WorldWideScience

Sample records for agricultural biotechnology products

  1. College Students' View of Biotechnology Products and Practices in Sustainable Agriculture Systems

    Science.gov (United States)

    Anderson, William A.

    2008-01-01

    Sustainable agriculture implies the use of products and practices that sustain production, protect the environment, ensure economic viability, and maintain rural community viability. Disagreement exists as to whether or not the products and practices of modern biotechnological support agricultural sustainability. The purpose of this study was to…

  2. The costly benefits of opposing agricultural biotechnology.

    Science.gov (United States)

    Apel, Andrew

    2010-11-30

    Rigorous application of a simple definition of what constitutes opposition to agricultural biotechnology readily encompasses a wide array of key players in national and international systems of food production, distribution and governance. Even though the sum of political and financial benefits of opposing agricultural biotechnology appears vastly to outweigh the benefits which accrue to providers of agricultural biotechnology, technology providers actually benefit from this opposition. If these barriers to biotechnology were removed, subsistence farmers still would not represent a lucrative market for improved seed. The sum of all interests involved ensures that subsistence farmers are systematically denied access to agricultural biotechnology. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Study on the Agricultural Biotechnology Innovation Based on the Product Differentiation

    Institute of Scientific and Technical Information of China (English)

    Gang; WU; Yong; DU

    2014-01-01

    Based on product differentiation,this paper researches the innovation of agricultural biotechnology. In the duopoly structure,the company’s investment in innovation is affected by the product differentiation,and the greater the difference,the greater the willingness to increase investment and improve quality; at the same time,low innovative cost companies will choose a higher level of investment in innovation and quality. If there is no difference between the products,the companies with high cost of innovation abandon quality competition,and the companies with low cost of innovation " monopolize" the market.

  4. "Othering" agricultural biotechnology: Slovenian media representation of agricultural biotechnology.

    Science.gov (United States)

    Zajc, Jožica; Erjavec, Karmen

    2014-08-01

    While studies on media representations of agricultural biotechnology mostly analyse media texts, this work is intended to fill a research gap with an analysis of journalistic interpretations of media representations. The purpose of this project was to determine how news media represent agricultural biotechnology and how journalists interpret their own representations. A content and critical discourse analysis of news texts published in the Slovenian media over two years and in-depth interviews with their authors were conducted. News texts results suggest that most of the news posts were "othering" biotechnology and biotechnologists: biotechnology as a science and individual scientists are represented as "they," who are socially irresponsible, ignorant, arrogant, and "our" enemies who produce unnatural processes and work for biotechnology companies, whose greed is destroying people, animals, and the environment. Most journalists consider these representations to be objective because they have published the biotechnologists' opinions, despite their own negative attitudes towards biotechnology.

  5. Application of agricultural biotechnology to improve food nutrition and healthcare products.

    Science.gov (United States)

    Sun, Samuel S M

    2008-01-01

    Crop plants provide essential food nutrients to humans and livestock, including carbohydrates, lipids, proteins, minerals and vitamins, directly or indirectly. The level and composition of food nutrients vary significantly in different food crops. As a result, plant foods are often deficient in certain nutrient components. Relying on a single food crop as source of nutrients thus will not achieve a balanced diet and results in malnutrition and deficiency diseases, especially in the developing countries, due mainly to poverty. The development and application of biotechnology offers opportunities and novel possibilities to enhance the nutritional quality of crops, particularly when the necessary genetic variability is not available. While initial emphasis of agricultural biotechnology has been placed on input traits of crops such as herbicide tolerance, insect resistance and virus resistance, increasing effort and promising proof-of-concept products have been made in output traits including enhancing the nutritional quality of crops since 1990s. Advancements in plant transformation and transgene expression also allow the use of plants as bioreactors to produce a variety of bio-products at large scale and low cost. Many proof-of-concept plant-derived healthcare products have been generated and several commercialized.

  6. Development of an agricultural biotechnology crop product: testing from discovery to commercialization.

    Science.gov (United States)

    Privalle, Laura S; Chen, Jingwen; Clapper, Gina; Hunst, Penny; Spiegelhalter, Frank; Zhong, Cathy X

    2012-10-17

    "Genetically modified" (GM) or "biotech" crops have been the most rapidly adopted agricultural technology in recent years. The development of a GM crop encompasses trait identification, gene isolation, plant cell transformation, plant regeneration, efficacy evaluation, commercial event identification, safety evaluation, and finally commercial authorization. This is a lengthy, complex, and resource-intensive process. Crops produced through biotechnology are the most highly studied food or food component consumed. Before commercialization, these products are shown to be as safe as conventional crops with respect to feed, food, and the environment. This paper describes this global process and the various analytical tests that must accompany the product during the course of development, throughout its market life, and beyond.

  7. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security.

    Science.gov (United States)

    Anderson, Jennifer A; Gipmans, Martijn; Hurst, Susan; Layton, Raymond; Nehra, Narender; Pickett, John; Shah, Dilip M; Souza, Thiago Lívio P O; Tripathi, Leena

    2016-01-20

    As global populations continue to increase, agricultural productivity will be challenged to keep pace without overtaxing important environmental resources. A dynamic and integrated approach will be required to solve global food insecurity and position agriculture on a trajectory toward sustainability. Genetically modified (GM) crops enhanced through modern biotechnology represent an important set of tools that can promote sustainable agriculture and improve food security. Several emerging biotechnology approaches were discussed in a recent symposium organized at the 13th IUPAC International Congress of Pesticide Chemistry meeting in San Francisco, CA, USA. This paper summarizes the innovative research and several of the new and emerging technologies within the field of agricultural biotechnology that were presented during the symposium. This discussion highlights how agricultural biotechnology fits within the context of sustainable agriculture and improved food security and can be used in support of further development and adoption of beneficial GM crops.

  8. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology.

    Science.gov (United States)

    Holaskova, Edita; Galuszka, Petr; Frebort, Ivo; Oz, M Tufan

    2015-11-01

    Antimicrobial peptides (AMPs) are vital components of the innate immune system of nearly all living organisms. They generally act in the first line of defense against various pathogenic bacteria, parasites, enveloped viruses and fungi. These low molecular mass peptides are considered prospective therapeutic agents due to their broad-spectrum rapid activity, low cytotoxicity to mammalian cells and unique mode of action which hinders emergence of pathogen resistance. In addition to medical use, AMPs can also be employed for development of innovative approaches for plant protection in agriculture. Conferred disease resistance by AMPs might help us surmount losses in yield, quality and safety of agricultural products due to plant pathogens. Heterologous expression in plant-based systems, also called plant molecular farming, offers cost-effective large-scale production which is regarded as one of the most important factors for clinical or agricultural use of AMPs. This review presents various types of AMPs as well as plant-based platforms ranging from cell suspensions to whole plants employed for peptide production. Although AMP production in plants holds great promises for medicine and agriculture, specific technical limitations regarding product yield, function and stability still remain. Additionally, establishment of particular stable expression systems employing plants or plant tissues generally requires extended time scale for platform development compared to certain other heterologous systems. Therefore, fast and promising tools for evaluation of plant-based expression strategies and assessment of function and stability of the heterologously produced AMPs are critical for molecular farming and plant protection.

  9. Certification, agricultural waste, organic production, herbal medicine and biotechnology in the conception of farmers of the State of Goiás

    Directory of Open Access Journals (Sweden)

    Sabrina Lucas Ribeiro Freitas

    Full Text Available ABSTRACT The organic production system aims not at the intensive exploitation of resources, but the correct management of waste, the use of alternative treatments of animal diseases, and the utilization of some biotechnologies to assist in production. This is an exploratory study to evaluate the way farmers perceive the certification of their farms, the organic agricultural production, waste control, and the use of herbal medicine and biotechnologies in their properties. Fifteen farmers from the Dom Fernando Gomes dos Santos (GI settlement, in Itaberaí, participated in the study, besides 15 farmers (GII who are not participants in agrarian reform programs from different municipalities in the state of Goiás. Information was collected using questionnaires that addressed issues related to certification of farms, production of waste, organic agricultural production, herbal medicine, and biotechnology. Most farmers of GI and GII were unfamiliar with farm certification. Most GII farmers knew about agricultural waste, but few GI farmers knew its meaning. Most farmers of the two groups were familiar with the term organic agricultural production. More GII farmers were familiar with herbal medicines than GI. In both groups the term biotechnology was unknown to most people. It was concluded that this lack of knowledge by the majority of farmers about most topics presented shows the need to plan and execute actions to assist in the dissemination of information among farmers, settlers or not, using practical and functional strategies.

  10. Agricultural Biotechnology Research and Development in Hunan

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Recent agricultural biotechnology research and advances in the province are reviewed. Targets and practices for biotechnological development in depth are discussed, with stress on the talent's training, new techniques' establishment and its industrialization, starting from the existing level and problems in the field in the province.

  11. Essential features of responsible governance of agricultural biotechnology

    OpenAIRE

    Hartley, Sarah; Gillund, Frøydis; van Hove, Lilian; Wickson, Fern

    2016-01-01

    Agricultural biotechnology continues to generate considerable controversy. We argue that to address this controversy, serious changes to governance are needed. The new wave of genomic tools and products (e.g., CRISPR, gene drives, RNAi, synthetic biology, and genetically modified [GM] insects and fish), provide a particularly useful opportunity to reflect on and revise agricultural biotechnology governance. In response, we present five essential features to advance more socially responsible f...

  12. Product, not process! Explaining a basic concept in agricultural biotechnologies and food safety.

    Science.gov (United States)

    Tagliabue, Giovanni

    2017-12-01

    Most life scientists have relentlessly recommended any evaluative approach of agri-food products to be based on examination of the phenotype, i.e. the actual characteristics of the food, feed and fiber varieties: the effects of any new cultivar (or micro-organism, animal) on our health are not dependent on the process(es), the techniques used to obtain it.The so-called "genetically modified organisms" ("GMOs"), on the other hand, are commonly framed as a group with special properties - most frequently seen as dubious, or even harmful.Some social scientists still believe that considering the process is a correct background for science-based understanding and regulation. To show that such an approach is utterly wrong, and to invite scientists, teachers and science communicators to explain this mistake to students, policy-makers and the public at large, we imagined a dialogue between a social scientist, who has a positive opinion about a certain weight that a process-based orientation should have in the risk assessment, and a few experts who offer plenty of arguments against that view. The discussion focuses on new food safety.

  13. Essential Features of Responsible Governance of Agricultural Biotechnology.

    Directory of Open Access Journals (Sweden)

    Sarah Hartley

    2016-05-01

    Full Text Available Agricultural biotechnology continues to generate considerable controversy. We argue that to address this controversy, serious changes to governance are needed. The new wave of genomic tools and products (e.g., CRISPR, gene drives, RNAi, synthetic biology, and genetically modified [GM] insects and fish, provide a particularly useful opportunity to reflect on and revise agricultural biotechnology governance. In response, we present five essential features to advance more socially responsible forms of governance. In presenting these, we hope to stimulate further debate and action towards improved forms of governance, particularly as these new genomic tools and products continue to emerge.

  14. Essential Features of Responsible Governance of Agricultural Biotechnology.

    Science.gov (United States)

    Hartley, Sarah; Gillund, Frøydis; van Hove, Lilian; Wickson, Fern

    2016-05-01

    Agricultural biotechnology continues to generate considerable controversy. We argue that to address this controversy, serious changes to governance are needed. The new wave of genomic tools and products (e.g., CRISPR, gene drives, RNAi, synthetic biology, and genetically modified [GM] insects and fish), provide a particularly useful opportunity to reflect on and revise agricultural biotechnology governance. In response, we present five essential features to advance more socially responsible forms of governance. In presenting these, we hope to stimulate further debate and action towards improved forms of governance, particularly as these new genomic tools and products continue to emerge.

  15. New technologies in agricultural biotechnology

    Directory of Open Access Journals (Sweden)

    Andras Szekacs

    2016-12-01

    Full Text Available Technologies that emerged during the last decade as new tools occasionally represent fundamentally new means of genome modification, which, in addition to the scientific novelty, faces legislators with new challenge by giving a new meaning to both the biochemical/molecular biological and legal meaning to genetically modified organisms (GMOs. Emerging plant genetic technologies are categorized as zinc finger nuclease (ZFN technology; oligonucleotide directed mutagenesis; cisgenesis and intragenesis; RNA-dependent DNA methylation by RNA interference; grafting on GM rootstock; reverse breeding; agro-infiltration; and synthetic genomics. Although all these methods apply biotechnology processes to create new plant varieties, it debated whether all result in GMOs according to the current legal definition. Official risk assessment of these technologies is a task of outstanding weight of the authority.

  16. Design for values in agricultural biotechnology

    NARCIS (Netherlands)

    Belt, van den Henk

    2015-01-01

    Agricultural biotechnology dates from the last two decades of the twentieth century. It involves the creation of plants and animals with new useful traits by inserting one or more genes taken from other species. New legal possibilities for patenting transgenic organisms and isolated genes have be

  17. Design for values in agricultural biotechnology

    NARCIS (Netherlands)

    Belt, van den Henk

    2015-01-01

    Agricultural biotechnology dates from the last two decades of the twentieth century. It involves the creation of plants and animals with new useful traits by inserting one or more genes taken from other species. New legal possibilities for patenting transgenic organisms and isolated genes have be

  18. Biotechnological production of citric acid

    National Research Council Canada - National Science Library

    Max, Belén; Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Converti, Attilio; Domínguez, José Manuel

    2010-01-01

    This work provides a review about the biotechnological production of citric acid starting from the physicochemical properties and industrial applications, mainly in the food and pharmaceutical sectors...

  19. How Japanese students reason about agricultural biotechnology.

    Science.gov (United States)

    Maekawa, Fumi; Macer, Darryl

    2004-10-01

    Many have claimed that education of the ethical issues raised by biotechnology is essential in universities, but there is little knowledge of its effectiveness. The focus of this paper is to investigate how university students assess the information given in class to make their own value judgments and decisions relating to issues of agricultural biotechnology, especially over genetically modified organisms (GMOs). Analysis of homework reports related with agricultural biotechnology after identification of key concepts and ideas in each student report is presented. The ideas were sorted into different categories. The ideas were compared with those in the reading materials using the same categories. These categories included: concern about affects on humans, affects on the environment, developing countries and starvation, trust in industry, responsibility of scientists, risk perception, media influence, need for (international) organizations or third parties, and information dissemination. What was consistent through the different years was that more than half of the students took a "neutral" position. A report was scored as "neutral" when the report included both the positive and negative side of an issue, or when the student could not make a definite decision about the use of GMOs and GM food. While it may be more difficult to defend a strong ''for" or "against" position, some students used logical arguments successfully in doing so. Sample comments are presented to depict how Japanese students see agricultural technology, and how they value its application, with comparisons to the general social attitudes towards biotechnology.

  20. Agricultural biotechnology and its contribution to the global knowledge economy.

    Science.gov (United States)

    Aerni, Philipp

    2007-01-01

    The theory of neoclassical welfare economics largely shaped international and national agricultural policies during the Cold War period. It treated technology as an exogenous factor that could boost agricultural productivity but not necessarily sustainable agriculture. New growth theory, the economic theory of the new knowledge economy, treats technological change as endogenous and argues that intangible assets such as human capital and knowledge are the drivers of sustainable economic development. In this context, the combined use of agricultural biotechnology and information technology has a great potential, not just to boost economic growth but also to empower people in developing countries and improve the sustainable management of natural resources. This article outlines the major ideas behind new growth theory and explains why agricultural economists and agricultural policy-makers still tend to stick to old welfare economics. Finally, the article uses the case of the Cassava Biotechnology Network (CBN) to illustrate an example of how new growth theory can be applied in the fight against poverty. CBN is a successful interdisciplinary crop research network that makes use of the new knowledge economy to produce new goods that empower the poor and improve the productivity and nutritional quality of cassava. It shows that the potential benefits of agricultural biotechnology go far beyond the already known productivity increases and pesticide use reductions of existing GM crops.

  1. The role of biotechnology for agricultural sustainability in Africa

    OpenAIRE

    2007-01-01

    Sub-Saharan Africa could have a shortfall of nearly 90 Mt of cereals by the year 2025 if current agricultural practices are maintained. Biotechnology is one of the ways to improve agricultural production. Insect-resistant varieties of maize and cotton suitable for the subcontinent have been identified as already having a significant impact. Virus-resistant crops are under development. These include maize resistant to the African endemic maize streak virus and cassava resistant to African cass...

  2. Agricultural biotechnology: Status and prospective

    Directory of Open Access Journals (Sweden)

    Drinić Goran

    2003-01-01

    Full Text Available The development of the DNA recombinant technology has provided the transfer of a single or several genes within or among species whereby organisms with new traits were developed. Such organisms have been called genetically modified organisms. The first genetically modified varieties of cultivated plants entered the market in 1996 and since then areas sown with such crops has been increasing, amounting to 60 M ha in 2002. During the stated period, genetically modified varieties and hybrids of cultivated plants were developed with a gene introduced for tolerance to herbicides, resistance to insects, prolonged maturity period and improved quality. However, heavy disputes have arisen all over the world relating the possible gain and potential risks from the growth and utilization of modified crops. First of all, there are ethical issues related directly to gene transfer from a species to a species, then effects of the introduced gene on the environment and human health, economical justification of cultivating genetically modified crops, consumers confidence in the legislation, labeling the products encompassing a genetic modification, effects on the global market and ever increasing food requirements. The effect of products derived from genetically modified plants on human health depends on a specific content of a product itself and can potentially be useful if a product contains an increased content of vitamins, with an allergen removed, or potentially harmful, if a new allergen or a toxin were introduced by genetic modifications. Each genetically modified product is subjected to a rigorous testing of its safety prior to its introduction into a food chain. It encompasses molecular, biochemical, toxicological, nutritional and allergenic tests. Many countries apply legislation that stipulates labeling of genetically modified products, whereby the fact that the commodity encompasses products of genetic modification is clearly pointed out. .

  3. Energy Crop and Biotechnology for Biofuel Production

    Institute of Scientific and Technical Information of China (English)

    Liangcai Peng; Neal Gutterson

    2011-01-01

    @@ Selection of energy crops is the first priority for large-scale biofuel production in China.As a major topic, it was extensively discussed in the Second International Symposium on Bioenergy and Biotechnology, held from October 16-19(th), 2010 in Huazhong Agricultural University(HZAU), Wuhan, China, with more than one hundred registered participants(Figure 1).

  4. The use of GMOs (genetically modified organisms): agricultural biotechnology or agricultural biopolitics?

    Science.gov (United States)

    Nuti, Marco; Felici, Cristiana; Agnolucci, Monica

    2007-01-01

    Agricultural biotechnologies embrace a large array of conventional and modern technologies, spanning from composting organic by-products of agriculture to innovative improvement of quality traits of about twenty out of the mostly cultivated plants. In EU a rather restrictive legislative framework has been installed for GMOs, requiring a risk assessment disproportionate with respect to conventional agriculture and organic farming products. The latter are far from being proved safe for human and animal health, and for the environment. Biotechnology of GMOs has been overtaken by biopolitics. On one side there are biotechnological challenges to be tackled, on another side there is plenty of ground for biopolitical decisions about GMOs. Perhaps the era of harsh confrontation could be fruitfully replaced by sensible cooperation, in order to get a sustainable agricultural development.

  5. BIOTECHNOLOGY – SCIENCE AND SECTOR OF AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Doroshenko N. P.

    2016-02-01

    Full Text Available This article presents information about the features of biotechnology as the driving force of scientific and technological progress. The national programs of the leading countries of the world, it is one of the priority sectors, reflecting the level of the socio-economic condition of the society. Biotechnology is now successfully solves such vital tasks as providing food, the establishment of effective medicaments, obtaining fuel based on renewable raw materials, maintaining ecological balance, conservation of biological resources of the Earth. The development of agriculture in modern conditions is impossible without agricultural biotechnology. It is directly related to viticulture. Choosing an object of an integrated system (embryos, apical meristem, axillary buds, it is possible to clone plants, i.e. produce plants identical to the original. If the same as the object to use isolated cells or protoplasts, in this case, there will most likely altered versions, creating diversity for the breeder. Genetic engineering – the science of younger, since the establishment of the first chimeric DNA molecule. The origin of genetic engineering is rooted in the development of molecular genetics, biochemistry. These technologies, undoubtedly progressive, but their biological safety is still insufficiently explored and is a danger to all life on Earth. The leading Western powers carried out strict control over the introduction of transgenic crop plants, as they are in agrocenosis new biological risks that may adversely affect the plants, animals and humans. In Russia, as in other countries, have already adopted the law “State regulation of genetic engineering”

  6. Agricultural Biotechnology : Transgenics in Agriculture and their Implications for Developing Countries

    OpenAIRE

    Pehu, Eija; Ragasa, Catherine

    2008-01-01

    Technological innovation in agriculture can bring enormous benefits to the poor. High-yielding varieties of staple food crops have improved agricultural productivity, raised incomes, and reduced food prices. Innovations in plant breeding research based on advances in genetics that make it possible to manipulate plant DNA. Referred to as 'biotechnology,' its use in agriculture is controversial, particularly with regard to the development and use of genetically modified organisms (GMOs), also k...

  7. Plant biotechnology patents: applications in agriculture and medicine.

    Science.gov (United States)

    Hefferon, Kathleen

    2010-06-01

    Recent advances in agricultural biotechnology have enabled the field of plant biology to move forward in great leaps and bounds. In particular, recent breakthroughs in molecular biology, plant genomics and crop science have brought about a paradigm shift of thought regarding the manner by which plants can be utilized both in agriculture and in medicine. Besides the more well known improvements in agronomic traits of crops such as disease resistance and drought tolerance, plants can now be associated with topics as diverse as biofuel production, phytoremediation, the improvement of nutritional qualities in edible plants, the identification of compounds for medicinal purposes in plants and the use of plants as therapeutic protein production platforms. This diversification of plant science has been accompanied by the great abundance of new patents issued in these fields and, as many of these inventions approach commercial realization, the subsequent increase in agriculturally-based industries. While this review chapter is written primarily for plant scientists who have great interest in the new directions being taken with respect to applications in agricultural biotechnology, those in other disciplines, such as medical researchers, environmental scientists and engineers, may find significant value in reading this article as well. The review attempts to provide an overview of the most recent patents issued for plant biotechnology with respect to both agriculture and medicine. The chapter concludes with the proposal that the combined driving forces of climate change, as well as the ever increasing needs for clean energy and food security will play a pivotal role in leading the direction for applied plant biotechnology research in the future.

  8. Challenges of climate change: omics-based biology of saffron plants and organic agricultural biotechnology for sustainable saffron production.

    Science.gov (United States)

    Husaini, Amjad M

    2014-01-01

    Kashmir Valley is a major saffron (Crocus sativus Kashmirianus) growing area of the world, second only to Iran in terms of production. In Kashmir, saffron is grown on uplands (termed in the local language as "Karewas"), which are lacustrine deposits located at an altitude of 1585 to 1677 m above mean sea level (amsl), under temperate climatic conditions. Kashmir, despite being one of the oldest historical saffron-producing areas, faces a rapid decline of saffron industry. Among many other factors responsible for decline of saffron industry the preponderance of erratic rainfalls and drought-like situation have become major challenges imposed by climate change. Saffron has a limited coverage area as it is grown as a 'niche crop' and is a recognized "geographical indication," growing under a narrow microclimatic condition. As such it has become a victim of climate change effects, which has the potential of jeopardizing the livelihood of thousands of farmers and traders associated with it. The paper discusses the potential and actual impact of climate change process on saffron cultivation in Kashmir; and the biotechnological measures to address these issues.

  9. Current and Future Leaders' Perceptions of Agricultural Biotechnology

    Science.gov (United States)

    Wingenbach, Gary J.; Miller, Rene P.

    2009-01-01

    Were elected state FFA officers' attitudes toward agricultural biotechnology significantly different from elected Texas legislators' attitudes about the same topic? The purpose of this study was to determine if differences existed in agricultural biotechnology perceptions or information source preferences when compared by leadership status:…

  10. Current and Future Leaders' Perceptions of Agricultural Biotechnology

    Science.gov (United States)

    Wingenbach, Gary J.; Miller, Rene P.

    2009-01-01

    Were elected state FFA officers' attitudes toward agricultural biotechnology significantly different from elected Texas legislators' attitudes about the same topic? The purpose of this study was to determine if differences existed in agricultural biotechnology perceptions or information source preferences when compared by leadership status:…

  11. Position of the American Dietetic Association: Agricultural and food biotechnology.

    Science.gov (United States)

    Bruhn, Christine; Earl, Robert

    2006-02-01

    It is the position of the American Dietetic Association that agricultural and food biotechnology techniques can enhance the quality, safety, nutritional value, and variety of food available for human consumption and increase the efficiency of food production, food processing, food distribution, and environmental and waste management. The American Dietetic Association encourages the government, food manufacturers, food commodity groups, and qualified food and nutrition professionals to work together to inform consumers about this new technology and encourage the availability of these products in the marketplace.

  12. Modernizing the Regulatory System for Biotechnology Products

    Science.gov (United States)

    This Web page describes the continuing effort to modernize the federal regulatory system for biotechnology products as well as clarify various roles of EPA, FDA and USDA in evaluating new biotechnology products.

  13. Transgenic barley: a prospective tool for biotechnology and agriculture.

    Science.gov (United States)

    Mrízová, Katarína; Holasková, Edita; Öz, M Tufan; Jiskrová, Eva; Frébort, Ivo; Galuszka, Petr

    2014-01-01

    Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming.

  14. BIOTECHNOLOGY – SCIENCE AND SECTOR OF AGRICULTURE

    National Research Council Canada - National Science Library

    Doroshenko N. P; Troshin L. P; Alzubaidi K. K

    2016-01-01

    .... Biotechnology is now successfully solves such vital tasks as providing food, the establishment of effective medicaments, obtaining fuel based on renewable raw materials, maintaining ecological...

  15. The role of biotechnology for agricultural sustainability in Africa.

    Science.gov (United States)

    Thomson, Jennifer A

    2008-02-27

    Sub-Saharan Africa could have a shortfall of nearly 90Mt of cereals by the year 2025 if current agricultural practices are maintained. Biotechnology is one of the ways to improve agricultural production. Insect-resistant varieties of maize and cotton suitable for the subcontinent have been identified as already having a significant impact. Virus-resistant crops are under development. These include maize resistant to the African endemic maize streak virus and cassava resistant to African cassava mosaic virus. Parasitic weeds such as Striga attack the roots of crops such as maize, millet, sorghum and upland rice. Field trials in Kenya using a variety of maize resistant to a herbicide have proven very successful. Drought-tolerant crops are also under development as are improved varieties of local African crops such as bananas, cassava, sorghum and sweet potatoes.

  16. BIOTECHNOLOGY – SCIENCE AND SECTOR OF AGRICULTURE

    OpenAIRE

    Doroshenko N. P.; Troshin L. P.; Alzubaidi K. K.

    2016-01-01

    This article presents information about the features of biotechnology as the driving force of scientific and technological progress. The national programs of the leading countries of the world, it is one of the priority sectors, reflecting the level of the socio-economic condition of the society. Biotechnology is now successfully solves such vital tasks as providing food, the establishment of effective medicaments, obtaining fuel based on renewable raw materials, maintaining ecological balanc...

  17. IMPACT OF AGRICULTURAL BIOTECHNOLOGY ON ENVIRONMENT AND FOOD SECURITY

    Directory of Open Access Journals (Sweden)

    Marijan Jošt

    2003-12-01

    Full Text Available The application of modern biotechnology in agricultural production processes has generated new ethical, economic, social and environmental dilemmas confronting scientists all over the world. While current knowledge is insufficient for assessing the promised benefits and possible risks of genetically modified organisms (GMOs, the principle of “substantial equivalence” in comparing GM and conventional food is profoundly flawed and scientifically insupportable. The current generation of GMOs provide small benefits except corporate profit and marginally improved grower returns. The TRIPS agreement has allowed worldwide patenting of genes and microorganisms, as well as genetically engineered organisms. Granting patents on life encourages biopiracy and the theft of genetic resources belonging to the local community. At the same time, the patented products are sold at relatively high prices to developing countries – the same countries from which the product originated.

  18. Comparing the Governance of Novel Products and Processes of Biotechnology

    DEFF Research Database (Denmark)

    Hansen, Janus

    to start to fill this gap and develop a conceptual framework for comparing and analysing new and emerging modes of governance affiliated with biotechnology in the light of more general approaches to governance. We aim for a framework that can facilitate comparative inquiries and learning across different......The emergence of novel products and processes of biotechnology in medicine, industry and agriculture has been accompanied by promises of healthier, safer and more productive lives and societies. However, biotechnology has also served as cause and catalyst of social controversy about the physical...

  19. 78 FR 7387 - Advisory Committee on Biotechnology and 21st Century Agriculture; Renewal

    Science.gov (United States)

    2013-02-01

    ...; ] DEPARTMENT OF AGRICULTURE Advisory Committee on Biotechnology and 21st Century Agriculture; Renewal AGENCY: Agricultural Research Service, USDA. ACTION: Advisory Committee on Biotechnology and 21st Century Agriculture... Committee on Biotechnology and 21st Century Agriculture (AC21). The Secretary of Agriculture has...

  20. Agricultural biotechnology and smallholder farmers in developing countries.

    Science.gov (United States)

    Anthony, Vivienne M; Ferroni, Marco

    2012-04-01

    Agricultural biotechnology holds much potential to contribute towards crop productivity gains and crop improvement for smallholder farmers in developing countries. Over 14 million smallholder farmers are already benefiting from biotech crops such as cotton and maize in China, India and other Asian, African and Central/South American countries. Molecular breeding can accelerate crop improvement timescales and enable greater use of diversity of gene sources. Little impact has been realized to date with fruits and vegetables because of development timescales for molecular breeding and development and regulatory costs and political considerations facing biotech crops in many countries. Constraints to the development and adoption of technology-based solutions to reduce yield gaps need to be overcome. Full integration with broader commercial considerations such as farmer access to seed distribution systems that facilitate dissemination of improved varieties and functioning markets for produce are critical for the benefits of agricultural biotechnology to be fully realized by smallholders. Public-private partnerships offer opportunities to catalyze new approaches and investment while accelerating integrated research and development and commercial supply chain-based solutions.

  1. Biotechnological production of citric acid

    Directory of Open Access Journals (Sweden)

    Belén Max

    2010-12-01

    Full Text Available This work provides a review about the biotechnological production of citric acid starting from the physicochemical properties and industrial applications, mainly in the food and pharmaceutical sectors. Several factors affecting citric acid fermentation are discussed, including carbon source, nitrogen and phosphate limitations, pH of culture medium, aeration, trace elements and morphology of the fungus. Special attention is paid to the fundamentals of biochemistry and accumulation of citric acid. Technologies employed at industrial scale such as surface or submerged cultures, mainly employing Aspergillus niger, and processes carried out with Yarrowia lipolytica, as well as the technology for recovering the product are also described. Finally, this review summarizes the use of orange peels and other by-products as feedstocks for the bioproduction of citric acid.

  2. Biotechnology: An Assessment of Agricultural Science Teachers' Knowledge and Attitudes

    Science.gov (United States)

    Mowen, Diana L.; Roberts, T. Grady; Wingenbach, Gary J.; Harlin, Julie F.

    2007-01-01

    The purpose of this study was to explore agricultural science teachers' knowledge levels and attitudes toward biotechnology topics. The average agricultural science teacher in this study was a 37-year-old male who had taught for 12 years. He had a bachelor's degree and had lived or worked on a farm or ranch. He had not attended…

  3. Current challenges and future perspectives of plant and agricultural biotechnology.

    Science.gov (United States)

    Moshelion, Menachem; Altman, Arie

    2015-06-01

    Advances in understanding plant biology, novel genetic resources, genome modification, and omics technologies generate new solutions for food security and novel biomaterials production under changing environmental conditions. New gene and germplasm candidates that are anticipated to lead to improved crop yields and other plant traits under stress have to pass long development phases based on trial and error using large-scale field evaluation. Therefore, quantitative, objective, and automated screening methods combined with decision-making algorithms are likely to have many advantages, enabling rapid screening of the most promising crop lines at an early stage followed by final mandatory field experiments. The combination of novel molecular tools, screening technologies, and economic evaluation should become the main goal of the plant biotechnological revolution in agriculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The Sociology of Agriculture in Transition: The Political Economy of Agriculture after Biotechnology

    Directory of Open Access Journals (Sweden)

    Gabriela Pechlaner

    2010-01-01

    Full Text Available In 2007, a global food crisis brought the topic of agriculture back into the public eye, and retriggered debates about the ability of agricultural industrialization to feed the world. As a nature-based process and an exception to capitalist industrialization, agriculture trends are difficult to assess. One of the more productive attempts to do so has developed conceptual tools that account for the distinction from typical capital accumulation patterns, notably Goodman,Sorj, and Wilkinson’s (1987 classic concepts of “appropriationism” and “substitutionism.” Agricultural biotechnologies are testing the limits of even these more refined conceptualizations, as the technologies’ associated proprietary framework — including seed saving restrictions, grower contracts, and patent infringement litigation — is reorganizing many traditional agricultural practices. Drawing on case studies in Mississippi, U.S. and Saskatchewan, Canada, thispaper argues that these trends suggest a need for a new concept in political economy of agriculture theory, which I term "expropriationism.” This concept identifies several aspects of an agricultural reorganization premised on legal means to enhance capital accumulation and on separating corporate ownership from liability. This accumulation strategy has important implications given the highsalience that agriculture has for society.

  5. Application of biotechnology to improve livestock products

    Directory of Open Access Journals (Sweden)

    Swati Gupta

    Full Text Available Biotechnological achievements of recent years have emerged as powerful tool to improve quality attributes of livestock products including milk and meat products. Biotechnological approaches can be employed for improving productivity, economy, physicochemical and nutritional attributes of a wide range of livestock products. The target areas of biotechnological research in the field of livestock products can be envisaged as production of high yielding food animal, improvement in quality of their products, enhanced production of natural food grade preservatives, efficient byproduct utilization and so forth. Many of the biotechnological techniques can be explored in the area of quality assurance programmes, which would be of great help to produce livestock products of assured quality and public health safety. [Vet World 2012; 5(10.000: 634-638

  6. Mechatronics design principles for biotechnology product development.

    Science.gov (United States)

    Mandenius, Carl-Fredrik; Björkman, Mats

    2010-05-01

    Traditionally, biotechnology design has focused on the manufacture of chemicals and biologics. Still, a majority of biotechnology products that appear on the market today is the result of mechanical-electric (mechatronic) construction. For these, the biological components play decisive roles in the design solution; the biological entities are either integral parts of the design, or are transformed by the mechatronic system. This article explains how the development and production engineering design principles used for typical mechanical products can be adapted to the demands of biotechnology products, and how electronics, mechanics and biology can be integrated more successfully. We discuss three emerging areas of biotechnology in which mechatronic design principles can apply: stem cell manufacture, artificial organs, and bioreactors.

  7. 76 FR 48797 - Notice of the Advisory Committee on Biotechnology and 21st Century Agriculture Meeting

    Science.gov (United States)

    2011-08-09

    ... Agricultural Research Service Notice of the Advisory Committee on Biotechnology and 21st Century Agriculture... on Biotechnology and 21st Century Agriculture (AC21). DATES: August 30-31, 2011. ADDRESSES: Rooms... consists of members representing the biotechnology industry, the organic food industry, farming...

  8. 77 FR 26725 - Advisory Committee on Biotechnology and 21st Century Agriculture Meeting

    Science.gov (United States)

    2012-05-07

    ...; ] DEPARTMENT OF AGRICULTURE Advisory Committee on Biotechnology and 21st Century Agriculture Meeting AGENCY... Biotechnology and 21st Century Agriculture (AC21). DATES: The meeting dates are May 29-30, 2012, 8:30 a.m. to 5... consists of members representing the biotechnology industry, the organic food industry, farming...

  9. 77 FR 46681 - Advisory Committee on Biotechnology and 21st Century Agriculture; Notice of Meeting

    Science.gov (United States)

    2012-08-06

    ...; ] DEPARTMENT OF AGRICULTURE Advisory Committee on Biotechnology and 21st Century Agriculture; Notice of Meeting... meeting of the Advisory Committee on Biotechnology and 21st Century Agriculture (AC21). DATES: The meeting... the biotechnology industry, the organic food industry, farming communities, the seed industry,...

  10. 76 FR 3599 - Renewal of the Advisory Committee on Biotechnology and 21st Century Agriculture

    Science.gov (United States)

    2011-01-20

    ...; ] DEPARTMENT OF AGRICULTURE Agricultural Research Service Renewal of the Advisory Committee on Biotechnology... Biotechnology and 21st Century Agriculture (AC21) for a 2- year period. FOR FURTHER INFORMATION CONTACT... Committee Purpose: USDA supports the responsible development and application of biotechnology within...

  11. 77 FR 11064 - Notice of the Advisory Committee on Biotechnology and 21st Century Agriculture Meeting

    Science.gov (United States)

    2012-02-24

    ... Agricultural Research Service Notice of the Advisory Committee on Biotechnology and 21st Century Agriculture... Committee on Biotechnology and 21st Century Agriculture (AC21). DATES: The meeting dates are March 5-6, 2012..., 2012. The AC21 consists of members representing the biotechnology industry, the organic food...

  12. Biotechnologies for the management of genetic resources for food and agriculture.

    Science.gov (United States)

    Lidder, Preetmoninder; Sonnino, Andrea

    2012-01-01

    In recent years, the land area under agriculture has declined as also has the rate of growth in agricultural productivity while the demand for food continues to escalate. The world population now stands at 7 billion and is expected to reach 9 billion in 2045. A broad range of agricultural genetic diversity needs to be available and utilized in order to feed this growing population. Climate change is an added threat to biodiversity that will significantly impact genetic resources for food and agriculture (GRFA) and food production. There is no simple, all-encompassing solution to the challenges of increasing productivity while conserving genetic diversity. Sustainable management of GRFA requires a multipronged approach, and as outlined in the paper, biotechnologies can provide powerful tools for the management of GRFA. These tools vary in complexity from those that are relatively simple to those that are more sophisticated. Further, advances in biotechnologies are occurring at a rapid pace and provide novel opportunities for more effective and efficient management of GRFA. Biotechnology applications must be integrated with ongoing conventional breeding and development programs in order to succeed. Additionally, the generation, adaptation, and adoption of biotechnologies require a consistent level of financial and human resources and appropriate policies need to be in place. These issues were also recognized by Member States at the FAO international technical conference on Agricultural Biotechnologies for Developing Countries (ABDC-10), which took place in March 2010 in Mexico. At the end of the conference, the Member States reached a number of key conclusions, agreeing, inter alia, that developing countries should significantly increase sustained investments in capacity building and the development and use of biotechnologies to maintain the natural resource base; that effective and enabling national biotechnology policies and science-based regulatory frameworks can

  13. Agricultural biotechnologies in developing countries and their possible contribution to food security.

    Science.gov (United States)

    Ruane, John; Sonnino, Andrea

    2011-12-20

    Latest FAO figures indicate that an estimated 925 million people are undernourished in 2010, representing almost 16% of the population in developing countries. Looking to the future, there are also major challenges ahead from the rapidly changing socio-economic environment (increasing world population and urbanisation, and dietary changes) and climate change. Promoting agriculture in developing countries is the key to achieving food security, and it is essential to act in four ways: to increase investment in agriculture, broaden access to food, improve governance of global trade, and increase productivity while conserving natural resources. To enable the fourth action, the suite of technological options for farmers should be as broad as possible, including agricultural biotechnologies. Agricultural biotechnologies represent a broad range of technologies used in food and agriculture for the genetic improvement of plant varieties and animal populations, characterisation and conservation of genetic resources, diagnosis of plant or animal diseases and other purposes. Discussions about agricultural biotechnology have been dominated by the continuing controversy surrounding genetic modification and its resulting products, genetically modified organisms (GMOs). The polarised debate has led to non-GMO biotechnologies being overshadowed, often hindering their development and application. Extensive documentation from the FAO international technical conference on Agricultural Biotechnologies in Developing Countries (ABDC-10), that took place in Guadalajara, Mexico, on 1-4 March 2010, gave a very good overview of the many ways that different agricultural biotechnologies are being used to increase productivity and conserve natural resources in the crop, livestock, fishery, forestry and agro-industry sectors in developing countries. The conference brought together about 300 policy-makers, scientists and representatives of intergovernmental and international non

  14. Consumer demand for information about agricultural biotechnology

    DEFF Research Database (Denmark)

    Scholderer, Joachim; Czienskowski, Uwe

    examples in this study, one was a conventional competitor product, and one was an organic product. A newly developed process-tracing method allowed the unobtrusive monitoring of attribute information uptake from photos of product packages. In the second part of the experiment, information access......The aim of the study was to provide a realistic assessment of (a) the amount and type of information that consumers would use in choices between second-generation novel foods and different types of competitor products, (b) the amount and type of information that consumers would access from general...... novel-food information sites, and (c) the effect of the different types of information on product preferences and attitudes towards novel foods and food technologies. Three paradigmatic novel food examples were used in the study: a genetically modified potato with altered levels of inherent toxicants...

  15. Development and application of modern agricultural biotechnology in Botswana: the potentials, opportunities and challenges.

    Science.gov (United States)

    Batlang, Utlwang; Tsurupe, Gorata; Segwagwe, Amogelang; Obopile, Motshwari

    2014-07-03

    In Botswana, approximately 40% of the population live in rural areas and derive most of their livelihood from agriculture by keeping livestock and practising arable farming. Due to the nature of their farming practises livestock and crops are exposed to diseases and environmental stresses. These challenges offer opportunities for application of biotechnology to develop adaptable materials to the country's environment. On the other hand, the perceived risk of genetically modified organisms (GMOs) has dimmed the promise of the technology for its application in agriculture. This calls for a holistic approach to the application of biotechnology to address issues of biosafety of GMOs. We have therefore assessed the potentials, challenges and opportunities to apply biotechnology with specific emphasis on agriculture, taking cognisance of requirement for its research, development and application in research and teaching institutions. In order to achieve this, resource availability, infrastructure, human and laboratory requirements were analyzed. The analysis revealed that the country has the capacity to carry out research in biotechnology in the development and production of genetically modified crops for food and fodder crops. These will include gene discovery, genetic transformation and development of systems to comply with the world regulatory framework on biosafety. In view of the challenges facing the country in agriculture, first generation biotech crops could be released for production. Novel GM products for development may include disease diagnosis kits, animal disease vaccines, and nutrient use efficiency, drought, and pest and disease resistant food and fodder crops.

  16. Consumer demand for information about agricultural biotechnology

    DEFF Research Database (Denmark)

    Scholderer, Joachim; Czienskowski, Uwe

    The aim of the study was to provide a realistic assessment of (a) the amount and type of information that consumers would use in choices between second-generation novel foods and different types of competitor products, (b) the amount and type of information that consumers would access from genera...

  17. The integrated web service and genome database for agricultural plants with biotechnology information

    Science.gov (United States)

    Kim, ChangKug; Park, DongSuk; Seol, YoungJoo; Hahn, JangHo

    2011-01-01

    The National Agricultural Biotechnology Information Center (NABIC) constructed an agricultural biology-based infrastructure and developed a Web based relational database for agricultural plants with biotechnology information. The NABIC has concentrated on functional genomics of major agricultural plants, building an integrated biotechnology database for agro-biotech information that focuses on genomics of major agricultural resources. This genome database provides annotated genome information from 1,039,823 records mapped to rice, Arabidopsis, and Chinese cabbage. PMID:21887015

  18. [Ecological significance of arbuscular mycorrhiza biotechnology in modern agricultural system].

    Science.gov (United States)

    Zhang, Yong; Zeng, Ming; Xiong, Bingquan; Yang, Xiaohong

    2003-04-01

    Mycorrhiza plays a key role in nutrient cycling in ecosystem, and protects host plant against environmental stress. Under natural condition, plant's mycorrhizal structure is a normal phenomenon, and arbuscular mycorrhiza (AM) association is the commonest mycorrhizal type. If well mycorrhizal structure can be formed during plant root system developing process, the quantity and quality of plant production will be improved in large. Because of its effects on plant growth and health, it is accepted that AM symbiosis can reduce chemical fertilizer and pesticide inputs. Consequently, this will lead to a reduction in harmful chemical substance impact on environment. The key effects of AM symbiosis can be summarized as follows: (1) improving rooting and plant establishment; (2) improving uptake of low mobile ions; (3) improving nutrient cycling; (4) enhancing plant tolerance to (biotic and abiotic) stress; (5) improving quality of soil structure; and (6) enhancing plant community diversity. In this paper, the ecological characteristic of arbuscular mycorrhiza fungi (AMF), effects of AM on host plant, and ecologic significance of AM biotechnology in agricultural system were reviewed.

  19. The Role of Biotechnology in Sustainable Agriculture: Views and Perceptions among Key Actors in the Swedish Food Supply Chain

    Directory of Open Access Journals (Sweden)

    Karin Edvardsson Björnberg

    2015-06-01

    Full Text Available Researchers have put forward agricultural biotechnology as one possible tool for increasing food production and making agriculture more sustainable. In this paper, it is investigated how key actors in the Swedish food supply chain perceive the concept of agricultural sustainability and the role of biotechnology in creating more sustainable agricultural production systems. Based on policy documents and semi-structured interviews with representatives of five organizations active in producing, processing and retailing food in Sweden, an attempt is made to answer the following three questions: How do key actors in the Swedish food supply chain define and operationalize the concept of agricultural sustainability? Who/what influences these organizations’ sustainability policies and their respective positions on agricultural biotechnology? What are the organizations’ views and perceptions of biotechnology and its possible role in creating agricultural sustainability? Based on collected data, it is concluded that, although there is a shared view of the core constituents of agricultural sustainability among the organizations, there is less explicit consensus on how the concept should be put into practice or what role biotechnology can play in furthering agricultural sustainability.

  20. 77 FR 48948 - Notice of the Advisory Committee on Biotechnology and 21st Century Agriculture Meeting; Correction

    Science.gov (United States)

    2012-08-15

    ...; ] DEPARTMENT OF AGRICULTURE Agricultural Research Service Notice of the Advisory Committee on Biotechnology and... meeting of the Advisory Committee on Biotechnology and 21st Century Agriculture (AC21). The notice...

  1. National Strategy for Modernizing the Regulatory System for Biotechnology Products

    Science.gov (United States)

    This National Strategy for Modernizing the Regulatory System for Biotechnology Products sets forth a vision for ensuring that the federal regulatory system is prepared to efficiently assess the risks, if any, of the future products of biotechnology.

  2. Biotechnological Production of Organic Acids from Renewable Resources.

    Science.gov (United States)

    Pleissner, Daniel; Dietz, Donna; van Duuren, Jozef Bernhard Johann Henri; Wittmann, Christoph; Yang, Xiaofeng; Lin, Carol Sze Ki; Venus, Joachim

    2017-03-07

    Biotechnological processes are promising alternatives to petrochemical routes for overcoming the challenges of resource depletion in the future in a sustainable way. The strategies of white biotechnology allow the utilization of inexpensive and renewable resources for the production of a broad range of bio-based compounds. Renewable resources, such as agricultural residues or residues from food production, are produced in large amounts have been shown to be promising carbon and/or nitrogen sources. This chapter focuses on the biotechnological production of lactic acid, acrylic acid, succinic acid, muconic acid, and lactobionic acid from renewable residues, these products being used as monomers for bio-based material and/or as food supplements. These five acids have high economic values and the potential to overcome the "valley of death" between laboratory/pilot scale and commercial/industrial scale. This chapter also provides an overview of the production strategies, including microbial strain development, used to convert renewable resources into value-added products.

  3. The biotechnological production of sorbitol.

    Science.gov (United States)

    Silveira, M M; Jonas, R

    2002-08-01

    Sorbitol, a polyol found in many fruits, is of increasing industrial interest as a sweetener, humectant, texturizer and softener. At present, it is produced chemically. The bacterium Zymomonas mobilis is able to produce sorbitol and gluconic acid from fructose and glucose, respectively. This is possible in a one-step reaction via a glucose-fructose oxidoreductase so far only known from Z. mobilis. The possibilities for the industrial production of sorbitol by Z. mobilis are discussed, and compared with the current chemical production method as well as other microbiological processes.

  4. Biotechnology 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-12-15

    This book first reveals prospect on biotechnology with low-carbon green growth Next, it consists of four chapters, which deal with vision of biotechnology, trend of biotechnology in main countries like the U.S, Eu, Japan and China, current condition for biotechnology with support and promoting policy such as health and medical treatment and maritime and fisheries, major product on investment, human power, paper and pattern, research development such as genomic, system biology, bio new medicine, agriculture, stock breeding and food, biological resources and legal system related biotechnology.

  5. Reducing agricultural greenhouse gas emissions: role of biotechnology, organic systems, and consumer behavior

    Science.gov (United States)

    All agricultural systems have environmental and societal costs and benefits that should be objectively quantified before recommending specific management practices. Agricultural biotechnology, which takes advantage of genetically engineered organisms (GEOs), along with organic cropping systems, econ...

  6. Biotechnological applications for rosmarinic acid production in plant ...

    African Journals Online (AJOL)

    Biotechnological applications for rosmarinic acid production in plant. ... African Journal of Biotechnology. Journal Home · ABOUT · Advanced Search · Current ... plant families and in some fern and hornwort species. Rosmarinic acid has a ...

  7. Biotechnological Processes in Microbial Amylase Production

    Directory of Open Access Journals (Sweden)

    Subash C. B. Gopinath

    2017-01-01

    Full Text Available Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi amylase is discussed along with its production methods from the laboratory to industrial scales.

  8. Biotechnological production of vanillin using immobilized enzymes.

    Science.gov (United States)

    Furuya, Toshiki; Kuroiwa, Mari; Kino, Kuniki

    2017-02-10

    Vanillin is an important and popular plant flavor, but the amount of this compound available from plant sources is very limited. Biotechnological methods have high potential for vanillin production as an alternative to extraction from plant sources. Here, we report a new approach using immobilized enzymes for the production of vanillin. The recently discovered oxygenase Cso2 has coenzyme-independent catalytic activity for the conversion of isoeugenol and 4-vinylguaiacol to vanillin. Immobilization of Cso2 on Sepabeads EC-EA anion-exchange carrier conferred enhanced operational stability enabling repetitive use. This immobilized Cso2 catalyst allowed 6.8mg yield of vanillin from isoeugenol through ten reaction cycles at a 1mL scale. The coenzyme-independent decarboxylase Fdc, which has catalytic activity for the conversion of ferulic acid to 4-vinylguaiacol, was also immobilized on Sepabeads EC-EA. We demonstrated that the immobilized Fdc and Cso2 enabled the cascade synthesis of vanillin from ferulic acid via 4-vinylguaiacol with repetitive use of the catalysts. This study is the first example of biotechnological production of vanillin using immobilized enzymes, a process that provides new possibilities for vanillin production.

  9. Editorial: from plant biotechnology to bio-based products.

    Science.gov (United States)

    Stöger, Eva

    2013-10-01

    From plant biotechnology to bio-based products - this Special Issue of Biotechnology Journal is dedicated to plant biotechnology and is edited by Prof. Eva Stöger (University of Natural Resources and Life Sciences, Vienna, Austria). The Special Issue covers a wide range of topics in plant biotechnology, including metabolic engineering of biosynthesis pathways in plants; taking advantage of the scalability of the plant system for the production of innovative materials; as well as the regulatory challenges and society acceptance of plant biotechnology.

  10. 76 FR 14895 - Request for Nominations to the Advisory Committee on Biotechnology and 21st Century Agriculture

    Science.gov (United States)

    2011-03-18

    ... Agricultural Research Service Request for Nominations to the Advisory Committee on Biotechnology and 21st...: Notice of request for nominations to the Advisory Committee on Biotechnology and 21st Century Agriculture... the Advisory Committee on Biotechnology and 21st Century Agriculture (AC21). DATES:...

  11. Biotechnological production of gluconic acid: future implications.

    Science.gov (United States)

    Singh, Om V; Kumar, Raj

    2007-06-01

    Gluconic acid (GA) is a multifunctional carbonic acid regarded as a bulk chemical in the food, feed, beverage, textile, pharmaceutical, and construction industries. The favored production process is submerged fermentation by Aspergillus niger utilizing glucose as a major carbohydrate source, which accompanied product yield of 98%. However, use of GA and its derivatives is currently restricted because of high prices: about US$ 1.20-8.50/kg. Advancements in biotechnology such as screening of microorganisms, immobilization techniques, and modifications in fermentation process for continuous fermentation, including genetic engineering programmes, could lead to cost-effective production of GA. Among alternative carbohydrate sources, sugarcane molasses, grape must show highest GA yield of 95.8%, and banana must may assist reducing the overall cost of GA production. These methodologies would open new markets and increase applications of GA.

  12. RNAi technologies in agricultural biotechnology: The Toxicology Forum 40th Annual Summer Meeting.

    Science.gov (United States)

    Sherman, James H; Munyikwa, Tichafa; Chan, Stephen Y; Petrick, Jay S; Witwer, Kenneth W; Choudhuri, Supratim

    2015-11-01

    During the 40th Annual Meeting of The Toxicology Forum, the current and potential future science, regulations, and politics of agricultural biotechnology were presented and discussed. The meeting session described herein focused on the technology of RNA interference (RNAi) in agriculture. The general process by which RNAi works, currently registered RNAi-based plant traits, example RNAi-based traits in development, potential use of double stranded RNA (dsRNA) as topically applied pesticide active ingredients, research related to the safety of RNAi, biological barriers to ingested dsRNA, recent regulatory RNAi science reviews, and regulatory considerations related to the use of RNAi in agriculture were discussed. Participants generally agreed that the current regulatory framework is robust and appropriate for evaluating the safety of RNAi employed in agricultural biotechnology and were also supportive of the use of RNAi to develop improved crop traits. However, as with any emerging technology, the potential range of future products, potential future regulatory frameworks, and public acceptance of the technology will continue to evolve. As such, continuing dialogue was encouraged to promote education of consumers and science-based regulations.

  13. Students' Knowledge of, and Attitudes towards Biotechnology Revisited, 1995-2014: Changes in Agriculture Biotechnology but Not in Medical Biotechnology

    Science.gov (United States)

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-01-01

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and…

  14. Microbial lipases: Production, properties and biotechnological applications

    Directory of Open Access Journals (Sweden)

    Josana Maria Messias

    2011-09-01

    Full Text Available Lipases belong to the group of hydrolases that catalyze the hydrolysis of triacylglycerol lipids to free fatty acids and glycerol. They have significant potential biotechnological applications in catalyzing organic synthesis reactions in non-aqueous solvents using simplified procedures resulting in conversions of high yields. Lipase production has conventionally been performed by submerged fermentation; however, solid-state fermentation processes have been prominent when residues are used as substrates because they serve as low-cost nutrient sources. Microbial lipases can be used as additives in foods to modify and enhance organoleptic properties, as well as in detergents to hydrolyse fats in the treatment of oily effluents, and also have value for pharmaceutical, cosmetic, agrochemical, and oil chemical industries. More recently, they are used in transesterification reactions to convert plant seed oils into biodiesel. The objective of this work was to review the published literature on the production, properties and applications of microbial lipases, and its biotechnological role in producing biodiesel.

  15. Globalization, the rise of biotechnology and catching up in agricultural innovation: The case of Bt technology in India

    OpenAIRE

    Iizuka, M.; Thutupalli, A.

    2014-01-01

    The agricultural sector has played an important role in the provision of food, foreign exchange and sustainable energy to many developing countries. This sector, however, has not been considered as a driving force of innovation as compared to other productive sectors. However, recent economics and international business literature suggests that the agricultural sector (1) has become knowledge intensive with the rise of biotechnology (Bt); and (2) is a sector where firms in developing countrie...

  16. Novel Techniques and Their Wide Applications to Health Foods, Medical and Agricultural Biotechnology in Relation to Policy Making on Genetically Modified Crops and Foods

    CERN Document Server

    Baianu, I C; Lozano, P; Lin, H C

    2004-01-01

    Selected applications of novel techniques in Agricultural Biotechnology, Health Food formulations and Medical Biotechnology are being reviewed with the aim of unraveling future developments and policy changes that are likely to open new markets for Biotechnology and prevent the shrinking or closing of existing ones. Amongst the selected novel techniques with applications in both Agricultural and Medical Biotechnology are: immobilized bacterial cells and enzymes, microencapsulation and liposome production, genetic manipulation of microorganisms, development of novel vaccines from plants, epigenomics of mammalian cells and organisms, and biocomputational tools for molecular modeling related to disease and Bioinformatics. Both fundamental and applied aspects of the emerging new techniques are being discussed in relation to their anticipated, marked impact on future markets and present policy changes that are needed for success in either Agricultural or Medical Biotechnology. The novel techniques are illustrated ...

  17. Complex Biochemistry and Biotechnological Production of Betalains

    Directory of Open Access Journals (Sweden)

    Marijana Krsnik-Rasol

    2011-01-01

    Full Text Available The demand for natural food colourants is increasing because of public awareness of their health benefits. Betalains are nitrogen-containing plant pigments whose colours range from red-violet betacyanins to yellow betaxanthins. They are used for colouring dairy products, meat and frozen desserts. Betalains have attracted additional interest because of their antioxidative, anti-inflammatory and anticarcinogenic properties. The main source of commercially produced betalains is red beet root, but alternative sources are found in plants from the Amaranthaceae and Cactaceae families. Another alternative source is plant cell culture in bioreactors, although optimization of pigment production seems necessary. In this paper we synthesize the results of recent studies on betalain biosynthesis, chemical properties, sources, biotechnology and applications.

  18. Isolation and Purification of Biotechnological Products

    Science.gov (United States)

    Hubbuch, Jürgen; Kula, Maria-Regina

    2007-05-01

    The production of modern pharma proteins is one of the most rapid growing fields in biotechnology. The overall development and production is a complex task ranging from strain development and cultivation to the purification and formulation of the drug. Downstream processing, however, still accounts for the major part of production costs. This is mainly due to the high demands on purity and thus safety of the final product and results in processes with a sequence of typically more than 10 unit operations. Consequently, even if each process step would operate at near optimal yield, a very significant amount of product would be lost. The majority of unit operations applied in downstream processing have a long history in the field of chemical and process engineering; nevertheless, mathematical descriptions of the respective processes and the economical large-scale production of modern pharmaceutical products are hampered by the complexity of the biological feedstock, especially the high molecular weight and limited stability of proteins. In order to develop new operational steps as well as a successful overall process, it is thus a necessary prerequisite to develop a deeper understanding of the thermodynamics and physics behind the applied processes as well as the implications for the product.

  19. Marine biotechnology for production of food ingredients.

    Science.gov (United States)

    Rasmussen, Rosalee S; Morrissey, Michael T

    2007-01-01

    The marine world represents a largely untapped reservoir of bioactive ingredients that can be applied to numerous aspects of food processing, storage, and fortification. Due to the wide range of environments they survive in, marine organisms have developed unique properties and bioactive compounds that, in some cases, are unparalleled by their terrestrial counterparts. Enzymes extracted from fish and marine microorganisms can provide numerous advantages over traditional enzymes used in food processing due to their ability to function at extremes of temperature and pH. Fish proteins such as collagens and their gelatin derivatives operate at relatively low temperatures and can be used in heat-sensitive processes such as gelling and clarifying. Polysaccharides derived from algae, including algins, carrageenans, and agar, are widely used for their ability to form gels and act as thickeners and stabilizers in a variety of foods. Besides applications in food processing, a number of marine-derived compounds, such as omega-3 polyunsaturated fatty acids and photosynthetic pigments, are important to the nutraceutical industry. These bioactive ingredients provide a myriad of health benefits, including reduction of coronary heart disease, anticarcinogenic and anti-inflammatory activity. Despite the vast possibilities for the use of marine organisms in the food industry, tools of biotechnology are required for successful cultivation and isolation of these unique bioactive compounds. In this chapter, recent developments and upcoming areas of research that utilize advances in biotechnology in the production of food ingredients from marine sources are introduced and discussed.

  20. World Agricultural Production

    Data.gov (United States)

    Department of Agriculture — Monthly report on crop acreage, yield and production in major countries worldwide. Sources include reporting from FAS’s worldwide offices, official statistics of...

  1. Biotechnological production and application of fructooligosaccharides.

    Science.gov (United States)

    Flores-Maltos, Dulce A; Mussatto, Solange I; Contreras-Esquivel, Juan C; Rodríguez-Herrera, Raúl; Teixeira, José A; Aguilar, Cristóbal N

    2016-01-01

    Currently, prebiotics are all carbohydrates of relatively short chain length. One important group is the fructooligosaccharides (FOS), a special kind of prebiotic associated to the selective stimulation of the activity of certain groups of colonic bacteria. They have a positive and beneficial effect on intestinal microbiota, reducing the incidence of gastrointestinal infections and also possessing a recognized bifidogenic effect. Traditionally, these prebiotic compounds have been obtained through extraction processes from some plants, as well as through enzymatic hydrolysis of sucrose. However, different fermentative methods have also been proposed for the production of FOS, such as solid-state fermentations utilizing various agro-industrial by-products. By optimizing the culture parameters, FOS yields and productivity can be improved. The use of immobilized enzymes and cells has also been proposed as being an effective and economic method for large-scale production of FOS. This article is an overview of the results considering recent studies on FOS biosynthesis, physicochemical properties, sources, biotechnological production and applications.

  2. Plant biotechnology for lignocellulosic biofuel production.

    Science.gov (United States)

    Li, Quanzi; Song, Jian; Peng, Shaobing; Wang, Jack P; Qu, Guan-Zheng; Sederoff, Ronald R; Chiang, Vincent L

    2014-12-01

    Lignocelluloses from plant cell walls are attractive resources for sustainable biofuel production. However, conversion of lignocellulose to biofuel is more expensive than other current technologies, due to the costs of chemical pretreatment and enzyme hydrolysis for cell wall deconstruction. Recalcitrance of cell walls to deconstruction has been reduced in many plant species by modifying plant cell walls through biotechnology. These results have been achieved by reducing lignin content and altering its composition and structure. Reduction of recalcitrance has also been achieved by manipulating hemicellulose biosynthesis and by overexpression of bacterial enzymes in plants to disrupt linkages in the lignin-carbohydrate complexes. These modified plants often have improved saccharification yield and higher ethanol production. Cell wall-degrading (CWD) enzymes from bacteria and fungi have been expressed at high levels in plants to increase the efficiency of saccharification compared with exogenous addition of cellulolytic enzymes. In planta expression of heat-stable CWD enzymes from bacterial thermophiles has made autohydrolysis possible. Transgenic plants can be engineered to reduce recalcitrance without any yield penalty, indicating that successful cell wall modification can be achieved without impacting cell wall integrity or plant development. A more complete understanding of cell wall formation and structure should greatly improve lignocellulosic feedstocks and reduce the cost of biofuel production.

  3. Transgenic proteins in agricultural biotechnology: The toxicology forum 40th annual summer meeting.

    Science.gov (United States)

    Sherman, James H; Choudhuri, Supratim; Vicini, John L

    2015-12-01

    During the 40th Annual Meeting of The Toxicology Forum, the current and potential future science, regulations, and politics of agricultural biotechnology were presented and discussed. The range of current commercial crops and commercial crop traits related to transgenic proteins were reviewed and example crop traits discussed, including insecticidal resistance conferred by Bt proteins and the development of nutritionally enhanced food such as Golden Rice. The existing regulatory framework in the USA, with an emphasis on US FDA's role in evaluating the safety of genetically engineered crops under the regulatory umbrella of the FD&C Act was reviewed. Consideration was given to the polarized politics surrounding agricultural biotechnology, the rise of open access journals, and the influence of the internet and social media in shaping public opinion. Numerous questions related to misconceptions regarding current products and regulations were discussed, highlighting the need for more scientists to take an active role in public discourse to facilitate public acceptance and adoption of new technologies and to enable science-based regulations.

  4. The Sociology of Agriculture in Transition: The Political Economy of Agriculture after Biotechnology

    OpenAIRE

    Gabriela Pechlaner

    2010-01-01

    In 2007, a global food crisis brought the topic of agriculture back into the public eye, and retriggered debates about the ability of agricultural industrialization to feed the world. As a nature-based process and an exception to capitalist industrialization, agriculture trends are difficult to assess. One of the more productive attempts to do so has developed conceptual tools that account for the distinction from typical capital accumulation patterns, notably Goodman,Sorj, and Wilkinson’s (1...

  5. Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The guidelines of the Biotechnology Program are research and development aiming at developing and manufacturing products of pharmaceutical interest. This Program has two main research areas, namely Pituitary Hormones and Biopharmaceuticals. The first one comprises a group with a long experience on Recombinant Human Pituitary Hormone synthesis, purification and characterization. Up to now they have worked mostly with human growth hormone (hGH), human prolactin (hPRL), human thyrotropin (hTSH), human follicle stimulating hormone (hFSH) and human luteotropin (hLH), with a particular emphasis on glycoprotein carbohydrate structures. An important research line is devoted to Growth Hormone Gene Therapy, working mostly on animal models: immunocompetent and immunodeficient-dwarf mice. For several years this development has been based on ex vivo grafting of transduced keratinocytes, while more recently very promising results have been obtained with the injections and electroporation of naked plasmid DNA. Besides research, they have also activities in the Biotechnological Production and Downstream Processing of the same recombinant hormones, which are produced in both E. coli and mammalian cells and in the development of joint-ventures with the National Industry. The biological effects of radiation on cells are also studied, specially concerning the administration of {sup 131}I together with thyroid-stimulating hormone in thyroid cancer. The Biopharmaceutical area is dedicated to the research of isolation, structural analysis and biological activities in different biological systems of macromolecules. These macromolecules are peptides or proteins, either native or recombinant with medical or pharmaceutical interest. During this period new proteins related to serine protease activity, breast cancer development and angiogenesis were described. The effects of ionizing radiation on macromolecules have also been investigated to detoxify animal venoms in order to improve antigens

  6. The impacts and acceptance of agricultural biotechnology: an introduction to the special issue

    NARCIS (Netherlands)

    Zilberman, D.; Wesseler, J.H.H.

    2014-01-01

    Attitudes towards and acceptance of agricultural biotechnology, which involves inserting genes that carry new traits into existing varieties, has been subject to much debate. This special issue aims to address several gaps in the literature on genetically modified (GM) technology in agriculture.

  7. Ethical Tools to Support Systematic Public Deliberations about the Ethical Aspects of Agricultural Biotechnologies

    NARCIS (Netherlands)

    Beekman, V.; Brom, F.W.A.

    2007-01-01

    This special issue of the Journal of Agricultural and Environmental Ethics presents so-called ethical tools that are developed to support systematic public deliberations about the ethical aspects of agricultural biotechnologies. This paper firstly clarifies the intended connotations of the term ¿eth

  8. Agricultural Science Teachers' Barriers, Roles, and Information Source Preferences for Teaching Biotechnology Topics

    Science.gov (United States)

    Mowen, Diana L.; Wingenbach, Gary J.; Roberts, T. Grady; Harlin, Julie F.

    2007-01-01

    The purpose of this study was to determine barriers, roles, and information source preferences for teaching agricultural biotechnology topics. Agricultural science teachers were described primarily as 37 year-old males who had taught for 12 years, had bachelor's degrees, and had lived or worked on a farm or ranch. Equipment was perceived as the…

  9. The impacts and acceptance of agricultural biotechnology: an introduction to the special issue

    NARCIS (Netherlands)

    Zilberman, D.; Wesseler, J.H.H.

    2014-01-01

    Attitudes towards and acceptance of agricultural biotechnology, which involves inserting genes that carry new traits into existing varieties, has been subject to much debate. This special issue aims to address several gaps in the literature on genetically modified (GM) technology in agriculture. Som

  10. Ethical Tools to Support Systematic Public Deliberations about the Ethical Aspects of Agricultural Biotechnologies

    NARCIS (Netherlands)

    Beekman, V.; Brom, F.W.A.

    2007-01-01

    This special issue of the Journal of Agricultural and Environmental Ethics presents so-called ethical tools that are developed to support systematic public deliberations about the ethical aspects of agricultural biotechnologies. This paper firstly clarifies the intended connotations of the term ¿eth

  11. Biotechnological production of bioflavors and functional sugars

    National Research Council Canada - National Science Library

    Bicas, Juliano Lemos; Silva, Júnio Cota; Dionísio, Ana Paula; Pastore, Gláucia Maria

    2010-01-01

    .... The use of agro-industrial residues as substrates in biotechnological processes seems to be a valuable alternative in helping to overcome the high manufacturing costs of industrial fermentations...

  12. Waste valorization by biotechnological conversion into added value products.

    Science.gov (United States)

    Liguori, Rossana; Amore, Antonella; Faraco, Vincenza

    2013-07-01

    Fossil fuel reserves depletion, global warming, unrelenting population growth, and costly and problematic waste recycling call for renewable resources of energy and consumer products. As an alternative to the 100 % oil economy, production processes based on biomass can be developed. Huge amounts of lignocellulosic wastes are yearly produced all around the world. They include agricultural residues, food farming wastes, "green-grocer's wastes," tree pruning residues, and organic and paper fraction of urban solid wastes. The common ways currently adopted for disposal of these wastes present environmental and economic disadvantages. As an alternative, processes for adding value to wastes producing high added products should be developed, that is the upgrading concept: adding value to wastes by production of a product with desired reproducible properties, having economic and ecological advantages. A wide range of high added value products, such as enzymes, biofuels, organic acids, biopolymers, bioelectricity, and molecules for food and pharmaceutical industries, can be obtained by upgrading solid wastes. The most recent advancements of their production by biotechnological processes are overviewed in this manuscript.

  13. A REVIEW ON REGULATORY ASPECTS OF BIOTECHNOLOGY DERIVED PRODUCT

    OpenAIRE

    Modh Nehal M; Patel P.M; Patel N. M.

    2011-01-01

    Biotechnology-derived pharmaceuticals are a well established and growing part of the therapeutic armamentarium. Beginning with recombinant versions of products such as insulin that were previously manufactured by extraction from animal and human sources, licensed biotechnology drugs and those in development now span an ever-increasing range of product types and therapeutic categories. As a consequence of this diversity, both general and product class-specific scientific guidelines have been d...

  14. Biotechnological applications for rosmarinic acid production in plant

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... biotechnological researches for production of rosmarinic acid were done in the past i.e. from shoot culture .... cycle (Eknamkul and Ellis, 1989). ..... α-tocopherol, ascorbyl palmitate and citric acid in sunflower oil. Food. Chem.

  15. Biotechnologies

    Directory of Open Access Journals (Sweden)

    Rival Alain

    2001-07-01

    Full Text Available Today, a range of biotechnological approaches, from somatic embryogenesis to biomolecular research, play an increasingly important role in breeding strategies for oil palm (Elaeis guineensis Jacq.. Clonal micropropagation. Methods of cloning by in vitro culture led to the development of a micropropagation technique for oil palm based on somatic embryogenesis which was tested at the pilot stage on elite genotypes, thus enabling the production of high oil yielding clones. This phase allowed the identification of limiting factors associated with scaling-up, with respect in particular to the scale of mass production required to meet the needs of planters and to the problem of ensuring genetic fidelity in the regenerated plant material. These two concerns led researchers to look further into the underlying physiological and/or molecular mechanisms involved in somatic embryogenesis and the somaclonal variation events induced by the in vitro cloning procedure. Structural and functional genomics. Marker-assisted breeding in oil palm is a long-term multi-stage project including: molecular analysis of genetic diversity in both E. guineensis and E. oleifera germplasms; large scale development of PCR-based microsatellite markers; and parallel development of three genome mapping and QTL detection projects studying key agronomic characters. Post-genomics. In order to tackle the problem of the mantled flowering abnormality, which is induced during the micropropagation process, studies of gene expression have been carried out in tissue cultures as a means of establishing an early clonal conformity testing procedure. It is important to assess what kind of methodology is the most appropriate for clonal conformity testing by comparing RNA, protein and DNA (PCR based approaches. Parallel studies on genomic DNA methylation changes induced by tissue culture suggest that the latter may play an important role in the determination of the mantled abnormality.

  16. Global unbalance in seaweed production, research effort and biotechnology markets.

    Science.gov (United States)

    Mazarrasa, Inés; Olsen, Ylva S; Mayol, Eva; Marbà, Núria; Duarte, Carlos M

    2014-01-01

    Exploitation of the world's oceans is rapidly growing as evidenced by a booming patent market of marine products including seaweed, a resource that is easily accessible without sophisticated bioprospecting technology and that has a high level of domestication globally. The investment in research effort on seaweed aquaculture has recently been identified to be the main force for the development of a biotechnology market of seaweed-derived products and is a more important driver than the capacity of seaweed production. Here, we examined seaweed patent registrations between 1980 and 2009 to assess the growth rate of seaweed biotechnology, its geographic distribution and the types of applications patented. We compare this growth with scientific investment in seaweed aquaculture and with the market of seaweed production. We found that both the seaweed patenting market and the rate of scientific publications are rapidly growing (11% and 16.8% per year respectively) since 1990. The patent market is highly geographically skewed (95% of all registrations belonging to ten countries and the top two holding 65% of the total) compared to the distribution of scientific output among countries (60% of all scientific publications belonging to ten countries and the top two countries holding a 21%), but more homogeneously distributed than the production market (with a 99.8% belonging to the top ten countries, and a 71% to the top two). Food industry was the dominant application for both the patent registrations (37.7%) and the scientific publications (21%) followed in both cases by agriculture and aquaculture applications. This result is consistent with the seaweed taxa most represented. Kelp, which was the target taxa for 47% of the patent registrations, is a traditional ingredient in Asian food and Gracilaria and Ulva, which were the focus of 15% and 13% of the scientific publications respectively, that are also used in more sophisticated applications such as cosmetics, chemical

  17. Overcoming barriers to trust in agricultural biotechnology projects: a case study of Bt cowpea in Nigeria

    Directory of Open Access Journals (Sweden)

    Ezezika Obidimma C

    2012-11-01

    Full Text Available Abstract Background Nigeria, Africa’s most populous country, has been the world’s largest cowpea importer since 2004. The country is currently in the early phases of confined field trials for two genetically modified crops: Bacillus thuringiensis (Bt cowpea and nutritionally enhanced cassava (“BioCassava Plus”. Using the bio-safety guidelines process as a backdrop, we evaluate the role of trust in the operation of the Cowpea Productivity Improvement Project, which is an international agricultural biotechnology public-private partnership (PPP aimed at providing pest-resistant cowpea varieties to Nigerian farmers. Methods We reviewed the published literature and collected data through direct observations and semi-structured, face-to-face interviews. Data were analyzed based on emergent themes to create a comprehensive narrative on how trust is understood and built among the partners and with the community. Results Our findings highlight the importance of respecting mandates and eliminating conflicts of interest; holding community engagement initiatives early on; having on-going internal discussion and planning; and serving a locally-defined need. These four lessons could prove helpful to other agricultural biotechnology initiatives in which partners may face similar trust-related challenges. Conclusions Overcoming challenges to building trust requires concerted effort throughout all stages of project implementation. Currently, plans are being made to backcross the cowpea strain into a local variety in Nigeria. The development and adoption of the Bt cowpea seed hinges on the adoption of a National Biosafety Law in Nigeria. For countries that have decided to adopt biotech crops, the Nigerian cowpea experiment can be used as a model for other West African nations, and is actually applied as such in Ghana and Burkina Faso, interested in developing a Bt cowpea.

  18. Biotechnology and the developing world. Finding ways to bridge the agricultural technology gap.

    Science.gov (United States)

    Platais, K W; Collinson, M P

    1992-03-01

    Biotechnology is a controversial subject that involves a range of scientific principles from basic tissue culture to genetic manipulation. Proponents include private sector capitalists, public sector researchers, and developing nation governments. Opponents include environmental organizations and social organizations involved in protecting the rights of developing nations. Biotechnology is being presented as the next step after the Green Revolution and the only way that the people of the developing world will be able to feed themselves in the next half century. Research by industrialized nations world wide total an estimated $11 billion with 66% being contributed by the private sector. Biotechnology represents somewhat of a dilemma. Since the majority of the work is being done by the private sector the interests of shareholders and profit are greater done by the private sector the interests of shareholders and profit are greater than that of public welfare or safety. The Consultative Group on International Agricultural Research (CGIAR) is one public sector group that is concerned about this problem. The countries of the developing world fall into 2 categories in relation to use of biotechnology: (1) those that have the potential to adapt imported biotechnologies to local conditions; (2) those that have little or no applied research capacity to effectively use biotechnologies. Currently only Brazil, China, India, and Thailand belong in the 1st category, all other developing countries fall into the 2nd. CGIAR believes it can help in 2 ways: (1) it can provide a bridge for needed information and germplasm between developed and developing countries; (2) it can help to ensure that the agricultural needs of developing countries are not lost. In 1990 CGIAR's plant and animal biotechnology research totaled $14.5 million which was less than 5% of the total CGIAR budget. Networking and institutions building are areas that CGIAR focuses on in an attempt to increase its affect

  19. Biotechnology for Chemical Production: Challenges and Opportunities.

    Science.gov (United States)

    Burk, Mark J; Van Dien, Stephen

    2016-03-01

    Biotechnology offers a new sustainable approach to manufacturing chemicals, enabling the replacement of petroleum-based raw materials with renewable biobased feedstocks, thereby reducing greenhouse gas (GHG) emissions, toxic byproducts, and the safety risks associated with traditional petrochemical processing. Development of such bioprocesses is enabled by recent advances in genomics, molecular biology, and systems biology, and will continue to accelerate as access to these tools becomes faster and cheaper.

  20. Biomechatronic Design in Biotechnology A Methodology for Development of Biotechnological Products

    CERN Document Server

    Mandenius, Carl-Fredrik

    2011-01-01

    This cutting-edge guide on the fundamentals, theory, and applications of biomechatronic design principles Biomechatronic Design in Biotechnology presents a complete methodology of biomechatronics, an emerging variant of the mechatronics field that marries biology, electronics, and mechanics to create products where biological and biochemical, technical, human, management-and-goal, and information systems are combined and integrated in order to solve a mission that fulfills a human need. A biomechatronic product includes a biological, mechanical, and electronic part. Beginning with an overvie

  1. Biotechnological production of value-added carotenoids from microalgae

    Science.gov (United States)

    Wichuk, Kristine; Brynjólfsson, Sigurður; Fu, Weiqi

    2014-01-01

    We recently evaluated the relationship between abiotic environmental stresses and lutein biosynthesis in the green microalga Dunaliella salina and suggested a rational design of stress-driven adaptive evolution experiments for carotenoids production in microalgae. Here, we summarize our recent findings regarding the biotechnological production of carotenoids from microalgae and outline emerging technology in this field. Carotenoid metabolic pathways are characterized in several representative algal species as they pave the way for biotechnology development. The adaptive evolution strategy is highlighted in connection with enhanced growth rate and carotenoid metabolism. In addition, available genetic modification tools are described, with emphasis on model species. A brief discussion on the role of lights as limiting factors in carotenoid production in microalgae is also included. Overall, our analysis suggests that light-driven metabolism and the photosynthetic efficiency of microalgae in photobioreactors are the main bottlenecks in enhancing biotechnological potential of carotenoid production from microalgae. PMID:24691165

  2. A critical assessment of regulatory triggers for products of biotechnology: Product vs. process.

    Science.gov (United States)

    McHughen, Alan

    2016-10-01

    Regulatory policies governing the safety of genetic engineering (rDNA) and the resulting products (GMOs) have been contentious and divisive, especially in agricultural applications of the technologies. These tensions led to vastly different approaches to safety regulation in different jurisdictions, even though the intent of regulations-to assure public and environmental safety-are common worldwide, and even though the international scientific communities agree on the basic principles of risk assessment and risk management. So great are the political divisions that jurisdictions cannot even agree on the appropriate triggers for regulatory capture, whether product or process. This paper reviews the historical policy and scientific implications of agricultural biotechnology regulatory approaches taken by the European Union, USA and Canada, using their respective statutes and regulations, and then critically assesses the scientific underpinnings of each.

  3. Advanced Manufacturing and Value-added Products from US Agriculture

    Science.gov (United States)

    Villet, Ruxton H.; Child, Dennis R.; Acock, Basil

    1992-01-01

    An objective of the US Department of Agriculture (USDA) Agriculture Research Service (ARS) is to develop technology leading to a broad portfolio of value-added marketable products. Modern scientific disciplines such as chemical engineering are brought into play to develop processes for converting bulk commodities into high-margin products. To accomplish this, the extremely sophisticated processing devices which form the basis of modern biotechnology, namely, genes and enzymes, can be tailored to perform the required functions. The USDA/ARS is a leader in the development of intelligent processing equipment (IPE) for agriculture in the broadest sense. Applications of IPE are found in the production, processing, grading, and marketing aspects of agriculture. Various biotechnology applications of IPE are discussed.

  4. Biotechnology education as social and cultural production/reproduction of the biotechnology community

    Science.gov (United States)

    Andrée, Maria

    2014-03-01

    This paper is a commentary to a paper by Anne Solli, Frank Bach and Björn Åkerman on how students at a technical university learn to argue as biotechnologists. Solli and her colleagues report from an ethnographic study performed during the first semester of a 5-year program in biotechnology at a technical university in Sweden. Their study demonstrates how students begin to acquire `the right way' of approaching the controversial issue of producing and consuming genetically modified organisms. In my response I discuss the ethnographic account of this particular educational practice in terms of social and cultural production/reproduction of a biotechnology community and how the participants (students and teaching professors) deal with the dialectic of individual and collective transformation. In the perspective of the biotechnology community, the work done by the teaching professor becomes a way of ensuring the future of the biotechnology community in terms of what values and objectives are held highly in the community of practice.

  5. Training Teens to Teach Agricultural Biotechnology: A National 4-H Science Demonstration Project

    Directory of Open Access Journals (Sweden)

    Chad Ripberger

    2013-12-01

    Full Text Available This article discusses a National 4-H Science agricultural biotechnology demonstration project and the impact of the pilot programs on the teenage leaders and teachers. A total of 82 teenagers were extensively trained, who in turn, engaged 620 youth participants with agricultural biotechnology education in afterschool and summer programs in five states. This article details the national and state level trainings for these teen teachers as well as the content rich partners from agribusinesses, agricultural commodity groups, and universities who supported their involvement. The impact on the content knowledge, science process and life skills, and program development and implementation skills of the teen leaders and teachers was evaluated using multiple instruments over multiple administrations (pre-training, post-training, and post-teaching. Results indicate significant gains in most areas assessed. Project recommendations and future plans are also discussed.

  6. Biotechnological and molecular approaches for vanillin production: a review.

    Science.gov (United States)

    Kaur, Baljinder; Chakraborty, Debkumar

    2013-02-01

    Vanillin is one of the most widely used flavoring agents in the world. As the annual world market demand of vanillin could not be met by natural extraction, chemical synthesis, or tissue culture technology, thus biotechnological approaches may be replacement routes to make production of bio-vanillin economically viable. This review's main focus is to highlight significant aspects of biotechnology with emphasis on the production of vanillin from eugenol, isoeugenol, lignin, ferulic acid, sugars, phenolic stilbenes, vanillic acid, aromatic amino acids, and waste residues by applying fungi, bacteria, and plant cells. Production of biovanillin using GRAS lactic acid bacteria and metabolically engineered microorganisms, genetic organization of vanillin biosynthesis operons/gene cassettes and finally the stability of biovanillin generated through various biotechnological procedures are also critically reviewed in the later sections of the review.

  7. Biotechnology: The U.S. Department of Agriculture's Biotechnology Research Efforts. Briefing Report. To the Chairman, Committee on Science and Technology, House of Representatives.

    Science.gov (United States)

    General Accounting Office, Washington, DC.

    Information pertaining to biotechnology research that was funded in whole or in part by the U.S. Department of Agriculture (USDA) is presented in this report. Findings obtained from state agricultural experimental stations and colleges of veterinary medicine are discussed in 11 appendices. These include: (1) information on USDA's biotechnology…

  8. Biotechnology 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-12-15

    This book deals with Bio-vision 2016 on the meaning and important contents Next, it reveals vision of biotechnology, current condition of biotechnology in the main countries such as the U.S, Japan, Eu and China, promoting nation biotechnology with promotion policy, support policy for biotechnology such as agriculture and forestry and information and communication, competitiveness of biotechnology, research development by fields and related industries and regulation and system on biotechnology.

  9. Biotechnology for Sustainable Crop Production and Protection: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    T. M. Manjunath

    2010-07-01

    Full Text Available In 2009, transgenic crops were grown on 134 million hectares in 25 countries, including India, in six continents by about 14million farmers, marking an 80-fold increase in the area since their first commercialization on 1.7 m ha in the USA and fiveother countries in 1996. The dominant transgenic traits were herbicide tolerance and insect resistance, deployed either alone orboth stacked in the same plant. A recent survey of the global impact of biotech crops estimated that in 2008 alone, the totalcrop production gain globally for the 4 principal biotech crops - maize, soybean, cotton and canola - was 29.6 million metrictons while the net economic benefit to the biotech farmers was US$ 9.2 billion. The cumulative benefits for the period 1996-2008 were yield gains of 167 million tons and economic returns of US$ 51.9 billion. In India, the area planted with Bt-cottonincreased significantly from year to year since its introduction in 2002 and reached 8.4 million hectares in 2009. The overallbenefits from Bt-cotton included an yield increase of up to 63% due to effective control of bollworms, pesticide reduction by50%, net profit to farmers up to Rs.10,000/hectare and turned India from an importer to a major exporter of cotton. Theseindicate that biotechnology has made significant contributions to higher productivity, lower costs of production and increasedeconomic benefits and that it has enormous potential for the future with new traits, events and crops. Over 60 countries,including India, are engaged in research on about 55 crop species to incorporate transgenes to bestow various traits such asresistance to pests, diseases or herbicides; tolerance to environmental stresses like drought, cold or salinity; enhanced cropyields, nutrition or shelf-life, etc. However, unreasonable opposition to biotechnology and undue delays in regulatoryapprovals are some of the major challenges that need to be addressed so as to make full use of this technology which

  10. Pharma Success in Product Development—Does Biotechnology Change the Paradigm in Product Development and Attrition.

    Science.gov (United States)

    Evens, Ronald P

    2016-01-01

    The biotechnology segment of the overall biopharma industry has existed for only about 40–45 years, as a driver of new product development. This driving force was initiated with the FDA approval of recombinant human insulin in 1982, originating from the Genentech company. The pharma industry in the early years of 1970s and 1980s engaged with biotechnology companies only to a small extent with their in-licensing of a few recombinant molecules, led by Roche, Eli Lilly, and Johnson and Johnson. However, subsequently and dramatically over the last 25 years, biotechnology has become a primary driver of product and technology innovation and has become a cornerstone in new product development by all biopharma companies. This review demonstrates these evolutionary changes regarding approved products, product pipelines, novelty of the products, FDA approval rates, product sales, financial R&D investments in biotechnology, partnerships, mergers and acquisitions, and patent issues. We now have about 300 biotechnology products approved in USA covering 16 medical disciplines and about 250 indications, with the engagement of 25 pharma companies, along with their biotechnology company innovators and partners. The biotechnology pipeline involves over 1000 molecules in clinical trials, including over 300 molecules associated with the top 10 pharma companies. Product approval rates by the FDA for biotechnology products are over double the rate for drugs. Yes, the R&D paradigm has changed with biotechnology now as one of the major focuses for new product development with novel molecules by the whole biopharma industry.

  11. Beyond knowledge transfer: The social construction of autonomous academic science in university-industry agricultural biotechnology research collaborations

    Science.gov (United States)

    Biscotti, Dina Louise

    Autonomy is a social product. Although some might view autonomy as the absence of social interference in individual action, it is in fact produced through social institutions. It enables social actors to act; it is the justification for the allocation of enormous public resources into institutions classified as "public" or "nonprofit;" it can lead to innovation; and, significantly, it is key to the public acceptance of new technologies. In this dissertation, I analyze the social construction of autonomy for academic science in U.S. university-industry agricultural biotechnology research collaborations. University-industry relationships (UIRs) are a site of concern about the influence of commercial interests on academic science. Agricultural biotechnology is a contentious technology that has prompted questions about the ecological and public health implications of genetically-modified plants and animals. It has also spurred awareness of the industrialization of agriculture and accelerating corporate control of the global food system. Through analysis of in-depth interviews with over 200 scientists and administrators from nine U.S. research universities and thirty agricultural biotechnology companies, I find that both the academy and industry have a vested interest in the social construction of the academy as an autonomous space from which claims to objective, disinterested scientific knowledge can be made. These claims influence government regulation, as well as grower and public acceptance of agricultural biotechnology products. I argue that the social production of autonomy for academic science can be observed in narratives and practices related to: (1) the framing of when, how and why academic scientists collaborate with industry, (2) the meanings ascribed to and the uses deemed appropriate for industry monies in academic research, and (3) the dissemination of research results into the public domain through publications and patents. These narratives and practices

  12. Agricultural Productivity and Farm Financing

    Science.gov (United States)

    Wright, F. Vernon

    1975-01-01

    The author, president of the Federal Intermediate Credit Bank of New Orleans, in remarks to the first general session of the Agricultural Education Division of the American Vocational Association, paints a bright picture of agricultural productivity, financial challenge, and agricultural commitment in the mid-South. (Author/EA)

  13. Impacts of Agricultural Biotechnology on China's Economy and World Trade

    NARCIS (Netherlands)

    Huang, Jikun; Ruifa, Hu; Meijl, van H.; Tongeren, van F.W.

    2002-01-01

    This paper analyses the impact of adopting non-food genetically modified organisms (GMOs) in China on production, trade and welfare. On the one hand the paper focuses on the productivity enhancing impact of GMOs and on the other hand it treats the consequences of some form of restrictions on Chinese

  14. Enzyme research and applications in biotechnological intensification of biogas production.

    Science.gov (United States)

    Parawira, Wilson

    2012-06-01

    Biogas technology provides an alternative source of energy to fossil fuels in many parts of the world. Using local resources such as agricultural crop remains, municipal solid wastes, market wastes and animal waste, energy (biogas), and manure are derived by anaerobic digestion. The hydrolysis process, where the complex insoluble organic materials are hydrolysed by extracellular enzymes, is a rate-limiting step for anaerobic digestion of high-solid organic solid wastes. Biomass pretreatment and hydrolysis are areas in need of drastic improvement for economic production of biogas from complex organic matter such as lignocellulosic material and sewage sludge. Despite development of pretreatment techniques, sugar release from complex biomass still remains an expensive and slow step, perhaps the most critical in the overall process. This paper gives an updated review of the biotechnological advances to improve biogas production by microbial enzymatic hydrolysis of different complex organic matter for converting them into fermentable structures. A number of authors have reported significant improvement in biogas production when crude and commercial enzymes are used in the pretreatment of complex organic matter. There have been studies on the improvement of biogas production from lignocellulolytic materials, one of the largest and renewable sources of energy on earth, after pretreatment with cellulases and cellulase-producing microorganisms. Lipids (characterised as oil, grease, fat, and free long chain fatty acids, LCFA) are a major organic compound in wastewater generated from the food processing industries and have been considered very difficult to convert into biogas. Improved methane yield has been reported in the literature when these lipid-rich wastewaters are pretreated with lipases and lipase-producing microorganisms. The enzymatic treatment of mixed sludge by added enzymes prior to anaerobic digestion has been shown to result in improved degradation of the

  15. Are life patents ethical? Conflict between Catholic social teaching and agricultural biotechnology's patent regime.

    Science.gov (United States)

    Warner, K D

    2001-09-01

    Patents for genetic material in the industrialized North have expanded significantly over the past twenty years, playing a crucial role in the current configuration of the agricultural biotechnology industries, and raising significant ethical issues. Patents have been claimed for genes, gene sequences, engineered crop species, and the technical processes to engineer them. Most critics have addressed the human and ecosystem health implications of genetically engineered crops, but these broad patents raise economic issues as well. The Catholic social teaching tradition offers guidelines for critiquing the economic implications of this new patent regime. The Catholic principle of the universal destination of goods implies that genes, gene sequences, and engineered crop varieties are ineligible for patent protection, although the processes to engineer these should be eligible. Religious leaders are likely to make a more substantive contribution to debates about agricultural biotechnology by addressing these life patents than by speculating that genetic engineering is "playing God."

  16. Consumer perceptions of the application of biotechnology in food production

    DEFF Research Database (Denmark)

    Grunert, Klaus G.

    Background: There has been considerable enthusiasm among scientists and industry about the possibilities of biotechnology and especially genetically modified organisms (GMO) in food production. At the same time, there has been considerable scepticism by consumers, much public debate, and a cautio...... produced using a GMO starter culture and a beer brewed using GMO yeast were used as examples....

  17. Impact of biotechnology on sugarcane agriculture and industry

    Science.gov (United States)

    There are nine key issues that can influence the productivity and sustainability of the sugarcane industry. These include land, soil fertility, water, variety, planting density, crop protection, cultural practices, harvesting and processing, and information technology. To all sugarcane farmers, it r...

  18. Biotechnological Production Process and Life Cycle Assessment of Graphene

    Directory of Open Access Journals (Sweden)

    P. Noorunnisa Khanam

    2017-01-01

    Full Text Available The aim of this study is to compare the graphene produced using a biotechnological method (Escherichia coli with the graphene produced by Hummers’ method (a chemical method and to study the effect on the energy consumption and environment. The results indicated that the chemical reduction process has higher energy consumption, approximately 1642 Wh, than the energy consumption of the biotechnological reduction process, which is 5 Wh. The potential of global warming (GWP 100 improved by 71% using the biotechnological route for the production of graphene. Abiotic depletion, the photochemical ozone creation potential, and marine aquatic ecotoxicity potential were improved when the biological route was employed, compared with the chemical route. The eutrophication potential, terrestrial ecotoxicity, and ozone depletion layer changed very little since the main variables involved in the production of graphene oxide and waste management are the same. The biotechnological method can be considered a green technique for the production of graphene, especially given the reduction in the negative effects on global warming, abiotic depletion, the photochemical ozone creation potential, and the marine aquatic ecotoxicity potential.

  19. Future Public Policy and Ethical Issues Facing the Agricultural and Microbial Genomics Sectors of the Biotechnology Industry: A Roundtable Discussion

    Energy Technology Data Exchange (ETDEWEB)

    Diane E. Hoffmann

    2003-09-12

    On September 12, 2003, the University of Maryland School of Law's Intellectual Property and Law & Health Care Programs jointly sponsored and convened a roundtable discussion on the future public policy and ethical issues that will likely face the agricultural and microbial genomics sectors of the biotechnology industry. As this industry has developed over the last two decades, societal concerns have moved from what were often local issues, e.g., the safety of laboratories where scientists conducted recombinant DNA research on transgenic microbes, animals and crops, to more global issues. These newer issues include intellectual property, international trade, risks of genetically engineered foods and microbes, bioterrorism, and marketing and labeling of new products sold worldwide. The fast paced nature of the biotechnology industry and its new developments often mean that legislators, regulators and society, in general, must play ''catch up'' in their efforts to understand the issues, the risks, and even the benefits, that may result from the industry's new ways of conducting research, new products, and novel methods of product marketing and distribution. The goal of the roundtable was to develop a short list of the most significant public policy and ethical issues that will emerge as a result of advances in these sectors of the biotechnology industry over the next five to six years. More concretely, by ''most significant'' the conveners meant the types of issues that would come to the attention of members of Congress or state legislators during this time frame and for which they would be better prepared if they had well researched and timely background information. A concomitant goal was to provide a set of focused issues for academic debate and scholarship so that policy makers, industry leaders and regulators would have the intellectual resources they need to better understand the issues and concerns at stake. The

  20. Risk Modelling of Agricultural Products

    Science.gov (United States)

    Nugrahani, E. H.

    2017-03-01

    In the real world market, agricultural commodity are imposed with fluctuating prices. This means that the price of agricultural products are relatively volatile, which means that agricultural business is a quite risky business for farmers. This paper presents some mathematical models to model such risks in the form of its volatility, based on certain assumptions. The proposed models are time varying volatility model, as well as time varying volatility with mean reversion and with seasonal mean equation models. Implementation on empirical data show that agricultural products are indeed risky.

  1. Development of agricultural biotechnology and biosafety regulations used to assess the safety of genetically modified crops in Iran.

    Science.gov (United States)

    Mousavi, Amir; Malboobi, Mohammad A; Esmailzadeh, Nasrin S

    2007-01-01

    Rapid progress in the application of biotechnological methodologies and development of genetically modified crops in Iran necessitated intensive efforts to establish proper organizations and prepare required rules and regulations at the national level to ensure safe application of biotechnology in all pertinent aspects. Practically, preparation of a national biotechnology strategic plan in the country coincided with development of a national biosafety framework that was the basis for the drafted biosafety law. Although biosafety measures were observed by researchers voluntarily, the establishment of national biosafety organizations since the year 2000 built a great capacity to deal with biosafety issues in the present and future time, particularly with respect to food and agricultural biotechnology.

  2. Women in sustainable agriculture and food biotechnology key advances and perspectives on emerging topics

    CERN Document Server

    2017-01-01

    This volume describes the contributions made by women scientists to the field of agricultural biotechnology, the most quickly adopted agricultural practice ever adopted. It features the perspectives of women educators, researchers and key stakeholders towards the development, implementation and acceptance of this modern technology. It describes the multiplying contemporary challenges in the field, how women are overcoming technological barriers, and their thoughts on what the future may hold. As sustainable agricultural practices increasingly represent a key option in the drive towards building a greener global community, the scientific, technological and implementation issues covered in this book are vital information for anyone working in environmental engineering. Provides a broad analysis of the science of agriculture, focusing on the contributions of women to the field, from basic research to applied technology Offers insights into hot topics in the field across the life cycle, from genetic engineering t...

  3. [Sustainable production of bulk chemicals by application of "white biotechnology"].

    Science.gov (United States)

    Patel, M K; Dornburg, V; Hermann, B G; Shen, Li; van Overbeek, Leo

    2008-12-01

    Practically all organic chemicals and plastics are nowadays produced from crude oil and natural gas. However, it is possible to produce a wide range of bulk chemicals from renewable resources by application of biotechnology. This paper focuses on White Biotechnology, which makes use of bacteria (or yeasts) or enzymes for the conversion of the fermentable sugar to the target product. It is shown that White Biotechnology offers substantial savings of non-renewable energy use and greenhouse gas emissions for nearly all of the products studied. Under favorable boundary conditions up to two thirds (67%) of the current non-renewable energy use for the production of the selected chemicals can be saved by 2050 if substantial technological progress is made and if the use of lignocellulosic feedstocks is successfully developed. The analysis for Europe (E.U. 25 countries) shows that land requirements related to White Biotechnology chemicals are not likely to become a critical issue in the next few decades, especially considering the large unused and underutilized resources in Eastern Europe. Substantial macroeconomic savings can be achieved under favourable boundary conditions. In principle, natural bacteria and enzymes can be used for White Biotechnology but, according to many experts in the fields, Genetically Modified Organisms (GMO) will be necessary in order to achieve the high yields, concentrations and productivities that are required to reach economic viability. Safe containment and inactivation of GMOs after release is very important because not all possible implications caused by the interaction of recombinant genes with other populations can be foreseen. If adequate precautionary measures are taken, the risks related to the use of genetically modified organisms in White Biotechnology are manageable. We conclude that the core requirements to be fulfilled in order to make clear steps towards a bio-based chemical industry are substantial technological progress in the

  4. Agriculture Breaks New Ground. How Biotechnology and Regrowing Materials Are Being Used in the Federal Republic of Germany. Sonderdienst Special Report SO1.

    Science.gov (United States)

    Grimm, Fritz; Born, Sigrid

    This document provides an overview of the major research priorities of biotechnology and the use of what is known as "regrowing raw materials" in agriculture in the Federal Republic of Germany. Following an introduction, section 2 addresses biotechnology in agriculture, including biotechnology and genetic engineering, the significance of…

  5. Soluble microbial products and their implications in mixed culture biotechnology.

    Science.gov (United States)

    Ni, Bing-Jie; Rittmann, Bruce E; Yu, Han-Qing

    2011-09-01

    Soluble microbial products (SMP) are soluble organic compounds released during normal biomass metabolism in mixed culture biotechnology. In this review, we give the up-to-date status on several essential SMP issues: mechanisms of SMP formation, differentiation between utilization-associated products (UAP) and biomass-associated products (BAP), biodegradability of the SMP components, how formation of SMP by autotrophs controls effluent quality and supports a substantial population of heterotrophs, mathematical modeling that includes SMP, and improving effluent quality by controlling SMP. We also present two timely examples that highlight our current understanding and give an indication of how SMP affects the performance of modern mixed culture biotechnology: membrane fouling of membrane bioreactors (MBRs) and the dynamics of SMP in anaerobic systems.

  6. Food and agricultural biotechnology: a summary and analysis of ethical concerns.

    Science.gov (United States)

    Thompson, Paul B; Hannah, William

    2008-01-01

    The range of social and ethical concerns that have been raised in connection with food and agricultural biotechnology is exceedingly broad. Many of these deal with risks and possible outcomes that are not unique to crops or animals developed using recombinant DNA. Food safety, animal welfare, socio-economic and environmental impacts, as well as shifts in power relations or access to technology raise concerns that might be generalized to many technologies. These aspects of the controversy over biotechnology are analyzed below as elements of general technological ethics, and key norms or values pertinent to each of these categories are specified in some detail. However, a number of special concerns unique to the use of rDNA in manipulating plant and animal genomes have been raised, and these are reviewed as well. The chapter concludes by reviewing two broad policy strategies for responding to the issues, one involving labels and consumer consent, the other applying the precautionary principle.

  7. Electroanalysis may be used in the vanillin biotechnological production.

    Science.gov (United States)

    Giraud, William; Mirabel, Marie; Comtat, Maurice

    2014-02-01

    This study shows that electroanalysis may be used in vanillin biotechnological production. As a matter of fact, vanillin and some molecules implicated in the process like eugenol, ferulic acid, and vanillic acid may be oxidized on electrodes made of different materials (gold, platinum, glassy carbon). By a judicious choice of the electrochemical method and the experimental conditions the current intensity is directly proportional to the molecule concentrations in a range suitable for the biotechnological process. So, it is possible to imagine some analytical strategies to control some steps in the vanillin biotechnological production: by sampling in the batch reactor during the process, it is possible to determine out of line the concentration of vanillin, eugenol, ferulic acid, and vanillic acid with a gold rotating disk electrode, and low concentration of vanillin with addition of hydrazine at an amalgamated electrode. Two other possibilities consist in the introduction of electrodes directly in the batch during the process; the first one with a gold rotating disk electrode using linear sweep voltammetry and the second one requires three gold rotating disk electrodes held at different potentials for chronoamperometry. The last proposal is the use of ultramicroelectrodes in the case when stirring is not possible.

  8. Biotechnology entrepreneurship and ethics: principles, paradigms, and products.

    Science.gov (United States)

    Kuszler, Patricia C

    2006-09-01

    Biotechnology, whether in the context of new drugs derived from DNA and genetic technology, genetically modified food, or biologics making use of living cells, raises ethical concerns at a variety of different levels. At the research level, there is concern that the very nature of research is being subverted, rather than enhanced, by entrepreneurship. This area of ethical concern has intensified in the United States as a result of the conflicts of interests resulting from the growing alliance between University academia and private industry in the research enterprise. As we travel down the research path into development of a drug or technology, ethical questions arise with respect to protecting human subjects and society from danger and exploitation by researchers. As development gives way to marketing and dissemination of a new product, government regulators are pressed to get drugs and biologics through the regulatory pipeline into the market faster, walking an ethical tightrope between speed and safety. As new biotechnology products enter the market place, doctors and patients traverse yet another tightrope, that between unknown risk and the promise of benefit. And finally, patent protection is increasingly viewed as a unethical culprit in keeping prices high and depriving the global poor from lifesaving drugs and biologics. Bioethics has, to date, been largely a creation of Western research and medicine. As such it is wholly inadequate to respond to the cascade of ethical issues that flow from a vibrant biotechnology industry. And if biotechnology is in its infancy, as most believe, it is crucial that scientists, entrepreneurs and governments engage in dialogue about the ethical and societal questions raised on the road of scientific progress.

  9. Irradiation of northwest agricultural products

    Science.gov (United States)

    Eakin, D. E.; Tingey, G. I.

    1985-02-01

    Irradiation of food for disinfestation and preservation is increasing in importance because of increasing restrictions on various chemical treatments. Irradiation treatment is of particular interest in the Northwest because of a growing supply of agricultural products and the need to develop new export markets. Several products have, or could potentially have, significant export markets if stringent insect ocntrol procedures are developed and followed. Due to the recognized potential benefits of irradiation, this program was conducted to evaluate the benefits of using irradiation on Northwest agricultural products. Commodities currently included in the program are cherries, apples, asparagus, spices, hay, and hides.

  10. Consumer perceptions of the application of biotechnology in food production

    DEFF Research Database (Denmark)

    Grunert, Klaus G.

    Background: There has been considerable enthusiasm among scientists and industry about the possibilities of biotechnology and especially genetically modified organisms (GMO) in food production. At the same time, there has been considerable scepticism by consumers, much public debate, and a cautious...... approach from retailers. On this background, a study was designed to answer four questions: 1. How negative are consumer attitudes to GMO applications in food? 2. How much do these attitudes affect product evaluation and purchase behaviour? 3. How deeply rooted are these attitudes? 4. Can the attitudes...

  11. Use of biotechnological methods in the potato seed production

    Directory of Open Access Journals (Sweden)

    Janet Igarza Castro

    2012-01-01

    Full Text Available Potato crop has a large economic importance. Worldwide, propagation of potato by in vitro culture of axillary buds is commonly used in the production of in vitro plants and microtubers. These constitute the core plant material of a production program of potatoes seeds. This study aimed to present a review of scientific literature on the potato propagation by biotechnological methods. This also describes the main characteristics of this crop and the tuberization processes under natural and in vitro conditions. Key words: in vitro plants, microtubers, minitubers, Temporary Inmmersion System.

  12. Labor, markets and agricultural production.

    NARCIS (Netherlands)

    Ploeg, van der J.D.

    1990-01-01

    Focusing on the complex and often contradictory relationships between agricultural production and markets, the author examines the micro-macro linkages between farm production, farm labour issues and the degree of autonomy or dependancy vis-a-vis markets. By comparing the case of farmers in Peru,

  13. From Discovery to Production: Biotechnology of Marine Fungi for the Production of New Antibiotics.

    Science.gov (United States)

    Silber, Johanna; Kramer, Annemarie; Labes, Antje; Tasdemir, Deniz

    2016-07-21

    Filamentous fungi are well known for their capability of producing antibiotic natural products. Recent studies have demonstrated the potential of antimicrobials with vast chemodiversity from marine fungi. Development of such natural products into lead compounds requires sustainable supply. Marine biotechnology can significantly contribute to the production of new antibiotics at various levels of the process chain including discovery, production, downstream processing, and lead development. However, the number of biotechnological processes described for large-scale production from marine fungi is far from the sum of the newly-discovered natural antibiotics. Methods and technologies applied in marine fungal biotechnology largely derive from analogous terrestrial processes and rarely reflect the specific demands of the marine fungi. The current developments in metabolic engineering and marine microbiology are not yet transferred into processes, but offer numerous options for improvement of production processes and establishment of new process chains. This review summarises the current state in biotechnological production of marine fungal antibiotics and points out the enormous potential of biotechnology in all stages of the discovery-to-development pipeline. At the same time, the literature survey reveals that more biotechnology transfer and method developments are needed for a sustainable and innovative production of marine fungal antibiotics.

  14. Biotechnological production of natural zero-calorie sweeteners.

    Science.gov (United States)

    Philippe, Ryan N; De Mey, Marjan; Anderson, Jeff; Ajikumar, Parayil Kumaran

    2014-04-01

    The increasing public awareness of adverse health impacts from excessive sugar consumption has created increasing interest in plant-derived, natural low-calorie or zero-calorie sweeteners. Two plant species which contain natural sweeteners, Stevia rebaudiana and Siraitia grosvenorii, have been extensively profiled to identify molecules with high intensity sweetening properties. However, sweetening ability does not necessarily make a product viable for commercial applications. Some criteria for product success are proposed to identify which targets are likely to be accepted by consumers. Limitations of plant-based production are discussed, and a case is put forward for the necessity of biotechnological production methods such as plant cell culture or microbial fermentation to meet needs for commercial-scale production of natural sweeteners.

  15. Biotechnological production of eleutherosides: current state and perspectives.

    Science.gov (United States)

    Murthy, Hosakatte Niranjana; Kim, Yun-Soo; Georgiev, Milen I; Paek, Kee-Yoeup

    2014-09-01

    Eleutherosides, the phenylpropanoid and lignan glycosides, are the active ingredients accumulated in the roots and stems of Eleutherococcus species and in Eleutherococcus senticosus in particular. Syringin (=eleutheroside B) and (-) syringaresinol-di-O-β-D-glucoside (=eleutheroside E) appear as the most important bioactive compounds which are used as adaptogens, besides their abundant antidiabetic and anticancer properties. As the availability of "Eleuthero" is becoming increasingly limited because of its scanty natural distribution, the production of these compounds by biotechnological means has become an attractive alternative. In E. senticosus and other closely related species, Eleutherococcus sessiliflorus, Eleutherococcus chiisanensis, and Eleutherococcus koreanum, organogenic cultures have been induced for the production of eleutherosides. Bioreactor cultures have been established and various parameters, which influence on the accumulation of biomass and secondary metabolites, have been thoroughly investigated. Pilot-scale cultures have also been accomplished for the large-scale production of somatic embryos containing abundant amounts of eleutherosides. This review describes the biotechnological approaches and challenges for the production of eleutherosides.

  16. Current status in biotechnological production and applications of glycolipid biosurfactants.

    Science.gov (United States)

    Paulino, Bruno Nicolau; Pessôa, Marina Gabriel; Mano, Mario Cezar Rodrigues; Molina, Gustavo; Neri-Numa, Iramaia Angélica; Pastore, Glaucia Maria

    2016-12-01

    Biosurfactants are natural compounds with surface activity and emulsifying properties produced by several types of microorganisms and have been considered an interesting alternative to synthetic surfactants. Glycolipids are promising biosurfactants, due to low toxicity, biodegradability, and chemical stability in different conditions and also because they have many biological activities, allowing wide applications in different fields. In this review, we addressed general information about families of glycolipids, rhamnolipids, sophorolipids, mannosylerythritol lipids, and trehalose lipids, describing their chemical and surface characteristics, recent studies using alternative substrates, and new strategies to improve of production, beyond their specificities. We focus in providing recent developments and trends in biotechnological process and medical and industrial applications.

  17. Chinese public understanding of the use of agricultural biotechnology--a case study from Zhejiang Province of China.

    Science.gov (United States)

    Lü, Lan

    2006-04-01

    This study explores the Chinese public's perceptions of, and attitudes to, agriculture and food applications of biotechnology; and investigates the effect of socio-demographic factors on attitudes. A questionnaire survey and interviews were used in an attempt to combine quantitative analysis with qualitative review. The main finding of this study is that the Chinese population has a superficial, optimistic attitude to agricultural biotechnology; and that, in accordance with public attitudes, a cautious policy, with obligatory labelling, should be adopted. The study reveals that education is the factor among socio-demographic variables with the strongest impact on public attitudes. Higher education leads to a more positive evaluation of GM (genetically modified) foods and applications of biotechnology with respect to usefulness, moral acceptability, and suitability for encouragement. In addition, public attitudinal differences depend significantly on area of residence. Compared with their more urban compatriots, members of the public in less developed areas of China have more optimistic attitudes, perceive more benefits, and are more risk tolerant in relation to GM foods and agricultural biotechnology. Finally we obtained a very high rate of "don't know" answers to our survey questions. This suggests that many people do not have settled attitudes, and correspondingly, that the overall public attitude to agricultural biotechnology and GM foods in China is at present somewhat unstable.

  18. Chinese public understanding of the use of agricultural biotechnology--A case study from Zhejiang Province of China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This study explores the Chinese public's perceptions of, and attitudes to, agriculture and food applications of biotechnology; and investigates the effect of socio-demographic factors on attitudes. A questionnaire survey and interviews were used in an attempt to combine quantitative analysis with qualitative review. The main finding of this study is that the Chinese population has a superficial, optimistic attitude to agricultural biotechnology; and that, in accordance with public attitudes, a cautious policy,with obligatory labelling, should be adopted. The study reveals that education is the factor among socio-demographic variables with the strongest impact on public attitudes. Higher education leads to a more positive evaluation of GM (genetically modified)foods and applications of biotechnology with respect to usefulness, moral acceptability, and suitability for encouragement. In addition, public attitudinal differences depend significantly on area of residence. Compared with their more urban compatriots,members of the public in less developed areas of China have more optimistic attitudes, perceive more benefits, and are more risk tolerant in relation to GM foods and agricultural biotechnology. Finally we obtained a very high rate of"don't know" answers to our survey questions. This suggests that many people do not have settled attitudes, and correspondingly, that the overall public attitude to agricultural biotechnology and GM foods in China is at present somewhat unstable.

  19. Toward biotechnological production of adipic acid and precursors from biorenewables.

    Science.gov (United States)

    Polen, Tino; Spelberg, Markus; Bott, Michael

    2013-08-20

    Adipic acid is the most important commercial aliphatic dicarboxylic acid in the chemical industry and is primarily used for the production of nylon-6,6 polyamide. The current adipic acid market volume is about 2.6 million tons/y and the average annual demand growth rate forecast to stay at 3-3.5% worldwide. Hitherto, the industrial production of adipic acid is carried out by petroleum-based chemo-catalytic processes from non-renewable fossil fuels. However, in the past years, efforts were made to find alternative routes for adipic acid production from renewable carbon sources by biotechnological processes. Here we review the approaches and the progress made toward bio-based production of adipic acid.

  20. Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology.

    Science.gov (United States)

    Kusari, Souvik; Singh, Satpal; Jayabaskaran, Chelliah

    2014-06-01

    Taxol® (generic name paclitaxel) represents one of the most clinically valuable natural products known to mankind in the recent past. More than two decades have elapsed since the notable discovery of the first Taxol®-producing endophytic fungus, which was followed by a plethora of reports on other endophytes possessing similar biosynthetic potential. However, industrial-scale Taxol® production using fungal endophytes, although seemingly promising, has not seen the light of the day. In this opinion article, we embark on the current state of knowledge on Taxol® biosynthesis focusing on the chemical ecology of its producers, and ask whether it is actually possible to produce Taxol® using endophyte biotechnology. The key problems that have prevented the exploitation of potent endophytic fungi by industrial bioprocesses for sustained production of Taxol® are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Biotechnological production of sphingoid bases and their applications.

    Science.gov (United States)

    Schorsch, Christoph; Boles, Eckhard; Schaffer, Steffen

    2013-05-01

    Sphingolipids are not only essential components of biological membranes but also play numerous other vital functions in living cells. Moreover, they are major constituents of the outermost layer of human epidermis which acts as permeability barrier of the skin. Therefore, they have a high potential to be used in a wide variety of application fields such as antibacterial and antifungal agents, active pharmaceutical ingredients of therapeutics as well as active ingredients in cosmeceutical or nutraceutical formulations. However, their chemical synthesis is a complex and cost-intensive process. As the yeast Wickerhamomyces ciferrii has been found to be a natural producer of acetylated sphingoid bases, it provides a promising alternative for their biotechnological synthesis. In the last years, this yeast has been established by classical strain improvements as well as modern genetic engineering for the industrial production of phytosphingosine. Moreover, routes for the synthesis of sphinganine and sphingosine have been implemented. This mini-review summarizes the current knowledge about biosynthesis of sphingoid bases, genetic engineering of W. ciferrii for their biotechnological production, as well as their applications in cosmetic formulations.

  2. Biotechnological production of vitamin B2-enriched bread and pasta.

    Science.gov (United States)

    Capozzi, Vittorio; Menga, Valeria; Digesu, Anna Maria; De Vita, Pasquale; van Sinderen, Douwe; Cattivelli, Luigi; Fares, Clara; Spano, Giuseppe

    2011-07-27

    Lactic acid bacteria (LAB) were obtained from durum wheat flour samples and screened for roseoflavin-resistant variants to isolate natural riboflavin-overproducing strains. Two riboflavin-overproducing strains of Lactobacillus plantarum isolated as described above were used for the preparation of bread (by means of sourdough fermentation) and pasta (using a prefermentation step) to enhance their vitamin B2 content. Pasta was produced from a monovarietal semolina obtained from the durum wheat cultivar PR22D89 and, for experimental purposes, from a commercial remilled semolina. Several samples were collected during the pasta-making process (dough, extruded, dried, and cooked pasta) and tested for their riboflavin content by a high-performance liquid chromatography method. The applied approaches resulted in a considerable increase of vitamin B2 content (about 2- and 3-fold increases in pasta and bread, respectively), thus representing a convenient and efficient food-grade biotechnological application for the production of vitamin B2-enriched bread and pasta. This methodology may be extended to a wide range of cereal-based foods, feed, and beverages. Additionally, this work exemplifies the production of a functional food by a novel biotechnological exploitation of LAB in pasta-making.

  3. Recent trends in lactic acid biotechnology: A brief review on production to purification

    Directory of Open Access Journals (Sweden)

    Tayyba Ghaffar

    2014-04-01

    Full Text Available Lactic acid is one of the most important organic acid which is being extensively used around the globe in a range of industrial and biotechnological applications. From its very old history to date, many methods have been introduced to improve the optimization of lactic acid to get highest yields of the product of industrial interests. In serious consideration of the worldwide economic and lactic acid consumption issues there has been increasing research interest in the value of materials with natural origin, which are cheap, abundant and easily available all around the year. Recent trends showed that lactic acid production through fermentation is advantageous over chemical due to the environmental concerns of the modern world. The eco-friendly processing and fermentable capability of many of the agricultural and agro-industrial based raw materials or by-products respectively makes them attractive candidates in fermentation biotechnology to produce a value-added product with multiple applications. In fact, major advances have already been achieved in recent years in order to get pure lactic acid with optimal yield. The present review work is summarized on the multi-step processing technologies to produce lactic acid from different substances as a starting material potentially from various agro-industrial based biomasses. The information is also given on a purification through schematic representation of the product of quality interests.

  4. Rational selection of alternative, environmentally compatible surfactants for biotechnological production of pharmaceuticals--a step toward green biotechnology.

    Science.gov (United States)

    Straub, Jürg Oliver; Shearer, Russel; Studer, Martin

    2014-09-01

    The biotechnological production of pharmaceutical active substances needs ancillary substances. Surfactants are used at the end of the cell culture as a protection against potential viral or bacterial contamination and to lyse the producing cells for isolation and purification of the products. To find a replacement for a surfactant that had raised environmental concern, environmentally relevant data for potential alternatives were searched for in the literature. Significant data gaps were filled with additional tests: biodegradability, algal growth inhibition, acute daphnid immobilization and chronic daphnid reproduction toxicity, acute fish toxicity, and activated sludge respiration inhibition. The results were used to model removal in the wastewater treatment plants (WWTPs) serving 3 biotechnological production sites in the Roche Group. Predicted environmental concentrations (PECs) were calculated using realistic amounts of surfactants and site-specific wastewater fluxes, modeled removals for the WWTPs and dilution factors by the respective receiving waters. Predicted no-effect concentrations (PNECs) were derived for WWTPs and for both fresh and marine receiving waters as the treated wastewater of 1 production site is discharged into a coastal water. This resulted in a spreadsheet showing PECs, PNECs, and PEC ÷ PNEC risk characterization ratios for the WWTPs and receiving waters for all investigated surfactants and all 3 sites. This spreadsheet now serves as a selection support for the biotechnological developers. This risk-based prioritization of surfactants is a step toward green biotechnological production.

  5. Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous.

    Science.gov (United States)

    Schmidt, Isabell; Schewe, Hendrik; Gassel, Sören; Jin, Chao; Buckingham, John; Hümbelin, Markus; Sandmann, Gerhard; Schrader, Jens

    2011-02-01

    The oxygenated β-carotene derivative astaxanthin exhibits outstanding colouring, antioxidative and health-promoting properties and is mainly found in the marine environment. To satisfy the growing demand for this ketocarotenoid in the feed, food and cosmetics industries, there are strong efforts to develop economically viable bioprocesses alternative to the current chemical synthesis. However, up to now, natural astaxanthin from Haematococcus pluvialis, Phaffia rhodozyma or Paracoccus carotinifaciens has not been cost competitive with chemically synthesized astaxanthin, thus only serving niche applications. This review illuminates recent advances made in elucidating astaxanthin biosynthesis in P. rhodozyma. It intensely focuses on strategies to increase astaxanthin titers in the heterobasidiomycetous yeast by genetic engineering of the astaxanthin pathway, random mutagenesis and optimization of fermentation processes. This review emphasizes the potential of P. rhodozyma for the biotechnological production of astaxanthin in comparison to other natural sources such as the microalga H. pluvialis, other fungi and transgenic plants and to chemical synthesis.

  6. Risk communication related to animal products derived from biotechnology.

    Science.gov (United States)

    McCrea, D

    2005-04-01

    Previous chapters of this review have dealt with the key considerations related to the application of biotechnology in veterinary science and animal production. This article explores the theory and practice of risk communication and sets out the basic principles for good risk communication when dealing with new technologies, uncertainty, and cautious and sceptical consumers. After failure to communicate with consumers and stakeholders about the risk to human health from bovine spongiform encephalopathy (BSE) in the 1990s, Government Agencies in the United Kingdom have made significant improvements in risk communication. The official inquiry that followed the BSE crisis concluded that a policy of openness was the correct approach, and this article emphasises the importance of consultation, consistency and transparency. There are, however, many different factors that affect public perception of risk (religious, political, social, cultural, etc.) and developing effective risk communication strategies must take all of these complex issues into consideration.

  7. An intellectual property sharing initiative in agricultural biotechnology: development of broadly accessible technologies for plant transformation.

    Science.gov (United States)

    Chi-Ham, Cecilia L; Boettiger, Sara; Figueroa-Balderas, Rosa; Bird, Sara; Geoola, Josef N; Zamora, Pablo; Alandete-Saez, Monica; Bennett, Alan B

    2012-06-01

    The Public Intellectual Property Resource for Agriculture (PIPRA) was founded in 2004 by the Rockefeller Foundation in response to concerns that public investments in agricultural biotechnology benefiting developing countries were facing delays, high transaction costs and lack of access to important technologies due to intellectual property right (IPR) issues. From its inception, PIPRA has worked broadly to support a wide range of research in the public sector, in specialty and minor acreage crops as well as crops important to food security in developing countries. In this paper, we review PIPRA's work, discussing the failures, successes, and lessons learned during its years of operation. To address public sector's limited freedom-to-operate, or legal access to third-party rights, in the area of plant transformation, we describe PIPRA's patent 'pool' approach to develop open-access technologies for plant transformation which consolidate patent and tangible property rights in marker-free vector systems. The plant transformation system has been licensed and deployed for both commercial and humanitarian applications in the United States (US) and Africa, respectively.

  8. Towards personalized agriculture: What chemical genomics can bring to plant biotechnology

    Directory of Open Access Journals (Sweden)

    Michael E Stokes

    2014-07-01

    Full Text Available In contrast to the dominant drug paradigm in which compounds were developed to fit all, new models focused around personalized medicine are appearing where treatments are customized for individual patients. The agricultural biotechnology industry should also think about these new personalized models. For example, most common herbicides are generic in action, which led to the development of genetically modified crops to add specificity. The ease and accessibility of modern genomic analysis should facilitate the discovery of chemicals that are more selective in their utility. Is it possible to develop species-selective herbicides and growth regulators? More generally put, is plant research at a stage where chemicals can be developed that streamline plant development and growth to various environments? We believe the advent of chemical genomics now opens up these and other opportunities to personalize agriculture. Furthermore, chemical genomics does not necessarily require genetically tractable plant models, which in principle should allow quick translation to practical applications. For this to happen, however, will require collaboration between the Ag-biotech industry and academic labs for early-stage research and development.

  9. Ascendancy of agricultural biotechnology in the Australian political mainstream coexists with technology criticism by a vocal-minority

    Science.gov (United States)

    Tribe, David

    2014-01-01

    Australia is a federation of States. This political structure necessitates collaborative arrangements between Australian governments to harmonize national regulation of gene technology and food standards. Extensive political negotiation among institutions of federal government has managed regulation of GM crops and food. Well-developed human resources in Australian government provided numerous policy documents facilitating a transparent political process. Workable legislation has been devised in the face of criticisms of gene technology though the political process. Conflicts between potential disruptions to food commodity trade by precautionary proposals for environmental protection were one cause of political tensions, and differences in policy priorities at regional political levels versus national and international forums for negotiation were another. Australian policy outcomes on GM crops reflect (a) strong economic self-interest in innovative and productive farming, (b) reliance on global agricultural market reforms through the Cairns trade group and the WTO, and (c) the importance of Codex Alimentarius and WTO instruments SPS and TBT. Precautionary frameworks for GM food safety assurance that are inconsistent with WTO obligations were avoided in legislation. Since 2008 the 2 major parties, Australian Labor Party (ALP) and the Liberals appear to have reached a workable consensus at the Federal policy level about an important role for agricultural biotechnology in Australia's economic future. PMID:25437242

  10. Ascendancy of agricultural biotechnology in the Australian political mainstream coexists with technology criticism by a vocal-minority.

    Science.gov (United States)

    Tribe, David

    2014-07-01

    Australia is a federation of States. This political structure necessitates collaborative arrangements between Australian governments to harmonize national regulation of gene technology and food standards. Extensive political negotiation among institutions of federal government has managed regulation of GM crops and food. Well-developed human resources in Australian government provided numerous policy documents facilitating a transparent political process. Workable legislation has been devised in the face of criticisms of gene technology though the political process. Conflicts between potential disruptions to food commodity trade by precautionary proposals for environmental protection were one cause of political tensions, and differences in policy priorities at regional political levels versus national and international forums for negotiation were another. Australian policy outcomes on GM crops reflect (a) strong economic self-interest in innovative and productive farming, (b) reliance on global agricultural market reforms through the Cairns trade group and the WTO, and (c) the importance of Codex Alimentarius and WTO instruments SPS and TBT. Precautionary frameworks for GM food safety assurance that are inconsistent with WTO obligations were avoided in legislation. Since 2008 the 2 major parties, Australian Labor Party (ALP) and the Liberals appear to have reached a workable consensus at the Federal policy level about an important role for agricultural biotechnology in Australia's economic future.

  11. Biotechnology Education as Social and Cultural Production/Reproduction of the Biotechnology Community

    Science.gov (United States)

    Andrée, Maria

    2014-01-01

    This paper is a commentary to a paper by Anne Solli, Frank Bach and Björn Åkerman on how students at a technical university learn to argue as biotechnologists. Solli and her colleagues report from an ethnographic study performed during the first semester of a 5-year program in biotechnology at a technical university in Sweden. Their study…

  12. Biotechnology Education as Social and Cultural Production/Reproduction of the Biotechnology Community

    Science.gov (United States)

    Andrée, Maria

    2014-01-01

    This paper is a commentary to a paper by Anne Solli, Frank Bach and Björn Åkerman on how students at a technical university learn to argue as biotechnologists. Solli and her colleagues report from an ethnographic study performed during the first semester of a 5-year program in biotechnology at a technical university in Sweden. Their study…

  13. Medium and long-term opportunities and risk of the biotechnological production of bulk chemicals from renewable resources - The potential of white biotechnology

    OpenAIRE

    Patel, M.; Crank, M.; Dornberg, V.; Hermann, B.; Roes, L.; Hüsing, B; Overbeek, van, F.; Terragni, F.; Recchia, E.

    2006-01-01

    This report studies processes which convert biomass-derived feedstocks (e.g. fermentable sugar) into organic bulk chemicals (e.g. lactic acid, acetic acid, butanol and ethanol) by means of white biotechnology (e.g. fermentation or enzymatic conversion), either with or without genetically modified organisms. Apart from white biotechnology, also conventional chemistry is involved in all processes. All white biotechnology products are compared to functionally equivalent petrochemical products. T...

  14. Industrial biotechnology: tools and applications.

    Science.gov (United States)

    Tang, Weng Lin; Zhao, Huimin

    2009-12-01

    Industrial biotechnology involves the use of enzymes and microorganisms to produce value-added chemicals from renewable sources. Because of its association with reduced energy consumption, greenhouse gas emissions, and waste generation, industrial biotechnology is a rapidly growing field. Here we highlight a variety of important tools for industrial biotechnology, including protein engineering, metabolic engineering, synthetic biology, systems biology, and downstream processing. In addition, we show how these tools have been successfully applied in several case studies, including the production of 1, 3-propanediol, lactic acid, and biofuels. It is expected that industrial biotechnology will be increasingly adopted by chemical, pharmaceutical, food, and agricultural industries.

  15. From Discovery to Production: Biotechnology of Marine Fungi for the Production of New Antibiotics

    OpenAIRE

    Johanna Silber; Annemarie Kramer; Antje Labes; Deniz Tasdemir

    2016-01-01

    Filamentous fungi are well known for their capability of producing antibiotic natural products. Recent studies have demonstrated the potential of antimicrobials with vast chemodiversity from marine fungi. Development of such natural products into lead compounds requires sustainable supply. Marine biotechnology can significantly contribute to the production of new antibiotics at various levels of the process chain including discovery, production, downstream processing, and lead development. Ho...

  16. Biotechnological production of enantiomerically pure d-lactic acid.

    Science.gov (United States)

    Klotz, Silvia; Kaufmann, Norman; Kuenz, Anja; Prüße, Ulf

    2016-11-01

    The fermentation process of l-lactic acid is well known. Little importance was attached to d-lactic acid, but in the past 10 years, d-lactic acid gained significantly in importance. d-Lactic acid is an interesting precursor for manufacturing heat-resistant polylactic acid (PLA) bioplastics which can be widely used, for example as packaging material, coatings, for textiles or in the automotive industry.This review provides a comprehensive overview of the most recent developments, including a spectrum of studied microorganisms and their capabilities for the production of d-lactic acid. Additionally, the technological achievements in biotechnological d-lactic acid production including fermentation techniques like fed batch, simultaneous saccharification, and fermentation and continuous techniques are presented. Attention is also turned to suitable alternative substrates and their applicability in fermentation processes. Furthermore, advantages and disadvantages of product recovery and purification are discussed. Economic aspects of PLA are pointed out, and the present industrial producers of lactic acid are briefly introduced.

  17. A future perspective on the role of industrial biotechnology for chemicals production

    DEFF Research Database (Denmark)

    Woodley, John; Breuer, Michael; Mink, Daniel

    2013-01-01

    The development of recombinant DNA technology, the need for renewable raw materials and a green, sustainable profile for future chemical processes have been major drivers in the implementation of industrial biotechnology. The use of industrial biotechnology for the production of chemicals is well...

  18. The 5th World Congress of chemical engineering: Technologies critical to a changing World. Volume II: Agriculture, food biotechnology biomedical electric power process safety

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Volume 2 of the proceedings from the 5th World Congress of Chemical Engineering covers four major topic areas from which papers were selected for the database: Agriculture, Food; Biotechnology; Electric Power, and Process Safety. Pertinent subtopics include: Renewable Resource Engineering; Special Processes in the Food Industry; Advances in Metabolite Production; Advances in Fermentation and Cell Culture Engineering; Coal and Nuclear Central Station Power Plants; Large Natural Gas Fired Power Stations; Distributed Generation; Potential Impact of Biomass Energy; and Chemical Hazards in Plant Design. 29 papers were selected from Volume 1 for the database.

  19. VARIETY DEMAND IN AN INTEGRATED AGRICULTURAL HOUSEHOLD MODEL WITH ATTRIBUTES: IMPLICATIONS FOR EMERGING CROP BIOTECHNOLOGIES

    OpenAIRE

    Edmeades, Svetlana; Phaneuf, Daniel J.; Smale, Melinda; Renkow, Mitch

    2004-01-01

    In this paper we consider the role of variety attributes in an agricultural household model of variety planting decisions. In an application to banana production in Uganda we derive a system of derived demands for a set of available banana varieties. Our empirical model uses a hudle/count data framework to examine simaltaneously the likelihood a household has experience with a given variety, and the amount of the variety that is planted. We find that production, consumption, and pest resistan...

  20. Relevance of chemistry to white biotechnology

    OpenAIRE

    Raghava Smita; Gupta Munishwar N

    2007-01-01

    Abstract White biotechnology is a fast emerging area that concerns itself with the use of biotechnological approaches in the production of bulk and fine chemicals, biofuels, and agricultural products. It is a truly multidisciplinary area and further progress depends critically on the role of chemists. This article outlines the emerging contours of white biotechnology and encourages chemists to take up some of the challenges that this area has thrown up.

  1. Relevance of chemistry to white biotechnology

    Directory of Open Access Journals (Sweden)

    Raghava Smita

    2007-06-01

    Full Text Available Abstract White biotechnology is a fast emerging area that concerns itself with the use of biotechnological approaches in the production of bulk and fine chemicals, biofuels, and agricultural products. It is a truly multidisciplinary area and further progress depends critically on the role of chemists. This article outlines the emerging contours of white biotechnology and encourages chemists to take up some of the challenges that this area has thrown up.

  2. Relevance of chemistry to white biotechnology.

    Science.gov (United States)

    Gupta, Munishwar N; Raghava, Smita

    2007-06-20

    White biotechnology is a fast emerging area that concerns itself with the use of biotechnological approaches in the production of bulk and fine chemicals, biofuels, and agricultural products. It is a truly multidisciplinary area and further progress depends critically on the role of chemists. This article outlines the emerging contours of white biotechnology and encourages chemists to take up some of the challenges that this area has thrown up.

  3. Biotechnological Strategies to Improve Plant Biomass Quality for Bioethanol Production

    National Research Council Canada - National Science Library

    2017-01-01

    .... In this review, we analyze the desirable traits of raw plant materials for the bioethanol industry and the molecular biotechnology strategies employed to improve them, in either plants already under use (as maize...

  4. Climate change and agricultural production | Offiong | Global ...

    African Journals Online (AJOL)

    Climate change and agricultural production. ... Abstract. The threat of global environmental change has tended to focus on the possible impacts of a changing environment on agriculture and the implications for global food security. From a ...

  5. Biotechnological Strategies to Improve Plant Biomass Quality for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Julián Mario Peña-Castro

    2017-01-01

    Full Text Available The transition from an economy dependent on nonrenewable energy sources to one with higher diversity of renewables will not be a simple process. It requires an important research effort to adapt to the dynamics of the changing energy market, sort costly processes, and avoid overlapping with social interest markets such as food and livestock production. In this review, we analyze the desirable traits of raw plant materials for the bioethanol industry and the molecular biotechnology strategies employed to improve them, in either plants already under use (as maize or proposed species (large grass families. The fundamentals of these applications can be found in the mechanisms by which plants have evolved different pathways to manage carbon resources for reproduction or survival in unexpected conditions. Here, we review the means by which this information can be used to manipulate these mechanisms for commercial uses, including saccharification improvement of starch and cellulose, decrease in cell wall recalcitrance through lignin modification, and increase in plant biomass.

  6. Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Torzillo, Giuseppe; Scoma, Alberto; Faraloni, Cecilia; Giannelli, Luca

    2015-01-01

    Biological hydrogen production is being evaluated for use as a fuel, since it is a promising substitute for carbonaceous fuels owing to its high conversion efficiency and high specific energy content. The basic advantages of biological hydrogen production over other "green" energy sources are that it does not compete for agricultural land use, and it does not pollute, as water is the only by-product of the combustion. These characteristics make hydrogen a suitable fuel for the future. Among several biotechnological approaches, photobiological hydrogen production carried out by green microalgae has been intensively investigated in recent years. A select group of photosynthetic organisms has evolved the ability to harness light energy to drive hydrogen gas production from water. Of these, the microalga Chlamydomonas reinhardtii is considered one of the most promising eukaryotic H2 producers. In this model microorganism, light energy, H2O and H2 are linked by two excellent catalysts, the photosystem 2 (PSII) and the [FeFe]-hydrogenase, in a pathway usually referred to as direct biophotolysis. This review summarizes the main advances made over the past decade as an outcome of the discovery of the sulfur-deprivation process. Both the scientific and technical barriers that need to be overcome before H2 photoproduction can be scaled up to an industrial level are examined. Actual and theoretical limits of the efficiency of the process are also discussed. Particular emphasis is placed on algal biohydrogen production outdoors, and guidelines for an optimal photobioreactor design are suggested.

  7. Biotechnology in agriculture, 1986-May 1992. Citation from agricola concerning diseases and other environmental considerations. Bibliographies and literature of agriculture (Final)

    Energy Technology Data Exchange (ETDEWEB)

    Bebee, C.N.

    1992-08-01

    The citations in this bibliography, Biotechnology in Agriculture, 1986 - May 1992, are selected from the AGRICOLA database and cover diseases, insects, nematodes, weeds, chemicals, and other environmental considerations. This is the 46th volume in a series of commodity-oriented listings of citations from AGRICOLA. Entries in the bibliography are subdivided into a series of section headings used in the contents of the Bibliography of Agriculture. Each item appears under every section heading assigned to the cited document. A personal author index accompanies this publication.

  8. [Biodiesel-fuel: content, production, producers, contemporary biotechnology (review)].

    Science.gov (United States)

    Feofilova, E P; Sergeeva, Ia E; Ivashechkin, A A

    2010-01-01

    The necessity of expanding studies on producing renewable biofuel is reviewed. Special attention is given to biodiesel, the history of its creation, and its advantages and disadvantages in comparison with diesel-fuel. The main part of the review is devoted to an analysis of diesel biofuel on the basis of bacterial lipids, filamentous fungi, yeasts, plants, photo- and heterotrophic algae. Biodiesel on the basis of filamentous fungi is studied in detail and the possibility of creation of the most perspective biotechnology using these producers is grounded. The contemporary state of biotechnology in Russia is discussed in connection with the development of energetics based on renewable biofuels.

  9. Large-Scale Biotechnological Production of the Antileukemic Marine Natural Product Sorbicillactone A

    Directory of Open Access Journals (Sweden)

    Johannes F. Imhoff

    2007-06-01

    Full Text Available In the search for novel bioactive compounds from sponge-derived microorganisms, we have recently identified two structurally and biosynthetically unprecedented fungal metabolites, the novel-type alkaloids sorbicillactone A and sorbicillactone B. Sorbicillactone A is active against leukemia cells without showing notable cytotoxicity. Therefore, we have developed an efficient process for its biotechnological production and isolation on a large scale supplying sufficient material for the ongoing preclinical investigations and structure-activity relationship (SAR studies.

  10. Biotechnology: Challenge for the food industry

    Directory of Open Access Journals (Sweden)

    Popov Stevan

    2007-01-01

    Full Text Available According to the broadest definition, biotechnology is the use of living matter (plants, animals and microorganisms in industry, environment protection, medicine and agriculture. Biotechnology takes a key position in the field of food processing during thousands of years. Last about fifty years brought dynamical development of knowledges in the natural sciences especially in domain of genetics and manipulation of genes. Biotechnology for which active role in the on-coming times could be foreseen, not only with respect of R&D, but also in general technological development represents scope of priority in the USA and in European Union (EU as well. It is accepted that the results achieved in biotechnology oversize scientific domain and find their entrance into economics, legislation, quality of life and even of politics. Corresponding with the definition of biotechnology as "the integration of natural sciences and engineering in the application of microorganisms, cells, their components and molecular analogues in production (General assembly of the European federation for Biotechnology, 1989 European Commission (1999 adopted the biotechnological taxonomy, i.e. fields and sub-fields of biotechnology. R&D activities in this domain are oriented to eight fields and branched through them. Fields of biotechnology (EC, 1999 are: 1 Plant biotechnology (agricultural cultivars, trees, bushes etc; 2 Animal biotechnology; 3 Biotechnology in environment protection; 4 Industrial biotechnology (food, feed, paper, textile, pharmaceutical and chemical productions; 5 Industrial biotechnology (production of cells and research of cells - producers of food and of other commodities; 6 Development of humane and veterinarian diagnostics (therapeutical systems 7 Development of the basic biotechnology, and 8 Nontechnical domains of biotechnology. In concordance with some judgments, in the World exist about 4000 biotechnological companies. World market of biotechnological

  11. Biotechnological route for sustainable succinate production utilizing oil palm frond and kenaf as potential carbon sources.

    Science.gov (United States)

    Luthfi, Abdullah Amru Indera; Manaf, Shareena Fairuz Abdul; Illias, Rosli Md; Harun, Shuhaida; Mohammad, Abdul Wahab; Jahim, Jamaliah Md

    2017-04-01

    Due to the world's dwindling energy supplies, greater thrust has been placed on the utilization of renewable resources for global succinate production. Exploration of such biotechnological route could be seen as an act of counterbalance to the continued fossil fuel dominance. Malaysia being a tropical country stands out among many other nations for its plenty of resources in the form of lignocellulosic biomass. To date, oil palm frond (OPF) contributes to the largest fraction of agricultural residues in Malaysia, while kenaf, a newly introduced fiber crop with relatively high growth rate, holds great potential for developing sustainable succinate production, apart from OPF. Utilization of non-food, inexhaustible, and low-cost derived biomass in the form of OPF and kenaf for bio-based succinate production remains largely untapped. Owing to the richness of carbohydrates in OPF and kenaf, bio-succinate commercialization using these sources appears as an attractive proposition for future sustainable developments. The aim of this paper was to review some research efforts in developing a biorefinery system based on OPF and kenaf as processing inputs. It presents the importance of the current progress in bio-succinate commercialization, in addition to describing the potential use of different succinate production hosts and various pretreatments-saccharifications under development for OPF and kenaf. Evaluations on the feasibility of OPF and kenaf as fermentation substrates are also discussed.

  12. Increasing Agricultural Productivity Through Rural Infrastructure ...

    African Journals Online (AJOL)

    SH

    The study examined access to infrastructure and its effects on agricultural productivity in Surulere and Ife East ... infrastructural elements, improvement in soil practices and extension visits had positive significant effects on ... Key words: Agricultural productivity, Rural infrastructure, Rural farmers .... R6 = Distance to Markets.

  13. Agricultural Productivity, Co-Operatives and Organisational ...

    African Journals Online (AJOL)

    Agricultural Productivity, Co-Operatives and Organisational Innovations: A Case of ... productivity and increase farmers' income by bringing financial services closer. ... of Kimuli Agricultural Marketing Co-operative Society (AMCOS) and Muungano ... Also, coffee farmers were able to innovate a new structure for harmonising ...

  14. Fungal biodiversity to biotechnology.

    Science.gov (United States)

    Chambergo, Felipe S; Valencia, Estela Y

    2016-03-01

    Fungal habitats include soil, water, and extreme environments. With around 100,000 fungus species already described, it is estimated that 5.1 million fungus species exist on our planet, making fungi one of the largest and most diverse kingdoms of eukaryotes. Fungi show remarkable metabolic features due to a sophisticated genomic network and are important for the production of biotechnological compounds that greatly impact our society in many ways. In this review, we present the current state of knowledge on fungal biodiversity, with special emphasis on filamentous fungi and the most recent discoveries in the field of identification and production of biotechnological compounds. More than 250 fungus species have been studied to produce these biotechnological compounds. This review focuses on three of the branches generally accepted in biotechnological applications, which have been identified by a color code: red, green, and white for pharmaceutical, agricultural, and industrial biotechnology, respectively. We also discuss future prospects for the use of filamentous fungi in biotechnology application.

  15. Recent advances in plant biotechnology and genetic engineering for production of secondary metabolites.

    Science.gov (United States)

    Sheludko, Y V

    2010-01-01

    For a long time people are using plants not only as crop cultures but also for obtaining of various chemicals. Currently plants remain one of the most important and essential sources of biologically active compounds in spite of progress in chemical or microbial synthesis. In our review we compare potentials and perspectives of modern genetic engineering approaches for pharmaceutical biotechnology and give examples of actual biotechnological systems used for production of several promising natural compounds: artemisinin, paclitaxel and scopolamine.

  16. 转基因农业生物技术安全隐忧及其监管研究%Studies on Supervision of the Underlying Worry in Security of Transgenic Agricultural Biotechnology

    Institute of Scientific and Technical Information of China (English)

    柏振忠; 王红玲

    2011-01-01

    随着转基因农业生物技术的迅猛发展,由其带来的潜在风险也日益被世人所关注。文章指出转基因农业生物技术在转基因农产品的食用安全性、转基因农作物的环境安全性、目的基因的遗传与表达稳定性等方面存在潜在风险,并在总结转基因农业生物技术安全监管的国际经验的基础上,提出我国应在防止不同农作物之间的基因漂移、完善转基因农产品的标识制度、加大转基因技术的研究力度等方面加强转基因农业生物技术的安全监管。%Development of transgenic agricultural biotechnology has made huge progress.However,the potential risks from it had been paid attention to by many people.It was pointed out in the paper that transgenic agricultural biotechnology may lead to some risks,such as the security in food for transgenic agricultural products,the security in circumstance for transgenic crops,and the stability in inheritance and expression for the target gene.Based on summing up international experiences on how to supervise the security of transgenic agricultural biotechnology,several advices for China were given,including preventing gene flow between different crops,perfecting labeling system of transgenic agricultural products,strengthening studies in transgenic agricultural biotechnology.

  17. International Conference on Harmonisation; guidance on quality of biotechnological/biological products: derivation and characterization of cell substrates used for production of biotechnological/biological products; availability. Notice. Food and Drug Administration, HHS.

    Science.gov (United States)

    1998-09-21

    The Food and Drug Administration (FDA) is publishing a guidance entitled "Q5D Quality of Biotechnological/Biological Products:Derivation and Characterization of Cell Substrates Used for Production of Biotechnological/Biological Products." The guidance was prepared under the auspices of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH).The document provides broad guidance on appropriate standards for the derivation and characterization of cell substrates used in the production of biotechnological/biological products and recommends information in these areas that should be presented in marketing applications.

  18. Consumer risk perceptions toward agricultural biotechnology, self-protection, and food demand: the case of milk in the United States.

    Science.gov (United States)

    Zepeda, Lydia; Douthitt, Robin; You, So-Ye

    2003-10-01

    This study is an econometric systems approach to modeling the factors and linkages affecting risk perceptions toward agricultural biotechnology, self-protection actions, and food demand. This model is applied to milk in the United States, but it can be adapted to other products as well as other categories of risk perceptions. The contribution of this formulation is the ability to examine how explanatory factors influence risk perceptions and whether they translate into behavior and ultimately what impact this has on aggregate markets. Hadden's outrage factors on heightening risk perceptions are among the factors examined. In particular, the article examines the role of labeling as a means of permitting informed consent to mitigate outrage factors. The effects of attitudinal, economic, and demographic factors on risk perceptions are also explored, as well as the linkage between risk perceptions, consumer behavior, and food demand. Because risk perceptions and self-protection actions are categorical variables and demand is a continuous variable, the model is estimated as a two-stage mixed system with a covariance correction procedure suggested by Amemiya. The findings indicate that it is the availability of labeling, not the price difference, between that labeled milk and milk produced with recombinant bovine Somatotropin (rbST) that significantly affects consumer's selection of rbST-free milk. The results indicate that greater availability of labeled milk would not only significantly increase the proportion of consumers who purchased labeled milk, its availability would also reduce the perception of risk associated with rbST, whether consumers purchase it or not. In other words, availability of rbST-free milk translates into lower risk perceptions toward milk produced with rbST.

  19. White biotechnology: ready to partner and invest in.

    Science.gov (United States)

    Kircher, Manfred

    2006-01-01

    It needs three factors to build an industry: market demand, product vision and capital. White biotechnology already produces high volume products such as feed additive amino acids and specialty products like enzymes for enantioselective biocatalysis. It serves large and diverse markets in the nutrition, wellness, pharmaceutical, agricultural and chemical industry. The total volume adds up to $ 50 billion worldwide. In spite of its proven track record, white biotechnology so far did not attract as much capital as red and even green biotechnology. However, the latest finance indicators confirm the continuously growing attractiveness of investment opportunities in white biotechnology. This article discusses white biotechnology's position and potential in the finance market and success factors.

  20. Energy production from agriculture: an economic evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Becker, J.J.

    1986-05-01

    The crisis in sales on the world market of the European Economic Community's traditional agricultural products as well as Europe's concern for its energy independence, have led to the elaboration of agricultural diversification strategies and more specifically of agricultural projects which produce energy. This article evaluates the interest of such schemes in relation to the criterion of collective profitability.

  1. Cotton, biotechnology, and economic development

    OpenAIRE

    Baffes, John

    2011-01-01

    During the past decade, cotton prices remained considerably below other agricultural prices (although they recovered toward the end of 2010). Yet, between 2000-04 and 2005-09 world cotton production increased 13 percent. This paper conjectures that biotechnology-induced productivity improvements increased supplies by China and India, which, in addition to keeping cotton prices low, aided t...

  2. Entotheonella Bacteria as Source of Sponge-Derived Natural Products: Opportunities for Biotechnological Production.

    Science.gov (United States)

    Bhushan, Agneya; Peters, Eike E; Piel, Jörn

    2017-01-01

    Marine sponges belong to the oldest animals existing today. Apart from their role in recycling of carbon and nitrogen in the ocean, they are also an important source of a wide variety of structurally diverse bioactive natural products. Over the past few decades, a multitude of compounds from sponges have been discovered exhibiting diverse, pharmacologically promising activities. However, in many cases the low substance quantities present in the sponge tissue would require the collection of large amounts of sponge material, thus impeding further drug development. Recent research has focused on understanding natural product biosynthesis in sponges and on investigating symbiotic bacteria as possible production sources in order to develop sustainable production systems. This chapter covers research efforts that have taken place over the past few years involving the identification of 'Entotheonella' symbionts responsible for production of sponge compounds, as well as the elucidation of their biosynthetic routes, highlighting future biotechnological applications.

  3. The Two Cultures of Science:Implications for University-Industry Relationships in the U.S. Agriculture Biotechnology

    Institute of Scientific and Technical Information of China (English)

    William B. Lacy; Leland L. Glenna; Dina Biscotti; Rick Welsh; Kate Clancy

    2014-01-01

    Partnerships between U.S. universities and industries have existed for several decades and in recent years have become generally more varied, wider in scope, more aggressive and experimental and higher in public visibility. In addition, in the last few decades, public and private interests have advocated for government policies and laws to globally promote the commercialization of university science. This paper examines the persistence or convergence of the two cultures of science and the implications of this commercialization for university-industry relationships in agriculture biotechnology. The perceptions and values of over 200 U.S. university and industry scientists, managers and administrators who participate in or oversee research collaborations in agricultural biotechnology were analyzed. The ifndings revealed that the participants in these research relationships continue to perceive very distinct cultures of science and identify a wide range of concerns and disadvantages of these partnerships. Several actions were discussed to ensure that the two cultures serve complementary roles and that they maximize the public beneifts from these increasing collaborations.

  4. A chaotic agricultural machines production growth model

    OpenAIRE

    Jablanović, Vesna D.

    2011-01-01

    Chaos theory, as a set of ideas, explains the structure in aperiodic, unpredictable dynamic systems. The basic aim of this paper is to provide a relatively simple agricultural machines production growth model that is capable of generating stable equilibrium, cycles, or chaos. A key hypothesis of this work is based on the idea that the coefficient π = 1 + α plays a crucial role in explaining local stability of the agricultural machines production, where α is an autonomous growth rate of the ag...

  5. A capital market's view on Industrial Biotechnology:proper valuation is the key for picking the right investment opportunities in stormy times

    OpenAIRE

    Schneider, B.W. (Bernd)

    2009-01-01

    Industrial biotechnology, also known as white biotechnology, is considered to be a revolutionary biotechnology field beside red and green biotechnology. After red (medicine) and green (agriculture), white biotechnology is now gaining momentum. With numerous applications e.g. in biocatalysis and fermentation technology, white biotech companies are able to produce – often from biomass out of agricultural products - biobased chemicals (like vitamins, amino acids or enzymes for textile finishing ...

  6. Typical pitfalls in applications for marketing authorization of biotechnological products in Europe.

    Science.gov (United States)

    Schneider, Christian K; Schäffner-Dallmann, Gabriele

    2008-11-01

    Although regulatory standards and procedures in Europe have improved following the establishment of the European Medicines Agency (EMEA), the number of major issues with marketing authorization applications for biotechnological products remains high. For example, the pivotal clinical trials of some late-stage failures have been found not to meet the regulatory guidelines of the European Union, and regulators are increasingly concerned that attempts to accelerate the process of biotechnological product development leads to the neglect of important issues. Based on the scientific decisions of the EMEA's major scientific committees, in this article we identify and discuss frequent concerns, and suggest approaches that might enable developers of biotechnological products to avoid these common pitfalls.

  7. [Pilot plant and experimental laboratory production. The role in biotechnology industry development].

    Science.gov (United States)

    Volkov, H L

    2000-01-01

    A stage-phase approach can contribute to unnecessarily long product development time. A simultaneous approach that integrates all development resources through an effectively managed pilot plant can significantly shorten the product development cycle. An intensive development of the domestic biotechnology manufacturing is impossible without creation of the real pilot plant market in Ukraine.

  8. Innovative technology to meet the demands of the white biotechnology revolution of chemical production

    DEFF Research Database (Denmark)

    Villadsen, John

    2007-01-01

    by which a technological revolution termed "white biotechnology" for production of commodity chemicals has proved its credibility. Obviously, the rapid advances in biology has been crucial for the development of industrial biotechnology towards a position where even its cheap products such as bio-fuels can...... of sophisticated models, supported by accurate data obtained in experimental equipment that did not exist a few years ago. The need to update the chemical engineering education to meet the needs of the bio-industry is also evident. Much of the progress of the bio-industry has up to now been based on fundamental...

  9. Anaerobic biotechnological approaches for production of liquid energy carriers from biomass

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Thomsen, Anne Belinda; Angelidaki, Irini

    2007-01-01

    In recent years, increasing attention has been paid to the use of renewable biomass for energy production. Anaerobic biotechnological approaches for production of liquid energy carriers (ethanol and a mixture of acetone, butanol and ethanol) from biomass can be employed to decrease environmental...... is determined by substrates and microbial communities available as well as the operating conditions applied. In this review, we evaluate the recent biotechnological approaches employed in ethanol and ABE fermentation. Practical applicability of different technologies is discussed taking into account...... the microbiology and biochemistry of the processes....

  10. Marketing research of organic agricultural products' customers

    Directory of Open Access Journals (Sweden)

    Salai Suzana

    2002-01-01

    Full Text Available The aim of customers' marketing research is to acquire information about the way domestic customers behave towards organic agricultural products. This research focuses the overview of conditions and factors influencing customer behavior in nutrition processes in the EM and in Yugoslavia. The acquired information about changes and directions directly affect the possibilities of getting involved into supply processes as well as the 'transmission' of some directions in customer behavior. Anticipations based, on marketing research deal with changes on customers' level, in consumption, products and other competitors. The results of a part of problems concerning customer behavior in nutrition processes follow below, with an emphasis on organic agricultural products.

  11. Options for enhancing agricultural productivity in Nigeria:

    OpenAIRE

    Nkonya, Ephraim; Pender, John L., ed.; Kato, Edward

    2009-01-01

    Since 2003, economic growth in Nigeria has been strong. Annual GDP grew by 9.1 percent per annum between 2003 and 2005 and by 6 .1 percent per annum between 2006 and 2008. Much of this growth can be attributed to the non-oil economy which has grown rapidly. This is due primarily to agriculture, which contributes approximately 35 percent to total GDP and supports 70 percent of the population. Agricultural research has been shown to be crucial in increasing agricultural productivity and reducin...

  12. Health and safety risks in production agriculture.

    OpenAIRE

    Von Essen, S G; McCurdy, S A

    1998-01-01

    Production agriculture is associated with a variety of occupational illnesses and injuries. Agricultural workers are at higher risk of death or disabling injury than most other workers. Traumatic injury commonly occurs from working with machinery or animals. Respiratory illness and health problems from exposures to farm chemicals are major concerns, and dermatoses, hearing loss, certain cancers, and zoonotic infections are important problems. Innovative means of encouraging safe work practice...

  13. Agricultural biology in the 3rd millennium: nutritional food security & specialty crops through sustainable agriculture and biotechnology

    Science.gov (United States)

    Food security and agricultural sustainability are of prime concern in the world today in light of the increasing trends in population growth in most parts of the globe excepting Europe. The need to develop capacity to produce more to feed more people is complicated since the arable land is decreasin...

  14. Exploiting new approaches for natural product drug discovery in the biotechnology industry.

    Science.gov (United States)

    Gullo, Vincent P; Hughes, Dallas E

    2005-01-01

    In recent years, large pharmaceutical companies have significantly reduced or eliminated the search for new therapeutic agents from natural sources. In spite of the many successes from natural product drug discovery, these companies have chosen to focus on compound libraries as the source of new lead compounds. Smaller biotechnology companies are continuing the search for novel natural products by developing and employing new and innovative approaches. This paper will describe some of these recent approaches to natural product drug discovery.:

  15. Agricultural production contract in American law

    Directory of Open Access Journals (Sweden)

    Izabela Lipińska

    2010-01-01

    Full Text Available Nowadays agricultural production is more and more based on the production contracts. There are many types of them that can be conducted by a farmer and processing plants, brokers, etc. Signing the contract a farmer reduces the production risk and stabilizes his revenue. Because the legal system varies from state to state there are some regularities and models that can be followed. Unfortunately the differences do not allow to define one common pattern of contact.

  16. Education and agricultural productivity: evidence from Uganda

    OpenAIRE

    1996-01-01

    Existing evidence on the impact of education on agricultural productivity in Africa is mixed, with estimates usually insignificant although sometimes large. Analysis of the first nationally representative household survey of Uganda gives an estimate of the impact of household primary schooling on crop production comparable to the developing country average. In addition, the primary schooling of neighbouring farm workers appears to raise crop production and these external returns exceed the in...

  17. An Overview on Indian Patents on Biotechnology.

    Science.gov (United States)

    Mallick, Anusaya; Chandra Santra, Subhas; Samal, Alok Chandra

    2015-01-01

    The application of biotechnology is a potential tool for mitigating the present and future fooding and clothing demands in developing countries like India. The commercialization of biotechnological products might benefiting the poor`s in developing countries are unlikely to be developed. Biotechnology has the potential to provide a wide range of products and the existing production skills in the industrial, pharmaceuticals and the agricultural sector. Ownership of the intellectual property rights is the key factors in determining the success of any technological invention, which was introduced in the market. It provides the means for technological progress to continue of the industry of the country. The new plans, animal varieties, new methods of treatments, new crops producing food articles as such are the inventions of biotechnology. Biotechnology is the result of the application of human intelligence and knowledge to the biological processes. Most of the tools of biotechnology have been developed, by companies, governments, research in- stitutes and universities in developed nations. These human intellectual efforts deserve protection. India is a developing country with advance biotechnology based segments of pharmaceutical and agricultural industries. The Trade Related Intellectual Property Rights (TRIPS) is not likely to have a significant impact on incentives for innovation creation in the biotechnology sectors. In the recent years, the world has seen the biotechnology sector as one of greatest investment area through the Patent Law and will giving huge profit in future. The Research and Development in the field of biotechnology should be encouraged for explor- ing new tools and improve the biological systems for interest of the common people. Priority should be given to generation, evaluation, protection and effective commercial utilization of tangible products of intellectual property in agriculture and pharmaceuticals. To support the future growth and

  18. Climate variability and the European agricultural production

    Science.gov (United States)

    Guimarães Nobre, Gabriela; Hunink, Johannes E.; Baruth, Bettina; Aerts, Jeroen C. J. H.; Ward, Philip J.

    2017-04-01

    By 2050, the global demand for maize, wheat and other major crops is expected to grow sharply. To meet this challenge, agricultural systems have to increase substantially their production. However, the expanding world population, coupled with a decline of arable land per person, and the variability in global climate, are obstacles to achieving the increasing demand. Creating a resilient agriculture system requires the incorporation of preparedness measures against weather-related events, which can trigger disruptive risks such as droughts. This study examines the influence of large-scale climate variability on agriculture production applying a robust decision-making tool named fast-and-frugal trees (FFT). We created FFTs using a dataset of crop production and indices of climate variability: the El Niño Southern Oscillation (SOI) and the North Atlantic Oscillation (NAO). Our main goal is to predict the occurrence of below-average crop production, using these two indices at different lead times. Initial results indicated that SOI and NAO have strong links with European low sugar beet production. For some areas, the FFTs were able to detect below-average productivity events six months before harvesting with hit rate and predictive positive value higher than 70%. We found that shorter lead times, such as three months before harvesting, have the highest predictive skill. Additionally, we observed that the responses of low production events to the phases of the NAO and SOI vary spatially and seasonally. Through the comprehension of the relationship between large scale climate variability and European drought related agricultural impact, this study reflects on how this information could potentially improve the management of the agricultural sector by coupling the findings with seasonal forecasting system of crop production.

  19. An updated view on horseradish peroxidases: recombinant production and biotechnological applications.

    Science.gov (United States)

    Krainer, Florian W; Glieder, Anton

    2015-02-01

    Horseradish peroxidase has been the subject of scientific research for centuries. It has been used exhaustively as reporter enzyme in diagnostics and histochemistry and still plays a major role in these applications. Numerous studies have been conducted on the role of horseradish peroxidase in the plant and its catalytic mechanism. However, little progress has been made in its recombinant production. Until now, commercial preparations of horseradish peroxidase are still isolated from plant roots. These preparations are commonly mixtures of various isoenzymes of which only a small fraction has been described so far. The composition of isoenzymes in these mixed isolates is subjected to uncontrollable environmental conditions. Nowadays, horseradish peroxidase regains interest due to its broad applicability in the fields of medicine, life sciences, and biotechnology in cancer therapy, biosensor systems, bioremediation, and biocatalysis. These medically and commercially relevant applications, the recent discovery of new natural isoenzymes with different biochemical properties, as well as the challenges in recombinant production render this enzyme particularly interesting for future biotechnological solutions. Therefore, we reviewed previous studies as well as current developments with biotechnological emphasis on new applications and the major remaining biotechnological challenge-the efficient recombinant production of horseradish peroxidase enzymes.

  20. Perspectives for biotechnological production of biodiesel and impacts

    Energy Technology Data Exchange (ETDEWEB)

    Du Wei; Li Wei; Sun Ting; Chen Xin; Liu Dehua [Tsinghua Univ., Beijing (China). Dept. of Chemical Engineering

    2008-06-15

    In recent years, biological ways for biodiesel production have drawn an increasing attention and compared to chemical approaches, lipase-mediated alcoholysis for biodiesel production has many advantages. Currently, there are extensive reports about enzyme-mediated alcoholysis for biodiesel production, and based on the application forms of biocatalyst, the related research can be classified into immobilized lipase, whole cell catalyst, and liquid lipase-mediated alcoholysis for biodiesel production, respectively. This mini-review is focusing on the study of the aforementioned three forms of biocatalyst for biodiesel production, as well as its impacts and prospects. (orig.)

  1. Agriculture familiale et production avicole au Vietnam

    OpenAIRE

    2011-01-01

    This research was carried out at Chương Mỹ and Phú Xuyên Districts for two years of 2009 – 2010 by production record keeping system according to a production cycle of 270 poultry flocks at 210 farms and smallholders to aim at better understanding the diversification, technical productivity in this region through an approach of animal production systems and the supply chains with their various constraints. Agricultural by-products are taken full advantage maximum but the daily diet is not bala...

  2. Remotely Sensed Mapping of Agricultural Productivity

    Science.gov (United States)

    Tsiros, E.; Domenikiotis, C.; Dalezios, N. R.; Danalatos, N. G.

    2009-04-01

    Identifying vulnerable agricultural production areas is essential for any sustainable development/farming plan. Climate is among the most important factors that determine the agricultural potential of a region and the suitability of an area for a specific crop or land management, followed by soil characteristics and geomorphology. Temperature and rainfall in terms of quantity and spatiotemporal variability are the two climatic variables that determine the agricultural potential of an area and the risk involved in any new agronomical use. Also, extreme weather events, such as droughts, have to be taken into account. In this paper, two satellite derived indices are combined in GIS environment with soil maps and a Digital Elevation Model (DEM) in order to identify the agricultural potential of areas. Namely, these indices are the Vegetation Health Index (VHI) and the Degree Days (DD) (also known as Heat Units). VHI represents overall vegetation health and is used for agricultural drought monitoring and mapping. DD units (oC d) are often used in agriculture in order to estimate or predict the lengths of the different phases of the development in crop plants, since temperature has a primary role in the growth of many organisms (plants and insects). The two indices are computed for 20 hydrological years, from October 1981 to September 2001, from NOAA/AVHRR ten -day composite images with 8x8 Km spatial resolution. DD is examined for crops of great commercial importance. The soil maps are digitized according to fertility (appropriate or not for agricultural use) and desertification vulnerability, whereas altitude based limitations are provided by the DEM. The study area is the water district of Thessaly, the largest lowland formation of Greece and the country's largest agricultural centre, located in Central Greece. The superposition of the two indices along with the soil and elevation data had led to the identification of vulnerable agricultural production areas. The

  3. The Change Path of Agricultural Production Outsourcing

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    2014-04-01

    Full Text Available The system of agricultural production outsourcing is a breakpoint for the development of agriculture and immigration worker’s urbanization. The analysis based on framework of the Institutional Change reveals that as a whole,the outsourcing system of agricultural production improves the welfare of society effectively. To some extents,it also can solve the problem of food security. The rural transferring labor-forces who realize the institutional change in the initial stage are is the first Action Group to gain the potential benefits. Local governments are a breakpoint of induced institutional change, which find potential benefits and then change the role of system changes. The central government is in dominant statue during the whole change. The outsourcing is a kind of improvement to the Family Contracted System, also an adaption to an imperfect Chinese rural social security. So the outsourcing has a positive meaning in the rural area.

  4. Biotechnological and in situ food production of polyols by lactic acid bacteria.

    Science.gov (United States)

    Ortiz, Maria Eugenia; Bleckwedel, Juliana; Raya, Raúl R; Mozzi, Fernanda

    2013-06-01

    Polyols such as mannitol, erythritol, sorbitol, and xylitol are naturally found in fruits and vegetables and are produced by certain bacteria, fungi, yeasts, and algae. These sugar alcohols are widely used in food and pharmaceutical industries and in medicine because of their interesting physicochemical properties. In the food industry, polyols are employed as natural sweeteners applicable in light and diabetic food products. In the last decade, biotechnological production of polyols by lactic acid bacteria (LAB) has been investigated as an alternative to their current industrial production. While heterofermentative LAB may naturally produce mannitol and erythritol under certain culture conditions, sorbitol and xylitol have been only synthesized through metabolic engineering processes. This review deals with the spontaneous formation of mannitol and erythritol in fermented foods and their biotechnological production by heterofermentative LAB and briefly presented the metabolic engineering processes applied for polyol formation.

  5. Crop succession requirements in agricultural production planning

    NARCIS (Netherlands)

    Klein Haneveld, W.K.; Stegeman, A.

    2005-01-01

    A method is proposed to write crop succession requirements as linear constraints in an LP-based model for agricultural production planning. Crop succession information is given in the form of a set of inadmissible successions of crops. The decision variables represent the areas where a certain

  6. Crop succession requirements in agricultural production planning

    NARCIS (Netherlands)

    Klein Haneveld, W.K.; Stegeman, A.

    2005-01-01

    A method is proposed to write crop succession requirements as linear constraints in an LP-based model for agricultural production planning. Crop succession information is given in the form of a set of inadmissible successions of crops. The decision variables represent the areas where a certain admis

  7. Torrefaction of agricultural by-products (abstract)

    Science.gov (United States)

    Torrefaction of biomass involves heating at 200°C-300°C under inert atmosphere to remove volatiles and produce materials with higher energy values and low moisture. Agricultural by-products, such as apple, grape, olive, and tomato pomaces as well as almond and walnut shells, were torrefied at differ...

  8. A new photobioreactor concept enabling the production of desiccation induced biotechnological products using terrestrial cyanobacteria.

    Science.gov (United States)

    Kuhne, S; Strieth, D; Lakatos, M; Muffler, K; Ulber, R

    2014-12-20

    Cyanobacteria offer great potential for the production of biotechnological products for pharmaceutical applications. However, these organisms can only be cultivated efficiently using photobioreactors (PBR). Under submerged conditions though, terrestrial cyanobacteria mostly grow in a suboptimal way, which makes this cultivation-technique uneconomic and thus terrestrial cyanobacteria unattractive. Therefore, a novel emersed photobioreactor (ePBR) has been developed, which can provide the natural conditions for these organisms. Proof of concept as well as first efficiency tests are conducted using the terrestrial cyanobacteria Trichocoleus sociatus as a model organism. The initial maximum growth rate of T. sociatus (0.014±0.001h(-1)) in submerged systems could be increased by 35%. Furthermore, it is now possible to control desiccation-correlated product formation and related metabolic processes. This is shown for the production of extracellular polymeric substances (EPS). In this case the yield of 0.068±0.006g of EPS/g DW could be increased by more than seven times.

  9. Mathematical Modeling and Analysis of Classified Marketing of Agricultural Products

    Institute of Scientific and Technical Information of China (English)

    Fengying; WANG

    2014-01-01

    Classified marketing of agricultural products was analyzed using the Logistic Regression Model. This method can take full advantage of information in agricultural product database,to find factors influencing best selling degree of agricultural products,and make quantitative analysis accordingly. Using this model,it is also able to predict sales of agricultural products,and provide reference for mapping out individualized sales strategy for popularizing agricultural products.

  10. Research on Logistics Mode of Fresh Agricultural Products in China

    OpenAIRE

    Xiao Hong; Qi Zhihui

    2013-01-01

    This study has a research on logistics mode of fresh agricultural products in china. Logistics costs are an important part of the price of fresh agricultural products. By researching the characteristics of fresh agricultural products, this study get the main reasons for the high price of fresh agricultural products in China, there are the high logistics cost, large loss and poor preservation in logistics process. Then some measures are proposed to reduce fresh agricultural products logistics ...

  11. Economies of Size in Production Agriculture.

    Science.gov (United States)

    Duffy, Michael

    2009-07-01

    Economies of size refer to the ability of a farm to lower costs of production by increasing production. Agriculture production displays an L-shaped average cost curve where costs are lower initially but reach a point where no further gains are achieved. Spreading fixed costs, bulk purchases, and marketing power are cited as reasons for economies of size. Labor-reducing technologies may be the primary reason. Most studies do not include the external costs from prophylactic antibiotic use, impact on rural communities, and environmental damage associated with large-scale production. These can contribute to the economies of size.

  12. Empirical Analysis of Agricultural Production Efficiency in Shaanxi Province

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    This article analyses the agricultural production efficiency of all cities and areas in Shaanxi Province in the period 2006-2009 using data envelopment analysis method,and compares the agricultural production efficiency between all cities and areas.The results show that the agricultural production efficiency and scale efficiency of agriculture of Shaanxi Province are high on the whole,but the efficiency of agricultural technology is very low,agricultural development still relies on factor inputs,and the driving role of technological progress is not conspicuous.Finally the following countermeasures are put forward to promote agricultural productivity in Shaanxi Province:improve the construction of agricultural infrastructure,and increase agricultural input;accelerate the project of extending agricultural technology into households,and promote the conversion and use rate of agricultural scientific and technological achievements;establish and improve industrial system of agriculture,and speed up the building of various agricultural cooperative economic organizations.

  13. Biotechnological lycopene production by mated fermentation of Blakeslea trispora.

    Science.gov (United States)

    López-Nieto, M J; Costa, J; Peiro, E; Méndez, E; Rodríguez-Sáiz, M; de la Fuente, J L; Cabri, W; Barredo, J L

    2004-12-01

    A semi-industrial process (800-l fermentor) for lycopene production by mated fermentation of Blakeslea trispora plus (+) and minus (-) strains has been developed. The culture medium was designed at the flask scale, using a program based on a genetic algorithm; and a fermentation process by means of this medium was developed. Fermentation involves separate vegetative phases for (+) and (-) strains and inoculation of the production medium with a mix of both together. Feeding with imidazole or pyridine, molecules known to inhibit lycopene cyclase enzymatic activity, enhanced lycopene accumulation. Different raw materials and physical parameters, including dissolved oxygen, stirring speed, air flow rate, temperature, and pH, were checked in the fermentor to get maximum lycopene production. Typical data for the fermentation process are presented and discussed. This technology can be easily scaled-up to an industrial application for the production of this carotenoid nowadays widely in demand.

  14. Biotechnological processes for biodiesel production using alternative oils

    Energy Technology Data Exchange (ETDEWEB)

    Azocar, Laura; Ciudad, Gustavo [La Frontera Univ., Temuco (Chile). Nucleo Cietifico Tecnologico en Biorrecursos; Heipieper, Hermann J. [Helmholtz Centre for Environmental Research-UFZ, Leipzig (Germany). Dept. of Environmental Biotechnology; Navia, Rodrigo [La Frontera Univ., Temuco (Chile). Nucleo Cietifico Tecnologico en Biorrecursos; La Frontera Univ., Temuco (Chile). Dept. de Ingenieria Quimica

    2010-10-15

    As biodiesel (fatty acid methyl ester (FAME)) is mainly produced from edible vegetable oils, crop soils are used for its production, increasing deforestation and producing a fuel more expensive than diesel. The use of waste lipids such as waste frying oils, waste fats, and soapstock has been proposed as low-cost alternative feedstocks. Non-edible oils such as jatropha, pongamia, and rubber seed oil are also economically attractive. In addition, microalgae, bacteria, yeast, and fungi with 20% or higher lipid content are oleaginous microorganisms known as single cell oil and have been proposed as feedstocks for FAME production. Alternative feedstocks are characterized by their elevated acid value due to the high level of free fatty acid (FFA) content, causing undesirable saponification reactions when an alkaline catalyst is used in the transesterification reaction. The production of soap consumes the conventional catalyst, diminishing FAME production yield and simultaneously preventing the effective separation of the produced FAME from the glycerin phase. These problems could be solved using biological catalysts, such as lipases or whole-cell catalysts, avoiding soap production as the FFAs are esterified to FAME. In addition, by-product glycerol can be easily recovered, and the purification of FAME is simplified using biological catalysts. (orig.)

  15. Biotechnological processes for biodiesel production using alternative oils.

    Science.gov (United States)

    Azócar, Laura; Ciudad, Gustavo; Heipieper, Hermann J; Navia, Rodrigo

    2010-10-01

    As biodiesel (fatty acid methyl ester (FAME)) is mainly produced from edible vegetable oils, crop soils are used for its production, increasing deforestation and producing a fuel more expensive than diesel. The use of waste lipids such as waste frying oils, waste fats, and soapstock has been proposed as low-cost alternative feedstocks. Non-edible oils such as jatropha, pongamia, and rubber seed oil are also economically attractive. In addition, microalgae, bacteria, yeast, and fungi with 20% or higher lipid content are oleaginous microorganisms known as single cell oil and have been proposed as feedstocks for FAME production. Alternative feedstocks are characterized by their elevated acid value due to the high level of free fatty acid (FFA) content, causing undesirable saponification reactions when an alkaline catalyst is used in the transesterification reaction. The production of soap consumes the conventional catalyst, diminishing FAME production yield and simultaneously preventing the effective separation of the produced FAME from the glycerin phase. These problems could be solved using biological catalysts, such as lipases or whole-cell catalysts, avoiding soap production as the FFAs are esterified to FAME. In addition, by-product glycerol can be easily recovered, and the purification of FAME is simplified using biological catalysts.

  16. Advances in in-situ product recovery (ISPR) in whole cell biotechnology during the last decade.

    Science.gov (United States)

    Van Hecke, Wouter; Kaur, Guneet; De Wever, Heleen

    2014-11-15

    The review presents the state-of-the-art in the applications of in-situ product recovery (ISPR) in whole-cell biotechnology over the last 10years. It summarizes various ISPR-integrated fermentation processes for the production of a wide spectrum of bio-based products. A critical assessment of the performance of various ISPR concepts with respect to the degree of product enrichment, improved productivity, reduced process flows and increased yields is provided. Requirements to allow a successful industrial implementation of ISPR are also discussed. Finally, supporting technologies such as online monitoring, mathematical modeling and use of recombinant microorganisms with ISPR are presented.

  17. Health and safety risks in production agriculture.

    Science.gov (United States)

    Von Essen, S G; McCurdy, S A

    1998-10-01

    Production agriculture is associated with a variety of occupational illnesses and injuries. Agricultural workers are at higher risk of death or disabling injury than most other workers. Traumatic injury commonly occurs from working with machinery or animals. Respiratory illness and health problems from exposures to farm chemicals are major concerns, and dermatoses, hearing loss, certain cancers, and zoonotic infections are important problems. Innovative means of encouraging safe work practices are being developed. Efforts are being made to reach all groups of farmworkers, including migrant and seasonal workers, farm youth, and older farmers.

  18. Biotechnological advances towards an enhanced peroxidase production in Pichia pastoris.

    Science.gov (United States)

    Krainer, Florian W; Gerstmann, Michaela A; Darnhofer, Barbara; Birner-Gruenberger, Ruth; Glieder, Anton

    2016-09-10

    Horseradish peroxidase (HRP) is a high-demand enzyme for applications in diagnostics, bioremediation, biocatalysis and medicine. Current HRP preparations are isolated from horseradish roots as mixtures of biochemically diverse isoenzymes. Thus, there is a strong need for a recombinant production process enabling a steady supply with enzyme preparations of consistent high quality. However, most current recombinant production systems are limited at titers in the low mg/L range. In this study, we used the well-known yeast Pichia pastoris as host for recombinant HRP production. To enhance recombinant enzyme titers we systematically evaluated engineering approaches on the secretion process, coproduction of helper proteins, and compared expression from the strong methanol-inducible PAOX1 promoter, the strong constitutive PGAP promoter, and a novel bidirectional promoter PHTX1. Ultimately, coproduction of HRP and active Hac1 under PHTX1 control yielded a recombinant HRP titer of 132mg/L after 56h of cultivation in a methanol-independent and easy-to-do bioreactor cultivation process. With regard to the many versatile applications for HRP, the establishment of a microbial host system suitable for efficient recombinant HRP production was highly overdue. The novel HRP production platform in P. pastoris presented in this study sets a new benchmark for this medically relevant enzyme. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Genome editing: intellectual property and product development in plant biotechnology.

    Science.gov (United States)

    Schinkel, Helga; Schillberg, Stefan

    2016-07-01

    Genome editing is a revolutionary technology in molecular biology. While scientists are fascinated with the unlimited possibilities provided by directed and controlled changes in DNA in eukaryotes and have eagerly adopted such tools for their own experiments, an understanding of the intellectual property (IP) implications involved in bringing genome editing-derived products to market is often lacking. Due to the ingenuity of genome editing, the time between new product conception and its actual existence can be relatively short; therefore knowledge about IP of the various genome editing methods is relevant. This point must be regarded in a national framework as patents are instituted nationally. Therefore, when designing scientific work that could lead to a product, it is worthwhile to consider the different methods used for genome editing not only for their scientific merits but also for their compatibility with a speedy and reliable launch into the desired market.

  20. Potential contribution of genomics and biotechnology in animal production

    Science.gov (United States)

    The overall objective of the book chapter is to define the potential contribution of genomics in livestock production in Latin American countries. A brief description on what is genomics, genome-wide association studies (GWAS), and genomic selection (GS) is provided. Genomics has been rapidly adopte...

  1. Cultivation of marine sponges for metabolite production: applications for biotechnology?

    NARCIS (Netherlands)

    Osinga, R.; Tramper, J.; Wijffels, R.H.

    1998-01-01

    The world's oceans harbour a large diversity of living organisms. As tropical rainforests have been searched for natural drugs, these marine organisms are being screened for useful products, and a number have been found in marine sponges. These are often produced only in trace amounts, and so a

  2. Research on Development Status and Countermeasures of Agricultural Cleaner Production

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In the study,the connotation and objectives of agricultural cleaner production were introduced firstly,and then the development status of agricultural cleaner production in China was analyzed,and the problems existing in the development of agricultural cleaner production were pointed out.From the strategy of agricultural sustainable development,the necessity and feasibility of implementing agricultural cleaner production in China were discussed.Finally,some related countermeasures were put forward according...

  3. Factors Influencing Price of Agricultural Products and Stability Countermeasures

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Factors leading to rise of prices of agricultural products mainly include tension of supply-demand relationship,promotion of production cost and circulation cost,and speculation of Refugee Capital(Hot Money).Factors leading to low price and difficult sales of agricultural products mainly include asymmetry of supply-demand information,lack of risk management tools for prices of agricultural products and decentralized and small-scaled operation of farmers.On the basis of these factors,this paper presents following countermeasures and suggestions for stabilizing prices of agricultural products:firstly,building long-effect mechanism for production and sales of agricultural products;secondly,expand the production and increase supply of agricultural products;thirdly,control the rising range of production cost for agricultural products;fourthly,enhance organization level of farmers;fifthly,promote innovation and development of risk management tools for prices of agricultural products.

  4. Biotechnological Aspects and Perspective of Microbial Keratinase Production

    Directory of Open Access Journals (Sweden)

    Subash C. B. Gopinath

    2015-01-01

    Full Text Available Keratinases are proteolytic enzymes predominantly active when keratin substrates are available that attack disulfide bridges in the keratin to convert them from complex to simplified forms. Keratinases are essential in preparation of animal nutrients, protein supplements, leather manufacture, textile processing, detergent formulation, feather meal processing for feed and fertilizer, the pharmaceutical and biomedical industries, and waste management. Accordingly, it is necessary to develop a method for continuous production of keratinase from reliable sources that can be easily managed. Microbial keratinase is less expensive than conventionally produced keratinase and can be obtained from fungi, bacteria, and actinomycetes. In this overview, the expansion of information about microbial keratinases and important considerations in keratinase production are discussed.

  5. Three generation production biotechnology of biomass into bio-fuel

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    The great change of climate change, depletion of natural resources, and scarcity of fossil fuel in the whole world nowadays have witnessed a sense of urgency home and abroad among scales of researchers, development practitioners, and industrialists to search for completely brand new sustainable solutions in the area of biomass transforming into bio-fuels attributing to our duty-that is, it is our responsibility to take up this challenge to secure our energy in the near future with the help of sustainable approaches and technological advancements to produce greener fuel from nature organic sources or biomass which comes generally from organic natural matters such as trees, woods, manure, sewage sludge, grass cuttings, and timber waste with a source of huge green energy called bio-fuel. Biomass includes most of the biological materials, livings or dead bodies. This energy source is ripely used industrially, or domestically for rather many years, but the recent trend is on the production of green fuel with different advance processing systems in a greener. More sustainable method. Biomass is becoming a booming industry currently on account of its cheaper cost and abundant resources all around, making it fairly more effective for the sustainable use of the bio-energy. In the past few years, the world has witnessed a remarkable development in the bio-fuel production technology, and three generations of bio-fuel have already existed in our society. The combination of membrane technology with the existing process line can play a vital role for the production of green fuel in a sustainable manner. In this paper, the science and technology for sustainable bio-fuel production will be introduced in detail for a cleaner world.

  6. Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass.

    Science.gov (United States)

    Lee, Jin-Ho; Wendisch, Volker F

    2017-09-10

    Aromatic chemicals that contain an unsaturated ring with alternating double and single bonds find numerous applications in a wide range of industries, e.g. paper and dye manufacture, as fuel additives, electrical insulation, resins, pharmaceuticals, agrochemicals, in food, feed and cosmetics. Their chemical production is based on petroleum (BTX; benzene, toluene, and xylene), but they can also be obtained from plants by extraction. Due to petroleum depletion, health compliance, or environmental issues such as global warming, the biotechnological production of aromatics from renewable biomass came more and more into focus. Lignin, a complex polymeric aromatic molecule itself, is a natural source of aromatic compounds. Many microorganisms are able to catabolize a plethora of aromatic compounds and interception of these pathways may lead to the biotechnological production of value-added aromatic compounds which will be discussed for Corynebacterium glutamicum. Biosynthesis of aromatic amino acids not only gives rise to l-tryptophan, L-tyrosine and l-phenylalanine, but also to aromatic intermediates such as dehydroshikimate or chorismate from which value-added aromatic compounds can be derived. In this review, we will summarize recent strategies for the biotechnological production of aromatic and related compounds from renewable biomass by Escherichia coli, Pseudomonas putida, C. glutamicum and Saccharomyces cerevisiae. In particular, we will focus on metabolic engineering of the extended shikimate pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Recent advances in curdlan biosynthesis, biotechnological production, and applications.

    Science.gov (United States)

    Zhan, Xiao-Bei; Lin, Chi-Chung; Zhang, Hong-Tao

    2012-01-01

    Curdlan is a water-insoluble β-(1,3)-glucan produced by Agrobacterium species under nitrogen-limited condition. Its heat-induced gelling properties render curdlan to be very useful in the food industry initially. Recent advances in the understanding of the role curdlan plays in both innate and adaptive immunity lead to its growing applications in biomedicine. Our review focuses on the recent advances on curdlan biosynthesis and the improvements of curdlan fermentation production both from our laboratory and many others as well as the latest advances on the new applications of curdlan and its derivatives particularly in their immunological functions in biomedicine.

  8. Laccase: Microbial Sources, Production, Purification, and Potential Biotechnological Applications

    Directory of Open Access Journals (Sweden)

    Shraddha

    2011-01-01

    Full Text Available Laccase belongs to the blue multicopper oxidases and participates in cross-linking of monomers, degradation of polymers, and ring cleavage of aromatic compounds. It is widely distributed in higher plants and fungi. It is present in Ascomycetes, Deuteromycetes and Basidiomycetes and abundant in lignin-degrading white-rot fungi. It is also used in the synthesis of organic substance, where typical substrates are amines and phenols, the reaction products are dimers and oligomers derived from the coupling of reactive radical intermediates. In the recent years, these enzymes have gained application in the field of textile, pulp and paper, and food industry. Recently, it is also used in the design of biosensors, biofuel cells, as a medical diagnostics tool and bioremediation agent to clean up herbicides, pesticides and certain explosives in soil. Laccases have received attention of researchers in the last few decades due to their ability to oxidize both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants. It has been identified as the principal enzyme associated with cuticular hardening in insects. Two main forms have been found: laccase-1 and laccase-2. This paper reviews the occurrence, mode of action, general properties, production, applications, and immobilization of laccases within different industrial fields.

  9. Efficiency and biotechnological aspects of biogas production from microalgal substrates.

    Science.gov (United States)

    Klassen, Viktor; Blifernez-Klassen, Olga; Wobbe, Lutz; Schlüter, Andreas; Kruse, Olaf; Mussgnug, Jan H

    2016-09-20

    Photosynthetic organisms like plants and algae can harvest, convert, and store solar energy and thus represent readily available sources for renewable biofuels production on a domestic or industrial scale. Anaerobic digestion (AD) of the organic biomass yields biogas, containing methane and carbon dioxide as major constituents. Combustion of the biogas or purification of the energy-rich methane fraction can be applied to provide electricity or fuel. AD procedures have been applied for several decades with organic waste, animal products, or higher plants and more recently, utilization of photosynthetic algae as substrates have gained considerable research interest. To provide an overview of recent research efforts made to characterize the AD process of microalgal biomass, we present extended summaries of experimentally determined biochemical methane potentials (BMP), biomass pretreatment options and digestion strategies in this article. We conclude that cultivation options, biomass composition and time of harvesting, application of biomass pretreatment strategies, and parameters of the digestion process are all important factors, which can significantly affect the AD process efficiency. The transition from batch to continuous microalgal biomass digestion trials, accompanied by state-of-the-art analytical techniques, is now in demand to refine the assessments of the overall process feasibility.

  10. Greenhouse Gas Emissions from Agricultural Production

    DEFF Research Database (Denmark)

    Bennetzen, Eskild Hohlmann

    unit. This dissertation presents results and comprehensions from my PhD study on the basis of three papers. The overall aim has been to develop a new identity-based framework, the KPI, to estimate and analyse GHG emissions from agriculture and LUC and apply this on national, regional and global level....... The KPI enables combined analyses of changes in total emissions, emissions per area and emissions per product. Also, the KPI can be used to assess how a change in each GHG emission category affects the change in total emissions; thus pointing to where things are going well and where things are going less...... well in relation to what is actually produced. The KPI framework is scale independent and can be applied at any level from field and farm to global agricultural production. Paper I presents the first attempt to develop the KPI identity framework and, as a case study, GHG emissions from Danish crop...

  11. Medium and Long-term Opportunities and Risks of the Biotechnological Production of Bulk Chemicals from Renewable Resources. The Potential of White Biotechnology. The BREW Project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Patel, M.; Crank, M.; Dornburg, V.; Hermann, B.; Roes, L. [Department of Science, Technology and Society NWS, Utrecht University, Utrecht (Netherlands); Huesing, B. [Fraunhofer Institute for Systems and Innovation Research FhG-ISl, Karlsruhe (Germany); Overbeek, L. [Plant Research International PRI, Wageningen (Netherlands); Terragni, F.; Recchia, E. [CERISS, Centro per I' Educazione, la Ricerca, I' lnformazione su Scienza e Society, Milan (Italy)

    2006-09-15

    This study investigates the medium and long-term opportunities and risks of the biotechnological production of organic chemicals. The objective is to gain better understanding of the techno-economic and the societal viability of White Biotechnology in the coming decades. The key research questions are which products could be made with White Biotechnology, whether these products can contribute to savings of energy use and greenhouse gas (GHG) emissions, under which conditions the products become economically viable, which risks may originate from the use of genetically modified organisms (GMO) in fermentation and what the public perception is. The main purpose of Chapter 2 is to provide an overview of emerging key White Biotechnology products and to explain which chemicals could be produced on their basis. For a selection of these products, detailed environmental and economic assessments are conducted in Chapter 3 (in specific terms, i.e. per tonne of product). Chapter 3 discusses also the so-called Generic Approach which is the methodology we developed and applied to assess future processes and processes, for which very little information is available. In Chapter 4, three scenario projections are developed for Europe (EU-25), thereby assuming benign, moderate and disadvantageous conditions for bio-based chemicals. The purpose of this chapter is hence to understand to which extent restructuring of the chemical sector might occur under which conditions. In Chapter 5, the risks related to the use of White Biotechnology are addressed. The main purpose of this chapter is to give insight into the main risk components influencing the overall risk and of the knowledge gaps. Both conventional risks (e.g., human toxicity and accidents) and risks related to generic modification (e.g., horizontal gene transfer) are analyzed. Since the public perception may play an important role for the implementation of White Biotechnology on a large scale, these issues are discussed in

  12. Transgenic animal bioreactors in biotechnology and production of blood proteins.

    Science.gov (United States)

    Lubon, H

    1998-01-01

    The regulatory elements of genes used to target the tissue-specific expression of heterologous human proteins have been studied in vitro and in transgenic mice. Hybrid genes exhibiting the desired performance have been introduced into large animals. Complex proteins like protein C, factor IX, factor VIII, fibrinogen and hemoglobin, in addition to simpler proteins like alpha 1-antitrypsin, antithrombin III, albumin and tissue plasminogen activator have been produced in transgenic livestock. The amount of functional protein secreted when the transgene is expressed at high levels may be limited by the required posttranslational modifications in host tissues. This can be overcome by engineering the transgenic bioreactor to express the appropriate modifying enzymes. Genetically engineered livestock are thus rapidly becoming a choice for the production of recombinant human blood proteins.

  13. The role of community engagement in the adoption of new agricultural biotechnologies by farmers: the case of the Africa harvest tissue-culture banana in Kenya.

    Science.gov (United States)

    Bandewar, Sunita V S; Wambugu, Florence; Richardson, Emma; Lavery, James V

    2017-03-13

    The tissue culture banana (TCB) is a biotechnological agricultural innovation that has been adopted widely in commercial banana production. In 2003, Africa Harvest Biotech Foundation International (AH) initiated a TCB program that was explicitly developed for smallholder farmers in Kenya to help them adopt the TCB as a scalable agricultural business opportunity. At the heart of the challenge of encouraging more widespread adoption of the TCB is the question: what is the best way to introduce the TCB technology, and all its attendant practices and opportunities, to smallholder farmers. In essence, a challenge of community or stakeholder engagement (CE). In this paper, we report the results of a case study of the CE strategies employed by AH to introduce TCB agricultural practices to small-hold farmers in Kenya, and their impact on the uptake of the TCB, and on the nature of the relationship between AH and the relevant community of farmers and other stakeholders. We identified six specific features of CE in the AH TCB project that were critical to its effectiveness: (1) adopting an empirical, "evidence-based" approach; (2) building on existing social networks; (3) facilitating farmer-to-farmer engagement; (4) focusing engagement on farmer groups; (5) strengthening relationships of trust through collaborative experiential learning; and (6) helping farmers to "learn the marketing game". We discuss the implications of AH's "values-based" approach to engagement, and how these guiding values functioned as "design constraints" for the key features of their CE strategy. And we highlight the importance of attention to the human dimensions of complex partnerships as a key determinant of successful CE. Our findings suggest new ways of conceptualizing the relationship between CE and the design and delivery of new technologies for global health and global development.

  14. Evaluation of some biotechnological parameters influencing the Pleurotus ostreatus biomass production by submerged cultivation

    Directory of Open Access Journals (Sweden)

    Vicenţiu-Bogdan HORINCAR

    2015-12-01

    Full Text Available The submerged culture of mushrooms represents a future for biotechnological processes at industrial level, in order to obtain biomass with economical value (food and ingredients, nutraceuticals and pharmaceuticals. Pleurotus ostreatus is well known worldwide for its culinary and medicinal value. The aim of the present study was to evaluate the most important biotechnological parameters that have influence on the biomass production of P. ostreatus, by cultivation in submerged conditions. Applying the Plackett-Burman experimental design, the significant parameters influencing the P. ostreatus biomass production were found to be the concentration of dextrose and yeast extract and time of cultivation. The best results in terms of maximising the biomass production (25.71 g·L-1 were obtained when the “+1” level of each independent variables was used in the Plackett-Burman experimental design. Analysis of variance (ANOVA exhibited a high correlation coefficient (R2 value of 0.9908, which certifies that the mathematical model was relevant for the biotechnological process.

  15. Research on Logistics Mode of Fresh Agricultural Products in China

    Directory of Open Access Journals (Sweden)

    Xiao Hong

    2013-12-01

    Full Text Available This study has a research on logistics mode of fresh agricultural products in china. Logistics costs are an important part of the price of fresh agricultural products. By researching the characteristics of fresh agricultural products, this study get the main reasons for the high price of fresh agricultural products in China, there are the high logistics cost, large loss and poor preservation in logistics process. Then some measures are proposed to reduce fresh agricultural products logistics costs in China. The measures are the advanced direct sales model, advanced cold chain technology and advanced networks of cold chain logistics and building fast fresh agricultural products information platform.

  16. Agricultural R&D, technology and productivity.

    Science.gov (United States)

    Piesse, J; Thirtle, C

    2010-09-27

    The relationships between basic and applied agricultural R&D, developed and developing country R&D and between R&D, extension, technology and productivity growth are outlined. The declining growth rates of public R&D expenditures are related to output growth and crop yields, where growth rates have also fallen, especially in the developed countries. However, growth in output value per hectare has not declined in the developing countries and labour productivity growth has increased except in the EU. Total factor productivity has generally increased, however it is measured. The public sector share of R&D expenditures has fallen and there has been rapid concentration in the private sector, where six multinationals now dominate. These companies are accumulating intellectual property to an extent that the public and international institutions are disadvantaged. This represents a threat to the global commons in agricultural technology on which the green revolution has depended. Estimates of the increased R&D expenditures needed to feed 9 billion people by 2050 and how these should be targeted, especially by the Consultative Group on International Agricultural Research (CGIAR), show that the amounts are feasible and that targeting sub-Saharan Africa (SSA) and South Asia can best increase output growth and reduce poverty. Lack of income growth in SSA is seen as the most insoluble problem.

  17. Market problems of agricultural products in Albania

    Directory of Open Access Journals (Sweden)

    Merita Marku

    2017-03-01

    Full Text Available The production of fruits and vegetables in our country still faces challenges, including informality in sector of planting material, high costs of inputs purchased and fuel (especially affecting the green houses with heating, low productivity and high losses of post-harvest, especially in the case of fruit. Fresh fruit and vegetable marketing is different in many respects from the marketing of other agricultural and nonagricultural products. Hundreds of individual commodities comprise the total group. Each product has its own special requirements for growing and handling, with its own quality attributes, merchandising methods, and standards of consumer acceptance (How, R. B. 2012, 1. Food safety standards of fruits and vegetables their compliance with key standards and certification as a prerequisite and a challenge to be addressed in order to increase Albanian exports of agricultural products to European markets. Concerning vegetables and fruits, Albanian farmers face important marketing problems. Such problems are encountered at all stages of the production system-provision of inputs, both in terms of processing, promotion and other market incentives, which directly assist in the efficient realization of the sale of fruits and vegetables.

  18. Bottleneck on Supply Chain of Organic Agricultural Products and Countermeasures

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-min

    2012-01-01

    Organic agriculture is one of successful models of low-carbon agriculture, and plays an important role in alleviating and adapting to climate change. However, the development of supply chain of organic agricultural products lags behind, which seriously restricts development of organic agricultural product market. In this paper, major models and bottleneck of supply chain of organic agricultural products are analyzed, and finally countermeasures are put forward.

  19. Globalization, the rise of biotechnology and catching up in agricultural innovation: The case of Bt technology in India

    NARCIS (Netherlands)

    Iizuka, M.; Thutupalli, A.

    2014-01-01

    The agricultural sector has played an important role in the provision of food, foreign exchange and sustainable energy to many developing countries. This sector, however, has not been considered as a driving force of innovation as compared to other productive sectors. However, recent economics and i

  20. ENVIRONMENTAL RISK MANAGEMENT OF BIOTECHNOLOGY

    Science.gov (United States)

    The last two decades have shown remarkable advances in the field of biotechnology. We have processes using biotechnology to produce materials from commodity chemicals to pharmaceuticals. The application to agriculture has shown the introduction of transgenic crops with pesticidal...

  1. ENVIRONMENTAL RISK MANAGEMENT OF BIOTECHNOLOGY

    Science.gov (United States)

    The last two decades have shown remarkable advances in the field of biotechnology. We have processes using biotechnology to produce materials from commodity chemicals to pharmaceuticals. The application to agriculture has shown the introduction of transgenic crops with pesticidal...

  2. Agricultural innovations for sustainable crop production intensification

    Directory of Open Access Journals (Sweden)

    Michele Pisante

    2012-10-01

    Full Text Available Sustainable crop production intensification should be the first strategic objective of innovative agronomic research for the next 40 years. A range of options exist (often very location specific for farming practices, approaches and technologies that ensure sustainability, while at the same time improving crop production. The main challenge is to encourage farmers in the use of appropriate technologies,  and  to  ensure  that  knowledge  about  sound  production  practices  is  increasingly accepted and applied by farmers. There is a huge, but underutilized potential to link farmers’ local knowledge with science-based innovations, through favourable institutional arrangements.  The same  holds  for  the  design,  implementation  and  monitoring  of  improved  natural  resource management  that  links  community  initiatives  to  external  expertise.  It is also suggested that a comprehensive effort be undertaken to measure different stages of the innovation system, including technological adoption and diffusion at the farm level, and to investigate the impact of agricultural policies on technological change and technical efficiency. This paper provides a brief review of agronomic management practices that support sustainable crop production system and evidence on developments  in the selection of crops and cultivars; describes farming systems for crop which take a predominantly ecosystem approach; discusses the scientific application of ecosystem principles for the management of pest and weed populations; reviews the  improvements in fertilizer and nutrient management that explain productivity growth; describes the benefits and constraints of irrigation technologies; and suggests a way forward. Seven changes in the context for agricultural development are proposed that heighten the need to examine how innovation occurs in the agricultural sector.

  3. Sourdough-Based Biotechnologies for the Production of Gluten-Free Foods

    Directory of Open Access Journals (Sweden)

    Luana Nionelli

    2016-09-01

    Full Text Available Sourdough fermentation, a traditional biotechnology for making leavened baked goods, was almost completely replaced by the use of baker’s yeast and chemical leavening agents in the last century. Recently, it has been rediscovered by the scientific community, consumers, and producers, thanks to several effects on organoleptic, technological, nutritional, and functional features of cereal-based products. Acidification, proteolysis, and activation of endogenous enzymes cause several changes during sourdough fermentation, carried out by lactic acid bacteria and yeasts, which positively affect the overall quality of the baked goods. In particular, the hydrolysis of native proteins of the cereal flours may improve the functional features of baked goods. The wheat flour processed with fungal proteases and selected lactic acid bacteria was demonstrated to be safe for coeliac patients. This review article focuses on the biotechnologies that use selected sourdough lactic acid bacteria to potentially counteract the adverse reactions to gluten, and the risk of gluten contamination.

  4. The impact of industrial biotechnology.

    Science.gov (United States)

    Soetaert, Wim; Vandamme, Erick

    2006-01-01

    In this review, the impact of industrial (or "white") biotechnology can have on our society and economy is discussed. An overview is given of industrial biotechnology and its applications in a number of product categories ranging from food ingredients, vitamins, bio-colorants, solvents, plastics and biofuels. The use of fossil resources is compared with renewable resources as the preferred feedstock for industrial biotechnology. A brief discussion is also given of the expected changes in society and technology, ranging from the shift in the supply of resources, the growing need for efficiency and sustainability of the production systems, changing consumer perception and behaviour and changing agricultural systems and practices. Many of these changes are expected to speed up the transition from a fossil-based to a bio-based economy and society.

  5. Minilivestock in Argentina. Integration with Agricultural Production

    Directory of Open Access Journals (Sweden)

    Biasatti, NR.

    1999-01-01

    Full Text Available The development of alternative agricultural production can take different forms. In Argentina there is an important diversity of species available to be incorporated into production systems, giving support for the use of natural resources based on taking advantage of the regional fauna. Moreover the use of different animal species can be incorporated under the concept of the optimization of flows of energy and materials, tending to minimize the environmental impact of livestock production, and also to make more efficient use of the ingredients required for developing the activity. The integration of non-traditional species (minilivestock within the context of sustainable agricultural development was the motivation for the present study A module for raising Myocastor coypus (coypu or false nutha was developed, to which was linked a module for raising Eisenia foetida (the socalled red worm, in both cases with a dual purpose. Preliminary estimates were made of the productive aspects of both species, as well as an analysis of their integration, to understand the extent to which diversification linked with complementation tends to optimize the system.

  6. Economic Analysis on Protection of Farmers’ Benefits Based on Market of Agricultural Means of Production and Agricultural Products

    Institute of Scientific and Technical Information of China (English)

    De; CHEN; Dongmei; XIANG; Shengping; SHI

    2013-01-01

    Influenced by many factors,farmers remain very unfavorable position in market transaction and thus fail to ensure their reasonable benefits.In accordance with basic theory of microeconomics,this paper analyzes mutual relation between market of agricultural means of production and agricultural product market,compares economic decisions of agricultural means of production enterprises and agricultural product circulation service providers in monopoly condition and perfect competitive market,expounds influence of monopoly position of agricultural means of production enterprises and agricultural products service providers on economic benefits of farmers,and elaborates weak position and economic damage of farmers in transaction with various economic entities.Through analysis,it further recognizes necessity for protection of farmers’benefits and puts forward corresponding countermeasures:(1)regulating providers of agricultural means of production;(2)strengthening construction of agricultural product market circulation system;(3)improving organization of farmers;(4)setting up and improving production subsidy system of farmers.

  7. The application of biotechnology on the enhancing of biogas production from lignocellulosic waste.

    Science.gov (United States)

    Wei, Suzhen

    2016-12-01

    Anaerobic digestion of lignocellulosic waste is considered to be an efficient way to answer present-day energy crisis and environmental challenges. However, the recalcitrance of lignocellulosic material forms a major obstacle for obtaining maximum biogas production. The use of biological pretreatment and bioaugmentation for enhancing the performance of anaerobic digestion is quite recent and still needs to be investigated. This paper reviews the status and perspectives of recent studies on biotechnology concept and investigates its possible use for enhancing biogas production from lignocellulosic waste with main emphases on biological pretreatment and bioaugmentation techniques.

  8. Forestry seedlings production by biotechnological methods, the forestry of 21th century in Albania.

    Directory of Open Access Journals (Sweden)

    HASAN CANI

    2014-06-01

    Full Text Available The forest biotechnology on the Faculty of Forestry Sciences is an interdisciplinary research dedicated to the development and application of advanced technology for the enhancement of forest regeneration and adaptation. Technical capabilities include Eco physiology, forest ecology, tissue culture and adaptation to climate change mitigation. These techniques are also being used to improve nursery culture regimes, pest’s management by biological fighting, planting regimes and new product development for a variety of broadleaf species (Oaks under ecological stress. Successful regeneration relies on the application of work from many forestry disciplines toward the common goal. At the center of any successful program is the production of high-quality seedlings that have god performance on reforestation site. Performance of an reforestation site depends on seedlings growth potential to be expressed. Seedlings growth potential is influenced by the inherent genetic make-up of source material and the culture used during nursery development. If these attributes can be directed toward improving seedling growth on a reforestation site, then the potential productivity of reforestation/afforestation will be increased. Disciplines that are oriented toward improving these faces of producing high-quality seedlings are the main focus of Forest biotechnology, the main objectives of which have been: (i defining forest species through ecophysiological parameters; (ii developing advanced propagation systems through somatic embryogenesis tissue culture technology; (iii applying ecophysiological assessment techniques in supporting seedling production, improved quality and reforestation site performance. The first results, presented in this paper, have been optimistic, but still the profound studies are needed. The main benefit impacts using biotechnology methods in forestry are: (i a model of sustainable development, (ii maintaining forest biodiversity, (iii

  9. PARITY PRICE OF AGRICULTURAL PRODUCTS, ENERGY AND MATERIAL RESOURCES

    Directory of Open Access Journals (Sweden)

    A. Alpatov

    2012-02-01

    Full Text Available The article describes the main approaches to parity of agricultural products to energy and material resources, are the price indices for certain types of energy resources, and presents data on the availability of agricultural machinery in agricultural organizations of the Russian Federation. The dynamics of growth in energy prices in relation to the specific energy consumption per 1 ha of sown area in the agricultural organizations of the Russian Federation, the consumption of resources such as petroleum products, electricity and fuel. In addition, the article shows the average sales price for agricultural products and logistical resources. Shown the equivalence of the exchange of products between agriculture and industry.

  10. Greenhouse Gas Emissions from Agricultural Production

    DEFF Research Database (Denmark)

    Bennetzen, Eskild Hohlmann

    at critical issues towards reducing our climate footprints. A logical next step for developing the concept of identities regarding food production could be to integrate this production-based framework with identities on consumption and economic development. It must be a scientific goal to illustrate how we...... unit. This dissertation presents results and comprehensions from my PhD study on the basis of three papers. The overall aim has been to develop a new identity-based framework, the KPI, to estimate and analyse GHG emissions from agriculture and LUC and apply this on national, regional and global level....... The KPI enables combined analyses of changes in total emissions, emissions per area and emissions per product. Also, the KPI can be used to assess how a change in each GHG emission category affects the change in total emissions; thus pointing to where things are going well and where things are going less...

  11. Research on Agricultural Products Traceability Mechanism Based on RFID

    Directory of Open Access Journals (Sweden)

    Fuguang Bao

    2014-10-01

    Full Text Available This study aim is to provide a feasible and effective way for the government supervision, agricultural enterprises and consumers to obtain traceability information. This study researches traceability of agricultural products. Through the analysis of the participators, the influence of the agricultural products circulation pattern of supply chain, traceability security system and tracing process, it constructs a pattern of the agricultural products traceability and puts forward a method to realize agricultural products traceability model. The method uses RFID to collect related information of agricultural products and realize the agricultural products traceability process based on the traceability chain construction of the agricultural products and redesigned trace code. Finally, this study analyzes the concrete application of the proposed method in beef traceability to prove the feasibility of our circulation and method.

  12. Electrifying white biotechnology: engineering and economic potential of electricity-driven bio-production.

    Science.gov (United States)

    Harnisch, Falk; Rosa, Luis F M; Kracke, Frauke; Virdis, Bernardino; Krömer, Jens O

    2015-03-01

    The production of fuels and chemicals by electricity-driven bio-production (i.e., using electric energy to drive biosynthesis) holds great promises. However, this electrification of white biotechnology is particularly challenging to achieve because of the different optimal operating conditions of electrochemical and biochemical reactions. In this article, we address the technical parameters and obstacles to be taken into account when engineering microbial bioelectrochemical systems (BES) for bio-production. In addition, BES-based bio-production processes reported in the literature are compared against industrial needs showing that a still large gap has to be closed. Finally, the feasibility of BES bio-production is analysed based on bulk electricity prices. Using the example of lysine production from sucrose, we demonstrate that there is a realistic market potential as cost savings of 8.4 % (in EU) and 18.0 % (in US) could be anticipated, if the necessary yields can be obtained.

  13. Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations?

    Science.gov (United States)

    Dogaris, Ioannis; Mamma, Diomi; Kekos, Dimitris

    2013-02-01

    Microbial production of ethanol might be a potential route to replace oil and chemical feedstocks. Bioethanol is by far the most common biofuel in use worldwide. Lignocellulosic biomass is the most promising renewable resource for fuel bioethanol production. Bioconversion of lignocellulosics to ethanol consists of four major unit operations: pretreatment, hydrolysis, fermentation, and product separation/distillation. Conventional bioethanol processes for lignocellulosics apply commercial fungal cellulase enzymes for biomass hydrolysis, followed by yeast fermentation of resulting glucose to ethanol. The fungus Neurospora crassa has been used extensively for genetic, biochemical, and molecular studies as a model organism. However, the strain's potential in biotechnological applications has not been widely investigated and discussed. The fungus N. crassa has the ability to synthesize and secrete all three enzyme types involved in cellulose hydrolysis as well as various enzymes for hemicellulose degradation. In addition, N. crassa has been reported to convert to ethanol hexose and pentose sugars, cellulose polymers, and agro-industrial residues. The combination of these characteristics makes N. crassa a promising alternative candidate for biotechnological production of ethanol from renewable resources. This review consists of an overview of the ethanol process from lignocellulosic biomass, followed by cellulases and hemicellulases production, ethanol fermentations of sugars and lignocellulosics, and industrial application potential of N. crassa.

  14. Host cell proteins in biotechnology-derived products: A risk assessment framework.

    Science.gov (United States)

    de Zafra, Christina L Zuch; Quarmby, Valerie; Francissen, Kathleen; Vanderlaan, Martin; Zhu-Shimoni, Judith

    2015-11-01

    To manufacture biotechnology products, mammalian or bacterial cells are engineered for the production of recombinant therapeutic human proteins including monoclonal antibodies. Host cells synthesize an entire repertoire of proteins which are essential for their own function and survival. Biotechnology manufacturing processes are designed to produce recombinant therapeutics with a very high degree of purity. While there is typically a low residual level of host cell protein in the final drug product, under some circumstances a host cell protein(s) may copurify with the therapeutic protein and, if it is not detected and removed, it may become an unintended component of the final product. The purpose of this article is to enumerate and discuss factors to be considered in an assessment of risk of residual host cell protein(s) detected and identified in the drug product. The consideration of these factors and their relative ranking will lead to an overall risk assessment that informs decision-making around how to control the levels of host cell proteins.

  15. [Production of acrylamide in agricultural products by cooking].

    Science.gov (United States)

    Takatsuki, Satoshi; Nemoto, Satoru; Sasaki, Kumiko; Maitani, Tamio

    2004-02-01

    Some model studies were performed using various agricultural Products, to clarify the relation between cooking conditions and production of acrylamide (AA). Disc chips made from dried mashed potato, corn meal, wheat flour, rice flour (jyohshin-ko) and glutinous rice flour (shiratama-ko), and dried sesame (arai-goma) and dried almond were baked at 120-200 degrees C for 5-20 min, and the samples were analyzed for the levels of AA. When the samples were baked for 10 min, the highest production of AA was observed at 180-200 degrees C. When the samples were baked at 180 degrees C, AA levels in agricultural products except sesame were highest after baking for 10 min. Vegetables and fruit were baked at 220 degrees C for 5 min with a oven, high AA concentrations were found in baked potato, asparagus, pumpkin, eggplant and green gram sprouts. Concentrations of AA in potato, asparagus and green gram sprouts baked after being pre-cooked by microwave irradiation were higher than those in the products baked without being precooked. On the other hand, the precooking by boiling reduced the production of AA by baking to 1/10-1/4. Acrylamide was not found in microwaved or boiled vegetables. High free asparagine concentrations in crops tended to result in high concentrations of AA being produced by heating the agricultural products.

  16. The Role of Public Opinion in Shaping Trajectories of Agricultural Biotechnology.

    Science.gov (United States)

    Malyska, Aleksandra; Bolla, Robert; Twardowski, Tomasz

    2016-07-01

    Science and technology are not autonomous entities and research trajectories are largely influenced by public opinion. The role of political decisions becomes especially evident in light of rapidly developing new breeding techniques (NBTs) and other genome editing methods for crop improvement. Decisions on how those new techniques should be regulated may not be based entirely on scientific rationale, and even if it is decided that crops produced by NBTs do not fall under the umbrella of genetically modified organisms (GMOs), their commercialization is by no means certain at this time. If and when adopted regulations do not comply with the public's perception of risks, policy makers will find themselves under pressure to ban or restrict the use of the respective products.

  17. Towards a more open debate about values in decision-making on agricultural biotechnology.

    Science.gov (United States)

    Devos, Yann; Sanvido, Olivier; Tait, Joyce; Raybould, Alan

    2014-12-01

    Regulatory decision-making over the use of products of new technology aims to be based on science-based risk assessment. In some jurisdictions, decision-making about the cultivation of genetically modified (GM) plants is blocked supposedly because of scientific uncertainty about risks to the environment. However, disagreement about the acceptability of risks is primarily a dispute over normative values, which is not resolvable through natural sciences. Natural sciences may improve the quality and relevance of the scientific information used to support environmental risk assessments and make scientific uncertainties explicit, but offer little to resolve differences about values. Decisions about cultivating GM plants will thus not necessarily be eased by performing more research to reduce scientific uncertainty in environmental risk assessments, but by clarifying the debate over values. We suggest several approaches to reveal values in decision-making: (1) clarifying policy objectives; (2) determining what constitutes environmental harm; (3) making explicit the factual and normative premises on which risk assessments are based; (4) better demarcating environmental risk assessment studies from ecological research; (5) weighing the potential for environmental benefits (i.e., opportunities) as well as the potential for environmental harms (i.e., risks); and (6) expanding participation in the risk governance of GM plants. Recognising and openly debating differences about values will not remove controversy about the cultivation of GM plants. However, by revealing what is truly in dispute, debates about values will clarify decision-making criteria.

  18. The R & D Market Structure of Agricultural Biotechnology Firm in Taiwan%台湾农业生物技术厂商研发市场结构分析

    Institute of Scientific and Technical Information of China (English)

    池敏青; 王海平; 周琼

    2013-01-01

    农业生技产业的长期发展很大程度上取决于相关厂商的实际技术和产品开发效率,与厂商研发创新能力密切相关。该文从研发经费投入、研发经费支出、研发主要成效、研发面临的主要问题,以及厂商研发受政府辅助影响5个方面对台湾当前农业生技厂商研发市场结构进行分析总结,并从企业战略合作、资金募集渠道、研发基础设施、研发人才队伍等方面提出了进一步提高台湾农业生技厂商研发效率的对策建议。%The long-term development of agricultural biotechnology industry depends largely on the relevant manufacturers of the actual technology and product development efficiency, and is closely related to R&D innovation ability. This article from the R&D, R&D expenditures, R&D major achievements, development problems, and R&D firms under government aided effect 5 aspects to the Taiwan Agricultural Biotechnology R&D market structure analysis. And cooperation, from the enterprise strategy, fund raising channels, R&D infrastructure, R&D personnel etc. to put forward a proposal to improve the Taiwan agricultural biotechnology industry development.

  19. Current biotechnological developments in Belgium.

    Science.gov (United States)

    Masschelein, C A; Callegari, J P; Laurent, M; Simon, J P; Taeymans, D

    1989-01-01

    In recent years, actions have been undertaken by the Belgian government to promote process innovation and technical diversification. Research programs are initiated and coordinated by the study committee for biotechnology setup within the Institute for Scientific Research in Industry and Agriculture (IRSIA). As a result of this action, the main areas where biotechnological processes are developed or commercially exploited include plant genetics, protein engineering, hybridoma technology, biopesticides, production by genetic engineering of vaccines and drugs, monoclonal detection of human and animal deseases, process reactors for aerobic and anaerobic wastewater treatment, and genetic modification of yeast and bacteria as a base for biomass and energy. Development research also includes new fermentation technologies principally based on immobilization of microorganisms, reactor design, and optimization of unit operations involved in downstream processing. Food, pharmaceutical, and chemical industries are involved in genetic engineering and biotechnology and each of these sectors is overviewed in this paper.

  20. Agricultural Productivity Forecasts for Improved Drought Monitoring

    Science.gov (United States)

    Limaye, Ashutosh; McNider, Richard; Moss, Donald; Alhamdan, Mohammad

    2010-01-01

    Water stresses on agricultural crops during critical phases of crop phenology (such as grain filling) has higher impact on the eventual yield than at other times of crop growth. Therefore farmers are more concerned about water stresses in the context of crop phenology than the meteorological droughts. However the drought estimates currently produced do not account for the crop phenology. US Department of Agriculture (USDA) and National Oceanic and Atmospheric Administration (NOAA) have developed a drought monitoring decision support tool: The U.S. Drought Monitor, which currently uses meteorological droughts to delineate and categorize drought severity. Output from the Drought Monitor is used by the States to make disaster declarations. More importantly, USDA uses the Drought Monitor to make estimates of crop yield to help the commodities market. Accurate estimation of corn yield is especially critical given the recent trend towards diversion of corn to produce ethanol. Ethanol is fast becoming a standard 10% ethanol additive to petroleum products, the largest traded commodity. Thus the impact of large-scale drought will have dramatic impact on the petroleum prices as well as on food prices. USDA's World Agricultural Outlook Board (WAOB) serves as a focal point for economic intelligence and the commodity outlook for U.S. WAOB depends on Drought Monitor and has emphatically stated that accurate and timely data are needed in operational agrometeorological services to generate reliable projections for agricultural decision makers. Thus, improvements in the prediction of drought will reflect in early and accurate assessment of crop yields, which in turn will improve commodity projections. We have developed a drought assessment tool, which accounts for the water stress in the context of crop phenology. The crop modeling component is done using various crop modules within Decision Support System for Agrotechnology Transfer (DSSAT). DSSAT is an agricultural crop

  1. Research and innovation in agriculture: beyond productivity?

    Directory of Open Access Journals (Sweden)

    Davide Viaggi

    2016-02-01

    Full Text Available Studies on the effects of research and innovation in agriculture have been largely characterised by efforts to make a connection between expenditure and productivity. A number of issues have challenged the ability of productivity to measure the effects of research, namely, in recent years, increasing efforts towards improving the environmental performance of the farming sector. Besides environmental concerns, however, a number of recent concepts have emerged that are shaping the current research and policy agenda and which could result in a revision of the productivity concepts used to evaluate research impacts. The objective of this paper is to discuss these issues and their implications for studies on the impact of research and innovation. We address, in particular, the following issues: a the development of the of bioeconomy and related concepts such as the circular economy, resource efficiency and bio-refinery; b the connection with entrepreneurship and eco-innovation; c changing tools in research assessment, in particular the widespread use of Life Cycle Assessment (LCA; and d the evolving concepts of sustainability and ecosystem services. We argue that while the traditional notion of productivity, intended as output/input ratio, maintains (and may be strengthens its role on the aggregate, a more analytical interpretation of the pathways towards research impacts is needed, as well as a broadened view of productivity and its determinants.

  2. The Network Marketing of Fresh Agricultural Products in China

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The paper introduced the connotation of network marketing of fresh agricultural products and analyzed the fundaments of launching the C2C marketing of fresh agricultural products in China.The fundaments mainly cover the development of e-commerce,the transformation of consumption concept,the change of life style and the features of Chinese agricultural production.The developmental status of the C2C marketing of Chinese fresh vegetables and fresh fruits is introduced and the plights,including imperfect rural network infrastructure,inadequate talents specialized in network marketing of fresh agricultural products,uneven quality of agricultural products,immature logistics system,uncertainty existed in faced by the C2C marketing of fresh agricultural products and imperfect governmental protection system,are pointed out.In the end,the developmental trend of Chinese network marketing of fresh agricultural products on the basis of C2C mode is described.

  3. [Biotechnology of yogurt and kefir production, study of their effect on human health].

    Science.gov (United States)

    Chagarovskiĭ, V P; Zholkevskaia, I G

    2003-01-01

    Biotechnological parameters of bioyogurt and biokefir production have been studied. The impact of the temperature on biological activity of lactic acid bacteria strains have been studied in the consortia of direct vat set (DVS). The phase of milk fermentation and increase of acid production comes within 6 hours at the temperature of 40 degrees C and pH in the limits of 4.7-5.1 for thermophilic strains and 30 degrees C and pH 5.4-5.7 for mezophilic strains. The concentration of alive cells counts 5 x 10(10) CFU per 1 ml of the product. The probiotic properties of bioyogurt and biokefir have been proved by clinical trials. Positive effect on the health of elder people has been shown. Bioproducts have been related by clinicists to the group of functional products.

  4. Corn Production. A Unit for Teachers of Vocational Agriculture. Production Agriculture Curriculum Materials Project.

    Science.gov (United States)

    Grace, Clyde, Jr.

    Designed to provide instructional materials for use by vocational agriculture teachers, this unit contains nine lessons based upon competencies needed to maximize profits in corn production. The lessons cover opportunities for growing corn; seed selection; seedbed preparation; planting methods and practices; fertilizer rates and application;…

  5. Positive and negative impacts of agricultural production of liquid biofuels

    NARCIS (Netherlands)

    Reijnders, L.; Hester, R.E.; Harrison, R.M.

    2012-01-01

    Agricultural production of liquid biofuels can have positive effects. It can decrease dependence on fossil fuels and increase farmers’ incomes. Agricultural production of mixed perennial biofuel crops may increase pollinator and avian richness. Most types of agricultural crop-based liquid biofuel pr

  6. Industrial biotechnology for the production of bio-based chemicals--a cradle-to-grave perspective.

    Science.gov (United States)

    Hatti-Kaul, Rajni; Törnvall, Ulrika; Gustafsson, Linda; Börjesson, Pål

    2007-03-01

    Shifting the resource base for chemical production from fossil feedstocks to renewable raw materials provides exciting possibilities for the use of industrial biotechnology-based process tools. This review gives an indication of the current developments in the transition to bio-based production, with a focus on the production of chemicals, and points out some of the challenges that exist in the large-scale implementation of industrial biotechnology. Furthermore, the importance of evaluating the environmental impact of bio-based products with respect to their entire life cycle is highlighted, demonstrating that the choice of the raw material often turns out to be an important parameter influencing the life cycle performance.

  7. Environmental risk assessment for ancillary substances in biotechnological production of pharmaceuticals.

    Science.gov (United States)

    Straub, Jürg Oliver; Gysel, Daniel; Kastl, Ursula; Klemmer, Jürgen; Sonderegger, Marco; Studer, Martin

    2012-03-01

    An increasing number of pharmaceutical active substances are produced through biotechnological processes. For sustained and safe growth of the host organisms as well as optimal expression, purification, and formulation of the product, biotechnological manufacturing processes need optimal and robust environmental conditions, which are attained through the use of buffers, chelators, and antibiotics, beside nutrients. These ancillary substances are drained with the wastewater to a wastewater treatment plant (WWTP) and are released after treatment with the effluent to receiving waters. The potential risks of such substances to WWTPs and surface waters were investigated. Three common buffers (morpholinoethane sulfonic acid [MES], morpholinopropanesulfonic acid [MOPS], 1,4-piperazine (diethanesulfonic acid) [PIPES]), one chelator (ethylenediaminetetraacetic acid [EDTA]), and one antibiotic (gentamycin) were searched in the literature for environmental data or tested for biodegradability and inhibition of activated sludge as well as acute toxicity to algae, daphnids, and fish. Amounts of the ancillary substances used in the European biotechnological production plants of F. Hoffmann-La Roche Ltd in Basle (Switzerland) and Penzberg (Germany), and actual wastewater fluxes through the respective WWTP, as well as realistic dilution factors for the local receiving water, were documented. Based on this information, site-specific predicted environmental concentrations (PECs) for the WWTPs and surface waters in Basle and Penzberg were extrapolated. These PECs were compared with predicted no effect concentrations (PNECs) for the WWTP and surface waters, derived from sludge inhibition and ecotoxicity results, respectively. For all five ancillary substances investigated, all PEC/PNEC risk characterization ratios are <1, indicating no significant risk to the WWTPs or the receiving waters at both sites. Copyright © 2011 SETAC.

  8. Bio agricultural product market in Romania and Europe

    Directory of Open Access Journals (Sweden)

    Simona BĂLĂŞESCU

    2016-07-01

    Full Text Available The general objectives of this paper are to obtain an overview of the present market for organic agricultural products in Europe in general, and in Romania in particular. Organic agricultural production represents a small part of Romanian agricultural production and the development potential of organic agricultural production Romania is infinitely greater than what is done today. European consumers know little about the Romanian bio agriculture and even less about the huge potential of this sector. Organic food market is growing both in Europe and in Romania due to the increased interest of consumers to live healthier and improve the quality of life.

  9. Agricultural productivity, malnutrition and human health in sub ...

    African Journals Online (AJOL)

    Agricultural productivity, malnutrition and human health in sub-Saharan Africa: A review. ... keep animals with low genetic merit, employ crude implements and primitive ... involved in procurement and distribution of improved agricultural inputs.

  10. A Study of Green Logistics for Chinese Agriculture Products

    Directory of Open Access Journals (Sweden)

    Na Liu

    2015-09-01

    Full Text Available Although agriculture plays an important role in China, the country is still suffering much from the weakness of the logistics system of its agriculture products, such as outdated facilities, lacking of logistics experts, weak information technology, etc. The weak logistics system causes the loss of many agricultural products in daily delivery and storing. This study addresses the problem by taking a study of green logistics for Chinese agriculture products. We take an SWOT method to analyze the different respects of logistics for Chinese agriculture products and then design several strategies for deploying and promoting green logistics in Chinese agriculture. We believe that green logistics is feasible in Chinese agriculture and these strategies can be effective in helping adapt green logistics to Chinese agriculture.

  11. Role of Mass Media in Agricultural Productivity in Adamawa State ...

    African Journals Online (AJOL)

    Role of Mass Media in Agricultural Productivity in Adamawa State, Nigeria. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... Specifically, it focused on the extent to which mass media have been used to communicate agricultural ...

  12. [Agricultural biotechnology safety assessment].

    Science.gov (United States)

    McClain, Scott; Jones, Wendelyn; He, Xiaoyun; Ladics, Gregory; Bartholomaeus, Andrew; Raybould, Alan; Lutter, Petra; Xu, Haibin; Wang, Xue

    2015-01-01

    Genetically modified (GM) crops were first introduced to farmers in 1995 with the intent to provide better crop yield and meet the increasing demand for food and feed. GM crops have evolved to include a thorough safety evaluation for their use in human food and animal feed. Safety considerations begin at the level of DNA whereby the inserted GM DNA is evaluated for its content, position and stability once placed into the crop genome. The safety of the proteins coded by the inserted DNA and potential effects on the crop are considered, and the purpose is to ensure that the transgenic novel proteins are safe from a toxicity, allergy, and environmental perspective. In addition, the grain that provides the processed food or animal feed is also tested to evaluate its nutritional content and identify unintended effects to the plant composition when warranted. To provide a platform for the safety assessment, the GM crop is compared to non-GM comparators in what is typically referred to as composition equivalence testing. New technologies, such as mass spectrometry and well-designed antibody-based methods, allow better analytical measurements of crop composition, including endogenous allergens. Many of the analytical methods and their intended uses are based on regulatory guidance documents, some of which are outlined in globally recognized documents such as Codex Alimentarius. In certain cases, animal models are recommended by some regulatory agencies in specific countries, but there is typically no hypothesis or justification of their use in testing the safety of GM crops. The quality and standardization of testing methods can be supported, in some cases, by employing good laboratory practices (GLP) and is recognized in China as important to ensure quality data. Although the number of recommended, in some cases, required methods for safety testing are increasing in some regulatory agencies, it should be noted that GM crops registered to date have been shown to be comparable to their nontransgenic counterparts and safe . The crops upon which GM development are based are generally considered safe.

  13. Citation Analysis of Dissertations in Molecular Biology and Biotechnology: A Case Study of G. B. Pant University of Agriculture and Technology, India

    Directory of Open Access Journals (Sweden)

    Hema Haldua

    2012-06-01

    Full Text Available Citation analysis and ranking of journals are key aspects of knowledge management and collection development in academic and research libraries. This paper aims to assist the library collection development in order to fulfill the needs of scientists and research scholars. The study covered the period 1998–2010 and used the reference lists of dissertations submitted by the doctoral students of the molecular biology and biotechnology sciences at the G. B. Pant University of Agriculture and Technology, Pantnagar, India. The findings of the study showed that citation analysis is a valid, reliable and practical method to provide reasonably accurate information on the use of molecular biology and biotechnology literature by doctoral students. Publishing research in high-quality journals is an integral part of academic life. Therefore, researchers often refer to journal rankings when making decisions to submit and publish their research findings.

  14. Progress towards the 'Golden Age' of biotechnology.

    Science.gov (United States)

    Gartland, K M A; Bruschi, F; Dundar, M; Gahan, P B; Viola Magni, M p; Akbarova, Y

    2013-07-01

    Biotechnology uses substances, materials or extracts derived from living cells, employing 22 million Europeans in a € 1.5 Tn endeavour, being the premier global economic growth opportunity this century. Significant advances have been made in red biotechnology using pharmaceutically and medically relevant applications, green biotechnology developing agricultural and environmental tools and white biotechnology serving industrial scale uses, frequently as process feedstocks. Red biotechnology has delivered dramatic improvements in controlling human disease, from antibiotics to overcome bacterial infections to anti-HIV/AIDS pharmaceuticals such as azidothymidine (AZT), anti-malarial compounds and novel vaccines saving millions of lives. Green biotechnology has dramatically increased food production through Agrobacterium and biolistic genetic modifications for the development of 'Golden Rice', pathogen resistant crops expressing crystal toxin genes, drought resistance and cold tolerance to extend growth range. The burgeoning area of white biotechnology has delivered bio-plastics, low temperature enzyme detergents and a host of feedstock materials for industrial processes such as modified starches, without which our everyday lives would be much more complex. Biotechnological applications can bridge these categories, by modifying energy crops properties, or analysing circulating nucleic acid elements, bringing benefits for all, through increased food production, supporting climate change adaptation and the low carbon economy, or novel diagnostics impacting on personalized medicine and genetic disease. Cross-cutting technologies such as PCR, novel sequencing tools, bioinformatics, transcriptomics and epigenetics are in the vanguard of biotechnological progress leading to an ever-increasing breadth of applications. Biotechnology will deliver solutions to unimagined problems, providing food security, health and well-being to mankind for centuries to come. Copyright © 2013

  15. Comparative analysis of aggregate agricultural productivity between ...

    African Journals Online (AJOL)

    GREGORY

    2010-08-23

    Aug 23, 2010 ... 1Department of Agricultural Science, Rivers State College of Education Port Harcourt, Nigeria. 2Department .... establish the existence or absence of structural changes in the two functions. .... Institutions and Agricultural Africa.

  16. Alcohol production from agricultural and forestry residues

    Energy Technology Data Exchange (ETDEWEB)

    Opilla, R.; Dale, L.; Surles, T.

    1980-05-01

    A variety of carbohydrate sources can be used as raw material for the production of ethanol. Section 1 is a review of technologies available for the production of ethanol from whole corn. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. Section 2 is a review of the use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. Section 3 deals with the environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  17. Evaluation of the Trading Website for Agricultural Products in China

    Institute of Scientific and Technical Information of China (English)

    Lingran; MENG; Jun; WU

    2014-01-01

    Agricultural product trading website is not only an important way to realize the agriculture informatization,but also the main manifestation of the agricultural informatization. Based on the preliminary understanding of the content and characteristics of China’s agricultural product trading website,the paper builds a scientific evaluation indicator system and evaluates 50 typical agricultural product trading websites objectively by using classification and grading method. The results show that the overall construction level of China’s agricultural product trading websites is general,and there are obvious differences between regions; the lack of website commercial function and the lag of informatization are the main factors restricting the development of agricultural product trading websites.

  18. Natural transformation in plant breeding - a biotechnological platform for quality improvement of ornamental, agricultural and medicinal plants

    DEFF Research Database (Denmark)

    Lütken, Henrik Vlk; Hegelund, Josefine Nymark; Himmelboe, Martin;

    2015-01-01

    Compactness is a desirable trait in ornamental plant breeding because it is preferred by producers, distributors and consumers. Presently, in ornamental plant production growth of many potted plants is regulated by application of chemical growth retardants, several of which are harmful to both......, decreased plant height, short internodes, reduced apical dominance and changes in flower characteristics. Several of these traits improve ornamental plant quality and may also benefit characteristics useful in agricultural field crops. In addition, a number of regenerated plants derived from hairy roots...

  19. Alcohol production from agricultural and forestry residues

    Energy Technology Data Exchange (ETDEWEB)

    Dale, L; Opilla, R; Surles, T

    1980-09-01

    Technologies available for the production of ethanol from whole corn are reviewed. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. The use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - is reviewed as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. The environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass are covered. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  20. Biotechnological approaches for the production of prebiotics and their potential applications.

    Science.gov (United States)

    Panesar, Parmjit S; Kumari, Shweta; Panesar, Reeba

    2013-12-01

    Worldwide interest in prebiotics have been increasing extensively both as food ingredients and pharmacological supplements, since they have beneficial properties for human health. Prebiotics not only stimulate the growth of healthy bacteria such as bifidobacteria and lactobacilli in the gut but also increase the resistance towards pathogens. In addition to this, they also act as dietary fiber, an energy source for intestinal cells after converting to short-chain fatty acids, a stimulator of immune systems, sugar replacer etc. Moreover, due to heat resistant properties, they are able to maintain their intact form during the baking process and allow them to be incorporated into every day food products. Thus, they can be interesting and useful ingredients in the development of novel functional foods. This review provides comprehensive information about the different biotechnological techniques employed in the production of prebiotics and their potential applications in different areas.

  1. From Pandemic Preparedness to Biofuel Production: Tobacco Finds Its Biotechnology Niche in North America

    Directory of Open Access Journals (Sweden)

    Joshua D. Powell

    2015-09-01

    Full Text Available In 2012 scientists funded by the United States Defense Advanced Research Projects Agency (DARPA produced 10 million doses of influenza vaccine in tobacco in a milestone deadline of one month. Recently the experimental antibody cocktail Zmapp™, also produced in tobacco, has shown promise as an emergency intervention therapeutic against Ebola virus. These two examples showcase how collaborative efforts between government, private industry and academia are applying plant biotechnology to combat pathogenic agents. Opportunities now exist repurposing tobacco expression systems for exciting new applications in synthetic biology, biofuels production and industrial enzyme production. As plant-produced biotherapeutics become more mainstream, government funding agencies need to be cognizant of the idea that many plant-produced biologicals are often safer, cheaper, and just as efficacious as traditionally used expression systems.

  2. Identification and analysis of metabolite production with biotechnological potential in Xanthophyllomyces dendrorhous isolates.

    Science.gov (United States)

    Contreras, Gabriela; Barahona, Salvador; Sepúlveda, Dionisia; Baeza, Marcelo; Cifuentes, Víctor; Alcaíno, Jennifer

    2015-03-01

    Antarctic microorganisms have developed different strategies to live in their environments, including modifications to their membrane components to regulate fluidity and the production of photoprotective metabolites such as carotenoids. Three yeast colonies (ANCH01, ANCH06 and ANCH08) were isolated from soil samples collected at King George Island, which according to their rDNA sequence analyses, were determined to be Xanthophyllomyces dendrorhous. This yeast is of biotechnological interest, because it can synthesize astaxanthin as its main carotenoid, which is a powerful antioxidant pigment used in aquaculture. Then, the aim of this work was to characterize the ANCH isolates at their molecular and phenotypic level. The isolates did not display any differences in their rDNA and COX1 gene nucleotide sequences. However, ANCH01 produces approximately sixfold more astaxanthin than other wild type strains. Moreover, even though ANCH06 and ANCH08 produce astaxanthin, their main carotenoid was β-carotene. In contrast to other X. dendrorhous strains, the ANCH isolates did not produce mycosporines. Finally, the ANCH isolates had a higher proportion of polyunsaturated fatty acids than other wild type strains. In conclusion, the reported X. dendrorhous isolates are phenotypically different from other wild type strains, including characteristics that could make them more resistant and better able to inhabit their original habitat, which may also have biotechnological potential.

  3. The Determinants of Agricultural Productivity and Rural Household ...

    African Journals Online (AJOL)

    Rahel

    potent for factor of production and rural household income enhancement. The policy ... production intended to meet national food security needs. But, output per ... from difference sources to averse the risk associated in agricultural farm sector. ... Agricultural productivity and rural household income in Ethiopia and more.

  4. Lipid and fatty acid metabolism in Ralstonia eutropha: relevance for the biotechnological production of value-added products.

    Science.gov (United States)

    Riedel, Sebastian L; Lu, Jingnan; Stahl, Ulf; Brigham, Christopher J

    2014-02-01

    Lipid and fatty acid metabolism has been well studied in model microbial organisms like Escherichia coli and Bacillus subtilis. The major precursor of fatty acid biosynthesis is also the major product of fatty acid degradation (β-oxidation), acetyl-CoA, which is a key metabolite for all organisms. Controlling carbon flux to fatty acid biosynthesis and from β-oxidation allows for the biosynthesis of natural products of biotechnological importance. Ralstonia eutropha can utilize acetyl-CoA from fatty acid metabolism to produce intracellular polyhydroxyalkanoate (PHA). R. eutropha can also be engineered to utilize fatty acid metabolism intermediates to produce different PHA precursors. Metabolism of lipids and fatty acids can be rerouted to convert carbon into other value-added compounds like biofuels. This review discusses the lipid and fatty acid metabolic pathways in R. eutropha and how they can be used to construct reagents for the biosynthesis of products of industrial importance. Specifically, how the use of lipids or fatty acids as the sole carbon source in R. eutropha cultures adds value to these biotechnological products will be discussed here.

  5. Biotechnological production of γ-decalactone, a peach like aroma, by Yarrowia lipolytica.

    Science.gov (United States)

    Braga, A; Belo, I

    2016-10-01

    The request for new flavourings increases every year. Consumer perception that everything natural is better is causing an increase demand for natural aroma additives. Biotechnology has become a way to get natural products. γ-Decalactone is a peach-like aroma widely used in dairy products, beverages and others food industries. In more recent years, more and more studies and industrial processes were endorsed to cost-effect this compound production. One of the best-known methods to produce γ-decalactone is from ricinoleic acid catalyzed by Yarrowia lipolytica, a generally regarded as safe status yeast. As yet, several factors affecting γ-decalactone production remain to be fully understood and optimized. In this review, we focus on the aromatic compound γ-decalactone and its production by Y. lipolytica. The metabolic pathway of lactone production and degradation are addressed. Critical analysis of novel strategies of bioprocess engineering, metabolic and genetic engineering and other strategies for the enhancement of the aroma productivity are presented.

  6. Cooperation and cheating in microbial exoenzyme production--theoretical analysis for biotechnological applications.

    Science.gov (United States)

    Schuster, Stefan; Kreft, Jan-Ulrich; Brenner, Naama; Wessely, Frank; Theissen, Günter; Ruppin, Eytan; Schroeter, Anja

    2010-07-01

    The engineering of microorganisms to produce a variety of extracellular enzymes (exoenzymes), for example for producing renewable fuels and in biodegradation of xenobiotics, has recently attracted increasing interest. Productivity is often reduced by "cheater" mutants, which are deficient in exoenzyme production and benefit from the product provided by the "cooperating" cells. We present a game-theoretical model to analyze population structure and exoenzyme productivity in terms of biotechnologically relevant parameters. For any given population density, three distinct regimes are predicted: when the metabolic effort for exoenzyme production and secretion is low, all cells cooperate; at intermediate metabolic costs, cooperators and cheaters coexist; while at high costs, all cells use the cheating strategy. These regimes correspond to the harmony game, snowdrift game, and Prisoner's Dilemma, respectively. Thus, our results indicate that microbial strains engineered for exoenzyme production will not, under appropriate conditions, be outcompeted by cheater mutants. We also analyze the dependence of the population structure on cell density. At low costs, the fraction of cooperating cells increases with decreasing cell density and reaches unity at a critical threshold. Our model provides an estimate of the cell density maximizing exoenzyme production.

  7. Agricultural productivity and supply responses in Ghana

    OpenAIRE

    2012-01-01

    The importance of Agricultural Supply Response (ASR) modelling cannot be over emphasised. Knowledge of its size provides a roadmap for designing a tailored agricultural policy based on suppliers’ responses to price and non-price incentives. In spite of its policy importance, limited amount of studies exist for Ghana. This study seeks to fill the gap and also sheds some light on how future agricultural policies in Ghana should be formulated. This study is conducted on a regional (ecologic...

  8. Plant science and agricultural productivity: why are we hitting the yield ceiling?

    Science.gov (United States)

    de Bossoreille de Ribou, Stève; Douam, Florian; Hamant, Olivier; Frohlich, Michael W; Negrutiu, Ioan

    2013-09-01

    Trends in conventional plant breeding and in biotechnology research are analyzed with a focus on production and productivity of individual organisms. Our growing understanding of the productive/adaptive potential of (crop) plants is a prerequisite to increasing this potential and also its expression under environmental constraints. This review concentrates on growth rate, ribosome activity, and photosynthetic rate to link these key cellular processes to plant productivity. Examples of how they may be integrated in heterosis, organ growth control, and responses to abiotic stresses are presented. The yield components in rice are presented as a model. The ultimate goal of research programs, that concentrate on yield and productivity and integrating the panoply of systems biology tools, is to achieve "low input, high output" agriculture, i.e. shifting from a conventional "productivist" agriculture to an efficient sustainable agriculture. This is of critical, strategic importance, because the extent to which we, both locally and globally, secure and manage the long-term productive potential of plant resources will determine the future of humanity.

  9. Linum narbonense: A new valuable tool for biotechnological production of a potent anticancer lignan Justicidine B

    Directory of Open Access Journals (Sweden)

    Iliana Ionkova

    2013-01-01

    Full Text Available Background: Arylnaphthalene lignan Justicidin B is a lead compound in the management of bone cancer and osteoclastogenesis . The compound is the main cytotoxic principle of rare medicinal plant Linum narbonense L. (Linaceae. However, there have been no reports on the bioreactor production of justicidin B. Objective: to develop cost-effective biotechnology for production of this anticancer metabolite. Materials and Methods: The genetic transformation in hairy roots induced by Agrobacterium rhizogenes strain ATCC 15834, was proven by PCR analysis. The control of bioreactor was synthesized by gradient method. The optimal values of the controlling parameters were estimated with presence of technological limitation. The general structure of control system was based on "Hardware in the Loop" (HIL. Results: Hairy roots produced five-fold higher yields of justicidin B (7.78mg/g DW compared to callus. A rapidly growing root line was selected for cultivation in 2-L stirred tank bioreactor. After optimization, maximum biomass of 22.5 g.l -1 dry wt was harvested from the bioreactor culture vessel (recording about 8 times increase over initial inoculum, with 1.42 % ± 0.12 Justicidine B, greater than contents from flasks were obtained. The extracts were tested in a panel of human tumor cell lines, using the MTT-dye reduction assay, exert inhibitory effects against malignant cells. Conclusion: Our findings are the first work on large cultivation of L. narbonense hairy roots and bioreactor production of plant anticancer agent Justicidin B. To extend the research to human clinical studies, we have found a reliable biotechnological supply of plant material, produced this target compound.

  10. Next-Generation Bio-Products Sowing the Seeds of Success for Sustainable Agriculture

    Directory of Open Access Journals (Sweden)

    Henry Müller

    2013-10-01

    Full Text Available Plants have recently been recognized as meta-organisms due to a close symbiotic relationship with their microbiome. Comparable to humans and other eukaryotic hosts, plants also harbor a “second genome” that fulfills important host functions. These advances were driven by both “omics”-technologies guided by next-generation sequencing and microscopic insights. Additionally, these new results influence applied fields such as biocontrol and stress protection in agriculture, and new tools may impact (i the detection of new bio-resources for biocontrol and plant growth promotion, (ii the optimization of fermentation and formulation processes for biologicals, (iii stabilization of the biocontrol effect under field conditions, and (iv risk assessment studies for biotechnological applications. Examples are presented and discussed for the fields mentioned above, and next-generation bio-products were found as a sustainable alternative for agriculture.

  11. Biotechnology in maize breeding

    Directory of Open Access Journals (Sweden)

    Mladenović-Drinić Snežana

    2004-01-01

    Full Text Available Maize is one of the most important economic crops and the best studied and most tractable genetic system among monocots. The development of biotechnology has led to a great increase in our knowledge of maize genetics and understanding of the structure and behaviour of maize genomes. Conventional breeding practices can now be complemented by a number of new and powerful techniques. Some of these often referred to as molecular methods, enable scientists to see the layout of the entire genome of any organism and to select plants with preferred characteristics by "reading" at the molecular level, saving precious time and resources. DNA markers have provided valuable tools in various analyses ranging from phylogenetic analysis to the positional cloning of genes. Application of molecular markers for genetic studies of maize include: assessment of genetic variability and characterization of germ plasm, identification and fingerprinting of genotypes, estimation of genetic distance, detection of monogamic and quantitative trait loci, marker assisted selection, identification of sequence of useful candidate genes, etc. The development of high-density molecular maps which has been facilitated by PCR-based markers, have made the mapping and tagging of almost any trait possible and serve as bases for marker assisted selection. Sequencing of maize genomes would help to elucidate gene function, gene regulation and their expression. Modern biotechnology also includes an array of tools for introducing or deieting a particular gene or genes to produce plants with novel traits. Development of informatics and biotechnology are resulted in bioinformatic as well as in expansion of microarrey technique. Modern biotechnologies could complement and improve the efficiency of traditional selection and breeding techniques to enhance agricultural productivity.

  12. PRODUCTION OF BIOETHANOL FROM AGRICULTURAL WASTE

    Directory of Open Access Journals (Sweden)

    W. Braide

    2016-05-01

    Full Text Available This study investigates the potential of ethanol production from agro wastes. Agro waste from sugarcane Saccharum officinarum (sugarcane baggasse, sugarcane bark and maize plant Zea mays (corncob, corn stalk, corn husk was subjected to a pretreatment process using acid hydrolysis was applied to remove lignin which acts as physical barrier to cellulolytic enzymes. Ethanolic fermentation was done using Saccharomyces cerevisiae for 5days and the ethanol yield, specific gravity, pH and total reducing sugar were also determined. From the results, the specific gravity, sugar content and pH decreased over time while the Sugarcane baggasse, Sugarcane bark, Cornstalk, Corncob and Cornhusk gave maximum percentage ethanol yield of 6.72, 6.23, 6.17, 4.17 and 3.45 respectively at 72hrs Fermentation. Maximum yields of ethanol were obtained at pH 3.60, 3.82, 4.00, 3.64 and 3.65. These findings show/prove that ethanol can be made from the named agricultural waste and the process is recommended as a means of generating wealth from waste.

  13. Unexploited potential of some biotechnological techniques for biofertilizer production and formulation.

    Science.gov (United States)

    Vassilev, N; Vassileva, M; Lopez, A; Martos, V; Reyes, A; Maksimovic, I; Eichler-Löbermann, B; Malusà, E

    2015-06-01

    The massive application of chemical fertilizers to support crop production has resulted in soil, water, and air pollution at a global scale. In the same time, this situation escalated consumers' concerns regarding quality and safety of food production which, due to increase of fertilizer prices, have provoked corresponding price increase of food products. It is widely accepted that the only solution is to boost exploitation of plant-beneficial microorganisms which in conditions of undisturbed soils play a key role in increasing the availability of minerals that otherwise are inaccessible to plants. This review paper is focused on the employment of microbial inoculants and their production and formulation. Special attention is given to biotechniques that are not fully exploited as tools for biofertilizer manufacturing such as microbial co-cultivation and co-immobilization. Another emerging area includes biotechnological production and combined usage of microorganisms/active natural compounds (biostimulants) such as plant extracts and exudates, compost extracts, and products like strigolactones, which improve not only plant growth and development but also plant-microbial interactions. The most important potential and novel strategies in this field are presented as well as the tendencies that will be developed in the near future.

  14. Catabolism of hydroxyacids and biotechnological production of lactones by Yarrowia lipolytica.

    Science.gov (United States)

    Waché, Y; Aguedo, M; Nicaud, J-M; Belin, J-M

    2003-06-01

    The gamma- and delta-lactones of less than 12 carbons constitute a group of compounds of great interest to the flavour industry. It is possible to produce some of these lactones through biotechnology. For instance, gamma-decalactone can be obtained by biotransformation of methyl ricinoleate. Among the organisms used for this bioproduction, Yarrowia lipolytica is a yeast of choice. It is well adapted to growth on hydrophobic substrates, thanks to its efficient and numerous lipases, cytochrome P450, acyl-CoA oxidases and its ability to produce biosurfactants. Furthermore, genetic tools have been developed for its study. This review deals with the production of lactones by Y. lipolytica with special emphasis on the biotransformation of methyl ricinoleate to gamma-decalactone. When appropriate, information from the lipid metabolism of other yeast species is presented.

  15. Synthesis, Production, and Biotechnological Applications of Exopolysaccharides and Polyhydroxyalkanoates by Archaea

    Directory of Open Access Journals (Sweden)

    Annarita Poli

    2011-01-01

    Full Text Available Extreme environments, generally characterized by atypical temperatures, pH, pressure, salinity, toxicity, and radiation levels, are inhabited by various microorganisms specifically adapted to these particular conditions, called extremophiles. Among these, the microorganisms belonging to the Archaea domain are of significant biotechnological importance as their biopolymers possess unique properties that offer insights into their biology and evolution. Particular attention has been devoted to two main types of biopolymers produced by such peculiar microorganisms, that is, the extracellular polysaccharides (EPSs, considered as a protection against desiccation and predation, and the endocellular polyhydroxyalkanoates (PHAs that provide an internal reserve of carbon and energy. Here, we report the composition, biosynthesis, and production of EPSs and PHAs by different archaeal species.

  16. Perspectives of biotechnological production of L-ribose and its purification.

    Science.gov (United States)

    Hu, Chao; Li, Liangzhi; Zheng, Yayue; Rui, Lilian; Hu, Cuiying

    2011-11-01

    L-ribose is a non-natural and expensive sugar that can be used as an important intermediate for the synthesis of L-nucleoside analogues, which are used as antiviral drugs. In contrast to chemical production, biotechnological methods can produce L-ribose from biomass under environmentally friendly conditions. In this mini-review, various strategies for synthesizing L-ribose by applying microorganisms and their enzymes are discussed, including microbial biotransformation and biocatalysis by engineering bacteria. Furthermore, subsequent isolation-and-purification techniques, as an integral step in the whole process, are accordingly described, containing the special introduction of a promising strategy of L-ribose separation. Particularly, further researches and outlook for the improvement of L-ribose preparation was solely stressed. Compared with each method, this mini-review provides a panorama of respective advantages and disadvantages existing in them.

  17. Production Structure of Agriculture in Huai’an City

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    According to the data in 1990-2009 Huai’an Statistical Yearbook and Jiangsu Statistical Yearbook,production structure of agriculture in Huai’an City is analyzed.Result shows that economic efficiency of planting industry is significantly lower than that of other industry types of agriculture;and the production structure of agriculture in Huai’an City is unbalanced and needs further optimization.The reasons for the imbalance in industrial structure are various,such as the relatively low quality of agricultural employees,the backward marketing of planting,and the lack of standardization management.Finally,corresponding suggestions are put forward,including developing education,conducting vocational training,improving the human capital stock of Huai’an City,cultivating the leading enterprises for agricultural product processing,and realizing the scale agglomeration effect of agricultural production in planting industry.

  18. How Could Agricultural Land Systems Contribute to Raise Food Production Under Global Change?

    Institute of Scientific and Technical Information of China (English)

    WU Wen-bin; YU Qiang-yi; Verburg H Peter; YOU Liang-zhi; YANG Peng; TANG Hua-jun

    2014-01-01

    To feed the increasing world population, more food needs to be produced from agricultural land systems. Solutions to produce more food with fewer resources while minimizing adverse environmental and ecological consequences require sustainable agricultural land use practices as supplementary to advanced biotechnology and agronomy. This review paper, from a land system perspective, systematically proposed and analyzed three interactive strategies that could possibly raise future food production under global change. By reviewing the current literatures, we suggest that cropland expansion is less possible amid iferce land competition, and it is likely to do less in increasing food production. Moreover, properly allocating crops in space and time is a practical way to ensure food production. Climate change, dietary shifts, and other socio-economic drivers, which would shape the demand and supply side of food systems, should be taken into consideration during the decision-making on rational land management in respect of sustainable crop choice and allocation. And ifnally, crop-speciifc agricultural intensiifcation would play a bigger role in raising future food production either by increasing the yield per unit area of individual crops or by increasing the number of crops sown on a particular area of land. Yet, only when it is done sustainably is this a much more effective strategy to maximize food production by closing yield and harvest gaps.

  19. An overview of biotechnological production of propionic acid: From upstream to downstream processes

    Directory of Open Access Journals (Sweden)

    Negin Ahmadi

    2017-07-01

    Full Text Available The increasing demand for propionic acid (PA production and its wide applications in several industries, especially the food industry (as a preservative and satiety inducer, have led to studies on the low-cost biosynthesis of this acid. This paper gives an overview of the biotechnological aspects of PA production and introduces Propionibacterium as the most popular organism for PA production. Moreover, all process variables influencing the production yield, different simple and complex carbon sources, the metabolic pathway of production, engineered mutants with increased productivity, and modified tolerance against high concentrations of acid have been described. Furthermore, possible methods of extraction and analysis of this organic acid, several applied bioreactors, and different culture systems and substrates are introduced. It can be concluded that maximum biomass and PA production may be achieved using metabolically engineered microorganisms and analyzing the most significant factors influencing yield. To date, the maximum reported yield for PA production is 0.973 g·g-1, obtained from Propionibacterium acidipropionici in a three-electrode amperometric culture system in medium containing 0.4 mM cobalt sepulchrate. In addition, the best promising substrate for PA bioproduction may be achieved using glycerol as a carbon source in an extractive continuous fermentation. Simultaneous production of PA and vitamin B12 is suggested, and finally, the limitations of and strategies for competitive microbial production with respect to chemical process from an economical point of view are proposed and presented. Finally, some future trends for bioproduction of PA are suggested.

  20. Evolution of agricultural production of Zaire before and after 1960

    Directory of Open Access Journals (Sweden)

    Sabiti, K.

    1991-01-01

    Full Text Available This study presents the evolution of agricultural production of Zaire before and after 1960 with the help of variable quantifies of products, the cultured area and the exported quantifies of products. A comparative analysis of quantifies of studied products shows that after 1960, the agricultural production of basis foodstuffs of the Zairian population has fallen of the order of 91 % in comparison with the first period. This study shows that the system of peasantry introduced in 1936 by the INEAC, the rationalization of cultural methods connected to the governmental explain the agricultural expansion of Zaire before 1960.

  1. Improving agricultural production under water scarcity in Fars province, Iran

    NARCIS (Netherlands)

    Hosseini, M.R.; Haile, A.M.; McClain, M.E.

    2012-01-01

    ABSTRACT Water scarcity is one of the major limiting factor for improving agricultural production in the world, which significantly affects agricultural production and livelihood of millions of people who live in arid and semi-arid regions. This case study presents the analysis of the effectiveness

  2. Status of Agricultural Production and Crop Variety Improvement in Thailand

    Institute of Scientific and Technical Information of China (English)

    JIAO Chun-hai; GUO Ying; YAO Ming-hua; WAN Zheng-huang

    2012-01-01

    We introduced basic conditions of agricultural production in Thailand, and variety improvement of major crops, including rice, cassava, rubber, and vegetable, in the hope of providing reference for agricultural production and crop variety improvement in Hubei Province and even in the whole country.

  3. A Spatial Data Model Desing For The Management Of Agricultural Data (Farmer, Agricultural Land And Agricultural Production)

    Science.gov (United States)

    Taşkanat, Talha; İbrahim İnan, Halil

    2016-04-01

    Since the beginning of the 2000s, it has been conducted many projects such as Agricultural Sector Integrated Management Information System, Agriculture Information System, Agricultural Production Registry System and Farmer Registry System by the Turkish Ministry of Food, Agriculture and Livestock and the Turkish Statistical Institute in order to establish and manage better agricultural policy and produce better agricultural statistics in Turkey. Yet, it has not been carried out any study for the structuring of a system which can meet the requirements of different institutions and organizations that need similar agricultural data. It has been tried to meet required data only within the frame of the legal regulations from present systems. Whereas the developments in GIS (Geographical Information Systems) and standardization, and Turkey National GIS enterprise in this context necessitate to meet the demands of organizations that use the similar data commonly and to act in terms of a data model logic. In this study, 38 institutions or organization which produce and use agricultural data were detected, that and thanks to survey and interviews undertaken, their needs were tried to be determined. In this study which is financially supported by TUBITAK, it was worked out relationship between farmer, agricultural land and agricultural production data and all of the institutions and organizations in Turkey and in this context, it was worked upon the best detailed and effective possible data model. In the model design, UML which provides object-oriented design was used. In the data model, for the management of spatial data, sub-parcel data model was used. Thanks to this data model, declared and undeclared areas can be detected spatially, and thus declarations can be associated to sub-parcels. Within this framework, it will be able to developed agricultural policies as a result of acquiring more extensive, accurate, spatially manageable and easily updatable farmer and

  4. Biotechnological production of 2,3-butanediol from agroindustrial food waste

    Energy Technology Data Exchange (ETDEWEB)

    Canepa, P.; Cauglia, F.; Gilio, A.; Perego, P. [Genoa Univ., Genoa (Italy)

    2000-07-01

    The exploitation of common agroindustrial wastes to produce important industrial bioproducts was examined during a research study in which the solvent glycol was bioproduced for industrial applications. The preliminary results of fermentation on starch hydrolysate, sugar beet molasses and cheese whey by microorganisms were presented. Currently, 2,3-butanediol synthesizes by chemical pathways even though its biotechnological production from industrial wastes has two interesting possibilities. These include the low production costs of fermentation to obtain a compound with a huge market, plus the reduced environmental impact of waste pollution by biodegradation. In this study, pure cultures of Enterobacter aerogenes were used in a stirred batch reactor under micro-aerobic conditions. In order to determine the optimal working conditions for bacterial production of 2,3-butanediol on a glucose solution, several batch fermentations were conducted at different pH levels, temperatures and substrate concentrations. It was determined that the final glycol concentration increases with the increase in initial substrate composition even when the product yield decreases. 14 refs., 1 tab., 4 figs.

  5. Climate change risks, agricultural production and the role of insurance

    Directory of Open Access Journals (Sweden)

    Njegomir Vladimir

    2016-01-01

    Full Text Available Climate change in the form of global warming is visible, tangible, measurable and is one of the most significant risks facing the world. During the conceptualization as the objective of the paper, we have determined the analysis of the impact of climate change on agricultural production and the ways of reduction of negative impacts. The most important results of the present work are the analysis of the implications of climate change on agricultural production and food security, adaptation possibilities of agriculture and the role of agriculture insurance. The main conclusions are that climate change negatively affects agricultural production and food security, especially in subtropical areas while there is limited potential for a positive impact of climate change in the northern hemisphere. There are two possible choices for agricultural producers, under the implications of climate change, that are not necessarily mutually exclusive: 1 finding a long term sustainable solution based on the adaptation and 2 obtaining insurance coverage.

  6. Practical Significance of Basin Water Market Construction on Agricultural Production

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    On the basis of introducing the concept of water market and the water market research in cluding both domestic market and foreign market,the system design features of water market are analyzed.The features include the prior distribution of agricultural water right,the close construction of market structure,reasonable price of water obtaining right and water pollution-discharge right and scientific stipulation of total volume of water use and total volume of pollution drainage.The practical significances of basin water market construction on Chinese agricultural production are revealed,which clover safeguarding the safety of agricultural water;effectively alleviating agricultural drought;saving the agricultural production water and improving the quality of agricultural products.

  7. Multiple Encryption-based Algorithm of Agricultural Product Trace Code

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    To establish a sound traceability system of agricultural products and guarantee security of agricultural products,an algorithm is proposed to encrypt trace code of agricultural products.Original trace code consists of 34 digits indicating such information as place of origin,name of product,date of production and authentication.Area code is used to indicate enterprise information,the encrypted algorithm is designed because of the increasing code length,such coding algorithms as system conversion and section division are applied for the encrypted conversion of code of origin place and production date code,moreover,section identification code and authentication code are permutated and combined to produce check code.Through the multiple encryption and code length compression,34 digits are compressed to 20 on the basis of ensuring complete coding information,shorter code length and better encryption enable the public to know information about agricultural products without consulting professional database.

  8. Marketing Agricultural Products. Curriculum Guide Developed for Secondary and Post Secondary Agriculture Programs.

    Science.gov (United States)

    Miller, W. Wade; And Others

    This curriculum guide can be used by secondary and postsecondary agriculture instructors for a semester course in marketing agricultural products or individual units can be incorporated in other courses. The curriculum guide consists of six units of study made up of two to eight lessons each. The units cover the following topics: (1) marketing…

  9. Agricultural Production Efficiency of Chongqing Based on DEA

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Literatures about agricultural production efficiency are reviewed.Concept of DEA Method,as well as the definition methods of effective DEA and scale efficiency increase are introduced.According to the relevant statistical data in the years 1997-2007 in Chongqing Municipality,efficiency of agricultural economy is calculated from the year 1997 to 2007 by DEA method and the scale efficiency is also analyzed by taking the total output of agriculture,forestry,animal husbandry and fishery industry as the output index.And the input index includes total workforce in agriculture,forestry,animal husbandry and fishery,the total sown area of crops,the total power of agricultural machinery,chemical fertilizer application,the draft animal,and the effective irrigation area.Result shows that Chongqing City became a municipality directly under the central government;its agricultural production efficiency is still low.And the sustainable development capacity of agricultural is weak in Chongqing,and the agricultural resources are not fully used.Based on this,related suggestions are put forward to improve the agricultural production efficiency of Chongqing,such as implementing an appropriate management scale of land,improving the organization degree of peasant households and the rate of industrialization management,enhancing the quality of the rural labor force,strengthening the agricultural science and technology input and extension,perfecting the construction of rural infrastructure,and improving the rate of resource utilization.

  10. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chao; Cao, Yujin; Zou, Huibin; Xian, Mo [Chinese Academy of Sciences, Qingdao (China). Key Lab. of Biofuels

    2011-02-15

    Confronted with the gradual and inescapable exhaustion of the earth's fossil energy resources, the bio-based process to produce platform chemicals from renewable carbohydrates is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to its clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. Compared to previous reviews, this review focuses on recent advances in metabolic engineering of the industrial model bacteria E. coli that lead to efficient recombinant biocatalysts for the production of high-value organic acids like succinic acid, lactic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like 1,3-propanediol, xylitol, mannitol, and glycerol with the discussion of the future research in this area. Besides, this review also discusses several platform chemicals, including fumaric acid, aspartic acid, glutamic acid, sorbitol, itaconic acid, and 2,5-furan dicarboxylic acid, which have not been produced by E. coli until now. (orig.)

  11. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols.

    Science.gov (United States)

    Yu, Chao; Cao, Yujin; Zou, Huibin; Xian, Mo

    2011-02-01

    Confronted with the gradual and inescapable exhaustion of the earth's fossil energy resources, the bio-based process to produce platform chemicals from renewable carbohydrates is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to its clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. Compared to previous reviews, this review focuses on recent advances in metabolic engineering of the industrial model bacteria E. coli that lead to efficient recombinant biocatalysts for the production of high-value organic acids like succinic acid, lactic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like 1,3-propanediol, xylitol, mannitol, and glycerol with the discussion of the future research in this area. Besides, this review also discusses several platform chemicals, including fumaric acid, aspartic acid, glutamic acid, sorbitol, itaconic acid, and 2,5-furan dicarboxylic acid, which have not been produced by E. coli until now.

  12. The rare fluorinated natural products and biotechnological prospects for fluorine enzymology.

    Science.gov (United States)

    Chan, K K Jason; O'Hagan, David

    2012-01-01

    Nature has hardly evolved a biochemistry of fluorine although there is a low-level occurrence of fluoroacetate found in selected tropical and subtropical plants. This compound, which is generally produced in low concentrations, has been identified in the plants due to its high toxicity, although to date the biosynthesis of fluoroacetate in plants remains unknown. After that, fluorinated entities in nature are extremely rare, and despite increasingly sophisticated screening and analytical methods applied to natural product extraction, it has been 25 years since the last bona fide fluorinated natural product was identified from an organism. This was the reported isolation of the antibiotic 4-fluorothreonine and the toxin fluoroacetate in 1986 from Streptomyces cattleya. This bacterium has proven amenable to biochemical investigation, the fluorination enzyme (fluorinase) has been isolated and characterized, and the biosynthetic pathway to these bacterial metabolites has been elucidated. Also the fluorinase gene has been cloned into a host bacterium (Salinispora tropica), and this has enabled the de novo production of a bioactive fluorinated metabolite from fluoride ion, by genetic engineering. Biotechnological manipulation of the fluorinase offers the prospects for the assembly of novel fluorinated metabolites by fermentation technology. This is particularly attractive, given the backdrop that about 15-20% of pharmaceuticals licensed each year (new chemical entities) contain a fluorine atom.

  13. Assessing ethics and animal welfare in animal biotechnology for farm production.

    Science.gov (United States)

    Kaiser, M

    2005-04-01

    This paper addresses the ethical issues involved in animal biotechnology. Considerable advances in this field have been made with transgenic fish, which may be the first real test case for regulatory bodies. Intrinsic concerns about animal biotechnology are often voiced in public debate, and the paper presents and critically discusses these issues. Even though these concerns may be hard to reconcile with standards of rational argument, they might still have practical consequences for ethical policy making. Animal welfare and environmental issues are discussed as the most salient extrinsic concerns about animal biotechnology. The most serious obstacle to a good risk assessment of animal biotechnology is the extent of scientific uncertainty. Ethical assessments need to address these uncertainties upfront, and the precautionary principle provides a good criterion for responsible policies. At the end of the paper, a practical method for the ethical assessment of animal biotechnology, the so-called ethical matrix, is briefly presented and discussed.

  14. On the New Mode of Production of Agricultural Modernization

    Directory of Open Access Journals (Sweden)

    Wenwu Zhang

    2014-04-01

    Full Text Available Facing the “new four modernizations” requirements, the efficiency of current rural production organization and the supply of agricultural labor is facing a huge challenge. Innovating the pattern of rural production organization has become the only one way to realize agricultural modernization. Based on the analysis of the fatal defects in the current agricultural production organization, we put forward a new mode of modernized agricultural production that can reduce the defects, namely the idea and operation mechanism of Tongpian Society or Datong Society. And also conclude the main breakthrough point of Datong Society and the environment for its full implementation. Finally we put forward some operational countermeasures and suggestions on how to start and develop Datong Society, also mention the problems and things we need in-depth study and need to be done. Hoping our viewpoint can contribute to the development of agricultural modernization.

  15. biotechnology in aquaculture: prospects and challenges

    African Journals Online (AJOL)

    JOSEPH

    to study ways that biotechnology can increase the production of fish and shellfish. Biotechnology allows ... This article describes ways in which biotechnology is .... Vaccines: Modern technology is also of great value in the field of vaccines and.

  16. Pour une agriculture mondiale, productive et durable

    OpenAIRE

    Gautier, Henri

    2015-01-01

    Ancien directeur du département Agriculture et développement durable de la Banque mondiale, Michel Petit nous livre un essai directement inspiré de son expérience au service des agricultures du monde. La critique du productivisme, en particulier de son impact sur les ressources naturelles, peut-elle faire l’impasse sur le rôle déterminant de la productivité agricole dans les processus de développement économique ? Dans la lignée des travaux de Théodore Schultz, prix Nobel d’économie en 1979 p...

  17. Rural Women Participate in Agricultural Production

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    THE rural market economy is becoming feminized because many male laborers are transferring to nonagricultural work. Women are now making a show of their decisive force in utilizing agricultural resources. As a result, agriculture’s sustainable development will more and more depend on women’s qualifications, including how well they will manage agricultural resources and how well they will master science and technology. In fact, rural women don’t yet have full economic independence. Although they have involved themselves in economic activities and have played a

  18. Industrial biotechnology takes off in Europe.

    Science.gov (United States)

    Lex, Maurice

    2008-01-01

    Biotechnologies have the potential to significantly impact the quality of life in a sustainable society through the understanding, diagnosis, treatment and prevention of diseases, advances in agriculture and food production, and numerous industrial applications ranging from chemicals to materials including environmental protection and remediation. This article considers how the business sector will be modified by developments in the understanding of living organisms. Will the 21st century see the growth of a Bioeconomy based on applications of biotechnology as pervasive and as powerful as the information economy has been at the end of the 20th century?

  19. Analysing agricultural productivity growth in a framework of institutional quality

    OpenAIRE

    2010-01-01

    This paper addresses the question whether the institutional environment of transition countries in Eastern Europe affects productivity growth in the agricultural sector. Situated in a neoclassical growth framework, a dynamic panel model for the period 1996-2005 provides evidence that poor institutional quality leads to a slowdown in agricultural productivity growth. Productivity growth is limited by a high degree of corruption, which is of particular importance given that corruption has been ...

  20. 8388 AGRICULTURAL PRODUCTION, FOOD AND NUTRITION ...

    African Journals Online (AJOL)

    December 2013 ... Development Goal on Agriculture and food security to halve hunger by 2015, there is need to examine ... rural areas on less than one US dollar a day [4,7,8,]. .... Motor cycle (24%), bicycle (21%), human porterage (13%) and.

  1. Microcredit Effect on Agricultural Productivity: A Comparative ...

    African Journals Online (AJOL)

    Faculty of Agricultural Sciences Lautech Ogbomoso

    2. Institute of Food Security, Environmental Resources and Agricultural ... F-value of 9.84 and 10.11 recorded for the two categories of farmers ... Introduction .... the two concepts are often used ... evidence suggests that small farms are ... practice in the rural parts of the state is ... elsewhere, and rate of return on investment.

  2. Energy production and use in Dutch agriculture

    NARCIS (Netherlands)

    Dekkers, W.A.; Lange, J.M.; Wit, de C.T.

    1974-01-01

    Energy relationschips in the agriculture of one of the most densely populated areas of the world, the Nether lands, are described. The Netherlands appear selfsupporting in food energy. However, if one takes account of energy consumption in horticulture, the direct and indirect fossil energy cost exc

  3. Innovation in biotechnology: moving from academic research to product development--the case of biosensors.

    Science.gov (United States)

    Siontorou, Christina G; Batzias, Fragiskos A

    2010-06-01

    The fast pace of technological change in the biotechnology industry and the market demands require continuous innovation, which, owing to the science base of the sector, derives from academic research through a transformation process that converts science-oriented knowledge to marketable products. There appear to be some inherent difficulties in transforming directly the knowledge output of academic research to industrial use. The purpose of this article is to examine certain transition mechanisms from monodisciplinary academic isolation (curiosity-driven and internal-worth innovation) to university-industry alliances (market-driven and public-worth innovation) through inter-organizational multidisciplinary collaboration and contextualize the analysis with the case of biosensors. While the majority of literature on the subject studies the channels of knowledge transfer as determinants of alliance success (transferor/transferee interactions), either from the university side (science base) or the industry side (market base), this article focuses on the transferable (technology base) and how it can be strategically modeled and managed by the industry to promote innovation. Based on the valuable lessons learnt from the biosensor paradigm, the authors argue that strategic industry choices deal primarily with the best stage/point to intersect and seize the university output, implanting the required element of marketability that will transform an idea to a viable application. The authors present a methodological approach for accelerating the knowledge transfer from the university to industry aiming at the effective transition of science to products through a business model reconfiguration.

  4. Lemon Effect of Green Agricultural Products and Its Marketing Strategy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The paper introduces the lemon effect of green agricultural products,analyzes the formation reasons of the lemon effect of green agricul-tural products and summarizes problems brought by the effect,such as malicious deception and high price.The paper proposes countermeasures toavoid the lemon effect of green agricultural products from a perspective of marketing.The first is to strengthen the quality supervision of green agri-cultural products,upgrade the quality of products,and build up branded products.The government should foster the main body of the products andguide the main body to realize the importance of brand construction and management.The second is to construct a sales channel system of greenagricultural products,making use of the trading center of modern green agricultural products to sell products,developing a long term partnershipwith processing industries,big supermarket and restaurants,making use of internet and selling products online and offline.The third is to propagatethe products.Make a good use of advertisement,personal sales,propagation and public relations to accelerate the healthy development of greenagricultural market.

  5. Energy of the wood – to quality of agricultural production

    Directory of Open Access Journals (Sweden)

    Viktor Rijov

    2014-04-01

    Full Text Available The group of authors is engaged in development and deployment in production of products of biomass of the wood in agriculture. Lately we introduced in production more than five domestic import-substituting products, more than 20 applications for inventions are submitted, 4 patents are taken out, more than 30 articles on this subject are published.

  6. Assessment of technology generating institutions in biotechnology ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... biotechnology innovation system of South-Eastern. Nigeria. E. N. Ajani, M. C. ... Agricultural biotechnology provides new technological tools and aims to ..... constraints include poor fringe benefit to researchers ( x. = 2.90) ...

  7. Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: Chemical diversity, impacts on plant biology and human health.

    Science.gov (United States)

    Ververidis, Filippos; Trantas, Emmanouil; Douglas, Carl; Vollmer, Guenter; Kretzschmar, Georg; Panopoulos, Nickolas

    2007-10-01

    Plant natural products derived from phenylalanine and the phenylpropanoid pathway are impressive in their chemical diversity and are the result of plant evolution, which has selected for the acquisition of large repertoires of pigments, structural and defensive compounds, all derived from a phenylpropanoid backbone via the plant-specific phenylpropanoid pathway. These compounds are important in plant growth, development and responses to environmental stresses and thus can have large impacts on agricultural productivity. While plant-based medicines containing phenylpropanoid-derived active components have long been used by humans, the benefits of specific flavonoids and other phenylpropanoid-derived compounds to human health and their potential for long-term health benefits have been only recognized more recently. In this part of the review, we discuss the diversity and biosynthetic origins of phenylpropanoids and particularly of the flavonoid and stilbenoid natural products. We then review data pertaining to the modes of action and biological properties of these compounds, referring on their effects on human health and physiology and their roles as plant defense and antimicrobial compounds. This review continues in Part II discussing the use of biotechnological tools targeting the rational reconstruction of multienzyme pathways in order to modify the production of such compounds in plants and model microbial systems for the benefit of agriculture and forestry.

  8. Policies for reduced deforestation and their impact on agricultural production

    Science.gov (United States)

    Angelsen, Arild

    2010-01-01

    Policies to effectively reduce deforestation are discussed within a land rent (von Thünen) framework. The first set of policies attempts to reduce the rent of extensive agriculture, either by neglecting extension, marketing, and infrastructure, generating alternative income opportunities, stimulating intensive agricultural production or by reforming land tenure. The second set aims to increase either extractive or protective forest rent and—more importantly—create institutions (community forest management) or markets (payment for environmental services) that enable land users to capture a larger share of the protective forest rent. The third set aims to limit forest conversion directly by establishing protected areas. Many of these policy options present local win–lose scenarios between forest conservation and agricultural production. Local yield increases tend to stimulate agricultural encroachment, contrary to the logic of the global food equation that suggests yield increases take pressure off forests. At national and global scales, however, policy makers are presented with a more pleasant scenario. Agricultural production in developing countries has increased by 3.3–3.4% annually over the last 2 decades, whereas gross deforestation has increased agricultural area by only 0.3%, suggesting a minor role of forest conversion in overall agricultural production. A spatial delinking of remaining forests and intensive production areas should also help reconcile conservation and production goals in the future. PMID:20643935

  9. Policies for reduced deforestation and their impact on agricultural production.

    Science.gov (United States)

    Angelsen, Arild

    2010-11-16

    Policies to effectively reduce deforestation are discussed within a land rent (von Thünen) framework. The first set of policies attempts to reduce the rent of extensive agriculture, either by neglecting extension, marketing, and infrastructure, generating alternative income opportunities, stimulating intensive agricultural production or by reforming land tenure. The second set aims to increase either extractive or protective forest rent and--more importantly--create institutions (community forest management) or markets (payment for environmental services) that enable land users to capture a larger share of the protective forest rent. The third set aims to limit forest conversion directly by establishing protected areas. Many of these policy options present local win-lose scenarios between forest conservation and agricultural production. Local yield increases tend to stimulate agricultural encroachment, contrary to the logic of the global food equation that suggests yield increases take pressure off forests. At national and global scales, however, policy makers are presented with a more pleasant scenario. Agricultural production in developing countries has increased by 3.3-3.4% annually over the last 2 decades, whereas gross deforestation has increased agricultural area by only 0.3%, suggesting a minor role of forest conversion in overall agricultural production. A spatial delinking of remaining forests and intensive production areas should also help reconcile conservation and production goals in the future.

  10. Incentives for development and application of environmentally friendly biotechnological products and processes; Anreize fuer die Entwicklung und Anwendung umweltfreundlicher biotechnischer Produkte und Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Rhein, Hans-Bernhard; Endler, Katharina [Umweltkanzlei Dr. Rhein, Sarstedt (Germany); Ulber, Roland; Muffler, Kai; Mueller, Felix [Technische Univ. Kaiserslautern (Germany)

    2011-01-15

    Studies assign a tremendous growth potential related to biotechnology. However, the predicted proportion of biotechnological manufactured products in the chemical industry for the year 2010 by 20 % will more likely remain by today's 5 %. The study deals with the question why biotechnological products are currently established at the market in the obvious slow way. Therefore, the current constraints and existing respectively new incentive instruments referring to the white (industrial) biotechnology are analyzed to focus on the promotion of the development and application of environmentally friendly biotechnology products and methods. In addition to a search concerning environmental relevance and further development of white biotechnology, the postulated constraints and incentives as well as new promotions are discussed with the help of expert interviews. On the basis of a preliminary study - after further discussion with experts - concrete proposals on improvements related to an ongoing establishment of biotechnology will be derived. Based on case studies (2nd generation biofuels, polyhydroxybutyrate as biopolymer and phytase as an animal feed additive), the practical effects and specific conditions to incentives, from the perspective of biotechnological processes and environmentally friendly products are investigated. Overall, about 40 activities were recommended, which could be assigned to areas of direct government incentives (tax policy/subsidies, subsidies, education and research policy, basic political conditions, government demand and information policy/consumer intelligence) as well as non-governmental incentives (knowledge transfer and cooperation, organisation-related policy, capital market financing). (orig.)

  11. Mechanisms for hydrogen production by different bacteria during mixed-acid and photo-fermentation and perspectives of hydrogen production biotechnology.

    Science.gov (United States)

    Trchounian, Armen

    2015-03-01

    H2 has a great potential as an ecologically-clean, renewable and capable fuel. It can be mainly produced via hydrogenases (Hyd) by different bacteria, especially Escherichia coli and Rhodobacter sphaeroides. The operation direction and activity of multiple Hyd enzymes in E. coli during mixed-acid fermentation might determine H2 production; some metabolic cross-talk between Hyd enzymes is proposed. Manipulating the activity of different Hyd enzymes is an effective way to enhance H2 production by E. coli in biotechnology. Moreover, a novel approach would be the use of glycerol as feedstock in fermentation processes leading to H2 production. Mixed carbon (sugar and glycerol) utilization studies enlarge the kind of organic wastes used in biotechnology. During photo-fermentation under limited nitrogen conditions, H2 production by Rh. sphaeroides is observed when carbon and nitrogen sources are supplemented. The relationship of H2 production with H(+) transport across the membrane and membrane-associated ATPase activity is shown. On the other hand, combination of carbon sources (succinate, malate) with different nitrogen sources (yeast extract, glutamate, glycine) as well as different metal (Fe, Ni, Mg) ions might regulate H2 production. All these can enhance H2 production yield by Rh. sphaeroides in biotechnology Finally, two of these bacteria might be combined to develop and consequently to optimize two stages of H2 production biotechnology with high efficiency transformation of different organic sources.

  12. Agricultural field reclamation utilizing native grass crop production

    Science.gov (United States)

    J. Cure

    2013-01-01

    Developing a method of agricultural field reclamation to native grasses in the Lower San Pedro Watershed could prove to be a valuable tool for educational and practical purposes. Agricultural field reclamation utilizing native grass crop production will address water table depletion, soil degradation and the economic viability of the communities within the watershed....

  13. Buffers for biomass production in temperate European agriculture

    DEFF Research Database (Denmark)

    Christen, Benjamin; Dalgaard, Tommy

    2013-01-01

    , environmental pressures from intensive agriculture and policy developments. Use of conservation buffers by farmers outside of designated schemes is limited to date, but the increasing demand for bioenergy and the combination of agricultural production with conservation calls for a much wider implementation...

  14. Agricultural Production Experiences at School for the Urban Student.

    Science.gov (United States)

    Dietz, Allen J.

    1980-01-01

    In vocational agriculture at Sycamore High School in Illinois, urban students start their vocational education with a basic understanding of production, which is the foundation for all agricultural industry. Future Farmers of America chapter-operated and school-owned facilities provide the resources to make these experiential programs possible.…

  15. The Origins of Agriculture Production in the Area of Croatia

    Directory of Open Access Journals (Sweden)

    Ivan Jurić

    2002-12-01

    Full Text Available Food production, that is to say agricultural production begins independently in three different geographical areas: the Near East, the Far East and Central America. From the Near East agriculture spread to the entire Europe. Locations of domestication and spreading routes of Triticum dicoccum, Triticum monococcum, sheep and cattle enable us to establish directions of the spread of agriculture. Growing precision of 14C method by which date of biological material is determined makes it possible to determine the beginnings of agricultural production in specific areas and the rapidity of its spreading. Food production created the conditions for significant population growth and rapid social development. Discovery of human genome and development of a new interdisciplinary science of arhaeogenetics led to knowledge about dates of appearance of certain human haplotypes, from which the spread of agriculture by demographic diffusion or by acquiring food production know-how can be inferred. In the period between 7000 and 5000 BC developing pottery cultures were spreading simultaneously with agriculture. For the understanding of spread of agriculture to Croatia and its further advance, archaeological data on the Impresso, Starèevo, Korenovo (as a part of Linear Pottery complex, Danilo and Lengyel - Sopot cultures are of great importance.

  16. The cell factory approach toward biotechnological production of high-value chitosan oligomers and their derivatives: an update.

    Science.gov (United States)

    Naqvi, Shoa; Moerschbacher, Bruno M

    2017-02-01

    Chitin is one of the most abundant renewable resources, and chitosans, the partially deacetylated derivatives of chitin, are among the most promising functional biopolymers, with superior material properties and versatile biological functionalities. Elucidating molecular structure-function relationships and cellular modes of action of chitosans, however, it is challenging due to the micro-heterogeneity and structural complexity of polysaccharides. Lately, it has become apparent that many of the biological activities of chitosan polymers, such as in agricultural plant disease protection or in mediating scar-free wound healing, may be attributed to oligomeric break-down products generated by the action of chitosanolytic hydrolases present in the target tissues, such as human chitotriosidase. Consequently, the focus of current research is shifting toward chitosan oligomers so that the availability of well-defined chitosan oligosaccharides (COS) becomes a bottleneck. Well-known ways of producing COS use physical and/or chemical means for the partial depolymerization of chitosan polymers, typically leading to broad mixtures of COS varying in their degrees of polymerization (DP) and acetylation (DA), and with more or less random patterns of acetylation (PAs). Even after chromatographic separation according to DP and DA, such mixtures are of limited value to elucidate structure-function relationships and modes of action. More recently, enzymatic means using chitinases and/or chitosanases, and sometimes chitin deacetylases, have been proposed as these can be more tightly controlled and yield slightly better defined mixtures of COS. An alternative would be chemical synthesis of COS which in principle would allow for full structural control, but protocols for it are lengthy, costly, and not yet well developed, and yields are low. Synthetic biology now allows to develop today's in vitro bio-refinery approaches into in vivo cell factory approaches for the biotechnological

  17. Vertical Coordination Development Mode and Influential Factors of Agricultural Products

    Institute of Scientific and Technical Information of China (English)

    Tuzhan WANG

    2016-01-01

    In China,the vertical coordination development mode of agricultural products can be divided into traditional market-oriented transaction mode with fluctuation according to market conditions,made-to-order on the basis of farmer organization,company leading cooperative mode,share or shareholding cooperative mode,and vertical integration mode. There are differences in coordination characteristics,advantages and disadvantages,and adaptability between different modes. Traditional vertical coordination mode is transforming and upgrading to close and high-efficient mode. In this process,it is influenced by factors such as cost-benefit balance between farmers and agricultural product processing enterprises,special use of agricultural product processing,structure of agricultural product industry chain,and action of local government.

  18. Globalization and internationalization of world food and agricultural product markets

    OpenAIRE

    Bakhyt, Arnabol; Nurgazina, Gulmira

    2014-01-01

    Interpretation of globalization and internalization influence on the world food and agricultural product markets is examined in the article. Moreover, the global problem of food safety is also examined.

  19. Climate Change: A Threat to Agricultural Production in Nigeria ...

    African Journals Online (AJOL)

    In recent times, climate change has generated a global issue of discourse, because ... to Nigeria because of its effects on agricultural production and food security. ... climate and climate components and the impact of their possible change on ...

  20. Striking a new balance between agricultural production and biodiversity

    National Research Council Canada - National Science Library

    FIRBANK, L G

    2005-01-01

    .... As a result, there is a window of opportunity to reconsider the balance between agricultural production and biodiversity management on British farmland, to seek to redress the problems for bio...

  1. Systems of innovation and agricultural productivity in African ...

    African Journals Online (AJOL)

    Systems of innovation and agricultural productivity in African economies. ... Open Access DOWNLOAD FULL TEXT ... sector in Africa has been dominated by the narrow approach of employing technology transfer and adoption theory. Indeed ...

  2. Agricultural Production, Food and Nutrition Security in Rural Benin ...

    African Journals Online (AJOL)

    Agricultural Production, Food and Nutrition Security in Rural Benin, Nigeria. ... administered in 20 rural communities in the Benin region to elicit information from ... to unstable incomes, seasonality of harvest and inadequate health and sanitary ...

  3. Utilization of agricultural by-products in healthful food products: Organogelators, antioxidants, and spreadable products

    Science.gov (United States)

    It was found that several agricultural by-products could be utilized for healthful food products. Three major applications that our research group has been focusing on will be discussed: 1) plant waxes for trans-fat free, low saturated fat-containing margarine and spread products, 2) extracts of cor...

  4. [A virtual water analysis for agricultural production and food security].

    Science.gov (United States)

    Ke, Bing; Liu, Wen-hua; Duan, Guang-ming; Yan, Yan; Deng, Hong-bing; Zhao, Jing-zhu

    2004-03-01

    Water resource demand is increasing with the population growth and economic development. Water resource problem for agriculture and food security have become one of the global focal points because of water resource scarcity. The concept of virtual water is useful to analyze and impair this problem. In this paper, virtual water implication was described, and international study progress about it was briefly reviewed. Furthermore, China's agricultural water scarcity and food security were analyzed. According to the grain import prediction and agricultural production conditions of China, the virtual water equivalents of China in 2010 and 2020 were evaluated, which were 88 x 10(9) m3 in 2010 and 95 x 10(9) m3 in 2020. With the function of virtual water to agricultural water stress, virtual water strategy was suggested to relieve agricultural production pressure from water resource and meet growing food demand as well as to promote water resource sustainability in China.

  5. AN ASSESSMENT OF AGRICULTURAL PRODUCTIVITY AND ...

    African Journals Online (AJOL)

    Osondu

    international bodies as International Monetary Fund .... After doing the autocorrelation test student test and stability test the log of productivity function .... Productivity for Sustainable Food Security in Asia and the Pacific: The Role of Investment.

  6. International Conference on Harmonisation; draft guidance on specifications: test procedures and acceptance criteria for biotechnological/biological products--FDA. Notice.

    Science.gov (United States)

    1998-06-09

    The Food and Drug Administration (FDA) is publishing a draft guidance entitled "Q6B Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products". The draft guidance was prepared under the auspices of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). The draft guidance provides guidance on general principles for the selection of test procedures and the setting and justification of acceptance criteria for biotechnological and biological products. The draft guidance is intended to assist in the establishment of a uniform set of international specifications for biotechnological and biological products to support new marketing applications.

  7. International Conference on Harmonisation; guidance on specifications: test procedures and acceptance criteria for biotechnological/biological products. Notice. Food and Drug Administration, HHS.

    Science.gov (United States)

    1999-08-18

    The Food and Drug Administration (FDA) is publishing a guidance entitled "Q6B Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products." The guidance was prepared under the auspices of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). The guidance provides guidance on general principles for the selection of test procedures and the setting and justification of acceptance criteria for biotechnological and biological products. The guidance is intended to assist in the establishment of a uniform set of international specifications for biotechnological and biological products to support new marketing applications.

  8. A THEORETICAL SPOTLIGHT OVER THE ROMANIAN AGRICULTURAL PRODUCTS

    Directory of Open Access Journals (Sweden)

    Tarcza Teodora

    2012-07-01

    Full Text Available This paper aims at identifying and classifying new types of agricultural products, especially in Romania, but not only. As we well know, all the countries all over the world have their own history, traditions, economic structure, and a certain type of agriculture, adapted to their soil, climate, and nevertheless to theirs people needs. So, we know that certain countries used to cultivate certain agricultural products, while others are wellknown for others. Usually, we associate Spain with great wines, Belgium with delicious chocolate, Turkey with coffee, India with rice, Romania with grain, Russia with cereals, SUA – tobacco, etc.\\r\

  9. The relationship of knowledge, attitudes and perceptions regarding biotechnology in college students

    Science.gov (United States)

    Sohan, Donna Elizabeth

    Biotechnology is the latest in a series of technological innovations that have revolutionized such fields as agriculture and the health sciences. However, along with the benefits of biotechnology are concerns. For biotechnology's potential to be realized, it must be accepted on public and governmental levels. Although many studies focus on adult consumer attitudes, it will be the students of today who will be the consumers and leaders of tomorrow. Therefore, this study focused on the knowledge, attitudes, and perceptions of college students regarding biotechnology. More than 3,000 undergraduate students were surveyed from a variety of undergraduate courses at Texas A&M University in College Station, Texas during the 1997-1998 academic year. Information sought included students' knowledge regarding recent applications of biotechnology, demographic information, and their agreement or disagreement with statements regarding different aspects and applications of biotechnology. This study found that despite a low awareness or knowledge of biotechnology, students were accepting of specific applications or products of biotechnology. Those applications or products viewed as beneficial without involving animals had the highest acceptance levels. A majority of the students identified mass media as their major source of biotechnology while also indicating a high level of distrust of the media. Students also indicated that biotechnology information is needed and that such information is appropriate for high school students. Relationships between knowledge and attitudes were also investigated. A greater knowledge level correlated with a more favorable view of biotechnology. In addition, relationships between demographic variables such as gender and race were investigated. Individuals who identified themselves as scientists were found more accepting of biotechnology while females in general were found less accepting. Females majoring in education were found to be the least

  10. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice

    Science.gov (United States)

    Clark, Michael; Tilman, David

    2017-06-01

    Global agricultural feeds over 7 billion people, but is also a leading cause of environmental degradation. Understanding how alternative agricultural production systems, agricultural input efficiency, and food choice drive environmental degradation is necessary for reducing agriculture’s environmental impacts. A meta-analysis of life cycle assessments that includes 742 agricultural systems and over 90 unique foods produced primarily in high-input systems shows that, per unit of food, organic systems require more land, cause more eutrophication, use less energy, but emit similar greenhouse gas emissions (GHGs) as conventional systems; that grass-fed beef requires more land and emits similar GHG emissions as grain-feed beef; and that low-input aquaculture and non-trawling fisheries have much lower GHG emissions than trawling fisheries. In addition, our analyses show that increasing agricultural input efficiency (the amount of food produced per input of fertilizer or feed) would have environmental benefits for both crop and livestock systems. Further, for all environmental indicators and nutritional units examined, plant-based foods have the lowest environmental impacts; eggs, dairy, pork, poultry, non-trawling fisheries, and non-recirculating aquaculture have intermediate impacts; and ruminant meat has impacts ∼100 times those of plant-based foods. Our analyses show that dietary shifts towards low-impact foods and increases in agricultural input use efficiency would offer larger environmental benefits than would switches from conventional agricultural systems to alternatives such as organic agriculture or grass-fed beef.

  11. Research on Supply Chain Coordination of Fresh Agricultural Products under Agricultural Insurance

    Directory of Open Access Journals (Sweden)

    Zhang Pei

    2017-01-01

    Full Text Available Based on the fact that the current fresh agricultural products are susceptible to natural risks and the coordination of supply chain is poor, This paper constructs the supply chain profit model under the two models of natural risk and agricultural insurance, Firstly, studying the coordination function of the supply chain system under Two-part Tariff; Then discussing the setting and claiming mechanism of agricultural insurance, compares the influence of agricultural insurance on supply chain profit and supply chain coordination; Finally, giving an example to validate the model results and give decision - making opinions. Research shows that the supply chain of fresh agricultural products can coordinated under Two-part Tariff, but the supply chain cooperation is poor in the natural risk , need to further stabilize and optimize the supply chain; When the risk factor is less than the non-participation insurance coefficient, not to participate in agricultural insurance is conducive to maintaining the coordination of the supply chain system; When the risk coefficient exceeds the non-participation insurance coefficient, the introduction of agricultural insurance can not only effectively manage the natural risks, but also help to improve the coordination of the supply chain system.

  12. Agency perspectives on food safety for the products of animal biotechnology.

    Science.gov (United States)

    Howard, H J; Jones, K M; Rudenko, L

    2012-08-01

    Animal biotechnology represents one subset of tools among a larger set of technologies for potential use to meet increasing world demands for food. Assisted reproductive technologies (ART) such as artificial insemination and embryo transfer continue to make positive contributions in food animal production. The US Food and Drug Administration (FDA) performed a comprehensive risk assessment to identify potential food consumption or animal health risks associated with animal cloning, an emerging ART. At that time, FDA concluded that animal cloning posed no unique risks either to animal health or to food consumption, and food from animal clones and their sexually reproduced offspring required no additional federal regulation beyond that applicable to conventionally bred animals of the species examined. At this time, no new information has arisen that would necessitate a change in FDA's conclusions on food from animal clones or their sexually reproduced offspring. Use of recombinant DNA technologies to produce genetically engineered (GE) animals represents another emerging technology with potential to impact food animal production. In its regulation of GE animals, FDA follows a cumulative, risk-based approach to address scientific questions related to the GE animals. FDA evaluates data and information on the safety, effectiveness and stability of the GE event. FDA carries out its review at several levels (e.g. molecular biology, animal safety, food safety, environmental safety and claim validation). GE animal sponsors provide data to address risk questions for each level. This manuscript discusses FDA's role in evaluation of animal cloning and GE animals. © 2012 Blackwell Verlag GmbH.

  13. Production of phycocyanin--a pigment with applications in biology, biotechnology, foods and medicine.

    Science.gov (United States)

    Eriksen, Niels T

    2008-08-01

    C-phycocyanin (C-PC) is a blue pigment in cyanobacteria, rhodophytes and cryptophytes with fluorescent and antioxidative properties. C-PC is presently extracted from open pond cultures of the cyanobacterium Arthrospira platensis although these cultures are not very productive and open for contaminating organisms. C-PC is considered a healthy ingredient in cyanobacterial-based foods and health foods while its colouring, fluorescent or antioxidant properties are utilised only to a minor extent. However, recent research and developments in C-PC synthesis and functionality have expanded the potential applications of C-PC in biotechnology, diagnostics, foods and medicine: The productivity of C-PC has been increased in heterotrophic, high cell density cultures of the rhodophyte Galdieria sulphuraria that are grown under well-controlled and axenic conditions. C-PC purification protocols based on various chromatographic principles or novel two-phase aqueous extraction methods have expanded in numbers and improved in performance. The functionality of C-PC as a fluorescent dye has been improved by chemical stabilisation of C-PC complexes, while protein engineering has also introduced increased stability and novel biospecific binding sites into C-PC fusion proteins. Finally, our understanding of the physiological functions of C-PC in humans has been improved by a mechanistic hypothesis that links the chemical properties of the phycocyanobilin chromophores of C-PC to the natural antioxidant, bilirubin, and may explain the observed health benefits of C-PC intake. This review outlines how C-PC is produced and utilised and discusses the novel C-PC synthesis procedures and applications.

  14. Equine Management and Production. Vocational Agriculture Education.

    Science.gov (United States)

    Rudolph, James A.

    This basic core of instruction for equine management and production is designed to assist instructors in preparing students for successful employment or management of a one- or two-horse operation. Contents include seven instructional areas totaling seventeen units of instruction: (1) Orientation (basic horse production; handling and grooming;…

  15. Biotechnological Production of Polyhydroxyalkanoates: A Review on Trends and Latest Developments

    Directory of Open Access Journals (Sweden)

    Baljeet Singh Saharan

    2014-01-01

    Full Text Available Polyhydroxyalkanoates (PHA producers have been reported to reside at various ecological niches which are naturally or accidently exposed to high organic matter or growth limited conditions such as dairy wastes, hydrocarbon contaminated sites, pulp and paper mill wastes, agricultural wastes, activated sludges of treatment plants, rhizosphere, and industrial effluents. Few among them also produce extracellular by-products like rhamnolipids, extracellular polymeric substances, and biohydrogen gas. These sorts of microbes are industrially important candidates for the reason that they can use waste materials of different origin as substrate with simultaneous production of valuable bioproducts including PHA. Implementation of integrated system to separate their by-products (intracellular and extracellular can be economical in regard to production. In this review, we have discussed various microorganisms dwelling at different environmental conditions which stimulate them to accumulate carbon as polyhydroxyalkanoates granules and factors influencing its production and composition. A brief aspect on metabolites which are produced concomitantly with PHA has also been discussed. In conclusion, exploring of capabilities like of dual production by microbes and use of wastes as renewable substrate under optimized cultural conditions either in batch or continuous process can cause deduction in present cost of bioplastic production from stored PHA granules.

  16. Production of Cellulosic Polymers from Agricultural Wastes

    Directory of Open Access Journals (Sweden)

    A. U. Israel

    2008-01-01

    Full Text Available Cellulosic polymers namely cellulose, di-and triacetate were produced from fourteen agricultural wastes; Branch and fiber after oil extraction from oil palm (Elais guineensis, raffia, piassava, bamboo pulp, bamboo bark from raphia palm (Raphia hookeri, stem and cob of maize plant (Zea mays, fruit fiber from coconut fruit (Cocos nucifera, sawdusts from cotton tree (Cossypium hirsutum, pear wood (Manilkara obovata, stem of Southern gamba green (Andropogon tectorus, sugarcane baggase (Saccharium officinarum and plantain stem (Musa paradisiaca. They were subjected to soda pulping and hypochlorite bleaching system. Results obtained show that pulp yield from these materials were: 70.00, 39.59, 55.40, 86.00, 84.60, 80.00, 40.84, 81.67, 35.70, 69.11, 4.54, 47.19, 31.70 and 52.44% respectively. The pulps were acetylated with acetic anhydride in ethanoic acid catalyzed by conc. H2SO4 to obtain cellulose derivatives (Cellulose diacetate and triacetate. The cellulose diacetate yields were 41.20, 17.85, 23.13, 20.80, 20.23, 20.00, 39.00, 44.00, 18.80, 20.75, 20.03, 41.20, 44.00, and 39.00% respectively while the results obtained as average of four determinations for cellulose triacetate yields were: 52.00, 51.00, 43.10, 46.60, 49.00, 35.00, 40.60, 54.00, 57.50, 62.52, 35.70. 52.00, 53.00 and 38.70% respectively for all the agricultural wastes utilized. The presence of these cellulose derivatives was confirmed by a solubility test in acetone and chloroform.

  17. Exploiting the potential of marine natural products: structure elucidation and metagenomic approaches to biotechnological production

    OpenAIRE

    Della Sala, Gerardo

    2013-01-01

    Sponges represent the most prolific producers of novel marine bioactive secondary metabolites. In the last years, several drugs derived from marine natural products have appeared in the market, and others are in clinical trials. The aim of my research project was to exploit the unusual and often surprising chemistry of marine sponges, in the frame of the more general purpose of discovering and developing new drugs from natural products. The research work presented in this PhD Thesis was di...

  18. [Agricultural products handling: methods of feasibility evaluation].

    Science.gov (United States)

    Scott, G J; Herrera, J E

    1993-06-01

    Post-harvest problems are important constraints to the expansion of production of food in many Latin American countries. Besides problems of bulkiness, perishability and seasonal production patterns, the necessity of reducing transportation costs, increasing rural employment, and finding new markets for processed products, requires the development of processing technologies. Possible processed products include a vast range of alternatives. Given limited time and resources, it is not always feasible to carry out detailed studies. Hence a practical, low-cost methodology is needed to evaluate the available options. This paper presents a series of methods to evaluate different processing possibilities. It describes in detail each method including a rapid initial assessment, market and consumer research, farm-oriented research, costs and returns analysis and finally, some marketing and promotion strategies.

  19. Wastes and by-products - alternatives for agricultural use

    Energy Technology Data Exchange (ETDEWEB)

    Boles, J.L.; Craft, D.J.; Parker, B.R.

    1994-10-01

    Top address a growing national problem with generation of wastes and by-products, TVA has been involved for several years with developing and commercializing environmentally responsible practices for eliminating, minimizing, or utilizing various wastes/by-products. In many cases, reducing waste generation is impractical, but the wastes/by-products can be converted into other environmentally sound products. In some instances, conversion of safe, value-added agricultural products in the best or only practical alternative. TVA is currently involved with a diversity of projects converting wastes/by-products into safe, economical, and agriculturally beneficial products. Environmental improvement projects have involved poultry litter, cellulosic wastes, used battery acid, ammonium sulfate fines, lead smelting effluents, deep-welled sulfuric acid/ammonium bisulfate solutions, wood ash, waste magnesium ammonium sulfate slurry from recording tape production, and ammunition plant waste sodium nitrate/ammonium nitrate streams.

  20. Outsourcing Agricultural Production: Evidence from Rice Farmers in Zhejiang Province.

    Science.gov (United States)

    Ji, Chen; Guo, Hongdong; Jin, Songqing; Yang, Jin

    2017-01-01

    China has recorded positive growth rates of grain production for the past eleven consecutive years. This is a remarkable accomplishment given that China's rapid industrialization and urbanization has led to a vast reduction of arable land and agricultural labor to non-agricultural sectors. While there are many factors contributing to this happy outcome, one potential contributing factor that has received increasing attention is the emergence of agricultural production outsourcing, a new rural institution that has emerged in recent years. This study aims to contribute to the limited but growing literature on agricultural production outsourcing in China. Specifically, this study analyzes factors affecting farmers' decisions to outsource any or some production tasks using data from rice farmers in Zhejiang province. Results from a logistic model show that farm size and government subsidy encourages farmers to outsource while ownership of agricultural machines and land fragmentation have negative effects on farmers' decisions to outsource production tasks. Results also showed that determinants of outsourcing decisions vary with the production tasks that farmers outsourced.

  1. Outsourcing Agricultural Production: Evidence from Rice Farmers in Zhejiang Province

    Science.gov (United States)

    Ji, Chen; Guo, Hongdong; Jin, Songqing; Yang, Jin

    2017-01-01

    China has recorded positive growth rates of grain production for the past eleven consecutive years. This is a remarkable accomplishment given that China’s rapid industrialization and urbanization has led to a vast reduction of arable land and agricultural labor to non-agricultural sectors. While there are many factors contributing to this happy outcome, one potential contributing factor that has received increasing attention is the emergence of agricultural production outsourcing, a new rural institution that has emerged in recent years. This study aims to contribute to the limited but growing literature on agricultural production outsourcing in China. Specifically, this study analyzes factors affecting farmers’ decisions to outsource any or some production tasks using data from rice farmers in Zhejiang province. Results from a logistic model show that farm size and government subsidy encourages farmers to outsource while ownership of agricultural machines and land fragmentation have negative effects on farmers’ decisions to outsource production tasks. Results also showed that determinants of outsourcing decisions vary with the production tasks that farmers outsourced. PMID:28129362

  2. Public Investment and Environrnental Sustainability of Agricultural Production in China

    Institute of Scientific and Technical Information of China (English)

    Zhu Jing; Li Yousheng

    2004-01-01

    The excessive application of fertilizer and pesticides in grain production in China has posed a threat to the environrnental sustainability of agricultural production. One of the major reasons of the increasing usage of chemical inputs by farmers is their trying to reach higher yields, especially in absence of adequate public inputs, such as development and extension of appropriate technology and necessary production infrastructure, etc. Based on the cropspecific data of the past 20 years, this paper examines how the public investments in agricultural researches could impact on the reduction of farmers' private material inputs of major grain crops in China. It manifests that the increased investments in public sector, especially in agricultural researches, is a favorable and effective way to reduce farmers' private material inputs and should be given a priority consideration in the policy emendation to increase yields and improve production sustainability.

  3. Decoupling of greenhouse gas emissions from global agricultural production

    DEFF Research Database (Denmark)

    Bennetzen, Eskild Hohlmann; Smith, Pete; Porter, John Roy

    2016-01-01

    Since 1970 global agricultural production has more than doubled; contributing ~1/4 of total anthropogenic greenhouse gas (GHG) burden in 2010. Food production must increase to feed our growing demands, but to address climate change, GHG emissions must decrease. Using an identity approach, we...... estimate and analyse past trends in GHG emission intensities from global agricultural production and land-use change and project potential future emissions. The novel Kaya-Porter identity framework deconstructs the entity of emissions from a mix of multiple sources of GHGs into attributable elements...... allowing not only a combined analysis of the total level of all emissions jointly with emissions per unit area and emissions per unit product. It also allows us to examine how a change in emissions from a given source contributes to the change in total emissions over time. We show that agricultural...

  4. Seasonality in birth defects, agricultural production and urban location.

    Science.gov (United States)

    McKinnish, Terra; Rees, Daniel I; Langlois, Peter H

    2014-12-01

    This paper tests whether the strength of the "spring spike" in birth defects is related to agricultural production and urban location using Texas Birth Defects Registry data for the period 1996-2007. We find evidence of a spike in birth defects among children conceived in the spring and summer, but it is more pronounced in urban non-agricultural counties than in other types of counties. Furthermore, the spike lasts longer in urban non-agricultural counties as compared to other types of counties.

  5. New developments in crop plant biotechnology and their possible implications for food product safety : literature study under commission of the foundation 'Consument and biotechnologie'

    NARCIS (Netherlands)

    Kleter, G.A.

    2000-01-01

    This study reports recent developments in the application of biotechnology in agriculture in order to assess whether current food safety evaluations strategies are adequate in view of these new and presumably more far reaching developments. Trends are observed that may require additional regulatory

  6. New developments in crop plant biotechnology and their possible implications for food product safety : literature study under commission of the foundation 'Consument and biotechnologie'

    NARCIS (Netherlands)

    Kleter, G.A.

    2000-01-01

    This study reports recent developments in the application of biotechnology in agriculture in order to assess whether current food safety evaluations strategies are adequate in view of these new and presumably more far reaching developments. Trends are observed that may require additional regulatory

  7. Climate change, agricultural production and food security: Evidence from Yemen

    OpenAIRE

    Breisinger, Clemens; Ecker, Olivier; Al-Riffai, Perrihan; Robertson, Richard; Thiele, Rainer; Wiebelt, Manfred

    2011-01-01

    This paper provides a model-based assessment of local and global climate change impacts for the case of Yemen, focusing on agricultural production, household incomes and food security. Global climate change is mainly transmitted through rising world food prices. Our simulation results suggest that climate change induced price increases for food will raise agricultural GDP while decreasing real household incomes and food security. Rural nonfarm households are hit hardest as they tend to be net...

  8. Climate Change, Agricultural Production and Food Security: Evidence from Yemen

    OpenAIRE

    Clemens Breisinger; Olivier Ecker; Perrihan Al-Riffai; Richard Robertson; Rainer Thiele

    2011-01-01

    This paper provides a model-based assessment of local and global climate change impacts for the case of Yemen, focusing on agricultural production, household incomes and food security. Global climate change is mainly transmitted through rising world food prices. Our simulation results suggest that climate change induced price increases for food will raise agricultural GDP while decreasing real household incomes and food security. Rural nonfarm households are hit hardest as they tend to be net...

  9. Estimation of pesticide emissions for LCA of agricultural products

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Birkved, Morten

    2002-01-01

    Inventory data for the use of pesticides in agricultural or forestry product systems are typically based on the applied dose and the contents of different ingredients in the commercial pesticide product. Normally in LCA, the field is considered as part of the technosphere, and then the emissions...

  10. Product competitiveness analysis for e-commerce platform of special agricultural products

    Science.gov (United States)

    Wan, Fucheng; Ma, Ning; Yang, Dongwei; Xiong, Zhangyuan

    2017-09-01

    On the basis of analyzing the influence factors of the product competitiveness of the e-commerce platform of the special agricultural products and the characteristics of the analytical methods for the competitiveness of the special agricultural products, the price, the sales volume, the postage included service, the store reputation, the popularity, etc. were selected in this paper as the dimensionality for analyzing the competitiveness of the agricultural products, and the principal component factor analysis was taken as the competitiveness analysis method. Specifically, the web crawler was adopted to capture the information of various special agricultural products in the e-commerce platform ---- chi.taobao.com. Then, the original data captured thereby were preprocessed and MYSQL database was adopted to establish the information library for the special agricultural products. Then, the principal component factor analysis method was adopted to establish the analysis model for the competitiveness of the special agricultural products, and SPSS was adopted in the principal component factor analysis process to obtain the competitiveness evaluation factor system (support degree factor, price factor, service factor and evaluation factor) of the special agricultural products. Then, the linear regression method was adopted to establish the competitiveness index equation of the special agricultural products for estimating the competitiveness of the special agricultural products.

  11. INSPIA project: European Index for Sustainable and Productive Agriculture

    Science.gov (United States)

    Triviño-Tarradas, Paula; Jesús González-Sánchez, Emilio; Gómez-Ariza, Manuel; Rass, Gerard; Gardette, Sophie; Whitmore, Gavin; Dyson, Jeremy

    2017-04-01

    The concept of sustainable development has evolved from a mere perception for the protection of the environment, to a holistic approach, seeking to preserve not only the environment, but also to achieve sustainability in economics and social wellbeing. Globally, there is a major challenge to face in the agricultural sector: to produce more food, feed and other raw materials to satisfy the increasing demand of a growing population, whilst also contributing to economic prosperity, climate change mitigation / adaptation, social wellbeing and preserving natural capital such as soil, water, biodiversity and other ecosystem services. Nowadays, conventional approaches to agriculture are under threat. A more productive and resource efficient agriculture that integrates natural resource protection into its approach will help to meet all these challenges, enabling us to have more of everything - more food, more feed, more non-food crops, more biodiversity and natural habitats - while also reducing greenhouse gas emissions. In this context, INSPIA is an innovative approach that has worked since 2013 towards demonstration that sustainable productive agriculture is possible thanks to the implementation of a host of best management practices (BMPs) capable of delivering the above achievements. The purpose on INSPIA is to make visible with European decision makers that a sustainable and productive agricultural model exists in a small scale in Europe and that wider dissemination is possible with enabling legislation. INSPIA is demonstrating sustainable agriculture through the implementation of BMPs and the measurement and monitoring of a set of defined indicators (economic, social and environmental ones). INSPIA promotes sustainable practices that protect biodiversity, soils and water and contribute towards maintaining ecosystems services. This holistic sustainable system of productive agriculture is based on the combination of Conservation Agriculture (CA) and Integrated Pest

  12. Co-existence of agricultural production systems.

    Science.gov (United States)

    Jank, Bernhard; Rath, Johannes; Gaugitsch, Helmut

    2006-05-01

    Strategies and best practices for the co-existence of GM and non-GM crops need to be developed and implemented with the participation of farmers and other stakeholders. According to the principle of 'subsidiarity', decisions should be made by the lowest authority possible. When applying this concept to the case of GM crops, the affected society should determine their use and management in a regional decision-making process. Public participation is better accomplished at a lower level, and democratic deficits in decision-making on GMOs are better resolved, enabling farmers to manage or avoid GM crops. Ultimately, voluntary GMO-free zones might be a tool for sustainable co-existence and GM-free production and GMO-free zones might create a specific image for marketing regional products and services, such as tourism.

  13. Ratite production as an agricultural enterprise.

    Science.gov (United States)

    Gillespie, J M; Schupp, A R

    1998-11-01

    The ratite industry remains in the market introduction stage of evolution; basic information on markets and production is limited. It is uncertain when, or perhaps whether, either the ostrich or emu industries will progress to the market growth stage. Until significant expansion occurs, ratite operations are likely to be faced with low or even nonexistant profits. It is the authors' observation that the ostrich industry is making slow but significant progress toward introducing products into potential growth markets. The fact that ostrich products were in demand prior to the ostrich being introduced into North America has helped the industry. The future of the emu industry appears to be much less certain. In the authors' opinion, in order for the emu industry to become profitable and grow, significant promotion of emu meat and immediate resolution of the value of the oil must be achieved. Meat sales alone will not carry emu production as a profitable commercial enterprise. Veterinarians can derive significant conclusions from this information. Currently, ratite production is composed of firms generating losses or minimal profits. South African producers are receiving approximately the same amount for a slaughter ostrich as North American producers. It is unlikely that North American ostrich prices will increase significantly. Prices of ostrich breeders of $2,000 to $4,000 per pair and $400 to $450 for slaughter birds are likely to remain the same for some time. Given that world demand has increased at a slower rate than supply, prices may decrease further. Breeder and slaughter birds will continue to require significant veterinary care; however, the producer will be forced to perform more farm treatments, given the negligible margins. Based on the differences in efficiency of existing operations, there are ample opportunities for veterinarians and extension services to assist producers. Vertical coordination in the ratite industry may evolve slowly in the future

  14. Explaining end-users' intentions to use innovative medical and food biotechnology products

    NARCIS (Netherlands)

    Mulder, B.C.; Poortvliet, P.M.; Lugtig, P.; de Bruin, M.

    2014-01-01

    Low public acceptance hinders the successful introduction of biotechnological innovations, such as genetically modified foods or vaccinations against infectious diseases. Earlier studies indicated that a lack of knowledge is not a key barrier to acceptance. This was confirmed in the current study,

  15. Mixed Culture Chain Elongation (MCCE) - A Novel Biotechnology for Renewable Biochemical Production from Organic Residual Streams.

    NARCIS (Netherlands)

    Chen, W.S.; Roghair, M.; Triana Mecerreyes, D.; Strik, D.P.B.T.B.; Kroeze, C.; Buisman, C.J.N.

    2017-01-01

    MCCE is a novel biotechnology that has potential to produce biochemicals from organic residual streams in a clean, renewable and economically viable way. A pilot plant has been established by ChainCraft in Amsterdam, Netherlands to process supermarket waste into value added biochemicals. Ongoing and

  16. Electrifying white biotechnology: engineering and economic potential of electricity-driven bio-production.

    Science.gov (United States)

    Harnisch, Falk; Rosa, Luis F M; Kracke, Frauke; Virdis, Bernardino; Krömer, Jens O

    2015-03-01

    Invited for the cover of this issue are the groups of Falk Harnisch at the Helmholtz Centre for Environmental Research (Germany) and his collaboration partners at The University of Queensland (Australia). The image depicts their vision of the world, if "electrification" of white biotechnology comes true. The Concept itself is available at 10.1002/cssc.201402736.

  17. Determining climate effects on US total agricultural productivity

    Science.gov (United States)

    Wu, You; Chambers, Robert G.; Schmoldt, Daniel L.; Gao, Wei; Liu, Chaoshun; Liu, Yan-An; Sun, Chao; Kennedy, Jennifer A.

    2017-01-01

    The sensitivity of agricultural productivity to climate has not been sufficiently quantified. The total factor productivity (TFP) of the US agricultural economy has grown continuously for over half a century, with most of the growth typically attributed to technical change. Many studies have examined the effects of local climate on partial productivity measures such as crop yields and economic returns, but these measures cannot account for national-level impacts. Quantifying the relationships between TFP and climate is critical to understanding whether current US agricultural productivity growth will continue into the future. We analyze correlations between regional climate variations and national TFP changes, identify key climate indices, and build a multivariate regression model predicting the growth of agricultural TFP based on a physical understanding of its historical relationship with climate. We show that temperature and precipitation in distinct agricultural regions and seasons explain ∼70% of variations in TFP growth during 1981–2010. To date, the aggregate effects of these regional climate trends on TFP have been outweighed by improvements in technology. Should these relationships continue, however, the projected climate changes could cause TFP to drop by an average 2.84 to 4.34% per year under medium to high emissions scenarios. As a result, TFP could fall to pre-1980 levels by 2050 even when accounting for present rates of innovation. Our analysis provides an empirical foundation for integrated assessment by linking regional climate effects to national economic outcomes, offering a more objective resource for policy making. PMID:28265075

  18. Determining climate effects on US total agricultural productivity.

    Science.gov (United States)

    Liang, Xin-Zhong; Wu, You; Chambers, Robert G; Schmoldt, Daniel L; Gao, Wei; Liu, Chaoshun; Liu, Yan-An; Sun, Chao; Kennedy, Jennifer A

    2017-03-06

    The sensitivity of agricultural productivity to climate has not been sufficiently quantified. The total factor productivity (TFP) of the US agricultural economy has grown continuously for over half a century, with most of the growth typically attributed to technical change. Many studies have examined the effects of local climate on partial productivity measures such as crop yields and economic returns, but these measures cannot account for national-level impacts. Quantifying the relationships between TFP and climate is critical to understanding whether current US agricultural productivity growth will continue into the future. We analyze correlations between regional climate variations and national TFP changes, identify key climate indices, and build a multivariate regression model predicting the growth of agricultural TFP based on a physical understanding of its historical relationship with climate. We show that temperature and precipitation in distinct agricultural regions and seasons explain ∼70% of variations in TFP growth during 1981-2010. To date, the aggregate effects of these regional climate trends on TFP have been outweighed by improvements in technology. Should these relationships continue, however, the projected climate changes could cause TFP to drop by an average 2.84 to 4.34% per year under medium to high emissions scenarios. As a result, TFP could fall to pre-1980 levels by 2050 even when accounting for present rates of innovation. Our analysis provides an empirical foundation for integrated assessment by linking regional climate effects to national economic outcomes, offering a more objective resource for policy making.

  19. Determining climate effects on US total agricultural productivity

    Science.gov (United States)

    Liang, Xin-Zhong; Wu, You; Chambers, Robert G.; Schmoldt, Daniel L.; Gao, Wei; Liu, Chaoshun; Liu, Yan-An; Sun, Chao; Kennedy, Jennifer A.

    2017-03-01

    The sensitivity of agricultural productivity to climate has not been sufficiently quantified. The total factor productivity (TFP) of the US agricultural economy has grown continuously for over half a century, with most of the growth typically attributed to technical change. Many studies have examined the effects of local climate on partial productivity measures such as crop yields and economic returns, but these measures cannot account for national-level impacts. Quantifying the relationships between TFP and climate is critical to understanding whether current US agricultural productivity growth will continue into the future. We analyze correlations between regional climate variations and national TFP changes, identify key climate indices, and build a multivariate regression model predicting the growth of agricultural TFP based on a physical understanding of its historical relationship with climate. We show that temperature and precipitation in distinct agricultural regions and seasons explain ˜70% of variations in TFP growth during 1981-2010. To date, the aggregate effects of these regional climate trends on TFP have been outweighed by improvements in technology. Should these relationships continue, however, the projected climate changes could cause TFP to drop by an average 2.84 to 4.34% per year under medium to high emissions scenarios. As a result, TFP could fall to pre-1980 levels by 2050 even when accounting for present rates of innovation. Our analysis provides an empirical foundation for integrated assessment by linking regional climate effects to national economic outcomes, offering a more objective resource for policy making.

  20. Multiple Knowledges for Agricultural Production: Implications for the Development of Conservation Agriculture in Kenya and Uganda

    Science.gov (United States)

    Moore, Keith M.; Lamb, Jennifer N.; Sikuku, Dominic Ngosia; Ashilenje, Dennis S.; Laker-Ojok, Rita; Norton, Jay

    2014-01-01

    Purpose: This article investigates the extent of multiple knowledges among smallholders and connected non-farm agents around Mount Elgon in Kenya and Uganda in order to build the communicative competence needed to scale up conservation agriculture production systems (CAPS). Design/methodology/approach: Our methodological approach examines local…

  1. Agricultural sectoral demand and crop productivity response across the world

    Science.gov (United States)

    Johnston, M.; Ray, D. K.; Cassidy, E. S.; Foley, J. A.

    2013-12-01

    With an increasing and increasingly affluent population, humans will need to roughly double agricultural production by 2050. Continued yield growth forms the foundation of all future strategies aiming to increase agricultural production while slowing or eliminating cropland expansion. However, a recent analysis by one of our co-authors has shown that yield trends in many important maize, wheat and rice growing regions have begun stagnating or declining from the highs seen during the green revolution (Ray et al. 2013). Additional research by our group has shown that nearly 50% of new agricultural production since the 1960s has gone not to direct human consumption, but instead to animal feed and other industrial uses. Our analysis for GLP looks at the convergence of these two trends by examining time series utilization data for 16 of the biggest crops to determine how demand from different sectors has shaped our land-use and intensification strategies around the world. Before rushing headlong into the next agricultural doubling, it would be prudent to first consult our recent agricultural history to better understand what was driving past changes in production. Using newly developed time series dataset - a fusion of cropland maps with historic agricultural census data gathered from around the world - we can examine yield and harvested area trends over the last half century for 16 top crops. We combine this data with utilization rates from the FAO Food Balance Sheet to see how demand from different sectors - food, feed, and other - has influenced long-term growth trends from the green revolution forward. We will show how intensification trends over time and across regions have grown or contracted depending on what is driving the change in production capacity. Ray DK, Mueller ND, West PC, Foley JA (2013) Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 8(6): e66428. doi:10.1371/journal.pone.0066428

  2. Biogas Production from Energy Crops and Agriculture Residues

    DEFF Research Database (Denmark)

    Wang, Guangtao

    In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according...... to their suitability for biogas production. Moreover, pretreatment of these biomasses by using wet explosion method was studied and the effect of the wet explosion process was evaluated based on the increase of (a) sugar release and (b) methane potential when comparing the pretreated biomass and raw biomass. Ensiling...

  3. Quality Management System of Agricultural Products Based on Spring

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    This article gives an overview of important property of the integrated management of agricultural product quality safety system,analyzes the lightweight characteristics of Spring technical system,hierarchical organization of MVC,and the technology SSH+Ajax associated with the Spring framework system.On the basis of this technical system,we design the quality management system of agricultural products under B/S model.This article points out that this system is realized mainly through consumers’information feedback and order management;then discusses operation environment,expandability,portability and security of the system.

  4. Detecting Chaos from Agricultural Product Price Time Series

    Directory of Open Access Journals (Sweden)

    Xin Su

    2014-12-01

    Full Text Available Analysis of the characteristics of agricultural product price volatility and trend forecasting are necessary to formulate and implement agricultural price control policies. Taking wholesale cabbage prices as an example, a multiple test methodology has been adopted to identify the nonlinearity, fractality, and chaos of the data. The approaches used include the R/S analysis, the BDS test, the power spectra, the recurrence plot, the largest Lyapunov exponent, the Kolmogorov entropy, and the correlation dimension. The results show that there is chaos in agricultural wholesale price data, which provides a good theoretical basis for selecting reasonable forecasting models as prediction techniques based on chaos theory can be applied to forecasting agricultural prices.

  5. Insect Cell Culture and Biotechnology

    Institute of Scientific and Technical Information of China (English)

    Robert R.Granados; Guoxun Li; G.W.Blissard

    2007-01-01

    The continued development of new cell culture technology is essential for the future growth and application of insect cell and baculovirus biotechnology. The use of cell lines for academic research and for commercial applications is currently dominated by two cell lines; the Spodoptera frugiperda line, SF21 (and its clonal isolate, SF9), and the Trichoplusia ni line, BTI 5B1-4, commercially known as High Five cells. The long perceived prediction that the immense potential application of the baculovirus-insect cell system, as a tool in cell and molecular biology, agriculture, and animal health, has been achieved. The versatility and recent applications of this popular expression system has been demonstrated by both academia and industry and it is clear that this cell-based system has been widely accepted for biotechnological applications. Numerous small to midsize startup biotechnology companies in North America and the Europe are currently using the baculovirus-insect cell technology to produce custom recombinant proteins for research and commercial applications. The recent breakthroughs using the baculovirus-insect cell-based system for the development of several commercial products that will impact animal and human health will further enhance interest in this technology by pharma. Clearly, future progress in novel cell and engineering advances will lead to fundamental scientific discoveries and serve to enhance the utility and applications of this baculovirus-insect cell system.

  6. Current state of biotechnology in Turkey.

    Science.gov (United States)

    Dundar, Munis; Akbarova, Yagut

    2011-09-01

    Biotechnology is an interdisciplinary branch of science that encompasses a wide range of subjects like genetics, virology, microbiology, immunology, engineering to develop vaccines, and so on and plays a vital role in health systems, crop and seed management, yield improvement, agriculture, soil management, ecology, animal farming, cellular process, bio statistics, and so on. This article is about activities in medical and pharmaceutical biotechnology, environmental biotechnology, agricultural biotechnology and nanobiotechnology carried out in Turkey. Turkey has made some progress in biotechnology projects for research and development.

  7. Modern Biotechnology in China

    Science.gov (United States)

    Wang, Qing-Zhao; Zhao, Xue-Ming

    In recent years, with the booming economy, the Chinese government has increased its financial input to biotechnology research, which has led to remarkable achievements by China in modern biotechnology. As one of the key parts of modern biotechnology, industrial biotechnology will be crucial for China's sustainable development in this century. This review presents an overview of Chinese industrial biotechnology in last 10 years. Modern biotechnology had been classified into metabolic engineering and systems biology framework. Metabolic engineering is a field of broad fundamental and practical concept so we integrated the related technology achievements into the real practices of many metabolic engineering cases, such as biobased products production, environmental control and others. Now metabolic engineering is developing towards the systems level. Chinese researchers have also embraced this concept and have contributed invaluable things in genomics, transcriptomics, proteomics and related bioinformatics. A series of advanced laboratories or centers were established which will represent Chinese modern biotechnology development in the near future. At the end of this review, metabolic network research advances have also been mentioned.

  8. Modern biotechnology in China.

    Science.gov (United States)

    Wang, Qing-Zhao; Zhao, Xue-Ming

    2010-01-01

    In recent years, with the booming economy, the Chinese government has increased its financial input to biotechnology research, which has led to remarkable achievements by China in modern biotechnology. As one of the key parts of modern biotechnology, industrial biotechnology will be crucial for China's sustainable development in this century. This review presents an overview of Chinese industrial biotechnology in last 10 years. Modern biotechnology had been classified into metabolic engineering and systems biology framework. Metabolic engineering is a field of broad fundamental and practical concept so we integrated the related technology achievements into the real practices of many metabolic engineering cases, such as biobased products production, environmental control and others. Now metabolic engineering is developing towards the systems level. Chinese researchers have also embraced this concept and have contributed invaluable things in genomics, transcriptomics, proteomics and related bioinformatics. A series of advanced laboratories or centers were established which will represent Chinese modern biotechnology development in the near future. At the end of this review, metabolic network research advances have also been mentioned.

  9. Innovative mechanical technologies for agricultural and forest quality productions

    Directory of Open Access Journals (Sweden)

    Raffaele Cavalli

    2008-04-01

    Full Text Available The quality of agricultural and forest products are related to the productive process in which innovative mechanical technologies are used. The innovation should be considered at product, process and enterprise level, the last one being considered as changes into enterprise organization, included services diversification. In the field of machinery used for agricultural products, from soil tillage to harvesting and post-harvesting processes the innovation dealing with products, but also with energy use, environmental protection, work safety has been important due to the mechanical technology output. In the forest sector working systems in which operations are carried out in totally mechanized way, with small turn to semi-mechanized operations, are growing. They are innovations that should change the relationship with young generation which could consider the mechanical technologies attractive for a working activity until now evaluated not much desiderable.

  10. Innovative mechanical technologies for agricultural and forest quality productions

    Directory of Open Access Journals (Sweden)

    Raffaele Cavalli

    2011-02-01

    Full Text Available The quality of agricultural and forest products are related to the productive process in which innovative mechanical technologies are used. The innovation should be considered at product, process and enterprise level, the last one being considered as changes into enterprise organization, included services diversification. In the field of machinery used for agricultural products, from soil tillage to harvesting and post-harvesting processes the innovation dealing with products, but also with energy use, environmental protection, work safety has been important due to the mechanical technology output. In the forest sector working systems in which operations are carried out in totally mechanized way, with small turn to semi-mechanized operations, are growing. They are innovations that should change the relationship with young generation which could consider the mechanical technologies attractive for a working activity until now evaluated not much desiderable.

  11. PRODUCTION OF BIOFUELS AND ITS IMPACT ON AGRICULTURE IN CROATIA

    Directory of Open Access Journals (Sweden)

    Tajana Krička

    2008-09-01

    Full Text Available There is a large potential for the production of energy crops on agricultural land. Global demand for food is expected to double within the coming 50 years, and demand for transportation fuels is expected to increase even more rapidly. There is a great need for renewable energy supplies for biofuel production that do not cause significant environmental harm and do not compete with food supply. In addition, biofuel by-products can be utilized as livestock feed with a substantial revenue source and significantly increases the profitability of the production process. Food-based biofuels can meet but a small portion of energy needs despite recent advances in crop yields and increased biofuel production efficiency. Therefore, biofuels that are non food-based are likely to be of far greater importance over the longer term. Reasonable values on the external effects are in most cases not enough to make agriculture-based biomass energy competitive so that considerable government subsidies are needed. Biofuels such as cellulosic ethanol that can be produced on agriculturally marginal lands with minimum fertilizer, pesticide, and fossil energy inputs, or produced with agricultural residues have potential to provide fuel supplies with greater environmental benefits that either petroleum or current food-based biofuels.

  12. Optimization of a biotechnological multiproduct batch plant design for the manufacture of four different products: A real case scenario.

    Science.gov (United States)

    Sandoval, Gabriela; Espinoza, Daniel; Figueroa, Nicolas; Asenjo, Juan A

    2017-06-01

    In this work a biotechnological multiproduct batch plant that manufactures four different recombinant proteins for human application is described in some detail. This batch plant design is then optimized with regards to the size of equipment using a mixed-integer linear programming (MILP) formulation recently developed by us in order to find a hypothetical new biotechnological batch plant based on the information of real known processes for the production of the four recombinant protein products. The real plant was divided for practical purposes into two sub-processes or facilities: a fermentation facility and a purification facility. Knowing the specific steps conforming the downstream processing of each product, size, and time factors were computed and used as parameters to solve the aforementioned MILP reformulation. New constraints were included to permit the selection of some equipment-such as centrifuges and membrane filters-in a discrete set of sizes. For equipment that can be built according to customer needs-such as reactors-the original formulation was retained. Computational results show the ability of this optimization methodology to deal with real data giving reliable solutions for a multi-product batch plant composed of 44 unit operations in a relatively small amount of time showing that in the case studied it is possible to save up to a 66% of the capital investment in equipment given the cost data used. Biotechnol. Bioeng. 2017;114: 1252-1263. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites

    DEFF Research Database (Denmark)

    Hwang, Kyu-Sang; Kim, Hyun Uk; Charusanti, Pep

    2014-01-01

    Streptomyces species continue to attract attention as a source of novel medicinal compounds. Despite a long history of studies on these microorganisms, they still have many biochemical mysteries to be elucidated. Investigations of novel secondary metabolites and their biosynthetic gene clusters h...... collected in the form of databases and knowledgebases, providing predictive information and enabling one to explore experimentally unrecognized biological spaces of secondary metabolism. Herein, we review recent trends in the systems biology and biotechnology of Streptomyces species....

  14. Multi-Objective Fuzzy Linear Programming In Agricultural Production Planning

    Directory of Open Access Journals (Sweden)

    H.M.I.U. Herath

    2015-08-01

    Full Text Available Abstract Modern agriculture is characterized by a series of conflicting optimization criteria that obstruct the decision-making process in the planning of agricultural production. Such criteria are usually net profit total cost total production etc. At the same time the decision making process in the agricultural production planning is often conducted with data that accidentally occur in nature or that are fuzzy not deterministic. Such data are the yields of various crops the prices of products and raw materials demand for the product the available quantities of production factors such as water labor etc. In this paper a fuzzy multi-criteria mathematical programming model is presented. This model is applied in a region of 10 districts in Sri Lanka where paddy is cultivated under irrigated and rain fed water in the two main seasons called Yala and Maha and the optimal production plan is achieved. This study was undertaken to find out the optimal allocation of land for paddy to get a better yield while satisfying the two conflicting objectives profit maximizing and cost minimizing subjected to the utilizing of water constraint and the demand constraint. Only the availability of land constraint is considered as a crisp in nature while objectives and other constraints are treated as fuzzy. It is observed that the MOFLP is an effective method to handle more than a single objective occurs in an uncertain vague environment.

  15. Microbiological Production of Surfactant from Agricultural Residuals for IOR Application

    Energy Technology Data Exchange (ETDEWEB)

    Bala, Greg Alan; Bruhn, Debby Fox; Fox, Sandra Lynn; Noah, Karl Scott; Thompson, David Neal

    2002-04-01

    Utilization of surfactants for improved oil recovery (IOR) is an accepted technique with high potential. However, technology application is frequently limited by cost. Biosurfactants (surface-active molecules produced by microorganisms) are not widely utilized in the petroleum industry due to high production costs associated with use of expensive substrates and inefficient product recovery methods. The economics of biosurfactant production could be significantly impacted through use of media optimization and application of inexpensive carbon substrates such as agricultural process residuals. Utilization of biosurfactants produced from agricultural residuals may 1) result in an economic advantage for surfactant production and technology application, and 2) convert a substantial agricultural waste stream to a value-added product for IOR. A biosurfactant with high potential for use is surfactin, a lipopeptide biosurfactant, produced by Bacillus subtilis. Reported here is the production and potential IOR utilization of surfactin produced by Bacillus subtilis (American Type Culture Collection (ATCC) 21332) from starch-based media. Production of surfactants from microbiological growth media based on simple sugars, chemically pure starch medium, simulated liquid and solid potato-process effluent media, a commercially prepared potato starch in mineral salts, and process effluent from a potato processor is discussed. Additionally, the effect of chemical and physical pretreatments on starchy feedstocks is discussed.

  16. Agricultural waste from the tequila industry as substrate for the production of commercially important enzymes.

    Science.gov (United States)

    Huitron, C; Perez, R; Sanchez, A E; Lappe, P; Rocha Zavaleta, L

    2008-01-01

    Approximately 1 million tons of Agave tequilana plants are processed annually by the Mexican Tequila industry generating vast amounts of agricultural waste. The aim of this study was to investigate the potential use of Agave tequilana waste as substrate for the production of commercially important enzymes. Two strains of Aspergillus niger (CH-A-2010 and CH-A-2016), isolated from agave fields, were found to grow and propagate in submerged cultures using Agave tequilana waste as substrate. Isolates showed simultaneous extracellular inulinase, xylanase, pectinase, and cellulase activities. Aspergillus CH-A-2010 showed the highest production of inulinase activity (1.48 U/ml), whereas Aspergillus niger CH-A-2016 produced the highest xylanase (1.52 U/ml) and endo-pectinase (2.7U/ml) activities. In both cases production of enzyme activities was significantly higher on Agave tequilana waste than that observed on lemon peel and specific polymeric carbohydrates. Enzymatic hydrolysis of raw A. tequilana stems and leaves, by enzymes secreted by the isolates yielded maximum concentrations of reducing sugars of 28.2 g/l, and 9.9 g/l respectively. In conclusion, Agave tequilana waste can be utilized as substrate for the production of important biotechnological enzymes.

  17. Root system-based limits to agricultural productivity and efficiency

    DEFF Research Database (Denmark)

    Thorup-Kristensen, Kristian; Kirkegaard, John

    2016-01-01

    BACKGROUND: There has been renewed global interest in both genetic and management strategies to improve root system function in order to improve agricultural productivity and minimize environmental damage. Improving root system capture of water and nutrients is an obvious strategy, yet few studie...

  18. Wheat and barley exposure to nanoceria: Implications for agricultural productivity

    Science.gov (United States)

    The impacts of man-made nanomaterials on agricultural productivity are not yet well understood. A soil microcosm study was performed to assess the physiological, phenological, and yield responses of wheat (Triticum aestivum) and barley (Hordeum vulgare L.) exposed to nanoceria (n...

  19. Microwave sensing of quality attributes of agricultural and food products

    Science.gov (United States)

    Microwave sensors for real-time characterization of agricultural and food products have become viable solutions with recent advances in the development of calibration methods and the availability of inexpensive microwave components. The examples shown here for grain, seed, and in-shell peanuts indic...

  20. Estimating pesticide emissions for LCA of agricultural products

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky

    2000-01-01

    Emission data for pesticides from agricultural product systems may be based on national and international pesticide usage statistics, but these only provide information on the applied dose. When the field is considered as part of the technosphere, the emissions from the system are those quantitie...

  1. Ohio Agricultural Business and Production Systems. Technical Competency Profile (TCP).

    Science.gov (United States)

    Ray, Gayl M.; Kershaw, Isaac; Mokma, Arnie

    This document describes the essential competencies from secondary through post-secondary associate degree programs for a career in agricultural business and production systems. Following an introduction, the Ohio College Tech Prep standards and program, and relevant definitions are described. Next are the technical competency profiles for these…

  2. Wheat and barley exposure to nanoceria: Implications for agricultural productivity

    Science.gov (United States)

    The impacts of man-made nanomaterials on agricultural productivity are not yet well understood. A soil microcosm study was performed to assess the physiological, phenological, and yield responses of wheat (Triticum aestivum) and barley (Hordeum vulgare L.) exposed to nanoceria (n...

  3. Nanomaterials for products and application in agriculture, feed and food

    NARCIS (Netherlands)

    Peters, Ruud J.B.; Bouwmeester, Hans; Gottardo, Stefania; Amenta, Valeria; Arena, Maria; Brandhoff, Puck; Marvin, Hans J.P.; Mech, Agnieszka; Moniz, Filipa Botelho; Pesudo, Laia Quiros; Rauscher, Hubert; Schoonjans, Reinhilde; Undas, Anna K.; Vettori, Maria Vittoria; Weigel, Stefan; Aschberger, Karin

    2016-01-01

    Background: Nanotechnology applications can be found in agricultural production, animal feed, food processing, food additives and food contact materials (hereinafter referred to as agri/feed/food). A great diversity of nanomaterials is reported to be currently used in various applications, while

  4. STATISTICAL CONTROL OF PROCESSES AND PRODUCTS IN AGRICULTURE

    Directory of Open Access Journals (Sweden)

    D. Horvat

    2006-06-01

    Full Text Available Fundamental concept of statistical process control is based on decision-making about the process on the basis of comparison of data collected from process with calculated control limits. Statistical process and quality control of agricultural products is used to provide agricultural products that will satisfy customer requirements in a view of quality pretension as well as costumer requirements in a cost price. In accordance with ISO 9000, quality standards for process and products are defined. There are many institutions in Croatia that work in accordance with these standards. Implementation of statistical process control and usage of a control charts can greatly help in convergence to the standards and in decreasing of production costs. To illustrate the above mentioned we tested a work quality of a nozzle at the eighteen meter clutch sprayer.

  5. Medium and long-term opportunities and risk of the biotechnological production of bulk chemicals from renewable resources - The potential of white biotechnology

    NARCIS (Netherlands)

    Patel, M.; Crank, M.; Dornberg, V.; Hermann, B.; Roes, L.; Hüsing, B.; Overbeek, van L.S.; Terragni, F.; Recchia, E.

    2006-01-01

    This report studies processes which convert biomass-derived feedstocks (e.g. fermentable sugar) into organic bulk chemicals (e.g. lactic acid, acetic acid, butanol and ethanol) by means of white biotechnology (e.g. fermentation or enzymatic conversion), either with or without genetically modified

  6. Medium and long-term opportunities and risk of the biotechnological production of bulk chemicals from renewable resources - The potential of white biotechnology

    NARCIS (Netherlands)

    Patel, M.; Crank, M.; Dornberg, V.; Hermann, B.; Roes, L.; Hüsing, B.; Overbeek, van L.S.; Terragni, F.; Recchia, E.

    2006-01-01

    This report studies processes which convert biomass-derived feedstocks (e.g. fermentable sugar) into organic bulk chemicals (e.g. lactic acid, acetic acid, butanol and ethanol) by means of white biotechnology (e.g. fermentation or enzymatic conversion), either with or without genetically modified or

  7. INDIRECT COSTS ALLOCATION AND DECISION MAKING IN AGRICULTURAL PRODUCTION

    Directory of Open Access Journals (Sweden)

    M. Karić

    2001-06-01

    Full Text Available The paper introduces a research on the changes occurred inside the accounting system of agricultural organisations in the transitional period. Changes of structure and accounting information system being results of privatisation processes were analysed. The introduction of modern methods in the preparation of relevant management information represents one of the preconditions for development of the privatised agricultural organisation during the transition period. Information prepared by the accounting, especially adapted to management requirements, is essential for rational decision making. Modern management system of reporting is fundamental task of management and a precondition for securing competitive production in agricultural industry. For this reason, it is necessary to define areas of responsibility and to enable application of a modern techniques for calculating expenses. The purpose of this paper is to emphasise the specialised use of accounting information by managers and to develop methods of management reporting in agricultural organisations. We propose an emphasis upon the application of modern management accounting techniques rather than financial accounting reporting approach. We support the contention that the need for high-quality management accounting is not debatable and tend to explain how and why accounting information is developed for the individual parts of a business entity, that is for each department or enterprise of an agricultural organisation. The responsibility accounting system should be introduced in agricultural business entities within our conditions, especially in larger organisations, as a measure of securing competitive production. We emphasise the importance of distinguishing between direct and indirect expenses and of using appropriate methods to allocate expenses among departments or enterprises. The research is based on information directly received from the largest agricultural companies in the area of

  8. Promotion of Agricultural Products Competitive Power in Heilongjiang Province with Modern Logistics

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The paper studied the competitive power of agricultural products in Heilongjiang Province by analyzing the revealed comparative advantage,and drew the conclution that agricultural products' competitive power was decreasing in Heilongjiang Province.There were three main reasons for this status: firstly,the cost of circulation of agricultural products was increasing;secondly,the commodity rate of agricultural products was low;thirdly,the marketing power of agricultural product was weak because of lacking the ...

  9. Water saving through international trade of agricultural products

    Directory of Open Access Journals (Sweden)

    A. K. Chapagain

    2006-01-01

    Full Text Available Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28 per cent of the international virtual water flows related to the trade of agricultural products and 6 per cent of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.

  10. Water saving through international trade of agricultural products

    Directory of Open Access Journals (Sweden)

    A. K. Chapagain

    2005-11-01

    Full Text Available Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28% of the international virtual water flows related to the trade of agricultural products and 6% of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.

  11. Trends in food biotechnology

    OpenAIRE

    Ramón, Daniel

    2014-01-01

    For thousands of years man has been applying genetics to improve both foodstuffs and food products. Using selective breeding and/or spontaneous mutations, a large number of plant varieties, animal breeds and microbial strains have been produced. In fact, food biotechnology is the oldest form of biotechnology. Recently, recombinant DNA techniques have been applied in food technology, creating so-called ‘genetically modified foods’ (GM foods). Examples include transgenic potatoes able to act as...

  12. BIOTECHNOLOGY BIOPRODUCTS "HEALING-1"

    OpenAIRE

    S. I. Artiukhova; T. T. Tolstoguzova

    2014-01-01

    Summary. The article presents data on the development of technology and qualitative research, bio-products «Healing-1». One of the promising directions in food biotechnology is the development of new integrated starter-based consortia of microorganisms, which have higher activity compared with cultures prepared using pure cultures. So it was interesting studies on the development of new biotechnology and bio-based microbial consortium of lactic acid bacteria. Based on the analysis of biotechn...

  13. Biotechnological potential of Synechocystis salina co-cultures with selected microalgae and cyanobacteria: Nutrients removal, biomass and lipid production.

    Science.gov (United States)

    Gonçalves, Ana L; Pires, José C M; Simões, Manuel

    2016-01-01

    Cultivation of microalgae and cyanobacteria has been the focus of several research studies worldwide, due to the huge biotechnological potential of these photosynthetic microorganisms. However, production of these microorganisms is still not economically viable. One possible alternative to improve the economic feasibility of the process is the use of consortia between microalgae and/or cyanobacteria. In this study, Chlorella vulgaris, Pseudokirchneriella subcapitata and Microcystis aeruginosa were co-cultivated with Synechocystis salina to evaluate how dual-species cultures can influence biomass and lipid production and nutrients removal. Results have shown that the three studied consortia achieved higher biomass productivities than the individual cultures. Additionally, nitrogen and phosphorus consumption rates by the consortia provided final concentrations below the values established by European Union legislation for these nutrients. In the case of lipid productivities, higher values were determined when S. salina was co-cultivated with P. subcapitata and M. aeruginosa.

  14. Characteristics of Serbian foreign trade of agricultural and food products

    Directory of Open Access Journals (Sweden)

    Božić Dragica

    2016-01-01

    Full Text Available Agricultural and food products are a significant segment of the total foreign trade of Serbia, which is characterized by a relatively high import dependency, modest export and constantly present deficit. In such conditions, agrarian sector serves as a stabilizer, and its importance is reflected in the permanently positive balance, increased participation, particularly in total exports, and balancing the trade balance of the country. The aim of the paper is to analyze the basic characteristics of foreign trade of agricultural and food products of Serbia in the period 2005-2015. The tendencies in export, import, and the level of coverage of import by export of agro-food (or agrarian products are analysed. The participation of these products in the total foreign trade of Serbia is also considered, followed by the comparison of this indicator with the neighbouring countries. In the next part of the paper, the structure of Serbian export and import of agricultural and food products (by product groups is analysed. Special attention is given to the territorial orientation of export and import of agrarian products by the most important trade partners. In order to conduct more comprehensive analysis of comparative advantages, or competitiveness of certain groups of agro-food products of Serbia in the exchange with the world, indicator of Revealed Comparative Advantage (RCA is calculated. The analysis of qualitative competitiveness is derived using the indicator - unit value of export and import. The analysis points to the dynamic growth in the value of Serbian export and import of agro-food products, with the constant surplus of trade balance in the observed period. These products are significantly represented in the structure of the total foreign trade of the country, particularly in export (with about 20%. RCA indicators show that Serbia has a comparative advantage in trade of agro-food products to the world in primary products and products of lower

  15. A simple method for the production of large volume 3D macroporous hydrogels for advanced biotechnological, medical and environmental applications

    Science.gov (United States)

    Savina, Irina N.; Ingavle, Ganesh C.; Cundy, Andrew B.; Mikhalovsky, Sergey V.

    2016-02-01

    The development of bulk, three-dimensional (3D), macroporous polymers with high permeability, large surface area and large volume is highly desirable for a range of applications in the biomedical, biotechnological and environmental areas. The experimental techniques currently used are limited to the production of small size and volume cryogel material. In this work we propose a novel, versatile, simple and reproducible method for the synthesis of large volume porous polymer hydrogels by cryogelation. By controlling the freezing process of the reagent/polymer solution, large-scale 3D macroporous gels with wide interconnected pores (up to 200 μm in diameter) and large accessible surface area have been synthesized. For the first time, macroporous gels (of up to 400 ml bulk volume) with controlled porous structure were manufactured, with potential for scale up to much larger gel dimensions. This method can be used for production of novel 3D multi-component macroporous composite materials with a uniform distribution of embedded particles. The proposed method provides better control of freezing conditions and thus overcomes existing drawbacks limiting production of large gel-based devices and matrices. The proposed method could serve as a new design concept for functional 3D macroporous gels and composites preparation for biomedical, biotechnological and environmental applications.

  16. Cost Accounting Methods and Calculation Agricultural Products` Cost

    Directory of Open Access Journals (Sweden)

    Saule B. Spatayeva

    2015-04-01

    Full Text Available In the condition of the current market the effective manage of expenses and calculation accountancy of cost production in agriculture must be aimed to control for resources usage at any level of technology process and getting the accountancy database needed for gaining the management targets.The improving the technologies and set up aspects of business entity activity, taken place for the last decades, which caused a significant influence on condition and structure expenses but could not provide the increase of economic effectiveness in agriculture.

  17. Total Factor Productivity in the Peruvian Agriculture: Estimation and Determinants

    Directory of Open Access Journals (Sweden)

    Francisco B. Galarza

    2016-02-01

    Full Text Available In this article, we propose an estimation of the agriculture productivity using micro data forPeru. The method used builds on recent production function’s estimation techniques developed for panel data (e.g., Gandhi et al., 2013 but using cross-section data. Data constraints urge us to impose functional forms for the estimation. In particular, we choose the constant elasticity of substitution function, which is more flexible that other functions used by prior literature in Peru (such as the Cobb-Douglas. We find no evidence of the existence of increasing returns to scale in the Peruvian agriculture, and that the productivity is positively correlated with age, sex, andeducation, and negatively correlated with the farming unit’s acreage and market power.

  18. ROMANIAN AGRICULTURAL POLICY AND SUSTAINABLE DEVELOPMENT OF ANIMAL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Condrea DRAGANESCU

    2013-12-01

    Full Text Available The rapid evolution of civilisation within the last two hundred years has involved the replacement of extensive, pastoral livestock systems for intensive production methods. The dangers implicit in this rapid evolution are discussed by Forrester (1971,in the Meadows report (1972 and latterly the necessity for “sustainable development” was flagged by the Brudtland Report (1987. The last agrarian reform in Romania increased the weight of small farms and led to non sustainable agriculture. In such conditions we are obliged to follow a twin-track strategy: (1livestock systems with high productivity potentials; (2traditional pastoral systems and organic agriculture, on marginal lands, which allow the utilisation of extensive grazing lands, the conservation of environment, genetic resources, landscape, the minimisation of the use of non-renewable resources and the production of "natural foods".

  19. Simulation and optimization of agricultural product supply chain system based on Witness

    Directory of Open Access Journals (Sweden)

    Jiandong Liu

    2017-03-01

    Full Text Available Researches on agricultural product supply chain have important implications for improving the efficiency of agricultural products circulation, strengthening the construction of agricultural market system, promoting agricultural modernization and solving the three rural issues. Agricultural product supply chain system has begun to be optimized through simulation technique. In this paper, agricultural product supply chain system is reasonably simplified and assumed. A simulation model was developed by using the simulation software Wit-ness to study agricultural product supply chain. Through the analysis of the simulation output data, improvement suggestions were also proposed as follows: improving the organization degree of agricultural products, improving the agricultural products processing, establishing strategic partnership and scientifically developing agricultural products logistics.

  20. ECONOMIC AND SOCIAL IMPORTANCE OF AGRICULTURAL PRODUCTIVE COOPERATIVES IN POLAND

    Directory of Open Access Journals (Sweden)

    Małgorzata Matyja

    2012-01-01

    Full Text Available In the introduction, the article presents a brief reflection on collaborative farming in Poland and abroad. There is also a formulated objective of the study, which is to show the essence of agricultural productive cooperatives’ activity and their role in the farmers’ and local communities’ protection. The following section presents used research methods and the subjective, spatial and temporal scope of own research. Subsequent parts of the article relate to the description of the history of APCs in Poland with an explanation of the causes of their foundation and liquidating, presentation the essence and the role of cooperative activi-ties in agriculture with an indication of the advantages of collective farming and characteris-tics of agricultural, economic and social activities of Polish APCs. At the end of the article there is the summary of the undertaken considerations and conclusions.

  1. Productivity limits and potentials of the principles of conservation agriculture.

    Science.gov (United States)

    Pittelkow, Cameron M; Liang, Xinqiang; Linquist, Bruce A; van Groenigen, Kees Jan; Lee, Juhwan; Lundy, Mark E; van Gestel, Natasja; Six, Johan; Venterea, Rodney T; van Kessel, Chris

    2015-01-15

    One of the primary challenges of our time is to feed a growing and more demanding world population with reduced external inputs and minimal environmental impacts, all under more variable and extreme climate conditions in the future. Conservation agriculture represents a set of three crop management principles that has received strong international support to help address this challenge, with recent conservation agriculture efforts focusing on smallholder farming systems in sub-Saharan Africa and South Asia. However, conservation agriculture is highly debated, with respect to both its effects on crop yields and its applicability in different farming contexts. Here we conduct a global meta-analysis using 5,463 paired yield observations from 610 studies to compare no-till, the original and central concept of conservation agriculture, with conventional tillage practices across 48 crops and 63 countries. Overall, our results show that no-till reduces yields, yet this response is variable and under certain conditions no-till can produce equivalent or greater yields than conventional tillage. Importantly, when no-till is combined with the other two conservation agriculture principles of residue retention and crop rotation, its negative impacts are minimized. Moreover, no-till in combination with the other two principles significantly increases rainfed crop productivity in dry climates, suggesting that it may become an important climate-change adaptation strategy for ever-drier regions of the world. However, any expansion of conservation agriculture should be done with caution in these areas, as implementation of the other two principles is often challenging in resource-poor and vulnerable smallholder farming systems, thereby increasing the likelihood of yield losses rather than gains. Although farming systems are multifunctional, and environmental and socio-economic factors need to be considered, our analysis indicates that the potential contribution of no-till to the

  2. Impacts of ecological restoration projects on agricultural productivity in China

    Institute of Scientific and Technical Information of China (English)

    QIN Yuanwei; YAN Huimin; LIU Jiyuan; DONG Jinwei; CHEN Jingqing; XIAO Xiangming

    2013-01-01

    The changes in cropland quantity and quality due to land use are critical concerns to national food security,particularly for China.Despite the significant ecological effects,the ecological restoration program (ERP),started from 1999,has evidently altered the spatial patterns of China's cropland and agricultural productivity.Based on cropland dynamic data from 2000 to 2008 primarily derived from satellite images with a 30-m resolution and satellite-based net primary productivity models,we identified the impacts on agricultural productivity caused by ERP,including "Grain for Green" Program (GFGP) and "Reclaimed Cropland to Lake" (RCTL) Program.Our results indicated that the agricultural productivity lost with a rate of 132.67×104 t/a due to ERP,which accounted for 44.01% of the total loss rate caused by land use changes during 2000-2005.During 2005-2008,the loss rate due to ERP decreased to 77.18×104 t/a,which was equivalent to 58.17% of that in the first five years and 30.22% of the total loss rate caused by land use changes.The agricultural productivity loss from 2000-2008 caused by ERP was more attributed to GFGP (about 70%) than RCTL.Al-though ERP had a certain influence on cropland productivity during 2000-2008,its effect was still much less than that of urbanization; moreover,ERP was already converted from the project implementation phase to the consolidation phase.

  3. Production of vanillin: a biotechnological opportunity; Obtencao de vanilina: oportunidade biotecnologica

    Energy Technology Data Exchange (ETDEWEB)

    Daugsch, Andreas; Pastores, Glaucia [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia de Alimentos]. E-daugsch@fea.unicamp.br

    2005-07-15

    Natural aroma compounds are of major interest to the food and fragrance industry. Vanillin (3-methoxy-4-hydroxybenzaldehyde) was isolated from the vanilla beans in 1816 and its world consumption has reached today about 12000 tons per year. But only approximately 50 tons per year are extracted from vanilla pods (Vanilla planifolia). The remainder is provided by synthetic vanillin. This review is about alternative processes to produce natural vanillin de novo or by biotransformation using biotechnological methods involving enzymes, microorganisms and plant cells. (author)

  4. Explaining end-users' intentions to use innovative medical and food biotechnology products.

    Science.gov (United States)

    Mulder, Bob C; Poortvliet, P Marijn; Lugtig, Peter; de Bruin, Marijn

    2014-08-01

    Low public acceptance hinders the successful introduction of biotechnological innovations, such as genetically modified foods or vaccinations against infectious diseases. Earlier studies indicated that a lack of knowledge is not a key barrier to acceptance. This was confirmed in the current study, which examined an integrated theoretical model tested among 579 participants from the Dutch public. The results suggest that communication strategies should instead target attitudes, social norms, and risk perceptions, and appeal to people's tendency (or lack thereof) to be innovative. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Recent advances in the biotechnological production of microbial poly(ɛ-L-lysine) and understanding of its biosynthetic mechanism.

    Science.gov (United States)

    Xu, Zhaoxian; Xu, Zheng; Feng, Xiaohai; Xu, Delei; Liang, Jinfeng; Xu, Hong

    2016-08-01

    Poly(ɛ-L-lysine) (ɛ-PL) is an unusual biopolymer composed of L-lysine connected between α-carboxyl and ɛ-amino groups. It has been used as a preservative in food and cosmetics industries, drug carrier in medicines, and gene carrier in gene therapy. Modern biotechnology has significantly improved the synthetic efficiency of this novel homopoly(amino acid) on an industrial scale and has expanded its industrial applications. In the latest years, studies have focused on the biotechnological production and understanding the biosynthetic mechanism of microbial ɛ-PL. Herein, this review focuses on the current trends and future perspectives of microbial ɛ-PL. Information on the screening of ɛ-PL-producing strains, fermentative production of ɛ-PL, breeding of high-ɛ-PL-producing strains, genomic data of ɛ-PL-producing strains, biosynthetic mechanism of microbial ɛ-PL, and the control of molecular weight of microbial ɛ-PL is included. This review will contribute to the development of this novel homopoly(amino acid) and serve as a basis of studies on other biopolymers.

  6. Traditional Chinese Biotechnology

    Science.gov (United States)

    Xu, Yan; Wang, Dong; Fan, Wen Lai; Mu, Xiao Qing; Chen, Jian

    The earliest industrial biotechnology originated in ancient China and developed into a vibrant industry in traditional Chinese liquor, rice wine, soy sauce, and vinegar. It is now a significant component of the Chinese economy valued annually at about 150 billion RMB. Although the production methods had existed and remained basically unchanged for centuries, modern developments in biotechnology and related fields in the last decades have greatly impacted on these industries and led to numerous technological innovations. In this chapter, the main biochemical processes and related technological innovations in traditional Chinese biotechnology are illustrated with recent advances in functional microbiology, microbial ecology, solid-state fermentation, enzymology, chemistry of impact flavor compounds, and improvements made to relevant traditional industrial facilities. Recent biotechnological advances in making Chinese liquor, rice wine, soy sauce, and vinegar are reviewed.

  7. Construction Biotechnology: a new area of biotechnological research and applications.

    Science.gov (United States)

    Stabnikov, Viktor; Ivanov, Volodymyr; Chu, Jian

    2015-09-01

    A new scientific and engineering discipline, Construction Biotechnology, is developing exponentially during the last decade. The major directions of this discipline are selection of microorganisms and development of the microbially-mediated construction processes and biotechnologies for the production of construction biomaterials. The products of construction biotechnologies are low cost, sustainable, and environmentally friendly microbial biocements and biogrouts for the construction ground improvement. The microbial polysaccharides are used as admixtures for cement. Microbially produced biodegradable bioplastics can be used for the temporarily constructions. The bioagents that are used in construction biotechnologies are either pure or enrichment cultures of microorganisms or activated indigenous microorganisms of soil. The applications of microorganisms in the construction processes are bioaggregation, biocementation, bioclogging, and biodesaturation of soil. The biotechnologically produced construction materials and the microbially-mediated construction technologies have a lot of advantages in comparison with the conventional construction materials and processes. Proper practical implementations of construction biotechnologies could give significant economic and environmental benefits.

  8. Biotechnological strategies for glycerol utilization derived from bio diesel production; Glicerol de biodiesel: estrategias biotecnologicas para o aproveitamento do glicerol gerado da producao de biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Rivaldi, Juan Daniel; Sarrouh, Boutros Fouad; Silva, Silvio Silverio da [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). Escola de Engenharia], e-mail: danielrivaldi@gmail.com; Fiorilo, Rodolfo [DAFFER Quimica Ltda., Mairipora, SP (Brazil)

    2007-07-01

    The claim for reducing environment pollution stimulates the world market of clean fuels. Bio fuels as bio diesel, represents a renewable and environmentally safety alternative to fossil fuel. Nonetheless, its production is increasing considerably, and as a consequence, the amount of raw glycerol (byproduct) generated is growing exponentially. With the aim to reduce environment problems due to accumulation of glycerol, biotechnological strategies for its bioconversion in value-added products are being implementing. This work presents detailed arguments on the metabolic mechanisms of glycerol assimilation by microorganisms, as well as, a description of the most recent biotechnological processes applied to obtain bio products from glycerol. (author)

  9. The Supply and Demand of Agricultural Products in China Based on Balanced Diet

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Promoting agricultural production and ensuring the supply of agricultural products has always been the main task of agricultural development in China,but the agricultural production in China has not yet been combined with the Chinese residents’ dietary needs to formulate reasonable development goals,with a certain blindness in production. According to the dietary standards in The Dietary Guidelines for Chinese Residents developed by the Chinese Nutrition Society,we calculate the demand of various types of agricultural products in China under the conditions of balanced diet. In comparison with the output of various types of agricultural products in China at present,we find that the output of most of agricultural products in China has exceeded the reasonable demand of the Chinese residents under the conditions of balanced diet. Therefore,adjusting the agricultural production structure in China and advocating balanced diet has become an important way to solve the problem of balance between supply and demand of agricultural products.

  10. Detection of contaminating enzymatic activity in plant-derived recombinant biotechnology products.

    Science.gov (United States)

    Brinson, Robert G; Giulian, Gary G; Kelman, Zvi; Marino, John P

    2014-12-02

    Residual impurities in recombinantly produced protein biologics, such as host cell proteins (HCP), can potentially cause unwanted toxic or immunogenic responses in patients. Additionally, undetected impurities found in recombinant proteins used in cell culture may adversely impact basic research and biotechnology applications. Currently, the enzyme-linked immunosorbent assay (ELISA) is the standard for detection of residual HCP contamination in recombinantly produced biologics. Alternatively, two-dimensional liquid chromatography coupled to mass spectrometry is being developed as a tool for assessing this critical quality attribute. Both of these methods rely on the direct detection of HCPs and some previous knowledge of the contaminant. For contaminating enzymes, the mass level of the impurity may fall below the threshold of detection of these methods and underestimate the true impact. To address this point, here we demonstrate facile detection and characterization of contaminating phytase activity in rice-derived recombinant human serum albumin (rHSA) using a sensitive, label-free nuclear magnetic resonance (NMR) spectroscopy assay. We observed varying degrees of phytase contamination in biotechnology-grade rHSA from various manufacturers by monitoring the degradation of adenosine-5'-triphosphate and myo-inositol-1,2,3,4,5,6-hexakisphosphate by (31)P NMR. The observed lot-to-lot variability may result in irreproducible cell culture results and should be evaluated as a possible critical quality attribute in plant-derived biotherapeutics.

  11. Biomass and multi-product crops for agricultural and energy production - an AGE analysis

    NARCIS (Netherlands)

    Ignaciuk, A.; Dellink, R.B.

    2006-01-01

    By-products from agriculture and forestry can contribute to production of clean and cheap (bio)electricity. To assess the role of such multi-product crops in the response to climate policies, we present an applied general equilibrium model with special attention to biomass and multi-product crops.

  12. Biotechnology of non-Saccharomyces yeasts-the basidiomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-09-01

    Yeasts are the major producer of biotechnology products worldwide, exceeding production in capacity and economic revenues of other groups of industrial microorganisms. Yeasts have wide-ranging fundamental and industrial importance in scientific, food, medical, and agricultural disciplines (Fig. 1). Saccharomyces is the most important genus of yeast from fundamental and applied perspectives and has been expansively studied. Non-Saccharomyces yeasts (non-conventional yeasts) including members of the Ascomycetes and Basidiomycetes also have substantial current utility and potential applicability in biotechnology. In an earlier mini-review, "Biotechnology of non-Saccharomyces yeasts-the ascomycetes" (Johnson Appl Microb Biotechnol 97: 503-517, 2013), the extensive biotechnological utility and potential of ascomycetous yeasts are described. Ascomycetous yeasts are particularly important in food and ethanol formation, production of single-cell protein, feeds and fodder, heterologous production of proteins and enzymes, and as model and fundamental organisms for the delineation of genes and their function in mammalian and human metabolism and disease processes. In contrast, the roles of basidiomycetous yeasts in biotechnology have mainly been evaluated only in the past few decades and compared to the ascomycetous yeasts and currently have limited industrial utility. From a biotechnology perspective, the basidiomycetous yeasts are known mainly for the production of enzymes used in pharmaceutical and chemical synthesis, for production of certain classes of primary and secondary metabolites such as terpenoids and carotenoids, for aerobic catabolism of complex carbon sources, and for bioremediation of environmental pollutants and xenotoxicants. Notwithstanding, the basidiomycetous yeasts appear to have considerable potential in biotechnology owing to their catabolic utilities, formation of enzymes acting on recalcitrant substrates, and through the production of unique primary

  13. A long-run view of South African agricultural production and productivity

    OpenAIRE

    Liebenberg, Frikkie; Pardey, Philip G.

    2012-01-01

    Production and productivity developments in South Africa have regional consequences: South Africa’s agricultural economy accounted for 43.1% of the agricultural GDP of southern Africa in 2009. Here we present and discuss newly constructed long-run data on agricultural input and output aggregates for South Africa spanning most of the 20th century. Updated multi-factor productivity (MFP) measures for South Africa for the last half of the 20th century are also presented. For the period after 1...

  14. Implications of salinity pollution hotspots on agricultural production

    Science.gov (United States)

    Floerke, Martina; Fink, Julia; Malsy, Marcus; Voelker, Jeanette; Alcamo, Joseph

    2016-04-01

    Salinity pollution can have many negative impacts on water resources used for drinking, irrigation, and industrial purposes. Elevated concentrations of salinity in irrigation water can lead to decreased crop production or crop death and, thus, causing an economic problem. Overall, salinity pollution is a global problem but tends to be more severe in arid and semi-arid regions where the dilution capacity of rivers and lakes is lower and the use of irrigation higher. Particularly in these regions agricultural production is exposed to high salinity of irrigation water as insufficient water quality further reduces the available freshwater resources. According to the FAO, irrigated agriculture contributes about 40 percent of the total food production globally, and therefore, high salinity pollution poses a major concern for food production and food security. We use the WaterGAP3 modeling framework to simulate hydrological, water use, and water quality conditions on a global scale for the time period 1990 to 2010. The modeling framework is applied to simulate total dissolved solids (TDS) loadings and in-stream concentrations from different point and diffuse sources to get an insight on potential environmental impacts as well as risks to agricultural food production. The model was tested and calibrated against observed data from GEMStat and literature sources. Although global in scope, the focus of this study is on developing countries, i.e., in Africa, Asia, and Latin America, as these are most threatened by salinity pollution. Furthermore, insufficient water quality for irrigation and therefore restrictions in irrigation water use are examined, indicating limitations to crop production. Our results show that elevated salinity concentrations in surface waters mainly occur in peak irrigation regions as irrigated agriculture is not only the most relevant water use sector contributing to water abstractions, but also the dominant source of salinity pollution. Additionally

  15. Ergot: from witchcraft to biotechnology.

    Science.gov (United States)

    Haarmann, Thomas; Rolke, Yvonne; Giesbert, Sabine; Tudzynski, Paul

    2009-07-01

    The ergot diseases of grasses, caused by members of the genus Claviceps, have had a severe impact on human history and agriculture, causing devastating epidemics. However, ergot alkaloids, the toxic components of Claviceps sclerotia, have been used intensively (and misused) as pharmaceutical drugs, and efficient biotechnological processes have been developed for their in vitro production. Molecular genetics has provided detailed insight into the genetic basis of ergot alkaloid biosynthesis and opened up perspectives for the design of new alkaloids and the improvement of production strains; it has also revealed the refined infection strategy of this biotrophic pathogen, opening up the way for better control. Nevertheless, Claviceps remains an important pathogen worldwide, and a source for potential new drugs for central nervous system diseases.

  16. Hydrogen production from agricultural waste by dark fermentation: A review

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xin Mei; Trably, Eric; Latrille, Eric; Carrere, Helene; Steyer, Jean-Philippe [INRA, UR050, Laboratoire de Biotechnologie de l' Environnement, F-11100 Narbonne (France)

    2010-10-15

    The degradation of the natural environment and the energy crisis are two vital issues for sustainable development worldwide. Hydrogen is considered as one of the most promising candidates as a substitute for fossil fuels. In this context, biological processes are considered as the most environmentally friendly alternatives for satisfying future hydrogen demands. In particular, biohydrogen production from agricultural waste is very advantageous since agri-wastes are abundant, cheap, renewable and highly biodegradable. Considering that such wastes are complex substrates and can be degraded biologically by complex microbial ecosystems, the present paper focuses on dark fermentation as a key technology for producing hydrogen from crop residues, livestock waste and food waste. In this review, recent findings on biohydrogen production from agricultural wastes by dark fermentation are reported. Key operational parameters such as pH, partial pressure, temperature and microbial actors are discussed to facilitate further research in this domain. (author)

  17. A STRATEGIC AGRICULTURAL PRODUCTION MODEL WITH RISK AND RETURN CONSIDERATIONS

    OpenAIRE

    Aull-Hyde, Rhonda L.; Tadesse, Solomon

    1994-01-01

    Decision support systems are generally geared to short-term tactical decision making. As an alternative, this paper develops a mathematical programming model to evaluate long-term strategic alternatives in the context of farm-level agricultural production where a broiler farm considers long-term implications of diversification into commercial aquaculture. The model considers a ten-year strategic planning horizon, incorporates financial risk and return considerations, and accommodates capacity...

  18. Performance Appraisal Method of Logistic Distribution for Fresh Agricultural Products

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Through the initial selection,screening and simplification,a set of performance appraisal system of logistic distribution suited to fresh agricultural products is established.In the process of establishing the appraisal indicator,the representative appraisal indicator of logistic distribution of fresh agricultural products is further obtained by delivering experts’ survey and applying the ABC screening system.The distribution costs,transportation and service level belong to the first level indicator;packing fees,distribution processing fees,full-load ratio,haulage capacity,customer satisfaction and the strain capability of delivery personnel belong to second level indicator.At the same time,the weighing of each indicator is determined.The quantification is conducted on indicators.The qualitative indicators applies ten-point system and then coverts these indicators into percentage,that is the number between [0,1];as for the quantitative indicators,they are concluded to the interval [0,1] according to the actual value range of the indicators and by applying the grade of membership in the vague mathematics.Through the analyses of the advantages and disadvantages of the frequently used performance evaluation method and its applicable conditions,the comprehensive evaluation of logistic distribution of agricultural products obtained by using the method of fuzzy comprehensive appraisal.The results show that,in terms of reducing distribution costs,the packaging and distribution processing technology of fresh agricultural products should be improved,so as to reduce distribution costs.In the process of introducing the application of advanced technology,the high automatic logistic equipments should be introduced.

  19. Pretreaments of Chinese Agricultural residues to increase biogas production

    OpenAIRE

    Wang, Yu

    2010-01-01

    Development of biological conversion of lignocellulosic biomass to biogas is one approach to utilize straw comprehensively. However, high lignin contents of lignocellulosic materials results in low degradation. The main aim of this study was to investigate the appropriate pre-treatment to increase biogas production from Chinese agricultural residues. In this study, Chinese corn stalk, rice plant and wheat straw were evaluated as substrates by applying three different pre-treatments. The inves...

  20. Metal and metalloid containing natural products and a brief overview of their applications in biology, biotechnology and biomedicine.

    Science.gov (United States)

    Dias, Daniel A; Kouremenos, Konstantinos A; Beale, David J; Callahan, Damien L; Jones, Oliver A H

    2016-02-01

    Bioinorganic natural product chemistry is a relatively unexplored but rapidly developing field with enormous potential for applications in biology, biotechnology (especially in regards to nanomaterial development, synthesis and environmental cleanup) and biomedicine. In this review the occurrence of metals and metalloids in natural products and their synthetic derivatives are reviewed. A broad overview of the area is provided followed by a discussion on the more common metals and metalloids found in natural sources, and an overview of the requirements for future research. Special attention is given to metal hyperaccumulating plants and their use in chemical synthesis and bioremediation, as well as the potential uses of metals and metalloids as therapeutic agents. The potential future applications and development in the field are also discussed.

  1. Denitrification 'Woodchip' Bioreactors for Productive and Sustainable Agricultural Systems

    Science.gov (United States)

    Christianson, L. E.; Summerfelt, S.; Sharrer, K.; Lepine, C.; Helmers, M. J.

    2014-12-01

    Growing alarm about negative cascading effects of reactive nitrogen in the environment has led to multifaceted efforts to address elevated nitrate-nitrogen levels in water bodies worldwide. The best way to mitigate N-related impacts, such as hypoxic zones and human health concerns, is to convert nitrate to stable, non-reactive dinitrogen gas through the natural process of denitrification. This means denitrification technologies need to be one of our major strategies for tackling the grand challenge of managing human-induced changes to our global nitrogen cycle. While denitrification technologies have historically been focused on wastewater treatment, there is great interest in new lower-tech options for treating effluent and drainage water from one of our largest reactive nitrogen emitters -- agriculture. Denitrification 'woodchip' bioreactors are able to enhance this natural N-conversion via addition of a solid carbon source (e.g., woodchips) and through designs that facilitate development of anoxic conditions required for denitrification. Wood-based denitrification technologies such as woodchip bioreactors and 'sawdust' walls for groundwater have been shown to be effective at reducing nitrate loads in agricultural settings around the world. Designing these systems to be low-maintenance and to avoid removing land from agricultural production has been a primary focus of this "farmer-friendly" technology. This presentation provides a background on woodchip bioreactors including design considerations, N-removal performance, and current research worldwide. Woodchip bioreactors for the agricultural sector are an accessible new option to address society's interest in improving water quality while simultaneously allowing highly productive agricultural systems to continue to provide food in the face of increasing demand, changing global diets, and fluctuating weather.

  2. The Relationship between Customer Knowledge Management and Performance of Agricultural Product Innovation

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    This paper takes an overview of the CKM and the performance of agricultural product innovation from contents of agricultural product innovation and customer knowledge management (CKM) ,the relation between CKM and agricultural product innovation. On the basis of the overview, it builds the theoretical framework of CKM and agricultural product innovation. It points out that enterprises can satisfy demands of customers through acquisition,share,utilization and innovation of customer knowledge,and improve performance of agricultural product innovation through speeding up agricultural product innovation.

  3. Ordering Strategy for Fresh Agricultural Products in External Financing Condition

    Institute of Scientific and Technical Information of China (English)

    Wenyi; DU

    2014-01-01

    This paper firstly introduced the two stage supply chain consisting of single agricultural product producer and fund restraint retailer.Then,it analyzed the influence of bank interest rate on order quantity,wholesale price and expected profit of retailer and producer on the condition of retailer taking external loan strategy.Studies have shown that when the bank interest rate is in(0,0.9),the order quantity of agricultural products is a decreasing function of bank interest rate; when the bank interest rate is in(0,1),wholesale price of agricultural products decreases with increase in the bank interest rate; when the bank interest rate is in(0,0.6),the expected profit of retailer is a decreasing function of bank interest rate; when the bank interest rate is in(0,1),the expected profit of producer decreases with increase in the bank interest rate.Finally,through simulation calculation examples,it verified suitability of the conclusion,in the hope of providing reference and application value for management of supply chain.

  4. BIOTECHNOLOGY OF THE FISH AQUACULTURE

    OpenAIRE

    L. P. Buchatsky

    2013-01-01

    The latest progress in biotechnology on fish aquaculture and different modern methods of investigations for increasing of fish productivity in aquaculture are analyzed. Except for the applied aspect, the use of modern biotechnological methods of investigations opens new possibilities for fundamental researches of sex-determining mechanisms, polyploidy, distant hybridization, and developmental biology of bony fishes. Review contains examples of utilizing modern biotechnology methods to obtain ...

  5. Importance of biotechnology for industrial chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Harnisch, H.; Woehner, G.

    1985-05-01

    In the next few decades, biotechnology will bring about fundamental innovations in the fields of health, nutrition and agriculture and in industrial production, such as of chemicals, which may compare with the present revolutionary technical progress in electronics. Pioneering scientific advances in the fields of molecular biology, biochemistry and microbiology justify these forecasts. Particular attention should be drawn to the potential of genetic engineering methods presently being developed. However, less spectacular techniques, such as cell fusion and the immobilization of enzymes or whole living cells on polymeric substrates to give biocatalysts with long lifetimes, will also contribute to this new technology. Some of these new developments are now gaining acceptance in industrial production.

  6. Probabilistic estimates of drought impacts on agricultural production

    Science.gov (United States)

    Madadgar, Shahrbanou; AghaKouchak, Amir; Farahmand, Alireza; Davis, Steven J.

    2017-08-01

    Increases in the severity and frequency of drought in a warming climate may negatively impact agricultural production and food security. Unlike previous studies that have estimated agricultural impacts of climate condition using single-crop yield distributions, we develop a multivariate probabilistic model that uses projected climatic conditions (e.g., precipitation amount or soil moisture) throughout a growing season to estimate the probability distribution of crop yields. We demonstrate the model by an analysis of the historical period 1980-2012, including the Millennium Drought in Australia (2001-2009). We find that precipitation and soil moisture deficit in dry growing seasons reduced the average annual yield of the five largest crops in Australia (wheat, broad beans, canola, lupine, and barley) by 25-45% relative to the wet growing seasons. Our model can thus produce region- and crop-specific agricultural sensitivities to climate conditions and variability. Probabilistic estimates of yield may help decision-makers in government and business to quantitatively assess the vulnerability of agriculture to climate variations. We develop a multivariate probabilistic model that uses precipitation to estimate the probability distribution of crop yields. The proposed model shows how the probability distribution of crop yield changes in response to droughts. During Australia's Millennium Drought precipitation and soil moisture deficit reduced the average annual yield of the five largest crops.

  7. The Cold Chain Logistics for Perishable Agricultural Products in China

    Directory of Open Access Journals (Sweden)

    Hou Yanfang

    2015-07-01

    Full Text Available This study introduces concepts of the agricultural product cold chain logistics and domestic and international researches. Also, the study discusses issues of Chinese agricultural cold chain logistics in the development process as the following aspects: the dividing of cold chain logistics market, refrigeration hardware facilities, third-party cold chain logistics development, the level of cold chain technologies, cold chain logistics professionals and the legal system and the standard system. Next, this study focuses on the countermeasures to solve problems of the agricultural cold chain logistics development by some ways as followings: increasing investments in technology, accelerating the improvement of the cold chain logistics facilities, strengthening the cultivation of third-party cold chain logistics enterprise, encouraging the training of personnel, promoting the cold chain logistics informatization and improving relevant laws, regulations and standards. Combining with the cold chain logistics of Mengniu Dairy, this study analyzes and proposes countermeasures. Finally, this study summarizes the developments in Chinese agricultural chain logistics, which needs to be strengthened in many aspects for suiting Chinese situation.

  8. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites.

    Science.gov (United States)

    Hwang, Kyu-Sang; Kim, Hyun Uk; Charusanti, Pep; Palsson, Bernhard Ø; Lee, Sang Yup

    2014-01-01

    Streptomyces species continue to attract attention as a source of novel medicinal compounds. Despite a long history of studies on these microorganisms, they still have many biochemical mysteries to be elucidated. Investigations of novel secondary metabolites and their biosynthetic gene clusters have been more systematized with high-throughput techniques through inspections of correlations among components of the primary and secondary metabolisms at the genome scale. Moreover, up-to-date information on the genome of Streptomyces species with emphasis on their secondary metabolism has been collected in the form of databases and knowledgebases, providing predictive information and enabling one to explore experimentally unrecognized biological spaces of secondary metabolism. Herein, we review recent trends in the systems biology and biotechnology of Streptomyces species.

  9. Making More Food Available: Promoting Sustainable Agricultural Production

    Institute of Scientific and Technical Information of China (English)

    Rudy Rabbinge; Prem S Bindraban

    2012-01-01

    INTRODUCTION During the 20th century food availability worldwide has increased considerably.The increase in population was outnumbered by the productivity increase in agriculture mainly by higher yields per ha.Globally there is more food available per person than ever before.In the coming decades the world population will further increase and diets will change requiring a doubling of plant production worldwide by 2050.Especially the increase in demand will be substantial in Asia and sub-Saharan Afi-ica.

  10. ASSESSING THE SUSTAINABILITY OF AGRICULTURAL PRODUCTION SYSTEMS USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Moslem Sami

    2013-09-01

    Full Text Available First stage for attaining sustainability in a system is the measurement of current state of sustainability. Indicators are widely used as tools for measurement of sustainability. In this study, a comprehensive index was proposed to measure sustainability in agricultural production systems. This index takes advantage of fuzzy logic to combine all six indexes which were selected as the representative of three dimensions of sustainability. A set of models and sub-models based on the fuzzy inference system were employed to define the index. A case study conducted in two large production farms of maize and wheat, in Iran, proved the feasibility and usability of the model.

  11. Genetic manipulation in biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, R.; Atkinson, T.

    1981-04-04

    The role of genetic manipulation in opening up new possibilities in biotechnology is discussed and the basic steps in a recombinant DNA experiment are summarized. Some current and future applications of this technology in the fields of medicine, industry and agriculture are presented, including, conversion of wastes to SCP, chemicals and alcohols, plant improvement and the introduction of nitrogen fixation genes into plants as an alternative to the use of nitrogen fertilizers.

  12. Biotechnology research in Thailand and applications to the study of animal parasites and their vectors.

    Science.gov (United States)

    Yuthavong, Y

    1988-03-01

    Biotechnology research in Thailand owes its origins to the strength in biomedical and life sciences in the academia, and the importance of agriculture in the economy. With growing awareness of the impact of new biotechnology including genetic engineering, biotechnology R & D centres were set up in the universities, and the National Centre for Genetic Engineering and biotechnology was created in 1983. The National Center functions as the center for policy and planning in biotechnology, for support of important research, development and technology transfer projects in designated institutions, and serves to link these institutions with the private sector. The aim is to develop specific biotechnology areas from laboratory stages up to pilot-scale, with emphasis on transfer and utilization of genetic engineering and biotechnology in various fields including public health had on strengthening of basic infrastructure in relevant disciplines. The National Center has 4 affiliated laboratories, including pilot plants, and over 30 projects in 9 institutions in the network. Recently the Science and Technology for Development Program has also devoted a part of its substantial funding to support various biotechnology research projects. With regard to biotechnology research relevant to the study of animal parasites and their vectors, the work in Thailand has up to now concentrated more on the application of new techniques in clinical laboratory and field work than in industrial productions. Specific contributions from the Unit of Parasite Biochemistry, Mahidol University, were given as illustrative examples.

  13. International Conference on Harmonisation; guidance on viral safety evaluation of biotechnology products derived from cell lines of human or animal origin; availability--FDA. Notice.

    Science.gov (United States)

    1998-09-24

    The Food and Drug Administration (FDA) is publishing a guidance entitled "Q5A Viral Safety Evaluation of Biotechnology Products Derived From Cell Lines of Human or Animal Origin." The guidance was prepared under the auspices of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). The guidance describes the testing and evaluation of the viral safety of biotechnology products derived from characterized cell lines of human or animal origin, and outlines data that should be submitted in marketing applications.

  14. Online hyperspectral imaging system for evaluating quality of agricultural products

    Science.gov (United States)

    Mo, Changyeun; Kim, Giyoung; Lim, Jongguk

    2017-06-01

    The consumption of fresh-cut agricultural produce in Korea has been growing. The browning of fresh-cut vegetables that occurs during storage and foreign substances such as worms and slugs are some of the main causes of consumers' concerns with respect to safety and hygiene. The purpose of this study is to develop an on-line system for evaluating quality of agricultural products using hyperspectral imaging technology. The online evaluation system with single visible-near infrared hyperspectral camera in the range of 400 nm to 1000 nm that can assess quality of both surfaces of agricultural products such as fresh-cut lettuce was designed. Algorithms to detect browning surface were developed for this system. The optimal wavebands for discriminating between browning and sound lettuce as well as between browning lettuce and the conveyor belt were investigated using the correlation analysis and the one-way analysis of variance method. The imaging algorithms to discriminate the browning lettuces were developed using the optimal wavebands. The ratio image (RI) algorithm of the 533 nm and 697 nm images (RI533/697) for abaxial surface lettuce and the ratio image algorithm (RI533/697) and subtraction image (SI) algorithm (SI538-697) for adaxial surface lettuce had the highest classification accuracies. The classification accuracy of browning and sound lettuce was 100.0% and above 96.0%, respectively, for the both surfaces. The overall results show that the online hyperspectral imaging system could potentially be used to assess quality of agricultural products.

  15. REDUCING ENERGY CONSUMPTION IN AGRICULTURAL PRODUCTION (POTATO EXAMPLE

    Directory of Open Access Journals (Sweden)

    Byshоv N. V.

    2016-06-01

    Full Text Available In recent years, in many countries around the world, much attention is paid to the issues of ensuring of rational use of energy resources, due to a number of objective factors, chief among which are: the lack of own energy resources to meet domestic energy needs; the sharp increase in the cost of production and the production of energy resources; further growth in energy needs; the presence of large potential opportunities to reduce unproductive losses of fuel and energy. In the world, the challenge now is to ensure a gradual but steady transfer of the economy on energy saving way of development. To achieve the goal of reducing energy costs we might use two ways: firstly, the widespread introduction of energy saving technologies, and secondly, the reduction of material production, improving its quality and service. In agriculture, the improvement of the technological process can be carried out using new tillage methods, improving the organization of production and tools. Further development of mechanization in agriculture will contribute to further growth of electrification in the agricultural sector, which will significantly reduce the use of the most expensive and limited energy resources. The article offers a technique of the estimation of the efficiency of consumption of energy in agricultural production. In order to compare the efficiency of machines in the cultivation and harvesting of potatoes, there was conducted an energy assessment of the operations of modern technology. As variables, there were investigated different operation modes of the machine: working speed and working width, depth of stroke of the working bodies. In the process of evaluating energy operations, modern technology to prepare the soil for planting potatoes was determined humidity, mechanical composition and soil type. As a main factor in the analysis of technological methods, we have taken the overall specific energy consumption and specific energy consumption for

  16. Teachers' Concerns About Biotechnology Education

    Science.gov (United States)

    Borgerding, Lisa A.; Sadler, Troy D.; Koroly, Mary Jo

    2013-04-01

    The impacts of biotechnology are found in nearly all sectors of society from health care and food products to environmental issues and energy sources. Despite the significance of biotechnology within the sciences, it has not become a prominent trend in science education. In this study, we seek to more fully identify biology teachers' concerns about biotechnology instruction and their reported practices. Consistent with the Stages of Concern framework as modified by Hord et al., we investigated teachers' awareness, informational, personal, management, consequences, collaboration, and refocusing concerns about biotechnology teaching by employing a qualitative design that allowed for the emergence of teachers' ideas. Twenty high school life science teachers attending a biotechnology institute were interviewed using an interview protocol specifically designed to target various Stages of Concern. Although the Stages of Concern framework guided the development of interview questions in order to target a wide range of concerns, data analysis employed a grounded theory approach wherein patterns emerged from teachers' own words and were constantly compared with each other to generate larger themes. Our results have potential to provide guidance for professional development providers and curriculum developers committed to supporting initial implementation of biotechnology education. Recommendations include supporting teacher development of biotechnology content knowledge; promoting strategies for obtaining, storing and managing biotechnology equipment and materials; providing opportunities for peer teaching as a means of building teacher confidence; and highlighting career opportunities in biotechnology and the intersections of biotechnology and everyday life.

  17. Obstacles to Development of Marketing Channels of Agricultural Products in China and Countermeasures

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper introduces the connotation of marketing channels of agricultural products, and gives an overall of current modes of marketing channels of agricultural products in China, including the marketing channel of transportation and sale of agricultural products, the marketing channel of intermediary sales agent, and the marketing channel of mutual cooperation. The problems existing in the marketing channel of agricultural products in China as follows: first, the cost is high; second, the technological content is low; third, the upstream main body lacks competitiveness; fourth, the structure of investment is irrational. Corresponding countermeasures are put forward to develop marketing channels of agricultural products as follows: perfect the service function of wholesale market of agricultural products; propel the construction of integration and expansion of wholesale market; develop the circulation cooperatives of agricultural products; develop the integrated organization of production and sales of agricultural products.

  18. Biogas production from energy crops and agriculture residues

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.

    2010-12-15

    In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according to their suitability for biogas production. Moreover, pretreatment of these biomasses by using wet explosion method was studied and the effect of the wet explosion process was evaluated based on the increase of (a) sugar release and (b) methane potential when comparing the pretreated biomass and raw biomass. Ensiling of perennial crops was tested as a storage method and pretreatment method for enhancement of the biodegradability of the crops. The efficiency of the silage process was evaluated based on (a) the amount of biomass loss during storage and (b) the effect of the silage on methane potential. Co-digestion of raw and wet explosion pretreated energy crops and agriculture residues with swine manure at various volatile solids (VS) ratio between crop and manure was carried out by batch tests and continuous experiments. The efficiency of the co-digestion experiment was evaluated based on (a) the methane potential in term of ml CH4 produced per g of VS-added and (b) the amount of methane produced per m3 of reactor volume. (Author)

  19. Agriculture

    Science.gov (United States)

    The EPA Agriculture Resource Directory offers comprehensive, easy-to-understand information about environmental stewardship on farms and ranches; commonsense, flexible approaches that are both environmentally protective and agriculturally sound.

  20. Rational allocation of agricultural production in the region

    Directory of Open Access Journals (Sweden)

    Grigorii Mikhailovich Semyashkin

    2015-05-01

    Full Text Available The paper proposes an original approach to determining the optimal allocation of agricultural production in the region; the approach includes the methodological substantiation of the necessity to differentiate consumers when addressing food security issues in the region. It was proposed to allocate three levels: level 1 – the provision of food to socially vulnerable layers, level 2 – the provision with food at the subsistence level, and level 3 – the provision of the total population of the region with food. A preliminary forecast was made for each municipality; it analyzed possible changes in the number of the socially vulnerable up to 2020; in accordance with medical standards and norms of the subsistence level the volumes of food were calculated, which in turn were compared with the actual production output. The difference between the actual volume and the volume of evidence-based requirements represented the very increase in the volume of production, the achievement of which requires certain investments on the basis of capital-output ratio. After that the regional market was divided into three sub-regional markets depending on distance, number of consumers and suppliers. This allowed us to calculate the amount of transport costs based on the type and lot size of the transported product, taking into account the distance to each sub-market. As a criterion of transportation expediency we took into account the share of transport costs in the price of the product not exceeding 30%. Otherwise, it is required to concentrate the production in order to increase the lot transported or to carry out a deeper processing of the product. The proposed methodology served as the basis for choosing the most effective option of spatial location of agricultural production

  1. Biodiversity of Aspergillus species in some important agricultural products

    DEFF Research Database (Denmark)

    Perrone, Giancarlo; Susca, A.,; Cozzi, G.

    2007-01-01

    The genus Aspergillus is one of the most important filamentous fungal genera. Aspergillus species are used in the fermentation industry, but they are also responsible of various plant and food secondary rot, with the consequence of possible accumulation of mycotoxins. The aflatoxin producing A....... flavus and A. parasiticus, and ochratoxinogenic A. niger, A. ochraceus and A. carbonarius species are frequently encountered in agricultural products. Studies on the biodiversity of toxigenic Aspergillus species is useful to clarify molecular, ecological and biochemical characteristics of the different...... occurring in agricultural fields. Altogether nine different black Aspergillus species can be found on grapes which are often difficult to identify with classical methods. The polyphasic approach used in our studies led to the identification of three new species occurring on grapes: A. brasiliensis, A...

  2. Determination of Diphenylamine in Agricultural Products by HPLC-FL.

    Science.gov (United States)

    Aoyagi, Mitsutoshi; Chiba, Masahiro; Kakimoto, Youichiro; Nemoto, Satoru

    2016-01-01

    A method for the determination of diphenylamine in agricultural products was developed. Diphenylamine was extracted with acetonitrile from a sample under an acidic condition, passed through a C18 cartridge column, re-extracted with n-hexane, cleaned up on a PSA cartridge column, determined by HPLC with fluorescence detector and confirmed by liquid chromatography with tandem mass spectrometry. Average recoveries (n=5) from brown rice, corn, soybeans, potato, cabbage, eggplant, spinach, orange, apple and green tea were in the range from 76.7 to 94.9%, and the relative standard deviations were from 0.6 to 5.8% at concentrations equal to the maximum residue limits (MRLs). The quantification limits were 0.01 mg/kg, which is the uniform limit in the positive list system for agricultural chemical residues in food in Japan.

  3. Soil biota and agriculture production in conventional and organic farming

    Science.gov (United States)

    Schrama, Maarten; de Haan, Joj; Carvalho, Sabrina; Kroonen, Mark; Verstegen, Harry; Van der Putten, Wim

    2015-04-01

    Sustainable food production for a growing world population requires a healthy soil that can buffer environmental extremes and minimize its losses. There are currently two views on how to achieve this: by intensifying conventional agriculture or by developing organically based agriculture. It has been established that yields of conventional agriculture can be 20% higher than of organic agriculture. However, high yields of intensified conventional agriculture trade off with loss of soil biodiversity, leaching of nutrients, and other unwanted ecosystem dis-services. One of the key explanations for the loss of nutrients and GHG from intensive agriculture is that it results in high dynamics of nutrient losses, and policy has aimed at reducing temporal variation. However, little is known about how different agricultural practices affect spatial variation, and it is unknown how soil fauna acts this. In this study we compare the spatial and temporal variation of physical, chemical and biological parameters in a long term (13-year) field experiment with two conventional farming systems (low and medium organic matter input) and one organic farming system (high organic matter input) and we evaluate the impact on ecosystem services that these farming systems provide. Soil chemical (N availability, N mineralization, pH) and soil biological parameters (nematode abundance, bacterial and fungal biomass) show considerably higher spatial variation under conventional farming than under organic farming. Higher variation in soil chemical and biological parameters coincides with the presence of 'leaky' spots (high nitrate leaching) in conventional farming systems, which shift unpredictably over the course of one season. Although variation in soil physical factors (soil organic matter, soil aggregation, soil moisture) was similar between treatments, but averages were higher under organic farming, indicating more buffered conditions for nutrient cycling. All these changes coincide with

  4. Mapping Drought Impacts on Agricultural Production in California's Central Valley

    Science.gov (United States)

    Melton, F. S.; Guzman, A.; Johnson, L.; Rosevelt, C.; Verdin, J. P.; Dwyer, J. L.; Mueller, R.; Zakzeski, A.; Thenkabail, P. S.; Wallace, C.; Jones, J.; Windell, S.; Urness, J.; Teaby, A.; Hamblin, D.; Post, K. M.; Nemani, R. R.

    2014-12-01

    The ongoing drought in California has substantially reduced surface water supplies for millions of acres of irrigated farmland in California's Central Valley. Rapid assessment of drought impacts on agricultural production can aid water managers in assessing mitigation options, and guide decision making with respect to requests for local water transfers, county drought disaster designations, and allocation of emergency funds to mitigate drought impacts. Satellite remote sensing offers an efficient way to provide quantitative assessments of drought impacts on agricultural production and increases in idle acreage associated with reductions in water supply. A key advantage of satellite-based assessments is that they can provide a measure of land fallowing that is consistent across both space and time. We describe an approach for monthly and seasonal mapping of uncultivated agricultural acreage developed as part of a joint effort by USGS, USDA, NASA, and the California Department of Water Resources to provide timely assessments of land fallowing during drought events. This effort has used the Central Valley of California as a pilot region for development and testing of an operational approach. To provide quantitative measures of uncultivated agricultural acreage from satellite data early in the season, we developed a decision tree algorithm and applied it to timeseries of data from Landsat TM, ETM+, OLI, and MODIS. Our effort has been focused on development of indicators of drought impacts in the March - August timeframe based on measures of crop development patterns relative to a reference period with average or above average rainfall. To assess the accuracy of the algorithms, monthly ground validation surveys were conducted across 640 fields from March - September, 2014. We present the algorithm along with updated results from the accuracy assessment, and discuss potential applications to other regions.

  5. [Discussion on agricultural product quality and safety problem from ecological view].

    Science.gov (United States)

    Xiao, Ming; Dong, Nan; Lyu, Xin

    2015-08-01

    There are many different perspectives about the sustainable agriculture, which had been proposed since the last three decades in the world. While China's ecologists and agronomists proposed a similar concept named 'ecological agriculture'. Although ecological agriculture in China has achieved substantial progress, including theory, models and supporting technologies nearly several decades of practice and development, its application guidance still is not yet clear. The organic agriculture model proposed by European Union is popular, but it is limited in the beneficiary groups and the social and ecological responsibility. In this context, the article based on an ecological point of view, analyzed the shortcomings of ecological imbalance caused by a single mode of agricultural production and the negative impact on the quality of agricultural products, and discussed the core values of ecological agriculture. On this basis, we put forward the concept of sustainable security of agricultural products. Based on this concept, an agricultural platform was established under the healthy ecosysphere environment, and from this agricultural platform, agricultural products could be safely and sustainably obtained. Around the central value of the concept, we designed the agricultural sustainable and security production model. Finally, we compared the responsibility, benefiting groups, agronomic practices selection and other aspects of sustainable agriculture with organic agriculture, and proved the advancement of sustainable agricultural model in agricultural production quality and safety.

  6. Integration of biotechnology, robot technology and visualisation technology for development of methods for automated mass production of elite trees

    DEFF Research Database (Denmark)

    Find, Jens

    . The method is, for several plant species, the preferred basis for development of additional biotechnological breeding technologies as e.g. genetic transformation. Elite clones can be stored over extended periods in liquid nitrogen at -196°C However, commercial application of the technology has until now been...... of plants for the forestry industry based on robot- and visualisation technology. The commercial aspect of the project aims at: 1) the market for cloned elite plants in the forestry sector and 2) the market for robot technology in the production of plants for the forestry sector....... are produced from single cells without sexual reproduction. SE has some particular advantages for the development of cost effective methods for clonal mass propagation of elite plants: It is a very effective and fast method for clonal propagation. The method is suitable for automatisation and robot technology...

  7. Understanding water deficit stress-induced changes in the basic metabolism of higher plants - biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe.

    Science.gov (United States)

    Shao, Hong-Bo; Chu, Li-Ye; Jaleel, C Abdul; Manivannan, P; Panneerselvam, R; Shao, Ming-An

    2009-01-01

    Water is vital for plant growth, development and productivity. Permanent or temporary water deficit stress limits the growth and distribution of natural and artificial vegetation and the performance of cultivated plants (crops) more than any other environmental factor. Productive and sustainable agriculture necessitates growing plants (crops) in arid and semiarid regions with less input of precious resources such as fresh water. For a better understanding and rapid improvement of soil-water stress tolerance in these regions, especially in the water-wind eroded crossing region, it is very important to link physiological and biochemical studies to molecular work in genetically tractable model plants and important native plants, and further extending them to practical ecological restoration and efficient crop production. Although basic studies and practices aimed at improving soil water stress resistance and plant water use efficiency have been carried out for many years, the mechanisms involved at different scales are still not clear. Further understanding and manipulating soil-plant water relationships and soil-water stress tolerance at the scales of ecology, physiology and molecular biology can significantly improve plant productivity and environmental quality. Currently, post-genomics and metabolomics are very important in exploring anti-drought gene resources in various life forms, but modern agriculturally sustainable development must be combined with plant physiological measures in the field, on the basis of which post-genomics and metabolomics have further practical prospects. In this review, we discuss physiological and molecular insights and effects in basic plant metabolism, drought tolerance strategies under drought conditions in higher plants for sustainable agriculture and ecoenvironments in arid and semiarid areas of the world. We conclude that biological measures are the bases for the solutions to the issues relating to the different types of

  8. The Relationship between Customer Knowledge Management and Performance of Agricultural Product Innovation

    OpenAIRE

    Hu, Jia-jia

    2012-01-01

    This paper takes an overview of the CKM and the performance of agricultural product innovation from contents of agricultural product innovation and customer knowledge management (CKM), the relation between CKM and agricultural product innovation. On the basis of the overview, it builds the theoretical framework of CKM and agricultural product innovation. It points out that enterprises can satisfy demands of customers through acquisition, share, utilization and innovation of customer knowledge...

  9. Obstacles to Development of Marketing Channels of Agricultural Products in China and Countermeasures

    OpenAIRE

    Han, Chun-mei

    2011-01-01

    This paper introduces the connotation of marketing channels of agricultural products, and gives an overall of current modes of marketing channels of agricultural products in China, including the marketing channel of transportation and sale of agricultural products, the marketing channel of intermediary sales agent, and the marketing channel of mutual cooperation. The problems existing in the marketing channel of agricultural products in China as follows, first, the cost is high; second, the t...

  10. Biotechnology for bulk production of organic chemicals. Use of biomass as an option for the future?; Biotechnologie voor bulkproductie van organische chemicalien. Inzet biomassa optie voor de toekomst?

    Energy Technology Data Exchange (ETDEWEB)

    Patel, M.K.; Crank, M.; Dornburg, V.; Hermann, B.G. [Sectie Natuurwetenschap en Samenleving, Copernicus Instituut, Universiteit Utrecht, Utrecht (Netherlands); Van Overbeek, L. [Plant Research International, Wageningen (Netherlands)

    2007-07-01

    This article summarizes the BREW study (Biotechnological production of bulk chemicals from RenEWable resources), which was carried out for the European Commission by a consortium, coordinated by the Copernicus Institute of the Utrecht University in the Netherlands. The study investigates the medium and long-term opportunities and risks of the biotechnological production of organic chemicals. The objective is to gain better understanding of the techno-economic and the societal viability of White Biotechnology in the coming decades. The key research questions are which products could be made with White Biotechnology, whether these products can contribute to savings of energy use and greenhouse gas (GHG) emissions, under which conditions the products become economically viable, which risks may originate from the use of genetically modified organisms (GMO) in fermentation and what the public perception is. [Dutch] Tegenwoordig worden bijna alle organische chemische stoffen en plastics geproduceerd uit ruwe olie en aardgas. Moet dit zo blijven of zijn er andere, meer duurzame manieren om chemische stoffen te produceren? Het gebruik van biomassa als grondstof en het inzetten van biotechnologie zijn twee mogelijkheden. Maar wanneer we deze methoden gebruiken, Iopen we dan tegen nieuwe, onvoorziene risico's aan? Dit artikel geeft een samenvatting van de uitkomst van een gedetailleerde studie, gefinancierd door de Europese Unie, over deze en andere belangrijke vragen.

  11. Ecological constraints on the ability of precision agriculture to improve the environmental performance of agricultural production systems.

    Science.gov (United States)

    Groffman, P M

    1997-01-01

    In this paper, I address three topics relevant to the ability of precision agriculture to improve the environmental performance of agricultural production systems. First, I describe the fundamental ecological factors that influence the environmental performance of these systems and address how precision agriculture practices can or cannot interact with these factors. Second, I review the magnitude of the ecological processes that we hope to manage with precision agriculture relative to agricultural inputs to determine whether managing these processes can significantly affect system environmental performance. Finally, I address scale incongruencies between ecological processes and precision agriculture techniques that could limit the ability of these techniques to manage variability in these processes. The analysis suggests that there are significant ecological constraints on the ability of precision agriculture techniques to improve the environmental performance of agricultural production systems. The primary constraint is that these techniques do not address many of the key factors that cause poor environmental performance in these systems. Further, the magnitude of the ecological processes that we hope to manage with precision agriculture are quite small relative to agricultural inputs and, finally, these processes vary on scales that are incongruent with precision management techniques.

  12. [Biotechnology's macroeconomic impact].

    Science.gov (United States)

    Dones Tacero, Milagros; Pérez García, Julián; San Román, Antonio Pulido

    2008-12-01

    This paper tries to yield an economic valuation of biotechnological activities in terms of aggregated production and employment. This valuation goes beyond direct estimation and includes the indirect effects derived from sectorial linkages between biotechnological activities and the rest of economic system. To deal with the proposed target several sources of data have been used, including official data from National Statistical Office (INE) such us national accounts, input-output tables, and innovation surveys, as well as, firms' level balance sheets and income statements and also specific information about research projects compiled by Genoma Spain Foundation. Methodological approach is based on the estimation of a new input-output table which includes the biotechnological activities as a specific branch. This table offers both the direct impact of these activities and the main parameters to obtain the induced effects over the rest of the economic system. According to the most updated available figures, biotechnological activities would have directly generated almost 1,600 millions of euros in 2005, and they would be employed more than 9,000 workers. But if we take into account the full linkages with the rest of the system, the macroeconomic impact of Biotechnological activities would reach around 5,000 millions euros in production terms (0.6% of total GDP) and would be responsible, directly or indirectly, of more than 44,000 employments.

  13. Biotechnology for renewable chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Kildegaard, Kanchana Rueksomtawin; Jensen, Niels Bjerg

    2014-01-01

    The majority of the industrial organic chemicals are derived from fossil sources. With the oil and gas resources becoming limiting, biotechnology offers a sustainable alternative for production ofchemicals from renewable feedstocks. Yeast is an attractive cell factory forsustainable production of...... for the production of non-native 3-hydroxypropionic acid (3HP).3HP can be chemically dehydrated into acrylic acid and thus can serve as a biosustainable building block for acrylate-based products (diapers, acrylic paints, acrylic polymers, etc.)...

  14. Teachers' Concerns about Biotechnology Education

    Science.gov (United States)

    Borgerding, Lisa A.; Sadler, Troy D.; Koroly, Mary Jo

    2013-01-01

    The impacts of biotechnology are found in nearly all sectors of society from health care and food products to environmental issues and energy sources. Despite the significance of biotechnology within the sciences, it has not become a prominent trend in science education. In this study, we seek to more fully identify biology teachers' concerns…

  15. Teachers' Concerns about Biotechnology Education

    Science.gov (United States)

    Borgerding, Lisa A.; Sadler, Troy D.; Koroly, Mary Jo

    2013-01-01

    The impacts of biotechnology are found in nearly all sectors of society from health care and food products to environmental issues and energy sources. Despite the significance of biotechnology within the sciences, it has not become a prominent trend in science education. In this study, we seek to more fully identify biology teachers' concerns…

  16. Monopolistic Competition in the International Trade of Agricultural Products

    Directory of Open Access Journals (Sweden)

    A. Soukup

    2014-03-01

    Full Text Available The aim of the paper is to describe the behavior of international firms using model of monopolistic competition, which is using optimizations of the number of firms in the sector and its characteristics, best corresponding to the needs of international trade. The assumption for application of the monopolistic competition model in the international trade area of agro production is the idea that trade increases the market size. In the sectors where increasing returns to scale apply it is valid that both heterogeneity of the goods the country produces and the extent of their production are influenced by the market size. The analysis has shown the validity of the model for the production of agricultural commodities; the expansion of the market or the increase of subsidies and thus decrease of the cost of farmers caused by an increase of the number of firms in the sector.

  17. Morphological studies in the buffalo as a contribution to biotechnological methodologies in the animal production

    Directory of Open Access Journals (Sweden)

    G. V. Pelagalli

    2010-02-01

    Full Text Available The researchers in the morphological area of the Faculty of Veterinary Medicine of Naples are long since carrying out investigations on the buffalo. This is due to the paucity of data in the literature of the field as well as scientific interest for many aspects of the biology of this species like the seasonality of the sexual cicle. The studies that have been done are numerous and regard many different fields as the chromosome map, spermatogenesis, histogenesis of the endocrine pancreas, blood circulation and innervation, and the structure and ultrastructure of several organs. In the present lecture, more recent and interesting results are reported regarding the blood circulation and peripheral innervation of several organs and the structure an ultrastructure of tracts of the digestive system. In particular, the following topics are presented: the evolution of the coronaric circle during the embryonic development; the hypophyseal ciculation; the morphology of sensitive corpuscles in the external genital organs and in the reticular groove. In addition, data regarding the structure, the ultrastructure of the stomach wall and the role of each mucosal layer in the stomach functions are reported. The results of these morphological studies costitute a scientific background which is essential in the field of the applicative biotechnology

  18. The lipases from Yarrowia lipolytica: genetics, production, regulation, biochemical characterization and biotechnological applications.

    Science.gov (United States)

    Fickers, Patrick; Marty, Alain; Nicaud, Jean Marc

    2011-01-01

    Lipases are serine hydrolases that catalyze in nature the hydrolysis of ester bonds of long chain triacylglycerol into fatty acid and glycerol. However, in favorable thermodynamic conditions, they are also able to catalyze reactions of synthesis such as esterification or amidation. The non-conventional yeast Yarrowia lipolytica possesses 16 paralogs of genes coding for lipase. However, little information on all those paralogs has been yet obtained and only three isoenzymes, namely Lip2p, Lip7p and Lip8p have been partly characterized so far. Microarray data suggest that only a few of them could be expressed and that lipase synthesis seems to be dependent on the fatty acid or oil used as carbon source confirming the high adaptation of Y. lipolytica to hydrophobic substrate utilization. This review focuses on the biochemical characterization of those enzymes with special emphasis on the Lip2p lipase which is the isoenzyme mainly synthesized by Y. lipolytica. Crystallographic data highlight that this latter is a lipase sensu stricto with a lid covering the active site of the enzyme in its closed conformation. Recent findings on enzyme conditioning in dehydrated or liquid formulation, in enzyme immobilization by entrapment in natural polymers from either organic or mineral origins are also discussed together with long-term storage strategies. The development of various biotechnological applications in different fields such as cheese ripening, waste treatment, drug synthesis or human therapeutics is also presented. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. A Bayesian Based Search and Classification System for Product Information of Agricultural Logistics Information Technology

    OpenAIRE

    2011-01-01

    Part 1: Decision Support Systems, Intelligent Systems and Artificial Intelligence Applications; International audience; In order to meet the needs of users who search agricultural products logistics information technology, this paper introduces a search and classification system of agricultural products logistics information technology search and classification. Firstly, the dictionary of field concept word was built based on analyzing the characteristics of agricultural products logistics in...

  20. Innovation of Supervision System for Quality and Safety of Edible Agricultural Products

    Institute of Scientific and Technical Information of China (English)

    Xingxing; MEI; Zhongchao; FENG

    2014-01-01

    This paper elaborated multidimensional characteristics of quality and safety of agricultural products,introduced current situation of quality and safety supervision of edible agricultural products in China,analyzed existing problems of quality and safety supervision system and corresponding reasons,and finally came up with recommendations for innovation of supervision system for quality and safety of agricultural products.

  1. International Trade of Agricultural Products in the Context of "B&R" Initiative

    Institute of Scientific and Technical Information of China (English)

    Lijing WU; Shuhua XIE

    2016-01-01

    At present,China’s agricultural product trade is facing the development dilemma. The trade deficit is expanding,market and product structure is irrational,and the Chinese agriculture products often encounter trade barriers. " B&R" initiative provides a rare opportunity for the development of agricultural products in China. It is necessary to seize this opportunity to change idea and innovate upon mechanism so as to increase the added value of exported agricultural products through various channels. There is also a need to develop electronic commerce,and make full use of interconnectivity and trade facilitation in " B&R" initiative to develop the international trade of agricultural products.

  2. Reduction of radiation injury of fresh agricultural products by saccharide

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Toru; Todoroki, Setsuko [National Food Research Inst., Tsukuba, Ibaraki (Japan)

    1998-02-01

    To establish irradiation technologies as one of alternative technology of methyl bromide fumigation, radiation sensitivities for each kind of fresh agricultural products and reduction of radiation injury were investigated. Fresh vegetables and flowers such as cabbage, sprouts, asparagus, lettuce, chrysanthemum, carnation, rose, etc. were used and irradiated with 750 Gy {gamma}-ray. Flowers received radiation injury were soaked into various kinds of solutions for one night, then they were irradiated with 500 Gy {gamma}-ray. They showed different radiation sensitivities. Cruciferae plant showed radioresistance and Compositae plant radiosensitivity. A keeping quality agent for cut flowers indicated protection effect on radiation injury. (S.Y.)

  3. Applied biotechnology in nematology.

    Science.gov (United States)

    Caswell-Chen, E P; Williamson, V M; Westerdahl, B B

    1993-12-01

    During the past two decades, rapid advances in biotechnology and molecular biology have affected the understanding and treatment of human and plant diseases. The human and Caenorhabditis elegans genome-sequencing projects promise further techniques and results useful to applied nematology. Of course, biotechnology is not a panacea for nematological problems, but it provides many powerful tools that have potential use in applied biology and nematode management. The tools will facilitate research on a range of previously intractable problems in nematology, from identification of species and pathotypes to the development of resistant cultivars that have been inaccessible because of technical limitations. However, to those unfamiliar or not directly involved with the new technologies and their extensive terminology, the benefits of the advances in biotechnology may not be readily discerned. The sustainable agriculture of the future will require ecology-based management, and successful integrated nematode management will depend on combinations of control tactics to reduce nematode numbers. In this review we discuss how biotechnology may influence nematode management, define terminology relative to potential applications, and present current and future avenues of research in applied nematology, including species identification, race and pathotype identification, development of resistant cultivars, definition of nematode-host interactions, nematode population dynamics, establishment of optimal rotations, the ecology of biological control and development of useful biological control agents, and the design of novel nematicides.

  4. Food biotechnology: benefits and concerns.

    Science.gov (United States)

    Falk, Michael C; Chassy, Bruce M; Harlander, Susan K; Hoban, Thomas J; McGloughlin, Martina N; Akhlaghi, Amin R

    2002-06-01

    Recent advances in agricultural biotechnology have highlighted the need for experimental evidence and sound scientific judgment to assess the benefits and risks to society. Nutrition scientists and other animal biologists need a balanced understanding of the issues to participate in this assessment. To date most modifications to crop plants have benefited producers. Crops have been engineered to decrease pesticide and herbicide usage, protect against stressors, enhance yields and extend shelf life. Beyond the environmental benefits of decreased pesticide and herbicide application, consumers stand to benefit by development of food crops with increased nutritional value, medicinal properties, enhanced taste and esthetic appeal. There remains concern that these benefits come with a cost to the environment or increased risk to the consumer. Most U.S. consumers are not aware of the extent that genetically modified foods have entered the marketplace. Consumer awareness of biotechnology seems to have increased over the last decade, yet most consumers remain confused over the science. Concern over the impact on the safety of the food supply remains low in the United States, but is substantially elevated in Europe. Before a genetically engineered crop is introduced into commerce it must pass regulatory scrutiny by as many as four different federal regulatory bodies to ensure a safe food supply and minimize the risk to the environment. Key areas for more research are evaluation of the nutritional benefits of new crops, further investigation of the environmental impact, and development of better techniques to identify and track genetically engineered products.

  5. The Leading Role of Governments in Promoting Chinese Agricultural Clean Production

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    On the basis of summarizing agricultural clean production,the theoretical basis of the leading role displayed by the government in promoting agricultural clean production is expounded.The characteristics of agricultural products,such as the hidden environment quality of agricultural production,spillover of profits and the benefits,make governments to display the leading role in promoting agricultural clean production at the primary stage in particular.The restrictive factors in promoting Chinese agricultural clean production are put forward,which include idea restriction,technology restriction,talent restriction,economic restriction and policy restriction.Countermeasures which should be adopted by governments on promoting Chinese agricultural clean production are put forward.Firstly,the laws and regulations for promoting agricultural clean production should be established and perfected gradually;secondly,the evaluation system for agricultural clean production should be established;thirdly,the promotion on agricultural clean production should be intensified;fourthly,the practical technologies and applications of agricultural clean production should be guided;fifthly,the industrialized operation of ecological agriculture should be vigorously promoted.

  6. Biotechnological production of fucosylated human milk oligosaccharides: Prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems.

    Science.gov (United States)

    Petschacher, Barbara; Nidetzky, Bernd

    2016-10-10

    Human milk oligosaccharides (HMOs) constitute a class of complex carbohydrates unique to mother's milk and are strongly correlated to the health benefits of breastfeeding in infants. HMOs are important as functional ingredients of advanced infant formula and have attracted broad interest for use in health-related human nutrition. About 50% of the HMOs structures contain l-fucosyl residues, which are introduced into nascent oligosaccharides by enzymatic transfer from GDP-l-fucose. To overcome limitation in the current availability of fucosylated HMOs, biotechnological approaches for their production have been developed. Functional expression of the fucosyltransferase(s) and effective supply of GDP-l-fucose, respectively, are both bottlenecks of the biocatalytic routes of synthesis. Strategies of in vitro and in vivo production of fucosylated HMOs are reviewed here. Besides metabolic engineering for enhanced HMO production in whole cells, the focus is on the characteristics and the heterologous overexpression of prokaryotic α1,2- and α1,3/4-fucosyltransferases. Up to 20g/L of fucosylated HMOs were obtained in optimized production systems. Optimized expression enabled recovery of purified fucosyltransferases in a yield of up to 45mg/L culture for α1,2-fucosyltransferases and of up to 200mg protein/L culture for α1,3/4-fucosyltransferases.

  7. A Hierarchical Framework of New Product Development: An Example from Biotechnology

    NARCIS (Netherlands)

    Furrer, O.F.G.; Alexandre, M.T.; Sudharshan, D.

    2003-01-01

    Many new products are based on new technologies, which may in turn be based on new scientific discoveries. The extant literature on new product development has focused on how a firm may successfully commercialize new products. There is a corporate cost associated with new product failure, which

  8. A Hierarchical Framework of New Product Development: An Example from Biotechnology

    NARCIS (Netherlands)

    Furrer, O.F.G.; Alexandre, M.T.; Sudharshan, D.

    2003-01-01

    Many new products are based on new technologies, which may in turn be based on new scientific discoveries. The extant literature on new product development has focused on how a firm may successfully commercialize new products. There is a corporate cost associated with new product failure, which exte

  9. An Analysis of Current Energy Consumption in China’s Agricultural Production

    Institute of Scientific and Technical Information of China (English)

    Xia; ZHANG; Zongshou; CAI; Lihong; CHEN; Dezheng; ZHANG; Zhe; ZHANG

    2015-01-01

    Energy consumption is one of the important symbols of modern agriculture,and it is also an important input in modern agricultural production. The study on the agricultural energy consumption not only has a positive significance to agricultural energy saving,emission reduction and ecological environment protection,but also can greatly reduce the cost of agricultural production and improve the economic benefit of farmers. Through the analysis of the national statistical data about energy consumption for agriculture production from 2005 to 2012 year,the results show that the amount of energy consumption for agricultural production in China has increased year by year since 2005. Because of the continued growth of the total energy consumption in China,the proportion of energy consumption for agricultural production to the total energy consumption of China has declined slightly since 2005. At present,the energy consumption structure for agricultural production in China is diesel fuel,coal,electric power,gasoline,and indirect energy consumption. With the rapid development of the agricultural technology in recent years,the total agricultural output value in China has increased greatly,the direct and indirect agricultural energy consumption per unit of agricultural output value in China has decreased year by year,and the efficiency of energy consumption for agricultural production has increased consequently.

  10. The Estimation Methods for Agricultural Surplus Labor Based on Stochastic Frontier Production Function

    Institute of Scientific and Technical Information of China (English)

    Chaozhou; LU; Yanfen; LUO

    2014-01-01

    The existing calculation methods for the number of agricultural surplus labor have a common flaw,that is,they can not reflect the impact of technical efficiency changes in agricultural production on the surplus labor. Based on the basic principle of stochastic frontier production function,this paper calculates the agricultural production technical efficiency of various provinces,and selects the province with the highest technical efficiency to assume that its agricultural labor is fully utilized,and there is no agricultural surplus labor. With the ratio of agricultural labor number to agricultural output value in this province as a reference,this paper calculates the number of agricultural surplus labor in other provinces. This calculation method makes up for the shortcomings of the existing calculation methods; it reflects the relationship between the number of agricultural surplus labor and production technical efficiency.

  11. Agave biotechnology: an overview.

    Science.gov (United States)

    Nava-Cruz, Naivy Y; Medina-Morales, Miguel A; Martinez, José L; Rodriguez, R; Aguilar, Cristóbal N

    2015-01-01

    Agaves are plants of importance both in Mexican culture and economy and in other Latin-American countries. Mexico is reported to be the place of Agave origin, where today, scientists are looking for different industrial applications without compromising its sustainability and preserving the environment. To make it possible, a deep knowledge of all aspects involved in production process, agro-ecological management and plant biochemistry and physiology is required. Agave biotechnology research has been focusing on bio-fuels, beverages, foods, fibers, saponins among others. In this review, we present the advances and challenges of Agave biotechnology.

  12. Theoretical Application of Supervision over Quality and Safety of Agricultural Products

    Institute of Scientific and Technical Information of China (English)

    Xin; CHENG; Ying; ZHANG

    2013-01-01

    Supervision over quality and safety of agricultural products has received high attention of management department.Competent authorities have formulated and issued many measures to strengthen supervision over quality and safety of agricultural products and improve China’s agricultural product quality and safety level.From the perspective of management science,this paper elaborates basic contents of two basic management theories,Broken Windows Effect and Effect of Heat Furnace.Then,it analyzes influence of Broken Windows Effect and Effect of Heat Furnace on supervision over quality and safety of agricultural products.Finally,it comes up with recommendations for supervision over quality and safety of agricultural products.

  13. Development of Agricultural Product Logistics from the Perspective of the 4PL

    Institute of Scientific and Technical Information of China (English)

    Alex; Wuya; ZHONG; Wei; YAN

    2013-01-01

    From the perspective of the Fourth Party Logistics(4PL),this paper elaborates the concept,background and development plight of agricultural products logistics,advises developing 4PL under the background of rapid development of agricultural products and logistics,etc.and explores issues of information,efficiency and supervision of agricultural products logistics,draws the conclusion that only construct an 4PL agricultural products logistics system can alleviate the aporia of cost,and speed the efficiency of China’s agricultural products logistics.

  14. Game Analysis and Countermeasures on Increasing Prices of Agricultural Products under Triple Supply Chain

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    From the perspective of supply chain of agricultural products,by establishing Stackelberg game model based on triple supply chain,this paper researches the price formation and profit distribution mechanism of agricultural products under circumstance of non-cooperation and cooperation.The results show the main factors responsible for the hiking of prices of agricultural products as follows:the cost of agricultural products climbs incessantly;the circulation cost hovers at high level;the factor inputs of agricultural products are short;inflation pressure is incessantly mounting;the profit distribution of supply chain is irrational.Finally,corresponding countermeasures are put forward.

  15. Biotechnological Innovations in Aquaculture

    Directory of Open Access Journals (Sweden)

    Mangesh M. Bhosale

    2016-04-01

    Full Text Available Aquaculture is gaining commendable importance to meet the required protein source for ever increasing human population. The aquaculture industry is currently facing problems on developing economically viable production systems by reducing the impact on environment. Sustainable and enhanced fish production from aquaculture may be better achieved through application of recent biotechnological innovations. Utilisation of transgenic technology has led to production of fishes with faster growth rate with disease resistance. The full advantage of this technology could not be achieved due to concern of acceptance for Genetically Modified Organisms (GMOs. The biotechnological intervention in developing plant based feed ingredient in place of fish meal which contain high phosphorus is of prime area of attention for fish feed industry. The replacement of fish meal will also reduce fish feed cost to a greater extent. Year round fish seed production of carps through various biotechnological interventions is also need of the hour. This paper discusses technical, environmental and managerial considerations regarding the use of these biotechnological tools in aquaculture along with the advantages of research application and its commercialization.

  16. Fluctuations in the futures market for agricultural products

    Directory of Open Access Journals (Sweden)

    Anna Szczepańska-Przekota

    2017-07-01

    Full Text Available Futures contracts are an important element in the market economy. The range of their use is quite wide, they may be an element of price risk management of agricultural production, so called hedging, but also the object of investment of free cash flows and financial speculation. Identifying the process of contract pricing is in this context a key factor for the success of investment activities. The paper attempts to describe fluctuations of ten futures contracts on agricultural products from the US market. Data series come from the years 1975–2016. Series of trading contracts are decomposed in terms of trends and cyclical components. The aim of the study is to assess the possibility of forecasting cyclical components. Harmonic analysis is used for the description and prediction of cyclical components. The effectiveness of predictions has been studied using fractions tests and Pearson correlation coefficient. The results show that the observation of past fluctuations may help to improve investments. Due to the irregular component, it is important to compare the results of predictions obtained from technical models with estimates obtained from the models that take account of fundamental variables.

  17. Fuel gas production from animal and agricultural residues and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Wise, D. L; Wentworth, R. L

    1978-05-30

    Progress was reported by all contractors. Topics presented include: solid waste to methane gas; pipeline fuel gas from an environmental cattle feed lot; heat treatment of organics for increasing anaerobic biodegradability; promoting faster anaerobic digestion; permselective membrane control of algae and wood digesters for increased production and chemicals recovery; anaerobic fermentation of agricultural residues; pilot plant demonstration of an anaerobic, fixed-film bioreactor for wastewater treatment; enhancement of methane production in the anaerobic diegestion of sewage; evaluation of agitation concepts for biogasification of sewage sludge; operation of a 50,000 gallon anaerobic digester; biological conversion of biomass to methane; dirt feedlot residue experiments; anaerobic fermentation of livestock and crop residues; current research on methanogenesis in Europe; and summary of EPA programs in digestion technology. (DC)

  18. Biotechnology of marine fungi.

    Science.gov (United States)

    Damare, Samir; Singh, Purnima; Raghukumar, Seshagiri

    2012-01-01

    Filamentous fungi are the most widely used eukaryotes in industrial and pharmaceutical applications. Their biotechnological uses include the production of enzymes, vitamins, polysaccharides, pigments, lipids and others. Marine fungi are a still relatively unexplored group in biotechnology. Taxonomic and habitat diversity form the basis for exploration of marine fungal biotechnology. This review covers what is known of the potential applications of obligate and marine-derived fungi obtained from coastal to the oceanic and shallow water to the deep-sea habitats. Recent studies indicate that marine fungi are potential candidates for novel enzymes, bioremediation, biosurfactants, polysaccharides, polyunsaturated fatty acids and secondary metabolites. Future studies that focus on culturing rare and novel marine fungi, combined with knowledge of their physiology and biochemistry will provide a firm basis for marine mycotechnology.

  19. Elicitation, an Effective Strategy for the Biotechnological Production of Bioactive High-Added Value Compounds in Plant Cell Factories

    Directory of Open Access Journals (Sweden)

    Karla Ramirez-Estrada

    2016-02-01

    Full Text Available Plant in vitro cultures represent an attractive and cost-effective alternative to classical approaches to plant secondary metabolite (PSM production (the “Plant Cell Factory” concept. Among other advantages, they constitute the only sustainable and eco-friendly system to obtain complex chemical structures biosynthesized by rare or endangered plant species that resist domestication. For successful results, the biotechnological production of PSM requires an optimized system, for which elicitation has proved one of the most effective strategies. In plant cell cultures, an elicitor can be defined as a compound introduced in small concentrations to a living system to promote the biosynthesis of the target metabolite. Traditionally, elicitors have been classified in two types, abiotic or biotic, according to their chemical nature and exogenous or endogenous origin, and notably include yeast extract, methyl jasmonate, salicylic acid, vanadyl sulphate and chitosan. In this review, we summarize the enhancing effects of elicitors on the production of high-added value plant compounds such as taxanes, ginsenosides, aryltetralin lignans and other types of polyphenols, focusing particularly on the use of a new generation of elicitors such as coronatine and cyclodextrins.

  20. The importance of fermentative conditions for the biotechnological production of lignin modifying enzymes from white-rot fungi.

    Science.gov (United States)

    Martani, Francesca; Beltrametti, Fabrizio; Porro, Danilo; Branduardi, Paola; Lotti, Marina

    2017-07-06

    White-rot fungi are the main natural producers of lignin-modifying enzymes, i.e. laccases and peroxidases, whose secretion and activity allows the depolymerization of lignin and the release of polysaccharides contained in lignocellulose. These enzymes are able to oxidize, in addition to lignin, a wide spectrum of natural and synthetic substrates, making their industrial and biotechnological application appealing. However, the complex regulation of the synthesis of lignin-modifying enzymes, as well as the heterogeneous physiology of fungi in response to nutrients, makes the use of white-rot fungi as production platforms challenging. Finally, yet importantly, analytical methods are not fully standardized, making evaluations and comparisons ambiguous. Consequently, robust and cost-effective fermentative processes for the production of lignin-modifying enzymes by fungi have not yet been fully established, limiting their industrial exploitation. In this review, we describe the importance of both the media composition and the fermentative conditions for leveraging the fungal potential in terms of production titer and enzymatic biodiversity of lignin-modifying enzymes. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.