbiological water quality in the Parisian area due to population increase and modifications in wastewater management were estimated over the last century. It was shown that the present standards for bathing and other aquatic recreational activities are not met in the large tributaries upstream from Paris since the middle of the 1950's, and at least since the middle of the XIXth century in the main branch of the Seine river downstream from Paris. Efforts carried out for improving urban wastewater treatment in terms or organic matter and

  11. The Metal And Sulphate Removal From Mine Drainage Waters By Biological-Chemical Ways

    Directory of Open Access Journals (Sweden)

    Jenčárová Jana

    2015-06-01

    Full Text Available Mine drainage waters are often characterized by high concentrations of sulphates and metals as a consequence of the mining industry of sulphide minerals. The aims of this work are to prove some biological-chemical processes utilization for the mine drainage water treatment. The studied principles of contamination elimination from these waters include sulphate reduction and metal bioprecipitation by the application of sulphate-reducing bacteria (SRB. Other studied process was metal sorption by prepared biogenic sorbent. Mine drainage waters from Slovak localities Banská Štiavnica and Smolník were used to the pollution removal examination. In Banská Štiavnica water, sulphates decreased below the legislative limit. The elimination of zinc by sorption experiments achieved 84 % and 65 %, respectively.

  12. A Water Hammer Protection Method for Mine Drainage System Based on Velocity Adjustment of Hydraulic Control Valve

    OpenAIRE

    Yanfei Kou; Jieming Yang; Ziming Kou

    2016-01-01

    Water hammer analysis is a fundamental work of pipeline systems design process for water distribution networks. The main characteristics for mine drainage system are the limited space and high cost of equipment and pipeline changing. In order to solve the protection problem of valve-closing water hammer for mine drainage system, a water hammer protection method for mine drainage system based on velocity adjustment of HCV (Hydraulic Control Valve) is proposed in this paper. The mathematic mode...

  13. Implications of Israeli Agricultural Water Price Sharing System to China

    Institute of Scientific and Technical Information of China (English)

    Yifan LI; Fusheng LIU

    2016-01-01

    This paper introduces Israeli agricultural water price sharing system. According to Israeli agricultural water cost composition,water price sharing by farmers as well as government subsidy and its forms,the financial subsidy-based agricultural water price system has been established on the basis of the farmers’ income in our country and reasonable water price sharing,thus to promote the development of water-saving agriculture in China.

  14. Impact assessment of mine drainage water and municipal wastewater on the surface water in the vicinity of Bor

    Directory of Open Access Journals (Sweden)

    Gardić Vojka R.

    2015-01-01

    Full Text Available Mining and copper production in Bor, in the past hundred years, had a huge impact on the environment of town, but also in a wide region. In the area of Bor, in the zone of Mining and Smelting Company (RTB activity, over 29,000 ha of land under forests and fields is degraded. The area of degraded agricultural land in the Bor municipality is over 60% of total agricultural land. Wastewater, generated in the sites of RTB Bor, pollute the Bor River and Krivelj River, which still flow into the Timok River and Danube River. These pollutions are often presented by low pH value, increased content of heavy metal ions, suspended particles and fine particles of flotation tailings, which is deposited in the valleys of these rivers on the area of over 2000 hectares. During the decades of exploitation of ore from the open pit Bor at different locations ("Visoki Planir" - also called “Oštreljski planir”, "Severni planir" dump of ore body "H" (RTH gangue and tailings were delayed. The largest amount of tailings, about 150 million tons, was postponed on location Visoki planir. The effect of the mining waste and the impact of the whole process of processing copper ore to the final products on the environment, was conducted during the 4th study period of the project "Management of mining waste-tailing dump in the Bor region," supported by the Japan Society for the Promotion Science (Eng. Japan Society for the Promotion of Science and the Japan international cooperation Agency and the Ministry of environment, Mining and Spatial planning of the Republic of Serbia. Influence of season on the level of pollutants in soil and water, the impact on water quality in the river Timok and the River Danube, was conducted during first three periods of project. This paper presents the results of the third study period. The third period of research, which was conducted over a period of 17. 10. 2012 to 17. 01.2013 year, included a review of pollution sources and define their

  15. LONG TERM EFFECTS OF AMELIORATIVE WORKS ON SOME SOIL QUALITY PARAMETERS FROM BAIA –MOLDOVA EXPERIMENTAL AGRICULTURAL DRAINAGE FIELD

    Directory of Open Access Journals (Sweden)

    V. Moca

    2009-10-01

    Full Text Available The soil-climatic conditions from Baia Depression – the hydrographical basin from the extra-Carpathian area of the Moldova River - have frequently determined the presence, under different forms, intensities and periods, of temporary water excess from soil. The underground drainage, as a measure of water excess control, with stagnant character, caused mainly by rainfall amounts registered for 1-5 consecutive days, was firstly arranged in pilot-experimental fields during 1972-1978. We followed the behaviour in exploitation of underground drainage technical solutions, as concerns the functional efficiency of the means of water excess removal and of the improved soil favourableness and/or suitability for crop growing.In order to assess the long-term effects of ameliorating works, applied in 1978 in the drainage field of Baia, on an area of 3.50 ha, we have qualitatively classified and estimated the albic stagnic glossic Luvosoil (S.R.T.S. – 2003, improved and unimproved. Based on this study, we have estimated the present favourableness for crops of the improved soil, as compared to unimproved soil, used as natural grassland, after an exploitation cycle of 30 years (1978- 2008.

  16. 210Po and major ions in drainage water from soil treated with various types of fertilizers.

    Science.gov (United States)

    Jiménez, Fernando; López, Raúl; Debán, Luis; Pardo, Rafael; García-Talavera, Marta

    2007-07-01

    The levels of (210)Po, nutrients (NH(4)(+), NO(3)(-), PO(4)(3 -)) and major ions (Na(+), K(+), Mg(2 +), Ca(2 +), F(-), NO(2 -), Br(-), Cl(-), SO(4)(2 -)) were determined, by means of lysimeter experiences, in drainage waters for agricultural soils untreated and treated with different types of fertilizers (animal manure, sewage sludge and NPK synthetic fertilizer) applied at several rates. Analytical determinations were performed by using alpha -spectrometry in the case of (210)Po, or Ion Exchange liquid chromatography for the other ionic species. Statistical uni and multivariate analysis of the results shown significant differences among lixiviates according to the different fertilizer treatments. Sewage sludge and manure applications resulted in similar compositions of lixiviates with low (210)Po levels, whereas synthetic fertilizers produced higher (210)Po concentrations and different concentration patterns of ionic species when applied at or above the recommended rates. All (210)Po levels were well below the limits proposed by the 2001/928/ Euratom Recommendation. The concentrations of the rest of the ionic species, exception made from NH(4)(+) and NO(3)(-), were also below the limits proposed by Spanish regulations.

  17. Economic feasibility of surface flow constructed (SFCW) wetlands for reduction of water pollution from agricultural fields in Denmark

    DEFF Research Database (Denmark)

    Gachango, Florence Gathoni; Pedersen, Søren Marcus; Kjaergaard, Charlotte

    2014-01-01

    Constructed wetlands have been proposed as cost effective and more targeted technologies in the reduction of nitrogen and phosphorous water pollution in drainage losses from agricultural fields in Denmark. Using two pig farms and one dairy farm situated in a pumped lowland catchment as study cases...

  18. The Connotation and Extension of Agricultural Water Resources Security

    Institute of Scientific and Technical Information of China (English)

    LIU Bu-chun; MEI Xu-rong; LI Yu-zhong; YANG You-lu

    2007-01-01

    The objective of this study is to define agricultural water resources security and its connotation and extension. The definitions of water security, water resources security, and water environment security were summarized, and their relationship was differentiated and analyzed. Based on these, the elements of the conception of agricultural water resources security were hashed and the conception was defined. Agricultural water resources security is the provision of water resource that ensures protection of agriculture against threat, hazards, destruction, and loss. Moreover, the connotation and extension of agricultural water resources security were ascertained. In detail, the connotation of the definition has natural attributes, socioeconomic attributes, and cultural attributes. The extensions of agricultural water resources security include both broad and narrow ones, as well as, food security, agroenvironmental security, agroeconomic security, rural society security, etc. The definition will serve as the frame of reference for developing the researches, limiting the frame of the theory, and founding a appraising system for agricultural water resources security.

  19. Conservation implications of amphibian habitat relationships within channelized agricultural headwater streams in the midwestern United States

    Science.gov (United States)

    The widespread use of stream channelization and subsurface tile drainage for removing water from agricultural fields has led to the development of numerous channelized agricultural headwater streams within agricultural watersheds of the Midwestern United States. Channelized agricultural headwater s...

  20. Drainage of the air-water-quartz film: experiments and theory.

    Science.gov (United States)

    Manica, Rogerio; Chan, Derek Y C

    2011-01-28

    Experimental results of the kinetics of drainage of the trapped water film between an approaching air bubble and a quartz plate have been analysed using recent theoretical advances in formulating and solving the flow problem in deformable films. Excellent agreement is obtained between experimental data and a model that assumes the bubble-water interface is tangentially immobile in its hydrodynamic response. The coupling between hydrodynamic pressure, disjoining pressure and film deformation is critical in determining the dynamic behaviour of the drainage process. The Reynolds parallel film model that omits the effects of film deformation predicts results that are qualitatively incorrect.

  1. Re-engineering the urban drainage system for resource recovery and protection of drinking water supplies.

    Science.gov (United States)

    Gumbo, B

    2000-01-01

    The Harare metropolis in Zimbabwe, extending upstream from Manyame Dam in the Upper Manyame River Basin, consists of the City of Harare and its satellite towns: Chitungwiza, Norton, Epworth and Ruwa. The existing urban drainage system is typically a single-use-mixing system: water is used and discharged to "waste", excreta are flushed to sewers and eventually, after "treatment", the effluent is discharged to a drinking water supply source. Polluted urban storm water is evacuated as fast as possible. This system not only ignores the substantial value in "waste" materials, but it also exports problems to downstream communities and to vulnerable fresh-water sources. The question is how can the harare metropolis urban drainage system, which is complex and has evolved over time, be rearranged to achieve sustainability (i.e. water conservation, pollution prevention at source, protection of the vulnerable drinking water sources and recovery of valuable materials)? This paper reviews current concepts regarding the future development of the urban drainage system in line with the new vision of "Sustainable Cities of the Future". The Harare Metropolis in Zimbabwe is taken as a case, and philosophical options for re-engineering the drainage system are discussed.

  2. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  3. Patterns and controls of nitrous oxide emissions from waters draining a subtropical agricultural valley

    Science.gov (United States)

    Harrison, John; Matson, Pamela

    2003-09-01

    Although nitrous oxide (N2O) emission from agricultural runoff is thought to constitute a globally important source of this greenhouse gas, N2O flux from polluted aquatic systems is poorly understood and scarcely reported, especially in low-latitude (0°-30°) regions where rapid agricultural intensification is occurring. We measured N2O emissions, dissolved N2O concentrations, and factors likely to control rates of N2O production in drainage canals receiving agricultural and mixed agricultural/urban inputs from the intensively farmed Yaqui Valley of Sonora, Mexico. Average per-area N2O flux in both purely agricultural and mixed urban/agricultural drainage systems (16.5 ng N2O-N cm-2 hr-1) was high compared to other fresh water fluxes, and extreme values ranged up to 244.6 ng N2O-N cm-2 hr-1. These extremely high N2O fluxes occurred during green algae blooms, when organic carbon, nitrogen, and oxygen concentrations were high, and only in canals receiving pig-farm and urban inputs, suggesting an important link between land-use and N2O emissions. N2O concentrations and fluxes correlated significantly with water column concentrations of nitrate, particulate organic carbon and nitrogen, ammonium, and chlorophyll a, and a multiple linear regression model including ammonium, dissolved organic carbon, and particulate organic carbon was the best predictor of [N2O] (r2 = 52%). Despite high per-area N2O fluxes, our estimate of regional N2O emission from surface drainage (20,869 kg N2O-N yr-1; 0.046% of N-fertilizer inputs) was low compared to values predicted by algorithms used in global budgets.

  4. Water-saving Agriculture: An Urgent Issue

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The twentieth century has witnessed the great effort of mankind to strive for more food production, which has led to an unprecedented increase in grain production known as the First Green Revolution. As mankind entered the 21st century, the Blue Revolution - the struggle in agriculture for better use of water resources - has just begun. Norman E. Borlaug, 1970 Nobel Peace Prize Laureate,said in 2000, "how can we continue to expand food production for a growing world population within the parameters of likely water availability? The inevitable conclusion is that humankind in the 21stCentury will need to bring about a 'Blue Revolution - more crop for every drop' to complement the ‘Green Revolution' of the 20th Century. Water use productivity must be wedded to land use productivity. Science and technology will be called upon to show the way".

  5. Risk analysis on agricultural drainage ditch filling and flood disasters in lower plain area of North China%华北低平原农田排水沟平填及洪涝灾害风险分析

    Institute of Scientific and Technical Information of China (English)

    赵晓宇; 张凤荣; 李超

    2016-01-01

    The construction of irrigation and water conservancy was initiated on the North China Plain in the 1950s, which played a significant role in the saline-alkali soil improvement and flood discharge. However, the phenomenon of filling agricultural drainage ditches has become common in the North China Plain since the 1990s. It is necessary to know the condition of filling agricultural drainage ditches and flood disasters related with this phenomenon. Nowadays, there are few researches to analyze the condition of filling agricultural drainage ditches. In order to enrich existing studies, this research took Cangxian County which was battered by flooding and soil salinization in lower plain area as a case study, and explored the condition of filling agricultural drainage ditch and the flood disaster. The changes of drainage ditch area and spatial variation were analyzed based on land use databases of Cangxian County in 1992 and 2010 using the method of GIS (geographic information system). Then, the condition of filling agricultural drainage ditch was investigated by means of the field research in Nan Gutun Village. This village was one of the most densely populated agriculture villages in Cangxian County. Interviewing with the village committee members and the villagers over 70 years old, we learned about the local agricultural production mode, the way of life, the changes of agricultural drainage ditch and its mechanisms from 1960s to now. Finally, we analyzed the risk of flood disasters from the aspects of precipitation trends, percentage of precipitation anomalies, underground water level, drought/flood frequency, relationship between soil water capacity and rainfall, and upland water condition. The results showed that from 1992 to 2010, the area of drainage ditches in Cangxian County reduced by 37.73%. Meanwhile, the proportion of drainage ditches in Cangxian County decreased by 2.03% and the farm ditches was the most serious in being filled. The results of flood

  6. A Water Hammer Protection Method for Mine Drainage System Based on Velocity Adjustment of Hydraulic Control Valve

    Directory of Open Access Journals (Sweden)

    Yanfei Kou

    2016-01-01

    Full Text Available Water hammer analysis is a fundamental work of pipeline systems design process for water distribution networks. The main characteristics for mine drainage system are the limited space and high cost of equipment and pipeline changing. In order to solve the protection problem of valve-closing water hammer for mine drainage system, a water hammer protection method for mine drainage system based on velocity adjustment of HCV (Hydraulic Control Valve is proposed in this paper. The mathematic model of water hammer fluctuations is established based on the characteristic line method. Then, boundary conditions of water hammer controlling for mine drainage system are determined and its simplex model is established. The optimization adjustment strategy is solved from the mathematic model of multistage valve-closing. Taking a mine drainage system as an example, compared results between simulations and experiments show that the proposed method and the optimized valve-closing strategy are effective.

  7. A critical review of integrated urban water modelling – Urban drainage and beyond

    DEFF Research Database (Denmark)

    Bach, Peter M.; Rauch, Wolfgang; Mikkelsen, Peter Steen

    2014-01-01

    considerations (e.g. data issues, model structure, computational and integration-related aspects), common methodology for model development (through a systems approach), calibration/optimisation and uncertainty are discussed, placing importance on pragmatism and parsimony. Integrated urban water models should......Modelling interactions in urban drainage, water supply and broader integrated urban water systems has been conceptually and logistically challenging as evidenced in a diverse body of literature, found to be confusing and intimidating to new researchers. This review consolidates thirty years...... of research (initially driven by interest in urban drainage modelling) and critically reflects upon integrated modelling in the scope of urban water systems. We propose a typology to classify integrated urban water system models at one of four ‘degrees of integration’ (followed by its exemplification). Key...

  8. Irrigation ponds:Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    BROWN; Larry

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and unrecycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China. With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious. Traditional irrigation and drainage systems only focus on issues concerning water quantity, i.e. the capacity of irrigation in drought and drainage in waterlogging period, yet have no requirement on water quality improvement. how to clean the water quality of farmland drainage through remodeling the existing irrigation and drainage systems has a very important realistic meaning. Pond is an important irrigation facility in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use. Such water storage features of pond provide the possibility and potential capacity for drainage water treatment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system. To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site. The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water. Other issues, e.g. how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  9. Irrigation ponds: Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    DONG Bin; MAO Zhi; BROWN Larry; CHEN XiuHong; PENG LiYuan; WANG JianZhang

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and un-recycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China.With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious.Traditional ir-rigation and drainage systems only focus on issues concerning water quantity, i.e.the capacity of irri-gation in drought and drainage in waterlogging period, yet have no requirement on water quality im-provement, how to clean the water quality of farmland drainage through remodeling the existing irriga-tion and drainage systems has a very important realistic meaning.Pond is an important irrigation facil-ity in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use.Such water storage features of pond provide the possibility and potential capacity for drainage water treat-ment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system.To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site.The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water.Other issues, e.g.how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  10. [A virtual water analysis for agricultural production and food security].

    Science.gov (United States)

    Ke, Bing; Liu, Wen-hua; Duan, Guang-ming; Yan, Yan; Deng, Hong-bing; Zhao, Jing-zhu

    2004-03-01

    Water resource demand is increasing with the population growth and economic development. Water resource problem for agriculture and food security have become one of the global focal points because of water resource scarcity. The concept of virtual water is useful to analyze and impair this problem. In this paper, virtual water implication was described, and international study progress about it was briefly reviewed. Furthermore, China's agricultural water scarcity and food security were analyzed. According to the grain import prediction and agricultural production conditions of China, the virtual water equivalents of China in 2010 and 2020 were evaluated, which were 88 x 10(9) m3 in 2010 and 95 x 10(9) m3 in 2020. With the function of virtual water to agricultural water stress, virtual water strategy was suggested to relieve agricultural production pressure from water resource and meet growing food demand as well as to promote water resource sustainability in China.

  11. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Humboldt Wildlife Management Area, Churchill and Pershing Counties, Nevada, 1990-91

    Science.gov (United States)

    Seiler, R.L.; Ekechukwu, G.A.; Hallock, R.J.

    1993-01-01

    A reconnaissance investigation was begun in 1990 to determine whether the quality of irrigation drainage in and near the Humboldt Wildlife Management Area, Nevada, has caused or has the potential to cause harmful effects on human health, fish, and wildlife or to impair beneficial uses of water. Samples of surface and ground water, bottom sediment, and biota collected from sites upstream and downstream from the Lovelock agricultural area were analyzed for potentially toxic trace elements. Also analyzed were radioactive substances, major dissolved constitu- ents, and nutrients in water, as well as pesticide residues in bottom sediment and biota. In samples from areas affected by irrigation drainage, the following constituents equaled or exceeded baseline concentrations or recommended standards for protection of aquatic life or propagation of wildlife--in water: arsenic, boron, dissolved solids, mercury, molybdenum, selenium, sodium, and un-ionized ammonia; in bottom sediment; arsenic and uranium; and in biota; arsenic, boron, and selenium. Selenium appears to be biomagnified in the Humboldt Sink wetlands. Biological effects observed during the reconnaissance included reduced insect diversity in sites receiving irrigation drainage and acute toxicity of drain water and sediment to test organisms. The current drought and upstream consumption of water for irrigation have reduced water deliveries to the wetlands and caused habitat degradation at Humboldt Wildlife Management Area. During this investigation. Humboldt and Toulon Lakes evaporated to dryness because of the reduced water deliveries.

  12. Experimental Investigation of Evaporation and Drainage in Wettable and Water-Repellent Sands

    Directory of Open Access Journals (Sweden)

    Dae Hyun Kim

    2015-05-01

    Full Text Available This study presents experimental results on evaporation and drainage in both wettable and water-repellent sands whose surface wettability was artificially modified by silanization. The 2D optical and 3D X-ray computed tomographic imaging was performed during evaporation and the water retention during cyclic drainage and infiltration was measured to assess effects of wettability and initial wetting conditions. The evaporation gradually induces its front at the early stage advance regardless of the wettability and sand types, while its rate becomes higher in water-repellent Ottawa sand than the wettable one. Jumunjin sand which has a smaller particle size and irregular particle shape than Ottawa sand exhibits a similar evaporation rate independent of wettability. Water-repellent sand can facilitate the evaporation when both wettable and water-repellent sands are naturally in contact with each other. The 3D X-ray imaging reveals that the hydraulically connected water films in wettable sands facilitate the propagation of the evaporation front into the soil such that the drying front deeply advances into the soil. For cyclic drainage-infiltration testing, the evolution of water retention is similar in both wettable and water-repellent sands when both are initially wet. However, when conditions are initially dry, water-repellent sands exhibit low residual saturation values. The experimental observations made from this study propose that the surface wettability may not be a sole factor while the degree of water-repellency, type of sands, and initial wetting condition are predominant when assessing evaporation and drainage behaviors.

  13. Wildlife and fishery use made of drainage waters in Nevada

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a survey of the Stillwater WMA and includes information about the physical features of the landscape, the vegetation, waterfowl use of the area, and water...

  14. Subglacial water drainage, storage, and piracy beneath the Greenland ice sheet

    Science.gov (United States)

    Lindbäck, K.; Pettersson, R.; Hubbard, A. L.; Doyle, S. H.; As, D.; Mikkelsen, A. B.; Fitzpatrick, A. A.

    2015-09-01

    Meltwater drainage across the surface of the Greenland ice sheet (GrIS) is well constrained by measurements and modeling, yet despite its critical role, knowledge of its transit through the subglacial environment remains limited. Here we present a subglacial hydrological analysis of a land-terminating sector of the GrIS at unprecedented resolution that predicts the routing of surface-derived meltwater once it has entered the basal drainage system. Our analysis indicates the probable existence of small subglacial lakes that remain undetectable by methods using surface elevation change or radar techniques. Furthermore, the analysis suggests transient behavior with rapid switching of subglacial drainage between competing catchments driven by seasonal changes in the basal water pressure. Our findings provide a cautionary note that should be considered in studies that attempt to relate and infer future response from surface temperature, melt, and runoff from point measurements and/or modeling with measurements of proglacial discharge and ice dynamics.

  15. Health risks from large-scale water pollution: Current trends and implications for improving drinking water quality in the lower Amu Darya drainage basin, Uzbekistan

    Science.gov (United States)

    Törnqvist, Rebecka; Jarsjö, Jerker

    2010-05-01

    Safe drinking water is a primary prerequisite to human health, well being and development. Yet, there are roughly one billion people around the world that lack access to safe drinking water supply. Health risk assessments are effective for evaluating the suitability of using various water sources as drinking water supply. Additionally, knowledge of pollutant transport processes on relatively large scales is needed to identify effective management strategies for improving water resources of poor quality. The lower Amu Darya drainage basin close to the Aral Sea in Uzbekistan suffers from physical water scarcity and poor water quality. This is mainly due to the intensive agriculture production in the region, which requires extensive freshwater withdrawals and use of fertilizers and pesticides. In addition, recurrent droughts in the region affect the surface water availability. On average 20% of the population in rural areas in Uzbekistan lack access to improved drinking water sources, and the situation is even more severe in the lower Amu Darya basin. In this study, we consider health risks related to water-borne contaminants by dividing measured substance concentrations with health-risk based guideline values from the World Health Organisation (WHO). In particular, we analyse novel results of water quality measurements performed in 2007 and 2008 in the Mejdurechye Reservoir (located in the downstream part of the Amu Darya river basin). We furthermore identify large-scale trends by comparing the Mejdurechye results to reported water quality results from a considerable stretch of the Amu Darya river basin, including drainage water, river water and groundwater. The results show that concentrations of cadmium and nitrite exceed the WHO health-risk based guideline values in Mejdurechye Reservoir. Furthermore, concentrations of the since long ago banned and highly toxic pesticides dichlorodiphenyltrichloroethane (DDT) and γ-hexachlorocyclohexane (γ-HCH) were detected in

  16. Isotopic composition of Lake Agassiz-Ojibway water just prior to final drainage

    Science.gov (United States)

    Hillaire-Marcel, C.; Helie, J.; McKay, J.; Lalonde, A.

    2006-12-01

    Controversies persist with respect to the impact of the final drainage of Lake Agassiz-Ojibway on the thermohaline circulation of the North Atlantic, some 8.4 ka ago. The lack of response of planktic foraminifer isotope records, off Hudson Strait (i.e., at the outlet of the drainage channel) constitutes one of the most puzzling elements in this debate. However, data on the isotopic composition of drainage waters are needed to estimate the response of the 18-O-salinity relationship in NW Atlantic surface waters. In the literature, a large array of isotopic compositions have been suggested, notably for modeling experiment purposes. Scattered information about the isotopic composition of Lake Agassiz water does exist. It includes isotopic measurements of pore waters of lacustrine sediments [1], analyses of oxygen isotopes in cellulose from algal or plant remains [2], and stable isotope compositions of concretions from varves [3]. Whereas, relatively low oxygen isotope values (apx. -25 per mil vs. VSMOW) are inferred for Lake Agassiz waters during cold pulses of the deglaciation, most data suggest much higher values during the final stages of Lake Agassiz-Ojiway, just prior to its drainage. Calcareous concretions from Lake Ojibway varves (not necessarily contemporaneous to the lacustrine stage) yielded oxygen isotope compositions of about -10 per mil (vs. VPDB), suggesting values as high as -14 per mil (vs. VSMOW) for pore waters (assuming a 0-4 degrees C temperature range). Similar high values (as high as -8 per mil vs. VSMOW [1]) were also estimated from pore water analyses of contemporaneous Lake Agassiz sediments. Here, we used a core raised from Eastern Hudson Bay, off Great Whale River, to further document isotopic compositions of the lake waters prior to their drainage into the North Atlantic. The 7.40 m long core has an apx. 1.3 m-thick lacustrine layer at its base, including the drainage sub- layer. It is overlain by Tyrrell Sea clays. Scarce valves of Candona

  17. Long term dynamics of nitrate concentrations and leaching losses in tile drainage water from cultivated clayey till at field scale

    DEFF Research Database (Denmark)

    Ernstsen, Vibeke; Olsen, Preben; Rosenbom, Annette Elisabeth;

    2014-01-01

    of regulations will require very detailed information concerning e.g. climate, soil, geological settings, and hydrological conditions. The purpose of this study was to investigate the contribution of nitrate (concentrations and losses) from drainage water at three fields (1.3-2.3 ha) located across Denmark.......g. climate, soil type and local hydraulic conditions. By the end of 2013, the Danish Commission of Nature and Agriculture issued a report which recommend that for the future protection of surface nitrogen regulations should be locally adapted, and if possible, at the level of field scale. This kind...... varying in climate, soil type and geology. Each site, is systematically subsurface tile drained in a depth of about 1.1 meters and with a horizontal spacing of 18-20 meters. On each site detailed information are recorded regarding crop development, tillage, N-fertilization (amount, type and time...

  18. Long-term development of phosphorus and nitrogen loads through the subsurface and surface water systems of drainage basins

    Science.gov (United States)

    Darracq, AméLie; Lindgren, Georg; Destouni, Georgia

    2008-09-01

    We analyze and compare simulations and controlling processes of the past 60 years and possible future short- and long-term development of phosphorus and nitrogen loading from the Swedish Norrström drainage basin to the Baltic Sea under different inland source management scenarios. Results indicate that both point and agricultural source inputs may need to be decreased by at least 40% in order to reach a long-term sustainable 30% reduction of anthropogenic coastal nitrogen loading, as required by national environmental goals. A corresponding 20% anthropogenic phosphorus load reduction goal may be reached in the short term by analogous combined 40% source input reduction, but appears impossible to maintain as a long-term achievement by inland source abatement only. In general, realistic quantification of the slow subsurface nutrient transport and accumulation-release dynamics may be essential for accurately predicting and managing nutrient loading to surface and coastal waters.

  19. Combination of drainage, water supply and environmental protection as well as rational distribution of water resource in Zhengzhou mining district

    Institute of Scientific and Technical Information of China (English)

    WU Qiang; LI Duo; DI Zhiqiang; MIAO Ying; ZHAO Suqi; GUO Qiwen

    2005-01-01

    The geological condition of coalfield is much complex in China. With increasing in mining depth and drainage amount, the contradiction of drainage, water supply and environmental protection is becoming more and more serious. However, the contradiction can be solved by the scientific management of optimizing combination of drainage, water supply and environmental protection. The Philip multiple objectives simplex method used in this article has searched for a possible solution at the first step, and then it goes on searching to find out whether there is a weight number that can lead the solution to the biggest. It can reduce the randomness and difficulty of traditional weight method which determine the weight number artificially. Some beneficial coefficients are vague and the number is larger in the model of water resource dispatch. So the vague layer analysis method can consider these vague factors fully, combining the qualitative and quantitative analysis together. Especially, this method can quantify the experiential judgement of policy decider, and it will turn to be more suitable if the structure of objective factors is complex or the necessary data are absent. In the paper, the two methods above are used to solve the plans of drainage, water supply and optimizing distribution of water resource in the Zhengzhou mining district.

  20. Pesticides detected in surface waters and fish of the Red River of the North drainage basin

    Science.gov (United States)

    Brigham, Mark E.

    1994-01-01

    The Red River of the North drainage basin (herein referred to as Red River Basin) within the United States is a study unit under the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) program. The overall goals of this program, initiated to better define the status and trends of the Nation’s water quality, are to address regional and national water-quality issues in a nationally consistent manner. Pesticide contamination of surface water and fish is one focus of this program.

  1. Integrating Phytoextraction and Biofortification: Fungal Accumulation of Selenium in Plant Materials from Phytoremediation of Agricultural Drainage

    Science.gov (United States)

    The phytomanagement of Se-polluted soil and water is one strategy that may be environmentally sustainable and cost-effective for soils and waters enriched with natural-occurring Se. Several plant species, including Indian mustard (Brassica juncea), pickleweed (Salicornia bigelovii), and other salt/S...

  2. Climate change mitigation for agriculture: water quality benefits and costs.

    Science.gov (United States)

    Wilcock, Robert; Elliott, Sandy; Hudson, Neale; Parkyn, Stephanie; Quinn, John

    2008-01-01

    impair wetland function to intercept and remove nitrate from drainage water, or even add to the overall N loading to waterways. DCD is water soluble and degrades rapidly in warm soil conditions. The recommended application rate of 10 kg DCD/ha corresponds to 6 kg N/ha and may be exceeded in warm climates. Of the N2O produced by agricultural systems, approximately 30% is emitted from indirect sources, which are waterways draining agriculture. It is important therefore to focus strategies for managing N inputs to agricultural systems generally to reduce inputs to wetlands and streams where these might be reduced to N2O. Waste management options include utilizing the CH4 resource produced in farm waste treatment ponds as a source of energy, with conversion to CO2 via combustion achieving a 21-fold reduction in GHG emissions. Both of these have co-benefits for waterways as a result of reduced loadings. A conceptual model derived showing the linkages between key land management practices for greenhouse gas mitigation and key waterway values and ecosystem attributes is derived to aid resource managers making decisions affecting waterways and atmospheric GHG emissions.

  3. Chemical and biological indicators of water quality in three agricultural watersheds of the Po valley, Italy

    Directory of Open Access Journals (Sweden)

    Linda Pieri

    2011-12-01

    Full Text Available Agriculture has both direct and indirect effects on quality of surface water and is one of the key activities causing water quality degradation. Its environmental impact can be evaluated by the determination of indicators of the quality of water bodies that collect drainage and runoff waters from agricultural watersheds. For this research, the water quality draining from three watersheds, totally or partially cultivated, all within the Po river valley (Italy, was determined, using chemical indicators (N-NO3 and N-NH4 concentration, N balance, trophic status (chlorophyll-a concentration and benthic population indexes. Together, they should provide an overview of the water status, which is supposed to be strictly related to the land use and the management. Results show that the chemical parameters are well related to land use and farming management: intensive agricultural activity leads to high N-NO3 concentration in water and N surplus and vice versa. The chlorophyll-a concentration follows the same trend, being linked to nitrogen loads and land use. Not always there is accordance between chemical and biological indicators: no direct correspondence is evident between the N-NO3 concentration in waters and benthic community. Its presence and abundance seems to be mostly correlated with the geomorphology, hydrology, riparian strips, etc. of the habitat than to the land use. Only the integration of chemical and biological parameters allows a correct understanding of the state of health of water body and benthic communities.

  4. Use of Wastewater in Agriculture: The Water Chain Approach

    NARCIS (Netherlands)

    Huibers, F.P.; Lier, van J.B.

    2005-01-01

    The agricultural use of (partially) treated or untreated wastewater is increasingly attracting the attention of policy makers, officials and researchers. Agricultural water reuse is a very complex issue comprising a wide range of different elements, such as food production, water quality and water t

  5. Workshops capacity building for agricultural water demand management; final report

    NARCIS (Netherlands)

    Vehmeijer, P.W.; Wolters, W.

    2004-01-01

    Agricultural Water Demand Management (AWDM) is at the core of the Water for Food Programme launched as a result of a pledge by the Netherlands' Minister for Agriculture at the 2nd World Water Forum in March 2000, The Hague. One of the projects that was started after the March 2000 pledge was Worksho

  6. Application of Solar Photovoltaic Water Pumping System in Hainan Agriculture

    Institute of Scientific and Technical Information of China (English)

    Xiangchun; YU; Qingqing; LIN; Xuedong; ZHOU; Zhibin; YANG

    2013-01-01

    With radical socio-economic development and strengthening of regulation of agricultural industrial structure in Hainan Province,fresh water resource becomes increasingly insufficient.Existing water-saving facilities and measures are unable to promote sustainable and stable development of local economy.This needs modern irrigation method.Solar photovoltaic water pumping system is necessary and feasible in Hainan agriculture,and will have directive significance for Hainan Province developing photovoltaic agriculture.

  7. P Fractions in Drainage Waters from the Broadbalk Continuous Wheat Experiment at Rothamsted

    Institute of Scientific and Technical Information of China (English)

    L(ú) Jia-Long; S.FORTUNE; P.BROOKES

    2004-01-01

    Total P (TP),total particulate P (PP),total dissolved P (TDP),molybdate reactive P (MRP) and dissolved organic P (DOP) were determined in waters from pipe-drains (at 65-cm depth) from the Broadbalk Experiment at Rothamsted Research,UK. Average TP and PP exceeded 1 mg L-1 in about half of the 12 plots receiving superphosphate for the 5 measurements taken between December 2000 and April 2001. Ranging between 33.8% and 87.3% of TP,PP was the largest P fraction in drainage waters,with DOP,ranging from 0.5% to 26.2% of TP,being the smallest fraction. Mean proportions of PP,MRP and DOP in TP in drainage waters were 63.4%,32.5% and 4.1%,respectively. These findings support previous findings that P losses from soil to drainage waters were much larger than previously thought,and could therefore make a significant contribution to eutrophication.

  8. Water-quality trends in the Scituate reservoir drainage area, Rhode Island, 1983-2012

    Science.gov (United States)

    Smith, Kirk P.

    2015-01-01

    The Scituate Reservoir is the primary source of drinking water for more than 60 percent of the population of Rhode Island. Water-quality and streamflow data collected at 37 surface-water monitoring stations in the Scituate Reservoir drainage area, Rhode Island, from October 2001 through September 2012, water years (WYs) 2002-12, were analyzed to determine water-quality conditions and constituent loads in the drainage area. Trends in water quality, including physical properties and concentrations of constituents, were investigated for the same period and for a longer period from October 1982 through September 2012 (WYs 1983-2012). Water samples were collected and analyzed by the Providence Water Supply Board, the agency that manages the Scituate Reservoir. Streamflow data were collected by the U.S. Geological Survey. Median values and other summary statistics for pH, color, turbidity, alkalinity, chloride, nitrite, nitrate, total coliform bacteria, Escherichia coli (E. coli), and orthophosphate were calculated for WYs 2003-12 for all 37 monitoring stations. Instantaneous loads and yields (loads per unit area) of total coliform bacteria and E. coli, chloride, nitrite, nitrate, and orthophosphate were calculated for all sampling dates during WYs 2003-12 for 23 monitoring stations with streamflow data. Values of physical properties and concentrations of constituents were compared with State and Federal water-quality standards and guidelines and were related to streamflow, land-use characteristics, varying classes of timber operations, and impervious surface areas.

  9. Application of polymeric flocculant for enhancing settling of the pond ash particles and water drainage from hydraulically stowed pond ash

    Institute of Scientific and Technical Information of China (English)

    Mishra Devi Prasad; Das Samir Kumar

    2013-01-01

    Delayed settling of the ash particles and poor drainage of water from the pond ash are the major problems faced during the hydraulic stowing of pond ash.In this study the effect of polymeric flocculant on settling of the ash particles and drainage of water during pond ash stowing are investigated.In addition,the parameters,viz.drainage and absorption of water during pond ash stowing are quantified by stowing a mine goaf model with pond ash slurries of five different concentrations added with and without flocculant.The study revealed that addition of only 5 × 10-6 of Sodium Carboxymethyl Cellulose (Na-CMC)flocculant with the pond ash slurries during stowing offers best result in terms of quicker settling of the ash particles and enhanced water drainage from the hydraulically stowed pond ash.Besides,it resulted in drainage of more than 85% of the total water used in the initial 45 min of stowing.The improvement in drainage is caused due to coagulation and flocculation of the pond ash particles because of charge neutralization and particle-particle bridging.This study may provide a basis for estimating the drainage and absorption of water during the real pond ash stowing operation in underground mines.

  10. Contaminant exposure of willets feeding in agricultural drainages of the Lower Rio Grande Valley of South Texas.

    Science.gov (United States)

    Custer, T W; Mitchell, C A

    1991-02-01

    Willets (Catoptrophorus semipalmatus) were collected in June and August 1986 at the outlets of two agricultural drainages into the Lower Laguna Madre of South Texas and at two other Texas coastal sites. Mean liver concentration of arsenic was higher in August than June. Over 20% of the livers had arsenic concentrations elevated above a suggested background level of 5.0 ppm dry weight (DW), but concentrations (maximum 15 ppm) were below those associated with acute toxicity. Selenium concentration in livers varied from 2.3 to 8.3 ppm DW for all locations and represented background levels. Mercury concentrations in livers for all locations (means = 2.0 to 3.4, maximum 17 ppm DW) were below those associated with avian mortality and similar to levels found in other estuarine/marine birds. DDE in carcasses was higher in adults (mean = 1.0 ppm wet weight) than juveniles (0.2 ppm), and higher in August (1.0 ppm) than June (0.5 ppm); however, DDE concentrations were generally at background levels. Based on brain cholinesterase activity, willets were not recently exposed to organophosphate pesticides.

  11. Hydrological problems of water resources in irrigated agriculture: A management perspective

    Science.gov (United States)

    Singh, Ajay

    2016-10-01

    The development of irrigated agriculture is necessary for fulfilling the rising food requirements of the burgeoning global population. However, the intensification of irrigated agriculture causes the twin menace of waterlogging and soil salinization in arid and semiarid regions where more than 75% of the world's population lives. These problems can be managed by either adopting preventive measures which decrease the inflow of water and salt or by employing remedial measures which increase the outflow. This paper presents an overview of various measures used for the management of waterlogging and salinity problems. The background, processes involved, and severity of waterlogging and salinity problems are provided. The role of drainage systems, conjunctive use of different water sources, use of computer-based mathematical models, and the use of remote sensing and GIS techniques in managing the problems are discussed. Conclusions are provided which could be useful for all the stakeholders.

  12. Predicting tile drainage discharge

    DEFF Research Database (Denmark)

    Iversen, Bo Vangsø; Kjærgaard, Charlotte; Petersen, Rasmus Jes;

    of the water load coming from the tile drainage system is therefore essential. This work aims at predicting tile drainage discharge using dynamic as well as a statistical predictive models. A large dataset of historical tile drain discharge data, daily discharge values as well as yearly average values were......More than 50 % of Danish agricultural areas are expected to be artificial tile drained. Transport of water and nutrients through the tile drain system to the aquatic environment is expected to be significant. For different mitigation strategies such as constructed wetlands an exact knowledge...... used in the analysis. For the dynamic modelling, a simple linear reservoir model was used where different outlets in the model represented tile drain as well as groundwater discharge outputs. This modelling was based on daily measured tile drain discharge values. The statistical predictive model...

  13. Surface water drainage system. Environmental assessment and finding of no significant impact

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This Environmental Assessment (EA) is written pursuant to the National Environmental Policy Act (NEPA). The document identifies and evaluates the action proposed to correct deficiencies in, and then to maintain, the surface water drainage system serving the Department of Energy`s Rocky Flats Environmental Technology Site (Site), located north of Golden, Colorado. Many of the activities proposed would not normally be subject to this level of NEPA documentation. However, in many cases, maintenance of the system has been deferred to the point that wetlands vegetation has become established in some ditches and culverts, creating wetlands. The proposed activities would damage or remove some of these wetlands in order to return the drainage system to the point that it would be able to fully serve its intended function - stormwater control. The Department of Energy (DOE) regulations require that activities affecting environmentally sensitive areas like wetlands be the subject of an EA. Most portions of the surface water drainage system are presently inadequate to convey the runoff from a 100-year storm event. As a result, such an event would cause flooding across much of the Site and possibly threaten the integrity of the dams at the terminal ponds. Severe flooding would not only cause damage to facilities and equipment, but could also facilitate the transport of contaminants from individual hazardous substance sites (IHSSs). Uncontrolled flow through the A- and B-series ponds could cause contaminated sediments to become suspended and carried downstream. Additionally, high velocity flood flows significantly increase erosion losses.

  14. Transport Characteristics of Soil Salinity in Saline-alkali Land under Water Storage and Drainage Conditions

    Institute of Scientific and Technical Information of China (English)

    Juan; LI; Jichang; HAN

    2015-01-01

    To test the variation and transport of soil salinity in saline- alkali land under water storage and drainage treatments,an experimental model was established in Fuping,Shaanxi Province,2009. The variation of soil salinity during 0- 160 cm soil depth under the two treatments was determined and analyzed. Results showed that the average soil water content under water storage treatment was 4. 47% higher than that under drainage treatment,which means that the water storage treatment could help to improve soil moisture to satisfy the crop’s growth needs. The profile distribution of soil soluble solids( TDS),anion( Cl-,HCO3-,SO2-4) and cation( Ca2 +,Na+,K+) content and the variation of soil p H were also measured and analyzed. PCA( Principal Component Analysis) was used to explore the relationship between the soil salinity and its ions,which showed that the water storage treatment could significantly decrease the surface salinity of soil and accelerate the desalination of topsoils,and finally,the soil quality was improved significantly,demonstrating that the water storage treatment has a remarkable effect on soil salinity management.

  15. In-situ treatment of mine drainage water using porous reactive walls

    Energy Technology Data Exchange (ETDEWEB)

    Blowes, D.W.; Ptacek, C.J.; Waybrant, K.R.; Bain, J.G. [University of Waterloo, Waterloo, ON (Canada). Waterloo Centre for Groundwater Research

    1995-01-01

    The purpose is to describe research on porous reactive walls, which are installed in the path of plumes of ground water from tailings, to determine their suitability for prevention and remediation of acid mine drainage and dissolved metals release. The method involves removal of a portion of the aquifer in the ground water plume path and its replacement by a permeable reactive mixture. Experiments under way and preliminary results are described for laboratory batch and column experiments and for a small scale field experiment using reactive walls containing organic carbon and sulphate-reducing bacteria. The results suggest that the method is effective and economically viable. 8 refs., 3 figs.

  16. Metal cycling during sediment early diagenesis in a water reservoir affected by acid mine drainage

    DEFF Research Database (Denmark)

    Torres, Ester; Ayora, Carlos; Canovas, C. R.;

    2013-01-01

    The discharge of acid mine drainage (AMD) into a reservoir may seriously affect the water quality. To investigate the metal transfer between the water and the sediment, three cores were collected from the Sancho Reservoir (Iberian Pyrite Belt, SW Spain) during different seasons: turnover event......; oxic, stratified period; anoxic and under shallow perennially oxic conditions. The cores were sliced in an oxygen-free atmosphere, after which pore water was extracted by centrifugation and analyzed. A sequential extraction was then applied to the sediments to extract the water-soluble, monosulfide......, low crystallinity Fe(III)-oxyhydroxide, crystalline Fe(III)-oxide, organic, pyrite and residual phases. The results showed that, despite the acidic chemistry of the water column (pH

  17. Colloid-borne uranium and other heavy metals in the water of a mine drainage gallery

    Energy Technology Data Exchange (ETDEWEB)

    Zaenker, H.; Richter, W.; Brendler, V.; Nitsche, H. [Forschungszentrum Rossendorf e.V. (FZR) (Germany). Inst. fuer Radiochemie

    2000-07-01

    The water of a mine drainage gallery was investigated for its contents of colloid-borne heavy metals with emphasis on uranium. About 1 mg/L of colloid particles of 100 to 300 nm were found. They consist of a matrix of Fe and Al oxyhydroxides and are formed when anoxic slightly acidic shaft waters mix with oxic near-neutral gallery water. The colloid particles bear toxic trace elements such as As, Pb, and Cu. Almost 100% of the As and Pb and about 70% of the Cu contained in the water are colloid-borne. Carbonato complexes prevent the uranyl from being adsorbed on the colloids in the unaltered gallery water. Acidification destroys these complexes: up to 50% of the uranium is attached to the colloids in the slightly acidic pH region. Further acidification converts the uranyl again to a 'non-colloidal' form. (orig.)

  18. Suspended sediment export in five intensive agricultural river catchments with contrasting land use and soil drainage characteristics

    Science.gov (United States)

    Sherriff, Sophie; Rowan, John; Melland, Alice; Jordan, Phil; Fenton, Owen; hUallacháin, Daire Ó.

    2015-04-01

    Soil erosion and sediment loss from land can have a negative impact on the chemical and ecological quality of freshwater resources. In catchments dominated by agriculture, prediction of soil erosion risk is complex due to the interaction of physical characteristics such as topography, soil erodibility, hydrological connectivity and climate. Robust measurement approaches facilitate the assessment of sediment loss magnitudes in relation to a range of agricultural settings. These approaches improve our understanding of critical sediment transfer periods and inform development of evidence-based and cost-effective management strategies. The aim of this study was to i) assess the efficacy of out-of-channel (ex-situ) suspended sediment measurement approaches, ii) to quantify the variability of sediment exported from five river catchments with varying hydrology and agricultural land uses over multiple years and iii) to investigate trends in relation to physical and land use characteristics when sediment data were compared between catchments. Sediment data were collected in five intensive agricultural river catchments in Ireland (3-11 km2) which featured contrasting land uses (predominantly intensive grassland or arable) and soil drainage classes (well, moderate and poor). High-resolution suspended sediment concentration data (SSC - using a calibrated turbidity proxy) were collected ex-situ and combined with in-stream discharge data measured at each catchment outlet to estimate suspended sediment yield (SSY - t km-2 yr-1). In two catchments additional in-stream turbidity monitoring equipment replicated ex-situ measurements including site specific calibration of individual in-stream and ex-situ turbidity probes. Depth-integrated samples were collected to assess the accuracy of both approaches. Method comparison results showed that true SSC values (from depth-integrated sampling) were predominantly within the 95% confidence interval of ex-situ predicted SSC consequently

  19. Water-quality assessment of the Smith River drainage basin, California and Oregon

    Science.gov (United States)

    Iwatsubo, Rick T.; Washabaugh, Donna S.

    1982-01-01

    A water-quality assessment of the Smith River drainage basin was made to provide a summary of the water-quality conditions including known or potential water-quality problems. Results of the study showed that the water quality of the Smith River is excellent and generally meets the water-quality objectives for the beneficial uses identified by the California Regional Water Quality Control Board, North Coast Region. Known and potential problems related to water quality include: Sedimentation resulting from both natural erosional processes and land-use activities such as timber harvest, road construction, and mining that accelerate the erosional processes; bacterial contamination of surface and ground waters from inundated septic tanks and drainfields, and grazing activities; industrial spills which have resulted in fish kills and oil residues; high concetrations of iron in ground water; log and debris jams creating fish migration barriers; and pesticide and trace-element contamination from timber-harvest and mining activities, respectively. Future studies are needed to establish: (1) a sustained long-term monitoring program to provide a broad coverage of water-quality conditions in order to define long-term water-quality trends; and (2) interpretive studies to determine the source of known and potential water-quality problems. (USGS)

  20. Effect of Agricultural Practices on Hydrology and Water Chemistry in a Small Irrigated Catchment, Yakima River Basin, Washington

    Science.gov (United States)

    McCarthy, Kathleen A.; Johnson, Henry M.

    2009-01-01

    The role of irrigation and artificial drainage in the hydrologic cycle and the transport of solutes in a small agricultural catchment in central Washington's Yakima Valley were explored using hydrologic, chemical, isotopic, age-dating, and mineralogical data from several environmental compartments, including stream water, ground water, overland flow, and streambed pore water. A conceptual understanding of catchment hydrology and solute transport was developed and an inverse end-member mixing analysis was used to further explore the effects of agriculture in this small catchment. The median concentrations of major solutes and nitrates were similar for the single field site and for the catchment outflow site, indicating that the net effects of transport processes for these constituents were similar at both scales. However, concentrations of nutrients were different at the two sites, suggesting that field-scale variations in agricultural practices as well as nearstream and instream biochemical processes are important components of agricultural chemical transformation and transport in this catchment. This work indicates that irrigation coupled with artificial drainage networks may exacerbate the ecological effects of agricultural runoff by increasing direct connectivity between fields and streams and minimizing potentially mitigating effects (denitrification and dilution, for example) of longer subsurface pathways.

  1. Impacts on water quality and biota from natural acid rock drainage in Colorado's Lake Creek watershed

    Science.gov (United States)

    Bird, D.A.; Sares, Matthew A.; Policky, Greg A.; Schmidt, Travis S.; Church, Stanley E.

    2006-01-01

    Colorado's Lake Creek watershed hosts natural acid rock drainage that significantly impacts surface water, streambed sediment, and aquatic life. The source of the ARD is a group of iron-rich springs that emerge from intensely hydrothermally altered, unexploited, low-grade porphyry copper mineralization in the Grizzly Peak Caldera. Source water chemistry includes pH of 2.5 and dissolved metal concentrations of up to 277 mg/L aluminum, 498 mg/L iron, and 10 mg/L copper. From the hydrothermally altered area downstream for 27 kilometers to Twin Lakes Reservoir, metal concentrations in streambed sediment are elevated and the watershed experiences locally severe adverse impacts to aquatic life due to the acidic, metal-laden water. The water and sediment quality of Twin Lakes Reservoir is sufficiently improved that the reservoir supports a trout fishery, and remnants of upstream ARD are negligible.

  2. Water quality and agricultural practices: the case study of southern Massaciuccoli reclaimed land (Tuscany, Italy)

    Science.gov (United States)

    Pistocchi, Chiara; Baneschi, Ilaria; Basile, Paolo; Cannavò, Silvia; Guidi, Massimo; Risaliti, Rosalba; Rossetto, Rudy; Sabbatini, Tiziana; Silvestri, Nicola; Bonari, Enrico

    2010-05-01

    sampling points were monitored monthly during 2008-2009. The main water physical and chemical parameters, including nutrients, as well as the principal soil types within the sub-catchment were analysed. First results point out: the reclaimed land presents a dense drainage network hydraulically interconnected with the shallow aquifer; surface waters present a high chemical heterogeneity: three main hydrochemical facies were identified and compared with nutrients contents and soil chemistry; artificially induced recharge to the reclaimed land aquifer occurs by means of lake water infiltration. This forces the pumping stations to remove an additional amount of water in order to allow land cultivation; the water salinity in the drainage network may increase during summer period. This could be related both to irrigation using lake water and a further contribution due to evapotranspiration processes; agricultural land use changed during the last 15 years, and shifted to less intensive farming practices. Fertilization levels dropped from 200 and 150 to 100 and 50 kg/ha N and P2O5 respectively, and the irrigated area decreased from 50% to 40% of the total utilised agricultural area; in the low land peaty area, the higher content of sulphate and phosphate in the drainage water supports the hypothesis that peat degradation could be a relevant source of nutrients. As a result, the impact of fertilizer use on the water quality is limited, while land management (e.g. water use and land reclamation) constitutes the key issue. Therefore, local stakeholders participation, farmers above all, should be supported in future management and planning actions in order to adapt socio-economic needs with the peculiar biophysical conditions.

  3. Water saving through international trade of agricultural products

    Directory of Open Access Journals (Sweden)

    A. K. Chapagain

    2006-01-01

    Full Text Available Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28 per cent of the international virtual water flows related to the trade of agricultural products and 6 per cent of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.

  4. Water saving through international trade of agricultural products

    Directory of Open Access Journals (Sweden)

    A. K. Chapagain

    2005-11-01

    Full Text Available Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28% of the international virtual water flows related to the trade of agricultural products and 6% of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.

  5. Improving agricultural production under water scarcity in Fars province, Iran

    NARCIS (Netherlands)

    Hosseini, M.R.; Haile, A.M.; McClain, M.E.

    2012-01-01

    ABSTRACT Water scarcity is one of the major limiting factor for improving agricultural production in the world, which significantly affects agricultural production and livelihood of millions of people who live in arid and semi-arid regions. This case study presents the analysis of the effectiveness

  6. Application of nanofiltration to the treatment of acid mine drainage waters

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, Edna T.R.; Barbosa, Celina C.R.; Oliveira, Elizabeth E.M.; Carvalho, Leonel M. de; Pedro Junior, Antonio [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], e-mail: ednaruas@ien.gov.br; Queiroz, Vanessa B.C. de [Industrias Nucleares do Brasil (INB), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This study investigated the separation of uranium and other elements in high concentrations from acid mine waters at Caldas Uranium Mining, in the southeast of Brazil, using nanofiltration membranes. Nanofiltrarion is widely used in water treatment due to the lower energy requirements and higher yields than reverse osmosis. Separation characteristics are dependent on both the molecular size and charge of the dissolved species in the feed solution as well as membrane properties. In this investigation the potential of nanofiltration to removed dissolved species like uranium from acid mine water drainage was measured. Two composite aromatic polyamide commercially membranes of FilmTec/Dow were tested and it found that uranium rejections of greater than 90% and also showed potential for the separation of aluminum and manganese. (author)

  7. Geochemistry of dissolved trace elements and heavy metals in the Dan River Drainage (China): distribution, sources, and water quality assessment.

    Science.gov (United States)

    Meng, Qingpeng; Zhang, Jing; Zhang, Zhaoyu; Wu, Tairan

    2016-04-01

    Dissolved trace elements and heavy metals in the Dan River drainage basin, which is the drinking water source area of South-to-North Water Transfer Project (China), affect large numbers of people and should therefore be carefully monitored. To investigate the distribution, sources, and quality of river water, this study integrating catchment geology and multivariate statistical techniques was carried out in the Dan River drainage from 99 river water samples collected in 2013. The distribution of trace metal concentrations in the Dan River drainage was similar to that in the Danjiangkou Reservoir, indicating that the reservoir was significantly affected by the Dan River drainage. Moreover, our results suggested that As, Sb, Cd, Mn, and Ni were the major pollutants. We revealed extremely high concentrations of As and Sb in the Laoguan River, Cd in the Qingyou River, Mn, Ni, and Cd in the Yinhua River, As and Sb in the Laojun River, and Sb in the Dan River. According to the water quality index, water in the Dan River drainage was suitable for drinking; however, an exposure risk assessment model suggests that As and Sb in the Laojun and Laoguan rivers could pose a high risk to humans in terms of adverse health and potential non-carcinogenic effects.

  8. Characterization of rain and roof drainage water quality in Xanthi, Greece.

    Science.gov (United States)

    Melidis, Paraschos; Akratos, Christos S; Tsihrintzis, Vassilios A; Trikilidou, Eleni

    2007-04-01

    Thirteen field campaigns were undertaken in the period from December 2,2002 until September 1,2004 to collect water samples in order to characterize the quality of rainfall and roof drainage in the city of Xanthi, a typical provincial city in Greece. In each campaign, water samples were collected from 10 representative sites in the city (in total 130 samples), representing areas of distinct land use and human activities (i.e., traffic volume, residence density and industrial activity). The water samples were analyzed according to drinking water criteria for total coliform (not detected), temperature (range: 0.9-20 degrees C), pH (range: 3.6-11.4), alkalinity (range: 0-21.5 mg CaCO(3)/L), nitrate (range: 0-2456 microg/L), ammonium (range: 0-2628 microg/L), sulfate (range: 0-0.5 mg/L), calcium (range: 259.1-3064 microeq/L), magnesium (range: 0.8-488.8 microeq/L), potassium (range: 0.0-110.6 microeq/L) and dissolved heavy metals (Fe, range: 0.01-0.18 mg/L; Mn, range: 0.01-0.09 mg/L; Zn, range: 0.01-0.54 mg/L; Cu, Cr and Ni, not detected). Pollutant concentrations were generally higher in roof drainage than in rainwater, but both were lower than drinking water standards. Dissolved heavy metal concentrations were generally higher in the areas of intensive human activities, such as roads with high traffic volume and densely populated residential areas. The satisfactory quality of rainwater, which results from this analysis, makes its use as grey water possible.

  9. Army Industrial, Landscaping, and Agricultural Water Use

    Energy Technology Data Exchange (ETDEWEB)

    McMordie Stoughton, Kate; Loper, Susan A.; Boyd, Brian K.

    2014-09-18

    The Pacific Northwest National Laboratory conducted a task for the Deputy Assistant Secretary of the Army to quantify the Army’s ILA water use and to help improve the data quality and installation water reporting in the Army Energy and Water Reporting System.

  10. Army industrial, landscaping, and agricultural water use

    Energy Technology Data Exchange (ETDEWEB)

    Stoughton, Kate McMordie [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Loper, Susan A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Boyd, Brian K. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-09-18

    The Pacific Northwest National Laboratory conducted a task for the Deputy Assistant Secretary of the Army to quantify the Army’s ILA water use and to help improve the data quality and installation water reporting in the Army Energy and Water Reporting System.

  11. Water allocation for agriculture complex terrain under changing climate

    Science.gov (United States)

    Putu Santikayasa, I.; Perdinan; Basit, Rizki Abdul

    2017-01-01

    The current water resources management in Indonesia requires the government to pay more attention on sustainable water management. Agriculture as the highest water demand in the country need better water management as the impact of future changing climate. Furthermore, the water managers as well as policy makers may require integrating the climate change assessment into water resources allocation policy and management. Agropolitan in Malang district, East java – Indonesia is an agriculture which is characterized by complex agricultural system and was assigned as a case study. The supply-demand water allocation approach was applied on allocating water to different water users under current and future climatic condition. Both climate and the changing nature of water demand have affected the development and evolution of water allocation. The result shows that the water supply is expected to decrease under future climate comparing with the current condition. Furthermore, it is required to incorporate the future climate information on design the future water policy and management to reduce the adverse impact of changing climate. This study also suggested policy actions as recommendation to better manage current climate variability as well as future uncertainty from climate change impacts on water allocation and resources management.

  12. Study of the Optimization and Adjustment of the Industrial Structure Subjected to Water Resource in the Drainage Area of the Yellow River

    Institute of Scientific and Technical Information of China (English)

    Wang Haiying; Fan Zhenjun; Hou Xiaoli; Dong Suocheng

    2004-01-01

    Since the 1990s, the Yellow River stream has been temporarily interrupted for several years,which affects the development of society, the economy and human life, limits the economic potential of the drainage areas, and especially causes great harm to regions on the lower reaches. Based on the analysis of the relationship between the development of society and economy and water scarcity, the author thinks it is necessary to optimize and adjust the industrial structure that has extravagantly consumed enormous amounts of water, and to develop ecological agriculture, industry and tourism which are balanced with the ecological environment. Finally, the author puts forward several pieces of advice and countermeasures about how to build the economic systems by which water can be used economically.

  13. Macrophyte loss drives decadal change in benthic invertebrates in peatland drainage ditches

    NARCIS (Netherlands)

    Whatley, M.H.; van Loon, E.; van Dam, H.; Vonk, J.A.; van der Geest, H.G.; Admiraal, W.

    2014-01-01

    1. Agricultural peatlands and their associated drainage systems are often highly managed and exposed to anthropogenic pressures, such as eutrophication and stable water tables, maintained via drainage during periods of high rainfall and inlet of, alkaline-rich, waters during dry periods. These press

  14. Geochemistry of acid mine drainage from a coal mining area and processes controlling metal attenuation in stream waters, southern Brazil

    Directory of Open Access Journals (Sweden)

    VERIDIANA P. CAMPANER

    2014-06-01

    Full Text Available Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil. Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8, and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.

  15. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Stillwater Wildlife Management Area, Churchill County, Nevada, 1986-87

    Science.gov (United States)

    Hoffman, R.J.; Hallock, R.J.; Rowe, T.G.; Lico, M.S.; Burge, H.L.; Thompson, S.P.

    1990-01-01

    A reconnaissance was initiated in 1986 to determine whether the quality of irrigation-drainage water in and near the Stillwater Wildlife Management Area, Nevada, has caused or has potential to cause harmful effects on human health, fish, wildlife, or other beneficial uses of water. Samples of surface and groundwater, bottom sediment, and biota were collected from sites upstream and downstream from the Fallon agricultural area in the Carson Desert, and analyzed for potentially toxic trace elements. Other analysis included radioactive substances, major dissolved constituents, and nutrients in water, and pesticide residues in bottom sediment and biota. In areas affected by irrigation drainage, the following constituents were found to commonly exceed baseline concentrations or recommended criteria for protection of aquatic life or propagation of wildlife: In water, arsenic, boron, dissolved solids, molybdenum, sodium, and un-ionized ammonia; in bottom sediments, arsenic, lithium, mercury, molybdenum, and selenium; and in biota, arsenic, boron, chromium, copper, mercury, selenium, and zinc. In some wetlands, selenium and mercury appeared to be biomagnified, and arsenic bioaccumulated. Pesticides contamination in bottom sediments and biota was insignificant. Adverse biological effects observed during this reconnaissance included gradual vegetative changes and species loss, fish die-offs, waterfowl disease epidemics, and persistent and unexplained deaths of migratory birds. (USGS)

  16. Essays on Water Resource Economics and Agricultural Extension

    OpenAIRE

    Buck, Steven Charles

    2011-01-01

    This dissertation discusses topics in the microeconomics of water resource economics and agricultural extension. In one chapter I use a hedonic model to explain the price of land transactions, and from this an implied value of irrigation water is inferred. In a separate chapter I develop measures of willingness-to-pay for water supply reliability measures, and estimate how consumers respond to changes in the price of residential water. My final chapter develops a model of a farmer's decision ...

  17. Evaluation of Tourism Water Capacity in Agricultural Heritage Sites

    Directory of Open Access Journals (Sweden)

    Mi Tian

    2015-11-01

    Full Text Available Agricultural heritage sites have been gaining popularity as tourism destinations. The arrival of large numbers of tourists, however, has created serious challenges to these vulnerable ecosystems. In particular, water resources are facing tremendous pressure. Thus, an assessment of tourism water footprint is suggested before promoting sustainable tourism. This paper uses the bottom-up approach to construct a framework on the tourism water footprint of agricultural heritage sites. The tourism water footprint consists of four components, namely accommodation water footprint, diet water footprint, transportation water footprint and sewage dilution water footprint. Yuanyang County, a representative of the Honghe Hani rice terraces, was selected as the study area. Field surveys including questionnaires, interviews and participant observation approaches were undertaken to study the tourism water footprint and water capacity of the heritage site. Based on the results, measures to improve the tourism water capacity have been put forward, which should provide references for making policies that aim to maintain a sustainable water system and promote tourism development without hampering the sustainability of the heritage system. The sewage dilution water footprint and the diet water footprint were top contributors to the tourism water footprint of the subject area, taking up 38.33% and 36.15% of the tourism water footprint, respectively, followed by the transportation water footprint (21.47%. The accommodation water footprint had the smallest proportion (4.05%. The tourism water capacity of the heritage site was 14,500 tourists per day. The water pressure index was 97%, indicating that the water footprint was still within the water capacity, but there is a danger that the water footprint may soon exceed the water capacity. As a consequence, we suggest that macro and micro approaches, including appropriate technologies, awareness enhancement and diversified

  18. Transient drainage summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This report summarizes the history of transient drainage issues on the Uranium Mill Tailings Remedial Action (UMTRA) Project. It defines and describes the UMTRA Project disposal cell transient drainage process and chronicles UMTRA Project treatment of the transient drainage phenomenon. Section 4.0 includes a conceptual cross section of each UMTRA Project disposal site and summarizes design and construction information, the ground water protection strategy, and the potential for transient drainage.

  19. Too Hot to Handle: Climate Change and Agricultural Water Use

    Directory of Open Access Journals (Sweden)

    Denise Fort

    2011-10-01

    Full Text Available The world faces enormous challenges in responding to looming crises in food and water. Responding to this challenge will require flexibility; such flexibility may be impeded by legal institutions. This paper looks at the western United States and discusses the role of irrigated agriculture in that region. Because of climate change, a growing population, declining groundwater, the need to protect ecosystems and other conflicts, the author suggests that all water uses, including long-standing agricultural water rights, need to be examined in light of these changes. Legal systems have tended to serve the status quo, but perhaps the law can help facilitate this re-examination.

  20. Phosphorus Concentration and Forms in Surface and Subsurface Drainage Water from Wetland Rice Fields in the Shaoxing Plain

    Institute of Scientific and Technical Information of China (English)

    ZHANG MINGKUI; JIANG HONG; LIU XINGMEI

    2003-01-01

    Phosphorus (P) is the limiting factor for eutrophication in most freshwater ecosystems. In China, Ptransported from intensively cultivated land has been reported as an important source of P in surface waters.In this study, we investigated P concentration and forms in surface and subsurface drainage from wetland ricefields in the Shaoxing plain, Zhejiang Province, China. From selected rice fields, surface drainage sampleswere collected at rice-growing, non-growing and fertilization periods, and subsurface drainage samples atdrought and rewetting (irrigation or precipitation after 5~10 d drought period in the surface soils) and wet(drainage under long-term wet soil condition) periods. Water samples were characterized for their totalreactive P (TRP), dissolved reactive P (DRP) and particulate reactive P (PRP). Concentrations of the TRPand DRP in the surface drainage ranged from 0.08 to 1.50 and 0.06 to 1.27 mg L-1, respectively. The TRPand DRP were dependent on field operation activities, and decreased in the order of fertilization period >rice-growing period > non-growing period. Phosphorus concentration of runoff receiving P fertilizer can bean environmental concern. The PRP concentration in the surface drainage, ranging from 0.01 to 0.57 mgL-1, accounted for 8%~78% of the TRP. Concentration of the TRP in the subsurface drainage was from0.026 to 0.090 mg L-1, consisting of 29%~90 % of the DRP and 10%~71% of the PRP. In the droughtand rewetting period, the PRP accounted for, on average, 63% of the TRP, much higher than in the wetperiod (23%), suggesting that there was transport of P in preferential flow during drainage events after ashort-term drought period in the surface soils. Therefore, P losses in particulate form may be importantin the subsurface drainage from rice fields when surface soils form cracks and favor rapid flow downwardthrough the soil profiles, suggesting the important role of water-dispersible colloid particles in mediating andco

  1. A site-specific agricultural water requirement and footprint estimator (SPARE:WATER 1.0 for irrigation agriculture

    Directory of Open Access Journals (Sweden)

    S. Multsch

    2013-01-01

    Full Text Available The water footprint accounting method addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall, blue water (irrigation from surface or groundwater and grey water (water needed to dilute pollutants. Most of current water footprint assessments focus on global to continental scale. We therefore developed the spatial decision support system SPARE:WATER that allows to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirement and water footprints are assessed on a grid-basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume in-efficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water can be defined as the water to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr−1 for 2008 with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional water footprint assessments.

  2. Dissolved organic compounds in reused process water for steam-assisted gravity drainage oil sands extraction.

    Science.gov (United States)

    Kawaguchi, Hideo; Li, Zhengguo; Masuda, Yoshihiro; Sato, Kozo; Nakagawa, Hiroyuki

    2012-11-01

    The in situ oil sands production method called steam-assisted gravity drainage (SAGD) reuses process wastewater following treatment. However, the treatment and reuse processes concentrate contaminants in the process water. To determine the concentration and dynamics of inorganic and organic contaminants, makeup water and process water from six process steps were sampled at a facility employing the SAGD process in Alberta, Canada. In the groundwater used for the makeup water, the total dissolved organic carbon (DOC) content was 4 mg/L. This significantly increased to 508 mg/L in the produced water, followed by a gradual increase with successive steps in subsequent water treatments. The concentrations and dynamics of DOC constituents in the process water determined by gas chromatography-mass spectrometry showed that in the produced water, volatile organic compounds (VOCs) such as acetone (33.1 mg/L) and 2-butanone (13.4 mg/L) predominated, and there were significant amounts of phenolic compounds (total 9.8 mg/L) and organic acids including naphthenic acids (NAs) corresponding to the formula C(n)H(2n+Z)O(X) for combinations of n = 4 to 18, Z = 0 and -2, and X = 2 to 4 (53 mg/L) with trace amounts of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene and phenanthrene. No organic contaminants, except for saturated fatty acids, were detected in the groundwater. The concentration of DOC in the recycled water was 4.4-fold higher than that in the produced water. Likewise, the total concentrations of phenols and organic acids in the recycled water were 1.7- and 4.5-fold higher than in the produced water, whereas the total concentrations of VOCs and PAHs in the recycled water were reduced by over 80%, suggesting that phenols and organic acids are selectively concentrated in the process water treatment. This comprehensive chemical analysis thus identified organic constituents that were concentrated in the process water and which interfere with subsequent

  3. Optimum combination of water drainage,water supply and eco-environment protection in coal-accumulated basin of North China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The conflict among water drainage,water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China.Efficient solutions to the conflict are to maintain long-term dynamic balance between input and output of the ground water basins,and to try to improve resourcification of the mine water.All solutions must guarantee the eco-environment quality.This paper presents a new idea of optimum combination of water drainage,water supply and eco-environment protection so as to solve the problem of unstable mine water supply,which is caused by the changeable water drainage for the whole combination system.Both the management of hydraulic techniques and constraints in economy,society,ecology,environment,industrial structural adjustments and sustainable developments have been taken into account.Since the traditional and separate management of different departments of water drainage,water supply and eco-environment protection is broken up,these departments work together to avoid repeated geological survey and specific evaluation calculations so that large amount of national investment can be saved and precise calculation for the whole system can be obtained.In the light of the conflict of water drainage,water supply and eco-environment protection in a typical sector in Jiaozuo coal mine,a case study puts forward an optimum combination scheme,in which a maximum economic benefit objective is constrained by multiple factors.The scheme provides a very important scientific base for finding a sustainable development strategy.

  4. Analysis of Water-saving Measures of Building Water Supply and Drainage Design%建筑给排水设计节水措施的分析

    Institute of Scientific and Technical Information of China (English)

    杨沁

    2014-01-01

    The water-saving design of drainage system is an important measure to save energy. This paper analyzes the present situation of water consumption of water drainage de- sign, clarifying the necessity of water saving design, and pu- ting forward some measures for water saving in design of water supply and drainage.%建筑给排水系统的节水设计是一项重要的节能措施。本文分析了建筑给排水设计的用水现状,明确了了节水设计的必要性,并提出了一些给排水设计中的节水措施。

  5. Integrating agricultural policies and water policies under water supply and climate uncertainty

    Science.gov (United States)

    MejíAs, Patricia; Varela-Ortega, Consuelo; Flichman, Guillermo

    2004-07-01

    Understanding the interactions of water and agricultural policies is crucial for achieving an efficient management of water resources. In the EU, agricultural and environmental policies are seeking to converge progressively toward mutually compatible objectives and, in this context, the recently reformed Common Agricultural Policy (CAP) and the EU Water Framework Directive constitute the policy framework in which irrigated agriculture and hence water use will evolve. In fact, one of the measures of the European Water Directive is to establish a water pricing policy for improving water use and attaining a more efficient water allocation. The aim of this research is to investigate the irrigators' responses to these changing policy developments in a self-managed irrigation district in southern Spain. A stochastic programming model has been developed to estimate farmers' response to the application of water pricing policies in different agricultural policy scenarios when water availability is subject to varying climate conditions and water storage capacity in the district's reservoir. Results show that irrigators are price-responsive, but a similar water-pricing policy in different agricultural policy options could have distinct effects on water use, farmers' income, and collected revenue by the water authority. Water availability is a critical factor, and pricing policies are less effective for reducing water consumption in drought years. Thus there is a need to integrate the objectives of water policies within the objectives of the CAP programs to avoid distortion effects and to seek synergy between these two policies.

  6. Volumetric Pricing of Agricultural Water Supplies: A Case Study

    Science.gov (United States)

    Griffin, Ronald C.; Perry, Gregory M.

    1985-07-01

    Models of water consumption by rice producers are conceptualized and then estimated using cross-sectional time series data obtained from 16 Texas canal operators for the years 1977-1982. Two alternative econometric models demonstrate that both volumetric and flat rate water charges are strongly and inversely related to agricultural water consumption. Nonprice conservation incentives accompanying flat rates are hypothesized to explain the negative correlation of flat rate charges and water consumption. Application of these results suggests that water supply organizations in the sample population converting to volumetric pricing will generally reduce water consumption.

  7. A 1-D modelling of streaming potential dependence on water content during drainage experiment in sand

    CERN Document Server

    Allègre, Vincent; Ackerer, Philippe; Jouniaux, Laurence; Sailhac, Pascal; 10.1111/j.1365-246X.2012.05371.x

    2012-01-01

    The understanding of electrokinetics for unsaturated conditions is crucial for numerous of geophysical data interpretation. Nevertheless, the behaviour of the streaming potential coefficient C as a function of the water saturation Sw is still discussed. We propose here to model both the Richards' equation for hydrodynamics and the Poisson's equation for electrical potential for unsaturated conditions using 1-D finite element method. The equations are first presented and the numerical scheme is then detailed for the Poisson's equation. Then, computed streaming potentials (SPs) are compared to recently published SP measurements carried out during drainage experiment in a sand column. We show that the apparent measurement of DV / DP for the dipoles can provide the SP coefficient in these conditions. Two tests have been performed using existing models for the SP coefficient and a third one using a new relation. The results show that existing models of unsaturated SP coefficients C(Sw) provide poor results in term...

  8. Modeling Agricultural Production Considering Water Quality and Risk

    OpenAIRE

    Apland, Jeffrey; Grainger, Corbett; Strock, Jeffrey

    2004-01-01

    Environmental goals often conflict with the economic goals of agricultural producers. The Cottonwood River in Minnesota is heavily polluted with nitrogen, phosphate and sediment from agricultural sources in the watershed. Goals of profit maximization for producers conflict with those of effluent alleviation. We incorporate water quality goals and risk into a mathematical programming framework to examine economically efficient means of pollution abatement while considering a wide range of alte...

  9. Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2013

    Science.gov (United States)

    Smith, Kirk P.

    2015-01-01

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2013 (October 1, 2012, through September 30, 2013) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB) in the cooperative study. Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2013 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the PWSB are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2013.

  10. Agricultural water demand, water quality and crop suitability in Souk-Alkhamis Al-Khums, Libya

    Science.gov (United States)

    Abunnour, Mohamed Ali; Hashim, Noorazuan Bin Md.; Jaafar, Mokhtar Bin

    2016-06-01

    Water scarcity, unequal population distribution and agricultural activities increased in the coastal plains, and the probability of seawater intrusion with ground water. According to this, the quantitative and qualitative deterioration of underground water quality has become a potential for the occurrence, in addition to the decline in agricultural production in the study area. This paper aims to discover the use of ground water for irrigation in agriculture and their suitability and compatibility for agricultural. On the other hand, the quality is determines by the cultivated crops. 16 random samples of regular groundwater are collected and analyzed chemically. Questionnaires are also distributed randomly on regular basis to farmers.

  11. Sustainable Water Management in Urban, Agricultural, and Natural Systems

    Directory of Open Access Journals (Sweden)

    Tess Russo

    2014-12-01

    Full Text Available Sustainable water management (SWM requires allocating between competing water sector demands, and balancing the financial and social resources required to support necessary water systems. The objective of this review is to assess SWM in three sectors: urban, agricultural, and natural systems. This review explores the following questions: (1 How is SWM defined and evaluated? (2 What are the challenges associated with sustainable development in each sector? (3 What are the areas of greatest potential improvement in urban and agricultural water management systems? And (4 What role does country development status have in SWM practices? The methods for evaluating water management practices range from relatively simple indicator methods to integration of multiple models, depending on the complexity of the problem and resources of the investigators. The two key findings and recommendations for meeting SWM objectives are: (1 all forms of water must be considered usable, and reusable, water resources; and (2 increasing agricultural crop water production represents the largest opportunity for reducing total water consumption, and will be required to meet global food security needs. The level of regional development should not dictate sustainability objectives, however local infrastructure conditions and financial capabilities should inform the details of water system design and evaluation.

  12. Water and Agricultural-Chemical Transport in a Midwestern, Tile-Drained Watershed: Implications for Conservation Practices

    Science.gov (United States)

    Baker, Nancy T.; Stone, Wesley W.; Frey, Jeffrey W.; Wilson, John T.

    2007-01-01

    The study of agricultural chemicals is one of five national priority topics being addressed by the National Water-Quality Assessment (NAWQA) Program in its second decade of studies, which began in 2001. Seven watersheds across the Nation were selected for the NAWQA agricultural-chemical topical study. The watersheds selected represent a range of agricultural settings - with varying crop types and agricultural practices related to tillage, irrigation, artificial drainage, and chemical use - as well as a range of landscapes with different geology, soils, topography, climate, and hydrology (Capel and others, 2004). Chemicals selected for study include nutrients (nitrogen and phosphorus) and about 50 commonly used pesticides. This study design leads to an improved understanding of many factors that can affect the movement of water and chemicals in different agricultural settings. Information from these studies will help with decision making related to chemical use, conservation, and other farming practices that are used to reduce runoff of agricultural chemicals and sediment from fields (Capel and others, 2004). This Fact Sheet highlights the results of the NAWQA agricultural chemical study in the Leary Weber Ditch Watershed in Hancock County, Indiana. This watershed was selected to represent a tile-drained, corn and soybean, humid area typical in the Midwest.

  13. Modeling the infrastructure dynamics of China -- Water, agriculture, energy, and greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, S.H.; Drennen, T.E.; Engi, D.; Harris, D.L.; Jeppesen, D.M.; Thomas, R.P.

    1998-08-01

    A comprehensive critical infrastructure analysis of the People`s Republic of China was performed to address questions about China`s ability to meet its long-term grain requirements and energy needs and to estimate greenhouse gas emissions in China likely to result from increased agricultural production and energy use. Four dynamic computer simulation models of China`s infrastructures--water, agriculture, energy and greenhouse gas--were developed to simulate, respectively, the hydrologic budgetary processes, grain production and consumption, energy demand, and greenhouse gas emissions in China through 2025. The four models were integrated into a state-of-the-art comprehensive critical infrastructure model for all of China. This integrated model simulates diverse flows of commodities, such as water and greenhouse gas, between the separate models to capture the overall dynamics of the integrated system. The model was used to generate projections of China`s available water resources and expected water use for 10 river drainage regions representing 100% of China`s mean annual runoff and comprising 37 major river basins. These projections were used to develop estimates of the water surpluses and/or deficits in the three end-use sectors--urban, industrial, and agricultural--through the year 2025. Projections of the all-China demand for the three major grains (corn, wheat, and rice), meat, and other (other grains and fruits and vegetables) were also generated. Each geographic region`s share of the all-China grain demand (allocated on the basis of each region`s share of historic grain production) was calculated in order to assess the land and water resources in each region required to meet that demand. Growth in energy use in six historically significant sectors and growth in greenhouse gas loading were projected for all of China.

  14. Paper versus plastic, water versus carbon and sustainable agriculture in the US

    Science.gov (United States)

    Bowling, L. C.

    2011-12-01

    It is increasingly recognized that food and energy security are inextricably linked to climate and climate change, resulting in the so-called climate, energy, food nexus, with the water cycle at its hub. The ability to provide sufficient and consistent energy and food for this generation, while not depleting soil, climate and water resources for future generations involves interconnected feedbacks along the paths of this wheel. In the US corn belt, for example, agricultural water management in the form of subsurface drainage lowers the regional water table to enhance crop production, while at the same time providing a conduit for the more efficient export of nitrate-nitrogen to the Gulf of Mexico and increasing rates of decomposition and subsidence in organic-rich soils. The use of control structures to regulate drainage water has the potential to reduce nitrate and carbon dioxide losses, while at the same time increasing the emissions of other greenhouse gases. Increased biofuels production offers the potential to increase domestic energy security, but at the cost of increased water demand and threats to food security. Just as budding US consumer environmentalists of the last decade struggled with the question of paper versus plastic for bagging their groceries, today's informed consumers are being asked to tacitly choose between water and carbon. The local foods movement encourages consumption of locally-produced foods as a means of reducing carbon emissions associated with food transportation, among other perceived benefits. At the same time, the concept of virtual water trade recognizes that importing the water embedded in production in the form of food can balance a local water deficit. Taking into account the virtual water of food production and carbon emissions of food transportation, the spatial arrangement of the current US crop portfolio minimizes neither water nor carbon footprints. Changes in crop distribution result in trade-offs between the per capita

  15. Reuse of drainage water for rice and wheat growth during reclamation of saline-sodic soils in Pakistan under the national drainage program (NDP)

    NARCIS (Netherlands)

    Ghafoor, A.; Boers, T.M.

    2003-01-01

    Pakistan is facing scarcity of canal water for irrigated agriculture on 16 mha land. This problem is caused, among others, by the loss of surface storage capacity and by the current prolonged dry spell lasting over the several past years. Siltation of Mangla, Tarbela and Chashma Dams have caused a l

  16. Annual down-glacier drainage of lakes and water-filled crevasses at Helheim Glacier, southeast Greenland

    Science.gov (United States)

    Everett, A.; Murray, T.; Selmes, N.; Rutt, I. C.; Luckman, A.; James, T. D.; Clason, C.; O'Leary, M.; Karunarathna, H.; Moloney, V.; Reeve, D. E.

    2016-10-01

    Supraglacial lake drainage events are common on the Greenland ice sheet. Observations on the west coast typically show an up-glacier progression of drainage as the annual melt extent spreads inland. We use a suite of remote sensing and modeling techniques in order to study a series of lakes and water-filled crevasses within 20 km of the terminus of Helheim Glacier, southeast Greenland. Automatic classification of surface water areas shows a down-glacier progression of drainage, which occurs in the majority of years between 2007 and 2014. We demonstrate that a linear elastic fracture mechanics model can reliably predict the drainage of the uppermost supraglacial lake in the system but cannot explain the pattern of filling and draining observed in areas of surface water downstream. We propose that the water levels in crevasses downstream of the supraglacial lake can be explained by a transient high-pressure wave passing through the subglacial system following the lake drainage. We support this hypothesis with analysis of the subglacial hydrological conditions, which can explain both the position and interannual variation in filling order of these crevasses. Similar behavior has been observed in association with jökulhaups, surging glaciers, and Antarctic subglacial lakes but has not previously been observed on major outlets of the Greenland ice sheet. Our results suggest that the behavior of near-terminus surface water may differ considerably from that of inland supraglacial lakes, with the potential for basal water pressures to influence the presence of surface water in crevasses close to the terminus of tidewater glaciers.

  17. Development and Validation of an Acid Mine Drainage Treatment Process for Source Water

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Ann [Battelle Memorial Institute, Columbus, OH (United States)

    2016-03-01

    Throughout Northern Appalachia and surrounding regions, hundreds of abandoned mine sites exist which frequently are the source of Acid Mine Drainage (AMD). AMD typically contains metal ions in solution with sulfate ions which have been leached from the mine. These large volumes of water, if treated to a minimum standard, may be of use in Hydraulic Fracturing (HF) or other industrial processes. This project’s focus is to evaluate an AMD water treatment technology for the purpose of providing treated AMD as an alternative source of water for HF operations. The HydroFlex™ technology allows the conversion of a previous environmental liability into an asset while reducing stress on potable water sources. The technology achieves greater than 95% water recovery, while removing sulfate to concentrations below 100 mg/L and common metals (e.g., iron and aluminum) below 1 mg/L. The project is intended to demonstrate the capability of the process to provide AMD as alternative source water for HF operations. The second budget period of the project has been completed during which Battelle conducted two individual test campaigns in the field. The first test campaign demonstrated the ability of the HydroFlex system to remove sulfate to levels below 100 mg/L, meeting the requirements indicated by industry stakeholders for use of the treated AMD as source water. The second test campaign consisted of a series of focused confirmatory tests aimed at gathering additional data to refine the economic projections for the process. Throughout the project, regular communications were held with a group of project stakeholders to ensure alignment of the project objectives with industry requirements. Finally, the process byproduct generated by the HydroFlex process was evaluated for the treatment of produced water against commercial treatment chemicals. It was found that the process byproduct achieved similar results for produced water treatment as the chemicals currently in use. Further

  18. Spatialising Agricultural Water Governance Data in Polycentric Regimes

    Directory of Open Access Journals (Sweden)

    Faith Sternlieb

    2015-06-01

    Full Text Available Water governance in the Colorado River Basin (CRB is based on a historical and complex set of policies, legal decisions, and operational guidelines called the Law of the River. Behind the complex institutional structure lies an intricate web of data on water, most of which are hydrogeological in nature. However, we posit that in order to realise sustainable water governance, management efforts must also address data on water governance. Therefore, our central research question is: what is the role of water governance data in water governance, as it pertains to agriculture? First, we lay out the digital landscape and theoretical framework that justify the development of the Colorado River Basin Water Governance Relational Database. Then, we conduct an analysis of water-sharing policies within Law of the River to identify and categorise boundaries. By operationalising a boundary typology in a geographic information system, we found that data on agricultural water governance have little to no current role in water governance due to scale discrepancies, insufficient availability and collection of data, and lack of standardisation. In addition, agricultural water governance in the CRB was found to exhibit polycentric patterns. However, unlike the flexible and adaptive nature of some polycentric systems, polycentric data sets may pose challenges to water governance due to limited information regarding organisational changes, policy developments, and special interests. This study advances the science-policy dialogue in four ways: 1 by emphasising the salience of the data on water governance, 2 by incorporating water governance data in water governance and policy decisions, 3 by demonstrating the value of integrating data types, and 4 by engaging users through geo-visualisation.

  19. Policy and Ethics In Agricultural and Ecological Water Uses.

    Science.gov (United States)

    Appelgren, Bo

    Agricultural water use accounts for about 70 percent of abstracted waters reaching 92 percent of the collective uses of all water resources when rain water is included. Agriculture is the traditional first sector and linked to a wide range of social, economic and cultural issues at local and global level that reach beyond the production of cheap food and industrial fibres. With the dominance in agricultural water uses and linkages with land use and soil conservation the sector is critical to the protection of global and local environmental values especially in sensitive dryland systems. Ethical principles related to development and nature conservation have traditionally been focused on sustainability imperatives building on precaution and preventive action or on indisputable natural systems values, but are by necessity turning more and more towards solidarity-based risk management approaches. Policy and management have in general failed to consider social dimensions with solidarity, consistency and realism for societal acceptance and practical application. As a consequence agriculture and water related land degradation is resulting in accelerated losses in land productivity and biodiversity in dryland and in humid eco- systems. Increasingly faced with the deer social consequences in the form of large man-made hydrological disasters and with pragmatic requirements driven by drastic increases in the related social cost the preferences are moving to short-term risk management approaches with civil protection objectives. Water scarcity assessment combined with crisis diagnoses and overriding statements on demographic growth, poverty and natural resources scarcity and deteriorating food security in developing countries have become common in the last decades. Such studies are increasingly questioned for purpose, ethical integrity and methodology and lack of consideration of interdependencies between society, economy and environment and of society's capacity to adapt to

  20. Antibiotic resistance and community analysis of surface and subsurface drainage waters in the South Fork Iowa River watershed

    Science.gov (United States)

    The Midwest is a center for swine production leading to application of swine manure onto lands that have artificial subsurface drainage. Previous reports have indicated elevated levels of antibiotic resistance genes (ARGs) in surface water and groundwater around confined animal feeding operations w...

  1. Performance evaluation and accuracy of passive capillary samplers (PCAPs) for estimating real-time drainage water fluxes

    Science.gov (United States)

    Successful monitoring of pollutant transport through the soil profile requires accurate, reliable, and appropriate instrumentation to measure amount of drainage water or flux within the vadose layer. We evaluated the performance and accuracy of automated passive capillary wick samplers (PCAPs) for ...

  2. Water reclamation and intersectoral water transfer between agriculture and cities--a FAO economic wastewater study.

    Science.gov (United States)

    Heinz, Ingo; Salgot, Miquel; Koo-Oshima, Sasha

    2011-01-01

    Cost-benefit studies on replacing conventional agricultural water resources with reclaimed water in favour of cities are still rare. Some results of a study under auspices of the Food and Agriculture Organisation (FAO) are presented. By means of an illustrative example at Lobregat River basin in Spain, it could be proved that reclaimed water reuse and intersectoral water transfer can result in economic and environmental benefits at the watershed level. The agricultural community faces cost savings in water pumping and fertilising, increases in yields and incomes; the municipality benefits from additional water resources released by farmers. Farmers should be encouraged to participate by implementing adequate economic incentives. Charging farmers with the full cost of water reclamation may discourage farmers from joining water exchange projects. Particularly in regions with water scarcity, investments in reclaimed water reuse and water exchange arrangements usually pay back and are profitable in the long term.

  3. Impact of acid mine drainages on surficial waters of an abandoned mining site.

    Science.gov (United States)

    García-Lorenzo, M L; Marimón, J; Navarro-Hervás, M C; Pérez-Sirvent, C; Martínez-Sánchez, M J; Molina-Ruiz, José

    2016-04-01

    Weathering of sulphide minerals produces a great variety of efflorescences of soluble sulphate salts. These minerals play an important role for environmental pollution, since they can be either a sink or a source for acidity and trace elements. This paper aims to characterise surface waters affected by mining activities in the Sierra Minera of Cartagena-La Union (SE, Spain). Water samples were analysed for trace metals (Zn, Cd, Pb, Cu, As and Fe), major ions (Na(+), K(+), Ca(2+) and Mg(2+)) and anions (F(-), Cl(-), NO3 (-), CO3 (2-), SO4 (2-)) concentrations and were submitted to an "evaporation-precipitation" experiment that consisted in identifying the salts resulting from the evaporation of the water aliquots sampled onsite. Mineralogy of the salts was studied using X-ray diffraction and compared with the results of calculations using VISUAL MINTEQ. The study area is heavily polluted as a result of historical mining and processing activities that has produced large amount of wastes characterised by a high trace elements content, acidic pH and containing minerals resulting from the supergene alteration of the raw materials. The mineralogical study of the efflorescences obtained from waters shows that magnesium, zinc, iron and aluminium sulphates predominate in the acid mine drainage precipitates. Minerals of the hexahydrite group have been quantified together with minerals of the rozenite group, alunogen and other phases such as coquimbite and copiapite. Calcium sulphates correspond exclusively to gypsum. In a semiarid climate, such as that of the study area, these minerals contribute to understand the response of the system to episodic rainfall events. MINTEQ model could be used for the analysis of waters affected by mining activities but simulation of evaporation gives more realistic results considering that MINTEQ does not consider soluble hydrated salts.

  4. Laboratory comparison of four iron-based filter materials for drainage water phosphate treatment.

    Science.gov (United States)

    Allred, Barry J; Racharaks, Ratanachat

    2014-09-01

    A laboratory investigation evaluated phosphate (PO4(3-)) drainage water treatment capabilities of four iron-based filter materials. The iron-based filter materials tested were zero-valent iron (ZVI), porous iron composite (PIC), sulfur modified iron (SMI), and iron oxide/ hydroxide (IOH). Only filter material retained on a 60-mesh sieve (> 0.25 mm) was used for evaluation. The laboratory investigation included saturated falling-head hydraulic conductivity tests, contaminant removal or desorption/dissolution batch tests, and low-to-high flow rate saturated solute transport column tests. Each of the four iron-based filter materials have sufficient water flow capacity as indicated by saturated hydraulic conductivity values that in most cases were greater than 1 x 10(-2) cm/s. For the 1, 10, and 100 ppm PO4(3-)-P contaminant removal batch tests, each of the four iron-based filter materials removed at least 95% of the PO4(3-)-P originally present. However, for the 1000 ppm PO4(3-)-P contaminant removal batch tests, IOH by far exhibited the greatest removal effectiveness (99% PO4(3-)-P removal), followed by SMI (72% PO4(3-)-P removal), then ZVI (62% PO4(3-)-P removal), and finally PIC (15% PO4(3-)-P removal). The desorption/dissolution batch test results, especially with respect to SMI and IOH, indicate that once PO4(3-) is adsorbed/precipitated onto surfaces of iron-based filter material particles, this PO4(3-) becomes fixed and is then not readily desorbed/dissolved back into solution. The results from the column tests showed that regardless of low or high flow rate (contact time ranged from a few hours to a few minutes) and PO4(3-) concentration (1 ppm or 10 ppm PO4(3-)-P), PIC, SMI, and IOH reduced PO4(3-)-P concentrations to below detection limits, while ZVI removed at least 90% of the influent PO4(3-)-P. Consequently, these laboratory results indicate that the ZVI, PIC, SMI, and IOH filter materials all exhibit promise for phosphate drainage water treatment.

  5. Changes in water quality of a small urban river triggered by deep drainage of a construction site

    Directory of Open Access Journals (Sweden)

    Bartnik Adam

    2016-12-01

    Full Text Available The paper presents the results of the monitoring of the selected physicochemical properties of the Jasień River waters (in Łódź, the third biggest city of Poland and their changes under the influence of drainage of a railway station Łódź Fabryczna construction site. Even 25 years ago the Jasień River was a receiver for the sewage from the Łódź textile factories. The drainage of the excavations and disposal of the water into the Jasień River was started on January 2014 and changed stable hydrological, physical and chemical regime of the river once again. In a consequence, average monthly flows exceeded the Jasień River flow in its upper section by six times, and at the beginning by even ten times. Chloride concentration was systematically growing over the study period. This growth and higher water pH were probably associated with increasing level of contaminants in the discharged water and its gradually decreasing uptake. Average annual water temperature increased and a decrease in its amplitude was observed. The annual conductivity and pH patterns became more uniform and the changes in pH followed a clear trend of monthly changes. Water turbidity increased by two times and during summer floods this parameter was often even a few times higher than before the drainage commenced. Chlorides improved water conductance and sodium and potassium increased basicity.

  6. Controlled Drainage As Measure to Reduce Nitrate Leaching in a Wheat Cropping System

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Hvid, Søren Kolind; Thomsen, Ingrid Kaag

    2013-01-01

    Subsurface drainage of soil to avoid water logging is a prerequisite for crop cultivation for a large proportion of the agricultural land, and approximately 50% of the Danish agricultural area is artificially drained. Multifunctional drain systems can be effective measures to reduce losses...... of nutrients, such as Controlled Drainage (CD). With CD the water table of drained fields is raised or lowered by adjusting the drain pipe outlet elevation. By restricting drain flow at times when drainage is not needed, the overall volume of water flow is reduced, more soil moisture is available...

  7. Drainage-water travel times as a key factor for surface water contamination

    OpenAIRE

    Groenendijk, P.; Eertwegh, van den, A.J.M.

    2004-01-01

    The importance of the unsaturated zone as an inextricable part of the hydrologic cycle has long been recognized. The root zone and the unsaturated sub-surface domain are chemically and biologically the most active zones. The interrelationships between soil, subsoil and surface waters make it unrealistic to treat the saturated and unsaturated zones and the discharge to surface waters separately. Point models describe vertical water flow in the saturated zone and possibly lateral flow by defini...

  8. Relation of water quality to land use in the drainage basins of six tributaries to the lower Delaware River, New Jersey, 2002-07

    Science.gov (United States)

    Baker, Ronald J.; Esralew, Rachel A.

    2010-01-01

    Concentrations and loads of water-quality constituents in six streams in the lower Delaware River Basin of New Jersey were determined in a multi-year study conducted by the U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection. Two streams receive water from relatively undeveloped basins, two from largely agricultural basins, and two from heavily urbanized basins. Each stream was monitored during eight storms and at least eight times during base flow during 2002-07. Sampling was conducted during base flow before each storm, when stage was first observed to rise, and several times during the rising limb of the hydrographs. Agricultural and urban land use has resulted in statistically significant increases in loads of nitrogen and phosphorus species relative to loads in undeveloped basins. For example, during the growing season, median storm flow concentrations of total nitrogen in the two streams in agricultural areas were 6,290 and 1,760 mg/L, compared to 988 and 823 mg/L for streams in urban areas, and 719 and 333 mg/L in undeveloped areas. Although nutrient concentrations and loads were clearly related to land useurban, agricultural, and undeveloped within the drainage basins, other basin characteristics were found to be important. Residual nutrients entrapped in lake sediments from streams that received effluent from recently removed sewage-treatment plants are hypothesized to be the cause of extremely high levels of nutrient loads to one urban stream, whereas another urban stream with similar land-use percentages (but without the legacy of sewage-treatment plants) had much lower levels of nutrients. One of the two agricultural streams studied had higher nutrient loads than the other, especially for total phosphorous and organic nitrogen. This difference appears to be related to the presence (or absence) of livestock (cattle).

  9. Water-oil drainage dynamics in oil-wet random microfluidic porous media analogs

    CERN Document Server

    Xu, Wei; Neeves, Keith; Yin, Xiaolong

    2012-01-01

    Displacement experiments carried out in microfluidic porous media analogs show that reduced surface tension leads to a more stable displacement, opposite to the process in Hele-Shaw cells where surface tension stabilizes the displacement of a more viscous fluid by a less viscous fluid. In addition, geometry of porous media is observed to play an important role. Three random microfluidic porous media analogs were made to study water-oil drainage dynamics, featuring a pattern of randomly connected channels with a uniform width, a pattern with Gaussian channel width distribution, and a pattern with large isolated pores. The microfluidic chips fabricated using Polydimenthylsiloxane with glass covers have the internal surface treated by Trichlorosilane to achieve a uniform oil-wet condition. The aqueous phase displaces the oil phase, with a viscosity ratio of about 1:40 and a density ratio of 1:0.85. Videos 1-3 show water flooding processes. It is observed that both channel size distribution (Video 2) and heteroge...

  10. Acid Water Neutralization Using Microbial Fuel Cells: An Alternative for Acid Mine Drainage Treatment

    Directory of Open Access Journals (Sweden)

    Eduardo Leiva

    2016-11-01

    Full Text Available Acid mine drainage (AMD is a complex environmental problem, which has adverse effects on surface and ground waters due to low pH, high toxic metals, and dissolved salts. New bioremediation approach based on microbial fuel cells (MFC can be a novel and sustainable alternative for AMD treatment. We studied the potential of MFC for acidic synthetic water treatment through pH neutralization in batch-mode and continuous-flow operation. We observed a marked pH increase, from ~3.7 to ~7.9 under batch conditions and to ~5.8 under continuous-flow operation. Likewise, batch reactors (non-MFC inoculated with different MFC-enriched biofilms showed a very similar pH increase, suggesting that the neutralization observed for batch operation was due to a synergistic influence of these communities. These preliminary results support the idea of using MFC technologies for AMD remediation, which could help to reduce costs associated with conventional technologies. Advances in this configuration could even be extrapolated to the recovery of heavy metals by precipitation or adsorption processes due to the acid neutralization.

  11. Gender Sensitive Planning, Monitoring and Evaluation in Agricultural Water Management

    OpenAIRE

    Gautam, Suman Rimal; Kuriakose, Anne

    2016-01-01

    Agricultural water management projects that take an inclusive, participatory gendersensitive approach at all levels of the project cycle help increase project effectiveness and improve account of livelihood concerns of women and the rural poor. Participatory planning methods; creation of genderspecific indicators; continuous monitoring; and beneficiary-led impact assessment are key features of this approach.

  12. The impact of informal irrigation practices on soil drainage condition, soil pollution and land suitability for agriculture in El Saf area of El Giza Governorate

    Directory of Open Access Journals (Sweden)

    Hanan E.M. El Azab

    2015-12-01

    Full Text Available The study area was selected in El Saf District of El Giza Governorate in Egypt, covering 21461.4 ha of Nile sediments and their outskirts of alluvial higher and lower terraces. The aim of this study was to assess the impact of informal irrigation practices on drainage deterioration, soil pollution and land suitability for agricultural use using the satellite LDCM data 2013. From the lower alluvial terraces (partly cultivated using wastewater, the drainage flows westward via descending slopes resulting in land deterioration in both the alluvial lower terraces and alluvial plain of River Nile. The drainage conditions are excessively drained soils in the alluvial upper terraces within soils of Typic Haplocalcids, sandy skeletal, but in the lower terraces it partly occurred within soils of Typic Torriorthents, sandy skeletal. Moderately well drained soils occurred in soils of Typic Torriorthents, sandy in the alluvial lower terraces, while in the alluvial plain of Nile sediments are Sodic Haplotorrerts, fine. Poorly drained soils in the lower alluvial terraces have soils of Typic Epiaquents, sandy associated with Sodic Psammaquents and Aquic Haplocalcids, coarse loamy, while in the alluvial plain of River Nile the soils are Halic Epiaquerts, fine. Very poorly drained soils (submerged areas are scattered spots in both the lower alluvial terraces and the alluvial plain. In the alluvial plain of River Nile, 1967.1 ha become not suitable for the traditional cultivated crops, while in the alluvial terraces 3251.0 ha are not suitable for the proposed cultivation of Jojoba plants. Heavy metals of Cadmium (Cd, Cobalt (Co, Lead (Pb and Nickel (Ni were added to the soil surface and sub-surface in the irrigated areas by wastewater in the lower alluvial terraces (moderately well drained soils, but Cd and Co exceeded the standards of permissible total concentrations in these soils. The same metals were added to soil sub-surface layers in the alluvial plain

  13. Climate Change and Water in Vulnerable Agriculture: Impacts - Mitigation - Adaptation

    Science.gov (United States)

    Dalezios, Nicolas; Tarquis, Ana Maria

    2016-04-01

    Agriculture highly depends on climate and is adversely affected by climate extremes caused mainly by anthropogenic climate change and increasing climate variability. Moreover, agricultural production risks and vulnerability of agriculture may become an issue in several regions around the world, since they are likely to increase the incidence of crop failure. The aim of this paper is to present the water availability and requirements in Southern Europe and specifically in the Mediterranean region, which is characterized by vulnerable agriculture. Indeed, the climatic trend in the 21st century for this region indicates temperature increase, precipitation decrease combined with an increase in the frequency of climate extremes, such as droughts, heat waves and forest fires. The three major components of climate change are examined, namely impacts, mitigation and adaptation. In particular, precipitation frequency analysis has already indicated a reduction in the precipitation amounts and a shift towards more intense rainstorms. Moreover, time series of drought indices are presented in affected areas. The importance of climate change mitigation measures is also highlighted. Finally, an adaptation scheme for agriculture from climate change in vulnerable and water scarce areas is presented.

  14. Salt and water exchange between drainage ditches and farmland under sub-irrigation condition%反渗条件下排水沟与农田水盐交换关系

    Institute of Scientific and Technical Information of China (English)

    李山; 罗纨; 贾忠华; 潘延鑫; 武迪; 张登科

    2015-01-01

    Many downstream irrigation areas are constructed with drainage ditches to prevent the potential threat of soil salinization; but the irrigation water supply to these areas can rarely be guaranteed due to their disadvantage of being located far away from the water source. It is critical for local agricultural development and environmental protection to find practical water management practice for crop production in these downstream irrigation areas. In this paper, we present an analytical study on salt and water exchange between drainage ditches and the farmlands in a downstream irrigation area, where the drainage ditches were periodically filled with a large amount of inflow (irrigation return flow and drainage water) from the upstream irrigation area. Due to its low elevation and poor drainage outlet of the study area, the drainage ditches originally built for salinity control now capacitate water storage for crop fields in the growing season; the high water level in the drainage ditches produced sub-irrigation effect on crop fields to meet some crop water requirement. To investigate the effect of reduced drainage intensity on salt and water balance in the crop fields, we employed the field hydrology model – DRAINMOD to predict the field water table fluctuations under subirrigation condition based on observed data from summer 2009 to fall 2010. Salt and water exchange between crop fields and drainage ditches was then calculated based on the predicted water table variations. The results showed that the water table depth in the study area was generally below 2 m, while the water level in the drainage ditches was generally higher; the salinity level in drainage ditches was much lower than the groundwater in the crop fields. The water table depth predicted by the DRAINMOD model agreed with the field measurements reasonably well; the average deviation was 3.29 cm, the mean absolute error was 8.6 cm, and the correlation coefficient was 0.97. With DRAINMOD simulations

  15. Comparison among monitoring strategies to assess water flow dynamic and soil hydraulic properties in agricultural soils

    Directory of Open Access Journals (Sweden)

    Javier Valdes-Abellan

    2015-03-01

    Full Text Available Abstract Irrigated agriculture is usually performed in semi-arid regions despite scarcity of water resources. Therefore, optimal irrigation management by monitoring the soil is essential, and assessing soil hydraulic properties and water flow dynamics is presented as a first measure. For this purpose, the control of volumetric water content, θ, and pressure head, h, is required. This study adopted two types of monitoring strategies in the same experimental plot to control θ and h in the vadose zone: i non-automatic and more time-consuming; ii automatic connected to a datalogger. Water flux was modelled with Hydrus-1D using the data collected from both acquisition strategies independently (3820 daily values for the automatic; less than 1000 for the non-automatic. Goodness-of-fit results reported a better adjustment in case of automatic sensors. Both model outputs adequately predicted the general trend of θ and h, but with slight differences in computed annual drainage (711 mm and 774 mm. Soil hydraulic properties were inversely estimated from both data acquisition systems. Major differences were obtained in the saturated volumetric water content, θs, and the n and α van Genuchten model shape parameters. Saturated hydraulic conductivity, Ks, shown lower variability with a coefficient of variation range from 0.13 to 0.24 for the soil layers defined. Soil hydraulic properties were better assessed through automatic data acquisition as data variability was lower and accuracy was higher.

  16. Surface Drainage, Field Ditches on Agricultural Land in the Conterminous United States, 1992: National Resource Inventory Conservation Practice 607

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the estimated percentage of the 1-km grid cell that is covered by or subject to the agricultural conservation practice (CP607), Surface...

  17. Plant species diversity in agricultural drainage ditches in Lingwu District of Ningxia,Northwest China%宁夏灵武地区农田排水沟植物物种多样性

    Institute of Scientific and Technical Information of China (English)

    吴攀; 陈永乐; 赵洋; 胡宜刚; 黄磊; 张志山

    2011-01-01

    Agricultural drainage ditch is a component of field boundaries, which has the function of water conveyance and plays an important role in ecosystem services and environmental protection. To study the biodiversity in agricultural drainage ditches is of significance for the operation of field boundaries and the biodiversity protection. In this study, an investigation was conducted on the plant community structure and plant species diversity in twenty-four agricultural ditches in Lingwu District of Ningxia Autonomous Region in August 2009 and 2010. The plants in the ditches were composed of 43 species, belonging to 36 genera and 17 families. There were 7 community types, including 6 types with Phragmites australis as the main established species and 1 type composed of submerged plants, among which, Typha angustifolia + P. Australis community had a mean fresh weight of 2326. 2 g · M-2, being significantly higher than that of the other communities. The plant community biomass in the drainage ditches was lower in 2010 than in 2009. The species diversity was higher on ditch bank than on ditch bed, with a significant difference in Shannon index and richness index, and was higher in 2009 than in 2010. Hydrological condition , water quality, and human interference could be the main factors affecting the plant distribution, community composition, and species diversity in the agricultural drainage ditches.%为探索宁夏灵武地区农田排水沟植物物种组成和多样性特征,选择24条农田排水沟,分别于2009和2010年8月对植物物种和群落结构进行调查,并对物种多样性特征进行分析.结果表明,排水沟植物由17科36属43种组成,分为以芦苇(Phragmites australis)为主要建群种的6种群落类型和1个沉水植物群落,其中水烛+芦苇(Typha angustifolia+Phragmites australis)群落生物量(平均鲜重达2326.2 g· m-2)显著高于其他群落,2010年排水沟植物群落生物量较2009年小;边坡较沟底的物种

  18. Studies on the agricultural uses of the thermal waters

    Energy Technology Data Exchange (ETDEWEB)

    Kiroglu, M.

    1973-01-01

    Some of the 300 natural hot water sources of the Anatolian peninsula were chosen for study as to possible agricultural uses, taking into consideration their capacities and location (nearness to big cities and transportation facilities). According to experiments which were conducted at experimental greenhouses erected in the Sey Valley, vegetables and other plants can be grown economically in cold weather. These greenhouses were heated in three different ways: by running thermal water in pipes, in open canals at ground level, or in pipes underground. The best results were obtained by running the thermal water in pipes inside of the greenhouse. Green parks can also be established economically in colder seasons which is important from the aesthetic standpoint as well as the tourist industry. The heat energy of thermal waters can be utilized for fermentation by food processes and brewers and in the anaerobic fermentation of organic materials for the production of biogas under favorable conditions. The content of thermal waters will be evaluated in agriculture for different purposes. Those having plant nutrients dissolved in the water will be used for plant culture, adding some elements lacking in the thermal water. Oylat thermal water is the typical one for this purpose. Those not suitable for irrigation or plant culture due to higher salt content or toxic materials unfavorable to plant growth, will be used as preventive solution for timber decay.

  19. Ultrasonic Sensing of Plant Water Needs for Agriculture

    Directory of Open Access Journals (Sweden)

    Tomas Gómez Álvarez-Arenas

    2016-07-01

    Full Text Available Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70% corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS in the frequency range 0.1–1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400–900 kHz and 200–400 kHz, respectively, These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained.

  20. Ultrasonic Sensing of Plant Water Needs for Agriculture

    Science.gov (United States)

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-01-01

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1–1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400–900 kHz and 200–400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained. PMID:27428968

  1. Agricultural Impacts on Water Resources: Recommendations for Successful Applied Research

    Science.gov (United States)

    Harmel, D.

    2014-12-01

    We, as water resource professionals, are faced with a truly monumental challenge - that is feeding the world's growing population and ensuring it has an adequate supply of clean water. As researchers and educators it is good for us to regularly remember that our research and outreach efforts are critical to people around the world, many of whom are desperate for solutions to water quality and supply problems and their impacts on food supply, land management, and ecosystem protection. In this presentation, recommendations for successful applied research on agricultural impacts on water resources will be provided. The benefits of building multidisciplinary teams will be illustrated with examples related to the development and world-wide application of the ALMANAC, SWAT, and EPIC/APEX models. The value of non-traditional partnerships will be shown by the Soil Health Partnership, a coalition of agricultural producers, chemical and seed companies, and environmental advocacy groups. The results of empowering decision-makers with useful data will be illustrated with examples related to bacteria source and transport data and the MANAGE database, which contains runoff nitrogen and phosphorus data for cultivated, pasture, and forest land uses. The benefits of focusing on sustainable solutions will be shown through examples of soil testing, fertilizers application, on-farm profit analysis, and soil health assessment. And the value of welcoming criticism will be illustrated by the development of a framework to estimate and publish uncertainty in measured discharge and water quality data. The good news for researchers is that the agricultural industry is faced with profitability concerns and the need to wisely utilize soil and water resources, and simultaneously state and federal agencies crave sound-science to improve decision making, policy, and regulation. Thus, the audience for and beneficiaries of agricultural research are ready and hungry for applied research results.

  2. Water environments: anthropogenic pressures and ecosystem changes in the Atlantic drainage basins of Brazil.

    Science.gov (United States)

    Marques, Marcia; da Costa, Monica F; Mayorga, Maria Irles de O; Pinheiro, Patrícia R

    2004-02-01

    Densely occupied drainage basins and coastal zones in developing countries that are facing economic growth are likely to suffer from moderate to severe environmental impacts regarding different issues. The catchment basins draining towards the Atlantic coast from northeastern to southern Brazil include a wide range of climatic zones and diverse ecosystems. Within its borders lies the Atlantic rain forest, significant extensions of semiarid thorn forests (caatinga), vast tree and scrub woodlands (cerrado) and most of the 6670 km of the Brazilian coast and its marine ecosystems. In recent decades, human activities have increasingly advanced over these natural resources. Littoralization has imposed a burden on coastal habitats and communities. Most of the native vegetation of the cerrado and caatinga was removed and only 7% of the original Atlantic rainforest still exists. Estuaries, bays and coastal lagoons have been irreversibly damaged. Land uses, damming and water diversion have become the major driving forces for habitat loss and aquatic ecosystem modification. Regardless of the contrast between the drought-affected northeastern Brazil and the much more prosperous and industrialized southeastern/southern Brazil, the impacts on habitat and communities were found equally severe in both cases. Attempts to halt environmental degradation have not been effective. Instead of focusing on natural resources separately, it is suggested that more integrated environmental policies that focus on aquatic ecosystems integrity are introduced.

  3. Water and Nutrient Balances in a Large Tile-Drained Agricultural Catchment: A Distributed Modeling Study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongyi; Sivapalan, Murugesu; Tian, Fuqiang; Liu, Dengfeng

    2010-11-16

    This paper presents the development and implementation of a distributed model of coupled water nutrient processes, based on the representative elementary watershed (REW) approach, to the Upper Sangamon River Basin, a large, tile-drained agricultural basin located in central Illinois, mid-west of USA. Comparison of model predictions with the observed hydrological and biogeochemical data, as well as regional estimates from literature studies, shows that the model is capable of capturing the dynamics of water, sediment and nutrient cycles reasonably well. The model is then used as a tool to gain insights into the physical and chemical processes underlying the inter- and intra-annual variability of water and nutrient balances. Model predictions show that about 80% of annual runoff is contributed by tile drainage, while the remainder comes from surface runoff (mainly saturation excess flow) and subsurface runoff. It is also found that, at the annual scale nitrogen storage in the soil is depleted during wet years, and is supplemented during dry years. This carryover of nitrogen storage from dry year to wet year is mainly caused by the lateral loading of nitrate. Phosphorus storage, on the other hand, is not affected much by wet/dry conditions simply because the leaching of it is very minor compared to the other mechanisms taking phosphorous out of the basin, such as crop harvest. The analysis then turned to the movement of nitrate with runoff. Model results suggested that nitrate loading from hillslope into the channel is preferentially carried by tile drainage. Once in the stream it is then subject to in-stream denitrification, the significant spatio-temporal variability of which can be related to the variation of the hydrologic and hydraulic conditions across the river network.

  4. Water and nutrient balances in a large tile-drained agricultural catchment: a distributed modeling study

    Directory of Open Access Journals (Sweden)

    H. Li

    2010-11-01

    Full Text Available This paper presents the development and implementation of a distributed model of coupled water nutrient processes, based on the representative elementary watershed (REW approach, to the Upper Sangamon River Basin, a large, tile-drained agricultural basin located in central Illinois, mid-west of USA. Comparison of model predictions with the observed hydrological and biogeochemical data, as well as regional estimates from literature studies, shows that the model is capable of capturing the dynamics of water, sediment and nutrient cycles reasonably well. The model is then used as a tool to gain insights into the physical and chemical processes underlying the inter- and intra-annual variability of water and nutrient balances. Model predictions show that about 80% of annual runoff is contributed by tile drainage, while the remainder comes from surface runoff (mainly saturation excess flow and subsurface runoff. It is also found that, at the annual scale nitrogen storage in the soil is depleted during wet years, and is supplemented during dry years. This carryover of nitrogen storage from dry year to wet year is mainly caused by the lateral loading of nitrate. Phosphorus storage, on the other hand, is not affected much by wet/dry conditions simply because the leaching of it is very minor compared to the other mechanisms taking phosphorous out of the basin, such as crop harvest. The analysis then turned to the movement of nitrate with runoff. Model results suggested that nitrate loading from hillslope into the channel is preferentially carried by tile drainage. Once in the stream it is then subject to in-stream denitrification, the significant spatio-temporal variability of which can be related to the variation of the hydrologic and hydraulic conditions across the river network.

  5. Drainage-water travel times as a key factor for surface water contamination

    NARCIS (Netherlands)

    Groenendijk, P.; Eertwegh, van den G.A.P.H.

    2004-01-01

    The importance of the unsaturated zone as an inextricable part of the hydrologic cycle has long been recognized. The root zone and the unsaturated sub-surface domain are chemically and biologically the most active zones. The interrelationships between soil, subsoil and surface waters make it unreali

  6. Roof drainage with pressurized-water systems. Part 2. Correct dimensioning and design; Dachentwaesserung mit Druckstroemung. Teil 2. Richtig dimensionieren und bemessen

    Energy Technology Data Exchange (ETDEWEB)

    Feurich, H.

    2006-02-15

    This two-installment article discusses roof drainage with partial vacuum. Correct planning, design, construction and installation of flat roof drainage systems are gone into. The last part of the seris discusses the hydraulic dimensioning of pressurized-water pipes and provides information on the fastening of excess-pressure and partial-vacuum pipelines. (orig.)

  7. Soil Water Balance and Irrigation Strategies in an Agricultural District of Southern Italy

    Directory of Open Access Journals (Sweden)

    Domenico Ventrella

    2010-06-01

    Full Text Available An efficient management of water resources is considered very important for Mediterranean regions of Italy in order to improve the economical and environmental sustainability of the agricultural activity. The purpose of this study is to analyze the components of soil water balance in an important district included in the regions of Basilicata and Puglia and situated in the Jonical coastal area of Southern Italy and mainly cropped with horticultural crops. The study was performed by using the spatially distributed and physically based model SIMODIS in order to individuate the best irrigation management maximizing the water use efficiency and minimizing water losses by deep percolation and soil evaporation. SIMODIS was applied taking in to account the soil spatial variability and localization of cadastral units for two crops, durum wheat and water melon. For water melon recognition in 2007 a remote sensed image, from SPOT5 satellite, at the spatial resolution of 10 m, has been used. In 2008, a multi-temporal data set was available, from SPOT5 satellite to produce a land cover map for the classes water melon and durum wheat. Water melon cultivation was simulated adopting different water supply managements: rainfed and four irrigation strategies based on (i soil water availability and (ii plant water status adopting a threshold daily stress value. For each management, several water management indicators were calculated and mapped in GIS environment. For seasonal irrigation depth, actual evapotranspiration and irrigation efficiency were also determined. The analysis allowed to individuate the areas particularly sensitive to water losses by deep percolation because of their hydraulic functions characterized by low water retention and large values of saturated hydraulic conductivity. For these areas, the irrigation based on plant water status caused very high water losses by drainage. On the contrary, the irrigation scheduled on soil base allowed to

  8. Water-conserving Potential for Agriculture in the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    To satisfy the water demand for Tarim Basin's economic development in the year 2000, about 33.4×108 m3 water needs to be further tapped. Acco rding t o the analysis of the current status of water utilization, it is pointed out th at, to achieve such economic objectives, the policy of emphasizing both water ex ploitation and water conservation with the preference given to conservation meas ures must be followed. For this end, the potentials of exploring new additional sources and strengthening water conservation have been well analyzed, along with the calculation and tech-economic-assessment of some related parameters like the canal transmission efficiency in water delivery systems and the water irrigation effi ciency in the field. The results indicate the potentials of water resource expan sion and conservation are 34×108 m3 and 57×108 m3, respectively. Bas ed on such rese arch outputs, a water conservation program has been developed for the Tarim Basi n, to provide important references and policy recommendations for the decision- makers in Xinjiang agricultural department to implement water utilization measur es.

  9. Chemical quality of surface waters, and sedimentation in the Grand River drainage basin, North and South Dakota

    Science.gov (United States)

    Hembree, Charles Herbert; Krieger, Robert A.; Jordan, Paul Robert

    1964-01-01

    An investigation of the chemical quality of surface waters and of the sedimentation in the Grand River drainage basin by the U.S. Geological Survey began in 1946. The chemical quality of the water was studied to obtain information on the nature and amounts of dissolved solids in the streams and on the suitability of the water for domestic, industrial, and irrigation uses. Sedimentation was studied to determine the quantity of sediment that is transported by the streams, the particle sizes of the sediment, and the probable specific weight of the sediment when deposited in a reservoir.

  10. Identifying factors affecting optimal management of agricultural water

    Directory of Open Access Journals (Sweden)

    Masoud Samian

    2015-01-01

    In addition to quantitative methodology such as descriptive statistics and factor analysis a qualitative methodology was employed for dynamic simulation among variables through Vensim software. In this study, the factor analysis technique was used through the Kaiser-Meyer-Olkin (KMO and Bartlett tests. From the results, four key elements were identified as factors affecting the optimal management of agricultural water in Hamedan area. These factors were institutional and legal factors, technical and knowledge factors, economic factors and social factors.

  11. Water quality, fate of metals and predictive model validation of a constructed wetland treating acid mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Mitsch, W.J.; Wise, K.M. [Ohio State University, Columbus, OH (United States). School of Natural Resources

    1998-06-01

    The paper describes how 0.39 ha constructed wetland designed with 9 cells, including two anaerobic cells that were to stimulate dissimilatory sulfate reduction, was evaluated for its effect on water quality of a low-order acid mine drainage (AMD) stream in southeastern Ohio, USA. Emphasis was on the uptake and fate of selected metals and the accuracy of a simulation model that predicted this specific wetland`s behavior before it was built.

  12. The Impact of Microbial Communities on Water Quality in an Acid Mine Drainage Impacted Watershed

    Science.gov (United States)

    McDaniel, G. R.; Rademacher, L. K.; Faul, K. L.; Brunell, M.; Burmeister, K. C.

    2011-12-01

    Acid mine drainage (AMD) from the former Leona Heights Sulfur mine in Oakland, CA, contributes toxic levels of Cu, Cd, and Zn and elevated levels of Fe2+ and SO42- to downstream reaches of Lion Creek via Leona Creek. To investigate the extent of AMD and its relationship to microbial community structure, water samples were collected from three tributaries (two natural, and one with AMD) as well as the inlet and outlet of Lake Aliso (a reservoir downstream of the confluence of the three tributaries) beginning in July 2009. Lake Aliso was dammed in the late 1800s but since the early 1990s it has been full during the dry season and drained during the wet season, thus dramatically altering the geochemical conditions on a seasonal basis. Natural waters from Lion Creek and Horseshoe Creek tributaries dilute the water from Leona Creek, thus reducing concentrations of major ions and metals below toxic levels before water discharges into Lake Aliso. Precipitation events lead to episodes of increased mobilization of Cu and Cd in Leona Creek and produce toxic levels of these metals below the confluence with Lion Creek. Tributary mixing calculations suggest that even though Leona Creek contributes the smallest volume of water of the three tributaries, it is the main source of metals entering Lake Aliso. The input of the metal-rich AMD from Leona Creek changes the redox conditions of Lion Creek. In addition, Lake Aliso has a significant impact on water quality in the Lion Creek watershed. Observations of temperature, conductivity, pH, and dissolved oxygen in lake depth profiles indicate that Lake Aliso is stratified during the dry season when the lake is full. Based on concentration differences between the inlet and outlet of the lake, Na, Mg, SO42-, Ca, Mn, Zn, Cd, Cu and Ni are removed from the water while K, As, Pb and Fe are mobilized when Lake Aliso is full. Geochemical modeling using PhreeqcI suggests the deposition of minerals containing the metals that are being removed

  13. Measuring Soil Water Potential for Water Management in Agriculture: A Review

    Directory of Open Access Journals (Sweden)

    Marco Bittelli

    2010-05-01

    Full Text Available Soil water potential is a soil property affecting a large variety of bio-physical processes, such as seed germination, plant growth and plant nutrition. Gradients in soil water potential are the driving forces of water movement, affecting water infiltration, redistribution, percolation, evaporation and plants’ transpiration. The total soil water potential is given by the sum of gravity, matric, osmotic and hydrostatic potential. The quantification of the soil water potential is necessary for a variety of applications both in agricultural and horticultural systems such as optimization of irrigation volumes and fertilization. In recent decades, a large number of experimental methods have been developed to measure the soil water potential, and a large body of knowledge is now available on theory and applications. In this review, the main techniques used to measure the soil water potential are discussed. Subsequently, some examples are provided where the measurement of soil water potential is utilized for a sustainable use of water resources in agriculture.

  14. Potential possibilities of water retention in agricultural loess catchments

    Directory of Open Access Journals (Sweden)

    Zubala Tomasz

    2016-09-01

    Full Text Available The growing water deficit and the increased demand for water, as well as economic problems and inadequate spatial planning in many regions indicate a necessity of developing more effective rules of programming and realisation of works concerning the water management in small catchments. The paper presents a sample analysis of the possibilities of increasing water retention in the agricultural loess catchments with periodic streams. The scope of the study included the determination of physical parameters of selected sub-catchments (geometry, soil cover, land use, etc. and of the sources of threat to water resources, resulting from construction and geomorphological conditions. Pre-design assumptions of dammings were developed, taking into account anti-erosion protective measures, and treatments increasing the landscape retention of water were proposed. Creating surface retention objects should be an important source of water in simplified agroecosystems, especially in regions, where productivity to a great extent depends on natural weather conditions. Proper management of the fourth-order loess basin of the Ciemięga River (area of about 150 km2, the presence of 50 lateral valleys could give a temporary reservoir retention reaching 500 thousand m3. Farmers should be encouraged to seek “own water sources” (including the accumulation of water within wasteland, using appropriate economic instruments (tax reliefs for the documented volume of retained water, e.g. in small retention reservoirs.

  15. Agricultural practices and irrigation water demand in Uttar Pradesh

    Science.gov (United States)

    O'Keeffe, J.; Buytaert, W.; Brozovic, N.; Mijic, A.

    2013-12-01

    Changes in farming practices within Uttar Pradesh, particularly advances in irrigation technology, have led to a significant drop in water tables across the region. While the acquisition of monitoring data in India is a challenge, current water use practices point towards water overdraught. This is exacerbated by government and state policies and practices, including the subsidising of electricity, seeds and fertilizer, and an agreement to buy all crops grown, promoting the over use of water resources. Taking India's predicted population growth, increases in industrialisation and climate change into account, both farmland and the water resources it depends upon will be subject to increased pressures in the future. This research is centred around irrigation demands on water resources within Uttar Pradesh, and in particular, quantifying those demands both spatially and temporally. Two aspects of this will be presented; the quantification of irrigation water applied and the characterisation of the spatial heterogeneity of water use practices. Calculating the volumes of applied irrigation water in the absence of observed data presents a major challenge and is achieved here through the use of crop models. Regional crop yields provided by statistical yearbooks are replicated by the crop models AquaCrop and InfoCrop, and by doing so the amount of irrigation water needed to produce the published yields is quantified. In addition, proxy information, for example electrical consumption for agricultural use, is used to verify the likely volumes of water abstracted from tubewells. Statistical analyses of borehole distribution and the characterisation of the spatial heterogeneity of water use practices, particularly farmer decision making, collected during a field trip are also presented. The evolution of agricultural practices, technological advancement and water use for irrigation is reconstructed through the use of multiple regression and principle component analysis

  16. Agro-Economic Design of Cropping Pattern in Hendijan Irrigation and Drainage Network with Emphasis on Water Resources

    Directory of Open Access Journals (Sweden)

    A Madeh Khaksar

    2012-02-01

    Full Text Available Recently, design of cropping pattern based on water resources is getting a high priority. This scheme is complicated, and affected by multiple factors. For investigation, designer must gather a huge data, and classify them. The method of processing and analyzing of the information is important. The method of linear programming based on Lingo software for Hendijan irrigation and drainage network was used. On the basis of water resources situation, physical limitations, ecology and economical parameters, hydromodule was determined. The model with initial data for crop pattern is performed by software to produce projected hydromodule. In this survey, sensitivity analysis on water cost was conducted. Result showed that by increasing water cost and rotation intensity, revenue for each consumption water unit was decreased. The maximum benefit for all available conditions of water on the case of non intensity would be 140 percent, for 3% of crops. The maximum benefit was 133346682 Rls per hectare based on water availability for 2006.

  17. Evaluation of the negative impacts of exposure to agricultural ditch water in fishes using streamside bioassays and field biomarkers

    Science.gov (United States)

    Land use in regions of the Midwest is dominated by crop agriculture that depends on ditch drainage systems for maximum productivity. Many drainage networks comprise headwater streams that have been degraded by alteration of habitat and by introduction of agrichemicals. Understanding the relative i...

  18. EnviroAtlas - Agricultural Water Demand by 12-Digit HUC for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — The national agricultural water demand metric provides insight into the amount of water currently used for agricultural irrigation in the contiguous United States....

  19. Integrating High Resolution Water Footprint and GIS for Promoting Water Efficiency in the Agricultural Sector: A Case Study of Plantation Crops in the Jordan Valley

    Science.gov (United States)

    Shtull-Trauring, Eliav; Aviani, Ido; Avisar, Dror; Bernstein, Nirit

    2016-01-01

    Addressing the global challenges to water security requires a better understanding of humanity's use of water, especially the agricultural sector that accounts for 70% of global withdrawals. This study combined high resolution-data with a GIS system to analyze the impact of agricultural practices, crop type, and spatial factors such as drainage basins, climate, and soil type on the Water Footprint (WF) of agricultural crops. The area of the study, the northern Lower Jordan Valley, covers 1121 ha in which three main plantation crops are grown: banana (cultivated in open-fields or net-houses), avocado and palm-dates. High-resolution data sources included GIS layers of the cultivated crops and a drainage pipe-system installed in the study area; meteorological data (2000–2013); and crop parameters (yield and irrigation recommendations). First, the study compared the WF of the different crops on the basis of yield and energy produced as well as a comparison to global values and local irrigation recommendations. The results showed that net-house banana has the lowest WF based on all different criteria. However, while palm-dates showed the highest WF for the yield criteria, it had the second lowest WF for energy produced, emphasizing the importance of using multiple parameters for low and high yield crop comparisons. Next, the regional WF of each drainage basin in the study area was calculated, demonstrating the strong influence of the Gray WF, an indication of the amount of freshwater required for pollution assimilation. Finally, the benefits of integrating GIS and WF were demonstrated by computing the effect of adopting net-house cultivation throughout the area of study with a result a reduction of 1.3 MCM irrigation water per year. Integrating the WF methodology and local high-resolution data using GIS can therefore promote and help quantify the benefits of adopting site-appropriate crops and agricultural practices that lower the WF by increasing yield, reducing

  20. Acute toxicity of drainage ditch water from a Washington State cranberry-growing region to Daphnia pulex in laboratory bioassays.

    Science.gov (United States)

    Wood, Barbara; Stark, John D

    2002-10-01

    High concentrations of organophosphorous insecticides resulting from cranberry bog applications were detected in the Grayland Drainage Ditch (GDD) system in Grayland, Washington State, during the 1994-1996 Washington State Department of Ecology Pesticide Monitoring Program. This drainage ditch system drains cranberry bogs and enters the Pacific Ocean via the North Cove and Supon Inlet. Concerns about the impact of these pesticides on human and environmental health led to this investigation of the potential impact on an indicator species, Daphnia pulex. To determine the toxic effects of multiple pesticides entering the GDD, standardized laboratory toxicity tests with D. pulex were conducted concurrently with the Washington State Department of Ecology pesticide sampling. Concentrations of three insecticides, diazinon, chlorpyrifos, and azinphosmethyl, were the highest ever detected in state waters. The GDD water was found to cause acute toxicity in 33% of the laboratory bioassays conducted. Regression analysis, however, detected a poor correlation between total insecticide detected and percentage mortality of D. pulex at the two drainage ditch sites studied, Grays Harbor County site and the Pacific County site. However, the relationship between mortality of D. pulex and detected concentrations of diazinon and chlorpyrifos were significant. Sampling schedules for chemical analysis and bioassay testing appear to be the primary reason that statistical analysis failed to correlate mortality with detected OP pesticide concentrations. Grab samples used in toxicity testing may over- or underestimate actual concentrations of contaminants present in the system being studied.

  1. Hydrological Modeling of Storm Water Drainage System due to Frequent and Intense Precipitation of Dhaka city using Storm Water Management Model (SWMM)

    Science.gov (United States)

    Hossain, S., Jr.

    2015-12-01

    Rainfall induced flooding during rainy season is a regular phenomenon in Dhaka City. Almost every year a significant part of the city suffers badly with drainage congestion. There are some highly dense areas with lower ground elevation which submerge under water even with an intense precipitation of few hours. The higher areas also suffer with the drainage problem due to inadequate maintenance of the system and encroachment or illegal filling up of the drainage canals and lakes. Most part of the city suffered from long term urban flooding during historical extreme rainfall events in September 2004, 2007 and July 2009. The situation is likely to worsen in the future due to Climate Change, which may lead to more frequent and intense precipitation. To assess the major and minor drainage systems and elements of the urban basins using the hydrodynamic modelling and, through this, identifying the flooding events and areas, taking into account the current situation and future flood or drainage scenarios. Stormwater modeling has a major role in preventing issues such as flash floods and urban water-quality problems. Stormwater models of a lowered spatial resolution would thus appear valuable if only their ability to provide realistic results could be proved. The present scenario of urban morphology of Dhaka city and existing drainage system is complex for hydrological and hydrodynamic modeling. Furthermore limitations of background data and uncertain future urban scenarios may confine the potential outputs of a model. Although several studies were carried out including modeling for drainage master planning, a detail model for whole DAP (Detaile Area Plan) of Dhaka city area is not available. The model developed under this study is covering the existing drainage system in the study area as well as natural flows in the fringe area. A good number of models are available for hydrological and hydraulic analysis of urban areas. These are MIKE 11, MOUSE, HEC-RAS, HEC HMS and EPA

  2. Managing agricultural phosphorus to minimize water quality impacts

    Directory of Open Access Journals (Sweden)

    Andrew Sharpley

    2016-02-01

    Full Text Available ABSTRACT Eutrophication of surface waters remains a major use-impairment in many countries, which, in fresh waters, is accelerated by phosphorus (P inputs from both point (e.g., municipal waste water treatment plants and nonpoint sources (e.g., urban and agricultural runoff. As point sources tend to be easier to identify and control, greater attention has recently focused on reducing nonpoint sources of P. In Brazil, agricultural productivity has increased tremendously over the last decade as a consequence, to a large extent, of increases in the use of fertilizer and improved land management. For instance, adoption of the “4R” approach (i.e., right rate, right time, right source, and right placement of P to fertilizer management can decrease P runoff. Additionally, practices that lessen the risk of runoff and erosion, such as reduced tillage and cover crops will also lessen P runoff. Despite these measures P can still be released from soil and fluvial sediment stores as a result of the prior 10 to 20 years’ management. These legacy sources can mask the water quality benefits of present-day conservation efforts. Future remedial efforts should focus on developing risk assessment indices and nonpoint source models to identify and target conservation measures and to estimate their relative effectiveness. New fertilizer formulations may more closely tailor the timing of nutrient release to plant needs and potentially decrease P runoff. Even so, it must be remembered that appropriate and timely inputs of fertilizers are needed to maintain agricultural productivity and in some cases, financial support might also be required to help offset the costs of expensive conservation measures.

  3. Water quality-based real time control of integrated urban drainage: a preliminary study from Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Lund Christensen, Margit; Thirsing, Carsten;

    2013-01-01

    Global Real Time Control (RTC) of urban drainage systems is increasingly seen as cost-effective solution for responding to increasing performance demands. This study investigated the potential for including water-quality based RTC into the global control strategy which is under implementation...... managers to improve the performance of their systems....... in the Lynetten catchment (Copenhagen, Denmark). Two different strategies were simulated, considering: (i) water quality at the wastewater treatment plant (WWTP) inlet and (ii) pollution discharge to the bathing areas. These strategies were included in the Dynamic Overflow Risk Assessment (DORA) RTC strategy...

  4. Geographical and biological analysis of the water quality of Moravica spring in the Sokobanjska Moravica drainage basin, Serbia

    Directory of Open Access Journals (Sweden)

    Stanković S.

    2012-01-01

    Full Text Available In this work we performed a geographical analysis of the Moravica spring locality in the Sokobanjska Moravica drainage basin in Serbia, as well as an analysis of the physical, chemical, and biological parameters of the water during a one-year period. The basic sanitary characteristics and physical, chemical, and biological parameters, necessary for understanding locality conditions, were studied, and the saprobity index, class of quality, O/H index, degree of saprobity, degree of trophicity, and category based on the phosphatase activity index (PAI were determined. Our results point to the need for continual monitoring of the water quality in the spring locality.

  5. Streamflow, water quality and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2014

    Science.gov (United States)

    Smith, Kirk P.

    2016-05-03

    Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2014 (October 1, 2013, through September 30, 2014) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey and the Providence Water Supply Board in the cooperative study. Streamflow was measured or estimated by the U.S. Geological Survey following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the Providence Water Supply Board and at 14 continuous-record streamgages by the U.S. Geological Survey during WY 2014 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the Providence Water Supply Board are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2014.The largest tributary to the reservoir (the Ponaganset River, which was monitored by the U.S. Geological Survey) contributed a mean streamflow of 23 cubic feet per second to the reservoir during WY 2014. For the same time period, annual mean streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.35 to about 14 cubic feet per second. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,200,000 kilograms of sodium and 2,100,000 kilograms of chloride to the Scituate Reservoir during WY 2014; sodium and chloride yields for the tributaries ranged from 7,700 to 45,000 kilograms per year per

  6. Equations of atrazine transfer from agricultural land to surface water

    Science.gov (United States)

    Cann, C.

    1995-08-01

    As atrazine, the most widely used herbicide in agriculture, makes problems for water supply, the Cemagref study its transfer from lands to surface water. On a small basin of central Brittany, soil and water contents of atrazine have been monitored from 1991 to 1994. Data show that atrazine content of the top layer of soil decreases slowly after spreading. Degradation works more than leaching for this decrease. There is always atrazine in the water of the stream at the outlet of the basin. The concentration of atrazine in water increase sharply in every flood and then decrease slowly. The maximum level of concentration in each flood is very well correlated with the ratio of maximum discharge to the base flow. It means that quick superficial flow of water is the most contaminated water. It brings most of the total flow of atrazine which can be measured in the stream. However, this flow represent only a very small part of the spread atrazine on the basin: less than 1%.

  7. Field Measurements of Water Supply and Drainage Noise in the Bathrooms of Korea’s Multi-Residential Buildings

    Directory of Open Access Journals (Sweden)

    Hong-Seok Yang

    2016-11-01

    Full Text Available In Korea, water supply and drainage noises result in one of the main noise complaints because more than 50% of people reside in multi-residential buildings. In this study, a series of field measurements were therefore carried out to examine the current noise situation. The noise levels were measured in the bathrooms of the upper and lower floors, as well as in habitable rooms. The measurement results for the bathrooms of the lower floor (N = 113 are 47.8 dBA (water closet, 42.7 dBA (basin, and 33.9 dBA (bathtub for water drainage, while values vary between 33.7 dBA and 37.0 dBA for the water supply. The results suggest that the water drainage noise needs to be controlled first. The system bathroom (42.8 dBA produced lower noise levels than the wet construction method (48.2 dBA for all of the sanitary wares. The highest noise levels in the living rooms (N = 11 and bedrooms (N = 8 of the lower floor are 34.3 dBA and 39.1 dBA, respectively. The average noise level in the rooms (N = 19 is 37.8 dBA. The overall result suggests that it is necessary to develop an acoustic guideline to satisfy the higher Class of the 2nd ISO/CD 19488, although the current noise level satisfies Class C (living room and Class D (bedroom.

  8. Virtual water and water self-sufficiency in agricultural and livestock products in Brazil.

    Science.gov (United States)

    da Silva, Vicente de Paulo R; de Oliveira, Sonaly D; Braga, Célia C; Brito, José Ivaldo B; de Sousa, Francisco de Assis S; de Holanda, Romildo M; Campos, João Hugo B C; de Souza, Enio P; Braga, Armando César R; Rodrigues Almeida, Rafaela S; de Araújo, Lincoln E

    2016-12-15

    Virtual water trade is often considered a solution for restricted water availability in many regions of the world. Brazil is the world leader in the production and export of various agricultural and livestock products. The country is either a strong net importer or a strong net exporter of these products. The objective of this study is to determine the volume of virtual water contained in agricultural and livestock products imported/exported by Brazil from 1997 to 2012, and to define the water self-sufficiency index of agricultural and livestock products in Brazil. The indexes of water scarcity (WSI), water dependency (WDI) and water self-sufficiency (WSSI) were calculated for each Brazilian state. These indexes and the virtual water balance were calculated following the methodology developed by Chapagain and Hoekstra (2008) and Hoekstra and Hung (2005). The total water exports and imports embedded in agricultural and livestock products were 5.28 × 10(10) and 1.22 × 10(10) Gm(3) yr(-1), respectively, which results in positive virtual water balance of 4.05 × 10(10) Gm(3) yr(-1). Brazil is either a strong net importer or a strong net exporter of agricultural and livestock products among the Mercosur countries. Brazil has a positive virtual water balance of 1.85 × 10(10) Gm(3) yr(-1). The indexes used in this study reveal that Brazil is self-sufficient in food production, except for a few products such as wheat and rice. Horticultural products (tomato, onion, potato, cassava and garlic) make up a unique product group with negative virtual water balance in Brazil.

  9. Stable isotope fingerprint of open-water evaporation losses and effective drainage area fluctuations in a subarctic shield watershed

    Science.gov (United States)

    Gibson, J. J.; Reid, R.

    2010-02-01

    SummaryStable isotopes of water, oxygen-18 and deuterium, were measured at biweekly to monthly intervals during the open-water season in a small, headwater lake (Pocket Lake, 4.8 ha) near Yellowknife Northwest Territories, and concurrently in a nearby string-of-lakes watershed (Baker Creek, 137 km 2) situated in the subarctic Precambrian Shield region. As measured in water samples collected over a 12 year period (1997-2008), the levels of evaporative isotopic enrichment in both lake and watershed outflow were differentially offset, and seasonal variations were found in both to be driven by variations in open-water evaporation. Systematic differences measured in the magnitude of the offset between the lake and watershed outflow are interpreted as being caused by changes in the effective drainage area contributing to runoff. Based on the observed and extremely consistent relationship between isotopic compositions of lake water and watershed outflow ( r2 = 0.849, p isotopic signals transferred downstream in a typical shield drainage system within the Mackenzie Basin.

  10. Assessment of water removal from oil sands tailings by evaporation and under-drainage, and the impact on tailings consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Junqueira, Fernando F.; Sanin, Maria Victoria [Golder Associates Ltd (Canada); Sedgwick, Andrea [Total EandP Canada (Canada); Blum, Jim [JG Blum Consulting Ltd (Canada)

    2011-07-01

    Tailings, left-over material produced during the extraction process that separates bitumen from oil sand, are challenging the oil sands industry. These tailings require large surface areas and contain mature fine tailings, made up of fine clay particles suspended in water, which do not settle within a reasonable timeframe. Consequently, maximizing water removal from oil sands tailings is required to accelerate tailings consolidation. The study described in this paper was developed to measure the water loss from oil sands tailings associated with evaporation and under-drainage, using laboratory drying column tests, and to evaluate the impact of water loss on the process of tailings consolidation and the gain in shear strength for different lift thicknesses. Water removal from the tailings through evaporation occurred at a nearly constant rate, while the rate of under-drainage progressively reduced with time. Additionally, it was found that thinner lifts would have better performance in terms of tailings consolidation and gain in shear strength than thick lifts.

  11. Calibration and validation of SWAT model for estimating water balance and nitrogen losses in a small agricultural watershed in central Poland

    Directory of Open Access Journals (Sweden)

    Smarzyńska Karolina

    2016-06-01

    Full Text Available Soil and Water Assessment Tool (SWAT ver. 2005 was applied to study water balance and nitrogen load pathways in a small agricultural watershed in the lowlands of central Poland. The natural flow regime of the Zgłowiączka River was strongly modified by human activity (deforestation and installation of a subsurface drainage system to facilitate stable crop production. SWAT was calibrated for daily and monthly discharge and monthly nitrate nitrogen load. Model efficiency was tested using manual techniques (subjective and evaluation statistics (objective. Values of Nash–Sutcliffe efficiency coefficient (NSE, coefficient of determination (R2 and percentage of bias for daily/monthly discharge simulations and monthly load indicated good or very good fit of simulated discharge and nitrate nitrogen load to the observed data set. Model precision and accuracy of fit was proved in validation. The calibrated and validated SWAT was used to assess water balance and nitrogen fluxes in the watershed. According to the results, the share of tile drainage in water yield is equal to 78%. The model analysis indicated the most significant pathway of NO3-N to surface waters in the study area, namely the tile drainage combined with lateral flow. Its share in total NO3-N load amounted to 89%. Identification of nitrogen fluxes in the watershed is crucial for decision makers in order to manage water resources and to implement the most effective measures to limit diffuse pollution from arable land to surface waters.

  12. Water Quality and Supply Issues of Irrigated Agricultural Regions - Lessons from the San Joaquin Valley of California

    Science.gov (United States)

    Suen, C. J.; Wang, D.

    2014-12-01

    The San Joaquin Valley of California covers 4 million hectares of farmland and produces $25 billion of agricultural products annually, but its average annual rainfall ranges from only 130 mm in the south to 330 mm in the north and nearly all occur in the winter. On the east side of the valley, irrigation water is mostly derived from the Sierra snow melt. On the west side, water is imported from the northern part of the state through the Sacramento Delta and a network of canals and aqueducts. Ground water is also used for both east and west sides of the valley to supplement surface water sources, especially during droughts. After years of intense irrigation, a number of water supply and water quality issues have emerged. They include groundwater overdraft, land subsidence, water contamination by agricultural drainage laden with selenium, salinity buildup in soil and water, nutrients contamination from fertilizers and livestock production, competition for water with megalopolis and environmental use and restoration. All these problems are intensified by the effect of climate change that has already taken place and other geological hazards, such as earthquakes that can bring the water supply system to a complete halt. In addition to scientific and technical considerations, solutions for these complex issues necessarily involve management planning, public policy and actions. Currently, they include furloughing marginally productive lands, groundwater recharge and banking, water reuse and recycle, salinity and nutrient management, integrated regional water management planning, and public education and outreach. New laws have been enacted to better monitor groundwater elevations, and new bond measures to improve storage, infrastructures, and reliability, have been placed on the public ballot. The presentation will discuss these complex water issues.

  13. 市政给排水设计问题及探讨%Design and Discussion of Municipal Water Supply and Drainage

    Institute of Scientific and Technical Information of China (English)

    周智勇

    2014-01-01

    市政给排水工程在城市发展过程中有着举足轻重的作用。市政给排水设计的科学性与合理性关系着城市给排水工程功能的发挥。本文深入分析了市政给排水设计中的常见问题,对采取的应对措施提出了建议。%The municipal water supply and drainage enginee-ring plays a decisive role in city development process. The sc-ience and rationality of the design of the municipal drainage is related to the function of city water supply and drainage eng-ineering. This paper deeply analyzed the common problems in the design of water supply and drainage, and put forward sug-gestions on countermeasures.

  14. Water Resources and Agricultural Water Use in the North China Plain: Current Status and Management Options

    Science.gov (United States)

    Serious water deficits with deteriorating environmental quality are threatening agricultural sustainability in the North China Plain (NCP). This paper addresses spatial and temporal availability of water resources in the NCP, and identifies the effects of soil management, irrigation and crop genetic...

  15. Can controlled drainage control agricultural nutrient emissions? Evidence from a BACI experiment combined with a dual isotope approach

    DEFF Research Database (Denmark)

    Carstensen, Mette Vodder; Poulsen, Jane Rosenstand; Ovesen, Niels Bering;

    2016-01-01

    , phosphate, and nitrous oxide was reduced by 44–45 %, 44–54 %, and 36–38 %, respectively. Stable isotope analysis of δ15N and δ18O in nitrate from drain water supported by measurements of nitrate, sulphate, and ammonium concentrations in drain water revealed that denitrification was not enhanced markedly...... nitrogen, nitrate, ammonium, nitrous oxide, total phosphorous, and phosphate when applying regulation levels of 50 and 70 cm above drain pipes were determined by using a before-after control-impact (BACI) study design. The regulation level had to be 70 cm to significantly elevate groundwater levels...

  16. Robust options to remove nitrate and phosphate from tile drainage

    NARCIS (Netherlands)

    Jansen, Stefan; Gerritse, Jan; Stuurman, Roelof; Chardon, W.J.; Talens, René

    2016-01-01

    Diffuse emission from agricultural land is a major, persistent source of nitrogen and phosphorus in surface waters. In this contribution, we present field experiments of a series of robust options to remove nitrate and phosphorus at
    field drainage level. Nitrate removal was enhanced by stimulati

  17. Drainage waters affected by pyrite oxidation in a coal mine in Galicia (NW Spain): composition and mineral stability

    Energy Technology Data Exchange (ETDEWEB)

    Monterroso, C.; Macias, F. [University of Santiago (Spain)

    1998-05-14

    The quality of the drainage water from the As Puentes lignite mine dump (Galicia, Spain) was evaluated along with the geochemical processes which determine its composition. Analysis of water form different areas of the dump was carried out at monthly intervals over a period of 2 years. In general, the water samples were characterised by the presence of elevated concentrations of Fe{sub 2}, SO{sub 4}{sup 2-} and H{sup +}, liberated from the oxidation of pyrite, and of Si, Al, Ca, and Mg derived from the accelerated mineral hydrolysis. At the same time, very high concentrations of elements, in particular Mn, Zn, Ni and Co, which were liberated from both processes, were recorded. The best water quality was found in the most recently constructed areas of the dump.

  18. Improvements in agricultural water decision support using remote sensing

    Science.gov (United States)

    Marshall, M. T.

    2012-12-01

    Population driven water scarcity, aggravated by climate-driven evaporative demand in dry regions of the world, has the potential of transforming ecological and social systems to the point of armed conflict. Water shortages will be most severe in agricultural areas, as the priority shifts to urban and industrial use. In order to design, evaluate, and monitor appropriate mitigation strategies, predictive models must be developed that quantify exposure to water shortage. Remote sensing data has been used for more than three decades now to parametrize these models, because field measurements are costly and difficult in remote regions of the world. In the past decade, decision-makers for the first time can make accurate and near real-time evaluations of field conditions with the advent of hyper- spatial and spectral and coarse resolution continuous remote sensing data. Here, we summarize two projects representing diverse applications of remote sensing to improve agricultural water decision support. The first project employs MODIS (coarse resolution continuous data) to drive an evapotranspiration index, which is combined with the Standardized Precipitation Index driven by meteorological satellite data to improve famine early warning in Africa. The combined index is evaluated using district-level crop yield data from Kenya and Malawi and national-level crop yield data from the United Nations Food and Agriculture Organization. The second project utilizes hyper- spatial (GeoEye 1, Quickbird, IKONOS, and RapidEye) and spectral (Hyperion/ALI), as well as multi-spectral (Landsat ETM+, SPOT, and MODIS) data to develop biomass estimates for key crops (alfalfa, corn, cotton, and rice) in the Central Valley of California. Crop biomass is an important indicator of crop water productivity. The remote sensing data is combined using various data fusion techniques and evaluated with field data collected in the summer of 2012. We conclude with a brief discussion on implementation of

  19. Factor Affecting the Sustainable Management of Agricultural Water

    Directory of Open Access Journals (Sweden)

    Masoud Samian

    2014-12-01

    Full Text Available The main purpose of the study was to investigate the factors affecting the sustainable management of agricultural water in Hamedan. The study population included all wheat farmers possessing irrigated farms in Hamedan city (N=1800. Of these farmers a sample of 317 people has been selected by using randomized multi-stage sampling method. The data were collected through a questionnaire's tool with help of the interview technique. Accuracy of the questions in the questionnaire was face validated by a panel of specialists. To test the reliability of the questionnaires, the questionnaires were first given to 30 farmers and Cronbach's Alpha was calculated (Alpha=0.92 then the questionnaire was finalized. Data analyzing methods such as Multiple Regression and the coefficient of variation (CV= standard deviation /mean were used in this study. To determine the level of sustainability of the farms Bossel method proposed for classification and grading the fields was used. The results showed that variables agronomic factors, policy factors and institutional factors were able to explain 34 percent of the dependent variable's changes (sustainable management of agricultural water. According to the results, 95.3 percent of the farmers were categorized into unsustainable group, 4.1 percent into semi-sustainable and only 0.6 percent in sustainable group.

  20. Integrating high resolution Water Footprint and GIS analyses for promoting water-efficiency in the agricultural sector: A case study of plantation crops in the Jordan Valley

    Directory of Open Access Journals (Sweden)

    Eliav Shtull-Trauring

    2016-12-01

    Full Text Available Addressing the global challenges to water security requires a better understanding of humanity’s use of water, especially the agricultural sector that accounts for 70% of global withdrawals. This study combined high resolution-data with a GIS system to analyze the impact of agricultural practices, crop type and spatial factors such as drainage basins, climate and soil type on the Water Footprint (WF of agricultural crops. The area of the study, the northern Lower Jordan Valley, covers 1121 ha in which three plantation crops are grown: banana (cultivated in open-fields or net-houses, avocado and palm-dates. High-resolution data sources included GIS layers of the cultivated crops and a drainage pipe-system installed in the study area; meteorological data (2000-2013; and crop parameters (yield, irrigation recommendations and profit. First, the study compared the WF of the different crops on the basis of yield and energy produced as well as a comparison to global values and local irrigation recommendations. The results showed that net-house banana has the lowest WF based on all different criteria. However, while palm-dates showed the highest WF for the yield criteria, it had the second lowest WF for energy produced and profit, emphasizing the importance of using multiple parameters for low and high yield crop comparisons. Next, the regional WF of each drainage basin in the study area was calculated, demonstrating the strong influence of the Grey WF, an indication of the amount of freshwater required for pollution assimilation. Finally, the benefits of integrating GIS and WF were demonstrated by computing the effect of adopting net-house cultivation throughout the area of study with a result a reduction of 1.3 MCM irrigation water per year. Integrating the WF methodology and local high-resolution data using GIS can therefore promote and help quantify the benefits of adopting site-appropriate crops and agroecological practices that lower the WF by

  1. Cornell University remote sensing program. [application to waste disposal site selection, study of drainage patterns, and water quality management.

    Science.gov (United States)

    Liang, T.; Mcnair, A. J.; Philipson, W. R.

    1977-01-01

    Aircraft and satellite remote sensing technology were applied in the following areas: (1) evaluation of proposed fly ash disposal sites; (2) development of priorities for drainage improvements; (3) state park analysis for rehabilitation and development; (4) watershed study for water quality planning; and (5) assistance project-landfill site selection. Results are briefly summarized. Other projects conducted include: (1) assessment of vineyard-related problems; (2) LANDSAT analysis for pheasant range management; (3) photo-historic evaluation of Revolutionary War sites; and (4) thermal analysis of building insulation. The objectives, expected benefits and actions, and status of these projects are described.

  2. Estimates of sustainable agricultural water use in northern China based on the equilibrium of groundwater

    Science.gov (United States)

    Yali, Y.; Yu, C.

    2015-12-01

    The northern plain is the important food production region in China. However, due to the lack of surface water resources, it needs overmuch exploitation of groundwater to maintain water use in agriculture, which leads to serious environmental problems. Based on the assumption that the reserves of groundwater matches the statistics and keeps on stable, the author explores the reasonable agricultural water and its spatial distribution based on the principle of sustainable utilization of water resources. According to the priorities of water resources allocation (domestic water and ecological water>industrial water>agricultural water), it is proposed to reduce agricultural water use to balance the groundwater reserves on condition that the total water supply is constant. Method: Firstly, we calculate annual average of northern groundwater reserves changes from 2004 to 2010, which is regarded as the reduction of agricultural water; Then, we estimate the food production changes using variables of typical crop water requirements and unit yields assuming that the efficiency of water use keeps the same during the entire study period; Finally, we evaluate the usage of sustainable agricultural water. The results reveal that there is a significant reduction of groundwater reserves in Haihe river basin and Xinjiang oasis regions; And the annual loss of the corn and wheat production is about 1.86 billion kg and 700 million kg respectively due to the reduction of agricultural water; What's more, in order to ensure China's food security and sustainable agricultural water use, in addition to great efforts to develop water-saving agriculture, an important adjustment in the distribution of food production is in need. This study provided a basis to the availability of agricultural water and a new perspective was put forth for an estimation of agricultural water.

  3. MiniSipper: A new in situ water sampler for high-resolution, long-duration acid mine drainage monitoring

    Science.gov (United States)

    Chapin, Thomas P.; Todd, Andrew S.

    2012-01-01

    Abandoned hard-rock mines can be a significant source of acid mine drainage (AMD) and toxic metal pollution to watersheds. In Colorado, USA, abandoned mines are often located in remote, high elevation areas that are snowbound for 7–8 months of the year. The difficulty in accessing these remote sites, especially during winter, creates challenging water sampling problems and major hydrologic and toxic metal loading events are often under sampled. Currently available automated water samplers are not well suited for sampling remote snowbound areas so the U.S. Geological Survey (USGS) has developed a new water sampler, the MiniSipper, to provide long-duration, high-resolution water sampling in remote areas. The MiniSipper is a small, portable sampler that uses gas bubbles to separate up to 250 five milliliter acidified samples in a long tubing coil. The MiniSipper operates for over 8 months unattended in water under snow/ice, reduces field work costs, and greatly increases sampling resolution, especially during inaccessible times. MiniSippers were deployed in support of an U.S. Environmental Protection Agency (EPA) project evaluating acid mine drainage inputs from the Pennsylvania Mine to the Snake River watershed in Summit County, CO, USA. MiniSipper metal results agree within 10% of EPA-USGS hand collected grab sample results. Our high-resolution results reveal very strong correlations (R2 > 0.9) between potentially toxic metals (Cd, Cu, and Zn) and specific conductivity at the Pennsylvania Mine site. The large number of samples collected by the MiniSipper over the entire water year provides a detailed look at the effects of major hydrologic events such as snowmelt runoff and rainstorms on metal loading from the Pennsylvania Mine. MiniSipper results will help guide EPA sampling strategy and remediation efforts in the Snake River watershed.

  4. GlobWat – a global water balance model to assess water use in irrigated agriculture

    Directory of Open Access Journals (Sweden)

    J. Hoogeveen

    2015-01-01

    Full Text Available GlobWat is a freely distributed, global soil water balance model that is used by FAO to assess water use in irrigated agriculture; the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high resolution datasets that are consistent at global level and calibrated against values for Internal Renewable Water Resources, as published in AQUASTAT, FAO's global information system on water and agriculture. Validation of the model is done against mean annual river basin outflows. The water balance is calculated in two steps: first a "vertical" water balance is calculated that includes evaporation from in situ rainfall ("green" water and incremental evaporation from irrigated crops. In a second stage, a "horizontal" water balance is calculated to determine discharges from river (sub-basins, taking into account incremental evaporation from irrigation, open water and wetlands ("blue" water. The paper describes methodology, input and output data, calibration and validation of the model. The model results are finally compared with other global water balance models.

  5. Food, water, and fault lines: Remote sensing opportunities for earthquake-response management of agricultural water

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Jenna, E-mail: jmmartin@ucdavis.edu; Ustin, Susan; Sandoval-Solis, Samuel; O' Geen, Anthony Toby

    2016-09-15

    Earthquakes often cause destructive and unpredictable changes that can affect local hydrology (e.g. groundwater elevation or reduction) and thus disrupt land uses and human activities. Prolific agricultural regions overlie seismically active areas, emphasizing the importance to improve our understanding and monitoring of hydrologic and agricultural systems following a seismic event. A thorough data collection is necessary for adequate post-earthquake crop management response; however, the large spatial extent of earthquake's impact makes challenging the collection of robust data sets for identifying locations and magnitude of these impacts. Observing hydrologic responses to earthquakes is not a novel concept, yet there is a lack of methods and tools for assessing earthquake's impacts upon the regional hydrology and agricultural systems. The objective of this paper is to describe how remote sensing imagery, methods and tools allow detecting crop responses and damage incurred after earthquakes because a change in the regional hydrology. Many remote sensing datasets are long archived with extensive coverage and with well-documented methods to assess plant-water relations. We thus connect remote sensing of plant water relations to its utility in agriculture using a post-earthquake agrohydrologic remote sensing (PEARS) framework; specifically in agro-hydrologic relationships associated with recent earthquake events that will lead to improved water management. - Highlights: • Remote sensing to improve agricultural disaster management • Introduce post-earthquake agrohydrologic remote sensing (PEARS) framework • Apply PEARS framework to 2010 Maule Earthquake in Central Chile.

  6. Lattice Boltzmann simulations of supercritical CO2-water drainage displacement in porous media: CO2 saturation and displacement mechanism.

    Science.gov (United States)

    Yamabe, Hirotatsu; Tsuji, Takeshi; Liang, Yunfeng; Matsuoka, Toshifumi

    2015-01-06

    CO2 geosequestration in deep aquifers requires the displacement of water (wetting phase) from the porous media by supercritical CO2 (nonwetting phase). However, the interfacial instabilities, such as viscous and capillary fingerings, develop during the drainage displacement. Moreover, the burstlike Haines jump often occurs under conditions of low capillary number. To study these interfacial instabilities, we performed lattice Boltzmann simulations of CO2-water drainage displacement in a 3D synthetic granular rock model at a fixed viscosity ratio and at various capillary numbers. The capillary numbers are varied by changing injection pressure, which induces changes in flow velocity. It was observed that the viscous fingering was dominant at high injection pressures, whereas the crossover of viscous and capillary fingerings was observed, accompanied by Haines jumps, at low injection pressures. The Haines jumps flowing forward caused a significant drop of CO2 saturation, whereas Haines jumps flowing backward caused an increase of CO2 saturation (per injection depth). We demonstrated that the pore-scale Haines jumps remarkably influenced the flow path and therefore equilibrium CO2 saturation in crossover domain, which is in turn related to the storage efficiency in the field-scale geosequestration. The results can improve our understandings of the storage efficiency by the effects of pore-scale displacement phenomena.

  7. 滨河国际大厦给排水工程设计%Design of water supply and drainage engineering of International Waterfront Mansion

    Institute of Scientific and Technical Information of China (English)

    赵志刚

    2012-01-01

    对滨河国际大厦给排水工程设计进行了详细介绍,分别阐述了该项目的给水系统、排水系统及消防给水系统的具体设置及管材选用情况,对今后同类公共建筑给排水设计具有一定指导意义。%The paper introduces the design of water supply and drainage engineering of International Waterfront Mansion in detail,and respectively describes the specific setting of water supply system,drainage system and fire protection water supply system and pipe material selection,which has certain guiding meaning for similar publish building water supply and drainage design in future.

  8. An integrated stochastic approach to the assessment of agricultural water demand and adaptation to water scarcity

    Science.gov (United States)

    Foster, T.; Butler, A. P.; McIntyre, N.

    2012-12-01

    Increasing water demands from growing populations coupled with changing water availability, for example due to climate change, are likely to increase water scarcity. Agriculture will be exposed to risk due to the importance of reliable water supplies as an input to crop production. To assess the efficiency of agricultural adaptation options requires a sound understanding of the relationship between crop growth and water application. However, most water resource planning models quantify agricultural water demand using highly simplified, temporally lumped estimated crop-water production functions (CWPFs). Such CWPFs fail to capture the biophysical complexities in crop-water relations and mischaracterise farmers ability to respond to water scarcity. Application of these models in policy analyses will be ineffective and may lead to unsustainable water policies. Crop simulation models provide an alternative means of defining the complex nature of the CWPF. Here we develop a daily water-limited crop model for this purpose. The model is based on the approach used in the FAO's AquaCrop model, balancing biophysical and computational complexities. We further develop the model by incorporating improved simulation routines to calculate the distribution of water through the soil profile. Consequently we obtain a more realistic representation of the soil water balance with concurrent improvements in the prediction of water-limited yield. We introduce a methodology to utilise this model for the generation of stochastic crop-water production functions (SCWPFs). This is achieved by running the model iteratively with both time series of climatic data and variable quantities of irrigation water, employing a realistic rule-based approach to farm irrigation scheduling. This methodology improves the representation of potential crop yields, capturing both the variable effects of water deficits on crop yield and the stochastic nature of the CWPF due to climatic variability. Application to

  9. Conceptualizations of water security in the agricultural sector: Perceptions, practices, and paradigms

    Science.gov (United States)

    Malekian, Atefe; Hayati, Dariush; Aarts, Noelle

    2017-01-01

    Conceptions of agricultural water security are conditioned by larger understandings of being and reality. It is still unclear what such understandings mean for perspectives on water security in general and on causes and solutions related to perceived water security risks and problems in agricultural sector in particular. Based on a systematic literature review, three conceptualizations of water security, related to different paradigms, are presented. Also the consequences of such conceptualizations for determining research objectives, research activities, and research outcomes on agricultural water security are discussed. The results showed that agricultural water security from a positivist paradigm referred to tangible and measurable water-related hazards and threats, such as floods and droughts, pollution, and so forth. A constructivist approach to agricultural water security, constituted by a process of interaction and negotiation, pointed at perceptions of water security of farmers and other stakeholders involved in agricultural sector. A critical approach to agricultural water security focused on the processes of securing vulnerable farmers and others from wider political, social, and natural impediments to sufficient water supplies. The conclusions of the study suggest that paradigms, underlying approaches should be expressed, clarified, and related to one another in order to find optimal and complementary ways to study water security issues in agricultural sector.

  10. Urban and peri-urban agricultural production in Beijing municipality and its impact on water quality

    NARCIS (Netherlands)

    Wolf, J.; Wijk, van M.S.; Cheung, X.; Hu, Y.; Diepen, van C.A.; Jongbloed, A.W.; Keulen, van H.; Lu, C.H.; Roeter, R.

    2003-01-01

    This paper reviews water use and water resource issues in Beijing Municipality, the main trends in the agricultural production systems in and around the city with respect to land use, input use, production and economic role, and the impacts of agricultural activities on water quality. Rapid urbaniza

  11. Quantify Effects of Integrated Land Management on Water Quality in Agricultural Landscape in South Fork Watershed, Iowa River

    Science.gov (United States)

    Ha, M.; Wu, M. M.

    2014-12-01

    Sustainable biofuel feedstock production — environmental sustainability and economic sustainability — may be achieved by using a multi-faceted approach. This study focuses on quantifying the water sustainability of an integrated landscaping strategy, by which current land use and land management, cropping system, agricultural Best Management Practices (BMPs), and economics play equal roles. The strategy was applied to the South Fork watershed, IA, including the tributaries of Tipton and Beaver Creeks, which expand to 800-km2 drainage areas. The watershed is an agricultural dominant area covered with row-crops production. On the basis of profitability, switchgrass was chosen as a replacement for row crops in low-productivity land. Areas for harvesting agricultural residue were selected on the basis of soil conservation principals. Double cropping with a cover crop was established to further reduce soil loss. Vegetation buffer strips were in place at fields and in riparian areas for water quality control, resource conservation, and eco service improvement. The Soil and Water Assessment Tool (SWAT) was applied to evaluate source reduction under various management schemes and land use changes. SWAT modeling incorporated 10-yr meteorological information, soil data, land slope classification, land use, four-year crop-rotation cycle, and management operations. Tile drain and pothole parameters were modeled to assess the fate and transport of nutrients. The influence of landscape management and cropping systems on nitrogen and phosphorus loadings, erosion process, and hydrological performance at the sub-watershed scale was analyzed and key factors identified. Results suggest strongly that incorporating agricultural BMPs and conservation strategies into integrated landscape management for certain energy crops in row-crop production regions can be economical and environmentally sustainable.

  12. 建筑给排水中的节水和水资源利用分析%The water saving and water resource utilization analysis in building water supply and drainage

    Institute of Scientific and Technical Information of China (English)

    王彦虎

    2015-01-01

    针对建筑给排水设计中水资源浪费的问题,从使用节水配水器、优质管材、采取减压措施、优化热水循环系统、强化节水意识等方面,提出了建筑给排水的节水对策,有利于水资源的高效应用。%According to the water resource problems in building water supply and drainage design,from the use of water-saving distributor,high quality steel tubes,using relief measures,optimization of hot water circulation system,strengthening the water saving awareness and other aspects,put forward water saving countermeasures for building water supply and drainage,was conducive to the efficient application of water resources.

  13. Airport Pavement Drainage

    Science.gov (United States)

    1990-06-01

    drainage layer and trench drains can be found in Cedergren (10). 4.2 COMPONENTS OF SUBSURFACE DRAINAGE SYSTEM 4.2.1 Outflow Once the water has found...According to Cedergren (10) the open graded aggregate can replace the normally used dense graded materials on an inch-for-inch basis. A main problem in...the perforated pipe to prevent fines from entering, Figure 4.24 (11). Cedergren (10) suggests that collector pipes should be 42 laid with the

  14. PATTERNS UTILIZED IN THE SIMULATION OF UNDERGROUND WATER FLOW AND THE TRANSPORTATION OF POLLUTANTS IN THE BAHLUI DRAINAGE BASIN

    Directory of Open Access Journals (Sweden)

    Ionut Minea

    2012-03-01

    Full Text Available ABSTRACT. – Patterns utilized in the simulation of underground water flow and the transportation of pollutants in the Bahlui drainage basin. In the actual context of accelerate economic development, the excessive exploatation of water resources from the underground and the contamination of these with different water pollutants has become a major problem which has enetered the attention of many researchers. For the evaluation of an underground water flow and pollutants transport sistem we have chosen the package of programs MODFLOW which includes a whole series of applications,such as MOC3D, MT3D, MT3DMS, PEST, UCODE, PMPATH, which allow simulations and multiple recalibrations of the capacity of recharging of the aquifers, the flowing of the water towards wells and drillings the transport of a pollutant agent in the underground or the evaluation of the exchange of water between the hidrographic network and aquifers. The sistem targets both the evaluation of the modelation of the underground flowing and the simulation of a punctual polluation of the canvas of groundwater scenery, in the meadow of the river Bahlui, west from Letcani village.

  15. Spatial and temporal water quality dynamics during baseflow in an agricultural headwater catchment

    Science.gov (United States)

    Schuetz, Tobias; Weiler, Markus; Saroos, Manuel

    2013-04-01

    Understanding the interaction of time variant source areas and biogeochemical in-stream processes and the determination of resulting spatial and temporal signatures of stream water composition will improve the prediction and management of water quality at the catchment scale. During baseflow periods runoff source areas can change over time depending e.g. on storage depletion rates, actual wetness, groundwater level or local evapotranspiration rates. Due to the resulting space/time variant water fluxes, these effects are also expressed in the physico-chemical composition of surface waters. Unfortunately the resulting signature is often overlain by biogeochemical in-stream processes, which make it difficult to identify physico-chemical signatures of specific runoff source areas. We studied these interactions in a 1.7 km² agricultural headwater catchment. A dense artificial drainage network and a predominantly impervious streambed allowed for detecting distinct locations of groundwater inflow and determining ongoing biogeochemical in-stream processes. The analysis of sub-catchment storage depletion and resulting time variant quantitative and qualitative impacts on stream water composition was based on observations made during 11 catchment wide synoptic sampling campaigns during the summer baseflow period. We measured stream discharges with salt dilution gauging as well as water temperatures (T) and electrical conductivity (EC) upstream, downstream and inside all active drain pipes. During two campaigns we took additional water samples for major ion analysis at all sampling points. Discharges, T and EC stream-network data sets were used to spatially determine groundwater contributions using mixing equations for 2 and 3 components, respectively. Thereby we derived local baseflow recessions in relation to the catchment wide stream discharge. Using a water balance approach we determined active runoff source areas for each drain pipe and identified the dominant land use

  16. Drainage filter technologies to mitigate site-specific phosphorus losses

    DEFF Research Database (Denmark)

    Kjærgaard, Charlotte; Heckrath, Goswin Johann; Iversen, Bo Vangsø;

    2014-01-01

    high risks areas of P loss and applying site-specific measures therefore seems a more cost-efficient approach. The Danish Commission for Nature and Agriculture has now called for a shift of paradigm towards targeted mitigation and development of new, cost-efficient technologies to mitigate site......-specific nutrient losses in drainage. The “SUPREME-TECH” project (2010-2015), funded by the Danish Strategic Research Council, aims at providing the scientific basis for developing cost-effective drainage filter technologies to retain P in agricultural drainage waters. The project studies different approaches......-scale surface-flow constructed wetland. In the former, various natural and industrial P filter substrates have been tested for their ability to reduce inlet P concentrations to below environmental threshold values (

  17. 建筑给水排水节能途径的探讨%Discuss the Energy Saving Approach of Building Water Supply and Drainage

    Institute of Scientific and Technical Information of China (English)

    潘永强

    2014-01-01

    文章针对建筑的给水与排水,分析了建筑给水排水节能途径,同时针对建筑给水排水节能的重要性进行了探究。旨在全面促进现代化建筑事业的发展,促进可持续社会和资源节约型社会的建设。%This article aims at the building water supply and drainage, analyzes the energy saving approach of building w-ater supply and drainage, and explores the importance of bu-ilding water supply and drainage energy saving at the same ti-me so as to comprehensively promote the development of mo-dern buildings and promote sustainable social and the const-ruction of a conservation-minded society.

  18. 建筑给排水设计中的节能减排%Energy-saving and emission-reducing in architectural water supply and drainage design

    Institute of Scientific and Technical Information of China (English)

    支山

    2015-01-01

    以节约能源和保护环境为核心,阐述了建筑工程给排水设计中节能减排的意义,并针对建筑工程给排水节能减排的问题,从给水设计、排水设计等几个方面进行了讨论,以大力推广节能减排措施。%To save energy and protect the environment as the core,the thesis discusses energy-saving and emission-reducing meaning in architec-tural engineering water supply and drainage design. In light of energy-saving and emission-reducing problems of architectural engineering water supply and drainage,it discusses water supply and drainage design,with a view to promote energy-saving and emission-reducing measures.

  19. Food, water, and fault lines: Remote sensing opportunities for earthquake-response management of agricultural water.

    Science.gov (United States)

    Rodriguez, Jenna; Ustin, Susan; Sandoval-Solis, Samuel; O'Geen, Anthony Toby

    2016-09-15

    Earthquakes often cause destructive and unpredictable changes that can affect local hydrology (e.g. groundwater elevation or reduction) and thus disrupt land uses and human activities. Prolific agricultural regions overlie seismically active areas, emphasizing the importance to improve our understanding and monitoring of hydrologic and agricultural systems following a seismic event. A thorough data collection is necessary for adequate post-earthquake crop management response; however, the large spatial extent of earthquake's impact makes challenging the collection of robust data sets for identifying locations and magnitude of these impacts. Observing hydrologic responses to earthquakes is not a novel concept, yet there is a lack of methods and tools for assessing earthquake's impacts upon the regional hydrology and agricultural systems. The objective of this paper is to describe how remote sensing imagery, methods and tools allow detecting crop responses and damage incurred after earthquakes because a change in the regional hydrology. Many remote sensing datasets are long archived with extensive coverage and with well-documented methods to assess plant-water relations. We thus connect remote sensing of plant water relations to its utility in agriculture using a post-earthquake agrohydrologic remote sensing (PEARS) framework; specifically in agro-hydrologic relationships associated with recent earthquake events that will lead to improved water management.

  20. The Analysis on the Influence of Water Conservancy Investment on Agricultural Economic Growth: An Empirical Study Based on the Boom Period of Shandong Agriculture

    Institute of Scientific and Technical Information of China (English)

    Jinping; CAO; Zhe; FENG; Jilian; HU

    2014-01-01

    This paper uses econometric methods to carry out a Granger causality test on the construction of water conservancy infrastructure construction and agricultural economic growth in the boom period(1981- 2002) of Shandong agriculture. Empirical results indicate that there exists two-way Granger causality between Shandong water conservancy infrastructure construction and Shandong agricultural economic growth.Therefore,water conservancy infrastructure construction has a significant influence on agricultural economic growth in Shandong.

  1. CALCULATION AND ANALYSIS ON CHANGE OF AGRICULTURAL WATER CONSUMPTION IN THE CHANGJIANG DELTA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The potential evapotranspiration of specific crops in the Changjiang Delta is calculated by using Penman-Monteith method, and an agricultural water consunption model in the area is developed on the basis of agricultural production situation. This model has higher precision compared with actual data and can reflect the actual status of agriculture water need. Considering the meteorological, hydrological, economical development situation of the Changjiang Delta, this paper calculates and analyzes the volumes of agricultural water consumption in 2000, 2010, 2030 and 2050 under different climate change conditions and different development speeds of urbanization in future. The result shows agriculture water demand increases with temperature rising and decreases obviously with cultivated area reducing. For the Changjiang Delta, the volume of agricultural water consumption in the future will less than that of present.

  2. Climate Change and Water Quality in the Rocky Mountains: challenges of too much summer for addressing acid rock drainage (Invited)

    Science.gov (United States)

    McKnight, D. M.; Crouch, C. M.; Rue, G. P.

    2013-12-01

    A major water quality concern in the Rocky Mountains is acid rock drainage, which causes acidic conditions and high metal concentrations. The 30-year water quality record for the Snake River watershed in Colorado, USA, shows that for the summer low-flow period zinc concentrations have increased four- to six-fold concurrently with a two- to three week advancement in spring snowmelt. We found that the main source of acidity, zinc and other metals, including rare earth elements to the upper Snake River was a tributary draining an alpine area rich in disseminated pyrite. By conducting a tracer experiment in this tributary, we demonstrated that more than half of the trace metal and acidity loading entered in an upper steep, rocky reach where the tributary is fed by an alpine spring. Another increase in flow and metal loading occurred where the tributary flows through a gently-sloped wetland area containing a bog iron deposit. Analysis of the tracer experiment indicated a significant increase in hyporheic exchange along this wetland reach, where decreases in pH of the water exchanging in the hyporheic zone may be mobilizing metals that had been sequestered in the wetland through sorption to iron oxides. One possible scenario is that decreasing pH in the upper reach has reached a threshold, resulting in mobilization of metals from the hyporheic zone of the wetland. This study illustrates how changes in hydrologic regime may cause changes in biogeochemical processes that exacerbate the danger to aquatic ecosystems associated with acid rock drainage.

  3. Emission standards versus immission standards for assessing the impact of urban drainage on ephemeral receiving water bodies.

    Science.gov (United States)

    Freni, Gabriele; Mannina, Giorgio; Viviani, Gaspare

    2010-01-01

    In the past, emission standard indicators have been adopted by environmental regulation authorities in order to preserve the quality of a receiving water body. Such indicators are based on the frequency or magnitude of a polluted discharge that may be continuous or intermittent. In order to properly maintain the quality of receiving waters, the Water Framework Directive, following the basic ideas of British Urban Pollution Manual, has been established. The Directive has overtaken the emission-standard concept, substituting it with the stream-standard concept that fixes discharge limits for each polluting substance depending on the self-depurative characteristics of receiving waters. Stream-standard assessment requires the deployment of measurement campaigns that can be very expensive; furthermore, the measurement campaigns are usually not able to provide a link between the receiving water quality and the polluting sources. Therefore, it would be very useful to find a correlation between the quality status of the natural waters and the emission-based indicators. Thus, this study is aimed to finding a possible connection between the receiving water quality indicators drawn by environmental regulation authorities and emission-based indicators while considering both continuous (i.e. from the wastewater treatment plants) and intermittent pollution discharges (mainly from combined sewer overflows). Such research has been carried out by means of long-term analysis adopting a holistic modelling approach. The different parts of the integrated urban drainage system were modelled by a parsimonious integrated model. The analysis was applied to an ephemeral river bounding Bologna (Italy). The study concluded that the correlation between receiving water quality and polluting emissions cannot be generally stated. Nevertheless, specific analyses on polluting emissions were pointed out in the study highlighting cause-effect link between polluting sources and receiving water quality.

  4. Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils

    Directory of Open Access Journals (Sweden)

    Antônio Ocimar Manzi

    2011-04-01

    Full Text Available Central Amazonian rainforest landscape supports a mosaic of tall terra firme rainforest and ecotone campinarana, riparian and campina forests, reflecting topography-induced variations in soil, nutrient and drainage conditions. Spatial and temporal variations in litter decomposition, soil and groundwater chemistry and soil CO2 respiration were studied in forests on sandy soils, whereas drought sensitivity of poorly-drained valley soils was investigated in an artificial drainage experiment. Slightly changes in litter decomposition or water chemistry were observed as a consequence of artificial drainage. Riparian plots did experience higher litter decomposition rates than campina forest. In response to a permanent lowering of the groundwater level from 0.1 m to 0.3 m depth in the drainage plot, topsoil carbon and nitrogen contents decreased substantially. Soil CO2 respiration decreased from 3.7±0.6 µmol m-2 s-1 before drainage to 2.5±0.2 and 0.8±0.1 µmol m-2 s-1 eight and 11 months after drainage, respectively. Soil respiration in the control plot remained constant at 3.7±0.6 µmol m-2 s-1. The above suggests that more frequent droughts may affect topsoil carbon and nitrogen content and soil respiration rates in the riparian ecosystem, and may induce a transition to less diverse campinarana or short-statured campina forest that covers areas with strongly-leached sandy soil.

  5. Agricultural green and blue water consumption and its influence on the global water system

    Science.gov (United States)

    Rost, Stefanie; Gerten, Dieter; Bondeau, Alberte; Lucht, Wolfgang; Rohwer, Janine; Schaphoff, Sibyll

    2008-09-01

    This study quantifies, spatially explicitly and in a consistent modeling framework (Lund-Potsdam-Jena managed Land), the global consumption of both "blue" water (withdrawn for irrigation from rivers, lakes and aquifers) and "green" water (precipitation) by rainfed and irrigated agriculture and by nonagricultural terrestrial ecosystems. In addition, the individual effects of human-induced land cover change and irrigation were quantified to assess the overall hydrological impact of global agriculture in the past century. The contributions to irrigation of nonrenewable (fossil groundwater) and nonlocal blue water (e.g., from diverted rivers) were derived from the difference between a simulation in which these resources were implicitly considered (IPOT) and a simulation in which they were neglected (ILIM). We found that global cropland consumed >7200 km3 year-1 of green water in 1971-2000, representing 92% (ILIM) and 85% (IPOT), respectively, of total crop water consumption. Even on irrigated cropland, 35% (ILIM) and 20% (IPOT) of water consumption consisted of green water. An additional 8155 km3 year-1 of green water was consumed on grazing land; a further ˜44,700 km3 year-1 sustained the ecosystems. Blue water consumption predominated only in intensively irrigated regions and was estimated at 636 km3 year-1 (ILIM) and 1364 km3 year-1 (IPOT) globally, suggesting that presently almost half of the irrigation water stemmed from nonrenewable and nonlocal sources. Land cover conversion reduced global evapotranspiration by 2.8% and increased discharge by 5.0% (1764 km3 year-1), whereas irrigation increased evapotranspiration by up to 1.9% and decreased discharge by 0.5% at least (IPOT, 1971-2000). The diverse water fluxes displayed considerable interannual and interdecadal variability due to climatic variations and the progressive increase of the global area under cultivation and irrigation.

  6. Estimating economic value of agricultural water under changing conditions and the effects of spatial aggregation.

    Science.gov (United States)

    Medellín-Azuara, Josué; Harou, Julien J; Howitt, Richard E

    2010-11-01

    Given the high proportion of water used for agriculture in certain regions, the economic value of agricultural water can be an important tool for water management and policy development. This value is quantified using economic demand curves for irrigation water. Such demand functions show the incremental contribution of water to agricultural production. Water demand curves are estimated using econometric or optimisation techniques. Calibrated agricultural optimisation models allow the derivation of demand curves using smaller datasets than econometric models. This paper introduces these subject areas then explores the effect of spatial aggregation (upscaling) on the valuation of water for irrigated agriculture. A case study from the Rio Grande-Rio Bravo Basin in North Mexico investigates differences in valuation at farm and regional aggregated levels under four scenarios: technological change, warm-dry climate change, changes in agricultural commodity prices, and water costs for agriculture. The scenarios consider changes due to external shocks or new policies. Positive mathematical programming (PMP), a calibrated optimisation method, is the deductive valuation method used. An exponential cost function is compared to the quadratic cost functions typically used in PMP. Results indicate that the economic value of water at the farm level and the regionally aggregated level are similar, but that the variability and distributional effects of each scenario are affected by aggregation. Moderately aggregated agricultural production models are effective at capturing average-farm adaptation to policy changes and external shocks. Farm-level models best reveal the distribution of scenario impacts.

  7. 加强探放水工作 防治矿井水患%Strengthening water detection and drainage and preventing mine floods

    Institute of Scientific and Technical Information of China (English)

    任兴祎

    2011-01-01

    Integrating with hydrogeological conditions of the mine, this thesis analyzes features of aquifer, carries out water detection and drainage design, and respectively illustrates water detection and drainage drilling design, drill hole layout, and drainage system design and so on, with a view to guide practice, to eliminates mine floods, and to realize safe production as well.%摘要:结合某矿井水文地质实际情况,分析了该矿井含隔水层的特征,在此基础上进行了探放水设计,分别阐述了探放水钻窝设计、钻眼布置及排水系统设计要点等内容,以期指导实践,杜绝矿井水害威胁,实现安全生产。

  8. New technological methods for protecting underground waters from agricultural pollution

    Science.gov (United States)

    Mavlyanov, Gani

    2015-04-01

    The agricultural production on the irrigated grounds can not carry on without mineral fertilizers, pesticides and herbicides. Especially it is shown in Uzbekistan, in cultivation of cotton. There is an increase in mineralization, rigidity, quantity of heavy metals, phenols and other pollutions in the cotton fields. Thus there is an exhaustion of stocks of fresh underground waters. In the year 2003 we were offered to create the ecological board to prevent pollution to get up to a level of subsoil waters in the top 30 centimeter layer of the ground. We carried out an accumulation and pollution processing. This layer possesses a high adsorbing ability for heavy metals, mineral oil, mineral fertilizers remnants, defoliants and pesticides. In order to remediate a biological pollution treatment processing should be take into account. The idea is consisted in the following. The adsorption properties of coal is all well-known that the Angren coal washing factories in Tashkent area have collected more than 10 million tons of the coal dust to mix with clays. We have picked up association of anaerobic microorganisms which, using for development, destroys nutrients of coal waste pollutions to a harmless content for people. Coal waste inoculation also are scattered by these microorganisms on the field before plowing. Deep (up to 30 cm) plowing brings them on depth from 5 up to 30 cm. Is created by a plough a layer with necessary protective properties. The norm of entering depends on the structure of ground and the intensity of pollutions. Laboratory experiments have shown that 50% of pollutions can be treated by the ecological board and are processed up to safe limit.

  9. 盐碱地排水沟蓄水后底泥与水体盐分交换试验%Experiment on salt exchange between sediments and ponding water in drainage ditches of saline farmland

    Institute of Scientific and Technical Information of China (English)

    潘延鑫; 罗纨; 贾忠华; 李进; 陈远

    2013-01-01

      因长期累积效果,盐碱地排水沟内盐分含量不断升高,危及排水沟系统的生态功能,利用淡水定期进行稀释可延缓盐分累积过程。该文以陕西富平县卤泊滩盐碱地改良区为例,通过实验室土柱试验,研究了排水沟蓄集淡水、水体保持静态条件下,底泥与上覆水体的盐分交换规律,揭示了底泥盐分释放的内在机理。研究结果表明,在分子扩散作用下底泥-上覆水界面之上10 cm 的范围内存在一个高盐分渐变区(即扩散边界层),10 cm 以上的水体盐分基本一致;分子扩散是边界层内盐分运移的主要机制;扩散边界层对底泥盐分释放具有一定的阻滞作用,并且随着边界层厚度的增加,阻滞效应也显著增强;底泥盐分释放通量符合负的幂指数形式。%In arid and semi-arid agricultural regions, artificial drainage is provided to maintain salt balance of the saline farmland. As a result of poor drainage outlet in some sites, salt accumulation in the drainage ditches often leads to salinity rising to a critical level that threatens ecological functions of the ditch system. Periodic flushing with fresh water has been suggested to slow down the process of salinity growth in such ditch system. But the effect of the slow moving freshwater in drainage ditches on salt balance is unclear. In order to investigate the internal mechanism of salt release in saline drainage ditches when freshwater is added, and to examine the relationship of salt exchange between sediment and the overlying water under hydrostatic condition, we conducted a laboratory study to measure spatial and temporal variations of salinity in sediment and water interface with two experimental plexiglass columns. Each column is 15 cm in (inner) diameter and 100 cm high. The column has a top cover to prevent the evaporation loss of water. Sediments were filled to 30 cm thick at the bottom and covered by a freshwater layer of 65 cm. Room

  10. Tracing the spatial propagation of river inlet water into an agricultural polder area using anthropogenic gadolinium

    NARCIS (Netherlands)

    Rozemeijer, J.; Siderius, C.; Verheul, M.; Pomarius, H.

    2012-01-01

    Diverting river water into agricultural areas or nature reserves is a frequently applied management strategy to prevent fresh water shortage. However, the river water might have negative consequences for chemical and ecological water quality in the receiving water bodies. This study aimed to obtain

  11. 75 FR 77821 - Agricultural Water Enhancement Program and Cooperative Conservation Partnership Initiative

    Science.gov (United States)

    2010-12-14

    ... agreements with the Natural Resources Conservation Service (NRCS) through either the Agricultural Water... concerns to be addressed, and specifically what water conservation resource issues and water quality... long-term conservation of surface and ground water or water quality improvement and related...

  12. Deficit irrigation and sustainable water-resource strategies in agriculture for China's food security.

    Science.gov (United States)

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J

    2015-04-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources.

  13. Land use effects on green water fluxes from agricultural production in Mato Grosso, Brazil

    Science.gov (United States)

    Lathuilliere, M. J.; Johnson, M. S.; Donner, S. D.

    2010-12-01

    The blue water/green water paradigm is increasingly used to differentiate between subsequent routing of precipitation once it reaches the soil. “Blue” water is that which infiltrates deep in the soil to become streams and aquifers, while “green” water is that which remains in the soil and is either evaporated (non-productive green water) or transpired by plants (productive green water). This differentiation in the fate of precipitation has provided a new way of thinking about water resources, especially in agriculture for which better use of productive green water may help to relieve stresses from irrigation (blue water). The state of Mato Grosso, Brazil, presents a unique case for the study of green water fluxes due to an expanding agricultural land base planted primarily to soybean, maize, sugar cane, and cotton. These products are highly dependent on green water resources in Mato Grosso where crops are almost entirely rain-fed. We estimate the change in green water fluxes from agricultural expansion for the 2000-2008 period in the state of Mato Grosso based on agricultural production data from the Instituto Brasileiro de Geografia e Estatísticas and a modified Penman-Monteith equation. Initial results for seven municipalities suggest an increase in agricultural green water fluxes, ranging from 1-10% per year, due primarily to increases in cropped areas. Further research is underway to elucidate the role of green water flux variations from land use practices on the regional water cycle.

  14. Evaluation of the surface-water sampling design in the Western Lake Michigan Drainages in relation to environmental factors affecting water quality at base flow

    Science.gov (United States)

    Robertson, Dale M.

    1998-01-01

    Eight stream sites (Fixed Sites) were chosen to describe the variability in the water quality of the Western Lake Michigan Drainages (WMIC) Study Unit of the National Water-Quality Assessment program. These sites were chosen in areas (Relatively Homogeneous Units) dominated by unique combinations of the environmental factors thought to be most important in influencing water quality; namely, land use, surficial deposits, and bedrock type. A study was designed to determine (1) the applicability of streamflow, nutrient, and suspended sediment data regularly collected at these eight sites describing the variability in these characteristics throughout the Study Unit during base-flow conditions and (2) the applicability of the interpretive results made from data collected at these few sites to streams throughout the Study Unit. This was done by sampling the Fixed Sites and an additional 83 sites in Relatively Homogeneous Units throughout the Study Unit during summer base-flow conditions.

  15. Agricultural water productivity optimization for irrigated Teff (Eragrostic Tef) in water scarce semi-arid region of EthiopiaAgricultural water productivity optimization for irrigated Teff (Eragrostic Tef) in water scarce semi-arid region of Ethiopia

    NARCIS (Netherlands)

    Yihun, Y.M.

    2015-01-01

    Title of the PhD Thesis: ‘Agricultural Water Productivity Optimization for Irrigated Teff (Eragrostic Tef) in water Scarce Semi-Arid region of Ethiopia’ Yenesew Mengiste Yihun In water stressed regions such as the Central Rift Valley of Ethiopia, increasing Crop Water Productivity (CWP)

  16. Determinants of agricultural water saving technology adoption: an empirical study of 10 provinces of China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In recent years,China has been faced by an increasingly severe water shortage due to the continua growth of demand on water resources.Although the Chinese government has been actively promoting the agricultural water-saving technology adoption,it is ill-informed of the adoption degree of the current agricultural water saving technologies as well as the function of the governmental policies.Therefore,this paper analyzes the aforesaid problems based on investigative data of 10 provinces in China.The results demonstrate that although there is a rapid increase of adopted agricultural water-saving technologies,the actual adoption area is rather limited.Moreover,the governmental policies and scarcity of water resources are the determinants of agricultural water-saving technology adoption.Ultimately,the paper proposes some policy suggestions.

  17. Changes in water budgets and sediment yields from a hypothetical agricultural field as a function of landscape and management characteristics--A unit field modeling approach

    Science.gov (United States)

    Roth, Jason L.; Capel, Paul D.

    2012-01-01

    Crop agriculture occupies 13 percent of the conterminous United States. Agricultural management practices, such as crop and tillage types, affect the hydrologic flow paths through the landscape. Some agricultural practices, such as drainage and irrigation, create entirely new hydrologic flow paths upon the landscapes where they are implemented. These hydrologic changes can affect the magnitude and partitioning of water budgets and sediment erosion. Given the wide degree of variability amongst agricultural settings, changes in the magnitudes of hydrologic flow paths and sediment erosion induced by agricultural management practices commonly are difficult to characterize, quantify, and compare using only field observations. The Water Erosion Prediction Project (WEPP) model was used to simulate two landscape characteristics (slope and soil texture) and three agricultural management practices (land cover/crop type, tillage type, and selected agricultural land management practices) to evaluate their effects on the water budgets of and sediment yield from agricultural lands. An array of sixty-eight 60-year simulations were run, each representing a distinct natural or agricultural scenario with various slopes, soil textures, crop or land cover types, tillage types, and select agricultural management practices on an isolated 16.2-hectare field. Simulations were made to represent two common agricultural climate regimes: arid with sprinkler irrigation and humid. These climate regimes were constructed with actual climate and irrigation data. The results of these simulations demonstrate the magnitudes of potential changes in water budgets and sediment yields from lands as a result of landscape characteristics and agricultural practices adopted on them. These simulations showed that variations in landscape characteristics, such as slope and soil type, had appreciable effects on water budgets and sediment yields. As slopes increased, sediment yields increased in both the arid and

  18. Pricing Policies in Managing Water Resources in Agriculture: An Application of Contract Theory to Unmetered Water

    Directory of Open Access Journals (Sweden)

    Davide Viaggi

    2013-09-01

    Full Text Available The paper explores how agricultural water pricing could contribute to lowering water demand when uses are unobserved (asymmetric information. The topic of the paper is justified by the fact that most water authorities worldwide do not control water uses at the farm scale. The study draws inspiration from the pricing policies of a Reclamation and Irrigation Board in Northern Italy. It analyses the optimal design of current tariff strategies with respect both to the actual regulator’s goals and the cost recovery objective of an ideal regulator driven by European Water Framework Directive principles and having full information. The analysis is based on the logic of a Principal-Agent model implemented as a mathematical non-linear programming model. Given the current pricing structure and assuming zero transaction costs, the results show a relevant increase in net benefits for the ideal scenario with respect to the actual one as water use costs increase. Benefits differences between the two scenarios mark a limit in value below which mechanisms able to solve the existing asymmetries between the principal and the agents are economically desirable. The study concludes by showing that the current regulator’s discriminatory strategy (pricing structure would be better justified with higher levels of cost for water use. However, the existence of non-zero transaction costs related to the control of water uses points to the need for further research in order to analyze incentive mechanisms in the absence of water metering.

  19. The water supply and drainage system design of Chinese financial information center%中国金融信息中心给排水系统设计

    Institute of Scientific and Technical Information of China (English)

    阮宜江

    2015-01-01

    介绍了甲级办公建筑中国金融信息中心给水、热水、排水、雨水及室外管线的设计方法,重点对热水、雨水和室外管线的设计进行分析,为甲级办公建筑的给排水系统设计积累经验。%This paper introduced the water supply, hot water, water drainage, rainwater and outdoor pipeline design method of class A office building China financial information center, emphatically analyzed the hot water, rainwater and outdoor pipelines design, accumulated experience for water supply and drainage system design of class A office building.

  20. Hysteresis of the NMR response and the complex relative permittivity of the quartz granules powders and solid sandstones during the water imbibition and drainage

    Science.gov (United States)

    Lapina, A. S.; Bobrov, P. P.; Golikov, N. A.; Repin, A. V.; Shumskayte, M. Y.

    2017-01-01

    This work provides the results of the complex relative dielectric permittivity ɛ  =  ɛ‧  -  iɛ″ (CRP) measurement and nuclear magnetic resonance (NMR) response of the quartz powders and cores of different porosity at stepped moistening and drainage. It is shown that CRP and NMR responses are ambiguous functions on water. The character of the CRP hysteresis depends on the electromagnetic field frequency, on the particle size and water salinity. The analysis of the NMR data shows that firstly the larger pores are filled with water at moistening and they are also drained first. Thus at the same water content, which is obtained in both the processes of moistening and drainage, pores of different sizes are filled. Herewith the water droplets have different curvature radiuses and different wetting contact angles which is the main cause of the hysteresis in the CRP and NMR response.

  1. Heterotrophic microflora of highly alkaline (pH > 13) brown mud disposal site drainage water near Ziar nad Hronom (Banska Bystrica region, Slovakia).

    Science.gov (United States)

    Stramova, Zuzana; Remenar, Matej; Javorsky, Peter; Pristas, Peter

    2016-03-01

    Brown mud is a waste by-product of alumina production by Bayer process. Due to extensive sodium hydroxide use in the process, brown mud disposal site near Ziar nad Hronom (Banska Bystrica region, Slovakia) and drainage water are ones of the greatest environmental burdens in Slovakia. Drainage water from this landfills has pH value higher than 13, and it contains many heavy metals and elevated salt content. In our experiments, relatively numerous bacterial population was detected in the drainage water with frequency of about 80 cfu/ml using cultivation approach. The alkalitolerant heterotrophic isolates were identified by combination of MALDI-TOF and 16S rDNA analysis. Drainage water population was dominated by Actinobacteria (Microbacterium spp. and Micrococcus spp.) followed by low G + C-content gram-positive bacteria (Bacillus spp.). Two isolates belonged to gram-negative bacteria only, identified as Brevundimonas spp. Phylogenetic and biochemical analyses indicate that nearly half of the bacteria isolated are probably representatives of a new species. Brown mud disposal site is proposed as a source of new bacterial taxa possibly used in bioremediation processes.

  2. 基于排水过程分析的水稻灌区农田面源污染模拟%Simulation of agricultural non-point source pollution from paddy rice irrigation district based on analyses of drainage processes

    Institute of Scientific and Technical Information of China (English)

    陈会; 王康; 周祖昊

    2012-01-01

    对前郭灌区主要面源污染物迁移、转化及汇集过程开展了2a的系统试验与监测,模拟了灌区面源污染水质水量过程,分析了灌区农田面源污染形成机制.水均衡测定结果表明,灌区排水主要由灌溉退水、稻田地表弃水和稻田渗流排水3部分组成,采用马斯京根法和连续分段马斯京根法能够有效地模拟各级排水沟道的排水过程.主要面源污染物随水体发生迁移及掺混,采用一级动力学方法描述污染物转化过程,模拟的灌区水质水量过程与实际过程符合较好,稻田地表退水主要影响水稻抽穗前的面源污染入河过程,而渗流排水则在抽穗后灌区排水水质中起主要作用.结果表明水稻灌区中地表排水和稻田渗漏排水对于面源污染过程起主要作用.%The transport and transformation processes of non-point source pollutions form paddy rice field to the main drainage canal through lateral and branch drainage canals were monitored in the Qianguo irrigation district during the rice growing seasons in 2009 and 2010. Water balance were measured in lateral canal in the controlled irrigation region. Results showed that the drainage water were composed of the rice field surface returned water, the irrigation returned water and the seepage from rice field to the drainage canals. Drainage processes in branch and main canal were simulated using the Muskingum method and the Muskingum segmentation flow routing method, respectively. The transport processes of chemical concentrations were determined by the mix and convection of water flow and the transformation processes were described using the first order kinetic equation. Drainage processes and contaminant concentration simulated showed good agreements with the measured values. The returned water and seepage from rice field played key roles in the process of agricultural non point pollution into the river. This research suggested the surface drainage and seepage

  3. Influence of artificially placed substrates on agro-drainage ditch water quality%人工布设基质对农田排水沟水质的影响

    Institute of Scientific and Technical Information of China (English)

    吴攀; 张志山; 黄磊; 胡宜刚; 陈永乐

    2012-01-01

    本研究选择宁夏灵武农场的典型排水支沟进行人工布设基质,在沟中布设土壤、炉渣、秸秆、锯末4种基质处理及铲草处理和对照(不做任何处理),研究分析了基质对农田排水沟水质的影响.对基质的组分分析表明,锯末显著地吸附盐分和全氮,吸附量分别达0.4 g·kg-1和0.3 g·kg-1,土壤、炉渣、秸秆均明显地释放盐分,释放量为5.3~50.8 g.kg-1;秸秆显著地释放有机碳,释放量达54.0 g·kg-1;4种基质对全磷吸附效果不明显.水质分析表明,除秸秆处理和对照外,盐分(TDS)在其他处理下显著减少,而化学需氧量(COD)、总氮(TN)、总磷(TP)、NO3--N和NH4+-N浓度在锯末和土壤处理下均有不同程度的减小.对于整条试验沟道,农田退水中TDS、TN、TP的浓度随着在沟道迁移距离的增加呈明显减小的趋势,至出水断面时浓度分别为0.60~0.80g.L-1、0.24~0.33 mg·L-1和0.04~0.09 mg·L-1.田间沟道试验说明,农田排水沟能有效地截留农田退水污染物,选择适合的基质进行人工布设实际可行,有助于发挥农田排水沟的生态功能.%Agricultural drainage ditch is a critical hydrological system in agro-ecosystems for transporting surface runoff to downstream water systems and for removing drainage water pollutants. While pollutant removal is critical for the protection of water environments, agro-drainage pollution continues to draw attention in several regions in China. In recent years, agro-drainage pollution in the Ningxia Yellow River Irrigation Region (NYRIR) heavily influences the quality of both local water systems and the Yellow River. The performance of such ditches regarding drainage water pollutant retention can be improved using suitable substrates. In this study, an experiment involving five treatments and a control was conducted in a NYRIR classical drainage ditch on Lingwu Farm of Ningxia Hui Autonomous Region. Soil, cinder, straw and sawdust were placed in

  4. Hydraulic flow characteristics of agricultural residues for denitrifying bioreactor media

    Science.gov (United States)

    Denitrifying bioreactors are a promising technology to mitigate agricultural subsurface drainage nitrate-nitrogen losses, a critical water quality goal for the Upper Mississippi River Basin. This study was conducted to evaluate the hydraulic properties of agricultural residues that are potential bio...

  5. Flow Forecasting in Urban Drainage Systems using Deterministic Updating of Water Levels in Distributed Hydraulic Models

    DEFF Research Database (Denmark)

    Hansen, Lisbeth S.; Borup, Morten; Møller, A.;

    2011-01-01

    the performance of the updating procedure for flow forecasting. Measured water levels in combination with rain gauge input are used as basis for the evaluation. When compared to simulations without updating, the results show that it is possible to obtain an improvement in the 20 minute forecast of the water level...... to eliminate some of the unavoidable discrepancies between model and reality. The latter can partly be achieved by using the commercial tool MOUSE UPDATE, which is capable of inserting measured water levels from the system into the distributed, physically based MOUSE model. This study evaluates and documents...

  6. On problems in municipal water-supply and drainage design and reasonable suggestions%市政给排水设计存在的问题与合理性建议

    Institute of Scientific and Technical Information of China (English)

    郭娟

    2014-01-01

    简述了市政给排水设计的内容与任务,对目前市政给排水设计中存在的给排水规划与污水管埋深问题进行了分析,并给出了一些市政给排水设计的合理化建议,以提高市政给排水系统的设计水平。%The paper indicates the contents and tasks for the municipal water-supply and drainage design,analyzes some problems in the water-supply and drainage planning and sewage tube buried deep in the municipal water-supply and drainage design,and provides some reasonable suggestions for municipal water-supply and drainage design,so as to enhance the design of municipal water-supply and drainage system.

  7. 建筑给排水技术应用现状及发展趋向%The technology status and development trend of buildings water supply and drainage

    Institute of Scientific and Technical Information of China (English)

    田维章

    2015-01-01

    Through the analysis on the status current building water supply and drainage system,from the water supply,drainage,technology and hot water supply perspective elaborated the development direction and trend of buildings drainage technology,so as to positive innovation of water supply and drainage system,continuously improved and prefect the traditional process,promoted the benign development of water supply and drainage system.%通过分析当前建筑给排水系统的状况,从给水、排水、技术及热水供应角度阐述了建筑给排水技术的发展方向和趋势,以积极创新给排水系统,不断改进与完善传统工艺,促进给排水系统的良性发展。

  8. Water saving through international trade of agricultural products

    NARCIS (Netherlands)

    Chapagain, A.K.; Hoekstra, A.Y.; Savenije, H.H.G.

    2006-01-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water product

  9. Zinc isotope investigation of surface and pore waters in a mountain watershed impacted by acid rock drainage.

    Science.gov (United States)

    Aranda, Suzan; Borrok, David M; Wanty, Richard B; Balistrieri, Laurie S

    2012-03-15

    The pollution of natural waters with metals derived from the oxidation of sulfide minerals like pyrite is a global environmental problem. However, the metal loading pathways and transport mechanisms associated with acid rock drainage reactions are often difficult to characterize using bulk chemical data alone. In this study, we evaluated the use of zinc (Zn) isotopes to complement traditional geochemical tools in the investigation of contaminated waters at the former Waldorf mining site in the Rocky Mountains, Colorado, U.S.A. Geochemical signatures and statistical analysis helped in identifying two primary metal loading pathways at the Waldorf site. The first was characterized by a circumneutral pH, high alkalinity, and high Zn/Cd ratios. The second was characterized by acidic pHs and low Zn/Cd ratios. Zinc isotope signatures in surface water samples collected across the site were remarkably similar (the δ(66)Zn, relative to JMC 3-0749-L, for most samples ranged from 0.20 to 0.30‰±0.09‰ 2σ). This probably suggests that the ultimate source of Zn is consistent across the Waldorf site, regardless of the metal loading pathway. The δ(66)Zn of pore water samples collected within a nearby metal-impacted wetland area, however, were more variable, ranging from 0.20 to 0.80‰±0.09‰ 2σ. Here the Zn isotopes seemed to reflect differences in groundwater flow pathways. However, a host of secondary processes might also have impacted Zn isotopes, including adsorption of Zn onto soil components, complexation of Zn with dissolved organic matter, uptake of Zn into plants, and the precipitation of Zn during the formation of reduced sulfur species. Zinc isotope analysis proved useful in this study; however, the utility of this isotopic tool would improve considerably with the addition of a comprehensive experimental foundation for interpreting the complex isotopic relationships found in soil pore waters.

  10. Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation

    Science.gov (United States)

    Cheng, C. L.

    2015-12-01

    Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation Chung-Lien Cheng, Wen-Ping Tsai, Fi-John Chang* Department of Bioenvironmental Systems Engineering, National Taiwan University, Da-An District, Taipei 10617, Taiwan, ROC.Corresponding author: Fi-John Chang (changfj@ntu.edu.tw) AbstractIn Taiwan, the population growth and economic development has led to considerable and increasing demands for natural water resources in the last decades. Under such condition, water shortage problems have frequently occurred in northern Taiwan in recent years such that water is usually transferred from irrigation sectors to public sectors during drought periods. Facing the uneven spatial and temporal distribution of water resources and the problems of increasing water shortages, it is a primary and critical issue to simultaneously satisfy multiple water uses through adequate reservoir operations for sustainable water resources management. Therefore, we intend to build an intelligent reservoir operation system for the assessment of agricultural water resources management strategy in response to food security during drought periods. This study first uses the grey system to forecast the agricultural water demand during February and April for assessing future agricultural water demands. In the second part, we build an intelligent water resources system by using the non-dominated sorting genetic algorithm-II (NSGA-II), an optimization tool, for searching the water allocation series based on different water demand scenarios created from the first part to optimize the water supply operation for different water sectors. The results can be a reference guide for adequate agricultural water resources management during drought periods. Keywords: Non-dominated sorting genetic algorithm-II (NSGA-II); Grey System; Optimization; Agricultural Water Resources Management.

  11. Modelling the water-agricultural sector in Rosetta, Egypt: exploring the interaction between water and food

    Science.gov (United States)

    Sušnik, Janez; Vamvakeridou-Lyroudia, Lydia; Savic, Dragan; Kapelan, Zoran

    2014-05-01

    An integrated System Dynamics Model for the Rosetta region, Egypt, assessing local water balance and agricultural yield to 2050, is presented. Fifty-seven simulations are analysed to better understand potential impacts on water and food security resulting from climate and social change and local/regional policy decisions related to the agricultural sector. Water limitation is a national issue: Egypt relies on the Nile for >95% of supply, and the flow of which is regulated by the Aswan High Dam. Egypt's share water of Aswan water is limited to 55 x 19 m3 yr-1. Any reduction in supply to the reservoir or increase in demand (e.g. from an expanding agricultural sector), has the potential to lead to a serious food and water supply situation. Results show current water resource over-exploitation. The remaining suite of 56 simulations, divided into seven scenarios, also mostly show resource overexploitation. Only under significant increases to Nile flow volumes was the trend reversed. Despite this, by threading together multiple local policies to reduce demand and improve/maintain supply, water resource exploitation can be mitigated while allowing for agricultural development. By changing cropping patterns, it is possible to improve yield and revenue, while using up to 21% less water in 2050 when compared with today. The results are useful in highlighting pathways to improving future water resource availability. Many policies should be considered in parallel, introducing redundancy into the policy framework. We do not suggest actual policy measures; this was beyond the scope of the work. This work highlights the utility of systems modelling of complex systems such as the water-food nexus, with the potential to extend the methodology to other studies and scales. In particular, the benefit of being able to easily modify and extend existing models in light of results from initial modelling efforts is cited. Analysis of initial results led to the hypothesis that by producing

  12. A Site-sPecific Agricultural water Requirement and footprint Estimator (SPARE:WATER 1.0

    Directory of Open Access Journals (Sweden)

    S. Multsch

    2013-07-01

    Full Text Available The agricultural water footprint addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall, blue water (irrigation from surface or groundwater and grey water (water needed to dilute pollutants. By considering site-specific properties when calculating the crop water footprint, this methodology can be used to support decision making in the agricultural sector on local to regional scale. We therefore developed the spatial decision support system SPARE:WATER that allows us to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirements and water footprints are assessed on a grid basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume inefficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water is defined as the water needed to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept, we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr−1 for 2008, with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional estimation of crop water footprints.

  13. The Drainage Consolidation Modeling of Sand Drain in Red Mud Tailing and Analysis on the Change Law of the Pore Water Pressure

    Directory of Open Access Journals (Sweden)

    Chuan-sheng Wu

    2014-01-01

    Full Text Available In order to prevent the occurring of dam failure and leakage, sand-well drainages systems were designed and constructed in red mud tailing. It is critical to focus on the change law of the pore water pressure. The calculation model of single well drainage pore water pressure was established. The pore water pressure differential equation was deduced and the analytical solution of differential equation using Bessel function and Laplace transform was given out. The impact of parameters such as diameter d, separation distance l, loading rate q, and coefficient of consolidation Cv in the function on the pore water pressure is analyzed by control variable method. This research is significant and has great reference for preventing red mud tailings leakage and the follow-up studies on the tailings stability.

  14. THE EONOMIC IMPACT OF MORE SUSTAINABLE WATER USE IN AGRICULTURE: A COMPUTABLE GENERAL EQUILIBRIUM ANALYSIS

    OpenAIRE

    Alvaro Calzadilla; Katrin Rehdanz; Richard S.J. Tol

    2008-01-01

    Water problems are typically studied at the farm-level, the river–catchment-level or the country-level. About 70% of irrigation water is used for agriculture, and agricultural products are traded internationally. A full understanding of water use is impossible without understanding the international market for food and related products, such as textiles. Based on the global general equilibrium model GTAP-W, we offer a method for investigating the role of green (rain) and blue (irrigation) wat...

  15. Geothermal assessment of the lower Bear River drainage and northern East Shore ground-water areas, Box Elder County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Klauk, R.H.; Budding, K.E.

    1984-07-01

    The Utah Geological and Mineral Survey (UGMS) has been researching the low-temperature geothermal resource potential in Utah. This report, part of an area-wide geothermal research program along the Wasatch Front, concerns the study conducted in the lower Bear River drainage and northern East Shore ground-water areas in Box Elder County, Utah. The primary purpose of the study is to identify new areas of geothermal resource potential. There are seven known low-temperature geothermal areas in this part of Box Elder County. Geothermal reconnaissance techniques used in the study include a temperature survey, chemical analysis of well and spring waters, and temperature-depth measurements in accessible wells. The geothermal reconnaissance techniques identified three areas which need further evaluation of their low-temperature geothermal resource potential. Area 1 is located in the area surrounding Little Mountain, area 2 is west and southwest of Plymouth, and area 3 is west and south of the Cutler Dam. 5 figures, 4 tables.

  16. Zinc isotope investigation of surface and pore waters in a mountain watershed impacted by acid rock drainage

    Energy Technology Data Exchange (ETDEWEB)

    Aranda, Suzan [Department of Geological Sciences, University of Texas at El Paso, El Paso, TX 79968 (United States); Borrok, David M., E-mail: dborrok@utep.edu [Department of Geological Sciences, University of Texas at El Paso, El Paso, TX 79968 (United States); Wanty, Richard B. [US Geological Survey, MS 964d, Denver Federal Center, Denver, CO 80225 (United States); Balistrieri, Laurie S. [U.S. Geological Survey, University of Washington, School of Oceanography, Seattle, WA 98195 (United States)

    2012-03-15

    The pollution of natural waters with metals derived from the oxidation of sulfide minerals like pyrite is a global environmental problem. However, the metal loading pathways and transport mechanisms associated with acid rock drainage reactions are often difficult to characterize using bulk chemical data alone. In this study, we evaluated the use of zinc (Zn) isotopes to complement traditional geochemical tools in the investigation of contaminated waters at the former Waldorf mining site in the Rocky Mountains, Colorado, U.S.A. Geochemical signatures and statistical analysis helped in identifying two primary metal loading pathways at the Waldorf site. The first was characterized by a circumneutral pH, high alkalinity, and high Zn/Cd ratios. The second was characterized by acidic pHs and low Zn/Cd ratios. Zinc isotope signatures in surface water samples collected across the site were remarkably similar (the {delta}{sup 66}Zn, relative to JMC 3-0749-L, for most samples ranged from 0.20 to 0.30 Per-Mille-Sign {+-} 0.09 Per-Mille-Sign 2{sigma}). This probably suggests that the ultimate source of Zn is consistent across the Waldorf site, regardless of the metal loading pathway. The {delta}{sup 66}Zn of pore water samples collected within a nearby metal-impacted wetland area, however, were more variable, ranging from 0.20 to 0.80 Per-Mille-Sign {+-} 0.09 Per-Mille-Sign 2{sigma}. Here the Zn isotopes seemed to reflect differences in groundwater flow pathways. However, a host of secondary processes might also have impacted Zn isotopes, including adsorption of Zn onto soil components, complexation of Zn with dissolved organic matter, uptake of Zn into plants, and the precipitation of Zn during the formation of reduced sulfur species. Zinc isotope analysis proved useful in this study; however, the utility of this isotopic tool would improve considerably with the addition of a comprehensive experimental foundation for interpreting the complex isotopic relationships found in

  17. Water use, root activity and deep drainage within a perennial legume-grass pasture: A case study in southern inland Queensland, Australia

    Directory of Open Access Journals (Sweden)

    A. Nahuel A. Pachas

    2016-09-01

    Full Text Available Water use and depth of water extraction of leucaena (Leucaena leucocephala and Rhodes grass (Chloris gayana pasture, irrigated with desalinated coal seam water (a by-product of the coal seam gas industry, were monitored to provide background information on root activity, spatial and temporal water use and deep drainage over a 757-day period from August 2011 to August 2013. Methodology comprised measurement of soil water from surface to 4 m depth using 8 EnviroSCAN probes connected to dataloggers positioned within leucaena twin rows and within the Rhodes grass inter-row. Just over 581,000 individual moisture measurements were collated and are reported here. Water extraction (and by inference root activity of leucaena and Rhodes grass showed marked seasonal fluctuation with deepest and highest water extraction occurring during the first growing season; water extraction was greatly diminished during the following drier and cooler seasons due to the negative influences of lower soil moisture contents, lower temperatures and increased defoliation on pasture growth. The highest values of deep drainage below 4 m depth occurred when high rainfall events corresponded with high soil water storage in the entire profile (0–4 m depth. Given that water usage by both leucaena and Rhodes grass was greatest in the upper layers of soil (<1.5 m, future research should focus on how the level of competitive interaction might be managed by choice of row spacing and frequency of irrigation. Further studies are needed, including: (a physical sampling to determine the depth of active roots; (b how defoliation affects rooting behaviours and water use of leucaena; and (c modelling of the water and salt balances of leucaena and grass inter-row systems using data from this study, with various levels of irrigation, to investigate the risks of deep drainage over an extended climate sequence.Keywords: Active rooting depth, agroforestry, Chloris gayana, Leucaena leucocephala

  18. LABORATORY EVALUATION OF ZERO-VALENT IRON TO TREAT WATER IMPACTED BY ACID MINE DRAINAGE

    Science.gov (United States)

    This study examines the applicability and limitations of granular zero-valent iron for the treatment of water impacted by mine wastes. Rates of acid neutralization and of metal (Cu, Cd, Ni, Zn, Hg, Al, and Mn) and metalloid (As) uptake were determined in batch systems using simu...

  19. Valuation of Water and its Sensitive Analysis in Agricultural Sector A Hedonic Pricing Approach

    Directory of Open Access Journals (Sweden)

    Mahmoud D. Kakhki

    2010-01-01

    Full Text Available Problem statement: In the recent decades water scarcity and its impacts on agricultural sectors and food security are growing concerns worldwide. Water scarcity is one the major problem facing agricultural production in Iran. In this context valuation of irrigation water can be suggest as an appropriate solution. Approach: This research based on utilizing hedonic pricing method for estimating effective variables on the value of agricultural lands and used a way, for obtaining the value of irrigation water in Mashhad. Sensitive analysis is also used for observation of varieties in the value of water. Results: Results showed that, irrigation water is the most effective and significant variable in the controversial area. Results of the sensitive analysis indicated that, by increasing discount rate, the value of water increased. Whereas by decreasing period of investment and annual consumption of water, the value of it, decreased. Conclusion: In the case of agricultural lands are allocated to cultivation of valuable crops, discount rate of investment would increase; and also if agricultural lands invested in quick return activities, period of investment decrease. And therefore, the value of irrigation water in m-3 increases. Results indicated that by decrease of aridity and so increase in water consumption, in a long run period of investment, value of irrigation water decreases.

  20. Water-Quality Characteristics for Sites in the Tongue, Powder, Cheyenne, and Belle Fourche River Drainage Basins, Wyoming and Montana, Water Years 2001-05, with Temporal Patterns of Selected Long-Term Water-Quality Data

    Science.gov (United States)

    Clark, Melanie L.; Mason, Jon P.

    2007-01-01

    Water-quality sampling was conducted regularly at stream sites within or near the Powder River structural basin in northeastern Wyoming and southeastern Montana during water years 2001-05 (October 1, 2000, to September 30, 2005) to characterize water quality in an area of coalbed natural gas development. The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, characterized the water quality at 22 sampling sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins. Data for general hydrology, field measurements, major-ion chemistry, and selected trace elements were summarized, and specific conductance and sodium-adsorption ratios were evaluated for relations with streamflow and seasonal variability. Trend analysis for water years 1991-2005 was conducted for selected sites and constituents to assess change through time. Average annual runoff was highly variable among the stream sites. Generally, streams that have headwaters in the Bighorn Mountains had more runoff as a result of higher average annual precipitation than streams that have headwaters in the plains. The Powder River at Moorhead, Mont., had the largest average annual runoff (319,000 acre-feet) of all the sites; however, streams in the Tongue River drainage basin had the highest runoff per unit area of the four major drainage basins. Annual runoff in all major drainage basins was less than average during 2001-05 because of drought conditions. Consequently, water-quality samples collected during the study period may not represent long-term water-quality con-ditions for all sites. Water-quality characteristics were highly variable generally because of streamflow variability, geologic controls, and potential land-use effects. The range of median specific-conductance values among sites was smallest in the Tongue River drainage basin. Median values in that basin ranged from 643 microsiemens per centimeter at 25 degrees Celsius (?S/cm at 25?C) on the

  1. A Review of Researches on Efficient Agricultural Water Usc in China

    Institute of Scientific and Technical Information of China (English)

    CUI Yuanlai; HUANG Jiesheng

    2012-01-01

    China is a large agricultural country. According to statistics in 2009, the amount of agricultural irrigation water use accounted tbr about 62% of the total water consumption of the national economy. With increasing population and fast growing food demand in the future, irrigated areas will be further expanded, yet the total agricultural water use will not increase or will continue to fall. It is estimated that the national irrigation efficiency in 2009 was about 49.3%, which is very lower than the irrigation efficiency of developed countries. As a result,

  2. High-frequency monitoring reveals nutrient sources and transport processes in an agriculture-dominated lowland water system

    Science.gov (United States)

    van der Grift, Bas; Broers, Hans Peter; Berendrecht, Wilbert; Rozemeijer, Joachim; Osté, Leonard; Griffioen, Jasper

    2016-05-01

    Many agriculture-dominated lowland water systems worldwide suffer from eutrophication caused by high nutrient loads. Insight in the hydrochemical functioning of embanked polder catchments is highly relevant for improving the water quality in such areas or for reducing export loads to downstream water bodies. This paper introduces new insights in nutrient sources and transport processes in a polder in the Netherlands situated below sea level using high-frequency monitoring technology at the outlet, where the water is pumped into a higher situated lake, combined with a low-frequency water quality monitoring programme at six locations within the drainage area. Seasonal trends and short-scale temporal dynamics in concentrations indicated that the NO3 concentration at the pumping station originated from N loss from agricultural lands. The NO3 loads appear as losses via tube drains after intensive rainfall events during the winter months due to preferential flow through the cracked clay soil. Transfer function-noise modelling of hourly NO3 concentrations reveals that a large part of the dynamics in NO3 concentrations during the winter months can be related to rainfall. The total phosphorus (TP) concentration and turbidity almost doubled during operation of the pumping station, which points to resuspension of particulate P from channel bed sediments induced by changes in water flow due to pumping. Rainfall events that caused peaks in NO3 concentrations did not results in TP concentration peaks. The rainfall induced and NO3 enriched quick interflow, may also be enriched in TP but retention of TP due to sedimentation of particulate P then results in the absence of rainfall induced TP concentration peaks. Increased TP concentrations associated with run-off events is only observed during a rainfall event at the end of a freeze-thaw cycle. All these observations suggest that the P retention potential of polder water systems is primarily due to the artificial pumping regime

  3. Effects of drainage salinity evolution on irrigation management

    Science.gov (United States)

    Kan, Iddo

    2003-12-01

    A soil physics theory of solute movement through a drained saturated zone underlying agricultural land is introduced into a long-term economic analysis of farm-level irrigation management; this is an alternative to the immediate, homogeneous blending assumption employed in previous studies as a base for calculating changes in drainage salinity over time. Using data from California, the effect of drainage salinity evolution is analyzed through a year-by-year profit optimization under the requirement of on-farm drainage disposal. Paths of optimal land allocation among crop production with fresh surface water, saline drainage reuse and evaporation ponds appear to depend on the relative profitability of the first two; that of reuse is affected by the trend of drainage salinity. Tile spacing and environmental regulations associated with evaporation ponds affect the timing of evaporation pond construction. The system converges into a solution involving both drainage-disposal activities; this solution includes an outlet for salts and is therefore sustainable. Following this strategy, the system is asymptotically approaching a steady state that possesses both hydrological and salt balances. Economic implications associated with land retirement programs in California are discussed.

  4. Investigation of the Agricultural Water Management Mechanisms in Zarindasht County, Fars Province, Iran

    Directory of Open Access Journals (Sweden)

    Ali Asadi

    2009-01-01

    Full Text Available Problem statement: Both sequential droughts and lack of water optimal consumption in Zarindasht county, have created scarcity problem that caused agricultural yield's loss in this county. So according to lack of optimal consumption of agricultural water in this county, the main purpose of this study was to investigate agricultural water management mechanisms in three fields of irrigation sources, water transfer and in farm water consumption level. Approach: This study was a sort of survey studies. Questionnaire was used to collect data and its reliability was confirmed by Cronbach’s alpha of 0.83, 0.72 and 0.85 in three fields of irrigation resources, water transfer and in farm water consumption level respectively. Questionnaire’s validity was also confirmed by professors of agriculture training department of Tehran University and experts were related to water management. Statistical population of this study consisted of 4648 individuals of Zarindasht farmers. Using Cochran’s formula, sample size was estimated about 150 individuals. To select the samples, the multi-step sampling method was used. Results: The results of priority setting of the agricultural water management mechanisms revealed that most of important mechanisms of agricultural water management such as “feeding underground water”, “farmers’ participation in providing the expenses of electronically wells”, “setting systems of determining the permissible Debby” in field of irrigation resources and “ participation in different fields” as an important mechanism in the field of water transfer channels and also “using agricultural swages”, “land consolidation and consolidation” in water consumption level are the last priorities of farmers point of view. Furthermore, the result of agricultural water management mechanisms’ factor analysis indicated the existence of six factors in irrigation resources field that most

  5. WTAQ version 2-A computer program for analysis of aquifer tests in confined and water-table aquifers with alternative representations of drainage from the unsaturated zone

    Science.gov (United States)

    Barlow, Paul M.; Moench, Allen F.

    2011-01-01

    The computer program WTAQ simulates axial-symmetric flow to a well pumping from a confined or unconfined (water-table) aquifer. WTAQ calculates dimensionless or dimensional drawdowns that can be used with measured drawdown data from aquifer tests to estimate aquifer hydraulic properties. Version 2 of the program, which is described in this report, provides an alternative analytical representation of drainage to water-table aquifers from the unsaturated zone than that which was available in the initial versions of the code. The revised drainage model explicitly accounts for hydraulic characteristics of the unsaturated zone, specifically, the moisture retention and relative hydraulic conductivity of the soil. The revised program also retains the original conceptualizations of drainage from the unsaturated zone that were available with version 1 of the program to provide alternative approaches to simulate the drainage process. Version 2 of the program includes all other simulation capabilities of the first versions, including partial penetration of the pumped well and of observation wells and piezometers, well-bore storage and skin effects at the pumped well, and delayed drawdown response of observation wells and piezometers.

  6. The many faces and facets of water in agriculture

    Science.gov (United States)

    The many forms of water (i.e., water vapor, fog, rain, snow, hail and ice) are essential, but can be detrimental, for maintaining an adequate food supply and a productive and healthy environment for all forms of life. Greater limitations on water availability and quality call for research on water c...

  7. Agricultural water requirements for commercial production of cranberries

    Science.gov (United States)

    Abundant water resources are essential for the commercial production of cranberries, which use irrigated water for frost protection, soil moisture management, and harvest and winter floods. Given water resource demands in southeastern Massachusetts, we sought to quantify the annual water requirement...

  8. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    Science.gov (United States)

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  9. Quantitative Campylobacter spp., antibiotic resistance genes, and veterinary antibiotics in surface and ground water following manure application: Influence of tile drainage control.

    Science.gov (United States)

    Frey, Steven K; Topp, Edward; Khan, Izhar U H; Ball, Bonnie R; Edwards, Mark; Gottschall, Natalie; Sunohara, Mark; Lapen, David R

    2015-11-01

    This work investigated chlortetracycline, tylosin, and tetracycline (plus transformation products), and DNA-based quantitative Campylobacter spp. and Campylobacter tetracycline antibiotic resistant genes (tet(O)) in tile drainage, groundwater, and soil before and following a liquid swine manure (LSM) application on clay loam plots under controlled (CD) and free (FD) tile drainage. Chlortetracycline/tetracycline was strongly bound to manure solids while tylosin dominated in the liquid portion of manure. The chlortetracycline transformation product isochlortetracycline was the most persistent analyte in water. Rhodamine WT (RWT) tracer was mixed with manure and monitored in tile and groundwater. RWT and veterinary antibiotic (VA) concentrations were strongly correlated in water which supported the use of RWT as a surrogate tracer. While CD reduced tile discharge and eliminated application-induced VA movement (via tile) to surface water, total VA mass loading to surface water was not affected by CD. At both CD and FD test plots, the biggest 'flush' of VA mass and highest VA concentrations occurred in response to precipitation received 2d after application, which strongly influenced the flow abatement capacity of CD on account of highly elevated water levels in field initiating overflow drainage for CD systems (when water level <0.3m below surface). VA concentrations in tile and groundwater became very low within 10d following application. Both Campylobacter spp. and Campylobacter tet(O) genes were present in groundwater and soil prior to application, and increased thereafter. Unlike the VA compounds, Campylobacter spp. and Campylobacter tet(O) gene loadings in tile drainage were reduced by CD, in relation to FD.

  10. Agricultural production and water use scenarios in Cyprus under global change

    Science.gov (United States)

    Bruggeman, Adriana; Zoumides, Christos; Camera, Corrado; Pashiardis, Stelios; Zomeni, Zomenia

    2014-05-01

    In many countries of the world, food demand exceeds the total agricultural production. In semi-arid countries, agricultural water demand often also exceeds the sustainable supply of water resources. These water-stressed countries are expected to become even drier, as a result of global climate change. This will have a significant impact on the future of the agricultural sector and on food security. The aim of the AGWATER project consortium is to provide recommendations for climate change adaptation for the agricultural sector in Cyprus and the wider Mediterranean region. Gridded climate data sets, with 1-km horizontal resolution were prepared for Cyprus for 1980-2010. Regional Climate Model results were statistically downscaled, with the help of spatial weather generators. A new soil map was prepared using a predictive modelling and mapping technique and a large spatial database with soil and environmental parameters. Stakeholder meetings with agriculture and water stakeholders were held to develop future water prices, based on energy scenarios and to identify climate resilient production systems. Green houses, including also hydroponic systems, grapes, potatoes, cactus pears and carob trees were the more frequently identified production systems. The green-blue-water model, based on the FAO-56 dual crop coefficient approach, has been set up to compute agricultural water demand and yields for all crop fields in Cyprus under selected future scenarios. A set of agricultural production and water use performance indicators are computed by the model, including green and blue water use, crop yield, crop water productivity, net value of crop production and economic water productivity. This work is part of the AGWATER project - AEIFORIA/GEOGRO/0311(BIE)/06 - co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation.

  11. Donnan membrane speciation of Al, Fe, trace metals and REEs in coastal lowland acid sulfate soil-impacted drainage waters.

    Science.gov (United States)

    Jones, Adele M; Xue, Youjia; Kinsela, Andrew S; Wilcken, Klaus M; Collins, Richard N

    2016-03-15

    Donnan dialysis has been applied to forty filtered drainage waters collected from five coastal lowland acid sulfate soil (CLASS) catchments across north-eastern NSW, Australia. Despite having average pH values70%) as negatively-charged complexes. In contrast, the speciation of the divalent trace metals Co, Mn, Ni and Zn was dominated by positively-charged complexes and was strongly correlated with the alkaline earth metals Ca and Mg. Thermodynamic equilibrium speciation calculations indicated that natural organic matter (NOM) complexes dominated Fe(III) speciation in agreement with that obtained by Donnan dialysis. In the case of Fe(II), however, the free cation was predicted to dominate under thermodynamic equilibrium, whilst our results indicated that Fe(II) was mainly present as neutral or negatively-charged complexes (most likely with sulfate). For all other divalent metals thermodynamic equilibrium speciation calculations agreed well with the Donnan dialysis results. The proportion of Al and REEs predicted to be negatively-charged was also grossly underestimated, relative to the experimental results, highlighting possible inaccuracies in the stability constants developed for these trivalent Me(SO4)2(-) and/or Me-NOM complexes and difficulties in modeling complex environmental samples. These results will help improve metal mobility and toxicity models developed for CLASS-affected environments, and also demonstrate that Australian CLASS environments can discharge REEs at concentrations an order of magnitude greater than previously reported.

  12. Contrasting nitrogen fate in watersheds using agricultural and water quality information

    Science.gov (United States)

    Essaid, Hedeff I.; Baker, Nancy T.; McCarthy, Kathleen A.

    2016-01-01

    Surplus nitrogen (N) estimates, principal component analysis (PCA), and end-member mixing analysis (EMMA) were used in a multisite comparison contrasting the fate of N in diverse agricultural watersheds. We applied PCA-EMMA in 10 watersheds located in Indiana, Iowa, Maryland, Nebraska, Mississippi, and Washington ranging in size from 5 to 1254 km2 with four nested watersheds. Watershed Surplus N was determined by subtracting estimates of crop uptake and volatilization from estimates of N input from atmospheric deposition, plant fixation, fertilizer, and manure for the period from 1987 to 2004. Watershed average Surplus N ranged from 11 to 52 kg N ha−1 and from 9 to 32% of N input. Solute concentrations in streams, overland runoff, tile drainage, groundwater (GW), streambeds, and the unsaturated zone were used in the PCA-EMMA procedure to identify independent components contributing to observed stream concentration variability and the end-members contributing to streamflow and NO3 load. End-members included dilute runoff, agricultural runoff, benthic-processing, tile drainage, and oxic and anoxic GW. Surplus N was larger in watersheds with more permeable soils (Washington, Nebraska, and Maryland) that allowed greater infiltration, and oxic GW was the primary source of NO3 load. Subsurface transport of NO3 in these watersheds resulted in some removal of Surplus N by denitrification. In less permeable watersheds (Iowa, Indiana, and Mississippi), NO3 was rapidly transported to the stream by tile drainage and runoff with little removal. Evidence of streambed removal of NO3 by benthic diatoms was observed in the larger watersheds.

  13. CONCENTRATION OF URANIUM IN WATERS OF THE BIGGEST LAKES OF THE TYWA RIVER DRAINAGE BASIN

    Directory of Open Access Journals (Sweden)

    Jacek Kubiak

    2014-07-01

    Full Text Available The paper presents the results of research of uranium concentrations in its different kinds – suspended and dissolved – in waters of the largest lakes located in the catchment area of the River Tywa – Strzeszowskie Lake, Dłużyna Lake, Długie Lake and Dłuzec Lake. Small (or the order of several 0,01 µg/l variations in concentration of uranium in different lakes were noted. The study has also shown a seasonal variation – in a similar range – in concentrations of the above species of uranium, as well as total uranium. The content of dissolved uranium was highest in the autumn and winter, lower in the spring and summer. Overall, total uranium was found in greatest concentrations during the fall, in other seasons concentrations were lower and similar to each other. Suspended uranium was found in largest concentrations in autumn and summer, in lower ones in spring and winter. Concentrations of the different species of uranium during the study period showed a small variation – variation coefficient below 10% for total uranium and dissolved uranium, and about 25% for suspended uranium. The observed concentrations of uranium were typical of uncontaminated unpolluted water.

  14. Blue water scarcity and the economic impacts of future agricultural trade and demand

    Science.gov (United States)

    Schmitz, Christoph; Lotze-Campen, Hermann; Gerten, Dieter; Dietrich, Jan Philipp; Bodirsky, Benjamin; Biewald, Anne; Popp, Alexander

    2013-06-01

    An increasing demand for agricultural goods affects the pressure on global water resources over the coming decades. In order to quantify these effects, we have developed a new agroeconomic water scarcity indicator, considering explicitly economic processes in the agricultural system. The indicator is based on the water shadow price generated by an economic land use model linked to a global vegetation-hydrology model. Irrigation efficiency is implemented as a dynamic input depending on the level of economic development. We are able to simulate the heterogeneous distribution of water supply and agricultural water demand for irrigation through the spatially explicit representation of agricultural production. This allows in identifying regional hot spots of blue water scarcity and explicit shadow prices for water. We generate scenarios based on moderate policies regarding future trade liberalization and the control of livestock-based consumption, dependent on different population and gross domestic product (GDP) projections. Results indicate increased water scarcity in the future, especially in South Asia, the Middle East, and north Africa. In general, water shadow prices decrease with increasing liberalization, foremost in South Asia, Southeast Asia, and the Middle East. Policies to reduce livestock consumption in developed countries not only lower the domestic pressure on water but also alleviate water scarcity to a large extent in developing countries. It is shown that one of the two policy options would be insufficient for most regions to retain water scarcity in 2045 on levels comparable to 2005.

  15. Estimation of Tile Drainage Contribution to Streamflow and Nutrient Export Loads

    Science.gov (United States)

    Schilling, K. E.; Arenas Amado, A.; Jones, C. S.; Weber, L. J.

    2015-12-01

    Subsurface drainage is a very common practice in the agricultural U.S. Midwest. It is typically installed in poorly drained soils in order to enhance crop yields. The presence of tile drains creates a route for agrichemicals to travel and therefore negatively impacts stream water quality. This study estimated through end-member analyses the contributions of tile drainage, groundwater, and surface runoff to streamflow at the watershed scale based on continuously monitored data. Especial attention was devoted to quantifying tile drainage impact on watershed streamflow and nutrient export loads. Data analyzed includes streamflow, rainfall, soil moisture, shallow groundwater levels, in-stream nitrate+nitrite concentrations and specific conductance. Data were collected at a HUC12 watershed located in Northeast Iowa, USA. Approximately 60% of the total watershed area is devoted to agricultural activities and forest and grassland are the other two predominant land uses. Results show that approximately 20% of total annual streamflow comes from tile drainage and during rainfall events tile drainage contribution can go up to 30%. Furthermore, for most of the analyzed rainfall events groundwater responded faster and in a more dramatic fashion than tile drainage. The State of Iowa is currently carrying out a plan to reduce nutrients in Iowa waters and the Gulf of Mexico (Iowa Nutrient Reduction Strategy). The outcome of this investigation has the potential to assist in Best Management Practice (BMP) scenario selection and therefore help the state achieve water quality goals.

  16. Roles of the combined irrigation, drainage, and storage of the canal network in improving water reuse in the irrigation districts along the lower Yellow River, China

    Science.gov (United States)

    Liu, Lei; Luo, Yi; He, Chansheng; Lai, Jianbin; Li, Xiubin

    2010-09-01

    SummaryThe commonly used irrigation system in the irrigation districts (with a combined irrigation area of 3.334 × 10 6 ha) along the lower Yellow River of China is canal network. It delivers water from the Yellow River to the fields, collects surface runoff and drainage from cropland, and stores both of them for subsequent irrigation uses. This paper developed a new combined irrigation, drainage, and storage (CIDS) module for the SWAT2000 model, simulated the multiple roles of the CIDS canal system, and estimated its performance in improving water reuse in the irrigation districts under different irrigation and water diversion scenarios. The simulation results show that the annual evapotranspiration (ET) of the double-cropping winter wheat and summer maize was the highest under the full irrigation scenario (automatic irrigation), and the lowest under the no irrigation scenario. It varied between these two values when different irrigation schedules were adopted. Precipitation could only meet the water requirement of the double-cropping system by 62-96% on an annual basis; that of the winter wheat by 32-36%, summer maize by 92-123%, and cotton by 87-98% on a seasonal basis. Hence, effective irrigation management for winter wheat is critical to ensure high wheat yield in the study area. Runoff generation was closely related to precipitation and influenced by irrigation. The highest and lowest annual runoff accounted for 19% and 11% of the annual precipitation under the full irrigation and no irrigation scenarios, respectively. Nearly 70% of the annual runoff occurred during months of July and August due to the concentrated precipitation in these 2 months. The CIDS canals play an important role in delivering the diversion water from the Yellow River, intercepting the surface runoff and drainage from cropland (inflow of the CIDS canal) and recharging the shallow aquifer for later use. Roughly 14-26% of the simulated total flow in the CIDS canal system recharged

  17. Chemical profiling of oil and PAH polluted soil and drainage water

    DEFF Research Database (Denmark)

    Boll, Esther Sørensen

    Hydrocarbons are some of the most common pollutants in soil. Groups of hydrocarbons have been classified as toxic, carcinogenic, and/or mutagenic and they pose an existing threat to human health and the environment. However, prohibition of hydrocarbons is not an option as the pollution sources...... concentrations and of varying compounds, depending on the pollution sources and the extent to which contaminants are weathered and degraded. In our work with the complex chemical composition and source identification of hydrocarbon contamination in soil, we have asked the same questions over and over again......-substituted PAHs and as petrogenic sources predominantly contains alkyl-substituted PAHs, derived O-PAHs from alkyl-substituted PAHs are more likely to be found. It is important to know the fate of hydrocarbons and PAHs in soil in order to make a proper risk assessment. The PAHs generally have low water solubility...

  18. Complex water management in modern agriculture: Trends in the water-energy-food nexus over the High Plains Aquifer.

    Science.gov (United States)

    Smidt, Samuel J; Haacker, Erin M K; Kendall, Anthony D; Deines, Jillian M; Pei, Lisi; Cotterman, Kayla A; Li, Haoyang; Liu, Xiao; Basso, Bruno; Hyndman, David W

    2016-10-01

    In modern agriculture, the interplay between complex physical, agricultural, and socioeconomic water use drivers must be fully understood to successfully manage water supplies on extended timescales. This is particularly evident across large portions of the High Plains Aquifer where groundwater levels have declined at unsustainable rates despite improvements in both the efficiency of water use and water productivity in agricultural practices. Improved technology and land use practices have not mitigated groundwater level declines, thus water management strategies must adapt accordingly or risk further resource loss. In this study, we analyze the water-energy-food nexus over the High Plains Aquifer as a framework to isolate the major drivers that have shaped the history, and will direct the future, of water use in modern agriculture. Based on this analysis, we conclude that future water management strategies can benefit from: (1) prioritizing farmer profit to encourage decision-making that aligns with strategic objectives, (2) management of water as both an input into the water-energy-food nexus and a key incentive for farmers, (3) adaptive frameworks that allow for short-term objectives within long-term goals, (4) innovative strategies that fit within restrictive political frameworks, (5) reduced production risks to aid farmer decision-making, and (6) increasing the political desire to conserve valuable water resources. This research sets the foundation to address water management as a function of complex decision-making trends linked to the water-energy-food nexus. Water management strategy recommendations are made based on the objective of balancing farmer profit and conserving water resources to ensure future agricultural production.

  19. Implementing sustainable drainage systems for urban surface water management within the regulatory framework in England and Wales.

    Science.gov (United States)

    Ellis, J Bryan; Lundy, Lian

    2016-12-01

    The UK 2007 floods resulted in damages estimated to exceed over £4 billion. This triggered a national review of strategic flood risk management (Pitt, 2008) with its recommendations informing and implemented by the Flood and Water Management, Act (FWMA, 2010). Estimating that up to two-thirds of properties flooded in the 2007 event as a direct result of overloaded sewer systems, the FWMA set out an ambitious overhaul of flood risk management approaches including identifying bodies responsible for the management of local flood risk (local municipalities) and the development of over-arching Lead Local Flood Authorities (LLFAs) at a regional level. LLFAs duties include developing local flood risk management strategies and, aligned with this, many LLFAs and local municipalities produced sustainable drainage system (SUDS) guidance notes. In parallel, changes to the national planning policy framework (NPPF) in England give priority to the use of SUDS in new major developments, as does the related Town and Country Planning Order (2015). However, whilst all three pieces of legislation refer to the preferential use of SUDs, these requirements remain "economically proportionate" and thus the inclusion of SUDS within development controls remain desirable - but not mandatory - obligations. Within this dynamic policy context, reignited most recently by the December 2015 floods, this paper examines some of the challenges to the implementation of SUDS in England and Wales posed by the new regulatory frameworks. In particular, it examines how emerging organisational procedures and processes are likely to impact on future SUDS implementation, and highlights the need for further cross-sectoral working to ensure opportunities for cross-sectoral benefits- such as that accrued by reducing stormwater flows within combined sewer systems for water companies, property developers and environmental protection - are not lost.

  20. 农地整理中灌排沟渠生态化设计%Ecological design of irrigation and drainage ditches in agricultural land consolidation

    Institute of Scientific and Technical Information of China (English)

    叶艳妹; 吴次芳; 俞婧

    2011-01-01

    不适当的农地整理沟渠设计,会导致生物栖息地环境退化,直接影响农田生态系统的稳定性.研究解决农地整理中灌排沟渠的生态化设计技术,协调灌排沟渠的功能性、生态性和经济性,是未来农地整理急需要解决的重要技术环节.该文在系统分析国内外研究的基础上,以福建小湖镇项目区为例,提出了灌排沟渠生态化设计的原则和技术要点.项目区沟渠生态化设计的结果表明,农地整理中沟渠的生态化设计,关键是要把握好缓坡设计、混凝土与块石的结合、造型模板混凝土护岸、生态孔洞设置、深槽、复式断面、半生态混凝土渠道、膨润土防水毯渠道、改良的植生型防渗砌块渠道、动物脱逃斜坡与青蛙保育设计等10个技术环节;沟渠的生态化设计必须兼顾输水效率与生态功能;考虑青蛙等动物的保育,当渠深1.0 m,边坡垂直时,应当设置阶梯式生态板建造动物脱逃斜坡.可持续性评价表明,沟渠生态化设计具有良好的生态、经济和社会可持续性.%Inappropriate design of ditch in agricultural land consolidation can degenerate habitat and affect the stability of agricultural ecosystem. So it is essential to develop ecological design technologies of the irrigation systems to simultaneously maintain irrigation functionality, ecological quality and economic gains. This article illustrates a case study of NADPA in Xiaohu Town of Fujian Province and describes how to develop principles and technological key points of ecological design of irrigational ditches. The result of ecological design of irrigational ditches in NADPA shows that the key to the ecological design of irrigational ditches in agricultural land consolidation is to implement the following ten technological improvements: design of gentle incline, combination of cement concrete and stone, plate molding concrete revetment, ecological cavern settings, deep groove, compound

  1. Planning an Agricultural Water Resources Management System: A Two-Stage Stochastic Fractional Programming Model

    Directory of Open Access Journals (Sweden)

    Liang Cui

    2015-07-01

    Full Text Available Irrigation water management is crucial for agricultural production and livelihood security in many regions and countries throughout the world. In this study, a two-stage stochastic fractional programming (TSFP method is developed for planning an agricultural water resources management system under uncertainty. TSFP can provide an effective linkage between conflicting economic benefits and the associated penalties; it can also balance conflicting objectives and maximize the system marginal benefit with per unit of input under uncertainty. The developed TSFP method is applied to a real case of agricultural water resources management of the Zhangweinan River Basin China, which is one of the main food and cotton producing regions in north China and faces serious water shortage. The results demonstrate that the TSFP model is advantageous in balancing conflicting objectives and reflecting complicated relationships among multiple system factors. Results also indicate that, under the optimized irrigation target, the optimized water allocation rate of Minyou Channel and Zhangnan Channel are 57.3% and 42.7%, respectively, which adapts the changes in the actual agricultural water resources management problem. Compared with the inexact two-stage water management (ITSP method, TSFP could more effectively address the sustainable water management problem, provide more information regarding tradeoffs between multiple input factors and system benefits, and help the water managers maintain sustainable water resources development of the Zhangweinan River Basin.

  2. Virtual water flows in the international trade of agricultural products of China.

    Science.gov (United States)

    Zhang, Yu; Zhang, Jinhe; Tang, Guorong; Chen, Min; Wang, Lachun

    2016-07-01

    With the rapid development of the economy and population, water scarcity and poor water quality caused by water pollution have become increasingly severe in China. Virtual water trade is a useful tool to alleviate water shortage. This paper focuses on a comprehensive study of China's international virtual water flows from agricultural products trade and completes a diachronic analysis from 2001 to 2013. The results show that China was in trade surplus in relation to the virtual water trade of agricultural products. The exported virtual water amounted to 29.94billionm(3)/yr. while 155.55billionm(3)/yr. was embedded in imported products. The trend that China exported virtual water per year was on the decline while the imported was on a rising trend. Virtual water trade of China was highly concentrated. Not all of the exported products had comparative advantages in virtual water content. Imported products were excessively concentrated on water intensive agricultural products such as soya beans, cotton, and palm oil. The exported virtual water mainly flowed to the Republic of Korea, Hong Kong of China and Japan, while the imported mainly flowed from the United States of America, Brazil and Argentina. From the ethical point of view, the trade partners were classified into four types in terms of "net import" and "water abundance": mutual benefit countries, such as Australia and Canada; unilateral benefit countries, such as Mongolia and Norway; supported countries, such as Egypt and Singapore; and double pressure countries, such as India and Pakistan. Virtual water strategy refers to water resources, agricultural products and human beings. The findings are beneficial for innovating water resources management system, adjusting trade structure, ensuring food security in China, and promoting the construction of national ecological security system.

  3. Towards a satellite based system for monitoring agricultural water use: A case study for Saudi Arabia

    KAUST Repository

    McCabe, Matthew

    2015-11-12

    Over the last few decades, the Kingdom of Saudi Arabia (KSA) has witnessed a dramatic expansion of its agricultural sector. In common with many other developing countries, this has been driven by a combination of population increases and the related effects on consumption as well as a demand for increased food security. Inevitably, the sector growth has come at the expense of a parallel increase in water consumption. Indeed, it is estimated that more than 80% of all of the water used in the Kingdom relates to agricultural production. More concerning is that the vast majority of this water is derived from non-renewable fossil groundwater extraction. To exacerbate the problem, groundwater extraction is largely unmonitored, meaning that there is very little accounting of water use on a routine basis. In the absence of techniques to directly quantify abstractions related to agriculture at large spatial scales, a mechanism for inferring crop water use as an indirect surrogate is required.

  4. When it Rains, It Pours: Drought, Excess Water, and Agricultural Risk Management in the U.S. Corn Belt

    Science.gov (United States)

    Baker, J. M.; Anderson, M. C.; Griffis, T. J.; Kustas, W.; Schultz, N. M.

    2012-12-01

    Ever since its inception agriculture has been a risky proposition, with yields subject to losses from insects, diseases, weeds, and weather anomalies. The transition from subsistence farming to production agriculture motivated research that eventually provided tools to combat some of the traditional sources of risk, particularly pests. However, weather-related risk remains resistant to mitigation, except in cases where there has been a fundamental alteration of lands otherwise unsuited for agriculture, e.g. - irrigation of arid lands and drainage of swamps. We have undertaken a multi-faceted analysis of potential avenues to reduce weather-related risk in the central U.S. corn belt, focusing on MN, IA, IL, IN, and OH. Mean annual precipitation has increased across the region over the past 60 years, and mean stream flows have increased as much or more, indicating relatively stable ET. The precipitation increase is consistent with changes predicted by GCMs for the region, while the stable (and even decreasing) regional ET primarily reflects changes in farming, particularly an increase in soybean acreage at the expense of permanent pasture. Unfortunately, the observed increases in precipitation are primarily associated with an increase in spatially and temporally isolated high intensity storms, so transient drought remains a problem. Indeed, analysis of crop insurance indemnities in recent years for the region reveals nearly equal yield losses due to drought and excess water, each totaling roughly $3 billion USD between 2000 and 2011, and jointly accounting for more than two thirds of all payments. County level mapping shows that losses from both causes occur throughout the corn belt, often in the same county in the same year. The ALEXI model, which provides continental-scale estimates of ET on a 10 km grid, was used to map ET anomalies across the region for the same time period. Correspondence between ALEXI output and insurance loss data was reasonably good in drought

  5. mpacts of Agricultural Non-point Pollution on Water-source Area in Songhua Dam

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    [Objective] The aim was to research impacts of agricultural non-point pol- lution on water-source region in Songhua Dam, laying foundation for control of water pollution and scientific protection of water-source region. [Method] Water in Muyang River, lengshui River and Zizania aquatica region were sampled to measure content of pollutants in water and conclude relation between water contamination and agri- cultural non-point pollution to find the major cause of pollution. [Result] Organic pollu- tant in Muyang River was higher; N and P contents in Lengshui River were higher; the measured indices in Zizania aquatica region excessively exceeded related stan- dard. [Conclusion] The chemical fertilizers and pesticides are the toxic materials lead- ing to water contamination and constitute a major cause of pollution in Songhua Dam water-source region. Agricultural non-point pollution should be controlled in a scientific way.

  6. Decision support for on-farm water management and long-term agricultural sustainability in a semi-arid region of India

    Science.gov (United States)

    Singh, Ajay

    2010-09-01

    SummaryThe long-term success of irrigated agriculture for sustainable crop production in India depends largely on the careful management of land and water resources. Currently, some serious environmental problems of waterlogging and soil salinization are burgeoning in parts of Haryana State of India; half a million hectare area of the State is already waterlogged. Poor irrigation and drainage management and inadequate exploitation of saline ground water are the main factors responsible for this phenomenon. In order to prevent further degradation and to maintain the food production for the growing population, judicious use of natural resources is a must. A wide range of solutions could be considered to address the problems. But the effectiveness of all the solutions and their combinations cannot be verified with on-farm experiments. Simulation models by way of their predictive capability are often the only viable means of providing input to management decisions. These models can help to forecast the likely impacts of a particular alternative management strategy. In the present study a physical based one-dimensional simulation model SWASALT was employed to evaluate on-farm irrigation water management options. After successful calibration and validation with field experimentation data, several scenario building exercises have been conducted under different crop, soil and rainfall conditions. The water and salt balance component obtained for each simulation run were used to derive water management response indicators. The simulation study revealed that in most conditions, saline water of up to 7.5 dS/m can be used safely on long term basis for crop production. The simulation study further revealed that alternative use of canal and saline water had an edge over mix use. Several alternatives have been suggested for sustainable agricultural production in the region. The strategies suggested, if followed, would lend sustainability to the agricultural production besides

  7. 关于民用建筑消防给排水的相关建议%Suggestions about the Civil Building Fire Protection Water Supply and Drainage

    Institute of Scientific and Technical Information of China (English)

    董志辉; 杨瑄

    2014-01-01

    Civil construction relates to residents' life and property security, which need to strengthen the fire fighting capacity. Therefore, the fire protection water supply and drai-nage as the fire protection infrastructure project to which need to pay more atention. In this article, the author starts from the type of fire protection water supply and drainage, and put for-ward the design suggestions of fire protection water supply and drainage in the civil construction.%民用建筑关乎居民生命财产的安全,其消防能力更是需要大力加强。因此,消防给排水作为消防基础项目,亟需得到重视。本文从消防给水的类型入手,提出了民用建筑中,消防给排水的设计建议。

  8. Acid mine drainage

    Science.gov (United States)

    Bigham, Jerry M.; Cravotta, Charles A.

    2016-01-01

    Acid mine drainage (AMD) consists of metal-laden solutions produced by the oxidative dissolution of iron sulfide minerals exposed to air, moisture, and acidophilic microbes during the mining of coal and metal deposits. The pH of AMD is usually in the range of 2–6, but mine-impacted waters at circumneutral pH (5–8) are also common. Mine drainage usually contains elevated concentrations of sulfate, iron, aluminum, and other potentially toxic metals leached from rock that hydrolyze and coprecipitate to form rust-colored encrustations or sediments. When AMD is discharged into surface waters or groundwaters, degradation of water quality, injury to aquatic life, and corrosion or encrustation of engineered structures can occur for substantial distances. Prevention and remediation strategies should consider the biogeochemical complexity of the system, the longevity of AMD pollution, the predictive power of geochemical modeling, and the full range of available field technologies for problem mitigation.

  9. Foreign Agricultural Land Acquisition and the Visibility of Water Resource Impacts in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Philip Woodhouse

    2012-06-01

    Full Text Available The many headlines focusing on 'land grabbing' have distracted attention from the role that access to water plays in underpinning the projected productivity of foreign direct investment in acquisition of agricultural land in developing countries. This paper identifies questions that arise about the explicit and implicit water requirements for irrigation in agricultural projects on land that is subject to such foreign investment deals. It focuses particularly on land acquisition in sub-Saharan Africa (SSA, where, for savanna ecosystems that cover some two thirds of the region, rainfall uncertainty is the principal constraint to increased agricultural productivity. The paper argues that, even where land acquisition deals do not specify irrigation, choice of location and/or crop type indicates this is invariably an implicit requirement of projects. It is arguable that private investment in water infrastructure (e.g. for water storage could provide wider benefits to neighbouring small-scale producers, thus reducing the risk inherent in much of African agriculture. However, it is also possible that foreign investment may compete with existing water use, and some land deals have included provisions for priority access to water in cases of scarcity. Empirical studies are used to identify the mechanisms through which large-scale land investments influence water availability for smaller-scale land users. The paper concludes that, although effects on water resources may constitute one of the main impacts of land deals, this is likely to be obscured by the lack of transparency over water requirements of agricultural projects and the invisibility of much existing local agricultural water management to government planning agencies.

  10. Soil and Water Challenges for Pacific Northwest Agriculture

    Science.gov (United States)

    Soil and water conservation has been a major concern in the Inland Pacific Northwest since the onset of farming 125 years ago. Some of the highest historic water erosion rates in the USA have occurred on steep slopes in the Palouse region where soil loss averaged 45 Mg ha-1 yr-1 and could reach 450 ...

  11. Assessment of alternative water management options for irrigated agriculture

    NARCIS (Netherlands)

    Jhorar, R.K.; Smit, A.A.M.F.R.; Roest, C.W.J.

    2009-01-01

    A simulation study on alternative water management strategies was carried out for Sirsa Irrigation Circle in Haryana, covering an area of about 4800 km(2). Results showed that crop evapotranspiration and soil salinity development under reduction in canal water supply and increase in groundwater use,

  12. Rising energy prices and the economics of water in agriculture

    NARCIS (Netherlands)

    Zilberman, D.; Sproul, T.; Rajagopal, D.; Sexton, S.; Hellegers, P.J.G.J.

    2008-01-01

    Rising energy prices will alter water allocation and distribution. Water extraction and conveyance will become more costly and demand for hydroelectric power will grow. The higher cost of energy will substantially increase the cost of groundwater, whereas increasing demand for hydroelectric power ma

  13. Vertical drainage capacity of new electrical drainage board on improvement of super soft clayey ground

    Institute of Scientific and Technical Information of China (English)

    沈扬; 励彦德; 黄文君; 徐海东; 胡品飞

    2015-01-01

    As an advanced polymer composites electro-kinetic geosynthetics, the electro-osmotic vertical drainage (EVD) board could drain water quickly and accelerate consolidation process. However, the drainage rate was mainly impacted by the vertical drainage capability. Therefore, vertical drainage capability at the top of EVD board was theoretically analyzed. Basic requirements for drainage at the top of the board were summed up, as well as the formula of anode pore pressure when losing the vertical drainage capability. Meanwhile, a contrast test on the top and bottom drainage capacities was conducted. In use of the advanced EVD board, the voltage potential and pore pressure of anode were measured. Moreover, the derived formulas were verified. The result shows that the decrease of electric force gradient had an observable impact on the drainage capability. There was nearly no difference between the energy consumption for the two drainage methods. Although a little less water was discharged, the top drainage method had more advantages, such as high initial drainage velocity, few soil cracks, low anode water content and high soil strength. All of these show that the super soft soil ground could be consolidated quickly in use of the advanced EVD board through the top drainage. The top drainage method could efficiently improve the drainage effect, decrease the energy consumption and speed up the project proceeding.

  14. Questa Baseline and Pre-Mining Ground-Water-Quality Investigation 22 - Ground-Water Budget for the Straight Creek Drainage Basin, Red River Valley, New Mexico

    Science.gov (United States)

    McAda, Douglas P.; Naus, Cheryl A.

    2008-01-01

    In April 2001, the U.S. Geological Survey (USGS) and the New Mexico Environment Department (NMED) began a cooperative study to infer the pre-mining ground-water chemistry at the Molycorp molybdenum mine site in the Red River Valley. The Molycorp mine has been in operation since the 1920s. Because ground-water conditions prior to mining are not available, sites analogous to the pre-mining conditions at the mine site must be studied to infer those pre-mining conditions. The Straight Creek drainage basin (watershed) was selected as the primary analog site for this study because of its similar terrain and geology to the mine site, accessibility, potential for well construction, and minimal anthropogenic activity. The purpose of this report is to present results of a water-budget analysis of the debris-flow aquifer in the Straight Creek watershed. The water budget is based on mean annual conditions and is assumed to be steady state. For this study, the Straight Creek watershed was divided into sub-watersheds on the basis of locations of seismic lines, which were used to calculate cross-section area through the Straight Creek debris-flow deposits and underlying fractured and weathered bedrock (regolith). Water-budget components were calculated for areas upstream from and between the seismic lines. Components of the water budget were precipitation, evapotranspiration, surface-water flow, and ground-water flow under a steady-state mean annual condition. Watershed yield, defined as precipitation minus evapotranspiration, was separated into surface-water flow, ground-water flow through the debris-flow deposits and regolith, and ground-water flow through fractured bedrock. The approach to this calculation was to use Darcy?s Law to calculate the flow through the cross-section area of the saturated debris-flow deposits and underlying regolith as defined by the interpreted seismic data. The amount of watershed yield unaccounted for through this section then was attributed to

  15. PRESSURE OF WATER SHORTAGE ON AGRICULTURE IN ARID REGION OF CHINA

    Institute of Scientific and Technical Information of China (English)

    LI Xin

    2003-01-01

    The arid areas in China are mainly located in North China and Northwest China. The North China is themain region for food production. There is 31.19% of the total farmland and 26. 01% of the total population, but only6. 14% of the available water resources of China. Groundwater is over pumped (6. 53 × 109m3 every year) in the regionsof Beijing, Tianjin, and Hebei Province, so water supply could not meet the water demand there. The distribution of wa-ter in Northwest China is uneven, some inland rivers and lakes are dried up, and desertification has expanded since riverwater in the upper and middle reaches is diverted for irrigation. Up to 2050, population will be up to 1.6 × 109 in Chi-na, and industry will be developed fast, therefore 50% of the water supply will be used by industry and resident, andwater for agriculture will be decreased year by year. In the coming 50 years, water demand for agriculture will be in-creased by 5.6 × 109m3 in the Huanghe (Yellow) River valley, and by 1.7 × 109m3 in the Northwest China. It will beimpossible for the Huanghe River to meet the water demand, because it always dried up in the cold half year since 1984.To avoid water shortage of agriculture in the arid regions, it is necessary to divert water from the Changjiang (Yangtze)River in the south of China, and to use water efficiently. It is the best way to use drip irrigation in agriculture, recyclewater in industry and resident use, and control water pollution. Otherwise water shortage in the arid regions will restrictthe development of agriculture in China.

  16. Problem area 1 effective water management in agriculture-Product area accomplishments-FY 11 - FY14

    Science.gov (United States)

    The USDA Agricultural Research Service National Program 211 is composed of four components or problem areas. Problem Area 1, Effective Water Management in Agriculture, focuses on six areas of research that are crucial to safe and effective use of all water resources for agricultural production: 1) I...

  17. The economic impact of more sustainable water use in agriculture: A computable general equilibrium analysis

    Science.gov (United States)

    Calzadilla, Alvaro; Rehdanz, Katrin; Tol, Richard S. J.

    2010-04-01

    SummaryAgriculture is the largest consumer of freshwater resources - around 70 percent of all freshwater withdrawals are used for food production. These agricultural products are traded internationally. A full understanding of water use is, therefore, impossible without understanding the international market for food and related products, such as textiles. Based on the global general equilibrium model GTAP-W, we offer a method for investigating the role of green (rain) and blue (irrigation) water resources in agriculture and within the context of international trade. We use future projections of allowable water withdrawals for surface water and groundwater to define two alternative water management scenarios. The first scenario explores a deterioration of current trends and policies in the water sector (water crisis scenario). The second scenario assumes an improvement in policies and trends in the water sector and eliminates groundwater overdraft world-wide, increasing water allocation for the environment (sustainable water use scenario). In both scenarios, welfare gains or losses are not only associated with changes in agricultural water consumption. Under the water crisis scenario, welfare not only rises for regions where water consumption increases (China, South East Asia and the USA). Welfare gains are considerable for Japan and South Korea, Southeast Asia and Western Europe as well. These regions benefit from higher levels of irrigated production and lower food prices. Alternatively, under the sustainable water use scenario, welfare losses not only affect regions where overdrafting is occurring. Welfare decreases in other regions as well. These results indicate that, for water use, there is a clear trade-off between economic welfare and environmental sustainability.

  18. Surface Drainage-Main or Lateral on Agricultural Land in the Conterminous United States, 1992: National Resource Inventory Conservation Practice 608

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the estimated percentage of the 1-km grid cell that is covered by or subject to the agricultural conservation practice (CP608), Surface...

  19. Water productivity in rainfed agriculture; redrawing the rainbow of water to achieve food security in rainfed smallholder systems

    NARCIS (Netherlands)

    Makurira, H.

    2010-01-01

    The challenge of water scarcity as a result of insufficient seasonal rainfall and dry spell occurrences during cropping seasons is compounded by inefficient agricultural practices by smallholder farmers where insignificant soil and water conservation efforts are applied. The hypothesis of this resea

  20. Benchmarking water productivity in agriculture and the scope for improvement - remote sensing modelling from field to global scale

    NARCIS (Netherlands)

    Zwart, S.J.

    2010-01-01

    Agriculture is the largest consumer and water. In the context of an increasing population and less water available for the agricultural sector, the water productivity needs to be sustained or increased to secure food security. This study provides benchmark values for water productivity for the major

  1. Land use policy and agricultural water management of the previous half of century in Africa

    Science.gov (United States)

    Valipour, Mohammad

    2015-12-01

    This paper examines land use policy and agricultural water management in Africa from 1962 to 2011. For this purpose, data were gathered from Food and Agriculture Organization of the United Nations (FAO) and the World Bank Group. Using the FAO database, ten indices were selected: permanent crops to cultivated area (%), rural population to total population (%), total economically active population in agriculture to total economically active population (%), human development index, national rainfall index (mm/year), value added to gross domestic product by agriculture (%), irrigation water requirement (mm/year), percentage of total cultivated area drained (%), difference between national rainfall index and irrigation water requirement (mm/year), area equipped for irrigation to cultivated area or land use policy index (%). These indices were analyzed for all 53 countries in the study area and the land use policy index was estimated by two different formulas. The results show that value of relative error is systems was studied using other eight indices with more limited information. These indices are surface irrigation (%), sprinkler irrigation (%), localized irrigation (%), spate irrigation (%), agricultural water withdrawal (10 km3/year), conservation agriculture area as percentage of cultivated area (%), percentage of area equipped for irrigation salinized (%), and area waterlogged by irrigation (%). Finally, tendency of farmers to use irrigation systems for cultivated crops has been presented. The results show that Africa needs governments' policy to encourage farmers to use irrigation systems and raise cropping intensity for irrigated area.

  2. Optimal management of water resources demand and supply in irrigated agriculture from plot to regional scale

    Science.gov (United States)

    Schütze, Niels; Wagner, Michael

    2016-04-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic optimization framework for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. Different open loop and closed loop control strategies are evaluated within this stochastic optimization framework in order to generate reliable stochastic crop water production functions (SCWPF). The resulting database of SCWPF can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  3. Agriculture and Energy: Implications for Food Security, Water, and Land Use

    Science.gov (United States)

    Tokgoz, S.; Zhang, W.; Msangi, S.; Bhandary, P.

    2011-12-01

    Sustainable production of agricultural commodities and growth of international trade in these goods are challenged as never before by supply-side constraints (such as climate change, water and land scarcity, and environmental degradation) and by demand-side dynamics (volatility in food and energy markets, the strengthening food-energy linkage, population growth, and income growth). On the one hand, the rapidly expanding demand can potentially create new market opportunities for agriculture. On the other hand, there are many threats to a sufficient response by the supply side to meet this growing and changing demand. Agricultural production systems in many countries are neither resource-efficient, nor producing according to their full potential. The stock of natural resources such as land, water, nutrients, energy, and genetic diversity is shrinking relative to demand, and their use must become increasingly efficient in order to reduce environmental impacts and preserve the planet's productive capacity. World energy prices have increased rapidly in recent years. At the same time, agriculture has become more energy-intensive. Higher energy costs have pushed up the cost of producing, transporting and processing agricultural commodities, driving up commodity prices. Higher energy costs have also affected water use and availability through increased costs of water extraction, conveyance and desalinization, higher demand for hydroelectric power, and increased cost of subsidizing water services. In the meantime, the development of biofuels has diverted increasing amounts of agricultural land and water resources to the production of biomass-based renewable energy. This more "intensified" linkage between agriculture and energy comes at a time when there are other pressures on the world's limited resources. The related high food prices, especially those in the developing countries, have led to setbacks in the poverty alleviation effort among the global community with more

  4. Water for Agriculture in a Vulnerable Delta: A Case Study of Indian Sundarban

    Science.gov (United States)

    Das, S.; Bhadra, T.; Hazra, S.

    2015-12-01

    Indian Sundarban lies in the south-western part of the Ganges-Brahmaputra Delta and supports a 4.43 million strong population. The agrarian economy of Sundarban is dominated by rainfed subsistence rice farming. Unavailability of upstream fresh water, high salinity of river water of up to 32ppt, soil salinity ranging between 2dSm-1 to 19dSm-1, small land holdings of per capita 840 sq. metre and inadequate irrigation facilities are serious constraints for agricultural production in Sundarban. This paper assesses Cropping Intensity, Irrigation Intensity and Man-Cropland Ratio from Agriculture Census (2010-11) data and estimates the seasonal water demand for agriculture in different blocks of Sundarban. The research exposes the ever increasing population pressure on agriculture with an average Man Cropland Ratio of 1745 person/sq.km. In 2010-2011, the average cropping intensity was 129.97% and the irrigation intensity was 20.40%. The highest cropping and irrigation intensity have been observed in the inland blocks where shallow ground water is available for agriculture on the contrary, the lowest values have been observed in the southern blocks, due to existence of saline shallow ground water. The annual water demand for agriculture in Sundarban has been estimated as 2784 mcm. Available water from 70000 freshwater tanks and around 8000 numbers of shallow tube wells are not sufficient to meet the agricultural water demand. Existing irrigation sources and rainfall of 343 mcm fall far short of the water demand of 382 mcm during peak dry Season. Unavailability of fresh water restricts the food production, which endangers the food security of 87.5% of the people in Sundarban. To ensure the food security in changing climatic condition, expansion of irrigation network and harnessing of new water sources are essential. Large scale rainwater harvesting, rejuvenation and re-connection of disconnected river channels, artificial recharge within shallow aquifer to bring down its

  5. Agricultural implications of reduced water supplies in the Green and Upper Yellowstone River Basins

    Energy Technology Data Exchange (ETDEWEB)

    Lansford, R. R.; Roach, F.; Gollehon, N. R.; Creel, B. J.

    1982-02-01

    The growth of the energy sector in the energy-rich but water-restricted Western US has presented a potential conflict with the irrigated agricultural sector. This study measures the direct impacts on farm income and employment resulting from the transfer of water from agriculture to energy in two specific geographical areas - the Green and Upper Yellowstone River Basins. We used a linear programming model to evaluate the impacts of reduced water supplies. Through the use of regional multipliers, we expanded our analysis to include regional impacts. Volume I provides the major analysis of these impacts. Volume II provides further technical data.

  6. The effects of industrial and agricultural activity on the water quality of the Sitnica River (Kosovo)

    OpenAIRE

    Albona Shala; Fatbardh Sallaku; Agron Shala; Shkëlzim Ukaj

    2015-01-01

    An important issue in Kosovo is water pollution. The use of polluted water has a direct impact on human health and cause long-term consequences. The longest and most polluted river in Kosovo is the Sitnica, a 90 km long river with its source located near the village of Sazli. The river flows into the Ibar River in Northern Kosovo. Agriculture is prevailing activity in the basin of Sitnica which is why agricultural as well as industrial waste are the biggest water pollutants. The purpose of th...

  7. Marginal value of natural water in agriculture: a study in the suburbs of Mekelle City, Ethiopia

    NARCIS (Netherlands)

    Gezahegn, T.W.; Xueqin Zhu, Xueqin

    2015-01-01

    In areas where markets for natural water are lacking, information on its marginal value can be an important tool for proper pricing to achieve efficient allocation of the resource. This article investigates the marginal value of natural water (rainwater used as a proxy) in agricultural crop producti

  8. Agriculture in the Mississippi River Basin; effects on water quality, aquatic biota, and watershed conservation.

    Science.gov (United States)

    Agriculture has been identified as a potential leading source of nutrients (nitrogen and phosphorus) and sediment enrichment of water bodies within the Mississippi River basin (MRB) and contributes to impaired water quality and biological resources in the MRB and the northern Gulf of Mexico (GOM). T...

  9. Urban and peri-urban agricultural production in Beijing Municipality and its impact on water quality

    NARCIS (Netherlands)

    Diepen, van C.A.; Wijk, van M.S.; Xu Cheng,; Roetter, R.P.; Jongbloed, A.W.; Yanxia Hu,; Changhe Lu,; Keulen, van H.; Wolf, J.

    2003-01-01

    For Beijing Municipality the quantity of available water resources and the quality of the available water have become matters of concern. This is caused by the rapid urbanization and the strong intensification of the agricultural sector. In this literature review for Beijing Municipality the followi

  10. Improving water quality in agricultural catchments: sediment and nutrient retention in field wetlands

    Science.gov (United States)

    Ockenden, M. C.; Deasy, C.; Quinton, J. N.; Stoate, C.

    2012-04-01

    A recent update of Water Framework Directive classifications in the UK indicates that only 28% of water bodies currently achieve good ecological status and that agriculture is one of the main sectors responsible for the pressures contributed by sediment and nutrients. The use of edge-of-field features, such as field wetlands - small sediment and pollutant trapping features (

  11. Spatial Mapping of Agricultural Water Productivity Using the SWAT Model

    Science.gov (United States)

    Thokal, Rajesh Tulshiram; Gorantiwar, S. D.; Kothari, Mahesh; Bhakar, S. R.; Nandwana, B. P.

    2015-03-01

    The Sina river basin is facing both episodic and chronic water shortages due to intensive irrigation development. The main objective of this study was to characterize the hydrologic processes of the Sina river basin and assess crop water productivity using the distributed hydrologic model, SWAT. In the simulation year (1998-1999), the inflow to reservoir from upstream side was the major contributor to the reservoir accounting for 92 % of the total required water release for irrigation purpose (119.5 Mm3), while precipitation accounted for 4.1 Mm3. Annual release of water for irrigation was 119.5 Mm3 out of which 54 % water was diverted for irrigation purpose, 26 % was wasted as conveyance loss, average discharge at the command outlet was estimated as 4 % and annual average ground-water recharge coefficient was in the range of 13-17 %. Various scenarios involving water allocation rule were tested with the goal of increasing economic water productivity values in the Sina Irrigation Scheme. Out of those, only most benefited allocation rule is analyzed in this paper. Crop yield varied from 1.98 to 25.9 t/ha, with the majority of the area between 2.14 and 2.78 t/ha. Yield and WP declined significantly in loamy soils of the irrigation command. Crop productivity in the basin was found in the lower range when compared with potential and global values. The findings suggested that there was a potential to improve further. Spatial variations in yield and WP were found to be very high for the crops grown during rabi season, while those were low for the crops grown during kharif season. The crop yields and WP during kharif season were more in the lower reach of the irrigation commands, where loamy soil is more concentrated. Sorghum in both seasons was most profitable. Sorghum fetched net income fivefold that of sunflower, two and half fold of pearl millet and one and half fold of mung beans as far as crop during kharif season were concerned and it fetched fourfold that of

  12. Analysis of economic impacts of climate change on agricultural water management in Europe

    Science.gov (United States)

    Garrote, Luis; Iglesias, Ana

    2016-04-01

    This contribution presents an analysis of impacts of climate change on agricultural water management in Europe. The analysis of climate change impacts on agriculture is composed of two main categories: rainfed agriculture and irrigated agriculture. Impacts on rainfed agriculture are mostly conditioned by climatic factors and were evaluated through the estimation of changes in agricultural productivity induced by climatic changes using the SARA model. At each site, process-based crop responses to climate and management are simulated by using the DSSAT crop models for cereals (wheat and rice), coarse grains (maize) and leguminous (soybeans). Changes in the rest of the crops are derived from analogies to these main crops. For each of the sites we conducted a sensitivity analysis to environmental variables (temperature, precipitation and CO2 levels) and management variables (planting date, nitrogen and irrigation applications) to obtain a database of crop responses. The resulting site output was used to define statistical models of yield response for each site which were used to obtain estimates of changes in agricultural productivity of representative production systems in European agro-climatic regions. Impacts on irrigated agriculture are mostly conditioned by water availability and were evaluated through the estimation of changes in water availability using the WAAPA model, which simulates the operation of a water resources system to maximize water availability. Basic components of WAAPA are inflows, reservoirs and demands. These components are linked to nodes of the river network. WAAPA allows the simulation of reservoir operation and the computation of supply to demands from a system of reservoirs accounting for ecological flows and evaporation losses. WAAPA model was used to estimate maximum potential water availability in the European river network applying gross volume reliability as performance criterion. Impacts on agricultural production are also dependent

  13. Runoff and drainage water quality from geotextile and gravel pads used in livestock feeding and loafing areas.

    Science.gov (United States)

    Singh, Anshu; Bicudo, José R; Workman, Stephen R

    2008-05-01

    Geotextile and gravel pads offer a low-cost alternative to concrete for providing all-weather surfaces for cattle and vehicle traffic, and are used in many livestock facilities to minimize mud, runoff and erosion of heavy traffic areas. The objective of this study was to compare different combinations of geotextile and gravel used in heavy livestock traffic areas that minimize the potential for water pollution. Three different pad combinations were constructed in 2.4 x 6-m plots as follows: (i) woven geotextile+100mm of gravel+50mm Dense Grade Aggregate (DGA); (ii) woven geotextile + geoweb+100 mm DGA; and (iii) non-woven geotextile+152 mm of gravel+50mm DGA; (iv) mud lots as control. The third combination was equivalent to one of the base treatments specified by the Kentucky Natural Resource and Conservation Service (NRCS). All treatment combinations were duplicated. Lysimeter pans were installed in four out of eight plots for the collection of leachate or drainage water. Runoff was collected at the lower end of the plots. About 14 kg of beef cattle manure were added evenly to the plots. Rainfall at 50mm/h was applied using rainfall simulators. In the first five of ten experiments, manure was removed from the surface of the pads after each experiment. In the remaining five experiments manure accumulated on the surface of the pads. The effect of pad treatment was significant on the electrical conductivity (EC), total solids (TS), chemical oxygen demand (COD), nitrite (NO2-N), total nitrogen (TN) and total phosphorus (TP) values in surface runoff at the 5% level. Manure removal did not have any significant effect on the nutrient content of runoff or leachate samples except for ammonia (NH4-N) values. Although a mass balance indicated relatively small amounts of organic matter and nutrients were lost by runoff and leaching, the actual contamination level of both runoff and leachate samples were high; TP levels as high as 12 mg/l (5.4 mg/m2) in runoff and nitrate (NO3

  14. Managing the drinking water catchment areas: the French agricultural cooperatives feed back.

    Science.gov (United States)

    Charrière, Séverine; Aumond, Claire

    2016-06-01

    The quality of raw water is problematic in France, largely polluted by nitrates and pesticides (Mueller and Helsel, Nutrients in the nation's waters-too much of a good thing? Geological Survey (U.S.), 1996; European Environment Agency, European waters-assessment of status and pressures, 2012).This type of pollution, even though not always due to agriculture (example of the catchment of Ambleville, county 95, France where the nitrate pollution is mainly due to sewers (2012)), has been largely related to the agricultural practices (Sci Total Environ 407:6034-6043, 2009).Taking note of this observation, and instead of letting it paralyze their actions, the agricultural cooperatives decided with Agrosolutions to act directly on the field with their subscribers to change the agricultural practices impacting the water and the environment.This article shows how the French agricultural cooperatives transformed the awareness of the raw water quality problem into an opportunity for the development and implementation of more precise and responsible practices, to protect their environment. They measure in order to pilot, co-construct and build the best action plans possible according to the three pillars of environment, economy and agronomy.

  15. An integrated model for assessing both crop productivity and agricultural water resources at a large scale

    Science.gov (United States)

    Okada, M.; Sakurai, G.; Iizumi, T.; Yokozawa, M.

    2012-12-01

    Agricultural production utilizes regional resources (e.g. river water and ground water) as well as local resources (e.g. temperature, rainfall, solar energy). Future climate changes and increasing demand due to population increases and economic developments would intensively affect the availability of water resources for agricultural production. While many studies assessed the impacts of climate change on agriculture, there are few studies that dynamically account for changes in water resources and crop production. This study proposes an integrated model for assessing both crop productivity and agricultural water resources at a large scale. Also, the irrigation management to subseasonal variability in weather and crop response varies for each region and each crop. To deal with such variations, we used the Markov Chain Monte Carlo technique to quantify regional-specific parameters associated with crop growth and irrigation water estimations. We coupled a large-scale crop model (Sakurai et al. 2012), with a global water resources model, H08 (Hanasaki et al. 2008). The integrated model was consisting of five sub-models for the following processes: land surface, crop growth, river routing, reservoir operation, and anthropogenic water withdrawal. The land surface sub-model was based on a watershed hydrology model, SWAT (Neitsch et al. 2009). Surface and subsurface runoffs simulated by the land surface sub-model were input to the river routing sub-model of the H08 model. A part of regional water resources available for agriculture, simulated by the H08 model, was input as irrigation water to the land surface sub-model. The timing and amount of irrigation water was simulated at a daily step. The integrated model reproduced the observed streamflow in an individual watershed. Additionally, the model accurately reproduced the trends and interannual variations of crop yields. To demonstrate the usefulness of the integrated model, we compared two types of impact assessment of

  16. Water and Energy Consumption by Agriculture in the Minqin Oasis Region

    Institute of Scientific and Technical Information of China (English)

    LI Cheng; WANG Yue; QIU Guo-yu

    2013-01-01

    Water used in agriculture consumes much energy, mainly due to pumping water for irrigation, but the water-energy nexus is always neglected in arid and semi-arid areas. Based on hydrological observation data, irrigation data and socio-economic data over the past 50 yr, this study has derived a detailed estimate of greenhouse gas (GHG) emissions from agricultural water use in the Minqin Oasis. Results show that the decreasing water supply and increasing demand for agriculture has caused severe water deficits over the past 50 yr in this region. The groundwater energy use rate rose by 76%between 1961 and 2009 because of the serious decline in groundwater levels. An increase in pump lift by an average 1 m would cause GHG emission rates to rise by around 2%. Over the past 10 yr, the GHG emissions from groundwater accounted for 65-88%of the total emissions from agricultural water. GHG emissions for diverted water varied from 0.047 to 0.074 Mt CO2e as the water input increased. Long distance conveyance and high pump lifts need more electricity input than groundwater abstraction does. Government policies have had a favorable effect on total emissions by reducing water abstraction. But groundwater depletion, exacerbated by a growing population and an expansion in arable land, remains the principal energy-water nexus challenge in the region. In response to the increasing water-energy crisis, energy-saving irrigation technology, matching to cost efficiencies, and better coordination between different infrastructural agencies could be feasible ways of rendering the water and energy sectors more sustainable over the long term.

  17. Projections of Virtual Water Trade Under Agricultural Policy Scenarios in China

    Science.gov (United States)

    Dalin, C.; Hanasaki, N.; Qiu, H.; Mauzerall, D. L.; Rodriguez-Iturbe, I.

    2014-12-01

    China's economic growth is expected to continue into the next decades, accompanied by a sustained urbanization and industrialization. The associated increase in demand for land, water resources and rich foods will deepen the challenge to sustainably feed the population and balance environmental and agricultural policies. In previous work, Inner Mongolia was identified as a target province for trade or agricultural policies aimed at water-use efficiency improvements, due to its large production relying on particularly significant irrigation water use. In addition, water scarcity issues may arises in the greater Beijing area, which represents the largest urban area of arid Northern China. Increasing residential and industrial water demand in this region may lead to fewer available water for irrigation. For these reasons, it is important to estimate the impacts of specific policies aiming at reducing excessive water use for crop production in Inner Mongolia, as well as exploring ways to mitigate pressure on water resources in dry urban areas. In this study, we use socio-economic projections to assess the future state of China's virtual water trade (VWT) network. We then quantify the effects of agricultural policies on the national VWT system and on the efficiency of food trade in terms of water resources. This study addresses the following questions: (1) How future socio-economic changes will affect China's food trade and associated water transfers? (2) To which extent localized reductions of irrigated area can decrease agricultural water use while maintaining national food security? (3) How would these policies affect China's domestic and international VWT network and induced water resources savings (losses)?

  18. Can rainfed agriculture adapt to uncertainty in availability of water in Indus Basin?

    Science.gov (United States)

    Jutla, A.; Sen, S.

    2015-12-01

    Understanding impacts of hydrological and climatological functions under changing climate on regional floods, droughts as well as agricultural commodities remain a serious challenge in tropical agricultural basins. These "tropical agricultural basins" are regions where: (i) the understanding on hydrologic functions (such as precipitation, soil moisture, evapotranspiration, surface runoff, vegetation) are not well established; (ii) increasing population is at the convergence of rural and urban boundaries; (iii) resilience and sustainability of the water resources under different climatic conditions is unknown; and, (iv) agriculture is the primary occupation for majority of the population. More than 95% of the farmed lands in tropical regions are rainfed and 60% of total agricultural production in South Asia relying on seasonal rainfall. Tropical regions frequently suffer from unexpected droughts and sudden flash floods, resulting in massive losses in human lives and affecting regional economy. Prediction of frequency, intensity and magnitude of floods in tropical regions is still a subject of debate and research. A clear example is from the massive floods in the Eastern Indus River in July 2010 that submerged 17 million acre of fertile cropland. Yet, seasonal droughts, such as 2014 rain deficits in Indus Basin, had no effects on annual crop yields - thus creating a paradox. Large amounts of groundwater is being used to supplement water needs for crops during drought conditions, leading to oversubscription of natural aquifers. Key reason that rainfed agriculture is relying heavily on groundwater is because of the uncertainty in timing and distribution of precipitation in the tropical regions, where such data are not routinely collected as well as the basins are transnational, thus limiting sharing of data. Assessment of availability of water for agricultural purposes a serious challenge in tropical regions. This study will provide a framework for using multi

  19. Practical Significance of Basin Water Market Construction on Agricultural Production%流域水市场建设对我国农业生产的现实意义

    Institute of Scientific and Technical Information of China (English)

    彭新育; 吴旭贤

    2011-01-01

    在介绍水市场相关概念并对国内外关于水市场的研究进展进行简述的基础上,分析了水市场的制度设计特点:农业水权的优先分配;市场结构的紧密构筑;取水权和排污权的合理定价;取水总量与排污总量的科学制定.揭示了流域水市场建设对我国农业生产的现实意义:保障农业用水安全;有效缓解农业旱情;节约农业生产用水;提高农产品质量.%On the basis of introducing the concept of water market and the water market research both domestic market and foreign market, the system design features of water market is analyzed. The features include the prior distribution of agricultural water right, the close construction of market structure, reasonable price making of the water obtaining right and water pollution-discharge right and scientific stipulation of total volume of water use and total volume of pollution drainage. The practical significances of basin water market construction on Chinese agricultural produc tion are revealed, which clover safeguarding the safety of agricultural water; effectively alleviating agricultural drought; saving the agricultural production water and improving the quality of agricultural products.

  20. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture.

    Science.gov (United States)

    Chaves, M M; Oliveira, M M

    2004-11-01

    Drought is one of the greatest limitations to crop expansion outside the present-day agricultural areas. It will become increasingly important in regions of the globe where, in the past, the problem was negligible, due to the recognized changes in global climate. Today the concern is with improving cultural practices and crop genotypes for drought-prone areas; therefore, understanding the mechanisms behind drought resistance and the efficient use of water by the plants is fundamental for the achievement of those goals. In this paper, the major constraints to carbon assimilation and the metabolic regulations that play a role in plant responses to water deficits, acting in isolation or in conjunction with other stresses, is reviewed. The effects on carbon assimilation include increased resistance to diffusion by stomata and the mesophyll, as well as biochemical and photochemical adjustments. Oxidative stress is critical for crops that experience drought episodes. The role of detoxifying systems in preventing irreversible damage to photosynthetic machinery and of redox molecules as local or systemic signals is revised. Plant capacity to avoid or repair membrane damage during dehydration and rehydration processes is pivotal for the maintenance of membrane integrity, especially for those that embed functional proteins. Among such proteins are water transporters, whose role in the regulation of plant water status and transport of other metabolites is the subject of intense investigation. Long-distance chemical signalling, as an early response to drought, started to be unravelled more than a decade ago. The effects of those signals on carbon assimilation and partitioning of assimilates between reproductive and non-reproductive structures are revised and discussed in the context of novel management techniques. These applications are designed to combine increased crop water-use efficiency with sustained yield and improved quality of the products. Through an understanding of

  1. Field screening of water quality, bottom sediment, and biota associated with irrigation drainage in the Yuma Valley, Arizona, 1995

    Science.gov (United States)

    Tadayon, Saeid; King, K.A.; Andrews, Brenda; Roberts, William

    1997-01-01

    Because of concerns expressed by the U.S. Congress and the environmental community, the Department of the Interior began a program in late 1985 to identify the nature and extent of water-quality problems induced by irrigation that might exist in the western States. Surface water, bottom sediment, and biota were collected from March through September 1995 along the lower Colorado River and in agricultural drains at nine sites in the Yuma Valley, Arizona, and analyzed for selected inorganic and organic constituents. Analyses of water, bottom sediment, and biota were completed to determine if irrigation return flow has caused, or has the potential to cause, harmful effects on human health, fish, and wildlife in the study area. Concentrations of dissolved solids in surface-water samples collected in March generally did not vary substantially from surface-water samples collected in June. Concentrations of dissolved solids ranged from 712 to 3,000 milligrams per liter and exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level of 500 milligrams per liter for drinking water. Concentrations of chloride in 9 of 18 water samples and concentrations of sulfate in 16 of 18 water samples exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level of 250 milligrams per liter for drinking water. Calcium and sodium were the dominant cations, and chloride and sulfate were the dominant anions. The maximum selenium concentration of 8 micrograms per liter exceeded the U.S. Environmental Protection Agency aquatic-life chronic criterion of 5 micrograms per liter. Concentrations of lead in 7 of 18 water samples and concentrations of mercury in 4 of 18 water samples exceeded the aquatic-life cronic criteria of 3.2 and 0.012 micrograms per liter, respectively. Concentrations of antimony, beryllium, cadmium, and silver in the water samples were below analytical reporting limits. Arsenic was detected in 3 of 9 bottom-sediment samples

  2. Agricultural water-saving potential and feasibility of developing semi-dryland farming in Henan Province

    Institute of Scientific and Technical Information of China (English)

    Huang Xiuqiao; Wang Jinglei

    2013-01-01

    Based on the collected data in the current status of developing and utilizing water resources and imple-menting water-saving agriculture in Henan Province,and taking into account the influence of engineering,agro-nomic and management measures,the water-saving potential in past years and the feasibility of implementing semi-dryland farming were analyzed in Henan Province. Finally,specific technical measures of developing semi-dryland farming in different areas of Henan Province were proposed.

  3. Estimating Hydrologic Fluxes, Crop Water Use, and Agricultural Land Area in China using Data Assimilation

    Science.gov (United States)

    Smith, Tiziana; McLaughlin, Dennis B.; Hoisungwan, Piyatida

    2016-04-01

    Crop production has significantly altered the terrestrial environment by changing land use and by altering the water cycle through both co-opted rainfall and surface water withdrawals. As the world's population continues to grow and individual diets become more resource-intensive, the demand for food - and the land and water necessary to produce it - will continue to increase. High-resolution quantitative data about water availability, water use, and agricultural land use are needed to develop sustainable water and agricultural planning and policies. However, existing data covering large areas with high resolution are susceptible to errors and can be physically inconsistent. China is an example of a large area where food demand is expected to increase and a lack of data clouds the resource management dialogue. Some assert that China will have insufficient land and water resources to feed itself, posing a threat to global food security if they seek to increase food imports. Others believe resources are plentiful. Without quantitative data, it is difficult to discern if these concerns are realistic or overly dramatized. This research presents a quantitative approach using data assimilation techniques to characterize hydrologic fluxes, crop water use (defined as crop evapotranspiration), and agricultural land use at 0.5 by 0.5 degree resolution and applies the methodology in China using data from around the year 2000. The approach uses the principles of water balance and of crop water requirements to assimilate existing data with a least-squares estimation technique, producing new estimates of water and land use variables that are physically consistent while minimizing differences from measured data. We argue that this technique for estimating water fluxes and agricultural land use can provide a useful basis for resource management modeling and policy, both in China and around the world.

  4. Analyzing the Potential Water Conservation Strategies: An Application to Irrigated Agriculture in the Texas Panhandle

    OpenAIRE

    Tewari, Rachna; Almas, Lal K.; Lust, David G.; Amosson, Stephen H.; Bretz, Fran E.

    2010-01-01

    Witnessing a rapid surge in irrigation requirements as well as the pressure on natural resources to augment production for satisfying grain demand for the growing human and livestock population, ground water supply in the Texas Panhandle reflects itself as a limiting yet indispensable factor. This study evaluates the effectiveness of eight potential water management strategies in terms of water savings, implementation costs as well as the regional impact of each policy on the agricultural eco...

  5. Optimizing Sustainable Integrated Use of Groundwater, Surface Water and Reclaimed Water for the Competing Demands of Agricultural Net Return and Urban Population

    OpenAIRE

    Landa, Silvia Anastasia

    2016-01-01

    Rapid population growth increases the competing water demand for agriculture and municipalities. This situation urges the necessity of using integrated water management to increase water supply and find possible symbiotic urban-agriculture relationships. Many studies have been done to simulate the integrated use of surface water, groundwater and reclaimed water for different water users. However, few studies use simulation/optimization (S-O) models for water resources to explicitly represent ...

  6. Integrated management of water resources demand and supply in irrigated agriculture from plot to regional scale

    Science.gov (United States)

    Schütze, Niels; Wagner, Michael

    2016-05-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. Recent trends of weather extremes in Saxony, Germany also enhance drought risks for agricultural production. In addition, signals of longer and more intense drought conditions during the vegetation period can be found in future regional climate scenarios for Saxony. However, those climate predictions are associated with high uncertainty and therefore, e.g. stochastic methods are required to analyze the impact of changing climate patterns on future crop water requirements and water availability. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic approach for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. The developed concept of stochastic crop water production functions (SCWPF) can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  7. Reducing Agricultural Water Footprints at the Farm Scale: A Case Study in the Beijing Region

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2015-12-01

    Full Text Available Beijing is one of the most water-stressed regions in the world. Reducing agricultural water use has long been the basis of local policy for sustainable water use. In this article, the potential to reduce the life cycle (cradle to gate water footprints of wheat and maize that contribute to 94% of the local cereal production was assessed. Following ISO 14046, consumptive and degradative water use for the wheat-maize rotation system was modeled under different irrigation and nitrogen (N application options. Reducing irrigation water volume by 33.3% compared to current practice did not cause a significant yield decline, but the water scarcity footprint and water eutrophication footprint were decreased by 27.5% and 23.9%, respectively. Similarly, reducing the N application rate by 33.3% from current practice did not cause a significant yield decline, but led to a 52.3% reduction in water eutrophication footprint while maintaining a similar water scarcity footprint. These results demonstrate that improving water and fertilizer management has great potential for reducing the crop water footprints at the farm scale. This situation in Beijing is likely to be representative of the challenge facing many of the water-stressed regions in China, where a sustainable means of agricultural production must be found.

  8. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality

    Science.gov (United States)

    Scanlon, B.R.; Jolly, I.; Sophocleous, M.; Zhang, L.

    2007-01-01

    [1] Past land use changes have greatly impacted global water resources, with often opposing effects on water quantity and quality. Increases in rain-fed cropland (460%) and pastureland (560%) during the past 300 years from forest and grasslands decreased evapotranspiration and increased recharge (two orders of magnitude) and streamflow (one order of magnitude). However, increased water quantity degraded water quality by mobilization of salts, salinization caused by shallow water tables, and fertilizer leaching into underlying aquifers that discharge to streams. Since the 1950s, irrigated agriculture has expanded globally by 174%, accounting for ???90% of global freshwater consumption. Irrigation based on surface water reduced streamflow and raised water tables resulting in waterlogging in many areas (China, India, and United States). Marked increases in groundwater-fed irrigation in the last few decades in these areas has lowered water tables (???1 m/yr) and reduced streamflow. Degradation of water quality in irrigated areas has resulted from processes similar to those in rain-fed agriculture: salt mobilization, salinization in waterlogged areas, and fertilizer leaching. Strategies for remediating water resource problems related to agriculture often have opposing effects on water quantity and quality. Long time lags (decades to centuries) between land use changes and system response (e.g., recharge, streamflow, and water quality), particularly in semiarid regions, mean that the full impact of land use changes has not been realized in many areas and remediation to reverse impacts will also take a long time. Future land use changes should consider potential impacts on water resources, particularly trade-offs between water, salt, and nutrient balances, to develop sustainable water resources to meet human and ecosystem needs. Copyright 2007 by the American Geophysical Union.

  9. Evaluating the potential of 'on-line' constructed wetlands for mitigating pesticide transfers from agricultural land to surface waters

    Science.gov (United States)

    Whelan, Michael; Ramos, Andre; Guymer, Ian; Villa, Raffaella; Jefferson, Bruce

    2016-04-01

    Pesticides make important contributions to modern agriculture but losses from land to water can present problems for environmental management, particularly in catchments where surface waters are abstracted for drinking water. Where artificial field drains represent a dominant pathway for pesticide transfers, buffer zones provide little mitigation potential. Instead, "on-line" constructed wetlands have been proposed as a potential means of reducing pesticide fluxes in drainage ditches and headwater streams. Here, we evaluate the potential of small free-surface wetlands to reduce pesticide concentrations in surface waters using a combination of field monitoring and numerical modelling. Two small constructed wetland systems in a first order catchment in Cambridgeshire, UK, were monitored over the 2014-2015 winter season. Discharge was measured at several flow control structures and samples were collected every eight hours and analysed for metaldehyde, a commonly-used molluscicide. Metaldehyde is moderately mobile and, like many other compounds, it has been regularly detected at high concentrations in surface water samples in a number of drinking water supply catchments in the UK over the past few years. However, it is unusually difficult to remove via conventional drinking water treatment which makes it particularly problematical for water companies. Metaldehyde losses from the upstream catchment were significant with peak concentrations occurring in the first storm events in early autumn, soon after application. Concentrations and loads appeared to be unaffected by transit through the wetland over a range of flow conditions - probably due to short solute residence times (quantified via several tracing experiments employing rhodamine WT - a fluorescent dye). A dynamic model, based on fugacity concepts, was constructed to describe chemical fate in the wetland system. The model was used to evaluate mitigation potential and management options under field conditions and

  10. A socio-hydrologic model of coupled water-agriculture dynamics with emphasis on farm size.

    Science.gov (United States)

    Brugger, D. R.; Maneta, M. P.

    2015-12-01

    Agricultural land cover dynamics in the U.S. are dominated by two trends: 1) total agricultural land is decreasing and 2) average farm size is increasing. These trends have important implications for the future of water resources because 1) growing more food on less land is due in large part to increased groundwater withdrawal and 2) larger farms can better afford both more efficient irrigation and more groundwater access. However, these large-scale trends are due to individual farm operators responding to many factors including climate, economics, and policy. It is therefore difficult to incorporate the trends into watershed-scale hydrologic models. Traditional scenario-based approaches are valuable for many applications, but there is typically no feedback between the hydrologic model and the agricultural dynamics and so limited insight is gained into the how agriculture co-evolves with water resources. We present a socio-hydrologic model that couples simplified hydrologic and agricultural economic dynamics, accounting for many factors that depend on farm size such as irrigation efficiency and returns to scale. We introduce an "economic memory" (EM) state variable that is driven by agricultural revenue and affects whether farms are sold when land market values exceed expected returns from agriculture. The model uses a Generalized Mixture Model of Gaussians to approximate the distribution of farm sizes in a study area, effectively lumping farms into "small," "medium," and "large" groups that have independent parameterizations. We apply the model in a semi-arid watershed in the upper Columbia River Basin, calibrating to data on streamflow, total agricultural land cover, and farm size distribution. The model is used to investigate the sensitivity of the coupled system to various hydrologic and economic scenarios such as increasing market value of land, reduced surface water availability, and increased irrigation efficiency in small farms.

  11. Donnan membrane speciation of Al, Fe, trace metals and REEs in coastal lowland acid sulfate soil-impacted drainage waters

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Adele M.; Xue, Youjia [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Kinsela, Andrew S. [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Institute for Environmental Research (IER), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234 (Australia); Wilcken, Klaus M. [Institute for Environmental Research (IER), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234 (Australia); Collins, Richard N., E-mail: richard.collins@unsw.edu.au [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2016-03-15

    Donnan dialysis has been applied to forty filtered drainage waters collected from five coastal lowland acid sulfate soil (CLASS) catchments across north-eastern NSW, Australia. Despite having average pH values < 3.9, 78 and 58% of Al and total Fe, respectively, were present as neutral or negatively-charged species. Complementary isotope dilution experiments with {sup 55}Fe and {sup 26}Al demonstrated that only soluble (i.e. no colloidal) species were present. Trivalent rare earth elements (REEs) were also mainly present (> 70%) as negatively-charged complexes. In contrast, the speciation of the divalent trace metals Co, Mn, Ni and Zn was dominated by positively-charged complexes and was strongly correlated with the alkaline earth metals Ca and Mg. Thermodynamic equilibrium speciation calculations indicated that natural organic matter (NOM) complexes dominated Fe(III) speciation in agreement with that obtained by Donnan dialysis. In the case of Fe(II), however, the free cation was predicted to dominate under thermodynamic equilibrium, whilst our results indicated that Fe(II) was mainly present as neutral or negatively-charged complexes (most likely with sulfate). For all other divalent metals thermodynamic equilibrium speciation calculations agreed well with the Donnan dialysis results. The proportion of Al and REEs predicted to be negatively-charged was also grossly underestimated, relative to the experimental results, highlighting possible inaccuracies in the stability constants developed for these trivalent Me(SO{sub 4}){sub 2}{sup −} and/or Me–NOM complexes and difficulties in modeling complex environmental samples. These results will help improve metal mobility and toxicity models developed for CLASS-affected environments, and also demonstrate that Australian CLASS environments can discharge REEs at concentrations an order of magnitude greater than previously reported. - Highlights: • CLASS discharge large amounts of metals and their speciation is poorly

  12. Water Resources and Sustainable Agriculture in 21st Century: Challenges and Opportunities

    Science.gov (United States)

    Asrar, G.

    2008-05-01

    Global agriculture faces some unique challenges and opportunities for the rest of this century. The need for food, feed and fiber will continues to grow as the world population continue to increase in the future. Agricultural ecosystems are also expected to be the source of a significant portion of renewable energy and fuels around the world, without further compromising the integrity of the natural resources base. How can agriculture continue to provide these services to meet the growing needs of world population while sustaining the integrity of agricultural ecosystems and natural resources, the very foundation it depends on? In the last century, scientific discoveries and technological innovations in agriculture resulted in significant increase in food, feed and fiber production globally, while the total amount of water, energy, fertilizers and other input used to achieve this growth remained the same or even decreased significantly in some parts of the world. Scientific and technical advances in understanding global and regional water and energy cycles, water resources management, soil and water conservation practices, weather prediction, plant breeding and biotechnology, and information and communication technologies contributed to this tremendous achievement. The projected increase in global population, urbanization, and changing lifestyles will continue the pressure on both agriculture and other managed and natural ecosystems to provide necessary goods and services for the rest of this century. To meet these challenges, we must obtain the requisite scientific and technical advances in the functioning of Earth's water, energy, carbon and biogeochemical cycles. We also need to apply the knowledge we gain and technologies we develop in assessing Earth's ecosystems' conditions, and their management and stewardship. In agricultural ecosystems, management of soil and water quality and quantity together with development of new varieties of plants based on advances

  13. The effects of industrial and agricultural activity on the water quality of the Sitnica River (Kosovo

    Directory of Open Access Journals (Sweden)

    Albona Shala

    2015-07-01

    Full Text Available An important issue in Kosovo is water pollution. The use of polluted water has a direct impact on human health and cause long-term consequences. The longest and most polluted river in Kosovo is the Sitnica, a 90 km long river with its source located near the village of Sazli. The river flows into the Ibar River in Northern Kosovo. Agriculture is prevailing activity in the basin of Sitnica which is why agricultural as well as industrial waste are the biggest water pollutants. The purpose of this study was to evaluate water quality of the river and analyse the pollution level along the Sitnica River caused by agricultural activities and industrial discharges. In order to assess the impact of pollutants on this river, a measurements were carried out in four (five monitoring stations: the first station represents the reference station which has not undergone or has not been affected by polluting pressures, two stations in water areas affected by the irrigation of farming land and two monitoring stations in water areas affected by industrial wastewater discharge. Some of the parameters of water quality analysed are temperature, turbidity, electrical conductivity, pH, DO, COD, BOD, P total, nitrates, sulfates, and heavy metals iron, manganese, zinc, nickel. Compared to the reference station the results obtained from the Gracka and Pestova monitoring stations prove that the dominant form of pollution is that from agricultural lands irrigation, while the Plemetin and Mitrovica stations show that the Sitnica River is affected by wastewater discharge which contains significant concentrations of heavy metals, as well as metal ions selected in this paper. It can be concluded that the irrigation of agricultural lands and discharges from mining significantly affect water quality of the Sitnica River.

  14. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods

    OpenAIRE

    Guilherme Lages Barbosa; Francisca Daiane Almeida Gadelha; Natalya Kublik; Alan Proctor; Lucas Reichelm; Emily Weissinger; Gregory M. Wohlleb; Halden, Rolf U.

    2015-01-01

    The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m2) of 41 ± 6.1 kg/m2/y had water and energy demands of 20 ± 3.8 L/...

  15. Tracing the spatial propagation of river inlet water into an agricultural polder area using anthropogenic gadolinium

    Directory of Open Access Journals (Sweden)

    J. Rozemeijer

    2012-08-01

    Full Text Available Diverting river water into agricultural areas or nature reserves is a frequently applied management strategy to prevent fresh water shortage. However, the river water might have negative consequences for chemical and ecological water quality in the receiving water bodies. This study aimed to obtain a spatial image of the diverted river water propagation into a hydrologically complex polder area, the polder Quarles van Ufford in The Netherlands. We used anthropogenic gadolinium (Gd-anomaly as a tracer for river water that was diverted into the polder. A clear reduction in the river water contribution was found between very dry conditions on 5 August 2010 and very wet conditions on 22 October. Despite the large river water impact on 5 August, the diverted river water did not propagate up into the small agricultural headwater ditches. Gadolinium proved to be an effective tracer for diverted river water in a polder system. We applied our results to upgrade the interpretation of water quality monitoring data and to validate an integrated nutrient transport model.

  16. Pérdidas de Glifosato por Drenaje y Escurrimiento en Mol¡soles bajo Siembra Directa Glyphosate losses by drainage and runoff from Mollisois under no-till agriculture

    Directory of Open Access Journals (Sweden)

    María C Sasal

    2010-01-01

    Full Text Available Se ha cuantificado las pérdidas de glifosato por drenaje y escurrimiento y su translocación hacia el grano en soja transgénica sembrada en Molisoles representativos de la Pampa Ondulada argentina bajo siembra directa. Se utilizaron 3 lisímetros (Argiudol típico y 3 parcelas de escorrentía (Argiudol ácuico ubicados en las Estaciones Experimentales del Instituto Nacional de Tecnología Agropecuaria de Pergamino y Paraná, respectivamente. El glifosato aplicado antes de la siembra se detectó en el agua de drenaje mientras que la aplicación de post-emergencia fue detectada en el grano. Se registraron máximos de elevadas concentraciones de glifosato en el agua de drenaje y escurrimiento (-10 ug L"¹. Sin embargo, la cantidad de glifosato que salió del sistema representó menos del 0,03 y 0,6% de las cantidades aplicadas, respectivamente. Se observó elevada variabilidad de las concentraciones de glifosato en todos los compartimentos analizados.Glyphosate losses by drainage and runoff from no-till-soybean-cultivated Molisolls representative of the Argentinean Rolling Pampas and its translocation in transgenic soybean biomass have been determined. Three lisymeters (Typic Argiudoll and 3 runoff plots (Aquic Argiudoll located in the Experimental Stations of the National Institute of Farming Technology of Pergamino y Paraná, respectively, were used. Glyphosate applied before sowing was detected in drainage water and the post-emergence application was detected in grains with small and variable concentrations. Peaks of glyphosate concentrations in drainage and runoff water were registered after important rain events (-10 ug L"¹. However, the amount of glyphosate lost throughout the study period was lower than 0.03 and 0.6% of the amounts applied, respectively. High variability of Glyphosate concentrations was found in all compartments analyzed.

  17. The 2005 catastrophic acid crater lake drainage, lahar, and acidic aerosol formation at Mount Chiginagak volcano, Alaska, USA: Field observations and preliminary water and vegetation chemistry results

    Science.gov (United States)

    Schaefer, J.R.; Scott, W.E.; Evans, William C.; Jorgenson, J.; McGimsey, R.G.; Wang, B.

    2008-01-01

    A mass of snow and ice 400-m-wide and 105-m-thick began melting in the summit crater of Mount Chiginagak volcano sometime between November 2004 and early May 2005, presumably owing to increased heat flux from the hydrothermal system, or possibly from magma intrusion and degassing. In early May 2005, an estimated 3.8??106 m3 of sulfurous, clay-rich debris and acidic water, with an accompanying acidic aerosol component, exited the crater through a tunnel at the base of a glacier that breaches the south crater rim. Over 27 km downstream, the acidic waters of the flood inundated an important salmon spawning drainage, acidifying Mother Goose Lake from surface to depth (approximately 0.5 km3 in volume at a pH of 2.9 to 3.1), killing all aquatic life, and preventing the annual salmon run. Over 2 months later, crater lake water sampled 8 km downstream of the outlet after considerable dilution from glacial meltwater was a weak sulfuric acid solution (pH = 3.2, SO4 = 504 mg/L, Cl = 53.6 mg/L, and F = 7.92 mg/L). The acid flood waters caused severe vegetation damage, including plant death and leaf kill along the flood path. The crater lake drainage was accompanied by an ambioructic flow of acidic aerosols that followed the flood path, contributing to defoliation and necrotic leaf damage to vegetation in a 29 km2 area along and above affected streams, in areas to heights of over 150 m above stream level. Moss species killed in the event contained high levels of sulfur, indicating extremely elevated atmospheric sulfurcontent. The most abundant airborne phytotoxic constituent was likely sulfuric acid aerosols that were generated during the catastrophic partial crater lake drainage event. Two mechanisms of acidic aerosol formation are proposed: (1) generation of aerosol mist through turbulent flow of acidic water and (2) catastrophic gas exsolution. This previously undocumented phenomenon of simultaneous vegetationdamaging acidic aerosols accompanying drainage of an acidic crater

  18. Projected water consumption in future global agriculture: scenarios and related impacts.

    Science.gov (United States)

    Pfister, Stephan; Bayer, Peter; Koehler, Annette; Hellweg, Stefanie

    2011-09-15

    Global stress on water and land resources is increasing as a consequence of population growth and higher caloric food demand. Many terrestrial ecosystems have already massively been degraded for providing agricultural land, and water scarcity related to irrigation has damaged water dependent ecosystems. Coping with the food and biomass demand of an increased population, while minimizing the impacts of crop production, is therefore a massive upcoming challenge. In this context, we developed four strategies to deliver the biotic output for feeding mankind in 2050. Expansion on suitable and intensification of existing areas are compared to assess associated environmental impacts, including irrigation demand, water stress under climate change, and the productivity of the occupied land. Based on the agricultural production pattern and impacts of the strategies we identified the trade-offs between land and water use. Intensification in regions currently under deficit irrigation can increase agricultural output by up to 30%. However, intensified crop production causes enormous water stress in many locations and might not be a viable solution. Furthermore, intensification alone will not be able to meet future food demand: additionally, a reduction of waste by 50% along the food supply chain or expansion of agricultural land is required for satisfying current per-capita meat and bioenergy consumption. Suitable areas for such expansion are mainly located in Africa, followed by South America. The increased land stress is of smaller concern than the water stress modeled for the intensification case. Therefore, a combination of waste reduction with expansion on suitable pastures generally results as the best option, along with some intensification on selected areas. Our results suggested that minimizing environmental impacts requires fundamental changes in agricultural systems and international cooperation, by producing crops where it is most environmentally efficient and not

  19. Reliability and Sensitivity Analysis of Cast Iron Water Pipes for Agricultural Food Irrigation

    Directory of Open Access Journals (Sweden)

    Yanling Ni

    2014-07-01

    Full Text Available This study aims to investigate the reliability and sensitivity of cast iron water pipes for agricultural food irrigation. The Monte Carlo simulation method is used for fracture assessment and reliability analysis of cast iron pipes for agricultural food irrigation. Fracture toughness is considered as a limit state function for corrosion affected cast iron pipes. Then the influence of failure mode on the probability of pipe failure has been discussed. Sensitivity analysis also is carried out to show the effect of changing basic parameters on the reliability and life time of the pipe. The analysis results show that the applied methodology can consider different random variables for estimating of life time of the pipe and it can also provide scientific guidance for rehabilitation and maintenance plans for agricultural food irrigation. In addition, the results of the failure and reliability analysis in this study can be useful for designing of more reliable new pipeline systems for agricultural food irrigation.

  20. Phosphorus release from agriculture to surface waters: past, present and future in China.

    Science.gov (United States)

    Chen, M; Chen, J

    2008-01-01

    So far, there is no clear picture at national level regarding the severity, spatial distribution, trend and driving forces of phosphorus (P) release from agriculture to surface waters in China, which presents a major obstacle for surface water quality management and relevant policy-making. By applying a proposed Activity-Unit-Balance (AUB) methodology, this paper retrospects and prospects phosphorus release from agricultural activities to surface waters from 1978 to 2050 in China. Modelling results reveal that P load from agriculture has increased 3.4 times during 1978-2005 and will increase by 1.8 times during 2005-2050. Although major contribution factors are mineral fertiliser application (MFA) and livestock feeding activities (LFAs), LFAs will be the single largest source of increased total P load in the next decades. Most importantly, agricultural pollution in China is spatially overlapped with industrial and domestic pollution, and regions in the southeast to "Heihe-Tengchong" line have to be confronted with an austere challenge to control and manage industrial and domestic pollution as well as pollution from agriculture at present and in future.

  1. Water-quality characteristics, including sodium-adsorption ratios, for four sites in the Powder River drainage basin, Wyoming and Montana, water years 2001-2004

    Science.gov (United States)

    Clark, Melanie L.; Mason, Jon P.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, monitors streams throughout the Powder River structural basin in Wyoming and parts of Montana for potential effects of coalbed natural gas development. Specific conductance and sodium-adsorption ratios may be larger in coalbed waters than in stream waters that may receive the discharge waters. Therefore, continuous water-quality instruments for specific conductance were installed and discrete water-quality samples were collected to characterize water quality during water years 2001-2004 at four sites in the Powder River drainage basin: Powder River at Sussex, Wyoming; Crazy Woman Creek near Arvada, Wyoming; Clear Creek near Arvada, Wyoming; and Powder River at Moorhead, Montana. During water years 2001-2004, the median specific conductance of 2,270 microsiemens per centimeter at 25 degrees Celsius (?S/cm) in discrete samples from the Powder River at Sussex, Wyoming, was larger than the median specific conductance of 1,930 ?S/cm in discrete samples collected downstream from the Powder River at Moorhead, Montana. The median specific conductance was smallest in discrete samples from Clear Creek (1,180 ?S/cm), which has a dilution effect on the specific conductance for the Powder River at Moorhead, Montana. The daily mean specific conductance from continuous water-quality instruments during the irrigation season showed the same spatial pattern as specific conductance values for the discrete samples. Dissolved sodium, sodium-adsorption ratios, and dissolved solids generally showed the same spatial pattern as specific conductance. The largest median sodium concentration (274 milligrams per liter) and the largest range of sodium-adsorption ratios (3.7 to 21) were measured in discrete samples from the Powder River at Sussex, Wyoming. Median concentrations of sodium and sodium-adsorption ratios were substantially smaller in Crazy Woman Creek and Clear Creek, which tend to

  2. Impact of climate change on the water cycle of agricultural landscapes in Southwest Germany

    Science.gov (United States)

    Witte, Irene; Ingwersen, Joachim; Gayler, Sebastian; Streck, Thilo

    2016-04-01

    For agricultural production and life in general, water is a necessity. To ensure food and drinking water security in the future an understanding of the impact of climate change on the water cycle is indispensable. The objective of this PhD research is to assess how higher temperatures, higher atmospheric CO2 concentration and changing precipitation patterns will alter the water cycle of agricultural landscapes in Southwest Germany. As representative key characteristics data evaluation will focus on water use efficiency (WUE) and groundwater recharge. The main research question is whether the positive effect of elevated atmospheric CO2 on WUE will be overcompensated by a decrease in net primary production due to warming and to altered seasonal water availability caused by higher rainfall variability. Elevated atmospheric CO2 stimulates plant growth and improves WUE, whereas higher temperatures are expected to reduce net primary production and groundwater recharge. Another research question referring to groundwater recharge is whether groundwater recharge will increase in winter and decrease in summer in Southwest Germany. Changed groundwater recharge directly affects drinking water supply and is an indicator for possible temporary water shortages in agricultural production. A multi-model ensemble composed of 16 combinations of four crop growth models, two water regime models and two nitrogen models will be calibrated and validated against sets of field data. Field data will be provided by FOR 1965 from 2009-2015 for the Kraichgau region and the Swabian Alb, two contrasting areas with regard to climate and agricultural intensity. By using a multi model ensemble uncertainties in predictions due to different model structures (epistemic uncertainty) can be quantified. The uncertainty related to the randomness of inputs and parameters, the so-called aleatory uncertainty, will be additionally assessed for each of the 16 models. Hence, a more reliable range of future

  3. Drainage ditches facilitate frog movements in a hostile landscape

    Science.gov (United States)

    Mazerolle, M.J.

    2005-01-01

    Ditches are common in landscapes influenced by agricultural, forestry, and peat mining activities, and their value as corridors remains unassessed. Pond-breeding amphibians can encounter hostile environments when moving between breeding, summering, or hibernation sites, and are likely to benefit from the presence of ditches in the landscape. Within a system consisting of ditch networks in bogs mined for peat in eastern New Brunswick, Canada, I quantified the breeding, survival, and movements of green frogs (Rana clamitans melanota) in drainage ditches and also surveyed peat fields. Frogs rarely ventured on peat fields and most individuals frequented drainage ditches containing water, particularly in late summer. Though frogs did not breed in ditches, their survival rate in ditches was high (88%). Ditches did not hinder frog movements, as frogs moved independently of the current. Results indicate that drainage ditches containing water enable some movements between habitats isolated by peat mining, in contrast to peat surfaces, and suggest they function as amphibian movement corridors. Thus, such drainage ditches may mitigate the effects of peat extraction on amphibian populations. At the very least, these structures provide an alternative to hostile peat surfaces. This study highlights that small-scale corridors are potentially valuable in population dynamics. ?? Springer 2005.

  4. THE USE OF SOLAR ENERGY IN THE DESALINATION SEA WATER IN AGRICULTURAL GREENHOUSE

    Directory of Open Access Journals (Sweden)

    T. Tahri

    2015-08-01

    Full Text Available The limited resources of fresh water in arid areas like the Middle East and North Africa MENA have led to the use of poor quality water in irrigation agriculture. These can reduce crop yield and environmental damage. Agriculture accounts for 70% of overall consumption in freshwater. Given the evaporation phenomena that occur in arid regions, this figure rises to 90%. This study focuses on the concept of combining the greenhouse with the desalination of seawater This concept is intended for small scale applications in remote areas where only saline water and solar energy are available.  The main objective of this research work is to analyze the production of fresh water using solar energy in the desalination of sea water in the greenhouse. This operating system is in need of thorough study of evaporators, condensers and design of the greenhouse. Desalination, combining the greenhouse to the use of sea water while exploiting the phenomenon of condensation of water vapor in the air, seems to respond positively to the needs of agricultural irrigation.

  5. Modeling future water demand in California from developed and agricultural land uses

    Science.gov (United States)

    Wilson, T. S.; Sleeter, B. M.; Cameron, D. R.

    2015-12-01

    Municipal and urban land-use intensification in coming decades will place increasing pressure on water resources in California. The state is currently experiencing one of the most extreme droughts on record. This coupled with earlier spring snowmelt and projected future climate warming will increasingly constrain already limited water supplies. The development of spatially explicit models of future land use driven by empirical, historical land use change data allow exploration of plausible LULC-related water demand futures and potential mitigation strategies. We utilized the Land Use and Carbon Scenario Simulator (LUCAS) state-and-transition simulation model to project spatially explicit (1 km) future developed and agricultural land use from 2012 to 2062 and estimated the associated water use for California's Mediterranean ecoregions. We modeled 100 Monte Carlo simulations to better characterize and project historical land-use change variability. Under current efficiency rates, total water demand was projected to increase 15.1% by 2062, driven primarily by increases in urbanization and shifts to more water intensive crops. Developed land use was projected to increase by 89.8%-97.2% and result in an average 85.9% increase in municipal water use, while agricultural water use was projected to decline by approximately 3.9%, driven by decreases in row crops and increases in woody cropland. In order for water demand in 2062 to balance to current demand levels, the currently mandated 25% reduction in urban water use must remain in place in conjunction with a near 7% reduction in agricultural water use. Scenarios of land-use related water demand are useful for visualizing alternative futures, examining potential management approaches, and enabling better informed resource management decisions.

  6. Effective utilization of waste water through recycling, reuse, and remediation for sustainable agriculture.

    Science.gov (United States)

    Raman, Rajamani; Krishnamoorthy, Renga

    2014-01-01

    Water is vital for human, animal, and plant life. Water is one of the most essential inputs for the production of crops. Plants need it in enormous quantities continuously during their life. The role of water is felt everywhere; its scarcity causes droughts and famines, its excess causes floods and deluge. During the next two decades, water will increasingly be considered a critical resource for the future survival of the arid and semiarid countries. The requirement of water is increasing day by day due to intensive agriculture practices, urbanization, population growth, industrialization, domestic use, and other uses. On the other hand, the availability of water resources is declining and the existing water is not enough to meet the needs. To overcome this problem, one available solution is utilization of waste water by using recycling, reuse, and remediation process.

  7. Future agriculture with minimized phosphorus losses to waters: Research needs and direction.

    Science.gov (United States)

    Sharpley, Andrew N; Bergström, Lars; Aronsson, Helena; Bechmann, Marianne; Bolster, Carl H; Börling, Katarina; Djodjic, Faruk; Jarvie, Helen P; Schoumans, Oscar F; Stamm, Christian; Tonderski, Karin S; Ulén, Barbro; Uusitalo, Risto; Withers, Paul J A

    2015-03-01

    The series of papers in this issue of AMBIO represent technical presentations made at the 7th International Phosphorus Workshop (IPW7), held in September, 2013 in Uppsala, Sweden. At that meeting, the 150 delegates were involved in round table discussions on major, predetermined themes facing the management of agricultural phosphorus (P) for optimum production goals with minimal water quality impairment. The six themes were (1) P management in a changing world; (2) transport pathways of P from soil to water; (3) monitoring, modeling, and communication; (4) importance of manure and agricultural production systems for P management; (5) identification of appropriate mitigation measures for reduction of P loss; and (6) implementation of mitigation strategies to reduce P loss. This paper details the major challenges and research needs that were identified for each theme and identifies a future roadmap for catchment management that cost-effectively minimizes P loss from agricultural activities.

  8. Impact of AMD on water quality in critical watershed in the Hudson River drainage basin: Phillips Mine, Hudson Highlands, New York

    Science.gov (United States)

    Gilchrist, S.; Gates, A.; Szabo, Z.; Lamothe, P.J.

    2009-01-01

    A sulfur and trace element enriched U-Th-laced tailings pile at the abandoned Phillips Mine in Garrison, New York, releases acid mine drainage (AMD, generally pH iron hydroxides which act as sinks for metals, indicating progressive sequestration that correlates with dilution and sharp rise in pH when mine water mixes with tributaries. Seasonal variations in metal concentrations were partly attributable to dissolution of the efflorescent salts with their sorbed metals and additional metals from surging acidic seepage induced by precipitation.

  9. Applying the World Water and Agriculture Model to Filling Scenarios for the Grand Ethiopian Renaissance Dam

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Daniel L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tidwell, Vincent C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Passell, Howard D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    The World Water and Agriculture Model has been used to simulate water, hydropower, and food sector effects in Egypt, Sudan, and Ethiopia during the filling of the Grand Ethiopian Renaissance Dam reservoir. This unique capability allows tradeoffs to be made between filling policies for the Grand Ethiopian Renaissance Dam reservoir. This Nile River Basin study is presented to illustrate the capacity to use the World Water and Agriculture Model to simulate regional food security issues while keeping a global perspective. The study uses runoff data from the Intergovernmental Panel for Climate Change Coupled Model Inter-comparison Project Phase 5 and information from the literature in order to establish a reasonable set of hydrological initial conditions. Gross Domestic Product and population growth are modelled exogenously based on a composite projection of United Nations and World Bank data. The effects of the Grand Ethiopian Renaissance Dam under various percentages of water withheld are presented.

  10. Evaluation for sustainable agriculture water use from River, Reservoirs and Groundwater in the 20th century

    Science.gov (United States)

    Yoshikawa, S.; Yamada, H.; Hanasaki, N.; Kanae, S.

    2011-12-01

    High water stress due to economic growth and climate change (ex. global warming) will be falling into 2 billion people to 4 billion people in the future. Agricultural water use accounting for about 70% of global water consumption might continue to increase due to production of foods and biofuels occurred by population growth in the future. In particular, water demand, food and biofuel production have an inextricable link. It is very important to evaluate these relationship for sustainable water use from past to the future. In this study, we focused on the objective to assess the impact of water withdrawal from various sources (stream flow, medium-sized reservoirs and nonrenewable nonlocal blue water) in the 20th century by considering irrigation area and climate change. Irrigation water withdrawal is the most important water use sector accounting for about 90% of total water withdrawal. First, we make the global spatial database of equipped irrigation area change and medium-sized reservoirs capacity. Then, water withdrawal from each sources for 50 years from 1950 to 2000 were simulated in global-scale at a resolution of 1.0 degree x 1.0 degree using an integrated global water resources model (hereafter, the H08 model). The H08 model can simulate both natural or anthropogenic water flow and anthropogenic water withdrawals. For comparison with our results, distribution of agricultural, industrial and domestic water withdrawals from 1950 to 2000 were estimated by distributing the country-based withdrawal data from AQUASTAT with irrigation area, urban population and total population, respectively. Groundwater withdrawal was then estimated by distributing the country-based withdrawal data based on statistical data from WRI, IGRAC and AQUASTAT with the total water withdrawal. As a result, agricultural water withdrawal change from nonrenewable nonlocal blue water during the past 50 years agreed well with the observed groundwater abstraction based on statistical data. In

  11. Measures to diminish leaching of heavy metals to surface waters from agricultural soils

    NARCIS (Netherlands)

    Schipper, P.N.M.; Bonten, L.T.C.; Plette, A.C.C.; Moolenaar, S.W.

    2008-01-01

    Historical accumulation of heavy metals in agricultural soils has caused an increased leaching to shallow groundwater in the Netherlands. The elevated concentrations of metals like copper and zinc in shallow groundwater, causes problems to meet target levels in surface waters. Important sources for

  12. Current developments in soil water sensing for climate, environment, hydrology and agriculture

    Science.gov (United States)

    Knowledge of the four dimensional spatio-temporal status and dynamics of soil water content is becoming indispensable to solutions of agricultural, environmental, climatological and engineering problems at all scales. In agronomy alone, science is severely limited by scant or inaccurate knowledge of...

  13. Development of a Solid Phase Extraction Method for Agricultural Pesticides in Large-Volume Water Samples

    Science.gov (United States)

    An analytical method using solid phase extraction (SPE) and analysis by gas chromatography/mass spectrometry (GC/MS) was developed for the trace determination of a variety of agricultural pesticides and selected transformation products in large-volume high-elevation lake water sa...

  14. Constraints and potentials of future irrigation water availability on agricultural production under climate change

    NARCIS (Netherlands)

    Elliott, J.; Deryng, D.; Muller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Florke, M.F.; Wada, Y.; Ludwig, F.

    2014-01-01

    We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Pro

  15. Water as an economic good in irrigated agriculture: theory and practice

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Perry, C.J.

    2004-01-01

    This report describes the results of the Water Valuation and Pricing project, which aims to provide insight into the relevance of economics to typical problems found in irrigated agriculture. It first considers the theoretical basis for the use of economic instruments, then considers their usefulnes

  16. Viewpoint – Rent-Seeking in Agricultural Water Management: An Intentionally Neglected Core Dimension?

    Directory of Open Access Journals (Sweden)

    Walter Huppert

    2013-06-01

    The author, drawing on thirty-five years of experience in the field of agricultural water management and on cases from research and from development cooperation, puts forward his personal viewpoint on this matter. He contends that local as well as international professionals on different levels in the water sector are caught in multifaceted conflicts between formal objectives and hidden interests – and often tend to resort to rent-seeking behaviour themselves.

  17. Influence of Agriculture on Water Quality: Significance of Heavy Metals Monitoring

    OpenAIRE

    Nusreta Đonlagić; Amra Odobašić; Amra Bratovčić

    2007-01-01

    Agricultural activities directly influence the quality of water systems. Investigations showed that application of various agro-technical measures results with the pollution of water streams with heavy metals and other polluters. Increased concentrations of heavy metals result with intake of heavy metals and their transfer to food chains, and for that reason it is necessary to monitor the content of heavy metals regularly. Broad investigations of bio-geochemical cycling of heavy metals in the...

  18. Mechanics of Aquitard Drainage by Aquifer-System Compaction and Its Implications for Water-Management in the North China Plain

    Institute of Scientific and Technical Information of China (English)

    Chen Su; Zongyu Chen; Jiang Chen; Yuhong Fei; Jingsheng Chen; Baoqian Duan

    2014-01-01

    The deformation of aquitard is the main contribution to land subsidence in the North China Plain, and the water released from aquitard compaction may be a large portion of the exploited groundwater. In this study, the consolidation test was employed to understand the mechanics on the drainage and deformation of aquitard. The results suggested the strain of aquitard mainly resulted from the difference of hydraulic head between aquifers. And it was decreased with depth of aquitard at the same hydrodynamic pressure. In contrast with the interbed within aquifers, the aquitard was de-formable when it was compressed. The weakly bound water was significantly released when the void ratio was about 0.44-0.45, and the EC of water released from the aquitard was decreased with the compacting process. The data from the consolidation test suggested that the pumping of groundwater from aquifer III might be less contribution to the land subsidence with respect to other aquifers in the future.

  19. 无土盆栽花卉的最佳水位线研究%The optimal drainage line of potted flowers of soilless culture

    Institute of Scientific and Technical Information of China (English)

    金龙新; 李青峰

    2005-01-01

    @@ Water is the source of life. China ranks No.13 among the water shortage countries. The most of the water is utilized in agriculture, while the utilization rate of irrigation water is only 40%, so it is very important to study on the theory and technology on high efficient water utilization. The purpose for this study is to find out the optimal drainage line on potted flowers through the analysis of experimental results of Aglaonema modestum and Rhododendron simsii Planch in different drainage lines.

  20. Conservation program works as an alternative irrigation districts in sustainable water management of agricultural use

    Directory of Open Access Journals (Sweden)

    Víctor Manuel Peinado Guevara

    2012-05-01

    Full Text Available Water scarcity is an issue of worldwide concern since it is already having an impact on social development. Mexico is not an exception to this problem because in several regions of the country are great difficulties in supplying water, primarily for agricultural use. In Sinaloa, it had been mentioned repeatedly by the media that in the Irrigation District 063, located in the northern of the state, there are problems of water scarcity, and yet there still exist difficulties in conserving the resource. More than 49% of the water used for agriculture is wasted. To resolve this problem, producers and government agencies spend significant resources for investment in water conservation. However, the results have not been entirely satisfactory because the waste is high, a situation that motivates them to study more deeply the main weaknesses that affect sustainable resource use. Farmer’s participation in the administration of water infrastructure is important, as well as providing financial resources for the conservation of water system; and participation in activities of construction and repaired of water infrastructure. Farmer’s should also plan and design strategies for water conservation. This situation requires an appropriate level of technology and intellectual, rather than local producers and thus no complicated sustainable resource management. That is what local producers don’t have and therefore it complicates the sustainable management of the resource.

  1. Water quality, agriculture and food safety in China:Current situation, trends, interdependencies, and management

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-nan; GUO Qiu-ping; SHEN Xiao-xue; YU Sheng-wen; QIU Guo-yu

    2015-01-01

    Water quality in China is becoming a severe chalenge for agriculture and food safety, and it might also impact health of populationvia agriculture and food. Thus, it is causing widespread concern. Based on extensive literatures review and data mining, current situation of water polution in China and its effects on food safety were analyzed.The 2nd National Water Resource Survey in China show that the surface water al over the country was under slight polution and about 60% of groundwater is poluted. Drinking water quality is basicaly guaranteed in urban area but it is worrisome in rural areas. In addition, China is the largest consumer of fertilizer and pesticide in the world and the amounts of application stil show increasing trends. Fertilizers and pesticides are the most important sources of polution, which affect human health as persistent organic polutants and environmental endocrine disruptors. Eutrophication of surface water and nitrate polution of groundwater are serious threats to drinking water safety. Sewage irrigation is becoming a polution source to China’s water and land because of lacking of effective regulations. Although, with the advance in technology and management level, control of nitrogen and phosphorus emissions and reducing water polution is stil a major chalenge for China.

  2. A Need for Education in Water Sustainability in the Agricultural Realm

    Science.gov (United States)

    Krajewski, J.

    2015-12-01

    This study draws upon the definition of water sustainability from the National Water Research Institute as the continual supply of clean water for human uses and for other living beings without compromising the water welfare of future generations. Currently, the greatest consumer of water resources worldwide is irrigation. The move from small-scale, family farms towards corporately owned and market driven, mass scale operations have drastically increased corn production and large-scale factory hog farming in the American Midwest—and the water quality related costs associated with this shift are well-documented. In the heart of the corn belt, the state of Iowa has dealt with issues over the past two decades ranging from flooding of historic proportions, to yield destroying droughts. Most recently, the state's water quality is intensely scrutinized due to nutrient levels higher than almost anywhere else in the world. While the changed agricultural landscape is ultimately responsible for these environmental costs, they can be mitigated if the farmers adopt practices that support water sustainability. However, many Iowa farmers have yet to embrace these necessary practices because of a lack of proper education in this context. Thus, the purpose of this paper is to explore how water sustainability is being conceptualized within the agricultural realm, and ultimately, how the issues are being communicated and understood within various subgroups in Iowa, such as the farmers, the college students, and the general public.

  3. An inexact risk management model for agricultural land-use planning under water shortage

    Science.gov (United States)

    Li, Wei; Feng, Changchun; Dai, Chao; Li, Yongping; Li, Chunhui; Liu, Ming

    2016-09-01

    Water resources availability has a significant impact on agricultural land-use planning, especially in a water shortage area such as North China. The random nature of available water resources and other uncertainties in an agricultural system present risk for land-use planning and may lead to undesirable decisions or potential economic loss. In this study, an inexact risk management model (IRM) was developed for supporting agricultural land-use planning and risk analysis under water shortage. The IRM model was formulated through incorporating a conditional value-at-risk (CVaR) constraint into an inexact two-stage stochastic programming (ITSP) framework, and could be used to control uncertainties expressed as not only probability distributions but also as discrete intervals. The measure of risk about the second-stage penalty cost was incorporated into the model so that the trade-off between system benefit and extreme expected loss could be analyzed. The developed model was applied to a case study in the Zhangweinan River Basin, a typical agricultural region facing serious water shortage in North China. Solutions of the IRM model showed that the obtained first-stage land-use target values could be used to reflect decision-makers' opinions on the long-term development plan. The confidence level α and maximum acceptable risk loss β could be used to reflect decisionmakers' preference towards system benefit and risk control. The results indicated that the IRM model was useful for reflecting the decision-makers' attitudes toward risk aversion and could help seek cost-effective agricultural land-use planning strategies under complex uncertainties.

  4. SUSTAINABLE MANAGEMENT-FEE COLLECTION MECHANISM FOR IRRIGATION AND DRAINAGE FACILITIES IN ISLAMIC LAW

    Directory of Open Access Journals (Sweden)

    Harby MOSTAFA

    2013-10-01

    Full Text Available Increasing the environmental stresses on water resources are causing countries to reconsider various mechanisms to improve water use efficiency. This is especially true for irrigation agriculture, a major consumer of water. The physical and hydraulic characteristics of the irrigation distribution system often form a major limit. Also the implementations of irrigation water fees are sensitive to physical, social, and religious beliefs, making it necessary to design allocation mechanisms accordingly. The purpose of this work is to study the water pricing mechanisms to improve cost recovery for irrigation and drainage facilities under the Islamic law and its impact on water saving. The study tries to find out if there is an irrigation water pricing system that better meets the social, economical, and environmental needs. Also the research tries to highlight Egypt's experience in dealing with the cost recovery in irrigated agriculture. the main findings to agree with Islamic law that cost recovery for irrigation and drainage services would be limited to those infrastructures that are used solely for direct irrigation and drainage and should ensure that at least the full operation and maintenance costs are recovered, because they reflect the service costs of providing farmers with irrigation water and ensuring acceptable drainage. When the pressure of demand on water resources is high and competition exists between uses of water, quota systems are imposed on agriculture. To get high cost-recovery rates, farmers should not only agree on the costs to be recovered but also see the fees collected are used to maintain and improve “their” system.

  5. Ditches and Drainage Structures, Surface Water Drainage Basin; s44hdb90; Surface water drainage basin and subasin watersheds within Rhode Island. Watershed boundaries as determined by RIDEM and USGS were hand drafted onto mylar base over quad maps and manually digitized from tablets, Published in 1990, 1:24000 (1in=2000ft) scale, State of Rhode Island and Providence Plantations.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Ditches and Drainage Structures dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Hardcopy Maps information as of 1990. It is...

  6. DRAINAGE AND FLEXIBLE PAVEMENT PERFORMANCE

    Directory of Open Access Journals (Sweden)

    SIDDHARTHA ROKADE

    2012-04-01

    Full Text Available Providing adequate drainage to a pavement system has been considered as an important design consideration to prevent premature failures due to water related problems such as pumping action, loss of support, and rutting, among others. Most water in pavements is due to rainfall infiltration into unsaturated pavement layers, throughjoints, cracks, shoulder edges, and various other defects, especially in older deteriorated pavements. Water also seep upward from a high groundwater table due to capillary suction or vapour movements, or it may flow laterally from the pavement edges and side ditches. Providing adequate drainage to a pavement system has been considered as an important design consideration to ensure satisfactory performance of the pavement, particularly from the perspective of life cycle cost and serviceability. To minimize premature pavement distresses and to enhance the pavement performance, it is imperative to provide adequate drainage to allow infiltrated water to drain out from the base and sub-base, thus avoiding saturation of base and subgrade soils. This paper deals with the analysis of the impact of subsurface drainage on pavement system performance. The requirement ofeffective subsurface drainage for pavement performance is also discussed.

  7. Evaluating sustainable water quality management in the U.S.: Urban, Agricultural, and Environmental Protection Practices

    Science.gov (United States)

    van Oel, P. R.; Alfredo, K. A.; Russo, T. A.

    2015-12-01

    Sustainable water management typically emphasizes water resource quantity, with focus directed at availability and use practices. When attention is placed on sustainable water quality management, the holistic, cross-sector perspective inherent to sustainability is often lost. Proper water quality management is a critical component of sustainable development practices. However, sustainable development definitions and metrics related to water quality resilience and management are often not well defined; water quality is often buried in large indicator sets used for analysis, and the policy regulating management practices create sector specific burdens for ensuring adequate water quality. In this research, we investigated the methods by which water quality is evaluated through internationally applied indicators and incorporated into the larger idea of "sustainability." We also dissect policy's role in the distribution of responsibility with regard to water quality management in the United States through evaluation of three broad sectors: urban, agriculture, and environmental water quality. Our research concludes that despite a growing intention to use a single system approach for urban, agricultural, and environmental water quality management, one does not yet exist and is even hindered by our current policies and regulations. As policy continues to lead in determining water quality and defining contamination limits, new regulation must reconcile the disparity in requirements for the contaminators and those performing end-of-pipe treatment. Just as the sustainable development indicators we researched tried to integrate environmental, economic, and social aspects without skewing focus to one of these three categories, policy cannot continue to regulate a single sector of society without considering impacts to the entire watershed and/or region. Unequal distribution of the water pollution burden creates disjointed economic growth, infrastructure development, and policy

  8. Lisrel Analysis of Factors for Empowering Producers to Abolish Livelihood Poverty through Optimizing Agricultural Water Resources Management

    Directory of Open Access Journals (Sweden)

    Fatemeh Panahi

    2010-01-01

    Full Text Available Problem statement: Most of the projected increase in global population will take place in third world countries that already suffer from water, food, and health problems. Irrigation in developing countries tends to be stereotyped as equity reducing, in competition with other uses for scarce water resources. Agricultural intensification through the practice of irrigation as a strategy for poverty reduction is examined. Water users were surveyed in order to explore their perception about the factors influencing the optimizing water consumption in agricultural sectors in Iran. This study looks into water-poverty interfaces as well as into approaches to and tools of, managing water in such a manner that water sector activities can contribute to alleviation of poverty. In addition, this study aims to empower water users with information on agricultural waste-water. Approach: The methodology used in this study involved a combination of descriptive and quantitative research. The total population was 350 producers in six provinces in Iran. Results: Based on the perception of the respondents and ordinal factor analysis, the factors were categorized into four group’s namely technical and practical, recognition and managing water equipment and constructive ordered by the magnitude of their impact. The total variance explained by these 4 factors is 54.27% as effective mechanisms in optimizing agricultural water resources management. Structural equation model is expected to be useful for designing targeted optimizing agricultural water resources management and poverty alleviation strategies that also enhance agricultural-productivity growth. Conclusion/Recommendations: Where there is equity in resource distribution, the impact of improved water management on agricultural productivity growth has been more poverty reducing. Using water better means improving the productivity of agricultural water in both irrigated and rainfed systems, through multiple

  9. Characteristics of Water Vapor Transportation and Budget over the Heihe Drainage Basin%黑河流域水汽输送及收支特征

    Institute of Scientific and Technical Information of China (English)

    陆桂华; 徐栋; 何海

    2012-01-01

    Based on the NCEP/NCAR reanalysis daily mean data from 1948 to 2008, the char acteristics of water vapor transportation and budget over the Heihe Drainage Basin were analyzed in this passage. The results showed that, influenced by westerly circulation, Atlantic and Arctic oceans were the main water vapor source over the Heihe Drainage Basin. Water vapor was mainly latitudinally transported from west to east, and the intensity of water vapor exported from east boundary of the Heihe Drainage Basin was greater than that imported from west boundary, the in tensity of water vapor imported from north boundary was also greater than that exported from south boundary. In the layer of 700 hPa, convergence and divergence of the southern Heihe Drainage Basin changed seasonally, it is a water vapor divergence area in winter, hut a convergence area in summer. The northern Heihe Drainage Basin had no such obvious characteristics all the year round. The annual influent water vapor amount is about 997.3 km3 , effluent water vapor amount is about 1046. 1 km3, and the net water vapor amount is about 48.8 km3. The net water vapor a mount tended to increase since the 1960s. Water vapor in the northern desert area of the Heihe Drainage Basin exported whole year, and it mainly exported from middle and lower atmosphere (surface to 500 hPa). June to September was the water vapor net influent period in the southern mountain area of the Heihe Drainage Basin, and lower atmosphere (surface to 700 hPa) was the main influent layer, middle and upper atmosphere (700 to 300 hPa) was the main enffuent layer. Annual evaporation amount is about 84 km3 according to the atmospheric water balance.%利用NCEP/NCAR逐日再分析资料对黑河流域的水汽输送和收支特征进行了计算分析,结果表明:西风环流使得源于大西洋和北冰洋的水汽成为黑河流域空中水汽的主要来源,流域内水汽输送以自西向东的纬向输送为主,东边界输出

  10. The EU Nitrates Directive: A European Approach to Combat Water Pollution from Agriculture

    Directory of Open Access Journals (Sweden)

    Gert J. Monteny

    2001-01-01

    Full Text Available From 1991 onward, the European Union (EU member states have had to comply with the Nitrates Directive. The aim of this directive is to sustainably protect ground and surface waters from pollution with nitrogen (nitrate originating from agriculture. Agriculture is, on an EU level, the largest single source of nitrate (runoff, leaching pollution, although households and industries also contribute to some extent. An important element in the directive is the reporting every 4 years on the monitoring of ground- and surface-water quality. Furthermore, all 15 member states are compelled to designate so-called Nitrate Vulnerable Zones (NVZs. These are regions where the nitrate concentrations in the groundwater amount to 50 mg/l or more. In addition to Codes of Good Agricultural Practice, valid on a countrywide basis and often consisting of voluntary-based measures, specific Action Programmes with mandatory measures have to be developed for the NVZs. The first reporting period ended in 1995. This paper describes the progress in member states’ compliance with the Nitrates Directive during the second period (1996–1999, with a focus on the agricultural practices and action pro- grammes. An evaluation of the member states’ reports shows that good progress is being made on the farmers’ awareness of the need to comply with EU regulations on the protection of the aquatic environment. Action programmes are valuable tools to enforce measures that lead to a reduction of the water pollution by agricultural activities. Regional projects show that significant improvements can be achieved (e.g., reduced fertiliser inputs while maintaining crop yields and thus maintaining the economic potential of agriculture.

  11. Geodatabase of sites, basin boundaries, and topology rules used to store drainage basin boundaries for the U.S. Geological Survey, Colorado Water Science Center

    Science.gov (United States)

    Dupree, Jean A.; Crowfoot, Richard M.

    2012-01-01

    This geodatabase and its component datasets are part of U.S. Geological Survey Digital Data Series 650 and were generated to store basin boundaries for U.S. Geological Survey streamgages and other sites in Colorado. The geodatabase and its components were created by the U.S. Geological Survey, Colorado Water Science Center, and are used to derive the numeric drainage areas for Colorado that are input into the U.S. Geological Survey's National Water Information System (NWIS) database and also published in the Annual Water Data Report and on NWISWeb. The foundational dataset used to create the basin boundaries in this geodatabase was the National Watershed Boundary Dataset. This geodatabase accompanies a U.S. Geological Survey Techniques and Methods report (Book 11, Section C, Chapter 6) entitled "Digital Database Architecture and Delineation Methodology for Deriving Drainage Basins, and Comparison of Digitally and Non-Digitally Derived Numeric Drainage Areas." The Techniques and Methods report details the geodatabase architecture, describes the delineation methodology and workflows used to develop these basin boundaries, and compares digitally derived numeric drainage areas in this geodatabase to non-digitally derived areas. 1. COBasins.gdb: This geodatabase contains site locations and basin boundaries for Colorado. It includes a single feature dataset, called BasinsFD, which groups the component feature classes and topology rules. 2. BasinsFD: This feature dataset in the "COBasins.gdb" geodatabase is a digital container that holds the feature classes used to archive site locations and basin boundaries as well as the topology rules that govern spatial relations within and among component feature classes. This feature dataset includes three feature classes: the sites for which basins have been delineated (the "Sites" feature class), basin bounding lines (the "BasinLines" feature class), and polygonal basin areas (the "BasinPolys" feature class). The feature dataset

  12. Modelling the impacts of agricultural management practices on river water quality in Eastern England.

    Science.gov (United States)

    Taylor, Sam D; He, Yi; Hiscock, Kevin M

    2016-09-15

    Agricultural diffuse water pollution remains a notable global pressure on water quality, posing risks to aquatic ecosystems, human health and water resources and as a result legislation has been introduced in many parts of the world to protect water bodies. Due to their efficiency and cost-effectiveness, water quality models have been increasingly applied to catchments as Decision Support Tools (DSTs) to identify mitigation options that can be introduced to reduce agricultural diffuse water pollution and improve water quality. In this study, the Soil and Water Assessment Tool (SWAT) was applied to the River Wensum catchment in eastern England with the aim of quantifying the long-term impacts of potential changes to agricultural management practices on river water quality. Calibration and validation were successfully performed at a daily time-step against observations of discharge, nitrate and total phosphorus obtained from high-frequency water quality monitoring within the Blackwater sub-catchment, covering an area of 19.6 km(2). A variety of mitigation options were identified and modelled, both singly and in combination, and their long-term effects on nitrate and total phosphorus losses were quantified together with the 95% uncertainty range of model predictions. Results showed that introducing a red clover cover crop to the crop rotation scheme applied within the catchment reduced nitrate losses by 19.6%. Buffer strips of 2 m and 6 m width represented the most effective options to reduce total phosphorus losses, achieving reductions of 12.2% and 16.9%, respectively. This is one of the first studies to quantify the impacts of agricultural mitigation options on long-term water quality for nitrate and total phosphorus at a daily resolution, in addition to providing an estimate of the uncertainties of those impacts. The results highlighted the need to consider multiple pollutants, the degree of uncertainty associated with model predictions and the risk of

  13. Vegetation Water Content Mapping in a Diverse Agricultural Landscape: National Airborne Field Experiment 2006

    Science.gov (United States)

    Cosh, Michael H.; Jing Tao; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2011-01-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE 06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE 06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/sq m. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy. Keywords: Vegetation, field experimentation, thematic mapper, NDWI, agriculture.

  14. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture.

    Science.gov (United States)

    Bouraoui, Fayçal; Grizzetti, Bruna

    2014-01-15

    Agriculture is responsible for large scale water quality degradation and is estimated to contribute around 55% of the nitrogen entering the European Seas. The key policy instrument for protecting inland, transitional and coastal water resources is the Water Framework Directive (WFD). Reducing nutrient losses from agriculture is crucial to the successful implementation of the WFD. There are several mitigation measures that can be implemented to reduce nitrogen losses from agricultural areas to surface and ground waters. For the selection of appropriate measures, models are useful for quantifying the expected impacts and the associated costs. In this article we review some of the models used in Europe to assess the effectiveness of nitrogen mitigation measures, ranging from fertilizer management to the construction of riparian areas and wetlands. We highlight how the complexity of models is correlated with the type of scenarios that can be tested, with conceptual models mostly used to evaluate the impact of reduced fertilizer application, and the physically-based models used to evaluate the timing and location of mitigation options and the response times. We underline the importance of considering the lag time between the implementation of measures and effects on water quality. Models can be effective tools for targeting mitigation measures (identifying critical areas and timing), for evaluating their cost effectiveness, for taking into consideration pollution swapping and considering potential trade-offs in contrasting environmental objectives. Models are also useful for involving stakeholders during the development of catchments mitigation plans, increasing their acceptability.

  15. 小区给排水设计应注意的几个问题%Several Problems of Water Supply and Drainage System Design Should Paid Attention

    Institute of Scientific and Technical Information of China (English)

    刘春波

    2013-01-01

    近几年,小到几万平米大到上百万平米的住宅小区在全国各地陆续建设并投入使用;而很多设计内容在国家规范的层面还属于空白;因此出现了全国各个地方、设计院对住宅小区给排水设计八仙过海,各显神通的局面。笔者总结多年在设计一线的小区给排水设计经验,在这里与大家一起讨论。%In recent years, residential district of different sizes has constructed and put into use in succession al over the cou-ntry;and many design elements in the specification of national level stil belongs to the blank;therefore appeared al over the country, design institute of residential water supply and draina-ge design became the Eight Immortals crossing the sea, each s-hows special prowess situation. The author sums up the old w-ater supply and drainage design experiences in the design of district, to discuss with you here.

  16. Water Quality in the Halawa, Haiku, and Kaneohe Drainage Basins Before, During, and After H-3 Highway Construction, Oahu, Hawaii, 1983-1999

    Science.gov (United States)

    Wong, Michael F.

    2005-01-01

    Selected water-quality data collected before, during, and after construction of the H-3 Highway at 13 water-quality stations were compared to the State of Hawaii Department of Health water-quality standards to determine the effects of highway construction on the water quality of the affected streams. Highway construction had no effect on the high concentrations of total nitrogen and nitrite plus nitrate nitrogen observed except for increased nitrite plus nitrate nitrogen concentrations at one station on Hooleinaiwa Stream. Exceedences of the 10- and 2-percent-of-the-time concentration standards for total phosphorus, total suspended solids, and turbidity, all constituents associated with sediment, occurred more commonly and at more stations during construction than either before or after. These exceedences may be, in part, due to land disturbance caused by highway construction. Highway construction had no effect on the physical water-quality properties of pH, dissolved oxygen, temperature, and specific conductance except at North Halawa and Kuou Streams, where specific-conductance values increased throughout the study period, most likely due to highway construction. No effects on selected trace metals and organic chemical compounds were observed due to highway construction. No effects due to highway construction were observed in the water quality of Waimaluhia Reservoir. Runoff from areas of urban land use in the Kaneohe drainage basin contributed more to the higher loads of selected water-quality constituents than did runoff from areas affected by highway construction.

  17. Water Scarcity and the Impact of the Mining and Agricultural Sectors in Chile

    Directory of Open Access Journals (Sweden)

    Douglas Aitken

    2016-02-01

    Full Text Available Chile contains some of the driest areas in the world, yet human activities in these areas require large volumes of water, the result is regions experiencing high water scarcity leading to environmental degradation, conflicts and reduced industrial productivity. The aim of this paper was to quantify the water scarcity in the central and northern regions by calculating the water scarcity index—the ratio of annual water demand to availability. A focus of the paper was to determine the impact of the main industries in each region and investigate the benefit of implementing water reduction strategies within these industries. The water resources of each investigated region were found to be greatly overexploited and particularly so in the region of Antofagasta. The mining industry was found to be the greatest water consuming sector in this region and further analysis demonstrated that the degree of water scarcity could be greatly reduced by the implementation of water reduction strategies. The agricultural sector dominated water demand in all other regions and it was found that upgrading irrigation efficiency alongside reducing consumption in mining improved the situation in all regions. Nevertheless, given the scale of water scarcity, further investigation is necessary to obtain more recent and accurate data and analyze alternative strategies.

  18. Big River Reservoir Project. Pawcatuck River and Narragansett Bay Drainage Basins. Water and Related Land Resources Study. Volume I. Main Report.

    Science.gov (United States)

    1981-07-01

    AGRICULTURAL EXPERIMENT STATION, UNIVERSITY OF RHODE ISLAND DEPT OF FORESTRY - KUPA a WHITMAN Z=- RurE 1-9!5 /e ALCARR POND SWIMMING. PICNIC, BOATING...Rhode Island Bonnie Cimino/ Barry Schiller Environmental Consultant Dr. John Kupa Kent County Water Authority Norman St. Serveire Natural Resources

  19. Integrated Modelling on Flow and Water Quality Under the Impacts of Climate Change and Agricultural Activities

    Science.gov (United States)

    SHI, J.

    2014-12-01

    Climate change is expected to have a significant impact on flooding in the UK, inducing more intense and prolonged storms. Frequent flooding due to climate change already exacerbates catchment water quality. Land use is another contributing factor to poor water quality. For example, the move to intensive farming could cause an increase in faecal coliforms entering the water courses. In an effort to understand better the effects on water quality from land use and climate change, the hydrological and estuarine processes are being modelled using SWAT (Soil and Water Assessment Tool), linked to a 2-D hydrodynamic model DIVAST(Depth Integrated Velocity and Solute Transport). The coupled model is able to quantify how much of each pollutant from the catchment reaches the harbour and the impact on water quality within the harbour. The work is focused on the transportation and decay of faecal coliforms from agricultural runoff into the rivers Frome and Piddle in the UK. The impact from the agricultural land use and activities on the catchment river hydrology and water quality are evaluated. The coupled model calibration and validation showed the good model performance on flow and faecal coliform in the watershed and estuary.

  20. The Potential Contribution of Subsurface Drip Irrigation to Water-Saving Agriculture in the Western USA

    Institute of Scientific and Technical Information of China (English)

    T L Thompson; PANG Huan-cheng; LI Yu-yi

    2009-01-01

    Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurface drip irrigation (SDI) provides a potential solution to the problem of low water use efficiency. Other advantages of SDI include reduced NO3 leaching compared to surface irrigation, higher yields, a dry soil surface for improved weed control, better crop health, and harvest flexibility for many specialty crops. The use of SDI also allows the virtual elimination of crop water stress, the ability to apply water and nutrients to the most active part of the root zone, protection of drip lines from damage due to cultivation and tillage, and the ability to irrigate with wastewater while preventing human contact. Yet, SDI is used only on a minority of cropland in the arid western USA. Reasons for the limited adoption of SDI include the high initial capital investment required, the need for intensive management, and the urbanization that is rapidly consuming farmland in parts of the western USA. The contributions of SDI to increasing yield, quality, and water use efficiency have been demonstrated. The two major barriers to SDI sustainability in arid regions are economics (i.e., paying for the SDI system), including the high cost of installation; and salt accumulation, which requires periodic leaching, specialized tillage methods, or transplanting of seedlings rather than direct-seeding. We will review advances in irrigation management with SDI.

  1. 玻璃厂生活给排水节水措施的探讨%Discussion on Water-saving Measures of Household Water Supply and Drainage in Glass Factory

    Institute of Scientific and Technical Information of China (English)

    孙志强

    2012-01-01

    The water-saving technology in connection with household water supply and drainage in glass factory was discussed by taking the following steps : strengthening water meter management , employing excellent water-supply pipe and valve , adopting water-saving sanitary wares , controlling over-pressure flow rate , Reusing recycled water and making use of rain water.%针对玻璃厂的生活给排水系统,通过加强水表管理、使用优质给水管材及阀门、使用节水型卫生器具、控制超压出流、中水回用及雨水利用等方面探讨了玻璃厂的节水技术,以达到节水之目的。

  2. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods

    Directory of Open Access Journals (Sweden)

    Guilherme Lages Barbosa

    2015-06-01

    Full Text Available The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m2 of 41 ± 6.1 kg/m2/y had water and energy demands of 20 ± 3.8 L/kg/y and 90,000 ± 11,000 kJ/kg/y (±standard deviation, respectively. In comparison, conventional production yielded 3.9 ± 0.21 kg/m2/y of produce, with water and energy demands of 250 ± 25 L/kg/y and 1100 ± 75 kJ/kg/y, respectively. Hydroponics offered 11 ± 1.7 times higher yields but required 82 ± 11 times more energy compared to conventionally produced lettuce. To the authors’ knowledge, this is the first quantitative comparison of conventional and hydroponic produce production by example of lettuce grown in the southwestern United States. It identified energy availability as a major factor in assessing the sustainability of hydroponics, and it points to water-scarce settings offering an abundance of renewable energy (e.g., from solar, geothermal, or wind power as particularly attractive regions for hydroponic agriculture.

  3. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods.

    Science.gov (United States)

    Barbosa, Guilherme Lages; Gadelha, Francisca Daiane Almeida; Kublik, Natalya; Proctor, Alan; Reichelm, Lucas; Weissinger, Emily; Wohlleb, Gregory M; Halden, Rolf U

    2015-06-16

    The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m2) of 41 ± 6.1 kg/m2/y had water and energy demands of 20 ± 3.8 L/kg/y and 90,000 ± 11,000 kJ/kg/y (±standard deviation), respectively. In comparison, conventional production yielded 3.9 ± 0.21 kg/m2/y of produce, with water and energy demands of 250 ± 25 L/kg/y and 1100 ± 75 kJ/kg/y, respectively. Hydroponics offered 11 ± 1.7 times higher yields but required 82 ± 11 times more energy compared to conventionally produced lettuce. To the authors' knowledge, this is the first quantitative comparison of conventional and hydroponic produce production by example of lettuce grown in the southwestern United States. It identified energy availability as a major factor in assessing the sustainability of hydroponics, and it points to water-scarce settings offering an abundance of renewable energy (e.g., from solar, geothermal, or wind power) as particularly attractive regions for hydroponic agriculture.

  4. Land-use change affects water recycling in Brazil's last agricultural frontier.

    Science.gov (United States)

    Spera, Stephanie A; Galford, Gillian L; Coe, Michael T; Macedo, Marcia N; Mustard, John F

    2016-10-01

    Historically, conservation-oriented research and policy in Brazil have focused on Amazon deforestation, but a majority of Brazil's deforestation and agricultural expansion has occurred in the neighboring Cerrado biome, a biodiversity hotspot comprised of dry forests, woodland savannas, and grasslands. Resilience of rainfed agriculture in both biomes likely depends on water recycling in undisturbed Cerrado vegetation; yet little is known about how changes in land-use and land-cover affect regional climate feedbacks in the Cerrado. We used remote sensing techniques to map land-use change across the Cerrado from 2003 to 2013. During this period, cropland agriculture more than doubled in area from 1.2 to 2.5 million ha, with 74% of new croplands sourced from previously intact Cerrado vegetation. We find that these changes have decreased the amount of water recycled to the atmosphere via evapotranspiration (ET) each year. In 2013 alone, cropland areas recycled 14 km(3) less (-3%) water than if the land cover had been native Cerrado vegetation. ET from single-cropping systems (e.g., soybeans) is less than from natural vegetation in all years, except in the months of January and February, the height of the growing season. In double-cropping systems (e.g., soybeans followed by corn), ET is similar to or greater than natural vegetation throughout a majority of the wet season (December-May). As intensification and extensification of agricultural production continue in the region, the impacts on the water cycle and opportunities for mitigation warrant consideration. For example, if an environmental goal is to minimize impacts on the water cycle, double cropping (intensification) might be emphasized over extensification to maintain a landscape that behaves more akin to the natural system.

  5. Dissolved Organic Carbon as a Drinking Water Constituent of Concern in California Agricultural Watersheds

    Science.gov (United States)

    Pellerin, B. A.; Bergamaschi, B. A.; Downing, B. D.; Bachand, P. A.; Deverel, S.; Kendall, C.

    2007-12-01

    Dissolved organic carbon (DOC) from the breakdown of plant and animal material is a concern for drinking water quality in California due to the potential formation of carcinogenic byproducts during disinfection. Agricultural DOC loading to surface water is a significant concern, but the sources and reactivity in agricultural runoff remains poorly understood. Here we present data on DOC dynamics in surface water from the Willow Slough watershed, a 425\\- km2 agricultural catchment in the Sacramento Valley, California. Samples collected weekly during 2006 and 2007 were analyzed for DOC concentration, optical properties (UV absorbance and fluorescence), 13C\\- DOC isotopes, and trihalomethane formation potential (a regulated disinfection byproduct formed during chlorination). DOC concentrations at the watershed mouth ranged from 2 to 4 mg/L during winter and spring, with a clear increase in DOC concentrations to more than 7 mg L following the onset of summer irrigation. The 13C\\- DOC values revealed a large range (-19 to -27 ‰), with lowest values during winter baseflow and higher values during summer and winter storms. Spectral slopes also varied seasonally (0.012 to 0.020), with steeper slopes during winter baseflow. Both isotopic and optical data provide evidence for algal\\- derived DOC during the winter baseflow and terrestrial sources during winter storms and summer irrigation. Total THM formation potential was higher in winter than summer, and is strongly correlated to DOC concentrations in surface waters (r2 = 0.87). In contrast to the total THM formation potential, the specific THM formation potential (e.g., total THM normalized to DOC) decreased during the summer irrigation season, suggesting a change in reactivity related to DOC source or degradation. Additional data from plant leachates and ground water will be discussed, as well as the implications of watershed management on DOC dynamics and reactivity in agriculturally-dominated landscapes.

  6. Evaluation for Water Conservation in Agriculture: Using a Multi-Method Econometric Approach

    Science.gov (United States)

    Ramirez, A.; Eaton, D. J.

    2012-12-01

    Since the 1960's, farmers have implemented new irrigation technology to increase crop production and planting acreage. At that time, technology responded to the increasing demand for food due to world population growth. Currently, the problem of decreased water supply threatens to limit agricultural production. Uncertain precipitation patterns, from prolonged droughts to irregular rains, will continue to hamper planting operations, and farmers are further limited by an increased competition for water from rapidly growing urban areas. Irrigation technology promises to reduce water usage while maintaining or increasing farm yields. The challenge for water managers and policy makers is to quantify and redistribute these efficiency gains as a source of 'new water.' Using conservation in farming as a source of 'new water' requires accurately quantifying the efficiency gains of irrigation technology under farmers' actual operations and practices. From a water resource management and policy perspective, the efficiency gains from conservation in farming can be redistributed to municipal, industrial and recreational uses. This paper presents a methodology that water resource managers can use to statistically verify the water savings attributable to conservation technology. The specific conservation technology examined in this study is precision leveling, and the study includes a mixed-methods approach using four different econometric models: Ordinary Least Squares, Fixed Effects, Propensity Score Matching, and Hierarchical Linear Models. These methods are used for ex-post program evaluation where random assignment is not possible, and they could be employed to evaluate agricultural conservation programs, where participation is often self-selected. The principal method taken in this approach is Hierarchical Linear Models (HLM), a useful model for agriculture because it incorporates the hierarchical nature of the data (fields, tenants, and landowners) as well as crop rotation

  7. Invisible water, visible impact: groundwater use and Indian agriculture under climate change

    Science.gov (United States)

    Zaveri, Esha; Grogan, Danielle S.; Fisher-Vanden, Karen; Frolking, Steve; Lammers, Richard B.; Wrenn, Douglas H.; Prusevich, Alexander; Nicholas, Robert E.

    2016-08-01

    India is one of the world’s largest food producers, making the sustainability of its agricultural system of global significance. Groundwater irrigation underpins India’s agriculture, currently boosting crop production by enough to feed 170 million people. Groundwater overexploitation has led to drastic declines in groundwater levels, threatening to push this vital resource out of reach for millions of small-scale farmers who are the backbone of India’s food security. Historically, losing access to groundwater has decreased agricultural production and increased poverty. We take a multidisciplinary approach to assess climate change challenges facing India’s agricultural system, and to assess the effectiveness of large-scale water infrastructure projects designed to meet these challenges. We find that even in areas that experience climate change induced precipitation increases, expansion of irrigated agriculture will require increasing amounts of unsustainable groundwater. The large proposed national river linking project has limited capacity to alleviate groundwater stress. Thus, without intervention, poverty and food insecurity in rural India is likely to worsen.

  8. Set Up of an Automatic Water Quality Sampling System in Irrigation Agriculture

    Science.gov (United States)

    Heinz, Emanuel; Kraft, Philipp; Buchen, Caroline; Frede, Hans-Georg; Aquino, Eugenio; Breuer, Lutz

    2014-05-01

    Climate change has already a large impact on the availability of water resources. Many regions in South-East Asia are assumed to receive less water in the future, dramatically impacting the production of the most important staple food: rice (Oryza sativa L.). Rice is the primary food source for nearly half of the World's population, and is the only cereal that can grow under wetland conditions. Especially anaerobic (flooded) rice fields require high amounts of water but also have higher yields than aerobic produced rice. In the past different methods were developed to reduce the water use in rice paddies, like alternative wetting and drying or the use of mixed cropping systems with aerobic (non-flooded) rice and alternative crops such as maize. A more detailed understanding of water and nutrient cycling in rice-based cropping systems is needed to reduce water use, and requires the investigation of hydrological and biochemical processes as well as transport dynamics at the field scale. New developments in analytical devices permit monitoring parameters at high temporal resolutions and at acceptable costs without much necessary maintenance or analysis over longer periods. Here we present a new type of automatic sampling set-up that facilitates in situ analysis of hydrometric information, stable water isotopes and nitrate concentrations in spatially differentiated agricultural fields. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water) in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS) for stable water isotope analysis (δ2H and δ18O), a reagentless hyperspectral UV photometer for monitoring nitrate content and various water level sensors for hydrometric information. The whole system is maintained with special developed software for remote control of the system via internet. We

  9. Impact of agricultural expansion on water footprint in the Amazon under climate change scenarios.

    Science.gov (United States)

    Miguel Ayala, Laura; van Eupen, Michiel; Zhang, Guoping; Pérez-Soba, Marta; Martorano, Lucieta G; Lisboa, Leila S; Beltrao, Norma E

    2016-11-01

    Agricultural expansion and intensification are main drivers of land-use change in Brazil. Soybean is the major crop under expansion in the area. Soybean production involves large amounts of water and fertiliser that act as sources of contamination with potentially negative impacts on adjacent water bodies. These impacts might be intensified by projected climate change in tropical areas. A Water Footprint Assessment (WFA) serves as a tool to assess environmental impacts of water and fertiliser use. The aim of this study was to understand potential impacts on environmental sustainability of agricultural intensification close to a protected forest area of the Amazon under climate change. We carried out a WFA to calculate the water footprint (WF) related to soybean production, Glycine max, to understand the sustainability of the WF in the Tapajós river basin, a region in the Brazilian Amazon with large expansion and intensification of soybean. Based on global datasets, environmental hotspots - potentially unsustainable WF areas - were identified and spatially plotted in both baseline scenario (2010) and projection into 2050 through the use of a land-use change scenario that includes climate change effects. Results show green and grey WF values in 2050 increased by 304% and 268%, respectively. More than one-third of the watersheds doubled their grey WF in 2050. Soybean production in 2010 lies within sustainability limits. However, current soybean expansion and intensification trends lead to large impacts in relation to water pollution and water use, affecting protected areas. Areas not impacted in terms of water pollution dropped by 20.6% in 2050 for the whole catchment, while unsustainability increased 8.1%. Management practices such as water consumption regulations to stimulate efficient water use, reduction of crop water use and evapotranspiration, and optimal fertiliser application control could be key factors in achieving sustainability within a river basin.

  10. Sustainable Drainage Systems

    Directory of Open Access Journals (Sweden)

    Miklas Scholz

    2015-05-01

    Full Text Available Urban water management has somewhat changed since the publication of The Sustainable Drainage System (SuDS Manual in 2007 [1], transforming from building traditional sewers to implementing SuDS, which are part of the best management practice techniques used in the USA and seen as contributing to water-sensitive urban design in Australia. Most SuDS, such as infiltration trenches, swales, green roofs, ponds, and wetlands, address water quality and quantity challenges, and enhance the local biodiversity while also being acceptable aesthetically to the public. Barriers to the implementation of SuDS include adoption problems, flood and diffuse pollution control challenges, negative public perception, and a lack of decision support tools addressing, particularly, the retrofitting of these systems while enhancing ecosystem services. [...

  11. Modelling tools to support the harmonization of Water Framework Directive and Common Agricultural Policy

    Science.gov (United States)

    Tediosi, A.; Bulgheroni, C.; Sali, G.; Facchi, A.; Gandolfi, C.

    2009-04-01

    After a few years from the delivery of the EU Water Framework Directive (WFD) the need to link agriculture and WFD has emerged as one of the highest priorities; therefore, it is important to discuss on how the EU Common Agricultural Policy (CAP) can contribute to the achievements of the WFD objectives. The recent CAP reform - known as Mid Term Review (MTR) or Fischler Reform - has increased the opportunities, offering to farmers increased support to address some environmental issues. The central novelty coming from the MTR is the introduction of a farm single payment which aims to the Decoupling of EU Agricultural Support from production. Other MTR important topics deal with the Modulation of the payments, the Cross-Compliance and the strengthening of the Rural Development policy. All these new elements will affect the farmers' behaviour, steering their productive choices for the future, which, in turn, will have consequences on the water demand for irrigation. Indeed, from the water quantity viewpoint, agriculture is a large consumer and improving water use efficiency is one of the main issues at stake, following the increasing impacts of water scarcity and droughts across Europe in a context of climate change. According to a recent survey of the European Commission the saving potential in the agricultural sector is 43% of present abstraction and 95% of it is concentrated in southern europe. Many models have been developed to forecast the farmers' behaviour as a consequence of agricultural policies, both at sector and regional level; all of them are founded on Mathematical Programming techniques and many of them use the Positive approach, which better fits the territorial dimension. A large body of literature also exists focusing on the assessment of irrigation water requirements. The examples of conjunctive modelling of the two aspects are however much more limited. The work presented has got some innovative aspects: not only does it couple an economical model

  12. Assessing Pesticide Contamination to Fresh Water in Some Agricultural Sites, Close to Oaxaca City, Mexico

    Science.gov (United States)

    Tomas, G.

    2002-12-01

    This study presents the results of a survey on pesticides in fresh water in shallow aquifers, rivers and dams in Zaachila, Tlacolula and Etla and agricultural valleys close to Oaxaca City, SW of Mexico. In the study zones, there are generalized uses of pesticides and the impact on the water resources by inadequate use of agricultural activities. Water is used for irrigation and drinking. Surveying criteria was to sample the aquifer (production wells), its water table (dig wells) and a regional water collector (Plan Benito Juarez Yuayapan dam). A total of 14 samples were analyzed for the identification and quantification of organochlorine and organophosphorous pesticides. Method was 508-EPA. Gas chromatographer was a 5890 series II Hewlett Packard, calibrated with several patterns. Results: 10 samples are contaminated with some pesticide of the used patterns; Dieldrin, Chlordano, Malathion, Mirex were not found; Traces of organophosphorus compounds were found in 8 samples, mainly Merphos, Parathion Ethylic and Disulfoton ; There was detected traces of world-forbidden insecticides as Metoxychlor, Parathion Ethylic and Disulfoton; and In one sample (Cuilapam well #1) DDT exceeds, the Mexican maximum limit for potable water (1 mg/l),

  13. Water flowing north of the border: export agriculture and water politics in a rural community in Baja California.

    Science.gov (United States)

    Zlolniski, Christian

    2011-01-01

    Favored by neoliberal agrarian policies, the production of fresh crops for international markets has become a common strategy for economic development in Mexico and other Latin American countries. But as some scholars have argued, the global fresh produce industry in developing countries in which fresh crops are produced for consumer markets in affluent nations implies “virtual water flows,” the transfer of high volumes of water embedded in these crops across international borders. This article examines the local effects of the production of fresh produce in the San Quintín Valley in northwestern Mexico for markets in the United States. Although export agriculture has fostered economic growth and employment opportunities for indigenous farm laborers, it has also led to the overexploitation of underground finite water resources, and an alarming decline of the quantity and quality of water available for residents’ domestic use. I discuss how neoliberal water policies have further contributed to water inequalities along class and ethnic lines, the hardships settlers endure to secure access to water for their basic needs, and the political protests and social tensions water scarcity has triggered in the region. Although the production of fresh crops for international markets is promoted by organizations such as the World Bank and Inter-American Development Bank as a model for economic development, I argue that it often produces water insecurity for the poorest, threatening the UN goal of ensuring access to clean water as a universal human right.

  14. Study of hybrid power system potential to power agricultural water pump in mountain area

    Science.gov (United States)

    Syuhada, Ahmad; Mubarak, Amir Zaki; Maulana, M. Ilham

    2016-03-01

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US 14,938.

  15. Water and Land Limitations to Future Agricultural Production in the Middle East

    Science.gov (United States)

    Koch, J. A. M.; Wimmer, F.; Schaldach, R.

    2015-12-01

    Countries in the Middle East use a large fraction of their scarce water resources to produce cash crops, such as fruit and vegetables, for international markets. At the same time, these countries import large amounts of staple crops, such as cereals, required to meet the nutritional demand of their populations. This makes food security in the Middle East heavily dependent on world market prices for staple crops. Under these preconditions, increasing food demand due to population growth, urban expansion on fertile farmlands, and detrimental effects of a changing climate on the production of agricultural commodities present major challenges to countries in the Middle East that try to improve food security by increasing their self-sufficiency rate of staple crops.We applied the spatio-temporal land-use change model LandSHIFT.JR to simulate how an expansion of urban areas may affect the production of agricultural commodities in Jordan. We furthermore evaluated how climate change and changes in socio-economic conditions may influence crop production. The focus of our analysis was on potential future irrigated and rainfed production (crop yield and area demand) of fruit, vegetables, and cereals. Our simulation results show that the expansion of urban areas and the resulting displacement of agricultural areas does result in a slight decrease in crop yields. This leads to almost no additional irrigation water requirements due to the relocation of agricultural areas, i.e. there is the same amount of "crop per drop". However, taking into account projected changes in socio-economic conditions and climate conditions, a large volume of water would be required for cereal production in order to safeguard current self-sufficiency rates for staple crops. Irrigation water requirements are expected to double until 2025 and to triple until 2050. Irrigated crop yields are projected to decrease by about 25%, whereas there is no decrease in rainfed crop yields to be expected.

  16. Key to GHG fluxes from organic soils: site characteristics, agricultural practices or water table management?

    Science.gov (United States)

    Tiemeyer, Bärbel

    2015-04-01

    Drained peatlands are hotspots of greenhouse gas (GHG) emissions. Agriculture is the major land use type for peatlands in Germany and other European countries, but strongly varies in its intensity regarding the groundwater level and the agricultural management. Although the mean annual water table depth is sometimes proposed as an overall predictor for GHG emissions, there is a strong variability of its effects on different peatlands. Furthermore, re-wetting measures generally decrease carbon dioxide emissions, but may strongly increase methane emissions. We synthesized 250 annual GHG budgets for 120 different sites in 13 German peatlands. Carbon dioxide (net ecosystem exchange and ecosystem respiration), nitrous oxide and methane fluxes were measured with transparent and opaque manual chambers. Land management ranged from very intensive use with arable land or grassland with up to five cuts per year to partially or completely re-wetted peatlands. Besides the GHG fluxes, biomass yield, fertilisation, groundwater level, climatic data, vegetation composition and soil properties were measured. Overall, we found a large variability of the total GHG budget ranging from small uptakes to extremely high emissions (> 70 t CO2-equivalents/(ha yr)). At nearly all sites, carbon dioxide was the major component of the GHG budget. Site conditions, especially the nitrogen content of the unsaturated zone and the intra-annual water level distribution, controlled the GHG emissions of the agricultural sites. Although these factors are influenced by natural conditions (peat type, regional hydrology), they could be modified by an improved water management. Agricultural management such as the number of cuts had only a minor influence on the GHG budgets. At the level of individual peatlands, higher water levels always decreased carbon dioxide emissions. In nearly all cases, the trade-off between reduced carbon dioxide and increased methane emissions turned out in favour of the re

  17. Numerical investigation of the spatial scale and time dependency of tile drainage contribution to stream flow

    Science.gov (United States)

    Thomas, Nicholas W.; Arenas, Antonio A.; Schilling, Keith E.; Weber, Larry J.

    2016-07-01

    Tile drainage systems are pervasive in the Central U.S., significantly altering the hydrologic system. The purpose of this study was to assess the effects of tile drainage systems on streamflow. A physically based coupled hydrologic model was applied to a 45 km2 agricultural Iowa watershed. Tile drainage was incorporated though an equivalent porous medium approach, calibrated though numerical experimentation. Experimental results indicated that a significant increase in hydraulic conductivity of the equivalent medium layer was needed to achieve agreement in total outflow with an explicit numerical representation of a tiled system. Watershed scale analysis derived the tile drainage contribution to stream flow (QT/Q) from a numerical tracer driven analysis of instream surface water. During precipitation events tile drainage represented 30% of stream flow, whereas during intervals between precipitations events, 61% of stream flow originated from the tile system. A division of event and non-event periods produced strong correlations between QT/Q and drainage area, positive for events, and negative for non-events. The addition of precipitation into the system acted to saturate near surface soils, increase lateral soil water movement, and dilute the relatively stable instream tile flow. Increased intensity precipitation translated the QT/Q relationship downward in a consistent manner. In non-event durations, flat upland areas contributed large contributions of tile flow, diluted by larger groundwater (non-tile) contribution to stream flow in the downstream steeper portion of the watershed. Study results provide new insights on the spatiotemporal response of tile drainage to precipitation and contributions of tile drainage to streamflow at a watershed scale, with results having important implications for nitrate transport.

  18. A Satellite Data-Driven, Client-Server Decision Support Application for Agricultural Water Resources Management

    Science.gov (United States)

    Johnson, Lee F.; Maneta, Marco P.; Kimball, John S.

    2016-01-01

    Water cycle extremes such as droughts and floods present a challenge for water managers and for policy makers responsible for the administration of water supplies in agricultural regions. In addition to the inherent uncertainties associated with forecasting extreme weather events, water planners need to anticipate water demands and water user behavior in a typical circumstances. This requires the use decision support systems capable of simulating agricultural water demand with the latest available data. Unfortunately, managers from local and regional agencies often use different datasets of variable quality, which complicates coordinated action. In previous work we have demonstrated novel methodologies to use satellite-based observational technologies, in conjunction with hydro-economic models and state of the art data assimilation methods, to enable robust regional assessment and prediction of drought impacts on agricultural production, water resources, and land allocation. These methods create an opportunity for new, cost-effective analysis tools to support policy and decision-making over large spatial extents. The methods can be driven with information from existing satellite-derived operational products, such as the Satellite Irrigation Management Support system (SIMS) operational over California, the Cropland Data Layer (CDL), and using a modified light-use efficiency algorithm to retrieve crop yield from the synergistic use of MODIS and Landsat imagery. Here we present an integration of this modeling framework in a client-server architecture based on the Hydra platform. Assimilation and processing of resource intensive remote sensing data, as well as hydrologic and other ancillary information occur on the server side. This information is processed and summarized as attributes in water demand nodes that are part of a vector description of the water distribution network. With this architecture, our decision support system becomes a light weight 'app' that

  19. Ecosystem Services Mapping for Sustainable Agricultural Water Management in California's Central Valley.

    Science.gov (United States)

    Matios, Edward; Burney, Jennifer

    2017-02-24

    Accurate information on agricultural water needs and withdrawals at appropriate spatial and temporal scales remains a key limitation to joint water and land management decision-making. We use InVEST ecosystem service mapping to estimate water yield and water consumption as functions of land use in Fresno County, a key farming region in California's Central Valley. Our calculations show that in recent years (2010-2015), the total annual water yield for the county has varied dramatically from ∼0.97 to 5.37 km(3) (all ±17%; 1 MAF ≈ 1.233 km(3)), while total annual water consumption has changed over a smaller range, from ∼3.37 to ∼3.98 km(3) (±20%). Almost all of the county's water consumption (∼96% of total use) takes place in Fresno's croplands, with discrepancy between local annual surface water yields and crop needs met by surface water allocations from outside the county and, to a much greater extent, private groundwater irrigation. Our estimates thus bound the amount of groundwater needed to supplement consumption each year (∼1.76 km(3) on average). These results, combined with trends away from field crops and toward orchards and vineyards, suggest that Fresno's land and water management have become increasingly disconnected in recent years, with the harvested area being less available as an adaptive margin to hydrological stress.

  20. Rye cover crop and gamagrass strip effects on NO3 concentration and load in tile drainage.

    Science.gov (United States)

    Kaspar, T C; Jaynes, D B; Parkin, T B; Moorman, T B

    2007-01-01

    A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or "tiles." Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concentrations in subsurface drainage to acceptable levels; therefore, additional approaches need to be devised. We compared two cropping system modifications for NO3 concentration and load in subsurface drainage water for a no-till corn (Zea mays L.)-soybean (Glycine max [L.] Merr.) management system. In one treatment, eastern gamagrass (Tripsacum dactyloides L.) was grown in permanent 3.05-m-wide strips above the tiles. For the second treatment, a rye (Secale cereale L.) winter cover crop was seeded over the entire plot area each year near harvest and chemically killed before planting the following spring. Twelve 30.5x42.7-m subsurface-drained field plots were established in 1999 with an automated system for measuring tile flow and collecting flow-weighted samples. Both treatments and a control were initiated in 2000 and replicated four times. Full establishment of both treatments did not occur until fall 2001 because of dry conditions. Treatment comparisons were conducted from 2002 through 2005. The rye cover crop treatment significantly reduced subsurface drainage water flow-weighted NO3 concentrations and NO3 loads in all 4 yr. The rye cover crop treatment did not significantly reduce cumulative annual drainage. Averaged over 4 yr, the rye cover crop reduced flow-weighted NO3 concentrations by 59% and loads by 61%. The gamagrass strips did not significantly reduce cumulative drainage, the average annual flow-weighted NO3 concentrations, or cumulative NO3 loads averaged over the 4 yr. Rye winter cover crops grown after corn and soybean have the potential to reduce the NO3 concentrations and loads delivered to surface waters by subsurface drainage systems.

  1. Soft Water Level Sensors for Characterizing the Hydrological Behaviour of Agricultural Catchments

    Directory of Open Access Journals (Sweden)

    François Garnier

    2011-04-01

    Full Text Available An innovative soft water level sensor is proposed to characterize the hydrological behaviour of agricultural catchments by measuring rainfall and stream flows. This sensor works as a capacitor coupled with a capacitance to frequency converter and measures water level at an adjustable time step acquisition. It was designed to be handy, minimally invasive and optimized in terms of energy consumption and low-cost fabrication so as to multiply its use on several catchments under natural conditions. It was used as a stage recorder to measure water level dynamics in a channel during a runoff event and as a rain gauge to measure rainfall amount and intensity. Based on the Manning equation, a method allowed estimation of water discharge with a given uncertainty and hence runoff volume at an event or annual scale. The sensor was tested under controlled conditions in the laboratory and under real conditions in the field. Comparisons of the sensor to reference devices (tipping bucket rain gauge, hydrostatic pressure transmitter limnimeter, Venturi channels… showed accurate results: rainfall intensities and dynamic responses were accurately reproduced and discharges were estimated with an uncertainty usually acceptable in hydrology. Hence, it was used to monitor eleven small agricultural catchments located in the Mediterranean region. Both catchment reactivity and water budget have been calculated. Dynamic response of the catchments has been studied at the event scale through the rising time determination and at the annual scale by calculating the frequency of occurrence of runoff events. It provided significant insight into catchment hydrological behaviour which could be useful for agricultural management perspectives involving pollutant transport, flooding event and global water balance.

  2. Growing water scarcity in agriculture: future challenge to global water security.

    Science.gov (United States)

    Falkenmark, Malin

    2013-11-13

    As water is an essential component of the planetary life support system, water deficiency constitutes an insecurity that has to be overcome in the process of socio-economic development. The paper analyses the origin and appearance of blue as well as green water scarcity on different scales and with particular focus on risks to food production and water supply for municipalities and industry. It analyses water scarcity originating from both climatic phenomena and water partitioning disturbances on different scales: crop field, country level and the global circulation system. The implications by 2050 of water scarcity in terms of potential country-level water deficits for food self-reliance are analysed, and the compensating dependence on trade in virtual water for almost half the world population is noted. Planetary-scale conditions for sustainability of the global water circulation system are discussed in terms of a recently proposed Planetary Freshwater Boundary, and the consumptive water use reserve left to be shared between water requirements for global food production, fuelwood production and carbon sequestration is discussed. Finally, the importance of a paradigm shift in the further conceptual development of water security is stressed, so that adequate attention is paid to water's fundamental role in both natural and socio-economic systems.

  3. Major and trace-element analyses of acid mine waters in the Leviathan mine drainage basin, California/Nevada - October, 1981 to October, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Ball, J.W.; Nordstrom, D.K.

    1985-01-01

    Water issuing from the inactive Leviathan open-pit sulfur mine has caused serious degradation of the water quality in the Leviathan/Bryant Creek drainage basin which drains into the East Fork of the Carson River. This report presents the analytical results from this sampling survey. Sixty-seven water samples were filtered and preserved on-site at 45 locations and at 3 different times. Temperature, discharge, pH, and Eh and specific conductance were measured on-site. Concentrations of 37 major and trace constituents were determined later in the laboratory on preserved samples. The quality of the analyses was checked by using two or more techniques to determine the concentrations including d.c.-argon plasma emission spectrometry (DCP), flame and flameless atomic absorption spectrophotometry, UV-visible spectrophotometry, hydride-generation atomic absorption spectrophotometry and ion chromatography. Leviathan acid mine waters contain mg/L concentrations of As, Cr, Co, Cu, Mn, Ni, Tl, V and Zn, and hundreds to thousands of mg/L concentrations of Al, Fe, and sulfate at pH values as low as 1.8. Other elements including Ba, B, Be, Bi, Cd, Mo, Sb, Se and Te are elevated above normal background concentrations and fall in the microgram/L range. The chemical and 34 S/32 S isotopic analyses demonstrate that these acid waters are derived from pyrite oxidation and not from the oxidation of elemental sulfur. 16 refs., 17 figs., 5 tabs.

  4. The impact of acid mine drainage on the methylmercury cycling at the sediment-water interface in Aha Reservoir, Guizhou, China.

    Science.gov (United States)

    He, Tianrong; Zhu, Yuzhen; Yin, Deliang; Luo, Guangjun; An, Yanlin; Yan, HaiYu; Qian, Xiaoli

    2015-04-01

    The methylmercury (MeHg) cycling at water-sediment interface in an acid mine drainage (AMD)-polluted reservoir (Aha Reservoir) and a reference site (Hongfeng Reservoir) were investigated and compared. Both reservoirs are seasonal anoxic and alkaline. The concentrations of sulfate, sulfide, iron, and manganese in Aha Reservoir were enriched compared to the reference levels in Hongfeng reservoir due to the AMD input. It was found that the MeHg accumulation layer in Aha Reservoir transitioned from the top sediment layer in winter to the water-sediment interface in spring and then to the overlying water above sediment in summer. It supported the assumption that spring methylation activity may start in sediments and migrate into the water column with seasonal variation. The weaker methylation in sediment during spring and summer was caused by the excessive sulfide (∼15-20 μM) that reduced the bioavailability of mercury, while sulfate reduction potential was in the optimal range for the methylation in the overlying water. This led to a transport flux of MeHg from water to sediment in spring and summer. In contrast, such inversion of MeHg accumulation layer did not occur in Hongfeng Reservoir. The sulfate reduction potential was in the optimal range for the methylation in top sediment, and dissolved MeHg was positively related to sulfide in pore water of Hongfeng Reservoir (r = 0.67, p water and cycling of MeHg at sediment-water interface associate with some sensitive environmental factors, such as sulfur.

  5. Droughts in the US: Modeling and Forecasting for Agriculture-Water Management and Adaptation

    Science.gov (United States)

    Perveen, S.; Devineni, N.; Lall, U.

    2012-12-01

    More than half of all US counties are currently mired in a drought that is considered the worst in decades. A persistent drought can not only lead to widespread impacts on water access with interstate implications (as has been shown in the Southeast US and Texas), chronic scarcity can emerge as a risk in regions where fossil aquifers have become the primary source of supply and are being depleted at rates much faster than recharge (e.g., Midwestern US). The standardized drought indices on which the drought declarations are made in the US so far consider only the static decision frameworks—where only the supply is the control variable and not the water consumption. If a location has low demands, drought as manifest in the usual indices does not really have "proportionate" social impact. Conversely, a modest drought as indicated by the traditional measures may have significant impacts where demand is close to the climatological mean value of precipitation. This may also lead to drought being declared too late or too soon. Against this fact, the importance of improved drought forecasting and preparedness for different sectors of the economy becomes increasingly important. The central issue we propose to address through this paper is the construction and testing of a drought index that considers regional water demands for specific purposes (e.g., crops, municipal use) and their temporal distribution over the year for continental US. Here, we have highlighted the use of the proposed index for three main sectors: (i) water management organizations, (ii) optimizing agricultural water use, and (iii) supply chain water risk. The drought index will consider day-to-day climate variability and sectoral demands to develop aggregate regional conditions or disaggregated indices for water users. For the daily temperature and precipitation data, we are using NLDAS dataset that is available from 1949 onwards. The national agricultural statistics services (NASS) online database has

  6. Vegetation water content mapping in a diverse agricultural landscape: National Airborne Field Experiment 2006

    Science.gov (United States)

    Cosh, Michael H.; Tao, Jing; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2010-05-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE'06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE'06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/m2. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy.

  7. Water-quality characteristics and trend analyses for the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins, Wyoming and Montana, for selected periods, water years 1991 through 2010

    Science.gov (United States)

    Clark, Melanie L.

    2012-01-01

    The Powder River structural basin in northeastern Wyoming and southeastern Montana is an area of ongoing coalbed natural gas (CBNG) development. Waters produced during CBNG development are managed with a variety of techniques, including surface impoundments and discharges into stream drainages. The interaction of CBNG-produced waters with the atmosphere and the semiarid soils of the Powder River structural basin can affect water chemistry in several ways. Specific conductance and sodium adsorption ratios (SAR) of CBNG-produced waters that are discharged to streams have been of particular concern because they have the potential to affect the use of the water for irrigation. Water-quality monitoring has been conducted since 2001 at main-stem and tributary sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins in response to concerns about CBNG effects. A study was conducted to summarize characteristics of stream-water quality for water years 2001–10 (October 1, 2000, to September 30, 2010) and examine trends in specific conductance, SAR, and primary constituents that contribute to specific conductance and SAR for changes through time (water years 1991–2010) that may have occurred as a result of CBNG development. Specific conductance and SAR are the focus characteristics of this report. Dissolved calcium, magnesium, and sodium, which are primary contributors to specific conductance and SAR, as well as dissolved alkalinity, chloride, and sulfate, which are other primary contributors to specific conductance, also are described. Stream-water quality in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins was variable during water years 2001–10, in part because of variations in streamflow. In general, annual runoff was less than average during water years 2001–06 and near or above average during water years 2007–10. Stream water of the Tongue River had the smallest specific conductance values, sodium adsorption ratios

  8. An appraisal of policies and institutional frameworks impacting on smallholder agricultural water management in Zimbabwe

    Science.gov (United States)

    Nyagumbo, I.; Rurinda, J.

    Policies and institutional frameworks associated with and / or impacting on agricultural water management (AWM) in smallholder farming systems in Zimbabwe were analyzed through literature reviews, feedback from stakeholder workshops, key informant interviews and evaluation of policy impacts on implemented case study projects/programmes. The study showed that Zimbabwe has gone a long way towards developing a water management policy addressing both equity and access, through the Water and ZINWA of 1998. However, lack of incentives for improving efficient management and utilization of water resources once water has reached the farm gate was apparent, apart from punitive economic instruments levied on usage of increased volumes of water. For example, the new water reforms of 1998 penalized water savers through loss of any unused water in their permits to other users. In addition, the ability of smallholder farmers to access water for irrigation or other purposes was influenced by macro and micro-economic policies such as Economic Structural and Adjustment Programme (ESAP), Zimbabwe Programme for Economic and Social Transformation (ZIMPREST), prevailing monetary and fiscal policies, as well as the Land and Agrarian Reform policies. For instance, the implementation of ESAP from 1991 to 95 resulted in a decline in government support to management of communal irrigation schemes, and as a result only gravity-fed schemes survived. Also AWM projects/programmes that were in progress were prematurely terminated. While considerable emphasis was placed on rehabilitation of irrigation infrastructure since the fast track land reform in 1998, the policies remained rather silent on strategies for water management in rainfed systems. The piecemeal nature and fragmentation of policies and institutional frameworks scattered across government ministries and sectors were complex and created difficulties for smallholder farmers to access water resources. Poor policy implementation

  9. Hydrogeology and potential effects of changes in water use, Carson Desert agricultural area, Churchill County, Nevada

    Science.gov (United States)

    Maurer, Douglas K.; Johnson, Ann K.; Welch, Alan H.

    1996-01-01

    Operating Criteria and Procedures for Newlands Project irrigation and Public Law 101-618 could result in reductions in surface water used for agriculture in the Carson Desert, potentially affecting ground-water supplies from shallow, intermediate, and basalt aquifers. A near-surface zone could exist at the top of the shallow aquifer near the center and eastern parts of the basin where underlying clay beds inhibit vertical flow and could limit the effects of changes in water use. In the basalt aquifer, water levels have declined about 10 feet from pre-pumping levels, and chloride and arsenic concentrations have increased. Conceptual models of the basin suggest that changes in water use in the western part of the basin would probably affect recharge to the shallow, intermediate, and basalt aquifers. Lining canals and removing land from production could cause water-level declines greater than 10 feet in the shallow aquifer up to 2 miles from lined canals. Removing land from production could cause water levels to decline from 4 to 17 feet, depending on the distribution of specific yield in the basin and the amount of water presently applied to irrigated fields. Where wells pump from a near-surface zone of the shallow aquifer, water level declines might not greatly affect pumping wells where the thickness of the zone is greatest, but could cause wells to go dry where the zone is thin.

  10. Using Coastal Fog to Support Sustainable Water Use in a California Agricultural System

    Science.gov (United States)

    Baguskas, S. A.; Loik, M. E.

    2015-12-01

    Impacts of climate change threaten California farmers in a number of ways, most importantly through a decline in freshwater availability, concurrent with a rise in water demand. The future of California's multibillion-dollar agricultural industry depends on increasing water use efficiency on farms. In coastal California, the growing season of economically important crops overlaps with the occurrence of coastal fog, which buffers the summer dry season through shading effects and direct water inputs. While the impacts of coastal fog on plant biology have been extensively studied in natural ecosystems, very few studies have evaluated its direct effects on the water and energy budgets of agricultural systems. The objective of this study was to develop a mechanistic understanding of the relationships between coastal fog and the water and energy budgets of croplands in order to improve estimates of crop-scale evapotranspiration rates, which has potential to curtail groundwater use based on local cloud meteorology. We established three sites on strawberry farms along a coastal-inland gradient in the Salinas Valley, California. At each site, we installed a passive fog collector and a micrometeorological station to monitor variation in microclimate conditions. Flow meters were installed in drip lines to quantify irrigation amount and timing. To assess plant response to foggy and non-foggy conditions, we collected measurements of photosynthesis and transpiration rates at the leaf and canopy-scale between June-September 2015. We found that canopy-level transpiration rates on foggy days were reduced by half compared to sunny, clear days (1.5 and 3 mmol H2O m-2 s-1, respectively). Whereas the amount of direct fog water inputs to the soil did not differ significantly between foggy and clear days, average photosynthetically active radiation between 0900-1100 hr. was reduced from 1500 to 500 μmol photons m-2 s-1 between these sampling periods. Our results provide convincing

  11. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the middle Green River basin, Utah, 1986-87

    Science.gov (United States)

    Stephens, D.W.; Waddell, Bruce; Miller, J.B.

    1988-01-01

    Reconnaissance of wildlife areas in the middle Green River basin of Utah was conducted during 1986 and 1987 to determine whether irrigation drainage has caused, or has the potential to cause significant harmful effects on human health, fish, and wildlife, or may adversely affect the suitability of water for beneficial uses. Studies at Stewart Lake Waterfowl Management Area and Ouray National Wildlife Refuge indicated that concentrations of boron, selenium, and zinc in water, bottom sediment, and biological tissue were sufficiently large to be harmful to fish and wildlife, and to adversely affect beneficial uses of water. Selenium is the principal element of concern in both areas. Concentrations of dissolved selenium in irrigation drain water entering Stewart Lake Waterfowl Management Area ranged from 14-140 micrograms/L (ug/L) and consistently exceeded Utah standards for wildlife protection in water in two of the four drains. Concentrations of boron and zinc exceeded Utah standards only occasionally in the drain waters. Concentrations of total selenium in sediments collected where the drains discharge into the lake were 10-85 ug/gm. Liver tissue collected from American coots at Stewart Lake Waterfowl Management Area contained concentrations of selenium from 4.9-26 ug/gm (dry weight), and whole body samples of carp contained as much as 31 ug/gm (dry weight). Concentrations of selenium in Potamogeton and blue-green algae ranged from 2.1-27 ug/gm. Concentrations of boron, selenium, and zinc were also measured in water from Ouray National Wildlife Refuge. Liver tissue of American coots from the North Roadside Pond, which receives irrigation tailwater, contained a geometric-mean concentration of selenium of 32 ug/gm (dry weight). Five water-bird eggs collected from the North and South Roadside Ponds contained selenium concentrations of 63-120 ug/gm (dry weight). (Lantz-PTT)

  12. Assessing Climate Change Impacts on Water Resources and Colorado Agriculture Using an Equilibrium Displacement Mathematical Programming Model

    OpenAIRE

    Eihab Fathelrahman; Amalia Davies; Stephen Davies; James Pritchett

    2014-01-01

    This research models selected impacts of climate change on Colorado agriculture several decades in the future, using an Economic Displacement Mathematical Programming model. The agricultural economy in Colorado is dominated by livestock, which accounts for 67% of total receipts. Crops, including feed grains and forages, account for the remainder. Most agriculture is based on irrigated production, which depends on both groundwater, especially from the Ogallala aquifer, and surface water that c...

  13. Municipal Water Supply and Drainage Engineering Cost Control and Management%市政给排水工程造价控制与管理

    Institute of Scientific and Technical Information of China (English)

    陈利萍

    2014-01-01

    Municipal water supply and drainage engineering is a municipal infrastructure construction, which is closely related to the quality of life and the vital interests of citizens, and plays an important role in improving the urban planning and greening urban environment. To improve the efficiency of funds is the direction and pursuit of municipal builders.%市政给排水工程是一项市政基础建设事业,与广大市民的生活质量及切身利益息息相关,并在完善城市规划、绿化城市环境等方面具有重要的保障作用,提高资金的使用效益是市政建设者必须努力和追求的方向。

  14. Impact of AMD on water quality in critical watershed in the Hudson River drainage basin: Phillips Mine, Hudson Highlands, New York

    Science.gov (United States)

    Gilchrist, Sivajini; Gates, Alexander; Szabo, Zoltan; Lamothe, Paul J.

    2009-03-01

    A sulfur and trace element enriched U-Th-laced tailings pile at the abandoned Phillips Mine in Garrison, New York, releases acid mine drainage (AMD, generally pH AMD evaporation during dry periods concentrates solid phase trace metals and sulfate, forming melanterite (FeSO4·7H2O) on sulfide-rich tailings surfaces. Wet periods dissolve these concentrates/precipitates, releasing stored acidity and trace metals into the CMB. Sediments along CMB are enriched in iron hydroxides which act as sinks for metals, indicating progressive sequestration that correlates with dilution and sharp rise in pH when mine water mixes with tributaries. Seasonal variations in metal concentrations were partly attributable to dissolution of the efflorescent salts with their sorbed metals and additional metals from surging acidic seepage induced by precipitation.

  15. Conservation agriculture increases soil organic carbon and residual water content in upland crop production systems

    Directory of Open Access Journals (Sweden)

    Victor B. Ella

    2016-01-01

    Full Text Available Conservation agriculture involves minimum soil disturbance, continuous ground cover, and diversified crop rotations or mixtures. Conservation agriculture production systems (CAPS have the potential to improve soil quality if appropriate cropping systems are developed. In this study, five CAPS including different cropping patterns and cover crops under two fertility levels, and a plow-based system as control, were studied in a typical upland agricultural area in northern Mindanao in the Philippines. Results showed that soil organic carbon (SOC at 0- 5-cm depth for all CAPS treatments generally increased with time while SOC under the plow-based system tended to decline over time for both the high (120, 60 and 60 kg N P K ha-1 and moderate (60-30-30 kg N P K ha-1 fertility levels. The cropping system with maize + Stylosanthes guianensis in the first year followed by Stylosanthes guianensis and fallow in the second year, and the cassava + Stylosanthes guianensis exhibited the highest rate of SOC increase for high and moderate fertility levels, respectively. After one, two, and three cropping seasons, plots under CAPS had significantly higher soil residual water content (RWC than under plow-based systems. Results of this study suggest that conservation agriculture has a positive impact on soil quality, while till systems negatively impact soil characteristics.

  16. Phase II modification of the Water Availability Tool for Environmental Resources (WATER) for Kentucky: The sinkhole-drainage process, point-and-click basin delineation, and results of karst test-basin simulations

    Science.gov (United States)

    Taylor, Charles J.; Williamson, Tanja N.; Newson, Jeremy K.; Ulery, Randy L.; Nelson, Hugh L.; Cinotto, Peter J.

    2012-01-01

    This report describes Phase II modifications made to the Water Availability Tool for Environmental Resources (WATER), which applies the process-based TOPMODEL approach to simulate or predict stream discharge in surface basins in the Commonwealth of Kentucky. The previous (Phase I) version of WATER did not provide a means of identifying sinkhole catchments or accounting for the effects of karst (internal) drainage in a TOPMODEL-simulated basin. In the Phase II version of WATER, sinkhole catchments are automatically identified and delineated as internally drained subbasins, and a modified TOPMODEL approach (called the sinkhole drainage process, or SDP-TOPMODEL) is applied that calculates mean daily discharges for the basin based on summed area-weighted contributions from sinkhole drain-age (SD) areas and non-karstic topographically drained (TD) areas. Results obtained using the SDP-TOPMODEL approach were evaluated for 12 karst test basins located in each of the major karst terrains in Kentucky. Visual comparison of simulated hydrographs and flow-duration curves, along with statistical measures applied to the simulated discharge data (bias, correlation, root mean square error, and Nash-Sutcliffe efficiency coefficients), indicate that the SDPOPMODEL approach provides acceptably accurate estimates of discharge for most flow conditions and typically provides more accurate simulation of stream discharge in karstic basins compared to the standard TOPMODEL approach. Additional programming modifications made to the Phase II version of WATER included implementation of a point-and-click graphical user interface (GUI), which fully automates the delineation of simulation-basin boundaries and improves the speed of input-data processing. The Phase II version of WATER enables the user to select a pour point anywhere on a stream reach of interest, and the program will automatically delineate all upstream areas that contribute drainage to that point. This capability enables

  17. Screening of pesticide residues in soil and water samples from agricultural settings

    Directory of Open Access Journals (Sweden)

    Djouaka Rousseau F

    2006-03-01

    Full Text Available Abstract Background The role of agricultural practices in the selection of insecticide resistance in malaria vectors has so far been hypothesized without clear evidence. Many mosquito species, Anopheles gambiae in particular, lay their eggs in breeding sites located around agricultural settings. There is a probability that, as a result of farming activities, insecticide residues may be found in soil and water, where they exercise a selection pressure on the larval stage of various populations of mosquitoes. To confirm this hypothesis, a study was conducted in the Republic of Benin to assess the environmental hazards which can be generated from massive use of pesticides in agricultural settings. Methods Lacking an HPLC machine for direct quantification of insecticide residues in samples, this investigation was performed using indirect bioassays focussed on the study of factors inhibiting the normal growth of mosquito larvae in breeding sites. The speed of development was monitored as well as the yield of rearing An. gambiae larvae in breeding sites reconstituted with water and soil samples collected in agricultural areas known to be under pesticide pressure. Two strains of An. gambiae were used in this indirect bioassay: the pyrethroid-susceptible Kisumu strain and the resistant Ladji strain. The key approach in this methodology is based on comparison of the growth of larvae in test and in control breeding sites, the test samples having been collected from two vegetable farms. Results Results obtained clearly show the presence of inhibiting factors on test samples. A normal growth of larvae was observed in control samples. In breeding sites simulated by using a few grams of soil samples from the two vegetable farms under constant insecticide treatments (test samples, a poor hatching rate of Anopheles eggs coupled with a retarded growth of larvae and a low yield of adult mosquitoes from hatched eggs, was noticed. Conclusion Toxic factors

  18. Geochemical characterization of water, sediment, and biota affected by mercury contamination and acidic drainage from historical gold mining, Greenhorn Creek, Nevada County, California, 1999-2001

    Science.gov (United States)

    Alpers, Charles N.; Hunerlach, Michael P.; May, Jason T.; Hothem, Roger L.; Taylor, Howard E.; Antweiler, Ronald C.; De Wild, John F.; Lawler, David A.

    2005-01-01

    In 1999, the U.S. Geological Survey (USGS) initiated studies of mercury and methylmercury occurrence, transformation, and transport in the Bear River and Yuba River watersheds of the northwestern Sierra Nevada. Because these watersheds were affected by large-scale, historical gold extraction using mercury amalgamation beginning in the 1850s, they were selected for a pilot study of mercury transport by the USGS and other cooperating agencies. This report presents data on methylmercury (MeHg) and total mercury (THg) concentrations in water, bed sediment, invertebrates, and frogs collected at 40 stations during 1999-2001 in the Greenhorn Creek drainage, a major tributary to Bear River. Results document several mercury contamination ?hot spots? that represent potential targets for ongoing and future remediation efforts at abandoned mine sites in the study area. Water-quality samples were collected one or more times at each of 29 stations. The concentrations of total mercury in 45 unfiltered water samples ranged from 0.80 to 153,000 nanograms per liter (ng/L); the median was 9.6 ng/L. Total mercury concentrations in filtered water (41 samples) ranged from less than 0.3 to 8,000 ng/L; the median was 2.7 ng/L. Concentrations of methylmercury in the unfiltered water (40 samples) ranged from less than 0.04 to 9.1 ng/L; the median was 0.07 ng/L. Methylmercury in filtered water (13 samples) ranged from less than 0.04 to 0.27 ng/L; the median was 0.04 ng/L. Acidic drainage with pH values as low as 3.4 was encountered in some of the mined areas. Elevated concentrations of aluminum, cadmium, copper, iron, manganese, nickel, and zinc were found at several stations, especially in the more acidic water samples. Total mercury concentrations in sediment were determined by laboratory and field methods. Total mercury concentrations (determined by laboratory methods) in ten samples from eight stations ranged from about 0.0044 to 12 ?g/g (microgram per gram, equivalent to parts per

  19. Whose waters? Large-scale agricultural development and water grabbing in the Wami-Ruvu River Basin, Tanzania

    Directory of Open Access Journals (Sweden)

    Aurelia van Eeden

    2016-10-01

    Full Text Available In Tanzania like in other parts of the global South, in the name of 'development' and 'poverty eradication' vast tracts of land have been earmarked by the government to be developed by investors for different commercial agricultural projects, giving rise to the contested land grab phenomenon. In parallel, Integrated Water Resources Management (IWRM has been promoted in the country and globally as the governance framework that seeks to manage water resources in an efficient, equitable and sustainable manner. This article asks how IWRM manages the competing interests as well as the diverse priorities of both large and small water users in the midst of foreign direct investment. By focusing on two commercial sugar companies operating in the Wami-Ruvu River Basin in Tanzania and their impacts on the water and land rights of the surrounding villages, the article asks whether institutional and capacity weaknesses around IWRM implementation can be exploited by powerful actors that seek to meet their own interests, thus allowing