WorldWideScience

Sample records for agricultural biotechnology

  1. Agriculture biotechnology report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This report provides the basis for an overall agriculture biotechnology strategy for Saskatchewan, encompassing all aspects of the biotechnology sector and supporting institutions. It presents results of a survey of over 70 industry and public sector leaders in agriculture biotechnology in order to assist Saskatchewan Agriculture & Food in defining its role and involvement in the agriculture biotechnology industry. Issues examined include: Goals for the agriculture biotechnology industry; research and development; technology transfer and commercialisation; infrastructure and services; human resources; legislation and policy; funding; future core areas of research and development; and the role of government in developing the industry. The report concludes with lists of recommendations. The supplement lists the survey questions and responses.

  2. Preface: Biocatalysis and Agricultural Biotechnology

    Science.gov (United States)

    This book was assembled with the intent of bringing together current advances and in-depth reviews of biocatalysis and agricultural biotechnology with emphasis on bio-based products and agricultural biotechnology. Recent energy and food crises point out the importance of bio-based products from ren...

  3. "Othering" agricultural biotechnology: Slovenian media representation of agricultural biotechnology.

    Science.gov (United States)

    Zajc, Jožica; Erjavec, Karmen

    2014-08-01

    While studies on media representations of agricultural biotechnology mostly analyse media texts, this work is intended to fill a research gap with an analysis of journalistic interpretations of media representations. The purpose of this project was to determine how news media represent agricultural biotechnology and how journalists interpret their own representations. A content and critical discourse analysis of news texts published in the Slovenian media over two years and in-depth interviews with their authors were conducted. News texts results suggest that most of the news posts were "othering" biotechnology and biotechnologists: biotechnology as a science and individual scientists are represented as "they," who are socially irresponsible, ignorant, arrogant, and "our" enemies who produce unnatural processes and work for biotechnology companies, whose greed is destroying people, animals, and the environment. Most journalists consider these representations to be objective because they have published the biotechnologists' opinions, despite their own negative attitudes towards biotechnology.

  4. Agricultural Biotechnology Research and Development in Hunan

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Recent agricultural biotechnology research and advances in the province are reviewed. Targets and practices for biotechnological development in depth are discussed, with stress on the talent's training, new techniques' establishment and its industrialization, starting from the existing level and problems in the field in the province.

  5. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security.

    Science.gov (United States)

    Anderson, Jennifer A; Gipmans, Martijn; Hurst, Susan; Layton, Raymond; Nehra, Narender; Pickett, John; Shah, Dilip M; Souza, Thiago Lívio P O; Tripathi, Leena

    2016-01-20

    As global populations continue to increase, agricultural productivity will be challenged to keep pace without overtaxing important environmental resources. A dynamic and integrated approach will be required to solve global food insecurity and position agriculture on a trajectory toward sustainability. Genetically modified (GM) crops enhanced through modern biotechnology represent an important set of tools that can promote sustainable agriculture and improve food security. Several emerging biotechnology approaches were discussed in a recent symposium organized at the 13th IUPAC International Congress of Pesticide Chemistry meeting in San Francisco, CA, USA. This paper summarizes the innovative research and several of the new and emerging technologies within the field of agricultural biotechnology that were presented during the symposium. This discussion highlights how agricultural biotechnology fits within the context of sustainable agriculture and improved food security and can be used in support of further development and adoption of beneficial GM crops.

  6. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security.

    Science.gov (United States)

    Anderson, Jennifer A; Gipmans, Martijn; Hurst, Susan; Layton, Raymond; Nehra, Narender; Pickett, John; Shah, Dilip M; Souza, Thiago Lívio P O; Tripathi, Leena

    2016-01-20

    As global populations continue to increase, agricultural productivity will be challenged to keep pace without overtaxing important environmental resources. A dynamic and integrated approach will be required to solve global food insecurity and position agriculture on a trajectory toward sustainability. Genetically modified (GM) crops enhanced through modern biotechnology represent an important set of tools that can promote sustainable agriculture and improve food security. Several emerging biotechnology approaches were discussed in a recent symposium organized at the 13th IUPAC International Congress of Pesticide Chemistry meeting in San Francisco, CA, USA. This paper summarizes the innovative research and several of the new and emerging technologies within the field of agricultural biotechnology that were presented during the symposium. This discussion highlights how agricultural biotechnology fits within the context of sustainable agriculture and improved food security and can be used in support of further development and adoption of beneficial GM crops. PMID:26785813

  7. Design for values in agricultural biotechnology

    NARCIS (Netherlands)

    Belt, van den Henk

    2015-01-01

    Agricultural biotechnology dates from the last two decades of the twentieth century. It involves the creation of plants and animals with new useful traits by inserting one or more genes taken from other species. New legal possibilities for patenting transgenic organisms and isolated genes have be

  8. UNIVERSITY BASIC RESEARCH AND APPLIED AGRICULTURAL BIOTECHNOLOGY

    OpenAIRE

    Xia, Yin

    2004-01-01

    I examine the effects of R&D inputs on the subset of life-science outputs which demonstrably has influenced later technology, as evidenced by literature citations in agricultural biotechnology patents. Universities are found to be a principal seedbed for cutting-edge technology development. A university's life-science research budget strongly affects its technology-relevant life-science output as well as graduate education.

  9. BIOTECHNOLOGY – SCIENCE AND SECTOR OF AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Doroshenko N. P.

    2016-02-01

    Full Text Available This article presents information about the features of biotechnology as the driving force of scientific and technological progress. The national programs of the leading countries of the world, it is one of the priority sectors, reflecting the level of the socio-economic condition of the society. Biotechnology is now successfully solves such vital tasks as providing food, the establishment of effective medicaments, obtaining fuel based on renewable raw materials, maintaining ecological balance, conservation of biological resources of the Earth. The development of agriculture in modern conditions is impossible without agricultural biotechnology. It is directly related to viticulture. Choosing an object of an integrated system (embryos, apical meristem, axillary buds, it is possible to clone plants, i.e. produce plants identical to the original. If the same as the object to use isolated cells or protoplasts, in this case, there will most likely altered versions, creating diversity for the breeder. Genetic engineering – the science of younger, since the establishment of the first chimeric DNA molecule. The origin of genetic engineering is rooted in the development of molecular genetics, biochemistry. These technologies, undoubtedly progressive, but their biological safety is still insufficiently explored and is a danger to all life on Earth. The leading Western powers carried out strict control over the introduction of transgenic crop plants, as they are in agrocenosis new biological risks that may adversely affect the plants, animals and humans. In Russia, as in other countries, have already adopted the law “State regulation of genetic engineering”

  10. Governing nanobiotechnology: lessons from agricultural biotechnology regulation

    International Nuclear Information System (INIS)

    This article uses lessons from biotechnology to help inform the design of oversight for nanobiotechnology. Those lessons suggest the following: first, oversight needs to be broadly defined, encompassing not just regulatory findings around safety and efficacy, but also public understanding and acceptance of the technology and its products. Second, the intensity of scrutiny and review should reflect not just risks but also perceptions of risk. Finally, a global marketplace argues for uniform standards or commercially practical solutions to differences in standards. One way of designing oversight to achieve these purposes is to think about it in three phases—precaution, prudence, and promotion. Precaution comes early in the technology or product’s development and reflects real and perceived uncertainties. Prudence governs when risks and hazards have been identified, containment approaches established, and benefits broadly defined. Transparency and public participation rise to the fore. The promotional phase moves toward shaping public understanding and acceptance and involves marketing issues rather than safety ones. This flexible, three-phase approach to oversight would have avoided some of the early regulatory problems with agricultural biotechnology. It also would have led to a more risk-adjusted pathway to regulatory approval. Furthermore, it would avoid some of the arbitrary, disruptive marketing issues that have arisen.

  11. Current and Future Leaders' Perceptions of Agricultural Biotechnology

    Science.gov (United States)

    Wingenbach, Gary J.; Miller, Rene P.

    2009-01-01

    Were elected state FFA officers' attitudes toward agricultural biotechnology significantly different from elected Texas legislators' attitudes about the same topic? The purpose of this study was to determine if differences existed in agricultural biotechnology perceptions or information source preferences when compared by leadership status:…

  12. Students' knowledge of, and attitudes towards biotechnology revisited, 1995-2014: Changes in agriculture biotechnology but not in medical biotechnology.

    Science.gov (United States)

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-09-10

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and attitudes towards biotechnology for nearly two decades. Not surprisingly, knowledge of biotechnology of current students has increased significantly (p biotechnology. There was a positive correlation between biotechnology knowledge and attitudes toward biotechnology for current students who study Advanced Biology (AB). However, for current students who did not study AB, there was a negative correlation.The attitude results showed that students today expressed less favorable opinions toward agricultural biotechnology (p medical biotechnology. In addition, current students showed a greater concern involving environmental risks than former students. Interestingly, the high school curriculum did affect students' attitudes toward genetically engineered (GE) plants but not GE animals. Our current study also found that the students' attitude towards GE animals was influenced more by their limited knowledge than by their moral belief. On the basis of findings from this study, we suggest that more materials of emerging animal biotechnology should be included in high school curriculum and recommend that high school teachers and university faculty establish a collaborative framework in the near future. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):475-491, 2016.

  13. Agricultural Communications Students' Awareness and Perceptions of Biotechnology Issues.

    Science.gov (United States)

    Wingenbach, Gary J.; Rutherford, Tracy A.; Dunsford, Deborah W.

    2003-01-01

    Agricultural communications students (n=330) from 11 universities were most aware of biotechnology effects on food, less aware of effects on health and the environment. They were somewhat accepting of genetic modifications for plants, not humans. Sources of biotechnology knowledge were science classes, labs, and university professors' beliefs.…

  14. Biotechnology and Nuclear Agriculture Research Institute (BNARI) at a glance

    International Nuclear Information System (INIS)

    Biotechnology and Nuclear Agriculture Research Institute (BNARI) was established in 1993 as one of the research, development and technology transfer institutes of the Ghana Atomic Energy Commission (GAEC). This was to help the GAEC to expand its research and development in the area of biotechnology and nuclear agriculture, which have been found to have a major impact on the agricultural development in countries involved in peaceful application of nuclear energy. The main objective of the Institute is to explore and exploit the application of isotopes, ionizing radiation and biotechnologies for increased agricultural and economic development of Ghana and to help the Country attain self-sufficiency in food and agriculture in order to alleviate malnutrition, hunger and poverty. This brochure describes the organizational structure; research facilities and programmes; services of the various departments of the Institute as well as achievements

  15. 78 FR 7387 - Advisory Committee on Biotechnology and 21st Century Agriculture; Renewal

    Science.gov (United States)

    2013-02-01

    ...; ] DEPARTMENT OF AGRICULTURE Advisory Committee on Biotechnology and 21st Century Agriculture; Renewal AGENCY: Agricultural Research Service, USDA. ACTION: Advisory Committee on Biotechnology and 21st Century Agriculture... Committee on Biotechnology and 21st Century Agriculture (AC21). The Secretary of Agriculture has...

  16. Biotechnology: An Assessment of Agricultural Science Teachers' Knowledge and Attitudes

    Science.gov (United States)

    Mowen, Diana L.; Roberts, T. Grady; Wingenbach, Gary J.; Harlin, Julie F.

    2007-01-01

    The purpose of this study was to explore agricultural science teachers' knowledge levels and attitudes toward biotechnology topics. The average agricultural science teacher in this study was a 37-year-old male who had taught for 12 years. He had a bachelor's degree and had lived or worked on a farm or ranch. He had not attended…

  17. The integrated web service and genome database for agricultural plants with biotechnology information

    OpenAIRE

    Kim, ChangKug; Park, DongSuk; Seol, YoungJoo; Hahn, JangHo

    2011-01-01

    The National Agricultural Biotechnology Information Center (NABIC) constructed an agricultural biology-based infrastructure and developed a Web based relational database for agricultural plants with biotechnology information. The NABIC has concentrated on functional genomics of major agricultural plants, building an integrated biotechnology database for agro-biotech information that focuses on genomics of major agricultural resources. This genome database provides annotated genome information...

  18. BIOTECHNOLOGICAL ASPECTS ANALYSIS OF AGRICULTURAL POULTRY MICROFLORA

    Directory of Open Access Journals (Sweden)

    Garda S. A.

    2014-07-01

    Full Text Available Probiotics based on normal microflora of the birds using perspective strains become increasingly popular for treatment and prophylaxis of dysbacteriosis in poultry. The purpose of the work is the biotechnological data analysis of the composition and functions of the microflora of different birds’ biotopes. One of biotechnological methods for the study of bacterial flora in the birds is a method of in vivo bacteriological control — analysis of group samples of fresh droppings. To study bird bacterial microflora the method based on vital bacteriological control (group sample study of fresh brood is the most effective. Only 60–70% of microorganisms are identified during the analysis of bowels bird microflora. It is shown that the normal microflora of the birds has a protective function because it is colonized on epithelial intestinal area and competes for power sources, has a wider set of enzymes, and also produces a wide range of exometabolites that determine their antagonistic action on pathogenic and conditionally pathogenic transient microorganisms. To improve modern technologies concerning cultivation of various breeds of birds with high genetic potential it needs full understanding of endogenous microflora role in a bird body. We found that as a source of probiotic strains it is better to use gastrointestinal tract laying hens and/or to make a selection of group tests of their fresh litter. Thus the best probiotic properties are characterized by microorganisms genera Bifidobacterium and Lactobacillus. The results could be used for selection of promising strains to create a acomplex probiotic.

  19. Agricultural biotechnology and its contribution to the global knowledge economy.

    Science.gov (United States)

    Aerni, Philipp

    2007-01-01

    The theory of neoclassical welfare economics largely shaped international and national agricultural policies during the Cold War period. It treated technology as an exogenous factor that could boost agricultural productivity but not necessarily sustainable agriculture. New growth theory, the economic theory of the new knowledge economy, treats technological change as endogenous and argues that intangible assets such as human capital and knowledge are the drivers of sustainable economic development. In this context, the combined use of agricultural biotechnology and information technology has a great potential, not just to boost economic growth but also to empower people in developing countries and improve the sustainable management of natural resources. This article outlines the major ideas behind new growth theory and explains why agricultural economists and agricultural policy-makers still tend to stick to old welfare economics. Finally, the article uses the case of the Cassava Biotechnology Network (CBN) to illustrate an example of how new growth theory can be applied in the fight against poverty. CBN is a successful interdisciplinary crop research network that makes use of the new knowledge economy to produce new goods that empower the poor and improve the productivity and nutritional quality of cassava. It shows that the potential benefits of agricultural biotechnology go far beyond the already known productivity increases and pesticide use reductions of existing GM crops.

  20. biotechnology: a tool for innovation sustainable agriculture

    International Nuclear Information System (INIS)

    Feed 9.6 billion people, according to UN projections, will populate the planet in 2050. This is the challenge that agriculture is called to deal and that will be one of the themes supporting the EXPO 2015. The answer to food needs of a population growing, in particular in In developing countries, it will certainly not be unique, but the road seems marked: it is that of an intensification sustainable agriculture, supported by innovation and research, able to enhance agricultural yields without adding to the budget input necessary for the production (energy, earth, water).

  1. IMPACT OF AGRICULTURAL BIOTECHNOLOGY ON ENVIRONMENT AND FOOD SECURITY

    OpenAIRE

    Marijan Jošt

    2003-01-01

    The application of modern biotechnology in agricultural production processes has generated new ethical, economic, social and environmental dilemmas confronting scientists all over the world. While current knowledge is insufficient for assessing the promised benefits and possible risks of genetically modified organisms (GMOs), the principle of “substantial equivalence” in comparing GM and conventional food is profoundly flawed and scientifically insupportable. The current generatio...

  2. 77 FR 11064 - Notice of the Advisory Committee on Biotechnology and 21st Century Agriculture Meeting

    Science.gov (United States)

    2012-02-24

    ... Agricultural Research Service Notice of the Advisory Committee on Biotechnology and 21st Century Agriculture... Committee on Biotechnology and 21st Century Agriculture (AC21). DATES: The meeting dates are March 5-6, 2012..., 2012. The AC21 consists of members representing the biotechnology industry, the organic food...

  3. 76 FR 48797 - Notice of the Advisory Committee on Biotechnology and 21st Century Agriculture Meeting

    Science.gov (United States)

    2011-08-09

    ... Agricultural Research Service Notice of the Advisory Committee on Biotechnology and 21st Century Agriculture... on Biotechnology and 21st Century Agriculture (AC21). DATES: August 30-31, 2011. ADDRESSES: Rooms... consists of members representing the biotechnology industry, the organic food industry, farming...

  4. 77 FR 46681 - Advisory Committee on Biotechnology and 21st Century Agriculture; Notice of Meeting

    Science.gov (United States)

    2012-08-06

    ...; ] DEPARTMENT OF AGRICULTURE Advisory Committee on Biotechnology and 21st Century Agriculture; Notice of Meeting... meeting of the Advisory Committee on Biotechnology and 21st Century Agriculture (AC21). DATES: The meeting... the biotechnology industry, the organic food industry, farming communities, the seed industry,...

  5. 77 FR 26725 - Advisory Committee on Biotechnology and 21st Century Agriculture Meeting

    Science.gov (United States)

    2012-05-07

    ...; ] DEPARTMENT OF AGRICULTURE Advisory Committee on Biotechnology and 21st Century Agriculture Meeting AGENCY... Biotechnology and 21st Century Agriculture (AC21). DATES: The meeting dates are May 29-30, 2012, 8:30 a.m. to 5... consists of members representing the biotechnology industry, the organic food industry, farming...

  6. The integrated web service and genome database for agricultural plants with biotechnology information

    Science.gov (United States)

    Kim, ChangKug; Park, DongSuk; Seol, YoungJoo; Hahn, JangHo

    2011-01-01

    The National Agricultural Biotechnology Information Center (NABIC) constructed an agricultural biology-based infrastructure and developed a Web based relational database for agricultural plants with biotechnology information. The NABIC has concentrated on functional genomics of major agricultural plants, building an integrated biotechnology database for agro-biotech information that focuses on genomics of major agricultural resources. This genome database provides annotated genome information from 1,039,823 records mapped to rice, Arabidopsis, and Chinese cabbage. PMID:21887015

  7. Agricultural Biotechnology : Transgenics in Agriculture and their Implications for Developing Countries

    OpenAIRE

    Pehu, Eija; Ragasa, Catherine

    2008-01-01

    Technological innovation in agriculture can bring enormous benefits to the poor. High-yielding varieties of staple food crops have improved agricultural productivity, raised incomes, and reduced food prices. Innovations in plant breeding research based on advances in genetics that make it possible to manipulate plant DNA. Referred to as 'biotechnology,' its use in agriculture is controversial, particularly with regard to the development and use of genetically modified organisms (GMOs), also k...

  8. Transgenic barley: a prospective tool for biotechnology and agriculture.

    Science.gov (United States)

    Mrízová, Katarína; Holasková, Edita; Öz, M Tufan; Jiskrová, Eva; Frébort, Ivo; Galuszka, Petr

    2014-01-01

    Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming.

  9. Challenges facing European agriculture and possible biotechnological solutions.

    Science.gov (United States)

    Ricroch, Agnès; Harwood, Wendy; Svobodová, Zdeňka; Sági, László; Hundleby, Penelope; Badea, Elena Marcela; Rosca, Ioan; Cruz, Gabriela; Salema Fevereiro, Manuel Pedro; Marfà Riera, Victoria; Jansson, Stefan; Morandini, Piero; Bojinov, Bojin; Cetiner, Selim; Custers, René; Schrader, Uwe; Jacobsen, Hans-Joerg; Martin-Laffon, Jacqueline; Boisron, Audrey; Kuntz, Marcel

    2016-10-01

    Agriculture faces many challenges to maximize yields while it is required to operate in an environmentally sustainable manner. In the present study, we analyze the major agricultural challenges identified by European farmers (primarily related to biotic stresses) in 13 countries, namely Belgium, Bulgaria, the Czech Republic, France, Germany, Hungary, Italy, Portugal, Romania, Spain, Sweden, UK and Turkey, for nine major crops (barley, beet, grapevine, maize, oilseed rape, olive, potato, sunflower and wheat). Most biotic stresses (BSs) are related to fungi or insects, but viral diseases, bacterial diseases and even parasitic plants have an important impact on yield and harvest quality. We examine how these challenges have been addressed by public and private research sectors, using either conventional breeding, marker-assisted selection, transgenesis, cisgenesis, RNAi technology or mutagenesis. Both national surveys and scientific literature analysis followed by text mining were employed to evaluate genetic engineering (GE) and non-GE approaches. This is the first report of text mining of the scientific literature on plant breeding and agricultural biotechnology research. For the nine major crops in Europe, 128 BS challenges were identified with 40% of these addressed neither in the scientific literature nor in recent European public research programs. We found evidence that the private sector was addressing only a few of these "neglected" challenges. Consequently, there are considerable gaps between farmer's needs and current breeding and biotechnology research. We also provide evidence that the current political situation in certain European countries is an impediment to GE research in order to address these agricultural challenges in the future. This study should also contribute to the decision-making process on future pertinent international consortia to fill the identified research gaps. PMID:26133365

  10. Agriculture and biotechnology centers of the PAEC: a resume

    International Nuclear Information System (INIS)

    Pakistan recognized the role of nuclear techniques in agricultural and other biological research and started establishing goal-oriented, multi- disciplinary institutions to help agricultural research in the country. A core manpower was trained and centers established in the cities where most of the agricultural research was located; the objective was to supplement the research activity in areas where nuclear techniques would have a clear advantage. The first centre was established at Tandojam, Sindh and others at Faisalabad, Mymensingh, Peshawar and again at Faisalabad. Apart from agricultural research, these centers utilized their facilities and ventured into other areas such as biotechnology and can now take some pride in contributing in the country's economy and in development of human resource and helping develop a science culture in the country. With better management systems, the inputs seem to have been better utilized. That the end users and the government have recognized the contributions of these centers is evident from the number of farmers visiting these institutions for advice and the number of medals awarded to their scientists by the government. These institutes could, perhaps, have done even better yet it seems their positive contributions outweigh their deficiencies. In this piece of writing a brief history of these institutions is given and some information provided about the raison for their programmes and the environment under which the programmes were executed. A few of their salient achievements have also been mentioned. (author)

  11. Intellectual property protection for agricultural biotechnological inventions: a case of Malaysia

    OpenAIRE

    Ismail, Suzi Fadhilah

    2011-01-01

    This research focuses on the current legal protection for agricultural biotechnological inventions in Europe and the U.S. It has been a subject of debate whether plants and agricultural biotechnological inventions which includes plants, transgenic plants and plant varieties, can be the subject of patent protection, in addition to or as an alternative to the protection afforded by plant variety rights. Biotechnological patents have been criticized for granting an excessive scope of protection ...

  12. Reducing agricultural greenhouse gas emissions: role of biotechnology, organic systems, and consumer behavior

    Science.gov (United States)

    All agricultural systems have environmental and societal costs and benefits that should be objectively quantified before recommending specific management practices. Agricultural biotechnology, which takes advantage of genetically engineered organisms (GEOs), along with organic cropping systems, econ...

  13. IMPACT OF AGRICULTURAL BIOTECHNOLOGY ON ENVIRONMENT AND FOOD SECURITY

    Directory of Open Access Journals (Sweden)

    Marijan Jošt

    2003-12-01

    Full Text Available The application of modern biotechnology in agricultural production processes has generated new ethical, economic, social and environmental dilemmas confronting scientists all over the world. While current knowledge is insufficient for assessing the promised benefits and possible risks of genetically modified organisms (GMOs, the principle of “substantial equivalence” in comparing GM and conventional food is profoundly flawed and scientifically insupportable. The current generation of GMOs provide small benefits except corporate profit and marginally improved grower returns. The TRIPS agreement has allowed worldwide patenting of genes and microorganisms, as well as genetically engineered organisms. Granting patents on life encourages biopiracy and the theft of genetic resources belonging to the local community. At the same time, the patented products are sold at relatively high prices to developing countries – the same countries from which the product originated.

  14. Students' Knowledge of, and Attitudes towards Biotechnology Revisited, 1995-2014: Changes in Agriculture Biotechnology but Not in Medical Biotechnology

    Science.gov (United States)

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-01-01

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and…

  15. Biotechnology

    International Nuclear Information System (INIS)

    The article sets out to explain in simple terms the main concepts of Biotechnology beginning with traditional biotechnology to modern biotechnology. It outlines fundamentals of Recombinant Deoxyribonucleic Acid (DNA), Genetically Modified Organisms (GMOs) and Genetic Engineering. The article offers a discussion of the benefits, disadvantages and the general public and policy concerns regarding genetically modified organisms

  16. 76 FR 3599 - Renewal of the Advisory Committee on Biotechnology and 21st Century Agriculture

    Science.gov (United States)

    2011-01-20

    ...; ] DEPARTMENT OF AGRICULTURE Agricultural Research Service Renewal of the Advisory Committee on Biotechnology and 21st Century Agriculture AGENCY: Office of the Under Secretary, Research, Education, and Economics, USDA. ACTION: Notice. SUMMARY: The Secretary of Agriculture intends to renew the Advisory Committee...

  17. The Sociology of Agriculture in Transition: The Political Economy of Agriculture after Biotechnology

    Directory of Open Access Journals (Sweden)

    Gabriela Pechlaner

    2010-01-01

    Full Text Available In 2007, a global food crisis brought the topic of agriculture back into the public eye, and retriggered debates about the ability of agricultural industrialization to feed the world. As a nature-based process and an exception to capitalist industrialization, agriculture trends are difficult to assess. One of the more productive attempts to do so has developed conceptual tools that account for the distinction from typical capital accumulation patterns, notably Goodman,Sorj, and Wilkinson’s (1987 classic concepts of “appropriationism” and “substitutionism.” Agricultural biotechnologies are testing the limits of even these more refined conceptualizations, as the technologies’ associated proprietary framework — including seed saving restrictions, grower contracts, and patent infringement litigation — is reorganizing many traditional agricultural practices. Drawing on case studies in Mississippi, U.S. and Saskatchewan, Canada, thispaper argues that these trends suggest a need for a new concept in political economy of agriculture theory, which I term "expropriationism.” This concept identifies several aspects of an agricultural reorganization premised on legal means to enhance capital accumulation and on separating corporate ownership from liability. This accumulation strategy has important implications given the highsalience that agriculture has for society.

  18. [Ecological significance of arbuscular mycorrhiza biotechnology in modern agricultural system].

    Science.gov (United States)

    Zhang, Yong; Zeng, Ming; Xiong, Bingquan; Yang, Xiaohong

    2003-04-01

    Mycorrhiza plays a key role in nutrient cycling in ecosystem, and protects host plant against environmental stress. Under natural condition, plant's mycorrhizal structure is a normal phenomenon, and arbuscular mycorrhiza (AM) association is the commonest mycorrhizal type. If well mycorrhizal structure can be formed during plant root system developing process, the quantity and quality of plant production will be improved in large. Because of its effects on plant growth and health, it is accepted that AM symbiosis can reduce chemical fertilizer and pesticide inputs. Consequently, this will lead to a reduction in harmful chemical substance impact on environment. The key effects of AM symbiosis can be summarized as follows: (1) improving rooting and plant establishment; (2) improving uptake of low mobile ions; (3) improving nutrient cycling; (4) enhancing plant tolerance to (biotic and abiotic) stress; (5) improving quality of soil structure; and (6) enhancing plant community diversity. In this paper, the ecological characteristic of arbuscular mycorrhiza fungi (AMF), effects of AM on host plant, and ecologic significance of AM biotechnology in agricultural system were reviewed.

  19. A stakeholder approach to investigating public perception and attitudes towards agricultural biotechnology in Ghana

    OpenAIRE

    Yawson, Robert M.; Quaye, Wilhemina; Williams, Irene E.; Yawson, Ivy

    2008-01-01

    A stakeholder survey was conducted in Ghana to assess the level of public perceptions and acceptance of agricultural biotechnologies. A total of 100 respondents drawn from academia, Non-governmental organizations, business community, government and other stakeholders were interviewed on their views on self-protection attitudes, health and economic benefits, skepticism and optimism about agricultural biotechnologies as well as the level of confidence in existing government regulatory systems t...

  20. Biotechnology.

    Science.gov (United States)

    Van Vranken, Nancy S., Ed.

    1987-01-01

    The field of biotechnology, and specifically recombinant DNA technology, is transforming the way that many feel about the nature and purposes of biology. This newsletter annual supplement contains several articles addressing the topic of biotechnology and the importance that the topic should be given in science classes. James D. Watson's article,…

  1. Agricultural Science Teachers' Barriers, Roles, and Information Source Preferences for Teaching Biotechnology Topics

    Science.gov (United States)

    Mowen, Diana L.; Wingenbach, Gary J.; Roberts, T. Grady; Harlin, Julie F.

    2007-01-01

    The purpose of this study was to determine barriers, roles, and information source preferences for teaching agricultural biotechnology topics. Agricultural science teachers were described primarily as 37 year-old males who had taught for 12 years, had bachelor's degrees, and had lived or worked on a farm or ranch. Equipment was perceived as the…

  2. College Students' View of Biotechnology Products and Practices in Sustainable Agriculture Systems

    Science.gov (United States)

    Anderson, William A.

    2008-01-01

    Sustainable agriculture implies the use of products and practices that sustain production, protect the environment, ensure economic viability, and maintain rural community viability. Disagreement exists as to whether or not the products and practices of modern biotechnological support agricultural sustainability. The purpose of this study was to…

  3. 77 FR 48948 - Notice of the Advisory Committee on Biotechnology and 21st Century Agriculture Meeting; Correction

    Science.gov (United States)

    2012-08-15

    ..., 202-720-3817. Correction In the Federal Register of August 6, 2012 in FR Doc. 151, on page 46681 in...; ] DEPARTMENT OF AGRICULTURE Agricultural Research Service Notice of the Advisory Committee on Biotechnology and... meeting of the Advisory Committee on Biotechnology and 21st Century Agriculture (AC21). The notice...

  4. Biotechnologies for the management of genetic resources for food and agriculture.

    Science.gov (United States)

    Lidder, Preetmoninder; Sonnino, Andrea

    2012-01-01

    In recent years, the land area under agriculture has declined as also has the rate of growth in agricultural productivity while the demand for food continues to escalate. The world population now stands at 7 billion and is expected to reach 9 billion in 2045. A broad range of agricultural genetic diversity needs to be available and utilized in order to feed this growing population. Climate change is an added threat to biodiversity that will significantly impact genetic resources for food and agriculture (GRFA) and food production. There is no simple, all-encompassing solution to the challenges of increasing productivity while conserving genetic diversity. Sustainable management of GRFA requires a multipronged approach, and as outlined in the paper, biotechnologies can provide powerful tools for the management of GRFA. These tools vary in complexity from those that are relatively simple to those that are more sophisticated. Further, advances in biotechnologies are occurring at a rapid pace and provide novel opportunities for more effective and efficient management of GRFA. Biotechnology applications must be integrated with ongoing conventional breeding and development programs in order to succeed. Additionally, the generation, adaptation, and adoption of biotechnologies require a consistent level of financial and human resources and appropriate policies need to be in place. These issues were also recognized by Member States at the FAO international technical conference on Agricultural Biotechnologies for Developing Countries (ABDC-10), which took place in March 2010 in Mexico. At the end of the conference, the Member States reached a number of key conclusions, agreeing, inter alia, that developing countries should significantly increase sustained investments in capacity building and the development and use of biotechnologies to maintain the natural resource base; that effective and enabling national biotechnology policies and science-based regulatory frameworks can

  5. Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The guidelines of the Biotechnology Program are research and development aiming to develop and manufacture products of pharmaceutical interest. This program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological system of macromolecules.

  6. Biotechnology

    International Nuclear Information System (INIS)

    The guidelines of the Biotechnology Program are research and development aiming to develop and manufacture products of pharmaceutical interest. This program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological system of macromolecules

  7. Agricultural biotechnologies in developing countries and their possible contribution to food security.

    Science.gov (United States)

    Ruane, John; Sonnino, Andrea

    2011-12-20

    Latest FAO figures indicate that an estimated 925 million people are undernourished in 2010, representing almost 16% of the population in developing countries. Looking to the future, there are also major challenges ahead from the rapidly changing socio-economic environment (increasing world population and urbanisation, and dietary changes) and climate change. Promoting agriculture in developing countries is the key to achieving food security, and it is essential to act in four ways: to increase investment in agriculture, broaden access to food, improve governance of global trade, and increase productivity while conserving natural resources. To enable the fourth action, the suite of technological options for farmers should be as broad as possible, including agricultural biotechnologies. Agricultural biotechnologies represent a broad range of technologies used in food and agriculture for the genetic improvement of plant varieties and animal populations, characterisation and conservation of genetic resources, diagnosis of plant or animal diseases and other purposes. Discussions about agricultural biotechnology have been dominated by the continuing controversy surrounding genetic modification and its resulting products, genetically modified organisms (GMOs). The polarised debate has led to non-GMO biotechnologies being overshadowed, often hindering their development and application. Extensive documentation from the FAO international technical conference on Agricultural Biotechnologies in Developing Countries (ABDC-10), that took place in Guadalajara, Mexico, on 1-4 March 2010, gave a very good overview of the many ways that different agricultural biotechnologies are being used to increase productivity and conserve natural resources in the crop, livestock, fishery, forestry and agro-industry sectors in developing countries. The conference brought together about 300 policy-makers, scientists and representatives of intergovernmental and international non

  8. Biotechnology and the developing world. Finding ways to bridge the agricultural technology gap.

    Science.gov (United States)

    Platais, K W; Collinson, M P

    1992-03-01

    Biotechnology is a controversial subject that involves a range of scientific principles from basic tissue culture to genetic manipulation. Proponents include private sector capitalists, public sector researchers, and developing nation governments. Opponents include environmental organizations and social organizations involved in protecting the rights of developing nations. Biotechnology is being presented as the next step after the Green Revolution and the only way that the people of the developing world will be able to feed themselves in the next half century. Research by industrialized nations world wide total an estimated $11 billion with 66% being contributed by the private sector. Biotechnology represents somewhat of a dilemma. Since the majority of the work is being done by the private sector the interests of shareholders and profit are greater done by the private sector the interests of shareholders and profit are greater than that of public welfare or safety. The Consultative Group on International Agricultural Research (CGIAR) is one public sector group that is concerned about this problem. The countries of the developing world fall into 2 categories in relation to use of biotechnology: (1) those that have the potential to adapt imported biotechnologies to local conditions; (2) those that have little or no applied research capacity to effectively use biotechnologies. Currently only Brazil, China, India, and Thailand belong in the 1st category, all other developing countries fall into the 2nd. CGIAR believes it can help in 2 ways: (1) it can provide a bridge for needed information and germplasm between developed and developing countries; (2) it can help to ensure that the agricultural needs of developing countries are not lost. In 1990 CGIAR's plant and animal biotechnology research totaled $14.5 million which was less than 5% of the total CGIAR budget. Networking and institutions building are areas that CGIAR focuses on in an attempt to increase its affect

  9. Biotechnology and the developing world. Finding ways to bridge the agricultural technology gap.

    Science.gov (United States)

    Platais, K W; Collinson, M P

    1992-03-01

    Biotechnology is a controversial subject that involves a range of scientific principles from basic tissue culture to genetic manipulation. Proponents include private sector capitalists, public sector researchers, and developing nation governments. Opponents include environmental organizations and social organizations involved in protecting the rights of developing nations. Biotechnology is being presented as the next step after the Green Revolution and the only way that the people of the developing world will be able to feed themselves in the next half century. Research by industrialized nations world wide total an estimated $11 billion with 66% being contributed by the private sector. Biotechnology represents somewhat of a dilemma. Since the majority of the work is being done by the private sector the interests of shareholders and profit are greater done by the private sector the interests of shareholders and profit are greater than that of public welfare or safety. The Consultative Group on International Agricultural Research (CGIAR) is one public sector group that is concerned about this problem. The countries of the developing world fall into 2 categories in relation to use of biotechnology: (1) those that have the potential to adapt imported biotechnologies to local conditions; (2) those that have little or no applied research capacity to effectively use biotechnologies. Currently only Brazil, China, India, and Thailand belong in the 1st category, all other developing countries fall into the 2nd. CGIAR believes it can help in 2 ways: (1) it can provide a bridge for needed information and germplasm between developed and developing countries; (2) it can help to ensure that the agricultural needs of developing countries are not lost. In 1990 CGIAR's plant and animal biotechnology research totaled $14.5 million which was less than 5% of the total CGIAR budget. Networking and institutions building are areas that CGIAR focuses on in an attempt to increase its affect

  10. 76 FR 14895 - Request for Nominations to the Advisory Committee on Biotechnology and 21st Century Agriculture

    Science.gov (United States)

    2011-03-18

    ... Century Agriculture AGENCY: Office of the Under Secretary, Research, Education, and Economics. ACTION... pathology; biodiversity; applicable laws and regulations relevant to agricultural biotechnology policy; risk... employer. Dated: March 10, 2011. Catherine E. Woteki, Under Secretary for Research, Education and...

  11. Biotechnology: a tool for sustainable innovation in agriculture

    International Nuclear Information System (INIS)

    Feed 9.6 billion people, according to UN projections, will populate the planet in 2050. This is the challenge that agriculture is called to deal and that will be one of the topics carriers EXPO 2015. The answer to food needs of a population growing, in particular in the Countries in the developing world, will certainly not unique, but the road seems marked: it is that of an intensification sustainable agriculture, supported by innovation and research, able to enhance agricultural yields without adding to the budget input necessary for the production (energy, earth, water).

  12. Biotechnology

    International Nuclear Information System (INIS)

    The guidelines of the Biotechnology Program are research and development aiming to develop and manufacture products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological system of macromolecules. The Animal Laboratory Division of IPEN is responsible for the breeding and production of small laboratory animal.

  13. Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The guidelines of the Biotechnology Program are research and development aiming to develop and manufacture products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological system of macromolecules. The Animal Laboratory Division of IPEN is responsible for the breeding and production of small laboratory animal.

  14. Biotechnology 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-12-15

    This book deals with Bio-vision 2016 on the meaning and important contents Next, it reveals vision of biotechnology, current condition of biotechnology in the main countries such as the U.S, Japan, Eu and China, promoting nation biotechnology with promotion policy, support policy for biotechnology such as agriculture and forestry and information and communication, competitiveness of biotechnology, research development by fields and related industries and regulation and system on biotechnology.

  15. Biotechnology and Nuclear Agriculture Research Institute (BNARI) : Annual Report January - December 2014

    International Nuclear Information System (INIS)

    The report is a summary of research projects undertaken by various centres of the Biotechnology and Nuclear Agriculture Institute (BNARI) of the Ghana Atomic Energy Commission from January to December 2014. Also included are the lists of published journal articles and technical reports issued by Staff.

  16. Biotechnology and Nuclear Agricultural Research Institute Annual Report January - December 2012

    International Nuclear Information System (INIS)

    The annual report highlights the activities of the Biotechnology and Nuclear Agriculture Research Institute (BNARI) of the Ghana Atomic Energy Commission for the year 2012 grouped under the following headings: Overview of programmes and activities; list of publications, conferences, training courses and workshops attended by staff and future projections. (A. B.)

  17. Biotechnology

    International Nuclear Information System (INIS)

    The guidelines of the Biotechnology Program are research and development aiming at developing and manufacturing products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. Up to now they have worked mostly with human growth hormone (hGH), human prolactin (hPRL), human thyrotropin (hTSH), human follicle stimulating hormone (hFSH) and human luteotropin (hLH), with a particular emphasis on glycoprotein carbohydrate structures. An important research line is devoted to Growth Hormone Gene Therapy, working mostly on animal models: immunocompetent and immunodeficient-dwarf mice. For several years this development has been based on ex vivo grafting of transduced keratinocytes, while more recently very promising results have been obtained with the injections and electroporation of naked plasmid DNA. Besides research, they have also activities in the Biotechnological Production and Downstream Processing of the same recombinant hormones, which are produced in both E. coli and mammalian cells and in the development of joint-ventures with the National Industry. The biological effects of radiation on cells are also studied, specially concerning the administration of 131I together with thyroid-stimulating hormone in thyroid cancer. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological systems of macromolecules. These macromolecules are peptides or proteins, either native or recombinant with medical or pharmaceutical interest. During this period new proteins related to serine protease activity, breast cancer development and angiogenesis were described. The effects of ionizing radiation on macromolecules have also been investigated to detoxify animal venoms in order to improve antigens for

  18. Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The guidelines of the Biotechnology Program are research and development aiming at developing and manufacturing products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. Up to now they have worked mostly with human growth hormone (hGH), human prolactin (hPRL), human thyrotropin (hTSH), human follicle stimulating hormone (hFSH) and human luteotropin (hLH), with a particular emphasis on glycoprotein carbohydrate structures. An important research line is devoted to Growth Hormone Gene Therapy, working mostly on animal models: immunocompetent and immunodeficient-dwarf mice. For several years this development has been based on ex vivo grafting of transduced keratinocytes, while more recently very promising results have been obtained with the injections and electroporation of naked plasmid DNA. Besides research, they have also activities in the Biotechnological Production and Downstream Processing of the same recombinant hormones, which are produced in both E. coli and mammalian cells and in the development of joint-ventures with the National Industry. The biological effects of radiation on cells are also studied, specially concerning the administration of {sup 131}I together with thyroid-stimulating hormone in thyroid cancer. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological systems of macromolecules. These macromolecules are peptides or proteins, either native or recombinant with medical or pharmaceutical interest. During this period new proteins related to serine protease activity, breast cancer development and angiogenesis were described. The effects of ionizing radiation on macromolecules have also been investigated to detoxify animal venoms in order to improve antigens

  19. Biotechnologies

    Directory of Open Access Journals (Sweden)

    Rival Alain

    2001-07-01

    Full Text Available Today, a range of biotechnological approaches, from somatic embryogenesis to biomolecular research, play an increasingly important role in breeding strategies for oil palm (Elaeis guineensis Jacq.. Clonal micropropagation. Methods of cloning by in vitro culture led to the development of a micropropagation technique for oil palm based on somatic embryogenesis which was tested at the pilot stage on elite genotypes, thus enabling the production of high oil yielding clones. This phase allowed the identification of limiting factors associated with scaling-up, with respect in particular to the scale of mass production required to meet the needs of planters and to the problem of ensuring genetic fidelity in the regenerated plant material. These two concerns led researchers to look further into the underlying physiological and/or molecular mechanisms involved in somatic embryogenesis and the somaclonal variation events induced by the in vitro cloning procedure. Structural and functional genomics. Marker-assisted breeding in oil palm is a long-term multi-stage project including: molecular analysis of genetic diversity in both E. guineensis and E. oleifera germplasms; large scale development of PCR-based microsatellite markers; and parallel development of three genome mapping and QTL detection projects studying key agronomic characters. Post-genomics. In order to tackle the problem of the mantled flowering abnormality, which is induced during the micropropagation process, studies of gene expression have been carried out in tissue cultures as a means of establishing an early clonal conformity testing procedure. It is important to assess what kind of methodology is the most appropriate for clonal conformity testing by comparing RNA, protein and DNA (PCR based approaches. Parallel studies on genomic DNA methylation changes induced by tissue culture suggest that the latter may play an important role in the determination of the mantled abnormality.

  20. FAO/IAEA Agriculture and Biotechnology Laboratories. Activities Report 2010

    International Nuclear Information System (INIS)

    Almost two thirds of the world's farm population is raised in developing countries where livestock production constitutes an important resource for the subsistence of more than 70% of the impoverished people living there. Animals represent an essential source of protein and contribute to the economic development of these countries and to overall food security. However, production losses caused by animal diseases, estimated to be around 20% worldwide, have huge negative impact on livestock productivity. The Animal Production and Health Laboratory (APHL), within the Animal Production and Health Section, conducts applied research activities to develop diagnostic tools and assists in the transfer of these tools to FAO and IAEA Member States in their efforts to improve livestock productivity, ensure food security and fight against hunger. The aims of the Food and Environmental Protection Laboratory (FEPL), as a component of the Food and Environmental Protection (FEP) Section, are to provide assistance and support to developing countries in their efforts to ensure the safety and quality of food and agricultural commodities, thereby safeguarding the health of consumers and facilitating international trade. The focus of the FEPL's work is on improving Member States' laboratory and regulatory practices and methodologies, The main areas of activity in pursuit of the FEPL objectives are applied R and D, technology transfer and support of the development of international standards and guidelines. The Insect Pest Control Laboratory (IPCL) is an integral part of the Insect Pest Control Section and contributes to its global objectives of increasing food security, reducing food losses and insecticide use, overcoming constraints to sustainable rural development, and facilitating international trade in agriculture commodities. The IPCL achieves these goals through the development and transfer of the sterile insect technique (SIT) package for key insect pests of crops, livestock and

  1. COMPETITIVE STRATEGIES OF BIOTECHNOLOGY FIRMS: IMPLICATIONS FOR U.S. AGRICULTURE

    OpenAIRE

    Begemann, Brett D.

    1997-01-01

    The agricultural biotechnology industry has evolved from a focus on outstanding science to a more mature phase where firms focus on near-term products and building businesses. Understanding complex relationships and distribution channels and a global perspective are crucial to commercialization. Yet, leading-edge technology and early identification of key traits will be critical to developing superior products that ensure competitiveness in the marketplace. Monsanto is organizing around a lif...

  2. The Role of Biotechnology in Sustainable Agriculture: Views and Perceptions among Key Actors in the Swedish Food Supply Chain

    Directory of Open Access Journals (Sweden)

    Karin Edvardsson Björnberg

    2015-06-01

    Full Text Available Researchers have put forward agricultural biotechnology as one possible tool for increasing food production and making agriculture more sustainable. In this paper, it is investigated how key actors in the Swedish food supply chain perceive the concept of agricultural sustainability and the role of biotechnology in creating more sustainable agricultural production systems. Based on policy documents and semi-structured interviews with representatives of five organizations active in producing, processing and retailing food in Sweden, an attempt is made to answer the following three questions: How do key actors in the Swedish food supply chain define and operationalize the concept of agricultural sustainability? Who/what influences these organizations’ sustainability policies and their respective positions on agricultural biotechnology? What are the organizations’ views and perceptions of biotechnology and its possible role in creating agricultural sustainability? Based on collected data, it is concluded that, although there is a shared view of the core constituents of agricultural sustainability among the organizations, there is less explicit consensus on how the concept should be put into practice or what role biotechnology can play in furthering agricultural sustainability.

  3. RNAi technologies in agricultural biotechnology: The Toxicology Forum 40th Annual Summer Meeting.

    Science.gov (United States)

    Sherman, James H; Munyikwa, Tichafa; Chan, Stephen Y; Petrick, Jay S; Witwer, Kenneth W; Choudhuri, Supratim

    2015-11-01

    During the 40th Annual Meeting of The Toxicology Forum, the current and potential future science, regulations, and politics of agricultural biotechnology were presented and discussed. The meeting session described herein focused on the technology of RNA interference (RNAi) in agriculture. The general process by which RNAi works, currently registered RNAi-based plant traits, example RNAi-based traits in development, potential use of double stranded RNA (dsRNA) as topically applied pesticide active ingredients, research related to the safety of RNAi, biological barriers to ingested dsRNA, recent regulatory RNAi science reviews, and regulatory considerations related to the use of RNAi in agriculture were discussed. Participants generally agreed that the current regulatory framework is robust and appropriate for evaluating the safety of RNAi employed in agricultural biotechnology and were also supportive of the use of RNAi to develop improved crop traits. However, as with any emerging technology, the potential range of future products, potential future regulatory frameworks, and public acceptance of the technology will continue to evolve. As such, continuing dialogue was encouraged to promote education of consumers and science-based regulations.

  4. RNAi technologies in agricultural biotechnology: The Toxicology Forum 40th Annual Summer Meeting.

    Science.gov (United States)

    Sherman, James H; Munyikwa, Tichafa; Chan, Stephen Y; Petrick, Jay S; Witwer, Kenneth W; Choudhuri, Supratim

    2015-11-01

    During the 40th Annual Meeting of The Toxicology Forum, the current and potential future science, regulations, and politics of agricultural biotechnology were presented and discussed. The meeting session described herein focused on the technology of RNA interference (RNAi) in agriculture. The general process by which RNAi works, currently registered RNAi-based plant traits, example RNAi-based traits in development, potential use of double stranded RNA (dsRNA) as topically applied pesticide active ingredients, research related to the safety of RNAi, biological barriers to ingested dsRNA, recent regulatory RNAi science reviews, and regulatory considerations related to the use of RNAi in agriculture were discussed. Participants generally agreed that the current regulatory framework is robust and appropriate for evaluating the safety of RNAi employed in agricultural biotechnology and were also supportive of the use of RNAi to develop improved crop traits. However, as with any emerging technology, the potential range of future products, potential future regulatory frameworks, and public acceptance of the technology will continue to evolve. As such, continuing dialogue was encouraged to promote education of consumers and science-based regulations. PMID:26361858

  5. AGRICULTURAL BIOTECHNOLOGY AND ORGANIC AGRICULTURE: NATIONAL ORGANIC STANDARDS, LABELING AND SECOND-GENERATION OF GM PRODUCTS

    OpenAIRE

    Giannakas, Konstantinos; Yiannaka, Amalia

    2003-01-01

    This paper examines the effect of the introduction of labels for products of biotechnology on the markets for GM, conventional, and organic food products. In addition, the paper analyzes the market and welfare effects of the introduction of consumer-oriented, second-generation GM products. Analytical results show that while a no-labeling regime is generally beneficial for the organic sector, when segregation costs are sufficiently high the introduction of labels for GM products can enhance th...

  6. Study on the Agricultural Biotechnology Innovation Based on the Product Differentiation

    Institute of Scientific and Technical Information of China (English)

    Gang; WU; Yong; DU

    2014-01-01

    Based on product differentiation,this paper researches the innovation of agricultural biotechnology. In the duopoly structure,the company’s investment in innovation is affected by the product differentiation,and the greater the difference,the greater the willingness to increase investment and improve quality; at the same time,low innovative cost companies will choose a higher level of investment in innovation and quality. If there is no difference between the products,the companies with high cost of innovation abandon quality competition,and the companies with low cost of innovation " monopolize" the market.

  7. Transgenic proteins in agricultural biotechnology: The toxicology forum 40th annual summer meeting.

    Science.gov (United States)

    Sherman, James H; Choudhuri, Supratim; Vicini, John L

    2015-12-01

    During the 40th Annual Meeting of The Toxicology Forum, the current and potential future science, regulations, and politics of agricultural biotechnology were presented and discussed. The range of current commercial crops and commercial crop traits related to transgenic proteins were reviewed and example crop traits discussed, including insecticidal resistance conferred by Bt proteins and the development of nutritionally enhanced food such as Golden Rice. The existing regulatory framework in the USA, with an emphasis on US FDA's role in evaluating the safety of genetically engineered crops under the regulatory umbrella of the FD&C Act was reviewed. Consideration was given to the polarized politics surrounding agricultural biotechnology, the rise of open access journals, and the influence of the internet and social media in shaping public opinion. Numerous questions related to misconceptions regarding current products and regulations were discussed, highlighting the need for more scientists to take an active role in public discourse to facilitate public acceptance and adoption of new technologies and to enable science-based regulations.

  8. Transgenic proteins in agricultural biotechnology: The toxicology forum 40th annual summer meeting.

    Science.gov (United States)

    Sherman, James H; Choudhuri, Supratim; Vicini, John L

    2015-12-01

    During the 40th Annual Meeting of The Toxicology Forum, the current and potential future science, regulations, and politics of agricultural biotechnology were presented and discussed. The range of current commercial crops and commercial crop traits related to transgenic proteins were reviewed and example crop traits discussed, including insecticidal resistance conferred by Bt proteins and the development of nutritionally enhanced food such as Golden Rice. The existing regulatory framework in the USA, with an emphasis on US FDA's role in evaluating the safety of genetically engineered crops under the regulatory umbrella of the FD&C Act was reviewed. Consideration was given to the polarized politics surrounding agricultural biotechnology, the rise of open access journals, and the influence of the internet and social media in shaping public opinion. Numerous questions related to misconceptions regarding current products and regulations were discussed, highlighting the need for more scientists to take an active role in public discourse to facilitate public acceptance and adoption of new technologies and to enable science-based regulations. PMID:26493003

  9. Chinese public understanding of the use of agricultural biotechnology--A case study from Zhejiang Province of China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This study explores the Chinese public's perceptions of, and attitudes to, agriculture and food applications of biotechnology; and investigates the effect of socio-demographic factors on attitudes. A questionnaire survey and interviews were used in an attempt to combine quantitative analysis with qualitative review. The main finding of this study is that the Chinese population has a superficial, optimistic attitude to agricultural biotechnology; and that, in accordance with public attitudes, a cautious policy,with obligatory labelling, should be adopted. The study reveals that education is the factor among socio-demographic variables with the strongest impact on public attitudes. Higher education leads to a more positive evaluation of GM (genetically modified)foods and applications of biotechnology with respect to usefulness, moral acceptability, and suitability for encouragement. In addition, public attitudinal differences depend significantly on area of residence. Compared with their more urban compatriots,members of the public in less developed areas of China have more optimistic attitudes, perceive more benefits, and are more risk tolerant in relation to GM foods and agricultural biotechnology. Finally we obtained a very high rate of"don't know" answers to our survey questions. This suggests that many people do not have settled attitudes, and correspondingly, that the overall public attitude to agricultural biotechnology and GM foods in China is at present somewhat unstable.

  10. Biotechnology 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-12-15

    This book first reveals prospect on biotechnology with low-carbon green growth Next, it consists of four chapters, which deal with vision of biotechnology, trend of biotechnology in main countries like the U.S, Eu, Japan and China, current condition for biotechnology with support and promoting policy such as health and medical treatment and maritime and fisheries, major product on investment, human power, paper and pattern, research development such as genomic, system biology, bio new medicine, agriculture, stock breeding and food, biological resources and legal system related biotechnology.

  11. Low - energy Accelerator - based Nuclear Biotechnology for Applications in Agriculture and Biomedicine

    International Nuclear Information System (INIS)

    A novel biotechnology based on low-energy-accelerator nuclear technology has recently been rapidly developed internationally. Low-energy ion beams with energy in a range of 10-100 keV generated from ion accelerators bombard plant seeds or tissues for mutation induction and plant or mammalian cells for gene transfection induction to benefit to agriculture and biomedicine. In Thailand, centered at Chiang Mai University, this so-called low-energy ion beam biotechnology has been explored and developed for more than a decade. Bioengineering-specialized ion implanters have been constructed and utilized for both research and applications. Certain Thai local rice mutants have been induced and achieved with improved characters of dwarf, photo-insensitivity, enriched nutrients and higher yields. Mutants of other plants such as flowers, vegetables and microorganisms have also been induced with improved properties. DNA transfer into bacterial and mammalian cells has been induced by ion beams. Particularly, ion-beam-induced gene transfection into human cells succeeded to initiate a new non-viral gene transfection method for potential gene therapy.

  12. Development of an agricultural biotechnology crop product: testing from discovery to commercialization.

    Science.gov (United States)

    Privalle, Laura S; Chen, Jingwen; Clapper, Gina; Hunst, Penny; Spiegelhalter, Frank; Zhong, Cathy X

    2012-10-17

    "Genetically modified" (GM) or "biotech" crops have been the most rapidly adopted agricultural technology in recent years. The development of a GM crop encompasses trait identification, gene isolation, plant cell transformation, plant regeneration, efficacy evaluation, commercial event identification, safety evaluation, and finally commercial authorization. This is a lengthy, complex, and resource-intensive process. Crops produced through biotechnology are the most highly studied food or food component consumed. Before commercialization, these products are shown to be as safe as conventional crops with respect to feed, food, and the environment. This paper describes this global process and the various analytical tests that must accompany the product during the course of development, throughout its market life, and beyond.

  13. Overcoming barriers to trust in agricultural biotechnology projects: a case study of Bt cowpea in Nigeria

    Directory of Open Access Journals (Sweden)

    Ezezika Obidimma C

    2012-11-01

    Full Text Available Abstract Background Nigeria, Africa’s most populous country, has been the world’s largest cowpea importer since 2004. The country is currently in the early phases of confined field trials for two genetically modified crops: Bacillus thuringiensis (Bt cowpea and nutritionally enhanced cassava (“BioCassava Plus”. Using the bio-safety guidelines process as a backdrop, we evaluate the role of trust in the operation of the Cowpea Productivity Improvement Project, which is an international agricultural biotechnology public-private partnership (PPP aimed at providing pest-resistant cowpea varieties to Nigerian farmers. Methods We reviewed the published literature and collected data through direct observations and semi-structured, face-to-face interviews. Data were analyzed based on emergent themes to create a comprehensive narrative on how trust is understood and built among the partners and with the community. Results Our findings highlight the importance of respecting mandates and eliminating conflicts of interest; holding community engagement initiatives early on; having on-going internal discussion and planning; and serving a locally-defined need. These four lessons could prove helpful to other agricultural biotechnology initiatives in which partners may face similar trust-related challenges. Conclusions Overcoming challenges to building trust requires concerted effort throughout all stages of project implementation. Currently, plans are being made to backcross the cowpea strain into a local variety in Nigeria. The development and adoption of the Bt cowpea seed hinges on the adoption of a National Biosafety Law in Nigeria. For countries that have decided to adopt biotech crops, the Nigerian cowpea experiment can be used as a model for other West African nations, and is actually applied as such in Ghana and Burkina Faso, interested in developing a Bt cowpea.

  14. Description of Ethical Bio-Technology Assessment Tools for Agriculture and Food Production. Interim Report Ethical Bio-TA Tools

    NARCIS (Netherlands)

    Beekman, V.

    2004-01-01

    The objective of 'Ethical Bio-TA Tools' project is to develop and improve tools for the ethical assessment of new technologies in agriculture and food production in general and modern biotechnologies in particular. The developed tools need to be designed for various purposes and contexts. They shoul

  15. Towards personalized agriculture: What chemical genomics can bring to plant biotechnology

    Directory of Open Access Journals (Sweden)

    Michael E Stokes

    2014-07-01

    Full Text Available In contrast to the dominant drug paradigm in which compounds were developed to fit all, new models focused around personalized medicine are appearing where treatments are customized for individual patients. The agricultural biotechnology industry should also think about these new personalized models. For example, most common herbicides are generic in action, which led to the development of genetically modified crops to add specificity. The ease and accessibility of modern genomic analysis should facilitate the discovery of chemicals that are more selective in their utility. Is it possible to develop species-selective herbicides and growth regulators? More generally put, is plant research at a stage where chemicals can be developed that streamline plant development and growth to various environments? We believe the advent of chemical genomics now opens up these and other opportunities to personalize agriculture. Furthermore, chemical genomics does not necessarily require genetically tractable plant models, which in principle should allow quick translation to practical applications. For this to happen, however, will require collaboration between the Ag-biotech industry and academic labs for early-stage research and development.

  16. Biotechnology opportunities in agriculture. June 1980-November 1989 (A Bibliography from the Management Contents data base). Report for June 1980-November 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-04-01

    This bibliography contains citations concerning advances in biotechnology and their impact on agricultural and food production markets. Crop growth stimulators, pharmaceutical products developed using biotechnology, poultry vaccines, salt tolerant plants, genetically engineered immune properties in plants and animals, and food crops of uniform size with improved flavor are among the products discussed. Specific company investments and activities in the biotechnology field are included. (This updated bibliography contains 155 citations, 19 of which are new entries to the previous edition.)

  17. Activities of the Animal Production Unit (APU) at the FAO/IAEA Agriculture and Biotechnology Laboratory

    International Nuclear Information System (INIS)

    The Animal Production Unit of the FAO/IAEA Agriculture and Biotechnology Laboratory and the Animal Production and Health Section of the FAO/IAEA Joint Division work together through the FAO/IAEA Animal Production and Health Subprogramme to assist in the development and use of these methods for improving livestock productivity. The main roles of the Animal Production Unit are to: Provide adaptive research in support of Coordinated Research Programmes (CRP) and Technical Cooperation Projects of the Subprogramme. Provide other services in support of the objectives of the Subprogramme such as technical support and external quality assurance. Provide training for Member State scientists and technicians (individual or group training programmes on the application of molecular techniques in Animal disease diagnosis and animal genetics). Currently, the Animal Production Unit is using nuclear and related techniques in: The development of tests (ELISA and Nucleic Acid Detection/PCR): In support of the global rinderpest eradication programme, the APU is developing new ELISA tests for specific diagnosis of Peste des Petits Ruminants and its differentiation from rinderpest, test based on the use of recombinant antigens expressed in the baculovirus vector system

  18. Novel Techniques and Their Wide Applications to Health Foods, Medical and Agricultural Biotechnology in Relation to Policy Making on Genetically Modified Crops and Foods

    CERN Document Server

    Baianu, I C; Lozano, P; Lin, H C

    2004-01-01

    Selected applications of novel techniques in Agricultural Biotechnology, Health Food formulations and Medical Biotechnology are being reviewed with the aim of unraveling future developments and policy changes that are likely to open new markets for Biotechnology and prevent the shrinking or closing of existing ones. Amongst the selected novel techniques with applications in both Agricultural and Medical Biotechnology are: immobilized bacterial cells and enzymes, microencapsulation and liposome production, genetic manipulation of microorganisms, development of novel vaccines from plants, epigenomics of mammalian cells and organisms, and biocomputational tools for molecular modeling related to disease and Bioinformatics. Both fundamental and applied aspects of the emerging new techniques are being discussed in relation to their anticipated, marked impact on future markets and present policy changes that are needed for success in either Agricultural or Medical Biotechnology. The novel techniques are illustrated ...

  19. The seed and agricultural biotechnology industries in India: An analysis of industry structure, competition, and policy options

    OpenAIRE

    Spielman, David J.; Kolady, Deepthi; Cavalieri, Anthony; N.Chandrasekhara Rao

    2011-01-01

    Since the late 1980s, technological advances and policy reforms have opened up new opportunities for growth in India's seed and agricultural biotechnology industries. The impacts of such changes have been significant in India's cotton sector, but less so for the country's main cereal crops, where both yield and output growth rates have been relatively stagnant. Some public policymakers and corporate decisionmakers are confident that the private sector will help reverse these trends, arguing t...

  20. IMPACT OF AGRICULTURAL BIOTECHNOLOGY ON ENVIRONMENT AND FOOD SECURITY UTJECAJ POLJOPRIVREDNE BIOTEHNOLOGIJE NA OKOLIŠ I SIGURNOST HRANE

    OpenAIRE

    Marijan Jošt

    2003-01-01

    The application of modern biotechnology in agricultural production processes has generated new ethical, economic, social and environmental dilemmas confronting scientists all over the world. While current knowledge is insufficient for assessing the promised benefits and possible risks of genetically modified organisms (GMOs), the principle of “substantial equivalence” in comparing GM and conventional food is profoundly flawed and scientifically insupportable. The current generation of GMOs pr...

  1. The Impact of Biotechnology, in Particular Genetically Modified Crops on International Agricultural Research, Production and Marketing and How this will Affect Agriculture in Western Australia

    OpenAIRE

    Forbes, Sandy

    2003-01-01

    In 2000 I was awarded a Nuffield Farming Scholarship to study the impact of biotechnology, in particular genetically modified crops, on international agricultural research, production and marketing. I studied this topic in 2001 in Canada, USA and United Kingdom in an attempt to gain an insight into the issues with GM crops and how this may impact on our decision to grow them in Western Australia. I was impressed by the technology available that opened up a range of opportunities for vast impr...

  2. Beyond knowledge transfer: The social construction of autonomous academic science in university-industry agricultural biotechnology research collaborations

    Science.gov (United States)

    Biscotti, Dina Louise

    Autonomy is a social product. Although some might view autonomy as the absence of social interference in individual action, it is in fact produced through social institutions. It enables social actors to act; it is the justification for the allocation of enormous public resources into institutions classified as "public" or "nonprofit;" it can lead to innovation; and, significantly, it is key to the public acceptance of new technologies. In this dissertation, I analyze the social construction of autonomy for academic science in U.S. university-industry agricultural biotechnology research collaborations. University-industry relationships (UIRs) are a site of concern about the influence of commercial interests on academic science. Agricultural biotechnology is a contentious technology that has prompted questions about the ecological and public health implications of genetically-modified plants and animals. It has also spurred awareness of the industrialization of agriculture and accelerating corporate control of the global food system. Through analysis of in-depth interviews with over 200 scientists and administrators from nine U.S. research universities and thirty agricultural biotechnology companies, I find that both the academy and industry have a vested interest in the social construction of the academy as an autonomous space from which claims to objective, disinterested scientific knowledge can be made. These claims influence government regulation, as well as grower and public acceptance of agricultural biotechnology products. I argue that the social production of autonomy for academic science can be observed in narratives and practices related to: (1) the framing of when, how and why academic scientists collaborate with industry, (2) the meanings ascribed to and the uses deemed appropriate for industry monies in academic research, and (3) the dissemination of research results into the public domain through publications and patents. These narratives and practices

  3. Bioenergy and the potential contribution of agricultural biotechnologies in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Ruane, John [FAO Working Group on Biotechnology, UN Food and Agriculture Organization (FAO), Viale delle Terme di Caracalla, 00153 Rome (Italy); Sonnino, Andrea [FAO Office of Knowledge Exchange, Research and Extension, UN Food and Agriculture Organization (FAO), Viale delle Terme di Caracalla, 00153 Rome (Italy); Agostini, Astrid [FAO Investment Centre, UN Food and Agriculture Organization (FAO), Viale delle Terme di Caracalla, 00153 Rome (Italy)

    2010-10-15

    We provide an overview of the current status of bioenergy development, focusing on first- and second-generation liquid biofuels, considering drivers of growth and risks that have raised concerns over recent years. We also describe the main areas where biotechnologies are being, or can be, applied for production of first- and second-generation biofuels as well as microalgal biodiesel and biogas. Greatest attention is paid to second-generation biofuels in the review because of the large expectations they have created and because of the significant role that biotechnology applications are likely to play in their development. We close with some specific considerations regarding applying biotechnologies for bioenergy development in developing countries. (author)

  4. Future Public Policy and Ethical Issues Facing the Agricultural and Microbial Genomics Sectors of the Biotechnology Industry: A Roundtable Discussion

    Energy Technology Data Exchange (ETDEWEB)

    Diane E. Hoffmann

    2003-09-12

    On September 12, 2003, the University of Maryland School of Law's Intellectual Property and Law & Health Care Programs jointly sponsored and convened a roundtable discussion on the future public policy and ethical issues that will likely face the agricultural and microbial genomics sectors of the biotechnology industry. As this industry has developed over the last two decades, societal concerns have moved from what were often local issues, e.g., the safety of laboratories where scientists conducted recombinant DNA research on transgenic microbes, animals and crops, to more global issues. These newer issues include intellectual property, international trade, risks of genetically engineered foods and microbes, bioterrorism, and marketing and labeling of new products sold worldwide. The fast paced nature of the biotechnology industry and its new developments often mean that legislators, regulators and society, in general, must play ''catch up'' in their efforts to understand the issues, the risks, and even the benefits, that may result from the industry's new ways of conducting research, new products, and novel methods of product marketing and distribution. The goal of the roundtable was to develop a short list of the most significant public policy and ethical issues that will emerge as a result of advances in these sectors of the biotechnology industry over the next five to six years. More concretely, by ''most significant'' the conveners meant the types of issues that would come to the attention of members of Congress or state legislators during this time frame and for which they would be better prepared if they had well researched and timely background information. A concomitant goal was to provide a set of focused issues for academic debate and scholarship so that policy makers, industry leaders and regulators would have the intellectual resources they need to better understand the issues and concerns at stake. The

  5. The Two Cultures of Science:Implications for University-Industry Relationships in the U.S. Agriculture Biotechnology

    Institute of Scientific and Technical Information of China (English)

    William B. Lacy; Leland L. Glenna; Dina Biscotti; Rick Welsh; Kate Clancy

    2014-01-01

    Partnerships between U.S. universities and industries have existed for several decades and in recent years have become generally more varied, wider in scope, more aggressive and experimental and higher in public visibility. In addition, in the last few decades, public and private interests have advocated for government policies and laws to globally promote the commercialization of university science. This paper examines the persistence or convergence of the two cultures of science and the implications of this commercialization for university-industry relationships in agriculture biotechnology. The perceptions and values of over 200 U.S. university and industry scientists, managers and administrators who participate in or oversee research collaborations in agricultural biotechnology were analyzed. The ifndings revealed that the participants in these research relationships continue to perceive very distinct cultures of science and identify a wide range of concerns and disadvantages of these partnerships. Several actions were discussed to ensure that the two cultures serve complementary roles and that they maximize the public beneifts from these increasing collaborations.

  6. Opportunities for biotechnology and policy

    Science.gov (United States)

    Despite being introduced more than a decade ago, agricultural biotechnology still remains framed in controversy impacting both the global economy and international regulations. Controversies surrounding agricultural biotechnology produced crops and foods commonly focus on human and environmental sa...

  7. Opportunities for Biotechnology and Policy

    Science.gov (United States)

    Despite being introduced more than a decade ago, agricultural biotechnology still remains framed in controversy impacting both the global economy and international regulations. Controversies surrounding agricultural biotechnology produced crops and foods commonly focus on human and environmental sa...

  8. Consequences of Biotechnology Policy for Competitiveness and Trade of Southern U.S. Agriculture

    OpenAIRE

    Jolly, Curtis M.; Jefferson-Moore, Kenrett Y.; Traxler, Greg

    2005-01-01

    The effect of policy decisions on the competitiveness of genetically modified (GM) crops was examined. The United States has been an early innovator in the development and use of biotechnology crops and has expanded its export market share of the three major GM crops: soybeans, cotton, and corn. Cotton, soybeans, and corn are all grown in the southern states, but these states have an apparent comparative advantage only in the production of cotton, which may be strengthened with the adoption o...

  9. Crop Biotechnology

    Science.gov (United States)

    The influence of crop biotechnology on outcomes of agricultural practices and economics is readily evidenced by the escalating acreage of genetically engineered crops, all occurring in a relatively short time span. Until the mid 1990s, virtually no acreage was planted with commercial genetically mo...

  10. Agricultural biology in the 3rd millennium: nutritional food security & specialty crops through sustainable agriculture and biotechnology

    Science.gov (United States)

    Food security and agricultural sustainability are of prime concern in the world today in light of the increasing trends in population growth in most parts of the globe excepting Europe. The need to develop capacity to produce more to feed more people is complicated since the arable land is decreasin...

  11. ASSESSMENT OF FUTURE ENVIRONMENTAL TRENDS AND PROBLEMS: AGRICULTURAL USE OF APPLIED GENETICS AND BIOTECHNOLOGIES

    Science.gov (United States)

    Battelle's Columbus Laboratories will identify and define future environmental concerns arising from applying genetic engineering technology to agricultural problems. Two genetic emgineering technologies, plant tissue culture and recombinant DNA, will be considered. Potential env...

  12. Ascendancy of agricultural biotechnology in the Australian political mainstream coexists with technology criticism by a vocal-minority.

    Science.gov (United States)

    Tribe, David

    2014-07-01

    Australia is a federation of States. This political structure necessitates collaborative arrangements between Australian governments to harmonize national regulation of gene technology and food standards. Extensive political negotiation among institutions of federal government has managed regulation of GM crops and food. Well-developed human resources in Australian government provided numerous policy documents facilitating a transparent political process. Workable legislation has been devised in the face of criticisms of gene technology though the political process. Conflicts between potential disruptions to food commodity trade by precautionary proposals for environmental protection were one cause of political tensions, and differences in policy priorities at regional political levels versus national and international forums for negotiation were another. Australian policy outcomes on GM crops reflect (a) strong economic self-interest in innovative and productive farming, (b) reliance on global agricultural market reforms through the Cairns trade group and the WTO, and (c) the importance of Codex Alimentarius and WTO instruments SPS and TBT. Precautionary frameworks for GM food safety assurance that are inconsistent with WTO obligations were avoided in legislation. Since 2008 the 2 major parties, Australian Labor Party (ALP) and the Liberals appear to have reached a workable consensus at the Federal policy level about an important role for agricultural biotechnology in Australia's economic future. PMID:25437242

  13. Ascendancy of agricultural biotechnology in the Australian political mainstream coexists with technology criticism by a vocal-minority.

    Science.gov (United States)

    Tribe, David

    2014-07-01

    Australia is a federation of States. This political structure necessitates collaborative arrangements between Australian governments to harmonize national regulation of gene technology and food standards. Extensive political negotiation among institutions of federal government has managed regulation of GM crops and food. Well-developed human resources in Australian government provided numerous policy documents facilitating a transparent political process. Workable legislation has been devised in the face of criticisms of gene technology though the political process. Conflicts between potential disruptions to food commodity trade by precautionary proposals for environmental protection were one cause of political tensions, and differences in policy priorities at regional political levels versus national and international forums for negotiation were another. Australian policy outcomes on GM crops reflect (a) strong economic self-interest in innovative and productive farming, (b) reliance on global agricultural market reforms through the Cairns trade group and the WTO, and (c) the importance of Codex Alimentarius and WTO instruments SPS and TBT. Precautionary frameworks for GM food safety assurance that are inconsistent with WTO obligations were avoided in legislation. Since 2008 the 2 major parties, Australian Labor Party (ALP) and the Liberals appear to have reached a workable consensus at the Federal policy level about an important role for agricultural biotechnology in Australia's economic future.

  14. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology.

    Science.gov (United States)

    Holaskova, Edita; Galuszka, Petr; Frebort, Ivo; Oz, M Tufan

    2015-11-01

    Antimicrobial peptides (AMPs) are vital components of the innate immune system of nearly all living organisms. They generally act in the first line of defense against various pathogenic bacteria, parasites, enveloped viruses and fungi. These low molecular mass peptides are considered prospective therapeutic agents due to their broad-spectrum rapid activity, low cytotoxicity to mammalian cells and unique mode of action which hinders emergence of pathogen resistance. In addition to medical use, AMPs can also be employed for development of innovative approaches for plant protection in agriculture. Conferred disease resistance by AMPs might help us surmount losses in yield, quality and safety of agricultural products due to plant pathogens. Heterologous expression in plant-based systems, also called plant molecular farming, offers cost-effective large-scale production which is regarded as one of the most important factors for clinical or agricultural use of AMPs. This review presents various types of AMPs as well as plant-based platforms ranging from cell suspensions to whole plants employed for peptide production. Although AMP production in plants holds great promises for medicine and agriculture, specific technical limitations regarding product yield, function and stability still remain. Additionally, establishment of particular stable expression systems employing plants or plant tissues generally requires extended time scale for platform development compared to certain other heterologous systems. Therefore, fast and promising tools for evaluation of plant-based expression strategies and assessment of function and stability of the heterologously produced AMPs are critical for molecular farming and plant protection.

  15. Plant biotechnology

    OpenAIRE

    Molina Fernández, Antonio

    2010-01-01

    The first decade of the 21st century has seen an intense debate of the potential contribution of Plant Biotechnology to meeting present and future world demands of food and biomass. The discussion started in 1997 when the first genetically modified (GM) crops were approved by the EPA for commercial production. The debate has been later stimulated by the increasing awareness of the potential effects of global climate change on agricultural production, as the current crops may be poorly adapted...

  16. Research needs to improve agricultural productivity and food quality, with emphasis on biotechnology.

    Science.gov (United States)

    Thomson, Jennifer A

    2002-11-01

    Research into agricultural productivity, especially for crops in the developing world, should include resistance to plant viruses, fungi and the parasitic weed Striga. It must also include research into the development of resistance to Bacillus thuringiensis (Bt) toxin-expressing crops. Drought- and heat-tolerant crops, and those that can combat the problems of soil deficiencies, are required, and vaccine production in plants should be a high priority. Research into food quality should include the equivalent of "golden rice" in maize, the enhancement of the production of phytosterols and improved qualities of vegetable oils. PMID:12421866

  17. Biotechnology: Beauty or Beast?

    OpenAIRE

    Ui Ghallachoir, Kate

    1993-01-01

    In recent years scientific advances have transformed that group of technologies referred to as biotechnology into a set of increasingly powerful tools for many industries. Biotechnology is identified by many as an important factor determining the future sucess of industries as diverse as healthcare and agriculture. In Ireland biotechnology use and development is a recognised area of strategic priority. The research presented here investigates factors suggested as affecting the rate and diffus...

  18. To see China in a grain of genetically modified rice : a case study on the governance of agricultural biotechnology in China

    OpenAIRE

    Li, Moxuan

    2010-01-01

    This thesis examines the development and changing practices of governance in China by example of the evolution of policy development in agricultural biotechnology (especially in the case of genetically modified rice). In particular, the process of negotiation between the central government, scientific community, NGOs and the media are brought up to investigate the paradigmatic change in China's development that has been taking place over the last three decades of reform. By drawing on an STS ...

  19. Activities at the Agrochemicals Unit, FAO/IAEA Agriculture and Biotechnology Laboratory, Seibersdorf

    International Nuclear Information System (INIS)

    There are several method development/validation and applied research activities ongoing in the Agrochemicals Unit. Methods currently under development and/or validation include multiresidue methods for polar and non-polar pesticides in water with analysis by gas chromatography-mass spectrometry, for application by a number of contract holders under the CRP 'Integrated analytical approaches to assess indicators of the effectiveness of pesticide management practices at the catchment scale' (D5.20.35) and in counterpart laboratories in the Latin American regional TCP 'Strengthening laboratory capacity to assess the implementation of good agricultural practices in the production of fruit and vegetables in Latin America' (RLA/5/050). A multiresidue isotope-dilution liquid chromatography-tandem mass spectrometry method for the analysis of residues of 38 anthelmintic veterinary drugs has been developed in the Unit in collaboration with Ashtown Food Research Centre, Dublin, Ireland, under the EU 6th Framework Project 'ProSafeBeef'. The method is currently being validated in the Unit for transfer initially to a partner laboratory in Brazil, and thereafter to contract holders under the new CRP 'Development of radiometric and allied analytical methods to strengthen national residue control programmes for antibiotics and anthelmintic veterinary drug residues' (D5.20.36) and TCP counterparts in the project on Establishing a South American regional network of national and reference laboratories for pharmacologically active substances and contaminants in food of animal origin through implementation of approved nuclear and conventional analytical techniques (RLA/5/055, ARCAL CIV). The Unit also provides analytical services and assistance with research problems for other Units and Sections within the Agency. For example, the Agrochemicals is currently assisting the Entomology Unit in their research activities through the development of a method to monitor levels of antiviral drugs

  20. Book review: Dominique Brossard, James Shanahan and Clint Nesbitt (eds), The Public, the Media and Agricultural Biotechnology (Wallingford: CABI, 2007). 414pp. ISBN 978 1 84593 204 6, #75.00 / $150.00

    OpenAIRE

    2008-01-01

    Book review: Dominique Brossard, James Shanahan and Clint Nesbitt (eds), The Public, the Media and Agricultural Biotechnology (Wallingford: CABI, 2007). 414pp. ISBN 978 1 84593 204 6, #75.00 / $150.00

  1. The Challenge in Teaching Biotechnology

    Science.gov (United States)

    Steele, F.; Aubusson, P.

    2004-01-01

    Agriculture, industry and medicine are being altered by new biotechnologies. Biotechnology education is important because today's students and citizens will make decisions about the development and application of these new molecular biologies. This article reports an investigation of the teaching of biotechnology in an Australian state, New South…

  2. [Agricultural biotechnology safety assessment].

    Science.gov (United States)

    McClain, Scott; Jones, Wendelyn; He, Xiaoyun; Ladics, Gregory; Bartholomaeus, Andrew; Raybould, Alan; Lutter, Petra; Xu, Haibin; Wang, Xue

    2015-01-01

    Genetically modified (GM) crops were first introduced to farmers in 1995 with the intent to provide better crop yield and meet the increasing demand for food and feed. GM crops have evolved to include a thorough safety evaluation for their use in human food and animal feed. Safety considerations begin at the level of DNA whereby the inserted GM DNA is evaluated for its content, position and stability once placed into the crop genome. The safety of the proteins coded by the inserted DNA and potential effects on the crop are considered, and the purpose is to ensure that the transgenic novel proteins are safe from a toxicity, allergy, and environmental perspective. In addition, the grain that provides the processed food or animal feed is also tested to evaluate its nutritional content and identify unintended effects to the plant composition when warranted. To provide a platform for the safety assessment, the GM crop is compared to non-GM comparators in what is typically referred to as composition equivalence testing. New technologies, such as mass spectrometry and well-designed antibody-based methods, allow better analytical measurements of crop composition, including endogenous allergens. Many of the analytical methods and their intended uses are based on regulatory guidance documents, some of which are outlined in globally recognized documents such as Codex Alimentarius. In certain cases, animal models are recommended by some regulatory agencies in specific countries, but there is typically no hypothesis or justification of their use in testing the safety of GM crops. The quality and standardization of testing methods can be supported, in some cases, by employing good laboratory practices (GLP) and is recognized in China as important to ensure quality data. Although the number of recommended, in some cases, required methods for safety testing are increasing in some regulatory agencies, it should be noted that GM crops registered to date have been shown to be comparable to their nontransgenic counterparts and safe . The crops upon which GM development are based are generally considered safe. PMID:25876504

  3. [Agricultural biotechnology safety assessment].

    Science.gov (United States)

    McClain, Scott; Jones, Wendelyn; He, Xiaoyun; Ladics, Gregory; Bartholomaeus, Andrew; Raybould, Alan; Lutter, Petra; Xu, Haibin; Wang, Xue

    2015-01-01

    Genetically modified (GM) crops were first introduced to farmers in 1995 with the intent to provide better crop yield and meet the increasing demand for food and feed. GM crops have evolved to include a thorough safety evaluation for their use in human food and animal feed. Safety considerations begin at the level of DNA whereby the inserted GM DNA is evaluated for its content, position and stability once placed into the crop genome. The safety of the proteins coded by the inserted DNA and potential effects on the crop are considered, and the purpose is to ensure that the transgenic novel proteins are safe from a toxicity, allergy, and environmental perspective. In addition, the grain that provides the processed food or animal feed is also tested to evaluate its nutritional content and identify unintended effects to the plant composition when warranted. To provide a platform for the safety assessment, the GM crop is compared to non-GM comparators in what is typically referred to as composition equivalence testing. New technologies, such as mass spectrometry and well-designed antibody-based methods, allow better analytical measurements of crop composition, including endogenous allergens. Many of the analytical methods and their intended uses are based on regulatory guidance documents, some of which are outlined in globally recognized documents such as Codex Alimentarius. In certain cases, animal models are recommended by some regulatory agencies in specific countries, but there is typically no hypothesis or justification of their use in testing the safety of GM crops. The quality and standardization of testing methods can be supported, in some cases, by employing good laboratory practices (GLP) and is recognized in China as important to ensure quality data. Although the number of recommended, in some cases, required methods for safety testing are increasing in some regulatory agencies, it should be noted that GM crops registered to date have been shown to be comparable to their nontransgenic counterparts and safe . The crops upon which GM development are based are generally considered safe.

  4. Proceedings of the International Symposium on Biotechnology

    International Nuclear Information System (INIS)

    This is a book of abstracts of oral communications and posters that were presented during the International Symposium on Biotechnology that was held in Sfax, Tunisia from May 4th to 8th, 2008. The following themes were covered : - Biotechnology for animal and human health and biopharmaceuticals; - Microbial and environmental biotechnology; - Agricultural, Food and marine biotechnology

  5. The 5th World Congress of chemical engineering: Technologies critical to a changing World. Volume II: Agriculture, food biotechnology biomedical electric power process safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Volume 2 of the proceedings from the 5th World Congress of Chemical Engineering covers four major topic areas from which papers were selected for the database: Agriculture, Food; Biotechnology; Electric Power, and Process Safety. Pertinent subtopics include: Renewable Resource Engineering; Special Processes in the Food Industry; Advances in Metabolite Production; Advances in Fermentation and Cell Culture Engineering; Coal and Nuclear Central Station Power Plants; Large Natural Gas Fired Power Stations; Distributed Generation; Potential Impact of Biomass Energy; and Chemical Hazards in Plant Design. 29 papers were selected from Volume 1 for the database.

  6. Case studies on the use of biotechnologies and on biosafety provisions in four African countries

    OpenAIRE

    Black, R; F. Fava; Mattei, N.; Robert, Vincent; Seal, S; Verdier, Valérie

    2011-01-01

    This review is based on a study commissioned by the European Commission on the evaluation of scientific, technical and institutional challenges, priorities and bottlenecks for biotechnologies and regional harmonisation of biosafety in Africa. Biotechnology was considered within four domains: agricultural biotechnologies ('Green'), industrial biotechnologies and biotechnologies for environmental remediation ('White'), biotechnologies in aquaculture ('Blue') and biotechnologies for healthcare (...

  7. On Teaching Biotechnology in Kentucky.

    Science.gov (United States)

    Brown, Dan C.; Kemp, Michael C.; Hall, Jennifer

    1998-01-01

    One study surveyed 187 Kentucky teachers (36% agriculture, 32% science, 32% technology education); they rated importance of content organizers, topics, transferable skills, and delivery methods for biotechnology. A second study received responses from 70 of 150 teachers; 45 thought science teachers or an integrated team should teach biotechnology;…

  8. Challenges of climate change: omics-based biology of saffron plants and organic agricultural biotechnology for sustainable saffron production.

    Science.gov (United States)

    Husaini, Amjad M

    2014-01-01

    Kashmir Valley is a major saffron (Crocus sativus Kashmirianus) growing area of the world, second only to Iran in terms of production. In Kashmir, saffron is grown on uplands (termed in the local language as "Karewas"), which are lacustrine deposits located at an altitude of 1585 to 1677 m above mean sea level (amsl), under temperate climatic conditions. Kashmir, despite being one of the oldest historical saffron-producing areas, faces a rapid decline of saffron industry. Among many other factors responsible for decline of saffron industry the preponderance of erratic rainfalls and drought-like situation have become major challenges imposed by climate change. Saffron has a limited coverage area as it is grown as a 'niche crop' and is a recognized "geographical indication," growing under a narrow microclimatic condition. As such it has become a victim of climate change effects, which has the potential of jeopardizing the livelihood of thousands of farmers and traders associated with it. The paper discusses the potential and actual impact of climate change process on saffron cultivation in Kashmir; and the biotechnological measures to address these issues.

  9. Current state of biotechnology in Turkey.

    Science.gov (United States)

    Dundar, Munis; Akbarova, Yagut

    2011-09-01

    Biotechnology is an interdisciplinary branch of science that encompasses a wide range of subjects like genetics, virology, microbiology, immunology, engineering to develop vaccines, and so on and plays a vital role in health systems, crop and seed management, yield improvement, agriculture, soil management, ecology, animal farming, cellular process, bio statistics, and so on. This article is about activities in medical and pharmaceutical biotechnology, environmental biotechnology, agricultural biotechnology and nanobiotechnology carried out in Turkey. Turkey has made some progress in biotechnology projects for research and development.

  10. 转基因农业生物技术安全隐忧及其监管研究%Studies on Supervision of the Underlying Worry in Security of Transgenic Agricultural Biotechnology

    Institute of Scientific and Technical Information of China (English)

    柏振忠; 王红玲

    2011-01-01

    随着转基因农业生物技术的迅猛发展,由其带来的潜在风险也日益被世人所关注。文章指出转基因农业生物技术在转基因农产品的食用安全性、转基因农作物的环境安全性、目的基因的遗传与表达稳定性等方面存在潜在风险,并在总结转基因农业生物技术安全监管的国际经验的基础上,提出我国应在防止不同农作物之间的基因漂移、完善转基因农产品的标识制度、加大转基因技术的研究力度等方面加强转基因农业生物技术的安全监管。%Development of transgenic agricultural biotechnology has made huge progress.However,the potential risks from it had been paid attention to by many people.It was pointed out in the paper that transgenic agricultural biotechnology may lead to some risks,such as the security in food for transgenic agricultural products,the security in circumstance for transgenic crops,and the stability in inheritance and expression for the target gene.Based on summing up international experiences on how to supervise the security of transgenic agricultural biotechnology,several advices for China were given,including preventing gene flow between different crops,perfecting labeling system of transgenic agricultural products,strengthening studies in transgenic agricultural biotechnology.

  11. Editorial: Biotechnology Journal's diverse coverage of biotechnology.

    Science.gov (United States)

    Wink, Michael

    2014-03-01

    This issue of Biotechnology Journal is a regular issue edited by Prof. Michael Wink. The issue covers all the major focus areas of the journal, including medical biotechnology, synthetic biology, and novel biotechnological methods.

  12. Biotechnology: Challenge for the food industry

    Directory of Open Access Journals (Sweden)

    Popov Stevan

    2007-01-01

    Full Text Available According to the broadest definition, biotechnology is the use of living matter (plants, animals and microorganisms in industry, environment protection, medicine and agriculture. Biotechnology takes a key position in the field of food processing during thousands of years. Last about fifty years brought dynamical development of knowledges in the natural sciences especially in domain of genetics and manipulation of genes. Biotechnology for which active role in the on-coming times could be foreseen, not only with respect of R&D, but also in general technological development represents scope of priority in the USA and in European Union (EU as well. It is accepted that the results achieved in biotechnology oversize scientific domain and find their entrance into economics, legislation, quality of life and even of politics. Corresponding with the definition of biotechnology as "the integration of natural sciences and engineering in the application of microorganisms, cells, their components and molecular analogues in production (General assembly of the European federation for Biotechnology, 1989 European Commission (1999 adopted the biotechnological taxonomy, i.e. fields and sub-fields of biotechnology. R&D activities in this domain are oriented to eight fields and branched through them. Fields of biotechnology (EC, 1999 are: 1 Plant biotechnology (agricultural cultivars, trees, bushes etc; 2 Animal biotechnology; 3 Biotechnology in environment protection; 4 Industrial biotechnology (food, feed, paper, textile, pharmaceutical and chemical productions; 5 Industrial biotechnology (production of cells and research of cells - producers of food and of other commodities; 6 Development of humane and veterinarian diagnostics (therapeutical systems 7 Development of the basic biotechnology, and 8 Nontechnical domains of biotechnology. In concordance with some judgments, in the World exist about 4000 biotechnological companies. World market of biotechnological

  13. Biotechnology in India : Current scene (Review Paper)

    OpenAIRE

    A. Nagaratnam

    2001-01-01

    Realising the immense potential of biotechnology in the fields of agricultural production and health care, especially in developing countries, India has been devoting special attention over the past two decades to biotechnology and its applications. Necessary infrastructure has been built-up, the human resources and technical expertise built-up, and fruitful interactions between academic institutions and industries supported. The Department of Biotechnology, Govt of India has been play...

  14. STRENGTHENING BIOTECHNOLOGY RESEARCH IN INDONESIA

    Directory of Open Access Journals (Sweden)

    S. Sastrapradja

    2012-09-01

    Full Text Available The wave of biotechnology promises has struck not only the developed countries but the developing countries as well. The scientific community in Indonesia is aware of the opportunities and is eager to take an active part in this particular endeavour. Meanwhile resources are required to welcoming the biotech­nology era. The need of trained manpower, appropriate infrastructure and equipment, operational and maintenance costs requires serious consideration if a unit or a laboratory is expected to be functional in biotechnology. There is a good opportunity of applying biotechnology in the field of agriculture and industry considering the availability of biological resources in Indonesia. This paper outlines what have been done so far, the difficulties encountered and the efforts made to strengthening biotechnology research in Indonesia.

  15. Zvláštnosti podnikání v biotechnologiích

    OpenAIRE

    MIKULÁŠOVÁ, Jana

    2008-01-01

    Use of biotechnology in agriculture has become beneficial for many farmers. However, growing of genetically modified crops has it's own specifics. Paper describes and evaluates specifics of use of biotechnologies in agriculture in the Czech Republic.

  16. Analysis on the Development Status of Transgenic Biotechnology in Agricultural Field%转基因生物技术在农业领域的发展现状分析

    Institute of Scientific and Technical Information of China (English)

    何礼健; 周玉婷; 左停

    2011-01-01

    The development status, superiorities and potential risks of transgenic biotechnology in agricultural field were summarized, based on which the development prospect and trend of GM crop were briefly analyzed.%概述了转基因生物技术在农业领域的发展现状,拥有的发展优势及其可能带来的风险,在此基础上简要分析了转基因农作物的发展前景和趋势.

  17. The Future of Plant Biotechnology

    Science.gov (United States)

    Plant biotechnology has been wildly successful and has literally transformed plant agriculture. There are still undulating concerns about safety and sustainability that critics demand to be addressed. In that light, there are some biotechnoloogies that are being developed that might not only improve...

  18. Exclusion by inclusion? : on difficulties with regard to an effective ethical assessment of patenting in the field of agricultural bio-technology

    NARCIS (Netherlands)

    Baumgartner, Christoph

    2006-01-01

    In order to take ethical considerations of patenting biological material into account, the so-called ‘‘ordre public or morality clause’’ was implemented as Article 6 in the EC directive on the legal protection of biotechnological inventions, 98/44/EC. At first glance, this seems to provide a signifi

  19. Microbial biotechnology.

    Science.gov (United States)

    Demain, A L

    2000-01-01

    For thousands of years, microorganisms have been used to supply products such as bread, beer and wine. A second phase of traditional microbial biotechnology began during World War I and resulted in the development of the acetone-butanol and glycerol fermentations, followed by processes yielding, for example, citric acid, vitamins and antibiotics. In the early 1970s, traditional industrial microbiology was merged with molecular biology to yield more than 40 biopharmaceutical products, such as erythropoietin, human growth hormone and interferons. Today, microbiology is a major participant in global industry, especially in the pharmaceutical, food and chemical industries. PMID:10631778

  20. Biotechnology in India : Current scene (Review Paper

    Directory of Open Access Journals (Sweden)

    A. Nagaratnam

    2001-10-01

    Full Text Available Realising the immense potential of biotechnology in the fields of agricultural production and health care, especially in developing countries, India has been devoting special attention over the past two decades to biotechnology and its applications. Necessary infrastructure has been built-up, the human resources and technical expertise built-up, and fruitful interactions between academic institutions and industries supported. The Department of Biotechnology, Govt of India has been playing a major role in this endeavour. Special efforts are being made to ensure practical applications of laboratory research. Salient achievements in the areas of agriculture (including tissue culture, transgenics, sericulture, animal, marine and microbial biotechnology, biofertilisers, bio-control agents, bio-prospecting, conservation of biodiversity and environment and health care (including genetic counselling, DNA fingerprinting, preservation and propagation of human cell lines, medicinal biotechnology with special reference to indigenous medicinal plants, and immunodiagnostics for human beings and animals are reviewed.

  1. Biotechnology opportunities on Space Station

    Science.gov (United States)

    Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis

    1987-01-01

    Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.

  2. Editorial: Biotechnology Journal brings more than biotechnology.

    Science.gov (United States)

    Jungbauer, Alois; Lee, Sang Yup

    2015-09-01

    Biotechnology Journal always brings the state-of-the-art biotechnologies to our readers. Different from other topical issues, this issue of Biotechnology Journal is complied with a series of exiting reviews and research articles from spontaneous submissions, again, addressing society's actual problems and needs. The progress is a real testimony how biotechnology contributes to achievements in healthcare, better utilization of resources, and a bio-based economy.

  3. Agriculture

    International Nuclear Information System (INIS)

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on agriculture describes how climate change will affect primary agriculture production in Canada with particular focus on potential adaptation options, and vulnerability of agriculture at the farm level. Agriculture is a vital part of the Canadian economy, although only 7 per cent of Canada's land mass is used for agricultural purposes due to the limitations of climate and soils. Most parts of Canada are expected to experience warmer conditions, longer frost-free seasons and increased evapotranspiration. The impacts of these changes on agriculture will vary depending on precipitation changes, soil conditions, and land use. Northern regions may benefit from longer farming seasons, but poor soil conditions will limit the northward expansion of agricultural crops. Some of the negative impacts associated with climate change on agriculture include increased droughts, changes in pest and pathogen outbreaks, and moisture stress. In general, it is expected that the positive and negative impacts of climate change would offset each other. 74 refs., 2 tabs., 1 fig

  4. Theme: The Role of Science in the Agricultural Education Curriculum.

    Science.gov (United States)

    Agricultural Education Magazine, 2002

    2002-01-01

    Thirteen theme articles discuss integration of science and agriculture, the role of science in agricultural education, biotechnology, agriscience in Tennessee and West Virginia, agriscience and program survival, modernization of agricultural education curriculum, agriscience and service learning, and biotechnology websites. (SK)

  5. BIOTECHNOLOGY IN FRUIT GROWING

    Directory of Open Access Journals (Sweden)

    Z. Jurković

    2008-09-01

    Full Text Available Research studies in the area of biotechnologies in fruit growing started at the Agricultural Institute Osijek in 2006 with the establishment of the first experimental in vitro laboratory for micropropagation. The laboratory started an active research related to the Project "Biotechnological methods in fruit tree identification, selection and propagation" Project is part of program "Preservation and revitalization of grape and fruit autochthonous cultivars". The goal of this research is to determine genetic differences between autochthonous and introduced cultivars of cherry as well as cultivars and types of sour cherry, to find and optimize a method for fast recovery of clonal material. A great number of cherry cultivars and types within the population of cv. Oblacinska sour cherry exists in Croatia. A survey with the purpose of selecting autochthonous cultivars for further selection has been done in previous research. Differences have been found in a number of important agronomic traits within the populations of cv. Oblačinska sour cherry. Autochthonous cherry cultivars are suspected to be synonyms of known old cultivars which were introduced randomly and have been naturalized under a local name. Identification and description of cultivars and types of fruits is based on special visible properties which were measurable or notable. In this approach difficulties arise from the effect of non-genetic factors on expression of certain traits. Genetic-physiological problem of S allele autoincompatibility exists within cherry cultivars. Therefore it is necessary to put different cultivars in the plantation to pollinate each other. Apart form the fast and certain sort identification independent of environmental factors, biotechnological methods based on PCR enable faster virus detection compared with classical serologic methods and indexing and cover a wider range of plant pathogens including those undetectable by other methods. Thermotherapy and

  6. Strategy on Strengthened Biotechnology Speciality Features in Agricultural Colleges and Universities%农科类高等院校生物技术专业特色强化策略

    Institute of Scientific and Technical Information of China (English)

    张志勇; 代海芳; 汤菊香

    2012-01-01

    In order to strengthen the professional characteristics of the agricultural universities of biotechnology.Against the status quo for the agricultural universities of biotechnology professional,the strategies were put forward,such as professional characteristics of the construction strategy,curriculum development,young teachers training and professional research characteristics of the corresponding development strategies formed as the basis.Theoretical teaching system optimization,the experimental teaching system optimization and complete optimization professional strategies corresponding to scientific research system.In order to promote the formation of the coordinated development-oriented teaching,research features,teaching and research promoted each other.%为了加强农科类高等院校生物技术的专业特色,针对农科类高等院校生物技术专业的现状,以专业特色建设策略形成为龙头,提出以课程建设、青年教师培养和与专业特色对应的科研发展策略形成为基础的对策,形成理论课程教学体系强化、实验课教学体系优化以及与专业对应科研体系优化的完整策略,以期促进形成以教学为主导,以科研为特色,教学与科研相互促进的协调发展模式。

  7. The impact of the biotechnology in the sustainable development of the agriculture in the Latin America and Caribbean region: The Andean countries as model

    International Nuclear Information System (INIS)

    In accordance with the premise that the base of the sustainable agricultural development is based on the conviction that it is possible to increase the agricultural production without affecting the natural resources non-renewable, the author makes a conceptual mark of the technological revolution in Latin America, he makes an analysis of the environment and the paper of the different organisms of the state inside this field

  8. Biotechnology organizations in action

    DEFF Research Database (Denmark)

    Norus, Jesper

    This volume analyzes the dynamics and interactive processes among the players (individuals, institutions, and organizations/firms) that have constituted and legitimized the development of the biotechnology industries. The unit of analysis is small entrepreneurial firms developing biotechnological...

  9. Progress towards the 'Golden Age' of biotechnology.

    Science.gov (United States)

    Gartland, K M A; Bruschi, F; Dundar, M; Gahan, P B; Viola Magni, M p; Akbarova, Y

    2013-07-01

    Biotechnology uses substances, materials or extracts derived from living cells, employing 22 million Europeans in a € 1.5 Tn endeavour, being the premier global economic growth opportunity this century. Significant advances have been made in red biotechnology using pharmaceutically and medically relevant applications, green biotechnology developing agricultural and environmental tools and white biotechnology serving industrial scale uses, frequently as process feedstocks. Red biotechnology has delivered dramatic improvements in controlling human disease, from antibiotics to overcome bacterial infections to anti-HIV/AIDS pharmaceuticals such as azidothymidine (AZT), anti-malarial compounds and novel vaccines saving millions of lives. Green biotechnology has dramatically increased food production through Agrobacterium and biolistic genetic modifications for the development of 'Golden Rice', pathogen resistant crops expressing crystal toxin genes, drought resistance and cold tolerance to extend growth range. The burgeoning area of white biotechnology has delivered bio-plastics, low temperature enzyme detergents and a host of feedstock materials for industrial processes such as modified starches, without which our everyday lives would be much more complex. Biotechnological applications can bridge these categories, by modifying energy crops properties, or analysing circulating nucleic acid elements, bringing benefits for all, through increased food production, supporting climate change adaptation and the low carbon economy, or novel diagnostics impacting on personalized medicine and genetic disease. Cross-cutting technologies such as PCR, novel sequencing tools, bioinformatics, transcriptomics and epigenetics are in the vanguard of biotechnological progress leading to an ever-increasing breadth of applications. Biotechnology will deliver solutions to unimagined problems, providing food security, health and well-being to mankind for centuries to come. PMID:23797042

  10. Progress towards the 'Golden Age' of biotechnology.

    Science.gov (United States)

    Gartland, K M A; Bruschi, F; Dundar, M; Gahan, P B; Viola Magni, M p; Akbarova, Y

    2013-07-01

    Biotechnology uses substances, materials or extracts derived from living cells, employing 22 million Europeans in a € 1.5 Tn endeavour, being the premier global economic growth opportunity this century. Significant advances have been made in red biotechnology using pharmaceutically and medically relevant applications, green biotechnology developing agricultural and environmental tools and white biotechnology serving industrial scale uses, frequently as process feedstocks. Red biotechnology has delivered dramatic improvements in controlling human disease, from antibiotics to overcome bacterial infections to anti-HIV/AIDS pharmaceuticals such as azidothymidine (AZT), anti-malarial compounds and novel vaccines saving millions of lives. Green biotechnology has dramatically increased food production through Agrobacterium and biolistic genetic modifications for the development of 'Golden Rice', pathogen resistant crops expressing crystal toxin genes, drought resistance and cold tolerance to extend growth range. The burgeoning area of white biotechnology has delivered bio-plastics, low temperature enzyme detergents and a host of feedstock materials for industrial processes such as modified starches, without which our everyday lives would be much more complex. Biotechnological applications can bridge these categories, by modifying energy crops properties, or analysing circulating nucleic acid elements, bringing benefits for all, through increased food production, supporting climate change adaptation and the low carbon economy, or novel diagnostics impacting on personalized medicine and genetic disease. Cross-cutting technologies such as PCR, novel sequencing tools, bioinformatics, transcriptomics and epigenetics are in the vanguard of biotechnological progress leading to an ever-increasing breadth of applications. Biotechnology will deliver solutions to unimagined problems, providing food security, health and well-being to mankind for centuries to come.

  11. State FFA Officers' Confidence and Trustworthiness of Biotechnology Information Sources

    Science.gov (United States)

    Wingenbach, Gary J.; Rutherford, Tracy A.

    2007-01-01

    Are state FFA officers' awareness levels of agricultural topics reported in mass media superior to those who do not serve in leadership roles? The purpose of this study was to determine elected state FFA officers' awareness of biotechnology, and their confidence and trust of biotechnology information sources. Descriptive survey methods were used…

  12. Anticipating the future: 'Biotechnology for the poor' as unrealized promise?

    NARCIS (Netherlands)

    Jansen, K.; Gupta, A.

    2009-01-01

    This article analyses visions of the future articulated by proponents of `biotechnology for the poor¿, those who claim that an embrace of transgenic technology in agriculture is critical to alleviating poverty in developing countries. Specifically, we analyse how such `biotechnology for the poor¿ pr

  13. Sectoral Innovation Watch Biotechnology Sector. Final sector report

    NARCIS (Netherlands)

    Enzing, C.

    2011-01-01

    Biotechnology has evolved from a single set of technologies in the mid 1970s into a full grown technological field that is the driving force in innovation processes in many industrial sectors (pharmaceutical, medical, agriculture, food, chemical, environment, instruments). Nowadays, biotechnology is

  14. Energy Crop and Biotechnology for Biofuel Production

    Institute of Scientific and Technical Information of China (English)

    Liangcai Peng; Neal Gutterson

    2011-01-01

    @@ Selection of energy crops is the first priority for large-scale biofuel production in China.As a major topic, it was extensively discussed in the Second International Symposium on Bioenergy and Biotechnology, held from October 16-19(th), 2010 in Huazhong Agricultural University(HZAU), Wuhan, China, with more than one hundred registered participants(Figure 1).

  15. Insect Cell Culture and Biotechnology

    Institute of Scientific and Technical Information of China (English)

    Robert R.Granados; Guoxun Li; G.W.Blissard

    2007-01-01

    The continued development of new cell culture technology is essential for the future growth and application of insect cell and baculovirus biotechnology. The use of cell lines for academic research and for commercial applications is currently dominated by two cell lines; the Spodoptera frugiperda line, SF21 (and its clonal isolate, SF9), and the Trichoplusia ni line, BTI 5B1-4, commercially known as High Five cells. The long perceived prediction that the immense potential application of the baculovirus-insect cell system, as a tool in cell and molecular biology, agriculture, and animal health, has been achieved. The versatility and recent applications of this popular expression system has been demonstrated by both academia and industry and it is clear that this cell-based system has been widely accepted for biotechnological applications. Numerous small to midsize startup biotechnology companies in North America and the Europe are currently using the baculovirus-insect cell technology to produce custom recombinant proteins for research and commercial applications. The recent breakthroughs using the baculovirus-insect cell-based system for the development of several commercial products that will impact animal and human health will further enhance interest in this technology by pharma. Clearly, future progress in novel cell and engineering advances will lead to fundamental scientific discoveries and serve to enhance the utility and applications of this baculovirus-insect cell system.

  16. A capital market's view on Industrial Biotechnology:proper valuation is the key for picking the right investment opportunities in stormy times

    OpenAIRE

    Schneider, B.W. (Bernd)

    2009-01-01

    Industrial biotechnology, also known as white biotechnology, is considered to be a revolutionary biotechnology field beside red and green biotechnology. After red (medicine) and green (agriculture), white biotechnology is now gaining momentum. With numerous applications e.g. in biocatalysis and fermentation technology, white biotech companies are able to produce – often from biomass out of agricultural products - biobased chemicals (like vitamins, amino acids or enzymes for textile finishing ...

  17. Biotechnology Laboratory Methods.

    Science.gov (United States)

    Davis, Robert H.; Kompala, Dhinakar S.

    1989-01-01

    Describes a course entitled "Biotechnology Laboratory" which introduces a variety of laboratory methods associated with biotechnology. Describes the history, content, and seven experiments of the course. The seven experiments are selected from microbiology and molecular biology, kinetics and fermentation, and downstream processing-bioseparations.…

  18. Organisation of biotechnological information into knowledge.

    Science.gov (United States)

    Boh, B

    1996-09-01

    The success of biotechnological research, development and marketing depends to a large extent on the international transfer of information and on the ability to organise biotechnology information into knowledge. To increase the efficiency of information-based approaches, an information strategy has been developed and consists of the following stages: definition of the problem, its structure and sub-problems; acquisition of data by targeted processing of computer-supported bibliographic, numeric, textual and graphic databases; analysis of data and building of specialized in-house information systems; information processing for structuring data into systems, recognition of trends and patterns of knowledge, particularly by information synthesis using the concept of information density; design of research hypotheses; testing hypotheses in the laboratory and/or pilot plant; repeated evaluation and optimization of hypotheses by information methods and testing them by further laboratory work. The information approaches are illustrated by examples from the university-industry joint projects in biotechnology, biochemistry and agriculture.

  19. Proteomics: A Biotechnology Tool for Crop Improvement

    Directory of Open Access Journals (Sweden)

    Moustafa eEldakak

    2013-02-01

    Full Text Available A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improvements in proteomic platforms and many other but related advances in plant biotechnology techniques offer various new ways to encourage the usage of these technologies by plant scientists for crop improvement programs. A combinatorial approach of accelerated gene discovery through genomics, proteomics, and other associated -omic branches of biotechnology, as an applied approach, is proving to be an effective way to speed up the crop improvement programs worldwide. In the near future, swift improvements in -omic databases are becoming critical and demand immediate attention for the effective utilization of these techniques to produce next-generation crops for the progressive farmers. Here, we have reviewed the recent advances in proteomics, as tools of biotechnology, which are offering great promise and leading the path towards crop improvement for sustainable agriculture.

  20. Proteomics: a biotechnology tool for crop improvement.

    Science.gov (United States)

    Eldakak, Moustafa; Milad, Sanaa I M; Nawar, Ali I; Rohila, Jai S

    2013-01-01

    A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improvements in proteomic platforms and many other but related advances in plant biotechnology techniques offer various new ways to encourage the usage of these technologies by plant scientists for crop improvement programs. A combinatorial approach of accelerated gene discovery through genomics, proteomics, and other associated -omic branches of biotechnology, as an applied approach, is proving to be an effective way to speed up the crop improvement programs worldwide. In the near future, swift improvements in -omic databases are becoming critical and demand immediate attention for the effective utilization of these techniques to produce next-generation crops for the progressive farmers. Here, we have reviewed the recent advances in proteomics, as tools of biotechnology, which are offering great promise and leading the path toward crop improvement for sustainable agriculture. PMID:23450788

  1. Biotechnology in Agriculture and Forestry: Economic Perspectives

    OpenAIRE

    Kooten, van, G.C.

    2011-01-01

    Economists are rarely brought into the interdisciplinary research until the biophysical scientists have developed their models, made their measurements or completed their research task. The research economist is then brought in to do what amounts to a consulting task – provide some numbers that indicate impacts on the economy and employment. In this paper, I begin by illustrating cases from forestry where this leads to erroneous and costly policy outcomes. However, the main objective of this ...

  2. Biotechnology Assisted Wheat Breeding for Organic Agriculture

    DEFF Research Database (Denmark)

    Steffan, Philipp Matthias

    markers for common bunt resistance may potentially help to speed up resistance breeding by shortening the long time required for phenotypic disease screening. Here, we report the results of 1. an association mapping study for common bunt resistance, 2. a QTL mapping study for the localization of common...... model identified two novel QTL for common bunt resistance located on wheat chromosomes 2B and 7 A. The identification of new resistance loci may help to broaden our understanding of common bunt resistance in wheat, and QTL may potentially be exploited by marker assisted selection in plant breeding. QTL...

  3. Consumer demand for information about agricultural biotechnology

    DEFF Research Database (Denmark)

    Scholderer, Joachim; Czienskowski, Uwe

    The aim of the study was to provide a realistic assessment of (a) the amount and type of information that consumers would use in choices between second-generation novel foods and different types of competitor products, (b) the amount and type of information that consumers would access from genera...

  4. Traditional Chinese Biotechnology

    Science.gov (United States)

    Xu, Yan; Wang, Dong; Fan, Wen Lai; Mu, Xiao Qing; Chen, Jian

    The earliest industrial biotechnology originated in ancient China and developed into a vibrant industry in traditional Chinese liquor, rice wine, soy sauce, and vinegar. It is now a significant component of the Chinese economy valued annually at about 150 billion RMB. Although the production methods had existed and remained basically unchanged for centuries, modern developments in biotechnology and related fields in the last decades have greatly impacted on these industries and led to numerous technological innovations. In this chapter, the main biochemical processes and related technological innovations in traditional Chinese biotechnology are illustrated with recent advances in functional microbiology, microbial ecology, solid-state fermentation, enzymology, chemistry of impact flavor compounds, and improvements made to relevant traditional industrial facilities. Recent biotechnological advances in making Chinese liquor, rice wine, soy sauce, and vinegar are reviewed.

  5. Biotechnology for renewable chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Kildegaard, Kanchana Rueksomtawin; Jensen, Niels Bjerg;

    2014-01-01

    The majority of the industrial organic chemicals are derived from fossil sources. With the oil and gas resources becoming limiting, biotechnology offers a sustainable alternative for production ofchemicals from renewable feedstocks. Yeast is an attractive cell factory forsustainable production...

  6. BIOTECHNOLOGY : AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    John I. Bruce

    2012-09-01

    Full Text Available Biotechnology as a science includes various aspects of the management and manipulation of biological systems. Recent advances in immunology, molecular biology, cell culture and other associated areas provide an opportunity for scientists to move biology out of the laboratory and into the realms of society. This has many implications which mankind on a whole may not be prepared to cope with at this time. This new capability has been referred to as "Biotechnology". Biotechnology has also been defined as "the integrated use of biochemistry, microbiology, and chemical engineering in order to achieve the capacities of microbes and culture cells". Genetic engineering which includes gene splicing and recombinant DNA-cloning is an example of a recent offshoot of biotechnology. Because of the advent of biotechnology, one can now think of the prospect of engineering tomorrows vaccines. In the past, vaccine development has been laborious and in many instances an unrewarding task. After years of effort only a handful of safe, effective vaccines have emerged. In the biotechnology arena, new methodologies and strategies for immunizing humans and domestic animals against infectious diseases are providing new hope for discovering successful vaccines. While most of the effort in the past has focused on viral vaccine development, attention is now being directed towards vaccines for protection against parasitic diseases. Currently, considerable effort is being made to develop vaccines for malaria, coccidiosis (in fowl, cholera, malaria, schistosomiasis and trypanosomiasis among others.

  7. MPACT OF GENETIC BIOTECHNOLOGIES ON BIOSECURITY AND FOOD SAFETY

    Directory of Open Access Journals (Sweden)

    NICA-BADEA DELIA

    2014-05-01

    Full Text Available Biosecurity is a relatively new area global, being promoted by the significant results, particularly in the last 20 years, fundamental and applied research. Biotechnology is a collection of techniques that can be used in the agro-food, medical and industrial. The paper examines the potential impact of transgenic biotechnology, vulnerabilities, implications, benefits and risks, quality of life and health. Introduction into the environment, cross-border trade and use of GMOs resulting from modern biotechnology can untoward effects on the conservation and sustainable use of biological diversity, food security and safety. It is openly acknowledged that modern biotechnology has great potential to promote human welfare, in particular, to overcome the critical needs in food, agriculture and human health. Establish appropriate safety measures when using genetically modified organisms (biosecurity policy, regulatory regime, scientific and technical measures is a highly sensitive process, aiming both to maximize the benefits of modern biotechnology and to minimize potential risk

  8. Food biotechnology: benefits and concerns.

    Science.gov (United States)

    Falk, Michael C; Chassy, Bruce M; Harlander, Susan K; Hoban, Thomas J; McGloughlin, Martina N; Akhlaghi, Amin R

    2002-06-01

    Recent advances in agricultural biotechnology have highlighted the need for experimental evidence and sound scientific judgment to assess the benefits and risks to society. Nutrition scientists and other animal biologists need a balanced understanding of the issues to participate in this assessment. To date most modifications to crop plants have benefited producers. Crops have been engineered to decrease pesticide and herbicide usage, protect against stressors, enhance yields and extend shelf life. Beyond the environmental benefits of decreased pesticide and herbicide application, consumers stand to benefit by development of food crops with increased nutritional value, medicinal properties, enhanced taste and esthetic appeal. There remains concern that these benefits come with a cost to the environment or increased risk to the consumer. Most U.S. consumers are not aware of the extent that genetically modified foods have entered the marketplace. Consumer awareness of biotechnology seems to have increased over the last decade, yet most consumers remain confused over the science. Concern over the impact on the safety of the food supply remains low in the United States, but is substantially elevated in Europe. Before a genetically engineered crop is introduced into commerce it must pass regulatory scrutiny by as many as four different federal regulatory bodies to ensure a safe food supply and minimize the risk to the environment. Key areas for more research are evaluation of the nutritional benefits of new crops, further investigation of the environmental impact, and development of better techniques to identify and track genetically engineered products.

  9. Biotechnology worldwide and the 'European Biotechnology Thematic Network' Association (EBTNA).

    Science.gov (United States)

    Bruschi, F; Dundar, M; Gahan, P B; Gartland, K; Szente, M; Viola-Magni, M P; Akbarova, Y

    2011-09-01

    The European Biotechnology Congress 2011 held under the auspices of the European Biotechnology Thematic Network Association (EBTNA) in conjunction with the Turkish Medical Genetics Association brings together a broad spectrum of biotechnologists from around the world. The subsequent abstracts indicate the manner in which biotechnology has permeated all aspects of research from the basic sciences through to small and medium enterprises and major industries. The brief statements before the presentation of the abstracts aim to introduce not only Biotechnology in general and its importance around the world, but also the European Biotechnology Thematic Network Association and its aims especially within the framework of education and ethics in biotechnology.

  10. The biotechnology innovation system of Brazil (part I)

    OpenAIRE

    Valeria Judice; Connie Vedovello

    2007-01-01

    Scientific and technological development of the past 30 years, and a breakthrough in the field of biotechnology resulted in appearance of new knowledge-based industries related to knowledge and technology, interdisciplinary life sciences. It covers a variety of sectors, products, processes and services, entering into such sectors as health, agriculture, food processing, environmental protection, new materials and energy sources. Biotechnology industry is far from an organizational maturity, a...

  11. Canadian biotechnology policy: designing incentives for a new technology

    OpenAIRE

    Jorge Niosi; Tomas G Bas

    2004-01-01

    Since the early 1980s Canada has created a set of incentives in order to develop the new biotechnology based on genetic engineering. In the beginning, the emphasis was on agriculture and environmental biotechnology, but already by the late 1980s the focus had changed towards human health products and services. Even if the federal government was the original policymaker, several provinces added their own incentives in order to nurture a local industry. Although policies have been changing in s...

  12. Acceptance of biotechnology and social-cultural implications in Ghana

    OpenAIRE

    Quaye, Wilhemina; Yawson, Ivy; Yawson, Robert M.; Williams, Irene E.

    2009-01-01

    Despite major scientific progress in the application of biotechnology in agriculture, public attitudes towards biotechnology in general and genetically modified food (GM food) products in particular remain mixed in Africa. Examining responses on acceptance of GM food through a stakeholder survey in Ghana, it was established that half of the 100 people sample interviewed were not in favor of GM foods. To this group acceptance of GM foods would make farmers loose focus on the traditional ways o...

  13. Biotechnological production of vanillin.

    Science.gov (United States)

    Priefert, H; Rabenhorst, J; Steinbüchel, A

    2001-08-01

    Vanillin is one of the most important aromatic flavor compounds used in foods, beverages, perfumes, and pharmaceuticals and is produced on a scale of more than 10 thousand tons per year by the industry through chemical synthesis. Alternative biotechnology-based approaches for the production are based on bioconversion of lignin, phenolic stilbenes, isoeugenol, eugenol, ferulic acid, or aromatic amino acids, and on de novo biosynthesis, applying fungi, bacteria, plant cells, or genetically engineered microorganisms. Here, the different biosynthesis routes involved in biotechnological vanillin production are discussed. PMID:11548997

  14. Advances in reproductive biotechnologies.

    Science.gov (United States)

    Choudhary, K K; Kavya, K M; Jerome, A; Sharma, R K

    2016-04-01

    In recent times, reproductive biotechnologies have emerged and started to replace the conventional techniques. It is noteworthy that for sustained livestock productivity, it is imperative to start using these techniques for facing the increasing challenges for productivity, reproduction and health with impending environment conditions. These recent biotechniques, both in male and female, have revolutionized and opened avenues for studying and manipulating the reproductive process both in vitro and in vivo in various livestock species for improving tis efficiency. This review attempts to highlight pros and cons, on the recent developments in reproductive biotechnologies, both in male and female in livestock species.

  15. Agave biotechnology: an overview.

    Science.gov (United States)

    Nava-Cruz, Naivy Y; Medina-Morales, Miguel A; Martinez, José L; Rodriguez, R; Aguilar, Cristóbal N

    2015-01-01

    Agaves are plants of importance both in Mexican culture and economy and in other Latin-American countries. Mexico is reported to be the place of Agave origin, where today, scientists are looking for different industrial applications without compromising its sustainability and preserving the environment. To make it possible, a deep knowledge of all aspects involved in production process, agro-ecological management and plant biochemistry and physiology is required. Agave biotechnology research has been focusing on bio-fuels, beverages, foods, fibers, saponins among others. In this review, we present the advances and challenges of Agave biotechnology.

  16. Silicon nano-biotechnology

    CERN Document Server

    He, Yao

    2014-01-01

    This book reviews the latest advances in the development of silicon nano-biotechnology for biological and biomedical applications, which include biosensing, bioimaging, and cancer therapy. In this book, newly developed silicon nano-biotechnology and its biomedical applications are systematically introduced. For instance, fluorescent silicon nanoparticles, serving as novel high-performance biological nanoprobes, are superbly suited to real-time and long-term bioimaging. Silicon nanowire-based sensing platform is especially capable of sensitive, specific, and multiplexed detection of various bio

  17. Colloids in Biotechnology

    CERN Document Server

    Fanun, Monzer

    2010-01-01

    Colloids have come a long way from when Thomas Graham coined the term colloid to describe 'pseudo solutions'. This book enables scientists to close the gap between extensive research and translation into commercial options in biomedicine and biotechnology. It covers biosurfactants and surface properties, phase behavior, and orientational change of surfactant mixtures with peptides at the interface. It also covers adsorption of polymers and biopolymers on the surface and interface, discusses colloidal nanoparticles and their use in biotechnology, and delves into bioadhesion and microencapsulati

  18. Agave biotechnology: an overview.

    Science.gov (United States)

    Nava-Cruz, Naivy Y; Medina-Morales, Miguel A; Martinez, José L; Rodriguez, R; Aguilar, Cristóbal N

    2015-01-01

    Agaves are plants of importance both in Mexican culture and economy and in other Latin-American countries. Mexico is reported to be the place of Agave origin, where today, scientists are looking for different industrial applications without compromising its sustainability and preserving the environment. To make it possible, a deep knowledge of all aspects involved in production process, agro-ecological management and plant biochemistry and physiology is required. Agave biotechnology research has been focusing on bio-fuels, beverages, foods, fibers, saponins among others. In this review, we present the advances and challenges of Agave biotechnology. PMID:25058832

  19. Disclosing Biology Teachers' Beliefs about Biotechnology and Biotechnology Education

    Science.gov (United States)

    Fonseca, Maria Joao; Costa, Patricio; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    Teachers have been shown to frequently avoid addressing biotechnology topics. Aiming to understand the extent to which teachers' scarce engagement in biotechnology teaching is influenced by their beliefs and/or by extrinsic constraints, such as practical limitations, this study evaluates biology teachers' beliefs about biotechnology and…

  20. National Center for Biotechnology Information

    Science.gov (United States)

    ... to NCBI Sign Out NCBI National Center for Biotechnology Information Search database All Databases Assembly BioProject BioSample ... Search Welcome to NCBI The National Center for Biotechnology Information advances science and health by providing access ...

  1. Projector Center. What Is Biotechnology?

    Science.gov (United States)

    Belzer, Bill; Case, Christine L.

    1990-01-01

    Presented is a menu designed to illustrate some classical examples of fermentation. This may be used to discuss biotechnology from a technological perspective. Other examples of biotechnology used in the foods industry are described. (CW)

  2. Biotechnologies and Human Dignity

    Science.gov (United States)

    Sweet, William; Masciulli, Joseph

    2011-01-01

    In this article, the authors review some contemporary cases where biotechnologies have been employed, where they have had global implications, and where there has been considerable debate. The authors argue that the concept of dignity, which lies at the center of such documents as the 2005 Universal Declaration on Bioethics and Human Rights, the…

  3. Biotechnology in weed control

    Science.gov (United States)

    Biotechnology can be used to enhance the management of weeds in several ways. Crops have been made resistant to herbicides by inserting transgenes that impart herbicide resistance into the plant genome. Glyphosate and glufosinate-resistant crops are commercialized in North America and crops made res...

  4. Biotechnology and derived products

    Science.gov (United States)

    Microorganisms able to infect and kill insect pests, metabolites from plants and microorganisms, and transgenic crops are biotechnologically derived products that are being promoted for use to control insect pests in lieu of chemical insecticides. Products based on these technologies effectively co...

  5. [Biotechnology and animal health].

    Science.gov (United States)

    Desmettre, P

    1993-06-01

    The development of the first vaccines for use in animals, by Louis Pasteur at the end of the 19th Century, was an initial step in applying biotechnology to animal health. However, it is only much more recently that decisive progress has been made in finding applications for biotechnology, in both detecting and preventing infectious and parasitic diseases. This progress has shown the way to developing a range of procedures, the application of which will benefit the health of domestic and wild animals, enhance the well-being of companion animals, develop the performance of sporting animals and improve the productivity of farm animals, while also serving to protect human health. Such progress results from the increasingly rapid application of knowledge gained in the material and life sciences, all of which contribute to the multidisciplinary nature of biotechnology. Similarly, reagents and diagnostic techniques have been made more specific, sensitive, reproducible, rapid and robust by updating them through recent discoveries in immunology, biochemistry and molecular biology (monoclonal antibodies, nucleic probes, deoxyribonucleic acid amplification and many more). The development of new vaccines which combine efficacy, duration of protection, innocuity, stability, multivalence and ease of use (subunit vaccines, recombinant vaccines, synthetic vaccines and anti-idiotype vaccines) has resulted from recent progress in immunology, immunochemistry, molecular biology and biochemistry. Finally, the availability of new anti-infective, anti-parasitic agents and immunomodulatory therapeutic agents (capable of stimulating the specific and non-specific defence mechanisms of the body) demonstrates that biotechnology is continuing to find new applications in the field of animal health. New diagnostic techniques, vaccines and therapeutic substances are the most immediate applications of knowledge which may, in the future, extend to the development of transgenic animals of revised

  6. Biotechnological applications of bacterial cellulases

    Directory of Open Access Journals (Sweden)

    Esther Menendez

    2015-08-01

    Full Text Available Cellulases have numerous applications in several industries, including biofuel production, food and feed industry, brewing, pulp and paper, textile, laundry, and agriculture.Cellulose-degrading bacteria are widely spread in nature, being isolated from quite different environments. Cellulose degradation is the result of a synergic process between an endoglucanase, an exoglucanase and a,β-glucosidase. Bacterial endoglucanases degrade ß-1,4-glucan linkages of cellulose amorphous zones, meanwhile exoglucanases cleave the remaining oligosaccharide chains, originating cellobiose, which is hydrolyzed by ß-glucanases. Bacterial cellulases (EC 3.2.1.4 are comprised in fourteen Glycosil Hydrolase families. Several advantages, such as higher growth rates and genetic versatility, emphasize the suitability and advantages of bacterial cellulases over other sources for this group of enzymes. This review summarizes the main known cellulolytic bacteria and the best strategies to optimize their cellulase production, focusing on endoglucanases, as well as it reviews the main biotechnological applications of bacterial cellulases in several industries, medicine and agriculture.

  7. Challenge of Biotechnology (Review Paper

    Directory of Open Access Journals (Sweden)

    Malcolm R. Dando

    2001-10-01

    Full Text Available The unravelling of the human genetic code whose first draft was announced in June 2000 has rightly blood been hailed as a momentous achievement, opening thc book of life, certain to be the dominant technology of the 21st century, which will inform all about medicine and biology. and lead us to a total understanding of life. Simultaneously, concerns have been expressed about thc implications of this work. In the past, major new technologies have been used intensively for hostile purposes. What is thc challenge that biotechnology poses in this regard'? This review paper looks at the enormous changes in civil society that thc genomics revolution could bring. Against this background, thc growing concerns about its potential misuses have been reviewed. Thc strengths and weaknesses or the Biological and Toxin Weapons Convention (BTWC are then touched upon. The BTWC presently lacks an adequate verification mechanism. Although biotechnology has been used by human beings since prehistoric times (eg. making of bread. cheese. wines its scientific understanding came only in the latter part of the 19th century. Thc decisive turning point in the field came in the 1970s with the advent of genetic engineering. In the military context classical agents like anthrax and toxin remain the threat today. Although thc current level or sophistication for many biological agents is low, there is enormous potential for making more sophisticated weapons. It might be possible to specifically target the genetic makeup of different ethnic groups. The limited varieties of staple crops and the limited strains of modern animals make agriculture particularly open to attack. Another serious possibility is the impact of genomics in neuroscience. With a better understanding of cellular receptor systems and bioregulators, it is not inconceivable that new means would be evolved for disturbing the functions of the nervous system. Thc genomics revolution can be used for peaceful purposes

  8. Elemental analysis in biotechnology.

    Science.gov (United States)

    Hann, Stephan; Dernovics, Mihaly; Koellensperger, Gunda

    2015-02-01

    This article focuses on analytical strategies integrating atomic spectroscopy in biotechnology. The rationale behind developing such methods is inherently linked to unique features of the key technique in elemental analysis, which is inductively coupled plasma mass spectrometry: (1) the high sensitivity and selectivity of state of the art instrumentation, (2) the possibility of accurate absolute quantification even in complex matrices, (3) the capability of combining elemental detectors with chromatographic separation methods and the versatility of the latter approach, (4) the complementarity of inorganic and organic mass spectrometry, (5) the multi-element capability and finally (6) the capability of isotopic analysis. The article highlights the most recent bio-analytical developments exploiting these methodological advantages and shows the potential in biotechnological applications.

  9. Biotechnology action programme BAP 1985-1989. Progress report 1987. Vol. 1. An overview

    Energy Technology Data Exchange (ETDEWEB)

    Magnien, E. (ed.)

    1987-01-01

    The multiannual research and training programme of the European Economic Community in the field of biotechnology is presented. It deals with two essential tasks, namely the establishment of a supportive infrastructure for biotechnology research and development in Europe as well as the exploitation by industry and agriculture of the materials and methods originating from modern biology. (EF)

  10. Practicing environmental biotechnology

    OpenAIRE

    Rittmann, Bruce E

    2014-01-01

    Environmental biotechnology involves ″managing microbial communities to provide services to society″.Its success comes from partnering with prokaryotic microorganisms,whose wide ranging metabolic capabilities can be harnessed to destroy pollutants and to generate renewable materials.Partnering with microorganisms requires that we understand them well,and important advances in molecular microbial ecology,analytical chemistry,and mathematical modeling are making it possible to look inside the b...

  11. Microfluidics in biotechnology

    OpenAIRE

    Ivanov Dimitri; Barry Richard

    2004-01-01

    Abstract Microfluidics enables biotechnological processes to proceed on a scale (microns) at which physical processes such as osmotic movement, electrophoretic-motility and surface interactions become enhanced. At the microscale sample volumes and assay times are reduced, and procedural costs are lowered. The versatility of microfluidic devices allows interfacing with current methods and technologies. Microfluidics has been applied to DNA analysis methods and shown to accelerate DNA microarra...

  12. Advances in Alstroemeria Biotechnology

    OpenAIRE

    Hoshino, Yoichiro

    2008-01-01

    The genus Alstroemeria belongs to the family Alstroemeriaceae and comprises many ornamental species. This genus, including more than 60 species, is indigenous to South America. Thus far, numerous cultivars, which are used as cut flowers and potted plants worldwide, have been produced by interspecific hybridization and mutation breeding. Recently, biotechnological approaches are being applied in order to improve Alstroemeria strains. Interspecific hybrid plants have been produced by ovule cult...

  13. Practicing environmental biotechnology

    Directory of Open Access Journals (Sweden)

    Bruce E.Rittmann

    2014-02-01

    Full Text Available Environmental biotechnology involves ″managing microbial communities to provide services to society″.Its success comes from partnering with prokaryotic microorganisms,whose wide ranging metabolic capabilities can be harnessed to destroy pollutants and to generate renewable materials.Partnering with microorganisms requires that we understand them well,and important advances in molecular microbial ecology,analytical chemistry,and mathematical modeling are making it possible to look inside the black box of microbial communities.Also crucial is translating the understanding to biotechnological processes that ″work for the microorganisms so that they work for us″.Successful translation demands novel reactor designs,application of advanced materials,and partnering with practitioners and users.The Swette Center for Environmental Biotechnology,founded in at Arizona State University in 2005,brings together the science and engineering tools in an inter disciplinary environment.The Center emphasizes teamwork and collaborations with research and practice partners around the world.Three new technologies illustrate how the Center applies these principles to ″work for the microorganisms″:the H2-based membrane biofilm reactor (MBfR for reducing many oxidized contaminants in water,the microbial electrochemical cells (MXCs for converting organic wastes into renewable products,and Intimately Coupled PhotoBioCatalysis (ICPBC to detoxify very difficult to biodegrade organic pollutants.

  14. Construction Biotechnology: a new area of biotechnological research and applications.

    Science.gov (United States)

    Stabnikov, Viktor; Ivanov, Volodymyr; Chu, Jian

    2015-09-01

    A new scientific and engineering discipline, Construction Biotechnology, is developing exponentially during the last decade. The major directions of this discipline are selection of microorganisms and development of the microbially-mediated construction processes and biotechnologies for the production of construction biomaterials. The products of construction biotechnologies are low cost, sustainable, and environmentally friendly microbial biocements and biogrouts for the construction ground improvement. The microbial polysaccharides are used as admixtures for cement. Microbially produced biodegradable bioplastics can be used for the temporarily constructions. The bioagents that are used in construction biotechnologies are either pure or enrichment cultures of microorganisms or activated indigenous microorganisms of soil. The applications of microorganisms in the construction processes are bioaggregation, biocementation, bioclogging, and biodesaturation of soil. The biotechnologically produced construction materials and the microbially-mediated construction technologies have a lot of advantages in comparison with the conventional construction materials and processes. Proper practical implementations of construction biotechnologies could give significant economic and environmental benefits. PMID:26070432

  15. Biotechnology: reality or dream

    Directory of Open Access Journals (Sweden)

    Konstantinov Kosana

    2002-01-01

    Full Text Available The development of molecular biology and molecular genetics, especially of the recombinant DNA technology enabled improvement of experimental methods that provide manipulation within a cell-free system, such as cell and tissue cultures. Such methods resulted in the development of different new technologies with specific properties in relation to the conventional definitions. According to PERSLEY and lantin (2000 the following components are essential for the contemporary biotechnology: (i genomics - a molecular characterization of all genes and gene products of an organism (ii bioinformatics - the assembly of data from genomic analysis into accessible forms; (iii transformation - the introduction of genes controlling a trait of interest into a genome of a desired organism (micro organisms, plants, animal systems. By the application of cotemporary biotechnology new methods in the field of diagnostic are developed such as rapid and more accurate identification of the presence and absence of genes in the genome of the organism of interest (identification of pathogens prenatal diagnostics, molecular markers assisted breeding for plants, etc. The traits of an organism are determined by its genetic material, i.e. by a molecule of deoxyribonucleic acid (DNA. watson and crick (1953 were the first scientists to describe the structure of DNA as a double-stranded helix. Higher organisms contain a set of linear DNA molecules - chromosomes and a full set of chromosomes of an organism is a genome. Each genome is divided into a series of functional units, i.e. genes. The traits of an organism depend on genes, but their expression depends not only on genes but also on many other factors, including whether a gene, controlling the trait, expresses, specific cells in which it expresses and specially the mode by which the gene and its product interact with the environment. A special aspect within the application of biotechnology occurs as an interaction of a

  16. Plant biotechnology : Future perspectives (Review Paper

    Directory of Open Access Journals (Sweden)

    P. Ananda Kumar

    2001-10-01

    Full Text Available Plant biotechnology has made significant strides in thc past 15 years encompassing within its fold the spectacular developments in plant molecular biology and genetic engineering. Some of the most vexing problems faced in agricultural ecosystems could be solved with the introduction of transgenic crops endowed with traits for insect pest resistance, herbicide tolerance and resistance to viral diseases. Attention is now being focussed on the development of transgenic plants having industrial, economic, pharmaceutical, nutritional and environmental importance. In the next millennium, crops will serve as factories for the synthesis of valuable metabolites and organic compounds. Agronomically important characters, such as drought tolerance, efficiency in photosynthesis, nutrient use and nitrogen fixation will be manipulated in the next century to enhance the genetic and physiological potential of the crops. Recent developments in the genome sequencing of Arabidopsis, rice and maize will have far reaching implications for future agriculture. Structural and functional genomics of plant species will virtually revolutionise the complexion of agricultural biotechnology as well as human health care. It is imperative that the developing world adopts these fast-changing technologies soon and harness their unprecedented potential for the benefit of the mankind. "

  17. Working Towards Disease Resistance in Peanuts Through Biotechnology

    Science.gov (United States)

    Resistant cultivars are the most desirable approach to disease control in agriculture. Early and late leaf spot are the most important foliar diseases of peanut worldwide. Significant progress for leaf spot resistance in peanut can be achieved through biotechnology. The National Peanut Research ...

  18. Herbicide-resistant crop biotechnology: potential and pitfalls

    Science.gov (United States)

    Herbicide-resistant crops are an important agricultural biotechnology that can enable farmers to effectively control weeds without harming their crops. Glyphosate-resistant (i.e. Roundup Ready) crops have been the most commercially successful varieties of herbicide-resistant crops and have been plan...

  19. Seaweed Aquaculture and Marine Biotechnology

    OpenAIRE

    Gonçalves Pereira, Rui

    2016-01-01

    Macroscopic marine algae, typically known as macroalgae or seaweeds, form an important living resource of the oceans, as primary producers. People have collected seaweeds for food, both for humans and animals for millennia. They also have been a source of nutrient rich fertilizers, as well as a source of gelling agents known as phycocolloids. More recently macroalgae are playing significant roles in medicine and biotechnology. Although Biotechnology and in particular marine biotechnology may ...

  20. Investing in Food Security? Philanthrocapitalism, Biotechnology and Development

    OpenAIRE

    Brooks, Sally

    2013-01-01

    This paper traces the evolution of philanthropic involvement in developing country agriculture from the ‘scientific philanthropy’ of the Rockefeller Foundation during and after the Green Revolution era to the ‘philathrocapitalism’ of the Bill and Melinda Gates Foundation, by examining two cases of ‘pro-poor’ agricultural biotechnology research: pro-Vitamin A-enriched ‘Golden Rice’ and drought tolerant maize. In each case, novel institutions developed for technology transfer have created...

  1. Food production in developing countries - the role of plant biotechnology

    Directory of Open Access Journals (Sweden)

    D. I. Ferreira

    1995-07-01

    Full Text Available The world is facing major problems with regard to food production. Agricultural land suffers from various conditions which make it less efficient for crop production while the rapid population growth, especially in developing countries, raises concern for sustainable food production. The Green Revolution has failed to secure sustainable food production and it is hoped that biotechnology will facilitate the transition to more sustainable agriculture. Excellent progress has been made with both Cell Biology (tissue culture and Molecular Biology (genetic engineering.

  2. Plant Biotechnology: Promises and Challenges

    Directory of Open Access Journals (Sweden)

    P.V. Lakshmana Rao

    1996-01-01

    Full Text Available Development of procedures in cell biology to regenerate plants from single cells in any desired quantity provides the prerequisite for the practical use of plant tissue culture and genetic engineering in crop improvement. Such regenerating cell cultures are used for selection of mutants and for DNA transformation experiments. DNA transfer by means of engineered Ti and Ri plasmids has become an established technique for the rapidly growing list of dicotyledonous plants. Considerable success has also been achieved in making gene transfer techniques independent of cell culture methods. These techniques have given the opportunity to create, characterise and select plant cultivars which cannot be obtained by traditional breeding methods. The exploitation of plant cell cultures for production of pharmaceuticals, natural products of commercial importance and mass propagation of high-value crops by automation, have developed into an important industry with considerable potential for future. This paper discusses the recent advances and applications of plant biotechnology in agriculture and industry and the challenges the still exist.

  3. Space Biotechnology and Commercial Applications University of Florida

    Science.gov (United States)

    Phillips, Winfred; Evanich, Peggy L.

    2004-01-01

    The Space Biotechnology and Commercial Applications grant was funded by NASA's Kennedy Space Center in FY 2002 to provide dedicated biotechnology and agricultural research focused on the regeneration of space flight environments with direct parallels in Earth-based applications for solving problems in the environment, advances in agricultural science, and other human support issues amenable to targeted biotechnology solutions. This grant had three project areas, each with multiple tasks. They are: 1) Space Agriculture and Biotechnology Research and Education, 2) Integrated Smart Nanosensors for Space Biotechnology Applications, and 3) Commercial Applications. The Space Agriculture and Biotechnology Research and Education (SABRE) Center emphasized the fundamental biology of organisms involved in space flight applications, including those involved in advanced life support environments because of their critical role in the long-term exploration of space. The SABRE Center supports research at the University of Florida and at the Space Life Sciences Laboratory (SLSL) at the Kennedy Space Center. The Integrated Smart Nanosensors for Space Biotechnology Applications component focused on developing and applying sensor technologies to space environments and agricultural systems. The research activities in nanosensors were coordinated with the SABRE portions of this grant and with the research sponsored by the NASA Environmental Systems Commercial Space Technology Center located in the Department of Environmental Engineering Sciences. Initial sensor efforts have focused on air and water quality monitoring essential to humans for living and working permanently in space, an important goal identified in NASA's strategic plan. The closed environment of a spacecraft or planetary base accentuates cause and effect relationships and environmental impacts. The limited available air and water resources emphasize the need for reuse, recycling, and system monitoring. It is essential to

  4. Biotechnological applications of microalgae

    Directory of Open Access Journals (Sweden)

    Wan-Loy Chu

    2012-07-01

    Full Text Available Microalgae are important biologicalresources that have a wide range of biotechnologicalapplications. Due to their high nutritional value,microalgae such as Spirulina and Chlorella are beingmass cultured for health food. A variety of high-valueproducts including polyunsaturated fatty acids (PUFA,pigments such as carotenoids and phycobiliproteins, andbioactive compounds are useful as nutraceuticals andpharmaceuticals, as well as for industrial applications. Interms of environmental biotechnology, microalgae areuseful for bioremediation of agro-industrial wastewater,and as a biological tool for assessment and monitoring ofenvironmental toxicants such as heavy metals, pesticidesand pharmaceuticals. In recent years, microalgae haveattracted much interest due to their potential use asfeedstock for biodiesel production. In Malaysia, therehas been active research on microalgal biotechnologyfor the past 30 years, tapping into the potential of ourrich microalgal resources for high-value products andapplications in wastewater treatment and assessmentof environmental toxicants. A culture collection ofmicroalgae has been established, and this serves asan important resource for microalgal biotechnologyresearch. Microalgal biotechnology should continue tobe regarded as a priority area of research in this country.

  5. Biotechnology Towards Energy Crops.

    Science.gov (United States)

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops. PMID:26798073

  6. A Case for Teaching Biotechnology

    Science.gov (United States)

    Lazaros, Edward; Embree, Caleb

    2016-01-01

    Biotechnology is an innovative field that is consistently growing in popularity. It is important that students are taught about this technology at an early age, so they are motivated to join the field, or at least motivated to become informed citizens and consumers (Gonzalez, et al, 2013). An increase in biotechnology knowledge can result in an…

  7. Teachers' Concerns about Biotechnology Education

    Science.gov (United States)

    Borgerding, Lisa A.; Sadler, Troy D.; Koroly, Mary Jo

    2013-01-01

    The impacts of biotechnology are found in nearly all sectors of society from health care and food products to environmental issues and energy sources. Despite the significance of biotechnology within the sciences, it has not become a prominent trend in science education. In this study, we seek to more fully identify biology teachers' concerns…

  8. THE PIONEERS OF THE GREEN REVOLUTION AS FORERUNNERS OF TODAY'S ECOLOGICAL AND BIOTECHNOLOGICAL REVOLUTIONS

    Directory of Open Access Journals (Sweden)

    Codrin TAPU

    2013-01-01

    Full Text Available This paper presents the milestones of the Green Revolution, outlining its role in the development of today's sustainable and biotechnological agriculture. In order to do this we used the material found in papers and books on the research in agriculture from the 1940s to the late 1980s. Current sustainable agriculture and biotechnological advancement, incuding the creation of genetically modified organisms could never have been possible without the Green Revolution. Reducing the height of the stalk allowed the production of high-yielding cultivars that now are used and modified with genetic engeneering methods in the context of a sustainable agriculture.

  9. Symposium on chemistry and biotechnology for national development. Proceedings

    International Nuclear Information System (INIS)

    This document is the full proceedings of the symposium on chemistry and biotechnology for national development held at SHESTCO in 1995. It contains the full texts of a forward, opening and special remarks, welcome and keynote addresses and abstracts and texts of 21 technical papers. The subjects covered included information technology,chemistry and biotechnology in agriculture, health care and industrial development. Additionally, the abstracts in respect of 19 other papers are included. We wish to thank the Coordinator of SHESTCO for making available this proceedings

  10. (Workshop on Willow Breeding and Biotechnology Development Activities)

    Energy Technology Data Exchange (ETDEWEB)

    Layton, P.A.

    1988-10-12

    P.A. Layton attended a workshop on Willow Breeding and Biotechnology Development Activities,'' which was organized by the International Energy Agency/Bioenergy Agreement (IEA/BA) Task II. The traveler spent 1 d prior to the meeting to visit scientists and administrators of Shell Research Limited. Physiology and Biological Chemistry Division to discus their interest in biomass production research as well as their other research interests in tissue culture, biotechnology, and management of forests and agricultural crops that are pertinent to the Department of Energy's (DOE's) Biomass Production program.

  11. Advanced genetic tools for plant biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, WS; Yuan, JS; Stewart, CN

    2013-10-09

    Basic research has provided a much better understanding of the genetic networks and regulatory hierarchies in plants. To meet the challenges of agriculture, we must be able to rapidly translate this knowledge into generating improved plants. Therefore, in this Review, we discuss advanced tools that are currently available for use in plant biotechnology to produce new products in plants and to generate plants with new functions. These tools include synthetic promoters, 'tunable' transcription factors, genome-editing tools and site-specific recombinases. We also review some tools with the potential to enable crop improvement, such as methods for the assembly and synthesis of large DNA molecules, plant transformation with linked multigenes and plant artificial chromosomes. These genetic technologies should be integrated to realize their potential for applications to pressing agricultural and environmental problems.

  12. Biotechnological advances in Lilium.

    Science.gov (United States)

    Bakhshaie, Mehdi; Khosravi, Solmaz; Azadi, Pejman; Bagheri, Hedayat; van Tuyl, Jaap M

    2016-09-01

    Modern powerful techniques in plant biotechnology have been developed in lilies (Lilium spp., Liliaceae) to propagate, improve and make new phenotypes. Reliable in vitro culture methods are available to multiply lilies rapidly and shorten breeding programs. Lilium is also an ideal model plant to study in vitro pollination and embryo rescue methods. Although lilies are recalcitrant to genetic manipulation, superior genotypes are developed with improved flower colour and form, disease resistance and year round forcing ability. Different DNA molecular markers have been developed for rapid indirect selection, genetic diversity evaluation, mutation detection and construction of Lilium linkage map. Some disease resistance-QTLs are already mapped on the Lilium linkage map. This review presents latest information on in vitro propagation, genetic engineering and molecular advances made in lily. PMID:27318470

  13. Bacteriophages and their implications on future biotechnology: a review

    Directory of Open Access Journals (Sweden)

    Haq Irshad

    2012-01-01

    Full Text Available Abstract Recently it has been recognized that bacteriophages, the natural predators of bacteria can be used efficiently in modern biotechnology. They have been proposed as alternatives to antibiotics for many antibiotic resistant bacterial strains. Phages can be used as biocontrol agents in agriculture and petroleum industry. Moreover phages are used as vehicles for vaccines both DNA and protein, for the detection of pathogenic bacterial strain, as display system for many proteins and antibodies. Bacteriophages are diverse group of viruses which are easily manipulated and therefore they have potential uses in biotechnology, research, and therapeutics. The aim of this review article is to enable the wide range of researchers, scientists, and biotechnologist who are putting phages into practice, to accelerate the progress and development in the field of biotechnology.

  14. 韩国农业生物技术年报(2011年)%Seung-Ah Chung,Michael G. Francom,Kathryn Ting* Korea Agricultural Biotechnology Annual

    Institute of Scientific and Technical Information of China (English)

    Seung-Ah Chung; Michael G. Francom; Kathryn Ting

    2013-01-01

      韩国正在修改其法律和法规,以体现《卡塔赫纳生物安全议定书》中的最新要求以及其他国际惯例。这些修订将让新转基因成分和转基因产品贸易的审批更加可以预测和透明。消费者对转基因食品的态度开始缓和,但是负面观点仍然存在。发动本地农民支持采用和积极推广这种技术在本地种植的作物中的采用被认为是增强消费者信心的关键。%Korea is in the process of revising its laws and regulations to reflect the current language in the Cartagena Protocol on Biosafety as well as other international practices. These revisions will make the approval of new biotech events and the trade in these products more predictable and transparent. Consumer attitudes toward the use of biotechnology in food are starting to soften, but negative perceptions still persist. Generating local farmers' support to adopt and actively use this technology in locally grown crops is seen as the key to increasing consumer confidence.

  15. Bioceres: AG Biotechnology from Argentina

    Directory of Open Access Journals (Sweden)

    Roberto Feeney

    2016-04-01

    Full Text Available In this case we present a business decision-making situation in which the CEO of an Argentine Ag Biotech company, Bioceres, has to decide the best way to commercialize a new drought-tolerant transgenic technology. The company was founded by twenty three farmers, who shared a common dream that Argentina could become a benchmark in the development of Ag biotechnology. The case has strategic and financial implications, as well as decision-making situation involving a joint venture with an American biotechnology company. It also introduces to discussion the business models of Ag biotechnology companies in developing countries.

  16. Big is beautiful in biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, G.

    1984-01-01

    Venture capital has guaranteed the successful launch of biotechnology in the US since 1977. Established companies are then licensed to produce and distribute the latest inventions. By contrast in Japan established industrial companies are the leaders in biotechnology research, development and commercialization, building on existing technology and past experience and retraining staff. In the US electronics industry the acute shortage of electronic engineers combined with the high cost of capital and instability within venture capital companies to restrict the high level of innovation required looks likely to happen again in biotechnology.

  17. An Overview of NASA Biotechnology

    Science.gov (United States)

    Pusey, Marc L.

    1997-01-01

    Biotechnology research at NASA has comprised three separate areas; cell science and tissue culture, separations methods, and macromolecular crystal growth. This presentation will primarily focus on the macromolecular crystal growth.

  18. Biotechnology of riboflavin.

    Science.gov (United States)

    Schwechheimer, Susanne Katharina; Park, Enoch Y; Revuelta, José Luis; Becker, Judith; Wittmann, Christoph

    2016-03-01

    Riboflavin (vitamin B2) production has shifted from chemical synthesis to exclusive biotechnological synthesis in less than 15 years. The underlying extraordinary achievement in metabolic engineering and bioprocess engineering is reviewed in this article with regard to the two most important industrial producers Bacillus subtilis and Ashbya gossypii. The respective biosynthetic routes and modifications are discussed, and also the regulation of riboflavin synthesis. As the terminal biosynthesis of riboflavin starts from the two precursors, ribulose 5-phosphate and guanosine triphosphate (GTP), both strains have been optimized for an improved flux through the pentose phosphate pathway as well as the purine biosynthetic pathway. Specific targets for improvement of A. gossypii were the increase of the glycine pool and the increase of carbon flow through the glyoxylic shunt. In B. subtilis, research interest, amongst others, has focused on gluconeogenesis and overexpression of the rib operon. In addition, insight into large-scale production of vitamin B2 is given, as well as future prospects and possible developments. PMID:26758294

  19. New Directions in Biotechnology

    Science.gov (United States)

    2003-01-01

    The macromolecule crystallization program within NASA is undergoing considerable pressure, particularly budgetary pressure. While it has shown some successes, they have not lived up to the expectations of others, and technological advances may rapidly overtake the natural advantages offered by crystallization in microgravity. Concomitant with the microgravity effort has been a research program to study the macromolecule crystallization process. It was believed that a better understanding of the process would lead to growth of improved crystals for X-ray diffraction studies. The results of the various research efforts have been impressive in improving our understanding of macromolecule crystallization, but have not led to any improved structures. Macromolecule crystallization for structure determination is "one of", the job being unique for every protein and finished once a structure is obtained. However, the knowledge gained is not lost, but instead lays the foundation for developments in new areas of biotechnology and nanotechnology. In this it is highly analogous to studies into small molecule crystallization, the results of which have led to our present day microelectronics-based society. We are conducting preliminary experiments into areas such as designed macromolecule crystals, macromolecule-inorganic hybrid structures, and macromolecule-based nanotechnology. In addition, our protein crystallization studies are now being directed more towards industrial and new approaches to membrane protein crystallization.

  20. Mannan biotechnology: from biofuels to health.

    Science.gov (United States)

    Yamabhai, Montarop; Sak-Ubol, Suttipong; Srila, Witsanu; Haltrich, Dietmar

    2016-01-01

    Mannans of different structure and composition are renewable bioresources that can be widely found as components of lignocellulosic biomass in softwood and agricultural wastes, as non-starch reserve polysaccharides in endosperms and vacuoles of a wide variety of plants, as well as a major component of yeast cell walls. Enzymatic hydrolysis of mannans using mannanases is essential in the pre-treatment step during the production of second-generation biofuels and for the production of potentially health-promoting manno-oligosaccharides (MOS). In addition, mannan-degrading enzymes can be employed in various biotechnological applications, such as cleansing and food industries. In this review, fundamental knowledge of mannan structures, sources and functions will be summarized. An update on various aspects of mannan-degrading enzymes as well as the current status of their production, and a critical analysis of the potential application of MOS in food and feed industries will be given. Finally, emerging areas of research on mannan biotechnology will be highlighted.

  1. Mannan biotechnology: from biofuels to health.

    Science.gov (United States)

    Yamabhai, Montarop; Sak-Ubol, Suttipong; Srila, Witsanu; Haltrich, Dietmar

    2016-01-01

    Mannans of different structure and composition are renewable bioresources that can be widely found as components of lignocellulosic biomass in softwood and agricultural wastes, as non-starch reserve polysaccharides in endosperms and vacuoles of a wide variety of plants, as well as a major component of yeast cell walls. Enzymatic hydrolysis of mannans using mannanases is essential in the pre-treatment step during the production of second-generation biofuels and for the production of potentially health-promoting manno-oligosaccharides (MOS). In addition, mannan-degrading enzymes can be employed in various biotechnological applications, such as cleansing and food industries. In this review, fundamental knowledge of mannan structures, sources and functions will be summarized. An update on various aspects of mannan-degrading enzymes as well as the current status of their production, and a critical analysis of the potential application of MOS in food and feed industries will be given. Finally, emerging areas of research on mannan biotechnology will be highlighted. PMID:25025271

  2. Intellectual Property Rights and Agro-Biotechnology: Limitations and Alternatives

    Directory of Open Access Journals (Sweden)

    Mary Luz Yaya-Lancheros

    2008-11-01

    Full Text Available Intellectual property rights have led to stimulating innovation in different fields such as biotechnology. Patents, plant variety protection, industrial secrets and material transfer agreements are legal terms individually and/or collectively protecting materials or processes deemed necessary for agricultural-biotech product development. Such terms may often accumulate to such an extent that this hinders a product’s development and commercial release. Some current initiatives are aimed at facilitating access to basic technology for agricultural-biotech product development, including public organisation cooperation networks, requests for special licences for humanitarian programmes and open access projects. These may be good short-and medium-term alternatives for carrying out biotechnological research in countries like Colombia.

  3. Economic Impacts of Policies Affecting Crop Biotechnology and Trade

    OpenAIRE

    Kym Anderson

    2010-01-01

    Agricultural biotechnologies, and especially transgenic crops, have the potential to boost food security in developing countries by offering higher incomes for farmers and lower-priced and better quality food for consumers. That potential is being heavily compromised, however, because the European Union and some other countries have implemented strict regulatory systems to govern their production and consumption of genetically modified (GM) food and feed crops, and to prevent imports of foods...

  4. Public Acceptance of Plant Biotechnology and GM Crops

    OpenAIRE

    Lucht, Jan M.

    2015-01-01

    A wide gap exists between the rapid acceptance of genetically modified (GM) crops for cultivation by farmers in many countries and in the global markets for food and feed, and the often-limited acceptance by consumers. This review contrasts the advances of practical applications of agricultural biotechnology with the divergent paths—also affecting the development of virus resistant transgenic crops—of political and regulatory frameworks for GM crops and food in different parts of the world. T...

  5. Canada. National Biotechnology Advisory Committee: Annual report 1985-1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The Committee is to recommend, to the Minister of State for Science and Technology, policies and focused strategies for the continued economic growth of Canada by enhancing the international competitiveness of Canadian industry through the development, application and commercialization of biotechnology. This annual report includes a list of members, and Committee activities. It discusses research, technology transfer, precommercial development, and marketing and commercialization. Next, it looks at opportunities in agriculture, forestry and health care. Finally, the document touches on future activities.

  6. Producers and Consumer attitudes toward Biotechnology in Ghana

    OpenAIRE

    Nsafoah, Annie; Dicks, Michael R.; Osei, Collins

    2011-01-01

    Over 265 million people in Sub-Saharan Africa face malnutrition, chronic hunger, and poverty. One of the technologies that could help alleviate the perpetuating cycle of chronic hunger is biotechnology. Genetic modification (GM) has the potential to enhance agricultural productivity and improve Africa’s food security, but little is known about the potential benefits and costs of using genetically modified maize in Africa - Ghana. African and Ghanaian policy makers, farmers, and consumers ofte...

  7. Biotechnology and the Development of Food Markets: Retrospect and Prospects

    OpenAIRE

    GianCarlo Moschini

    2008-01-01

    Biotechnology has had an important impact on the agricultural and food industries over the last twelve years by way of fast and extensive adoption of a few genetically modified (GM) crops. This has produced large efficiency gains, including higher yields and reduced costs of weed and pest control, as well as some environmental benefits. The expected development of crops with additional agronomic traits, and with output traits to improve the nutrition and health attributes of food products, ho...

  8. Improving Technology Perception through Information and Education: A case of Biotechnology in Nigeria

    OpenAIRE

    Adegbenga Emmanuel Adekoya; Oladimeji Idowu Oladele

    2008-01-01

    A study was conducted in two states in Nigeria (Edo and Delta) as part of the International Institute of Tropical Agriculture Activities in the Niger Delta area of the south-western agro-ecological zone part of Nigeria. A workshop was organized for the sole purpose of presenting information on biotechnology as a discipline and as a necessary technology that can be safely adopted by even peasant farmers. Several areas of biotechnology such as biosafety,ethics, environmental and health safety w...

  9. CONSUMER ACCEPTANCE OF FOOD BIOTECHNOLOGY: WILLINGNESS TO BUY GENETICALLY MODIFIED FOOD PRODUCTS

    OpenAIRE

    Hossain, Ferdaus; Onyango, Benjamin M.; Adelaja, Adesoji O.; Schilling, Brian J.; Hallman, William K.

    2002-01-01

    Biotechnology is often viewed as the defining technology for the future of food and agriculture with the potential to deliver a wide range of economic and health benefits. Public acceptance of genetically modified food products is a critical factor for this emerging technology. Using data from a national survey, this study examines public acceptance of food biotechnology by modeling consumers' willingness to buy genetically modified foods. Empirical results suggest that younger, white, male a...

  10. PLANT TISSUE CULTURE IN BIOTECHNOLOGY: RECENT ADVANCES IN TRANSFORMATION THROUGH SOMATIC EMBRYOGENESIS

    Directory of Open Access Journals (Sweden)

    V. A. Sidorov

    2012-08-01

    Full Text Available Plant genetic transformation has become an important biotechnology tool for the improvement of many crops. A solid foundation for the fast development and implementation of biotechnology in agriculture was provided by achievements in plant tissue culture. On the 30th anniversary of plant transformation, I report the advancements, recent challenges and shifts in methodology of transformation. The main focus of this paper will be on conventional and novel approaches for genetic improvements of soybean, cotton and corn. I will also highlight results on the transformation of these crops that have considerably been improved by modern biotechnology.

  11. BIOTECHNOLOGY OF UTILIZATION OF MUNICIPAL WASTEWATER SEDIMENTS

    Directory of Open Access Journals (Sweden)

    G. N. Nikovskaya

    2014-06-01

    Full Text Available Analysis of information on air-conditioning contaminated with heavy metals sludge municipal wastewater points to the actual ecological and chemical problem and its solution could be implemented within the framework of the biological process involving heterotrophic microorganisms. Information on the spread, toxicity, biochemistry, microbiology, colloidal and chemical properties of sludge sediments of municipal wastewater biological treatment is given in the review. These sediments contain vitamins, amino acids, organic matter, heavy metals (micro- and macroelements. Therefore the most rational approach to sludge wastes utilization is their use as an agricultural fertilizer after partial removal of heavy metals. Hence, the interaction of sludge components with heavy metals, modern methods of their removing from biocolloidal systems and biotechnologies of conversion of sludge wastes into fertilizer based on the enhancing of vital ability of sludge biocenoses are discussed.

  12. Cosmetics - chemical technology or biotechnology?

    Science.gov (United States)

    Allen, G

    1984-04-01

    Synopsis Over the past 25 years the cosmetic industry has become increasingly technological. The origins of many of these advances were based upon chemical technology usually related to colloid science, although more recent developments have had clear biological improvements. A number of recent innovations are examined to consider how far developments in the future will stem from biotechnology rather than chemical technology. The working of surface active materials (e.g. CTAB) is discussed as an example of cosmetic effects being generated purely from chemical technology. The role of fluoride toothpaste in decreasing the incidence of dental caries is discussed as an effect based essentially on chemical technology in an area where future alternatives might come from biotechnology. Skin research is highlighted as the area where new understanding, e.g. of the role of epidermal growth factor (EGF), fibronectin and laminin, could lead to a whole new biotechnological approach to the appraisal of skin. As we venture into innovations based on biotechnology we may be introducing new dimensions in product safety which will need an even closer relationship with the medical fraternity. Consequently the introduction of products based on biotechnology may not be as rapid as is sometimes suggested.

  13. Applied thermodynamics: A new frontier for biotechnology

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    2006-01-01

    The scientific career of one of the most outstanding scientists in molecular thermodynamics, Professor John M. Prausnitz at Berkeley, reflects the change in the agenda of molecular thermodynamics, from hydrocarbon chemistry to biotechnology. To make thermodynamics a frontier for biotechnology...

  14. Past, Present, and Future Industrial Biotechnology in China

    Science.gov (United States)

    Li, Zhenjiang; Ji, Xiaojun; Kan, Suli; Qiao, Hongqun; Jiang, Min; Lu, Dingqiang; Wang, Jun; Huang, He; Jia, Honghua; Ouyuang, Pingkai; Ying, Hanjie

    Fossil resources, i.e. concentrated carbon from biomass, have been irrecoverably exhausted through modern industrial civilization in the last two hundred years. Serious consequences including crises in resources, environment and energy, as well as the pressing need for direct and indirect exploitation of solar energy, pose challenges to the science and technology community of today. Bioenergy, bulk chemicals, and biomaterials could be produced from renewable biomass in a biorefinery via biocatalysis. These sustainable industries will match the global mass cycle, creating a new form of civilization with new industries and agriculture driven by solar energy. Industrial biotechnology is the dynamo of a bioeconomy, leading to a new protocol for production of energy, bulk chemicals, and materials. This new mode of innovation will place the industry at center stage supported by universities and research institutes. Creativity in industrial biotechnology will be promoted and China will successfully follow the road to green modernization. China's rapid economic development and its traditional capacity in fermentation will place it in an advantageous position in the industrial biotechnology revolution. The development and current status of industrial biotechnology in China are summarized herein.

  15. Biotechnology Facility (BTF) for ISS

    Science.gov (United States)

    1998-01-01

    Engineering mockup shows the general arrangement of the plarned Biotechnology Facility inside an EXPRESS rack aboard the International Space Station. This layout includes a gas supply module (bottom left), control computer and laptop interface (bottom right), two rotating wall vessels (top right), and support systems.

  16. Infusing Authentic Inquiry into Biotechnology

    Science.gov (United States)

    Hanegan, Nikki L.; Bigler, Amber

    2009-01-01

    Societal benefit depends on the general public's understandings of biotechnology (Betsch in "World J Microbiol Biotechnol" 12:439-443, 1996; Dawson and Cowan in "Int J Sci Educ" 25(1):57-69, 2003; Schiller in "Business Review: Federal Reserve Bank of Philadelphia" (Fourth Quarter), 2002; Smith and Emmeluth in "Am Biol Teach" 64(2):93-99, 2002). A…

  17. Biotechnology in defence (Review Paper

    Directory of Open Access Journals (Sweden)

    T. Lazar Mathew

    2001-10-01

    Full Text Available Biotechnology, in its present perspective, encompasses activities, such as recombination of genes; cloning, or making genetically identical copies of a living thing; and splicing of genes from DNA of one organism into the genome of unrelated species, to create new, self-reproducing forms of life. The vast potential of biotechnology is being increasingly realised, and efforts are in progress to harness it for improving quality and quantity of bio-weapons, The bio-weapons, as such, are highly attractive because of their non-detection by routine security systems, ease of access, low production cost and easy transportation, A wide range of genetically manipulated organisms and their by-products are considered to have an added advantage, because these genetically manipulated biologics not only accentuate the existing properties of bio-weapons, but also could be made target-specific. Biotechnology, if used prudently, can play a significant role to counter such threats of biologics, viz., by producing (i bio-armoury comprising powerful antibiotics, antisera toxoids and vaccines to neutralise and eliminate a wide range of diseases, and (ii bio-sensors for rapid detection, identification and neutralisation of biological warfare agents. This article elucidates some facets of biological warfare, legal protective strategies emphasised through international consultation, cooperation and adherence to the Biological and Toxin Weapons Convention, and discusses how biotechnology could be effectively used to strengthen countries' defence and combat the threat of biological warfare.

  18. Biotechnology Gains Brighten Resource Outlook.

    Science.gov (United States)

    O'Sullivan, Dermot A.

    1979-01-01

    This report details recent advances in fermentation biotechnology as presented by speakers at the 27th International Union of Pure and Applied Chemistry (IUPAC) Congress. Discussion centered around the use of bacteria, yeasts, and fungi as future sources of essential materials as food, fuel, and medicine. (BT)

  19. BIOTECHNOLOGY OF THE FISH AQUACULTURE

    Directory of Open Access Journals (Sweden)

    L. P. Buchatsky

    2013-12-01

    Full Text Available The latest progress in biotechnology on fish aquaculture and different modern methods of investigations for increasing of fish productivity in aquaculture are analyzed. Except for the applied aspect, the use of modern biotechnological methods of investigations opens new possibilities for fundamental researches of sex-determining mechanisms, polyploidy, distant hybridization, and developmental biology of bony fishes. Review contains examples of utilizing modern biotechnology methods to obtain transgenic fishes with accelerated growth and for designing surrogate fishes. Methods for receiving unisexual shoals of salmon and sturgeon female fishes with the view of obtaining a large quantity of caviar, as well as receiving sterile (triploid fishes are analyzed. Great attention is given to androgenesis, particularly to disperm one, in connection with the problem of conserving rare and vanishing fish species using only sperm genetic material. Examples how distant hybrids may be obtained with the use of disperm androgenesis and alkylated DNA are given. Methods of obtaining fish primordium germ cells, recent developments in cultivation of fish stem cells and their use in biotechnology, as well as ones of transplantation of oogonium and spermatogonium to obtain surrogate fishes. The examples of successful experiments on spermatogonial xenotransplantation and characteristic of antifreezing fish proteins and also the prospect of their practical usage are given.

  20. Excitement of biotechnology in the new economy (Review Paper

    Directory of Open Access Journals (Sweden)

    Kiran Mazumdar-Shaw

    2001-10-01

    Full Text Available "Today the world economy is no longer driven by material wealth but instead powered by intellectual wealth. Knowledge in the economic context translates to technology, of which information technology and biotechnology are the prime drivers, India has made it in information technology. but not yet in biotechnology. The exciting synergy between information technology and biotechnology in the form of bioinformatics is paving the way for intellectual wealth creation in the areas of health care (including pharmaceuticals, food and agriculture. The race for discovering new lead molecules is frenzied in the pharmaceutical arena, being mined by high throughput screening techniques for new chemical entities. The Himalayan yew tree. for example, has provided a billion dollar cancer drug. taxol. Pharmacogenomics is providing ' a wealth of information pertaining to defective or missing genes-a new avenue for drug research. A new trend in bioinformatics is in silica testing, which involves computational simulation of in vivo and in vitro tests, providing better predictability of clinical trials. In gene therapy cloning and expressing healthy genes is simple, but finding a mechanism to deliver these genes into target cells is the difficult part. Promising methods include virus as well as non-virus-based delivery systems. How Indians can take advantage of the exciting opportunities in biotechnology? One can boast of a treasure chest of biodiversities-microbial, plant, animal and human, but it is largely unutilised. A large number of inbred communities in India are offering unique human genome pools for genomic studies. We have the main ingredient for global success in biotechnology-our scientific manpower. We need to harness this talent in an enabling business environment and a pragmatic, entrepreneurial mindset. "

  1. The rise (and decline?) of biotechnology.

    Science.gov (United States)

    Kinch, Michael S

    2014-11-01

    Since the 1970s, biotechnology has been a key innovator in drug development. An analysis of FDA-approved therapeutics demonstrates pharmaceutical companies outpace biotechs in terms of new approvals but biotechnology companies are now responsible for earlier-stage activities (patents, INDs or clinical development). The number of biotechnology organizations that contributed to an FDA approval began declining in the 2000s and is at a level not seen since the 1980s. Whereas early biotechnology companies had a decade from first approval until acquisition, the average acquisition of a biotechnology company now occurs months before their first FDA approval. The number of hybrid organizations that arise when pharmaceutical companies acquire biotechnology is likewise declining, raising questions about the sustainability of biotechnology.

  2. Recent patents in plant biotechnology: impact on global health.

    Science.gov (United States)

    Hefferon, Kathleen L

    2012-08-01

    Agricultural biotechnology offers a robust series of tools by which to address global concerns such as food security, crop protection, and fuel/energy requirements. A number of advances made recently in plant molecular biology also have resulted in applications which largely focus on improving global human health. This review describes some of the recent innovations in plant biotechnology that have come to the forefront over the past year. Included are novel techniques by which plants can be improved as platforms for biopharmaceutical protein production, a growing field also referred to as 'molecular pharming'. The metabolic engineering of plants to produce compounds which have additional nutritional benefits is also outlined. The review concludes with a discussion of the future impact that these innovations may have both on global health and on the development of our future intellectual property landscape. PMID:22642820

  3. Recent patents in plant biotechnology: impact on global health.

    Science.gov (United States)

    Hefferon, Kathleen L

    2012-08-01

    Agricultural biotechnology offers a robust series of tools by which to address global concerns such as food security, crop protection, and fuel/energy requirements. A number of advances made recently in plant molecular biology also have resulted in applications which largely focus on improving global human health. This review describes some of the recent innovations in plant biotechnology that have come to the forefront over the past year. Included are novel techniques by which plants can be improved as platforms for biopharmaceutical protein production, a growing field also referred to as 'molecular pharming'. The metabolic engineering of plants to produce compounds which have additional nutritional benefits is also outlined. The review concludes with a discussion of the future impact that these innovations may have both on global health and on the development of our future intellectual property landscape.

  4. Comparing the Governance of Novel Products and Processes of Biotechnology

    DEFF Research Database (Denmark)

    Hansen, Janus

    The emergence of novel products and processes of biotechnology in medicine, industry and agriculture has been accompanied by promises of healthier, safer and more productive lives and societies. However, biotechnology has also served as cause and catalyst of social controversy about the physical...... safety and social desirability of novel technologies. Such controversies have put the principles, institutions and instruments of governance, which has conventionally guided the interactions between science and society, under pressure. While researchers in science and technology studies (STS) have done...... extensive work on the substance and processes of such controversies, they have devoted less effort to link their work to the broader tradition in political science and political sociology, which analyses more general principles and varieties of governance in modern societies. This paper presents an attempt...

  5. Biotechnology Science Experiments on Mir

    Science.gov (United States)

    Kroes, Roger L.

    1999-01-01

    This paper describes the microgravity biotechnology experiments carried out on the Shuttle/Mir program. Four experiments investigated the growth of protein crystals, and three investigated cellular growth. Many hundreds of protein samples were processed using four different techniques. The objective of these experiments was to determine optimum conditions for the growth of very high quality single crystals to be used for structure determination. The Biotechnology System (BTS) was used to process the three cell growth investigations. The samples processed by these experiments were: bovine chondrocytes, human renal epithelial cells, and human breast cancer cells and endothelial cells. The objective was to determine the unique properties of cell aggregates produced in the microgravity environment.

  6. Biodiesel production by microalgal biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Huang, GuanHua [School of Chemical Engineering and Technology, China University of Mining and Technology (China); Chen, Feng [School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong (China); College of Light Industry and Food Sciences, South China University of Technology, Guangzhou (China); Wei, Dong; Zhang, XueWu; Chen, Gu [College of Light Industry and Food Sciences, South China University of Technology, Guangzhou (China)

    2010-01-15

    Biodiesel has received much attention in recent years. Although numerous reports are available on the production of biodiesel from vegetable oils of terraneous oil-plants, such as soybean, sunflower and palm oils, the production of biodiesel from microalgae is a newly emerging field. Microalgal biotechnology appears to possess high potential for biodiesel production because a significant increase in lipid content of microalgae is now possible through heterotrophic cultivation and genetic engineering approaches. This paper provides an overview of the technologies in the production of biodiesel from microalgae, including the various modes of cultivation for the production of oil-rich microalgal biomass, as well as the subsequent downstream processing for biodiesel production. The advances and prospects of using microalgal biotechnology for biodiesel production are discussed. (author)

  7. International Comparison and Implications of Agricultural Development in Foreign Low Latitude Plateau Regions for Yunnan Province

    OpenAIRE

    Luo, Yan; Yan YANG; Chen, Rui; Wu, Wei; PENG, Ziyun; Chen, Liangzheng; Li, Xuelin

    2013-01-01

    Climatic characteristics of foreign low latitude plateau regions are firstly introduced. Then, experience and lessons of major foreign low latitude plateau countries in developing modern agriculture are analyzed, including Indian three agricultural revolutions and agricultural informationization development, application of agricultural biotechnology in Brazil, trade liberalization and economic de-agriculture of Mexico, and Argentina, Saudi Arabia and South Africa attaching great importance to...

  8. IMPORTANCE OF IPR IN BIOTECHNOLOGY

    OpenAIRE

    Rashmi Mishra*

    2016-01-01

    The objective of this review is to highlight and explore the inter-relationship and the functioning of the intellectual property right in the pharmaceutical and biotechnology industry. The rising tide of patent applications can be witnessed globally in this industry as the need for such protection and licensing has become imperative so as to safeguard the rights of the inventor and also to encourage and promote new talents, inventions and innovations which can be a boon for the economy. The f...

  9. Interface of nuclear and biotechnologies

    International Nuclear Information System (INIS)

    Addressing nuclear and biotechnologies in the International Year of Physics should begin by highlighting the important role that this science has played in the development of both branches of science and technologies. The first as a direct consequence of the Theory of Relativity, the further was considerably influenced by Schroedinger's remarks that there must be a code of some kind that allowed molecules in cells to carry information, making a connection between genes and proteins. Both, like any highly technical endeavor, have also in common that the use of technologies demands a vast accumulation of knowledge, i.e. volumes of scientific research, engineering analysis, strict regulatory controls and a huge amount of information combined with a complex assortment of people with the required educational background, expertise and skills to master it. This presentation briefly explores the ways in which nuclear technology has been used in the last decades of the 20th century in the field of biomedicine applications, which includes the use of radiation to obtain accurate images as well as in diagnosis and therapy. The paper looks at the present prospects of some nuclear methods and instrumentation in the so-called Red biotechnology and its genetically engineered therapeutic agents and diagnostic tests as well as some related perspectives in the field of bioinformatics. As an example of biotechnology being successfully applied to health problems in developing countries the presentation gives an outlook of relevant Cuban achievements in this field. (author)

  10. Changing Climate Is Affecting Agriculture in the U.S.

    Medline Plus

    Full Text Available ... Biotechnology Climate Solutions Conservation Disaster and Emergency Preparedness Employee Services Energy Environment and Natural Resources Ethics Farm Bill Food and Nutrition Food Safety Forestry Housing Assistance Laws and Regulations Organic Agriculture Outreach Plant Health Research ...

  11. Changing Climate Is Affecting Agriculture in the U.S.

    Medline Plus

    Full Text Available   Topics Animal Health Biotechnology Climate Solutions Conservation Disaster and Emergency Preparedness Employee Services Energy Environment and Natural Resources Ethics Farm Bill Food and Nutrition Food Safety Forestry Housing Assistance Laws and Regulations Organic Agriculture Outreach Plant ...

  12. Public Acceptance of Plant Biotechnology and GM Crops.

    Science.gov (United States)

    Lucht, Jan M

    2015-07-30

    A wide gap exists between the rapid acceptance of genetically modified (GM) crops for cultivation by farmers in many countries and in the global markets for food and feed, and the often-limited acceptance by consumers. This review contrasts the advances of practical applications of agricultural biotechnology with the divergent paths-also affecting the development of virus resistant transgenic crops-of political and regulatory frameworks for GM crops and food in different parts of the world. These have also shaped the different opinions of consumers. Important factors influencing consumer's attitudes are the perception of risks and benefits, knowledge and trust, and personal values. Recent political and societal developments show a hardening of the negative environment for agricultural biotechnology in Europe, a growing discussion-including calls for labeling of GM food-in the USA, and a careful development in China towards a possible authorization of GM rice that takes the societal discussions into account. New breeding techniques address some consumers' concerns with transgenic crops, but it is not clear yet how consumers' attitudes towards them will develop. Discussions about agriculture would be more productive, if they would focus less on technologies, but on common aims and underlying values.

  13. Public Acceptance of Plant Biotechnology and GM Crops

    Directory of Open Access Journals (Sweden)

    Jan M. Lucht

    2015-07-01

    Full Text Available A wide gap exists between the rapid acceptance of genetically modified (GM crops for cultivation by farmers in many countries and in the global markets for food and feed, and the often-limited acceptance by consumers. This review contrasts the advances of practical applications of agricultural biotechnology with the divergent paths—also affecting the development of virus resistant transgenic crops—of political and regulatory frameworks for GM crops and food in different parts of the world. These have also shaped the different opinions of consumers. Important factors influencing consumer’s attitudes are the perception of risks and benefits, knowledge and trust, and personal values. Recent political and societal developments show a hardening of the negative environment for agricultural biotechnology in Europe, a growing discussion—including calls for labeling of GM food—in the USA, and a careful development in China towards a possible authorization of GM rice that takes the societal discussions into account. New breeding techniques address some consumers’ concerns with transgenic crops, but it is not clear yet how consumers’ attitudes towards them will develop. Discussions about agriculture would be more productive, if they would focus less on technologies, but on common aims and underlying values.

  14. Public Acceptance of Plant Biotechnology and GM Crops.

    Science.gov (United States)

    Lucht, Jan M

    2015-08-01

    A wide gap exists between the rapid acceptance of genetically modified (GM) crops for cultivation by farmers in many countries and in the global markets for food and feed, and the often-limited acceptance by consumers. This review contrasts the advances of practical applications of agricultural biotechnology with the divergent paths-also affecting the development of virus resistant transgenic crops-of political and regulatory frameworks for GM crops and food in different parts of the world. These have also shaped the different opinions of consumers. Important factors influencing consumer's attitudes are the perception of risks and benefits, knowledge and trust, and personal values. Recent political and societal developments show a hardening of the negative environment for agricultural biotechnology in Europe, a growing discussion-including calls for labeling of GM food-in the USA, and a careful development in China towards a possible authorization of GM rice that takes the societal discussions into account. New breeding techniques address some consumers' concerns with transgenic crops, but it is not clear yet how consumers' attitudes towards them will develop. Discussions about agriculture would be more productive, if they would focus less on technologies, but on common aims and underlying values. PMID:26264020

  15. Impact of biotechnology on sugarcane agriculture and industry

    Science.gov (United States)

    There are nine key issues that can influence the productivity and sustainability of the sugarcane industry. These include land, soil fertility, water, variety, planting density, crop protection, cultural practices, harvesting and processing, and information technology. To all sugarcane farmers, it r...

  16. Agricultural biotechnology. Monsanto donates its share of golden rice.

    Science.gov (United States)

    Normile, D

    2000-08-11

    Monsanto Co. has agreed to provide royalty-free licenses to speed up work on a genetically modified rice that could alleviate vitamin A deficiency around the world. Researchers welcomed last week's announcement, but warn that a thicket of intellectual property claims surrounds the technology and that significant legal hurdles remain before the rice can become widely available to farmers in developing countries.

  17. Journal of Northeast Agricultural University (English Edition)%Journal of Northeast Agricultural University (English Edition)

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Instruction to Authors Aims and Scope Journal of Northeast Agricultural University (English Edition) is a comprehensive academic journal on agricultural sciences sponsored by Northeast Agricultural University and distributed worldwide. It is a peer reviewed journal published quarterly and mainly publishes review and research articles that reflect the latest achievements on crop science, horticulture, plant protection, resource and environment, animal science, veterinary medicine, agricultural engineering and technology, agricultural water conservancy, life science, biotechnology and food science.

  18. Enrichment and Strengthening of Indian Biotechnology Industry along with Academic Interface

    Science.gov (United States)

    Singh, Shalini

    2014-01-01

    For many years, humankind has been incorporating biosciences in different places--from agriculture to food and medicine. Today, the nomenclature of biology has been recoined as Biotechnology, a technological science with a perfect blend of sophisticated techniques, manuals and application of fast delivery equipment and vehicles. It encompasses…

  19. Against Free Markets, against Science? Regulating the Socio-Economic Effects of Biotechnology

    Science.gov (United States)

    Kinchy, Abby J.; Kleinman, Daniel Lee; Autry, Robyn

    2008-01-01

    This study challenges the assumption that abstract "globalization" forces are driving transformations in the relationships between states and markets. Employing three cases of policy debate regarding the regulation of agricultural biotechnology (ag-biotech), we examine the role of discourse in the formation of neoliberal regulatory schemes. We…

  20. Les Biotechnologies Marines dans le Grand Ouest

    OpenAIRE

    Boyen, Catherine; Jaouen, Pascal; Blanchard, Gilbert; Compere, Chantal; Dufour, Alain; Durand, Patrick; Guerard, Fabienne; Hallouin, Florence; Jebbar, Mohamed; Le Blay, Gwenaelle; Le Deit, Hervé; Le Seyec, Jocelyne; Monks, Brian; Portal-sellin, Rachel; Probert, Ian

    2015-01-01

    Marine (= blue) biotechnology, i.e. the utilization of marine bio-resources as a target or source of biotechnological applications, is a field with massive potential for innovation and economic growth. In a context of rapid climate change and increasing pressure on natural resources, renewed interest in marine biotechnology has been promoted by application of recent methodological and technological advances, notably in bioprocessing and in the various –omics domains, to the study of marine bi...

  1. Innovation Challenges in Malaysia SME Biotechnology

    OpenAIRE

    Lai, Tuck Keong

    2013-01-01

    The study was to find out the supporting elements that lead to innovation in Malaysia SME biotechnology firms. The context of this study was to understand the collaboration process that lead to better innovation for their product and service development. The results is to assist potential new start-up to navigate Malaysia biotechnology landscape as a lessons learned and what it takes to be successful in biotechnology investment. There are four settings that author was trying to uncover like c...

  2. Medical Biotechnology: Problems and Prospects in Bangladesh

    OpenAIRE

    Shaikh Mizan

    2013-01-01

    Biotechnology is the knowledge and techniques of developing and using biological systems for deriving special products and services. The age-old technology took a new turn with the advent of recombinant DNA techniques, and boosted by the development of other molecular biological techniques, cell culture techniques and bioinformatics. Medical biotechnology is the major thrust area of biotechnology. It has brought revolutions in medicine – quick methods for diagnosing diseases, generation of ne...

  3. Undergraduate Biotechnology Students' Views of Science Communication

    Science.gov (United States)

    Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato

    2010-12-01

    Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology sector by providing a pipeline of university graduates entering into the profession, it has been proposed that formal science communication training be introduced at this early stage of career development. The aim of the present study was to examine the views of biotechnology students towards science communication and science communication training. Using an Australian biotechnology degree programme as a case study, 69 undergraduates from all three years of the programme were administered a questionnaire that asked them to rank the importance of 12 components of a biotechnology curriculum, including two science communication items. The results were compared to the responses of 274 students enrolled in other science programmes. Additional questions were provided to the second year biotechnology undergraduates and semi-structured interviews were undertaken with 13 of these students to further examine their views of this area. The results of this study suggest that the biotechnology students surveyed do not value communication with non-scientists nor science communication training. The implications of these findings for the reform of undergraduate biotechnology courses yet to integrate science communication training into their science curriculum are discussed.

  4. Fungal genome sequencing: basic biology to biotechnology.

    Science.gov (United States)

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research. PMID:25721271

  5. Fungal genome sequencing: basic biology to biotechnology.

    Science.gov (United States)

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.

  6. Improving microalgae for biotechnology--From genetics to synthetic biology.

    Science.gov (United States)

    Hlavova, Monika; Turoczy, Zoltan; Bisova, Katerina

    2015-11-01

    Microalgae have traditionally been used in many biotechnological applications, where each new application required a different species or strain expressing the required properties; the challenge therefore is to isolate or develop, characterize and optimize species or strains that can express more than one specific property. In agriculture, breeding of natural variants has been successfully used for centuries to improve production traits in many existing plant and animal species. With the discovery of the concepts of classical genetics, these new ideas have been extensively used in selective breeding. However, many biotechnologically relevant algae do not possess the sexual characteristics required for traditional breeding/crossing, although they can be modified by chemical and physical mutagens. The resulting mutants are not considered as genetically modified organisms (GMOs) and their cultivation is therefore not limited by legislation. On the other hand, mutants prepared by random or specific insertion of foreign DNA are considered to be GMOs. This review will compare the effects of two genetic approaches on model algal species and will summarize their advantages in basic research. Furthermore, we will discuss the potential of mutagenesis to improve microalgae as a biotechnological resource, to accelerate the process from specific strain isolation to growth optimization, and discuss the production of new products. Finally, we will explore the potential of algae in synthetic biology.

  7. Biotechnology: employing organism as bioreactors

    Directory of Open Access Journals (Sweden)

    Maryam Baniasad

    2015-06-01

    Full Text Available Biological products, especially proteins, have numerous applications including prevention, diagnosis, and treating diseases. Advances in biotechnology in recent years have opened up many ways to manufacture these products in large scales. To engineer biopharmaceuticals, often pro and/or eukaryotic sustainable resources are used. Selection of the cellular factory depends on the type and application of protein needed. In this review, we explore current resources used to produce biologics, examine these resources critically for their biological output, and finally highlight impact of using sustainable resources in modern medicine.

  8. Certain problems of space biotechnology

    Science.gov (United States)

    Gilyarov, V. N.

    1980-01-01

    Experiments in the field of biotechnology conducted by the USA Apollo and Skylab space probes are described, as well as the joint Soviet-American Apollo-Soyuz Test Project (ASTP). Experiments in electrophoretic separation in space of biological compounds in a liquid medium are detailed. Space processing of vaccines and separation of human and animal cells are described. Methyl-cellulose, a coating for use in electrophoresis was developed. Erythropoietin, which stimulates the formation of red blood corpuscles in bone marrow, was obtained in pure form.

  9. On the Cognition of Graduates Competencies: Based on the Investigation of Biotechnology Specialty Students of Zhongkai University of Agriculture and Engineering%大学毕业生能力期望的认知研究——基于仲恺农业工程学院生物技术专业学生的调查分析

    Institute of Scientific and Technical Information of China (English)

    胡延吉; 梁红

    2012-01-01

    Students of biotechnology specialty in Zhongkai University of Agriculture and Engineering completed a questionnaire (n=1 11) , in which they ranked the relative importance of a list of 25 competencies for graduates entering the workforce using a 7-point Likert scale. The results showed that the students believed all the listed competencies were important for now and in 10 years time. The top five ranked competencies for now in order were: self confidence, initiative, ability and willingness to learn, energy and passion and problem solving. When the competencies were classified into hard skill and soft skill categories, the students perceived both hard skills and soft skills to be equally important. Comparison between sophomore and senior's perceptions indicated that practical work experience in enterprise will greatly influence students' cognition of competencies. To improve graduates quality and competencies, strengthening cooperative education program is an effective way to make full use of educational resources from both universities and enterprises and improve students' competency development environment.%通过利克特量表问卷调查的方式,研究了仲恺农业工程学院生物技术专业学生对大学毕业生25种能力相对重要性的认知情况。结果表明:学生认为所有能力无论在当前还是未来都是重要的;当前最重要的5种能力分别是自信、首创精神、学习意愿与能力、热情和活力、解决问题;如果将所有能力分为硬技能与软技能两大类,则学生认为两类技能具有同等的重要性:不同年级间的比较表明,企业工作实习经历对学生的能力认知具有重要影响。加强产学研合作,充分利用校企资源,优化学生能力培养环境,是提高毕业生综合素质和能力的有效途径。

  10. Chronological development avenues in biotechnology across the world

    Directory of Open Access Journals (Sweden)

    Prashant Y Mali

    2011-01-01

    Full Text Available Biotechnology is expected to be a great technological revolution followed by information technology. It is an application of scientific and engineering principles to the processing of material by biological agents to provide better goods and services to mankind. Commercially its techniques are applied long back in 6 th century in the art of brewing, wine making and baking. It has progressed there after crossing different land marks. Modern biotechnology has developed significantly in the late 19 th century with groundbreaking discoveries applicable in medicine, food, agriculture, chemistry, environmental protection and many more industries. It is widely used in the development of high-yielding, disease-resistant, better quality varieties by applying tissue culture and recombinant DNA techniques. It has wide application in animal breeding using techniques such as artificial insemination, in vitro fertilization and embryo transfer. Specific enzymes used in laundry, fuel and leather industries for better quality, economically feasible and environmental friendly production. Biotechnology in healthcare system uses body′s own tools and weapons to fight against diseases, manufacturing of targeted therapeutic proteins, gene therapy and so on. Novel approaches such as proteomics and structural biology are contributing to understanding the chemistry of life and diseases. Malfunctioning gene replaced with correctly functioning gene by using gene therapy. Tissue engineering has opened up the use of in vitro developed tissue or organ in repairing wounded tissue and system biology which is a computer-based approach to understand cell functions. Although every new discovery related to biology and its implications is significant and has taken the technology ahead. This includes applications, commercialization, controversies, media exposure and so on. Hence, we have enlisted some of the chronological development avenues in biotechnology across the world.

  11. Biotechnology for Solar System Exploration

    Science.gov (United States)

    Steele, A.; Maule, J.; Toporski, J.; Parro-Garcia, V.; Briones, C.; Schweitzer, M.; McKay, D.

    With the advent of a new era of astrobiology missions in the exploration of the solar system and the search for evidence of life elsewhere, we present a new approach to this goal, the integration of biotechnology. We have reviewed the current list of biotechnology techniques, which are applicable to miniaturization, automatization and integration into a combined flight platform. Amongst the techniques reviewed are- The uses of antibodies- Fluorescent detection strategies- Protein and DNA chip technology- Surface plasmon resonance and its relation to other techniques- Micro electronic machining (MEMS where applicable to biologicalsystems)- nanotechnology (e.g. molecular motors)- Lab-on-a-chip technology (including PCR)- Mass spectrometry (i.e. MALDI-TOF)- Fluid handling and extraction technologies- Chemical Force Microscopy (CFM)- Raman Spectroscopy We have begun to integrate this knowledge into a single flight instrument approach for the sole purpose of combining several mutually confirming tests for life, organic and/or microbial contamination, as well as prebiotic and abiotic organic chemicals. We will present several innovative designs for new instrumentation including pro- engineering design drawings of a protein chip reader for space flight and fluid handling strategies. We will also review the use of suitable extraction methodologies for use on different solar system bodies.

  12. Principles of biotechnological treatment of industrial wastes

    Energy Technology Data Exchange (ETDEWEB)

    Roig, M.G.; Martin Rodriguez, M.J.M.; Cachaza, J.M. (Univ. de Salamanca, Salamanca (Spain). Dept. de Quimica Fisica); Mendoza Sanchez, L. (C/Sol Oriente, Salamanca (Spain). Estudios y Proyectos); Kennedy, J.F. (Univ. of Birmingham, Birmingham (United Kingdom). Research Lab. for the Chemistry of Bioactive Carbohydrates and Proteins)

    1993-07-01

    This review includes current information on biodegradation processes of pollutants, digestor biocenosis and bioadditives, sludge production, measurement of pollution, and advances regarding biotechnological treatment of a series of specific industrial effluents. It was foreseen in 1980 that biotechnology would foster the creation of new industries with low energy requirements. This is because the growth of microorganisms provides a renewable source of energy.

  13. Biotechnology in the Middle School Curriculum

    Science.gov (United States)

    Campbell, De Ann

    2007-01-01

    Biotechnology is a fairly new concept for middle school students as well as teachers. If the latest craze of TV shows focused on crime scene investigation events were not so popular, the term and concept might be even obscure to the public. There is an increased presence of biotechnology in our daily surroundings that makes it practical and…

  14. Undergraduate Biotechnology Students' Views of Science Communication

    Science.gov (United States)

    Edmondston, Joanne Elisabeth; Dawson, Vaille; Schibeci, Renato

    2010-01-01

    Despite rapid growth of the biotechnology industry worldwide, a number of public concerns about the application of biotechnology and its regulation remain. In response to these concerns, greater emphasis has been placed on promoting biotechnologists' public engagement. As tertiary science degree programmes form the foundation of the biotechnology…

  15. Assessment and diffusion of biotechnology drugs

    NARCIS (Netherlands)

    Zwart-van Rijkom, J.E.F.

    2002-01-01

    Biotechnology, viewed as a young and innovative field, is associated with great possibilities and high expectation on patient benefits. But there are also public controversies on ethical, social and economic issues. Beginning with recombinant human insulin in 1982, more than 50 biotechnology drugs h

  16. Interdisciplinarity in Biotechnology, Genomics and Nanotechnology

    NARCIS (Netherlands)

    Heimeriks, G.J.

    2013-01-01

    In this paper we study developments in biotechnology, genomics and nanotechnology in the period 1998–2008. The fields show changing interdisciplinary characteristics in relation to distinct co-evolutionary dynamics in research, science and society. Biotechnology emerged as a discipline in publicatio

  17. New trends in biotechnology. Biotechnology no atarashii choryu

    Energy Technology Data Exchange (ETDEWEB)

    Karube, I. (The University of Tokyo, Tokyo (Japan). Research Center for Advanced Science and Technology)

    1993-11-30

    This paper focuses on application of the recent biotechnology and introduces its new trends. What has triggered the boom in the application is when the technology has been applied to medicines in the 1970's. Beginning with insulin and interferon, various fibrinolytic agents including tPA and monoclonals have been put on markets one after another in 1991. Progress in humangenomic analysis has led to implementation of gene therapies and diagnoses using genes on gene diseases. Sweeteners used in a large quantity in the foodstuff field are fructoses made by isomerizing glucose produced by using enzymatic bioreactors. Needless to say about production of amino acid, organic acids, saccharides, antibiotics, steroids, and nucleic acid-based compounds by using enzymatic bioreactors, chemicals including acrylic amide from acrylonitrile, enzyme detergents, and bio-herbicides are available commercially. Progress in the technology is seen in all of the fields, including electronics industry and environmental preservation. 6 refs., 4 figs.

  18. Western Australian school students' understanding of biotechnology

    Science.gov (United States)

    Dawson, Vaille; Schibeci, Renato

    2003-01-01

    Are science educators providing secondary school students with the background to understand the science behind recent controversies such as the recently introduced compulsory labelling of genetically modified foods? Research from the UK suggests that many secondary school students do not understand the processes or implications of modern biotechnology. The situation in Australia is unclear. In this study, 1116 15-year-old students from eleven Western Australian schools were surveyed to determine their understanding of, and attitude towards, recent advances in modern biotechnology. The results indicate that approximately one third of students have little or no understanding of biotechnology. Many students over-estimate the use of biotechnology in our society by confusing current uses with possible future applications. The results provide a rationale for the inclusion of biotechnology, a cutting edge science, in the school science curriculum

  19. The current biotechnology outlook in Malaysia

    Directory of Open Access Journals (Sweden)

    Khairiah Salwa MOKHTAR

    2010-06-01

    Full Text Available Blessed with extremely rich biodiversity, Malaysia is all geared up to explore new high technology to utilize the advantage it possesses whilst to protect its environment. Biotechnology has been identified as an appropriate driver that can deliver economic gains through research and development, improvement of food security, creation of entrepreneurial opportunities for industrial growth, health and environmental sustainability. This paper attempts to address the evolution of biotechnology institutions and the stumbling blocks in developing the Malaysian biotechnology industry. This paper identifies three main impediments in the current Malaysian biotechnology, namely lack of skilled human capital; weak industrial base; and lack of commercialization effort. Besides, a set of strategies are discussed with aim to further improve and strengthen the Malaysian biotechnology industry. In general, the arguments are presented by mapping out the symbiotic relationship between data from elite interviews, archival data and observations.

  20. The role of biotechnology to ensure rice food security

    International Nuclear Information System (INIS)

    Rice as a food is key to the survival of more than 60% of the world population, most of whom live in Asia. Food security in Asia is therefore strongly dependent on an adequate, available supply of affordable rice. Experts estimate that global rice supply would need to increase at an average of 1.7% per annum for the next 20 years, and average rice yields must roughly double in the next 20 years in both the irrigated and favourable rainfed lowland environments, if a global shortage is to be avoided. At the same time that the need to increase total production, and unit area productivity is being felt, society is also demanding that agricultural practices be environment friendly and be part of a sustainable agricultural system. Rice breeders have seen increased difficulties to source and utilize new genetic resources for genetic improvement of yield potential from within the rice genome. As with other cereals, rice yield potential has not been dramatically increased in the last decade when compared to the quantum increase of the early Green Revolution years. Furthermore, pest-induced losses currently account for up to 30% of the loss in yield potential. Biotechnology, especially recombinant DNA technology, offers tools to transfer genes from outside the rice genome to address the critical issues of raising the yield potential, increasing tolerance or resistance to insects, diseases and a biotic stresses, to increase the efficiency of pest management, and also to improve the nutritive value of the rice grain. Genetically modified crops have a demonstrated record of environmental and food safety, and all such crops undergo a process of safety assessment and regulatory approval before they are put into the marketplace. Serious social issues, however, arise in matching the capacity of biotechnology to change crops, and in what changes society is willing to accept; and at this early stage of biotechnology applications, science-based approaches are important so that emotion

  1. THE ROLE OF BIOTECHNOLOGY IN THE CONSERVATION OF BIODIVERSITY

    Directory of Open Access Journals (Sweden)

    Malabika Roy Pathak

    2014-08-01

    Full Text Available Biological diversity provides the variety of life on the Earth and can be defined as the variability among and between the living organisms and species of surrounding ecosystems and ecological complexes of their life support. It has been estimated that one third of the global plant species are threatened in different level according to the International Union of Conservation of Nature (IUCN.The major threat to rapid loss and extinction of genetic diversity due to habitat destruction, pollution, climate change, invasion of exotic species, human population pressure, ever increasing agricultural pressure and practices, life style change etc. are well-known. Biodiversity conservation is a global concern. All member states of the Convention on Biological Diversity (CBD took measure to preserve both native and agricultural biodiversity. The global concern of biodiversity conservation initiated either by in situ or ex situ methods. In situ methods protect both plants and their natural habitat. On the other hand, ex situ methods involves preservation and maintenance of plant species or plant parts (such as seeds, cuttings, rhizomes, tubers etc. outside their natural habitat for the purpose of developing seed banks or more preciously gene banks following classical / advanced methods of plant propagation. Classical methods of plant propagations have certain limitations in terms of rapid production of plants or plant propagules and their long term conservation. So, the biotechnological methods such as plant tissue culture, plant cell culture, anther culture, embryo culture etc. are quite applicable and useful techniques for ex situ conservation. On the other hand, the production of superior quality seeds has enhanced by the application of plant biotechnology. So, plant biotechnology offers new means of improving biodiversity conservation rather than threatening biodiversity in various ways.

  2. Biotechnology and bioforensics new trends

    CERN Document Server

    Kumar, Amit

    2015-01-01

    This Brief covers broad areas of Applied Biology specifically into the domains of Biotechnology/Biomedicine and Forensic Science. Chapters included here would also explain the role of bioinformatics in protein and gene characterization, modeling of the protein structure, survey related to the chromosomal effect on Human Disorders like Diabetes and Cardiac Problems. This Brief is full of Innovative Literature like Use of Microbes in Electricity Production, Brain connection to Type 2 Diabetes etc. Interesting issues in Forensic biology and the aspects of Bioforensics like STR profiling of exhumed bones makes this brief truly useful and informative for Researchers. It also includes the advancements and new ideologies in understanding crop improvements & crop quality. This Brief witnesses Innovative Research related to the Bio and Agri software development too which are capable of accelerating Insilico biological data analysis.

  3. Environmental biotechnology research: an overview.

    Science.gov (United States)

    Spain, J C

    1994-05-01

    Cleanup and treatment of hazardous wastes incur major operational costs for the U.S. Air Force. Bioremediation can provide a cost-effective alternative to traditional technologies for a wide range of natural organic compounds such as jet fuel. Bioventing and natural attenuation are emerging as treatments of choice in many instances. Synthetic organic chemicals are much more resistant to biodegradation. However, recent advances in biotechnology allow the development of strains able to use nitro- and chloro-substituted organic compounds as their sole source of carbon and energy. Current basic research is focused on expanding the range of synthetic chemicals amenable to biodegradation. At the same time, development of appropriate bioreactors and models for scale up are essential for practical application of the technology.

  4. Biotechnological production of citric acid

    Directory of Open Access Journals (Sweden)

    Belén Max

    2010-12-01

    Full Text Available This work provides a review about the biotechnological production of citric acid starting from the physicochemical properties and industrial applications, mainly in the food and pharmaceutical sectors. Several factors affecting citric acid fermentation are discussed, including carbon source, nitrogen and phosphate limitations, pH of culture medium, aeration, trace elements and morphology of the fungus. Special attention is paid to the fundamentals of biochemistry and accumulation of citric acid. Technologies employed at industrial scale such as surface or submerged cultures, mainly employing Aspergillus niger, and processes carried out with Yarrowia lipolytica, as well as the technology for recovering the product are also described. Finally, this review summarizes the use of orange peels and other by-products as feedstocks for the bioproduction of citric acid.

  5. Frontiers in biomedical engineering and biotechnology.

    Science.gov (United States)

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu

    2014-01-01

    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  6. Developments in biotechnological research in Austria.

    Science.gov (United States)

    Kubicek, C P

    1996-01-01

    Austria is a small European country with a small number of universities and biotechnological industries, but with great efforts in the implementation of environmental consciousness and corresponding legal standards. This review attempts to describe the biotechnological landscape of Austria, thereby focusing on the highlights in research by industry, universities, and research laboratories, as published during 1990 to early 1995. These will include microbial metabolite (organic acids, antibiotics) and biopolymer (polyhydroxibutyrate, S-layers) production; enzyme (cellulases, hemicellulases, ligninases) technology and biocatalysis; environmental biotechnology; plant breeding and plant protection; mammalian cell products; fermenter design; and bioprocess engineering. PMID:8856962

  7. Biotechnology in Food Production and Processing

    Science.gov (United States)

    Knorr, Dietrich; Sinskey, Anthony J.

    1985-09-01

    The food processing industry is the oldest and largest industry using biotechnological processes. Further development of food products and processes based on biotechnology depends upon the improvement of existing processes, such as fermentation, immobilized biocatalyst technology, and production of additives and processing aids, as well as the development of new opportunities for food biotechnology. Improvements are needed in the characterization, safety, and quality control of food materials, in processing methods, in waste conversion and utilization processes, and in currently used food microorganism and tissue culture systems. Also needed are fundamental studies of the structure-function relationship of food materials and of the cell physiology and biochemistry of raw materials.

  8. The Biotechnology Facility for International Space Station

    Science.gov (United States)

    Goodwin, Thomas; Lundquist, Charles; Tuxhorn, Jennifer; Hurlbert, Katy

    2004-01-01

    The primary mission of the Cellular Biotechnology Program is to advance microgravity as a tool in basic and applied cell biology. The microgravity environment can be used to study fundamental principles of cell biology and to achieve specific applications such as tissue engineering. The Biotechnology Facility (BTF) will provide a state-of-the-art facility to perform cellular biotechnology research onboard the International Space Station (ISS). The BTF will support continuous operation, which will allow performance of long-duration experiments and will significantly increase the on-orbit science throughput.

  9. Brazil: The Future of Modern Agriculture?

    OpenAIRE

    Holger Matthey; Fabiosa, Jacinto F.; Fuller, Frank H.

    2004-01-01

    In an attempt to understand better Brazil's future role in agricultural markets, the authors of this report traveled to Brazil on a fact-finding mission in September 2003. The goal was to get a first-hand impression of Brazil's agricultural sector and especially its future potential. In this report we provide a general description of crop and livestock production, government policies, public and private cooperation, and transportation and biotechnology issues. The most striking observations m...

  10. European biotechnology: Business aspects. March 1985-November 1989 (Citations from the Biobusiness data base). Report for March 1985-November 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-01

    This bibliography contains citations concerning business issues of biotechnological research and development (R D) being conducted primarily in Western Europe. The major emphasis is on commercial agricultural and pharmaceutical R D companies. Business topics such as location, product technology, marketing strategies, sales statistics, competitive issues and market share, and consumption data are covered. Collaborative agreements between biotechnology firms located in Western Europe and leading biotechnology companies around the globe are also cited. This bibliography is germane to the upcoming consolidation of the European Econonic Community (EEC) and is of interest to biotechnology companies whose business/marketing plans include possible expansion into the EEC. (Contains 286 citations fully indexed and including a title list.)

  11. Social Responsibility in Developing New Biotechnology : Interpretations of Responsibility in the Governance of Finnish Biotechnology

    OpenAIRE

    Snell, Karoliina

    2009-01-01

    The object of the dissertation is to analyse the concept of social responsibility in relation to research and development of new biotechnology. This is done by examining the relevant actors – researchers, administrators, decision-makers, experts, industry, and the public – involved in the Finnish governance of biotechnology through their roles and responsibilities. Existing practises of responsibility in biotechnology governance, as well as the discourses of responsibility – the actorsâ...

  12. Application of biotechnology to improve livestock products

    Directory of Open Access Journals (Sweden)

    Swati Gupta

    Full Text Available Biotechnological achievements of recent years have emerged as powerful tool to improve quality attributes of livestock products including milk and meat products. Biotechnological approaches can be employed for improving productivity, economy, physicochemical and nutritional attributes of a wide range of livestock products. The target areas of biotechnological research in the field of livestock products can be envisaged as production of high yielding food animal, improvement in quality of their products, enhanced production of natural food grade preservatives, efficient byproduct utilization and so forth. Many of the biotechnological techniques can be explored in the area of quality assurance programmes, which would be of great help to produce livestock products of assured quality and public health safety. [Vet World 2012; 5(10.000: 634-638

  13. What is the future of animal biotechnology?

    OpenAIRE

    Alison L Van Eenennaam

    2006-01-01

    Animal biotechnology encompasses a broad range of techniques for the genetic improvement of domesticated animal species, although the term is increasingly associated with the more controversial technologies of cloning and genetic engineering. Despite the many potential applications of these two biotechnologies, no public or private entity has yet delivered a genetically engineered food-animal product to the global market, and the sale of milk or meat from cloned animals and their offspring is...

  14. The current biotechnology outlook in Malaysia

    OpenAIRE

    Khairiah Salwa MOKHTAR; Mahalingam, Ravi

    2010-01-01

    Blessed with extremely rich biodiversity, Malaysia is all geared up to explore new high technology to utilize the advantage it possesses whilst to protect its environment. Biotechnology has been identified as an appropriate driver that can deliver economic gains through research and development, improvement of food security, creation of entrepreneurial opportunities for industrial growth, health and environmental sustainability. This paper attempts to address the evolution of biotechnology in...

  15. Framing Biotechnology in Iranian TV Series

    OpenAIRE

    H. Khaniki; M. H. Panahi; M. A. Ghaneirad; Z. Zardar

    2014-01-01

    Media as public opinion formers have crucial role in supporting the growth and development of science and technology . They form media frames in various fields of science and Technology. This paper seeks to identify frames which Iranian television series depict biotechnology. The Biotechnology frames Identified through qualitative framing analysis. To achieve this goal, all TV series of Five main national channels for a five-year period (2008-2013) were considered and two TV series – “Balhaye...

  16. Ethics in biotechnology and biosecurity

    Directory of Open Access Journals (Sweden)

    S Jameel

    2011-01-01

    Full Text Available Great advances in technology produce unique challenges. Every technology also has a dual use, which needs to be understood and managed to extract maximum benefits for mankind and the development of civilization. The achievements of physicists in the mid-20th century resulted in the nuclear technology, which gave us the destructive power of the atomic bomb as also a source of energy. Towards the later part of the 20th century, information technology empowered us with fast, easy and cheap access to information, but also led to intrusions into our privacy. Today, biotechnology is yielding life- saving and life-enhancing advances at a fast pace. But, the same tools can also give rise to fiercely destructive forces. How do we construct a security regime for biology? What have we learnt from the management of earlier technological advances? How much information should be in the public domain? Should biology, or more broadly science, be regulated? Who should regulate it? These and many other ethical questions need to be addressed.

  17. Immunoassays in monitoring biotechnological drugs.

    Science.gov (United States)

    Gygax, D; Botta, L; Ehrat, M; Graf, P; Lefèvre, G; Oroszlan, P; Pfister, C

    1996-08-01

    For the evaluation and interpretation of pharmacokinetic data reliable quantitative determinations are a requirement that can only be met by well-characterized and fully validated analytical methods. To cope with these requirements a method is being established that is based on an integrated and automated fiber-optic biospecific interaction analysis system (FOBIA) for immunoassays. Performance characteristics of this system used in monitoring of recombinant hirudin (CGP 39 393) are presented. Recombinant hirudin is a highly potent and selective inhibitor of human thrombin. Owing to its size and charge, recombinant hirudin is mainly eliminated by glomerular filtration. But only a fraction of the hirudin dose seems to be reabsorbed at the proximal tubule by luminal endocytosis and hydrolyzed by lysosomal enzymes, leaving approximately 50% of the dose to be extracted in the urine. Thus, renal clearance of recombinant hirudin in the absence of renal insufficiency appears to depend primarily on the glomerular filtration rate. During a 3-month i.v. tolerability study in dogs, some of the dogs developed antibodies against recombinant hirudin. The hirudin-antibody complex accumulated in plasma and apparent hirudin plasma concentrations were therefore much higher than expected from single-dose kinetics. Hirudin captured by antibodies showed an extended half-life and the hirudin-antibody complex is still pharmacologically active, as demonstrated by the observed increase in thrombin time. In conclusion, only appropriate analytical methods allow adequate monitoring and pharmacokinetic characterization of biotechnology drugs in biological materials. PMID:8857560

  18. New biotechnologies in Serbian forestry

    Directory of Open Access Journals (Sweden)

    Galović Vladislava

    2014-01-01

    Full Text Available This paper presents an overview of the results achieved in the laboratory for molecular studies of the Institute of Lowland Forestry and Environment, University of Novi Sad, in the field of biotechnology, mainly in molecular genetics, genomics and functional genomics. Researches are designed to serve as a breeding tool. The aim was to clarify the processes of classical genetics by applying modern methods and enable a qualitative and rapid progress in understanding the processes that occur at the level of genes in the genome of forest plant species and thus help the processes of conservation of valuable taxa at the time of global climate change. The results are presented within various research fields and by type of forest trees that were given priority by importance in forest ecosystems. Studies have in most cases been of applicative character with the aim of solving the major problems in forestry, but also of fundamental nature when they were necessary to elucidate the response of forest species to the induced stress, which is an inevitable component of the time characterized by tolerance and adaptation as keywords. [Projekat Ministarstva nauke Republike SRbije, br. III 43002: Biosenzing tehnologije i globalni sistem za kontinuirano istraživanje i integrisano upravljanje ekosistemima i br. III 43007: Istraživanje klimatskih promena i njihovog uticaja na životnu sredinu - praćenje uticaja, adaptacija i ublažavanje i IPA - OXIT

  19. Yeast Genetics and Biotechnological Applications

    Science.gov (United States)

    Mishra, Saroj; Baranwal, Richa

    Yeast can be recognized as one of the very important groups of microorganisms on account of its extensive use in the fermentation industry and as a basic eukaryotic model cellular system. The yeast Saccharomyces cerevisiae has been extensively used to elucidate the genetics and regulation of several key functions in the cell such as cell mating, electron transport chain, protein trafficking, cell cycle events and others. Even before the genome sequence of the yeast was out, the structural organization and function of several of its genes was known. With the availability of the origin of replication from the 2 μm plasmid and the development of transformation system, it became the host of choice for expression of a number of important proteins. A large number of episomal and integrative shuttle vectors are available for expression of mammalian proteins. The latest developments in genomics and micro-array technology have allowed investigations of individual gene function by site-specific deletion method. The application of metabolic profiling has also assisted in understanding the cellular network operating in this yeast. This chapter is aimed at reviewing the use of this system as an experimental tool for conducting classical genetics. Various vector systems available, foreign genes expressed and the limitations as a host will be discussed. Finally, the use of various yeast enzymes in biotechnology sector will be reviewed.

  20. Medical biotechnology trends and achievements in iran.

    Science.gov (United States)

    Mahboudi, Fereidoun; Hamedifar, Haleh; Aghajani, Hamideh

    2012-10-01

    A healthcare system has been the most important priority for all governments worldwide. Biotechnology products have affected the promotion of health care over the last thirty years. During the last several decades, Iran has achieved significant success in extending healthcare to the rural areas and in reducing the rates of infant mortality and increasing population growth. Biomedical technology as a converging technology is considered a helpful tool to fulfill the Iranian healthcare missions. The number of biotechnology products has reached 148 in 2012. The total sales have increased to 98 billion USD without considering vaccines and plasma derived proteins in 2012. Iran is one of the leading countries in the Middle East and North Africa in the area of Medical biotechnology. The number of biotechnology medicines launched in Iran is 13 products until 2012. More than 15 products are in pipelines now. Manufacturers are expecting to receive the market release for more than 8 products by the end of 2012. Considering this information, Iran will lead the biotechnology products especially in area of biosimilars in Asia after India in next three years. The present review will discuss leading policy, decision makers' role, human resource developing system and industry development in medical biotechnology.

  1. Journal of Northeast Agricultural University (English Edition)Instruction to Authors%Journal of Northeast Agricultural University (English Edition)Instruction to Authors

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Aims and Scope Journal of Northeast Agricultural University (English Edition) is a comprehensive academic journal on agricultural sciences sponsored by Northeast Agricultural University and distributed worldwide. It is a peer reviewed journal published quarterly and mainly publishes review and research articles that reflect the latest achievements on crop science, horticulture, plant protection, resource and environment, animal science, veterinary medicine, agricultural engineering and technology, agricultural water conservancy, life science, biotechnology and food science.

  2. Attitudes in China about Crops and Foods Developed by Biotechnology.

    Science.gov (United States)

    Han, Fei; Zhou, Dingyang; Liu, Xiaoxia; Cheng, Jie; Zhang, Qingwen; Shelton, Anthony M

    2015-01-01

    Transgenic Bt cotton has been planted in China since 1997 and, in 2009, biosafety certificates for the commercial production of Bt rice and phytase corn were issued by the Chinese government. The public attitude in China toward agricultural biotechnology and genetically modified (GM) crops and foods has received considerable attention worldwide. We investigated the attitudes of consumers, Bt cotton farmers and scientists in China regarding GM crops and foods and the factors influencing their attitudes. Data were collected using interview surveys of consumer households, farmer households and scientists. A discrete choice approach was used to elicit the purchase intentions of the respondents. Two separate probit models were developed to examine the effect of various factors on the choices of the respondents. Bt cotton farmers had a very positive attitude because Bt cotton provided them with significant economic benefits. Chinese consumers from developed regions had a higher acceptance and willingness to pay for GM foods than consumers in other regions. The positive attitude toward GM foods by the scientific community will help to promote biotechnology in China in the future. Our survey emphasized that educational efforts made by government officials, the media and scientists can facilitate the acceptance of GM technology in China. Further educational efforts will be critical for influencing consumer attitudes and decisions of government agencies in the future. More effective educational efforts by government agencies and public media concerning the scientific facts and safety of GM foods would enhance the acceptance of GM crops in China.

  3. Attitudes in China about Crops and Foods Developed by Biotechnology.

    Directory of Open Access Journals (Sweden)

    Fei Han

    Full Text Available Transgenic Bt cotton has been planted in China since 1997 and, in 2009, biosafety certificates for the commercial production of Bt rice and phytase corn were issued by the Chinese government. The public attitude in China toward agricultural biotechnology and genetically modified (GM crops and foods has received considerable attention worldwide. We investigated the attitudes of consumers, Bt cotton farmers and scientists in China regarding GM crops and foods and the factors influencing their attitudes. Data were collected using interview surveys of consumer households, farmer households and scientists. A discrete choice approach was used to elicit the purchase intentions of the respondents. Two separate probit models were developed to examine the effect of various factors on the choices of the respondents. Bt cotton farmers had a very positive attitude because Bt cotton provided them with significant economic benefits. Chinese consumers from developed regions had a higher acceptance and willingness to pay for GM foods than consumers in other regions. The positive attitude toward GM foods by the scientific community will help to promote biotechnology in China in the future. Our survey emphasized that educational efforts made by government officials, the media and scientists can facilitate the acceptance of GM technology in China. Further educational efforts will be critical for influencing consumer attitudes and decisions of government agencies in the future. More effective educational efforts by government agencies and public media concerning the scientific facts and safety of GM foods would enhance the acceptance of GM crops in China.

  4. Attitudes in China about Crops and Foods Developed by Biotechnology.

    Science.gov (United States)

    Han, Fei; Zhou, Dingyang; Liu, Xiaoxia; Cheng, Jie; Zhang, Qingwen; Shelton, Anthony M

    2015-01-01

    Transgenic Bt cotton has been planted in China since 1997 and, in 2009, biosafety certificates for the commercial production of Bt rice and phytase corn were issued by the Chinese government. The public attitude in China toward agricultural biotechnology and genetically modified (GM) crops and foods has received considerable attention worldwide. We investigated the attitudes of consumers, Bt cotton farmers and scientists in China regarding GM crops and foods and the factors influencing their attitudes. Data were collected using interview surveys of consumer households, farmer households and scientists. A discrete choice approach was used to elicit the purchase intentions of the respondents. Two separate probit models were developed to examine the effect of various factors on the choices of the respondents. Bt cotton farmers had a very positive attitude because Bt cotton provided them with significant economic benefits. Chinese consumers from developed regions had a higher acceptance and willingness to pay for GM foods than consumers in other regions. The positive attitude toward GM foods by the scientific community will help to promote biotechnology in China in the future. Our survey emphasized that educational efforts made by government officials, the media and scientists can facilitate the acceptance of GM technology in China. Further educational efforts will be critical for influencing consumer attitudes and decisions of government agencies in the future. More effective educational efforts by government agencies and public media concerning the scientific facts and safety of GM foods would enhance the acceptance of GM crops in China. PMID:26418161

  5. Economic impacts of policies affecting crop biotechnology and trade.

    Science.gov (United States)

    Anderson, Kym

    2010-11-30

    Agricultural biotechnologies, and especially transgenic crops, have the potential to boost food security in developing countries by offering higher incomes for farmers and lower priced and better quality food for consumers. That potential is being heavily compromised, however, because the European Union and some other countries have implemented strict regulatory systems to govern their production and consumption of genetically modified (GM) food and feed crops, and to prevent imports of foods and feedstuffs that do not meet these strict standards. This paper analyses empirically the potential economic effects of adopting transgenic crops in Asia and Sub-Saharan Africa. It does so using a multi-country, multi-product model of the global economy. The results suggest the economic welfare gains from crop biotechnology adoption are potentially very large, and that those benefits are diminished only very slightly by the presence of the European Union's restriction on imports of GM foods. That is, if developing countries retain bans on GM crop production in an attempt to maintain access to EU markets for non-GM products, the loss to their food consumers as well as to farmers in those developing countries is huge relative to the slight loss that could be incurred from not retaining EU market access. PMID:20478422

  6. New Developments in Biotechnology: U.S. Investment in Biotechnology. [Special Report.

    Science.gov (United States)

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    Since the discovery of recombinant DNA in the early 1970s, biotechnology has become an essential tool for many industries. The potential of biotechnology to improve the Nation's health, food supply, and the quality of the environment leads logically to questions of whether current levels of investment in research and development, human resources,…

  7. New Developments in Biotechnology: U.S. Investment in Biotechnology. Summary.

    Science.gov (United States)

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    Since the discovery of recombinant DNA in the early 1970s, biotechnology has become an essential tool for many industries. The potential of biotechnology to improve the Nation's health, food supply, and the quality of the environment leads logically to questions of whether current levels of investment in research and development, human resources,…

  8. Biotechnology Education. Engaging the Learner: Embedding Information Literacy Skills into a Biotechnology Degree

    Science.gov (United States)

    Ward, Helena; Hockey, Julie

    2007-01-01

    One of the challenges of the Biotechnology industry is keeping up to date with the rapid pace of change and that much of the information, which students learn in their undergraduate studies, will be out of date in a few years. It is therefore crucial that Biotechnology students have the skills to access the relevant information for their studies…

  9. "Recombinant Protein of the Day": Using Daily Student Presentations to Add Real-World Aspects to a Biotechnology Course

    Science.gov (United States)

    Shaffer, Justin F.

    2013-01-01

    To provide a realistic view of the biotechnology industry for students, a novel course focusing on recombinant proteins and their importance in medicine, pharmaceuticals, industry, scientific research, and agriculture was developed. ''Designer Proteins and Society,'' an upper-division elective, was taught in the Fall 2012…

  10. Agriculture in the xxi century: transgenic plants role in agricultural sector´s technological development

    Directory of Open Access Journals (Sweden)

    Rodrigo Artunduaga Salas

    2011-12-01

    Full Text Available The new advances in biotechnology, especially in the completion of the Arabidopsis thaliana, genome sequence has profound implications for human health as well as plant biology and agriculture. It will permit us to know the action of all the genes involved in the key growing and development processes of plants. Modification of the structure of genes will allow the regulation of the expression of some characteristics such as the size of the leaves or the dynamics of the roots and fruits growth. In this way, the commercialization of the products of the new biotechnologies will influence in this century´s nations, agricultural production, productivity and food supply. The challenges and opportunities for the countries of Latin America and the Caribbean (LAC are enormous, due to the rich base of their flora, fauna and microorganisms resources, which are essential to the pharmaceutical and feeding industries. The international Community recognizes the benefits of Biotechnology, but it also advocate more inquiry into the impacts of advanced agricultural biotechnologies on the environment, food system, structure of agriculture, rural communities, and population health.The countries of LAC should continue the development and improvement of the regulatory framework for preventing or minimizing the possible risks of the use and management of the transgenic organisms in their territory, and therefore, be able to make use of their potential benefits, ensuring the protection of public health and the environment.

  11. The Application of Molecular Biotechnology in implementing Regulatory Normatives: the case of GMOs

    OpenAIRE

    Samson, Maria Cristina

    2010-01-01

    Biotechnology has been widely adopted in agriculture but this has been also the focus of many controversies. Questions have arisen regarding its impact on food and environmental safety. In Europe, EFSA (European Food Safety Authority) has primary responsibility in the food safety ensuring systems. Food safety assessment for the products obtained with or containing GMOs (Genetically Modified Organisms), requires evaluation of the safety of: the newly added DNA (Deoxyribonucle...

  12. Bio-based C-3 Platform Chemical: Biotechnological Production and -Conversion of 3-Hydroxypropionaldehyde

    OpenAIRE

    Rezaei, Roya

    2013-01-01

    Demands for efficient, greener, economical and sustainable production of chemicals, materials and energy have led to development of industrial biotechnology as a key technology area to provide such products from bio-based raw materials from agricultural-, forestry- and related industrial residues and by-products. For the bio-based industry, it is essential to develop a number of building blocks or platform chemicals for C2-C6 chemicals and even aromatic chemicals. 3-hydroxypropionaldehyde (3H...

  13. Liberalization, biotechnology and the private seed sector: The Case of India's cotton seed market

    OpenAIRE

    Milind Murugkar; Bharat Ramaswami; Mahesh Shelar

    2006-01-01

    Liberalization, stronger intellectual property rights laws and the commercialization of biotechnology have led the private sector to become an important supplier of varietal technology in agriculture in developed and developing countries. The departure from the public sector driven Green Revolution model has given rise to new concerns about competition in the seed market. India's cotton seed market exemplifies these new developments. This study examines the evolution in its market structure a...

  14. Revolution from the aisle? Anti-biotechnology activism and the politics of agrifood restructuring

    OpenAIRE

    Roff, Robin Jane

    2008-01-01

    Genetic engineering as scientific practice and a package of social relations has deeply marked the global political economy. Yet, the future of agricultural applications is uncertain. In the United States, the global leader in GE production, the industry’s dominance is challenged by a growing opposition movement intent on slowing commercial introductions, increasing regulation and shifting decision-making power from biotechnology corporations to citizens. Geographers and agrifood scholars her...

  15. European biotechnology. April 1978-July 1989 (Citations from the Life Sciences Collection data base). Report for April 1978-July 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-01

    This bibliography contains citations concerning agricultural and pharmaceutical biotechnical research and development being conducted by Western European nations. Topics include: the future of biotechnology, recent developments, genetic analysis and manipulation (biomolecular engineering), and the biological production of pesticides and medicinals. This bibliography will be especially useful to R D professionals and advanced biochemistry students entering the biomedical or agricultural fields. (Contains 134 citations fully indexed and including a title list.)

  16. Oil palm biotechnologies are definitely out of infancy

    Directory of Open Access Journals (Sweden)

    Rival Alain

    2010-11-01

    Full Text Available Although biotechnologies and sustainable development are often considered as antagonists, there is increasing evidence for a role for this approach in the ecological intensification of oil palm cultivation. Ecological intensification is based on the understanding of how nature functions so as to exploit its resources without destroying it. Living organisms are supported by the genome (DNA through the action of the transcriptome (RNAs, proteome, metabolome, and ionome, the four basic pillars of functional genomics. These pillars represent the sum of all the expressed genes, proteins, metabolites, and elements within an organism. The dynamic response and interaction of these biochemical “omes” defines how a living system functions, and its study, systems biology, is now one of the biggest challenges in life sciences. In oil palm, as in many major crops, functional genomics is still at its beginning, although there are no reasons why oil palm should not rapidly benefit from the fast progresses generated by automated and high-throughput technologies. The success of sequencing projects on model plants has created a widespread interest in exploring the structure and expression patterns of the genome. Indeed, several institutions have now achieved the full sequencing of the oil palm genome, paving the way for the rapid evolution of various genomics-based approaches. Oil palm breeding has provided an average 1% of genetic gain per year since the early 1960s and such an impressive increase in oil yield will be maintained in future generations with a major contribution from biotechnology. Indeed, the recent adoption of biotechnological approaches has already proven very useful in major areas such as cloning of outstanding material, identity checking of progenies/mother palms, identification and characterization of genes underlying agricultural traits, etc. Phenotypic differences among individuals are partly the result of quantitative differences in

  17. Six priorities proposed for marine biotechnology in Denmark

    DEFF Research Database (Denmark)

    Børresen, Torger

    : - Increased exploitation of marine biomass. In addition to traditional fisheries, full utilisation of all catches and improved utilisation of by-products are suggested. Further, new species of fish and macro algae should be harvested. - New farming operations. Aquaculture should be applied in its widest sense......A survey initiated by the Ministry of Food, Agriculture and Fisheries in 2010 resulted in six priorities for the development of marine biotechnology in Denmark. Business opportunities were suggested and some elements for a successful strategy were proposed. The six priorities are the following....... Marine farming has the advantage that it does not impact freshwater resources. If established on land, water should be re-circulated and production limited to high priced species. - Healthy diet. Marine fatty acids, proteins, peptides and micronutrients are found in large quantities in marine organisms...

  18. Medical Biotechnology: Problems and Prospects in Bangladesh

    Directory of Open Access Journals (Sweden)

    Shaikh Mizan

    2013-01-01

    Full Text Available Biotechnology is the knowledge and techniques of developing and using biological systems for deriving special products and services. The age-old technology took a new turn with the advent of recombinant DNA techniques, and boosted by the development of other molecular biological techniques, cell culture techniques and bioinformatics. Medical biotechnology is the major thrust area of biotechnology. It has brought revolutions in medicine – quick methods for diagnosing diseases, generation of new drugs and vaccines, completely novel approach of treatment are only a few to mention. The industrial and financial bulk of the industry mushroomed very rapidly in the last three decades, led by the USA and western advanced nations. Asian countries like China, India, South Korea, Taiwan and Singapore joined late, but advancing forward in a big way. In all the Asian countries governments supported the initiatives of the expert and entrepreneur community, and invested heavily in its development. Bangladesh has got great potential in developing biotechnology and reaping its fruits. However, lack of commitment and patriotism, and too much corruption and irresponsibility in political and bureaucratic establishment are the major hindrance to the development of biotechnology in Bangladesh.

  19. Biotechnology Facility: An ISS Microgravity Research Facility

    Science.gov (United States)

    Gonda, Steve R.; Tsao, Yow-Min

    2000-01-01

    The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

  20. Biotechnology Approaches to Life Detection

    Science.gov (United States)

    Steele, Andrew; McKay, David; Schweitzer, Mary

    2001-01-01

    The direct detection of organic biomarkers for living or fossil microbes on Mars by an in situ instrument is a worthy goal for future lander missions. Several new and innovative biotechnology approaches are being explored. Firstly we have proposed an instrument based on immunological reactions to specific antibodies to cause activation of fluorescent stains. Antibodies are raised or acquired to a variety of general and specific substances that might be in Mars soil. These antibodies are then combined with various fluorescent stains and applied to micron sized numbered spots on a small (2-3 cm) test plate where they become firmly attached after freeze drying. Using technology that has been developed for gene mining in DNA technology up to 10,000 tests per square inch can now be applied to a test plate. On Mars or the planet/moon of interest, a sample of soil from a trench or drill core is extracted with water and/or an organic solvent and ultrasonication and then applied to the test plate. Any substance, which has an antibody on the test plate, will react with its antibody and activate its fluorescent stain. At the moment a small UV light source will illuminate the test plate, which is observed with a small CCD camera, although other detection systems will be applied. The numbered spots that fluoresce indicate the presence of the tested-for substance, and the intensity indicates relative amounts. Furthermore with up to a thousand test plates available false positives and several variations of antibody can also be screened for. The entire instrument can be quite small and light, on the order of 10 cm in each dimension. A possible choice for light source may be small UV lasers at several wavelengths. Some of the wells or spots can contain simply standard fluorescent stains used to detect live cells, dead cells, DNA, etc. The stains in these spots may be directly activated, with no antibodies being necessary. The proposed system will look for three classes of

  1. Coexistence or contradiction? GM crops versus alternative agricultures in Europe

    OpenAIRE

    Levidow, Les; Boschert, Karin

    2008-01-01

    Agricultural biotechnology (agbiotech) has intersected with a wider debate about 'sustainable agriculture', especially in Europe. Agbiotech was initially promoted as an alternative which would avoid or remedy past problems of intensive agriculture, but such claims were soon challenged. Agbiotech has extended the dominant agri-industrial paradigm, while critics have counterposed alternatives corresponding to an agrarian-based rural development paradigm. Amid controversy over environmental a...

  2. Case studies on the use of biotechnologies and on biosafety provisions in four African countries.

    Science.gov (United States)

    Black, Robert; Fava, Fabio; Mattei, Niccolo; Robert, Vincent; Seal, Susan; Verdier, Valerie

    2011-12-20

    This review is based on a study commissioned by the European Commission on the evaluation of scientific, technical and institutional challenges, priorities and bottlenecks for biotechnologies and regional harmonisation of biosafety in Africa. Biotechnology was considered within four domains: agricultural biotechnologies ('Green'), industrial biotechnologies and biotechnologies for environmental remediation ('White'), biotechnologies in aquaculture ('Blue') and biotechnologies for healthcare ('Red'). An important consideration was the decline in partnerships between the EU and developing countries because of the original public antipathy to some green biotechnologies, particularly genetically modified organisms (GMOs) and food from GM crops in Europe. The study focus reported here was West Africa (Ghana, Senegal, Mali and Burkina Faso). The overall conclusion was that whereas high-quality research was proceeding in the countries visited, funding is not sustained and there is little evidence of practical application of biotechnology and benefit to farmers and the wider community. Research and development that was being carried out on genetically modified crop varieties was concentrating on improving food security and therefore unlikely to have significant impact on EU markets and consumers. However, there is much non-controversial green biotechnology such as molecular diagnostics for plant and animal disease and marker-assisted selection for breeding that has great potential application. Regarding white biotechnology, it is currently occupying only a very small industrial niche in West Africa, basically in the sole sector of the production of liquid biofuels (i.e., bio-ethanol) from indigenous and locally planted biomass (very often non-food crops). The presence of diffused small-scale fish production is the basis to develop and apply new (Blue) aquaculture technologies and, where the research conditions and the production sector can permit, to increase this type of

  3. Journal of Northeast Agricultural University (English Edition) Instruction to Authors

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Aims and Scope Jo,rnal of Northeast Agricultural University (English Edition) is a comprehensive academic journal on agricultural sciences sponsored by Northeast Agricultural University and distributed worldwide. It is a peer reviewed journal published quarterly and mainly publishes review and research articles that reflect the latest achievements on crop science, horticulture, plant protection, resource and environment, animal science, veterinary medicine, agricultural engineering and technology, agricultural water conservancy. life science, biotechnology and food science.

  4. Applications of Protein Hydrolysates in Biotechnology

    Science.gov (United States)

    Pasupuleti, Vijai K.; Holmes, Chris; Demain, Arnold L.

    By definition, protein hydrolysates are the products that are obtained after the hydrolysis of proteins and this can be achieved by enzymes, acid or alkali. This broad definition encompasses all the products of protein hydrolysis - peptides, amino acids and minerals present in the protein and acid/alkali used to adjust pH (Pasupuleti 2006). Protein hydrolysates contain variable side chains depending on the enzymes used. These side chains could be carboxyl, amino, imidazole, sulfhydryl, etc. and they may exert specific physiological roles in animal, microbial, insect and plant cells. This introductory chapter reviews the applications of protein hydrolysates in biotechnology. The word biotechnology is so broad and for the purpose of this book, we define it as a set of technologies such as cell culture technology, bioprocessing technology that includes fermentations, genetic engineering technology, microbiology, and so on. This chapter provides introduction and leads to other chapters on manufacturing and applications of protein hydrolysates in biotechnology.

  5. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    Science.gov (United States)

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  6. Needed: models of biotechnology intellectual property.

    Science.gov (United States)

    Gold, E Richard; Castle, David; Cloutier, L Martin; Daar, Abdallah S; Smith, Pamela J

    2002-08-01

    Although never uncontroversial, intellectual property rights in biotechnological innovation are once more the focus of intense debate. The debate has yet to reach any result, largely because of several important errors in the way that various disciplines approach it. These errors include making assumptions without empirical basis and conflating various intellectual property regimes. What is needed is a transdisciplinary integrated method to correct these errors. Such a method can be implemented through the construction of alternative models of intellectual property protection designed to balance the various social, ethical and economic constraints that affect biotechnology.

  7. Biotechnological applications of extremophiles, extremozymes and extremolytes

    KAUST Repository

    Raddadi, Noura

    2015-08-14

    In the last decade, attention to extreme environments has increased because of interests to isolate previously unknown extremophilic microorganisms in pure culture and to profile their metabolites. Microorganisms that live in extreme environments produce extremozymes and extremolytes that have the potential to be valuable resources for the development of a bio-based economy through their application to white, red, and grey biotechnologies. Here, we provide an overview of extremophile ecology, and we review the most recent applications of microbial extremophiles and the extremozymes and extremolytes they produce to biotechnology.

  8. Wood production, wood technology, and biotechnological impacts.

    OpenAIRE

    2007-01-01

    In the year 2001, Prof. Dr. Ursula Kües was appointed at the Faculty of Forest Sciences and Forest Ecology of the Georg-August-University Göttingen to the chair Molecular Wood Biotechnology endowed by the Deutsche Bundesstiftung Umwelt (DBU). Her group studies higher fungi in basic and applied research. Research foci are on mushroom development and on fungal enzymes degrading wood and their applications in wood biotechnology. This book has been edited to thank the DBU for all support given to...

  9. Biotechnology and medicine of the future

    International Nuclear Information System (INIS)

    The practice of biology and medicine has been revolutionized during the past ten years by the advent of three biotechnologies-recombinant DNA techniques, the monoclonal antibody technology, and the development of microchemical instrumentation, machines that permit the rapid and effective synthesis and sequence analysis of proteins and genes. In this article, these powerful biotechnologies are discussed, with particular emphasis on microchemical instrumentation, a major focus of my efforts for the past 15 years. The author also discusses two fundamental problems in modern medicine that are being explored in the laboratory using these techniques-genetic engineering of the nervous system and the mapping and sequencing of the human genome

  10. Advances in optics for biotechnology, medicine and surgery

    OpenAIRE

    Fitzmaurice, Maryann; Pogue, Brian W.; Tearney, Guillermo J.; Tunnell, James W.; Yang, Changhuei

    2014-01-01

    The editors introduce the Biomedical Optics Express feature issue, “Advances in Optics for Biotechnology, Medicine and Surgery,” which includes 12 contributions from attendees of the 2011 conference Advances in Optics for Biotechnology, Medicine and Surgery XII.

  11. What Ideas Do Students Associate with "Biotechnology" and "Genetic Engineering"?

    Science.gov (United States)

    Hill, Ruaraidh; Stanisstreet, Martin; Boyes, Edward

    2000-01-01

    Explores the ideas that students aged 16-19 associate with the terms 'biotechnology' and 'genetic engineering'. Indicates that some students see biotechnology as risky whereas genetic engineering was described as ethically wrong. (Author/ASK)

  12. Biotechnology for site restoration: scope of the problem

    Energy Technology Data Exchange (ETDEWEB)

    Bitchaeva, O.

    1996-09-18

    The potential of modern biotechnology for solving problems related with the nuclear industry, especially site restoration, are investigated. The advantages of biotechnology, the current applications in Russia, main points of international collaboration, and political considerations are discussed.

  13. Improving Technology Perception through Information and Education: A case of Biotechnology in Nigeria

    Directory of Open Access Journals (Sweden)

    Adegbenga Emmanuel Adekoya

    2008-12-01

    Full Text Available A study was conducted in two states in Nigeria (Edo and Delta as part of the International Institute of Tropical Agriculture Activities in the Niger Delta area of the south-western agro-ecological zone part of Nigeria. A workshop was organized for the sole purpose of presenting information on biotechnology as a discipline and as a necessary technology that can be safely adopted by even peasant farmers. Several areas of biotechnology such as biosafety,ethics, environmental and health safety where the audience can participate and explore were presented by speakers. Ninety-five participants at the workshop formed the respondents for the study and a questionnaire was designed to elicit information on the participants’ awareness, knowledge, perception and attitude about biotechnology and its products, before and after the workshop. The results showed that the age of the respondents ranged from 19 to 56 years with a mean of 41 years. Results also showed that all the participants, apart from 14.8 percent, had educational qualification higher than secondary school. Majority (63 percent were civil servants including 30 percent from Ministry of Agriculture and 33 percent from Agricultural Research Institutes, 24 percent from the academia and others from private organisations. Through workshop as an education method, there was change in perception after training. Before the workshop 67.4 percent of the respondents said they would eat food made from genetically engineered crops however, at the end of the workshop 80 percent of the same group of respondents indicated they will eat food made from genetically engineered crops. Using a paired sample t-test statistics, the test of difference on disposition before and after the workshop gave a t-value of 4.569 which was significant at 0.05 level. The study concludes that information dissemination through training method such as workshop has contributed to change in perception of biotechnology in Nigeria.

  14. Improving Technology Perception through Information and Education: A case of Biotechnology in Nigeria

    Directory of Open Access Journals (Sweden)

    Adegbenga Emmanuel ADEKOYA

    2008-12-01

    Full Text Available A study was conducted in two states in Nigeria (Edo and Delta as part of the International Institute of Tropical Agriculture Activities in the Niger Delta area of the south-western agro-ecological zone part of Nigeria. A workshop was organized for the sole purpose of presenting information on biotechnology as a discipline and as a necessary technology that can be safely adopted by even peasant farmers. Several areas of biotechnology such as biosafety,ethics, environmental and health safety where the audience can participate and explore were presented by speakers. Ninety-five participants at the workshop formed the respondents for the study and a questionnaire was designed to elicit information on the participants’ awareness, knowledge, perception and attitude about biotechnology and its products, before and after the workshop. The results showed that the age of the respondents ranged from 19 to 56 years with a mean of 41 years. Results also showed that all the participants, apart from 14.8 percent, had educational qualification higher than secondary school. Majority (63 percent were civil servants including 30 percent from Ministry ofAgriculture and 33 percent from Agricultural Research Institutes, 24 percent from the academia and others from private organisations. Through workshop as an education method, there was change in perception after training. Before the workshop 67.4 percent of the respondents said they would eat food made from genetically engineered crops however, at the end of the workshop 80 percent of the same group of respondents indicated they will eat food made from genetically engineered crops. Using a paired sample t-test statistics, the test of difference on disposition before and after the workshop gave a t-value of 4.569 which was significant at 0.05 level. The study concludes that information dissemination through training method such as workshop has contributed to change in perception of biotechnology in Nigeria.

  15. Initiatives on a sustainable development strategy for Finnish biotechnology

    OpenAIRE

    Hermans, Raine; Kulvik, Martti

    2005-01-01

    The need for the strategic initiatives for biotechnology strategy emerged in interviews with 90 Finnish biotechnology leaders in the ETLA Biotechnology Survey, conducted at the end of 2004. This paper discusses on the policy implications for the project on “The biotechnology industry as a part of the Finnish National Innovation System” financed by Tekes, the National Technology Agency of Finland. Tekes has strongly encouraged the formation of policy implications and strategic initiatives for ...

  16. Strategies to enable the adoption of animal biotechnology to sustainably improve global food safety and security.

    Science.gov (United States)

    Tizard, Mark; Hallerman, Eric; Fahrenkrug, Scott; Newell-McGloughlin, Martina; Gibson, John; de Loos, Frans; Wagner, Stefan; Laible, Götz; Han, Jae Yong; D'Occhio, Michael; Kelly, Lisa; Lowenthal, John; Gobius, Kari; Silva, Primal; Cooper, Caitlin; Doran, Tim

    2016-10-01

    The ability to generate transgenic animals has existed for over 30 years, and from those early days many predicted that the technology would have beneficial applications in agriculture. Numerous transgenic agricultural animals now exist, however to date only one product from a transgenic animal has been approved for the food chain, due in part to cumbersome regulations. Recently, new techniques such as precision breeding have emerged, which enables the introduction of desired traits without the use of transgenes. The rapidly growing human population, environmental degradation, and concerns related to zoonotic and pandemic diseases have increased pressure on the animal agriculture sector to provide a safe, secure and sustainable food supply. There is a clear need to adopt transgenic technologies as well as new methods such as gene editing and precision breeding to meet these challenges and the rising demand for animal products. To achieve this goal, cooperation, education, and communication between multiple stakeholders-including scientists, industry, farmers, governments, trade organizations, NGOs and the public-is necessary. This report is the culmination of concepts first discussed at an OECD sponsored conference and aims to identify the main barriers to the adoption of animal biotechnology, tactics for navigating those barriers, strategies to improve public perception and trust, as well as industry engagement, and actions for governments and trade organizations including the OECD to harmonize regulations and trade agreements. Specifically, the report focuses on animal biotechnologies that are intended to improve breeding and genetics and currently are not routinely used in commercial animal agriculture. We put forward recommendations on how scientists, regulators, and trade organizations can work together to ensure that the potential benefits of animal biotechnology can be realized to meet the future needs of agriculture to feed the world. PMID:27246007

  17. Strategies to enable the adoption of animal biotechnology to sustainably improve global food safety and security.

    Science.gov (United States)

    Tizard, Mark; Hallerman, Eric; Fahrenkrug, Scott; Newell-McGloughlin, Martina; Gibson, John; de Loos, Frans; Wagner, Stefan; Laible, Götz; Han, Jae Yong; D'Occhio, Michael; Kelly, Lisa; Lowenthal, John; Gobius, Kari; Silva, Primal; Cooper, Caitlin; Doran, Tim

    2016-10-01

    The ability to generate transgenic animals has existed for over 30 years, and from those early days many predicted that the technology would have beneficial applications in agriculture. Numerous transgenic agricultural animals now exist, however to date only one product from a transgenic animal has been approved for the food chain, due in part to cumbersome regulations. Recently, new techniques such as precision breeding have emerged, which enables the introduction of desired traits without the use of transgenes. The rapidly growing human population, environmental degradation, and concerns related to zoonotic and pandemic diseases have increased pressure on the animal agriculture sector to provide a safe, secure and sustainable food supply. There is a clear need to adopt transgenic technologies as well as new methods such as gene editing and precision breeding to meet these challenges and the rising demand for animal products. To achieve this goal, cooperation, education, and communication between multiple stakeholders-including scientists, industry, farmers, governments, trade organizations, NGOs and the public-is necessary. This report is the culmination of concepts first discussed at an OECD sponsored conference and aims to identify the main barriers to the adoption of animal biotechnology, tactics for navigating those barriers, strategies to improve public perception and trust, as well as industry engagement, and actions for governments and trade organizations including the OECD to harmonize regulations and trade agreements. Specifically, the report focuses on animal biotechnologies that are intended to improve breeding and genetics and currently are not routinely used in commercial animal agriculture. We put forward recommendations on how scientists, regulators, and trade organizations can work together to ensure that the potential benefits of animal biotechnology can be realized to meet the future needs of agriculture to feed the world.

  18. Biotechnologizing Jatropha for local sustainable development

    NARCIS (Netherlands)

    Puente, D.

    2010-01-01

    This article explores whether and how the biotechnologization process that the fuel-plant Jatropha curcas is undergoing might strengthen local sustainable development. It focuses on the ongoing efforts of the multi-stakeholder network Gota Verde to harness Jatropha within local small-scale productio

  19. National strategy of safety of biotechnology

    International Nuclear Information System (INIS)

    This document was drafted in the frame of the sustainable development, the social fairness, the citizen participation; in Bolivia the management of the biotechnology and the security of the same one are identified for the first time to the actors involved in constituting in a document for the sustainable management of the conservation and sustainable use of the biodiversity in Bolivia

  20. Opportunities for energy conservation through biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.K.; Griffin, E.A.; Russell, J.A.

    1984-11-01

    The purpose of this study is to identify and quantify potential energy savings available through the development and application of biotechnologies. This information is required in support of ECUT research planning efforts as an aid in identifying promising areas needing further consideration and development. It is also intended as background information for a companion ECUT study being conducted by the National Academy of Science to evaluate the use of bioprocessing methods to conserve energy. Several studies have been conducted recently to assess the status and implications of the development of biotechnology. The Office of Technology Assessment (OTA) considered institutional, economic, and scientific problems and barriers. The National Science Foundation sponsored a study to examine regulatory needs for this new and expanding technology. Somewhat in contrast to these studies, this report covers principally the technical issues. It should be emphasized that the practicality of many developments in biotechnology is not evaluated solely on the basis of energy considerations. Bioprocesses must often compete with well-established coal, petroleum, and natural gas technologies. A complete evaluation of the technical, economical, and ecological impacts of the large-scale applications discussed in this report is not possible within the scope of this study. Instead, this report assesses the potential of biotechnology to save energy so that research into all aspects of implementation will be stimulated for those industries with significant energy savings potential. 92 references, 6 figures, 24 tables.

  1. Final report, International Symposium on Environmental Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Donald L.

    2000-03-20

    This meeting included technical presentations of state-of-the-art research which were integrated with tutorials and workshops by practicing technologies in the broad field of environmental biotechnology. This meeting was designed to be, in every respect, truly global. Over 150 excellent abstracts from around the world were accepted. For example, presentations were heard from technical workers in Southeast Asia, Russia, China, Europe, North Africa, India, and the US. By having these selected presenters, as well as identified experienced tutors with focused workshops, all participants benefited from this interactive symposium. A number of social events further promoted informal exchange of ideas, discussions of technical problems, and exploration of new applications. This international symposium on environmental biotechnology was on the campus of Northeastern University but all Boston area universities were included and participated using designed conference Co-Chairs. This symposium, with an attendance of several hundred people, was considered a major success. Workers with experience in one area of environmental biotechnology learned from the wealth of established backgrounds of those in other areas of environmental biotechnology. To formally disseminate conference results, it was pre-arranged that all technical presentations were reviewed for formal publications.

  2. Sugarcane Improvement Through Breeding and Biotechnology

    Science.gov (United States)

    The advancements in sugarcane breeding and the improvement of sugarcane through biotechnology have been reviewed by a team of leading sugarcane specialists from around the world. Topics covered in the breeding section include the evolution and origin of sugarcane, early history of conventional sugar...

  3. Novel gene expression tools for rice biotechnology

    Science.gov (United States)

    Biotechnology is an effective and important method of improving both quality and agronomic traits in rice. We are developing novel molecular tools for genetic engineering, with a focus on developing novel transgene expression control elements (i.e. promoters) for rice. A suite of monocot grass promo...

  4. Biotechnology Education in India: An Overview

    Science.gov (United States)

    Joshi, Kirti; Mehra, Kavita; Govil, Suman; Singh, Nitu

    2013-01-01

    Among the developing countries, India is one of those that recognises the importance of biotechnology. The trajectory of different policies being formulated over time is proof that the government is progressing towards achieving self-sufficiency. However, to cater to the ever-growing biotech industry, skilled manpower is required. This article…

  5. [The new Colombian criminal code and biotechnology].

    Science.gov (United States)

    González de Cancino, Emilssen

    2002-01-01

    The author describes the process by which new offenses concerning biotechnology have been included in Colombia's Penal Code and discusses some of the more controversial aspects involved. She examines the various stages of the passage of the Bill through Parliament and the modifications undergone. She also provides well-argued criticism of the text, with appropriate reference to Constitutional provisions regarding the rights concerned.

  6. Public Germplasm Collections and Revolutions in Biotechnology

    Science.gov (United States)

    Public germplasm collections provided the biological material critical for launching the three most important revolutions in modern biotechnology: (i) An isolate of Penicillium chrysogenum, NRRL 1951, the basis for industrial production of penicillan, originated from the ARS Culture Collection in Pe...

  7. Personality and Impersonality in Biotechnology Discourse

    DEFF Research Database (Denmark)

    Lassen, Inger

    2006-01-01

    With the emergence of biotechnology, the field account has been replaced by something that we may refer to as a laboratory account - a kind of narrative that constitutes the Materials and Methods section of the IMRD model (introduction, methods, results and discussion). Research focusing on field...

  8. The Brave New World of Biotechnology

    Science.gov (United States)

    Reese, Susan

    2004-01-01

    Is it the science that will save the world from starvation, or will it mean the end of the world as it is known? While some people fear genetically altered "Frankenfoods" and DNA experiments with pathogenic microorganisms that could result in worldwide epidemics, others view biotechnology as using biological organisms to make products that benefit…

  9. Biotechnology System Facility: Risk Mitigation on Mir

    Science.gov (United States)

    Gonda, Steve R., III; Galloway, Steve R.

    2003-01-01

    NASA is working with its international partners to develop space vehicles and facilities that will give researchers the opportunity to conduct scientific investigations in space. As part of this activity, NASA's Biotechnology Cell Science Program (BCSP) at the Johnson Space Center (JSC) is developing a world-class biotechnology laboratory facility for the International Space Station (ISS). This report describes the BCSP, including the role of the BTS. We identify the purpose and objectives of the BTS and a detailed description of BTS facility design and operational concept, BTS facility and experiment-specific hardware, and scientific investigations conducted in the facility. We identify the objectives, methods, and results of risk mitigation investigations of the effects of microgravity and cosmic radiation on the BTS data acquisition and control system. These results may apply to many other space experiments that use commercial, terrestrial-based data acquisition technology. Another focal point is a description of the end-to-end process of integrating and operating biotechnology experiments on a variety of space vehicles. The identification of lessons learned that can be applied to future biotechnology experiments is an overall theme of the report. We include a brief summary of the science results, but this is not the focus of the report. The report provides some discussion on the successful 130-day tissue engineering experiment performed in BTS on Mir and describes a seminal gene array investigation that identified a set of unique genes that are activated in space.

  10. High School Students' Knowledge and Attitudes regarding Biotechnology Applications

    Science.gov (United States)

    Ozel, Murat; Erdogan, Mehmet; Usak, Muhammet; Prokop, Pavol

    2009-01-01

    The purpose of this study was to investigate high school students' knowledge and attitudes regarding biotechnology and its various applications. In addition, whether students' knowledge and attitudes differed according to age and gender were also explored. The Biotechnology Knowledge Questionnaire (BKQ) with 16 items and the Biotechnology Attitude…

  11. Agricultural Production.

    Science.gov (United States)

    Lehigh County Area Vocational-Technical School, Schnecksville, PA.

    This brochure describes the philosophy and scope of a secondary-level course in agricultural production. Addressed in the individual units of the course are the following topics: careers in agriculture and agribusiness, animal science and livestock production, agronomy, agricultural mechanics, supervised occupational experience programs, and the…

  12. Plant synthetic biology: a new platform for industrial biotechnology.

    Science.gov (United States)

    Fesenko, Elena; Edwards, Robert

    2014-05-01

    Thirty years after the production of the first generation of genetically modified plants we are now set to move into a new era of recombinant crop technology through the application of synthetic biology to engineer new and complex input and output traits. The use of synthetic biology technologies will represent more than incremental additions of transgenes, but rather the directed design of completely new metabolic pathways, physiological traits, and developmental control strategies. The need to enhance our ability to improve crops through new engineering capability is now increasingly pressing as we turn to plants not just for food, but as a source of renewable feedstocks for industry. These accelerating and diversifying demands for new output traits coincide with a need to reduce inputs and improve agricultural sustainability. Faced with such challenges, existing technologies will need to be supplemented with new and far-more-directed approaches to turn valuable resources more efficiently into usable agricultural products. While these objectives are challenging enough, the use of synthetic biology in crop improvement will face public acceptance issues as a legacy of genetically modified technologies in many countries. Here we review some of the potential benefits of adopting synthetic biology approaches in improving plant input and output traits for their use as industrial chemical feedstocks, as linked to the rapidly developing biorefining industry. Several promising technologies and biotechnological targets are identified along with some of the key regulatory and societal challenges in the safe and acceptable introduction of such technology.

  13. Plant synthetic biology: a new platform for industrial biotechnology.

    Science.gov (United States)

    Fesenko, Elena; Edwards, Robert

    2014-05-01

    Thirty years after the production of the first generation of genetically modified plants we are now set to move into a new era of recombinant crop technology through the application of synthetic biology to engineer new and complex input and output traits. The use of synthetic biology technologies will represent more than incremental additions of transgenes, but rather the directed design of completely new metabolic pathways, physiological traits, and developmental control strategies. The need to enhance our ability to improve crops through new engineering capability is now increasingly pressing as we turn to plants not just for food, but as a source of renewable feedstocks for industry. These accelerating and diversifying demands for new output traits coincide with a need to reduce inputs and improve agricultural sustainability. Faced with such challenges, existing technologies will need to be supplemented with new and far-more-directed approaches to turn valuable resources more efficiently into usable agricultural products. While these objectives are challenging enough, the use of synthetic biology in crop improvement will face public acceptance issues as a legacy of genetically modified technologies in many countries. Here we review some of the potential benefits of adopting synthetic biology approaches in improving plant input and output traits for their use as industrial chemical feedstocks, as linked to the rapidly developing biorefining industry. Several promising technologies and biotechnological targets are identified along with some of the key regulatory and societal challenges in the safe and acceptable introduction of such technology. PMID:24638901

  14. Agricultural Waste.

    Science.gov (United States)

    Xue, Ling; Zhang, Panpan; Shu, Huajie; Chang, Chein-Chi; Wang, Renqing; Zhang, Shuping

    2016-10-01

    In recent years, the quantity of agricultural waste has been rising rapidly all over the world. As a result, the environmental problems and negative impacts of agricultural waste are drawn more and more attention. Therefore, there is a need to adopt proper approaches to reduce and reuse agricultural waste. This review presented about 200 literatures published in 2015 relating to the topic of agricultural waste. The review examined research on agricultural waste in 2015 from the following four aspects: the characterization, reuse, treatment, and management. Researchers highlighted the importance to reuse agricultural waste and investigated the potential to utilize it as biofertilizers, cultivation material, soil amendments, adsorbent, material, energy recycling, enzyme and catalyst etc. The treatment of agricultural waste included carbonization, biodegradation, composting hydrolysis and pyrolysis. Moreover, this review analyzed the differences of the research progress in 2015 from 2014. It may help to reveal the new findings and new trends in this field in 2015 comparing to 2014. PMID:27620093

  15. Can plant biotechnology help break the HIV-malaria link?

    Science.gov (United States)

    Vamvaka, E; Twyman, R M; Christou, P; Capell, T

    2014-01-01

    The population of sub-Saharan Africa is at risk from multiple, poverty-related endemic diseases. HIV and malaria are the most prevalent, but they disproportionately affect different groups of people, i.e. HIV predominantly affects sexually-active adults whereas malaria has a greater impact on children and pregnant women. Nevertheless, there is a significant geographical and epidemiological overlap which results in bidirectional and synergistic interactions with important consequences for public health. The immunosuppressive effects of HIV increase the risk of infection when individuals are exposed to malaria parasites and also the severity of malaria symptoms. Similarly, acute malaria can induce a temporary increase in the HIV viral load. HIV is associated with a wide range of opportunistic infections that can be misdiagnosed as malaria, resulting in the wasteful misuse of antimalarial drugs and a failure to address the genuine cause of the disease. There is also a cumulative risk of toxicity when antiretroviral and antimalarial drugs are given to the same patients. Synergistic approaches involving the control of malaria as a strategy to fight HIV/AIDS and vice versa are therefore needed in co-endemic areas. Plant biotechnology has emerged as a promising approach to tackle poverty-related diseases because plant-derived drugs and vaccines can be produced inexpensively in developing countries and may be distributed using agricultural infrastructure without the need for a cold chain. Here we explore some of the potential contributions of plant biotechnology and its integration into broader multidisciplinary public health programs to combat the two diseases in developing countries. PMID:24607600

  16. Beyond Conservation Agriculture

    Directory of Open Access Journals (Sweden)

    Ken E Giller

    2015-10-01

    Full Text Available Global support for Conservation Agriculture (CA as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance, soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals and biotechnology. Over the past ten years CA has been promoted among smallholder farmers in the (sub- tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture.

  17. Beyond conservation agriculture

    Science.gov (United States)

    Giller, Ken E.; Andersson, Jens A.; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard

    2015-01-01

    Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture. PMID:26579139

  18. Identification of Chromobacterium violaceum genes with potential biotechnological application in environmental detoxification.

    Science.gov (United States)

    Carepo, Marta S P; Azevedo, Juliana S Nina de; Porto, Jorge I R; Bentes-Sousa, Alexandra R; Batista, Jacqueline da Silva; Silva, Artur L C da; Schneider, Maria P C

    2004-01-01

    Chromobacterium violaceum is a Gram-negative bacterium found in a wide variety of tropical and subtropical ecosystems. The complete genome sequence of C. violaceum ATCC 12472 is now available, and it has considerable biotechnological potential for various applications, such as environmental detoxification, as well as medical and agricultural use. We examined the biotechnological potential of C. violaceum for environmental detoxification. Three operons, comprising the ars operon, involved in arsenic resistance, the cyn operon, involved in cyanate detoxification, and the hcn operon, encoding a cyanase, responsible for biogenic production of cyanide, as well as an open reading frame, encoding an acid dehalogenase, were analyzed in detail. Probable catalytic mechanisms for the enzymes were determined, based on amino acid sequence comparisons and on published structural information for these types of proteins.

  19. Applications for biotechnology: present and future improvements in lactic acid bacteria.

    Science.gov (United States)

    McKay, L L; Baldwin, K A

    1990-09-01

    The lactic acid bacteria are involved in the manufacture of fermented foods from raw agricultural materials such as milk, meat, vegetables, and cereals. These fermented foods are a significant part of the food processing industry and are often prepared using selected strains that have the ability to produce desired products or changes efficiently. The application of genetic engineering technology to improve existing strains or develop novel strains for these fermentations is an active research area world-wide. As knowledge about the genetics and physiology of lactic acid bacteria accumulates, it becomes possible to genetically construct strains with characteristics shaped for specific purposes. Examples of present and future applications of biotechnology to lactic acid bacteria to improve product quality are described. Studies of the basic biology of these bacteria are being actively conducted and must be continued, in order for the food fermentation industry to reap the benefits of biotechnology.

  20. Biothechnology conferences held in Cuba. Cuba no biotechnology gakkai ni sankashite

    Energy Technology Data Exchange (ETDEWEB)

    Murata, M. (Ajinomoto Co. Inc., Tokyo, (Japan))

    1990-04-25

    Three biotechnology conferences including Cuba International Interferon Conference were held at Havana in April 1989, and the author participated in them. The number of participants was about 3,000. Most of them were from the Middle and the Central America, but there were also those from Europe, the USSR and the USA. The three conferences were composed of 16 symposiums and they covered a wide range of field such as medical science, agriculture and industry. High leveled reports were read in the conferences: on the application of interferons to medical treatments, curing effects of infections caused by herpes virus and B type hepatitis virus, anti-tumor effects, and anti-virus effects against AIDS virus; on the production of protein and vaccini by gene engineering, large quantity production of interleukin and epithelium cell multiplication genes. Especially impressing were the efforts the whole nation of Cuba makes to promote biotechnology and its modern facilities. 3 figs.

  1. Transgenic agriculture and environmental indicators

    Directory of Open Access Journals (Sweden)

    Denize Dias de Carvalho

    2006-12-01

    Full Text Available Despite the rapid diffusion of transgenic crops, there are still few environmental impact studies capable of supplying a conclusive scientific response in regard to its technical and economic advantages and disadvantages. Prospective scenarios were elaborated to assist environmental impact assessment, using techniques derived from SWOT (Strength, Weakness, Opportunity, Threat analysis and the DPSIR (Driving Force – human activity, Pressure, State, Impact, Response model, to evaluate the environmental indicators and the relationship between them. Control and management actions were identified, searching the integration of aspects related to the biotechnology applied to transgenic processes, biodiversity, biosafety and intellectual property. It was demonstrated that the DPSIR model is, in fact, an instrument for integrated environmental assessment and the application of the proposed methodology resulted in favorable indicators to the adoption of transgenic agriculture. The elaborated scenarios are useful to develop an Environmental Management System (EMS to agriculture.

  2. Biotechnology and DNA vaccines for aquatic animals

    Science.gov (United States)

    Kurath, G.

    2008-01-01

    Biotechnology has been used extensively in the development of vaccines for aquaculture. Modern molecular methods such as polymerase chain reaction (PCR), cloning and microarray analysis have facilitated antigen discovery, construction of novel candidate vaccines, and assessments of vaccine efficacy, mode of action, and host response. This review focuses on DNA vaccines for finfish to illustrate biotechnology applications in this field. Although DNA vaccines for fish rhabdoviruses continue to show the highest efficacy, DNA vaccines for several other viral and bacterial fish pathogens have now been proven to provide significant protection against pathogen challenge. Studies of the fish rhabdovirus DNA vaccines have elucidated factors that affect DNA vaccine efficacy as well as the nature of the fish innate and adaptive immune responses to DNA vaccines. As tools for managing aquatic animal disease emergencies, DNA vaccines have advantages in speed, flexibility, and safety, and one fish DNA vaccine has been licensed.

  3. Biotechnology/materials: The growing interface

    Science.gov (United States)

    Decker, Raymond F.

    1986-01-01

    The biotechnology/materials interaction dates back 3.5 billion years, yet today offers novel challenges for human creativity. The materials cycle practiced by microorganisms is compared to that recently practiced by humans. The processes of the biotechnology materials cycle are biogenesis, bioleaching, biofouling, biocorrosion, biodeterioration, and bioaccumulation. Each process is examined for mechanisms, scale of effect, and opportunity for creative human intervention or utilization. More than 50 of our metallic elements are bio-processed in nature. A like number of biogenic materials have been identified, with some at production rates of trillions of kg per annum (p.a.). Microorganisms can substitute for energy, capital, and labor. Over the eons, microorganisms have gained special attributes that now offer creative humans a new era of partnership in materials processing.

  4. The Nose Knows: Biotechnological Production of Vanillin

    OpenAIRE

    Winter, Remko T.; van Beek, Hugo L.; Fraaije, Marco W.

    2012-01-01

    Vanillin, the compound responsible for the well-known vanilla aroma, is almost exclusively produced via a chemical process, with only a small fraction extracted from natural sources, namely, the bean of the orchid Vanilla planifolia. Research is being done towards a green chemistry process to obtain natural vanillin. A model biotechnological process is described that exposes students to the essentials of a greener, chemoenzymatic synthesis of vanillin in a multiday laboratory experiment. Bact...

  5. Novel oscillatory flow reactors for biotechnological applications

    OpenAIRE

    Reis, N.

    2006-01-01

    Tese de Doutoramento em Engenharia Química e Biológica This thesis explores the biotechnological applications of two novel scale-down oscillatory flow reactors (OFRs). A micro-bioreactor (working mostly in batch) and a continuous meso-reactor systems were developed based on a 4.4 mm internal diameter tube with smooth periodic constrictions (SPC), both operating under oscillatory flow mixing (OFM). The first part is dedicated to the flow characterisation in the novel SPC geom...

  6. Biotechnology for Chemical Production: Challenges and Opportunities.

    Science.gov (United States)

    Burk, Mark J; Van Dien, Stephen

    2016-03-01

    Biotechnology offers a new sustainable approach to manufacturing chemicals, enabling the replacement of petroleum-based raw materials with renewable biobased feedstocks, thereby reducing greenhouse gas (GHG) emissions, toxic byproducts, and the safety risks associated with traditional petrochemical processing. Development of such bioprocesses is enabled by recent advances in genomics, molecular biology, and systems biology, and will continue to accelerate as access to these tools becomes faster and cheaper.

  7. Biotechnology for Chemical Production: Challenges and Opportunities.

    Science.gov (United States)

    Burk, Mark J; Van Dien, Stephen

    2016-03-01

    Biotechnology offers a new sustainable approach to manufacturing chemicals, enabling the replacement of petroleum-based raw materials with renewable biobased feedstocks, thereby reducing greenhouse gas (GHG) emissions, toxic byproducts, and the safety risks associated with traditional petrochemical processing. Development of such bioprocesses is enabled by recent advances in genomics, molecular biology, and systems biology, and will continue to accelerate as access to these tools becomes faster and cheaper. PMID:26683567

  8. Reproductive biotechnologies in Swedish male alpacas

    OpenAIRE

    Abraham, Maria Celina

    2016-01-01

    Alpacas have become more popular during the last decades. The herds have been built up by importing live animals since reproductive biotechnologies, for example artificial insemination and semen preservation, are not well-developed in this species. A major problem is the viscosity of the seminal plasma which hinders processing or evaluation of the semen. Enzymes have been used to deal with the viscous seminal plasma but they may damage spermatozoa or render them incapable of fertilization. Th...

  9. New challenges and opportunities for industrial biotechnology

    OpenAIRE

    Chen Guo-Qiang

    2012-01-01

    Abstract Industrial biotechnology has not developed as fast as expected due to some challenges including the emergences of alternative energy sources, especially shale gas, natural gas hydrate (or gas hydrate) and sand oil et al. The weaknesses of microbial or enzymatic processes compared with the chemical processing also make industrial biotech products less competitive with the chemical ones. However, many opportunities are still there if industrial biotech processes can be as similar as th...

  10. Electrodes and Electrokinetic Systems for Biotechnological Applications

    OpenAIRE

    Nilsson, Sara

    2015-01-01

    Research in bioelectronics studies biological systems and materials in combination with electronic interfaces for the development of devices, e.g., for medical applications, drug and toxicity tests, and biotechnology in general. Neural implants and pacemakers are examples of products developed from this area of research. Conducting polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) bridge biology and electronics with a combination of biocompatibility, flexibility, and capability to the...

  11. Microencapsulation in food science and biotechnology.

    Science.gov (United States)

    Nazzaro, Filomena; Orlando, Pierangelo; Fratianni, Florinda; Coppola, Raffaele

    2012-04-01

    Microencapsulation can represent an excellent example of microtechnologies applied to food science and biotechnology. Microencapsulation can be successfully applied to entrap natural compounds, like essential oils or vegetal extracts containing polyphenols with well known antimicrobial properties to be used in food packaging. Microencapsulation preserves lactic acid bacteria, both starters and probiotics, in food and during the passage through the gastrointestinal tract, and may contribute to the development of new functional foods.

  12. Status of coal biotechnology in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    M. Afzal Ghauri; M.A. Anwar; N. Akhtar; R. Haider; A. Tawab [National Institute for Biotechnology and Genetic Engineering, Faisalabad (Pakistan)

    2009-07-01

    Pakistan is endued with 185 billion tons colossal reserves of coal, but only 7.89 % of the country total energy requirements are met by coal. Most of the Pakistani coal reserves are sub-bituminous or lignitic in nature and contain 3-12 % sulphur. Existence of sulphur compounds in coal limits its industrial application due to environmental as well as technical problems. However, coal biotechnology can emerge as panacea for upgrading the huge reserves of coal in Pakistan. In general, coal biotechnology refers to biodesulphurization, biosolubilization and biogasification of coal. NIBGE has long term interests in the field of coal bioprocessing for tapping prime resources of indigenous coal. In NIBGE, lab scale experiments for coal biodesulphurization led to 90% efficiency in sulphur removal. Heap leaching was also carried out at the level of 10 and 20 tons coal heaps with 60% sulphur removal efficiency. Furthermore, a prototype of 300 tons coal heap was set up with a local cement industry and 75% microbial desulphurization was achieved. The league of indigenously isolated chemolithotrophic bacteria was involved in coal desulphurization. On the other side, for making the best use of 175 billion tons of low rank coal reserves, coal biosolubilization and subsequent biogasification is being projected. Consequently, beneficiated coal through biotechnology is supposed to contribute in energy mix of Pakistan for providing electricity requirements of the country and saving huge oil import bills.

  13. Methods in industrial biotechnology for chemical engineers

    CERN Document Server

    Kandasamy, W B Vasantha

    2008-01-01

    In keeping with the definition that biotechnology is really no more than a name given to a set of techniques and processes, the authors apply some set of fuzzy techniques to chemical industry problems such as finding the proper proportion of raw mix to control pollution, to study flow rates, to find out the better quality of products. We use fuzzy control theory, fuzzy neural networks, fuzzy relational equations, genetic algorithms to these problems for solutions. When the solution to the problem can have certain concepts or attributes as indeterminate, the only model that can tackle such a situation is the neutrosophic model. The authors have also used these models in this book to study the use of biotechnology in chemical industries. This book has six chapters. First chapter gives a brief description of biotechnology. Second chapter deals will proper proportion of mix of raw materials in cement industries to minimize pollution using fuzzy control theory. Chapter three gives the method of determination of te...

  14. Biotechnology for uranium extraction and environmental control

    International Nuclear Information System (INIS)

    India is looking forward to augmenting mining and extraction of uranium mineral for its nuclear energy needs. Being a radio-active mineral, mining and processing of uranium ore deposits need be carried out in an environmentally acceptable fashion. In this respect, a biotechnological approach holds great promise since it is environment-friendly, cost-effective and energy-efficient. There are several types of microorganisms which inhabit uranium ore bodies and biogenesis plays an important role in the mineralisation and transport of uranium-bearing minerals under the earth's crust. Uranium occurrences in India are only meagre and it becomes essential to tap effectively all the available resources. Uraninite and pitchblende occurring along with sulfide mineralisation such as pyrite are ideal candidates for bioleaching. Acidithiobacillus ferrooxidans present ubiquitously in the ore deposits can be isolated, cultured and utilised to bring about efficient acidic dissolution of uranium. Many such commercial attempts to extract uranium from even lean ores using acidophilic autotrophic bacteria have been made in different parts of the world. Anaerobes such a Geobacter and Sulfate Reducing Bacteria (SRB) can be effectively used in uranium mining for environmental control. Radioactive uranium mined wastes and tailing dumps can be cleaned and protected using microorganisms. In this lecture use of biotechnology in uranium extraction and bioremediation is illustrated with practical examples. Applicability of environment-friendly biotechnology for mining and extraction of uranium from Indian deposits is outlined. Commercial potentials for bioremediation in uranium-containing wastes are emphasised. (author)

  15. New biotechnological procedures in swine reproduction

    Directory of Open Access Journals (Sweden)

    Petrujkić Tihomir

    2002-01-01

    Full Text Available New biotechnological procedures and the use of hormones in swine breeding are aimed at increasing the number of piglets in the litter. In small herds and groups, selected sows with 16 mammary complexes (tits can yield up to 32 piglets, or porkers, per year per sow. In order to achieve such reproduction results, special, individual stalls for sow deliveries are used, in addition to biotechnological methods, with a warm core and floor heating, phased diet and clean facilities. The ovulation value in swine is determined by their genetic and paragenetic effects, and it is often provoked and increased with injections and preparations for superovulation. However, the results vary, since any administration of hormone injecions can reduce the reproductive cycle, shorten the duration of estrus, or disrupt the work of ovaries and create cystic follicles. The use of follicle-stimulating hormones in quantities up to 1000 IU per animal for the induction and synchronization of estrus has become customary for sows and gilts, as well as the use of prostaglandins, the use of GnRH for increasing ovulation in swine and increasing the number of follicles >4 mm in diameter in the implementation of new biotechnologies in swine breeding, increases the number of ovulations and fertility in swine. In this way, reproduction is raised to the highest possible level, and artificial insemination of sows has 12 separate rules which enable better and more successful artificial insemination of sows.

  16. International Marine Biotechnology Culture Collection (IMBCC)

    Energy Technology Data Exchange (ETDEWEB)

    Zaborsky, O.R.; Baker, K. [Univ. of Hawaii at Manoa, Honolulu, HI (United States)

    1996-10-01

    The objective of this project is to establish a premier culture collection of tropical marine microorganisms able to generate hydrogen from water or organic substances. Both eukaryotic and prokaryotic microorganisms will serve as the biological reservoir or {open_quotes}library{close_quotes} for other DOE Hydrogen Program contractors, the biohydrogen research community and industry. This project consists of several tasks: (a) transfer of the Mitsui-Miami strains to Hawaii`s International Marine Biotechnology Culture Collection (IMBCC) housed at the Hawaii Natural Energy Institute (HNEI); (b) maintain and distribute Mitsui-Miami strains; (c) characterize key strains by traditional and advanced biotechnological techniques; (d) expand Hawaii`s IMBCC; and (e) establish and operate an information resource (database). The project was initiated only late in the summer of 1995 but progress has been made on all tasks. Of the 161 cyanobacterial strains imported, 147 survived storage and importation and 145 are viable. with most exhibiting growth. Of the 406 strains of other photosynthetic bacteria imported, 392 survived storage and importation and 353 are viable, with many exhibiting growth. This project is linked to cooperative efforts being supported by the Japanese Ministry of International Trade and Industry (MITI) through its Marine Biotechnology Institute (MBI) and Research Institute of Innovative Technology for the Earth (RITE).

  17. ISS Biotechnology Facility - Overview of Analytical Tools for Cellular Biotechnology Investigations

    Science.gov (United States)

    Jeevarajan, A. S.; Towe, B. C.; Anderson, M. M.; Gonda, S. R.; Pellis, N. R.

    2001-01-01

    The ISS Biotechnology Facility (BTF) platform provides scientists with a unique opportunity to carry out diverse experiments in a microgravity environment for an extended period of time. Although considerable progress has been made in preserving cells on the ISS for long periods of time for later return to Earth, future biotechnology experiments would desirably monitor, process, and analyze cells in a timely way on-orbit. One aspect of our work has been directed towards developing biochemical sensors for pH, glucose, oxygen, and carbon dioxide for perfused bioreactor system developed at Johnson Space Center. Another aspect is the examination and identification of new and advanced commercial biotechnologies that may have applications to on-orbit experiments.

  18. Technical Update for Vocational Agriculture Teachers in Secondary Schools. Final Report.

    Science.gov (United States)

    Iowa State Univ. of Science and Technology, Ames. Dept. of Agricultural Education.

    A project provided ongoing opportunities for teachers in Iowa to upgrade their expertise in agribusiness management using new technology; production, processing, and marketing agricultural products; biotechnology in agriculture; and conservation of natural resources. The project also modeled effective teaching methods and strategies. Project…

  19. Nuclear techniques in agriculture

    International Nuclear Information System (INIS)

    Crops provide us food grains and many other products. Demand for food and other agricultural products is increasing. There is also need for improvement of quality of the agricultural produce. There are several technologies in use for achieving the goal of increasing the quantity and quality of agricultural produce. Nuclear techniques provide us with an option which has certain advantages. The characteristics of crop plants are determined by the genetic make up of the plant. Traditionally the genetic make up was modified using conventional breeding techniques such as cross breeding to improve crops for yield, disease resistance, stress tolerance, resistance to insect pests or to improve quality. New varieties of crops are produced which replace the earlier ones and thus the demands are met. The process of development of new varieties is long and time consuming. Nuclear technique called mutation breeding provides an efficient way of breeding new varieties or improving the older ones. This technique merely enhances the process of occurrence of mutations. In nature mutations occur at a rate of approximately one in a million, while when mutations are induced using radiations such as gamma rays the efficiency of inducing mutations is enhanced. Useful mutations are selected, the mutants are evaluated and developed as a new variety. In the Nuclear Agriculture and Biotechnology Division (NA and BTD) this technique has been used to develop mutants of many crop plants. The mutants can be used to develop a variety directly or by using it in further breeding programme. Using these approaches the NA and BTD has developed 40 new varieties of crops such as groundnut, mungbean, urid, pigeon pea, mustard, soybean, sunflower, cowpea, jute. These varieties are developed in collaboration with other agricultural institutions and are popular among the farming community. The method of mutation breeding can be applied to many other crops for improvement. There is increasing interest among

  20. New developments in crop plant biotechnology and their possible implications for food product safety : literature study under commission of the foundation 'Consument and biotechnologie'

    NARCIS (Netherlands)

    Kleter, G.A.

    2000-01-01

    This study reports recent developments in the application of biotechnology in agriculture in order to assess whether current food safety evaluations strategies are adequate in view of these new and presumably more far reaching developments. Trends are observed that may require additional regulatory

  1. The Carolina conference on marine biotechnology: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Frankenberg, D.

    1985-01-01

    This report summarizes proceedings of a Carolina Conference on Marine Biotechnology held March 24-26, 1985, at the University of North Carolina at Chapel Hill. This report consists of the responders' summary of each topic discussed. The topics presented were General Prospects for Marine Biotechnology, Bioactive Substances from Marine Organisms, Fundamental Processes in Marine Organisms as Guides for Biotechnology Development, Genetic Manipulation of Potential Use to Mariculture, Organisms Interactions with Marine Surfaces: Marine Glues, and Biomolecular Engineering Materials Applications.

  2. The science communication environment: biotechnology researchers' discourse on communication

    OpenAIRE

    Merton, Eve

    2009-01-01

    Communication is problematic for biotechnology because biotechnology uses or changes life processes, which leads us to question ourselves and our definitions of life — it is controversial. Yet, communication is crucial for engagement and understanding among research scientists and the wider community. This thesis examined the communication beliefs, attitudes and practices of researchers at the National Institute for Cellular Biotechnology (NICB) in Ireland, using semi- structured, face-to...

  3. UNCOVERING FACTORS INFLUENCING PUBLIC PERCEPTIONS OF FOOD BIOTECHNOLOGY

    OpenAIRE

    Hossain, Ferdaus; Onyango, Benjamin M.; Adelaja, Adesoji O.; Schilling, Brian J.; Hallman, William K.

    2002-01-01

    Significant divergence exists in public opinions about biotechnology. Although there is broad support for plant biotechnology for health benefits, opinions differ on the issue of animal genetics for pure economic benefits. While some are opposed to it, many are undecided about genetically modified foods. Considerable skepticism exists about scientists, corporations and government which have negative influence on public acceptance of food biotechnology. Consumers' personal attributes have sign...

  4. PUBLIC PERCEPTIONS OF BIOTECHNOLOGY AND ACCEPTANCE OF GENETICALLY MODIFIED FOOD

    OpenAIRE

    Hossain, Ferdaus; Onyango, Benjamin M.; Schilling, Brian J.; Hallman, William K.

    2003-01-01

    Public debate on biotechnology is embroiled in controversy over the risks and benefits associated with this emerging technology. Using data from a national survey, this study analyzes public acceptance of biotechnology in food production. Empirical results suggest that while there is general optimism about biotechnology and support for its use in plants, public approval of its use in animals is perhaps more limited. Younger and more-educated individuals are generally more supportive of biotec...

  5. PUBLIC PERCEPTIONS OF BIOTECHNOLOGY AND ACCEPTANCE OF GENETICALLY MODIFIED FOOD

    OpenAIRE

    Hossain, Ferdaus; Onyango, Benjamin M.; Adelaja, Adesoji O.; Schilling, Brian J.; Hallman, William K.

    2002-01-01

    Public debate on biotechnology is embroiled in controversy over the risks and benefits associated with this emerging technology. Using data from a national survey, this study analyzes public acceptance of biotechnology in food production. Empirical results suggest that while there is general optimism about biotechnology, and support for its use in plants, public approval of its use in animals is perhaps more limited. Younger and more educated individuals are generally more supportive of biote...

  6. Advancement of Marketing Developing Biotechnology-Based Business

    OpenAIRE

    Vaidas Vilmantas; Borisas Melnikas

    2014-01-01

    The article, in a complex way, analyzes the needs of marketing improvement in developing biotechnology­based business and highlights its role in the context of modern society and globalization challenges. The article distinguishes between the existing problems of biotechnology business, the present perspectives and specific characteristics of developing the marketing of biotechnological business. The paper represents the possibility of the substantial modernization of marketing tools with reg...

  7. Progress and Challenges for Implementation of the Common Market for Eastern and Southern Africa Policy on Biotechnology and Biosafety

    OpenAIRE

    Waithaka, Michael; Belay, Getachew; Kyotalimye, Miriam; Karembu, Margaret

    2015-01-01

    In 2001, the Meeting of the COMESA Ministers of Agriculture raised concerns that proliferation of genetically modified organisms (GMOs) could impact significantly on trade and food security in the region. This triggered studies on a regional approach to biotechnology and biosafety policy in Eastern and Southern Africa. The studies and stakeholder consultations revealed that farm incomes would increase if they switched from conventional varieties of cotton and maize to genetically modified (GM...

  8. The Economics of Biotechnology (Gmos) and the Need for A Regional Policy: The Case for COMESA Countries

    OpenAIRE

    Minde, Isaac J.; Kizito, Mazvimavi

    2008-01-01

    Many countries in the world have adopted genetically modified organisms as products that can have great beneficial impact on agriculture, industry and trade. However, to date for the whole of Africa, only South Africa has commercialized genetically modified organisms (GMOs). Realizing the high transactions costs—particularly in trade that may underlie different countries having varying policy stances on biotechnology, COMESA (COMESA—Common Market for Eastern and Southern Africa, is a regional...

  9. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58.

    Science.gov (United States)

    Goodner, B; Hinkle, G; Gattung, S; Miller, N; Blanchard, M; Qurollo, B; Goldman, B S; Cao, Y; Askenazi, M; Halling, C; Mullin, L; Houmiel, K; Gordon, J; Vaudin, M; Iartchouk, O; Epp, A; Liu, F; Wollam, C; Allinger, M; Doughty, D; Scott, C; Lappas, C; Markelz, B; Flanagan, C; Crowell, C; Gurson, J; Lomo, C; Sear, C; Strub, G; Cielo, C; Slater, S

    2001-12-14

    Agrobacterium tumefaciens is a plant pathogen capable of transferring a defined segment of DNA to a host plant, generating a gall tumor. Replacing the transferred tumor-inducing genes with exogenous DNA allows the introduction of any desired gene into the plant. Thus, A. tumefaciens has been critical for the development of modern plant genetics and agricultural biotechnology. Here we describe the genome of A. tumefaciens strain C58, which has an unusual structure consisting of one circular and one linear chromosome. We discuss genome architecture and evolution and additional genes potentially involved in virulence and metabolic parasitism of host plants.

  10. [Trends of microalgal biotechnology: a view from bibliometrics].

    Science.gov (United States)

    Yang, Xiaoqiu; Wu, Yinsong; Yan, Jinding; Song, Haigang; Fan, Jianhua; Li, Yuanguang

    2015-10-01

    Microalgae is a single-cell organism with the characteristics of high light energy utilization rate, fast growth rate, high-value bioactive components and high energy material content. Therefore, microalgae has broad application prospects in food, feed, bioenergy, carbon sequestration, wastewater treatment and other fields. In this article, the microalgae biotechnology development in recent years were fully consulted, through analysis from the literature and patent. The progress of microalgal biotechnology at home and abroad is compared and discussed. Furthermore, the project layout, important achievements and development bottlenecks of microalgae biotechnology in our country were also summarized. At last, future development directions of microalgae biotechnology were discussed. PMID:26964332

  11. [Trends of microalgal biotechnology: a view from bibliometrics].

    Science.gov (United States)

    Yang, Xiaoqiu; Wu, Yinsong; Yan, Jinding; Song, Haigang; Fan, Jianhua; Li, Yuanguang

    2015-10-01

    Microalgae is a single-cell organism with the characteristics of high light energy utilization rate, fast growth rate, high-value bioactive components and high energy material content. Therefore, microalgae has broad application prospects in food, feed, bioenergy, carbon sequestration, wastewater treatment and other fields. In this article, the microalgae biotechnology development in recent years were fully consulted, through analysis from the literature and patent. The progress of microalgal biotechnology at home and abroad is compared and discussed. Furthermore, the project layout, important achievements and development bottlenecks of microalgae biotechnology in our country were also summarized. At last, future development directions of microalgae biotechnology were discussed.

  12. The biotechnology innovation machine: a source of intelligent biopharmaceuticals for the pharma industry--mapping biotechnology's success.

    Science.gov (United States)

    Evens, R P; Kaitin, K I

    2014-05-01

    The marriage of biotechnology and the pharmaceutical industry (pharma) is predicated on an evolution in technology and product innovation. It has come as a result of advances in both the science and the business practices of the biotechnology sector in the past 30 years. Biotechnology products can be thought of as "intelligent pharmaceuticals," in that they often provide novel mechanisms of action, new approaches to disease control, higher clinical success rates, improved patient care, extended patent protection, and a significant likelihood of reimbursement. Although the first biotechnology product, insulin, was approved just 32 years ago in 1982, today there are more than 200 biotechnology products commercially available. Research has expanded to include more than 900 biotechnology products in clinical trials. Pharma is substantially engaged in both the clinical development of these products and their commercialization.

  13. Biotechnological production of xylitol with Candida yeasts

    OpenAIRE

    Granström, Tom

    2002-01-01

    The aim of this study was to develop a biotechnological production process for xylitol. The xylitol production characteristics of Candida millerii, Candida guilliermondii and Candida tropicalis were compared. C. tropicalis was the best xylitol producer. A volumetric productivity of 5.7 g xylitol L-1 h-1 was achieved with 69 % yield from D-xylose on a mineral medium with a modified repeated fed batch production method. The xylitol production mechanism was confirmed by chemostat cultivation stu...

  14. Production of vanillin: a biotechnological opportunity

    International Nuclear Information System (INIS)

    Natural aroma compounds are of major interest to the food and fragrance industry. Vanillin (3-methoxy-4-hydroxybenzaldehyde) was isolated from the vanilla beans in 1816 and its world consumption has reached today about 12000 tons per year. But only approximately 50 tons per year are extracted from vanilla pods (Vanilla planifolia). The remainder is provided by synthetic vanillin. This review is about alternative processes to produce natural vanillin de novo or by biotransformation using biotechnological methods involving enzymes, microorganisms and plant cells. (author)

  15. Biotechnology network promotes knowledge of transgenics

    International Nuclear Information System (INIS)

    Red de Ingenieria Genetica Aplicada al Mejoramiento de Cultivos Tropicales (Rigatrop) integrated by a group of scientists from the Universidad de Costa Rica (UCR), Universidad Nacional (UNA) and of the Instituto Tecnologico de Costa Rica (TEC) have organized two forums on the topic of transgenics. The first forum has shown successful experiences of development of transgenic crops in Latin America, as for example: the transgenic bean, project realized in Brazil and transgenic eggplant in Bangladesh. The second forum has been about transgenics and environment effected at the UCR, on the occasion of World Environment Day. Rigatrop members are working currently in two projects applying biotechnological tools to coffee

  16. Chrysanthemum biotechnology: discoveries from the recent literature

    Directory of Open Access Journals (Sweden)

    Teixeira da Silva Jaime A.

    2014-12-01

    Full Text Available The in vitro propagation of chrysanthemum (Chrysanthemum × grandiflorum (Ramat. Kitam., one of the world’s most important ornamentals, is a very well-studied topic and shows numerous strides each year. This mini-review condenses the knowledge that has been published on chrysanthemum biotechnology, especially in vitro culture in the wider plant science literature. In 2013 and 2014, important strides were made in molecular breeding, particularly anti-viral strategies, including through transgenics, and our understanding of flower genetics and flowering regulation.

  17. Biotechnologies and biomimetics for civil engineering

    CERN Document Server

    Labrincha, J; Diamanti, M; Yu, C-P; Lee, H

    2015-01-01

    Putting forward an innovative approach to solving current technological problems faced by human society, this book encompasses a holistic way of perceiving the potential of natural systems. Nature has developed several materials and processes which both maintain an optimal performance and are also totally biodegradable, properties which can be used in civil engineering. Delivering the latest research findings to building industry professionals and other practitioners, as well as containing information useful to the public, ‘Biotechnologies and Biomimetics for Civil Engineering’ serves as an important tool to tackle the challenges of a more sustainable construction industry and the future of buildings.

  18. New developments in Biotechnology-an overview

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    人类运用生物技术已经几千年了.直到上个世纪,发酵方法生产啤酒、白酒、面包、酱油以及其它食品都是在农产品领域的主要应用.自从50年前DNA和RNA结构和作用被揭示以来,一场生物技术的革命便产生了,并导致了两项关键技术的发展:1)通过基因技术进行遣传因素的修改;2)新型快速多样分析工具;最新的发展都基于遗传学.这篇文章我将探讨以下问题:遗传因子修改的进展和公众认可的争论;基因学技术在农产品领域的应用;我的TNO研究所与中国伙伴联合的生物技术项目的例子;谷物科技方面的生物技术.%Mankind applies biotechnology already for thousands of years. Until the last century, fermentation processes for producing beer, wine, bread, soy sauces and other food products were the main application in the agri- food area. The elucidation of the structure and role of DNA and RNA in living organisms since the past 50 years has created a revolution in biotechnology, resulting in two key technological developments: 1) Genetic modification by gene technology 2) New rapid and multiple analytical tools; the latest developments being based on genomics. In this presentation I will discuss: - progress in genetic modification and the issue of public acceptance - application of genomic based technologies in the agri- food field - examples of joint biotechnology projects of my TNO institute with partners in China - biotechnology in cereal science and technology

  19. Biotechnology Protein Expression and Purification Facility

    Science.gov (United States)

    2003-01-01

    The purpose of the Project Scientist Core Facility is to provide purified proteins, both recombinant and natural, to the Biotechnology Science Team Project Scientists and the NRA-Structural Biology Test Investigators. Having a core facility for this purpose obviates the need for each scientist to develop the necessary expertise and equipment for molecular biology, protein expression, and protein purification. Because of this, they are able to focus their energies as well as their funding on the crystallization and structure determination of their target proteins.

  20. Biotechnology education as social and cultural production/reproduction of the biotechnology community

    Science.gov (United States)

    Andrée, Maria

    2014-03-01

    This paper is a commentary to a paper by Anne Solli, Frank Bach and Björn Åkerman on how students at a technical university learn to argue as biotechnologists. Solli and her colleagues report from an ethnographic study performed during the first semester of a 5-year program in biotechnology at a technical university in Sweden. Their study demonstrates how students begin to acquire `the right way' of approaching the controversial issue of producing and consuming genetically modified organisms. In my response I discuss the ethnographic account of this particular educational practice in terms of social and cultural production/reproduction of a biotechnology community and how the participants (students and teaching professors) deal with the dialectic of individual and collective transformation. In the perspective of the biotechnology community, the work done by the teaching professor becomes a way of ensuring the future of the biotechnology community in terms of what values and objectives are held highly in the community of practice.

  1. Biotechnology Education as Social and Cultural Production/Reproduction of the Biotechnology Community

    Science.gov (United States)

    Andrée, Maria

    2014-01-01

    This paper is a commentary to a paper by Anne Solli, Frank Bach and Björn Åkerman on how students at a technical university learn to argue as biotechnologists. Solli and her colleagues report from an ethnographic study performed during the first semester of a 5-year program in biotechnology at a technical university in Sweden. Their study…

  2. Halophiles, coming stars for industrial biotechnology.

    Science.gov (United States)

    Yin, Jin; Chen, Jin-Chun; Wu, Qiong; Chen, Guo-Qiang

    2015-11-15

    Industrial biotechnology aims to produce chemicals, materials and biofuels to ease the challenges of shortage on petroleum. However, due to the disadvantages of bioprocesses including energy consuming sterilization, high fresh water consumption, discontinuous fermentation to avoid microbial contamination, highly expensive stainless steel fermentation facilities and competing substrates for human consumption, industrial biotechnology is less competitive compared with chemical processes. Recently, halophiles have shown promises to overcome these shortcomings. Due to their unique halophilic properties, some halophiles are able to grow in high pH and high NaCl containing medium under higher temperature, allowing fermentation processes to run contamination free under unsterile conditions and continuous way. At the same time, genetic manipulation methods have been developed for halophiles. So far, halophiles have been used to produce bioplastics polyhydroxyalkanoates (PHA), ectoines, enzymes, and bio-surfactants. Increasing effects have been made to develop halophiles into a low cost platform for bioprocessing with advantages of low energy, less fresh water consumption, low fixed capital investment, and continuous production. PMID:25447783

  3. Transforming exoelectrogens for biotechnology using synthetic biology.

    Science.gov (United States)

    TerAvest, Michaela A; Ajo-Franklin, Caroline M

    2016-04-01

    Extracellular electron transfer pathways allow certain bacteria to transfer energy between intracellular chemical energy stores and extracellular solids through redox reactions. Microorganisms containing these pathways, exoelectrogens, are a critical part of microbial electrochemical technologies that aim to impact applications in bioenergy, biosensing, and biocomputing. However, there are not yet any examples of economically viable microbial electrochemical technologies due to the limitations of naturally occurring exoelectrogens. Here we first briefly summarize recent discoveries in understanding extracellular electron transfer pathways, then review in-depth the creation of customized and novel exoelectrogens for biotechnological applications. We analyze engineering efforts to increase current production in native exoelectrogens, which reveals that modulating certain processes within extracellular electron transfer are more effective than others. We also review efforts to create new exoelectrogens and highlight common challenges in this work. Lastly, we summarize work utilizing engineered exoelectrogens for biotechnological applications and the key obstacles to their future development. Fueled by the development of genetic tools, these approaches will continue to expand and genetically modified organisms will continue to improve the outlook for microbial electrochemical technologies. PMID:26284614

  4. Plant biotechnological patents from the legal perspective

    Directory of Open Access Journals (Sweden)

    Farhah Abdullah

    2009-08-01

    Full Text Available The purpose of this article is to examine the extent to which plant biotechnological patent in terms of natural product which has human intervention, different from other product and the entitlement of such a patent whether it is the inventor or biological donor s patent? In addition, the article discusses how would one determine the value added” by the company s researchers as opposed to the value contributed by the original genetic material. Meanwhile, the poor farmers and indigenous people who are the pioneers in terms of the knowledge of the plant, they are left unprivileged and deprived of their contribution and benefits. Thus, this article would highlight the significance of the contribution made by the original donor especially, in a poor developing country whose natural heritage has been taken away without any consideration, acknowledgment and how to strike a balance between the rights of an inventor and biological donor? Keywords: Plant Biotechnology, Patents, Inventor, Biological Donor, Developing countries Received: 7 July 2009 / Received in revised form: 28 August 2009, Accepted: 28 August 2009, Published online: 22 September 2009

  5. Biotechnology Applications of Tethered Lipid Bilayer Membranes

    Directory of Open Access Journals (Sweden)

    Joshua A. Jackman

    2012-12-01

    Full Text Available The importance of cell membranes in biological systems has prompted the development of model membrane platforms that recapitulate fundamental aspects of membrane biology, especially the lipid bilayer environment. Tethered lipid bilayers represent one of the most promising classes of model membranes and are based on the immobilization of a planar lipid bilayer on a solid support that enables characterization by a wide range of surface-sensitive analytical techniques. Moreover, as the result of molecular engineering inspired by biology, tethered bilayers are increasingly able to mimic fundamental properties of natural cell membranes, including fluidity, electrical sealing and hosting transmembrane proteins. At the same time, new methods have been employed to improve the durability of tethered bilayers, with shelf-lives now reaching the order of weeks and months. Taken together, the capabilities of tethered lipid bilayers have opened the door to biotechnology applications in healthcare, environmental monitoring and energy storage. In this review, several examples of such applications are presented. Beyond the particulars of each example, the focus of this review is on the emerging design and characterization strategies that made these applications possible. By drawing connections between these strategies and promising research results, future opportunities for tethered lipid bilayers within the biotechnology field are discussed.

  6. Comparative genomics of biotechnologically important yeasts.

    Science.gov (United States)

    Riley, Robert; Haridas, Sajeet; Wolfe, Kenneth H; Lopes, Mariana R; Hittinger, Chris Todd; Göker, Markus; Salamov, Asaf A; Wisecaver, Jennifer H; Long, Tanya M; Calvey, Christopher H; Aerts, Andrea L; Barry, Kerrie W; Choi, Cindy; Clum, Alicia; Coughlan, Aisling Y; Deshpande, Shweta; Douglass, Alexander P; Hanson, Sara J; Klenk, Hans-Peter; LaButti, Kurt M; Lapidus, Alla; Lindquist, Erika A; Lipzen, Anna M; Meier-Kolthoff, Jan P; Ohm, Robin A; Otillar, Robert P; Pangilinan, Jasmyn L; Peng, Yi; Rokas, Antonis; Rosa, Carlos A; Scheuner, Carmen; Sibirny, Andriy A; Slot, Jason C; Stielow, J Benjamin; Sun, Hui; Kurtzman, Cletus P; Blackwell, Meredith; Grigoriev, Igor V; Jeffries, Thomas W

    2016-08-30

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation.

  7. Halophiles, coming stars for industrial biotechnology.

    Science.gov (United States)

    Yin, Jin; Chen, Jin-Chun; Wu, Qiong; Chen, Guo-Qiang

    2015-11-15

    Industrial biotechnology aims to produce chemicals, materials and biofuels to ease the challenges of shortage on petroleum. However, due to the disadvantages of bioprocesses including energy consuming sterilization, high fresh water consumption, discontinuous fermentation to avoid microbial contamination, highly expensive stainless steel fermentation facilities and competing substrates for human consumption, industrial biotechnology is less competitive compared with chemical processes. Recently, halophiles have shown promises to overcome these shortcomings. Due to their unique halophilic properties, some halophiles are able to grow in high pH and high NaCl containing medium under higher temperature, allowing fermentation processes to run contamination free under unsterile conditions and continuous way. At the same time, genetic manipulation methods have been developed for halophiles. So far, halophiles have been used to produce bioplastics polyhydroxyalkanoates (PHA), ectoines, enzymes, and bio-surfactants. Increasing effects have been made to develop halophiles into a low cost platform for bioprocessing with advantages of low energy, less fresh water consumption, low fixed capital investment, and continuous production.

  8. Comparative genomics of biotechnologically important yeasts.

    Science.gov (United States)

    Riley, Robert; Haridas, Sajeet; Wolfe, Kenneth H; Lopes, Mariana R; Hittinger, Chris Todd; Göker, Markus; Salamov, Asaf A; Wisecaver, Jennifer H; Long, Tanya M; Calvey, Christopher H; Aerts, Andrea L; Barry, Kerrie W; Choi, Cindy; Clum, Alicia; Coughlan, Aisling Y; Deshpande, Shweta; Douglass, Alexander P; Hanson, Sara J; Klenk, Hans-Peter; LaButti, Kurt M; Lapidus, Alla; Lindquist, Erika A; Lipzen, Anna M; Meier-Kolthoff, Jan P; Ohm, Robin A; Otillar, Robert P; Pangilinan, Jasmyn L; Peng, Yi; Rokas, Antonis; Rosa, Carlos A; Scheuner, Carmen; Sibirny, Andriy A; Slot, Jason C; Stielow, J Benjamin; Sun, Hui; Kurtzman, Cletus P; Blackwell, Meredith; Grigoriev, Igor V; Jeffries, Thomas W

    2016-08-30

    Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation. PMID:27535936

  9. The application of biotechnology in animal nutrition

    Directory of Open Access Journals (Sweden)

    Šefer Dragan

    2015-01-01

    Full Text Available Animal food has to incorporate multiple objectives, ie. it should provide good animal health, good production and reproductive performance, reduce pollution of the environment as well as have the impact on food of animal origin, by supplying it, in addition to basic nutrients, with certain useful substances that can act preventively on the occurrence of various diseases in humans in modern living conditions. This complex task implies the application of scientific knowledge concerning biotechnology in the field of animal feed production, and also includes the use of specific nutrients that are the result of the latest developments in specific disciplines such as molecular biology and genetic engineering. As a result of researches in these areas there were created some varieties of cereals and legumes with improved nutritional properties. On the other hand, obtaining a safe food of animal origin product imposes the use of substances of natural origin (such as probiotics, prebiotics, phytobiotics, enzymes, chelating forms .., which provide better digestibility and more complete utilization of certain nutrients from the feedstuff. In this way, the quantity of undigested substances are significantly reduced as well as soil and the atmosphere pollution. The use of specific additives in animal nutrition resulting from biotechnological research is most frequent when a problem concerning certain level of production or animal health has to be overcome. This implies a group of non-nutritional ingredients which are aimed to regulate the digestive tract microflora, pH, weight gain, as well as to modify metabolic processes etc.

  10. Microbial lipases: Production, properties and biotechnological applications

    Directory of Open Access Journals (Sweden)

    Josana Maria Messias

    2011-09-01

    Full Text Available Lipases belong to the group of hydrolases that catalyze the hydrolysis of triacylglycerol lipids to free fatty acids and glycerol. They have significant potential biotechnological applications in catalyzing organic synthesis reactions in non-aqueous solvents using simplified procedures resulting in conversions of high yields. Lipase production has conventionally been performed by submerged fermentation; however, solid-state fermentation processes have been prominent when residues are used as substrates because they serve as low-cost nutrient sources. Microbial lipases can be used as additives in foods to modify and enhance organoleptic properties, as well as in detergents to hydrolyse fats in the treatment of oily effluents, and also have value for pharmaceutical, cosmetic, agrochemical, and oil chemical industries. More recently, they are used in transesterification reactions to convert plant seed oils into biodiesel. The objective of this work was to review the published literature on the production, properties and applications of microbial lipases, and its biotechnological role in producing biodiesel.

  11. Biotechnology in China II. Chemicals, energy and environment

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, G.T. [Purdue Univ., West Lafayette, IN (United States). Lab. Renewable Resources Engineering; Ouyang, Pingkai [Nanjing Univ. of Technology (China). College of Life Science and Pharmaceutical Engineering; Chen, Jian (eds.) [Jiangnan Univ., Wuxi (China). School of Biotechnology

    2010-07-01

    The biochemical engineering and biotechnology is now becoming the most important industry all over the world. China, as a country that has more than 1.3 billion people, has become one of the fastest growing countries in the world during the last several decades. Both the Chinese government and companies pay more and more attention on the research and the application of biotechnology. In the 11th five-year plan (2006-2010), Chinese government unprecedented enhanced the support on the biotechnology in both policy and finance. Currently, the biotechnology gains the most R and D funding in China. With the great support and the increasingly frequent exchanges from abroad, the biotechnology in China becomes more and more important in the world. In recognition of the enormous advances in biotechnology in China, we are pleased to present the second volume of Advances in Biochemical Engineering/ Biotechnology: Biotechnology in China II, edited by P. K. Ouyang, J. Chen and G. T. Tsao, relatively soon after the introduction of the first volume of this multivolume comprehensive books. Since the previous volume was extremely well accepted by the scientific community, we have maintained the overall goal of creating a number of chapters, each devoted to a certain topic by several Chinese research groups working in the field, which provide scientists in academia and public institutions with a well-balanced and comprehensive overview of this growing field in China. We have fully revised the volume and expanded it from bioreaction, bioseparation and bioremediation to more extensive issues in order to cover all recent developments in China into account as much as possible. The new volume of Advances in Biochemical Engineering/Biotechnology: Biotechnology in China II is a comprehensive description of the state-of-the-art in China, and a guide to the understanding the work of Chinese biochemical engineering and biotechnology researchers. It is specifically directed to microbiologists

  12. Biotechnology for Sustainable Crop Production and Protection: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    T. M. Manjunath

    2010-07-01

    Full Text Available In 2009, transgenic crops were grown on 134 million hectares in 25 countries, including India, in six continents by about 14million farmers, marking an 80-fold increase in the area since their first commercialization on 1.7 m ha in the USA and fiveother countries in 1996. The dominant transgenic traits were herbicide tolerance and insect resistance, deployed either alone orboth stacked in the same plant. A recent survey of the global impact of biotech crops estimated that in 2008 alone, the totalcrop production gain globally for the 4 principal biotech crops - maize, soybean, cotton and canola - was 29.6 million metrictons while the net economic benefit to the biotech farmers was US$ 9.2 billion. The cumulative benefits for the period 1996-2008 were yield gains of 167 million tons and economic returns of US$ 51.9 billion. In India, the area planted with Bt-cottonincreased significantly from year to year since its introduction in 2002 and reached 8.4 million hectares in 2009. The overallbenefits from Bt-cotton included an yield increase of up to 63% due to effective control of bollworms, pesticide reduction by50%, net profit to farmers up to Rs.10,000/hectare and turned India from an importer to a major exporter of cotton. Theseindicate that biotechnology has made significant contributions to higher productivity, lower costs of production and increasedeconomic benefits and that it has enormous potential for the future with new traits, events and crops. Over 60 countries,including India, are engaged in research on about 55 crop species to incorporate transgenes to bestow various traits such asresistance to pests, diseases or herbicides; tolerance to environmental stresses like drought, cold or salinity; enhanced cropyields, nutrition or shelf-life, etc. However, unreasonable opposition to biotechnology and undue delays in regulatoryapprovals are some of the major challenges that need to be addressed so as to make full use of this technology which

  13. Global unbalance in seaweed production, research effort and biotechnology markets.

    Science.gov (United States)

    Mazarrasa, Inés; Olsen, Ylva S; Mayol, Eva; Marbà, Núria; Duarte, Carlos M

    2014-01-01

    Exploitation of the world's oceans is rapidly growing as evidenced by a booming patent market of marine products including seaweed, a resource that is easily accessible without sophisticated bioprospecting technology and that has a high level of domestication globally. The investment in research effort on seaweed aquaculture has recently been identified to be the main force for the development of a biotechnology market of seaweed-derived products and is a more important driver than the capacity of seaweed production. Here, we examined seaweed patent registrations between 1980 and 2009 to assess the growth rate of seaweed biotechnology, its geographic distribution and the types of applications patented. We compare this growth with scientific investment in seaweed aquaculture and with the market of seaweed production. We found that both the seaweed patenting market and the rate of scientific publications are rapidly growing (11% and 16.8% per year respectively) since 1990. The patent market is highly geographically skewed (95% of all registrations belonging to ten countries and the top two holding 65% of the total) compared to the distribution of scientific output among countries (60% of all scientific publications belonging to ten countries and the top two countries holding a 21%), but more homogeneously distributed than the production market (with a 99.8% belonging to the top ten countries, and a 71% to the top two). Food industry was the dominant application for both the patent registrations (37.7%) and the scientific publications (21%) followed in both cases by agriculture and aquaculture applications. This result is consistent with the seaweed taxa most represented. Kelp, which was the target taxa for 47% of the patent registrations, is a traditional ingredient in Asian food and Gracilaria and Ulva, which were the focus of 15% and 13% of the scientific publications respectively, that are also used in more sophisticated applications such as cosmetics, chemical

  14. 77 FR 13258 - Biotechnology Regulatory Services; Changes Regarding the Solicitation of Public Comment for...

    Science.gov (United States)

    2012-03-06

    ... Animal and Plant Health Inspection Service Biotechnology Regulatory Services; Changes Regarding the.... FOR FURTHER INFORMATION CONTACT: Dr. T. Clint Nesbitt, Chief of Staff, Biotechnology Regulatory...://www.aphis.usda.gov/biotechnology/pet_proc_imp.shtml . Current Comment Process for Petitions...

  15. 75 FR 41798 - Solicitation of Letters of Interest to Participate in Biotechnology Quality Management System...

    Science.gov (United States)

    2010-07-19

    ... Biotechnology Quality Management System Program AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION...) is soliciting letters of interest to participate in the APHIS Biotechnology Quality Management System Program. The Biotechnology Quality Management System Program is a voluntary ] compliance...

  16. Role of biotechnology in sustainable development of cotton

    Science.gov (United States)

    The prospect of biotechnology to provide cost-efficient sustainable cotton production under a safe environment for the 21st century is enormous. The role of plant biotechnology in the improvement of cotton is a rapidly evolving area and very broad. The specific objective of this paper is to provide...

  17. Preface: Biocatalysis and Biotechnology for Functional Foods and Industrial Products

    Science.gov (United States)

    This book was assembled with the intent of bringing together current advances and in-depth review of biocatalysis and biotechnology with emphasis on functional foods and industrial products. Biocatalysis and biotechnology defined in this book include enzyme catalysis, biotransformation, bioconversi...

  18. Too New for Textbooks: The Biotechnology Discoveries & Applications Guidebook

    Science.gov (United States)

    Loftin, Madelene; Lamb, Neil E.

    2013-01-01

    The "Biotechnology Discoveries and Applications" guidebook aims to provide teachers with an overview of the recent advances in genetics and biotechnology, allowing them to share these findings with their students. The annual guidebook introduces a wealth of modern genomic discoveries and provides teachers with tools to integrate exciting…

  19. Using the Mystery of the Cyclopic Lamb to Teach Biotechnology

    Science.gov (United States)

    Jensen, Jamie L.

    2010-01-01

    I present a learning cycle that explores different biotechnologies using the process of in situ hybridization as a platform. Students are presented with a cyclopic lamb and must use biotechnology to discover the mechanism behind the deformity. Through this activity, students learn about signal transduction and discover the processes of polymerase…

  20. Multidimensional Analysis of High-School Students' Perceptions about Biotechnology

    Science.gov (United States)

    Fonseca, Maria Joao; Costa, Patricio; Lencastre, Leonor; Tavares, Fernando

    2012-01-01

    Concerns about public understanding of biotechnology have motivated educational initiatives to improve students' competency to make scientifically sustained decisions regarding controversial issues. Understanding students' perceptions about biotechnology is essential to determine the effectiveness of these programmes. To assess how students'…

  1. Teaching Biotechnology to Medical Students: Is There an Easy Way?

    Science.gov (United States)

    Steggles, Allen W.

    1987-01-01

    Discusses the teaching of biotechnology to medical students, undergraduate students and high school seniors. Suggests changes in how the basic sciences are taught in medical schools. Reviews the effects of teaching biotechnology at Northeastern Ohio Universities College of Medicine (NEOUCOM). (CW)

  2. Sectoral innovation foresight. Biotechnology sector. Final Reeport. Task 2

    NARCIS (Netherlands)

    Valk, T. van der; Gijsbers, G.W.; Meis, M.

    2010-01-01

    Biotechnology has evolved from a single set of technologies in the mid 1970s (e.g. recombinant DNA technology) into the full grown economic activity of today. The set of technologies that constitute the field of biotechnology thus find their applications in different sectors, most notably in agricul

  3. Biotechnology policies and performance in central and eastern Europe

    NARCIS (Netherlands)

    Senker, J.; Enzing, C.; Reiss, T.

    2008-01-01

    This paper assesses how far ten Central and Eastern European (CEE) countries have 'caught up' in biotechnology on the basis of information about the policies and funding for biotechnology research and commercialisation from 2002-2005 and on the research and commercialisation performance of these cou

  4. Fossil energy biotechnology: A research needs assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.

  5. Agricultural methanization

    International Nuclear Information System (INIS)

    After having briefly outlined the interest of the development of methanization of agricultural by-products in the context of struggle against climate change, and noticed that France is only now developing this sector as some other countries already did, this publication describes the methanization process also called anaerobic digestion, which produces a digestate and biogas. Advantages for the agriculture sector are outlined, as well as drawbacks and recommendations (required specific technical abilities, an attention to the use of energetic crops, an improved economic balance which still depends on public subsidies, competition in the field of waste processing). Actions undertaken by the ADEME are briefly evoked

  6. 77 FR 16846 - National Science Advisory Board for Biosecurity Meeting; Office of Biotechnology Activities...

    Science.gov (United States)

    2012-03-22

    ...; Office of Biotechnology Activities, Office of Science Policy, Office of the Director; Notice of Closed...: Ronna Hill, NSABB Program Assistant, NIH Office of Biotechnology Activities, 6705 Rockledge Drive,...

  7. How to be Cautious but Open to Learning: Time to Update Biotechnology and GMO Legislation.

    Science.gov (United States)

    Hansson, Sven Ove

    2016-08-01

    Precautionary measures to protect human health and the environment should be science based. This implies that they should be directed at a potential danger for which there is credible scientific evidence (although that evidence need not be conclusive). Furthermore, protective measures should be updated as relevant science advances. This means that decisionmakers should be prepared to strengthen the precautionary measures if the danger turns out to be greater than initially suspected, and to reduce or lift them, should the danger prove to be smaller. Most current legislation on agricultural biotechnology has not been scientifically updated. Therefore, it reflects outdated criteria for identifying products that can cause problems. Modern knowledge in genetics, plant biology, and ecology has provided us with much better criteria that risk analysts can use to identify the potentially problematic breeding projects at which precautionary measures should be directed. Legislation on agricultural biotechnology should be scientifically updated. Furthermore, legislators should learn from this example that regulations based on the current state of science need to have inbuilt mechanisms for revisions and adjustments in response to future developments in science.

  8. How to be Cautious but Open to Learning: Time to Update Biotechnology and GMO Legislation.

    Science.gov (United States)

    Hansson, Sven Ove

    2016-08-01

    Precautionary measures to protect human health and the environment should be science based. This implies that they should be directed at a potential danger for which there is credible scientific evidence (although that evidence need not be conclusive). Furthermore, protective measures should be updated as relevant science advances. This means that decisionmakers should be prepared to strengthen the precautionary measures if the danger turns out to be greater than initially suspected, and to reduce or lift them, should the danger prove to be smaller. Most current legislation on agricultural biotechnology has not been scientifically updated. Therefore, it reflects outdated criteria for identifying products that can cause problems. Modern knowledge in genetics, plant biology, and ecology has provided us with much better criteria that risk analysts can use to identify the potentially problematic breeding projects at which precautionary measures should be directed. Legislation on agricultural biotechnology should be scientifically updated. Furthermore, legislators should learn from this example that regulations based on the current state of science need to have inbuilt mechanisms for revisions and adjustments in response to future developments in science. PMID:27305655

  9. The Development of TALE Nucleases for Biotechnology.

    Science.gov (United States)

    Ousterout, David G; Gersbach, Charles A

    2016-01-01

    The development of a facile genome engineering technology based on transcription activator-like effector nucleases (TALENs) has led to significant advances in diverse areas of science and medicine. In this review, we provide a broad overview of the development of TALENs and the use of this technology in basic science, biotechnology, and biomedical applications. This includes the discovery of DNA recognition by TALEs, engineering new TALE proteins to diverse targets, general advances in nuclease-based editing strategies, and challenges that are specific to various applications of the TALEN technology. We review examples of applying TALENs for studying gene function and regulation, generating disease models, and developing gene therapies. The current status of genome editing and future directions for other uses of these technologies are also discussed. PMID:26443211

  10. Biotechnological solutions to the nitrogen problem.

    Science.gov (United States)

    Oldroyd, Giles E D; Dixon, Ray

    2014-04-01

    The availability of nitrogen is one of the major limiting factors to crop growth. In the developed world, farmers use unsustainable levels of inorganic fertilisers to promote crop production. In contrast, in the developing world inorganic fertilisers are often not available and small-holder farmers suffer the resultant poor yields. Finding alternatives to inorganic fertilisers is critical for sustainable and secure food production. Bacteria and Archaea have evolved the capability to fix atmospheric nitrogen to ammonia, a form readily usable in biological processes. This capability presents an opportunity to improve the nutrition of crop plants, through the introduction into cereal crops of either the nitrogen fixing bacteria or the nitrogenase enzyme responsible for nitrogen fixation. While both approaches are challenging, recent advances have laid the groundwork to initiate these biotechnological solutions to the nitrogen problem. PMID:24679253

  11. Interfacing microbiology and biotechnology. Conference abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, Julia A.

    2001-05-19

    The Interfacing Microbiology and Biotechnology Conference was attended by over 100 faculty, post-docs, students, and research scientists from the US, Europe, and Latin America. The conference successfully stimulated communication and the dissemination of knowledge among scientists involved in basic and applied research. The focus of the conference was on microbial physiology and genetics and included sessions on C1 metabolism, archaeal metabolism, proteases and chaperones, gene arrays, and metabolic engineering. The meeting provided the setting for in-depth discussions between scientists who are internationally recognized for their research in these fields. The following objectives were met: (1) The promotion of interaction and future collaborative projects among scientists involved in basic and applied research which incorporates microbial physiology, genetics, and biochemistry; (2) the facilitation of communication of new research findings through seminars, posters, and abstracts; (3 ) the stimulation of enthusiasm and education among participants including graduate and undergraduate students.

  12. Synthesis of aromatic cytokinins for plant biotechnology.

    Science.gov (United States)

    Plíhalová, Lucie; Vylíčilová, Hana; Doležal, Karel; Zahajská, Lenka; Zatloukal, Marek; Strnad, Miroslav

    2016-09-25

    Cytokinins represent an important group of plant growth regulators that can modulate several biotechnological processes owing to their ability to influence almost all stages of plant development and growth. In addition, the use of purine based cytokinins with aromatic substituent in C6 position of the purine moiety in tissue culture techniques is currently experiencing a surge in interest, made possible by the ongoing systematic synthesis and study of these compounds. This review article outlines progress in the synthesis of aromatic cytokinins, the in vitro and in vivo effects of these substances and insights gleaned from their synthesis. As the purine moiety in these compounds can be substituted at several positions, we examine each of the substitution possibilities in relation to the derivatives prepared so far. The discussion highlights the gradual simplification of their preparation in relation to their application in practice and summarizes the relevant organic chemistry literature and published patents. PMID:26703810

  13. Biotechnological production of gluconic acid: future implications.

    Science.gov (United States)

    Singh, Om V; Kumar, Raj

    2007-06-01

    Gluconic acid (GA) is a multifunctional carbonic acid regarded as a bulk chemical in the food, feed, beverage, textile, pharmaceutical, and construction industries. The favored production process is submerged fermentation by Aspergillus niger utilizing glucose as a major carbohydrate source, which accompanied product yield of 98%. However, use of GA and its derivatives is currently restricted because of high prices: about US$ 1.20-8.50/kg. Advancements in biotechnology such as screening of microorganisms, immobilization techniques, and modifications in fermentation process for continuous fermentation, including genetic engineering programmes, could lead to cost-effective production of GA. Among alternative carbohydrate sources, sugarcane molasses, grape must show highest GA yield of 95.8%, and banana must may assist reducing the overall cost of GA production. These methodologies would open new markets and increase applications of GA.

  14. New challenges and opportunities for industrial biotechnology

    Directory of Open Access Journals (Sweden)

    Chen Guo-Qiang

    2012-08-01

    Full Text Available Abstract Industrial biotechnology has not developed as fast as expected due to some challenges including the emergences of alternative energy sources, especially shale gas, natural gas hydrate (or gas hydrate and sand oil et al. The weaknesses of microbial or enzymatic processes compared with the chemical processing also make industrial biotech products less competitive with the chemical ones. However, many opportunities are still there if industrial biotech processes can be as similar as the chemical ones. Taking advantages of the molecular biology and synthetic biology methods as well as changing process patterns, we can develop bioprocesses as competitive as chemical ones, these including the minimized cells, open and continuous fermentation processes et al.

  15. A sign-theoretic approach to biotechnology

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    ’s semiotics. I also provide a brief overview of current knowledge about genome architecture, evolution and communication. I stress the importance of not neglecting the fact that there is no simple linear relation between genotype and phenotype. In section 2.5, I present a “toolbox” of concepts for ”mapping...... to exemplify what is the relevance of a sign-theoretic approach to biotechnology. In particular, I introduce the notion of digital-analogical consensus as a semiotic pattern for the creation of complex logical products that constitute specific signs. The chapter ends with some examples of conspicuous semiotic...... to exemplify how a semiotic approach can be of help when organising the knowledge that can lead us to understanding the relevance, the role and the position of signal transduction networks in relation to the larger semiotic networks in which they function, i.e.: in the hierarchical formal processes of mapping...

  16. Nonclinical statistics for pharmaceutical and biotechnology industries

    CERN Document Server

    2016-01-01

    This book serves as a reference text for regulatory, industry and academic statisticians and also a handy manual for entry level Statisticians. Additionally it aims to stimulate academic interest in the field of Nonclinical Statistics and promote this as an important discipline in its own right. This text brings together for the first time in a single volume a comprehensive survey of methods important to the nonclinical science areas within the pharmaceutical and biotechnology industries. Specifically the Discovery and Translational sciences, the Safety/Toxiology sciences, and the Chemistry, Manufacturing and Controls sciences. Drug discovery and development is a long and costly process. Most decisions in the drug development process are made with incomplete information. The data is rife with uncertainties and hence risky by nature. This is therefore the purview of Statistics. As such, this book aims to introduce readers to important statistical thinking and its application in these nonclinical areas. The cha...

  17. Engineered transcriptional systems for cyanobacterial biotechnology

    Directory of Open Access Journals (Sweden)

    Daniel eCamsund

    2014-10-01

    Full Text Available Cyanobacteria can function as solar-driven biofactories thanks to their ability to perform photosynthesis and the ease with which they are genetically modified. In this review, we discuss transcriptional parts and promoters available for engineering cyanobacteria. First, we go through special cyanobacterial characteristics that may impact engineering, including the unusual cyanobacterial RNA polymerase, sigma factors and promoter types, mRNA stability, circadian rhythm, and gene dosage effects. Then, we continue with discussing component characteristics that are desirable for synthetic biology approaches, including decoupling, modularity and orthogonality. We then summarize and discuss the latest promoters for use in cyanobacteria regarding characteristics such as regulation, strength and dynamic range and suggest potential uses. Finally, we provide an outlook and suggest future developments that would advance the field and accelerate the use of cyanobacteria for renewable biotechnology.

  18. Electroporation-based applications in biotechnology.

    Science.gov (United States)

    Kotnik, Tadej; Frey, Wolfgang; Sack, Martin; Haberl Meglič, Saša; Peterka, Matjaž; Miklavčič, Damijan

    2015-08-01

    Electroporation is already an established technique in several areas of medicine, but many of its biotechnological applications have only started to emerge; we review here some of the most promising. We outline electroporation as a phenomenon and then proceed to applications, first outlining the best established - the use of reversible electroporation for heritable genetic modification of microorganisms (electrotransformation), and then explore recent advances in applying electroporation for inactivation of microorganisms, extraction of biomolecules, and fast drying of biomass. Although these applications often aim to upscale to the industrial and/or clinical level, we also outline some important chip-scale applications of electroporation. We conclude our review with a discussion of the main challenges and future perspectives.

  19. The Development of TALE Nucleases for Biotechnology.

    Science.gov (United States)

    Ousterout, David G; Gersbach, Charles A

    2016-01-01

    The development of a facile genome engineering technology based on transcription activator-like effector nucleases (TALENs) has led to significant advances in diverse areas of science and medicine. In this review, we provide a broad overview of the development of TALENs and the use of this technology in basic science, biotechnology, and biomedical applications. This includes the discovery of DNA recognition by TALEs, engineering new TALE proteins to diverse targets, general advances in nuclease-based editing strategies, and challenges that are specific to various applications of the TALEN technology. We review examples of applying TALENs for studying gene function and regulation, generating disease models, and developing gene therapies. The current status of genome editing and future directions for other uses of these technologies are also discussed.

  20. AGRICULTURAL EDUCATION.

    Science.gov (United States)

    STEVENS, GLENN Z.

    FEDERAL LEGISLATION HAS PROVIDED FOR PUBLIC PROGRAMS OF OCCUPATIONAL AGRICULTURE EDUCATION IN LAND GRANT COLLEGES AND UNIVERSITIES, LOCAL SCHOOL DISTRICTS, AND MANPOWER DEVELOPMENT PROGRAMS. PROGRAM OBJECTIVES SHOULD BE TO DEVELOP KNOWLEDGE AND SKILLS, PROVIDE OCCUPATIONAL GUIDANCE AND PLACEMENT, AND DEVELOP ABILITIES IN HUMAN RELATIONS AND…

  1. Biomechatronic Design in Biotechnology A Methodology for Development of Biotechnological Products

    CERN Document Server

    Mandenius, Carl-Fredrik

    2011-01-01

    This cutting-edge guide on the fundamentals, theory, and applications of biomechatronic design principles Biomechatronic Design in Biotechnology presents a complete methodology of biomechatronics, an emerging variant of the mechatronics field that marries biology, electronics, and mechanics to create products where biological and biochemical, technical, human, management-and-goal, and information systems are combined and integrated in order to solve a mission that fulfills a human need. A biomechatronic product includes a biological, mechanical, and electronic part. Beginning with an overvie

  2. Biotechnology in petroleum recovery. The microbial EOR

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ramkrishna [Department of Biotechnology, Indian Institute of Technology (IIT), Kharagpur, West Bengal 721302 (India)

    2008-12-15

    Biotechnology has played a significant role in enhancing crude oil recovery from the depleted oil reservoirs to solve stagnant petroleum production, after a three-stage recovery process employing mechanical, physical and chemical methods. Biotechnologically enhanced oil recovery processes, known as microbial enhanced oil recovery (MEOR), involve stimulating indigenous reservoir microbes or injecting specially selected consortia of natural bacteria into the reservoir to produce specific metabolic events that lead to improved oil recovery. This also involves flooding with oil recovery agents produced ex situ by industrial or pilot scale fermentation. This paper essentially reviews the operating mechanisms and the progress made in enhanced oil recovery through the use of microbes and their metabolic products. Improvement in oil recovery by injecting solvents and gases or by energizing the reservoir microflora to produce them in situ for carbonate rock dissolution and reservoir re-pressurization has been enunciated. The role of biosurfactants in oil mobilization through emulsification and that of biopolymers for selective plugging of oil-depleted zones and for biofilm formation have been delineated. The spoil sport played by sulfate-reducing bacteria (SRB) in MEOR has also been briefly reviewed. The importance of mathematical models used in predicting the applicability of an MEOR strategy and the microbial growth and transport has been qualitatively discussed. The results of some laboratory studies and worldwide field trials applying ex situ and in situ MEOR technologies were compiled and interpreted. However, the potential of the MEOR technologies has not been fully realized due to poor yield of the useful microbial metabolic products, growth inhibition by accumulated toxic metabolites and longer time of incubation. A complete evaluation and assessment of MEOR from an engineering standpoint based on economics, applicability and performance is required to further

  3. Insect-derived enzymes: a treasure for industrial biotechnology and food biotechnology.

    Science.gov (United States)

    Mika, Nicole; Zorn, Holger; Rühl, Martin

    2013-01-01

    Insects are the most diverse group of organisms on earth, colonizing almost every ecological niche of the planet. To survive in various and sometimes extreme habitats, insects have established diverse biological and chemical systems. Core components of these systems are enzymes that enable the insects to feed on diverse nutrient sources. The enzymes are produced by either the insects themselves (homologous) or by symbiotic organisms located in the insects' bodies or in their nests (heterologous). The use of these insect-associated enzymes for applications in the fields of food biotechnology and industrial (white) biotechnology is gaining more and more interest. Prominent examples of insect-derived enzymes include peptidases, amylases, lipases, and β-D-glucosidases. Highly potent peptidases for the degradation of gluten, a storage protein that can cause intestinal disorders, may be received from grain pests. Several insects, such as bark and ambrosia beetles and termites, are able to feed on wood. In the field of white biotechnology, their cellulolytic enzyme systems of mainly endo-1,4-β-D-glucanases and β-D-glucosidases can be employed for saccharification of the most prominent polymer on earth-cellulose.

  4. Biotechnology in the 21st Century (Review Paper

    Directory of Open Access Journals (Sweden)

    M.R. Das

    2001-10-01

    Full Text Available The two technologies that will essentially determine the shape of things to come in the present century are biotechnology and information technology. A merger of biotechnology and information technology is happening right now, a significant example of which is the success of the human genome project. Biotechnology can be said to have started with the unravelling of the structure of DNA in 1953. The next decade saw exciting developments in our understanding of the fundamentals of functioning of biological system, including the role of DNA in protein synthesis. The discovery of reverse transcriptase and restriction enzymes in 1970s paved the way for further advances, including recombinant DNA and hybridoma technologies, often called 'genetic engineering'. The discovery of polymerase chain reaction in 1986 laid the foundation for large-scale applications of biotechnology in various fields. The practical applications of mapping of the entire human genome would be enormous in terms of better overall health care (diagnosis, therapy and management of disorders. In the field of flora and fauna, it generally happens that biotechnologically-rich countries have poor biodiversity and vice versa. But countries like India and China that have rich biodiversity have, by the use of biotechnology, the potential to become also biotechnologically rich.

  5. A bibliometric assessment of ASEAN collaboration in plant biotechnology

    KAUST Repository

    Payumo, Jane

    2015-04-03

    This study draws on publication and citation data related to plant biotechnology from a 10-year (2004–2013) period to assess the research performance, impact, and collaboration of member states of the Association of Southeast Asian Nations (ASEAN). Plant biotechnology is one of the main areas of cooperation between ASEAN member states and among the research areas promoted to achieve regional food security and sustainable development. In general, findings indicate increased scientific output, influence, and overall collaboration of ASEAN countries in plant biotechnology over time. Research performance and collaboration (domestic, regional, and international) of the region in plant biotechnology are linked to the status of the economic development of each member country. Thailand produced the most publications of the ASEAN member states while Singapore had the highest influence as indicated by its citation activity in plant biotechnology among the ASEAN countries. Domestic and international collaborations on plant biotechnology are numerous. Regional collaboration or partnership among ASEAN countries was, however, was found to be very limited, which is a concern for the region’s goal of economic integration and science and technology cooperation. More studies using bibliometric data analysis need to be conducted to understand plant biotechnology cooperation and knowledge flows between ASEAN countries. © 2015 Akadémiai Kiadó, Budapest, Hungary

  6. How can developing countries harness biotechnology to improve health?

    Directory of Open Access Journals (Sweden)

    Persad Deepa L

    2007-12-01

    Full Text Available Abstract Background The benefits of genomics and biotechnology are concentrated primarily in the industrialized world, while their potential to combat neglected diseases in the developing world has been largely untapped. Without building developing world biotechnology capacity to address local health needs, this disparity will only intensify. To assess the potential of genomics to address health needs in the developing world, the McLaughlin-Rotman Centre for Global Health, along with local partners, organized five courses on Genomics and Public Health Policy in the developing world. The overall objective of the courses was to collectively explore how to best harness genomics to improve health in each region. This article presents and analyzes the recommendations from all five courses. Discussion In this paper we analyze recommendations from 232 developing world experts from 58 countries who sought to answer how best to harness biotechnology to improve health in their regions. We divide their recommendations into four categories: science; finance; ethics, society and culture; and politics. Summary The Courses' recommendations can be summarized across the four categories listed above: Science - Collaborate through national, regional, and international networks - Survey and build capacity based on proven models through education, training, and needs assessments Finance - Develop regulatory and intellectual property frameworks for commercialization of biotechnology - Enhance funding and affordability of biotechnology - Improve the academic-industry interface and the role of small and medium enterprise Ethics, Society, Culture - Develop public engagement strategies to inform and educate the public about developments in genomics and biotechnology - Develop capacity to address ethical, social and cultural issues - Improve accessibility and equity Politics - Strengthen understanding, leadership and support at the political level for biotechnology

  7. Advances in biomedical engineering and biotechnology during 2013-2014.

    Science.gov (United States)

    Liu, Feng; Wang, Ying; Burkhart, Timothy A; González Penedo, Manuel Francisco; Ma, Shaodong

    2014-01-01

    The 3rd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2014), held in Beijing from the 25th to the 28th of September 2014, is an annual conference that intends to provide an opportunity for researchers and practitioners around the world to present the most recent advances and future challenges in the fields of biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, amongst others. The papers published in this issue are selected from this conference, which witnesses the advances in biomedical engineering and biotechnology during 2013-2014.

  8. Alternative Agriculture

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Will the popularization of bioenergy, a new source for powering China, trigger another agricultural revolution? Skyrocketing energy prices, especially the oil shock in the first half of 2005, are pushing China to seek more substitutes for gasoline. A number of cities are turning to ethanol-blended gas made from com. Starting this month, the sale of regular gasoline will be brought to an end in nine of China's

  9. Agricultural problems

    International Nuclear Information System (INIS)

    Although there were not reasons to deplore against major activity release from any of the 110 industrial reactors authorized to operate in US, the nuclear incident that occurred at the Three Mile Island Plant in 1979 urged the public conscience toward the necessity of readiness to cope with events of this type. The personnel of the Emergency Planning Office functioning in the frame of US Department of Agriculture has already participated in around 600 intervention drillings on a federal, local or state scale to plan, test or asses radiological emergency plans or to intervene locally. These exercises allowed acquiring a significant experience in elaborating emergency plans, planning the drillings, working out scenarios and evaluation of the potential impact of accidents from the agricultural point of view. We have also taken part in different international drillings among which the most recent are INEX 1 and RADEX 94. We have found on these occasions that the agricultural problems are essential preoccupations in most of the cases no matter if the context is international, national, local or of state level. The paper poses problems specifically related to milk, fruits and vegetables, soils, meat and meat products. Finally the paper discusses issues like drilling planning, alarm and notification, sampling strategy, access authorizations for farmers, removing of contamination wastes. A number of social, political and economical relating problems are also mentioned

  10. Integration of biotechnology, robot technology and visualisation technology for development of methods for automated mass production of elite trees

    DEFF Research Database (Denmark)

    Find, Jens

    Biotechnology has become an integrated part of plant breeding, and in recent years new methods have been developed for breeding and propagation of important plants in the agricultural-, ornamental- and forestry sector. One of the promising methods is somatic embryogenesis (SE), where plants....... The method is, for several plant species, the preferred basis for development of additional biotechnological breeding technologies as e.g. genetic transformation. Elite clones can be stored over extended periods in liquid nitrogen at -196°C However, commercial application of the technology has until now been...... & germination' and 'ex-vitro acclimatization'). The aim of the present project is to reduce labour costs associated with the late stages of the production of cloned plants through development of robot- and visualisation technologies. (From Afreen & Zobayed, p. 96, 2005)   The presentation will report on two...

  11. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    NARCIS (Netherlands)

    R.H. Wijffels; O. Kruse; K.J. Hellingwerf

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms fo

  12. Lichens as natural sources of biotechnologically relevant bacteria.

    Science.gov (United States)

    Suzuki, Marcelino T; Parrot, Delphine; Berg, Gabriele; Grube, Martin; Tomasi, Sophie

    2016-01-01

    The search for microorganisms from novel sources and in particular microbial symbioses represents a promising approach in biotechnology. In this context, lichens have increasingly become a subject of research in microbial biotechnology, particularly after the recognition that a diverse community of bacteria other than cyanobacteria is an additional partner to the traditionally recognized algae-fungus mutualism. Here, we review recent studies using culture-dependent as well as culture-independent approaches showing that lichens can harbor diverse bacterial families known for the production of compounds of biotechnological interest and that several microorganisms isolated from lichens, in particular Actinobacteria and Cyanobacteria, can produce a number of bioactive compounds, many of them with biotechnological potential.

  13. Applications of radiations, radioisotopes and nuclear techniques in biotechnology

    International Nuclear Information System (INIS)

    Applications of radiations, radioisotopes and other nuclear techniques has contributed a great deal in our understanding of microbial plant and animal biochemistry and molecular biology. Electron microscopy has provided visual evidence for molecular events. Developments in cell tissue culture of both plants and animals and immunology have contributed to advances in what we now refer as biotechnology. This paper focuses on the applications in the high-tech end of biotechnology, limited to the use of recombinant-DNA techniques. Molecular identification of the genes, their cloning and horizontal transfer across the species of microbes, plants and animals and expression of the transferred genes is the major strength of modern biotechnology. The techniques described in this paper have played a significant role in the development of biotechnology. 6 refs

  14. Advances in optics for biotechnology, medicine and surgery.

    Science.gov (United States)

    Fitzmaurice, Maryann; Pogue, Brian W; Tearney, Guillermo J; Tunnell, James W; Yang, Changhuei

    2014-02-01

    The guest editors introduce a Biomedical Optics Express feature issue that includes contributions from participants at the 2013 conference on Advances in Optics for Biotechnology, Medicine and Surgery XIII. PMID:24575348

  15. Patho-biotechnology: using bad bugs to do good things.

    Science.gov (United States)

    Sleator, Roy D; Hill, Colin

    2006-04-01

    Pathogenic bacteria have evolved sophisticated strategies to overcome host defences, to interact with the immune system and to interfere with essential host systems. We coin the term 'patho-biotechnology' to describe the exploitation of these valuable traits in biotechnology, medicine and food. This approach shows promise for the development of novel vaccine and drug delivery systems, as well as for the design of more technologically robust and effective probiotic cultures with improved biotechnological and clinical applications. The genetic tractability of Listeria monocytogenes, the availability of the complete genome sequence of this intracellular pathogen, its ability to cope with stress, and its ability to traverse the gastrointestinal tract and induce a strong cellular immune response make L. monocytogenes an ideal model organism for demonstrating the patho-biotechnology concept.

  16. Bargaining in Technology Markets: An empirical study of biotechnology alliances

    OpenAIRE

    Kinukawa, Shinya; Motohashi, Kazuyuki

    2010-01-01

    We empirically examine the distribution of bargaining power between buyers and sellers on the biotechnology markets by estimating the extracted surplus in alliance agreements, which depends on each party's bargaining power. The results show that buyers have extracted more surplus than sellers. However, these also reveal that the surplus extracted by buyers has been decreasing while that of the sellers has been increasing. We construe that the prices of biotechnologies have been lower than the...

  17. Application of biotechnology to PCB disposal problems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Terhorst, E.G.; Attaway, L.D.; Peyton, T.O.

    1985-05-01

    Results are presented of a study addressing the feasibility of using biotechnology to help solve the electric utility industry's PCB disposal problems. The study investigates those charateristics of PCB waste which influence biodegradation, the reported pathways and rates of degradation, the biotechnologies which appear to hold promise as treatment approaches, and the types of research and development which should be pursued to lead to commercial applications. 160 refs.

  18. Introduction of Shanghai Hua Xin High-Biotechnology Inc.

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Shanghai Hua Xin High-Biotechnology Inc.,jointly sponsored by Hong Kong Pharmaceutical(Group) Co., Ltd., Shanghai Life Science Researching Institute of China Academy of Science, was founded in 1992, it is situated in Shanghai Biotechnology Industrial Garden. Prof. Liu Xinyuan, the founder of the company has been laureated three Academicians, including Academician of Chinese Academy of Science, Foreign Academician of National Academy of Ukraine,Academician of The Third World Academy of Science in 2001.

  19. Role of biotechnology in textile industry: а review

    OpenAIRE

    Mojsov, Kiro

    2013-01-01

    Textile processing is a growing industry that traditionally has used a lot of water, energy and harsh chemicals. They are also not easily biodegradable. Biotechnology in textiles is one of the revolutionary ways to advance the textile field. Biotechnology offers the potential for new industrial processes that require less energy and are based on renewable raw materials, as well as the application of green technologies with low energy consumption and environmentally healthy practices. Due to t...

  20. Variability in forms of organisation in biotechnology firms

    OpenAIRE

    Luukkonen, Terttu

    2003-01-01

    This paper examines variability in forms of organisation, in terms of forward and backward networking versus vertical integration, in biotechnology SMEs. The study examines forms of organisation in a set of firms across different application segments. The forms of organisation vary by application segment in biotechnology, but differences are not clear-cut, and a firm can apply different forms to different application segments in its activities. Reasons for the variability are related to the s...

  1. IMPACT OF GENETIC BIOTECHNOLOGIES ON BIOSECURITY AND FOOD SAFETY

    OpenAIRE

    NICA-BADEA DELIA

    2014-01-01

    Biosecurity is a relatively new area global, being promoted by the significant results, particularly in the last 20 years, fundamental and applied research. Biotechnology is a collection of techniques that can be used in the agro-food, medical and industrial. The paper examines the potential impact of transgenic biotechnology, vulnerabilities, implications, benefits and risks, quality of life and health. Introduction into the environment, crossborder trade and use of GMOs resulting from moder...

  2. MPACT OF GENETIC BIOTECHNOLOGIES ON BIOSECURITY AND FOOD SAFETY

    OpenAIRE

    NICA-BADEA DELIA

    2014-01-01

    Biosecurity is a relatively new area global, being promoted by the significant results, particularly in the last 20 years, fundamental and applied research. Biotechnology is a collection of techniques that can be used in the agro-food, medical and industrial. The paper examines the potential impact of transgenic biotechnology, vulnerabilities, implications, benefits and risks, quality of life and health. Introduction into the environment, cross-border trade and use of GMOs resulti...

  3. Biotechnology and health Biotecnología y salud

    OpenAIRE

    Cardozo C.; Reguero M. T

    1998-01-01

    Biotechnology plays an important role in the Health Sciences. The production of immunoreagents and biological drugs, gene therapy, the food industry and the environmental protection have been using the molecular biology and genetic engineering knowledge to improve the quality of life. This review summarizes the contribution and impact of the Biotechnology to the advance of the Biomedical Sciences. The work is framed within the idea that the healthdisease process changes according to specific ...

  4. Magnetic separations: From steel plants to biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Cafer T. Yavuz; Arjun Prakash; J.T. Mayo; Vicki L. Colvin [Rice University, Houston, TX (United States). Department of Chemistry

    2009-05-15

    Magnetic separations have for decades been essential processes in diverse industries ranging from steel production to coal desulfurization. In such settings magnetic fields are used in continuous flow processes as filters to remove magnetic impurities. High gradient magnetic separation (HGMS) has found even broader use in wastewater treatment and food processing. Batch scale magnetic separations are also relevant in industry, particularly biotechnology where fixed magnetic separators are used to purify complex mixtures for protein isolation, cell separation, drug delivery, and biocatalysis. In this review, we introduce the basic concepts behind magnetic separations and summarize a few examples of its large scale application. HGMS systems and batch systems for magnetic separations have been developed largely in parallel by different communities. However, in this work we compare and contrast each approach so that investigators can approach both key areas. Finally, we discuss how new advances in magnetic materials, particularly on the nanoscale, as well as magnetic filter design offer new opportunities for industries that have challenging separation problems.

  5. Plant protoplasts: status and biotechnological perspectives.

    Science.gov (United States)

    Davey, Michael R; Anthony, Paul; Power, J Brian; Lowe, Kenneth C

    2005-03-01

    Plant protoplasts ("naked" cells) provide a unique single cell system to underpin several aspects of modern biotechnology. Major advances in genomics, proteomics, and metabolomics have stimulated renewed interest in these osmotically fragile wall-less cells. Reliable procedures are available to isolate and culture protoplasts from a range of plants, including both monocotyledonous and dicotyledonous crops. Several parameters, particularly the source tissue, culture medium, and environmental factors, influence the ability of protoplasts and protoplast-derived cells to express their totipotency and to develop into fertile plants. Importantly, novel approaches to maximise the efficiency of protoplast-to-plant systems include techniques already well established for animal and microbial cells, such as electrostimulation and exposure of protoplasts to surfactants and respiratory gas carriers, especially perfluorochemicals and hemoglobin. However, despite at least four decades of concerted effort and technology transfer between laboratories worldwide, many species still remain recalcitrant in culture. Nevertheless, isolated protoplasts are unique to a range of experimental procedures. In the context of plant genetic manipulation, somatic hybridisation by protoplast fusion enables nuclear and cytoplasmic genomes to be combined, fully or partially, at the interspecific and intergeneric levels to circumvent naturally occurring sexual incompatibility barriers. Uptake of isolated DNA into protoplasts provides the basis for transient and stable nuclear transformation, and also organelle transformation to generate transplastomic plants. Isolated protoplasts are also exploited in numerous miscellaneous studies involving membrane function, cell structure, synthesis of pharmaceutical products, and toxicological assessments. This review focuses upon the most recent developments in protoplast-based technologies.

  6. Designer cell signal processing circuits for biotechnology.

    Science.gov (United States)

    Bradley, Robert W; Wang, Baojun

    2015-12-25

    Microorganisms are able to respond effectively to diverse signals from their environment and internal metabolism owing to their inherent sophisticated information processing capacity. A central aim of synthetic biology is to control and reprogramme the signal processing pathways within living cells so as to realise repurposed, beneficial applications ranging from disease diagnosis and environmental sensing to chemical bioproduction. To date most examples of synthetic biological signal processing have been built based on digital information flow, though analogue computing is being developed to cope with more complex operations and larger sets of variables. Great progress has been made in expanding the categories of characterised biological components that can be used for cellular signal manipulation, thereby allowing synthetic biologists to more rationally programme increasingly complex behaviours into living cells. Here we present a current overview of the components and strategies that exist for designer cell signal processing and decision making, discuss how these have been implemented in prototype systems for therapeutic, environmental, and industrial biotechnological applications, and examine emerging challenges in this promising field.

  7. Biotechnological production and application of fructooligosaccharides.

    Science.gov (United States)

    Flores-Maltos, Dulce A; Mussatto, Solange I; Contreras-Esquivel, Juan C; Rodríguez-Herrera, Raúl; Teixeira, José A; Aguilar, Cristóbal N

    2016-01-01

    Currently, prebiotics are all carbohydrates of relatively short chain length. One important group is the fructooligosaccharides (FOS), a special kind of prebiotic associated to the selective stimulation of the activity of certain groups of colonic bacteria. They have a positive and beneficial effect on intestinal microbiota, reducing the incidence of gastrointestinal infections and also possessing a recognized bifidogenic effect. Traditionally, these prebiotic compounds have been obtained through extraction processes from some plants, as well as through enzymatic hydrolysis of sucrose. However, different fermentative methods have also been proposed for the production of FOS, such as solid-state fermentations utilizing various agro-industrial by-products. By optimizing the culture parameters, FOS yields and productivity can be improved. The use of immobilized enzymes and cells has also been proposed as being an effective and economic method for large-scale production of FOS. This article is an overview of the results considering recent studies on FOS biosynthesis, physicochemical properties, sources, biotechnological production and applications.

  8. Biotechnology and the fight against onchocerciasis

    International Nuclear Information System (INIS)

    Biotechnology has recently broken into the rather closed field of human and animal disease vectors and vector control. With regard to blackflies which carry onchocerciasis, in particular, some possible directions which initial research is taking, and which future research might follow are: identification of vectors among the species making up the Simulium damnosum group; identification in the vectors of Onchocerca volvulus strains, of greater or lesser pathogenic nature according to the geographical area; identification of the source of the blood meal; and identification of resistance on an individual level. This research will all contribute towards the development of tools for use in the field, which will enable the epidemiology of onchocerciasis to be better understood, and the fight against this form of parasitosis to be better planned. After a long period using chemical insecticides, the discovery of the larvicidal properties of Bacillus thuringiensis serovar 14 (B.t. H-14), and of Bacillus sphaericus, opens up new horizons. However, the formulation of these biological insecticides is not entirely satisfactory, and research is therefore in progress to discover the toxins inside the commensal organisms of certain disease vectors. (author). 29 refs

  9. Isolation and Purification of Biotechnological Products

    Science.gov (United States)

    Hubbuch, Jürgen; Kula, Maria-Regina

    2007-05-01

    The production of modern pharma proteins is one of the most rapid growing fields in biotechnology. The overall development and production is a complex task ranging from strain development and cultivation to the purification and formulation of the drug. Downstream processing, however, still accounts for the major part of production costs. This is mainly due to the high demands on purity and thus safety of the final product and results in processes with a sequence of typically more than 10 unit operations. Consequently, even if each process step would operate at near optimal yield, a very significant amount of product would be lost. The majority of unit operations applied in downstream processing have a long history in the field of chemical and process engineering; nevertheless, mathematical descriptions of the respective processes and the economical large-scale production of modern pharmaceutical products are hampered by the complexity of the biological feedstock, especially the high molecular weight and limited stability of proteins. In order to develop new operational steps as well as a successful overall process, it is thus a necessary prerequisite to develop a deeper understanding of the thermodynamics and physics behind the applied processes as well as the implications for the product.

  10. Biological basis of beam application in biotechnology

    International Nuclear Information System (INIS)

    Heavy particle beams have relatively high value of linear energy transfer (LET), and relative biological effectiveness (RBE). There is a sharp increase in ionization density (LET) in the so-called Bragg peak, close to the end of each track. The LET and RBE may, therefore, be high at the distal edge of the biological target volume. It is well-known that as the LET is increased beyond about 30 keV/um the RBE increases to a peak at 100 to 110 keV/um and then falls. At the same time the oxygen-enhancement ratio (OER) decreases steadily. The reason of these events has a greater chance per unit dose of depositing a certain minimum energy of about 300 eV, that is, 10 to 15 ionizations into each biological target volume of 5 to 10 nm diameter. These biological targets may be pictured as double strands of DNA and histones, 2 or 3 nm in diameter, with a surrounding water sheath of a few nm thick. The drop of RBE with increasing LET past the peak of RBE is due to either overkill or the recombinations of electrons and ions and of chemical radicals in the higher LET track. Large new accelerators have allowed the effects of heavy particle irradiation to be investigated. In biotechnology, radiation methods have found application as tools to explore some basic problems and this aspect of radiation research is likely to expand in the future. (author)

  11. Biotechnological production and application of fructooligosaccharides.

    Science.gov (United States)

    Flores-Maltos, Dulce A; Mussatto, Solange I; Contreras-Esquivel, Juan C; Rodríguez-Herrera, Raúl; Teixeira, José A; Aguilar, Cristóbal N

    2016-01-01

    Currently, prebiotics are all carbohydrates of relatively short chain length. One important group is the fructooligosaccharides (FOS), a special kind of prebiotic associated to the selective stimulation of the activity of certain groups of colonic bacteria. They have a positive and beneficial effect on intestinal microbiota, reducing the incidence of gastrointestinal infections and also possessing a recognized bifidogenic effect. Traditionally, these prebiotic compounds have been obtained through extraction processes from some plants, as well as through enzymatic hydrolysis of sucrose. However, different fermentative methods have also been proposed for the production of FOS, such as solid-state fermentations utilizing various agro-industrial by-products. By optimizing the culture parameters, FOS yields and productivity can be improved. The use of immobilized enzymes and cells has also been proposed as being an effective and economic method for large-scale production of FOS. This article is an overview of the results considering recent studies on FOS biosynthesis, physicochemical properties, sources, biotechnological production and applications. PMID:25519697

  12. Biotechnology core facilities: trends and update.

    Science.gov (United States)

    Ivanetich, K M; Niece, R L; Rohde, M; Fowler, E; Hayes, T K

    1993-09-01

    A survey of 128 biotechnology core facilities has provided data on the finances, services, space requirements, and personnel. An average facility had four full-time personnel and 7.5 major instrument systems, and occupied 969 sq. ft. Average total income was $244,000/year, but annual user fee income was only $125,000. Typically, facilities required substantial institutional support or grants. Cost recovery (user fee income divided by total income) averaged 49%. During the last 5 years user fee income, total income, and cost recovery have increased. In-house charges for protein sequencing and peptide synthesis increased approximately 30%, while oligonucleotide synthesis charges decreased by 74%. The costs (charges corrected for subsidy from non-user fee income) for most services did not significantly change, except that oligonucleotide synthesis costs decreased by 25% in 1992. DNA synthesis had the highest throughout per month (116 samples), followed by amino acid analysis (86 samples) and DNA sequencing (67 samples). Other services averaged from 5 to 60 samples. DNA synthesis and purification were the services used by the greatest number of principal investigators. A number of services including DNA sequencing, mass spectrometry, capillary electrophoresis, RNA synthesis, electroblotting, and carbohydrate analysis have been introduced in the last 3 years. Although these services are characterized by high levels of methods development and non-user runs, they are offered by twice the percentage of facilities as in 1989, and are increasingly contributing to facility income. PMID:8375609

  13. Fossil energy biotechnology: A research needs assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Finnerty, W.R. [Consultec Scientific, Inc., Knoxville, TN (United States)

    1992-04-01

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects into three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes. The integration of these programs as viable bioprocessing initiatives proposes an innovative and conceptual principle for the development of a ``new`` approach to fossil energy biotechnology. This unifying principle is NON-AQUEOUS BIOCATALYSIS. Biocatalysis coupled to conventional chemical catalysis in organic-based media offers bioprocessing options uniquely characterized by the selectivity of biocatalysts plus fast reaction rates and specificity of chemical catalysts.

  14. Biotechnology trends in oilseed crops in the USA

    International Nuclear Information System (INIS)

    Full text: Private biotechnology companies (primarily DuPont and Monsanto) have isolated hundreds of genes from developing seeds of a wide range of plant species that produce novel fatty acids in addition to more generic fatty acids. Both companies have completed massive expressed sequence tag (EST) sequencing programs. Genes underlying most of the key activities for engineering novel oils have been cloned and many have been engineered. However, despite phenomenal progress in isolating genes and producing novel phenotypes (fatty acid profiles) in engineered plants, the field is still a long way from producing so-called 'designer oils' by genetic engineering. Numerous target phenotypes have been very difficult to reproduce in transgenic plants (e.g. the development of oils with novel unsaturated fatty acids has been particularly difficult). Dow Elanco Co. is funding a significant collaborative research project in several public laboratories in the USA geared towards understanding why certain fatty acids are not incorporated into triacylglycerides in high concentrations and how the glycerolipid biosynthetic pathway is regulated. Among the oilseeds, DuPont has concentrated on genetically engineering soybean with some work on sunflower, while Monsanto has concentrated on genetically engineering rapeseed. Several genetically modified organisms (GMOs) have been developed and tested and many are being produced commercially. This trend is expected to continue; however, there seems to be a growing resistance to GMOs that could dramatically impact the delivery of transgenic technology to the marketplace. Regardless, the biotechnology industry will become more and more proficient at producing novel oils by genetic engineering. Novel oils produced by induced mutations still play a role and are economically significant. There are still many crops or species where induced mutations are needed or can play a role. The US is investing millions of dollars in plant genomics. Research

  15. Use of biotechnology in flax germplasm development

    International Nuclear Information System (INIS)

    Full text: Andro, CDC Normandy, CDC Triffid, and Linola 989 are examples of flax varieties that have been developed through the application of biotechnology. Somaclonal variation, cell selection, haploid breeding, mutagenesis, genetic engineering and molecular marker development are all being employed in flax germplasm development. Tissue culture techniques such as somaclonal variation (CDC Normandy) and cell selection (Andro) have been successful, but the greatest potential for the use of tissue culture methodology is the application of haploid breeding. While a number of groups worldwide have had limited success in producing doubled haploid plants from anther and/or microspore culture [Chen et al. 1998, Plant Breeding 117: 463; Friedt et al. 1995, Plant Breeding 114: 322; Nichterlein and Friedt 1993, Plant Cell Rep. 12: 426], the frequency of regeneration has limited its application in variety development. Several groups are currently using anther culture within their breeding programs, but the ultimate success of haploid breeding will undoubtedly depend on developing an efficient microspore-derived system for doubled haploid production. Perhaps the most successful technique to date, in terms of germplasm development, has been the use of mutagenesis. The Linola types [Dribnenki et al. 1996, Can. J. Plant Sci. 76:329; Dribnenki and Green 1995, Can. J. Plant Sci. 75: 201], have already been released, and other modified oil types are currently being developed [Saeidi and Rowland 1997, J. Hered. 88: 466; Ntiamoah et al. 1995, Crop Sci. 35: 148]. Additional traits being investigated in mutagenized populations include seed colour, reduced levels of anti nutritional factors in seed, increased nutraceutical content, and traits of agronomic interest. For example, screening of an EMS-treated population of McGregor flax at the Crop Development Centre identified three mutant lines which had greatly reduced levels of cyanogenic glucosides. Flax has proven to be amenable to

  16. Microbial utilization of lignin: available biotechnologies for its degradation and valorization.

    Science.gov (United States)

    Palazzolo, Martín A; Kurina-Sanz, Marcela

    2016-10-01

    Lignocellulosic biomasses, either from non-edible plants or from agricultural residues, stock biomacromolecules that can be processed to produce both energy and bioproducts. Therefore, they become major candidates to replace petroleum as the main source of energy. However, to shift the fossil-based economy to a bio-based one, it is imperative to develop robust biotechnologies to efficiently convert lignocellulosic streams in power and platform chemicals. Although most of the biomass processing facilities use celluloses and hemicelluloses to produce bioethanol and paper, there is no consolidated bioprocess to produce valuable compounds out of lignin at industrial scale available currently. Usually, lignin is burned to provide heat or it remains as a by-product in different streams, thus arising environmental concerns. In this way, the biorefinery concept is not extended to completion. Due to Nature offers an arsenal of biotechnological tools through microorganisms to accomplish lignin valorization or degradation, an increasing number of projects dealing with these tasks have been described recently. In this review, outstanding reports over the last 6 years are described, comprising the microbial utilization of lignin to produce a variety of valuable compounds as well as to diminish its ecological impact. Furthermore, perspectives on these topics are given. PMID:27565783

  17. Biological risks and laboratory-acquired infections. A reality that cannot be ignored in health biotechnology

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Coelho

    2015-04-01

    Full Text Available Advances and research in biotechnology have applications over a wide range of areas such as microbiology, medicine, the food industry, agriculture, genetically modified organisms and nanotechnology, among others. However, research with pathogenic agents such as virus, parasites, fungi, rickettsia, bacterial microorganisms or genetic modified organisms has generated concern because of their potential biological risk - not only for people, but also for the environment due to their unpredictable behavior. In addition, concern for biosafety is associated with the emergence of new diseases or re-emergence of diseases that were already under control. Biotechnology laboratories require biosafety measures designed to protect their staff, the population and the environment, which may be exposed to hazardous organisms and materials. Laboratory staff training and education is essential, not only to acquire a good understanding about the direct handling of hazardous biological agents but also knowledge of the epidemiology, pathogenicity and human susceptibility to the biological materials used in research. Biological risk can be reduced and controlled by the correct application of internationally recognized procedures such as proper microbiological techniques, proper containment apparatus, adequate facilities, protective barriers and special training and education of laboratory workers. To avoid occupational infections, knowledge about standardized microbiological procedures and techniques and the use of containment devices, facilities and protective barriers is necessary. Training and education about the epidemiology, pathogenicity and biohazards of the microorganisms involved may prevent or decrease the risk. In this way, the scientific community may benefit from the lessons learned in the past to anticipate future problems.

  18. Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential

    KAUST Repository

    Soussi, Asma

    2015-08-28

    Background: Aridification is a worldwide serious threat directly affecting agriculture and crop production. In arid and desert areas, it has been found that microbial diversity is huge, built of microorganisms able to cope with the environmental harsh conditions by developing adaptation strategies. Plants growing in arid lands or regions facing prolonged abiotic stresses such as water limitation and salt accumulation have also developed specific physiological and molecular stress responses allowing them to thrive under normally unfavorable conditions. Scope: Under such extreme selection pressures, special root-associated bacterial assemblages, endowed with capabilities of plant growth promotion (PGP) and extremophile traits, are selected by the plants. In this review, we provide a general overview on the microbial diversity in arid lands and deserts versus specific microbial assemblages associated with plants. The ecological drivers that shape this diversity, how plant-associated microbiomes are selected, and their biotechnological potential are discussed. Conclusions: Selection and recruitment of the plant associated bacterial assemblages is mediated by the combination of the bio-pedo-agroclimatic conditions and the plant species or varieties. Diversity and functional redundancy of these associated PGPR makes them very active in supporting plant improvement, health and resistance to drought, salt and related stresses. Implementing proper biotechnological applications of the arid and desert-adapted PGPR constitute the challenge to be raised.

  19. Recent trends in lactic acid biotechnology: A brief review on production to purification

    Directory of Open Access Journals (Sweden)

    Tayyba Ghaffar

    2014-04-01

    Full Text Available Lactic acid is one of the most important organic acid which is being extensively used around the globe in a range of industrial and biotechnological applications. From its very old history to date, many methods have been introduced to improve the optimization of lactic acid to get highest yields of the product of industrial interests. In serious consideration of the worldwide economic and lactic acid consumption issues there has been increasing research interest in the value of materials with natural origin, which are cheap, abundant and easily available all around the year. Recent trends showed that lactic acid production through fermentation is advantageous over chemical due to the environmental concerns of the modern world. The eco-friendly processing and fermentable capability of many of the agricultural and agro-industrial based raw materials or by-products respectively makes them attractive candidates in fermentation biotechnology to produce a value-added product with multiple applications. In fact, major advances have already been achieved in recent years in order to get pure lactic acid with optimal yield. The present review work is summarized on the multi-step processing technologies to produce lactic acid from different substances as a starting material potentially from various agro-industrial based biomasses. The information is also given on a purification through schematic representation of the product of quality interests.

  20. Microbial utilization of lignin: available biotechnologies for its degradation and valorization.

    Science.gov (United States)

    Palazzolo, Martín A; Kurina-Sanz, Marcela

    2016-10-01

    Lignocellulosic biomasses, either from non-edible plants or from agricultural residues, stock biomacromolecules that can be processed to produce both energy and bioproducts. Therefore, they become major candidates to replace petroleum as the main source of energy. However, to shift the fossil-based economy to a bio-based one, it is imperative to develop robust biotechnologies to efficiently convert lignocellulosic streams in power and platform chemicals. Although most of the biomass processing facilities use celluloses and hemicelluloses to produce bioethanol and paper, there is no consolidated bioprocess to produce valuable compounds out of lignin at industrial scale available currently. Usually, lignin is burned to provide heat or it remains as a by-product in different streams, thus arising environmental concerns. In this way, the biorefinery concept is not extended to completion. Due to Nature offers an arsenal of biotechnological tools through microorganisms to accomplish lignin valorization or degradation, an increasing number of projects dealing with these tasks have been described recently. In this review, outstanding reports over the last 6 years are described, comprising the microbial utilization of lignin to produce a variety of valuable compounds as well as to diminish its ecological impact. Furthermore, perspectives on these topics are given.

  1. Biological Risks and Laboratory-Acquired Infections: A Reality That Cannot be Ignored in Health Biotechnology.

    Science.gov (United States)

    Coelho, Ana Cláudia; García Díez, Juan

    2015-01-01

    Advances and research in biotechnology have applications over a wide range of areas, such as microbiology, medicine, the food industry, agriculture, genetically modified organisms, and nanotechnology, among others. However, research with pathogenic agents, such as virus, parasites, fungi, rickettsia, bacterial microorganisms, or genetic modified organisms, has generated concern because of their potential biological risk - not only for people, but also for the environment due to their unpredictable behavior. In addition, concern for biosafety is associated with the emergence of new diseases or re-emergence of diseases that were already under control. Biotechnology laboratories require biosafety measures designed to protect their staff, the population, and the environment, which may be exposed to hazardous organisms and materials. Laboratory staff training and education is essential, not only to acquire a good understanding about the direct handling of hazardous biological agents but also knowledge of the epidemiology, pathogenicity, and human susceptibility to the biological materials used in research. Biological risk can be reduced and controlled by the correct application of internationally recognized procedures such as proper microbiological techniques, proper containment apparatus, adequate facilities, protective barriers, and special training and education of laboratory workers. To avoid occupational infections, knowledge about standardized microbiological procedures and techniques and the use of containment devices, facilities, and protective barriers is necessary. Training and education about the epidemiology, pathogenicity, and biohazards of the microorganisms involved may prevent or decrease the risk. In this way, the scientific community may benefit from the lessons learned in the past to anticipate future problems. PMID:25973418

  2. Nanobody-derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications

    Science.gov (United States)

    Wang, Yongzhong; Fan, Zhen; Shao, Lei; Kong, Xiaowei; Hou, Xianjuan; Tian, Dongrui; Sun, Ying; Xiao, Yazhong; Yu, Li

    2016-01-01

    Owing to peculiar properties of nanobody, including nanoscale size, robust structure, stable and soluble behaviors in aqueous solution, reversible refolding, high affinity and specificity for only one cognate target, superior cryptic cleft accessibility, and deep tissue penetration, as well as a sustainable source, it has been an ideal research tool for the development of sophisticated nanobiotechnologies. Currently, the nanobody has been evolved into versatile research and application tool kits for diverse biomedical and biotechnology applications. Various nanobody-derived formats, including the nanobody itself, the radionuclide or fluorescent-labeled nanobodies, nanobody homo- or heteromultimers, nanobody-coated nanoparticles, and nanobody-displayed bacteriophages, have been successfully demonstrated as powerful nanobiotechnological tool kits for basic biomedical research, targeting drug delivery and therapy, disease diagnosis, bioimaging, and agricultural and plant protection. These applications indicate a special advantage of these nanobody-derived technologies, already surpassing the “me-too” products of other equivalent binders, such as the full-length antibodies, single-chain variable fragments, antigen-binding fragments, targeting peptides, and DNA-based aptamers. In this review, we summarize the current state of the art in nanobody research, focusing on the nanobody structural features, nanobody production approach, nanobody-derived nanobiotechnology tool kits, and the potentially diverse applications in biomedicine and biotechnology. The future trends, challenges, and limitations of the nanobody-derived nanobiotechnology tool kits are also discussed. PMID:27499623

  3. AMELIORATION DES PLANTES Biotechnologies et arachide

    Directory of Open Access Journals (Sweden)

    Clavel Danièle

    2002-07-01

    Full Text Available Les recherches sur les biotechnologies de l’arachide sont principalement conduites aux États-Unis mais également à travers des programmes collaboratifs internationaux où interviennent l’Icrisat et le Cirad. Malgré une forte variation phénotypique, l’arachide cultivée montre peu de variabilité moléculaire. L’arachide étant une culture alimentaire et de rente très importante dans les régions sahéliennes, la sécheresse et la contamination des graines par l’aflatoxine en cours de culture constituent des contraintes majeures. La seule application connue en sélection assistée par marqueurs d’ADN fait intervenir des gènes provenant d’une espèce sauvage compatible en croisement avec l’espèce cultivée. Les principaux résultats publiés jusqu’à présent concernent la mise au point de techniques de régénération et de transfert de gènes. Le marquage moléculaire s’avérant inefficace, les recherches s’orientent aujourd’hui sur la génomique fonctionnelle du fait de la disponibilité des techniques de transformation génétique. L’objectif est de développer de nouveaux outils moléculaires capables d’assister les programmes de sélection pour la résistance à ces deux traits complexes.

  4. Approaches in biotechnological applications of natural polymers

    Directory of Open Access Journals (Sweden)

    José A. Teixeira

    2016-08-01

    Full Text Available Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them

  5. States of uncertainty: governing the empire of biotechnology.

    Science.gov (United States)

    Forbes, Ian

    2006-04-01

    The biotechnological revolution presents states and governments with a set of challenges that they have difficulty meeting. Part of the problem is associated with common perceptions of the speed, volume and the radical uncertainty of the new developments. Globalisation is also implicated, especially in relation to the development of the knowledge economy and the role of multinational actors. This in turn contributes to the apparent decline in the confidence of the public that national governments will be effective in addressing mounting concern about the dangers inherent in new techniques and products. Under these circumstances, 'normal' governance begins to look more like 'failure' governance. This article asks whether the effects of the biotechnological revolution on governance can adequately be explained by the critique of imperialism proposed by Michael Hardt and Antonio Negri, and whether the state is in danger of becoming implicated in sponsorship of modernist schemes to improve the human condition of the kind analysed by James E Scott. Biotechnology does appear to have imperial qualities, while there are strong reasons for states to see biotechnology as a feasible and desirable set of developments. For some critics of biotechnology, like Francis Fukuyama, this is a lethal combination, and the powers of the state should be used to stop biotechnological development. Others, by contrast and more pragmatically, propose a check on what the state will support by the application of precautionary principles. The article concludes that the association between the biotechnology empire and the state, combined with the inescapable duty of the state to be the risk manager of last resort, alerts us to the complexities of uncertainty at the same time as it renders a merely restrictive precautionary approach impracticable.

  6. Progress and Challenges for the Implementation of the Common Market for Eastern and Southern Africa (COMESA) Policy on Biotechnology and Biosafety

    OpenAIRE

    Michael eWaithaka; Getachew eBelay; Miriam eKyotalimye; Margaret eKarembu

    2015-01-01

    In 2001, the Meeting of the COMESA Ministers of Agriculture raised concerns that proliferation of genetically modified organisms (GMOs) could impact significantly on trade and food security in the region. This triggered studies on a regional approach to biotechnology and biosafety policy in Eastern and Southern Africa. The studies and stakeholder consultations revealed that farm incomes would increase if they switched from conventional varieties of cotton and maize to GM counterparts. Commerc...

  7. Agriculture ideas and modernization of agriculture

    OpenAIRE

    Li Kangmin

    2011-01-01

    The development of agriculture has its own history from primitive agriculture, traditional agriculture to modem agriculture. Is it a historical road we must follow?Human being had experienced a long history of living on collection and hunting for about 2,000 to 3,000 millenniums since human being appeared on earth. After we settled down, another 10 millenniums passed. Human being began to cultivate crops and raise animals. Thus, we entered the primitive agriculture stage. The primitive agricu...

  8. Biotechnology: Japan. March 1985-November 1989 (Citations from the Biobusiness data base). Report for March 1985-November 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-01

    This bibliography contains citations concerning Japanese commercial agricultural and pharmaceutical biotechnology research and development. The major emphasis of this bibliography is on Japanese/U.S. cooperative agreements with discussion of patent rights, bulk pharmaceutical production facilities, bi-national technology transfer activities, and related topics. Some attention is given to Japanese industrial and governmental efforts to garner and protect new biotechnical processes and applications. This bibliography will be useful to individuals and organizations seeking biotechnical opportunities with Pacific Rim countries. (Contains 238 citations fully indexed and including a title list.)

  9. Perspectives for nano-biotechnology enabled protection and nutrition of plants.

    Science.gov (United States)

    Ghormade, Vandana; Deshpande, Mukund V; Paknikar, Kishore M

    2011-01-01

    Indiscriminate use of pesticides and fertilizers causes environmental pollution, emergence of agricultural pests and pathogens, and loss of biodiversity. Nanotechnology, by virtue of nanomaterial related properties, has potential agro-biotechnological applications for alleviation of these problems. The literature pertaining to the role of nanotechnology in plant and soil systems demonstrates that nanomaterials may assist in a) the controlled release of agrochemicals for nutrition and protection against pests and pathogens, b) delivery of genetic material, c) sensitive detection of plant disease and pollutants and d) protection and formation of soil structure. For instance, porous silica (15nm) and biodegradable, polymeric chitosan (78nm) nanoparticles displayed slow release of encapsulated pesticide and fertilizer, respectively. Further, nanosized gold (5-25nm) delivered DNA to plant cells while iron oxide (30nm) based nanosensors detected pesticides at minute levels. These functions assist the development of precision farming by minimizing pollution and maximizing the value of farming practice. PMID:21729746

  10. Third-generation biofuels: current and future research on microalgal lipid biotechnology

    Directory of Open Access Journals (Sweden)

    Li-Beisson Yonghua

    2013-11-01

    Full Text Available One pressing issue faced by modern societies is to develop renewable energy for transportation. Microalgal biomass offers an attractive solution due to its high (annual surface biomass productivity, efficient conversion of solar energy into chemical energy and the ability to grow on non-agricultural land. Despite these considerable advantages, microalgal biofuels are not yet commercially sustainable. Major challenges lie in improving both cultivation technologies and microalgal strains. A microalgal crop species is yet to emerge. In this review, we focus on researches aiming at understanding and harnessing lipid metabolism in microalgae in view of producing lipid-based biofuels such as biodiesel. Current biotechnological challenges and key progresses made in the development of algal models, genetic tools and lipid metabolic engineering strategies are reviewed. Possible future research directions to increase oil yields in microalgae are also highlighted.

  11. The gap between science and perception: the case of plant biotechnology in Europe.

    Science.gov (United States)

    Einsele, Arthur

    2007-01-01

    Although the global area of biotech crops continues to climb for the tenth consecutive year at a sustainable double-digit growth rate, the acceptance of biotech products from agriculture in Europe is still low. There is a gap between science and perception. It is a strong belief that the public turning against science and against GM food has been encouraged by the negative activities of NGO groups. Scientists have to overcome the purely risk-based discussion, and the benefits of plant biotechnology have to be made literally visible. GM food should be available, the benefits should be tangible and the consumer should have fun with such novel food. The gap could be reduced if genetically modified plants and the products thereof were regulated in the same way as classical products. PMID:17522817

  12. Current knowledge on biotechnological interesting seaweeds from the Magellan Region, Chile

    Directory of Open Access Journals (Sweden)

    Andrés Mansilla

    2012-08-01

    Full Text Available This paper is a compilation of data from investigations made with marine benthic algae from the Magellan Region that have biotechnological utilization in human consumption or medicine or as a source of phycolloids or food supplements or animal feed. The most important Rhodophyta species are: Ahnfeltia plicata (Hudson E.M. Fries for agarose production, Gigartina skottsbergii Setchell & N.L.Gardner for carrageenan production, and Callophyllis variegata (Bory de Saint-Vincent Kützing for human consumption. The most important Heterokontophyta species are: Macrocystis pyrifera (L. C. Agardh, and Durvillaea antarctica (Chamisso Hariot for human consumption, alginate production, and as biofertilizer for agricultural crops. M. pyrifera is also used as a food supplement for salmon, chickens, quails, sheep and bovines and for biofuel production.

  13. Nuclear techniques in food and agriculture. 1980-1994. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    The catalogue lists all publications of the International Atomic Energy Agency dealing with Food And Agriculture during the period 1980-1994. The major subjects covered include: food irradiation, insect and pest control, mutation plant breeding, plant biotechnology, soil fertility and irrigation, agrochemicals animal production and health

  14. Biotechnology Indonesia-Germany (BTIG). Phase 4. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-06

    In total 516 lines of populations and parental lines were tested for Al-tolerance in glass house trials. A quantitative inheritance of relative root growth under Al-stress conditions could be observed in the populations. Due to a segregation deviating from normal distribution and a very high environmental variance it could be concluded that only few genes might be involved in the inheritance of Al-tolerance. Based on diversity analysis and observations on Al-tolerance with different methods the cultivars 'Doko RC' and 'Willis' were selected as parental lines for a new population. It was clearly shown that this population is well suited for a marker-trait correlation. An international spectrum of soybean cultivars was tested on three field sites in Indonesia and related to results in glass house trials. In total three cultivars from Nigeria and Brazil were identified showing a higher Al-tolerance on acid soils. These cultivars will be used in coming breeding programs in Indonesia. A method for direct selection on a physiological tolerance reaction was developed in form of a dyeing method for Al-containing agarose gels. 18{sup th} Abridged Version: Molecular mechanisms of the features of Al-resistance of the plants are at present not known. Conventional breeding programmes have been deployed to increase the Al-resistance, as in the past technical genetic strategic did not lead to agriculturally useable increases in the resistance. The aim of the project was to look into the molecular mechanisms of the Al-resistance of soy plants and to examine the possibilities of a genetic increase in resistance. Accordingly the molecular stress-reply of Al-sensitive and tolerant soy cultivates was examined at a nucleic acid level. Numerous partial cDNA sequences could be isolated, which only showed a higher expression with tolerant cultivates under Al-stress load. Through the transformation of gene sequences in yeast and arabidopsis plants, a genetic increase in

  15. Enzyme research and applications in biotechnological intensification of biogas production.

    Science.gov (United States)

    Parawira, Wilson

    2012-06-01

    Biogas technology provides an alternative source of energy to fossil fuels in many parts of the world. Using local resources such as agricultural crop remains, municipal solid wastes, market wastes and animal waste, energy (biogas), and manure are derived by anaerobic digestion. The hydrolysis process, where the complex insoluble organic materials are hydrolysed by extracellular enzymes, is a rate-limiting step for anaerobic digestion of high-solid organic solid wastes. Biomass pretreatment and hydrolysis are areas in need of drastic improvement for economic production of biogas from complex organic matter such as lignocellulosic material and sewage sludge. Despite development of pretreatment techniques, sugar release from complex biomass still remains an expensive and slow step, perhaps the most critical in the overall process. This paper gives an updated review of the biotechnological advances to improve biogas production by microbial enzymatic hydrolysis of different complex organic matter for converting them into fermentable structures. A number of authors have reported significant improvement in biogas production when crude and commercial enzymes are used in the pretreatment of complex organic matter. There have been studies on the improvement of biogas production from lignocellulolytic materials, one of the largest and renewable sources of energy on earth, after pretreatment with cellulases and cellulase-producing microorganisms. Lipids (characterised as oil, grease, fat, and free long chain fatty acids, LCFA) are a major organic compound in wastewater generated from the food processing industries and have been considered very difficult to convert into biogas. Improved methane yield has been reported in the literature when these lipid-rich wastewaters are pretreated with lipases and lipase-producing microorganisms. The enzymatic treatment of mixed sludge by added enzymes prior to anaerobic digestion has been shown to result in improved degradation of the

  16. Proteomics meets blue biotechnology: a wealth of novelties and opportunities.

    Science.gov (United States)

    Hartmann, Erica M; Durighello, Emie; Pible, Olivier; Nogales, Balbina; Beltrametti, Fabrizio; Bosch, Rafael; Christie-Oleza, Joseph A; Armengaud, Jean

    2014-10-01

    Blue biotechnology, in which aquatic environments provide the inspiration for various products such as food additives, aquaculture, biosensors, green chemistry, bioenergy, and pharmaceuticals, holds enormous promise. Large-scale efforts to sequence aquatic genomes and metagenomes, as well as campaigns to isolate new organisms and culture-based screenings, are helping to push the boundaries of known organisms. Mass spectrometry-based proteomics can complement 16S gene sequencing in the effort to discover new organisms of potential relevance to blue biotechnology by facilitating the rapid screening of microbial isolates and by providing in depth profiles of the proteomes and metaproteomes of marine organisms, both model cultivable isolates and, more recently, exotic non-cultivable species and communities. Proteomics has already contributed to blue biotechnology by identifying aquatic proteins with potential applications to food fermentation, the textile industry, and biomedical drug development. In this review, we discuss historical developments in blue biotechnology, the current limitations to the known marine biosphere, and the ways in which mass spectrometry can expand that knowledge. We further speculate about directions that research in blue biotechnology will take given current and near-future technological advancements in mass spectrometry.

  17. Advanced health biotechnologies in Thailand: redefining policy directions

    Directory of Open Access Journals (Sweden)

    Velasco Román Pérez

    2013-01-01

    Full Text Available Abstract Background Thailand faces a significant burden in terms of treating and managing degenerative and chronic diseases. Moreover, incidences of rare diseases are rising. Many of these—such as diabetes, cancer, and inherited inborn metabolic diseases—have no definite treatments or cure. Meanwhile, advanced health biotechnology has been found, in principle, to be an effective solution for these health problems. Methods Qualitative approaches were employed to analyse the current situation and examine existing public policies related to advanced health biotechnologies in Thailand. The results of this analysis were then used to formulate policy recommendations. Results Our research revealed that the system in Thailand in relation to advanced health biotechnologies is fragmented, with multiple unaddressed gaps, underfunding of research and development (R&D, and a lack of incentives for the private sector. In addition, there are no clear definitions of advanced health biotechnologies, and coverage pathways are absent. Meanwhile, false advertising and misinformation are prevalent, with no responsible bodies to actively and effectively provide appropriate information and education (I&E. The establishment of a specialised institution to fill the gaps in this area is warranted. Conclusion The development and implementation of a comprehensive national strategic plan related to advanced health biotechnologies, greater investment in R&D and I&E for all stakeholders, collaboration among agencies, harmonisation of reimbursement across public health schemes, and provision of targeted I&E are specifically recommended.

  18. What is trust?: perspectives from farmers and other experts in the field of agriculture in Africa

    OpenAIRE

    Ezezika Obidimma C; Oh Jessica

    2012-01-01

    Abstract Background Agricultural biotechnology public-private partnerships (PPPs) have been recognized as necessary for improving agricultural productivity and increasing food production in sub-Saharan Africa. However, there are issues of public trust uniquely associated with PPPs involved in the development of genetically modified (GM) crops. Insight into how trust is understood by agbiotech stakeholders is needed to be able to promote and improve trust among actors comprising agbiotech PPPs...

  19. Development of marine biotechnology as a resource for novel proteases and their role in modern biotechnology.

    Science.gov (United States)

    Homaei, Ahmad; Lavajoo, Fatemeh; Sariri, Reyhaneh

    2016-07-01

    Marine environment consists of the largest sources diversified genetic pool of material with an enormous potential for a wide variety of enzymes including proteases. A protease hydrolyzes the peptide bond and most of proteases possess many industrial applications. Marine proteases differ considerably from those found in internal or external organs of invertebrates and vertebrates. In common with all enzymes, external factors such as temperature, pH and type of media are important for the activity, catalytic efficiency, stability and proper functioning of proteases. In this review valuable characteristics of proteases in marine organisms and their applications are gathered from a wide literature survey. Considering their biochemical significance and their increasing importance in biotechnology, a thorough understanding of marine proteases functioning could be of prime importance.

  20. Photo-biotechnological hydrogen production with microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Lehr, F.; Posten, C. [Inst. fuer Bio- und Lebensmitteltechnik, Univ. Karlsruhe (Germany); Renz, A.; Schaub, G. [Engler-Bunte-Inst., Univ. Karlsruhe (Germany)

    2008-07-01

    Some types of unicellular green algae have evolved the ability to use solar energy to produce hydrogen by splitting water. Compared to photosynthesis with terrestrial plants, microalgal hydrogen production exhibits higher photo conversion efficiencies, very low water demands, and no competition with agriculture for arable land use. The overall process includes microalgae growth by photosynthesis and subsequent hydrogen production. The main challenge in process development is the design of photo bioreactors with minimum energy demand for mixing and liquid handling and maximum overall efficiency. In an ongoing research project, process engineering fundamentals are presently being investigated in order to allow more accurate process design and cost estimates. (orig.)

  1. Agriculture ideas and modernization of agriculture

    Directory of Open Access Journals (Sweden)

    Li Kangmin

    2011-12-01

    Full Text Available The development of agriculture has its own history from primitive agriculture, traditional agriculture to modem agriculture. Is it a historical road we must follow?Human being had experienced a long history of living on collection and hunting for about 2,000 to 3,000 millenniums since human being appeared on earth. After we settled down, another 10 millenniums passed. Human being began to cultivate crops and raise animals. Thus, we entered the primitive agriculture stage. The primitive agriculture lasted for 7,000 years to get our food security on primitive crop cultivation and animal raising.

  2. Success Factors of Biotechnology Industry Based on Triangular Fuzzy Number

    Institute of Scientific and Technical Information of China (English)

    Lei; LEI

    2013-01-01

    Based on the theory of competitive advantage and value chain, this paper establishes the indicator system, and develop the strategic framework using the fuzzy Delphi method. Then the triangular fuzzy number model is established using Fuzzy Analytic Hierarchy Process, and the key factors influencing biotechnology industry are extracted. The results show that in terms of weight, the key factors influencing the success of biotechnology industry are sequenced as follows: "open innovation capacity", "quality and cost control ability", "advanced customer-oriented product manufacturing capacity", "technology R & D personnel’s capacity", "brand image building capacity", "logistics and sales capacity", "grasping the market demand trends". The manufacturers and government decision-making body can use this as the basis, to promote the development of the biotechnology industry.

  3. Gas, oil, coal, and environmental biotechnology research. Technology spotlight report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The missions of Biotechnology Research at Institute of Gas Technology (IGT) are to apply biological processes to the production and utilization of fossil energy and related products and to determine ways of accelerating the natural processes by which biological entities can help reduce contaminants in gas, oil, coal, and water. Biotechnology research at IGT resulted in the development of several processes and the accumulation ofextensive experience and expertise. The following are some of the ongoing and recently completed biotechnology research programs at IGT: Molecular biological enhancement of coal biodesulfurization; Removal of organic sulfur from coal; Microbial desulfurization and denitrification of oil shales; Biological removal of heavy metals from wastewater; Methane production from community wastes; Methane enrichment from anaerobic digestion of biomass.

  4. Biotechnological and molecular approaches for vanillin production: a review.

    Science.gov (United States)

    Kaur, Baljinder; Chakraborty, Debkumar

    2013-02-01

    Vanillin is one of the most widely used flavoring agents in the world. As the annual world market demand of vanillin could not be met by natural extraction, chemical synthesis, or tissue culture technology, thus biotechnological approaches may be replacement routes to make production of bio-vanillin economically viable. This review's main focus is to highlight significant aspects of biotechnology with emphasis on the production of vanillin from eugenol, isoeugenol, lignin, ferulic acid, sugars, phenolic stilbenes, vanillic acid, aromatic amino acids, and waste residues by applying fungi, bacteria, and plant cells. Production of biovanillin using GRAS lactic acid bacteria and metabolically engineered microorganisms, genetic organization of vanillin biosynthesis operons/gene cassettes and finally the stability of biovanillin generated through various biotechnological procedures are also critically reviewed in the later sections of the review.

  5. Biotechnology in Argentina: New products, new multilateral challenges

    Directory of Open Access Journals (Sweden)

    Luciano M. Donadio Linares

    2016-06-01

    Full Text Available Since 20 years ago, a public-private alliance has transformed Argentina into a remarkable global actor in developing biotechnological products for food and renewable energies. This strategic alliance resulted in the boosting of scientific knowledge, the extension of the production boundary, the expansion of international trade and the creation of the conditions for an integral development. Furthermore, given the characteristics of biotechnology as a new phenomenon, wto has become the field within where a number of disputes take place, disputes which not only controvert trade issues, but also the State’s limits to design and apply public policies on the matter at issue. As a consequence, the present article seeks to, on the one hand, describe how Argentina built its public policy on Biotechnology and, on the other hand, analyze the challenges that Argentina faces within the multilateral trade system

  6. 巴西农业生物技术年报%Brazil Agricultural Biotechnology Annual

    Institute of Scientific and Technical Information of China (English)

    Joao F.Silva; Julie Morin

    2012-01-01

    巴西是世界上第二大植物生物技术农作物生产国.预计在2011 -2012年间种植生物技术农作物的面积将增加16%.种植面积的增加主要归因于巴西增加了生物技术玉米事件的审批,并为农民提供信贷补贴.本报告还提供了最新数据用以反映新的贸易信息和政府资源.

  7. The Role of Public Opinion in Shaping Trajectories of Agricultural Biotechnology.

    Science.gov (United States)

    Malyska, Aleksandra; Bolla, Robert; Twardowski, Tomasz

    2016-07-01

    Science and technology are not autonomous entities and research trajectories are largely influenced by public opinion. The role of political decisions becomes especially evident in light of rapidly developing new breeding techniques (NBTs) and other genome editing methods for crop improvement. Decisions on how those new techniques should be regulated may not be based entirely on scientific rationale, and even if it is decided that crops produced by NBTs do not fall under the umbrella of genetically modified organisms (GMOs), their commercialization is by no means certain at this time. If and when adopted regulations do not comply with the public's perception of risks, policy makers will find themselves under pressure to ban or restrict the use of the respective products. PMID:27059762

  8. Resistance to agricultural biotechnology: the importance of distinguishing between weak and strong public attitudes.

    Science.gov (United States)

    Aerni, Philipp

    2013-10-01

    Empirical research shows that European governments and retailers are unlikely to be directly punished by taxpayers and consumers if they move away from their anti-GMO positions and policies. However, it is ultimately not the weak attitudes of taxpayers and consumers that matter to governments and retailers but the strong attitudes of the noisy anti-biotech movement. (Image: Highway signs: ©maxmitzu - Fotolia.com; woman and balance: ©lassedesignen - Fotolia.com).

  9. The Role of Public Opinion in Shaping Trajectories of Agricultural Biotechnology.

    Science.gov (United States)

    Malyska, Aleksandra; Bolla, Robert; Twardowski, Tomasz

    2016-07-01

    Science and technology are not autonomous entities and research trajectories are largely influenced by public opinion. The role of political decisions becomes especially evident in light of rapidly developing new breeding techniques (NBTs) and other genome editing methods for crop improvement. Decisions on how those new techniques should be regulated may not be based entirely on scientific rationale, and even if it is decided that crops produced by NBTs do not fall under the umbrella of genetically modified organisms (GMOs), their commercialization is by no means certain at this time. If and when adopted regulations do not comply with the public's perception of risks, policy makers will find themselves under pressure to ban or restrict the use of the respective products.

  10. Risk Perceptions, Social Interactions and the Influence of Information on Social Attitudes to Agricultural Biotechnology

    OpenAIRE

    Veeman, Michele M.; Adamowicz, Wiktor L.; Hu, Wuyang

    2005-01-01

    We assess Canadian’s risk perceptions for genetically modified (GM) food and probe influences of socio-economic, demographic and other factors impinging on these perceptions. An internet-administered questionnaire with two stated choice split-sample experiments that approximate market choices of individual grocery shoppers is applied to elicit purchase behavior from 882 respondents across Canada. Data are collected to assess the influence on respondents’ choices for a specific food product (b...

  11. Food safety assessment of an antifungal protein from Moringa oleifera seeds in an agricultural biotechnology perspective.

    Science.gov (United States)

    Pinto, Clidia E M; Farias, Davi F; Carvalho, Ana F U; Oliveira, José T A; Pereira, Mirella L; Grangeiro, Thalles B; Freire, José E C; Viana, Daniel A; Vasconcelos, Ilka M

    2015-09-01

    Mo-CBP3 is an antifungal protein produced by Moringa oleifera which has been investigated as potential candidate for developing transgenic crops. Before the use of novel proteins, food safety tests must be conducted. This work represents an early food safety assessment of Mo-CBP3, using the two-tiered approach proposed by ILSI. The history of safe use, mode of action and results for amino acid sequence homology using the full-length and short contiguous amino acids sequences indicate low risk associated to this protein. Mo-CBP3 isoforms presented a reasonable number of alignments (>35% identity) with allergens in a window of 80 amino acids. This protein was resistant to pepsin degradation up to 2 h, but it was susceptible to digestion using pancreatin. Many positive attributes were presented for Mo-CBP3. However, this protein showed high sequence homology with allergens and resistance to pepsin digestion that indicates that further hypothesis-based testing on its potential allergenicity must be done. Additionally, animal toxicity evaluations (e.g. acute and repeated dose oral exposure assays) must be performed to meet the mandatory requirements of several regulatory agencies. Finally, the approach adopted here exemplified the importance of performing an early risk assessment of candidate proteins for use in plant transformation programs. PMID:26032632

  12. Food safety assessment of an antifungal protein from Moringa oleifera seeds in an agricultural biotechnology perspective.

    Science.gov (United States)

    Pinto, Clidia E M; Farias, Davi F; Carvalho, Ana F U; Oliveira, José T A; Pereira, Mirella L; Grangeiro, Thalles B; Freire, José E C; Viana, Daniel A; Vasconcelos, Ilka M

    2015-09-01

    Mo-CBP3 is an antifungal protein produced by Moringa oleifera which has been investigated as potential candidate for developing transgenic crops. Before the use of novel proteins, food safety tests must be conducted. This work represents an early food safety assessment of Mo-CBP3, using the two-tiered approach proposed by ILSI. The history of safe use, mode of action and results for amino acid sequence homology using the full-length and short contiguous amino acids sequences indicate low risk associated to this protein. Mo-CBP3 isoforms presented a reasonable number of alignments (>35% identity) with allergens in a window of 80 amino acids. This protein was resistant to pepsin degradation up to 2 h, but it was susceptible to digestion using pancreatin. Many positive attributes were presented for Mo-CBP3. However, this protein showed high sequence homology with allergens and resistance to pepsin digestion that indicates that further hypothesis-based testing on its potential allergenicity must be done. Additionally, animal toxicity evaluations (e.g. acute and repeated dose oral exposure assays) must be performed to meet the mandatory requirements of several regulatory agencies. Finally, the approach adopted here exemplified the importance of performing an early risk assessment of candidate proteins for use in plant transformation programs.

  13. Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre (BARC, Mumbai 400085, India

    Directory of Open Access Journals (Sweden)

    Ashok Badigannavar

    2015-08-01

    Full Text Available Phytic acid is the major storage form of phosphorus in cereals. It binds with nutritionally important metals and affects mineral bioavailability. The present study analyzed phytic acid, inorganic phosphorus (IP content, seed weight, and grain yield in 98 sorghum landraces and varieties grown in two environments to evaluate genotypic and environmental effects and to determine trait stability. Genotypic effects and genotype × interaction were significant for phytic acid concentration and yield components. A promising landrace, Malkhed-1, had the lowest phytic acid (0.015 mg g− 1 concentration, with a higher yield (70.02 g plant− 1, than the check variety M-35-1 in both environments. Similarly, among the varieties, Phule Maulee showed the lowest phytic acid (0.07 mg g− 1 and a higher grain yield of 53.15 g plant− 1 in both environments. Phytic acid and IP were negatively correlated (r = − 0.34, whereas grain yield and seed weight were positively correlated (r = 0.20. Cluster analysis based on seed phosphorus traits and yield components identified five and six clusters, respectively. Genotypes containing low phytic acid with high yield identified in this study would be helpful for increasing the bioavailability of mineral nutrients.

  14. Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre (BARC), Mumbai 400085, India

    OpenAIRE

    Ashok Badigannavar; Girish, G; T.R. Ganapathi

    2015-01-01

    Phytic acid is the major storage form of phosphorus in cereals. It binds with nutritionally important metals and affects mineral bioavailability. The present study analyzed phytic acid, inorganic phosphorus (IP) content, seed weight, and grain yield in 98 sorghum landraces and varieties grown in two environments to evaluate genotypic and environmental effects and to determine trait stability. Genotypic effects and genotype × interaction were significant for phytic acid concentration and yield...

  15. Sharing Malaysian experience with the development of biotechnology-derived food crops.

    Science.gov (United States)

    Abu Bakar, Umi K; Pillai, Vilasini; Hashim, Marzukhi; Daud, Hassan Mat

    2005-12-01

    Biotechnology-derived food crops are currently being developed in Malaysia mainly for disease resistance and improved post harvest quality. The modern biotechnology approach is adopted because of its potential to overcome constraints faced by conventional breeding techniques. Research on the development of biotechnology-derived papaya, pineapple, chili, passion fruit, and citrus is currently under way. Biotechnology-derived papaya developed for resistance to papaya ringspot virus (PRSV) and improved postharvest qualities is at the field evaluation stage. Pineapple developed for resistance to fruit black heart disorder is also being evaluated for proof-of-concept. Other biotechnology-derived food crops are at early stages of gene cloning and transformation. Activities and products involving biotechnology-derived crops will be fully regulated in the near future under the Malaysian Biosafety Law. At present they are governed only by guidelines formulated by the Genetic Modification Advisory Committee (GMAC), Malaysia. Commercialization of biotechnology-derived crops involves steps that require GMAC approval for all field evaluations and food-safety assessments before the products are placed on the market. Public acceptance of the biotechnology product is another important factor for successful commercialization. Understanding of biotechnology is generally low among Malaysians, which may lead to low acceptance of biotechnology-derived products. Initiatives are being taken by local organizations to improve public awareness and acceptance of biotechnology. Future research on plant biotechnology will focus on the development of nutritionally enhanced biotechnology-derived food crops that can provide more benefits to consumers.

  16. Sharing Malaysian experience with the development of biotechnology-derived food crops.

    Science.gov (United States)

    Abu Bakar, Umi K; Pillai, Vilasini; Hashim, Marzukhi; Daud, Hassan Mat

    2005-12-01

    Biotechnology-derived food crops are currently being developed in Malaysia mainly for disease resistance and improved post harvest quality. The modern biotechnology approach is adopted because of its potential to overcome constraints faced by conventional breeding techniques. Research on the development of biotechnology-derived papaya, pineapple, chili, passion fruit, and citrus is currently under way. Biotechnology-derived papaya developed for resistance to papaya ringspot virus (PRSV) and improved postharvest qualities is at the field evaluation stage. Pineapple developed for resistance to fruit black heart disorder is also being evaluated for proof-of-concept. Other biotechnology-derived food crops are at early stages of gene cloning and transformation. Activities and products involving biotechnology-derived crops will be fully regulated in the near future under the Malaysian Biosafety Law. At present they are governed only by guidelines formulated by the Genetic Modification Advisory Committee (GMAC), Malaysia. Commercialization of biotechnology-derived crops involves steps that require GMAC approval for all field evaluations and food-safety assessments before the products are placed on the market. Public acceptance of the biotechnology product is another important factor for successful commercialization. Understanding of biotechnology is generally low among Malaysians, which may lead to low acceptance of biotechnology-derived products. Initiatives are being taken by local organizations to improve public awareness and acceptance of biotechnology. Future research on plant biotechnology will focus on the development of nutritionally enhanced biotechnology-derived food crops that can provide more benefits to consumers. PMID:16465992

  17. 75 FR 15713 - Office of Biotechnology Activities; Office of Science Policy; Office of the Director; Notice of a...

    Science.gov (United States)

    2010-03-30

    ... HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Office of Science..., Advisory Committee Coordinator, Office of Biotechnology Activities, Office of Science Policy, Office of the... of Biotechnology Activities, National Institutes of Health. BILLING CODE 4140-01-P...

  18. 75 FR 10293 - Office of Biotechnology Activities; Office of Science Policy; Office of the Director; Notice of a...

    Science.gov (United States)

    2010-03-05

    ... HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Office of Science.... Laurie Lewallen, Advisory Committee Coordinator, Office of Biotechnology Activities, Office of Science.... Patterson, Director, Office of Biotechnology Activities, National Institutes of Health. BILLING CODE...

  19. Extremophilic adaptations and biotechnological applications in diverse environments

    Directory of Open Access Journals (Sweden)

    Brendan P. Burns

    2016-07-01

    Full Text Available Extremophiles are organisms that tolerate and thrive in the most extreme and challenging conditions to life. As a result of these extreme environmental insults extremophiles have developed a number of interesting adaptations to cellular membranes, proteins and extracellular metabolites. These uniquely adapted biological molecules and systems already have roles in a number of biotechnological fields. In this review we give a brief overview of a number of different extreme environments and the potential for biotechnological innovation from the microbes which inhabit them.

  20. Plant Biotechnology Institute (Canada): Annual report, 1991-1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The National Research Council operates more than a dozen national laboratories along with programs for scientific-technical information and industrial research assistance. In the biotechnology program, the Plant Biotechnology Institute has the mission of delivering new, exploitable biological and biochemical methods for the control and genetic alteration of plant development, especially at the cellular and molecular levels. This annual report covers the highlights of the year, the institute and its organizaiton, activities, management and administration, resource profiles, the Advisory Board, and research activities. Also presents a list of publications, awards and distinctions, patents and licenses, presentations, participation on committees, and personnel.