WorldWideScience

Sample records for agn outflow feedback

  1. AGN feedback in action? - outflows and star formation in type 2 AGNs

    Science.gov (United States)

    Woo, Jong-Hak

    2017-01-01

    We present the statistical constraints on the ionized gas outflows and their connection to star formation, using a large sample of ~110,000 AGNs and star-forming galaxies at z dispersion of star forming galaxies can be entirely accounted by the gravitational potential of host galaxies, AGNs clearly show non-gravitational kinematics, which is comparable to or stronger than the virial motion caused by the gravitational potential. Second, the distribution in the [OIII] velocity - velocity dispersion diagram dramatically expands toward large values with increasing AGN luminosity, implying that the outflows are AGN-driven. Third, the fraction of AGNs with a signature of outflow kinematics, steeply increases with AGN luminosity and Eddington ratio. In particular, the majority of luminous AGNs presents strong non-gravitational kinematics in the [OIII] profile. Interestingly, we find that the specific star formation of non-outflow AGNs is much lower than that of strong outflow AGNs, while the star formation rate of strong outflow AGNs is comparable to that of star forming galaxies. We interpret this trend as a delayed AGN feedback as it takes dynamical time for the outflows to suppress star formation in galactic scales.

  2. Delayed or No Feedback? Gas Outflows in Type 2 AGNs. III

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Jong-Hak; Son, Donghoon; Bae, Hyun-Jin, E-mail: woo@astro.snu.ac.kr, E-mail: hjbae@galaxy.yonsei.ac.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2017-04-20

    We present gas kinematics based on the [O iii] λ 5007 line and their connection to galaxy gravitational potential, active galactic nucleus (AGN) energetics, and star formation, using a large sample of ∼110,000 AGNs and star-forming (SF) galaxies at z < 0.3. Gas and stellar velocity dispersions are comparable to each other in SF galaxies, indicating that the ionized gas kinematics can be accounted by the gravitational potential of host galaxies. In contrast, AGNs clearly show non-gravitational kinematics, which is comparable to or stronger than the virial motion caused by the gravitational potential. The [O iii] velocity–velocity dispersion (VVD) diagram dramatically expands toward high values as a function of AGN luminosity, implying that the outflows are AGN-driven, while SF galaxies do not show such a trend. We find that the fraction of AGNs with a signature of outflow kinematics, steeply increases with AGN luminosity and Eddington ratio. In particular, the majority of luminous AGNs presents strong non-gravitational kinematics in the [O iii] profile. AGNs with strong outflow signatures show on average similar specific star formation rates (sSFRs) to those of star-forming galaxies. In contrast, AGNs with weak or no outflows have an order of magnitude lower sSFRs, suggesting that AGNs with current strong outflows do now show any negative AGN feedback and that it may take dynamical time to impact on star formation over galactic scales.

  3. GAS OUTFLOWS IN SEYFERT GALAXIES: EFFECTS OF STAR FORMATION VERSUS AGN FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Melioli, C.; Pino, E. M. de Gouveia Dal, E-mail: claudio.melioli@iag.usp.br, E-mail: dalpino@iag.usp.br [Department of Astronomy (IAG-USP), University of Sao Paulo (Brazil)

    2015-10-20

    Large-scale, weakly collimated outflows are very common in galaxies with large infrared luminosities. In complex systems in particular, where intense star formation (SF) coexists with an active galactic nucleus (AGN), it is not clear yet from observations whether the SF, the AGN, or both are driving these outflows. Accreting supermassive black holes are expected to influence their host galaxies through kinetic and radiative feedback processes, but in a Seyfert galaxy, where the energy emitted in the nuclear region is comparable to that of the body of the galaxy, it is possible that stellar activity is also playing a key role in these processes. In order to achieve a better understanding of the mechanisms driving the gas evolution especially at the nuclear regions of these galaxies, we have performed high-resolution three-dimensional hydrodynamical simulations with radiative cooling considering the feedback from both SF regions, including supernova (Type I and II) explosions and an AGN jet emerging from the central region of the active spiral galaxy. We computed the gas mass lost by the system, separating the role of each of these injection energy sources on the galaxy evolution, and found that at scales within 1 kpc an outflow can be generally established considering intense nuclear SF only. The jet alone is unable to drive a massive gas outflow, although it can sporadically drag and accelerate clumps of the underlying outflow to very high velocities.

  4. The combined effect of AGN and supernovae feedback in launching massive molecular outflows in high-redshift galaxies

    Science.gov (United States)

    Biernacki, Pawel; Teyssier, Romain

    2018-04-01

    We have recently improved our model of active galactic nucleus (AGN) by attaching the supermassive black hole (SMBH) to a massive nuclear star cluster (NSC). Here, we study the effects of this new model in massive, gas-rich galaxies with several simulations of different feedback recipes with the hydrodynamics code RAMSES. These simulations are compared to a reference simulation without any feedback, in which the cooling halo gas is quickly consumed in a burst of star formation. In the presence of strong supernovae (SN) feedback, we observe the formation of a galactic fountain that regulates star formation over a longer period, but without halting it. If only AGN feedback is considered, as soon as the SMBH reaches a critical mass, strong outflows of hot gas are launched and prevent the cooling halo gas from reaching the disc, thus efficiently halting star formation, leading to the so-called `quenching'. If both feedback mechanisms act in tandem, we observe a non-linear coupling, in the sense that the dense gas in the supernovae-powered galactic fountain is propelled by the hot outflow powered by the AGN at much larger radii than without AGN. We argue that these particular outflows are able to unbind dense gas from the galactic halo, thanks to the combined effect of SN and AGN feedback. We speculate that this mechanism occurs at the end of the fast growing phase of SMBH, and is at the origin of the dense molecular outflows observed in many massive high-redshift galaxies.

  5. The energetics of AGN radiation pressure-driven outflows

    Science.gov (United States)

    Ishibashi, W.; Fabian, A. C.; Maiolino, R.

    2018-05-01

    The increasing observational evidence of galactic outflows is considered as a sign of active galactic nucleus (AGN) feedback in action. However, the physical mechanism responsible for driving the observed outflows remains unclear, and whether it is due to momentum, energy, or radiation is still a matter of debate. The observed outflow energetics, in particular the large measured values of the momentum ratio (\\dot{p}/(L/c) ˜ 10) and energy ratio (\\dot{E}_k/L ˜ 0.05), seems to favour the energy-driving mechanism; and most observational works have focused their comparison with wind energy-driven models. Here, we show that AGN radiation pressure on dust can adequately reproduce the observed outflow energetics (mass outflow rate, momentum flux, and kinetic power), as well as the scalings with luminosity, provided that the effects of radiation trapping are properly taken into account. In particular, we predict a sublinear scaling for the mass outflow rate (\\dot{M} ∝ L^{1/2}) and a superlinear scaling for the kinetic power (\\dot{E}_k ∝ L^{3/2}), in agreement with the observational scaling relations reported in the most recent compilation of AGN outflow data. We conclude that AGN radiative feedback can account for the global outflow energetics, at least equally well as the wind energy-driving mechanism, and therefore both physical models should be considered in the interpretation of future AGN outflow observations.

  6. Negative and Positive Outflow-Feedback in Nearby (U)LIRGs

    Energy Technology Data Exchange (ETDEWEB)

    Cazzoli, Sara, E-mail: sara@iaa.es [Instituto de Astrofisica de Andalucia (CSIC), Granada (Spain)

    2017-12-15

    The starburst-AGN coexistence in local (U)LIRGs makes these galaxies excellent laboratories for the study of stellar and AGN outflows and feedback. Outflows regulate star formation and AGN activity, redistributing gas, dust and metals over large scales in the interstellar and intergalactic media (negative feedback) being also considered to be able to undergo vigorous star formation (positive feedback). In this contribution, I will summarize the results from a search for outflows in a sample of nearby 38 local (U)LIRG systems observed with VIMOS/VLT integral field unit. For two galaxies of the sample I will detail the outflow properties and discuss the observational evidence for negative and positive outflow-feedback. The assessment of both negative and positive feedback effects represent a novel approach toward a comprehensive understanding of the impact of outflow feedback in the galaxy evolution.

  7. Outflow Kinematics Manifested by the Hα Line: Gas Outflows in Type 2 AGNs. IV

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Daeun; Woo, Jong-Hak; Bae, Hyun-Jin, E-mail: woo@astro.snu.ac.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2017-08-20

    Energetic ionized gas outflows driven by active galactic nuclei (AGNs) have been studied as a key phenomenon related to AGN feedback. To probe the kinematics of the gas in the narrow-line region, [O iii] λ 5007 has been utilized in a number of studies showing nonvirial kinematic properties due to AGN outflows. In this paper, we statistically investigate whether the H α emission line is influenced by AGN-driven outflows by measuring the kinematic properties based on the H α line profile and comparing them with those of [O iii]. Using the spatially integrated spectra of ∼37,000 Type 2 AGNs at z < 0.3 selected from the Sloan Digital Sky Survey DR7, we find a nonlinear correlation between H α velocity dispersion and stellar velocity dispersion that reveals the presence of the nongravitational component, especially for AGNs with a wing component in H α . The large H α velocity dispersion and velocity shift of luminous AGNs are clear evidence of AGN outflow impacts on hydrogen gas, while relatively smaller kinematic properties compared to those of [O iii] imply that the observed outflow effect on the H α line is weaker than the case of [O iii].

  8. Dissecting the Butterfly: Dual Outflows in the Dual AGN NGC 6240

    Science.gov (United States)

    Mueller Sanchez, Francisco; Comerford, Julie; Nevin, Rebecca; Davies, Richard; Treister, Ezequiel; Privon, George

    2018-01-01

    Current theories of galaxy evolution invoke some kind of feedback (from the stars or the supermassive black hole) to explain the properties of galaxies. However, numerical simulations and observations have not been able to evaluate the real impact of feedback in galaxies. This is largely because most studies have focused on studying stellar feedback or AGN feedback alone, instead of considering the combined effect of both. In fact, this is an unexplored territory for observations due to the difficulty of separating the contribution from the two sources.In this contribution I present the discovery of a dual outflow of different species of gas in the prototypical merging galaxy NGC 6240 using HST imaging, long-slit and integral-eld spectroscopy: an AGN-driven outflow of highly-ionized gas to the northeast and a starburst-driven outflow of ionized hydrogen to the northwest. The AGN outflow extends up to 4 kpc along a position angle of 56 degrees, has a conical shape with an opening angle of 52 degrees and a maximum line-of-sight velocity of 350 km/s. The WFC3 images also reveal a bubble of Halpha emission in the northwest, which has no counterpart in [O III], consistent with a scenario in which the starburst is ionizing and driving outflowing winds which inflate the bubble at an expansion velocity of 380 km/s. Assuming a spherical geometry for the starburst-driven bubble and a conical geometry for the AGN-driven outflow, we estimate mass outflow rates of 26 Msun/yr and 62 Msun/yr, respectively. We conclude that the AGN contribution to the evolution of the merger remnant and the formation of outflowing winds is signicant in the central 5 kpc of NGC 6240.

  9. Fading AGN Candidates: AGN Histories and Outflow Signatures

    International Nuclear Information System (INIS)

    Keel, William C.; Maksym, W. Peter; Lintott, Chris J.; Bennert, Vardha N.; Scott, Bryan; Showley, Charles; Flatland, Kelsi; Chojnowski, S. Drew; Moiseev, Alexei; Smirnova, Aleksandrina; Schawinski, Kevin; Sartori, Lia F.; Urry, C. Megan; Pancoast, Anna; Schirmer, Mischa

    2017-01-01

    We consider the energy budgets and radiative history of eight fading active galactic nuclei (AGNs), identified from an energy shortfall between the requirements to ionize very extended (radius > 10 kpc) ionized clouds and the luminosity of the nucleus as we view it directly. All show evidence of significant fading on timescales of ≈50,000 yr. We explore the use of minimum ionizing luminosity Q ion derived from photoionization balance in the brightest pixels in H α at each projected radius. Tests using presumably constant Palomar–Green QSOs, and one of our targets with detailed photoionization modeling, suggest that we can derive useful histories of individual AGNs, with the caveat that the minimum ionizing luminosity is always an underestimate and subject to uncertainties about fine structure in the ionized material. These consistency tests suggest that the degree of underestimation from the upper envelope of reconstructed Q ion values is roughly constant for a given object and therefore does not prevent such derivation. The AGNs in our sample show a range of behaviors, with rapid drops and standstills; the common feature is a rapid drop in the last ≈2×10 4 yr before the direct view of the nucleus. The e -folding timescales for ionizing luminosity are mostly in the thousands of years, with a few episodes as short as 400 yr. In the limit of largely obscured AGNs, we find additional evidence for fading from the shortfall between even the lower limits from recombination balance and the maximum luminosities derived from far-infrared fluxes. We compare these long-term light curves, and the occurrence of these fading objects among all optically identified AGNs, to simulations of AGN accretion; the strongest variations over these timespans are seen in models with strong and local (parsec-scale) feedback. We present Gemini integral-field optical spectroscopy, which shows a very limited role for outflows in these ionized structures. While rings and loops of emission

  10. Fading AGN Candidates: AGN Histories and Outflow Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Keel, William C.; Maksym, W. Peter [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Lintott, Chris J. [Astrophysics, Oxford University and Adler Planetarium, 1300 S. Lakeshore Drive, Chicago, IL 60605 (United States); Bennert, Vardha N.; Scott, Bryan; Showley, Charles; Flatland, Kelsi [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States); Chojnowski, S. Drew [Department of Astronomy, New Mexico State University, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003-8001 (United States); Moiseev, Alexei; Smirnova, Aleksandrina [Special Astrophysical Observatory, Russian Academy of Sciences, Nizhny Arkhyz, 369167 (Russian Federation); Schawinski, Kevin; Sartori, Lia F. [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-Straße 27, CH-8093 Zurich (Switzerland); Urry, C. Megan [Department of Physics, Yale University, P.O. Box 208120, New Haven, CT 06520-8120 (United States); Pancoast, Anna [Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Schirmer, Mischa, E-mail: wkeel@ua.edu [Gemini Observatory, La Serena (Chile)

    2017-02-01

    We consider the energy budgets and radiative history of eight fading active galactic nuclei (AGNs), identified from an energy shortfall between the requirements to ionize very extended (radius > 10 kpc) ionized clouds and the luminosity of the nucleus as we view it directly. All show evidence of significant fading on timescales of ≈50,000 yr. We explore the use of minimum ionizing luminosity Q {sub ion} derived from photoionization balance in the brightest pixels in H α at each projected radius. Tests using presumably constant Palomar–Green QSOs, and one of our targets with detailed photoionization modeling, suggest that we can derive useful histories of individual AGNs, with the caveat that the minimum ionizing luminosity is always an underestimate and subject to uncertainties about fine structure in the ionized material. These consistency tests suggest that the degree of underestimation from the upper envelope of reconstructed Q {sub ion} values is roughly constant for a given object and therefore does not prevent such derivation. The AGNs in our sample show a range of behaviors, with rapid drops and standstills; the common feature is a rapid drop in the last ≈2×10{sup 4} yr before the direct view of the nucleus. The e -folding timescales for ionizing luminosity are mostly in the thousands of years, with a few episodes as short as 400 yr. In the limit of largely obscured AGNs, we find additional evidence for fading from the shortfall between even the lower limits from recombination balance and the maximum luminosities derived from far-infrared fluxes. We compare these long-term light curves, and the occurrence of these fading objects among all optically identified AGNs, to simulations of AGN accretion; the strongest variations over these timespans are seen in models with strong and local (parsec-scale) feedback. We present Gemini integral-field optical spectroscopy, which shows a very limited role for outflows in these ionized structures. While rings and

  11. Multi-phase outflows as probes of AGN accretion history

    Science.gov (United States)

    Nardini, Emanuele; Zubovas, Kastytis

    2018-05-01

    Powerful outflows with a broad range of properties (such as velocity, ionization, radial scale and mass loss rate) represent a key feature of active galactic nuclei (AGN), even more so since they have been simultaneously revealed also in individual objects. Here we revisit in a simple analytical framework the recent remarkable cases of two ultraluminous infrared quasars, IRAS F11119+3257 and Mrk 231, which allow us to investigate the physical connection between multi-phase AGN outflows across the ladder of distance from the central supermassive black hole (SMBH). We argue that any major deviations from the standard outflow propagation models might encode unique information on the past SMBH accretion history, and briefly discuss how this could help address some controversial aspects of the current picture of AGN feedback.

  12. AGN feedback compared: jets versus radiation

    Science.gov (United States)

    Cielo, Salvatore; Bieri, Rebekka; Volonteri, Marta; Wagner, Alexander Y.; Dubois, Yohan

    2018-06-01

    Feedback by active galactic nuclei (AGNs) is often divided into quasar and radio mode, powered by radiation or radio jets, respectively. Both are fundamental in galaxy evolution, especially in late-type galaxies, as shown by cosmological simulations and observations of jet-ISM (interstellar medium) interactions in these systems. We compare AGN feedback by radiation and by collimated jets through a suite of simulations, in which a central AGN interacts with a clumpy, fractal galactic disc. We test AGNs of 1043 and 1046 erg s-1, considering jets perpendicular or parallel to the disc. Mechanical jets drive the more powerful outflows, exhibiting stronger mass and momentum coupling with the dense gas, while radiation heats and rarefies the gas more. Radiation and perpendicular jets evolve to be quite similar in outflow properties and effect on the cold ISM, while inclined jets interact more efficiently with all the disc gas, removing the densest 20 {per cent} in 20 Myr, and thereby reducing the amount of cold gas available for star formation. All simulations show small-scale inflows of 0.01-0.1 M⊙ yr-1, which can easily reach down to the Bondi radius of the central supermassive black hole (especially for radiation and perpendicular jets), implying that AGNs modulate their own duty cycle in a feedback/feeding cycle.

  13. UNRAVELLING THE COMPLEX STRUCTURE OF AGN-DRIVEN OUTFLOWS. II. PHOTOIONIZATION AND ENERGETICS

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Woo, Jong-Hak [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Bae, Hyun-Jin, E-mail: woo@astro.snu.ac.kr [Department of Astronomy and Center for Galaxy EVolution Research, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2016-12-20

    Outflows have been shown to be prevalent in galaxies hosting luminous active galactic nuclei (AGNs); they present a physically plausible way to couple the AGN energy output with the interstellar medium of their hosts. Despite their prevalence, accurate characterization of these outflows has been challenging. In the second of a series of papers, we use Gemini Multi-Object Spectrograph integral field unit (IFU) data of six local ( z  < 0.1) and moderate-luminosity Type 2 AGNs to study the ionization properties and energetics of AGN-driven outflows. We find strong evidence connecting the extreme kinematics of the ionized gas to the AGN photoionization. The kinematic component related to the AGN-driven outflow is clearly separated from other kinematic components, such as virial motions or rotation, on the velocity and velocity dispersion diagram. Our spatially resolved kinematic analysis reveals that 30 to 90% of the total mass and kinetic energy of the outflow is contained within the central kpc of the galaxy. The spatially integrated mass and kinetic energy of the gas entrained in the outflow correlate well with the AGN bolometric luminosity and results in energy conversion efficiencies between 0.01% and 1%. Intriguingly, we detect ubiquitous signs of ongoing circumnuclear star formation. Their small size, the centrally contained mass and energy, and the universally detected circumnuclear star formation cast doubts on the potency of these AGN-driven outflows as agents of galaxy-scale negative feedback.

  14. AGN Feedback Compared: Jets versus Radiation

    Science.gov (United States)

    Cielo, Salvatore; Bieri, Rebekka; Volonteri, Marta; Wagner, Alexander Y.; Dubois, Yohan

    2018-03-01

    Feedback by Active Galactic Nuclei is often divided into quasar and radio mode, powered by radiation or radio jets, respectively. Both are fundamental in galaxy evolution, especially in late-type galaxies, as shown by cosmological simulations and observations of jet-ISM interactions in these systems. We compare AGN feedback by radiation and by collimated jets through a suite of simulations, in which a central AGN interacts with a clumpy, fractal galactic disc. We test AGN of 1043 and 1046 erg/s, considering jets perpendicular or parallel to the disc. Mechanical jets drive the more powerful outflows, exhibiting stronger mass and momentum coupling with the dense gas, while radiation heats and rarifies the gas more. Radiation and perpendicular jets evolve to be quite similar in outflow properties and effect on the cold ISM, while inclined jets interact more efficiently with all the disc gas, removing the densest 20% in 20 Myr, and thereby reducing the amount of cold gas available for star formation. All simulations show small-scale inflows of 0.01 - 0.1 M⊙/yr, which can easily reach down to the Bondi radius of the central supermassive black hole (especially for radiation and perpendicular jets), implying that AGN modulate their own duty cycle in a feedback/feeding cycle.

  15. HOW DOES RADIO AGN FEEDBACK FEED BACK?

    International Nuclear Information System (INIS)

    De Young, David S.

    2010-01-01

    The possible role of radio active galactic nucleus (AGN) 'feedback' in conventional hierarchical cosmological models has become widely discussed. This paper examines some of the details of how such feedback might work. A basic requirement is the conversion of radio AGN outflow energy into heating of the circumgalactic medium in a time comparable to the relevant cooling times. First, the class of radio AGN relevant to this process is identified as FR-I radio sources. Second, it is argued via comparisons with experimental data that these AGN outflows are strongly decelerated and become fully turbulent sonic or subsonic flows due to their interaction with the surrounding medium. Using this, a three-dimensional time-dependent calculation of the evolution of such turbulent magnetohydrodynamic flows is made to determine the time scale required for conversion of the turbulent energy into heat. This calculation, when coupled with observational data, suggests that the onset of heating can occur ∼10 8 yr after the fully turbulent flow is established, and this time is less than or comparable to the local cooling times in the interstellar or circumgalactic medium for many of these objects. The location of where heat deposition occurs remains uncertain, but estimates of outflow speeds suggest that heating may occur many tens of kpc from the center of the parent galaxy. Recent observations suggest that such radio AGN outflows may become dispersed on much larger scales than previously thought, thus possibly satisfying the requirement that heating occurs over a large fraction of the volume occupied by the circumgalactic gas.

  16. Ultrafast Outflows: Galaxy-scale Active Galactic Nucleus Feedback

    Science.gov (United States)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  17. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, A. Y.; Umemura, M. [Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Bicknell, G. V., E-mail: ayw@ccs.tsukuba.ac.jp [Research School of Astronomy and Astrophysics, Australian National University, ACT 2611 (Australia)

    2013-01-20

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  18. ULTRAFAST OUTFLOWS: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK

    International Nuclear Information System (INIS)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2013-01-01

    We show, using global three-dimensional grid-based hydrodynamical simulations, that ultrafast outflows (UFOs) from active galactic nuclei (AGNs) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous, hot, hydrostatic medium. The outflow floods through the intercloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically rather than in a disk. In the latter case, the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGNs, they are likely to be important in the cosmological feedback cycles of galaxy formation.

  19. AGN Feedback and Its Quenching Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Combes, Francoise, E-mail: francoise.combes@obspm.fr [Observatoire de Paris, LERMA, Centre National de la Recherche Scientifique, College de France, PSL, Sorbonne University UPMC, Paris (France)

    2017-09-21

    In the last decade, observations have accumulated on gas outflows in galaxies, and in particular massive molecular ones. The mass outflow rate is estimated between 1 and 5 times the star formation rate. For the highest maximal velocities, they are driven by AGN; these outflows are therefore a clear way to moderate or suppress star formation. Some of the most convincing examples at low redshift come from the radio mode, when the radio jets are inclined toward the galaxy plane, or expand in the hot intra-cluster medium, in cool core clusters. However, AGN feedback can also be positive in many occasions, and the net effect is difficult to evaluate. The quenching efficiency is discussed in view of recent observations.

  20. Evidence for ultrafast outflows in radio-quiet AGNs - III. Location and energetics

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.

    2012-05-01

    Using the results of a previous X-ray photoionization modelling of blueshifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this Letter we estimate the location and energetics of the associated ultrafast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval ˜0.0003-0.03 pc (˜ 102-104rs) from the central black hole, consistent with what is expected for accretion disc winds/outflows. The mass outflow rates are constrained between ˜0.01 and 1 M⊙ yr-1, corresponding to >rsim5-10 per cent of the accretion rates. The average lower/upper limits on the mechanical power are log? 42.6-44.6 erg s-1. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN cosmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyfert galaxies.

  1. AGN outflows as neutrino sources: an observational test

    Science.gov (United States)

    Padovani, P.; Turcati, A.; Resconi, E.

    2018-04-01

    We test the recently proposed idea that outflows associated with Active Galactic Nuclei (AGN) could be neutrino emitters in two complementary ways. First, we cross-correlate a list of 94 "bona fide" AGN outflows with the most complete and updated repository of IceCube neutrinos currently publicly available, assembled by us for this purpose. It turns out that AGN with outflows matched to an IceCube neutrino have outflow and kinetic energy rates, and bolometric powers larger than those of AGN with outflows not matched to neutrinos. Second, we carry out a statistical analysis on a catalogue of [O III] λ5007 line profiles using a sample of 23,264 AGN at z values (˜6 and 18 per cent respectively, pre-trial) for relatively high velocities and luminosities. Our results are consistent with a scenario where AGN outflows are neutrino emitters but at present do not provide a significant signal. This can be tested with better statistics and source stacking. A predominant role of AGN outflows in explaining the IceCube data appears in any case to be ruled out.

  2. The Many Routes to AGN Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Morganti, Raffaella, E-mail: morganti@astron.nl [ASTRON, Netherlands Institute for Radio Astronomy, Dwingeloo (Netherlands); Kapteyn Astronomical Institute, University of Groningen, Groningen (Netherlands)

    2017-11-29

    The energy released by Active Galactic Nuclei (AGN) in the form of radiation, winds, or radio plasma jets, is known to impact on the surrounding interstellar medium. The result of these processes, known as AGN (negative) feedback, is suggested to prevent gas, in and around galaxies, from cooling, and to remove, or at least redistribute, gas by driving massive and fast outflows, hence playing a key role in galaxy evolution. Given its importance, a large effort is devoted by the astronomical community to trace the effects of AGN on the surrounding gaseous medium and to quantify their impact for different types of AGN. This review briefly summarizes some of the recent observational results obtained in different wavebands, tracing different phases of the gas. I also summarize the new insights they have brought, and the constraints they provide to numerical simulations of galaxy formation and evolution. The recent addition of deep observations of cold gas and, in particular, of cold molecular gas, has brought some interesting surprises and has expanded our understanding of AGN and AGN feedback.

  3. The many routes to AGN feedback

    Science.gov (United States)

    Morganti, Raffaella

    2017-11-01

    The energy released by Active Galactic Nuclei (AGN) in the form of radiation, winds or radio plasma jets, is known to impact on the surrounding interstellar medium. The result of these processes, known as AGN (negative) feedback, is suggested to prevent gas, in and around galaxies, from cooling, and to remove, or at least redistribute, gas by driving massive and fast outflows, hence playing a key role in galaxy evolution. Given its importance, a large effort is devoted by the astronomical community to trace the effects of AGN on the surrounding gaseous medium and to quantify their impact for different types of AGN. This review briefly summarizes some of the recent observational results obtained in different wavebands, tracing different phases of the gas. I also summarise new insights they have brought, and the constraints they provide to numerical simulations of galaxy formation and evolution. The recent addition of deep observations of cold gas and, in particular, of cold molecular gas, has brought some interesting surprises and has expanded our understanding of AGN and AGN feedback.

  4. AGN Outflow Shocks on Bonnor–Ebert Spheres

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, Zachary; Silk, Joseph; Rahman, Mubdi [The Johns Hopkins University Department of Physics and Astronomy, Bloomberg Center for Physics and Astronomy, Room 366, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Gaibler, Volker [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Bieri, Rebekka [Institut d’Astrophysique de Paris, UMR 7095, CNRS, UPMC Univ. Paris VI, 98 bis Boulevard Arago, F-75014 Paris (France)

    2017-04-20

    Feedback from active galactic nuclei (AGNs) and subsequent jet cocoons and outflow bubbles can have a significant impact on star formation in the host galaxy. To investigate feedback physics on small scales, we perform hydrodynamic simulations of realistically fast AGN winds striking Bonnor–Ebert spheres and examine gravitational collapse and ablation. We test AGN wind velocities ranging from 300 to 3000 km s{sup −1} and wind densities ranging from 0.5 to 10 m {sub p} cm{sup −3}. We include heating and cooling of low- and high-temperature gas, self-gravity, and spatially correlated perturbations in the shock, with a maximum resolution of 0.01 pc. We find that the ram pressure is the most important factor that determines the fate of the cloud. High ram pressure winds increase fragmentation and decrease the star formation rate, but they also cause star formation to occur on a much shorter timescale and with increased velocities of the newly formed stars. We find a threshold ram pressure of ∼2 × 10{sup −8} dyn cm{sup −2} above which stars are not formed because the resulting clumps have internal velocities large enough to prevent collapse. Our results indicate that simultaneous positive and negative feedback will be possible in a single galaxy, as AGN wind parameters will vary with location within a galaxy.

  5. Observational Signatures Of Agn Feedback Across Cosmic Time

    Science.gov (United States)

    Wylezalek, Dominika

    2017-06-01

    While many compelling models of AGN feedback exist, there is no clear data-driven picture of how winds are launched, how they propagate through the galaxy and what impact they have on the galactic gas. Recent work suggests that AGN luminosity plays an important role. The following described projects focus on understanding the power, reach and impact of feedback processes exerted by AGN of different power. I first describe recent efforts in our group of relating feedback signatures in powerful quasars to the specific star formation rate in their host galaxies, where our results are consistent with the AGN having a `negative' impact through feedback on the galaxies' star formation history. Feedback signatures seem to be best observable in gas-rich galaxies where the coupling of the AGN-driven wind to the gas is strongest, in agreement with recent simulations. But how and where does this quenching happen? Is it accomplished through the mechanical action of jets or through nuclear winds driven by radiation pressure? Finally, I show that AGN signatures and AGN-driven winds can be easily hidden and not be apparent in the integrated spectrum of a galaxy hosting a low/intermediate-luminosity AGN. Using data from the new SDSS-IV MaNGA survey, we have developed a new AGN selection algorithm tailored to IFU data and we are uncovering a much more nuanced picture of AGN activity allowing us to discover AGN signatures at large distances from the galaxy center. This implies that large IFU surveys, such as the SDSS-IV MaNGA survey, might uncover many previously unknown AGN and feedback signatures related to them. Outflows and feedback from low- and intermediate-luminosity AGN might have been underestimated in the past but can potentially significantly contribute to the AGN/host-galaxy self-regulation.

  6. Watching AGN feedback at its birth: HST observations of nascent outflow host IC860

    Science.gov (United States)

    Alatalo, Katherine

    2016-10-01

    IC860 is a nearby IR-luminous early-type spiral with a unique set of properties: it is a shocked, poststarburst galaxy that hosts an AGN-driven neutral wind and a compact core of molecular gas. IC860 can serve as a rosetta stone for the early stages of triggering AGN feedback. We propose to use WFC3 on HST to obtain NUV, optical and near-IR imaging of IC860. We will create a spatially-resolved history of star formation quenching through SED-fitting of 7 requested broadband filters, and compare the spatially resolved star formation histories to in different positions within the underlying stellar features (such as spiral structure) that might define a narrative of how star formation is quenching in IC860. These observations will also resolve the super-star cluster sites to trace the most recent star formation. Finally, these observations will trace the mass of the outflow by building an absorption map of the dust. IC860 presents a unique opportunity to study a galaxy at an early stage of transitioning from blue spiral to red early-type galaxy, that also hosts an AGN-driven neutral wind and a compact, turbulent molecular gas core.

  7. Evidence for Ultra-Fast Outflows in Radio-Quiet AGNs: III - Location and Energetics

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.

    2012-01-01

    Using the results of a previous X-ray photo-ionization modelling of blue-shifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this letter we estimate the location and energetics of the associated ultrafast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval approx.0.0003-0.03pc (approx.10(exp 2)-10(exp 4)tau(sub s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are constrained between approx.0.01- 1 Stellar Mass/y, corresponding to approx. or >5-10% of the accretion rates. The average lower-upper limits on the mechanical power are logE(sub K) approx. or = 42.6-44.6 erg/s. However, the minimum possible value of the ratio between the mechanical power and bolometric luminosity is constrained to be comparable or higher than the minimum required by simulations of feedback induced by winds/outflows. Therefore, this work demonstrates that UFOs are indeed capable to provide a significant contribution to the AGN r.osmological feedback, in agreement with theoretical expectations and the recent observation of interactions between AGN outflows and the interstellar medium in several Seyferts galaxies .

  8. Probing the Gas Fueling and Outflows in Nearby AGN with ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Audibert, Anelise [Observatoire de Paris, LERMA, Centre National de la Recherche Scientifique, PSL University, Sorbonne University, UPMC, Paris (France); Combes, Françoise [Observatoire de Paris, LERMA, Centre National de la Recherche Scientifique, PSL University, Sorbonne University, UPMC, Paris (France); College de France, Paris (France); García-Burillo, Santiago [Observatorio Astronómico Nacional, Observatorio de Madrid, Madrid (Spain); Salomé, Philippe, E-mail: anelise.audibert@obspm.fr [Observatoire de Paris, LERMA, Centre National de la Recherche Scientifique, PSL University, Sorbonne University, UPMC, Paris (France)

    2017-12-12

    Feeding and feedback in AGN play a very important role to gain a proper understanding of galaxy formation and evolution. The interaction between activity mechanisms in the nucleus and its influence in the host galaxy are related to the physical processes involved in feedback and the gas fueling of the black hole. The discovery of many massive molecular outflows in the last few years have been promoting the idea that winds may be major actors in sweeping the gas out of galaxies. Also, the widely observed winds from the central regions of AGN are promising candidates to explain the scaling relations (e.g., the black hole-bulge mass relation, BH accretion rate tracking the star formation history) under the AGN feedback scenario. Out goal is to probe these phenomena through the kinematic and morphology of the gas inside the central kpc in nearby AGN. This has recently been possible due to the unprecedented ALMA spatial resolution and sensitivity. We present results on NGC7213 and NGC1808, the latter is part of a new ALMA follow-up of the NuGa project, a previous high-resolution (0.5–1″) CO survey of low luminosity AGN performed with the IRAM PdBI.

  9. Probing the gas fuelling and outflows in nearby AGN with ALMA

    Science.gov (United States)

    Audibert, Anelise; Combes, Françoise; García-Burillo, Santiago; Salomé, Philippe

    2017-12-01

    Feeding and feedback in AGN play a very important role to gain a proper understanding of galaxy formation and evolution. The interaction between activity mechanisms in the nucleus and its influence in the host galaxy are related to the physical processes involved in feedback and the gas fuelling of the black hole. The discovery of many massive molecular outflows in the last few years have been promoting the idea that winds may be major actors in sweeping the gas out of galaxies. Also, the widely observed winds from the central regions of AGN are promising candidates to explain the scaling relations (e.g. the black hole-bulge mass relation, BH accretion rate tracking the star formation history) under the AGN feedback scenario. Out goal is to probe these phenomena through the kinematic and morphology of the gas inside the central kpc in nearby AGN. This has recently been possible due to the unprecedented ALMA spatial resolution and sensitivity. We present results on NGC7213 and NGC1808, the latter is part of a new ALMA follow-up of the NuGa project, a previous high-resolution (0.5-1”) CO survey of low luminosity AGN performed with the IRAM PdBI.

  10. Probing the Gas Fueling and Outflows in Nearby AGN with ALMA

    Directory of Open Access Journals (Sweden)

    Anelise Audibert

    2017-12-01

    Full Text Available Feeding and feedback in AGN play a very important role to gain a proper understanding of galaxy formation and evolution. The interaction between activity mechanisms in the nucleus and its influence in the host galaxy are related to the physical processes involved in feedback and the gas fueling of the black hole. The discovery of many massive molecular outflows in the last few years have been promoting the idea that winds may be major actors in sweeping the gas out of galaxies. Also, the widely observed winds from the central regions of AGN are promising candidates to explain the scaling relations (e.g., the black hole-bulge mass relation, BH accretion rate tracking the star formation history under the AGN feedback scenario. Out goal is to probe these phenomena through the kinematic and morphology of the gas inside the central kpc in nearby AGN. This has recently been possible due to the unprecedented ALMA spatial resolution and sensitivity. We present results on NGC7213 and NGC1808, the latter is part of a new ALMA follow-up of the NuGa project, a previous high-resolution (0.5–1″ CO survey of low luminosity AGN performed with the IRAM PdBI.

  11. A simple way to improve AGN feedback prescription in SPH simulations

    Science.gov (United States)

    Zubovas, Kastytis; Bourne, Martin A.; Nayakshin, Sergei

    2016-03-01

    Active galactic nuclei (AGN) feedback is an important ingredient in galaxy evolution, however its treatment in numerical simulations is necessarily approximate, requiring subgrid prescriptions due to the dynamical range involved in the calculations. We present a suite of smoothed particle hydrodynamics simulations designed to showcase the importance of the choice of a particular subgrid prescription for AGN feedback. We concentrate on two approaches to treating wide-angle AGN outflows: thermal feedback, where thermal and kinetic energy is injected into the gas surrounding the supermassive black hole (SMBH) particle, and virtual particle feedback, where energy is carried by tracer particles radially away from the AGN. We show that the latter model produces a far more complex structure around the SMBH, which we argue is a more physically correct outcome. We suggest a simple improvement to the thermal feedback model - injecting the energy into a cone, rather than spherically symmetrically - and show that this markedly improves the agreement between the two prescriptions, without requiring any noticeable increase in the computational cost of the simulation.

  12. X-ray evidence for ultra-fast outflows in AGNs

    Science.gov (United States)

    Tombesi, Francesco; Sambruna, Rita; Braito, Valentina; Reeves, James; Reynolds, Christopher; Cappi, Massimo

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts and 5 radio galaxies observed with XMM-Newton and Suzaku. We assessed the global detection significance of the absorption lines and performed a detailed photo-ionization modeling. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1} and the associated mechanical power is high, in the range ˜10^{43}--10^{45} erg/s. Therefore, UFOs are capable to provide a significant contribution to the AGN cosmological feedback and their study can provide important clues on the connection between accretion disks, winds and jets.

  13. Formation and spatial distribution of hypervelocity stars in AGN outflows

    Science.gov (United States)

    Wang, Xiawei; Loeb, Abraham

    2018-05-01

    We study star formation within outflows driven by active galactic nuclei (AGN) as a new source of hypervelocity stars (HVSs). Recent observations revealed active star formation inside a galactic outflow at a rate of ∼ 15M⊙yr-1 . We verify that the shells swept up by an AGN outflow are capable of cooling and fragmentation into cold clumps embedded in a hot tenuous gas via thermal instabilities. We show that cold clumps of ∼ 103 M⊙ are formed within ∼ 105 yrs. As a result, stars are produced along outflow's path, endowed with the outflow speed at their formation site. These HVSs travel through the galactic halo and eventually escape into the intergalactic medium. The expected instantaneous rate of star formation inside the outflow is ∼ 4 - 5 orders of magnitude greater than the average rate associated with previously proposed mechanisms for producing HVSs, such as the Hills mechanism and three-body interaction between a star and a black hole binary. We predict the spatial distribution of HVSs formed in AGN outflows for future observational probe.

  14. Ultra-Fast Outflows in Radio-Loud AGN: New Constraints on Jet-Disk Connection

    Science.gov (United States)

    Sambruna, Rita

    There is strong observational and theoretical evidence that outflows/jets are coupled to accretion disks in black hole accreting systems, from Galactic to extragalactic sizes. While in radio-quiet AGN there is ample evidence for the presence of Ultra-Fast Outflows (UFOs) from the presence of blue-shifted absorption features in their 4-10~keV spectra, sub-relativistic winds are expected on theoretical basis in radio-loud AGN but have not been observed until now. Our recent Suzaku observations of 5 bright Broad- Line Radio Galaxies (BLRGs, the radio-loud counterparts of Seyferts) has started to change this picture. We found strong evidence for UFOs in 3 out of 5 BLRGs, with ionization parameters, column densities, and velocities of the absorber similar to Seyferts. Moreover, the outflows in BLRGs are likely to be energetically very significant: from the Suzaku data of the three sources, outflow masses similar to the accretion masses and kinetic energies of the wind similar to the X-ray luminosity and radio power of the jet are inferred. Clearly, UFOs in radio-loud AGN represent a new key ingredient to understand their central engines and in particular, the jet-disk linkage. Our discovery of UFOs in a handful of BLRGs raises the questions of how common disk winds are in radio-loud AGN, what the absorber physical and dynamical characteristics are, and what is the outflow role in broader picture of galaxy-black hole connection for radio sources, i.e., for large-scale feedback models. To address these and other issues, we propose to use archival XMM-Newton and Suzaku spectra to search for Ultra-Fast Outflows in a large number of radio sources. Over a period of two years, we will conduct a systematic, uniform analysis of the archival X-ray data, building on our extensive experience with a similar previous project for Seyferts, and using robust analysis and statistical methodologies. As an important side product, we will also obtain accurate, self- consistent measurements

  15. NGC 3393: multi-component AGN feedback as seen by CHEERS

    Science.gov (United States)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Raymond, John C.; Storchi-Bergmann, Thaisa; Paggi, Alessandro; Wang, Junfeng; Risaliti, Guido

    2017-01-01

    Due to its low density, moderate ionization, and weak kinematics, the narrow line region (NLR) of active galactic nuclei (AGN) provides poweful diagnostics for investigating AGN feedback. The CHandra Extended Emission line Region Survey (CHEERS) is the ultimate investigation into resolved feedback in the NLR. We present results from our CHEERS investigations of NGC 3393. By imaging extended X-ray line emission of NGC 3393 with Chandra and optical line emission with Hubble's narrow-band filters, we are able to map out the simultaneous impact of photoionization, jets and an AGN disk-wind. When resolved on scales of ~10s of parsecs, the NLR of NGC 3393 shows a complex multi-component medium. Diagnostic line mapping indicates a Low-ionization Emmision Line Region (LINER) cocoon surrounding the outflow-evacuated cavities (in optical) and surrounding the supports the presence of collisional plasma (in X-rays). These physically distinct constituent regions can only be resolved by the high-resolution imaging that Chandra and HST enable.

  16. The LLAMA Project: A SINFONI Study of Gas Outflows and Feeding in Local, X-ray Selected AGN

    Science.gov (United States)

    Shimizu, Thomas Taro; Davies, Richard; Burtscher, Leonard; Lin, Ming-yi

    2018-01-01

    We present new results from our survey of the inner few hundred parsecs of nearby galaxies as part of our Local Luminous AGN with Matched Analogues (LLAMA) project. AGN within the LLAMA sample were selected based on detection at ultra-hard X-rays (14-195 keV) by the Swift/Burst Alert Telescope ensuring the definitive presence of an AGN. We further imposed a redshift (z 42.5) cutoff to create a complete and volume-limited sample of nearby, luminous AGN. Inactive galaxies were chosen carefully by matching in redshift, host galaxy morphology, inclination, and stellar mass to create a clean sample with which to compare to the AGN. A subset of LLAMA AGN and inactive galaxies were observed with VLT/SINFONI using adaptive optics producing high spatial resolution integral field unit spectra in the H and K band. This unique IFU data allows for analysis of a suite of NIR emission lines including [FeII], H2 (1-0) S(1), [SiVI], and Br-gamma to probe the ionized and warm molecular gas in the circumnuclear region as well as CO absorption lines to probe the stellar disk. I will present initial results from our study including the prevalence of AGN outflows along with their geometry, kinematics, and mass outflow rates and compare the mass, state, and excitation mechanisms of circumnuclear gas between AGN and inactive galaxies. Finally, I will discuss our results in the context of AGN fuelling and feedback and provide insight on interpreting similar data at higher redshift.

  17. Revisiting the `forbidden' region: AGN radiative feedback with radiation trapping

    Science.gov (United States)

    Ishibashi, W.; Fabian, A. C.; Ricci, C.; Celotti, A.

    2018-06-01

    Active galactic nucleus (AGN) feedback, driven by radiation pressure on dust, is an important mechanism for efficiently coupling the accreting black hole to the surrounding environment. Recent observations confirm that X-ray selected AGN samples respect the effective Eddington limit for dusty gas in the plane defined by the observed column density versus the Eddington ratio, the so-called NH - λ plane. A `forbidden' region occurs in this plane, where obscuring clouds cannot be long-lived, due to the action of radiation pressure on dust. Here we compute the effective Eddington limit by explicitly taking into account the trapping of reprocessed radiation (which has been neglected in previous works), and investigate its impact on the NH - λ plane. We show that the inclusion of radiation trapping leads to an enhanced forbidden region, such that even Compton-thick material can potentially be disrupted by sub-Eddington luminosities. We compare our model results to the most complete sample of local AGNs with measured X-ray properties, and find good agreement. Considering the anisotropic emission from the accretion disc, we also expect the development of dusty outflows along the polar axis, which may naturally account for the polar dust emission recently detected in several AGNs from mid-infrared observations. Radiative feedback thus appears to be the key mechanism regulating the obscuration properties of AGNs, and we discuss its physical implications in the context of co-evolution scenarios.

  18. The Simbol-X Perspective on the Physics of Quasar Outflows

    Science.gov (United States)

    Giustini, M.; Cappi, M.; Vignali, C.; Palumbo, G. G. C.; Fiore, F.; Malaguti, G.

    2009-05-01

    There is increasing evidence that quasar outflows may play a key role in providing the feedback between AGN/QSOs and their surrounding (and feeding) media, in regulating the central supermassive black hole growth and the galaxy formation and, on larger scales, in shaping the growth of cosmic structures (see e.g. [1]). X-ray observations of quasar outflows are crucial to probe their innermost parts and assess the global energetics entrained in the outflow by studying its most extreme (in terms of velocity, ionization state, mass outflow rate) phases. Simbol-X-with its high effective area in the Fe K energy band and above-will allow the detection and the characterization of powerful outflows in bright, nearby AGN and notably also in moderately faint AGN, thus shedding light on feedback processes in these objects.

  19. Active galactic nucleus outflows in galaxy discs

    Science.gov (United States)

    Hartwig, Tilman; Volonteri, Marta; Dashyan, Gohar

    2018-05-01

    Galactic outflows, driven by active galactic nuclei (AGNs), play a crucial role in galaxy formation and in the self-regulated growth of supermassive black holes (BHs). AGN feedback couples to and affects gas, rather than stars, and in many, if not most, gas-rich galaxies cold gas is rotationally supported and settles in a disc. We present a 2D analytical model for AGN-driven outflows in a gaseous disc and demonstrate the main improvements, compared to existing 1D solutions. We find significant differences for the outflow dynamics and wind efficiency. The outflow is energy-driven due to inefficient cooling up to a certain AGN luminosity (˜1043 erg s-1 in our fiducial model), above which the outflow remains momentum-driven in the disc up to galactic scales. We reproduce results of 3D simulations that gas is preferentially ejected perpendicular to the disc and find that the fraction of ejected interstellar medium is lower than in 1D models. The recovery time of gas in the disc, defined as the free-fall time from the radius to which the AGN pushes the ISM at most, is remarkably short, of the order 1 Myr. This indicates that AGN-driven winds cannot suppress BH growth for long. Without the inclusion of supernova feedback, we find a scaling of the BH mass with the halo velocity dispersion of MBH ∝ σ4.8.

  20. The origin of ultrafast outflows in AGN: Monte Carlo simulations of the wind in PDS 456

    Science.gov (United States)

    Hagino, Kouichi; Odaka, Hirokazu; Done, Chris; Gandhi, Poshak; Watanabe, Shin; Sako, Masao; Takahashi, Tadayuki

    2015-01-01

    Ultrafast outflows (UFOs) are seen in many AGN, giving a possible mode for AGN feedback on to the host galaxy. However, the mechanism(s) for the launch and acceleration of these outflows are currently unknown, with UV line driving apparently strongly disfavoured as the material along the line of sight is so highly ionized that it has no UV transitions. We revisit this issue using the Suzaku X-ray data from PDS 456, an AGN with the most powerful UFO seen in the local Universe. We explore conditions in the wind by developing a new 3D Monte Carlo code for radiation transport. The code only handles highly ionized ions, but the data show the ionization state of the wind is high enough that this is appropriate, and this restriction makes it fast enough to explore parameter space. We reproduce the results of earlier work, confirming that the mass-loss rate in the wind is around 30 per cent of the inferred inflow rate through the outer disc. We show for the first time that UV line driving is likely to be a major contribution to the wind acceleration. The mass-loss rate in the wind matches that predicted from a purely line driven system, and this UV absorption can take place out of the line of sight. Continuum driving should also play a role as the source is close to Eddington. This predicts that the most extreme outflows will be produced from the highest mass accretion rate flows on to high-mass black holes, as observed.

  1. Evidence for Ultra-Fast Outflows in Radio-Quiet AGNs. 2; Detailed Photoionization Modeling of Fe K-Shell Absorption Lines

    Science.gov (United States)

    Tombesi, Francesco; Clapp, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.; Dadina, M.

    2011-01-01

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet AGNs. In the previous paper of this series we defined UFOs as those absorbers with an outflow velocity higher than 10,000km/s and assessed the statistical significance of the associated blue shifted FeK absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. In the present paper we report a detailed curve of growth analysis and directly model the FeK absorbers with the Xstar photo-ionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35%. The outflow velocity distribution spans from \\sim10,000km/s (\\sim0.03c) up to \\siml00,000kmis (\\sim0.3c), with a peak and mean value of\\sim42,000km/s (\\sim0.14c). The ionization parameter is very high and in the range log\\xi 3-6 erg s/cm, with a mean value of log\\xi 4.2 erg s/cm. The associated column densities are also large, in the range N_H\\siml0(exp 22)-10(exp 24)/sq cm, with a mean value of N_H\\siml0(exp23)/sq cm. We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected cosmological feedback from AGNs and their study can provide important clues on the connection between accretion disks, winds and jets.

  2. Evidence for AGN feedback in low-mass galaxies

    Science.gov (United States)

    Masters, Karen; Penny, Sam; Smethurst, Rebecca; Krawczyk, Coleman; Nichol, Bob; SDSS-IV MaNGA

    2018-01-01

    Despite being the dominant galaxy population by number in groups and clusters, the formation and quenching mechanism of dwarf galaxies remains unknown. We present evidence for AGN feedback in a subset of 69 quenched low-mass galaxies (M* less than 5e9 Msun, fainter than Mr = -19) selected from the first two years of the MaNGA survey. The majority (85 per cent) of these quenched galaxies appear to reside in a group environment. We find 6 galaxies in our sample that appear to have an active AGN that is preventing on-going star-formation; this is the first time such a feedback mechanism has been observed in this mass range. Interestingly, five of these six galaxies have an ionised gas component that is kinematically offset from their stellar component, suggesting the gas is either recently accreted or outflowing. We hypothesise these six galaxies are low-mass equivalents to the “red geysers” observed in more massive galaxies. Of the other 62 galaxies in the sample, we find 8 do appear to have some low-level, residual star formation, or emission from hot, evolved stars. The remaining galaxies in our sample have no detectable ionised gas emission throughout their structures, consistent with them being quenched. I will show that despite being the "simplest" galaxies in our current models of galaxy formation, these quenched dwarf galaxies are a diverse population.

  3. The Origin of Fast Molecular Outflows in Quasars: Molecule Formation in AGN-Driven Galactic Winds

    Science.gov (United States)

    Richings, Alexander James; Faucher-Giguere, Claude-Andre

    2017-07-01

    Observations of AGN host galaxies have detected fast molecular outflows, with velocities up to 1000 km s-1. However, the origin of these molecular outflows is currently unclear. One possibility is that they are formed from molecular gas that is swept up from the host galaxy by the AGN wind. However, previous studies have suggested that molecular clouds that are swept up by an AGN wind are unlikely to survive being accelerated to such high velocities. An alternative scenario is that molecules may form within the AGN wind material itself. We present a suite of 3D hydrodynamic simulations of an idealised AGN wind that we have run to explore this scenario. These simulations are coupled to a time-dependent chemical model to follow the creation and destruction of molecules, including H2, CO, OH and HCO+. We find that molecules do form within the wind, with molecular outflow rates up to 140 M⊙ yr-1 after 1 Myr. This is sensitive to the ambient ISM density, metallicity, and AGN luminosity. We also compute observable CO emission lines from these simulations using a radiative transfer code in post-processing. The CO-derived outflow rates are comparable to those seen in observations, although the maximum line of sight velocities are a factor ≍2 lower than observed. We find a CO (1-0) to H2 conversion factor of αCO = 0.15 M⊙ (K km s-1 pc2)-1 at solar metallicity, 5 times lower than is typically assumed in observations of such systems.

  4. Characterizing the origin and impact of the most extreme molecular outflows in the nearby universe

    Science.gov (United States)

    Gowardhan, Avani; Riechers, Dominik A.; Spoon, Henrik; Farrah, Duncan

    2018-01-01

    Observations over the last decade have revealed that feedback in the form of molecular gas outflows is ubiquitous in local ultra luminous infrared galaxies (ULIRGs). Such outflows can clear the nuclear environments of gas and dust, quench star formation and active galactic nuclei (AGN) growth, and they are a key step in the evolution of dust-obscured AGN to optically luminous quasars. We here present multi-spectral line observations of feedback in the two most powerful molecular gas outflows in the local universe. We spatially resolve the outflows to determine their kinematics and structure and find that they can drive out the molecular gas and quench star formation within ~ few Myr. Applying mid-IR diagnostics to constrain the relative contributions of AGN and nuclear starburst activity, we find that starburst activity plays a significant role in driving the outflow. We discuss the implications for future studies of feedback in the local universe and obscured AGN at high redshift, which is a key target population for JWST and ALMA over the next decade.

  5. Quasar Feedback in the Ultraluminous Infrared Galaxy F11119+3257: Connecting the Accretion Disk Wind with the Large-scale Molecular Outflow

    Science.gov (United States)

    Veilleux, S.; Bolatto, A.; Tombesi, F.; Meléndez, M.; Sturm, E.; González-Alfonso, E.; Fischer, J.; Rupke, D. S. N.

    2017-07-01

    In Tombesi et al., we reported the first direct evidence for a quasar accretion disk wind driving a massive (>100 M ⊙ yr-1) molecular outflow. The target was F11119+3257, an ultraluminous infrared galaxy (ULIRG) with unambiguous type 1 quasar optical broad emission lines. The energetics of the accretion disk wind and molecular outflow were found to be consistent with the predictions of quasar feedback models where the molecular outflow is driven by a hot energy-conserving bubble inflated by the inner quasar accretion disk wind. However, this conclusion was uncertain because the mass outflow rate, momentum flux, and mechanical power of the outflowing molecular gas were estimated from the optically thick OH 119 μm transition profile observed with Herschel. Here, we independently confirm the presence of the molecular outflow in F11119+3257, based on the detection of ˜±1000 km s-1 blue- and redshifted wings in the CO(1-0) emission line profile derived from deep ALMA observations obtained in the compact array configuration (˜2.″8 resolution). The broad CO(1-0) line emission appears to be spatially extended on a scale of at least ˜7 kpc from the center. Mass outflow rate, momentum flux, and mechanical power of (80-200) {R}7-1 M ⊙ yr-1, (1.5-3.0) {R}7-1 L AGN/c, and (0.15-0.40)% {R}7-1 {L}{AGN}, respectively, are inferred from these data, assuming a CO-to-H2 conversion factor appropriate for a ULIRG (R 7 is the radius of the outflow normalized to 7 kpc, and L AGN is the AGN luminosity). These rates are time-averaged over a flow timescale of 7 × 106 yr. They are similar to the OH-based rates time-averaged over a flow timescale of 4 × 105 yr, but about a factor of 4 smaller than the local (“instantaneous” ≲105 yr) OH-based estimates cited in Tombesi et al. The implications of these new results are discussed in the context of time-variable quasar-mode feedback and galaxy evolution. The need for an energy-conserving bubble to explain the molecular outflow

  6. AGN feedback in galaxy formation

    CERN Document Server

    Antonuccio-Delogu, Vincenzo

    2010-01-01

    During the past decade, convincing evidence has been accumulated concerning the effect of active galactic nuclei (AGN) activity on the internal and external environment of their host galaxies. Featuring contributions from well-respected researchers in the field, and bringing together work by specialists in both galaxy formation and AGN, this volume addresses a number of key questions about AGN feedback in the context of galaxy formation. The topics covered include downsizing and star-formation time scales in massive elliptical galaxies, the connection between the epochs of supermassive black h

  7. A High Definition View of AGN Feedback: Chandra Imaging of Nearby Seyfert Galaxies

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, G.; Risaliti, G.; Elvis, M.; Karovska, M.; Zezas, A.; Mundell, C. G.

    2010-03-01

    To improve the physics of AGN feedback, it is crucial to evaluate the true role of outflows on galaxy evolution observationally. I will present new results from Chandra spectral imaging of nearby Seyfert galaxies, which offer unique opportunities to examine feedback in action in much greater detail than at high redshift. Exploiting Chandra's highest possible resolution, we are able to study structures in NGC 4151 on spatial scales of 0.5 arcsec (30 pc), showing an extended X-ray morphology overall consistent with the optical NLR. We find that most of the NLR clouds in NGC 4151 have [OIII] to soft X-ray ratio consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii. We examine various X-ray emission mechanisms of the radio jet and consider thermal emission from interaction between radio outflow and the NLR clouds the most probable origin for the X-ray emission associated with the jet.

  8. Star Formation of Merging Disk Galaxies with AGN Feedback Effects

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jongwon; Smith, Rory; Yi, Sukyoung K., E-mail: jw.park@yonsei.ac.kr [Department of Astronomy and Yonsei University Observatory, Yonsei University, Seoul 03722 (Korea, Republic of)

    2017-08-20

    Using a numerical hydrodynamics code, we perform various idealized galaxy merger simulations to study the star formation (SF) of two merging disk galaxies. Our simulations include gas accretion onto supermassive black holes and active galactic nucleus (AGN) feedback. By comparing AGN simulations with those without AGNs, we attempt to understand when the AGN feedback effect is significant. Using ∼70 simulations, we investigate SF with the AGN effect in mergers with a variety of mass ratios, inclinations, orbits, galaxy structures, and morphologies. Using these merger simulations with AGN feedback, we measure merger-driven SF using the burst efficiency parameter introduced by Cox et al. We confirm previous studies which demonstrated that, in galaxy mergers, AGN suppresses SF more efficiently than in isolated galaxies. However, we also find that the effect of AGNs on SF is larger in major than in minor mergers. In minor merger simulations with different primary bulge-to-total ratios, the effect of bulge fraction on the merger-driven SF decreases due to AGN feedback. We create models of Sa-, Sb-, and Sc-type galaxies and compare their SF properties while undergoing mergers. With the current AGN prescriptions, the difference in merger-driven SF is not as pronounced as in the recent observational study of Kaviraj. We discuss the implications of this discrepancy.

  9. Star Formation of Merging Disk Galaxies with AGN Feedback Effects

    International Nuclear Information System (INIS)

    Park, Jongwon; Smith, Rory; Yi, Sukyoung K.

    2017-01-01

    Using a numerical hydrodynamics code, we perform various idealized galaxy merger simulations to study the star formation (SF) of two merging disk galaxies. Our simulations include gas accretion onto supermassive black holes and active galactic nucleus (AGN) feedback. By comparing AGN simulations with those without AGNs, we attempt to understand when the AGN feedback effect is significant. Using ∼70 simulations, we investigate SF with the AGN effect in mergers with a variety of mass ratios, inclinations, orbits, galaxy structures, and morphologies. Using these merger simulations with AGN feedback, we measure merger-driven SF using the burst efficiency parameter introduced by Cox et al. We confirm previous studies which demonstrated that, in galaxy mergers, AGN suppresses SF more efficiently than in isolated galaxies. However, we also find that the effect of AGNs on SF is larger in major than in minor mergers. In minor merger simulations with different primary bulge-to-total ratios, the effect of bulge fraction on the merger-driven SF decreases due to AGN feedback. We create models of Sa-, Sb-, and Sc-type galaxies and compare their SF properties while undergoing mergers. With the current AGN prescriptions, the difference in merger-driven SF is not as pronounced as in the recent observational study of Kaviraj. We discuss the implications of this discrepancy.

  10. Fast Molecular Outflows in Luminous Galaxy Mergers: Evidence for Quasar Feedback from Herschel

    Science.gov (United States)

    Veilleux, S.; Melendez, M.; Sturm, E.; Garcia-Carpio, J.; Fischer, J.; Gonzalez-Alfonso, E.; Contursi, A.; Lutz, D.; Poglitsch, A.; Davies, R.; hide

    2013-01-01

    We report the results from a systematic search for molecular (OH 119 micron) outflows with Herschel/PACS in a sample of 43 nearby (z 11.8 +/- 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. However, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.

  11. Molecular Outflow and Feedback in an Obscured Quasar at z˜1.5 Revealed by ALMA

    Science.gov (United States)

    Brusa, Marcella

    2017-11-01

    We imaged with ALMA and ARGOS/LUCI the molecular gas and the dust and stellar continuum in XID2028, an obscured QSO at z=1.593, where the presence of a massive outflow in the ionized gas component traced by the [O III]5007 emission has been resolved up to 10 kpc. This target does represent a unique test case to study QSO 'feedback in action' at the peak epoch of AGN- galaxy coevolution. The QSO has been detected both in the CO(5-4) transition and in the 1.3mm continuum, with emissions confined in the central ( consumption conditions in XID2028, possibly due to feedback effects on the host galaxy. Finally, we observe an asymmetric profile of the CO(5-4) line, which suggests the presence of high velocity gas up to 700 km/s. An image of the blueshfited and redshifted CO wings provides the first detection of a spatially resolved, galaxy-scale molecular outflow at high-z, extended in opposite directions with the approaching component spatially coincident with the ionised gas outflow. The resolved, molecular outflow appear to be cospatial with the component observed int the ionised gas. XID2028 therefore represents the first example of molecular and ionised kpc scales outflows at high-z.

  12. An X-Ray/SDSS Sample: Observational Characterization of The Outflowing Gas

    Science.gov (United States)

    Perna, Michele; Brusa, M.; Lanzuisi, G.; Mignoli, M.

    2016-10-01

    Powerful ionised AGN-driven outflows, commonly detected both locally and at high redshift, are invoked to contribute to the co-evolution of SMBH and galaxies through feedback phenomena. Our recent works (Brusa+2015; 2016; Perna+2015a,b) have shown that the XMM-COSMOS targets with evidence of outflows collected so far ( 10 sources) appear to be associated with low X-ray kbol corrections (Lbol /LX ˜ 18), in spite of their spread in obscuration, in the locations on the SFR-Mstar diagram, in their radio emission. A higher statistical significance is required to validate a connection between outflow phenomena and a X-ray loudness. Moreover, in order to validate their binding nature to the galaxy fate, it is crucial to correctly determine the outflow energetics. This requires time consuming integral field spectroscopic (IFS) observations, which are, at present, mostly limited to high luminosity objectsThe study of SDSS data offers a complementary strategy to IFS efforts. I will present physical and demographic characterization of the AGN-galaxy system during the feedback phase obtained studying a sample of 500 X-ray/SDSS AGNs, at zdispersion) and X-ray properties (intrinsic X-ray luminosity, obscuration and X-ray kbol correction), to determine what drives ionised winds. Several diagnostic line ratios have been used to infer the physical properties of the ionised outflowing gas. The knowledge of these properties can reduce the actual uncertainties in the outflow energetics by a factor of ten, pointing to improve our understanding of the AGN outflow phenomenon and its impact on galaxy evolution.

  13. New Insights into AGN Mass Outflows: Detailed Study of the Spectral Properties of NGC 4151

    Science.gov (United States)

    Denes Couto, Jullianna

    2017-08-01

    Active Galactic Nuclei (AGNs) exist in a few percent of all massive galaxies. It is believed that AGNs are powered by accretion of matter onto a supermassive black hole (SMBH), generating in the process huge amounts of radiation that span the entire electromagnetic spectrum. In turn, this also triggers the so-called AGN Feedback phenomenon, by inducing the formation of accretion disk winds (or outflows) that accelerate highly ionized gas outwards and affect the intergalactic medium of the host galaxy, reducing star formation rates and preventing bulge growth. It has been suggested that a dominant component of mass outflows is observable in the X-rays, and there are a limited number of detailed studies of single objects for which the relation between outflows and power of the central engine can be determined directly. The Seyfert 1.5 galaxy NGC 4151 is a great study candidate, given its proximity (14.077 Mpc, z = 0.0033), X-ray brightness and orientation. Over the past decades, it has been the target of many single and multiwavelength observations, and its heavily absorbed X-ray spectrum and complex absorption features have been extensively stud- ied and characterized. I have investigated the relationship between the long term X-ray spectral variability in and its intrinsic absorption, by comparing our 2014 simultaneous ultraviolet/X-Ray observations taken with Hubble Space Telescope Imaging Spectrometer (STIS) Echelle and Chandra High Energy Transmission Grating Spectrometer (HETGS) with archival observations from Chandra, XMM-Newton and Suzaku. The observations were divided into "high" and "low" flux states, with the low states showing strong and unabsorbed extended emission at energies below 2 keV. The X-ray model consists of a broken powerlaw, neutral reflection and two dominant absorption components, a high and a low ionization component, which are present in all epochs. The model fittings suggest that the absorbers are very stable, with the principal changes

  14. Ionized Gas Outflows from the MAGNUM Survey: NGC 1365 and NGC 4945

    Energy Technology Data Exchange (ETDEWEB)

    Venturi, Giacomo; Marconi, Alessandro [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Sesto Fiorentino (Italy); Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy); Mingozzi, Matilde [Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna (Italy); Carniani, Stefano [Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge (United Kingdom); Kavli Institute for Cosmology, University of Cambridge, Cambridge (United Kingdom); Cresci, Giovanni [Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy); Risaliti, Guido [Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Sesto Fiorentino (Italy); Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy); Mannucci, Filippo, E-mail: gventuri@arcetri.astro.it [Osservatorio Astrofisico di Arcetri (INAF), Firenze (Italy)

    2017-11-24

    AGN feedback, acting through strong outflows accelerated in the nuclear region of AGN hosts, is invoked as a key ingredient for galaxy evolution by many models to explain the observed BH-galaxy scaling relations. Recently, some direct observational evidence of radiative mode feedback in action has been finally found in quasars at z >1.5. However, it is not possible to study outflows in quasars at those redshifts on small scales (≲100 pc), as spatial information is limited by angular resolution. This is instead feasible in nearby active galaxies, which are ideal laboratories to explore outflow structure and properties, as well as the effects of AGN on their host galaxies. In this proceeding we present preliminary results from the MAGNUM survey, which comprises nearby Seyfert galaxies observed with the integral field spectrograph VLT/MUSE. We focus on two sources, NGC 1365 and NGC 4945, that exhibit double conical outflows extending on distances >1 kpc. We disentangle the dominant contributions to ionization of the various gas components observed in the central ~5.3 kpc of NGC 1365. An attempt to infer outflow 3D structure in NGC 4945 is made via simple kinematic modeling, suggesting a hollow cone geometry.

  15. Physical Conditions in Ultra-fast Outflows in AGN

    Science.gov (United States)

    Kraemer, S. B.; Tombesi, F.; Bottorff, M. C.

    2018-01-01

    XMM-Newton and Suzaku spectra of Active Galactic Nuclei (AGN) have revealed highly ionized gas, in the form of absorption lines from H-like and He-like Fe. Some of these absorbers, ultra-fast outflows (UFOs), have radial velocities of up to 0.25c. We have undertaken a detailed photoionization study of high-ionization Fe absorbers, both UFOs and non-UFOs, in a sample of AGN observed by XMM-Newton. We find that the heating and cooling processes in UFOs are Compton-dominated, unlike the non-UFOs. Both types are characterized by force multipliers on the order of unity, which suggest that they cannot be radiatively accelerated in sub-Eddington AGN, unless they were much less ionized at their point of origin. However, such highly ionized gas can be accelerated via a magneto-hydrodynamic (MHD) wind. We explore this possibility by applying a cold MHD flow model to the UFO in the well-studied Seyfert galaxy, NGC 4151. We find that the UFO can be accelerated along magnetic streamlines anchored in the accretion disk. In the process, we have been able to constrain the magnetic field strength and the magnetic pressure in the UFO and have determined that the system is not in magnetic/gravitational equipartition. Open questions include the variability of the UFOs and the apparent lack of non-UFOs in UFO sources.

  16. Warm Absorber Diagnostics of AGN Dynamics

    Science.gov (United States)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  17. Density profile of dark matter haloes and galaxies in the HORIZON-AGN simulation: the impact of AGN feedback

    Science.gov (United States)

    Peirani, Sébastien; Dubois, Yohan; Volonteri, Marta; Devriendt, Julien; Bundy, Kevin; Silk, Joe; Pichon, Christophe; Kaviraj, Sugata; Gavazzi, Raphaël; Habouzit, Mélanie

    2017-12-01

    Using a suite of three large cosmological hydrodynamical simulations, HORIZON-AGN, HORIZON–NOAGN (no AGN feedback) and HORIZON-DM (no baryons), we investigate how a typical sub-grid model for AGN feedback affects the evolution of the inner density profiles of massive dark matter haloes and galaxies. Based on direct object-to-object comparisons, we find that the integrated inner mass and density slope differences between objects formed in these three simulations (hereafter, HAGN, HnoAGN and HDM) significantly evolve with time. More specifically, at high redshift (z ∼ 5), the mean central density profiles of HAGN and HnoAGN dark matter haloes tend to be much steeper than their HDM counterparts owing to the rapidly growing baryonic component and ensuing adiabatic contraction. By z ∼ 1.5, these mean halo density profiles in HAGN have flattened, pummelled by powerful AGN activity ('quasar mode'): the integrated inner mass difference gaps with HnoAGN haloes have widened, and those with HDM haloes have narrowed. Fast forward 9.5 billion years, down to z = 0, and the trend reverses: HAGN halo mean density profiles drift back to a more cusped shape as AGN feedback efficiency dwindles ('radio mode'), and the gaps in integrated central mass difference with HnoAGN and HDM close and broaden, respectively. On the galaxy side, the story differs noticeably. Averaged stellar profile central densities and inner slopes are monotonically reduced by AGN activity as a function of cosmic time, resulting in better agreement with local observations.

  18. The Prevalence of Ionized Gas Outflow Signatures in SDSS-IV MaNGA Active Galactic Nuclei

    Science.gov (United States)

    Flores, Anthony M.; Wylezalek, Dominika; Zakamska, Nadia

    2018-01-01

    Actively accreting supermassive black holes (AGN) can have a variety of effects on their host galaxies, from generating large regions of hot, photoionized gas, to driving AGN feedback in the form of galaxy wide outflows that may affect the evolution of the galaxy over time by quenching their star formation and by thus setting limits to the total mass of their host galaxy. The focus of this work is to assess the prevalence of AGN-driven outflows in low-redshift AGN of moderate power using IFU observations of 2778 galaxies available through SDSS-IV MaNGA.SDSS-IV MaNGA is an optical spectroscopic IFU survey which will have obtained spatially resolved spectroscopic observations of ~10,000 galaxies at z ≤ 0.1 and with stellar masses >10^9 solar masses over the next three years, allowing us to describe the kinematic properties of a large galaxy sample across different spatial regions.We have re-mapped the kinematics of the [O III] emission line to account for asymmetries and secondary kinematic components in the emission line brought on by potential AGN-driven outflows. Using all galaxies currently in the MaNGA survey, we implement a new fitting procedure to help determine the prevalence of these secondary components. Specifically, we use the non-parametric W80 value as a proxy for velocity dispersion, which we expect to be affected especially in the case of asymmetries and broadening of the emission lines. Separating these galaxies into two samples of independently identified AGN candidates and non-AGN, I will show that broad secondary components are twice as common in MaNGA-selected AGN compared to galaxies in MaNGA not classified as AGN. Moreover, when the underlying distribution of W80 values are compared between samples, I will show that the differences in these distributions are statistically significant. This demonstrates that large IFU survey like SDSS-IV MaNGA will uncover many previously unknown AGN and AGN feedback signatures. Outflows and feedback from low

  19. Ionized Gas Outflows from the MAGNUM Survey: NGC 1365 and NGC 4945

    Directory of Open Access Journals (Sweden)

    Giacomo Venturi

    2017-11-01

    Full Text Available AGN feedback, acting through strong outflows accelerated in the nuclear region of AGN hosts, is invoked as a key ingredient for galaxy evolution by many models to explain the observed BH-galaxy scaling relations. Recently, some direct observational evidence of radiative mode feedback in action has been finally found in quasars at z >1.5. However, it is not possible to study outflows in quasars at those redshifts on small scales (≲100 pc, as spatial information is limited by angular resolution. This is instead feasible in nearby active galaxies, which are ideal laboratories to explore outflow structure and properties, as well as the effects of AGN on their host galaxies. In this proceeding we present preliminary results from the MAGNUM survey, which comprises nearby Seyfert galaxies observed with the integral field spectrograph VLT/MUSE. We focus on two sources, NGC 1365 and NGC 4945, that exhibit double conical outflows extending on distances >1 kpc. We disentangle the dominant contributions to ionization of the various gas components observed in the central ~5.3 kpc of NGC 1365. An attempt to infer outflow 3D structure in NGC 4945 is made via simple kinematic modeling, suggesting a hollow cone geometry.

  20. Ultrafast outflows disappear in high-radiation fields

    Science.gov (United States)

    Pinto, C.; Alston, W.; Parker, M. L.; Fabian, A. C.; Gallo, L. C.; Buisson, D. J. K.; Walton, D. J.; Kara, E.; Jiang, J.; Lohfink, A.; Reynolds, C. S.

    2018-05-01

    Ultrafast outflows (UFOs) are the most extreme winds launched by active galactic nuclei (AGN) due to their mildly relativistic speeds (˜0.1-0.3c) and are thought to significantly contribute to galactic evolution via AGN feedback. Their nature and launching mechanism are however not well understood. Recently, we have discovered the presence of a variable UFO in the narrow-line Seyfert 1 IRAS 13224-3809. The UFO varies in response to the brightness of the source. In this work we perform flux-resolved X-ray spectroscopy to study the variability of the UFO and found that the ionization parameter is correlated with the luminosity. In the brightest states the gas is almost completely ionized by the powerful radiation field and the UFO is hardly detected. This agrees with our recent results obtained with principal component analysis. We might have found the tip of the iceberg: the high ionization of the outflowing gas may explain why it is commonly difficult to detect UFOs in AGN and possibly suggest that we may underestimate their actual feedback. We have also found a tentative correlation between the outflow velocity and the luminosity, which is expected from theoretical predictions of radiation-pressure-driven winds. This trend is rather marginal due to the Fe XXV-XXVI degeneracy. Further work is needed to break such degeneracy through time-resolved spectroscopy.

  1. Imaging AGN Feedback in NGC 3393 with CHEERS

    Science.gov (United States)

    Paggi, Alessandro; Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2016-04-01

    The CHandra Extended Emission-line Region Survey (CHEERS) is the 'ultimate' resolution X-ray imaging survey of nearby far-IR selected AGN. By comparing deep Chandra observations with complementary HST and radio data, we investigate the morphology of the extended narrow-line region on scales of <100 pc. We present new results on the gas surrounding the compton-thick AGN NGC 3393. The luminous extended narrow-line X-ray emission from this gas allows us to study the role and extent of AGN feedback as sub-kpc jets interact with the surrounding ISM.

  2. Satellites of radio AGN in SDSS: Insights into agn triggering and feedback

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Cameron; Salim, Samir, E-mail: cjpace@indiana.edu, E-mail: salims@indiana.edu [Indiana University, Department of Astronomy, Swain Hall West 319, Bloomington, IN 47405-7105 (United States)

    2014-04-10

    We study the effects of radio jets on galaxies in their vicinity (satellites) and the role of satellites in triggering radio-loud active galactic nuclei (AGNs). The study compares the aggregate properties of satellites of a sample of 7220 radio AGNs at z < 0.3 (identified by Best and Heckman from the SDSS and NVSS+FIRST surveys) to the satellites of a control sample of radio-quiet galaxies, which are matched in redshift, color, luminosity, and axis ratio, as well as by environment type: field galaxies, cluster members, and brightest cluster galaxies (BCGs). Remarkably, we find that radio AGNs exhibit on average a 50% excess (17σ significance) in the number of satellites within 100 kpc even though the cluster membership was controlled (e.g., radio BCGs have more satellites than radio-quiet BCGs, etc.). Satellite excess is not confirmed for high-excitation sources, which are only 2% of radio AGN. Extra satellites may be responsible for raising the probability for hot gas AGN accretion via tidal effects or may otherwise enhance the intensity or duration of the radio-emitting phase. Furthermore, we find that the incidence of radio AGNs among potential hosts (massive ellipticals) is similar for field galaxies and for non-BCG cluster members, suggesting that AGN fueling depends primarily on conditions in the host halo rather than the parent, cluster halo. Regarding feedback, we find that radio AGNs, either high or low excitation, have no detectable effect on star formation in their satellites, as neither induced star formation nor star formation quenching is present in more than ∼1% of radio AGN.

  3. Satellites of radio AGN in SDSS: Insights into agn triggering and feedback

    International Nuclear Information System (INIS)

    Pace, Cameron; Salim, Samir

    2014-01-01

    We study the effects of radio jets on galaxies in their vicinity (satellites) and the role of satellites in triggering radio-loud active galactic nuclei (AGNs). The study compares the aggregate properties of satellites of a sample of 7220 radio AGNs at z < 0.3 (identified by Best and Heckman from the SDSS and NVSS+FIRST surveys) to the satellites of a control sample of radio-quiet galaxies, which are matched in redshift, color, luminosity, and axis ratio, as well as by environment type: field galaxies, cluster members, and brightest cluster galaxies (BCGs). Remarkably, we find that radio AGNs exhibit on average a 50% excess (17σ significance) in the number of satellites within 100 kpc even though the cluster membership was controlled (e.g., radio BCGs have more satellites than radio-quiet BCGs, etc.). Satellite excess is not confirmed for high-excitation sources, which are only 2% of radio AGN. Extra satellites may be responsible for raising the probability for hot gas AGN accretion via tidal effects or may otherwise enhance the intensity or duration of the radio-emitting phase. Furthermore, we find that the incidence of radio AGNs among potential hosts (massive ellipticals) is similar for field galaxies and for non-BCG cluster members, suggesting that AGN fueling depends primarily on conditions in the host halo rather than the parent, cluster halo. Regarding feedback, we find that radio AGNs, either high or low excitation, have no detectable effect on star formation in their satellites, as neither induced star formation nor star formation quenching is present in more than ∼1% of radio AGN.

  4. Energetics of the molecular gas in the H2 luminous radio galaxy 3C 326: Evidence for negative AGN feedback

    Science.gov (United States)

    Nesvadba, N. P. H.; Boulanger, F.; Salomé, P.; Guillard, P.; Lehnert, M. D.; Ogle, P.; Appleton, P.; Falgarone, E.; Pineau Des Forets, G.

    2010-10-01

    We present a detailed analysis of the gas conditions in the H2 luminous radio galaxy 3C 326 N at z ~ 0.1, which has a low star-formation rate (SFR ~ 0.07 M⊙ yr-1) in spite of a gas surface density similar to those in starburst galaxies. Its star-formation efficiency is likely a factor ~10-50 lower than those of ordinary star-forming galaxies. Combining new IRAM CO emission-line interferometry with existing Spitzer mid-infrared spectroscopy, we find that the luminosity ratio of CO and pure rotational H2 line emission is factors 10-100 lower than what is usually found. This suggests that most of the molecular gas is warm. The Na D absorption-line profile of 3C 326 N in the optical suggests an outflow with a terminal velocity of ~-1800 km s-1 and a mass outflow rate of 30-40 M⊙ yr-1, which cannot be explained by star formation. The mechanical power implied by the wind, of order 1043 erg s-1, is comparable to the bolometric luminosity of the emission lines of ionized and molecular gas. To explain these observations, we propose a scenario where a small fraction of the mechanical energy of the radio jet is deposited in the interstellar medium of 3C 326 N, which powers the outflow, and the line emission through a mass, momentum and energy exchange between the different gas phases of the ISM. Dissipation times are of order 107-8 yrs, similar or greater than the typical jet lifetime. Small ratios of CO and PAH surface brightnesses in another 7 H2 luminous radio galaxies suggest that a similar form of AGN feedback could be lowering star-formation efficiencies in these galaxies in a similar way. The local demographics of radio-loud AGN suggests that secular gas cooling in massive early-type galaxies of ≥1011 M⊙ could generally be regulated through a fundamentally similar form of “maintenance-phase” AGN feedback. Based on observations carried out with the IRAM Plateau de Bure Interferometer.

  5. SDSS-IV MaNGA: evidence of the importance of AGN feedback in low-mass galaxies

    Science.gov (United States)

    Penny, Samantha J.; Masters, Karen L.; Smethurst, Rebecca; Nichol, Robert C.; Krawczyk, Coleman M.; Bizyaev, Dmitry; Greene, Olivia; Liu, Charles; Marinelli, Mariarosa; Rembold, Sandro B.; Riffel, Rogemar A.; Ilha, Gabriele da Silva; Wylezalek, Dominika; Andrews, Brett H.; Bundy, Kevin; Drory, Niv; Oravetz, Daniel; Pan, Kaike

    2018-05-01

    We present new evidence for AGN feedback in a subset of 69 quenched low-mass galaxies (M⋆ ≲ 5 × 109 M⊙, Mr > -19) selected from the first 2 yr of the Sloan Digital Sky Survey-IV Mapping Nearby Galaxies at APO (SDSS-IV MaNGA) survey. The majority (85 per cent) of these quenched galaxies appear to reside in a group environment. We find six galaxies in our sample that appear to have an active AGN that is preventing on-going star formation; this is the first time such a feedback mechanism has been observed in this mass range. Interestingly, five of these six galaxies have an ionized gas component that is kinematically offset from their stellar component, suggesting the gas is either recently accreted or outflowing. We hypothesize these six galaxies are low-mass equivalents to the `red geysers' observed in more massive galaxies. Of the other 63 galaxies in the sample, we find 8 do appear for have some low level, residual star formation, or emission from hot, evolved stars. The remaining galaxies in our sample have no detectable ionized gas emission throughout their structures, consistent with them being quenched. This work shows the potential for understanding the detailed physical properties of dwarf galaxies through spatially resolved spectroscopy.

  6. Quasar outflow energetics from broad absorption line variability

    Science.gov (United States)

    McGraw, S. M.; Shields, J. C.; Hamann, F. W.; Capellupo, D. M.; Herbst, H.

    2018-03-01

    Quasar outflows have long been recognized as potential contributors to the co-evolution between supermassive black holes (SMBHs) and their host galaxies. The role of outflows in active galactic nucleus (AGN) feedback processes can be better understood by placing observational constraints on wind locations and kinetic energies. We utilize broad absorption line (BAL) variability to investigate the properties of a sample of 71 BAL quasars with P V broad absorption. The presence of P V BALs indicates that other BALs like C IV are saturated, such that variability in those lines favours clouds crossing the line of sight. We use these constraints with measurements of BAL variability to estimate outflow locations and energetics. Our data set consists of multiple-epoch spectra from the Sloan Digital Sky Survey and MDM Observatory. We detect significant (4σ) BAL variations from 10 quasars in our sample over rest-frame time-scales between ≤0.2-3.8 yr. Our derived distances for the 10 variable outflows are nominally ≲ 1-10 pc from the SMBH using the transverse-motion scenario, and ≲ 100-1000 pc from the central source using ionization-change considerations. These distances, in combination with the estimated high outflow column densities (i.e. NH ≳ 1022 cm-2), yield outflow kinetic luminosities between ˜ 0.001 and 1 times the bolometric luminosity of the quasar, indicating that many absorber energies within our sample are viable for AGN feedback.

  7. CAN AGN FEEDBACK BREAK THE SELF-SIMILARITY OF GALAXIES, GROUPS, AND CLUSTERS?

    International Nuclear Information System (INIS)

    Gaspari, M.; Brighenti, F.; Temi, P.; Ettori, S.

    2014-01-01

    It is commonly thought that active galactic nucleus (AGN) feedback can break the self-similar scaling relations of galaxies, groups, and clusters. Using high-resolution three-dimensional hydrodynamic simulations, we isolate the impact of AGN feedback on the L x -T x relation, testing the two archetypal and common regimes, self-regulated mechanical feedback and a quasar thermal blast. We find that AGN feedback has severe difficulty in breaking the relation in a consistent way. The similarity breaking is directly linked to the gas evacuation within R 500 , while the central cooling times are inversely proportional to the core density. Breaking self-similarity thus implies breaking the cool core, morphing all systems to non-cool-core objects, which is in clear contradiction with the observed data populated by several cool-core systems. Self-regulated feedback, which quenches cooling flows and preserves cool cores, prevents dramatic evacuation and similarity breaking at any scale; the relation scatter is also limited. The impulsive thermal blast can break the core-included L x -T x at T 500 ≲ 1 keV, but substantially empties and overheats the halo, generating a perennial non-cool-core group, as experienced by cosmological simulations. Even with partial evacuation, massive systems remain overheated. We show that the action of purely AGN feedback is to lower the luminosity and heat the gas, perpendicular to the fit

  8. A COMPACT GROUP OF GALAXIES AT Z = 2.48 HOSTING AN AGN-DRIVEN OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Hsin-Yi [Gemini Observatory, 670 N Aohoku Place, Hilo, HI 96720 (United States); Stockton, Alan, E-mail: jshih@gemini.edu, E-mail: stockton@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2015-12-10

    We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high-redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6 × 10{sup 11}M{sub ⊙} and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the active galactic nucleus (AGN) producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass–metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At ≳50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio-jet-driven outflow.

  9. AGN feedback on molecular gas reservoirs in quasars at z 2.4

    Science.gov (United States)

    Carniani, S.; Marconi, A.; Maiolino, R.; Feruglio, C.; Brusa, M.; Cresci, G.; Cano-Díaz, M.; Cicone, C.; Balmaverde, B.; Fiore, F.; Ferrara, A.; Gallerani, S.; La Franca, F.; Mainieri, V.; Mannucci, F.; Netzer, H.; Piconcelli, E.; Sani, E.; Schneider, R.; Shemmer, O.; Testi, L.

    2017-09-01

    We present new ALMA observations aimed at mapping molecular gas reservoirs through the CO(3-2) transition in three quasars at z ≃ 2.4, LBQS 0109+0213, 2QZ J002830.4-281706, and [HB89] 0329-385. Previous [Oiii]λ5007 observations of these quasars showed evidence for ionised outflows quenching star formation in their host galaxies. Systemic CO(3-2) emission has been detected only in one quasar, LBQS 0109+0213, where the CO(3-2) emission is spatially anti-correlated with the ionised outflow, suggesting that most of the molecular gas may have been dispersed or heated in the region swept by the outflow. In all three sources, including the one detected in CO, our constraints on the molecular gas mass indicate a significantly reduced reservoir compared to main-sequence galaxies at the same redshift, supporting a negative feedback scenario. In the quasar 2QZ J002830.4-281706, we tentatively detect an emission line blob blue-shifted by v - 2000 km s-1 with respect to the galaxy systemic velocity and spatially offset by 0.2'' (1.7 kpc) with respect to the ALMA continuum peak. Interestingly, such emission feature is coincident in both velocity and space with the ionised outflow as seen in [Oiii]λ5007. This tentative detection must be confirmed with deeper observations but, if real, it could represent the molecular counterpart of the ionised gas outflow driven by the Active Galactic Nucleus (AGN). Finally, in all ALMA maps we detect the presence of serendipitous line emitters within a projected distance 160 kpc from the quasars. By identifying these features with the CO(3-2) transition, we find that the serendipitous line emitters would be located within | Δv | < 500 km s-1 from the quasars, hence suggesting an overdensity of galaxies in two out of three quasars.

  10. CAN AGN FEEDBACK BREAK THE SELF-SIMILARITY OF GALAXIES, GROUPS, AND CLUSTERS?

    Energy Technology Data Exchange (ETDEWEB)

    Gaspari, M. [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, D-85741 Garching (Germany); Brighenti, F. [Astronomy Department, University of Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Temi, P. [Astrophysics Branch, NASA/Ames Research Center, MS 245-6, Moffett Field, CA 94035 (United States); Ettori, S., E-mail: mgaspari@mpa-garching.mpg.de [INAF, Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy)

    2014-03-01

    It is commonly thought that active galactic nucleus (AGN) feedback can break the self-similar scaling relations of galaxies, groups, and clusters. Using high-resolution three-dimensional hydrodynamic simulations, we isolate the impact of AGN feedback on the L {sub x}-T {sub x} relation, testing the two archetypal and common regimes, self-regulated mechanical feedback and a quasar thermal blast. We find that AGN feedback has severe difficulty in breaking the relation in a consistent way. The similarity breaking is directly linked to the gas evacuation within R {sub 500}, while the central cooling times are inversely proportional to the core density. Breaking self-similarity thus implies breaking the cool core, morphing all systems to non-cool-core objects, which is in clear contradiction with the observed data populated by several cool-core systems. Self-regulated feedback, which quenches cooling flows and preserves cool cores, prevents dramatic evacuation and similarity breaking at any scale; the relation scatter is also limited. The impulsive thermal blast can break the core-included L {sub x}-T {sub x} at T {sub 500} ≲ 1 keV, but substantially empties and overheats the halo, generating a perennial non-cool-core group, as experienced by cosmological simulations. Even with partial evacuation, massive systems remain overheated. We show that the action of purely AGN feedback is to lower the luminosity and heat the gas, perpendicular to the fit.

  11. New Insights on the Accretion Disk-Winds Connection in Radio-Loud AGNs from Suzaku

    Science.gov (United States)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Cappi, M.; Reynolds, S.; Mushotzky, R. F.

    2011-01-01

    From the spectral analysis of long Suzaku observations of five radio-loud AGNs we have been able to discover the presence of ultra-fast outflows with velocities ,,approx.0.1 c in three of them, namely 3C III, 3C 120 and 3C 390.3. They are consistent with being accretion disk winds/outflows. We also performed a follow-up on 3C III to monitor its outflow on approx.7 days time-scales and detected an anti-correlated variability of a possible relativistic emission line with respect to blue-shifted Fe K features, following a flux increase. This provides the first direct evidence for an accretion disc-wind connection in an AGN. The mass outflow rate of these outflows can be comparable to the accretion rate and their mechanical power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, they can possibly play a significant role in the expected feedback from AGNs and can give us further clues on the relation between the accretion disk and the formation of winds/jets.

  12. The role of AGN feedback in galaxy evolution at high-redshift

    International Nuclear Information System (INIS)

    Collet, Cedric

    2014-01-01

    There is growing evidence that supermassive black holes may play a crucial role for galaxy evolution, in particular during the formation of massive galaxies at high redshift (z ≅ 2 - 3). Our work focuses on quantifying the effects of jets of radiogalaxies and of large bolometric luminosities of quasars on the interstellar gas in their host galaxies. To this end, we studied the kinematics of the ionized gas in 12 moderately powerful radio galaxies and 11 quasars (6 radio-loud and 5 radio-quiet) at high redshifts with rest-frame optical imaging spectroscopy obtained at the VLT with SINFONI. We searched for outflows and other signatures of feedback from the supermassive black holes in the centers of these galaxies to evaluate if the AGN may plausibly quench star formation. In our sample of moderately powerful radiogalaxies, we observe velocity dispersions nearly as large as those observed in the most powerful ones (with FWHM ≅ 1000 km/s), but the quantity of ionized gas is decreased by one order of magnitude (M-ion gas ≅ 10"8 - 10"9 M-sun) and velocity gradients tend to be less dramatic (Δv ≤ 400 km/s), when they are observed. In our sample of quasars, we had to carefully subtract the broad spectral component of emission lines to have access to its narrow, and spatially extended, component. We detect truly extended emission line regions in 4/6 sources of our radio-loud sub-sample and in 1/5 source of our radio-quiet sub-sample. We estimate that masses of ionized gas in these sources are smaller than in our sample of high-redshift radiogalaxies (with Mion gas ≅ 10"7 - 10"8 Msun) and kinematics tend to be more quiescent, akin to what is observed in local quasars. Finally, detailed observations of two outliers among our sample of high-redshift radiogalaxies revealed that one of them is closely surrounded by 14 companions galaxies, hence lying in an over density. We therefore interpret the presence and morphology of ionized gas around these galaxies as evidence

  13. How Quasar Feedback May Shape the Co-evolutionary Paths

    Energy Technology Data Exchange (ETDEWEB)

    Ishibashi, Wako, E-mail: wako.ishibashi@physik.uzh.ch [Physik-Institut, University of Zurich, Zürich (Switzerland)

    2017-10-17

    Observations point toward some form of “co-evolutionary sequence,” from dust-enshrouded starbursts to luminous unobscured quasars. Active galactic nucleus (AGN) feedback is generally invoked to expel the obscuring dusty gas in a blow-out event, eventually revealing the hidden central quasar. However, the physical mechanism driving AGN feedback, either due to winds or radiation, remains uncertain and is still a source of much debate. We consider quasar feedback, based on radiation pressure on dust, which directly acts on the obscuring dusty gas. We show that AGN radiative feedback is capable of efficiently removing the obscuring cocoon, and driving powerful outflows on galactic scales, consistent with recent observations. I will discuss how such quasar feedback may provide a natural physical interpretation of the observed evolutionary path, and the physical implications in the broader context of black hole-host galaxy co-evolution.

  14. Ionized Outflows in 3-D Insights from Herbig-Haro Objects and Applications to Nearby AGN

    Science.gov (United States)

    Cecil, Gerald

    1999-01-01

    HST shows that the gas distributions of these objects are complex and clump at the limit of resolution. HST spectra have lumpy emission-line profiles, indicating unresolved sub-structure. The advantages of 3D over slits on gas so distributed are: robust flux estimates of various dynamical systems projected along lines of sight, sensitivity to fainter spectral lines that are physical diagnostics (reddening-gas density, T, excitation mechanisms, abundances), and improved prospects for recovery of unobserved dimensions of phase-space. These advantages al- low more confident modeling for more profound inquiry into underlying dynamics. The main complication is the effort required to link multi- frequency datasets that optimally track the energy flow through various phases of the ISM. This tedium has limited the number of objects that have been thoroughly analyzed to the a priori most spectacular systems. For HHO'S, proper-motions constrain the ambient B-field, shock velocity, gas abundances, mass-loss rates, source duty-cycle, and tie-ins with molecular flows. If the shock speed, hence ionization fraction, is indeed small then the ionized gas is a significant part of the flow energetics. For AGN'S, nuclear beaming is a source of ionization ambiguity. Establishing the energetics of the outflow is critical to determining how the accretion disk loses its energy. CXO will provide new constraints (especially spectral) on AGN outflows, and STIS UV-spectroscopy is also constraining cloud properties (although limited by extinction). HHO's show some of the things that we will find around AGN'S. I illustrate these points with results from ground-based and HST programs being pursued with collaborators.

  15. Evidence for ultra-fast outflows in radio-quiet AGNs: III - location and energetics

    OpenAIRE

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Braito, V.

    2012-01-01

    Using the results of a previous X-ray photo-ionization modelling of blue-shifted Fe K absorption lines on a sample of 42 local radio-quiet AGNs observed with XMM-Newton, in this letter we estimate the location and energetics of the associated ultra-fast outflows (UFOs). Due to significant uncertainties, we are essentially able to place only lower/upper limits. On average, their location is in the interval ~0.0003-0.03pc (~10^2-10^4 r_s) from the central black hole, consistent with what is exp...

  16. Identifying the subtle signatures of feedback from distant AGN using ALMA observations and the EAGLE hydrodynamical simulations

    Science.gov (United States)

    Scholtz, J.; Alexander, D. M.; Harrison, C. M.; Rosario, D. J.; McAlpine, S.; Mullaney, J. R.; Stanley, F.; Simpson, J.; Theuns, T.; Bower, R. G.; Hickox, R. C.; Santini, P.; Swinbank, A. M.

    2018-03-01

    We present sensitive 870 μm continuum measurements from our ALMA programmes of 114 X-ray selected active galactic nuclei (AGN) in the Chandra Deep Field-South and Cosmic Evolution Survey fields. We use these observations in combination with data from Spitzer and Herschel to construct a sample of 86 X-ray selected AGN, 63 with ALMA constraints at z = 1.5-3.2 with stellar mass >2 × 1010 M⊙. We constructed broad-band spectral energy distributions in the infrared band (8-1000 μm) and constrain star-formation rates (SFRs) uncontaminated by the AGN. Using a hierarchical Bayesian method that takes into account the information from upper limits, we fit SFR and specific SFR (sSFR) distributions. We explore these distributions as a function of both X-ray luminosity and stellar mass. We compare our measurements to two versions of the Evolution and Assembly of GaLaxies and their Environments (EAGLE) hydrodynamical simulations: the reference model with AGN feedback and the model without AGN. We find good agreement between the observations and that predicted by the EAGLE reference model for the modes and widths of the sSFR distributions as a function of both X-ray luminosity and stellar mass; however, we found that the EAGLE model without AGN feedback predicts a significantly narrower width when compared to the data. Overall, from the combination of the observations with the model predictions, we conclude that (1) even with AGN feedback, we expect no strong relationship between the sSFR distribution parameters and instantaneous AGN luminosity and (2) a signature of AGN feedback is a broad distribution of sSFRs for all galaxies (not just those hosting an AGN) with stellar masses above ≈1010 M⊙.

  17. A New Look at Speeding Outflows

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    The compact centers of active galaxies known as active galactic nuclei, or AGN are known for the dynamic behavior they exhibit as the supermassive black holes at their centers accrete matter. New observations of outflows from a nearby AGN provide a more detailed look at what happens in these extreme environments.Outflows from GiantsThe powerful radio jets of Cygnus A, which extend far beyond the galaxy. [NRAO/AUI]AGN consist of a supermassive black hole of millions to tens of billions of solar masses surrounded by an accretion disk of in-falling matter. But not all the material falling toward the black hole accretes! Some of it is flung from the AGN via various types of outflows.The most well-known of these outflows are powerful radio jets collimated and incredibly fast-moving streams of particles that blast their way out of the host galaxy and into space. Only around 10% of AGN are observed to host such jets, however and theres another outflow thats more ubiquitous.Fast-Moving AbsorbersPerhaps 30% of AGN both those with and without observed radio jets host wider-angle, highly ionized gaseous outflows known as ultra-fast outflows (UFOs). Ultraviolet and X-ray radiation emitted from the AGN is absorbed by the UFO, revealing the outflows presence: absorption lines appear in the ultraviolet and X-ray spectra of the AGN, blue-shifted due to the high speeds of the absorbing gas in the outflow.Quasar PG 1211+143, indicated by the crosshairs at the center of the image, in the color context of its surroundings. [SDSS/S. Karge]But what is the nature of UFOs? Are they disk winds? Or are they somehow related to the radio jets? And what impact do they have on the AGNs host galaxy?X-ray and Ultraviolet CooperationNew observations are now providing fresh information about one particular UFO. A team of scientists led by Ashkbiz Danehkar (Harvard-Smithsonian Center for Astrophysics) recently used the Chandra and Hubble space telescopes to make the first simultaneous observations

  18. AGN feedback through UFO and galaxy-wide winds in the early Universe

    Science.gov (United States)

    Feruglio, C.; Piconcelli, E.; Bischetti, M.; Zappacosta, L.; Fiore, F.

    2017-10-01

    AGN feedback through massive molecular winds is today routinely observed in local AGN host galaxies, but not as such in the early universe. I will present the first evidence for a massive, AGN-driven molecular wind in the z 4 QSO APM08279, which also hosts the most well studied and persistent nuclear semi-raltivistic wind (UFO). This observation directly probes the expansion mechanism of a nuclear wind into the ISM on galaxy wide scales, that so far was constrained by a couple of other objects only (Feruglio et al. 2015, Tombesi et al. 2015). This result also opens the path toward the exploration of molecular AGN-driven winds at early epochs, close after the end of the Epoch of Reionisation (EoR).

  19. Active Galactic Nucleus Feedback in an Elliptical Galaxy with the Most Updated AGN Physics. I. Low Angular Momentum Case

    Science.gov (United States)

    Yuan, Feng; Yoon, DooSoo; Li, Ya-Ping; Gan, Zhao-Ming; Ho, Luis C.; Guo, Fulai

    2018-04-01

    We investigate the effects of AGN feedback on the cosmological evolution of an isolated elliptical galaxy by performing two-dimensional high-resolution hydrodynamical numerical simulations. The inner boundary of the simulation is chosen so that the Bondi radius is resolved. Compared to previous works, the two accretion modes—namely, hot and cold, which correspond to different accretion rates and have different radiation and wind outputs—are carefully discriminated, and the feedback effects by radiation and wind in each mode are taken into account. The most updated AGN physics, including the descriptions of radiation and wind from the hot accretion flows and wind from cold accretion disks, are adopted. Physical processes like star formation and SNe Ia and II are taken into account. We study the AGN light curve, typical AGN lifetime, growth of the black hole mass, AGN duty cycle, star formation, and X-ray surface brightness of the galaxy. We compare our simulation results with observations and find general consistency. Comparisons with previous simulation works find significant differences, indicating the importance of AGN physics. The respective roles of radiation and wind feedback are examined, and it is found that they are different for different problems of interest, such as AGN luminosity and star formation. We find that it is hard to neglect any of them, so we suggest using the names “cold feedback mode” and “hot feedback mode” to replace the currently used ones.

  20. Dusty Feedback from Massive Black Holes in Two Elliptical Galaxies

    Science.gov (United States)

    Temi, P.; Brighenti, F.; Mathews, W. G.; Amblard, A.; Riguccini, L.

    2013-01-01

    Far-infrared dust emission from elliptical galaxies informs us about galaxy mergers, feedback energy outbursts from supermassive black holes and the age of galactic stars. We report on the role of AGN feedback observationally by looking for its signatures in elliptical galaxies at recent epochs in the nearby universe. We present Herschel observations of two elliptical galaxies with strong and spatially extended FIR emission from colder grains 5-10 kpc distant from the galaxy cores. Extended excess cold dust emission is interpreted as evidence of recent feedback-generated AGN energy outbursts in these galaxies, visible only in the FIR, from buoyant gaseous outflows from the galaxy cores.

  1. Massive Molecular Outflows and Evidence for AGN Feedback from CO Observations

    Science.gov (United States)

    2014-01-01

    outflows of the molecular phase out of which stars form, which in most galaxies also represents the bulk of the ISM; moreover the spectro -imaging...method for estimating the integrated flux and the spa- tial extension of the CO(1–0) wings relies almost exclusively on the analysis of the uv ...the 3 mm continuum emission from the line-free frequency ranges in our wide-band (WideX) observations, and then subtract it directly from the uv data

  2. A tale of two feedbacks: Star formation in the host galaxies of radio AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Im, Myungshin; Jeon, Yiseul; Kim, Ji Hoon [CEOU-Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Trichas, Markos [Airbus Defence and Space, Gunnels Wood Road, Stevenage SG1 2AS (United Kingdom); Goto, Tomo [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Malkan, Matt [Division of Astronomy and Astrophysics, 3-714 UCLA, CA 90095-1547 (United States); Ruiz, Angel [Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4, Ganeshkhind, 411 007 Pune (India); Lee, Hyung Mok; Kim, Seong Jin [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Oi, Nagisa; Matsuhara, Hideo; Takagi, Toshinobu; Murata, K.; Wada, Takehiko; Wada, Kensuke [Institute of Space and Astronautical Science, JAXA, Yoshino-dai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Shim, Hyunjin [Department of Earth Science Education, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hanami, Hitoshi [Physics Section, Faculty of Humanities, Iwate University, Ueda 3 chome, 18-34 Morioka, Morioka, Iwate 020-8550 (Japan); Serjeant, Stephen; White, Glenn J., E-mail: mkarouzos@astro.snu.ac.kr [Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes (United Kingdom); and others

    2014-04-01

    Several lines of argument support the existence of a link between activity at the nuclei of galaxies, in the form of an accreting supermassive black hole, and star formation activity in these galaxies. Radio jets have long been argued to be an ideal mechanism that allows active galactic nuclei (AGNs) to interact with their host galaxies and affect star formation. We use a sample of radio sources in the North Ecliptic Pole (NEP) field to study the nature of this putative link, by means of spectral energy distribution (SED) fitting. We employ the excellent spectral coverage of the AKARI infrared space telescope and the rich ancillary data available in the NEP to build SEDs extending from UV to far-IR wavelengths. We find a significant AGN component in our sample of relatively faint radio sources (AGN component and that of star formation in the host galaxy, independent of the radio luminosity. In contrast, for narrow redshift and AGN luminosity ranges, we find that increasing radio luminosity leads to a decrease in the specific star formation rate. The most radio-loud AGNs are found to lie on the main sequence of star formation for their respective redshifts. For the first time, we potentially see such a two-sided feedback process in the same sample. We discuss the possible suppression of star formation, but not total quenching, in systems with strong radio jets, that supports the maintenance nature of feedback from radio AGN jets.

  3. X-ray evidence for ultra-fast outflows in Seyfert galaxies

    Science.gov (United States)

    Tombesi, Francesco; Braito, Valentina; Reeves, James; Cappi, Massimo; Dadina, Mauro

    2012-07-01

    X-ray evidence for massive, highly ionized, ultra-fast outflows (UFOs) has been recently reported in a number of AGNs through the detection of blue-shifted Fe XXV/XXVI absorption lines. We present the results of a comprehensive spectral analysis of a large sample of 42 local Seyferts observed with XMM-Newton. Similar results are also obtained from a Suzaku analysis of 5 radio galaxies. We find that UFOs are common phenomena, being present in >40% of the sources. Their outflow velocity distribution is in the range ˜0.03--0.3c, with mean value of ˜0.14c. The ionization parameter is very high, in the range logξ˜3--6 erg~s^{-1}~cm, and the associated column densities are also large, in the range ˜10^{22}--10^{24} cm^{-2}. Their location is constrained at ˜0.0003--0.03pc (˜10^2--10^4 r_s) from the central black hole, consistent with what is expected for accretion disk winds/outflows. The mass outflow rates are in the interval ˜0.01--1M_{⊙}~yr^{-1}. The associated mechanical power is also high, in the range ˜10^{43}--10^{45} erg/s, which indicates that UFOs are capable to provide a significant contribution to the AGN cosmological feedback.

  4. COST meeting - Polarization and AGN II - Abstracts and slides

    International Nuclear Information System (INIS)

    Kishimoto, M.; Rouan, D.; Tadhunter, C.; Lopez Rodriguez, E.; Braibant, L.; Pasetto, A.; Matt, G.; Afanasiev, V.; Lira, P.; Hutsemekers, D.; Sluse, D.; Marin, F.; Tamborra, F.; Yankova, K.; Laing, R.; Lico, R.; Agudo, I.; Hovatta, T.; Jermak, H.; Chen, X.; Myserlis, I.; Cellone, S.A.; Chidiac, C.; Chakraborty, N.; Bozhilov, V.

    2016-01-01

    This meeting is the 2. COST workshop on Polarization and Active Galactic Nuclei (AGN). Accreting supermassive black holes in active galactic nuclei are the most powerful, long-lasting sources in the universe. Emitting over ten orders of magnitude in photon energy or more, the radiation of AGN encodes information about a multitude of astrophysical processes: accretion, thermal and non-thermal radiative transfer, acceleration of outflows and jets, shock physics, special and general relativity. Observationally, AGN appear as numerous types and polarization studies have played a key role in establishing the idea of a unifying AGN geometry. The topics covered at the meeting include the following: 1) Polarimetry of AGN from the radio to gamma-rays; 2) Tools for modeling and data analysis of AGN polarization; 3) Polarization due to magnetic fields and dust in AGN; 4) Polarization of AGN inflows, outflows and jets; 5) Spectropolarimetry and polarization variability of AGN; and 6) From Sgr A* to the most luminous quasars: what can polarimetry do for AGN (super-)unification? This document is made up of the abstracts and slides of the presentations

  5. AGN Obscuration Through Dusty Infrared Dominated Flows. 1; Radiation-Hydrodynamics Solution for the Wind

    Science.gov (United States)

    Dorodnitsyn, A.; Bisnovatyi-Kogan. G. S.; Kallman, T.

    2011-01-01

    We construct a radiation-hydrodynamics model for the obscuring toroidal structure in active galactic nuclei. In this model the obscuration is produced at parsec scale by a dense, dusty wind which is supported by infrared radiation pressure on dust grains. To find the distribution of radiation pressure, we numerically solve the 2D radiation transfer problem in a flux limited diffusion approximation. We iteratively couple the solution with calculations of stationary 1D models for the wind, and obtain the z-component of the velocity. Our results demonstrate that for AGN luminosities greater than 0.1 L(sub edd) external illumination can support a geometrically thick obscuration via outflows driven by infrared radiation pressure. The terminal velocity of marginally Compton-thin models (0.2 infrared-driven winds is a viable option for the AGN torus problem and AGN unification models. Such winds can also provide an important channel for AGN feedback.

  6. Density diagnostics of ionized outflows in active galacitc nuclei

    Science.gov (United States)

    Mao, J.; Kaastra, J.; Mehdipour, M.; Raassen, T.; Gu, L.

    2017-10-01

    Ionized outflows in Active Galactic Nuclei are thought to influence their nuclear and local galactic environment. However, the distance of outflows with respect to the central engine is poorly constrained, which limits our understanding of the kinetic power by the outflows. Therefore, the impact of AGN outflows on their host galaxies is uncertain. Given the density of the outflows, their distance can be immediately obtained by the definition of the ionization parameter. Here we carry out a theoretical study of density diagnostics of AGN outflows using absorption lines from metastable levels in Be-like to F-like ions. With the new self-consistent photoionization model (PION) in the SPEX code, we are able to calculate ground and metastable level populations. This enable us to determine under what physical conditions these levels are significantly populated. We then identify characteristic transitions from these metastable levels in the X-ray band. Firm detections of absorption lines from such metastable levels are challenging for current grating instruments. The next generation of spectrometers like X-IFU onboard Athena will certainly identify the presence/absence of these density- sensitive absorption lines, thus tightly constraining the location and the kinetic power of AGN outflows.

  7. The three-dimensional properties and energetics of radio-jet-driven outflows

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Hsin-Yi; Stockton, Alan, E-mail: hsshih@ifa.hawaii.edu, E-mail: stockton@ifa.hawaii.edu [Institute for Astronomy, University of Hawai' i 2680 Woodlawn Dr, Honolulu, HI 96822 (United States)

    2014-05-01

    Extended emission-line regions (EELRs), found around radio-loud sources, are likely outflows driven by one form of powerful active galactic nucleus (AGN) feedback mechanism. We seek to constrain the three-dimensional gas properties and the outflow energetics of the EELRs in this study. We used an integral field unit to observe EELRs around two samples of radio-loud AGNs with similar radio properties, but different orientations: a sample of quasars and a sample of radio galaxies. A morphological comparison suggests a scenario where the three-dimensional EELR gas distribution follows rough biconical shapes with wide opening angles. The average extent of the EELRs is ∼18.5 kpc. The estimated average mass of the EELRs, with reasonable assumptions for gas densities, is ∼3 × 10{sup 8} M {sub ☉}, and the average mass outflow rate is ∼30 M {sub ☉} yr{sup –1}. The EELRs around quasars and radio galaxies share similar kinematic properties. Both samples have velocity structures that display a range of complexities, they do not appear to correlate with the jet orientations, and both span a similar range of velocity dispersions. Around 30% of the detected EELRs show large-scale rotational motions, which may have originated from recent mergers involving gas-rich disk galaxies.

  8. DISCOVERY OF ULTRA-FAST OUTFLOWS IN A SAMPLE OF BROAD-LINE RADIO GALAXIES OBSERVED WITH SUZAKU

    International Nuclear Information System (INIS)

    Tombesi, F.; Sambruna, R. M.; Mushotzky, R. F.; Reeves, J. N.; Gofford, J.; Braito, V.; Ballo, L.; Cappi, M.

    2010-01-01

    We present the results of a uniform and systematic search for blueshifted Fe K absorption lines in the X-ray spectra of five bright broad-line radio galaxies observed with Suzaku. We detect, for the first time in radio-loud active galactic nuclei (AGNs) at X-rays, several absorption lines at energies greater than 7 keV in three out of five sources, namely, 3C 111, 3C 120, and 3C 390.3. The lines are detected with high significance according to both the F-test and extensive Monte Carlo simulations. Their likely interpretation as blueshifted Fe XXV and Fe XXVI K-shell resonance lines implies an origin from highly ionized gas outflowing with mildly relativistic velocities, in the range v ≅ 0.04-0.15c. A fit with specific photoionization models gives ionization parameters in the range log ξ ≅ 4-5.6 erg s -1 cm and column densities of N H ≅ 10 22 -10 23 cm -2 . These characteristics are very similar to those of the ultra-fast outflows (UFOs) previously observed in radio-quiet AGNs. Their estimated location within ∼0.01-0.3 pc of the central super-massive black hole suggests a likely origin related with accretion disk winds/outflows. Depending on the absorber covering fraction, the mass outflow rate of these UFOs can be comparable to the accretion rate and their kinetic power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, these UFOs can play a significant role in the expected feedback from the AGN to the surrounding environment and can give us further clues on the relation between the accretion disk and the formation of winds/jets in both radio-quiet and radio-loud AGNs.

  9. A Compact Group of Galaxies at z = 2.48 Hosting an AGN-driven Outflow

    Science.gov (United States)

    Shih, Hsin-Yi; Stockton, Alan

    2015-12-01

    We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high-redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6 × 1011M⊙ and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the active galactic nucleus (AGN) producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass-metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At ≳50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio-jet-driven outflow. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The work is also based, in part, on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, and on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  10. Revolutionizing Our Understanding of AGN Feedback and its Importance to Galaxy Evolution in the Era of the Next Generation Very Large Array

    Science.gov (United States)

    Nyland, K.; Harwood, J. J.; Mukherjee, D.; Jagannathan, P.; Rujopakarn, W.; Emonts, B.; Alatalo, K.; Bicknell, G. V.; Davis, T. A.; Greene, J. E.; Kimball, A.; Lacy, M.; Lonsdale, Carol; Lonsdale, Colin; Maksym, W. P.; Molnár, D. C.; Morabito, L.; Murphy, E. J.; Patil, P.; Prandoni, I.; Sargent, M.; Vlahakis, C.

    2018-05-01

    Energetic feedback by active galactic nuclei (AGNs) plays an important evolutionary role in the regulation of star formation on galactic scales. However, the effects of this feedback as a function of redshift and galaxy properties such as mass, environment, and cold gas content remain poorly understood. The broad frequency coverage (1 to 116 GHz), high sensitivity (up to ten times higher than the Karl G. Jansky Very Large Array), and superb angular resolution (maximum baselines of at least a few hundred kilometers) of the proposed next-generation Very Large Array (ngVLA) are uniquely poised to revolutionize our understanding of AGNs and their role in galaxy evolution. Here, we provide an overview of the science related to AGN feedback that will be possible in the ngVLA era and present new continuum ngVLA imaging simulations of resolved radio jets spanning a wide range of intrinsic extents. We also consider key computational challenges and discuss exciting opportunities for multiwavelength synergy with other next-generation instruments, such as the Square Kilometer Array and the James Webb Space Telescope. The unique combination of high-resolution, large collecting area, and wide frequency range will enable significant advancements in our understanding of the effects of jet-driven feedback on sub-galactic scales, particularly for sources with extents of a few parsec to a few kiloparsec, such as young and/or lower-power radio AGNs, AGNs hosted by low-mass galaxies, radio jets that are interacting strongly with the interstellar medium of the host galaxy, and AGNs at high redshift.

  11. Momentum-driven Winds from Radiatively Efficient Black Hole Accretion and Their Impact on Galaxies

    Science.gov (United States)

    Brennan, Ryan; Choi, Ena; Somerville, Rachel S.; Hirschmann, Michaela; Naab, Thorsten; Ostriker, Jeremiah P.

    2018-06-01

    We explore the effect of momentum-driven winds representing radiation-pressure-driven outflows from accretion onto supermassive black holes in a set of numerical hydrodynamical simulations. We explore two matched sets of cosmological zoom-in runs of 24 halos with masses ∼1012.0–1013.4 M ⊙ run with two different feedback models. Our “NoAGN” model includes stellar feedback via UV heating, stellar winds and supernovae, photoelectric heating, and cosmic X-ray background heating from a metagalactic background. Our fiducial “MrAGN” model is identical except that it also includes a model for black hole seeding and accretion, as well as heating and momentum injection associated with the radiation from black hole accretion. Our MrAGN model launches galactic outflows, which result in both “ejective” feedback—the outflows themselves that drive gas out of galaxies—and “preventative” feedback, which suppresses the inflow of new and recycling gas. As much as 80% of outflowing galactic gas can be expelled, and accretion can be suppressed by as much as a factor of 30 in the MrAGN runs when compared with the NoAGN runs. The histories of NoAGN galaxies are recycling dominated, with ∼70% of material that leaves the galaxy eventually returning, and the majority of outflowing gas reaccretes on 1 Gyr timescales without AGN feedback. Outflowing gas in the MrAGN runs has a higher characteristic velocity (500–1000 km s‑1 versus 100–300 km s‑1 for outflowing NoAGN gas) and travels as far as a few megaparsecs. Only ∼10% of ejected material is reaccreted in the MrAGN galaxies.

  12. The Close AGN Reference Survey (CARS)

    Science.gov (United States)

    Husemann, B.; Tremblay, G.; Davis, T.; Busch, G.; McElroy, R.; Neumann, J.; Urrutia, T.; Krumpe, M.; Scharwächter, J.; Powell, M.; Perez-Torres, M.; The CARS Team

    2017-09-01

    The role of active galactic nuclei (AGN) in the evolution of galaxies remains a mystery. The energy released by these accreting supermassive black holes can vastly exceed the entire binding energy of their host galaxies, yet it remains unclear how this energy is dissipated throughout the galaxy, and how that might couple to the galaxy's evolution. The Close AGN Reference Survey (CARS) is a multi-wavelength survey of a representative sample of luminous Type I AGN at redshifts 0.01 connection. These AGN are more luminous than very nearby AGN but are still close enough for spatially resolved mapping at sub-kpc scales with various state- of-the art facilities and instruments, such as VLT-MUSE, ALMA, JVLA, Chandra, SOFIA, and many more. In this article we showcase the power of CARS with examples of a multi-phase AGN outflow, diverse views on star formation activity and a unique changing-look AGN. CARS will provide an essential low-redshift reference sample for ongoing and forthcoming AGN surveys at high redshift.

  13. Self-regulated growth of supermassive black holes by a dual jet-heating active galactic nucleus feedback mechanism: methods, tests and implications for cosmological simulations

    Science.gov (United States)

    Dubois, Yohan; Devriendt, Julien; Slyz, Adrianne; Teyssier, Romain

    2012-03-01

    We develop a subgrid model for the growth of supermassive black holes (BHs) and their associated active galactic nucleus (AGN) feedback in hydrodynamical cosmological simulations. This model transposes previous attempts to describe BH accretion and AGN feedback with the smoothed particle hydrodynamics (SPH) technique to the adaptive mesh refinement framework. It also furthers their development by implementing a new jet-like outflow treatment of the AGN feedback which we combine with the heating mode traditionally used in the SPH approach. Thus, our approach allows one to test the robustness of the conclusions derived from simulating the impact of self-regulated AGN feedback on galaxy formation vis-à-vis the numerical method. Assuming that BHs are created in the early stages of galaxy formation, they grow by mergers and accretion of gas at a Eddington-limited Bondi accretion rate. However this growth is regulated by AGN feedback which we model using two different modes: a quasar-heating mode when accretion rates on to the BHs are comparable to the Eddington rate, and a radio-jet mode at lower accretion rates which not only deposits energy, but also deposits mass and momentum on the grid. In other words, our feedback model deposits energy as a succession of thermal bursts and jet outflows depending on the properties of the gas surrounding the BHs. We assess the plausibility of such a model by comparing our results to observational measurements of the co-evolution of BHs and their host galaxy properties, and check their robustness with respect to numerical resolution. We show that AGN feedback must be a crucial physical ingredient for the formation of massive galaxies as it appears to be able to efficiently prevent the accumulation of and/or expel cold gas out of haloes/galaxies and significantly suppress star formation. Our model predicts that the relationship between BHs and their host galaxy mass evolves as a function of redshift, because of the vigorous accretion

  14. N uSTAR Hard X-Ray Data and Gemini 3D Spectra Reveal Powerful AGN and Outflow Histories in Two Low-redshift Lyα Blobs

    Science.gov (United States)

    Kawamuro, Taiki; Schirmer, Mischa; Turner, James E. H.; Davies, Rebecca L.; Ichikawa, Kohei

    2017-10-01

    We have shown that Lyα blobs (LABs) may still exist even at z˜ 0.3, about seven billion years later than most other LABs known (Shirmer et al.). Their luminous Lyα and [O III] emitters at z˜ 0.3 offer new insights into the ionization mechanism. This paper focuses on the two X-ray brightest LABs at z˜ 0.3, SDSS J0113+0106 (J0113) and SDSS J1155-0147 (J1155), comparable in size and luminosity to “B1,” one of the best-studied LABs at z≳ 2. Our NuSTAR hard X-ray (3-30 keV) observations reveal powerful active galactic nuclei (AGN) with {L}2{--10{keV}}=(0.5{--}3)× {10}44 erg s-1. J0113 also faded by a factor of ˜5 between 2014 and 2016, emphasizing that variable AGN may cause apparent ionization deficits in LABs. Joint spectral analyses including Chandra data constrain column densities of {N}{{H}}={5.1}-3.3+3.1× {10}23 cm-2 (J0113) and {N}{{H}}={6.0}-1.1+1.4× {10}22 cm-2 (J1155). J0113 is likely buried in a torus with a narrow ionization cone, but ionizing radiation is also leaking in other directions, as revealed by our Gemini/GMOS 3D spectroscopy. The latter shows a bipolar outflow over 10 kpc, with a peculiar velocity profile that is best explained by AGN flickering. X-ray analysis of J1155 reveals a weakly absorbed AGN that may ionize over a wide solid angle, consistent with our 3D spectra. Extinction-corrected [O III] log-luminosities are high, ˜43.6. The velocity dispersions are low, ˜100-150 km s-1, even at the AGN positions. We argue that this is a combination of high extinction hiding the turbulent gas and previous outflows that have cleared the escape paths for their successors.

  15. Outflow and Accretion Physics in Active Galactic Nuclei

    Science.gov (United States)

    McGraw, Sean Michael

    2016-09-01

    intervals are associated with high-ionization species such as C IV and N V, low-ionization lines including Mg II and Al III, and ground and excited states from Fe II multiplets. The detected BAL and mini-BAL variations in a subset of sources provide evidence supporting scenarios involving either transverse motions of gas or ionization changes within the absorbers. We conclude that some outflows in our samples likely exist on the order of 0.01-1 pc from the SMBH, and the possibility remains that we are tracing outflowing gas on larger scales within limits ranging from ≤10 pc to ≤1 kpc from the central source. We estimate outflow kinetic luminosities between ˜10 6 and 1 times the bolometric luminosity of the quasar, indicating that the BAL outflows we probe likely possess a range of energies and only some absorber energies are likely sufficient for AGN feedback processes. We estimate the SMBH mass in the LLAGN in NGC 4203 to be ˜1.1x10 7 solar masses within a factor of ˜2. This mass estimate in conjunction with theoretical predictions is consistent with the existence of a two-component accretion flow in the nucleus of NGC 4203, consisting of a hot, advection-dominated torus at small radii connected with a thin, radiatively efficient disk at larger scales. These results provide a significant increase in the information available for quasar outflow properties and the conditions in low-luminosity accretion disks, and will inform future observational and theoretical studies that attempt to construct a more complete picture of AGN and their effects on the surrounding environments.

  16. X-RAY HIGH-RESOLUTION SPECTROSCOPY REVEALS FEEDBACK IN A SEYFERT GALAXY FROM AN ULTRA-FAST WIND WITH COMPLEX IONIZATION AND VELOCITY STRUCTURE

    International Nuclear Information System (INIS)

    Longinotti, A. L.; Krongold, Y.; Guainazzi, M.; Santos-Lleo, M.; Rodriguez-Pascual, P.; Giroletti, M.; Panessa, F.; Costantini, E.

    2015-01-01

    Winds outflowing from active galactic nuclei (AGNs) may carry significant amounts of mass and energy out to their host galaxies. In this paper we report the detection of a sub-relativistic outflow observed in the narrow line Seyfert 1 galaxy IRAS 17020+4544 as a series of absorption lines corresponding to at least five absorption components with an unprecedented wide range of associated column densities and ionization levels and velocities in the range of 23,000–33,000 km s −1 , detected at X-ray high spectral resolution (E/ΔE ∼ 1000) with the ESA's observatory XMM-Newton. The charge states of the material constituting the wind clearly indicate a range of low to moderate ionization states in the outflowing gas and column densities that are significantly lower than observed in highly ionized ultra-fast outflows. We estimate that at least one of the outflow components may carry sufficient energy to substantially suppress star formation and heat the gas in the host galaxy. IRAS 17020+4544 therefore provides an interesting example of feedback by a moderately luminous AGN that is hosted in a spiral galaxy, a case barely envisaged in most evolution models, which often predict that feedback processes take place in massive elliptical galaxies hosting luminous quasars in a post-merger phase

  17. X-RAY HIGH-RESOLUTION SPECTROSCOPY REVEALS FEEDBACK IN A SEYFERT GALAXY FROM AN ULTRA-FAST WIND WITH COMPLEX IONIZATION AND VELOCITY STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Longinotti, A. L. [Catedrática CONACYT—Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis E. Erro 1, Tonantzintla, Puebla, C.P. 72840, México (Mexico); Krongold, Y. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apartado Postal 70264, 04510 Mexico D.F. (Mexico); Guainazzi, M.; Santos-Lleo, M.; Rodriguez-Pascual, P. [ESAC, P.O. Box, 78 E-28691 Villanueva de la Cañada, Madrid (Spain); Giroletti, M. [INAF Osservatorio di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Panessa, F. [INAF—Istituto di Astrofisica e Planetologia Spaziali di Roma (IAPS), Via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Costantini, E. [SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht (Netherlands)

    2015-11-10

    Winds outflowing from active galactic nuclei (AGNs) may carry significant amounts of mass and energy out to their host galaxies. In this paper we report the detection of a sub-relativistic outflow observed in the narrow line Seyfert 1 galaxy IRAS 17020+4544 as a series of absorption lines corresponding to at least five absorption components with an unprecedented wide range of associated column densities and ionization levels and velocities in the range of 23,000–33,000 km s{sup −1}, detected at X-ray high spectral resolution (E/ΔE ∼ 1000) with the ESA's observatory XMM-Newton. The charge states of the material constituting the wind clearly indicate a range of low to moderate ionization states in the outflowing gas and column densities that are significantly lower than observed in highly ionized ultra-fast outflows. We estimate that at least one of the outflow components may carry sufficient energy to substantially suppress star formation and heat the gas in the host galaxy. IRAS 17020+4544 therefore provides an interesting example of feedback by a moderately luminous AGN that is hosted in a spiral galaxy, a case barely envisaged in most evolution models, which often predict that feedback processes take place in massive elliptical galaxies hosting luminous quasars in a post-merger phase.

  18. Recent Chandra/HETGS and NuSTAR observations of the quasar PDS 456 and its Ultra-Fast Outflow

    Science.gov (United States)

    Boissay Malaquin, Rozenn; Marshall, Herman L.; Nowak, Michael A.

    2018-01-01

    Evidence is growing that the interaction between outflows from active galactic nuclei (AGN) and their surrounding medium may play an important role in galaxy evolution, i.e. in the regulation of star formation in galaxies, through AGN feedback processes. Indeed, powerful outflows, such as the ultra-fast outflows (UFOs) that can reach mildly relativistic velocities of 0.2-0.4c, could blow away a galaxy’s reservoir of star-forming gas and hence quench the star formation in host galaxies. The low-redshift (z=0.184) radio-quiet quasar PDS 456 has showed the presence of a strong and blueshifted absorption trough in the Fe K band above 7 keV, that has been associated with the signature of such a fast and highly ionized accretion disk wind of a velocity of 0.25-0.3c. This persistent and variable feature has been detected in many observations of PDS 456, in particular by XMM-Newton, Suzaku and NuSTAR, together with other blueshifted absorption lines in the soft energy band (e.g. Nardini et al. 2015, Reeves et al. 2016). I will present here the results of the analysis of recent and contemporaneous high-resolution Chandra/HETGS and NuSTAR observations of PDS 456, and compare them with the previous findings.

  19. Measuring Galactic Feedback with the Origins Space Telescope

    Science.gov (United States)

    Armus, Lee; Bolatto, Alberto; Pope, Alexandra; Bradford, Charles Matt; Origins Space Telescope Science and Technology Definition Team

    2018-01-01

    Since a significant fraction of star formation and black hole growth occurs behind dust, our understanding of how and why galaxies evolve will remain incomplete until deep, wide area spectroscopic surveys in the FIRcan be carried out from space. The Origins Space Telescope (OST), a mission concept being studied for presentation to the 2020 Decadal Survey, represents an enormous leap over any existing infrared mission, and will uniquely measure black hole growth and star formation in dusty galaxies over more than 95% of cosmic history. Energetic feedback from AGN, young stars, and supernovae can regulate galaxy growth over a wide range in mass and be important for the enrichment of the interstellar and circumgalactic medium, yet the existence and type of feedback as a function of redshift, luminosity, and environment is poorly constrained. With wide wavelength coverage (5-600 microns), a large primary mirror actively cooled to ~4K, and a capable suite of imagers and spectrometers, OST will be an extremely sensitive probe of the effects of feedback on the multi-phase ISM in galaxies, through measurement of key feedback tracers such as OH and H2O absorption lines, fine structure emission lines, and PAH dust features. With OST we can directly observe the role of feedback in quenching galaxies, derive the wind kinetic energy and mass outflow rates, and correlate these with key galaxy properties (AGN or starburst power, environment, mass, age). In this poster we will explain how blind and targeted surveys with OST will have an enormous impact on our understanding of the duty cycle and basic physical properties of feedback in AGN and starburst galaxies over the last 12 Gyr.

  20. AGN UNIFICATION AT z ∼ 1: u - R COLORS AND GRADIENTS IN X-RAY AGN HOSTS

    International Nuclear Information System (INIS)

    Mark Ammons, S.; Rosario, David J. V.; Koo, David C.

    2011-01-01

    We present uncontaminated rest-frame u - R colors of 78 X-ray-selected active galactic nucleus (AGN) hosts at 0.5 1.1 kpc. These three observations imply that AGN obscuration is uncorrelated with the star formation rate beyond ∼1 kpc. These observations favor a unification scenario for intermediate-luminosity AGNs in which obscuration is determined geometrically. Scenarios in which the majority of intermediate-luminosity AGNs at z ∼ 1 are undergoing rapid, galaxy-wide quenching due to AGN-driven feedback processes are disfavored.

  1. The multi-phase winds of Markarian 231: from the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow

    Science.gov (United States)

    Feruglio, C.; Fiore, F.; Carniani, S.; Piconcelli, E.; Zappacosta, L.; Bongiorno, A.; Cicone, C.; Maiolino, R.; Marconi, A.; Menci, N.; Puccetti, S.; Veilleux, S.

    2015-11-01

    kinetic energy is transferred to mechanical energy of the kpc-scale outflow, strongly supporting that the energy released during accretion of matter onto super-massive black holes is the ultimate driver of giant massive outflows. The momentum flux dot {P}OF derived for the large scale outflows in Mrk 231 enables us to estimate a momentum boost dot {P}OF/ dot {P} UFO ≈ [30-60]. The ratios Ėkin,UFO/Lbol,AGN = [1-5] % and Ėkin,OF/Lbol,AGN = [1-3] % agree with the requirements of the most popular models of AGN feedback. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain), and with Chandra and NuSTAR observatories.

  2. Figuring Out Gas and Galaxies in Enzo (FOGGIE): Simulating effects of feedback on galactic outflows

    Science.gov (United States)

    Morris, Melissa Elizabeth; Corlies, Lauren; Peeples, Molly; Tumlinson, Jason; O'Shea, Brian; Smith, Britton

    2018-01-01

    The circumgalactic medium (CGM) is the region beyond the galactic disk in which gas is accreted through pristine inflows from the intergalactic medium and expelled from the galaxy by stellar feedback in large outflows that can then be recycled back onto the disk. These gas cycles connect the galactic disk with its cosmic environment, making the CGM a vital component of galaxy evolution. However, the CGM is primarily observed in absorption, which can be difficult to interpret. In this study, we use high resolution cosmological hydrodynamic simulations of a Milky Way mass halo evolved with the code Enzo to aid the interpretation of these observations. In our simulations, we vary feedback strength and observe the effect it has on galactic outflows and the evolution of the galaxy’s CGM. We compare the star formation rate of the galaxy with the velocity flux and mass outflow rate as a function of height above the plane of the galaxy in order to measure the strength of the outflows and how far they extend outside of the galaxy.This work was supported by The Space Astronomy Summer Program at STScI and NSF grant AST-1517908.

  3. DISCOVERY OF RELATIVISTIC OUTFLOW IN THE SEYFERT GALAXY Ark 564

    International Nuclear Information System (INIS)

    Gupta, A.; Mathur, S.; Krongold, Y.; Nicastro, F.

    2013-01-01

    We present Chandra High Energy Transmission Grating Spectra of the narrow-line Seyfert-1 galaxy Ark 564. The spectrum shows numerous absorption lines which are well modeled with low-velocity outflow components usually observed in Seyfert galaxies. There are, however, some residual absorption lines which are not accounted for by low-velocity outflows. Here, we present identifications of the strongest lines as Kα transitions of O VII (two lines) and O VI at outflow velocities of ∼0.1c. These lines are detected at 6.9σ, 6.2σ, and 4.7σ, respectively, and cannot be due to chance statistical fluctuations. Photoionization models with ultra-high velocity components improve the spectral fit significantly, providing further support for the presence of relativistic outflow in this source. Without knowing the location of the absorber, its mass and energy outflow rates cannot be well constrained; we find E-dot (outflow)/L bol lower limit of ≥0.006% assuming a bi-conical wind geometry. This is the first time that absorption lines with ultra-high velocities are unambiguously detected in the soft X-ray band. The presence of outflows with relativistic velocities in active galactic nuclei (AGNs) with Seyfert-type luminosities is hard to understand and provides valuable constraints to models of AGN outflows. Radiation pressure is unlikely to be the driving mechanism for such outflows and magnetohydrodynamic may be involved

  4. CAUSE AND EFFECT OF FEEDBACK: MULTIPHASE GAS IN CLUSTER CORES HEATED BY AGN JETS

    International Nuclear Information System (INIS)

    Gaspari, M.; Ruszkowski, M.; Sharma, P.

    2012-01-01

    Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t TI /t ff ) falls below a critical threshold of ≈10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Hα filaments. These cold gas clumps and filaments 'rain' down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t TI /t ff > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t TI /t ff ∼< 10. This occurs despite the fact that the energy from AGN jets is supplied to the core in a highly anisotropic fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.

  5. Observing positive and negative AGN feedback

    Science.gov (United States)

    Cresci, Giovanni; Maiolino, Roberto

    2018-03-01

    Galaxy-scale outflows powered by actively accreting supermassive black holes are routinely detected, and they have been associated with both the suppression and triggering of star formation. Recent observational evidence and simulations are favouring a delayed mechanism that connects outflows and star formation.

  6. Gas Flows in Dual Active Galactic Nuclei

    Science.gov (United States)

    Mueller Sanchez, Francisco; Comerford, Julia M.; Davies, Richard; Treister, Ezequiel; Privon, George C.; Nevin, Becky

    2018-06-01

    Dual Active Galactic Nuclei (AGN) are the Rosetta stone to understand the role of galaxy mergers in triggering nuclear activity and regulating black hole (BH) and galaxy growth. But very little is known about the physical processes required to effectively trigger AGN activity and regulate the growth of the two BHs. The work I will present here characterizes for the first time the properties of the stars, gas (molecular, ionized, and highly-ionized) and dust in all the confirmed dual AGN at z prototypical merger system NGC 6240: vigorous star formation, two AGNs, outflowing winds of ionized gas, rippling dust and gas lanes, and tidal tails. In this galaxy, we observe for the first time a dual outflow of different species of gas: an AGN-driven outflow of highly-ionized gas to the northeast and a starburst-driven outflow of ionized hydrogen to the northwest. This shows that stellar feedback and supermassive black hole feedback can work in tandem to regulate the stellar growth of a galaxy after a merger event. These results open a new door to studies of dual AGN and AGN pairs in general, and enable dual AGN to be used, for the first time, for studies of galaxy evolution.

  7. ACTIVE GALACTIC NUCLEUS FEEDBACK AT z ∼ 2 AND THE MUTUAL EVOLUTION OF ACTIVE AND INACTIVE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Cimatti, A.; Brusa, M.; Talia, M. [Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, I-30127 Bologna (Italy); Mignoli, M. [INAF, Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Rodighiero, G. [Dipartimento di Fisica e Astronomia, Università di Padova, Vicolo dell' Osservatorio 3, I-35122 Padova (Italy); Kurk, J. [Max-Planck-Institut für Extraterrestrial Physik, Giessenbachstrasse, D-85748 Garching bei München (Germany); Cassata, P. [Aix Marseille Universite, CNRS, Laboratoire d' Astrophysique de Marseille, UMR 7326, F-13388 Marseille (France); Halliday, C. [23 rue d' Yerres, F-91230 Montgeron (France); Renzini, A. [INAF, Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Daddi, E., E-mail: a.cimatti@unibo.it [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d' Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France)

    2013-12-10

    The relationship between galaxies of intermediate stellar mass and moderate luminosity active galactic nuclei (AGNs) at 1 < z < 3 is investigated with a Galaxy Mass Assembly ultra-deep Spectroscopic Survey (GMASS) sample complemented with public data in the GOODS-South field. Using X-ray data, hidden AGNs are identified in unsuspected star-forming galaxies with no apparent signs of non-stellar activity. In the color-mass plane, two parallel trends emerge during the ∼2 Gyr between the average redshifts z ∼ 2.2 and z ∼ 1.3: while the red sequence becomes significantly more populated by ellipticals, the majority of AGNs with L(2-10 keV) > 10{sup 42.3} erg s{sup –1} disappear from the blue cloud/green valley where they were hosted predominantly by star-forming systems with disk and irregular morphologies. These results are even clearer when the rest-frame colors are corrected for dust reddening. At z ∼ 2.2, the ultraviolet spectra of active galaxies (including two Type 1 AGNs) show possible gas outflows with velocities up to about –500 km s{sup –1}, which are observed neither in inactive systems at the same redshift, nor at lower redshifts. Such outflows indicate the presence of gas that can move faster than the escape velocities of active galaxies. These results suggest that feedback from moderately luminous AGNs (log L{sub X} < 44.5 erg s{sup –1}) played a key role at z ≳ 2 by contributing to outflows capable of ejecting part of the interstellar medium and leading to a rapid decrease in star formation in host galaxies with stellar masses 10 < log(M/M{sub ⊙})< 11.

  8. AGN Science with AGIS

    Science.gov (United States)

    Coppi, Paolo

    2009-05-01

    AGIS, a proposed future gamma-ray telescope consisting of a square km array of 50 atmospheric Cherenkov telescopes, will provide a powerful new view of the high energy universe. The combination of its increased sensitivity (a factor 10 over current observatories), increased survey capabilities, and a low energy threshold (<30 GeV) that allows observations at energies not subject to absorption on extragalactic background light will result in a dramatic increase in the number of AGN accessible at high energies. The overall number of ``TeV blazar" AGN, those detected by current ground-based observatories, should increase by a factor 30 or more with a corresponding increase in the number of these that can be monitored at high statistical significance to test emission models rigorously. More excitingly, AGIS may also begin to pick up entirely new classes of AGN such as radio galaxies with X-ray emitting hotspots at large distances from the central engine, providing further insight into the outflows from AGN. The low AGIS threshold energy will also allow significant source overlap with objects detected by the recently launched Fermi gamma-ray space observatory at lower, GeV energies. AGIS will significantly improve on the localization and variability monitoring of the Fermi sources it sees.

  9. Hosts and environments of low luminosity active galaxies in the local universe: The care and feeding of weak AGN

    Science.gov (United States)

    Parejko, John Kenneth

    The observed relationship between the mass of a galaxy's supermassive black hole and the galaxy's bulge mass suggests a relationship between the growth of the galaxy and the growth of its central black hole. When these black holes grow, they release phenomenal amounts of energy into their surroundings, possibly disrupting further growth of the galaxy. The feeding (inflowing matter) and feedback (outflowing energy) of a galaxy's central black hole may be intimately related to the properties of the host's environment, on scales many orders of magnitude beyond the black hole's gravitational influence. While feeding, a massive black hole reveals itself as an Active Galactic Nucleus (AGN), but only a few percent of all galaxies show evidence of an AGN. This thesis focuses on this question: What distinguishes galaxies that are currently hosting actively accreting black holes from those that are not? We use the vast data set provided by the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) to study the environments of a well defined sample of AGN hosts. To reduce contamination by galaxies that do not harbor actively accreting black holes, we define a clear, unambiguous sample of local AGN. Using this sample, we search for AGN in merging galaxies and measure the 2-point cross-correlation function of AGN and all galaxies to estimate the environments of AGN hosts compared to non-AGN hosts. We also describe trends in different subsamples of AGN, including luminosity and classification sub-type. Finally, we show how these techniques may be applied to future data sets such as forthcoming SDSS III data and X-ray data from the eROSITA satellite.

  10. MAGNETICALLY DRIVEN ACCRETION DISK WINDS AND ULTRA-FAST OUTFLOWS IN PG 1211+143

    International Nuclear Information System (INIS)

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2015-01-01

    We present a study of X-ray ionization of MHD accretion-disk winds in an effort to constrain the physics underlying the highly ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectroscopic observations. Employing a stratified MHD wind launched across the entire AGN accretion disk, we calculate its X-ray ionization and the ensuing X-ray absorption-line spectra. Assuming an appropriate ionizing AGN spectrum, we apply our MHD winds to model the absorption features in an XMM-Newton/EPIC spectrum of the narrow-line Seyfert, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log (ξ c [erg cm s −1 ]) ≃ 5–6 and a column density on the order of N H ≃ 10 23 cm −2 outflowing at a characteristic velocity of v c /c ≃ 0.1–0.2 (where c is the speed of light). The best-fit model favors its radial location at r c ≃ 200 R o (R o is the black hole’s innermost stable circular orbit), with an inner wind truncation radius at R t ≃ 30 R o . The overall K-shell feature in the data is suggested to be dominated by Fe xxv with very little contribution from Fe xxvi and weakly ionized iron, which is in good agreement with a series of earlier analyses of the UFOs in various AGNs, including PG 1211+143

  11. Radio Jets as Driving Mechanism of Fast Outflows: The HI View

    NARCIS (Netherlands)

    Morganti, Raffaella; Maccagni, Filippo; Oosterloo, Tom; Schulz, Robert; Santoro, Francesco

    2017-01-01

    The complex and multi-phase nature of gas outflows is one of the properties highlighted by the work in recent years on AGN-driven outflows. In particular, the cold gas is found to play a more important role than previously expected. Surprisingly, HI has been shown to be a good tracer of fast

  12. Cause and Effect of Feedback: Multiphase Gas in Cluster Cores Heated by AGN Jets

    Science.gov (United States)

    Gaspari, M.; Ruszkowski, M.; Sharma, P.

    2012-02-01

    Multiwavelength data indicate that the X-ray-emitting plasma in the cores of galaxy clusters is not cooling catastrophically. To a large extent, cooling is offset by heating due to active galactic nuclei (AGNs) via jets. The cool-core clusters, with cooler/denser plasmas, show multiphase gas and signs of some cooling in their cores. These observations suggest that the cool core is locally thermally unstable while maintaining global thermal equilibrium. Using high-resolution, three-dimensional simulations we study the formation of multiphase gas in cluster cores heated by collimated bipolar AGN jets. Our key conclusion is that spatially extended multiphase filaments form only when the instantaneous ratio of the thermal instability and free-fall timescales (t TI/t ff) falls below a critical threshold of ≈10. When this happens, dense cold gas decouples from the hot intracluster medium (ICM) phase and generates inhomogeneous and spatially extended Hα filaments. These cold gas clumps and filaments "rain" down onto the central regions of the core, forming a cold rotating torus and in part feeding the supermassive black hole. Consequently, the self-regulated feedback enhances AGN heating and the core returns to a higher entropy level with t TI/t ff > 10. Eventually, the core reaches quasi-stable global thermal equilibrium, and cold filaments condense out of the hot ICM whenever t TI/t ff fashion. The effective spatial redistribution of heat is enabled in part by the turbulent motions in the wake of freely falling cold filaments. Increased AGN activity can locally reverse the cold gas flow, launching cold filamentary gas away from the cluster center. Our criterion for the condensation of spatially extended cold gas is in agreement with observations and previous idealized simulations.

  13. Modeling optical and UV polarization of AGNs. IV. Polarization timing

    Science.gov (United States)

    Rojas Lobos, P. A.; Goosmann, R. W.; Marin, F.; Savić, D.

    2018-03-01

    Context. Optical observations cannot resolve the structure of active galactic nuclei (AGN), and a unified model for AGN was inferred mostly from indirect methods, such as spectroscopy and variability studies. Optical reverberation mapping allowed us to constrain the spatial dimension of the broad emission line region and thereby to measure the mass of supermassive black holes. Recently, reverberation was also applied to the polarized signal emerging from different AGN components. In principle, this should allow us to measure the spatial dimensions of the sub-parsec reprocessing media. Aim. We conduct numerical modeling of polarization reverberation and provide theoretical predictions for the polarization time lag induced by different AGN components. The model parameters are adjusted to the observational appearance of the Seyfert 1 galaxy NGC 4151. Methods: We modeled scattering-induced polarization and tested different geometries for the circumnuclear dust component. Our tests included the effects of clumpiness and different dust prescriptions. To further extend the model, we also explored the effects of additional ionized winds stretched along the polar direction, and of an equatorial scattering ring that is responsible for the polarization angle observed in pole-on AGN. The simulations were run using a time-dependent version of the STOKES code. Results: Our modeling confirms the previously found polarization characteristics as a function of the observer`s viewing angle. When the dust adopts a flared-disk geometry, the lags reveal a clear difference between type 1 and type 2 AGN. This distinction is less clear for a torus geometry where the time lag is more sensitive to the geometry and optical depth of the inner surface layers of the funnel. The presence of a scattering equatorial ring and ionized outflows increased the recorded polarization time lags, and the polar outflows smooths out dependence on viewing angle, especially for the higher optical depth of the

  14. BAT AGN Spectroscopic Survey. VIII. Type 1 AGN with Massive Absorbing Columns

    Science.gov (United States)

    Shimizu, T. Taro; Davies, Richard I.; Koss, Michael; Ricci, Claudio; Lamperti, Isabella; Oh, Kyuseok; Schawinski, Kevin; Trakhtenbrot, Benny; Burtscher, Leonard; Genzel, Reinhard; Lin, Ming-yi; Lutz, Dieter; Rosario, David; Sturm, Eckhard; Tacconi, Linda

    2018-04-01

    We explore the relationship between X-ray absorption and optical obscuration within the BAT AGN Spectroscopic Survey (BASS), which has been collecting and analyzing the optical and X-ray spectra for 641 hard X-ray selected (E > 14 keV) active galactic nuclei (AGNs). We use the deviation from a linear broad Hα-to-X-ray relationship as an estimate of the maximum optical obscuration toward the broad line region (BLR) and compare the A V to the hydrogen column densities ({N}{{H}}) found through systematic modeling of their X-ray spectra. We find that the inferred columns implied by A V toward the BLR are often orders of magnitude less than the columns measured toward the X-ray emitting region, indicating a small-scale origin for the X-ray absorbing gas. After removing 30% of Sy 1.9s that potentially have been misclassified due to outflows, we find that 86% (164/190) of the Type 1 population (Sy 1–1.9) are X-ray unabsorbed as expected based on a single obscuring structure. However, 14% (26/190), of which 70% (18/26) are classified as Sy 1.9, are X-ray absorbed, suggesting that the BLR itself is providing extra obscuration toward the X-ray corona. The fraction of X-ray absorbed Type 1 AGNs remains relatively constant with AGN luminosity and Eddington ratio, indicating a stable BLR covering fraction.

  15. EVIDENCE FOR ULTRA-FAST OUTFLOWS IN RADIO-QUIET ACTIVE GALACTIC NUCLEI. II. DETAILED PHOTOIONIZATION MODELING OF Fe K-SHELL ABSORPTION LINES

    International Nuclear Information System (INIS)

    Tombesi, F.; Cappi, M.; Dadina, M.; Reeves, J. N.; Palumbo, G. G. C.; Braito, V.

    2011-01-01

    X-ray absorption line spectroscopy has recently shown evidence for previously unknown Ultra-fast Outflows (UFOs) in radio-quiet active galactic nuclei (AGNs). These have been detected essentially through blueshifted Fe XXV/XXVI K-shell transitions. In the previous paper of this series we defined UFOs as those highly ionized absorbers with an outflow velocity higher than 10,000 km s –1 and assessed the statistical significance of the associated blueshifted absorption lines in a large sample of 42 local radio-quiet AGNs observed with XMM-Newton. The present paper is an extension of that work. First, we report a detailed curve of growth analysis of the main Fe XXV/XXVI transitions in photoionized plasmas. Then, we estimate an average spectral energy distribution for the sample sources and directly model the Fe K absorbers in the XMM-Newton spectra with the detailed Xstar photoionization code. We confirm that the frequency of sources in the radio-quiet sample showing UFOs is >35% and that the majority of the Fe K absorbers are indeed associated with UFOs. The outflow velocity distribution spans from ∼10,000 km s –1 (∼0.03c) up to ∼100,000 km s –1 (∼0.3c), with a peak and mean value of ∼42,000 km s –1 (∼0.14c). The ionization parameter is very high and in the range log ξ ∼ 3-6 erg s –1 cm, with a mean value of log ξ ∼ 4.2 erg s –1 cm. The associated column densities are also large, in the range N H ∼ 10 22 -10 24 cm –2 , with a mean value of N H ∼ 10 23 cm –2 . We discuss and estimate how selection effects, such as those related to the limited instrumental sensitivity at energies above 7 keV, may hamper the detection of even higher velocities and higher ionization absorbers. We argue that, overall, these results point to the presence of extremely ionized and possibly almost Compton-thick outflowing material in the innermost regions of AGNs. This also suggests that UFOs may potentially play a significant role in the expected

  16. PROBING THE EXTREME REALM OF ACTIVE GALACTIC NUCLEUS FEEDBACK IN THE MASSIVE GALAXY CLUSTER, RX J1532.9+3021

    Energy Technology Data Exchange (ETDEWEB)

    Hlavacek-Larrondo, J.; Allen, S. W.; Canning, R. E. A.; Werner, N.; Ehlert, S.; Von der Linden, A. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085 (United States); Taylor, G. B.; Grimes, C. K. [Department of Physics and Astronomy, University of New-Mexico, Albuquerque, NM 87131 (United States); Fabian, A. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Sanders, J. S., E-mail: juliehl@stanford.edu [Max-Planck-Institut fur extraterrestrische Physik (MPE), Giessenbachstrasse, D-85748 Garching (Germany)

    2013-11-10

    We present a detailed Chandra, XMM-Newton, Very Large Array (VLA) and Hubble Space Telescope analysis of one of the strongest cool core clusters known, RX J1532.9+3021 (z = 0.3613). Using new, deep 90 ks Chandra observations, we confirm the presence of a western X-ray cavity or bubble, and report on a newly discovered eastern X-ray cavity. The total mechanical power associated with these active galactic nucleus (AGN) driven outflows is (22 ± 9) × 10{sup 44} erg s{sup –1}, and is sufficient to offset the cooling, indicating that AGN feedback still provides a viable solution to the cooling flow problem even in the strongest cool core clusters. Based on the distribution of the optical filaments, as well as a jet-like structure seen in the 325 MHz VLA radio map, we suggest that the cluster harbors older outflows along the north to south direction. The jet of the central AGN is therefore either precessing or sloshing-induced motions have caused the outflows to change directions. There are also hints of an X-ray depression to the north aligned with the 325 MHz jet-like structure, which might represent the highest redshift ghost cavity discovered to date. We further find evidence of a cold front (r ≈ 65 kpc) that coincides with the outermost edge of the western X-ray cavity and the edge of the radio mini-halo. The common location of the cold front with the edge of the radio mini-halo supports the idea that the latter originates from electrons being reaccelerated due to sloshing-induced turbulence. Alternatively, its coexistence with the edge of the X-ray cavity may be due to cool gas being dragged out by the outburst. We confirm that the central AGN is highly sub-Eddington and conclude that a >10{sup 10} M{sub ☉} or a rapidly spinning black hole is favored to explain both the radiative-inefficiency of the AGN and the powerful X-ray cavities.

  17. Unification of X-ray Winds in Seyfert Galaxies: From Ultra-fast Outflows to Warm Absorbers

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Nemmen, R. S.; Braito, V.; Gaspari, M.; Reynolds, C. S.

    2013-01-01

    a sufficiently high mechanical power (at least approx 0.5 per cent of the bolometric luminosity) to provide a significant contribution to active galactic nuclei (AGN) feedback and thus to the evolution of the host galaxy. In this regard, we find possible evidence for the interaction of the AGN wind with the surrounding environment on large scales.

  18. Soft X-ray Emission from Large-Scale Galactic Outflows in Seyfert Galaxies

    Science.gov (United States)

    Colbert, E. J. M.; Baum, S.; O'Dea, C.; Veilleux, S.

    1998-01-01

    Kiloparsec-scale soft X-ray nebulae extend along the galaxy minor axes in several Seyfert galaxies, including NGC 2992, NGC 4388 and NGC 5506. In these three galaxies, the extended X-ray emission observed in ROSAT HRI images has 0.2-2.4 keV X-ray luminosities of 0.4-3.5 x 10(40) erg s(-1) . The X-ray nebulae are roughly co-spatial with the large-scale radio emission, suggesting that both are produced by large-scale galactic outflows. Assuming pressure balance between the radio and X-ray plasmas, the X-ray filling factor is >~ 10(4) times as large as the radio plasma filling factor, suggesting that large-scale outflows in Seyfert galaxies are predominantly winds of thermal X-ray emitting gas. We favor an interpretation in which large-scale outflows originate as AGN-driven jets that entrain and heat gas on kpc scales as they make their way out of the galaxy. AGN- and starburst-driven winds are also possible explanations if the winds are oriented along the rotation axis of the galaxy disk. Since large-scale outflows are present in at least 50 percent of Seyfert galaxies, the soft X-ray emission from the outflowing gas may, in many cases, explain the ``soft excess" X-ray feature observed below 2 keV in X-ray spectra of many Seyfert 2 galaxies.

  19. DRIVING OUTFLOWS WITH RELATIVISTIC JETS AND THE DEPENDENCE OF ACTIVE GALACTIC NUCLEUS FEEDBACK EFFICIENCY ON INTERSTELLAR MEDIUM INHOMOGENEITY

    International Nuclear Information System (INIS)

    Wagner, A. Y.; Umemura, M.; Bicknell, G. V.

    2012-01-01

    We examine the detailed physics of the feedback mechanism by relativistic active galactic nucleus (AGN) jets interacting with a two-phase fractal interstellar medium (ISM) in the kpc-scale core of galaxies using 29 three-dimensional grid-based hydrodynamical simulations. The feedback efficiency, as measured by the amount of cloud dispersal generated by the jet-ISM interactions, is sensitive to the maximum size of clouds in the fractal cloud distribution but not to their volume filling factor. Feedback ceases to be efficient for Eddington ratios P jet /L edd ∼ –4 , although systems with large cloud complexes ∼> 50 pc require jets of Eddington ratio in excess of 10 –2 to disperse the clouds appreciably. Based on measurements of the bubble expansion rates in our simulations, we argue that sub-grid AGN prescriptions resulting in negative feedback in cosmological simulations without a multi-phase treatment of the ISM are good approximations if the volume filling factor of warm-phase material is less than 0.1 and the cloud complexes are smaller than ∼25 pc. We find that the acceleration of the dense embedded clouds is provided by the ram pressure of the high-velocity flow through the porous channels of the warm phase, flow that has fully entrained the shocked hot-phase gas it has swept up, and is additionally mass loaded by ablated cloud material. This mechanism transfers 10% to 40% of the jet energy to the cold and warm gas, accelerating it within a few 10 to 100 Myr to velocities that match those observed in a range of high- and low-redshift radio galaxies hosting powerful radio jets.

  20. Superwind Outflow in Seyfert Galaxies? : Optical Observations of an Edge-On Sample

    Science.gov (United States)

    Colbert, E.; Gallimore, J.; Baum, S.; O'Dea, C.; Lehnert, M.

    1994-12-01

    Large-scale galactic winds (superwinds) are commonly found flowing out of the nuclear region of ultraluminous infrared and powerful starburst galaxies. Stellar winds and supernovae from the nuclear starburst are thought to provide the energy to drive these superwinds. The outflowing gas escapes along the rotation axis, sweeping up and shock-heating clouds in the halo, which produces optical line emission, X-rays and radio synchrotron emission. These features can most easily be studied in edge-on systems, so that the wind emission is not confused by that from the disk. Diffuse radio emission has been found (Baum et al. 1993, ApJ, 419, 553) to extend out to kpc-scales in a number of edge-on Seyfert galaxies. We have therefore launched a systematic search for superwind outflows in Seyferts. We present here narrow-band optical images and optical spectra for a sample of edge-on Seyferts. These data have been used to estimate the frequency of occurence of superwinds. Approximately half of the sample objects show evidence for extended emission-line regions which are preferentially oriented perpendicular to the galaxy disk. It is possible that these emission-line regions may be energized by a superwind outflow from a circumnuclear starburst, although there may also be a contribution from the AGN itself. A goal of this work is to find a diagnostic that can be used to distinguish between large-scale outflows that are driven by starbursts and those that are driven by an AGN. The presence of starburst-driven superwinds in Seyferts, if established, would have important implications for the connection between starburst galaxies and AGN.

  1. The [O III] Profiles of Infrared-selected Active Galactic Nuclei: More Powerful Outflows in the Obscured Population

    Science.gov (United States)

    DiPompeo, M. A.; Hickox, R. C.; Carroll, C. M.; Runnoe, J. C.; Mullaney, J. R.; Fischer, T. C.

    2018-03-01

    We explore the kinematics of ionized gas via the [O III] λ5007 emission lines in active galactic nuclei (AGNs) selected on the basis of their mid-infrared (IR) emission, and split into obscured and unobscured populations based on their optical‑IR colors. After correcting for differences in redshift distributions, we provide composite spectra of spectroscopically and photometrically defined obscured/Type 2 and unobscured/Type 1 AGNs from 3500 to 7000 Å. The IR-selected obscured sources contain a mixture of narrow-lined Type 2 AGNs and intermediate sources that have broad Hα emission and significantly narrower Hβ. Using both [O III] luminosities and AGN luminosities derived from optical‑IR spectral energy distribution fitting, we find evidence for enhanced large-scale obscuration in the obscured sources. In matched bins of luminosity we find that the obscured population typically has broader, more blueshifted [O III] emission than in the unobscured sample, suggestive of more powerful AGN-driven outflows. This trend is not seen in spectroscopically classified samples, and is unlikely to be entirely explained by orientation effects. In addition, outflow velocities increase from small to moderate AGN E(B ‑ V) values, before flattening out (as traced by FWHM) and even decreasing (as traced by blueshift). While difficult to fully interpret in a single physical model, due to both the averaging over populations and the spatially averaged spectra, these results agree with previous findings that simple geometric unification models are insufficient for the IR-selected AGN population, and may fit into an evolutionary model for obscured and unobscured AGNs.

  2. Star formation quenching in quasar host galaxies

    Science.gov (United States)

    Carniani, Stefano

    2017-10-01

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionised and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ˜2.4 obtained with SINFONI in the H- and K-band. All the quasars show [OIII]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM anti-correlated with star-formation powered emission, i.e. star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50 - 100 M⊙/yr, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  3. BAT AGN Spectroscopic Survey - III. An Observed Link Between AGN Eddington Ratio and Narrow-Emission-Line Ratios

    Science.gov (United States)

    Oh, Kyuseok; Schawinski, Kevin; Koss, Michael; Trakhtenbrot, Benny; Lamperti, Isabella; Ricci, Claudio; Mushotzky, Richard; Veilleux, Sylvain; Berney, Simon; Crenshaw, D. Michael; hide

    2016-01-01

    We investigate the observed relationship between black hole mass (M(sub BH)), bolometric luminosity (L(sub bol)) and Eddington ratio (lambda(sub Edd)) with optical emission-line ratios ([N II] lambda6583/Halpha, [S II]lambda-lamda6716, 6731/Halpha, [O I] lamda6300/Halpha, [O III] lamda5007/Hbeta, [Ne III] lamda3869/Hbeta and He II lamda4686/Hbeta) of hard X-ray-selected active galactic nuclei (AGN) from the BAT AGN Spectroscopic Survey. We show that the [N II] lamda6583/Halpha ratio exhibits a significant correlation with lamda(sub Edd) (R(sub Pear) = -0.44, p-value 3 x 10(exp. -13) sigma = 0.28 dex), and the correlation is not solely driven by M(sub BH) or L(sub bol). The observed correlation between [N II] lamda6583/Halpha ratio and M(sub BH) is stronger than the correlation with L(sub bol), but both are weaker than the lamda(sub Edd) correlation. This implies that the large-scale narrow lines of AGN host galaxies carry information about the accretion state of the AGN central engine. We propose that [N II] lamda6583/Halpha is a useful indicator of Eddington ratio with 0.6 dex of rms scatter, and that it can be used to measure lambda(sub Edd) and thus M(sub BH) from the measured L(sub bol), even for high-redshift obscured AGN. We briefly discuss possible physical mechanisms behind this correlation, such as the mass-metallicity relation, X-ray heating, and radiatively driven outflows.

  4. Geometrically Thick Obscuration by Radiation-driven Outflow from Magnetized Tori of Active Galactic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Chi-Ho [Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Krolik, Julian H. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2017-07-01

    Near-Eddington radiation from active galactic nuclei (AGNs) has significant dynamical influence on the surrounding dusty gas, plausibly furnishing AGNs with geometrically thick obscuration. We investigate this paradigm with radiative magnetohydrodynamics simulations. The simulations solve the magnetohydrodynamics equations simultaneously with the infrared (IR) and ultraviolet (UV) radiative transfer (RT) equations; no approximate closure is used for RT. We find that our torus, when given a suitable sub-Keplerian angular momentum profile, spontaneously evolves toward a state in which its opening angle, density distribution, and flow pattern change only slowly. This “steady” state lasts for as long as there is gas resupply toward the inner edge. The torus is best described as a midplane inflow and a high-latitude outflow. The outflow is launched from the torus inner edge by UV radiation and expands in solid angle as it ascends; IR radiation continues to drive the wide-angle outflow outside the central hole. The dusty outflow obscures the central source in soft X-rays, the IR, and the UV over three-quarters of solid angle, and each decade in column density covers roughly equal solid angle around the central source; these obscuration properties are similar to what observations imply.

  5. The origin of blueshifted absorption features in the X-ray spectrum of PG 1211+143: outflow or disc

    Science.gov (United States)

    Gallo, L. C.; Fabian, A. C.

    2013-07-01

    In some radio-quiet active galactic nuclei (AGN), high-energy absorption features in the X-ray spectra have been interpreted as ultrafast outflows (UFOs) - highly ionized material (e.g. Fe XXV and Fe XXVI) ejected at mildly relativistic velocities. In some cases, these outflows can carry energy in excess of the binding energy of the host galaxy. Needless to say, these features demand our attention as they are strong signatures of AGN feedback and will influence galaxy evolution. For the same reason, alternative models need to be discussed and refuted or confirmed. Gallo and Fabian proposed that some of these features could arise from resonance absorption of the reflected spectrum in a layer of ionized material located above and corotating with the accretion disc. Therefore, the absorbing medium would be subjected to similar blurring effects as seen in the disc. A priori, the existence of such plasma above the disc is as plausible as a fast wind. In this work, we highlight the ambiguity by demonstrating that the absorption model can describe the ˜7.6 keV absorption feature (and possibly other features) in the quasar PG 1211+143, an AGN that is often described as a classic example of a UFO. In this model, the 2-10 keV spectrum would be largely reflection dominated (as opposed to power law dominated in the wind models) and the resonance absorption would be originating in a layer between about 6 and 60 gravitational radii. The studies of such features constitute a cornerstone for future X-ray observatories like Astro-H and Athena+. Should our model prove correct, or at least important in some cases, then absorption will provide another diagnostic tool with which to probe the inner accretion flow with future missions.

  6. Average Heating Rate of Hot Atmospheres in Distant Galaxy Clusters by Radio AGN: Evidence for Continuous AGN Heating

    Science.gov (United States)

    Ma, Cheng-Jiun; McNamara, B.; Nulsen, P.; Schaffer, R.

    2011-09-01

    X-ray observations of nearby clusters and galaxies have shown that energetic feedback from AGN is heating hot atmospheres and is probably the principal agent that is offsetting cooling flows. Here we examine AGN heating in distant X-ray clusters by cross correlating clusters selected from the 400 Square Degree X-ray Cluster survey with radio sources in the NRAO VLA Sky Survey. The jet power for each radio source was determined using scaling relations between radio power and cavity power determined for nearby clusters, groups, and galaxies with atmospheres containing X-ray cavities. Roughly 30% of the clusters show radio emission above a flux threshold of 3 mJy within the central 250 kpc that is presumably associated with the brightest cluster galaxy. We find no significant correlation between radio power, hence jet power, and the X-ray luminosities of clusters in redshift range 0.1 -- 0.6. The detection frequency of radio AGN is inconsistent with the presence of strong cooling flows in 400SD, but cannot rule out the presence of weak cooling flows. The average jet power of central radio AGN is approximately 2 10^{44} erg/s. The jet power corresponds to an average heating of approximately 0.2 keV/particle for gas within R_500. Assuming the current AGN heating rate remained constant out to redshifts of about 2, these figures would rise by a factor of two. Our results show that the integrated energy injected from radio AGN outbursts in clusters is statistically significant compared to the excess entropy in hot atmospheres that is required for the breaking of self-similarity in cluster scaling relations. It is not clear that central AGN in 400SD clusters are maintained by a self-regulated feedback loop at the base of a cooling flow. However, they may play a significant role in preventing the development of strong cooling flows at early epochs.

  7. Quenching of Star Formation in Molecular Outflow Host NGC 1266

    NARCIS (Netherlands)

    Alatalo, K.; Nyland, K. E.; Graves, G.; Deustua, S.; Young, L. M.; Davis, T. A.; Crocker, A. F.; Bureau, M.; Bayet, E.; Blitz, L.; Bois, M.; Bournaud, F.; Cappellari, M.; Davies, R. L.; de Zeeuw, P. T.; Emsellem, E.; Khochfar, S.; Krajnovic, D.; Kuntschner, H.; McDermid, R. M.; Morganti, R.; Naab, T.; Oosterloo, T.; Sarzi, M.; Scott, N.; Serra, P.; Weijmans, A.; Wong, Tony; Ott, Jürgen

    We detail the rich molecular story of NGC 1266, its serendipitous discovery within the ATLAS3D survey (Cappellari et al. 2011) and how it plays host to an AGN-driven molecular outflow, potentially quenching all of its star formation (SF) within the next 100 Myr. While major mergers appear to play a

  8. Star Formation Quenching in Quasar Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Carniani, Stefano, E-mail: sc888@mrao.cam.ac.uk [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Kavli Institute for Cosmology, University of Cambridge, Cambridge (United Kingdom)

    2017-10-16

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M{sub ⊙} yr{sup −1}, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  9. Star Formation Quenching in Quasar Host Galaxies

    International Nuclear Information System (INIS)

    Carniani, Stefano

    2017-01-01

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M ⊙ yr −1 , has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  10. Star Formation Quenching in Quasar Host Galaxies

    Directory of Open Access Journals (Sweden)

    Stefano Carniani

    2017-10-01

    Full Text Available Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN. In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s, which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M⊙ yr−1, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2 ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2 transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  11. Another piece of the puzzle: The fast H I outflow in Mrk 231

    Science.gov (United States)

    Morganti, Raffaella; Veilleux, Sylvain; Oosterloo, Tom; Teng, Stacy H.; Rupke, David

    2016-09-01

    We present the detection, performed with the Westerbork Synthesis Radio Telescope (WSRT) and the Karl Jansky Very Large Array (VLA), of a fast H I 21 cm outflow in the ultra-luminous infrared galaxy Mrk 231. The outflow is observed as shallow H I absorption blueshifted ~1300 km s-1 with respect to the systemic velocity and located against the inner kpc of the radio source. The outflowing gas has an estimated column density between 5 and 15 × 1018Tspin cm-2. We derive the Tspin to lie in the range 400-2000 K and the corresponding H I densities are nHI ~ 10-100 cm-3. Our results complement previous findings and confirm the multiphase nature of the outflow in Mrk 231. Although effects of the interaction between the radio plasma and the surrounding medium cannot be ruled out, the energetics and the lack of a clear kpc-scale jet suggest that the most likely origin of the H I outflow is a wide-angle nuclear wind, as earlier proposed to explain the neutral outflow traced by Na I and molecular gas in this source. Our results suggest that an H I component is present in fast outflows regardless of the acceleration mechanism (wind vs. jet driven) and that it must be connected with common properties of the pre-interaction gas involved. Considering the observed similarity of their column densities, the H I outflow likely represents the inner part of the broad wind identified on larger scales in atomic Na I. The mass outflow rate of the H I outflow (between 8 and 18 M⊙ yr-1) does not appear to be as large as that observed in molecular gas, partly owing to the smaller sizes of the outflowing region sampled by the H I absorption. These characteristics are commonly seen in other cases of outflows driven by the active galactic nucleus (AGN) suggesting that the H I may represent a short intermediate phase in the rapid cooling of the gas. The results further confirm H I as a good tracer for AGN-driven outflows not only in powerful radio sources. We also obtained deeper continuum

  12. The cosmic evolution of massive black holes in the Horizon-AGN simulation

    Science.gov (United States)

    Volonteri, M.; Dubois, Y.; Pichon, C.; Devriendt, J.

    2016-08-01

    We analyse the demographics of black holes (BHs) in the large-volume cosmological hydrodynamical simulation Horizon-AGN. This simulation statistically models how much gas is accreted on to BHs, traces the energy deposited into their environment and, consequently, the back-reaction of the ambient medium on BH growth. The synthetic BHs reproduce a variety of observational constraints such as the redshift evolution of the BH mass density and the mass function. Strong self-regulation via AGN feedback, weak supernova feedback, and unresolved internal processes result in a tight BH-galaxy mass correlation. Starting at z ˜ 2, tidal stripping creates a small population of BHs over-massive with respect to the halo. The fraction of galaxies hosting a central BH or an AGN increases with stellar mass. The AGN fraction agrees better with multi-wavelength studies, than single-wavelength ones, unless obscuration is taken into account. The most massive haloes present BH multiplicity, with additional BHs gained by ongoing or past mergers. In some cases, both a central and an off-centre AGN shine concurrently, producing a dual AGN. This dual AGN population dwindles with decreasing redshift, as found in observations. Specific accretion rate and Eddington ratio distributions are in good agreement with observational estimates. The BH population is dominated in turn by fast, slow, and very slow accretors, with transitions occurring at z = 3 and z = 2, respectively.

  13. Zooming into local active galactic nuclei: the power of combining SDSS-IV MaNGA with higher resolution integral field unit observations

    Science.gov (United States)

    Wylezalek, Dominika; Schnorr Müller, Allan; Zakamska, Nadia L.; Storchi-Bergmann, Thaisa; Greene, Jenny E.; Müller-Sánchez, Francisco; Kelly, Michael; Liu, Guilin; Law, David R.; Barrera-Ballesteros, Jorge K.; Riffel, Rogemar A.; Thomas, Daniel

    2017-05-01

    Ionized gas outflows driven by active galactic nuclei (AGN) are ubiquitous in high-luminosity AGN with outflow speeds apparently correlated with the total bolometric luminosity of the AGN. This empirical relation and theoretical work suggest that in the range Lbol ˜ 1043-45 erg s-1 there must exist a threshold luminosity above which the AGN becomes powerful enough to launch winds that will be able to escape the galaxy potential. In this paper, we present pilot observations of two AGN in this transitional range that were taken with the Gemini North Multi-Object Spectrograph integral field unit (IFU). Both sources have also previously been observed within the Sloan Digital Sky Survey-IV (SDSS) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. While the MaNGA IFU maps probe the gas fields on galaxy-wide scales and show that some regions are dominated by AGN ionization, the new Gemini IFU data zoom into the centre with four times better spatial resolution. In the object with the lower Lbol we find evidence of a young or stalled biconical AGN-driven outflow where none was obvious at the MaNGA resolution. In the object with the higher Lbol we trace the large-scale biconical outflow into the nuclear region and connect the outflow from small to large scales. These observations suggest that AGN luminosity and galaxy potential are crucial in shaping wind launching and propagation in low-luminosity AGN. The transition from small and young outflows to galaxy-wide feedback can only be understood by combining large-scale IFU data that trace the galaxy velocity field with higher resolution, small-scale IFU maps.

  14. The Mass Outflow Rate of the Milky Way

    Science.gov (United States)

    Fox, Andrew

    2017-08-01

    The balance between gaseous inflow and outflow regulates star formation in spiral galaxies. This paradigm can be tested in the Milky Way, but whereas the star formation rate and inflow rate have both been measured, the outflow rate has not. We propose an archival COS program to determine the Galactic outflow rate in cool gas ( 10^4 K) by surveying UV absorption line high-velocity clouds (HVCs). This project will make use of the newly updated Hubble Spectroscopic Legacy Archive, which contains a uniformly reduced sample of 233 COS G130M spectra of background AGN. The outflow rate will be determined by (1) searching for redshifted HVCs; (2) modeling the clouds with photoionization simulations to determine their masses and physical properties; (3) combining the cloud masses with their velocities and distances. We will measure how the outflow is distributed spatially across the sky, calculate its mass loading factor, and compare the line profiles to synthetic spectra extracted from new hydrodynamic simulations. The distribution of HVC velocities will inform us what fraction of the outflowing clouds will escape the halo and what fraction will circulate back to the disk, to better understand how and where gas enters and exits the Milky Way.

  15. Modeling jet and outflow feedback during star cluster formation

    Energy Technology Data Exchange (ETDEWEB)

    Federrath, Christoph [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, VIC 3800 (Australia); Schrön, Martin [Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, D-04318 Leipzig (Germany); Banerjee, Robi [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany); Klessen, Ralf S., E-mail: christoph.federrath@monash.edu [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany)

    2014-08-01

    Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ∼1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ∼1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ∼ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.

  16. Stellar feedback as the origin of an extended molecular outflow in a starburst galaxy.

    Science.gov (United States)

    Geach, J E; Hickox, R C; Diamond-Stanic, A M; Krips, M; Rudnick, G H; Tremonti, C A; Sell, P H; Coil, A L; Moustakas, J

    2014-12-04

    Recent observations have revealed that starburst galaxies can drive molecular gas outflows through stellar radiation pressure. Molecular gas is the phase of the interstellar medium from which stars form, so these outflows curtail stellar mass growth in galaxies. Previously known outflows, however, involve small fractions of the total molecular gas content and have typical scales of less than a kiloparsec. In at least some cases, input from active galactic nuclei is dynamically important, so pure stellar feedback (the momentum return into the interstellar medium) has been considered incapable of rapidly terminating star formation on galactic scales. Molecular gas has been detected outside the galactic plane of the archetypal starburst galaxy M82 (refs 4 and 5), but so far there has been no evidence that starbursts can propel substantial quantities of cold molecular gas to the same galactocentric radius (about 10 kiloparsecs) as the warmer gas that has been traced by metal ion absorbers in the circumgalactic medium. Here we report observations of molecular gas in a compact (effective radius 100 parsecs) massive starburst galaxy at redshift 0.7, which is known to drive a fast outflow of ionized gas. We find that 35 per cent of the total molecular gas extends approximately 10 kiloparsecs, and one-third of this extended gas has a velocity of up to 1,000 kilometres per second. The kinetic energy associated with this high-velocity component is consistent with the momentum flux available from stellar radiation pressure. This demonstrates that nuclear bursts of star formation are capable of ejecting large amounts of cold gas from the central regions of galaxies, thereby strongly affecting their evolution by truncating star formation and redistributing matter.

  17. Development of AGNES, a kinetics code for fissile solutions, 1

    International Nuclear Information System (INIS)

    Nakajima, Ken; Ohnishi, Nobuaki

    1986-01-01

    A kinetics code for fissile solutions, AGNES (Accidentally Generated Nuclear Excursion Simulation code), has been developed. This code calculates the radiolytic gas void effect as a reactivity feedback. Physical and calculative models of the radiolytic gas void are summarized and the usage of AGNES is described. In addition, some benchmark calculations were performed and results of calculations show good agreement with those of experiments. (author)

  18. The Resolved Outflow from 3C 48

    Science.gov (United States)

    Shih, Hsin-Yi; Stockton, Alan

    2014-10-01

    We investigate the properties of the high-velocity outflow driven by the young radio jet of 3C 48, a compact-steep-spectrum source. We use the Space Telescope Imaging Spectrograph on board the Hubble Space Telecope to obtain (1) low-resolution UV and optical spectra and (2) multi-slit medium-resolution spectra of the ionized outflow. With supporting data from ground-based spectrographs, we are able to accurately measure the ratios of diagnostic emission lines such as [O III] λ5007, [O III] λ3727, [N II] λ6548, Hα, Hβ, [Ne V] λ3425, and [Ne III] λ3869. We fit the observed emission-line ratios using a range of ionization models, powered by active galactic nucleus (AGN) radiation and shocks, produced by the MAPPINGS code. We have determined that AGN radiation is likely the dominant ionization source. The outflow's density is estimated to be in the range n = 103-104 cm-3, the mass is ~6 × 106 M ⊙, and the metallicity is likely equal to or higher than solar. Compared with the typical outflows associated with more evolved radio jets, this young outflow is denser, less massive, and more metal rich. Multi-slit observations allow us to construct a two-dimensional velocity map of the outflow that shows a wide range of velocities with distinct velocity components, suggesting a wide-angle clumpy outflow. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-11574. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Some of the

  19. Beyond Hydrodynamic Modeling of AGN Heating in Galaxy Clusters

    Science.gov (United States)

    Yang, Hsiang-Yi Karen

    Clusters of galaxies hold a unique position in hierarchical structure formation - they are both powerful cosmological probes and excellent astrophysical laboratories. Accurate modeling of the cluster properties is crucial for reducing systematic uncertainties in cluster cosmology. However, theoretical modeling of the intracluster medium (ICM) has long suffered from the "cooling-flow problem" - clusters with short central times or cool cores (CCs) are predicted to host massive inflows of gas that are not observed. Feedback from active galactic nuclei (AGN) is by far the most promising heating mechanism to counteract radiative cooling. Recent hydrodynamic simulations have made remarkable progress reproducing properties of the CCs. However, there remain two major questions that cannot be probed using purely hydrodynamic models: (1) what are the roles of cosmic rays (CRs)? (2) how is the existing picture altered when the ICM is modeled as weakly collisional plasma? We propose to move beyond limitations of pure hydrodynamics and progress toward a complete understanding of how AGN jet-inflated bubbles interact with their surroundings and provide heat to the ICM. Our objectives include: (1) understand how CR-dominated bubbles heat the ICM; (2) understand bubble evolution and sound-wave dissipation in the ICM with different assumptions of plasma properties, e.g., collisionality of the ICM, with or without anisotropic transport processes; (3) Develop a subgrid model of AGN heating that can be adopted in cosmological simulations based on state-of-the-art isolated simulations. We will use a combination of analytical calculations and idealized simulations to advance our understanding of each individual physical process. We will then perform the first three-dimensional (3D) magnetohydrodynamic (MHD) simulations of self-regulated AGN feedback with relevant CR and anisotropic transport processes in order to quantify the amount and distribution of heating from the AGN. Our

  20. Numerical Simulations of Turbulent Molecular Clouds Regulated by Radiation Feedback Forces. II. Radiation-Gas Interactions and Outflows

    Science.gov (United States)

    Raskutti, Sudhir; Ostriker, Eve C.; Skinner, M. Aaron

    2017-12-01

    Momentum deposition by radiation pressure from young, massive stars may help to destroy molecular clouds and unbind stellar clusters by driving large-scale outflows. We extend our previous numerical radiation hydrodynamic study of turbulent star-forming clouds to analyze the detailed interaction between non-ionizing UV radiation and the cloud material. Our simulations trace the evolution of gas and star particles through self-gravitating collapse, star formation, and cloud destruction via radiation-driven outflows. These models are idealized in that we include only radiation feedback and adopt an isothermal equation of state. Turbulence creates a structure of dense filaments and large holes through which radiation escapes, such that only ˜50% of the radiation is (cumulatively) absorbed by the end of star formation. The surface density distribution of gas by mass as seen by the central cluster is roughly lognormal with {σ }{ln{{Σ }}}=1.3{--}1.7, similar to the externally projected surface density distribution. This allows low surface density regions to be driven outwards to nearly 10 times their initial escape speed {v}{esc}. Although the velocity distribution of outflows is broadened by the lognormal surface density distribution, the overall efficiency of momentum injection to the gas cloud is reduced because much of the radiation escapes. The mean outflow velocity is approximately twice the escape speed from the initial cloud radius. Our results are also informative for understanding galactic-scale wind driving by radiation, in particular, the relationship between velocity and surface density for individual outflow structures and the resulting velocity and mass distributions arising from turbulent sources.

  1. The COS-AGN survey: Revealing the nature of circum-galactic gas around hosts of active galactic nuclei

    Science.gov (United States)

    Berg, Trystyn A. M.; Ellison, Sara L.; Tumlinson, Jason; Oppenheimer, Benjamin D.; Horton, Ryan; Bordoloi, Rongmon; Schaye, Joop

    2018-04-01

    Active galactic nuclei (AGN) are thought to play a critical role in shaping galaxies, but their effect on the circumgalactic medium (CGM) is not well studied. We present results from the COS-AGN survey: 19 quasar sightlines that probe the CGM of 20 optically-selected AGN host galaxies with impact parameters 80 frame equivalent widths EW≥124 mÅ) whilst many of the metal ions are not detected in individual sightlines. A sightline-by-sightline comparison between COS-AGN and the control sample yields no significant difference in EW distribution. However, stacked spectra of the COS-AGN and control samples show significant (>3σ) enhancements in the EW of both Siiii And Lyα at impact parameters >164 kpc by a factor of +0.45 ± 0.05 dex and >+0.75 dex respectively. The lack of detections of both high-ionization species near the AGN and strong kinematic offsets between the absorption systemic galaxy redshifts indicates that neither the AGN's ionization nor its outflows are the origin of these differences. Instead, we suggest the observed differences could result from either AGN hosts residing in haloes with intrinsically distinct gas properties, or that their CGM has been affected by a previous event, such as a starburst, which may also have fuelled the nuclear activity.

  2. Xray cavities in a sample of 83 SPT-selected clusters galaxies. Tracing the evolution of AGN feedback in clusters of galaxies out to z=1.2

    Energy Technology Data Exchange (ETDEWEB)

    Hlavacek-Larrondo, J.; McDonald, M.; Benson, B. A.; Forman, W. R.; Allen, S. W.; Bleem, L. E.; Ashby, M. L. N.; Bocquet, S.; Brodwin, M.; Dietrich, J. P.; Jones, C.; Liu, J.; Reichardt, C. L.; Saliwanchik, B. R.; Saro, A.; Schrabback, T.; Song, J.; Stalder, B.; Vikhlinin, A.; Zenteno, A.

    2015-05-18

    X-ray cavities are key tracers of mechanical (or radio mode) heating arising from the active galactic nuclei (AGNs) in brightest cluster galaxies (BCGs). We report on a survey for X-ray cavities in 83 massive, high-redshift ($0.4\\lt z\\lt 1.2$) clusters of galaxies selected by their Sunyaev-Zel’dovich signature in the South Pole Telescope data. Based on Chandra X-ray images, we find a total of six clusters having symmetric pairs of surface brightness depressions consistent with the picture of radio jets inflating X-ray cavities in the intracluster medium (ICM). The majority of these detections are of relatively low significance and require deeper follow-up data in order to be confirmed. Further, this search will miss small (<10 kpc) X-ray cavities that are unresolved by Chandra at high ($z\\gtrsim 0.5$) redshift. Despite these limitations, our results suggest that the power generated by AGN feedback in BCGs has remained unchanged for over half of the age of the universe ($\\gt 7$ Gyr at $z\\sim 0.8$). On average, the detected X-ray cavities have powers of $(0.8-5)\\times {{10}^{45}}\\ {\\rm erg}\\ {{{\\rm s}}^{-1}}$, enthalpies of $(3-6)\\times {{10}^{59}}\\ {\\rm erg}$, and radii of ~17 kpc. Integrating over 7 Gyr, we find that the supermassive black holes in BCGs may have accreted 10(8) to several ${{10}^{9}}\\,{{M}_{\\odot }}$ of material to power these outflows. This level of accretion indicates that significant supermassive black hole growth may occur not only at early times, in the quasar era, but at late times as well. We also find that X-ray cavities at high redshift may inject an excess heat of 0.1–1.0 keV per particle into the hot ICM above and beyond the energy needed to offset cooling. Although this result needs to be confirmed, we note that the magnitude of excess heating is similar to the energy needed to preheat clusters, break self-similarity, and explain the excess entropy in hot atmospheres.

  3. Jet launching radius in low-power radio-loud AGNs in advection-dominated accretion flows

    Science.gov (United States)

    Le, Truong; Newman, William; Edge, Brinkley

    2018-06-01

    Using our theory for the production of relativistic outflows, we estimate the jet launching radius and the inferred mass accretion rate for 52 low-power radio-loud AGNs based on the observed jet powers. Our analysis indicates that (1) a significant fraction of the accreted energy is required to convert the accreted mass to relativistic energy particles for the production of the jets near the event horizon, (2) the jet's launching radius moves radially towards the horizon as the mass accretion rate or jet's power increases, and (3) no jet/outflow formation is possible beyond 44 gravitational radii.

  4. The SINS/zC-SINF survey of z ∼ 2 galaxy kinematics: Evidence for powerful active galactic nucleus-driven nuclear outflows in massive star-forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Förster Schreiber, N. M.; Genzel, R.; Kurk, J. D.; Lutz, D.; Tacconi, L. J.; Wuyts, S.; Bandara, K.; Buschkamp, P.; Davies, R.; Eisenhauer, F.; Lang, P. [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Newman, S. F. [Department of Astronomy, Hearst Field Annex, University of California, Berkeley, CA 94720 (United States); Burkert, A. [Universitäts-Sternwarte, Ludwig-Maximilians-Universität, Scheinerstrasse 1, D-81679 München (Germany); Carollo, C. M.; Lilly, S. J. [Institute for Astronomy, Department of Physics, Eidgenössische Technische Hochschule, 8093-CH Zürich (Switzerland); Cresci, G. [Istituto Nazionale di Astrofisica—Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Daddi, E. [CEA Saclay, DSM/IRFU/SAp, F-91191 Gif-sur-Yvette (France); Hicks, E. K. S. [Department of Astronomy, University of Washington, P.O. Box 351580, Seattle, WA 98195-1580 (United States); Mainieri, V. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Mancini, C. [Istituto Nazionale di Astrofisica—Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); and others

    2014-05-20

    We report the detection of ubiquitous powerful nuclear outflows in massive (≥10{sup 11} M {sub ☉}) z ∼ 2 star-forming galaxies (SFGs), which are plausibly driven by an active galactic nucleus (AGN). The sample consists of the eight most massive SFGs from our SINS/zC-SINF survey of galaxy kinematics with the imaging spectrometer SINFONI, six of which have sensitive high-resolution adaptive optics-assisted observations. All of the objects are disks hosting a significant stellar bulge. The spectra in their central regions exhibit a broad component in Hα and forbidden [N II] and [S II] line emission, with typical velocity FWHM ∼ 1500 km s{sup –1}, [N II]/Hα ratio ≈ 0.6, and intrinsic extent of 2-3 kpc. These properties are consistent with warm ionized gas outflows associated with Type 2 AGN, the presence of which is confirmed via independent diagnostics in half the galaxies. The data imply a median ionized gas mass outflow rate of ∼60 M {sub ☉} yr{sup –1} and mass loading of ∼3. At larger radii, a weaker broad component is detected but with lower FWHM ∼485 km s{sup –1} and [N II]/Hα ≈ 0.35, characteristic for star formation-driven outflows as found in the lower-mass SINS/zC-SINF galaxies. The high inferred mass outflow rates and frequent occurrence suggest that the nuclear outflows efficiently expel gas out of the centers of the galaxies with high duty cycles and may thus contribute to the process of star formation quenching in massive galaxies. Larger samples at high masses will be crucial in confirming the importance and energetics of the nuclear outflow phenomenon and its connection to AGN activity and bulge growth.

  5. Discovery of 21 New Changing-look AGNs: Study on Evolution of AGNs and AGN Host Galaxies

    Science.gov (United States)

    Yang, Qian; Wu, Xuebing; Fan, Xiaohui; Jiang, Linhua; McGreer, Ian; Shangguan, Jinyi; Yao, Su; Wang, Bingquan; Joshi, Ravi; Green, Richard F.; Wang, Feige; Feng, Xiaotong; Fu, Yuming; Yang, Jinyi; Liu, Yuanqi

    2018-01-01

    The rare case of changing-look (CL) AGNs, with the appearance or disappearance of broad Balmer emission lines within a few years, challenges our understanding of the AGN unified model. We present a sample of 21 new CL AGNs at 0.08 Survey Explorer (WISE), were detected in 15 CL AGNs during the transition. The optical and mid-infrared variability is not consistent with the scenario of variable obscuration in 10 CL AGNs at higher than 3σ confidence level. We confirm a bluer-when-brighter trend in the optical. However, the mid-infrared colors W1‑W2 become redder when the objects become brighter in the W1 band, possibly due to a stronger hot dust contribution in the W2 band when the AGN activity becomes stronger. The physical mechanism of type transition is important for understanding the evolution of AGNs. The rare CL AGNs provide exceptional cases for the black hole and host stellar velocity dispersion relation studies at higher redshift. The faint state spectrum can be used to obtain the host stellar velocity dispersion without contamination from AGN component, and the bright state spectrum can be used to calculate the black hole mass with broad Balmer emission lines. The images at the non-AGN phase of CL AGNs are useful for studies of AGN host galaxies avoiding contamination from the luminous central engines.

  6. The effects of baryon physics, black holes and active galactic nucleus feedback on the mass distribution in clusters of galaxies

    Science.gov (United States)

    Martizzi, Davide; Teyssier, Romain; Moore, Ben; Wentz, Tina

    2012-06-01

    The spatial distribution of matter in clusters of galaxies is mainly determined by the dominant dark matter component; however, physical processes involving baryonic matter are able to modify it significantly. We analyse a set of 500 pc resolution cosmological simulations of a cluster of galaxies with mass comparable to Virgo, performed with the AMR code RAMSES. We compare the mass density profiles of the dark, stellar and gaseous matter components of the cluster that result from different assumptions for the subgrid baryonic physics and galaxy formation processes. First, the prediction of a gravity-only N-body simulation is compared to that of a hydrodynamical simulation with standard galaxy formation recipes, and then all results are compared to a hydrodynamical simulation which includes thermal active galactic nucleus (AGN) feedback from supermassive black holes (SMBHs). We find the usual effects of overcooling and adiabatic contraction in the run with standard galaxy formation physics, but very different results are found when implementing SMBHs and AGN feedback. Star formation is strongly quenched, producing lower stellar densities throughout the cluster, and much less cold gas is available for star formation at low redshifts. At redshift z= 0 we find a flat density core of radius 10 kpc in both the dark and stellar matter density profiles. We speculate on the possible formation mechanisms able to produce such cores and we conclude that they can be produced through the coupling of different processes: (I) dynamical friction from the decay of black hole orbits during galaxy mergers; (II) AGN-driven gas outflows producing fluctuations of the gravitational potential causing the removal of collisionless matter from the central region of the cluster; (III) adiabatic expansion in response to the slow expulsion of gas from the central region of the cluster during the quiescent mode of AGN activity.

  7. Evidence for wide-spread active galactic nucleus-driven outflows in the most massive z ∼ 1-2 star-forming galaxies

    International Nuclear Information System (INIS)

    Genzel, R.; Förster Schreiber, N. M.; Rosario, D.; Lang, P.; Lutz, D.; Wisnioski, E.; Wuyts, E.; Wuyts, S.; Bandara, K.; Bender, R.; Berta, S.; Kurk, J.; Mendel, J. T.; Tacconi, L. J.; Wilman, D.; Beifiori, A.; Burkert, A.; Buschkamp, P.; Chan, J.; Brammer, G.

    2014-01-01

    In this paper, we follow up on our previous detection of nuclear ionized outflows in the most massive (log(M * /M ☉ ) ≥ 10.9) z ∼ 1-3 star-forming galaxies by increasing the sample size by a factor of six (to 44 galaxies above log(M * /M ☉ ) ≥ 10.9) from a combination of the SINS/zC-SINF, LUCI, GNIRS, and KMOS 3D spectroscopic surveys. We find a fairly sharp onset of the incidence of broad nuclear emission (FWHM in the Hα, [N II], and [S II] lines ∼450-5300 km s –1 ), with large [N II]/Hα ratios, above log(M * /M ☉ ) ∼ 10.9, with about two-thirds of the galaxies in this mass range exhibiting this component. Broad nuclear components near and above the Schechter mass are similarly prevalent above and below the main sequence of star-forming galaxies, and at z ∼ 1 and ∼2. The line ratios of the nuclear component are fit by excitation from active galactic nuclei (AGNs), or by a combination of shocks and photoionization. The incidence of the most massive galaxies with broad nuclear components is at least as large as that of AGNs identified by X-ray, optical, infrared, or radio indicators. The mass loading of the nuclear outflows is near unity. Our findings provide compelling evidence for powerful, high-duty cycle, AGN-driven outflows near the Schechter mass, and acting across the peak of cosmic galaxy formation.

  8. Two separate outflows in the dual supermassive black hole system NGC 6240.

    Science.gov (United States)

    Müller-Sánchez, F; Nevin, R; Comerford, J M; Davies, R I; Privon, G C; Treister, E

    2018-04-01

    Theoretical models and numerical simulations have established a framework of galaxy evolution in which galaxies merge and create dual supermassive black holes (with separations of one to ten kiloparsecs), which eventually sink into the centre of the merger remnant, emit gravitational waves and coalesce. The merger also triggers star formation and supermassive black hole growth, and gas outflows regulate the stellar content 1-3 . Although this theoretical picture is supported by recent observations of starburst-driven and supermassive black hole-driven outflows 4-6 , it remains unclear how these outflows interact with the interstellar medium. Furthermore, the relative contributions of star formation and black hole activity to galactic feedback remain unknown 7-9 . Here we report observations of dual outflows in the central region of the prototypical merger NGC 6240. We find a black-hole-driven outflow of [O III] to the northeast and a starburst-driven outflow of Hα to the northwest. The orientations and positions of the outflows allow us to isolate them spatially and study their properties independently. We estimate mass outflow rates of 10 and 75 solar masses per year for the Hα bubble and the [O III] cone, respectively. Their combined mass outflow is comparable to the star formation rate 10 , suggesting that negative feedback on star formation is occurring.

  9. The AGN nature of LINER nuclear sources

    Science.gov (United States)

    Márquez, Isabel; Masegosa, Josefa; González-Martin, Omaira; Hernández-Garcia, Lorena; Pović, Mirjana; Netzer, Hagai; Cazzoli, Sara; del Olmo, Ascensión

    2017-11-01

    Low-ionization nuclear emission-line regions (LINERs) are specially interesting objects since not only they represent the most numerous local Active Galactic Nuclei population, but they could be the link between normal and active galaxies as suggested by their low X-ray luminosities. The origin of LINER nuclei being still controversial, our works, through a multiwavelength approach, have contributed, firstly, to confirm that a large number of nuclear LINERs in the local universe are AGN powered. Secondly, from the study of X-ray spectral variability, we found that long term variations are very common, and they are mostly related to hard energies (2-10 keV). These variations might be due to changes in the absorber and/or intrinsic variations of the source. Thirdly, Mid-infrared (MIR) imaging also indicates that LINERs are the low luminosity end of AGN towards lower luminosities, and MIR spectroscopy shows that the average spectrum of AGN-dominated LINERs with X-ray luminosities L_X(2-10 keV) > 10^{41} erg/s is similar to the average mid-IR spectrum of AGN-dominated Seyfert 2s; for fainter LINERS, their spectral shape suggests that the dusty-torus may disappear. Fourth, the extended Hα emission of LINERs at HST resolution indicates that they follow remarkably well the Narrow Line Region morphology and the luminosity-size relation obtained for Seyfert and QSOs; HST Hα morphology may suggest the presence of outflows, which could contribute to the line broadening, with the resulting consequences on the percentage of LINERs where the Broad Line Region is detected. This issue is being revisited by our group with a high spectral resolution set of optical data for nearby type-1 LINERs. Finally, concerning systematic studies on the role of star formation in LINERs, which are scarce, our contribution deals with the study of a sample of the most luminous, highest star formation rate LINERs in the local Universe (at z from 0.04 to 0.11), together with its comparison with both

  10. The AGN Nature of LINER Nuclear Sources

    Energy Technology Data Exchange (ETDEWEB)

    Márquez, Isabel; Masegosa, Josefa [Instituto de Astrofisica de Andalucia (CSIC), Granada (Spain); González-Martin, Omaira [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia (Mexico); Hernández-Garcia, Lorena [Istituto di Astrofisica e Planetologia Spaziali, Rome (Italy); Pović, Mirjana [Instituto de Astrofisica de Andalucia (CSIC), Granada (Spain); Ethiopian Space Science and Technology Institute and Entoto Observatory and Research Center, Addis Ababa (Ethiopia); Netzer, Hagai [Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy and the Wise Observatory, Tel-Aviv University, Tel Aviv (Israel); Cazzoli, Sara; Olmo, Ascensión del, E-mail: isabel@iaa.es [Instituto de Astrofisica de Andalucia (CSIC), Granada (Spain)

    2017-11-16

    Low-ionization nuclear emission-line regions (LINERs) are specially interesting objects since not only they represent the most numerous local Active Galactic Nuclei population, but they could be the link between normal and active galaxies as suggested by their low X-ray luminosities. The origin of LINER nuclei being still controversial, our works, through a multiwavelength approach, have contributed, firstly, to confirm that a large number of nuclear LINERs in the local universe are AGN powered. Secondly, from the study of X-ray spectral variability, we found that long term variations are very common, and they are mostly related to hard energies (2–10keV). These variations might be due to changes in the absorber and/or intrinsic variations of the source. Thirdly, Mid-infrared (MIR) imaging also indicates that LINERs are the low luminosity end of AGN toward lower luminosities, and MIR spectroscopy shows that the average spectrum of AGN-dominated LINERs with X-ray luminosities L{sub X}(2–10 keV) > 10{sup 41} erg/s is similar to the average mid-IR spectrum of AGN-dominated Seyfert 2s; for fainter LINERS, their spectral shape suggests that the dusty-torus may disappear. Fourth, the extended Hα emission of LINERs at HST resolution indicates that they follow remarkably well the Narrow Line Region morphology and the luminosity-size relation obtained for Seyfert and QSOs; HST Hα morphology may suggest the presence of outflows, which could contribute to the line broadening, with the resulting consequences on the percentage of LINERs where the Broad Line Region is detected. This issue is being revisited by our group with a high spectral resolution set of optical data for nearby type-1 LINERs. Finally, concerning systematic studies on the role of star formation in LINERs, which are scarce, our contribution deals with the study of a sample of the most luminous, highest star formation rate LINERs in the local Universe (at z from 0.04 to 0.11), together with its comparison

  11. The AGN Nature of LINER Nuclear Sources

    International Nuclear Information System (INIS)

    Márquez, Isabel; Masegosa, Josefa; González-Martin, Omaira; Hernández-Garcia, Lorena; Pović, Mirjana; Netzer, Hagai; Cazzoli, Sara; Olmo, Ascensión del

    2017-01-01

    Low-ionization nuclear emission-line regions (LINERs) are specially interesting objects since not only they represent the most numerous local Active Galactic Nuclei population, but they could be the link between normal and active galaxies as suggested by their low X-ray luminosities. The origin of LINER nuclei being still controversial, our works, through a multiwavelength approach, have contributed, firstly, to confirm that a large number of nuclear LINERs in the local universe are AGN powered. Secondly, from the study of X-ray spectral variability, we found that long term variations are very common, and they are mostly related to hard energies (2–10keV). These variations might be due to changes in the absorber and/or intrinsic variations of the source. Thirdly, Mid-infrared (MIR) imaging also indicates that LINERs are the low luminosity end of AGN toward lower luminosities, and MIR spectroscopy shows that the average spectrum of AGN-dominated LINERs with X-ray luminosities L X (2–10 keV) > 10 41 erg/s is similar to the average mid-IR spectrum of AGN-dominated Seyfert 2s; for fainter LINERS, their spectral shape suggests that the dusty-torus may disappear. Fourth, the extended Hα emission of LINERs at HST resolution indicates that they follow remarkably well the Narrow Line Region morphology and the luminosity-size relation obtained for Seyfert and QSOs; HST Hα morphology may suggest the presence of outflows, which could contribute to the line broadening, with the resulting consequences on the percentage of LINERs where the Broad Line Region is detected. This issue is being revisited by our group with a high spectral resolution set of optical data for nearby type-1 LINERs. Finally, concerning systematic studies on the role of star formation in LINERs, which are scarce, our contribution deals with the study of a sample of the most luminous, highest star formation rate LINERs in the local Universe (at z from 0.04 to 0.11), together with its comparison with

  12. The Gaseous Environments of Quasars: Outflows, Feedback & Cold Mode Accretion

    Science.gov (United States)

    Chen, Chen; Hamann, Fred

    2018-06-01

    The early stages of massive galaxy evolution can involve galaxy-scale outflows driven by a starburst or a central quasar and cold-mode accretion (infall) that adds to the mass buildup in the galaxies. I will describe three related studies that use quasar absorption lines to measure outflows, infall, and the general gaseous environments of quasars across a range of spatial scales. The three studies are: 1) High-resolution spectroscopy with Keck-HIRES and VLT-UVES to study associated absorption lines (AALs) that have redshifts greater than the emission redshifts indicating infall and/or rich multi-component AAL complexes that might be interstellar clouds in the host galaxies that have been shredded and dispersed by a fast unseen quasar-driven wind. The data provide strong constraints on the gas kinematics, spatial structure, column densities, metallicities, and energetics. 2) A complete inventory of high-velocity CIV 1548,1550 mini-BAL outflows in quasars using high-resolution high signal-to-noise spectra in the public VLT-UVES and Keck-HIRES archives. This sensitive mini-BAL survey fills an important niche between previous work on narrow absorption lines (NALs) and the much-studied broad absorption lines (BALs) to build a more complete picture of quasar outflows. I will report of the mini-BAL statistics, the diversity of lines detected, and some tests for correlations with the quasar properties. We find, for example, that mini-BALs at v > 4000 km/s in at least 10% of 511 quasars studied, including 1% at v > 0.1 c. Finally, 3) Use the much larger database of NALs measured in 262,449 BOSS quasars by York et al. (in prep.) to study their potential relationships to the quasars and, specifically, their origins in quasar outflows. This involves primarily comparisons of the incidence and properties of NALs at different velocity shifts to other measured properties of the quasars such as BAL outflows, emission line characteristics, radio-loudness, and red colors. We find

  13. Gemini NIFS survey of feeding and feedback processes in nearby active galaxies - II. The sample and surface mass density profiles

    Science.gov (United States)

    Riffel, R. A.; Storchi-Bergmann, T.; Riffel, R.; Davies, R.; Bianchin, M.; Diniz, M. R.; Schönell, A. J.; Burtscher, L.; Crenshaw, M.; Fischer, T. C.; Dahmer-Hahn, L. G.; Dametto, N. Z.; Rosario, D.

    2018-02-01

    We present and characterize a sample of 20 nearby Seyfert galaxies selected for having BAT 14-195 keV luminosities LX ≥ 1041.5 erg s-1, redshift z ≤ 0.015, being accessible for observations with the Gemini Near-Infrared Field Spectrograph (NIFS) and showing extended [O III]λ5007 emission. Our goal is to study Active Galactic Nucleus (AGN) feeding and feedback processes from near-infrared integral-field spectra, which include both ionized (H II) and hot molecular (H2) emission. This sample is complemented by other nine Seyfert galaxies previously observed with NIFS. We show that the host galaxy properties (absolute magnitudes MB, MH, central stellar velocity dispersion and axial ratio) show a similar distribution to those of the 69 BAT AGN. For the 20 galaxies already observed, we present surface mass density (Σ) profiles for H II and H2 in their inner ˜500 pc, showing that H II emission presents a steeper radial gradient than H2. This can be attributed to the different excitation mechanisms: ionization by AGN radiation for H II and heating by X-rays for H2. The mean surface mass densities are in the range (0.2 ≤ ΣH II ≤ 35.9) M⊙ pc-2, and (0.2 ≤ ΣH2 ≤ 13.9)× 10-3 M⊙ pc-2, while the ratios between the H II and H2 masses range between ˜200 and 8000. The sample presented here will be used in future papers to map AGN gas excitation and kinematics, providing a census of the mass inflow and outflow rates and power as well as their relation with the AGN luminosity.

  14. Type 2 Active Galactic Nuclei with Double-peaked [O III] Lines. II. Single AGNs with Complex Narrow-line Region Kinematics are More Common than Binary AGNs

    Science.gov (United States)

    Shen, Yue; Liu, Xin; Greene, Jenny E.; Strauss, Michael A.

    2011-07-01

    Approximately 1% of low-redshift (z interpreted as either due to kinematics, such as biconical outflows and/or disk rotation of the narrow line region (NLR) around single black holes, or due to the relative motion of two distinct NLRs in a merging pair of AGNs. Here, we report follow-up near-infrared (NIR) imaging and optical slit spectroscopy of 31 double-peaked [O III] type 2 AGNs drawn from the Sloan Digital Sky Survey (SDSS) parent sample presented in Liu et al. The NIR imaging traces the old stellar population in each galaxy, while the optical slit spectroscopy traces the NLR gas. These data reveal a mixture of origins for the double-peaked feature. Roughly 10% of our objects are best explained by binary AGNs at (projected) kpc-scale separations, where two stellar components with spatially coincident NLRs are seen. ~50% of our objects have [O III] emission offset by a few kpc, corresponding to the two velocity components seen in the SDSS spectra, but there are no spatially coincident double stellar components seen in the NIR imaging. For those objects with sufficiently high-quality slit spectra, we see velocity and/or velocity dispersion gradients in [O III] emission, suggestive of the kinematic signatures of a single NLR. The remaining ~40% of our objects are ambiguous and will need higher spatial resolution observations to distinguish between the two scenarios. Our observations therefore favor the kinematics scenario with a single AGN for the majority of these double-peaked [O III] type 2 AGNs. We emphasize the importance of combining imaging and slit spectroscopy in identifying kpc-scale binary AGNs, i.e., in no cases does one of these alone allow an unambiguous identification. We estimate that ~0.5%-2.5% of the z ~ 150 km s-1. Based in part on observations obtained with the 6.5 m Magellan telescopes located at Las Campanas Observatory, Chile, and with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research

  15. The Role of Turbulence in AGN Self-Regulation in Galaxy Clusters

    International Nuclear Information System (INIS)

    Scannapieco, Evan; Brueggen, Marcus

    2009-01-01

    Cool cores of galaxy clusters are thought to be heated by low-power active galactic nuclei (AGN), whose accretion is regulated by feedback. However, the interaction between the hot gas ejected by the AGN and the ambient intracluster medium is extremely difficult to simulate, as it involves a wide range of spatial scales and gas that is Rayleigh-Taylor (RT) unstable. Here we use a subgrid model for RT-driven turbulence to overcome these problems and present the first observationally-consistent hydrodynamical simulations of AGN self-regulation in galaxy clusters. For a wide range of parameter choices the cluster in our three-dimensional simulations regulates itself for at least several 10 9 years. Heating balances cooling through a string of outbreaks with a typical recurrence time of ≅80 Myrs, a timescale that depends only on the global cluster properties.

  16. RADIO PROPERTIES OF THE BAT AGNs: THE FIR–RADIO RELATION, THE FUNDAMENTAL PLANE, AND THE MAIN SEQUENCE OF STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Krista Lynne; Mushotzky, Richard F.; Vogel, Stuart; Shimizu, Thomas T. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Miller, Neal, E-mail: klsmith@astro.umd.edu [Department of Mathematics and Physics, Stevenson University, Stevenson, MD 21117 (United States)

    2016-12-01

    We conducted 22 GHz 1″ JVLA imaging of 70 radio-quiet active galactic nuclei (AGNs) from the Swift -BAT survey. We find radio cores in all but three objects. The radio morphologies of the sample fall into three groups: compact and core-dominated, extended, and jet-like. We spatially decompose each image into core flux and extended flux, and compare the extended radio emission with that predicted from previous Herschel observations using the canonical FIR–radio relation. After removing the AGN contribution to the FIR and radio flux densities, we find that the relation holds remarkably well despite the potentially different star formation physics in the circumnuclear environment. We also compare our core radio flux densities with predictions of coronal models and scale-invariant jet models for the origin of radio emission in radio-quiet AGNs, and find general consistency with both models. However, we find that the L {sub R}/ L {sub X} relation does not distinguish between star formation and non-relativistic AGN-driven outflows as the origin of radio emission in radio-quiet AGNs. Finally, we examine where objects with different radio morphologies fall in relation to the main sequence (MS) of star formation, and conclude that those AGNs that fall below the MS, as X-ray selected AGNs have been found to do, have core-dominated or jet-like 22 GHz morphologies.

  17. Understanding the build-up of supermassive black holes and galaxies

    Science.gov (United States)

    Carrera, Francisco; Ueda, Yoshihiro; Georgakakis, Antonis

    2016-07-01

    . The excellent survey capabilities of Athena/WFI (effective area, angular resolution, field of view) will allow to measure the incidence of feedback in the shape of warm absorbers and Ultra Fast Outflows among the general population of AGN, as well as to complete the census of black hole growth by detecting and characterising significant samples of the most heavily obscured (including Compton thick) AGN, to redshifts z~3-4. The outstanding spectral throughput and resolution of Athena/X-IFU will permit measuring the energetics of those outflows to assess their influence on their host galaxies. The demographics of the heavily obscured and outflowing populations relative to their hosts are fundamental for understanding how major black hole growth events relate to the build-up of galaxies.

  18. Understanding the build-up of SMBH and Galaxies

    Science.gov (United States)

    Carrera, Francisco; Georgakakis, Antonis; Ueda, Yoshihiro; Akylas, Thanassis; Lanzuisi, Giorgio; Castello, N.

    2015-09-01

    . The excellent survey capabilities of Athena/WFI (effective area, angular resolution, field of view) will allow to measure the incidence of feedback in the shape of warm absorbers and Ultra Fast Outflows among the general population of AGN, as well as to complete the census of black hole growth by detecting and characterising significant samples of the most heavily obscured (including Compton thick) AGN, to redshifts z~3-4. The outstanding spectral throughput and resolution of Athena/X-IFU will permit measuring the energetics of those outflows to assess their influence on their host galaxies. The demographics of the heavily obscured and outflowing populations relative to their hosts are fundamental for understanding how major black hole growth events relate to the build-up of galaxies.

  19. Multiwavelength Studies of Dual AGN in the Swift/BAT Sample

    Science.gov (United States)

    Treister, Ezequiel; Privon, George; Sartori, Lia; Nagar, Neil; Bauer, Franz Erik; Schawinski, Kevin; Ricci, Claudio; U, Vivian; Comerford, Julie; Muller-Sanchez, Francisco; Evans, Aaron; Koss, Michael; Sanders, David B.; Urry, Meg; MODA Collaboration

    2018-01-01

    For the last 30 years there has been growing evidence for a strong connection between major galaxy mergers and simultaneous episodes ofstrong star formation and signicant central supermassive black hole (SMBH) growth. A natural consequence of this scenario is that dual Active Galactic Nuclei (AGN), i.e., systems in which the two nuclear SMBHs are growing simultaneously at separations survey aimed to study the multiwavelength properties of the dual AGN in the neary universe, z10 keV, obtained from the Swift-BAT extragalactic survey and complemented by NuSTAR observations. Our work focuses on the study of the physical properties of the ionized, atomic and molecular gas and the dust in confirmed dual AGN by combining observations with ALMA, VLT/MUSE and SINFONI and Keck/OSIRIS among others. In addition to providing general properties of this poulation, we will further focus on two remarkable systems, NGC6240 and Mrk 463. Both systems show evidence of large kpc-scale tidal features, complex gas dynamics and kinematical evidence for both inflows and outflows.These results clearly show the importance of performing high resolution multi wavelength studies covering kpc scales in order to understandthe complex connection between black hole growth and galaxy evolution in this critical phase.Support from this work has been provided by CONICYT FONDECYT 1160999 and PFB-06/2007.

  20. GBT Detection of Polarization-Dependent HI Absorption and HI Outflows in Local ULIRGs and Quasars

    Science.gov (United States)

    Teng, Stacy H.; Veilleux, Sylvain; Baker, Andrew J.

    2013-01-01

    We present the results of a 21-cm HI survey of 27 local massive gas-rich late-stage mergers and merger remnants with the Green Bank Telescope (GBT). These remnants were selected from the Quasar/ULIRG Evolution Study (QUEST) sample of ultraluminous infrared galaxies (ULIRGs; L(sub 8 - 1000 micron) > 10(exp 12) solar L) and quasars; our targets are all bolometrically dominated by active galactic nuclei (AGN) and sample the later phases of the proposed ULIRG-to-quasar evolutionary sequence. We find the prevalence of HI absorption (emission) to be 100% (29%) in ULIRGs with HI detections, 100% (88%) in FIR-strong quasars, and 63% (100%) in FIR-weak quasars. The absorption features are associated with powerful neutral outflows that change from being mainly driven by star formation in ULIRGs to being driven by the AGN in the quasars. These outflows have velocities that exceed 1500 km/s in some cases. Unexpectedly, we find polarization-dependent HI absorption in 57% of our spectra (88% and 63% of the FIR-strong and FIR-weak quasars, respectively). We attribute this result to absorption of polarized continuum emission from these sources by foreground HI clouds. About 60% of the quasars displaying polarized spectra are radio-loud, far higher than the approx 10% observed in the general AGN population. This discrepancy suggests that radio jets play an important role in shaping the environments in these galaxies. These systems may represent a transition phase in the evolution of gas-rich mergers into "mature" radio galaxies.

  1. FEEDBACK EFFECTS ON LOW-MASS STAR FORMATION

    International Nuclear Information System (INIS)

    Hansen, Charles E.; Klein, Richard I.; McKee, Christopher F.; Fisher, Robert T.

    2012-01-01

    Protostellar feedback, both radiation and bipolar outflows, dramatically affects the fragmentation and mass accretion from star-forming cores. We use ORION, an adaptive mesh refinement gravito-radiation-hydrodynamics code, to simulate low-mass star formation in a turbulent molecular cloud in the presence of protostellar feedback. We present results of the first simulations of a star-forming cluster that include both radiative transfer and protostellar outflows. We run four simulations to isolate the individual effects of radiation feedback and outflow feedback as well as the combination of the two. We find that outflows reduce protostellar masses and accretion rates each by a factor of three and therefore reduce protostellar luminosities by an order of magnitude. This means that, while radiation feedback suppresses fragmentation, outflows render protostellar radiation largely irrelevant for low-mass star formation above a mass scale of 0.05 M ☉ . We find initial fragmentation of our cloud at half the global Jeans length, around 0.1 pc. With insufficient protostellar radiation to stop it, these 0.1 pc cores fragment repeatedly, forming typically 10 stars each. The accretion rate in these stars scales with mass as predicted from core accretion models that include both thermal and turbulent motions; the accretion rate does not appear to be consistent with either competitive accretion or accretion from an isothermal sphere. We find that protostellar outflows do not significantly affect the overall cloud dynamics, in the absence of magnetic fields, due to their small opening angles and poor coupling to the dense gas. The outflows reduce the mass from the cores by 2/3, giving a core to star efficiency, ε core ≅ 1/3. The simulations are also able to reproduce many observation of local star-forming regions. Our simulation with radiation and outflows reproduces the observed protostellar luminosity function. All of the simulations can reproduce observed core mass

  2. Correlating The Star Formation Histories Of MaNGA Galaxies With Their Past AGN Activity

    Science.gov (United States)

    Gonzalez Ortiz, Andrea

    2017-01-01

    We investigate active galactic nuclei (AGN) as a primary mechanism affecting star formation in MaNGA galaxies. Using the Pipe3D code, we modeled the stellar population from MaNGA spectra and derived the star formation histories of 53 AGN host galaxies. We seek to compare the star formation histories of the host galaxies of AGN with the ages of their radio lobes to better understand the role of AGN feedback in the star formation histories of MaNGA galaxies. MaNGA (Mapping Nearby Galaxies at APO) is one of the three core programs in the fourth generation Sloan Digital Sky Survey(SDSS). MaNGA will investigate the internal kinematics of nearly 10,000 local galaxies through dithered observations using fiber integral field units (IFUs) that vary in diameter from 12" (19 fibers) to 32" (127 fibers). In this poster, we present initial results on the star formation histories of MaNGA AGN host galaxies. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from Sloan Foundation to the Astrophysical Research Consortium.

  3. Searching for Dual AGNs in Galaxy Mergers: Understanding Double-Peaked [O III] and Ultra Hard X-rays as Selection Method

    Science.gov (United States)

    McGurk, Rosalie C.; Max, Claire E.; Medling, Anne; Shields, Gregory A.

    2015-01-01

    When galaxies merge, gas accretes onto both central supermassive black holes. Thus, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O III] or of ultra hard X-rays have been proposed as techniques to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O III] emitting AGNs from SDSS DR7. By obtaining new and archival high spatial resolution images taken with the Keck 2 Laser Guide Star Adaptive Optics system and the near-infrared (IR) camera NIRC2, we showed that 30% of double-peaked [O III] emission line SDSS AGNs have two spatial components within a 3' radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up these spatially-double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and Gemini GMOS and with long-slit spectroscopy from Keck NIRSPEC and Shane Kast Double Spectrograph. We find double-peaked emitters are caused sometimes by dual AGN and sometimes by outflows or narrow line kinematics. We also performed Chandra X-ray ACIS-S observations on 12 double-peaked candidate dual AGNs. Using our observations and 8 archival observations, we compare the distribution of X-ray photons to our spatially double near-IR images, measure X-ray luminosities and hardness ratios, and estimate column densities. By assessing what fraction of double-peaked emission line SDSS AGNs are true dual AGNs, we can better determine whether double-peaked [O III] is an efficient dual AGN indicator and constrain the statistics of dual AGNs. A second technique to find dual AGN is the detection of ultra hard X-rays by the Swift Burst Alert Telescope. We use CARMA observations to measure and map the CO(1-0) present in nearby ultra-hard X-ray Active Galactic Nuclei (AGNs) merging with either a quiescent companion

  4. NuSTAR View of the Black Hole Wind in the Galaxy Merger IRAS F11119+3257

    Science.gov (United States)

    Tombesi, F.; Veilleux, S.; Meléndez, M.; Lohfink, A.; Reeves, J. N.; Piconcelli, E.; Fiore, F.; Feruglio, C.

    2017-12-01

    Galactic winds driven by active galactic nuclei (AGNs) have been invoked to play a fundamental role in the co-evolution between supermassive black holes and their host galaxies. Finding observational evidence of such feedback mechanisms is of crucial importance and it requires a multi-wavelength approach in order to compare winds at different scales and phases. In Tombesi et al., we reported the detection of a powerful ultra-fast outflow (UFO) in the Suzaku X-ray spectrum of the ultra-luminous infrared galaxy IRAS F11119+3257. The comparison with a galaxy-scale OH molecular outflow observed with Herschel in the same source supported the energy-conserving scenario for AGN feedback. The main objective of this work is to perform an independent check of the Suzaku results using the higher sensitivity and wider X-ray continuum coverage of NuSTAR. We clearly detect a highly ionized Fe K UFO in the 100 ks NuSTAR spectrum with parameters N H = (3.2 ± 1.5) × 1024 cm-2, log ξ = {4.0}-0.3+1.2 erg s-1 cm, and {v}{out}={0.253}-0.118+0.061c. The launching radius is likely at a distance of r ≥ 16r s from the black hole. The mass outflow rate is in the range of {\\dot{M}}{out} ≃ 0.5-2 M ⊙ yr-1. The UFO momentum rate and power are {\\dot{P}}{out} ≃ 0.5-2 L AGN/c and {\\dot{E}}{out} ≃ 7%-27% L AGN, respectively. The UFO parameters are consistent between the 2013 Suzaku and the 2015 NuSTAR observations. Only the column density is found to be variable, possibly suggesting a clumpy wind. The comparison with the energetics of molecular outflows estimated in infrared and millimeter wavelengths support a connection between the nuclear and galaxy-scale winds in luminous AGNs.

  5. AGN Heating in Simulated Cool-core Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan; Ruszkowski, Mateusz [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Bryan, Greg L., E-mail: yuanlium@umich.edu [Department of Astronomy, Columbia University, Pupin Physics Laboratories, New York, NY 10027 (United States)

    2017-10-01

    We analyze heating and cooling processes in an idealized simulation of a cool-core cluster, where momentum-driven AGN feedback balances radiative cooling in a time-averaged sense. We find that, on average, energy dissipation via shock waves is almost an order of magnitude higher than via turbulence. Most of the shock waves in the simulation are very weak shocks with Mach numbers smaller than 1.5, but the stronger shocks, although rare, dissipate energy more effectively. We find that shock dissipation is a steep function of radius, with most of the energy dissipated within 30 kpc, more spatially concentrated than radiative cooling loss. However, adiabatic processes and mixing (of post-shock materials and the surrounding gas) are able to redistribute the heat throughout the core. A considerable fraction of the AGN energy also escapes the core region. The cluster goes through cycles of AGN outbursts accompanied by periods of enhanced precipitation and star formation, over gigayear timescales. The cluster core is under-heated at the end of each cycle, but over-heated at the peak of the AGN outburst. During the heating-dominant phase, turbulent dissipation alone is often able to balance radiative cooling at every radius but, when this is occurs, shock waves inevitably dissipate even more energy. Our simulation explains why some clusters, such as Abell 2029, are cooling dominated, while in some other clusters, such as Perseus, various heating mechanisms including shock heating, turbulent dissipation and bubble mixing can all individually balance cooling, and together, over-heat the core.

  6. A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies

    International Nuclear Information System (INIS)

    Zhu, Yi-Nan; Wu, Hong

    2015-01-01

    As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M H i ), stellar mass (M * ), and H i-to-stellar mass ratio (M H i /M * ) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increase or decrease either M H i or M H i /M * . The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.

  7. A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yi-Nan; Wu, Hong, E-mail: zyn@bao.ac.cn, E-mail: hwu@bao.ac.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2015-01-01

    As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M{sub H} {sub i}), stellar mass (M{sub *}), and H i-to-stellar mass ratio (M{sub H} {sub i}/M{sub *}) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increase or decrease either M{sub H} {sub i} or M{sub H} {sub i}/M{sub *}. The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.

  8. GALAXY OUTFLOWS WITHOUT SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Sur, Sharanya [Indian Institute of Astrophysics, 2nd Block, Koramangala, Bangalore 560034 (India); Scannapieco, Evan [School of Earth and Space Exploration, Arizona State University, P.O. Box 876004, Tempe-85287 (United States); Ostriker, Eve C., E-mail: sharanya.sur@iiap.res.in, E-mail: sharanya.sur@asu.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-02-10

    High surface density, rapidly star-forming galaxies are observed to have ≈50–100 km s{sup −1} line of sight velocity dispersions, which are much higher than expected from supernova driving alone, but may arise from large-scale gravitational instabilities. Using three-dimensional simulations of local regions of the interstellar medium, we explore the impact of high velocity dispersions that arise from these disk instabilities. Parametrizing disks by their surface densities and epicyclic frequencies, we conduct a series of simulations that probe a broad range of conditions. Turbulence is driven purely horizontally and on large scales, neglecting any energy input from supernovae. We find that such motions lead to strong global outflows in the highly compact disks that were common at high redshifts, but weak or negligible mass loss in the more diffuse disks that are prevalent today. Substantial outflows are generated if the one-dimensional horizontal velocity dispersion exceeds ≈35 km s{sup −1}, as occurs in the dense disks that have star-formation rate (SFR) densities above ≈0.1 M{sub ⊙} yr{sup −1} kpc{sup −2}. These outflows are triggered by a thermal runaway, arising from the inefficient cooling of hot material coupled with successive heating from turbulent driving. Thus, even in the absence of stellar feedback, a critical value of the SFR density for outflow generation can arise due to a turbulent heating instability. This suggests that in strongly self-gravitating disks, outflows may be enhanced by, but need not caused by, energy input from supernovae.

  9. [Transfer of the AGnES concept to the regular German health-care system: legal evaluation, reimbursement, qualification].

    Science.gov (United States)

    van den Berg, N; Kleinke, S; Heymann, R; Oppermann, R F; Jakobi, B; Hoffmann, W

    2010-05-01

    According to an amendment of German social security legislation, the AGnES concept of delegation of certain tasks of medical care, especially house calls, by general practitioners (GPs) to qualified practice employees (AGnES employees), will be transferred into the regular German health care system from January 2009 onward. The concept was developed to support GPs in regions with imminent gaps in primary care. Patient data, the specifically delegated and all other activities carried out by the AGnES employees in the AGnES projects were digitally documented. Additionally, the participating GPs, AGnES employees and patients underwent a set of standardised interviews. A curriculum to qualify the AGnES employees and to define the requirements needed was developed. A legal assessment of all delegated activities was carried out, and an economical model to calculate the necessary allowance was calculated. In seven model projects in four federal states in Germany, 11,228 house calls were carried out involving 1,424, mostly multimorbid, patients (mean age: 78.6 years). A modular structured curriculum, considering the basic education and acquired competences, was developed. It allows for an individual qualification of the AGnES employees. The result of the legal assessment was the central relevance of the qualification of the practice employees according to the AGnES curriculum as the essential condition for carrying out the entire range of activities of the AGnES concept. The economic model revealed euro 21.58 for a house call by an AGnES employee. The underlying model referred to underserved regions. A successful transfer of the AGnES concept with a high standard of quality into regular health-care depends on several factors. Of particular importance is the specific qualification of the practice employees, which is a central legal condition for the delegation of medical tasks from GPs to AGnEs employees. A second determining factor is also an adequate reimbursement within

  10. NGC 741—Mergers and AGN Feedback on a Galaxy-group Scale

    Energy Technology Data Exchange (ETDEWEB)

    Schellenberger, G.; Vrtilek, J. M.; David, L.; O’Sullivan, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Giacintucci, S. [Naval Research Laboratory, 4555 Overlook Avenue SW, Code 7213, Washington, DC 20375 (United States); Johnston-Hollitt, M.; Duchesne, S. W. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6140 (New Zealand); Raychaudhury, S., E-mail: gerrit.schellenberger@cfa.harvard.edu [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India)

    2017-08-10

    Low-mass galaxy cluster systems and groups will play an essential role in upcoming cosmological studies, such as those to be carried out with eROSITA. Though the effects of active galactic nuclei (AGNs) and merging processes are of special importance to quantify biases like selection effects or deviations from hydrostatic equilibrium, they are poorly understood on the galaxy-group scale. We present an analysis of recent deep Chandra and XMM-Newton integrations of NGC 741 that provides an excellent example of a group with multiple concurrent phenomena: both an old central radio galaxy and a spectacular infalling head-tail source, strongly bent jets, a 100-kpc radio trail, intriguing narrow X-ray filaments, and gas-sloshing features. Supported principally by X-ray and radio continuum data, we address the merging history of the group, the nature of the X-ray filaments, the extent of gas-stripping from NGC 742, the character of cavities in the group, and the roles of the central AGN and infalling galaxy in heating the intra-group medium.

  11. Playing with Positive Feedback: External Pressure-triggering of a Star-forming Disk Galaxy

    Science.gov (United States)

    Bieri, Rebekka; Dubois, Yohan; Silk, Joseph; Mamon, Gary A.

    2015-10-01

    In massive galaxies, the currently favored method for quenching star formation is via active galactic nuclei (AGN) feedback, which ejects gas from the galaxy using a central supermassive black hole. At high redshifts however, explanation of the huge rates of star formation often found in galaxies containing AGNs may require a more vigorous mode of star formation than is attainable by simply enriching the gas content of galaxies in the usual gravitationally driven mode that is associated with the nearby universe. Using idealized hydrodynamical simulations, we show that AGN-pressure-driven star formation potentially provides the positive feedback that may be required to generate the accelerated star formation rates observed in the distant universe.

  12. ACTIVE GALACTIC NUCLEUS FEEDBACK AND ENTROPY INJECTION IN GALAXY CLUSTER CORES

    International Nuclear Information System (INIS)

    Chaudhuri, Anya; Majumdar, Subhabrata; Nath, Biman B.

    2013-01-01

    We make the first estimate of non-gravitational energy profiles in galaxy cluster cores (and beyond) based on observational data. Comparing the observed entropy profiles within r 500 , from the Representative XMM-Newton Cluster Structure Survey to simulated base entropy profiles without feedback from both adaptive mesh refinement (AMR) and smoothed particle hydrodynamic (SPH) non-radiative simulations, we estimate the amount of additional non-gravitational energy, E ICM , contained in the intracluster medium (ICM), as well as the total energy feedback, E Feedback , from active galactic nuclei (AGNs; the central AGNs in most cases) into the clusters. The total feedback energy scales with the mean spectroscopic temperature as E Feedback ∝T sp 2.52±0.08 and E Feedback ∝T sp 2.17±0.11 for the SPH and AMR baseline profiles. The mean non-gravitational energy per particle within r 500 remaining in the ICM after energy lost during cooling is ε ICM = 2.8 ± 0.8 keV for the SPH theoretical relation and ε ICM = 1.7 ± 0.9 keV for the AMR theoretical relation. We use the NRAO/VLA Sky Survey source catalog to determine the radio luminosity, L R , at 1.4 GHz of the central source(s) of our sample. For T sp > 3 keV, the E Feedback correlates with L R , although with different normalization for cool-core and non-cool-core clusters. We show that AGNs could provide a significant portion of the feedback

  13. THE ROLE OF COSMIC-RAY PRESSURE IN ACCELERATING GALACTIC OUTFLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Christine M.; Pakmor, Rüdiger; Pfrommer, Christoph; Springel, Volker [Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Marinacci, Federico [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Glover, Simon C. O. [Zentrum für Astronomie der Universität Heidelberg, ITA, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Clark, Paul C. [School of Physics and Astronomy, Queen’s Buildings, The Parade, Cardiff University, Cardiff CF24 3AA (United Kingdom); Smith, Rowan J., E-mail: Christine.Simpson@h-its.org [Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2016-08-20

    We study the formation of galactic outflows from supernova (SN) explosions with the moving-mesh code AREPO in a stratified column of gas with a surface density similar to the Milky Way disk at the solar circle. We compare different simulation models for SN placement and energy feedback, including cosmic rays (CRs), and find that models that place SNe in dense gas and account for CR diffusion are able to drive outflows with similar mass loading as obtained from a random placement of SNe with no CRs. Despite this similarity, CR-driven outflows differ in several other key properties including their overall clumpiness and velocity. Moreover, the forces driving these outflows originate in different sources of pressure, with the CR diffusion model relying on non-thermal pressure gradients to create an outflow driven by internal pressure and the random-placement model depending on kinetic pressure gradients to propel a ballistic outflow. CRs therefore appear to be non-negligible physics in the formation of outflows from the interstellar medium.

  14. Theoretical Re-evaluations of Scaling Relations between SMBHs and Their Host Galaxies–2. Importance of AGN Feedback Suggested by Stellar Age–Velocity Dispersion Relation

    Directory of Open Access Journals (Sweden)

    Hikari Shirakata

    2017-09-01

    Full Text Available We present the galactic stellar age—velocity dispersion relation obtained from a semi-analytic model of galaxy formation. We divide galaxies into two populations: galaxies which have over-massive/under-massive black holes (BHs against the best-fitting BH mass—velocity dispersion relation. We find that galaxies with larger velocity dispersion have older stellar ages. We also find that galaxies with over-massive BHs have older stellar ages. These results are consistent with observational results obtained from Martín-Navarro et al. (2016. We tested the model with weak AGN feedback and find that galaxies with larger velocity dispersion have a younger stellar age.

  15. Theoretical Re-evaluations of Scaling Relations between SMBHs and Their Host Galaxies–2. Importance of AGN Feedback Suggested by Stellar Age–Velocity Dispersion Relation

    International Nuclear Information System (INIS)

    Shirakata, Hikari; Kawaguchi, Toshihiro; Okamoto, Takashi; Ishiyama, Tomoaki

    2017-01-01

    We present the galactic stellar age—velocity dispersion relation obtained from a semi-analytic model of galaxy formation. We divide galaxies into two populations: galaxies which have over-massive/under-massive black holes (BHs) against the best-fitting BH mass—velocity dispersion relation. We find that galaxies with larger velocity dispersion have older stellar ages. We also find that galaxies with over-massive BHs have older stellar ages. These results are consistent with observational results obtained from Martín-Navarro et al. (2016). We tested the model with weak AGN feedback and find that galaxies with larger velocity dispersion have a younger stellar age.

  16. Theoretical Re-evaluations of Scaling Relations between SMBHs and Their Host Galaxies–2. Importance of AGN Feedback Suggested by Stellar Age–Velocity Dispersion Relation

    Energy Technology Data Exchange (ETDEWEB)

    Shirakata, Hikari [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo (Japan); Kawaguchi, Toshihiro [Department of Economics, Management and Information Science, Onomichi City University, Onomichi, Hiroshima (Japan); Okamoto, Takashi [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo (Japan); Ishiyama, Tomoaki, E-mail: shirakata@astro1.sci.hokudai.ac.jp [Institute of Management and Information Technologies, Chiba University, Chiba (Japan)

    2017-09-12

    We present the galactic stellar age—velocity dispersion relation obtained from a semi-analytic model of galaxy formation. We divide galaxies into two populations: galaxies which have over-massive/under-massive black holes (BHs) against the best-fitting BH mass—velocity dispersion relation. We find that galaxies with larger velocity dispersion have older stellar ages. We also find that galaxies with over-massive BHs have older stellar ages. These results are consistent with observational results obtained from Martín-Navarro et al. (2016). We tested the model with weak AGN feedback and find that galaxies with larger velocity dispersion have a younger stellar age.

  17. Quenching star formation with quasar outflows launched by trapped IR radiation

    Science.gov (United States)

    Costa, Tiago; Rosdahl, Joakim; Sijacki, Debora; Haehnelt, Martin G.

    2018-06-01

    We present cosmological radiation-hydrodynamic simulations, performed with the code RAMSES-RT, of radiatively-driven outflows in a massive quasar host halo at z = 6. Our simulations include both single- and multi-scattered radiation pressure on dust from a quasar and are compared against simulations performed with thermal feedback. For radiation pressure-driving, we show that there is a critical quasar luminosity above which a galactic outflow is launched, set by the equilibrium of gravitational and radiation forces. While this critical luminosity is unrealistically high in the single-scattering limit for plausible black hole masses, it is in line with a ≈ 3 × 10^9 M_⊙ black hole accreting at its Eddington limit, if infrared (IR) multi-scattering radiation pressure is included. The outflows are fast (v ≳ 1000 km s^{-1}) and strongly mass-loaded with peak mass outflow rates ≈ 10^3 - 10^4 M_⊙ yr^{-1}, but short-lived (star formation in the bulge. We hence argue that radiation pressure-driven feedback may be an important ingredient in regulating star formation in compact starbursts, especially during the quasar's `obscured' phase.

  18. ENVIRONMENTAL EFFECTS ON THE GROWTH OF SUPERMASSIVE BLACK HOLES AND ACTIVE GALACTIC NUCLEUS FEEDBACK

    International Nuclear Information System (INIS)

    Shin, Min-Su; Ostriker, Jeremiah P.; Ciotti, Luca

    2012-01-01

    We investigate how environmental effects by gas stripping alter the growth of a supermassive black hole (SMBH) and its host galaxy evolution, by means of one-dimensional hydrodynamical simulations that include both mechanical and radiative active galactic nucleus (AGN) feedback effects. By changing the truncation radius of the gas distribution (R t ), beyond which gas stripping is assumed to be effective, we simulate possible environments for satellite and central galaxies in galaxy clusters and groups. The continuous escape of gas outside the truncation radius strongly suppresses star formation, while the growth of the SMBH is less affected by gas stripping because the SMBH accretion is primarily ruled by the density of the central region. As we allow for increasing environmental effects—the truncation radius decreasing from about 410 to 50 kpc—we find that the final SMBH mass declines from about 10 9 to 8 × 10 8 M ☉ , but the outflowing mass is roughly constant at about 2 × 10 10 M ☉ . There are larger changes in the mass of stars formed, which declines from about 2 × 10 10 to 2 × 10 9 M ☉ , and the final thermal X-ray gas, which declines from about 10 9 to 5 × 10 8 M ☉ , with increasing environmental stripping. Most dramatic is the decline in the total time that the objects would be seen as quasars, which declines from 52 Myr (for R t = 377 kpc) to 7.9 Myr (for R t = 51 kpc). The typical case might be interpreted as a red and dead galaxy having episodic cooling flows followed by AGN feedback effects resulting in temporary transitions of the overall galaxy color from red to green or to blue, with (cluster) central galaxies spending a much larger fraction of their time in the elevated state than do satellite galaxies. Our results imply that various scaling relations for elliptical galaxies, in particular, the mass ratio between the SMBH and its host galaxy, can have dispersions due to environmental effects such as gas stripping. In addition, the

  19. Observational Corollaries of Proto-AGN: Understanding Formation of Supermassive Black Hole Seeds

    Science.gov (United States)

    Shlosman, Isaac

    2016-10-01

    Formation of supermassive black holes (SMBHs) is still an enigma. Recent detections of high-z quasars which harbor massive SMBHs provide a challenge to models of structure buildup in the universe. Main alternatives for the formation of SMBH seeds are (1) remnants of Population III stars, and (2) a direct baryonic collapse within dark matter (DM) halos of 10^8 Mo -- first halos whose virial temperature exceeds 10^4 K, and which can lead to the formation of proto-AGN -- luminous pre-SMBH objects. Potentially, this can involve both high-z objects as well as low-z dwarf galaxies in voids. We focus on the direct collapse in 10^8 Mo halos which circumvents the pitfalls of Pop III remnants. The collapse can proceed via a radiation pressure-supported quasistar -- with a modified blackbody continuum. Such a configuration requires a very efficient angular momentum transfer. Or, it can form a thick, differentially rotating, self-gravitating disk, which is associated with an X-ray-infrared continuum and Seyfert-level luminosity, anisotropic emission, massive bi-conical outflows, and will be a powerful source of the Ly-alpha emission. We propose to perform radiative transfer in the continuum and hydrogen lines (e.g., Lyman and Balmer), using our models of proto-AGN, and do it on-the-fly -- concurrently with the collapse. We shall test the path to quasistellar and disky proto-AGN, produce first synthetic spectra of proto-AGN, and address the issue of feasibility of their detection by the JWST. Finally, we shall develop the strategy of searching for these objects at high- and low-z, based on the specific features in the spectra and associated variability.

  20. The Contribution of Compton-Thick AGN/ULIRGs to the X-Ray Background

    Science.gov (United States)

    Nardini, Emanuele

    Accretion onto the supermassive black holes located at the centre of Active Galactic Nuclei(AGN) is one of the most efficient power sources in the Universe, and provides a significant contribution to the energy radiated over cosmic times. The spectral shape of the X-ray background and its progressive resolution strongly suggests that most AGN are heavily obscured by large amounts of dust and gas. Their primary radiation field is reprocessed and re-emitted at longer wavelengths, driving a huge IR luminosity. Ultraluminous Infrared Galaxies (ULIRGs) are the local counterparts of the high-redshift (z sport the typical features of buried AGN in the mid-IR. IRAS 12127 1412 was observed for the first time in the X-rays by our group. Its Chandra spectrum clearly shows the signatures of AGN reflection at 2 10 keV. Similar properties were previously found in IRAS 00182 7112. Our Suzaku observations will allow to pinpont the AGN emission above 10 keV, and will provide fundamental information on the physical and geometrical structure of Compton-thick AGN embedded in a nuclear starburst. These sources are believed to experience the very initial phase of the AGN feedback on the surrounding environment, eventually leading to the formation of powerful optically- bright quasars. Besides this, we stress another remarkable opportunity related to the study of these two ULIRGs. Due to their really unique mid-IR and hard X-ray spectral properties, IRAS 00182 7112 and IRAS 12127 1412 can be considered as representative templates for a significant fraction of the obscured AGN population. Their broadband spectral energy distribution can then be used to calibrate new photometric diagnostics based on mid-IR colors and bolometric corrections, capable of selecting their faint counterparts within the IR deep fields. The wealth of data in the WISE and Spitzer archives will allow a complete census of this AGN subclass. The reflection efficiency inferred from our new Suzaku observations will make

  1. Nonradial and nonpolytropic astrophysical outflows. X. Relativistic MHD rotating spine jets in Kerr metric

    Science.gov (United States)

    Chantry, L.; Cayatte, V.; Sauty, C.; Vlahakis, N.; Tsinganos, K.

    2018-04-01

    Context. High-resolution radio imaging of active galactic nuclei (AGN) has revealed that the jets of some sources present superluminal knots and transverse stratification. Recent observational projects, such as ALMA and γ-ray telescopes, such as HESS and HESS2 have provided new observational constraints on the central regions of rotating black holes in AGN, suggesting that there is an inner- or spine-jet surrounded by a disk wind. This relativistic spine-jet is likely to be composed of electron-positron pairs extracting energy from the black hole and will be explored by the future γ-ray telescope CTA. Aims: In this article we present an extension to and generalization of relativistic jets in Kerr metric of the Newtonian meridional self-similar mechanism. We aim at modeling the inner spine-jet of AGN as a relativistic light outflow emerging from a spherical corona surrounding a Kerr black hole and its inner accretion disk. Methods: The model is built by expanding the metric and the forces with colatitude to first order in the magnetic flux function. As a result of the expansion, all colatitudinal variations of the physical quantities are quantified by a unique parameter. Unlike previous models, effects of the light cylinder are not neglected. Results: Solutions with high Lorentz factors are obtained and provide spine-jet models up to the polar axis. As in previous publications, we calculate the magnetic collimation efficiency parameter, which measures the variation of the available energy across the field lines. This collimation efficiency is an integral part of the model, generalizing the classical magnetic rotator efficiency criterion to Kerr metric. We study the variation of the magnetic efficiency and acceleration with the spin of the black hole and show their high sensitivity to this integral. Conclusions: These new solutions model collimated or radial, relativistic or ultra-relativistic outflows in AGN or γ-ray bursts. In particular, we discuss the

  2. A High-definition View Of The Circum-nuclear Regions In Nearby Seyferts With Chandra And HST

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A.; Mundell, C. G.

    2011-09-01

    To improve our understanding of AGN feedback, it is crucial to evaluate the true role of outflows on galaxy evolution observationally. I will present new results from the CHandra survey of Extended Emission-line Regions in nearby Seyfert galaxies (CHEERS), which aims to examine feedback in action in much greater detail than at high redshift. Findings from Chandra studies of the circum-nuclear region in the archetypal Seyfert 1 galaxy NGC 4151 will be discussed in detail. Exploiting Chandra's highest possible resolution, we find evidence for X-ray emission from interaction between radio outflow and the optical narrow-line region clouds, in addition to the emission from photoionized gas.

  3. Optical Time-Domain and Radio Imaging Analyses of the Dynamic Hearts of AGN

    Science.gov (United States)

    Smith, Krista Lynne

    Active galactic nuclei (AGN) are among the most extreme objects in the universe: galaxies with a central supermassive black hole feeding on gas from a hot accretion disk. Despite their potential as powerful tools to study topics ranging from relativity to cosmology, they remain quite mysterious. In the first portion of this thesis, we explore how an AGN may influence the formation of stars in its host galaxy. Using high-resolution 22 GHz radio imaging of an X-ray selected sample of radio-quiet AGN, we find that the far-infrared radio correlation for normal star forming galaxies remains valid within a few hundred parsecs of the central engine. Because the core flux is often spatially isolated from star formation, we can also determine that the radio emission in radio-quiet AGN is consistent with both coronal and disk-jet coupling models. Finally, we find that AGN with jet-like radio morphologies have suppressed star formation, possibly indicating ongoing feedback. The second portion of this thesis uses optical AGN light curves to study the physics of accretion. The Kepler spacecraft produces groundbreaking light curves, but its fixed field of view only contained a handful of known AGN. We conduct an X-ray survey of this field, yielding 93 unique X-ray sources identified by optical follow-up spectroscopy as a mixture of AGN and stars. For the AGN, we spectroscopically measure black hole masses and accretion rates. We then analyze a sample of 22 Kepler AGN light curves. We develop a customized pipeline for AGN science with Kepler, a necessary step since the initial data was optimized for the unique goal of exoplanet detection. The light curves display an astonishing variety of behaviors in a new regime of optical variability inaccessible with previous facilities. We find power spectral slopes inconsistent with the damped random walk model, characteristic variability timescales, correlations of variability properties with physical parameters, and bimodal flux

  4. Suppression of AGN-driven Turbulence by Magnetic Fields in a Magnetohydrodynamic Model of the Intracluster Medium

    Science.gov (United States)

    Bambic, Christopher J.; Morsony, Brian J.; Reynolds, Christopher S.

    2018-04-01

    We investigate the role of active galactic nucleus (AGN) feedback in turbulent heating of galaxy clusters. Specifically, we analyze the production of turbulence by g-modes generated by the supersonic expansion and buoyant rise of AGN-driven bubbles. Previous work that neglects magnetic fields has shown that this process is inefficient, with less than 1% of the injected energy ending up in turbulence. This inefficiency primarily arises because the bubbles are shredded apart by hydrodynamic instabilities before they can excite sufficiently strong g-modes. Using a plane-parallel model of the intracluster medium (ICM) and 3D ideal magnetohydrodynamics (MHD) simulations, we examine the role of a large-scale magnetic field that is able to drape around these rising bubbles, preserving them from hydrodynamic instabilities. We find that while magnetic draping appears better able to preserve AGN-driven bubbles, the driving of g-modes and the resulting production of turbulence is still inefficient. The magnetic tension force prevents g-modes from transitioning into the nonlinear regime, suppressing turbulence in our model ICM. Our work highlights the ways in which ideal MHD is an insufficient description for the cluster feedback process, and we discuss future work such as the inclusion of anisotropic viscosity as a means of simulating high β plasma kinetic effects. These results suggest the hypothesis that other mechanisms of heating the ICM plasma such as sound waves or cosmic rays may be responsible for the observed feedback in galaxy clusters.

  5. Gas inflows towards the nucleus of NGC 1358

    Science.gov (United States)

    Schnorr-Müller, Allan; Storchi-Bergmann, Thaisa; Nagar, Neil M.; Robinson, Andrew; Lena, Davide

    2017-11-01

    We use optical spectra from the inner 1.8 × 2.5 kpc2 of the Seyfert 2 galaxy NGC 1358, obtained with the GMOS integral field spectrograph on the Gemini South telescope at a spatial resolution of ≈ 165 pc, to assess the feeding and feedback processes in this nearby active galaxy. Five gaseous kinematical components are observed in the emission line profiles. One of the components is present in the entire field-of-view and we interpret it as due to gas rotating in the disc of the galaxy. Three of the remaining components we interpret as associated with active galactic nucleus (AGN) feedback: a compact unresolved outflow in the inner 1 arcsec and two gas clouds observed at opposite sides of the nucleus, which we propose have been ejected in a previous AGN burst. The disc component velocity field is strongly disturbed by a large-scale bar. The subtraction of a velocity model combining both rotation and bar flows reveals three kinematic nuclear spiral arms: two in inflow and one in outflow. We estimate the mass inflow rate in the inner 180 pc obtaining \\dot{M}_{in} ≈ 1.5 × 10-2 M⊙ yr-1, about 160 times larger than the accretion rate necessary to power this AGN.

  6. The impact of feedback and the hot halo on the rates of gas accretion onto galaxies

    Science.gov (United States)

    Correa, Camila A.; Schaye, Joop; van de Voort, Freeke; Duffy, Alan R.; Wyithe, J. Stuart B.

    2018-04-01

    We investigate the physics that drives the gas accretion rates onto galaxies at the centers of dark matter haloes using the EAGLE suite of hydrodynamical cosmological simulations. We find that at redshifts z ≤ 2 the accretion rate onto the galaxy increases with halo mass in the halo mass range 1010 - 1011.7 M⊙, flattens between the halo masses 1011.7 - 1012.7 M⊙, and increases again for higher-mass haloes. However, the galaxy gas accretion does not flatten at intermediate halo masses when AGN feedback is switched off. To better understand these trends, we develop a physically motivated semi-analytic model of galaxy gas accretion. We show that the flattening is produced by the rate of gas cooling from the hot halo. The ratio of the cooling radius and the virial radius does not decrease continuously with increasing halo mass as generally thought. While it decreases up to ˜1013 M⊙ haloes, it increases for higher halo masses, causing an upturn in the galaxy gas accretion rate. This may indicate that in high-mass haloes AGN feedback is not sufficiently efficient. When there is no AGN feedback, the density of the hot halo is higher, the ratio of the cooling and virial radii does not decrease as much and the cooling rate is higher. Changes in the efficiency of stellar feedback can also increase or decrease the accretion rates onto galaxies. The trends can plausibly be explained by the re-accretion of gas ejected by progenitor galaxies and by the suppression of black hole growth, and hence AGN feedback, by stellar feedback.

  7. SUPPRESSION OF STAR FORMATION IN NGC 1266

    Energy Technology Data Exchange (ETDEWEB)

    Alatalo, Katherine; Lanz, Lauranne; Bitsakis, Theodoros; Appleton, Philip N.; Ogle, Patrick M. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Lacy, Mark; Lonsdale, Carol J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Nyland, Kristina; Meier, David S. [Physics Department, New Mexico Tech, Socorro, NM 87801 (United States); Cales, Sabrina L. [Department of Astronomy, Faculty of Physical and Mathematical Sciences, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Chang, Philip [Department of Physics, University of Wisconsin—Milwaukee, Milwaukee, WI 53201 (United States); Davis, Timothy A.; De Zeeuw, P. T. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); Martín, Sergio, E-mail: kalatalo@ipac.caltech.edu [Institut de Radioastronomie Millimétrique, 300 Rue de la Piscine, Domaine Universitaire, F-38406 Saint Martin d' Hères (France)

    2015-01-01

    NGC 1266 is a nearby lenticular galaxy that harbors a massive outflow of molecular gas powered by the mechanical energy of an active galactic nucleus (AGN). It has been speculated that such outflows hinder star formation (SF) in their host galaxies, providing a form of feedback to the process of galaxy formation. Previous studies, however, indicated that only jets from extremely rare, high-power quasars or radio galaxies could impart significant feedback on their hosts. Here we present detailed observations of the gas and dust continuum of NGC 1266 at millimeter wavelengths. Our observations show that molecular gas is being driven out of the nuclear region at M-dot {sub out}≈110 M{sub ⊙} yr{sup –1}, of which the vast majority cannot escape the nucleus. Only 2 M {sub ☉} yr{sup –1} is actually capable of escaping the galaxy. Most of the molecular gas that remains is very inefficient at forming stars. The far-infrared emission is dominated by an ultra-compact (≲ 50 pc) source that could either be powered by an AGN or by an ultra-compact starburst. The ratio of the SF surface density (Σ{sub SFR}) to the gas surface density (Σ{sub H{sub 2}}) indicates that SF is suppressed by a factor of ≈50 compared to normal star-forming galaxies if all gas is forming stars, and ≈150 for the outskirt (98%) dense molecular gas if the central region is powered by an ultra-compact starburst. The AGN-driven bulk outflow could account for this extreme suppression by hindering the fragmentation and gravitational collapse necessary to form stars through a process of turbulent injection. This result suggests that even relatively common, low-power AGNs are able to alter the evolution of their host galaxies as their black holes grow onto the M-σ relation.

  8. The Keck/OSIRIS Nearby AGN Survey (KONA). I. The Nuclear K-band Properties of Nearby AGN

    Science.gov (United States)

    Müller-Sánchez, F.; Hicks, E. K. S.; Malkan, M.; Davies, R.; Yu, P. C.; Shaver, S.; Davis, B.

    2018-05-01

    We introduce the Keck OSIRIS Nearby AGN survey (KONA), a new adaptive optics-assisted integral-field spectroscopic survey of Seyfert galaxies. KONA permits at ∼0.″1 resolution a detailed study of the nuclear kinematic structure of gas and stars in a representative sample of 40 local bona fide active galactic nucleus (AGN). KONA seeks to characterize the physical processes responsible for the coevolution of supermassive black holes and galaxies, principally inflows and outflows. With these IFU data of the nuclear regions of 40 Seyfert galaxies, the KONA survey will be able to study, for the first time, a number of key topics with meaningful statistics. In this paper we study the nuclear K-band properties of nearby AGN. We find that the K-band (2.1 μm) luminosities of the compact Seyfert 1 nuclei are correlated with the hard X-ray luminosities, implying a non-stellar origin for the majority of the continuum emission. The best-fit correlation is log L K = 0.9log L 2–10 keV + 4 over three orders of magnitude in both K-band and X-ray luminosities. We find no strong correlation between 2.1 μm luminosity and hard X-ray luminosity for the Seyfert 2 galaxies. The spatial extent and spectral slope of the Seyfert 2 galaxies indicate the presence of nuclear star formation and attenuating material (gas and dust), which in some cases is compact and in some galaxies extended. We detect coronal-line emission in 36 galaxies and for the first time in 5 galaxies. Finally, we find 4/20 galaxies that are usually classified as Seyfert 2 based on their optical spectra exhibit a broad component of Brγ emission, and one galaxy (NGC 7465) shows evidence of a double nucleus. Based on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The observatory was made possible by the generous financial support of the W. M

  9. AGN Clustering in the BAT Sample

    Science.gov (United States)

    Powell, Meredith; Cappelluti, Nico; Urry, Meg; Koss, Michael; BASS Team

    2018-01-01

    We characterize the environments of local growing supermassive black holes by measuring the clustering of AGN in the Swift-BAT Spectroscopic Survey (BASS). With 548 AGN in the redshift range 0.012MASS galaxies, we constrain the halo occupation distribution (HOD) of the full sample with unprecedented sensitivity, as well as in bins of obscuration with matched luminosity distributions. In doing so, we find that AGN tend to reside in galaxy groups, agreeing with previous studies of AGN throughout a large range of luminosity and redshift. We also find evidence that obscured AGN tend to reside in denser environments than unobscured AGN.

  10. Does the X-ray outflow quasar PDS 456 have a UV outflow at 0.3c?

    Science.gov (United States)

    Hamann, Fred; Chartas, George; Reeves, James; Nardini, Emanuele

    2018-05-01

    The quasar PDS 456 (at redshift ˜0.184) has a prototype ultra-fast outflow (UFO) measured in X-rays. This outflow is highly ionized with relativistic speeds, large total column densities log NH(cm-2) > 23, and large kinetic energies that could be important for feedback to the host galaxy. A UV spectrum of PDS 456 obtained with the Hubble Space Telescope in 2000 contains one well-measured broad absorption line (BAL) at ˜1346 Å (observed) that might be Ly α at v ≈ 0.06c or N V λ1240 at v ≈ 0.08c. However, we use photoionization models and comparisons to other outflow quasars to show that these BAL identifications are problematic because other lines that should accompany them are not detected. We argue that the UV BAL is probably C IV at v ≈ 0.30c. This would be the fastest UV outflow ever reported, but its speed is similar to the X-ray outflow and its appearance overall is similar to relativistic UV BALs observed in other quasars. The C IV BAL identification is also supported indirectly by the tentative detection of another broad C IV line at v ≈ 0.19c. The high speeds suggest that the UV outflow originates with the X-ray UFO crudely 20-30 rg from the central black hole. We speculate that the C IV BAL might form in dense clumps embedded in the X-ray UFO, requiring density enhancements of only ≳0.4 dex compared to clumpy structures already inferred for the soft X-ray absorber in PDS 456. The C IV BAL might therefore be the first detection of low-ionization clumps proposed previously to boost the opacities in UFOs for radiative driving.

  11. THE EFFECTS OF X-RAY FEEDBACK FROM ACTIVE GALACTIC NUCLEI ON HOST GALAXY EVOLUTION

    International Nuclear Information System (INIS)

    Hambrick, D. Clay; Ostriker, Jeremiah P.; Naab, Thorsten; Johansson, Peter H.

    2011-01-01

    Hydrodynamic simulations of galaxies with active galactic nuclei (AGNs) have typically employed feedback that is purely local, i.e., an injection of energy to the immediate neighborhood of the black hole (BH). We perform GADGET-2 simulations of massive elliptical galaxies with an additional feedback component: an observationally calibrated X-ray radiation field which emanates from the BH and heats gas out to large radii from the galaxy center. We find that including the heating and radiation pressure associated with this X-ray flux in our simulations enhances the effects which are commonly reported from AGN feedback. This new feedback model is twice as effective as traditional feedback at suppressing star formation, produces three times less star formation in the last 6 Gyr, and modestly lowers the final BH mass (30%). It is also significantly more effective than an X-ray background in reducing the number of satellite galaxies.

  12. GREEN BANK TELESCOPE DETECTION OF POLARIZATION-DEPENDENT H I ABSORPTION AND H I OUTFLOWS IN LOCAL ULIRGs AND QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Stacy H. [Observational Cosmology Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Veilleux, Sylvain [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Baker, Andrew J., E-mail: stacy.h.teng@nasa.gov [Department of Physics and Astronomy, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States)

    2013-03-10

    We present the results of a 21 cm H I survey of 27 local massive gas-rich late-stage mergers and merger remnants with the Robert C. Byrd Green Bank Telescope. These remnants were selected from the Quasar/ULIRG Evolution Study sample of ultraluminous infrared galaxies (ULIRGs; L{sub 8{sub -{sub 1000{sub {mu}m}}}} > 10{sup 12} L{sub Sun }) and quasars; our targets are all bolometrically dominated by active galactic nuclei (AGNs) and sample the later phases of the proposed ULIRG-to-quasar evolutionary sequence. We find the prevalence of H I absorption (emission) to be 100% (29%) in ULIRGs with H I detections, 100% (88%) in FIR-strong quasars, and 63% (100%) in FIR-weak quasars. The absorption features are associated with powerful neutral outflows that change from being mainly driven by star formation in ULIRGs to being driven by the AGN in the quasars. These outflows have velocities that exceed 1500 km s{sup -1} in some cases. Unexpectedly, we find polarization-dependent H I absorption in 57% of our spectra (88% and 63% of the FIR-strong and FIR-weak quasars, respectively). We attribute this result to absorption of polarized continuum emission from these sources by foreground H I clouds. About 60% of the quasars displaying polarized spectra are radio-loud, far higher than the {approx}10% observed in the general AGN population. This discrepancy suggests that radio jets play an important role in shaping the environments in these galaxies. These systems may represent a transition phase in the evolution of gas-rich mergers into ''mature'' radio galaxies.

  13. The BAT AGN Spectroscopic Survey (BASS) DR1-Spectral Measurements, Derived Quantities, and AGN Demographics

    Science.gov (United States)

    Koss, Michael; BASS Team

    2018-01-01

    We present the first catalog and data release of the Swift-BAT AGN Spectroscopic Survey (BASS). We analyze optical spectra of the majority of AGN (77%, 641/836) detected based on their 14-195 keV emission in the 70-month Swift BAT all-sky catalog. This includes redshift determination, absorption and emission line measurements, and black hole mass and accretion rate estimates for the majority of obscured and un-obscured AGN (74%, 473/641) with 340 measured for the first time. With ~90% of sources at z10^21.9 cm^-2. Seyfert 1.9 show a range of column densities. Compared to narrow line AGN in the SDSS, the X-ray selected AGN have a larger fraction of dusty host galaxies suggesting these types of AGN are missed in optical surveys. Using the most sensitive [OIII]/Hbeta and [NII]/Halpha emission line diagnostic, about half of the sources are classified as Seyferts, ~15% reside in dusty galaxies that lack an Hbeta detection, but for which the line upper limits imply either a Seyfert or LINER, ~15% are in galaxies with weak or no emission lines despite high quality spectra, and a few percent each are LINERS, composite galaxies, HII regions, or in known beamed AGN.

  14. Heavily Obscured AGN with SIMBOL-X

    International Nuclear Information System (INIS)

    Ceca, R. Della; Caccianiga, A.; Severgnini, P.

    2009-01-01

    By comparing an optically selected sample of narrow lines AGN with an X-ray selected sample of AGN we have recently derived an estimate of the intrinsic (i.e. before absorption) 2-10 keV luminosity function (XLF) of Compton Thick AGNs. We will use this XLF to derive the number of Compton Thick AGN that will be found in the SIMBOL-X survey(s).

  15. Heavily Obscured AGN with SIMBOL-X

    Science.gov (United States)

    Della Ceca, R.; Caccianiga, A.; Severgnini, P.

    2009-05-01

    By comparing an optically selected sample of narrow lines AGN with an X-ray selected sample of AGN we have recently derived an estimate of the intrinsic (i.e. before absorption) 2-10 keV luminosity function (XLF) of Compton Thick AGNs. We will use this XLF to derive the number of Compton Thick AGN that will be found in the SIMBOL-X survey(s).

  16. The BAT AGN Spectroscopic Survey (BASS)

    Science.gov (United States)

    Koss, Michael

    2017-08-01

    We present the Swift BAT AGN Spectroscopic Survey (BASS) and discus the first four papers. The catalog represents an unprecedented census of hard-X-ray selected AGN in the local universe, with ~90% of sources at zpast studies. Consistent with previous surveys, we find an increase in the fraction of un-obscured (type 1) AGN, as measured from broad Hbeta and Halpha, with increasing 14-195 keV and 2-10 keV luminosity. We find the FWHM of the emission lines to show broad agreement with the X-ray obscuration measurements. Compared to narrow line AGN in the SDSS, the X-ray selected AGN in our sample with emission lines have a larger fraction of dustier galaxies suggesting these types of galaxies are missed in optical AGN surveys using emission line diagnostics.

  17. Cosmic-Ray Feedback Heating of the Intracluster Medium

    Energy Technology Data Exchange (ETDEWEB)

    Ruszkowski, Mateusz [Department of Astronomy, University of Michigan, 1085 South University Avenue, 311 West Hall, Ann Arbor, MI 48109 (United States); Yang, H.-Y. Karen; Reynolds, Christopher S., E-mail: mateuszr@umich.edu, E-mail: hsyang@astro.umd.edu, E-mail: chris@astro.umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2017-07-20

    Active galactic nuclei (AGNs) play a central role in solving the decades-old cooling-flow problem. Although there is consensus that AGNs provide the energy to prevent catastrophically large star formation, one major problem remains: How is the AGN energy thermalized in the intracluster medium (ICM)? We perform a suite of three-dimensional magnetohydrodynamical adaptive mesh refinement simulations of AGN feedback in a cool core cluster including cosmic rays (CRs). CRs are supplied to the ICM via collimated AGN jets and subsequently disperse in the magnetized ICM via streaming, and interact with the ICM via hadronic, Coulomb, and streaming instability heating. We find that CR transport is an essential model ingredient at least within the context of the physical model considered here. When streaming is included, (i) CRs come into contact with the ambient ICM and efficiently heat it, (ii) streaming instability heating dominates over Coulomb and hadronic heating, (iii) the AGN is variable and the atmosphere goes through low-/high-velocity dispersion cycles, and, importantly, (iv) CR pressure support in the cool core is very low and does not demonstrably violate observational constraints. However, when streaming is ignored, CR energy is not efficiently spent on the ICM heating and CR pressure builds up to a significant level, creating tension with the observations. Overall, we demonstrate that CR heating is a viable channel for the AGN energy thermalization in clusters and likely also in ellipticals, and that CRs play an important role in determining AGN intermittency and the dynamical state of cool cores.

  18. Superwind Outflows in Seyfert Galaxies? : Large-Scale Radio Maps of an Edge-On Sample

    Science.gov (United States)

    Colbert, E.; Gallimore, J.; Baum, S.; O'Dea, C.

    1995-03-01

    Large-scale galactic winds (superwinds) are commonly found flowing out of the nuclear region of ultraluminous infrared and powerful starburst galaxies. Stellar winds and supernovae from the nuclear starburst provide the energy to drive these superwinds. The outflowing gas escapes along the rotation axis, sweeping up and shock-heating clouds in the halo, which produces optical line emission, radio synchrotron emission, and X-rays. These features can most easily be studied in edge-on systems, so that the wind emission is not confused by that from the disk. We have begun a systematic search for superwind outflows in Seyfert galaxies. In an earlier optical emission-line survey, we found extended minor axis emission and/or double-peaked emission line profiles in >~30% of the sample objects. We present here large-scale (6cm VLA C-config) radio maps of 11 edge-on Seyfert galaxies, selected (without bias) from a distance-limited sample of 23 edge-on Seyferts. These data have been used to estimate the frequency of occurrence of superwinds. Preliminary results indicate that four (36%) of the 11 objects observed and six (26%) of the 23 objects in the distance-limited sample have extended radio emission oriented perpendicular to the galaxy disk. This emission may be produced by a galactic wind blowing out of the disk. Two (NGC 2992 and NGC 5506) of the nine objects for which we have both radio and optical data show good evidence for a galactic wind in both datasets. We suggest that galactic winds occur in >~30% of all Seyferts. A goal of this work is to find a diagnostic that can be used to distinguish between large-scale outflows that are driven by starbursts and those that are driven by an AGN. The presence of starburst-driven superwinds in Seyferts, if established, would have important implications for the connection between starburst galaxies and AGN.

  19. Cosmic ray driven outflows in an ultraluminous galaxy

    Science.gov (United States)

    Fujita, Akimi; Mac Low, Mordecai-Mark

    2018-06-01

    In models of galaxy formation, feedback driven both by supernova (SN) and active galactic nucleus is not efficient enough to quench star formation in massive galaxies. Models of smaller galaxies have suggested that cosmic rays (CRs) play a major role in expelling material from the star-forming regions by diffusing SN energy to the lower density outskirts. We therefore run gas dynamical simulations of galactic outflows from a galaxy contained in a halo with 5 × 1012 M⊙ that resembles a local ultraluminous galaxy, including both SN thermal energy and a treatment of CRs using the same diffusion approximation as Salem & Bryan. We find that CR pressure drives a low-density bubble beyond the edge of the shell swept up by thermal pressure, but the main bubble driven by SN thermal pressure overtakes it later, which creates a large-scale biconical outflow. CRs diffusing into the disc are unable to entrain its gas in the outflows, yielding a mass-loading rate of only ˜ 0.1 per cent with varied CR diffusion coefficients. We find no significant difference in mass-loading rates in SN-driven outflows with or without CR pressure. Our simulations strongly suggest that it is hard to drive a heavily mass-loaded outflow with CRs from a massive halo potential, although more distributed star formation could lead to a different result.

  20. Active Galactic Nuclei Feedback and the Origin and Fate of the Hot Gas in Early-type Galaxies

    Science.gov (United States)

    Pellegrini, Silvia; Ciotti, Luca; Negri, Andrea; Ostriker, Jeremiah P.

    2018-04-01

    A recent determination of the relationships between the X-ray luminosity of the ISM (L X) and the stellar and total mass for a sample of nearby early-type galaxies (ETGs) is used to investigate the origin of the hot gas, via a comparison with the results of hydrodynamical simulations of the ISM evolution for a large set of isolated ETGs. After the epoch of major galaxy formation (after z ≃ 2), the ISM is replenished by stellar mass losses and SN ejecta, at the rate predicted by stellar evolution, and is depleted by star formation; it is heated by the thermalization of stellar motions, SNe explosions, and the mechanical (from winds) and radiative AGN feedback. The models agree well with the observed relations, even for the largely different L X values at the same mass, thanks to the sensitivity of the gas flow to many galaxy properties; this holds for models including AGN feedback, and those without. Therefore, the mass input from the stellar population is able to account for a major part of the observed L X; and AGN feedback, while very important to maintain massive ETGs in a time-averaged quasi-steady state, keeping low star formation and the black hole mass, does not dramatically alter the gas content originating in stellar recycled material. These conclusions are based on theoretical predictions for the stellar population contributions in mass and energy, and on a self-consistent modeling of AGN feedback.

  1. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Wang, Junfeng [Department of Astronomy, Physics Building, Xiamen University Xiamen, Fujian, 361005 (China); Storchi-Bergmann, Thaisa, E-mail: walter.maksym@cfa.harvard.edu [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, IF, CP 15051, 91501-970 Porto Alegre, RS (Brazil)

    2017-07-20

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  2. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    Science.gov (United States)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2017-07-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O III], [S II], and Hα, as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ˜10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include Hα evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  3. CHEERS Results from NGC 3393. II. Investigating the Extended Narrow-line Region Using Deep Chandra Observations and Hubble Space Telescope Narrow-line Imaging

    International Nuclear Information System (INIS)

    Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa

    2017-01-01

    The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.

  4. GLAST and AGN Science

    Science.gov (United States)

    Reyes, Luis C.

    2006-04-01

    The Large Area Telescope (LAT) on board GLAST (Gamma-ray Large Area Space Telescope) is an instrument under construction to study the gamma-ray sky in the energy range 20 MeV to >300 GeV with special interest in the previously unexplored region between a few GeV and a few hundred GeV. Among the high energy gamma-ray sources in the sky, the Blazar-class of AGNs are distinguished because of their brightness and very short term variability. GLAST's improved sensitivity with respect to previous missions will increase the number of known AGN gamma-ray sources from about 100 to thousands, with redshifts up to z>4. Science returns with GLAST include: examination of the blazar sequence model, test of leptonic and hadronic models for particle acceleration, physics of relativistic jets, and evolution of Blazar AGNs population with cosmic time. Special consideration will be given to the possibility of using the large size of the GLAST Blazar catalog to distinguish intrinsic spectra of AGNs from the redshift dependent effects of attenuation by the Extragalactic Background Light (EBL). A measured attenuation as a function of AGN redshift would constitute and effective and unique probe to the optical-UV EBL.

  5. Are X-ray emitting coronae around supermassive black holes outflowing?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Teng; Wang, Jun-Xian; Yang, Huan; Zhu, Fei-Fan; Zhou, You-Yuan, E-mail: liuteng@ustc.edu.cn, E-mail: jxw@ustc.edu.cn [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-03-10

    Hard X-ray emission in radio-quiet active galactic nuclei (AGNs) is believed to be produced via inverse Compton scattering by hot and compact coronae near the supermassive black hole. However, the origin and physical properties of the coronae, including geometry, kinematics, and dynamics, remain poorly known. In this work, taking [O IV] 25.89 μm emission line as an isotropic indicator of AGNs' intrinsic luminosity, we compare the intrinsic corona X-ray emission between Seyfert 1 and Compton-thin Seyfert 2 galaxies, which are viewed at different inclinations according to the unification scheme. We compile a sample of 130 Compton-thin Seyfert galaxies with both [O IV] 25.89 μm line luminosities measured with the Spitzer Infrared Spectrometer and X-ray spectra observed by XMM-Newton, Chandra, Suzaku, or Swift. Known radio-loud sources are excluded. We fit the X-ray spectra to obtain the absorption-corrected 2-10 keV continuum luminosities. We find that Seyfert 1 galaxies are intrinsically brighter in intrinsic 2-10 keV emission by a factor of 2.8{sub −0.4}{sup +0.5} (2.2{sub −0.3}{sup +0.9} in Swift Burst Alert Telescope 14-195 keV emission), compared with Compton-thin Seyfert 2 galaxies. The Seyfert 1 and Compton-thin Seyfert 2 galaxies follow a statistically identical correlation between the absorption-corrected 2-10 keV luminosity and the 14-195 keV luminosity, indicating that our absorption correction to the 2-10 keV flux is sufficient. The difference in X-ray emission between the two populations is thus unlikely to be due to X-ray absorption, and instead implies an intrinsic anisotropy in the corona X-ray emission. This striking anisotropy of X-ray emission can be explained by a bipolar outflowing corona with a bulk velocity of ∼0.3-0.5c. This would provide a natural link between the so-called coronae and weak jets in these systems. Other consequences of outflowing coronae are also discussed.

  6. Lens-Aided Multi-Angle Spectroscopy (LAMAS) Reveals Small-Scale Outflow Structure in Quasars

    Science.gov (United States)

    Green, Paul J.

    2006-06-01

    Spectral differences between lensed quasar image components are common. Since lensing is intrinsically achromatic, these differences are typically explained as the effect of either microlensing, or as light path time delays sampling intrinsic quasar spectral variability. Here we advance a novel third hypothesis: some spectral differences are due to small line-of-sight differences through quasar disk wind outflows. In particular, we propose that variable spectral differences seen only in component A of the widest separation lens SDSS J1004+4112 are due to differential absorption along the sight lines. The absorber properties required by this hypothesis are akin to known broad absorption line (BAL) outflows but must have a broader, smoother velocity profile. We interpret the observed C IV emission-line variability as further evidence for spatial fine structure transverse to the line of sight. Since outflows are likely to be rotating, such absorber fine structure can consistently explain some of the UV and X-ray variability seen in AGNs. The implications are many: (1) Spectroscopic differences in other lensed objects may be due to this ``lens-aided multi-angle spectroscopy'' (LAMAS). (2) Outflows have fine structure on size scales of arcseconds, as seen from the nucleus. (3) Assuming either broad absorption line region sizes proposed in recent wind models, or typically assumed continuum emission region sizes, LAMAS and/or variability provide broadly consistent absorber size scale estimates of ~1015 cm. (4) Very broad smooth absorption may be ubiquitous in quasar spectra, even when no obvious troughs are seen.

  7. STAR CLUSTER FORMATION WITH STELLAR FEEDBACK AND LARGE-SCALE INFLOW

    International Nuclear Information System (INIS)

    Matzner, Christopher D.; Jumper, Peter H.

    2015-01-01

    During star cluster formation, ongoing mass accretion is resisted by stellar feedback in the form of protostellar outflows from the low-mass stars and photo-ionization and radiation pressure feedback from the massive stars. We model the evolution of cluster-forming regions during a phase in which both accretion and feedback are present and use these models to investigate how star cluster formation might terminate. Protostellar outflows are the strongest form of feedback in low-mass regions, but these cannot stop cluster formation if matter continues to flow in. In more massive clusters, radiation pressure and photo-ionization rapidly clear the cluster-forming gas when its column density is too small. We assess the rates of dynamical mass ejection and of evaporation, while accounting for the important effect of dust opacity on photo-ionization. Our models are consistent with the census of protostellar outflows in NGC 1333 and Serpens South and with the dust temperatures observed in regions of massive star formation. Comparing observations of massive cluster-forming regions against our model parameter space, and against our expectations for accretion-driven evolution, we infer that massive-star feedback is a likely cause of gas disruption in regions with velocity dispersions less than a few kilometers per second, but that more massive and more turbulent regions are too strongly bound for stellar feedback to be disruptive

  8. X-RAY SELECTED AGN HOST GALAXIES ARE SIMILAR TO INACTIVE GALAXIES OUT TO z = 3: RESULTS FROM CANDELS/CDF-S

    International Nuclear Information System (INIS)

    Rosario, D. J.; Wuyts, S.; Nandra, K.; Mozena, M.; Faber, S. M.; Koo, D. C.; Koekemoer, A.; Ferguson, H.; Grogin, N.; McGrath, E.; Hathi, N. P.; Dekel, A.; Donley, J.; Dunlop, J. S.; Giavalisco, M.; Guo, Y.; Kocevski, D. D.; Laird, E.; Rangel, C.; Newman, J.

    2013-01-01

    We use multi-band spatially resolved photometry from the Cosmic Assembly Near-IR Deep Legacy Survey in the 4 Ms Chandra Deep Field-South to explore the nuclear and extended colors, color gradients, and stellar populations of the host galaxies of X-ray selected active galactic nuclei (AGNs) out to z = 3. Based on a study of their central light, we develop X-ray based criteria to exclude objects with strong AGN contamination. We use stellar masses from the FIREWORKS database to understand and account for stellar mass selection effects and carefully study, for the first time, the resolved host galaxy properties of AGNs at z ∼ 2 in their rest-frame optical light without substantial nuclear contamination. AGN hosts span a sizable range of stellar masses, colors, and color gradients at these redshifts. Their colors, color gradients, and stellar population properties are very similar to inactive galaxies of the same stellar mass. At z ∼ 1, we find a slightly narrower range in host colors compared to inactive galaxies, as well as hints of more recent star formation. These differences are weaker or non-existent among AGN hosts at z ∼ 2. We discuss the importance of AGN-driven feedback in the quenching of galaxies at z ∼> 1 and speculate on possible evolution in the relationship between black hole accretion and the host galaxy toward high redshifts.

  9. Superposed epoch analysis of O+ auroral outflow during sawtooth events and substorms

    Science.gov (United States)

    Nowrouzi, N.; Kistler, L. M.; Lund, E. J.; Cai, X.

    2017-12-01

    Sawtooth events are repeated injection of energetic particles at geosynchronous orbit. Studies have shown that 94% of sawtooth events occurred during magnetic storm times. The main factor that causes a sawtooth event is still an open question. Simulations have suggested that heavy ions like O+ may play a role in triggering the injections. One of the sources of the O+ in the Earth's magnetosphere is the nightside aurora. O+ ions coming from the nightside auroral region have direct access to the near-earth magnetotail. A model (Brambles et al. 2013) for interplanetary coronal mass ejection driven sawtooth events found that nightside O+ outflow caused the subsequent teeth of the sawtooth event through a feedback mechanism. This work is a superposed epoch analysis to test whether the observed auroral outflow supports this model. Using FAST spacecraft data from 1997-2007, we examine the auroral O+ outflow as a function of time relative to an injection onset. Then we determine whether the profile of outflow flux of O+ during sawtooth events is different from the outflow observed during isolated substorms. The auroral region boundaries are estimated using the method of (Andersson et al. 2004). Subsequently the O+ outflow flux inside these boundaries are calculated and binned as a function of superposed epoch time for substorms and sawtooth "teeth". In this way, we will determine if sawtooth events do in fact have greater O+ outflow, and if that outflow is predominantly from the nightside, as suggested by the model results.

  10. Line-driven disk winds in active galactic nuclei: The critical importance of ionization and radiative transfer

    Energy Technology Data Exchange (ETDEWEB)

    Higginbottom, Nick; Knigge, Christian; Matthews, James H. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton, SO17 1BJ (United Kingdom); Proga, Daniel [Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV 89154-4002 (United States); Long, Knox S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sim, Stuart A., E-mail: nick_higginbottom@fastmail.fm [School of Mathematics and Physics, Queens University Belfast, University Road, Belfast, BT7 1NN (United Kingdom)

    2014-07-01

    Accretion disk winds are thought to produce many of the characteristic features seen in the spectra of active galactic nuclei (AGNs) and quasi-stellar objects (QSOs). These outflows also represent a natural form of feedback between the central supermassive black hole and its host galaxy. The mechanism for driving this mass loss remains unknown, although radiation pressure mediated by spectral lines is a leading candidate. Here, we calculate the ionization state of, and emergent spectra for, the hydrodynamic simulation of a line-driven disk wind previously presented by Proga and Kallman. To achieve this, we carry out a comprehensive Monte Carlo simulation of the radiative transfer through, and energy exchange within, the predicted outflow. We find that the wind is much more ionized than originally estimated. This is in part because it is much more difficult to shield any wind regions effectively when the outflow itself is allowed to reprocess and redirect ionizing photons. As a result, the calculated spectrum that would be observed from this particular outflow solution would not contain the ultraviolet spectral lines that are observed in many AGN/QSOs. Furthermore, the wind is so highly ionized that line driving would not actually be efficient. This does not necessarily mean that line-driven winds are not viable. However, our work does illustrate that in order to arrive at a self-consistent model of line-driven disk winds in AGN/QSO, it will be critical to include a more detailed treatment of radiative transfer and ionization in the next generation of hydrodynamic simulations.

  11. The Swift/BAT AGN Spectroscopic Survey. IX. The Clustering Environments of an Unbiased Sample of Local AGNs

    Science.gov (United States)

    Powell, M. C.; Cappelluti, N.; Urry, C. M.; Koss, M.; Finoguenov, A.; Ricci, C.; Trakhtenbrot, B.; Allevato, V.; Ajello, M.; Oh, K.; Schawinski, K.; Secrest, N.

    2018-05-01

    We characterize the environments of local accreting supermassive black holes by measuring the clustering of AGNs in the Swift/BAT Spectroscopic Survey (BASS). With 548 AGN in the redshift range 0.01 2MASS galaxies, and interpreting it via halo occupation distribution and subhalo-based models, we constrain the occupation statistics of the full sample, as well as in bins of absorbing column density and black hole mass. We find that AGNs tend to reside in galaxy group environments, in agreement with previous studies of AGNs throughout a large range of luminosity and redshift, and that on average they occupy their dark matter halos similar to inactive galaxies of comparable stellar mass. We also find evidence that obscured AGNs tend to reside in denser environments than unobscured AGNs, even when samples were matched in luminosity, redshift, stellar mass, and Eddington ratio. We show that this can be explained either by significantly different halo occupation distributions or statistically different host halo assembly histories. Lastly, we see that massive black holes are slightly more likely to reside in central galaxies than black holes of smaller mass.

  12. The AGN-Star Formation Connection: Future Prospects with JWST

    Science.gov (United States)

    Kirkpatrick, Allison; Alberts, Stacey; Pope, Alexandra; Barro, Guillermo; Bonato, Matteo; Kocevski, Dale D.; Pérez-González, Pablo; Rieke, George H.; Rodríguez-Muñoz, Lucia; Sajina, Anna; Grogin, Norman A.; Mantha, Kameswara Bharadwaj; Pandya, Viraj; Pforr, Janine; Salvato, Mara; Santini, Paola

    2017-11-01

    The bulk of the stellar growth over cosmic time is dominated by IR-luminous galaxies at cosmic noon (z=1{--}2), many of which harbor a hidden active galactic nucleus (AGN). We use state-of-the-art infrared color diagnostics, combining Spitzer and Herschel observations, to separate dust-obscured AGNs from dusty star-forming galaxies (SFGs) in the CANDELS and COSMOS surveys. We calculate 24 μm counts of SFGs, AGN/star-forming “Composites,” and AGNs. AGNs and Composites dominate the counts above 0.8 mJy at 24 μm, and Composites form at least 25% of an IR sample even to faint detection limits. We develop methods to use the Mid-Infrared Instrument (MIRI) on JWST to identify dust-obscured AGNs and Composite galaxies from z˜ 1{--}2. With the sensitivity and spacing of MIRI filters, we will detect >4 times as many AGN hosts as with Spitzer/IRAC criteria. Any star formation rates based on the 7.7 μm PAH feature (likely to be applied to MIRI photometry) must be corrected for the contribution of the AGN, or the star formation rate will be overestimated by ˜35% for cases where the AGN provides half the IR luminosity and ˜50% when the AGN accounts for 90% of the luminosity. Finally, we demonstrate that our MIRI color technique can select AGNs with an Eddington ratio of {λ }{Edd}˜ 0.01 and will identify AGN hosts with a higher specific star formation rate than X-ray techniques alone. JWST/MIRI will enable critical steps forward in identifying and understanding dust-obscured AGNs and the link to their host galaxies.

  13. Cloud Formation and Water Transport on Mars after Major Outflow Events

    Science.gov (United States)

    Santiago, D. L.; Colaprete, A.; Kreslavsky, M.; Kahre, M. A.; Asphaug, E.

    2012-01-01

    The triggering of a robust water cycle on Mars might have been caused by the gigantic flooding events evidenced by outflow channels. We use the Ames Mars General Circulation Model (MGCM) to test this hypothesis, studying how these presumably abrupt eruptions of water might have affected the climate of Mars in the past. We model where the water ultimately went as part of a transient atmospheric water cycle, to answer questions including: (1) Can sudden introductions of large amounts of water on the Martian surface lead to a new equilibrated water cycle? (2) What are the roles of water vapor and water ice clouds to sudden changes in the water cycle on Mars? (3) How are radiative feedbacks involved with this? (4) What is the ultimate fate of the outflow water? (5) Can we tie certain geological features to outflow water redistributed by the atmosphere?

  14. Optical and near-infrared IFU spectroscopy of the nuclear region of the AGN-starburst galaxy NGC 7582

    Science.gov (United States)

    Ricci, T. V.; Steiner, J. E.; May, D.; Garcia-Rissmann, A.; Menezes, R. B.

    2018-02-01

    NGC 7582 is an SB(s)ab galaxy which displays evidences of simultaneous nuclear activity and star formation in its centre. Previous optical observations revealed, besides the H II regions, an ionization cone and a gas disc in its central part. Hubble Space Telescope (HST) images in both optical and infrared bands show the active galactic nuclei (AGNs) and a few compact structures that are possibly associated with young stellar clusters. In order to study in detail both the AGN and evidence for star formation, we analyse optical (Gemini Multi-Object Spectrograph) and near-infrared (Spectrograph for Integral Field Observations in the Near Infrared) archival data cubes. We detected five nebulae with strong He II λ4686 emission in the same region where an outflow is detected in the [O III] λ5007 kinematic map. We interpreted this result as clouds that are exposed to high-energy photons emerging from the AGN throughout the ionization cone. We also detected Wolf-Rayet features which are related to emission of one of the compact clusters seen in the HST image. Broad Hα and Br γ components are detected at the position of the nucleus. [Fe II] λ1.644 μm, H2λ2.122 μm and Br γ flux maps show two blobs, one north and the other south from the nucleus, that seem to be associated with five previously detected mid-infrared sources. Two of the five He II nebulae are partially ionized by photons from starbursts. However, we conclude that the main source of excitation of these blobs is the AGN jet/disc. The jet orientation indicates that the accretion disc is nearly orthogonal to the dusty torus.

  15. Ionized and Neutral Outflows in the QUEST QSOs

    Science.gov (United States)

    Veilleux, Sylvain

    2011-10-01

    The role of galactic winds in gas-rich mergers is of crucial importance to understand galaxy and SMBH evolution. In recent months, our group has had three major scientific breakthroughs in this area: {1} The discovery with Herschel of massive molecular {OH-absorbing} outflows in several ULIRGs, including the nearest quasar, Mrk 231. {2} The independent discovery from mm-wave interferometric observations in the same object of a spatially resolved molecular {CO-emitting} wind with estimated mass outflow rate 3x larger than the star formation rate and spatially coincident with blueshifted neutral {Na ID-absorbing} gas in optical long-slit spectra. {3} The unambiguous determination from recent Gemini/IFU observations that the Na ID outflow in this object is wide-angle, thus driven by a QSO wind rather than a jet. This powerful outflow may be the long-sought "smoking gun" of quasar mechanical feedback purported to transform gas-rich mergers. However, our Herschel survey excludes all FIR-faint {UV-bright} "classic" QSOs by necessity. So here we propose a complementary FUV absorption-line survey of all FIR-bright -and- FIR-faint QSOs from the same parent sample. New {19 targets} and archival {11} spectra will be used to study, for the first time, the gaseous environments of QSOs as a function of host properties and age across the merger sequence ULIRG -> QSO. These data will allow us to distinguish between ionized & neutral quasar-driven outflows, starburst-driven winds, and tidal debris around the mergers. They will also be uniquely suited for a shallow but broad study of the warm & warm-hot intergalactic media, complementary to on-going surveys that are deeper but narrower.

  16. Compact Starburst Galaxies with Fast Outflows: Spatially Resolved Stellar Mass Profiles

    Science.gov (United States)

    Gottlieb, Sophia; Diamond-Stanic, Aleksandar; Lipscomb, Charles; Ohene, Senyo; Rines, Josh; Moustakas, John; Sell, Paul; Tremonti, Christy; Coil, Alison; Rudnick, Gregory; Hickox, Ryan C.; Geach, James; Kepley, Amanda

    2018-01-01

    Powerful galactic winds driven by stellar feedback and black hole accretion are thought to play an important role in regulating star formation in galaxies. In particular, strong stellar feedback from supernovae, stellar winds, radiation pressure, and cosmic rays is required by simulations of star-forming galaxies to prevent the vast majority of baryons from cooling and collapsing to form stars. However, it remains unclear whether these stellar processes play a significant role in expelling gas and shutting down star formation in massive progenitors of quiescent galaxies. What are the limits of stellar feedback? We present multi-band photometry with HST/WFC3 (F475W, F814W, F160W) for a dozen compact starburst galaxies at z~0.6 with half-light radii that suggest incredibly large central escape velocities. These massive galaxies are driving fast (>1000 km/s) outflows that have been previously attributed to stellar feedback associated with the compact (r~100 pc) starburst. But how compact is the stellar mass? In the context of the stellar feedback hypothesis, it is unclear whether these fast outflows are being driven at velocities comparable to the escape velocity of an incredibly dense stellar system (as predicted by some models of radiation-pressure winds) or at velocities that exceed the central escape velocity by large factor. Our spatially resolved measurements with HST show that the stellar mass is more extended than the light, and this requires that the physical mechanism responsible for driving the winds must be able to launch gas at velocities that are factors of 5-10 beyond the central escape velocity.

  17. Tracing Supermassive Black Hole Growth with Offset and Dual AGN

    Science.gov (United States)

    Comerford, Julia

    The growth of supermassive black holes is tied to the evolution of their host galaxies, but we are still missing a fundamental understanding of how and when supermassive black holes build up their mass. Black hole mass growth can be traced when the black holes are powered as active galactic nuclei (AGN), and AGN activity can be triggered by the stochastic accretion of gas or by gas inflows driven by galaxy mergers. Galaxy merger simulations make a series of predictions about the AGN that are triggered by mergers: (1) major mergers preferentially trigger higher-luminosity AGN, (2) minor mergers more often trigger AGN activity in one supermassive black hole while major mergers more often trigger AGN activity in both black holes in a merger, and (3) black hole mass growth peaks when the black holes approach the center (theory have been limited by the difficulty in defining a clean observational sample of AGN in galaxy mergers and the observational challenge of spatially resolving two AGN with small (dual AGN as a new observational tool that can be used to address how and when supermassive black hole mass growth occurs. A merger of two galaxies brings two supermassive black holes together, and the two black holes exist at kpc-scale separations for 100 Myr before ultimately merging. While the black holes are at kpc-scale separations, they are known as dual AGN when both of them are fueled as AGN and offset AGN when only one is fueled as an AGN. Since offset and dual AGN only occur in galaxy mergers, by their very definition, they provide a clean observational sample of black hole mass growth in galaxy mergers. The small, kpc-scale separations of offset and dual AGN also enable an observational test of black hole fueling near the centers of merger-remnant galaxies. The full potential of offset and dual AGN for such studies of black hole mass growth has not yet been realized, due to the small number of such systems known. To date, only 13 confirmed offset and dual AGN are

  18. Pair-Matching of Radio-Loud and Radio-Quiet AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Kozieł-Wierzbowska, Dorota [Astronomical Observatory, Jagiellonian University, Krakow (Poland); Stasińska, Grażyna [LUTH, Observatoire de Paris, Centre National de la Recherche Scientifique, Université Paris Diderot, Meudon (France); Vale Asari, Natalia [Departamento de Física–CFM, Universidade Federal de Santa Catarina, Florianópolis (Brazil); Sikora, Marek [Nicolaus Copernicus Astronomical Center, Warsaw (Poland); Goettems, Elisa [Departamento de Física–CFM, Universidade Federal de Santa Catarina, Florianópolis (Brazil); Wójtowicz, Anna, E-mail: dorota.koziel@uj.edu.pl [Astronomical Observatory, Jagiellonian University, Krakow (Poland)

    2017-11-07

    Active galactic nuclei (AGNs) are known to cover an extremely broad range of radio luminosities and the spread of their radio-loudness is very large at any value of the Eddington ratio. This implies very diverse jet production efficiencies which can result from the spread of the black hole spins and magnetic fluxes. Magnetic fluxes can be developed stochastically in the innermost zones of accretion discs, or can be advected to the central regions prior to the AGN phase. In the latter case there could be systematic differences between the properties of galaxies hosting radio-loud (RL) and radio-quiet (RQ) AGNs. In the former case the differences should be negligible for objects having the same Eddington ratio. To study the problem we decided to conduct a comparison study of host galaxy properties of RL and RQ AGNs. In this study we selected type II AGNs from SDSS spectroscopic catalogs. Our RL AGN sample consists of the AGNs appearing in the Best and Heckman (2012) catalog of radio galaxies. To compare RL and RQ galaxies that have the same AGN parameters we matched the galaxies in black hole mass, Eddington ratio and redshift. We compared several properties of the host galaxies in these two groups of objects like galaxy mass, color, concentration index, line widths, morphological type and interaction signatures. We found that in the studied group RL AGNs are preferentially hosted by elliptical galaxies while RQ ones are hosted by galaxies of later type. We also found that the fraction of interacting galaxies is the same in both groups of AGNs. These results suggest that the magnetic flux in RL AGNs is advected to the nucleus prior to the AGN phase.

  19. Laboratory Calibration of X-ray Velocimeters for Radiation Driven Winds and Outflows Surrounding X-ray Binaries and Active Galactic Nuclei

    Science.gov (United States)

    Brown, Gregory V.; Beiersdorfer, P.; Graf, A.; Hell, N.; Liedahl, D.; Magee, E. W.; Träbert, E.; Beilmann, C.; Bernitt, S.; Crespo-Lopez-Urritiua, J.; Eberle, S.; Kubicek, K.; Mäckel, V.; Rudolph, J.; Steinbrügge, R.; Ullrich, J.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M.; Porter, F. S.; Rasmussen, A.; Simon, M.; Epp, S.

    2011-09-01

    High resolution measurements of X-ray absorption and fluorescence by radiation driven winds and outflows surrounding X-ray binaries and AGN provide a powerful means for measuring wind velocities. The accuracy of these X-ray velocimeters is limited by the accuracy of atomic data. For example, in the case of the high mass X-ray binary Vela X-1 the uncertainty in the calculated transition wavelengths of the K alpha lines produced by photoionization and photoexcitation of Si L-shell ions is comparable to the likely Doppler shifts, making it impossible to determine a reliable velocity. Similar problems also exist in the case of absorption of X-rays by M-shell Fe ions, which produces in some AGN the so-called unresolved transition array across the 15-17 angstrom band. In this case, there is a 15-45 milliangstrom variation among different wavelength calculations. The uncertainty in the calculations makes it impossible to reliably determine the true velocity structure of the outflow, and in turn, prevents a reliable determination of the mass-loss rate of the AGN. We present results of a recent series of laboratory experiments conducted using an electron beam ion trap coupled with the LCLS X-ray free electron laser and the BESSY-II synchrotron and designed to calibrate the velocimeters provided by high resolution instruments on Chandra and XMM-Newton. We also present results of resonant photoexcitation measurements of the transition wavelength of an Fe XVI satellite line 'coincident' with the 2p-3d Fe XVII line 3D at 15.26 angstroms. This line has never been resolved using emission spectroscopy and its measurement confirms the intensity of line 3D is sensitive to the relative abundance of Fe XVI and XVII and thus temperature. Work at LLNL was performed under the auspices of DOE under contract DE-AC53-07NA27344 and supported by NASA's APRA program.

  20. Extreme Gaseous Outflows in Radio-Loud Narrow-Line Seyfert 1 Galaxies

    Science.gov (United States)

    Komossa, S.; Xu, D. W.; Wagner, A. Y.

    2018-04-01

    We present four radio-loud NLS1 galaxies with extreme emission-line shifts, indicating radial outflow velocities of the ionized gas of up to 2450 km/s, above the escape velocity of the host galaxies. The forbidden lines show strong broadening, up to 2270 km/s. An ionization stratification (higher line shift at higher ionization potential) implies that we see a large-scale outflow rather than single, localized jet-cloud interactions. Similarly, the paucity of zero-velocity [OIII]λ5007 emitting gas implies the absence of a second narrow-line region (NLR) component at rest, and therefore a large part of the high-ionization NLR is affected by the outflow. Given the radio loudness of these NLS1 galaxies, the observations are consistent with a pole on view onto their central engines, so that the effects of polar outflows are maximized. In addition, a very efficient driving mechanism is required, to reach the high observed velocities. We explore implications from recent hydrodynamic simulations of the interaction between fast winds or jets with the large-scale NLR. Overall, the best agreement with observations (and especially the high outflow speeds of the [NeV] emitting gas) can be reached if the NLS1 galaxies are relatively young sources with lifetimes not much exceeding 1 Myr. These systems represent sites of strong feedback at NLR scales at work, well below redshift one.

  1. Red Geyser: A New Class of Galaxy with Large-scale AGN-driven Winds

    Science.gov (United States)

    Roy, Namrata; Bundy, Kevin; Cheung, Edmond; MaNGA Team

    2018-01-01

    A new class of quiescent (non-star-forming) galaxies harboring possible AGN-driven winds have been discovered using the spatially resolved optical spectroscopy from the ongoing SDSS-IV MaNGA (Sloan Digital Sky Survey-IV Mapping Nearby Galaxies at Apache Point Observatory) survey. These galaxies named "red geysers" constitute 5%-10% of the local quiescent galaxy population and are characterized by narrow bisymmetric ionized gas emission patterns. These enhanced patterns are seen in equivalent width maps of Hα, [OIII] and other strong emission lines. They are co-aligned with the ionized gas velocity gradients but significantly misaligned with stellar velocity gradients. They also show very high gas velocity dispersions (~200 km/s). Considering these observations in light of models of the gravitational potential, Cheung et al. argued that red geysers host large-scale AGN-driven winds of ionized gas that may play a role in suppressing star formation at late times. In this work, we test the hypothesis that AGN activity is ultimately responsible for the red geyser phenomenon. We compare the nuclear radio activity of the red geysers to a matched control sample of galaxies of similar stellar mass, redshift, rest frame NUV–r color and axis ratio. and additionally, control for the presence of ionized gas. We have used 1.4 GHz radio continuum data from the VLA FIRST Survey to stack the radio flux from the red geyser sample and control sample. We find that the red geysers have a higher average radio flux than the control galaxies at > 3σ significance. Our sample is restricted to rest-frame NUV–r color > 5, thus ruling out possible radio emission due to star formation activity. We conclude that red geysers are associated with more active AGN, supporting a feedback picture in which episodic AGN activity drives large-scale but relatively weak ionized winds in many in many early-type galaxies.

  2. CHARACTERIZATION OF A SAMPLE OF INTERMEDIATE-TYPE AGNs. I. SPECTROSCOPIC PROPERTIES AND SERENDIPITOUS DISCOVERY OF NEW DUAL AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Erika; Cruz-Gonzalez, Irene; Martinez, Benoni; Jimenez-Bailon, Elena [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-264, Mexico D.F. 04510 (Mexico); Mendez-Abreu, Jairo; Lopez-Martin, Luis [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Fuentes-Carrera, Isaura [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional (ESFM-IPN), U.P. Adolfo Lopez Mateos, Mexico D.F. 07730 (Mexico); Leon-Tavares, Jonathan [Aalto University Metsaehovi Radio Observatory, Metsaehovintie 114, FI-02540, Kylmaelae (Finland); Chavushyan, Vahram H., E-mail: erika@astro.unam.mx [Instituto Nacional de Astrofisica, Optica y Electronica, Apdo. Postal 51-216, 72000 Puebla (Mexico)

    2013-01-20

    A sample of 10 nearby intermediate-type active galactic nuclei (AGNs) drawn from the Sloan Digital Sky Survey is presented. The aim of this work is to provide estimations of the black hole (BH) mass for the sample galaxies from the dynamics of the broad-line region. For this purpose, a detailed spectroscopic analysis of the objects was done. Using Baldwin-Phillips-Terlevich diagnostic diagrams, we have carefully classified the objects as true intermediate-type AGNs and found that 80%{sup +7.2%} {sub -17.3%} are composite AGNs. The BH mass estimated for the sample is within 6.54 {+-} 0.16 < log M {sub BH} < 7.81 {+-} 0.14. Profile analysis shows that five objects (J120655.63+501737.1, J121607.08+504930.0, J141238.14+391836.5, J143031.18+524225.8, and J162952.88+242638.3) have narrow double-peaked emission lines in both the red (H{alpha}, [N II] {lambda}{lambda}6548,6583 and [S II] {lambda}{lambda}6716, 6731) and the blue (H{beta} and [O III] {lambda}{lambda}4959, 5007) regions of the spectra, with velocity differences ({Delta}V) between the double peaks within 114 km s{sup -1} < {Delta}V < 256 km s{sup -1}. Two of them, J121607.08+504930.0 and J141238.14+391836.5, are candidates for dual AGNs since their double-peaked emission lines are dominated by AGN activity. In searches of dual AGNs, type 1, type II, and intermediate-type AGNs should be carefully separated, due to the high serendipitous number of narrow double-peaked sources (50% {+-} 14.4%) found in our sample.

  3. Characterisation of a candidate dual AGN

    Science.gov (United States)

    Lena, D.; Panizo-Espinar, G.; Jonker, P. G.; Torres, M.; Heida, M.

    2018-05-01

    We present Chandra and optical observations of a candidate dual AGN discovered serendipitously while searching for recoiling black holes via a cross-correlation between the serendipitous XMM source catalog (2XMMi) and SDSS-DR7 galaxies with a separation no larger than ten times the sum of their Petrosian radii. The system has a stellar mass ratio M1/M2 ≈ 0.7. One of the galaxies (Source 1) shows clear evidence for AGN activity in the form of hard X-ray emission and optical emission-line diagnostics typical of AGN ionisation. The nucleus of the other galaxy (Source 2) has a soft X-ray spectrum, bluer colours, and optical emission line ratios dominated by stellar photoionisation with a "composite" signature, which might indicate the presence of a weak AGN. When plotted on a diagram with X-ray luminosity vs [OIII] luminosity both nuclei fall within the locus defined by local Seyfert galaxies. From the optical spectrum we estimate the electron densities finding n1 active nature of Source 1 can be established with confidence, whether the nucleus of Source 2 is active remains a matter of debate. Evidence that a faint AGN might reside in its nucleus is, however, tantalising.

  4. Clustering Measurements of broad-line AGNs: Review and Future

    Directory of Open Access Journals (Sweden)

    Mirko Krumpe

    2014-12-01

    Full Text Available Despite substantial effort, the precise physical processes that lead to the growth of super-massive black holes in the centers of galaxies are still not well understood. These phases of black hole growth are thought to be of key importance in understanding galaxy evolution. Forthcoming missions such as eROSITA, HETDEX, eBOSS, BigBOSS, LSST, and Pan-STARRS will compile by far the largest ever Active Galactic Nuclei (AGNs catalogs which will allow us to measure the spatial distribution of AGNs in the universe with unprecedented accuracy. For the first time, AGN clustering measurements will reach a level of precision that will not only allow for an alternative approach to answering open questions in AGN and galaxy co-evolution but will open a new frontier, allowing us to precisely determine cosmological parameters. This paper reviews large-scale clustering measurements of broad line AGNs. We summarize how clustering is measured and which constraints can be derived from AGN clustering measurements, we discuss recent developments, and we briefly describe future projects that will deliver extremely large AGN samples which will enable AGN clustering measurements of unprecedented accuracy. In order to maximize the scientific return on the research fields of AGN and galaxy evolution and cosmology, we advise that the community develops a full understanding of the systematic uncertainties which will, in contrast to today’s measurement, be the dominant source of uncertainty.

  5. HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?

    Energy Technology Data Exchange (ETDEWEB)

    Assef, R. J.; Diaz-Santos, T. [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Walton, D. J.; Brightman, M. [Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, D.; Eisenhardt, P. R. M.; Tsai, C.-W. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-236, Pasadena, CA 91109 (United States); Alexander, D. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Bauer, F. [Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Blain, A. W. [Physics and Astronomy, University of Leicester, 1 University Road, Leicester LE1 7RH (United Kingdom); Finkelstein, S. L. [The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); Hickox, R. C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Wu, J. W., E-mail: roberto.assef@mail.udp.cl [UCLA Astronomy, P.O. Box 951547, Los Angeles, CA 90095-1547 (United States)

    2016-03-10

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13–050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M{sub ⊙} yr{sup −1}. Deep polarimetry observations could confirm the reflection hypothesis.

  6. HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?

    International Nuclear Information System (INIS)

    Assef, R. J.; Diaz-Santos, T.; Walton, D. J.; Brightman, M.; Stern, D.; Eisenhardt, P. R. M.; Tsai, C.-W.; Alexander, D.; Bauer, F.; Blain, A. W.; Finkelstein, S. L.; Hickox, R. C.; Wu, J. W.

    2016-01-01

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13–050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M ⊙ yr −1 . Deep polarimetry observations could confirm the reflection hypothesis

  7. THE MOLECULAR WIND IN THE NEAREST SEYFERT GALAXY CIRCINUS REVEALED BY ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Zschaechner, Laura K.; Walter, Fabian; Farina, Emanuele P.; Kruijssen, J. M. Diederik [Max Planck Institute für Astronomie—Königstuhl 17, D-69117 Heidelberg (Germany); Bolatto, Alberto; Veilleux, Sylvain [Department of Astronomy and Joint Space Science Institute, University of Maryland, College Park, MD 20642 (United States); Leroy, Adam [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Meier, David S. [Department of Physics, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 (United States); Ott, Jürgen, E-mail: zschaechner@mpia.de [National Radio Astronomy Observatory—P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States)

    2016-12-01

    We present ALMA observations of the inner 1′ (1.2 kpc) of the Circinus galaxy, the nearest Seyfert. We target CO (1–0) in the region associated with a well-known multiphase outflow driven by the central active galactic nucleus (AGN). While the geometry of Circinus and its outflow make disentangling the latter difficult, we see indications of outflowing molecular gas at velocities consistent with the ionized outflow. We constrain the mass of the outflowing molecular gas to be 1.5 × 10{sup 5}−5.1 × 10{sup 6} M {sub ⊙}, yielding a molecular outflow rate of 0.35–12.3 M {sub ⊙} yr{sup −1}. The values within this range are comparable to the star formation (SF) rate in Circinus, indicating that the outflow indeed regulates SF to some degree. The molecular outflow in Circinus is considerably lower in mass and energetics than previously studied AGN-driven outflows, especially given its high ratio of AGN luminosity to bolometric luminosity. The molecular outflow in Circinus is, however, consistent with some trends put forth by Cicone et al., including a linear relation between kinetic power and AGN luminosity, as well as its momentum rate versus bolometric luminosity (although the latter places Circinus among the starburst galaxies in that sample). We detect additional molecular species including CN and C{sup 17}O.

  8. Quasar Massive Ionized Outflows Traced by CIV λ1549 and [OIII]λλ4959,5007

    Energy Technology Data Exchange (ETDEWEB)

    Marziani, Paola [National Institute for Astrophysics, Osservatorio Astronomico di Padova, Rome (Italy); Negrete, C. Alenka; Dultzin, Deborah [Instituto de Astronomía, Universidad Nacional Autonoma de Mexico, Mexico City (Mexico); Martínez-Aldama, Mary L.; Del Olmo, Ascensión [Instituto de Astrofísica de Andalucía (CSIC), Granada (Spain); D' Onofrio, Mauro [Dipartimento di Fisica e Astronomia, Università di Padova, Padova (Italy); Stirpe, Giovanna M., E-mail: paola.marziani@oapd.inaf.it [Osservatorio Astronomico di Bologna (INAF), Bologna (Italy)

    2017-09-27

    The most luminous quasars (with bolometric luminosities are ≳ 10{sup 47} erg/s) show a high prevalence of CIV λ1549 and [OIII]λλ4959,5007 emission line profiles with strong blueshifts. Blueshifts are interpreted as due to Doppler effect and selective obscuration, and indicate outflows occurring over a wide range of spatial scales. We found evidence in favor of the nuclear origin of the outflows diagnosed by [OIII]λλ4959,5007. The ionized gas mass, kinetic power, and mechanical thrust are extremely high, and suggest widespread feedback effects on the host galaxies of very luminous quasars, at cosmic epochs between 2 and 6 Gyr from the Big Bang. In this mini-review we summarize results obtained by our group and reported in several major papers in the last few years with an eye on challenging aspects of quantifying feedback effects in large samples of quasars.

  9. Quasar Massive Ionized Outflows Traced by CIV λ1549 and [OIII]λλ4959,5007

    Directory of Open Access Journals (Sweden)

    Paola Marziani

    2017-09-01

    Full Text Available The most luminous quasars (with bolometric luminosities are ≳ 1047 erg/s show a high prevalence of CIV λ1549 and [OIII]λλ4959,5007 emission line profiles with strong blueshifts. Blueshifts are interpreted as due to Doppler effect and selective obscuration, and indicate outflows occurring over a wide range of spatial scales. We found evidence in favor of the nuclear origin of the outflows diagnosed by [OIII]λλ4959,5007. The ionized gas mass, kinetic power, and mechanical thrust are extremely high, and suggest widespread feedback effects on the host galaxies of very luminous quasars, at cosmic epochs between 2 and 6 Gyr from the Big Bang. In this mini-review we summarize results obtained by our group and reported in several major papers in the last few years with an eye on challenging aspects of quantifying feedback effects in large samples of quasars.

  10. Escape of ionizing radiation from high redshift dwarf galaxies: role of AGN feedback

    Science.gov (United States)

    Trebitsch, Maxime; Volonteri, Marta; Dubois, Yohan; Madau, Piero

    2018-05-01

    While low mass, star forming galaxies are often considered as the primary driver of reionization, their actual contribution to the cosmic ultraviolet background is still uncertain, mostly because the escape fraction of ionizing photons is only poorly constrained. Theoretical studies have shown that efficient supernova feedback is a necessary condition to create paths through which ionizing radiation can escape into the intergalactic medium. We investigate the possibility that accreting supermassive black holes in early dwarf galaxies may provide additional feedback and enhance the leakage of ionizing radiation. We use a series of high resolution cosmological radiation hydrodynamics simulations where we isolate the different sources of feedback. We find that supernova feedback prevents the growth of the black hole, thus quenching its associated feedback. Even in cases where the black hole can grow, the structure of the interstellar medium is strongly dominated by supernova feedback. We conclude that, in the dwarf galaxy regime, supermassive black holes do not appear to play a significant role in enhancing the escape fraction and in contributing to the early UV background.

  11. Challenges in Finding AGNs in the Low Luminosity Regime

    Science.gov (United States)

    Satyapal, Shobita; Abel, Nick; Secrest, Nathan; Singh, Amrit; Ellison, Sara

    2016-08-01

    Low luminosity AGNs are an important component of the AGN population. They are often found in the lowest mass galaxies or galaxies that lack classical bulges, a demographic that places important constraints to models of supermassive black hole seed formation and merger-free models of AGN fueling. The detection of AGNs in this low luminosity regime is challenging both because star formation in the host galaxy can dominate the optical spectrum and gas and dust can obscure the central engine at both optical and X-ray wavelengths. Thus while mid-infrared color selection and X-ray observations at energies <10 keV are often powerful tools in uncovering optically unidentified AGNs at higher luminosities, this is not the case in the low luminosity regime. In this talk, I will review the effectiveness of uncovering AGNs in the low luminosity regime using multiwavength investigations, with a focus on infrared spectroscopic signatures.

  12. A UV to mid-IR study of AGN selection

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Sun Mi; Kochanek, Christopher S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Assef, Roberto [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Brown, Michael J. I. [School of Physics, Monash University, Clayton, Vic 3800 (Australia); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-221, Pasadena, CA 91109 (United States); Jannuzi, Buell T. [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Hickox, Ryan C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States)

    2014-07-20

    We classify the spectral energy distributions (SEDs) of 431,038 sources in the 9 deg{sup 2} Boötes field of the NOAO Deep Wide-Field Survey (NDWFS). There are up to 17 bands of data available per source, including ultraviolet (GALEX), optical (NDWFS), near-IR (NEWFIRM), and mid-infrared (IRAC and MIPS) data, as well as spectroscopic redshifts for ∼20,000 objects, primarily from the AGN and Galaxy Evolution Survey. We fit galaxy, active galactic nucleus (AGN), stellar, and brown dwarf templates to the observed SEDs, which yield spectral classes for the Galactic sources and photometric redshifts and galaxy/AGN luminosities for the extragalactic sources. The photometric redshift precision of the galaxy and AGN samples are σ/(1 + z) = 0.040 and σ/(1 + z) = 0.169, respectively, with the worst 5% outliers excluded. On the basis of the χ{sub ν}{sup 2} of the SED fit for each SED model, we are able to distinguish between Galactic and extragalactic sources for sources brighter than I = 23.5 mag. We compare the SED fits for a galaxy-only model and a galaxy-AGN model. Using known X-ray and spectroscopic AGN samples, we confirm that SED fitting can be successfully used as a method to identify large populations of AGNs, including spatially resolved AGNs with significant contributions from the host galaxy and objects with the emission line ratios of 'composite' spectra. We also use our results to compare with the X-ray, mid-IR, optical color, and emission line ratio selection techniques. For an F-ratio threshold of F > 10, we find 16,266 AGN candidates brighter than I = 23.5 mag and a surface density of ∼1900 AGN deg{sup –2}.

  13. ACTIVE GALACTIC NUCLEI AS MAIN CONTRIBUTORS TO THE ULTRAVIOLET IONIZING EMISSIVITY AT HIGH REDSHIFTS: PREDICTIONS FROM A Λ-CDM MODEL WITH LINKED AGN/GALAXY EVOLUTION

    International Nuclear Information System (INIS)

    Giallongo, E.; Menci, N.; Fiore, F.; Castellano, M.; Fontana, A.; Grazian, A.; Pentericci, L.

    2012-01-01

    We have evaluated the contribution of the active galactic nuclei (AGN) population to the ionization history of the universe based on a semi-analytic model of galaxy formation and evolution in the cold dark matter cosmological scenario. The model connects the growth of black holes and of the ensuing AGN activity to galaxy interactions. In the model we have included a self-consistent physical description of the escape of ionizing UV photons; this is based on the blast-wave model for the AGN feedback we developed in a previous paper to explain the distribution of hydrogen column densities in AGNs of various redshifts and luminosities, due to absorption by the host galaxy gas. The model predicts UV luminosity functions for AGNs that are in good agreement with those derived from the observations especially at low and intermediate redshifts (z ∼ 3). At higher redshifts (z > 5), the model tends to overestimate the data at faint luminosities. Critical biases in both the data and in the model are discussed to explain such apparent discrepancies. The predicted hydrogen photoionization rate as a function of redshift is found to be consistent with that derived from the observations. All of the above suggests that we should reconsider the role of the AGNs as the main driver of the ionization history of the universe.

  14. Impression Management Agnes Monica Melalui Akun Instagram (@Agnezmo)

    OpenAIRE

    Alim, Chelsea Amanda

    2014-01-01

    Penelitian ini dilakukan untuk menganalisa penggunaan taktik manajemen kesan yang dilakukan Agnes Monica melalui akun Instagram (@agnezmo). Agnes Monica sebagai seseorang yang berpengaruh, selalu menjadi bahan perbincangan publik, dan perhatian media sosial, memiliki kesan yang baik, termasuk melalui Instagram. Peneliti menggunakan metode analisis isi kuantitatif untuk menganalisa 45 post foto Instagram Agnes Monica, yang ada pada tanggal 1 Februari 2014 - 1 April 2014. Hasil penelitian ini ...

  15. Studying AGN Jets At Extreme Angular Resolution

    Science.gov (United States)

    Bruni, Gabriele

    2016-10-01

    RadioAstron is a 10m antenna orbiting on the Russian Speckt-R spacecraft, launched in 2011. Performing radio interferometry with a global array of ground telescopes, it is providing record angular resolution. The Key Science Project on AGN polarization is exploiting it to study in great detail the configuration of magnetic fields in AGN jets, and understand their formation and collimation. To date, the project has already achieved the highest angular resolution image ever obtained in Astronomy, and detected brightness temperatures exceeding the ones predicted by theory of AGN.

  16. STELLAR VELOCITY DISPERSION MEASUREMENTS IN HIGH-LUMINOSITY QUASAR HOSTS AND IMPLICATIONS FOR THE AGN BLACK HOLE MASS SCALE

    Energy Technology Data Exchange (ETDEWEB)

    Grier, C. J.; Martini, P.; Peterson, B. M.; Pogge, R. W.; Zu, Y. [Department of Astronomy, Ohio State University, 140 W 18th Avenue, Columbus, OH 43210 (United States); Watson, L. C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Dasyra, K. M. [Observatoire de Paris, LERMA (CNRS:UMR8112), 61 Avenue de l' Observatoire, F-75014, Paris (France); Dietrich, M. [Department of Physics and Astronomy, Ohio University, Athens, OH 45601 (United States); Ferrarese, L. [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria BV V9E 2E7 (Canada)

    2013-08-20

    We present new stellar velocity dispersion measurements for four luminous quasars with the Near-Infrared Integral Field Spectrometer instrument and the ALTAIR laser guide star adaptive optics system on the Gemini North 8 m telescope. Stellar velocity dispersion measurements and measurements of the supermassive black hole (BH) masses in luminous quasars are necessary to investigate the coevolution of BHs and galaxies, trace the details of accretion, and probe the nature of feedback. We find that higher-luminosity quasars with higher-mass BHs are not offset with respect to the M{sub BH}-{sigma}{sub *} relation exhibited by lower-luminosity active galactic nuclei (AGNs) with lower-mass BHs, nor do we see correlations with galaxy morphology. As part of this analysis, we have recalculated the virial products for the entire sample of reverberation-mapped AGNs and used these data to redetermine the mean virial factor (f) that places the reverberation data on the quiescent M{sub BH}-{sigma}{sub *} relation. With our updated measurements and new additions to the AGN sample, we obtain (f) = 4.31 {+-} 1.05, which is slightly lower than, but consistent with, most previous determinations.

  17. The role of major mergers in (obscured) black hole growth and galaxy evolution

    Science.gov (United States)

    Treister, E.; Privon, G.; Ricci, C.; Bauer, F.; Schawinski, K.; MODA Collaboration

    2017-10-01

    A clear picture is emerging in which rapid supermassive black hole (SMBH) growth episodes (luminous AGN) are directly linked to major galaxy mergers. Here, we present the first results from our MODA program aimed to obtain optical and near-IR Integral Field Unit (IFU) spectroscopy and mm/sub-mm ALMA maps for a sample of confirmed nearby dual AGN (separation 10 kpc), including the archetypical galaxy NGC6240. Specifically, we will focus here on Mrk 463, a very rich system of two galaxies separated by 3.8 kpc hosting two SMBH growing simultaneously. Clear evidence for complex morphologies and kinematics, outflows and feedback effects can be seen in this system, evidencing the deep connection between major galaxy mergers, SMBH growth and galaxy evolution.

  18. Yet another UFO in the X-ray spectrum of a high-z lensed QSO

    Science.gov (United States)

    Dadina, M.; Vignali, C.; Cappi, M.; Lanzuisi, G.; Ponti, G.; Torresi, E.; De Marco, B.; Chartas, G.; Giustini, M.

    2018-02-01

    Aim. Ultra-fast outflows (UFO) appear to be common in local active galactic nuclei (AGN) and may be powerful enough (Ėkin ≥ 1% of Lbol) to effectively quench the star formation in their host galaxies. To test feedback models based on AGN outflows, it is mandatory to investigate UFOs near the peak of AGN activity, that is, at high-z where only a few studies are available to date. Methods: UFOs produce Fe resonant absorption lines measured above ≈7 keV. The most critical problem in detecting such features in distant objects is the difficulty in obtaining X-ray data with sufficient signal-to-noise. We therefore selected a distant QSO that gravitational lensing made bright enough for these purposes, the z = 2.64 QSO MG J0414+0534, and observed it with XMM-Newton for ≈78 ks. Results: The X-ray spectrum of MG J0414+0534 is complex and shows signatures of cold absorption (NH ≈ 4 × 1022 cm-2) and of the presence of an iron emission line (E ≈ 6.4 keV, EW = 95 ± 53 eV) consistent with it originating in the cold absorber. Our main result, however, is the robust detection (more than 5σ) of an absorption line at Eint ≈ 9.2 keV (Eobs ≈ 2.5 keV observer frame). If interpreted as due to FeXXVI, it implies gas outflowing at vout ≈ 0.3c. To our knowledge, this is the first detection of an UFO in a radio-loud quasar at z ≥ 1.5. We estimated that the UFO mechanical output is Ėkin ≈ 2.5Lbol with ṗout/ṗrad ≈ 17 indicating that it is capable of installing significant feedback between the super-massive black hole and the bulge of the host galaxy. We argue that this also suggests a magnetic driving origin of the UFO.

  19. Search for AGN neutrinos with the Soudan 2 detector

    International Nuclear Information System (INIS)

    DeMuth, D.M.

    1997-05-01

    Several authors have presented models for neutrino production from Active Galactic Nuclei (AGN) that allow for the possibility of AGN neutrinos outnumbering the atmospheric neutrino flux for energies in excess of 30 TeV. Preliminary results from a search for high energy neutrinos from AGN using the underground Soudan 2 Detector are presented

  20. Multi-Frequency Databases for AGN Investigation—Results and Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    La Mura, Giovanni [Department of Physics and Astronomy, University of Padua, Padua (Italy); Berton, Marco [Department of Physics and Astronomy, University of Padua, Padua (Italy); Astronomical Observatory of Brera, National Institute for Astrophysics, Milan (Italy); Chen, Sina; Ciroi, Stefano [Department of Physics and Astronomy, University of Padua, Padua (Italy); Congiu, Enrico [Department of Physics and Astronomy, University of Padua, Padua (Italy); Astronomical Observatory of Brera, National Institute for Astrophysics, Milan (Italy); Cracco, Valentina; Frezzato, Michele; Rafanelli, Piero, E-mail: giovanni.lamura@unipd.it [Department of Physics and Astronomy, University of Padua, Padua (Italy)

    2017-10-17

    Active Galactic Nuclei (AGNs) are characterized by emission of radiation over more than 10 orders of magnitude in frequency. Therefore, the execution of extensive surveys of the sky, with different types of detectors, is providing the attractive possibility to identify and to investigate the properties of AGNs on very large statistical samples. Thanks to the large spectroscopic surveys that allow detailed investigation of many of these sources, we have the opportunity to place new constraints on the nature and evolution of AGNs and to investigate their relations with the host systems. In this contribution we present the results that can be obtained by using a new interactive catalog that we developed to investigate the range of AGN spectral energy distributions (SEDs). We present simple SED models based on data collected in the catalog and discuss their relations with optical spectra obtained by follow up observations. We compare our findings with the expectations based on the AGN Unification Model, and we discuss the perspectives of multi-wavelength approaches to address AGN related processes such as black hole accretion and acceleration of relativistic jets.

  1. The AGN Population in Nearby Galaxies

    International Nuclear Information System (INIS)

    Filho, Mercedes; Barthel, Peter; Ho, Luis

    2006-01-01

    In order to determine the incidence of black hole accretion-driven nuclear activity in nearby galaxies, we have compiled radio data for the LINERs, composite LINER,/Hn and Seyfert galaxies from a complete magnitude-limited sample of bright nearby galaxies (Palomar sample). Our results show an overall radio detection rate of 54% (22% of all bright nearby galaxies) and we estimate that at least ∼50% (∼20% of all bright nearby galaxies) are true AGN. By comparing the radio luminosity function of the LINERs, composite LINER/Hll and Seyferts galaxies in the Palomar sample with those of selected moderate-redshift AGN, we fhd that our sources naturally extend the radio luminosity function of powerful AGN down to powers of about 10 times that of Sgr A*

  2. X-ray View of Four High-Luminosity Swift-BAT AGN: Unveiling Obscuration and Reflection with Suzaku

    Science.gov (United States)

    Fiorettil, V.; Angelini, L.; Mushotzky, R. F.; Koss, M.; Malaguti, G.

    2013-01-01

    Aims. A complete census of obscured Active Galactic Nuclei (AGN) is necessary to reveal the history of the super massive black hole (SMBH) growth and galaxy evolution in the Universe given the complex feedback processes and the fact that much of this growth occurs in an obscured phase. In this context, hard X-ray surveys and dedicated follow-up observations represent a unique tool for selecting highly absorbed AGN and for characterizing the obscuring matter surrounding the SMBH. Here we focus on the absorption and reflection occurring in highly luminous, quasar-like AGN, to study the relation between the geometry of the absorbing matter and the AGN nature (e.g. X-ray, optical, and radio properties), and to help to determine the column density dependency on the AGN luminosity. Methods. The Swift/BAT nine-month survey observed 153 AGN, all with ultra-hard X-ray BAT fluxes in excess of 10(exp -11) erg per square centimeter and an average redshift of 0.03. Among them, four of the most luminous BAT AGN (44.73 less than LogLBAT less than 45.31) were selected as targets of Suzaku follow-up observations: J2246.0+3941 (3C 452), J0407.4+0339 (3C 105), J0318.7+6828, and J0918.5+0425. The column density, scattered/reflected emission, the properties of the Fe K line, and a possible variability are fully analyzed. For the latter, the spectral properties from Chandra, XMM-Newton and Swift/XRT public observations were compared with the present Suzaku analysis, adding an original spectral analysis when non was available from the literature. Results. Of our sample, 3C 452 is the only certain Compton-thick AGN candidate because of i) the high absorption (N(sub H) approximately 4 × 10(exp 23) per square centimeter) and strong Compton reflection; ii) the lack of variability; iii) the "buried" nature, i.e. the low scattering fraction (less than 0.5%) and the extremely low relative [OIII] luminosity. In contrast 3C 105 is not reflection-dominated, despite the comparable column density

  3. DISCOVERY OF AN EXTREMELY WIDE-ANGLE BIPOLAR OUTFLOW IN AFGL 5142

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tie; Kim, Kee-Tae; Lee, Chang-Won; Cho, Se-Hyung [Korea Astronomy and Space Science Institute 776, Daedeokdae-ro, Yuseong-gu, Daejeon, 305-348 (Korea, Republic of); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Wu, Yuefang [Department of Astronomy, Peking University, Beijing 100871 (China); Goldsmith, Paul F. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Li, Di [National Astronomical Observatories, Chinese Academy of Science, A20 Datun Road, Chaoyang District, Beijing 100012 (China); Liu, Sheng-Yuan; Chen, Huei-Ru [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan (China); Tatematsu, Ken’ichi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Wang, Ke [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Lee, Jeong-Eun [School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Qin, Sheng-Li [Department of Astronomy, Yunnan University, and Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming 650091 (China); Mardones, Diego, E-mail: liutiepku@gmail.com [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile)

    2016-06-10

    Most bipolar outflows are associated with individual young stellar objects and have small opening angles. Here we report the discovery of an extremely wide-angle (∼180°) bipolar outflow (“EWBO”) in a cluster forming region AFGL 5142 from low-velocity emission of the HCN (3–2) and HCO{sup +} (3–2) lines. This bipolar outflow is along a north-west to south-east direction with a line of sight flow velocity of about 3 km s{sup −1} and is spatially connected to the high-velocity jet-like outflows. It seems to be a collection of low-velocity material entrained by the high-velocity outflows due to momentum feedback. The total ejected mass and mass loss rate due to both high-velocity jet-like outflows and the “EWBO” are ∼24.5 M {sub ⊙} and ∼1.7 × 10{sup −3} M {sub ⊙} yr{sup −1}, respectively. Global collapse of the clump is revealed by the “blue profile” in the HCO{sup +} (1–0) line. A hierarchical network of filaments was identified in NH{sub 3} (1, 1) emission. Clear velocity gradients of the order of 10 km s{sup −1} pc{sup −1} are found along filaments, indicating gas inflow along the filaments. The sum of the accretion rate along filaments and mass infall rate along the line of sight is ∼3.1 × 10{sup −3} M {sub ⊙} yr{sup −1}, which exceeds the total mass loss rate, indicating that the central cluster is probably still gaining mass. The central cluster is highly fragmented and 22 condensations are identified in 1.1 mm continuum emission. The fragmentation process seems to be determined by thermal pressure and turbulence. The magnetic field may not play an important role in fragmentation.

  4. Towards A Complete Census of the Compton-thick AGN population and the NH Distribution of AGN in the Local Universe.

    Science.gov (United States)

    Annuar, A.

    2015-09-01

    We present updated results from an ongoing project to establish the most unbiased census of the Compton- thick active galactic nucleus (CTAGN) population and the intrinsic column density (NH) distribution of the overall AGN population in the local universe, using a sample of mid-infrared (mid-IR) selected AGN within 15 Mpc. We find that 20% of the AGN in the sample are bona-fide CTAGN based upon hard X-ray studies (E > 10 keV). More candidates are then selected using multiwavelength techniques, i.e. mid-IR:X-ray and optical [OIII]5007:X-ray flux ratios. Based on these analyses along with evidence from previous literature, we initially find a further 25% of potential candidates. We then observed two of these candidates, NGC 5643 and NGC 3486, using NuSTAR and is able to confirm the former as a CTAGN and rule out the latter as an obscured AGN. This constrains the total CTAGN population in the sample to 25-40%, though it could potentially be as high as 65% accounting for those that still lack data. Finally, we use these results to estimate the intrinsic NH distribution of the local AGN population. Two more of our CTAGN candidates are scheduled to be observed by NuSTAR, bringing the completeness of hard X-ray energy data of the sample to 65%. This work provides a well-defined local benchmark for AGN unification studies.

  5. Feedback Gating Control for Network Based on Macroscopic Fundamental Diagram

    Directory of Open Access Journals (Sweden)

    YangBeibei Ji

    2016-01-01

    Full Text Available Empirical data from Yokohama, Japan, showed that a macroscopic fundamental diagram (MFD of urban traffic provides for different network regions a unimodal low-scatter relationship between network vehicle density and network space-mean flow. This provides new tools for network congestion control. Based on MFD, this paper proposed a feedback gating control policy which can be used to mitigate network congestion by adjusting signal timings of gating intersections. The objective of the feedback gating control model is to maximize the outflow and distribute the allowed inflows properly according to external demand and capacity of each gating intersection. An example network is used to test the performance of proposed feedback gating control model. Two types of background signalization types for the intersections within the test network, fixed-time and actuated control, are considered. The results of extensive simulation validate that the proposed feedback gating control model can get a Pareto improvement since the performance of both gating intersections and the whole network can be improved significantly especially under heavy demand situations. The inflows and outflows can be improved to a higher level, and the delay and queue length at all gating intersections are decreased dramatically.

  6. BREATHING FIRE: HOW STELLAR FEEDBACK DRIVES RADIAL MIGRATION, RAPID SIZE FLUCTUATIONS, AND POPULATION GRADIENTS IN LOW-MASS GALAXIES

    International Nuclear Information System (INIS)

    El-Badry, Kareem; Geha, Marla; Wetzel, Andrew; Hopkins, Philip F.; Kereš, Dusan; Chan, T. K.; Faucher-Giguère, Claude-André

    2016-01-01

    We examine the effects of stellar feedback and bursty star formation on low-mass galaxies (M star  = 2 × 10 6  − 5 × 10 10 M ⊙ ) using the Feedback in Realistic Environments (FIRE) simulations. While previous studies emphasized the impact of feedback on dark matter profiles, we investigate the impact on the stellar component: kinematics, radial migration, size evolution, and population gradients. Feedback-driven outflows/inflows drive significant radial stellar migration over both short and long timescales via two processes: (1) outflowing/infalling gas can remain star-forming, producing young stars that migrate ∼1 kpc within their first 100 Myr, and (2) gas outflows/inflows drive strong fluctuations in the global potential, transferring energy to all stars. These processes produce several dramatic effects. First, galaxies’ effective radii can fluctuate by factors of >2 over ∼200 Myr, and these rapid size fluctuations can account for much of the observed scatter in the radius at fixed M star . Second, the cumulative effects of many outflow/infall episodes steadily heat stellar orbits, causing old stars to migrate outward most strongly. This age-dependent radial migration mixes—and even inverts—intrinsic age and metallicity gradients. Thus, the galactic-archaeology approach of calculating radial star formation histories from stellar populations at z = 0 can be severely biased. These effects are strongest at M star  ≈ 10 7–9.6 M ⊙ , the same regime where feedback most efficiently cores galaxies. Thus, detailed measurements of stellar kinematics in low-mass galaxies can strongly constrain feedback models and test baryonic solutions to small-scale problems in ΛCDM

  7. THE ROLE OF RADIATION PRESSURE IN THE NARROW LINE REGIONS OF SEYFERT HOST GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Rebecca L.; Dopita, Michael A.; Kewley, Lisa; Groves, Brent; Sutherland, Ralph; Hampton, Elise J.; Banfield, Julie [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Shastri, Prajval; Kharb, Preeti; Bhatt, Harish [Indian Institute of Astrophysics, Sarjapur Road, Bengaluru 560034 (India); Scharwächter, Julia [LERMA, Observatoire de Paris, PSL, CNRS, Sorbonne Universités, UPMC, F-75014 Paris (France); Jin, Chichuan [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Zaw, Ingyin [New York University (Abu Dhabi), 70 Washington Square S, New York, NY 10012 (United States); James, Bethan [Institute of Astronomy, Cambridge University, Madingley Road, Cambridge CB3 0HA (United Kingdom); Juneau, Stéphanie [CEA-Saclay, DSM/IRFU/SAp, F-91191 Gif-sur-Yvette (France); Srivastava, Shweta, E-mail: Rebecca.Davies@anu.edu.au [Astronomy and Astrophysics Division, Physical Research Laboratory, Ahmedabad 380009 (India)

    2016-06-10

    We investigate the relative significance of radiation pressure and gas pressure in the extended narrow line regions (ENLRs) of four Seyfert galaxies from the integral field Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). We demonstrate that there exist two distinct types of starburst-active galactic nucleus (AGN) mixing curves on standard emission line diagnostic diagrams, which reflect the balance between gas pressure and radiation pressure in the ENLR. In two of the galaxies the ENLR is radiation pressure dominated throughout and the ionization parameter remains constant (log U ∼ 0). In the other two galaxies radiation pressure is initially important, but gas pressure becomes dominant as the ionization parameter in the ENLR decreases from log U ∼ 0 to −3.2 ≲ log U ≲ −3.4. Where radiation pressure is dominant, the AGN regulates the density of the interstellar medium on kiloparsec scales and may therefore have a direct impact on star formation activity and/or the incidence of outflows in the host galaxy to scales far beyond the zone of influence of the black hole. We find that both radiation pressure dominated and gas pressure dominated ENLRs are dynamically active with evidence for outflows, indicating that radiation pressure may be an important source of AGN feedback even when it is not dominant over the entire ENLR.

  8. The fraction of AGNs in major merger galaxies and its luminosity dependence

    Science.gov (United States)

    Weigel, Anna K.; Schawinski, Kevin; Treister, Ezequiel; Trakhtenbrot, Benny; Sanders, David B.

    2018-05-01

    We use a phenomenological model which connects the galaxy and active galactic nucleus (AGN) populations to investigate the process of AGNs triggering through major galaxy mergers at z ˜ 0. The model uses stellar mass functions as input and allows the prediction of AGN luminosity functions based on assumed Eddington ratio distribution functions (ERDFs). We show that the number of AGNs hosted by merger galaxies relative to the total number of AGNs increases as a function of AGN luminosity. This is due to more massive galaxies being more likely to undergo a merger and does not require the assumption that mergers lead to higher Eddington ratios than secular processes. Our qualitative analysis also shows that to match the observations, the probability of a merger galaxy hosting an AGN and accreting at a given Eddington value has to be increased by a factor ˜10 relative to the general AGN population. An additional significant increase of the fraction of high Eddington ratio AGNs among merger host galaxies leads to inconsistency with the observed X-ray luminosity function. Physically our results imply that, compared to the general galaxy population, the AGN fraction among merger galaxies is ˜10 times higher. On average, merger triggering does however not lead to significantly higher Eddington ratios.

  9. Further analysis of the inhibition by agmatine on the cardiac sympathetic outflow: Role of the α2-adrenoceptor subtypes.

    Science.gov (United States)

    Cobos-Puc, Luis; Aguayo-Morales, Hilda; Ventura-Sobrevilla, Janeth; Luque-Contreras, Diana; Chin-Chan, Miguel

    2017-06-15

    This study has investigated the role of the α 2 -adrenoceptor subtypes involved in the inhibition of the cardiac sympathetic outflow induced by intravenous (i.v) infusions of agmatine. Therefore, we analysed the effect of an i.v. bolus injections of the selective antagonists BRL 44408 (300μg/kg; α 2A ), imiloxan (3000μg/kg; α 2B ), and JP-1302 (300μg/kg; α 2C ) given separately, and their combinations: BRL 44408 plus Imiloxan, JP 1302 plus imiloxan, BRL 44408 plus JP-1302, BRL 44408 plus imiloxan plus JP-1302 on the cardiac sympatho-inhibition of agmatine. Also, the effect of the combination BRL 44408 plus JP-1302 plus AGN 192403 (3000μg/kg; I 1 antagonist) was evaluated. In this way, i.v. infusions of 1000μg/kg min of agmatine, but not 300, inhibited the tachycardic response induced by electrical stimulation. Furthermore, the antagonists used or their combinations had no effect on the electrically-induced tachycardic response. On the other hand, the inhibitory response of agmatine was: (1) partially antagonized by BRL 44408 or JP-1302 given separately, a similar response was observed when we administered their combination with imiloxan, but not by imiloxan alone, (2) antagonized in greater magnitude by the combination BRL 44408 plus JP-1302 or the combination BRL 44408 plus imiloxan plus JP-1302, and (3) abolished by the combination BRL 44408 plus JP-1302 plus AGN 192403. Taken together, these results demonstrate that the α 2A - and α 2C -adrenoceptor subtypes and I 1 -imidazoline receptors are involved in the inhibition of the cardiac sympathetic outflow induced by agmatine. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Testing AGN unification via inference from large catalogs

    Science.gov (United States)

    Nikutta, Robert; Ivezic, Zeljko; Elitzur, Moshe; Nenkova, Maia

    2018-01-01

    Source orientation and clumpiness of the central dust are the main factors in AGN classification. Type-1 QSOs are easy to observe and large samples are available (e.g. in SDSS), but obscured type-2 AGN are dimmer and redder as our line of sight is more obscured, making it difficult to obtain a complete sample. WISE has found up to a million QSOs. With only 4 bands and a relatively small aperture the analysis of individual sources is challenging, but the large sample allows inference of bulk properties at a very significant level.CLUMPY (www.clumpy.org) is arguably the most popular database of AGN torus SEDs. We model the ensemble properties of the entire WISE AGN content using regularized linear regression, with orientation-dependent CLUMPY color-color-magnitude (CCM) tracks as basis functions. We can reproduce the observed number counts per CCM bin with percent-level accuracy, and simultaneously infer the probability distributions of all torus parameters, redshifts, additional SED components, and identify type-1/2 AGN populations through their IR properties alone. We increase the statistical power of our AGN unification tests even further, by adding other datasets as axes in the regression problem. To this end, we make use of the NOAO Data Lab (datalab.noao.edu), which hosts several high-level large datasets and provides very powerful tools for handling large data, e.g. cross-matched catalogs, fast remote queries, etc.

  11. Spectral-luminosity evolution of active galactic nuclei (AGN)

    Science.gov (United States)

    Leiter, Darryl; Boldt, Elihu

    1992-01-01

    The origin of the cosmic X-ray and gamma-ray backgrounds is explained via the mechanism of AGN spectral-luminosity evolution. The spectral evolution of precursor active galaxies into AGN, and Newton-Raphson input and output parameters are discussed.

  12. A model for AGN variability on multiple time-scales

    Science.gov (United States)

    Sartori, Lia F.; Schawinski, Kevin; Trakhtenbrot, Benny; Caplar, Neven; Treister, Ezequiel; Koss, Michael J.; Urry, C. Megan; Zhang, C. E.

    2018-05-01

    We present a framework to link and describe active galactic nuclei (AGN) variability on a wide range of time-scales, from days to billions of years. In particular, we concentrate on the AGN variability features related to changes in black hole fuelling and accretion rate. In our framework, the variability features observed in different AGN at different time-scales may be explained as realisations of the same underlying statistical properties. In this context, we propose a model to simulate the evolution of AGN light curves with time based on the probability density function (PDF) and power spectral density (PSD) of the Eddington ratio (L/LEdd) distribution. Motivated by general galaxy population properties, we propose that the PDF may be inspired by the L/LEdd distribution function (ERDF), and that a single (or limited number of) ERDF+PSD set may explain all observed variability features. After outlining the framework and the model, we compile a set of variability measurements in terms of structure function (SF) and magnitude difference. We then combine the variability measurements on a SF plot ranging from days to Gyr. The proposed framework enables constraints on the underlying PSD and the ability to link AGN variability on different time-scales, therefore providing new insights into AGN variability and black hole growth phenomena.

  13. Optical colours of AGN in the Extended Chandra Deep Field South: Obscured black holes in early type galaxies

    OpenAIRE

    Rovilos, E.; Georgantopoulos, I.

    2007-01-01

    We investigate the optical colours of X-ray sources from the Extended Chandra Deep Field South (ECDFS) using photometry from the COMBO-17 survey, aiming to explore AGN - galaxy feedback models. The X-ray sources populate both the ``blue'' and the ``red sequence'' on the colour-magnitude diagram. However, sources in the ``red sequence'' appear systematically more obscured. HST imaging from the GEMS survey demonstrates that the nucleus does not affect significantly the observed colours, and the...

  14. BREATHING FIRE: HOW STELLAR FEEDBACK DRIVES RADIAL MIGRATION, RAPID SIZE FLUCTUATIONS, AND POPULATION GRADIENTS IN LOW-MASS GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    El-Badry, Kareem; Geha, Marla [Department of Astronomy, Yale University, New Haven, CT (United States); Wetzel, Andrew; Hopkins, Philip F. [TAPIR, California Institute of Technology, Pasadena, CA USA (United States); Kereš, Dusan; Chan, T. K. [Department of Physics, Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla (United States); Faucher-Giguère, Claude-André, E-mail: kareem.el-badry@yale.edu [Department of Physics and Astronomy and CIERA, Northwestern University, Evanston, IL (United States)

    2016-04-01

    We examine the effects of stellar feedback and bursty star formation on low-mass galaxies (M{sub star} = 2 × 10{sup 6} − 5 × 10{sup 10} M{sub ⊙}) using the Feedback in Realistic Environments (FIRE) simulations. While previous studies emphasized the impact of feedback on dark matter profiles, we investigate the impact on the stellar component: kinematics, radial migration, size evolution, and population gradients. Feedback-driven outflows/inflows drive significant radial stellar migration over both short and long timescales via two processes: (1) outflowing/infalling gas can remain star-forming, producing young stars that migrate ∼1 kpc within their first 100 Myr, and (2) gas outflows/inflows drive strong fluctuations in the global potential, transferring energy to all stars. These processes produce several dramatic effects. First, galaxies’ effective radii can fluctuate by factors of >2 over ∼200 Myr, and these rapid size fluctuations can account for much of the observed scatter in the radius at fixed M{sub star}. Second, the cumulative effects of many outflow/infall episodes steadily heat stellar orbits, causing old stars to migrate outward most strongly. This age-dependent radial migration mixes—and even inverts—intrinsic age and metallicity gradients. Thus, the galactic-archaeology approach of calculating radial star formation histories from stellar populations at z = 0 can be severely biased. These effects are strongest at M{sub star} ≈ 10{sup 7–9.6} M{sub ⊙}, the same regime where feedback most efficiently cores galaxies. Thus, detailed measurements of stellar kinematics in low-mass galaxies can strongly constrain feedback models and test baryonic solutions to small-scale problems in ΛCDM.

  15. Massive Outflows Associated with ATLASGAL Clumps

    Science.gov (United States)

    Yang, A. Y.; Thompson, M. A.; Urquhart, J. S.; Tian, W. W.

    2018-03-01

    We have undertaken the largest survey for outflows within the Galactic plane using simultaneously observed {}13{CO} and {{{C}}}18{{O}} data. Out of a total of 919 ATLASGAL clumps, 325 have data suitable to identify outflows, and 225 (69% ± 3%) show high-velocity outflows. The clumps with detected outflows show significantly higher clump masses ({M}clump}), bolometric luminosities ({L}bol}), luminosity-to-mass ratios ({L}bol}/{M}clump}), and peak H2 column densities ({N}{{{H}}2}) compared to those without outflows. Outflow activity has been detected within the youngest quiescent clump (i.e., 70 μ {{m}} weak) in this sample, and we find that the outflow detection rate increases with {M}clump}, {L}bol}, {L}bol}/{M}clump}, and {N}{{{H}}2}, approaching 90% in some cases (UC H II regions = 93% ± 3%; masers = 86% ± 4%; HC H II regions = 100%). This high detection rate suggests that outflows are ubiquitous phenomena of massive star formation (MSF). The mean outflow mass entrainment rate implies a mean accretion rate of ∼ {10}-4 {M}ȯ {yr}}-1, in full agreement with the accretion rate predicted by theoretical models of MSF. Outflow properties are tightly correlated with {M}clump}, {L}bol}, and {L}bol}/{M}clump} and show the strongest relation with the bolometric clump luminosity. This suggests that outflows might be driven by the most massive and luminous source within the clump. The correlations are similar for both low-mass and high-mass outflows over 7 orders of magnitude, indicating that they may share a similar outflow mechanism. Outflow energy is comparable to the turbulent energy within the clump; however, we find no evidence that outflows increase the level of clump turbulence as the clumps evolve. This implies that the origin of turbulence within clumps is fixed before the onset of star formation.

  16. Star-forming Galaxies as AGN Imposters? A Theoretical Investigation of the Mid-infrared Colors of AGNs and Extreme Starbursts

    Science.gov (United States)

    Satyapal, Shobita; Abel, Nicholas P.; Secrest, Nathan J.

    2018-05-01

    We conduct for the first time a theoretical investigation of the mid-infrared spectral energy distribution (SED) produced by dust heated by an active galactic nucleus (AGN) and an extreme starburst. These models employ an integrated modeling approach using photoionization and stellar population synthesis models in which both the line and emergent continuum is predicted from gas exposed to the ionizing radiation from a young starburst and an AGN. In this work, we focus on the infrared colors from the Wide-field Infrared Survey Explorer, predicting the dependence of the colors on the input radiation field, the interstellar medium conditions, the obscuring column, and the metallicity. We find that an extreme starburst can mimic an AGN in two band mid-infrared color cuts employed in the literature. However, the three-band color cuts employed in the literature require starbursts with extremely high ionization parameters or gas densities. We show that the extreme mid-infrared colors seen in some blue compact dwarf galaxies are not due to metallicity but rather a combination of high ionization parameters and high column densities. Based on our theoretical calculations, we present a theoretical mid-infrared color cut that will exclude even the most extreme starburst that we have modeled in this work. The theoretical AGN demarcation region presented here can be used to identify elusive AGN candidates for future follow-up studies with the James Webb Space Telescope. The full suite of simulated SEDs are available online.

  17. DUAL SUPERMASSIVE BLACK HOLE CANDIDATES IN THE AGN AND GALAXY EVOLUTION SURVEY

    International Nuclear Information System (INIS)

    Comerford, Julia M.; Schluns, Kyle; Greene, Jenny E.; Cool, Richard J.

    2013-01-01

    Dual supermassive black holes (SMBHs) with kiloparsec-scale separations in merger-remnant galaxies are informative tracers of galaxy evolution, but the avenue for identifying them in large numbers for such studies is not yet clear. One promising approach is to target spectroscopic signatures of systems where both SMBHs are fueled as dual active galactic nuclei (AGNs), or where one SMBH is fueled as an offset AGN. Dual AGNs may produce double-peaked narrow AGN emission lines, while offset AGNs may produce single-peaked narrow AGN emission lines with line-of-sight velocity offsets relative to the host galaxy. We search for such dual and offset systems among 173 Type 2 AGNs at z +3.6 -1.9 % to 18 +5 -5 %). This may be associated with the rise in the galaxy merger fraction over the same cosmic time. As further evidence for a link with galaxy mergers, the AGES offset and dual AGN candidates are tentatively ∼3 times more likely than the overall AGN population to reside in a host galaxy that has a companion galaxy (from 16/173 to 2/7, or 9 +3 -2 % to 29 -19 +26 %). Follow-up observations of the seven offset and dual AGN candidates in AGES will definitively distinguish velocity offsets produced by dual SMBHs from those produced by narrow-line region kinematics, and will help sharpen our observational approach to detecting dual SMBHs

  18. STELLAR POPULATION AND GAS KINEMATICS OF POST-STARBURST QUASARS

    Science.gov (United States)

    Sanmartim, David; Storchi-Bergmann, Thaisa

    2018-01-01

    Post-Starburst Quasars (PSQs) are an intriguing set of galaxies that simultaneously host AGNs and post-starburst stellar populations, making them one of the most suitable objects to investigate the nature of the connection between these two components. The simultaneous presence of a post-starburst population and nuclear activity may be explained by two possible scenarios. In the secular evolutionary scenario star formation may cease due to exhaustion of the gas, while in the quenching one it may cease abruptly when the nuclear activity is triggered. In order to test these scenarios we have mapped the star formation history, manifestations of nuclear activity and excitation mechanisms in the central kpc of two nearby PSQs by using GMOS-IFU observations. In these two first exploratory studies, we have found that the young and intermediate age populations are located in a ring at ≈300-500 kpc, with some contribution of the intermediate age component also in the central region. In both of them, the gas outflow does not coincide with the young stellar population ring, which suggests that the ring is not being affected by the AGN feedback, but only the innermost regions. The individual study one of the PSQs of the sample has supported the evolutionary scenario, since the post-starburst population is not located close enough to the nucleus, where the outflow is observed. As a general behaviour, we found that outflows velocity are on the order of ~600-800 km/s and the mass outflow rates of ≈0.03-0.1 M⊙/yr, one order of magnitude greater than the AGN accretion rate, which suggests a scenario where the AGN-driven wind has entrained material from the circumnuclear region. In order to increase the statistical significance of our previous results and to distinguish between the proposed scenarios, we are conducting the same analysis to a wider sample of PSQs, which we hope will indicate more conclusively which is the favored scenario. During the meeting, we will present

  19. Monitoring AGNs with Hbeta Asymmetry with the Wyoming Infra-Red Observatory

    Science.gov (United States)

    Brotherton, Michael S.; Du, Pu; Wang, Jian-Min; Wang, Kai; Huang, Zhengpeng; Hu, Chen; Li, Yan-rong; Kasper, David H.; Chick, William T.; Nguyen, My L.; Maithil, Jaya; Hand, Derek; Bai, Jin-Ming; Ho, Luis

    2018-06-01

    We present preliminary results from two seasons of reverberation mapping of AGNs using the optical longslit spectrograph on the 2.3 meter WIRO telescope. The majority of the sample is part of our "Monitoring AGNs with Hbeta Asymmetry" project, also known as MAHA, which targets rarer AGNs with extremely asymmetric profiles that may provide new insights into the full diversity of size and structure of the broad-line region (BLR). Our hundreds of nights of telescope time provide dozens of epochs of spectra for approximately two dozen objects. Notably we find that many AGNs with broader asymmetric Hbeta emission lines possess time lags significantly shorter than expected for their luminosity in comparison to the majority of AGNs reverberation mapped.

  20. Remnant radio-loud AGN in the Herschel-ATLAS field

    Science.gov (United States)

    Mahatma, V. H.; Hardcastle, M. J.; Williams, W. L.; Brienza, M.; Brüggen, M.; Croston, J. H.; Gurkan, G.; Harwood, J. J.; Kunert-Bajraszewska, M.; Morganti, R.; Röttgering, H. J. A.; Shimwell, T. W.; Tasse, C.

    2018-04-01

    Only a small fraction of observed active galactic nuclei (AGN) display large-scale radio emission associated with jets, yet these radio-loud AGN have become increasingly important in models of galaxy evolution. In determining the dynamics and energetics of the radio sources over cosmic time, a key question concerns what happens when their jets switch off. The resulting `remnant' radio-loud AGN have been surprisingly evasive in past radio surveys, and therefore statistical information on the population of radio-loud AGN in their dying phase is limited. In this paper, with the recent developments of Low-Frequency Array (LOFAR) and the Very Large Array, we are able to provide a systematically selected sample of remnant radio-loud AGN in the Herschel-ATLAS field. Using a simple core-detection method, we constrain the upper limit on the fraction of remnants in our radio-loud AGN sample to 9 per cent, implying that the extended lobe emission fades rapidly once the core/jets turn off. We also find that our remnant sample has a wide range of spectral indices (-1.5≤slant α ^{1400}_{150}≤slant -0.5), confirming that the lobes of some remnants may possess flat spectra at low frequencies just as active sources do. We suggest that, even with the unprecedented sensitivity of LOFAR, our sample may still only contain the youngest of the remnant population.

  1. Host Galaxy Properties of the Swift BAT Ultra Hard X-Ray Selected AGN

    Science.gov (United States)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) AGN with host galaxy optical data to date, with 185 nearby (zBAT) sample. The BAT AGN host galaxies have intermediate optical colors (u -- r and g -- r) that are bluer than a comparison sample of inactive galaxies and optically selected AGN from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGN are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGN in massive galaxies (log Stellar Mass >10.5) have a 5 to 10 times higher rate of spiral morphologies than in SDSS AGN or inactive galaxies. We also see enhanced far-IR emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGN are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGN have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] Lambda 5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGN in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as whole. In agreement with the Unified Model of AGN, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGN suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  2. Studying the outflow-core interaction with ALMA Cycle 1 observations of the HH 46/47 molecular outflow

    Science.gov (United States)

    Zhang, Yichen; Arce, Hector G.; Mardones, Diego; Dunham, Michael; Garay, Guido; Noriega-Crespo, Alberto; Corder, Stuartt; Offner, Stella; Cabrit, Sylvie

    2016-01-01

    We present ALMA Cycle 1 observations of the HH 46/47 molecular outflow which is driven by a low-mass Class 0/I protostar. Previous ALMA Cycle 0 12CO observation showed outflow cavities produced by the entrainment of ambient gas by the protostellar jet and wide-angle wind. Here we present analysis of observation of 12CO, 13CO, C18O and other species using combined 12m array and ACA observations. The improved angular resolution and sensitivity allow us to detect details of the outflow structure. Specially, we see that the outflow cavity wall is composed of two or more layers of outflowing gas, which separately connect to different shocked regions along the outflow axis inside the cavity, suggesting the outflow cavity wall is composed of multiple shells entrained by a series of jet bow-shock events. The new 13CO and C18O data also allow us to trace relatively denser and slower outflow material than that traced by the 12CO. These species are only detected within about 1 to 2 km/s from the cloud velocity, tracing the outflow to lower velocities than what is possible using only the 12CO emission. Interestingly, the cavity wall of the red lobe appears at very low outflow velocities (as low as ~0.2 km/s). In addition, 13CO and C18O allow us to correct for the CO optical depth, allowing us to obtain more accurate estimates of the outflow mass, momentum and kinetic energy. Applying the optical depth correction significantly increases the previous mass estimate by a factor of 14. The outflow kinetic energy distribution shows that even though the red lobe is mainly entrained by jet bow-shocks, most of the outflow energy is being deposited into the cloud at the base of the outflow cavity rather than around the heads of the bow shocks. The estimated total mass, momentum, and energy of the outflow indicate that the outflow has the ability to disperse the parent core. We found possible evidence for a slowly moving rotating outflow in CS. Our 13CO and C18O observations also trace a

  3. Making Sense of Black Holes: Modeling the Galactic Center and Other Low-power AGN

    Science.gov (United States)

    Falcke, Heino; Moscibrodzka, Monika

    2018-06-01

    The Galactic center host a well-known flat-spectrum radio source, Sgr A*, that is akin to the radio nuclei of quasars and radio galaxies. It is the main target of the Event Horizon Telescope to image the shadow of the black hole. There is, however, still considerable discussion on where the near-horizon emission originates from. Does it come from an accretion flow or is it produced in a relativistic jet-like outflow? Using advanced three-dimensional general relativistic magnetohydrodynamics simulations coupled to general relativistic ray tracing simulations, we now model the dynamics and emission of the plasma around starving black holes in great detail out to several thousand Schwarzschild radii. Jets appear almost naturally in theses simulations. A crucial parameter is the heating of radiating electrons and we argue that electron-proton coupling is low in the accretion flow and high in the magnetized region of the jets, making the jet an important ingredient for the overall appearance of the source. This comprehensive model is able to predict the radio size and appearance, the spectral energy distribution from radio to X-rays, the variability, and the time lags of Sgr A* surprisingly well. Interestingly, the same model can be easily generalized to other low-power AGN like M87, suggesting that GRMHD models for AGN are finally becoming predictive. With upcoming submm-VLBI experiment on the ground and in space, we will be able to further test these models in great detail and see black holes in action.

  4. The joint fit of the BHMF and ERDF for the BAT AGN Sample

    Science.gov (United States)

    Weigel, Anna K.; Koss, Michael; Ricci, Claudio; Trakhtenbrot, Benny; Oh, Kyuseok; Schawinski, Kevin; Lamperti, Isabella

    2018-01-01

    A natural product of an AGN survey is the AGN luminosity function. This statistical measure describes the distribution of directly measurable AGN luminosities. Intrinsically, the shape of the luminosity function depends on the distribution of black hole masses and Eddington ratios. To constrain these fundamental AGN properties, the luminosity function thus has to be disentangled into the black hole mass and Eddington ratio distribution function. The BASS survey is unique as it allows such a joint fit for a large number of local AGN, is unbiased in terms of obscuration in the X-rays and provides black hole masses for type-1 and type-2 AGN. The black hole mass function at z ~ 0 represents an essential baseline for simulations and black hole growth models. The normalization of the Eddington ratio distribution function directly constrains the AGN fraction. Together, the BASS AGN luminosity, black hole mass and Eddington ratio distribution functions thus provide a complete picture of the local black hole population.

  5. Incision of the Jezero Crater Outflow Channel by Fluvial Sediment Transport

    Science.gov (United States)

    Holo, S.; Kite, E. S.

    2017-12-01

    Jezero crater, the top candidate landing site for the Mars 2020 rover, once possessed a lake that over-spilled and eroded a large outflow channel into the Eastern rim. The Western deltaic sediments that would be the primary science target of the rover record a history of lake level, which is modulated by the inflow and outflow channels. While formative discharges for the Western delta exist ( 500 m3/s), little work has been done to see if these flows are the same responsible for outflow channel incision. Other models of the Jezero outflow channel incision assume that a single rapid flood (incision timescales of weeks), with unknown initial hydraulic head and no discharge into the lake (e.g. from the inflow channels or the subsurface), incised an open channel with discharge modulated by flow over a weir. We present an alternate model where, due to an instability at the threshold of sediment motion, the incision of the outflow channel occurs in concert with lake filling. In particular, we assume a simplified lake-channel-valley system geometry and that the channel is hydraulically connected to the filling/draining crater lake. Bed load sediment transport and water discharge through the channel are quantified using the Meyer-Peter and Mueller relation and Manning's law respectively. Mass is conserved for both water and sediment as the lake level rises/falls and the channel incises. This model does not resolve backwater effects or concavity in the alluvial system, but it does capture the non-linear feedbacks between lake draining, erosion rate, channel flow rate, and slope relaxation. We identify controls on incision of the outflow channel and estimate the time scale of outflow channel formation through a simple dynamical model. We find that the observed 300m of channel erosion can be reproduced in decades to centuries of progressive bed load as the delta forming flows fill the lake. This corresponds to time scales on the order of or smaller than the time scale

  6. AGNs with discordant optical and X-ray classification are not a physical family: diverse origin in two AGNs

    Science.gov (United States)

    Ordovás-Pascual, I.; Mateos, S.; Carrera, F. J.; Wiersema, K.; Barcons, X.; Braito, V.; Caccianiga, A.; Del Moro, A.; Della Ceca, R.; Severgnini, P.

    2017-07-01

    Approximately 3-17 per cent of active galactic nuclei (AGNs) without detected rest-frame UV/optical broad emission lines (type-2 AGN) do not show absorption in X-rays. The physical origin behind the apparently discordant optical/X-ray properties is not fully understood. Our study aims at providing insight into this issue by conducting a detailed analysis of the nuclear dust extinction and X-ray absorption properties of two AGNs with low X-ray absorption and with high optical extinction, for which a rich set of high-quality spectroscopic data is available from XMM-Newton archive data in X-rays and XSHOOTER proprietary data at UV-to-NIR wavelengths. In order to unveil the apparent mismatch, we have determined the AV/NH and both the supermassive black hole and the host galaxy masses. We find that the mismatch is caused in one case by an abnormally high dust-to-gas ratio that makes the UV/optical emission to appear more obscured than in the X-rays. For the other object, we find that the dust-to-gas ratio is similar to the Galactic one but the AGN is hosted by a very massive galaxy so that the broad emission lines and the nuclear continuum are swamped by the star light and difficult to detect.

  7. PRIMUS: INFRARED AND X-RAY AGN SELECTION TECHNIQUES AT 0.2 < z < 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, Alexander J.; Coil, Alison L.; Aird, James; Diamond-Stanic, Aleksandar M. [Center for Astrophysics and Space Sciences, Department of Physics, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States); Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Cool, Richard J. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Eisenstein, Daniel J. [Harvard College Observatory, 60 Garden St., Cambridge, MA 02138 (United States); Wong, Kenneth C. [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Zhu Guangtun [Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 (United States)

    2013-06-10

    We present a study of Spitzer/IRAC and X-ray active galactic nucleus (AGN) selection techniques in order to quantify the overlap, uniqueness, contamination, and completeness of each. We investigate how the overlap and possible contamination of the samples depend on the depth of both the IR and X-ray data. We use Spitzer/IRAC imaging, Chandra and XMM-Newton X-ray imaging, and spectroscopic redshifts from the PRism MUlti-object Survey to construct galaxy and AGN samples at 0.2 < z < 1.2 over 8 deg{sup 2}. We construct samples over a wide range of IRAC flux limits (SWIRE to GOODS depth) and X-ray flux limits (10 ks to 2 Ms). We compare IR-AGN samples defined using both the IRAC color selection of Stern et al. and Donley et al. with X-ray-detected AGN samples. For roughly similar depth IR and X-ray surveys, we find that {approx}75% of IR-selected AGNs are also identified as X-ray AGNs. This fraction increases to {approx}90% when comparing against the deepest X-ray data, indicating that at most {approx}10% of IR-selected AGNs may be heavily obscured. The IR-AGN selection proposed by Stern et al. suffers from contamination by star-forming galaxies at various redshifts when using deeper IR data, though the selection technique works well for shallow IR data. While similar overall, the IR-AGN samples preferentially contain more luminous AGNs, while the X-ray AGN samples identify a wider range of AGN accretion rates including low specific accretion rate AGNs, where the host galaxy light dominates at IR wavelengths. The host galaxy populations of the IR and X-ray AGN samples have similar rest-frame colors and stellar masses; both selections identify AGNs in blue, star-forming and red, quiescent galaxies.

  8. Duty-cycle and energetics of remnant radio-loud AGN

    Science.gov (United States)

    Turner, Ross J.

    2018-05-01

    Deriving the energetics of remnant and restarted active galactic nuclei (AGNs) is much more challenging than for active sources due to the complexity in accurately determining the time since the nucleus switched-off. I resolve this problem using a new approach that combines spectral ageing and dynamical models to tightly constrain the energetics and duty-cycles of dying sources. Fitting the shape of the integrated radio spectrum yields the fraction of the source age the nucleus is active; this, in addition to the flux density, source size, axis ratio, and properties of the host environment, provides a constraint on dynamical models describing the remnant radio source. This technique is used to derive the intrinsic properties of the well-studied remnant radio source B2 0924+30. This object is found to spend 50_{-12}^{+14} Myr in the active phase and a further 28_{-5}^{+6} Myr in the quiescent phase, have a jet kinetic power of 3.6_{-1.7}^{+3.0}× 10^{37} W, and a lobe magnetic field strength below equipartition at the 8σ level. The integrated spectra of restarted and intermittent radio sources are found to yield a `steep-shallow' shape when the previous outburst occurred within 100 Myr. The duty-cycle of B2 0924+30 is hence constrained to be δ < 0.15 by fitting the shortest time to the previous comparable outburst that does not appreciably modify the remnant spectrum. The time-averaged feedback energy imparted by AGNs into their host galaxy environments can in this manner be quantified.

  9. Differential Canalograms Detect Outflow Changes from Trabecular Micro-Bypass Stents and Ab Interno Trabeculectomy.

    Science.gov (United States)

    Parikh, Hardik A; Loewen, Ralitsa T; Roy, Pritha; Schuman, Joel S; Lathrop, Kira L; Loewen, Nils A

    2016-11-04

    Recently introduced microincisional glaucoma surgeries that enhance conventional outflow offer a favorable risk profile over traditional surgeries, but can be unpredictable. Two paramount challenges are the lack of an adequate training model for angle surgeries and the absence of an intraoperative quantification of surgical success. To address both, we developed an ex vivo training system and a differential, quantitative canalography method that uses slope-adjusted fluorescence intensities of two different chromophores to avoid quenching. We assessed outflow enhancement by trabecular micro-bypass (TMB) implantation or by ab interno trabeculectomy (AIT). In this porcine model, TMB resulted in an insignificant (p > 0.05) outflow increase of 13 ± 5%, 14 ± 8%, 9 ± 3%, and 24 ± 9% in the inferonasal, superonasal, superotemporal, and inferotemporal quadrant, respectively. AIT caused a 100 ± 50% (p = 0.002), 75 ± 28% (p = 0.002), 19 ± 8%, and 40 ± 21% increase in those quadrants. The direct gonioscopy and tactile feedback provided a surgical experience that was very similar to that in human patients. Despite the more narrow and discontinuous circumferential drainage elements in the pig with potential for underperformance or partial stent obstruction, unequivocal patterns of focal outflow enhancement by TMB were seen in this training model. AIT achieved extensive access to outflow pathways beyond the surgical site itself.

  10. Non-thermal AGN models

    Energy Technology Data Exchange (ETDEWEB)

    Band, D.L.

    1986-12-01

    The infrared, optical and x-ray continua from radio quiet active galactic nuclei (AGN) are explained by a compact non-thermal source surrounding a thermal ultraviolet emitter, presumably the accretion disk around a supermassive black hole. The ultraviolet source is observed as the ''big blue bump.'' The flat (..cap alpha.. approx. = .7) hard x-ray spectrum results from the scattering of thermal ultraviolet photons by the flat, low energy end of an electron distribution ''broken'' by Compton losses; the infrared through soft x-ray continuum is the synchrotron radiation of the steep, high energy end of the electron distribution. Quantitative fits to specific AGN result in models which satisfy the variability constraints but require electron (re)acceleration throughout the source. 11 refs., 1 fig.

  11. Nuclear mid-infrared properties of nearby low-luminosity AGN

    International Nuclear Information System (INIS)

    Asmus, D; Duschl, W J; Hönig, S F; Gandhi, P; Smette, A

    2012-01-01

    We present ground-based high-spatial resolution mid-infrared (MIR) observations of 20 nearby low-luminosity AGN (LLAGN) with VLT/VISIR and the preliminary analysis of a new sample of 10 low-luminosity Seyferts observed with Gemini/Michelle. LLAGN are of great interest because these objects are the most common among active galaxies, especially in the nearby universe. Studying them in great detail makes it possible to investigate the AGN evolution over cosmic timescale. Indeed, many LLAGN likely represent the final stage of an AGN's lifetime. We show that even at low luminosities and accretion rates nuclear unresolved MIR emission is present in most objects. Compared to lower spatial resolution Spitzer/IRS spectra, the high-resolution MIR photometry exhibits significantly lower fluxes and different PAH emission feature properties in many cases. By using scaled Spitzer/IRS spectra of typical starburst galaxies, we show that the star formation contribution to the 12 μm emission is minor in the central parsecs of most LLAGN. Therefore, the observed MIR emission in the VISIR and Michelle data is most likely emitted by the AGN itself, which, for higher luminosity AGN, is interpreted as thermal emission from a dusty torus. Furthermore, the 12 /amemission of the LLAGN is strongly correlated with the absorption corrected 2-10 keV luminosity and the MIR- X-ray correlation found previously for AGN is extended to a range from 10 40 to 10 45 erg/s. This correlation is independent of the object type, and in particular the low-luminosity Seyferts observed with Michelle fall exactly on the power-law fit valid for brighter AGN. In addition, no dependency of the MIR-X-ray ratio on the accretion rate is found. These results are consistent with the unification model being applicable even in the probed low-luminosity regime.

  12. Uncovering extreme AGN variability in serendipitous X-ray source surveys

    Science.gov (United States)

    Moran, Edward C.; Garcia Soto, Aylin; LaMassa, Stephanie; Urry, Meg

    2018-01-01

    Constraints on the duty cycle and duration of accretion episodes in active galactic nuclei (AGNs) are vital for establishing how most AGNs are fueled, which is essential for a complete picture of black hole/galaxy co-evolution. Perhaps the best handle we have on these activity parameters is provided by AGNs that have displayed dramatic changes in their bolometric luminosities and, in some cases, spectroscopic classifications. Given that X-ray emission is directly linked to black-hole accretion, X-ray surveys should provide a straightforward means of identifying AGNs that have undergone dramatic changes in their accretion states. However, it appears that such events are very rare, so wide-area surveys separated in time by many years are needed to maximize discovery rates. We have cross-correlated the Einstein IPC Two-Sigma Catalog with the ROSAT All-Sky Survey Faint Source Catalog to identify a sample of soft X-ray sources that varied by factors ranging from 7 to more than 100 over a ten year timescale. When possible, we have constructed long-term X-ray light curves for the sources by combining the Einstein and RASS fluxes with those obtained from serendipitous pointed observations by ROSAT, Chandra,XMM, and Swift. Optical follow-up observations indicate that many of the extremely variable sources in our sample are indeed radio-quiet AGNs. Interestingly, the majority of objects that dimmed between ~1980 and ~1990 are still (or are again) broad-line AGNs rather than“changing-look” candidates that have more subtle AGN signatures in their spectra — despite the fact that none of the sources examined thus far has returned to its highest observed luminosity. Future X-ray observations will provide the opportunity to characterize the X-ray behavior of these anonymous, extreme AGNs over a four decade span.

  13. A MODEL FOR TYPE 2 CORONAL LINE FOREST (CLiF) AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Glidden, Ana [Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Rose, Marvin; Elvis, Martin; McDowell, Jonathan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-06-10

    We present a model for the classification of Coronal Line Forest Active Galactic Nuclei (CLiF AGNs). CLiF AGNs are of special interest due to their remarkably large number of emission lines, especially forbidden high-ionization lines (FHILs). Rose et al. suggest that their emission is dominated by reflection from the inner wall of the obscuring region rather than direct emission from the accretion disk. This makes CLiF AGNs laboratories to test AGN-torus models. Modeling an AGN as an accreting supermassive black hole surrounded by a cylinder of dust and gas, we show a relationship between the viewing angle and the revealed area of the inner wall. From the revealed area, we can determine the amount of FHIL emission at various angles. We calculate the strength of [Fe vii] λ 6087 emission for a number of intermediate angles (30°, 40°, and 50°) and compare the results with the luminosity of the observed emission line from six known CLiF AGNs. We find that there is good agreement between our model and the observational results. The model also enables us to determine the relationship between the type 2:type 1 AGN fraction vs the ratio of torus height to radius, h / r .

  14. Feedback by AGN Jets and Wide-angle Winds on a Galactic Scale

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, Zachary; Silk, Joseph [The Johns Hopkins University Department of Physics and Astronomy, Bloomberg Center for Physics and Astronomy, Room 366, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Gaibler, Volker [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2017-07-20

    To investigate the differences in mechanical feedback from radio-loud and radio-quiet active galactic nuclei on the host galaxy, we perform 3D AMR hydrodynamic simulations of wide-angle, radio-quiet winds with different inclinations on a single, massive, gas-rich disk galaxy at a redshift of 2–3. We compare our results to hydrodynamic simulations of the same galaxy but with a jet. The jet has an inclination of 0° (perpendicular to the galactic plane), and the winds have inclinations of 0°, 45°, and 90°. We analyze the impact on the host’s gas, star formation, and circumgalactic medium. We find that jet feedback is energy-driven and wind feedback is momentum-driven. In all the simulations, the jet or wind creates a cavity mostly devoid of dense gas in the nuclear region where star formation is then quenched, but we find strong positive feedback in all the simulations at radii greater than 3 kpc. All four simulations have similar SFRs and stellar velocities with large radial and vertical components. However, the wind at an inclination of 90° creates the highest density regions through ram pressure and generates the highest rates of star formation due to its ongoing strong interaction with the dense gas of the galactic plane. With increased wind inclination, we find greater asymmetry in gas distribution and resulting star formation. Our model generates an expanding ring of triggered star formation with typical velocities of the order of 1/3 of the circular velocity, superimposed on the older stellar population. This should result in a potentially detectable blue asymmetry in stellar absorption features at kiloparsec scales.

  15. Can double-peaked lines indicate merging effects in AGNs?

    Directory of Open Access Journals (Sweden)

    Popović L.Č.

    2000-01-01

    Full Text Available The influence of merging effects in the central part of an Active Galactic Nucleus (AGN on the emission spectral line shapes are discussed. We present a model of close binary Broad Line Region. The numerical experiments show that the merging effects can explain double peaked lines. The merging effects may also be present in the center of AGNs, although they emit slightly asymmetric as well as symmetric and relatively stable (in profile shape spectral lines. Depending on the black hole masses and their orbit elements such model may explain some of the line profile shapes observed in AGNs. This work shows that if one is looking for the merging effects in the central region as well as in the wide field structure of AGNs, he should first pay attention to objects which have double peaked lines.

  16. ISOTROPIC LUMINOSITY INDICATORS IN A COMPLETE AGN SAMPLE

    International Nuclear Information System (INIS)

    Diamond-Stanic, Aleksandar M.; Rieke, George H.; Rigby, Jane R.

    2009-01-01

    The [O IV] λ25.89 μm line has been shown to be an accurate indicator of active galactic nucleus (AGN) intrinsic luminosity in that it correlates well with hard (10-200 keV) X-ray emission. We present measurements of [O IV] for 89 Seyfert galaxies from the unbiased revised Shapley-Ames (RSA) sample. The [O IV] luminosity distributions of obscured and unobscured Seyferts are indistinguishable, indicating that their intrinsic AGN luminosities are quite similar and that the RSA sample is well suited for tests of the unified model. In addition, we analyze several commonly used proxies for AGN luminosity, including [O III] λ5007 A, 6 cm radio, and 2-10 keV X-ray emission. We find that the radio luminosity distributions of obscured and unobscured AGNs show no significant difference, indicating that radio luminosity is a useful isotropic luminosity indicator. However, the observed [O III] and 2-10 keV luminosities are systematically smaller for obscured Seyferts, indicating that they are not emitted isotropically.

  17. The AGN Luminosity Fraction in Galaxy Mergers

    Science.gov (United States)

    Dietrich, Jeremy; Weiner, Aaron; Ashby, Matthew; Martinez-Galarza, Juan Rafael; Smith, Howard Alan

    2017-01-01

    Galaxy mergers are key events in galaxy evolution, generally triggering massive starbursts and AGNs. However, in these chaotic systems, it is not yet known what fraction each of these two mechanisms contributes to the total luminosity. Here we measure and model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) in up to 33 broad bands from the UV to the far-IR for 23 IR-luminous galaxies to estimate the fraction of the bolometric IR luminosity that can be attributed to the AGN. The galaxies are split nearly evenly into two subsamples: late-stage mergers, found in the IRAS Revised Bright Galaxy Sample or Faint Source Catalog, and early-stage mergers found in the Spitzer Interacting Galaxy Sample. We find that the AGN contribution to the total IR luminosity varies greatly from system to system, from 0% up to ~90%, but is substantially greater in the later-stage and brighter mergers. This is consistent with what is known about galaxy evolution and the triggering of AGNs.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  18. Imprints of the large-scale structure on AGN formation and evolution

    Science.gov (United States)

    Porqueres, Natàlia; Jasche, Jens; Enßlin, Torsten A.; Lavaux, Guilhem

    2018-04-01

    Black hole masses are found to correlate with several global properties of their host galaxies, suggesting that black holes and galaxies have an intertwined evolution and that active galactic nuclei (AGN) have a significant impact on galaxy evolution. Since the large-scale environment can also affect AGN, this work studies how their formation and properties depend on the environment. We have used a reconstructed three-dimensional high-resolution density field obtained from a Bayesian large-scale structure reconstruction method applied to the 2M++ galaxy sample. A web-type classification relying on the shear tensor is used to identify different structures on the cosmic web, defining voids, sheets, filaments, and clusters. We confirm that the environmental density affects the AGN formation and their properties. We found that the AGN abundance is equivalent to the galaxy abundance, indicating that active and inactive galaxies reside in similar dark matter halos. However, occurrence rates are different for each spectral type and accretion rate. These differences are consistent with the AGN evolutionary sequence suggested by previous authors, Seyferts and Transition objects transforming into low-ionization nuclear emission line regions (LINERs), the weaker counterpart of Seyferts. We conclude that AGN properties depend on the environmental density more than on the web-type. More powerful starbursts and younger stellar populations are found in high densities, where interactions and mergers are more likely. AGN hosts show smaller masses in clusters for Seyferts and Transition objects, which might be due to gas stripping. In voids, the AGN population is dominated by the most massive galaxy hosts.

  19. Mid-infrared Variability of Changing-look AGNs

    International Nuclear Information System (INIS)

    Sheng, Zhenfeng; Wang, Tinggui; Jiang, Ning; Yang, Chenwei; Peng, Bo; Yan, Lin; Dou, Liming

    2017-01-01

    It is known that some active galactic nuclei (AGNs) transit from Type 1 to Type 2 or vice versa. There are two explanations for the so-called changing-look AGNs: one is the dramatic change of the obscuration along the line of sight, and the other is the variation of accretion rate. In this Letter, we report the detection of large amplitude variations in the mid-infrared luminosity during the transitions in 10 changing-look AGNs using the Wide-field Infrared Survey Explorer ( WISE ) and newly released Near-Earth Object WISE Reactivation data. The mid-infrared light curves of 10 objects echo the variability in the optical band with a time lag expected for dust reprocessing. The large variability amplitude is inconsistent with the scenario of varying obscuration, rather it supports the scheme of dramatic change in the accretion rate.

  20. Mid-infrared Variability of Changing-look AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Zhenfeng; Wang, Tinggui; Jiang, Ning; Yang, Chenwei; Peng, Bo [CAS Key Laboratory for Researches in Galaxies and Cosmology, University of Sciences and Technology of China, Hefei, Anhui 230026 (China); Yan, Lin [Caltech Optical Observatories, Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Dou, Liming, E-mail: shengzf@mail.ustc.edu.cn, E-mail: twang@ustc.edu.cn [Center for Astrophysics, Guangzhou University, Guangzhou 510006 (China)

    2017-09-01

    It is known that some active galactic nuclei (AGNs) transit from Type 1 to Type 2 or vice versa. There are two explanations for the so-called changing-look AGNs: one is the dramatic change of the obscuration along the line of sight, and the other is the variation of accretion rate. In this Letter, we report the detection of large amplitude variations in the mid-infrared luminosity during the transitions in 10 changing-look AGNs using the Wide-field Infrared Survey Explorer ( WISE ) and newly released Near-Earth Object WISE Reactivation data. The mid-infrared light curves of 10 objects echo the variability in the optical band with a time lag expected for dust reprocessing. The large variability amplitude is inconsistent with the scenario of varying obscuration, rather it supports the scheme of dramatic change in the accretion rate.

  1. Particle content, radio-galaxy morphology, and jet power: all radio-loud AGN are not equal

    Science.gov (United States)

    Croston, J. H.; Ineson, J.; Hardcastle, M. J.

    2018-05-01

    Ongoing and future radio surveys aim to trace the evolution of black hole growth and feedback from active galactic nuclei (AGNs) throughout cosmic time; however, there remain major uncertainties in translating radio luminosity functions into a reliable assessment of the energy input as a function of galaxy and/or dark matter halo mass. A crucial and long-standing problem is the composition of the radio-lobe plasma that traces AGN jet activity. In this paper, we carry out a systematic comparison of the plasma conditions in Fanaroff & Riley class I and II radio galaxies to demonstrate conclusively that their internal composition is systematically different. This difference is best explained by the presence of an energetically dominant proton population in the FRI, but not the FRII radio galaxies. We show that, as expected from this systematic difference in particle content, radio morphology also affects the jet-power/radio-luminosity relationship, with FRII radio galaxies having a significantly lower ratio of jet power to radio luminosity than the FRI cluster radio sources used to derive jet-power scaling relations via X-ray cavity measurements. Finally, we also demonstrate conclusively that lobe composition is unconnected to accretion mode (optical excitation class): the internal conditions of low- and high-excitation FRII radio lobes are indistinguishable. We conclude that inferences of population-wide AGN impact require careful assessment of the contribution of different jet subclasses, particularly given the increased diversity of jet evolutionary states expected to be present in deep, low-frequency radio surveys such as the LOFAR Two-Metre Sky Survey.

  2. Hypercat - Hypercube of Clumpy AGN Tori

    Science.gov (United States)

    Nikutta, Robert; Lopez-Rodriguez, Enrique; Ichikawa, Kohei; Levenson, Nancy; Packham, Christopher C.

    2017-06-01

    Dusty tori surrounding the central engines of Active Galactic Nuclei (AGN) are required by the Unification Paradigm, and are supported by many observations, e.g. variable nuclear absorber (sometimes Compton-thick) in X-rays, reverberation mapping in optical/UV, hot dust emission and SED shapes in NIR/MIR, molecular and cool-dust tori observed with ALMA in sub-mm.While models of AGN torus SEDs have been developed and utilized for a long time, the study of the resolved emission morphology (brightness maps) has so far been under-appreciated, presumably because resolved observations of the central parsec in AGN are only possible very recently. Currently, only NIR+MIR interferometry is capable of resolving the nuclear dust emission (but not of producing images, until MATISSE comes online). Furthermore, MIR interferometry has delivered also puzzling results, e.g. that in some resolved sources the light emanates preferentially from polar directions above the "torus" system, and not from the equatorial plane, where most of the dust is located.We are preparing the release of a panchromatic, fully interpolable hypercube of brightness maps and projected dust images for a large number of CLUMPY torus models (Nenkova+2008), that will help facilitate studies of resolved AGN emission and dust morphologies. Together with the cube we will release a comprehensive set of open-source tools (Python) that will enable researches to work efficiently with this large hypercube:* easy sub-cube selection + memory-mapping (mitigating the too-big-for-RAM problem)* multi-dim image interpolation (get an image at any wavelength & model parameter combination)* simulation of observations with telescopes (compute/provide + apply a PSF) and interferometers (get visibilities)* analyze images with respect to the power contained at all scales and orientations (via 2D steerable wavelets), addressing the seemingly puzzling results mentioned aboveA series of papers is in preparation, aiming at solving the

  3. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    Energy Technology Data Exchange (ETDEWEB)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei, E-mail: gbmou@ustc.edu.cn [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei 230026 (China)

    2017-07-20

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.

  4. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    International Nuclear Information System (INIS)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei

    2017-01-01

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.

  5. Numerical Study on Outflows in Seyfert Galaxies I: Narrow Line Region Outflows in NGC 4151

    Science.gov (United States)

    Mou, Guobin; Wang, Tinggui; Yang, Chenwei

    2017-07-01

    The origin of narrow line region (NLR) outflows remains unknown. In this paper, we explore the scenario in which these outflows are circumnuclear clouds driven by energetic accretion disk winds. We choose the well-studied nearby Seyfert galaxy NGC 4151 as an example. By performing 3D hydrodynamical simulations, we are able to reproduce the radial distributions of velocity, mass outflow rate, and kinetic luminosity of NLR outflows in the inner 100 pc deduced from spatial resolved spectroscopic observations. The demanded kinetic luminosity of disk winds is about two orders of magnitude higher than that inferred from the NLR outflows, but is close to the ultrafast outflows (UFO) detected in the X-ray spectrum and a few times lower than the bolometric luminosity of the Seyfert. Our simulations imply that the scenario is viable for NGC 4151. The existence of the underlying disk winds can be confirmed by their impacts on higher density ISM, e.g., shock excitation signs, and the pressure in NLR.

  6. EXTENDED X-RAY EMISSION IN THE H I CAVITY OF NGC 4151: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK?

    International Nuclear Information System (INIS)

    Wang Junfeng; Fabbiano, Giuseppina; Risaliti, Guido; Elvis, Martin; Zezas, Andreas; Mundell, Carole G.; Dumas, Gaelle; Schinnerer, Eva

    2010-01-01

    We present the Chandra discovery of soft diffuse X-ray emission in NGC 4151 (L 0.5-2 k eV ∼ 10 39 erg s -1 ), extending ∼2 kpc from the active nucleus and filling in the cavity of the H I material. The best fit to the X-ray spectrum requires either a kT ∼ 0.25 keV thermal plasma or a photoionized component. In the thermal scenario, hot gas heated by the nuclear outflow would be confined by the thermal pressure of the H I gas and the dynamic pressure of inflowing neutral material in the galactic disk. In the case of photoionization, the nucleus must have experienced an Eddington limit outburst. For both scenarios, the active galactic nucleus (AGN)-host interaction in NGC 4151 must have occurred relatively recently (some 10 4 yr ago). This very short timescale to the last episode of high activity phase may imply such outbursts occupy ∼>1% of AGN lifetime.

  7. Spatially Resolved Imaging and Spectroscopy of Candidate Dual Active Galactic Nuclei

    Science.gov (United States)

    McGurk, R. C.; Max, C. E.; Medling, A. M.; Shields, G. A.; Comerford, J. M.

    2015-09-01

    When galaxies merge, both central supermassive black holes are immersed in a dense and chaotic environment. If there is sufficient gas in the nuclear regions, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O iii] emission lines has been proposed as a technique to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O iii] emitting AGNs from Sloan Digital Sky Survey (SDSS) DR7. By obtaining new and archival high spatial resolution images taken with the Keck II Laser Guide Star Adaptive Optics system and the near-infrared camera NIRC2, we show that 30% of 140 double-peaked [O iii] emission line SDSS AGNs have two spatial components within a 3″ radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up three spatially double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and 10 candidates with long-slit spectroscopy from the Shane Kast Double Spectrograph at Lick Observatory. We find that the double-peaked emission lines in our sample of 12 candidates are caused by: one dual AGN (SDSS J114642.47+511029.6), one confirmed outflow and four likely outflows, two pairs of star-forming galaxies, one candidate indeterminate due to sky line interference, and three AGNs with spatially coincident double [O iii] peaks, likely due to unresolved complex narrow line kinematics, outflows, binary AGN, or small-scale jets.

  8. SPATIALLY RESOLVED IMAGING AND SPECTROSCOPY OF CANDIDATE DUAL ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    McGurk, R. C.; Max, C. E. [Astronomy Department and UCO-Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Medling, A. M. [Research School of Astronomy and Astrophysics, Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia); Shields, G. A. [Laguna Falls Institute for Astrophysics, Austin, TX 78746 (United States); Comerford, J. M., E-mail: rosalie.mcgurk@gmail.com, E-mail: max@ucolick.org, E-mail: anne.medling@anu.edu.au, E-mail: shields@lfastro.org, E-mail: julie.comerford@colorado.edu [Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2015-09-20

    When galaxies merge, both central supermassive black holes are immersed in a dense and chaotic environment. If there is sufficient gas in the nuclear regions, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O iii] emission lines has been proposed as a technique to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O iii] emitting AGNs from Sloan Digital Sky Survey (SDSS) DR7. By obtaining new and archival high spatial resolution images taken with the Keck II Laser Guide Star Adaptive Optics system and the near-infrared camera NIRC2, we show that 30% of 140 double-peaked [O iii] emission line SDSS AGNs have two spatial components within a 3″ radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up three spatially double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and 10 candidates with long-slit spectroscopy from the Shane Kast Double Spectrograph at Lick Observatory. We find that the double-peaked emission lines in our sample of 12 candidates are caused by: one dual AGN (SDSS J114642.47+511029.6), one confirmed outflow and four likely outflows, two pairs of star-forming galaxies, one candidate indeterminate due to sky line interference, and three AGNs with spatially coincident double [O iii] peaks, likely due to unresolved complex narrow line kinematics, outflows, binary AGN, or small-scale jets.

  9. SPATIALLY RESOLVED IMAGING AND SPECTROSCOPY OF CANDIDATE DUAL ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    McGurk, R. C.; Max, C. E.; Medling, A. M.; Shields, G. A.; Comerford, J. M.

    2015-01-01

    When galaxies merge, both central supermassive black holes are immersed in a dense and chaotic environment. If there is sufficient gas in the nuclear regions, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O iii] emission lines has been proposed as a technique to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O iii] emitting AGNs from Sloan Digital Sky Survey (SDSS) DR7. By obtaining new and archival high spatial resolution images taken with the Keck II Laser Guide Star Adaptive Optics system and the near-infrared camera NIRC2, we show that 30% of 140 double-peaked [O iii] emission line SDSS AGNs have two spatial components within a 3″ radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up three spatially double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and 10 candidates with long-slit spectroscopy from the Shane Kast Double Spectrograph at Lick Observatory. We find that the double-peaked emission lines in our sample of 12 candidates are caused by: one dual AGN (SDSS J114642.47+511029.6), one confirmed outflow and four likely outflows, two pairs of star-forming galaxies, one candidate indeterminate due to sky line interference, and three AGNs with spatially coincident double [O iii] peaks, likely due to unresolved complex narrow line kinematics, outflows, binary AGN, or small-scale jets

  10. Molecular outflows in protostellar evolution

    International Nuclear Information System (INIS)

    Fukui, Y.; Iwata, T.; Mizuno, A.; Ogawa, H.; Kawabata, K.; Sugitani, K.

    1989-01-01

    Molecular outflow is an energetic mass-ejection phenomenon associated with very early stage of stellar evolution. The large kinetic energy involved in the phenomenon indicates that outflow may play an essential role in the process of star formation, particularly by extracting angular momentum. Most of the previous searches have been strongly biased toward optical or near-infrared signposts of star formation. They are not able, therefore, to provide the complete database necessary for a statistical study of the evolutionary status of molecular outflow. To overcome this difficulty, it is of vital importance to make an unbiased search of single molecular clouds for molecular outflows; here we report the final result of such a survey of the Lynds 1641 dark cloud. We show that molecular outflows are characterized by a total luminosity significantly greater than that of T Tauri stars. This indicates that molecular outflow corresponds to the main accretion phase of protostellar evolution, in which the luminosity excess is due to the gravitational energy released by dynamical mass accretion onto the protostellar core. (author)

  11. X-Rays and Infrared Selected AGN

    Science.gov (United States)

    Kirhakos, S. D.; Steiner, J. E.

    1990-11-01

    RESUMEN. En la busqueda de nucleos activos galacticos (NAG) oscurecidos, seleccionamos una tnuestra de galaxias ernisoras de rayos S infrarrojos, Ia mayoria de las cuales son vistas de perf ii. La 6ptica de la regi6n nuclear de las galaxias seleccionadas revelan que el 76% de ellas muestran lineas de emisi5n La clasificaci6n de los es- pectros de acuerdo a los anchos y a la intensidad de cocientes de lineas muestran que existen 34 NAG, 34 objetos de tipo de transici6n y 34 galaxias de la regi6n con nucleos de tipo regi6n H II. Entre los NAG, 3 son del tipo Seyfert I y las otras son del tipo 2. Sugerimos que los objetos identificados como NAG de llneas angostas son objetos tipo Seyfert I oscurecidos ABSTRACT. Looking for obscured active galactic nuclei (AGN), we selected a sample of infrarediX-rays emitting galaxies, mos"t of which are seen as edge-on. Optical spectroscopy of the nuclear region of the selected galaxies revealed that 76 % of them show emission l 'nes. Classification of the spectra according to the widths and line intensity ratios shows that there are 34 AGN, 34 transition type objects and 43 nuclear HIl-like region galaxies. Among the AGN, three are Seyfert type 1 and the others are type 2 objects. We suggest that the objects identified as narrow line AGN are obscured Seyfert 1. o'L : GALAXIES-ACTIVE - X-RAY S-GENERAL

  12. Morphology of AGN Emission Line Regions in SDSS-IV MaNGA Survey

    Science.gov (United States)

    He, Zhicheng; Sun, Ai-Lei; Zakamska, Nadia L.; Wylezalek, Dominika; Kelly, Michael; Greene, Jenny E.; Rembold, Sandro B.; Riffel, Rogério; Riffel, Rogemar A.

    2018-05-01

    Extended narrow-line regions (NLRs) around active galactic nuclei (AGN) are shaped by the distribution of gas in the host galaxy and by the geometry of the circumnuclear obscuration, and thus they can be used to test the AGN unification model. In this work, we quantify the morphologies of the narrow-line regions in 308 nearby AGNs (z = 0 - 0.14, Lbol˜1042.4 - 44.1 erg s-1) from the MaNGA survey. Based on the narrow-line region maps, we find that a large fraction (81%) of these AGN have bi-conical NLR morphology. The distribution of their measured opening angles suggests that the intrinsic opening angles of the ionization cones has a mean value of 85-98° with a finite spread of 39-44° (1-σ). Our inferred opening angle distribution implies a number ratio of type I to type II AGN of 1:1.6-2.3, consistent with other measurements of the type I / type II ratio at low AGN luminosities. Combining these measurements with the WISE photometry data, we find that redder mid-IR color (lower effective temperature of dust) corresponds to stronger and narrower photo-ionized bicones. This relation is in agreement with the unification model that suggests that the bi-conical narrow-line regions are shaped by a toroidal dusty structure within a few pc from the AGN. Furthermore, we find a significant alignment between the minor axis of host galaxy disks and AGN ionization cones. Together, these findings suggest that obscuration on both circumnuclear (˜pc) and galactic (˜ kpc) scales are important in shaping and orienting the AGN narrow-line regions.

  13. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    Science.gov (United States)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-04-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disk galaxy setups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disk. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, require a better star formation prescription or most likely some combination of these issues.

  14. Multi-wavelength investigations on feedback of massive star formation

    Science.gov (United States)

    Yuan, Jinghua

    2014-05-01

    In the course of massive star formation, outflows, ionizing radiation and intense stellar winds could heavily affect their adjacent environs and natal clouds. There are several outstanding open questions related to these processes: i) whether they can drive turbulence in molecular clouds; ii) whether they are able to trigger star formation; iii) whether they can destroy natal clouds to terminate star formation at low efficiencies. This thesis investigates feedback in different stages of massive star formation. Influence of such feedback to the ambient medium has been revealed. A new type of millimeter methanol maser is detected for the first time. An uncommon bipolar outflow prominent in the mid-infrared is discovered. And features of triggered star formation are found on the border of an infrared bubble and in the surroundings of a Herbig Be star. Extended green objects (EGOs) are massive outflow candidates showing prominent shocked features in the mid-infrared. We have carried out a high resolution study of the EGO G22.04+0.22 (hereafter, G22) based on archived SMA data. Continuum and molecular lines at 1.3 mm reveal that G22 is still at a hot molecular core stage. A very young multi-polar outflow system is detected, which is interacting with the adjacent dense gas. Anomalous emission features from CH3OH (8,-1,8 - 7,0,7) and CH3OH (4,2,2 - 3,1,2) are proven to be millimeter masers. It is the first time that maser emission of CH3OH (8,-1,8 - 7,0,7) at 218.440 GHz is detected in a massive star-forming region. Bipolar outflows have been revealed and investigated almost always in the microwave or radio domain. It's sort of rare that hourglass-shaped morphology be discovered in the mid-infrared. Based on GLIMPSE data, we have discovered a bipolar object resembling an hourglass at 8.0 um. It is found to be associated with IRAS 18114-1825. Analysis based on fitted SED, optical spectroscopy, and infrared color indices suggests IRAS 18114-1825 is an uncommon bipolar

  15. PRIMUS: THE DEPENDENCE OF AGN ACCRETION ON HOST STELLAR MASS AND COLOR

    Energy Technology Data Exchange (ETDEWEB)

    Aird, James; Coil, Alison L.; Moustakas, John; Smith, M. Stephen M. [Center for Astrophysics and Space Sciences, Department of Physics, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093 (United States); Blanton, Michael R.; Zhu Guangtun [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Burles, Scott M. [D.E. Shaw and Co., L.P., 20400 Stevens Creek Blvd., Suite 850, Cupertino, CA 95014 (United States); Cool, Richard J. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States); Eisenstein, Daniel J. [Harvard College Observatory, 60 Garden St., Cambridge, MA 02138 (United States); Wong, Kenneth C. [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States)

    2012-02-10

    We present evidence that the incidence of active galactic nuclei (AGNs) and the distribution of their accretion rates do not depend on the stellar masses of their host galaxies, contrary to previous studies. We use hard (2-10 keV) X-ray data from three extragalactic fields (XMM-LSS, COSMOS, and ELAIS-S1) with redshifts from the Prism Multi-object Survey to identify 242 AGNs with L{sub 2-10keV} = 10{sup 42-44} erg s{sup -1} within a parent sample of {approx}25,000 galaxies at 0.2 < z < 1.0 over {approx}3.4 deg{sup 2} and to i {approx} 23. We find that although the fraction of galaxies hosting an AGN at fixed X-ray luminosity rises strongly with stellar mass, the distribution of X-ray luminosities is independent of mass. Furthermore, we show that the probability that a galaxy will host an AGN can be defined by a universal Eddington ratio distribution that is independent of the host galaxy stellar mass and has a power-law shape with slope -0.65. These results demonstrate that AGNs are prevalent at all stellar masses in the range 9.5< log M{sub *}/M{sub sun}<12 and that the same physical processes regulate AGN activity in all galaxies in this stellar mass range. While a higher AGN fraction may be observed in massive galaxies, this is a selection effect related to the underlying Eddington ratio distribution. We also find that the AGN fraction drops rapidly between z {approx} 1 and the present day and is moderately enhanced (factor {approx}2) in galaxies with blue or green optical colors. Consequently, while AGN activity and star formation appear to be globally correlated, we do not find evidence that the presence of an AGN is related to the quenching of star formation or the color transformation of galaxies.

  16. Pharmacological analysis of the inhibition produced by moxonidine and agmatine on the vasodepressor sensory CGRPergic outflow in pithed rats.

    Science.gov (United States)

    Rubio-Beltrán, Eloísa; Labastida-Ramírez, Alejandro; Hernández-Abreu, Oswaldo; MaassenVanDenBrink, Antoinette; Villalón, Carlos M

    2017-10-05

    Calcitonin gene-related peptide (CGRP) plays a role in several (patho)physiological functions, and modulation of its release is considered a therapeutic target. In this respect, electrical spinal (T 9 --T 12 ) stimulation of the perivascular sensory outflow in pithed rats produces vasodepressor responses mediated by CGRP release. This study investigated the role of imidazoline I 1 and I 2 receptors in the inhibition by moxonidine and agmatine of these vasodepressor responses. Male Wistar pithed rats (pretreated i.v. with 25mg/kg gallamine and 2mg/kg⋅min hexamethonium) received i.v. continuous infusions of methoxamine (20μg/kg⋅min) followed by physiological saline (0.02ml/min), moxonidine (1, 3, 10 or 30μg/kg⋅min) or agmatine (1000 or 3000μg/kg⋅min). Under these conditions, electrical stimulation (0.56-5.6Hz; 50V; 2ms) of the spinal cord (T 9 -T 12 ) produced frequency-dependent vasodepressor responses which were: (i) unchanged during saline infusion; and (ii) inhibited during the above infusions of moxonidine or agmatine. Moreover, using i.v. administrations, the inhibition by 3μg/kg⋅min moxonidine or 3000μg/kg⋅min agmatine (which failed to inhibit the vasodepressor responses by α-CGRP; 0.1-1µg/kg) was: (i) unaltered after saline (1ml/kg), rauwolscine (300μg/kg; α 2 -adrenoceptor antagonist) or BU224 (300μg/kg; imidazoline I 2 receptor antagonist); and (ii) reversed after AGN 192403 (3000μg/kg; imidazoline I 1 receptor antagonist). This reversion was relatively more pronounced after AGN 192403 plus rauwolscine. These blocking doses of antagonists lacked any effects on the electrically-induced vasodepressor responses. Therefore, the inhibition of the vasodepressor sensory CGRPergic outflow by moxonidine and agmatine is mainly mediated by prejunctional imidazoline I 1 receptors on perivascular sensory nerves. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The long lives of giant clumps and the birth of outflows in gas-rich galaxies at high redshift

    Energy Technology Data Exchange (ETDEWEB)

    Bournaud, Frédéric; Renaud, Florent; Daddi, Emanuele; Duc, Pierre-Alain; Elbaz, David; Gabor, Jared M.; Juneau, Stéphanie; Kraljic, Katarina; Le Floch' , Emeric [CEA, IRFU/SAp, F-91191 Gif-Sur-Yvette (France); Perret, Valentin; Amram, Philippe; Epinat, Benoit [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille), F-13388 Marseille (France); Dekel, Avishai [Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Elmegreen, Bruce G. [IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598 (United States); Elmegreen, Debra M. [Department of Physics and Astronomy, Vassar College, Poughkeepsie, NY 12604 (United States); Teyssier, Romain [Institute for Theoretical Physics, University of Zurich, CH-8057 Zurich (Switzerland)

    2014-01-01

    Star-forming disk galaxies at high redshift are often subject to violent disk instability, characterized by giant clumps whose fate is yet to be understood. The main question is whether the clumps disrupt within their dynamical timescale (≤50 Myr), like the molecular clouds in today's galaxies, or whether they survive stellar feedback for more than a disk orbital time (≈300 Myr) in which case they can migrate inward and help building the central bulge. We present 3.5-7 pc resolution adaptive mesh refinement simulations of high-redshift disks including photoionization, radiation pressure, and supernovae feedback. Our modeling of radiation pressure determines the mass loading and initial velocity of winds from basic physical principles. We find that the giant clumps produce steady outflow rates comparable to and sometimes somewhat larger than their star formation rate, with velocities largely sufficient to escape the galaxy. The clumps also lose mass, especially old stars, by tidal stripping, and the stellar populations contained in the clumps hence remain relatively young (≤200 Myr), as observed. The clumps survive gaseous outflows and stellar loss, because they are wandering in gas-rich turbulent disks from which they can reaccrete gas at high rates compensating for outflows and tidal stripping, overall keeping realistic and self-regulated gaseous and stellar masses. The outflow and accretion rates have specific timescales of a few 10{sup 8} yr, as opposed to rapid and repeated dispersion and reformation of clumps. Our simulations produce gaseous outflows with velocities, densities, and mass loading consistent with observations, and at the same time suggest that the giant clumps survive for hundreds of Myr and complete their migration to the center of high-redshift galaxies. These long-lived clumps are gas-dominated and contain a moderate mass fraction of stars; they drive inside-out disk evolution, thickening, spheroid growth, and fueling of the central

  18. Compton Reflection in AGN with Simbol-X

    Science.gov (United States)

    Beckmann, V.; Courvoisier, T. J.-L.; Gehrels, N.; Lubiński, P.; Malzac, J.; Petrucci, P. O.; Shrader, C. R.; Soldi, S.

    2009-05-01

    AGN exhibit complex hard X-ray spectra. Our current understanding is that the emission is dominated by inverse Compton processes which take place in the corona above the accretion disk, and that absorption and reflection in a distant absorber play a major role. These processes can be directly observed through the shape of the continuum, the Compton reflection hump around 30 keV, and the iron fluorescence line at 6.4 keV. We demonstrate the capabilities of Simbol-X to constrain complex models for cases like MCG-05-23-016, NGC 4151, NGC 2110, and NGC 4051 in short (10 ksec) observations. We compare the simulations with recent observations on these sources by INTEGRAL, Swift and Suzaku. Constraining reflection models for AGN with Simbol-X will help us to get a clear view of the processes and geometry near to the central engine in AGN, and will give insight to which sources are responsible for the Cosmic X-ray background at energies >20 keV.

  19. Can CMB Surveys Help the AGN Community?

    Directory of Open Access Journals (Sweden)

    Bruce Partridge

    2017-08-01

    Full Text Available Contemporary projects to measure anisotropies in the cosmic microwave background (CMB are now detecting hundreds to thousands of extragalactic radio sources, most of them blazars. As a member of a group of CMB scientists involved in the construction of catalogues of such sources and their analysis, I wish to point out the potential value of CMB surveys to studies of AGN jets and their polarization. Current CMB projects, for instance, reach mJy sensitivity, offer wide sky coverage, are “blind” and generally of uniform sensitivity across the sky (hence useful statistically, make essentially simultaneous multi-frequency observations at frequencies from 30 to 857 GHz, routinely offer repeated observations of sources with interesting cadences and now generally provide polarization measurements. The aim here is not to analyze in any depth the AGN science already derived from such projects, but rather to heighten awareness of their promise for the AGN community.

  20. Compton-thick AGN at high and low redshift

    Science.gov (United States)

    Akylas, A.; Georgantopoulos, I.; Corral, A.; Ranalli, P.; Lanzuisi, G.

    2017-10-01

    The most obscured sources detected in X-ray surveys, the Compton-thick AGN present great interest both because they represent the hidden side of accretion but also because they may signal the AGN birth. We analyse the NUSTAR observations from the serendipitous observations in order to study the Compton-thick AGN at the deepest possible ultra-hard band (>10 keV). We compare our results with our SWIFT/BAT findings in the local Universe, as well as with our results in the CDFS and COSMOS fields. We discuss the comparison with X-ray background synthesis models finding that a low fraction of Compton-thick sources (about 15 per cent of the obscured population) is compatible with both the 2-10keV band results and those at harder energies.

  1. Fermi-LAT observation of nonblazar AGNs

    Science.gov (United States)

    Sahakyan, N.; Baghmanyan, V.; Zargaryan, D.

    2018-06-01

    Context. Fermi Large Area Telescope (Fermi-LAT) has recently detected γ-ray emission from active galactic nuclei (AGN) that do not show clear evidence for optical blazar characteristics or have jets pointing away from the observer (nonblazar AGNs). These are interesting γ-ray emitters providing an alternative approach to studying high energy emission processes. Aims: This paper investigates the spectral and temporal properties of γ-ray emission from nonblazar AGNs using the recent Fermi-LAT observational data. Methods: The data collected by Fermi-LAT during 2008-2015, from the observations of 26 nonblazar AGNs, including 11 Fanaroff-Riley Type I (FRI) and ten FRII radio galaxies and steep spectrum radio quasars (SSRQs) and five narrow line seyfert 1s (NLSy1s) are analysed using the new PASS 8 event selection and instrument response function. Possible spectral changes above GeV energies are investigated with a detailed spectral analysis. Light curves generated with normal and adaptive time bins are used to study the γ-ray flux variability. Results: Non-blazar AGNs have a γ-ray photon index in the range of 1.84-2.86 and a flux varying from a few times 10-9 photon cm-2 s-1 to 10-7 photon cm-2 s-1. Over long time periods, the power law provides an adequate description of the γ-ray spectra of almost all sources. Significant curvature is observed in the γ-ray spectra of NGC 1275, NGC 6251, SBS 0846 + 513, and PMN J0948 + 0022 and their spectra are better described by log parabola or by the power law with exponential cut-off models. The γ-ray spectra of PKS 0625-25 and 3C 380 show a possible deviation from a simple power-law shape, indicating a spectral cut-off around the observed photon energy of Ecut = 131.2 ± 88.04 GeV and Ecut = 55.57 ± 50.74 GeV, respectively. Our analysis confirms the previous finding of an unusual spectral turnover in the γ-ray spectrum of Cen A: the photon index changes from Γ = 2.75 ± 0.02 to 2.31 ± 0.1 at 2.35 ± 0.08 GeV. In the

  2. AGN Science with STROBE-X

    Science.gov (United States)

    Ballantyne, David; Balokovic, Mislav; Garcia, Javier; Koss, Michael; STROBE-X

    2018-01-01

    The probe concept STROBE-X, with its combination of large collecting area, wide-field monitor, broad bandpass, and rapid timing capability, is a powerful tool for studying many aspects of AGN astrophysics. This unique combination of features opens up the possibility for studying AGNs in ways current and other future missions are unable to accomplish. Here, we show a few of the novel new investigations made possible by STROBE-X: probing the structure of the BLR and torus with reverberation of the narrow Fe Kα line and line-of-sight column density, tracking changes in coronal parameters, investigating the origin of the soft excess, Fe Kα emission line surveys, and efficient Compton-thick characterization. Additional ideas and suggestions are always welcome and can be communicated to any member of the STROBE-X team.

  3. Self-consistent two-phase AGN torus models⋆. SED library for observers

    Science.gov (United States)

    Siebenmorgen, Ralf; Heymann, Frank; Efstathiou, Andreas

    2015-11-01

    We assume that dust near active galactic nuclei (AGNs) is distributed in a torus-like geometry, which can be described as a clumpy medium or a homogeneous disk, or as a combination of the two (i.e. a two-phase medium). The dust particles considered are fluffy and have higher submillimeter emissivities than grains in the diffuse interstellar medium. The dust-photon interaction is treated in a fully self-consistent three-dimensional radiative transfer code. We provide an AGN library of spectral energy distributions (SEDs). Its purpose is to quickly obtain estimates of the basic parameters of the AGNs, such as the intrinsic luminosity of the central source, the viewing angle, the inner radius, the volume filling factor and optical depth of the clouds, and the optical depth of the disk midplane, and to predict the flux at yet unobserved wavelengths. The procedure is simple and consists of finding an element in the library that matches the observations. We discuss the general properties of the models and in particular the 10 μm silicate band. The AGN library accounts well for the observed scatter of the feature strengths and wavelengths of the peak emission. AGN extinction curves are discussed and we find that there is no direct one-to-one link between the observed extinction and the wavelength dependence of the dust cross sections. We show that objects in the library cover the observed range of mid-infrared colors of known AGNs. The validity of the approach is demonstrated by matching the SEDs of a number of representative objects: Four Seyferts and two quasars for which we present new Herschel photometry, two radio galaxies, and one hyperluminous infrared galaxy. Strikingly, for the five luminous objects we find that pure AGN models fit the SED without needing to postulate starburst activity. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.The SED

  4. Coeval Starburst and AGN Activity in the CDFS

    Science.gov (United States)

    Brusa, M.; Fiore, F.

    2009-10-01

    Here we present a study on the host galaxies properties of obscured Active Galactic Nuclei (AGN) detected in the CDFS 1Ms observation and for which deep K-band observations obtained with ISAAC@VLT are available. The aim of this study is to characterize the host galaxies properties of obscured AGN in terms of their stellar masses, star formation rates, and specific star formation rates. To this purpose we refined the X-ray/optical association of 179 1 Ms sources in the MUSIC area, using a three-bands (optical, K, and IRAC) catalog for the counterparts search and we derived the rest frame properties from SED fitting. We found that the host of obscured AGN at z>1 are associated with luminous, massive, red galaxies with significant star formation rates episodes still ongoing in about 50% of the sample.

  5. X-RAY ABSORPTION, NUCLEAR INFRARED EMISSION, AND DUST COVERING FACTORS OF AGNs: TESTING UNIFICATION SCHEMES

    Energy Technology Data Exchange (ETDEWEB)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Barcons, X. [Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), E-39005, Santander (Spain); Ramos, A. Asensio; Almeida, C. Ramos [Instituto de Astrofísica de Canarias, E-38205, La Laguna, Tenerife (Spain); Watson, M. G.; Blain, A. [Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Caccianiga, A.; Ballo, L. [INAF-Osservatorio Astronomico di Brera, via Brera 28, I-20121 Milano (Italy); Braito, V., E-mail: mateos@ifca.unican.es [INAF-Osservatorio Astronomico di Brera, Via Bianchi 46, I-23807 Merate (Italy)

    2016-03-10

    We present the distributions of the geometrical covering factors of the dusty tori (f{sub 2}) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2–10 keV luminosities between 10{sup 42} and 10{sup 46} erg s{sup −1}, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1–20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f{sub 2} than type 1 AGNs. Nevertheless, ∼20% of type 1 AGNs have tori with large covering factors, while ∼23%–28% of type 2 AGNs have tori with small covering factors. Low f{sub 2} are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f{sub 2} increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f{sub 2} determine the optical appearance of an AGN and control the shape of the rest-frame ∼1–20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.

  6. Galactic Outflows, Star Formation Histories, and Timescales in Starburst Dwarf Galaxies from STARBIRDS

    Science.gov (United States)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Heilman, Taryn N.; Mitchell, Noah P.; Kelley, Tyler

    2018-03-01

    Winds are predicted to be ubiquitous in low-mass, actively star-forming galaxies. Observationally, winds have been detected in relatively few local dwarf galaxies, with even fewer constraints placed on their timescales. Here, we compare galactic outflows traced by diffuse, soft X-ray emission from Chandra Space Telescope archival observations to the star formation histories derived from Hubble Space Telescope imaging of the resolved stellar populations in six starburst dwarfs. We constrain the longevity of a wind to have an upper limit of 25 Myr based on galaxies whose starburst activity has already declined, although a larger sample is needed to confirm this result. We find an average 16% efficiency for converting the mechanical energy of stellar feedback to thermal, soft X-ray emission on the 25 Myr timescale, somewhat higher than simulations predict. The outflows have likely been sustained for timescales comparable to the duration of the starbursts (i.e., 100's Myr), after taking into account the time for the development and cessation of the wind. The wind timescales imply that material is driven to larger distances in the circumgalactic medium than estimated by assuming short, 5-10 Myr starburst durations, and that less material is recycled back to the host galaxy on short timescales. In the detected outflows, the expelled hot gas shows various morphologies which are not consistent with a simple biconical outflow structure. The sample and analysis are part of a larger program, the STARBurst IRregular Dwarf Survey (STARBIRDS), aimed at understanding the lifecycle and impact of starburst activity in low-mass systems.

  7. Feedback in low-mass galaxies in the early Universe.

    Science.gov (United States)

    Erb, Dawn K

    2015-07-09

    The formation, evolution and death of massive stars release large quantities of energy and momentum into the gas surrounding the sites of star formation. This process, generically termed 'feedback', inhibits further star formation either by removing gas from the galaxy, or by heating it to temperatures that are too high to form new stars. Observations reveal feedback in the form of galactic-scale outflows of gas in galaxies with high rates of star formation, especially in the early Universe. Feedback in faint, low-mass galaxies probably facilitated the escape of ionizing radiation from galaxies when the Universe was about 500 million years old, so that the hydrogen between galaxies changed from neutral to ionized-the last major phase transition in the Universe.

  8. High-Sensitivity AGN Polarimetry at Sub-Millimeter Wavelengths

    Directory of Open Access Journals (Sweden)

    Ivan Martí-Vidal

    2017-10-01

    Full Text Available The innermost regions of radio loud Active Galactic Nuclei (AGN jets are heavily affected by synchrotron self-absorption, due to the strong magnetic fields and high particle densities in these extreme zones. The only way to overcome this absorption is to observe at sub-millimeter wavelengths, although polarimetric observations at such frequencies have so far been limited by sensitivity and calibration accuracy. However, new generation instruments such as the Atacama Large mm/sub-mm Array (ALMA overcome these limitations and are starting to deliver revolutionary results in the observational studies of AGN polarimetry. Here we present an overview of our state-of-the-art interferometric mm/sub-mm polarization observations of AGN jets with ALMA (in particular, the gravitationally-lensed sources PKS 1830−211 and B0218+359, which allow us to probe the magneto-ionic conditions at the regions closest to the central black holes.

  9. Prospects for AGN Science using the ART-XC on the SRG Mission

    Science.gov (United States)

    Swartz, Douglas A.; Elsner, Ronald F.; Gubarev, Mikhail V.; O'Dell, Stephen L.; Ramsey, Brian D.; Bonamente, Massimiliano

    2012-01-01

    The enhanced hard X-ray sensitivity provided by the Astronomical Roentgen Telescope to the Spectrum Roentgen Gamma mission facilitates the detection of heavily obscured and other hard-spectrum cosmic X-ray sources. The SRG all-sky survey will obtain large, statistically-well-defined samples of active galactic nuclei (AGN) including a significant population of local heavily-obscured AGN. In anticipation of the SRG all-sky survey, we investigate the prospects for refining the bright end of the AGN luminosity function and determination of the local black hole mass function and comparing the spatial distribution of AGN with large-scale structure defined by galaxy clusters and groups. Particular emphasis is placed on studies of the deep survey Ecliptic Pole regions.

  10. Molecular outflows driven by low-mass protostars. I. Correcting for underestimates when measuring outflow masses and dynamical properties

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Michael M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 78, Cambridge, MA 02138 (United States); Arce, Héctor G. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Mardones, Diego [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Lee, Jeong-Eun [Department of Astronomy and Space Science, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of); Matthews, Brenda C. [National Research Council of Canada, Herzberg Astronomy and Astrophysics, 5071 W. Saanich Road, Victoria, BC V9E 2E7 (Canada); Stutz, Amelia M. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Williams, Jonathan P., E-mail: mdunham@cfa.harvard.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2014-03-01

    We present a survey of 28 molecular outflows driven by low-mass protostars, all of which are sufficiently isolated spatially and/or kinematically to fully separate into individual outflows. Using a combination of new and archival data from several single-dish telescopes, 17 outflows are mapped in {sup 12}CO (2-1) and 17 are mapped in {sup 12}CO (3-2), with 6 mapped in both transitions. For each outflow, we calculate and tabulate the mass (M {sub flow}), momentum (P {sub flow}), kinetic energy (E {sub flow}), mechanical luminosity (L {sub flow}), and force (F {sub flow}) assuming optically thin emission in LTE at an excitation temperature, T {sub ex}, of 50 K. We show that all of the calculated properties are underestimated when calculated under these assumptions. Taken together, the effects of opacity, outflow emission at low velocities confused with ambient cloud emission, and emission below the sensitivities of the observations increase outflow masses and dynamical properties by an order of magnitude, on average, and factors of 50-90 in the most extreme cases. Different (and non-uniform) excitation temperatures, inclination effects, and dissociation of molecular gas will all work to further increase outflow properties. Molecular outflows are thus almost certainly more massive and energetic than commonly reported. Additionally, outflow properties are lower, on average, by almost an order of magnitude when calculated from the {sup 12}CO (3-2) maps compared to the {sup 12}CO (2-1) maps, even after accounting for different opacities, map sensitivities, and possible excitation temperature variations. It has recently been argued in the literature that the {sup 12}CO (3-2) line is subthermally excited in outflows, and our results support this finding.

  11. Towards A Complete Census of the Compton-thick AGN Population in our Cosmic Backyard

    Science.gov (United States)

    Annuar, Ady

    2016-09-01

    We propose for Chandra and NuSTAR observations of two local AGNs to characterise their obscuring properties. We are using Chandra and NuSTAR to form the first complete measurement of the column density (N_H) distribution of AGN at D35%. We also found that Chandra resolution is key in resolving the AGN from off-nuclear X-ray sources. When combined with NuSTAR, this allow us to accurately characterise the broadband spectrum of the AGN, and identify it as CT. These new observations will provide Chandra data for all D<15Mpc AGNs and boost up the N_H distribution up to 85% complete. This will be fully completed with future NuSTAR observations.

  12. The first 62 AGN observed with SDSS-IV MaNGA - II: resolved stellar populations

    Science.gov (United States)

    Mallmann, Nícolas Dullius; Riffel, Rogério; Storchi-Bergmann, Thaisa; Barboza Rembold, Sandro; Riffel, Rogemar A.; Schimoia, Jaderson; da Costa, Luiz Nicolaci; Ávila-Reese, Vladimir; Sanchez, Sebastian F.; Machado, Alice D.; Cirolini, Rafael; Ilha, Gabriele S.; do Nascimento, Janaína C.

    2018-05-01

    We present spatially resolved stellar population age maps, average radial profiles and gradients for the first 62 Active Galactic Nuclei (AGN) observed with SDSS-IV MaNGA to study the effects of the active nuclei on the star formation history of the host galaxies. These results, derived using the STARLIGHT code, are compared with a control sample of non-active galaxies matching the properties of the AGN hosts. We find that the fraction of young stellar populations (SP) in high-luminosity AGN is higher in the inner (R≤0.5 Re) regions when compared with the control sample; low-luminosity AGN, on the other hand, present very similar fractions of young stars to the control sample hosts for the entire studied range (1 Re). The fraction of intermediate age SP of the AGN hosts increases outwards, with a clear enhancement when compared with the control sample. The inner region of the galaxies (AGN and control galaxies) presents a dominant old SP, whose fraction decreases outwards. We also compare our results (differences between AGN and control galaxies) for the early and late-type hosts and find no significant differences. In summary, our results suggest that the most luminous AGN seems to have been triggered by a recent supply of gas that has also triggered recent star formation (t ≤ 40 Myrs) in the central region.

  13. EDDINGTON RATIO DISTRIBUTION OF X-RAY-SELECTED BROAD-LINE AGNs AT 1.0 < z < 2.2

    International Nuclear Information System (INIS)

    Suh, Hyewon; Hasinger, Günther; Steinhardt, Charles; Silverman, John D.; Schramm, Malte

    2015-01-01

    We investigate the Eddington ratio distribution of X-ray-selected broad-line active galactic nuclei (AGNs) in the redshift range 1.0 < z < 2.2, where the number density of AGNs peaks. Combining the optical and Subaru/Fiber Multi Object Spectrograph near-infrared spectroscopy, we estimate black hole masses for broad-line AGNs in the Chandra Deep Field South (CDF-S), Extended Chandra Deep Field South (E-CDF-S), and the XMM-Newton Lockman Hole (XMM-LH) surveys. AGNs with similar black hole masses show a broad range of AGN bolometric luminosities, which are calculated from X-ray luminosities, indicating that the accretion rate of black holes is widely distributed. We find a substantial fraction of massive black holes accreting significantly below the Eddington limit at z ≲ 2, in contrast to what is generally found for luminous AGNs at high redshift. Our analysis of observational selection biases indicates that the “AGN cosmic downsizing” phenomenon can be simply explained by the strong evolution of the comoving number density at the bright end of the AGN luminosity function, together with the corresponding selection effects. However, one might need to consider a correlation between the AGN luminosity and the accretion rate of black holes, in which luminous AGNs have higher Eddington ratios than low-luminosity AGNs, in order to understand the relatively small fraction of low-luminosity AGNs with high accretion rates in this epoch. Therefore, the observed downsizing trend could be interpreted as massive black holes with low accretion rates, which are relatively fainter than less-massive black holes with efficient accretion

  14. THE HOST GALAXY PROPERTIES OF VARIABILITY SELECTED AGN IN THE PAN-STARRS1 MEDIUM DEEP SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Heinis, S.; Gezari, S.; Kumar, S. [Department of Astronomy, University of Maryland, College Park, MD (United States); Burgett, W. S.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Wainscoat, R. J.; Waters, C. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2016-07-20

    We study the properties of 975 active galactic nuclei (AGNs) selected by variability in the Pan-STARRS1 Medium deep Survey. Using complementary multi-wavelength data from the ultraviolet to the far-infrared, we use spectral energy distribution fitting to determine the AGN and host properties at z < 1 and compare to a well-matched control sample. We confirm the trend previously observed: that the variability amplitude decreases with AGN luminosity, but we also observe that the slope of this relation steepens with wavelength, resulting in a “redder when brighter” trend at low luminosities. Our results show that AGNs are hosted by more massive hosts than control sample galaxies, while the rest frame dust-corrected NUV r color distribution of AGN hosts is similar to control galaxies. We find a positive correlation between the AGN luminosity and star formation rate (SFR), independent of redshift. AGN hosts populate the entire range of SFRs within and outside of the Main Sequence of star-forming galaxies. Comparing the distribution of AGN hosts and control galaxies, we show that AGN hosts are less likely to be hosted by quiescent galaxies and more likely to be hosted by Main Sequence or starburst galaxies.

  15. Large-Scale Outflows in Seyfert Galaxies

    Science.gov (United States)

    Colbert, E. J. M.; Baum, S. A.

    1995-12-01

    \\catcode`\\@=11 \\ialign{m @th#1hfil ##hfil \\crcr#2\\crcr\\sim\\crcr}}} \\catcode`\\@=12 Highly collimated outflows extend out to Mpc scales in many radio-loud active galaxies. In Seyfert galaxies, which are radio-quiet, the outflows extend out to kpc scales and do not appear to be as highly collimated. In order to study the nature of large-scale (>~1 kpc) outflows in Seyferts, we have conducted optical, radio and X-ray surveys of a distance-limited sample of 22 edge-on Seyfert galaxies. Results of the optical emission-line imaging and spectroscopic survey imply that large-scale outflows are present in >~{{1} /{4}} of all Seyferts. The radio (VLA) and X-ray (ROSAT) surveys show that large-scale radio and X-ray emission is present at about the same frequency. Kinetic luminosities of the outflows in Seyferts are comparable to those in starburst-driven superwinds. Large-scale radio sources in Seyferts appear diffuse, but do not resemble radio halos found in some edge-on starburst galaxies (e.g. M82). We discuss the feasibility of the outflows being powered by the active nucleus (e.g. a jet) or a circumnuclear starburst.

  16. Measurement of Outflow Facility Using iPerfusion.

    Directory of Open Access Journals (Sweden)

    Joseph M Sherwood

    Full Text Available Elevated intraocular pressure (IOP is the predominant risk factor for glaucoma, and reducing IOP is the only successful strategy to prevent further glaucomatous vision loss. IOP is determined by the balance between the rates of aqueous humour secretion and outflow, and a pathological reduction in the hydraulic conductance of outflow, known as outflow facility, is responsible for IOP elevation in glaucoma. Mouse models are often used to investigate the mechanisms controlling outflow facility, but the diminutive size of the mouse eye makes measurement of outflow technically challenging. In this study, we present a new approach to measure and analyse outflow facility using iPerfusion™, which incorporates an actuated pressure reservoir, thermal flow sensor, differential pressure measurement and an automated computerised interface. In enucleated eyes from C57BL/6J mice, the flow-pressure relationship is highly non-linear and is well represented by an empirical power law model that describes the pressure dependence of outflow facility. At zero pressure, the measured flow is indistinguishable from zero, confirming the absence of any significant pressure independent flow in enucleated eyes. Comparison with the commonly used 2-parameter linear outflow model reveals that inappropriate application of a linear fit to a non-linear flow-pressure relationship introduces considerable errors in the estimation of outflow facility and leads to the false impression of pressure-independent outflow. Data from a population of enucleated eyes from C57BL/6J mice show that outflow facility is best described by a lognormal distribution, with 6-fold variability between individuals, but with relatively tight correlation of facility between fellow eyes. iPerfusion represents a platform technology to accurately and robustly characterise the flow-pressure relationship in enucleated mouse eyes for the purpose of glaucoma research and with minor modifications, may be applied

  17. THE XMM-NEWTON WIDE FIELD SURVEY IN THE COSMOS FIELD: REDSHIFT EVOLUTION OF AGN BIAS AND SUBDOMINANT ROLE OF MERGERS IN TRIGGERING MODERATE-LUMINOSITY AGNs AT REDSHIFTS UP TO 2.2

    International Nuclear Information System (INIS)

    Allevato, V.; Hasinger, G.; Salvato, M.; Finoguenov, A.; Brusa, M.; Bongiorno, A.; Merloni, A.; Cappelluti, N.; Miyaji, T.; Gilli, R.; Zamorani, G.; Comastri, A.; Shankar, F.; James, J. B.; Peacock, J. A.; McCracken, H. J.; Silverman, J.

    2011-01-01

    We present a study of the redshift evolution of the projected correlation function of 593 X-ray selected active galactic nuclei (AGNs) with I AB 2 XMM- Cosmic Evolution Survey (COSMOS). We introduce a method to estimate the average bias of the AGN sample and the mass of AGN hosting halos, solving the sample variance using the halo model and taking into account the growth of the structure over time. We find evidence of a redshift evolution of the bias factor for the total population of XMM-COSMOS AGNs from b-bar ( z-bar =0.92)=2.30±0.11 to b-bar ( z-bar =1.94)=4.37±0.27 with an average mass of the hosting dark matter (DM) halos log M 0 (h -1 M sun ) ∼ 13.12 ± 0.12 that remains constant at all z 0 (h -1 M sun ) ∼ 13.28 ± 0.07 and log M 0 (h -1 M sun ) ∼ 13.00 ± 0.06 for BL/X-ray unobscured AGNs and NL/X-ray obscured AGNs, respectively. The theoretical models, which assume a quasar phase triggered by major mergers, cannot reproduce the high bias factors and DM halo masses found for X-ray selected BL AGNs with L BOL ∼ 2 x 10 45 erg s -1 . Our work extends up to z ∼ 2.2 the z ∼< 1 statement that, for moderate-luminosity X-ray selected BL AGNs, the contribution from major mergers is outnumbered by other processes, possibly secular ones such as tidal disruptions or disk instabilities.

  18. Understanding AGNs in the Local Universe through Optical Reverberation Mapping

    Science.gov (United States)

    Pei, Liuyi

    2016-01-01

    I present the results of observational projects aimed at measuring the mass of the black hole at the center of active galactic nuclei (AGNs) and understanding the structure and kinematics of the broad-line emitting gas within the black hole's sphere of influence.The first project aims to measure the black hole mass in the Kepler-field AGN KA1858. We obtained simultaneous spectroscopic data from the Lick Observatory 3-m telescope using the Kast Double Spectrograph and photometry data from five ground-based telescopes, and used reverberation mapping (RM) techniques to measure the emission-line light curves' lags relative to continuum variations. We obtained lags for H-beta, H-gamma, H-delta, and He II, and obtained the first black hole mass measurement for this object. Our results will serve as a reference point for future studies on relations between black hole mass and continuum variability characteristics using Kepler AGN light curves.The second project, in collaboration with the AGN STORM team, aims to understand the structure and dynamics of the broad line region (BLR) in NGC 5548 in both UV and optical wavelengths. To supplement 6 months of HST UV observations, we obtained simultaneous optical spectroscopic data from six ground-based observatories. We obtained emission-line lags for the optical H-beta and He II lines as well as velocity-resolved lag measurements for H-beta. We also compared the velocity-resolved lags for H-beta to the UV emission lines C IV and Ly-alpha and found similar lag profiles for all three lines.Finally, I will discuss my contributions to two other collaborations in AGN RM. A key component in RM is monitoring continuum variability, which is often done through ground-based photometry. I will present a pipeline that performs aperture photometry on any number of images of an AGN with WCS coordinates and immediately produces relative light curves. This pipeline enables quick looks of AGN variability in real time and has been used in the

  19. Radio Loud AGN Unification: Connecting Jets and Accretion

    Directory of Open Access Journals (Sweden)

    Meyer Eileen T.

    2013-12-01

    Full Text Available While only a fraction of Active Galactic Nuclei are observed to host a powerful relativistic jet, a cohesive picture is emerging that radio-loud AGN may represent an important phase in the evolution of galaxies and the growth of the central super-massive black hole. I will review my own recent observational work in radio-loud AGN unification in the context of understanding how and why jets form and their the connection to different kinds of accretion and growing the black hole, along with a brief discussion of possible connections to recent modeling work in jet formation. Starting from the significant observational advances in our understanding of jetted AGN as a population over the last decade thanks to new, more sensitive instruments such as Fermi and Swift as well as all-sky surveys at all frequencies, I will lay out the case for a dichotomy in the jetted AGN population connected to accretion mode onto the black hole. In recent work, we have identified two sub-populations of radio-loud AGN which appear to be distinguished by jet structure, where low-efficiency accreting systems produce ‘weak’ jets which decelerate more rapidly than the ’strong’ jets of black holes accreting near the Eddington limit. The two classes are comprised of: (1The weak jet sources, corresponding to the less collimated, edge-darkened FR Is, with a decelerating or spine-sheath jet with velocity gradients, and (2 The strong jet sources, having fast, collimated jets, and typically displaying strong emission lines. The dichotomy in the vp-Lp plane can be understood as a "broken power sequence" in which jets exist on one branch or the other based on the particular accretion mode (Georganopolous 2011.We suggest that the intrinsic kinetic power (as measured by low-frequency, isotropic radio emission, the orientation, and the accretion rate of the SMBH system are the the fundamental axes needed for unification of radio-loud AGN by studying a well-characterized sample

  20. CANDELS: CONSTRAINING THE AGN-MERGER CONNECTION WITH HOST MORPHOLOGIES AT z {approx} 2

    Energy Technology Data Exchange (ETDEWEB)

    Kocevski, Dale D.; Faber, S. M.; Mozena, Mark; Trump, Jonathan R.; Koo, David C. [University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Koekemoer, Anton M.; Somerville, Rachel S.; Lotz, Jennifer M.; Dahlen, Tomas; Donley, Jennifer L. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Nandra, Kirpal; Brusa, Marcella; Wuyts, Stijn [Max-Planck-Institut fuer extraterrestrische Physik, D-85748 Garching (Germany); Rangel, Cyprian; Laird, Elise S. [Astrophysics Group, Imperial College London, London, SW7 2AZ (United Kingdom); Bell, Eric F. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Alexander, David M. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Bournaud, Frederic [CEA, IRFU, SAp and Laboratoire AIM Paris-Saclay, F-91191 Gif-sur-Yvette (France); Conselice, Christopher J. [Centre for Astronomy and Particle Theory, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Dekel, Avishai, E-mail: kocevski@ucolick.org [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); and others

    2012-01-10

    Using Hubble Space Telescope/WFC3 imaging taken as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, we examine the role that major galaxy mergers play in triggering active galactic nucleus (AGN) activity at z {approx} 2. Our sample consists of 72 moderate-luminosity (L{sub X} {approx} 10{sup 42-44} erg s{sup -1}) AGNs at 1.5 < z < 2.5 that are selected using the 4 Ms Chandra observations in the Chandra Deep Field South, the deepest X-ray observations to date. Employing visual classifications, we have analyzed the rest-frame optical morphologies of the AGN host galaxies and compared them to a mass-matched control sample of 216 non-active galaxies at the same redshift. We find that most of the AGNs reside in disk galaxies (51.4{sup +5.8}{sub -5.9}%), while a smaller percentage are found in spheroids (27.8{sup +5.8}{sub -4.6}%). Roughly 16.7{sup +5.3}{sub -3.5}% of the AGN hosts have highly disturbed morphologies and appear to be involved in a major merger or interaction, while most of the hosts (55.6{sup +5.6}{sub -5.9}%) appear relatively relaxed and undisturbed. These fractions are statistically consistent with the fraction of control galaxies that show similar morphological disturbances. These results suggest that the hosts of moderate-luminosity AGNs are no more likely to be involved in an ongoing merger or interaction relative to non-active galaxies of similar mass at z {approx} 2. The high disk fraction observed among the AGN hosts also appears to be at odds with predictions that merger-driven accretion should be the dominant AGN fueling mode at z {approx} 2, even at moderate X-ray luminosities. Although we cannot rule out that minor mergers are responsible for triggering these systems, the presence of a large population of relatively undisturbed disk-like hosts suggests that the stochastic accretion of gas plays a greater role in fueling AGN activity at z {approx} 2 than previously thought.

  1. OH outflows in star-forming regions

    International Nuclear Information System (INIS)

    Mirabel, I.F.; Ruiz, A.; Rodriguez, L.F.; Canto, J.; Universidad de Puer; Universidad de Puerto Rico, Rio Piedras; Universidad Nacional Autonoma de Mexico, Mexico City)

    1987-01-01

    The results from a survey for high-velocity OH in molecular outflows in star-forming regions are reported. High-velocity OH was detected in absorption in nine of these regions. When the telescope beam can resolve the outflows, they show similar anisotropic angular distribution as the redshifted and blueshifted CO. The OH transitions are markedly subthermal since for several sources it is found that the radiation that is being absorbed is a background continuum constituted by the cosmic component plus a small Galactic contribution. The absorbing OH appears to trace gas with higher velocities and lower densities than does the CO and, in some cases, provides information on the structure of the outflows at larger distances from the central source. At scales of 0.1 pc, the outflows are elongated in the direction of the steepest density gradient of the ambient cloud, suggesting that the large-scale collimation of the outflow is produced by the density structure of the ambient cloud. 29 references

  2. Flickering AGN can explain the strong circumgalactic O VI observed by COS-Halos

    Science.gov (United States)

    Oppenheimer, Benjamin D.; Segers, Marijke; Schaye, Joop; Richings, Alexander J.; Crain, Robert A.

    2018-03-01

    Proximity zone fossils (PZFs) are ionization signatures around recently active galactic nuclei (AGNs) where metal species in the circumgalactic medium remain overionized after the AGNs have shut off due to their long recombination time scales. We explore cosmological zoom hydrodynamic simulations, using the EAGLE (Evolution and Assembly of GaLaxies and their Environments) model paired with a non-equilibrium ionization and cooling module including time-variable AGN radiation to model PZFs around star-forming disc galaxies in the z ˜ 0.2 Universe. Previous simulations typically underestimated the O VI content of galactic haloes, but we show that plausible PZF models increase O VI column densities by 2 - 3 × to achieve the levels observed around COS-Halos star-forming galaxies out to 150 kpc. Models with AGN bolometric luminosities ≳ 1043.6erg s- 1, duty cycle fractions ≲ 10 per cent, and AGN lifetimes ≲ 106 yr are the most promising, because their supermassive black holes grow at the cosmologically expected rate and they mostly appear as inactive AGN, consistent with COS-Halos. The central requirement is that the typical star-forming galaxy hosted an active AGN within a time-scale comparable to the recombination time of a high metal ion, which for circumgalactic O VI is ≈107 yr. H I, by contrast, returns to equilibrium much more rapidly due to its low neutral fraction and does not show a significant PZF effect. O VI absorption features originating from PZFs appear narrow, indicating photoionization, and are often well aligned with lower metal ion species. PZFs are highly likely to affect the physical interpretation of circumgalactic high ionization metal lines if, as expected, normal galaxies host flickering AGN.

  3. Mid-IR Properties of an Unbiased AGN Sample of the Local Universe. 1; Emission-Line Diagnostics

    Science.gov (United States)

    Weaver, K. A.; Melendez, M.; Muhotzky, R. F.; Kraemer, S.; Engle, K.; Malumuth. E.; Tueller, J.; Markwardt, C.; Berghea, C. T.; Dudik, R. P.; hide

    2010-01-01

    \\Ve compare mid-IR emission-lines properties, from high-resolution Spitzer IRS spectra of a statistically-complete hard X-ray (14-195 keV) selected sample of nearby (z < 0.05) AGN detected by the Burst Alert Telescope (BAT) aboard Swift. The luminosity distribution for the mid-infrared emission-lines, [O IV] 25.89 microns, [Ne II] 12.81 microns, [Ne III] 15.56 microns and [Ne V] 14.32 microns, and hard X-ray continuum show no differences between Seyfert 1 and Seyfert 2 populations, although six newly discovered BAT AGNs are shown to be under-luminous in [O IV], most likely the result of dust extinction in the host galaxy. The overall tightness of the mid-infrared correlations and BAT luminosities suggests that the emission lines primarily arise in gas ionized by the AGN. We also compared the mid-IR emission-lines in the BAT AGNs with those from published studies of star-forming galaxies and LINERs. We found that the BAT AGN fall into a distinctive region when comparing the [Ne III]/[Ne II] and the [O IV]/[Ne III] quantities. From this we found that sources that have been previously classified in the mid-infrared/optical as AGN have smaller emission line ratios than those found for the BAT AGNs, suggesting that, in our X-ray selected sample, the AGN represents the main contribution to the observed line emission. Overall, we present a different set of emission line diagnostics to distinguish between AGN and star forming galaxies that can be used as a tool to find new AGN.

  4. The response of relativistic outflowing gas to the inner accretion disk of a black hole.

    Science.gov (United States)

    Parker, Michael L; Pinto, Ciro; Fabian, Andrew C; Lohfink, Anne; Buisson, Douglas J K; Alston, William N; Kara, Erin; Cackett, Edward M; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C; Garcia, Javier; Harrison, Fiona A; King, Ashley L; Middleton, Matthew J; Miller, Jon M; Miniutti, Giovanni; Reynolds, Christopher S; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J; Wilkins, Daniel R; Zoghbi, Abderahmen

    2017-03-01

    The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these-the ultrafast outflows-are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224-3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very different

  5. Molecular Outflows: Explosive versus Protostellar

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Luis A.; Rodríguez, Luis F.; Palau, Aina; Loinard, Laurent [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico); Schmid-Burgk, Johannes [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121, Bonn (Germany)

    2017-02-10

    With the recent recognition of a second, distinctive class of molecular outflows, namely the explosive ones not directly connected to the accretion–ejection process in star formation, a juxtaposition of the morphological and kinematic properties of both classes is warranted. By applying the same method used in Zapata et al., and using {sup 12}CO( J = 2-1) archival data from the Submillimeter Array, we contrast two well-known explosive objects, Orion KL and DR21, to HH 211 and DG Tau B, two flows representative of classical low-mass protostellar outflows. At the moment, there are only two well-established cases of explosive outflows, but with the full availability of ALMA we expect that more examples will be found in the near future. The main results are the largely different spatial distributions of the explosive flows, consisting of numerous narrow straight filament-like ejections with different orientations and in almost an isotropic configuration, the redshifted with respect to the blueshifted components of the flows (maximally separated in protostellar, largely overlapping in explosive outflows), the very-well-defined Hubble flow-like increase of velocity with distance from the origin in the explosive filaments versus the mostly non-organized CO velocity field in protostellar objects, and huge inequalities in mass, momentum, and energy of the two classes, at least for the case of low-mass flows. Finally, all the molecular filaments in the explosive outflows point back to approximately a central position (i.e., the place where its “exciting source” was located), contrary to the bulk of the molecular material within the protostellar outflows.

  6. Search for neutrinos from TANAMI observed AGN using Fermi lightcurves wit ANTARES

    International Nuclear Information System (INIS)

    Fehn, Kerstin

    2015-01-01

    Active galactic nuclei (AGN) are promising candidates for hadronic acceleration. The combination of radio, gamma ray and neutrino data should give information on their properties, especially concerning the sources of the high-energetic cosmic rays. Assuming a temporal correlation of gamma and neutrino emission in AGN the background of neutrino telescopes can be reduced using gamma ray lightcurves. Thereby the sensitivity for discovering cosmic neutrino sources is enhanced. In the present work a stacked search for a group of AGN with the ANTARES neutrino telescope in the Mediterranean is presented. The selection of AGN is based on the source sample of TANAMI, a multiwavelength observation program (radio to gamma rays) of extragalactic jets southerly of -30 declination. In the analysis lightcurves of the gamma satellite Fermi are used. In an unbinned maximum likelihood approach the test statistic in the background only case and in the signal and background case is determined. For the investigated 10% of data of ANTARES within the measurement time between 01.09.2008 and 30.07.2012 no significant excess is observed. So on the total flux of the AGN of the stacked search an upper limit can be set.

  7. SWIFT BAT Survey of AGN

    Science.gov (United States)

    Tueller, J.; Mushotzky, R. F.; Barthelmy, S.; Cannizzo, J. K.; Gehrels, N.; Markwardt, C. B.; Skinner, G. K.; Winter, L. M.

    2008-01-01

    We present the results1 of the analysis of the first 9 months of data of the Swift BAT survey of AGN in the 14-195 keV band. Using archival X-ray data or follow-up Swift XRT observations, we have identified 129 (103 AGN) of 130 objects detected at [b] > 15deg and with significance > 4.8-delta. One source remains unidentified. These same X-ray data have allowed measurement of the X-ray properties of the objects. We fit a power law to the logN - log S distribution, and find the slope to be 1.42+/-0.14. Characterizing the differential luminosity function data as a broken power law, we find a break luminosity logL*(ergs/s)= 43.85+/-0.26. We obtain a mean photon index 1.98 in the 14-195 keV band, with an rms spread of 0.27. Integration of our luminosity function gives a local volume density of AGN above 10(exp 41) erg/s of 2.4x10(exp -3) Mpc(sup -3), which is about 10% of the total luminous local galaxy density above M* = -19.75. We have obtained X-ray spectra from the literature and from Swift XRT follow-up observations. These show that the distribution of log nH is essentially flat from nH = 10(exp 20)/sq cm to 10(exp 24)/sq cm, with 50% of the objects having column densities of less than 10(exp 22)/sq cm. BAT Seyfert galaxies have a median redshift of 0.03, a maximum log luminosity of 45.1, and approximately half have log nH > 22.

  8. Metal enriched gaseous halos around distant radio galaxies: Clues to feedback in galaxy formation

    Energy Technology Data Exchange (ETDEWEB)

    Reuland, M; van Breugel, W; de Vries, W; Dopita, A; Dey, A; Miley, G; Rottgering, H; Venemans, B; Stanford, S A; Lacy, M; Spinrad, H; Dawson, S; Stern, D; Bunker, A

    2006-08-01

    We present the results of an optical and near-IR spectroscopic study of giant nebular emission line halos associated with three z > 3 radio galaxies, 4C 41.17, 4C 60.07 and B2 0902+34. Previous deep narrow band Ly{alpha} imaging had revealed complex morphologies with sizes up to 100 kpc, possibly connected to outflows and AGN feedback from the central regions. The outer regions of these halos show quiet kinematics with typical velocity dispersions of a few hundred km s{sup -1}, and velocity shears that can mostly be interpreted as being due to rotation. The inner regions show shocked cocoons of gas closely associated with the radio lobes. These display disturbed kinematics and have expansion velocities and/or velocity dispersions >1000 km s{sup -1}. The core region is chemically evolved, and we also find spectroscopic evidence for the ejection of enriched material in 4C 41.17 up to a distance of {approx} 60 kpc along the radio-axis. The dynamical structures traced in the Ly{alpha} line are, in most cases, closely echoed in the Carbon and Oxygen lines. This shows that the Ly{alpha} line is produced in a highly clumped medium of small filling factor, and can therefore be used as a tracer of the dynamics of HzRGs. We conclude that these HzRGs are undergoing a final jet-induced phase of star formation with ejection of most of their interstellar medium before becoming 'red and dead' Elliptical galaxies.

  9. Water in star-forming regions with Herschel (WISH). V. The physical conditions in low-mass protostellar outflows revealed by multi-transition water observations

    NARCIS (Netherlands)

    Mottram, J. C.; Kristensen, L. E.; van Dishoeck, E. F.; Bruderer, S.; San José-García, I.; Karska, A.; Visser, R.; Santangelo, G.; Benz, A. O.; Bergin, E. A.; Caselli, P.; Herpin, F.; Hogerheijde, M. R.; Johnstone, D.; van Kempen, T. A.; Liseau, R.; Nisini, B.; Tafalla, M.; van der Tak, F. F. S.; Wyrowski, F.

    2014-01-01

    Context. Outflows are an important part of the star formation process as both the result of ongoing active accretion and one of the main sources of mechanical feedback on small scales. Water is the ideal tracer of these effects because it is present in high abundance for the conditions expected in

  10. PROTOSTELLAR OUTFLOWS IN L1340

    Energy Technology Data Exchange (ETDEWEB)

    Walawender, Josh [W. M. Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743 (United States); Wolf-Chase, Grace [Astronomy Department, Adler Planetarium, 1300 South Lake Shore Drive, Chicago, IL 60605 (United States); Smutko, Michael [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); OLinger-Luscusk, JoAnn [California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125 (United States); Moriarty-Schieven, Gerald, E-mail: jmwalawender@keck.hawaii.edu [National Research Council—Herzberg Astronomy and Astrophysics, 5017 West Saanich Road, Victoria, BC, V9E 2E7 (Canada)

    2016-12-01

    We have searched the L1340 A, B, and C clouds for shocks from protostellar outflows using the H{sub 2} 2.122 μ m near-infrared line as a shock tracer. Substantial outflow activity has been found in each of the three regions of the cloud (L1340 A, L1340 B, and L1340 C). We find 42 distinct shock complexes (16 in L1340 A, 11 in L1340 B, and 15 in L1340 C). We were able to link 17 of those shock complexes into 12 distinct outflows and identify candidate source stars for each. We examine the properties ( A {sub V}, T {sub bol}, and L {sub bol}) of the source protostars and compare them to the properties of the general population of Class 0/I and flat spectral energy distribution protostars and find that there is an indication, albeit at low statistical significance, that the outflow-driving protostars are drawn from a population with lower A {sub V}, higher L {sub bol}, and lower T {sub bol} than the general population of protostars.

  11. SDSS IV MaNGA - Properties of AGN Host Galaxies

    Science.gov (United States)

    Sánchez, S. F.; Avila-Reese, V.; Hernandez-Toledo, H.; Cortes-Suárez, E.; Rodríguez-Puebla, A.; Ibarra-Medel, H.; Cano-Díaz, M.; Barrera-Ballesteros, J. K.; Negrete, C. A.; Calette, A. R.; de Lorenzo-Cáceres, A.; Ortega-Minakata, R. A.; Aquino, E.; Valenzuela, O.; Clemente, J. C.; Storchi-Bergmann, T.; Riffel, R.; Schimoia, J.; Riffel, R. A.; Rembold, S. B.; Brownstein, J. R.; Pan, K.; Yates, R.; Mallmann, N.; Bitsakis, T.

    2018-04-01

    We present the characterization of the main properties of a sample of 98 AGN host galaxies, both type-II and type-I, in comparison with those of ≍2700 non-active galaxies observed by the MaNGA survey. We found that AGN hosts are morphologically early-type or early-spirals. AGN hosts are, on average, more massive, more compact, more centrally peaked and more pressure-supported systems. They are located in the intermediate/transition region between starforming and non-star-forming galaxies (i.e., the so-called green valley). We consider that they are in the process of halting/quenching the star formation. The analysis of the radial distributions of different properties shows that the quenching happens from inside-out involving both a decrease of the effciency of the star formation and a deficit of molecular gas. The data-products of the current analysis are distributed as a Value Added Catalog within the SDSS-DR14.

  12. The ΓX-L/LEdd relation in BAT AGN Spectroscopic Survey (BASS)

    Science.gov (United States)

    Trakhtenbrot, Benny; Ricci, Claudio; Koss, Michael; Schawinski, Kevin; Mushotzky, Richard; Ueda, Yoshihiro; Veilleux, Sylvain; Lamperti, Isabella; Oh, Kyuseok; Treister, Ezequiel; Stern, Daniel; Harrison, Fiona; Balokovic, Mislav

    2018-01-01

    We present a study of the relation between accretion rate (in terms of L/LEdd) and shape of the hard X-ray spectral energy distribution (namely the photon index Γx) for a large sample of over 200 hard X-ray-selected, low-redshift active galactic nuclei (AGNs), drawn from the Swift/BAT AGN Spectroscopic Survey (BASS). This includes 30 AGNs for which black hole mass (and therefore L/LEdd) is measured directly through masers, spatially resolved gas or stellar dynamics, or reverberation mapping. The high-quality and broad energy coverage of the data provided through BASS allow us to examine several alternative determinations of both Γx and L/LEdd. We find very weak correlation between Γx and L/LEdd for the BASS sample as a whole, with best-fitting relations that are considerably shallower than those reported in previous studies. Moreover, we find no corresponding correlations among the subsets of AGN with different MBH determination methodology, and in particular those AGN with direct or single-epoch MBH estimates. This latter finding is in contrast to several previous studies which focused on z > 0.5 broad-line AGN. We conclude that this tension can be partially accounted for if one adopts a simplified, power-law X-ray spectral model, combined with L/LEdd estimates that are based on the continuum emission and on single-epoch broad-line spectroscopy in the optical regime. Given these findings, we highlight the limitations of using Γx as a probe of supermassive black hole evolution in deep extragalactic X-ray surveys.

  13. Dust-deficient Palomar-Green Quasars and the Diversity of AGN Intrinsic IR Emission

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Jianwei; Rieke, G. H. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Shi, Yong, E-mail: jianwei@email.arizona.edu [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2017-02-01

    To elucidate the intrinsic broadband infrared (IR) emission properties of active galactic nuclei (AGNs), we analyze the spectral energy distributions (SEDs) of 87 z ≲ 0.5 Palomar-Green (PG) quasars. While the Elvis AGN template with a moderate far-IR correction can reasonably match the SEDs of the AGN components in ∼60% of the sample (and is superior to alternatives such as that by Assef), it fails on two quasar populations: (1) hot-dust-deficient (HDD) quasars that show very weak emission thoroughly from the near-IR to the far-IR, and (2) warm-dust-deficient (WDD) quasars that have similar hot dust emission as normal quasars but are relatively faint in the mid- and far-IR. After building composite AGN templates for these dust-deficient quasars, we successfully fit the 0.3–500 μm SEDs of the PG sample with the appropriate AGN template, an infrared template of a star-forming galaxy, and a host galaxy stellar template. 20 HDD and 12 WDD quasars are identified from the SED decomposition, including seven ambiguous cases. Compared with normal quasars, the HDD quasars have AGNs with relatively low Eddington ratios and the fraction of WDD quasars increases with AGN luminosity. Moreover, both the HDD and WDD quasar populations show relatively stronger mid-IR silicate emission. Virtually identical SED properties are also found in some quasars from z = 0.5 to 6. We propose a conceptual model to demonstrate that the observed dust deficiency of quasars can result from a change of structures of the circumnuclear tori that can occur at any cosmic epoch.

  14. Molecular outflows in the L1641 region of Orion

    International Nuclear Information System (INIS)

    Morgan, J.A.

    1990-01-01

    Little is known about the interaction between molecular outflows associated with young stellar objects and the parent molecular cloud that produced them. This is because molecular outflows are a recently discovered phenomenon and, so, have not had their global properties studied in great detail and molecular clouds were not mapped to sufficiently high spatial resolution to resolve the interaction. The interaction between molecular outflows and the L1641 molecular cloud is addressed by both identifying and mapping all the molecular outflows as well as the detailed structure of the cloud. Candidate molecular outflows were found from single point 12-CO observations of young stellar objects identified from the IRAS survey data. The candidate sources were then mapped to confirm their molecular outflow nature. From these maps, molecular outflow characteristics such as their morphology, orientation, and energetics were determined. In addition, the Orion molecular cloud was mapped to compare directly with the molecular outflows. The molecular outflows identified were found to have rising infrared spectra, radio continuum emission that suggests a stellar wind or optically thick H II region, and molecular line strengths that indicate that they are embedded within a very dense environment. The lack of an optical counterpart for many molecular outflows suggests that they occur at the earliest stages of stellar evolution. The lack of an optical counterpart for many molecular outflows suggest that they occur at the earliest stages of stellar evolution. The orientations of the molecular outflows appear to lie in no preferred direction and they have shapes that indicate that the molecular cloud is responsible for determining their direction and collimation

  15. Modeling AGN outbursts from supermassive black hole binaries

    Directory of Open Access Journals (Sweden)

    Tanaka T.

    2012-12-01

    Full Text Available When galaxies merge to assemble more massive galaxies, their nuclear supermassive black holes (SMBHs should form bound binaries. As these interact with their stellar and gaseous environments, they will become increasingly compact, culminating in inspiral and coalescence through the emission of gravitational radiation. Because galaxy mergers and interactions are also thought to fuel star formation and nuclear black hole activity, it is plausible that such binaries would lie in gas-rich environments and power active galactic nuclei (AGN. The primary difference is that these binaries have gravitational potentials that vary – through their orbital motion as well as their orbital evolution – on humanly tractable timescales, and are thus excellent candidates to give rise to coherent AGN variability in the form of outbursts and recurrent transients. Although such electromagnetic signatures would be ideally observed concomitantly with the binary’s gravitational-wave signatures, they are also likely to be discovered serendipitously in wide-field, high-cadence surveys; some may even be confused for stellar tidal disruption events. I discuss several types of possible “smoking gun” AGN signatures caused by the peculiar geometry predicted for accretion disks around SMBH binaries.

  16. Development of the criticality accident analysis code, AGNES

    International Nuclear Information System (INIS)

    Nakajima, Ken

    1989-01-01

    In the design works for the facilities which handle nuclear fuel, the evaluation of criticality accidents cannot be avoided even if their possibility is as small as negligible. In particular in the system using solution fuel like uranyl nitrate, solution has the property easily becoming dangerous form, and all the past criticality accidents occurred in the case of solution, therefore, the evaluation of criticality accidents becomes the most important item of safety analysis. When a criticality accident occurred in a solution fuel system, due to the generation and movement of radiolysis gas voids, the oscillation of power output and pressure pulses are observed. In order to evaluate the effect of criticality accidents, these output oscillation and pressure pulses must be calculated accurately. For this purpose, the development of the dynamic characteristic code AGNES (Accidentally Generated Nuclear Excursion Simulation code) was carried out. The AGNES is the reactor dynamic characteristic code having two independent void models. Modified energy model and pressure model, and as the benchmark calculation of the AGNES code, the results of the experimental analysis on the CRAC experiment are reported. (K.I.)

  17. Dynamics and Formation of Obscuring Tori in AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Bannikova, Elena Yu.; Sergeyev, Alexey V., E-mail: bannikova@astron.kharkov.ua [Institute of Radio Astronomy, National Academy of Science of Ukraine, Kharkiv (Ukraine); Institute of Astronomy, V. N. Karazin Kharkiv National University, Kharkiv (Ukraine)

    2017-12-12

    We considered the evolution of a self-gravitating clumpy torus in the gravitational field of the central mass of an active galactic nucleus (AGN) in the framework of the N-body problem. The initial conditions take into account winds with different opening angles. Results of our N-body simulations show that the clouds moving on orbits with a spread in inclinations and eccentricities form a toroidal region. The velocity of the clouds at the inner boundary of the torus is lower than in a disk model that can explain the observed rotation curves. We discuss the scenario of torus formation related with the beginning of the AGN stage.

  18. FRESH ACTIVITY IN OLD SYSTEMS: RADIO AGNs IN FOSSIL GROUPS OF GALAXIES

    International Nuclear Information System (INIS)

    Hess, Kelley M.; Wilcots, Eric M.; Hartwick, Victoria L.

    2012-01-01

    We present the first systematic 1.4 GHz Very Large Array radio continuum survey of fossil galaxy group candidates. These are virialized systems believed to have assembled over a gigayear in the past through the merging of galaxy group members into a single, isolated, massive elliptical galaxy and featuring an extended hot X-ray halo. We use new photometric and spectroscopic data from Sloan Digital Sky Survey Data Release 7 to determine that three of the candidates are clearly not fossil groups. Of the remaining 30 candidates, 67% contain a radio-loud (L 1.4GHz > 10 23 W Hz –1 ) active galactic nucleus (AGN) at the center of their dominant elliptical galaxy. We find a weak correlation between the radio luminosity of the AGN and the X-ray luminosity of the halo suggesting that the AGN contributes to energy deposition into the intragroup medium. We only find a correlation between the radio and optical luminosity of the central elliptical galaxy when we include X-ray-selected, elliptically dominated non-fossil groups, indicating a weak relationship between AGN strength and the mass assembly history of the groups. The dominant elliptical galaxy of fossil groups is on average roughly an order of magnitude more luminous than normal group elliptical galaxies in optical, X-ray, and radio luminosities and our findings are consistent with previous results that the radio-loud fraction in elliptical galaxies is linked to the stellar mass of a population. The current level of activity in fossil groups suggests that AGN fueling continues long after the last major merger. We discuss several possibilities for fueling the AGN at the present epoch.

  19. AGES: THE AGN AND GALAXY EVOLUTION SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Kochanek, C. S. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Eisenstein, D. J.; Caldwell, N.; Jones, C.; Murray, S. S.; Forman, W. R.; Green, P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cool, R. J. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States); Assef, R. J.; Eisenhardt, P.; Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Jannuzi, B. T.; Dey, A. [NOAO, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Brown, M. J. I. [School of Physics, Monash University, Clayton, Victoria 3800 (Australia); Gonzalez, A. H. [Department of Astronomy, Bryant Space Science Center, University of Florida, Gainesville, FL 32611 (United States)

    2012-05-01

    The AGN and Galaxy Evolution Survey (AGES) is a redshift survey covering, in its standard fields, 7.7 deg{sup 2} of the Booetes field of the NOAO Deep Wide-Field Survey. The final sample consists of 23,745 redshifts. There are well-defined galaxy samples in 10 bands (the B{sub W} , R, I, J, K, IRAC 3.6, 4.5, 5.8, and 8.0 {mu}m, and MIPS 24 {mu}m bands) to a limiting magnitude of I < 20 mag for spectroscopy. For these galaxies, we obtained 18,163 redshifts from a sample of 35,200 galaxies, where random sparse sampling was used to define statistically complete sub-samples in all 10 photometric bands. The median galaxy redshift is 0.31, and 90% of the redshifts are in the range 0.085 < z < 0.66. Active galactic nuclei (AGNs) were selected as radio, X-ray, IRAC mid-IR, and MIPS 24 {mu}m sources to fainter limiting magnitudes (I < 22.5 mag for point sources). Redshifts were obtained for 4764 quasars and galaxies with AGN signatures, with 2926, 1718, 605, 119, and 13 above redshifts of 0.5, 1, 2, 3, and 4, respectively. We detail all the AGES selection procedures and present the complete spectroscopic redshift catalogs and spectral energy distribution decompositions. Photometric redshift estimates are provided for all sources in the AGES samples.

  20. The 60 Month All-Sky Burst Alert Telescope Survey of Active Galactic Nucleus and the Anisotropy of Nearby AGNs

    Science.gov (United States)

    Ajello, M.; Alexander, D. M.; Greiner, J.; Madejeski, G. M.; Gehrels, N.; Burlon, D.

    2014-01-01

    Surveys above 10 keV represent one of the best resources to provide an unbiased census of the population of active galactic nuclei (AGNs). We present the results of 60 months of observation of the hard X-ray sky with Swift/Burst Alert Telescope (BAT). In this time frame, BAT-detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGNs, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of approx. 2 larger over similarly complete sets of AGNs. Our sample contains (at least) 15 bona fide Compton-thick AGNs and 3 likely candidates. Compton-thick AGNs represent approx. 5% of AGN samples detected above 15 keV. We use the BAT data set to refine the determination of the log N-log S of AGNs which is extremely important, now that NuSTAR prepares for launch, toward assessing the AGN contribution to the cosmic X-ray background. We show that the log N-log S of AGNs selected above 10 keV is now established to approx. 10% precision. We derive the luminosity function of Compton-thick AGNs and measure a space density of 7.9(+4.1/-2.9)× 10(exp -5)/cubic Mpc for objects with a de-absorbed luminosity larger than 2 × 10(exp 42) erg / s. As the BAT AGNs are all mostly local, they allow us to investigate the spatial distribution of AGNs in the nearby universe regardless of absorption. We find concentrations of AGNs that coincide spatially with the largest congregations of matter in the local (much < 85 Mpc) universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions..

  1. STORM IN A {sup T}EACUP{sup :} A RADIO-QUIET QUASAR WITH ≈10 kpc RADIO-EMITTING BUBBLES AND EXTREME GAS KINEMATICS

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, C. M.; Thomson, A. P.; Alexander, D. M.; Edge, A. C.; Hogan, M. T.; Swinbank, A. M. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Bauer, F. E. [Instituto de Astrofísica, Facultad de Física, Pontifica Universidad Católica de Chile, 306, Santiago 22 (Chile); Mullaney, J. R., E-mail: c.m.harrison@mail.com [Department of Physics and Astronomy, University of Sheffield, Sheffield S7 3RH (United Kingdom)

    2015-02-10

    We present multi-frequency (1-8 GHz) Very Large Array data, combined with VIsible MultiObject Spectrograph integral field unit data and Hubble Space Telescope imaging, of a z = 0.085 radio-quiet type 2 quasar (with L {sub 1.4} {sub GHz} ≈ 5 × 10{sup 23} W Hz{sup –1} and L {sub AGN} ≈ 2 × 10{sup 45} erg s{sup –1}). Due to the morphology of its emission-line region, the target (J1430+1339) has been referred to as the ''Teacup'' active galactic nucleus (AGN) in the literature. We identify ''bubbles'' of radio emission that are extended ≈10-12 kpc to both the east and west of the nucleus. The edge of the brighter eastern bubble is co-spatial with an arc of luminous ionized gas. We also show that the ''Teacup'' AGN hosts a compact radio structure, located ≈0.8 kpc from the core position, at the base of the eastern bubble. This radio structure is co-spatial with an ionized outflow with an observed velocity of v = –740 km s{sup –1}. This is likely to correspond to a jet, or possibly a quasar wind, interacting with the interstellar medium at this position. The large-scale radio bubbles appear to be inflated by the central AGN, which indicates that the AGN can also interact with the gas on ≳ 10 kpc scales. Our study highlights that even when a quasar is formally ''radio-quiet'' the radio emission can be extremely effective for observing the effects of AGN feedback.

  2. ¿Teología para agnósticos?

    Directory of Open Access Journals (Sweden)

    Sotelo Martínez, Igancio

    2002-04-01

    Full Text Available Not available

    Pretendo exponer de la manera más breve unas pocas razones que muestren que la teología concierne también al agnóstico. Por teología entiendo la reflexión sistemática en torno a la fe cristiana y por agnóstico, también en sentido muy amplio, aquel que no participa de esta fe. La tesis que defiendo es que no es necesaria la fe para interesarse por la teología; tiene sentido ocuparse de Dios sin creer en su existencia.
    ¿Por qué el agnóstico habría de ocuparse de la teología cuando el creyente parece que no la necesita? Cree antes de examinar reflexivamente su fe, que no depende de argumentos ni de demostraciones. Lo cierto es que la teología no conduce a la fe y hasta puede dudarse de si la fortalece. Conozco personas profundamente creyentes que huyen de las disquisiciones teológicas como de la peste. Viven la fe en una experiencia de amor al prójimoque no precisa de argumentos. Les basta acompañarse con las Sagradas Escrituras y de algunos libros piadosos o de espiritualidad. Cabría ampliar el horizonte de este artículo y preguntarse por el alcance y sentido que tenga la «reflexión sistemática» sobre Dios para aquellos que creen.
    En todo caso, no deja de ser paradójico intentar una defensa de la teología, cuando parece que les sobra, tanto a agnósticos como a creyentes; incluso la Iglesia ha encerrado a los teólogos en un gueto en el que, si bien gozan de mucha mayor libertad que en el pasado, la disfrutan en buena parte porque se han quedado sin audiencia. Escriben exclusivamente para los colegas que son los únicos que los leen. Claro que, dada la fragmentación actual de los saberes, lo mismo les ocurre a los demás especialistas.
    Si una buena parte de los creyentes se desentienden de la teología, ¿por qué habría de ocupar al agnóstico? Barrunto que una vindicación de la teología valga tanto para los unos como para los otros, pero en esta ocasión considero tan sólo las

  3. Studies of Quasar Outflows

    Science.gov (United States)

    Arav, Nahum

    2002-01-01

    The main aim of this research program is to determine the ionization equilibrium and abundances in quasar outflows. Especially in the broad absorption line QSO PG 0946+301. We find that the outflow's metalicity is consistent with being solar, while the abundance ratio of phosphorus to other metals is at least ten times solar. These findings are based on diagnostics that are not sensitive to saturation and partial covering effects in the BALs (Broad Adsorption Lines), which considerably weakened previous claims for enhanced metalicity. Ample evidence for these effects is seen in the spectrum.

  4. The XMM-Newton Wide Field Survey in the COSMOS Field: Redshift Evolution of AGN Bias and Subdominant Role of Mergers in Triggering Moderate-luminosity AGNs at Redshifts up to 2.2

    OpenAIRE

    Allevato, V.; Finoguenov, A.; Cappelluti, N.; Miyaji, T.; Hasinger, G.; Salvato, M.; Brusa, M.; Gilli, R.; Zamorani, G.; Shankar, F.; James, J. B.; McCracken, H. J.; Bongiorno, A.; Merloni, A.; Peacock, J. A.

    2011-01-01

    We present a study of the redshift evolution of the projected correlation function of 593 X-ray selected active galactic nuclei (AGNs) with I_(AB) < 23 and spectroscopic redshifts z < 4, extracted from the 0.5–2 keV X-ray mosaic of the 2.13 deg^2 XMM- Cosmic Evolution Survey (COSMOS). We introduce a method to estimate the average bias of the AGN sample and the mass of AGN hosting halos, solving the sample variance using the halo model and taking into account the growth of the structure over t...

  5. Knowledge Outflows from Foreign Subsidiaries

    DEFF Research Database (Denmark)

    Perri, Alessandra; Andersson, Ulf

    This paper analyzes the MNC subsidiaries’ trade-off between the need for knowledge creation and the need for knowledge protection, and relates it to the extent of knowledge outflows generated within the host location. Combining research in International Business with Social Theory, we find...... the value of the subsidiary’s knowledge stock is very high, the need for knowledge protection restrains reciprocity mechanisms in knowledge exchanges, thus reducing the extent of knowledge outflows to the host location. This study contributes to the literature on the firm-level antecedents of FDI...... that subsidiaries that extensively draw on external knowledge sources are also more likely to generate knowledge outflows to local firms. We argue that this may be explained by the subsidiaries’ willingness to build the trust that facilitates the establishment of reciprocal knowledge linkages. However, when...

  6. Searching for faint AGN in the CDFS: an X-ray (Chandra) vs optical variability (HST) comparison.

    Science.gov (United States)

    Georgantopoulos, I.; Pouliasis, E.; Bonanos, A.; Sokolovsky, K.; Yang, M.; Hatzidimitriou, D.; Bellas, I.; Gavras, P.; Spetsieri, Z.

    2017-10-01

    X-ray surveys are believed to be the most efficient way to detect AGN. Recently though, optical variability studies are claimed to probe even fainter AGN. We are presenting results from an HST study aimed to identify Active Galactic Nuclei (AGN) through optical variability selection in the CDFS.. This work is part of the 'Hubble Catalogue of Variables'project of ESA that aims to identify variable sources in the Hubble Source Catalogue.' In particular, we used Hubble Space Telescope (HST) z-band images taken over 5 epochs and performed aperture photometry to derive the lightcurves of the sources. Two statistical methods (standard deviation & interquartile range) resulting in a final sample of 175 variable AGN candidates, having removed the artifacts by visual inspection and known stars and supernovae. The fact that the majority of the sources are extended and variable indicates AGN activity. We compare the efficiency of the method by comparing with the 7Ms Chandra detections. Our work shows that the optical variability probes AGN at comparable redshifts but at deeper optical magnitudes. Our candidate AGN (non detected in X-rays) have luminosities of L_x<6×10^{40} erg/sec at z˜0.7 suggesting that these are associated with low luminosity Seyferts and LINERS.

  7. Extragalactic gamma-ray background from AGN winds and star-forming galaxies in cosmological galaxy-formation models

    Science.gov (United States)

    Lamastra, A.; Menci, N.; Fiore, F.; Antonelli, L. A.; Colafrancesco, S.; Guetta, D.; Stamerra, A.

    2017-10-01

    We derive the contribution to the extragalactic gamma-ray background (EGB) from active galactic nuclei (AGN) winds and star-forming galaxies by including a physical model for the γ-ray emission produced by relativistic protons accelerated by AGN-driven and supernova-driven shocks into a state-of-the-art semi-analytic model of galaxy formation. This is based on galaxy interactions as triggers of AGN accretion and starburst activity and on expanding blast waves as the mechanism to communicate outwards the energy injected into the interstellar medium by the active nucleus. We compare the model predictions with the latest measurement of the EGB spectrum performed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) in the range between 100 MeV and 820 GeV. We find that AGN winds can provide 35 ± 15% of the observed EGB in the energy interval Eγ = 0.1-1 GeV, for 73 ± 15% at Eγ = 1-10 GeV, and for 60 ± 20% at Eγ ≳10 GeV. The AGN wind contribution to the EGB is predicted to be larger by a factor of 3-5 than that provided by star-forming galaxies (quiescent plus starburst) in the hierarchical clustering scenario. The cumulative γ-ray emission from AGN winds and blazars can account for the amplitude and spectral shape of the EGB, assuming the standard acceleration theory, and AGN wind parameters that agree with observations. We also compare the model prediction for the cumulative neutrino background from AGN winds with the most recent IceCube data. We find that for AGN winds with accelerated proton spectral index p = 2.2-2.3, and taking into account internal absorption of γ-rays, the Fermi-LAT and IceCube data could be reproduced simultaneously.

  8. Co-existence of two plasma phases in solar and AGN coronas

    Directory of Open Access Journals (Sweden)

    Kubičela A.

    1998-01-01

    Full Text Available Here we have juxtaposed two distant cosmic locations of the Sun and AGN where neutral hydrogen appears in a close connection with hot coronas. Besides the solar photosphere, chromosphere and prominences where the presence of neutral hydrogen is well established, its emission quite high in hot solar corona is still puzzling. Some of earlier observations where Hα emission in solar corona was detected in eclipse and in daily coronagraphic observations are reviewed. A proper theoretical explanation of this cold chromospheric-type emission in the hot corona does not exist yet. On the other side, a similar emission of hydrogen lines is present in Active Galactic Nuclei (AGNs. Much research work is currently being done in this field. We outline some of the concepts of the AGN structure prevailing in the astrophysics today.

  9. A Multi-wavelength Analysis of Binary-AGN Candidate PSO J334.2028+01.4075

    OpenAIRE

    Foord, Adi; Gultekin, Kayhan; Reynolds, Mark; Ayers, Megan; Liu, Tingting; Gezari, Suvi; Runnoe, Jessie

    2017-01-01

    We present analysis of the first Chandra observation of PSO J334.2028+01.4075 (PSO J334), targeted as a binary-AGN candidate based on periodic variations of the optical flux. With no prior targeted X-ray coverage for PSO J334, our new 40 ksec Chandra observation allows for the opportunity to differentiate between a single or binary-AGN system, and if a binary, can characterize the mode of accretion. Simulations show that the two expected accretion disk morphologies for binary-AGN systems are ...

  10. Cumulative neutrino background from quasar-driven outflows

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiawei; Loeb, Abraham, E-mail: xiawei.wang@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu [Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-12-01

    Quasar-driven outflows naturally account for the missing component of the extragalactic γ-ray background through neutral pion production in interactions between protons accelerated by the forward outflow shock and interstellar protons. We study the simultaneous neutrino emission by the same protons. We adopt outflow parameters that best fit the extragalactic γ-ray background data and derive a cumulative neutrino background of ∼ 10{sup −7} GeV cm{sup −2} s{sup −1} sr{sup −1} at neutrino energies E {sub ν} ∼> 10 TeV, which naturally explains the most recent IceCube data without tuning any free parameters. The link between the γ-ray and neutrino emission from quasar outflows can be used to constrain the high-energy physics of strong shocks at cosmological distances.

  11. Simulating the Growth of a Disk Galaxy and its Supermassive Black Hole in a Cosmological Simulating the Growth of a Disk Galaxy and its Supermassive Black Hole in a Cosmological Context

    International Nuclear Information System (INIS)

    Levine, Robyn Deborah; JILA, Boulder

    2008-01-01

    Supermassive black holes (SMBHs) are ubiquitous in the centers of galaxies. Their formation and subsequent evolution is inextricably linked to that of their host galaxies, and the study of galaxy formation is incomplete without the inclusion of SMBHs. The present work seeks to understand the growth and evolution of SMBHs through their interaction with the host galaxy and its environment. In the first part of the thesis (Chap. 2 and 3), we combine a simple semi-analytic model of outflows from active galactic nuclei (AGN) with a simulated dark matter density distribution to study the impact of SMBH feedback on cosmological scales. We find that constraints can be placed on the kinetic efficiency of such feedback using observations of the filling fraction of the Lyα forest. We also find that AGN feedback is energetic enough to redistribute baryons over cosmological distances, having potentially significant effects on the interpretation of cosmological data which are sensitive to the total matter density distribution (e.g. weak lensing). However, truly assessing the impact of AGN feedback in the universe necessitates large-dynamic range simulations with extensive treatment of baryonic physics to first model the fueling of SMBHs. In the second part of the thesis (Chap. 4-6) we use a hydrodynamic adaptive mesh refinement simulation to follow the growth and evolution of a typical disk galaxy hosting a SMBH, in a cosmological context. The simulation covers a dynamical range of 10 million allowing us to study the transport of matter and angular momentum from super-galactic scales all the way down to the outer edge of the accretion disk around the SMBH. Focusing our attention on the central few hundred parsecs of the galaxy, we find the presence of a cold, self-gravitating, molecular gas disk which is globally unstable. The global instabilities drive super-sonic turbulence, which maintains local stability and allows gas to fuel a SMBH without first fragmenting completely

  12. AGNES at vibrated gold microwire electrode for the direct quantification of free copper concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Rute F., E-mail: rdomingos@ipgp.fr [Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Torre Sul Lab 11-6.3, Av. Rovisco Pais #1, 1049-001 Lisbon (Portugal); Carreira, Sara [Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Torre Sul Lab 11-6.3, Av. Rovisco Pais #1, 1049-001 Lisbon (Portugal); Galceran, Josep [Department of Chemistry, University of Lleida and Agrotecnio, Rovira Roure 191, 25198 Lleida (Spain); Salaün, Pascal [School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, Liverpool L693 GP (United Kingdom); Pinheiro, José P. [LIEC/ENSG, UMR 7360 CNRS – Université de Lorraine, 15 Avenue du Charmois, 54500 Vandoeuvre-les-Nancy (France)

    2016-05-12

    The free metal ion concentration and the dynamic features of the metal species are recognized as key to predict metal bioavailability and toxicity to aquatic organisms. Quantification of the former is, however, still challenging. In this paper, it is shown for the first time that the concentration of free copper (Cu{sup 2+}) can be quantified by applying AGNES (Absence of Gradients and Nernstian equilibrium stripping) at a solid gold electrode. It was found that: i) the amount of deposited Cu follows a Nernstian relationship with the applied deposition potential, and ii) the stripping signal is linearly related with the free metal ion concentration. The performance of AGNES at the vibrating gold microwire electrode (VGME) was assessed for two labile systems: Cu-malonic acid and Cu-iminodiacetic acid at ionic strength 0.01 M and a range of pH values from 4.0 to 6.0. The free Cu concentrations and conditional stability constants obtained by AGNES were in good agreement with stripping scanned voltammetry and thermodynamic theoretical predictions obtained by Visual MinteQ. This work highlights the suitability of gold electrodes for the quantification of free metal ion concentrations by AGNES. It also strongly suggests that other solid electrodes may be well appropriate for such task. This new application of AGNES is a first step towards a range of applications for a number of metals in speciation, toxicological and environmental studies for the direct determination of the key parameter that is the free metal ion concentration. - Highlights: • AGNES principles are valid at the vibrating gold microwire electrode (VGME). • VGME was successfully employed to quantify free Cu concentrations by using AGNES. • Stability constants of labile systems were in good agreement with predictions.

  13. A Comprehensive Study of the Cold Dust and Gas in Galactic Winds

    Science.gov (United States)

    Veilleux, Sylvain

    Galaxies do not evolve statically or in isolation, but instead are being structurally rearranged by stellar and gas motions and are interacting dynamically with their halos and environments. Galactic winds (GWs), or large-scale outflows of material from disks and spheroids, are a primary means by which this structural evolution and ongoing interplay occur. Major outstanding questions remain, however, about the precise impact that GWs make. Both from the ground and from space, our recent effort has focused on the all-important cold gas and dust components of GWs. They are the key to understanding GWs for at least three reasons: i. Outflows have to affect the cold gas and dust out of which stars form if they are to inhibit star formation in the host galaxy. ii. We have found in recent years that the cold gas phase is the energetically dominant phase of many GWs. iii. The kinematics and dynamics of the cold gas phase show trends with AGN luminosity that suggest that we are finally seeing the long-sought ``smoking gun'' of quasar feedback. However, these conclusions rest on very limited samples and are thus tentative. Remarkably, the Herschel and Spitzer Science Archives are treasure troves of high-quality images and spectra on GWs that could drastically improve this sad state of affairs, once these data are analyzed. Here we propose to carry out for the first time a single, self-consistent analysis of all of these data, and combine the results with our extensive ancillary ground-based data (Gemini, VLT, JVLA, ALMA, IRAM, and Keck) to capture all of the gas phases involved in GWs. This multiwavelength approach is unique and goes much beyond individual targeted programs in this area. We are interested in studying all GWs, regardless of redshifts: For the nearest (systems, we will examine deep Herschel and Spitzer images to derive the dust content of GWs and the circumgalactic environment in general. Our sample size (~50 GWs and control galaxies) will allow us to

  14. Exploring the Connection Between Star Formation and AGN Activity in the Local Universe

    Science.gov (United States)

    LaMassa, Stephanie M.; Heckman. T. M.; Ptak, Andrew; Schiminovich, D.; O'Dowd, M.; Bertincourt, B.

    2012-01-01

    We study a combined sample of 264 star-forming, 51 composite, and 73 active galaxies using optical spectra from SDSS and mid-infrared (mid-IR) spectra from the Spitzer Infrared Spectrograph. We examine optical and mid-IR spectroscopic diagnostics that probe the amount of star formation and relative energetic con- tributions from star formation and an active galactic nucleus (AGN). Overall we find good agreement between optical and mid-IR diagnostics. Misclassifications of galaxies based on the SDSS spectra are rare despite the presence of dust obscuration. The luminosity of the [NeII] 12.8 micron emission-line is well correlated with the star formation rate (SFR) measured from the SDSS spectra, and this holds for the star forming, composite, and AGN-dominated systems. AGN show a clear excess of [NeIII] 15.6 micron emission relative to star forming and composite systems. We find good qualitative agreement between various parameters that probe the relative contributions of the AGN and star formation, including: the mid-IR spectral slope, the ratio of the [NeV] 14.3 micron to [NeII] micron 12.8 fluxes, the equivalent widths of the 7.7, 11.3, and 17 micron PAH features, and the optical "D" parameter which measures the distance a source lies from the locus of star forming galaxies in the optical BPT emission-line diagnostic diagram. We also consider the behavior of the three individual PAH features by examining how their flux ratios depend upon the degree of AGN-dominance. We find that the PAH 11.3 micron feature is significantly suppressed in the most AGN-dominated systems.

  15. Compact binary merger and kilonova: outflows from remnant disc

    Science.gov (United States)

    Yi, Tuan; Gu, Wei-Min; Liu, Tong; Kumar, Rajiv; Mu, Hui-Jun; Song, Cui-Ying

    2018-05-01

    Outflows launched from a remnant disc of compact binary merger may have essential contribution to the kilonova emission. Numerical calculations are conducted in this work to study the structure of accretion flows and outflows. By the incorporation of limited-energy advection in the hyper-accretion discs, outflows occur naturally from accretion flows due to imbalance between the viscous heating and the sum of the advective and radiative cooling. Following this spirit, we revisit the properties of the merger outflow ejecta. Our results show that around 10-3 ˜ 10-1 M⊙ of the disc mass can be launched as powerful outflows. The amount of unbound mass varies with the disc mass and the viscosity. The outflow-contributed peak luminosity is around 1040 ˜ 1041 erg s-1. Such a scenario can account for the observed kilonovae associated with short gamma-ray bursts, including the recent event AT2017gfo (GW170817).

  16. AGN Obscuration Through Dusty Infrared Dominated Flows. II. Multidimensional, Radiation-Hydrodynamics Modeling

    Science.gov (United States)

    Dorodnitsyn, Anton; Kallman, Tim; Bisno\\vatyiI-Kogan, Gennadyi

    2011-01-01

    We explore a detailed model in which the active galactic nucleus (AGN) obscuration results from the extinction of AGN radiation in a global ow driven by the pressure of infrared radiation on dust grains. We assume that external illumination by UV and soft X-rays of the dusty gas located at approximately 1pc away from the supermassive black hole is followed by a conversion of such radiation into IR. Using 2.5D, time-dependent radiation hydrodynamics simulations in a ux-limited di usion approximation we nd that the external illumination can support a geometrically thick obscuration via out ows driven by infrared radiation pressure in AGN with luminosities greater than 0:05 L(sub edd) and Compton optical depth, Tau(sub T) approx > & 1.

  17. Character and dynamics of the Red Sea and Persian Gulf outflows

    Science.gov (United States)

    Bower, Amy S.; Hunt, Heather D.; Price, James F.

    2000-03-01

    Historical hydrographic data and a numerical plume model are used to investigate the initial transformation, dynamics, and spreading pathways of Red Sea and Persian Gulf outflow waters where they enter the Indian Ocean. The annual mean transport of these outflows is relatively small (outflows in that they flow over very shallow sills (depth Red Sea outflow exhibits strong seasonal variability in transport. The four main results of this study are as follows. First, on the basis of observed temperature-salinity (T-S) characteristics of the outflow source and product waters we estimate that the Red Sea and Persian Gulf outflows are diluted by factors of ˜2.5 and 4, respectively, as they descend from sill depth to their depth of neutral buoyancy. The high-dilution factor for the Persian Gulf outflow results from the combined effects of large initial density difference between the outflow source water and oceanic water and low outflow transport. Second, the combination of low latitude and low outflow transport (and associated low outflow thickness) results in Ekman numbers for both outflows that are O(1). This indicates that they should be thought of as frictional density currents modified by rotation rather than geostrophic density currents modified by friction. Third, different mixing histories along the two channels that direct Red Sea outflow water into the open ocean result in product waters with significantly different densities, which probably contributes to the multilayered structure of the Red Sea product waters. In both outflows, seasonal variations in source water and oceanic properties have some effect on the T-S of the product waters, but they have only a minor impact on equilibrium depth. Fourth, product waters from both outflows are advected away from the sill region in narrow boundary currents, at least during part of the year. At other times, the product water appears more in isolated patches.

  18. Cerebral venous outflow and cerebrospinal fluid dynamics

    Directory of Open Access Journals (Sweden)

    Clive B. Beggs

    2014-12-01

    Full Text Available In this review, the impact of restricted cerebral venous outflow on the biomechanics of the intracranial fluid system is investigated. The cerebral venous drainage system is often viewed simply as a series of collecting vessels channeling blood back to the heart. However there is growing evidence that it plays an important role in regulating the intracranial fluid system. In particular, there appears to be a link between increased cerebrospinal fluid (CSF pulsatility in the Aqueduct of Sylvius and constricted venous outflow. Constricted venous outflow also appears to inhibit absorption of CSF into the superior sagittal sinus. The compliance of the cortical bridging veins appears to be critical to the behaviour of the intracranial fluid system, with abnormalities at this location implicated in normal pressure hydrocephalus. The compliance associated with these vessels appears to be functional in nature and dependent on the free egress of blood out of the cranium via the extracranial venous drainage pathways. Because constricted venous outflow appears to be linked with increased aqueductal CSF pulsatility, it suggests that inhibited venous blood outflow may be altering the compliance of the cortical bridging veins.

  19. ALMA OBSERVATIONS OF THE HH 46/47 MOLECULAR OUTFLOW

    International Nuclear Information System (INIS)

    Arce, Héctor G.; Mardones, Diego; Garay, Guido; Corder, Stuartt A.; Noriega-Crespo, Alberto; Raga, Alejandro C.

    2013-01-01

    The morphology, kinematics, and entrainment mechanism of the HH 46/47 molecular outflow were studied using new ALMA Cycle 0 observations. Results show that the blue and red lobes are strikingly different. We argue that these differences are partly due to contrasting ambient densities that result in different wind components having a distinct effect on the entrained gas in each lobe. A 29 point mosaic, covering the two lobes at an angular resolution of about 3'', detected outflow emission at much higher velocities than previous observations, resulting in significantly higher estimates of the outflow momentum and kinetic energy than previous studies of this source, using the CO(1-0) line. The morphology and the kinematics of the gas in the blue lobe are consistent with models of outflow entrainment by a wide-angle wind, and a simple model describes the observed structures in the position-velocity diagram and the velocity-integrated intensity maps. The red lobe exhibits a more complex structure, and there is evidence that this lobe is entrained by a wide-angle wind and a collimated episodic wind. Three major clumps along the outflow axis show velocity distribution consistent with prompt entrainment by different bow shocks formed by periodic mass ejection episodes which take place every few hundred years. Position-velocity cuts perpendicular to the outflow cavity show gradients where the velocity increases toward the outflow axis, inconsistent with outflow rotation. Additionally, we find evidence for the existence of a small outflow driven by a binary companion

  20. The Kepler Light Curves of AGN: A Detailed Analysis

    Science.gov (United States)

    Smith, Krista Lynne; Mushotzky, Richard F.; Boyd, Patricia T.; Malkan, Matt; Howell, Steve B.; Gelino, Dawn M.

    2018-04-01

    We present a comprehensive analysis of 21 light curves of Type 1 active galactic nuclei (AGN) from the Kepler spacecraft. First, we describe the necessity and development of a customized pipeline for treating Kepler data of stochastically variable sources like AGN. We then present the light curves, power spectral density functions (PSDs), and flux histograms. The light curves display an astonishing variety of behaviors, many of which would not be detected in ground-based studies, including switching between distinct flux levels. Six objects exhibit PSD flattening at characteristic timescales that roughly correlate with black hole mass. These timescales are consistent with orbital timescales or free-fall accretion timescales. We check for correlations of variability and high-frequency PSD slope with accretion rate, black hole mass, redshift, and luminosity. We find that bolometric luminosity is anticorrelated with both variability and steepness of the PSD slope. We do not find evidence of the linear rms–flux relationships or lognormal flux distributions found in X-ray AGN light curves, indicating that reprocessing is not a significant contributor to optical variability at the 0.1%–10% level.

  1. Relativistic Outflows from ADAFs

    Science.gov (United States)

    Becker, Peter; Subramanian, Prasad; Kazanas, Demosthenes

    2001-04-01

    Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter, and are therefore gravitationally bound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a seudo - Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self - similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Our self - similar model may therefore help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approachs the unique form dot M ∝ r^1/2, with an associated density variation given by ρ ∝ r-1. This density variation agrees with that implied by the dependence of the X-ray hard time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the results of our self-similar model need to be confirmed in the future by incorporating a detailed physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.

  2. Finding AGN in Deep X-ray Flux States with Swift

    OpenAIRE

    Grupe, Dirk; Komossa, S.; Bush, Mason; Pruett, Chelsea; Ernst, Sonny; Barber, Taylor; Carter, Jen; Schartel, Norbert; Rodriguez, Pedro; Santos-Lleó, Maria

    2015-01-01

    We report on our ongoing project of finding Active Galactic Nuclei (AGN) that go into deep X-ray flux states detected by Swift. Swift is performing an extensive study on the flux and spectral variability of AGN using Guest Investigator and team fill-in programs followed by triggering XMM_Newton for deeper follow-up observations. So far this program has been very successful and has led to a number of XMM-Newton follow up observations, including Mkn 335, PG 0844+349, and RX J2340.8-5329. Recent...

  3. The first 62 AGNs observed with SDSS-IV MaNGA - I. Their characterization and definition of a control sample

    Science.gov (United States)

    Rembold, Sandro B.; Shimoia, Jáderson S.; Storchi-Bergmann, Thaisa; Riffel, Rogério; Riffel, Rogemar A.; Mallmann, Nícolas D.; do Nascimento, Janaína C.; Moreira, Thales N.; Ilha, Gabriele S.; Machado, Alice D.; Cirolini, Rafael; da Costa, Luiz N.; Maia, Marcio A. G.; Santiago, Basílio X.; Schneider, Donald P.; Wylezalek, Dominika; Bizyaev, Dmitry; Pan, Kaike; Müller-Sánchez, Francisco

    2017-12-01

    We report the characterization of the first 62 Mapping Nearby Galaxies at the Apache Point Observatory active galactic nuclei (AGNs) hosts and the definition of a control sample of non-active galaxies. This control sample was selected in order to match the AGN hosts in terms of stellar mass, redshift, visual morphology and inclination. The stellar masses are in the range 9.4AGN sample is mostly comprised low-luminosity AGN, with only 17 'strong AGN' with L([O III]λ 5007°_A ≥ 3.8× 10^{40} erg s^{-1}. The inner 1-3 kpc of the control sample galaxies are dominated by the oldest (≥ 4 Gyr) component, with a small contribution of intermediate age and young stars (<940 Myr). Examining the relationship between the stellar population properties and L([O III]}), we find that with increasing L([O III]), the AGN exhibit a decreasing contribution from the oldest stellar population relative to control galaxies and an increasing contribution from the younger components (∼40 Myr). We also find a correlation of the mean age differences (AGN-control) with L([O III]), in the sense that more luminous AGNs are younger than the control objects, while the low-luminosity AGNs are older. These results support a connection between the growth of the galaxy bulge via formation of new stars and the growth of the Supermassive Black Hole via accretion in the AGN phase.

  4. Simultaneous Chandra and NuSTAR Observations of the Highly Obscured AGN Candidate in NGC660.

    Science.gov (United States)

    Annuar, Ady

    2014-09-01

    We are using NuSTAR to undertake a detailed investigation of the obscured AGN population at D<15Mpc. Our latest target is NGC660 where the presence of an AGN has been ambiguous. However, recently it was observed to undergo a radio outburst which reveals a bright continuum source (Argo et al. 2015), coincident with Chandra 2-8 keV emission from one of the three point sources near the nucleus (<5"). This confirms and pinpoints the X-ray position of the AGN. Comparisons of the Chandra flux with the radio emission and other multiwavelength luminosity indicators indicate that the X-ray flux is suppressed, suggesting that it is absorbed by a high column of gas. A NuSTAR observation for this object has been scheduled as part of our program. The requested Chandra observation is essential to unambiguously constrain the AGN and isolate it from other sources at <8 keV. When combined with NuSTAR, we will then be able to accurately characterise the 0.5-30 keV spectrum of the AGN for the first time.

  5. Is Black Hole Growth a Universal Process? Exploring Selection Effects in Measurements of AGN Accretion Rates and Host Galaxies.

    Science.gov (United States)

    Jones, Mackenzie

    2018-01-01

    At the center of essentially every massive galaxy is a monstrous black hole producing luminous radiation driven by the accretion of gas. By observing these active galactic nuclei (AGN) we may trace the growth of black holes across cosmic time. However, our knowledge of the full underlying AGN population is hindered by complex observational biases. My research aims to untangle these biases by using a novel approach to simulate the impact of selection effects on multiwavelength observations.The most statistically powerful studies of AGN to date come from optical spectroscopic surveys, with some reporting a complex relationship between AGN accretion rates and host galaxy characteristics. However, the optical waveband can be strongly influenced by selection effects and dilution from host galaxy star formation. I have shown that accounting for selection effects, the Eddington ratio distribution for optically-selected AGN is consistent with a broad power-law, as seen in the X-rays (Jones et al. 2016). This suggests that a universal Eddington ratio distribution may be enough to describe the full multiwavelength AGN population.Building on these results, I have expanded a semi-numerical galaxy formation simulation to include this straightforward prescription for AGN accretion and explicitly model selection effects. I have found that a simple model for AGN accretion can broadly reproduce the host galaxies and halos of X-ray AGN, and that different AGN selection techniques yield samples with very different host galaxy properties (Jones et al. 2017). Finally, I will discuss the capabilities of this simulation to build synthetic multiwavelength SEDs in order to explore what AGN populations would be detected with the next generation of observatories. This research is supported by a NASA Jenkins Graduate Fellowship under grant no. NNX15AU32H.

  6. A fragilidade das Instituições Sociais e o rompimento da Ética no filme Agnes de Deus.

    Directory of Open Access Journals (Sweden)

    Marco Antonio Palermo Moretto

    2015-04-01

    Full Text Available Research about the fragilities of the social institutions in the movie Agnes of God and the ethic and moral. There are a mistery in the story:a murder of the baby inside the convent.  The young nun, Agnes killed her baby and a psichiatrist. Dra. Martha Livingstone  begans a investigation since the childhood of Agnes until the crime. The presence of the Superior Mother, Mirian Ruth is important to the story. She is an administrator and protect Agnes in many situations. Such social institutions are showed as Family, Religion and the Justice. Methods are explained: questions and the hipnosis. Agnes has mistics experiences and reveal the conflict between cience and religion.

  7. RESOLVING THE GEOMETRY OF THE INNERMOST RELATIVISTIC JETS IN ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Algaba, J. C.; Lee, S. S. [Korea Astronomy and Space Science Institute, 776, Daedeokdae-ro, Yuseong-gu, Daejeon, 305-348 (Korea, Republic of); Nakamura, M.; Asada, K., E-mail: algaba@kasi.re.kr [Academia Sinica, Institute of Astronomy and Astrophysics, 11F of Astronomy-Mathematics Building, AS/NTU. No.1, Section 4, Roosevelt Road, Taipei 10617, Taiwan, R.O.C (China)

    2017-01-01

    In the current paradigm, it is believed that the compact VLBI radio core of radio-loud active galactic nuclei (AGNs) represents the innermost upstream regions of relativistic outflows. These regions of AGN jets have generally been modeled by a conical outflow with a roughly constant opening angle and flow speed. Nonetheless, some works suggest that a parabolic geometry would be more appropriate to fit the high energy spectral distribution properties and it has been recently found that, at least in some nearby radio galaxies, the geometry of the innermost regions of the jet is parabolic. We compile here multi-frequency core sizes of archival data to investigate the typically unresolved upstream regions of the jet geometry of a sample of 56 radio-loud AGNs. Data combined from the sources considered here are not consistent with the classic picture of a conical jet starting in the vicinity of the super-massive black hole (SMBH), and may exclude a pure parabolic outflow solution, but rather suggest an intermediate solution with quasi-parabolic streams, which are frequently seen in numerical simulations. Inspection of the large opening angles near the SMBH and the range of the Lorentz factors derived from our results support our analyses. Our result suggests that the conical jet paradigm in AGNs needs to be re-examined by millimeter/sub-millimeter VLBI observations.

  8. AGN Heating Through Cavities and Shocks

    NARCIS (Netherlands)

    Nulsen, P.E.J.; Jones, C.; Forman, W.R.; David, L.P.; McNamara, B.R.; Rafferty, D.A.; Bîrzan, L.; Wise, M.

    2007-01-01

    Three comments are made on AGN heating of cooling flows. A simple physical argument is used to show that the enthalpy of a buoyant radio lobe is converted to heat in its wake. Thus, a significant part of ``cavity'' enthalpy is likely to end up as heat. Second, the properties of the repeated weak

  9. Continuum Reverberation Mapping of AGN Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Fausnaugh, Michael M. [Department of Astronomy, Ohio State University, Columbus, OH (United States); MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA (United States); Peterson, Bradley M. [Department of Astronomy, Ohio State University, Columbus, OH (United States); Center for Cosmology and AstroParticle Physics, Ohio State University, Columbus, OH (United States); Space Telescope Science Institute, Baltimore, MD (United States); Starkey, David A. [SUPA Physics and Astronomy, University of St. Andrews, Scotland (United Kingdom); Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Horne, Keith, E-mail: faus@mit.edu [SUPA Physics and Astronomy, University of St. Andrews, Scotland (United Kingdom); Collaboration: the AGN STORM Collaboration

    2017-12-05

    We show recent detections of inter-band continuum lags in three AGN (NGC 5548, NGC 2617, and MCG+08-11-011), which provide new constraints on the temperature profiles and absolute sizes of the accretion disks. We find lags larger than would be predicted for standard geometrically thin, optically thick accretion disks by factors of 2.3–3.3. For NGC 5548, the data span UV through optical/near-IR wavelengths, and we are able to discern a steeper temperature profile than the T ~ R{sup −3/4} expected for a standard thin disk. Using a physical model, we are also able to estimate the inclinations of the disks for two objects. These results are similar to those found from gravitational microlensing of strongly lensed quasars, and provide a complementary approach for investigating the accretion disk structure in local, low luminosity AGN.

  10. Characterization of molecular outflows in the substellar domain

    International Nuclear Information System (INIS)

    Phan-Bao, Ngoc; Dang-Duc, Cuong; Lee, Chin-Fei; Ho, Paul T. P.; Li, Di

    2014-01-01

    We report here our latest search for molecular outflows from young brown dwarfs and very low-mass stars in nearby star-forming regions. We have observed three sources in Taurus with the Submillimeter Array and the Combined Array for Research in Millimeter-wave Astronomy at 230 GHz frequency to search for CO J = 2 → 1 outflows. We obtain a tentative detection of a redshifted and extended gas lobe at about 10 arcsec from the source GM Tau, a young brown dwarf in Taurus with an estimated mass of 73 M J , which is right below the hydrogen-burning limit. No blueshifted emission around the brown dwarf position is detected. The redshifted gas lobe that is elongated in the northeast direction suggests a possible bipolar outflow from the source with a position angle of about 36°. Assuming that the redshifted emission is outflow emission from GM Tau, we then estimate a molecular outflow mass in the range from 1.9 × 10 –6 M ☉ to 2.9 × 10 –5 M ☉ and an outflow mass-loss rate from 2.7 × 10 –9 M ☉ yr –1 to 4.1 × 10 –8 M ☉ yr –1 . These values are comparable to those we have observed in the young brown dwarf ISO-Oph 102 of 60 M J in ρ Ophiuchi and the very low-mass star MHO 5 of 90 M J in Taurus. Our results suggest that the outflow process in very low-mass objects is episodic with a duration of a few thousand years and the outflow rate of active episodes does not significantly change for different stages of the formation process of very low-mass objects. This may provide us with important implications that clarify the formation process of brown dwarfs.

  11. Microvariability in AGNs: study of different statistical methods - I. Observational analysis

    Science.gov (United States)

    Zibecchi, L.; Andruchow, I.; Cellone, S. A.; Carpintero, D. D.; Romero, G. E.; Combi, J. A.

    2017-05-01

    We present the results of a study of different statistical methods currently used in the literature to analyse the (micro)variability of active galactic nuclei (AGNs) from ground-based optical observations. In particular, we focus on the comparison between the results obtained by applying the so-called C and F statistics, which are based on the ratio of standard deviations and variances, respectively. The motivation for this is that the implementation of these methods leads to different and contradictory results, making the variability classification of the light curves of a certain source dependent on the statistics implemented. For this purpose, we re-analyse the results on an AGN sample observed along several sessions with the 2.15 m 'Jorge Sahade' telescope (CASLEO), San Juan, Argentina. For each AGN, we constructed the nightly differential light curves. We thus obtained a total of 78 light curves for 39 AGNs, and we then applied the statistical tests mentioned above, in order to re-classify the variability state of these light curves and in an attempt to find the suitable statistical methodology to study photometric (micro)variations. We conclude that, although the C criterion is not proper a statistical test, it could still be a suitable parameter to detect variability and that its application allows us to get more reliable variability results, in contrast with the F test.

  12. A fragilidade das Instituições Sociais e o rompimento da Ética no filme Agnes de Deus.

    OpenAIRE

    Marco Antonio Palermo Moretto

    2015-01-01

    Research about the fragilities of the social institutions in the movie Agnes of God and the ethic and moral. There are a mistery in the story:a murder of the baby inside the convent.  The young nun, Agnes killed her baby and a psichiatrist. Dra. Martha Livingstone  begans a investigation since the childhood of Agnes until the crime. The presence of the Superior Mother, Mirian Ruth is important to the story. She is an administrator and protect Agnes in many situations. Such social institutions...

  13. High spectral resolution X-ray observations of AGN

    NARCIS (Netherlands)

    Kaastra, J.S.

    2008-01-01

    brief overview of some highlights of high spectral resolution X-ray observations of AGN is given, mainly obtained with the RGS of XMM-Newton. Future prospects for such observations with XMM-Newton are given.

  14. Stellar feedback in galaxies and the origin of galaxy-scale winds

    Science.gov (United States)

    Hopkins, Philip F.; Quataert, Eliot; Murray, Norman

    2012-04-01

    Feedback from massive stars is believed to play a critical role in driving galactic super-winds that enrich the intergalactic medium and shape the galaxy mass function, mass-metallicity relation and other global galaxy properties. In previous papers, we have introduced new numerical methods for implementing stellar feedback on sub-giant molecular cloud (sub-GMC) through galactic scales in numerical simulations of galaxies; the key physical processes include radiation pressure in the ultraviolet through infrared, supernovae (Type I and Type II), stellar winds ('fast' O star through 'slow' asymptotic giant branch winds), and H II photoionization. Here, we show that these feedback mechanisms drive galactic winds with outflow rates as high as ˜10-20 times the galaxy star formation rate. The mass-loading efficiency (wind mass-loss rate divided by the star formation rate) scales roughly as ? (where Vc is the galaxy circular velocity), consistent with simple momentum-conservation expectations. We use our suite of simulations to study the relative contribution of each feedback mechanism to the generation of galactic winds in a range of galaxy models, from Small Magellanic Cloud like dwarfs and Milky Way (MW) analogues to z˜ 2 clumpy discs. In massive, gas-rich systems (local starbursts and high-z galaxies), radiation pressure dominates the wind generation. By contrast, for MW-like spirals and dwarf galaxies the gas densities are much lower and sources of shock-heated gas such as supernovae and stellar winds dominate the production of large-scale outflows. In all of our models, however, the winds have a complex multiphase structure that depends on the interaction between multiple feedback mechanisms operating on different spatial scales and time-scales: any single feedback mechanism fails to reproduce the winds observed. We use our simulations to provide fitting functions to the wind mass loading and velocities as a function of galaxy properties, for use in cosmological

  15. The Role of the Most Luminous Obscured AGNs in Galaxy Assembly at z ∼ 2

    Energy Technology Data Exchange (ETDEWEB)

    Farrah, Duncan [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Petty, Sara [Green Science Policy Institute, Berkeley, CA 94709 (United States); Connolly, Brian [Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229 (United States); Blain, Andrew [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Efstathiou, Andreas [School of Sciences, European University Cyprus, Diogenes Street, Engomi, 1516 Nicosia (Cyprus); Lacy, Mark [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Stern, Daniel; Bridge, Carrie; Eisenhardt, Peter; Moustakas, Leonidas [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Lake, Sean; Tsai, Chao-Wei [Physics and Astronomy Department, University of California, Los Angeles, CA 90095 (United States); Jarrett, Tom [Department of Astronomy, University of Cape Town, 7700 Rondebosch, Capetown 7700 (South Africa); Benford, Dominic [Observational Cosmology Lab., Code 665, NASA at Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Jones, Suzy [Department of Space, Earth, and Environment, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala (Sweden); Assef, Roberto [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Wu, Jingwen [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing, 100012 (China)

    2017-08-01

    We present Hubble Space Telescope WFC3 F160W imaging and infrared spectral energy distributions for 12 extremely luminous, obscured active galactic nuclei (AGNs) at 1.8 < z < 2.7 selected via “hot, dust-obscured” mid-infrared colors. Their infrared luminosities span (2–15) × 10{sup 13} L {sub ⊙}, making them among the most luminous objects in the universe at z ∼ 2. In all cases, the infrared emission is consistent with arising at least for the most part from AGN activity. The AGN fractional luminosities are higher than those in either submillimeter galaxies or AGNs selected via other mid-infrared criteria. Adopting the G , M {sub 20}, and A morphological parameters, together with traditional classification boundaries, infers that three-quarters of the sample are mergers. Our sample does not, however, show any correlation between the considered morphological parameters and either infrared luminosity or AGN fractional luminosity. Moreover, the asymmetries and effective radii of our sample are distributed identically to those of massive galaxies at z ∼ 2. We conclude that our sample is not preferentially associated with mergers, though a significant merger fraction is still plausible. Instead, we propose that our sample includes examples of the massive galaxy population at z ∼ 2 that harbor a briefly luminous, “flickering” AGN and in which the G and M {sub 20} values have been perturbed due to either the AGN and/or the earliest formation stages of a bulge in an inside-out manner. Furthermore, we find that the mass assembly of the central black holes in our sample leads the mass assembly of any bulge component. Finally, we speculate that our sample represents a small fraction of the immediate antecedents of compact star-forming galaxies at z ∼ 2.

  16. DISENTANGLING AGN AND STAR FORMATION ACTIVITY AT HIGH REDSHIFT USING HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P., E-mail: jsbridge@psu.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2016-08-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ∼ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope /Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/H β line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ∼40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/H β gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ∼ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  17. DISENTANGLING AGN AND STAR FORMATION ACTIVITY AT HIGH REDSHIFT USING HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY

    International Nuclear Information System (INIS)

    Bridge, Joanna S.; Zeimann, Gregory R.; Trump, Jonathan R.; Gronwall, Caryl; Ciardullo, Robin; Fox, Derek; Schneider, Donald P.

    2016-01-01

    Differentiating between active galactic nucleus (AGN) activity and star formation in z ∼ 2 galaxies is difficult because traditional methods, such as line-ratio diagnostics, change with redshift, while multi-wavelength methods (X-ray, radio, IR) are sensitive to only the brightest AGNs. We have developed a new method for spatially resolving emission lines using the Hubble Space Telescope /Wide Field Camera 3 G141 grism spectra and quantifying AGN activity through the spatial gradient of the [O iii]/H β line ratio. Through detailed simulations, we show that our novel line-ratio gradient approach identifies ∼40% more low-mass and obscured AGNs than obtained by classical methods. Based on our simulations, we developed a relationship that maps the stellar mass, star formation rate, and measured [O iii]/H β gradient to the AGN Eddington ratio. We apply our technique to previously studied stacked samples of galaxies at z ∼ 2 and find that our results are consistent with these studies. This gradient method will also be able to inform other areas of galaxy evolution science, such as inside-out quenching and metallicity gradients, and will be widely applicable to future spatially resolved James Webb Space Telescope data.

  18. CERN Library | Agnes Chavez @ CERN | 3 May

    CERN Multimedia

    CERN Library

    2016-01-01

    Agnes Chavez is an artist and educator participating in a two-week research stay through the ATLAS Experiment at CERN.   Tuesday 3 May at 4 p.m. CERN Library (52 1-052) Artist/educator, Agnes Chavez will share video outcomes from Projecting Particles, an Art + Science + Education collaboration with ATLAS. The Sci-Art project combines the International Masterclass with Projection Art in a series of teen-led youth workshops and projection events. In this presentation Chavez will share her vision and describe the research and development behind the project, now in its third year.  For the Projecting pARTicles series of art installations she has formed an interdisciplinary team of programmers, artists, scientists and educators to investigate how we can create art and education interventions inspired by emerging particle physics theories. Chavez’s art experiments with data visualization, sound and projections to create participatory environments. She collaborates with programmers t...

  19. CERN Library | Agnes Chavez @ CERN | 17 March

    CERN Multimedia

    2015-01-01

    Agnes Chavez will present her work on Tuesday, 17 March 2015 at 4 p.m. in the Library (Builidng. 52-1-052) Coffee will be served from 3.30 p.m.   Agnes Chavez is an artist and educator participating in a two-week research stay organised by the ATLAS Experiment at CERN. Chavez is using the stay to develop her art and education project, Projecting pARTicles, which will be exploring particle physics through projection art. Chavez experiments with data visualization, sound and projection art to create participatory environments. She collaborates with programmers to create algorithmic drawings projected on to buildings, walls and spaces. This work explores our relationship with nature and technology, and how these and other sensory experiences determine how we perceive and interpret the world around us. For the Projecting pARTicles series she has formed an interdisciplinary team of programmers, artists, scientists and educators to investigate how we can create art and education interventions inspire...

  20. Early growth of typical high-redshift black holes seeded by direct collapse

    Science.gov (United States)

    Latif, Muhammad A.; Volonteri, Marta; Wise, John H.

    2018-06-01

    Understanding the growth of high-redshift massive black holes (MBHs) is a problem of great astrophysical interest. The most luminous quasars at z > 6 are frequently observed but they represent only the tip of the iceberg as the majority of the low-luminosity active galactic nuclei (AGN) population remains undetected. In this study, we perform a radiation hydrodynamics cosmological simulation to study the growth of `normal' black holes in the high-redshift universe. In our simulation, we model the formation of Pop III and Pop II stars along with their chemical, mechanical, and radiative feedback. We consider both UV and X-ray emission from an accreting BH to simulate its radiative feedback. The selected halo has a mass of 3 × 10^{10} M_{⊙} at z = 7.5 and we turn on radiative feedback from a MBH seed of 10^5 M_{⊙} along with in situ star formation at z = 12 when the halo mass reaches well above the atomic cooling limit. We find that the MBH accretes only about 2200 M_{⊙} during 320 Myr and the average mass accretion on to the MBH is a few times 10^{-6} M_{⊙} yr^{-1}. Our results suggest that the stunted growth of MBH is a consequence of supernovae in tandem with MBH feedback which drive large outflows and evacuate the gas from MBH vicinity. This may explain why a population of low-luminosity AGN has not been detected so-far at z > 6; the large contrast between the star formation rate and the MBH accretion rate may make then hard to detect even in upcoming deep surveys.

  1. Subgrid Modeling of AGN-driven Turbulence in Galaxy Clusters

    Science.gov (United States)

    Scannapieco, Evan; Brüggen, Marcus

    2008-10-01

    Hot, underdense bubbles powered by active galactic nuclei (AGNs) are likely to play a key role in halting catastrophic cooling in the centers of cool-core galaxy clusters. We present three-dimensional simulations that capture the evolution of such bubbles, using an adaptive mesh hydrodynamic code, FLASH3, to which we have added a subgrid model of turbulence and mixing. While pure hydro simulations indicate that AGN bubbles are disrupted into resolution-dependent pockets of underdense gas, proper modeling of subgrid turbulence indicates that this is a poor approximation to a turbulent cascade that continues far beyond the resolution limit. Instead, Rayleigh-Taylor instabilities act to effectively mix the heated region with its surroundings, while at the same time preserving it as a coherent structure, consistent with observations. Thus, bubbles are transformed into hot clouds of mixed material as they move outward in the hydrostatic intracluster medium (ICM), much as large airbursts lead to a distinctive "mushroom cloud" structure as they rise in the hydrostatic atmosphere of Earth. Properly capturing the evolution of such clouds has important implications for many ICM properties. In particular, it significantly changes the impact of AGNs on the distribution of entropy and metals in cool-core clusters such as Perseus.

  2. The Importance of Preventive Feedback: Inference from Observations of the Stellar Masses and Metallicities of Milky Way Dwarf Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yu; Benson, Andrew; Wetzel, Andrew; Tonnesen, Stephanie [The Observatories, The Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Mao, Yao-Yuan [Department of Physics and Astronomy and the Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, Pittsburgh, PA 15260 (United States); Peter, Annika H. G. [CCAPP and Department of Physics, The Ohio State University, 191 W. Woodruff Avenue, Columbus, OH 43210 (United States); Boylan-Kolchin, Michael [Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); Wechsler, Risa H. [Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2017-09-01

    Dwarf galaxies are known to have remarkably low star formation efficiency due to strong feedback. Adopting the dwarf galaxies of the Milky Way (MW) as a laboratory, we explore a flexible semi-analytic galaxy formation model to understand how the feedback processes shape the satellite galaxies of the MW. Using Markov Chain Monte Carlo, we exhaustively search a large parameter space of the model and rigorously show that the general wisdom of strong outflows as the primary feedback mechanism cannot simultaneously explain the stellar mass function and the mass–metallicity relation of the MW satellites. An extended model that assumes that a fraction of baryons is prevented from collapsing into low-mass halos in the first place can be accurately constrained to simultaneously reproduce those observations. The inference suggests that two different physical mechanisms are needed to explain the two different data sets. In particular, moderate outflows with weak halo mass dependence are needed to explain the mass–metallicity relation, and prevention of baryons falling into shallow gravitational potentials of low-mass halos (e.g., “pre-heating”) is needed to explain the low stellar mass fraction for a given subhalo mass.

  3. Characterization of molecular outflows in the substellar domain

    Energy Technology Data Exchange (ETDEWEB)

    Phan-Bao, Ngoc; Dang-Duc, Cuong [Department of Physics, International University-Vietnam National University HCM, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City (Viet Nam); Lee, Chin-Fei; Ho, Paul T. P. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Di, E-mail: pbngoc@hcmiu.edu.vn, E-mail: pbngoc@asiaa.sinica.edu.tw [National Astronomical Observatories, Chinese Academy of Science, Chaoyang District Datun Rd A20, Beijing (China)

    2014-11-01

    We report here our latest search for molecular outflows from young brown dwarfs and very low-mass stars in nearby star-forming regions. We have observed three sources in Taurus with the Submillimeter Array and the Combined Array for Research in Millimeter-wave Astronomy at 230 GHz frequency to search for CO J = 2 → 1 outflows. We obtain a tentative detection of a redshifted and extended gas lobe at about 10 arcsec from the source GM Tau, a young brown dwarf in Taurus with an estimated mass of 73 M {sub J}, which is right below the hydrogen-burning limit. No blueshifted emission around the brown dwarf position is detected. The redshifted gas lobe that is elongated in the northeast direction suggests a possible bipolar outflow from the source with a position angle of about 36°. Assuming that the redshifted emission is outflow emission from GM Tau, we then estimate a molecular outflow mass in the range from 1.9 × 10{sup –6} M {sub ☉} to 2.9 × 10{sup –5} M {sub ☉} and an outflow mass-loss rate from 2.7 × 10{sup –9} M {sub ☉} yr{sup –1} to 4.1 × 10{sup –8} M {sub ☉} yr{sup –1}. These values are comparable to those we have observed in the young brown dwarf ISO-Oph 102 of 60 M {sub J} in ρ Ophiuchi and the very low-mass star MHO 5 of 90 M {sub J} in Taurus. Our results suggest that the outflow process in very low-mass objects is episodic with a duration of a few thousand years and the outflow rate of active episodes does not significantly change for different stages of the formation process of very low-mass objects. This may provide us with important implications that clarify the formation process of brown dwarfs.

  4. PROTOSTELLAR OUTFLOW EVOLUTION IN TURBULENT ENVIRONMENTS

    International Nuclear Information System (INIS)

    Cunningham, Andrew J.; Frank, Adam; Carroll, Jonathan; Blackman, Eric G.; Quillen, Alice C.

    2009-01-01

    The link between turbulence in star-forming environments and protostellar jets remains controversial. To explore issues of turbulence and fossil cavities driven by young stellar outflows, we present a series of numerical simulations tracking the evolution of transient protostellar jets driven into a turbulent medium. Our simulations show both the effect of turbulence on outflow structures and, conversely, the effect of outflows on the ambient turbulence. We demonstrate how turbulence will lead to strong modifications in jet morphology. More importantly, we demonstrate that individual transient outflows have the capacity to re-energize decaying turbulence. Our simulations support a scenario in which the directed energy/momentum associated with cavities is randomized as the cavities are disrupted by dynamical instabilities seeded by the ambient turbulence. Consideration of the energy power spectra of the simulations reveals that the disruption of the cavities powers an energy cascade consistent with Burgers'-type turbulence and produces a driving scale length associated with the cavity propagation length. We conclude that fossil cavities interacting either with a turbulent medium or with other cavities have the capacity to sustain or create turbulent flows in star-forming environments. In the last section, we contrast our work and its conclusions with previous studies which claim that jets cannot be the source of turbulence.

  5. FROM NEARBY LOW LUMINOSITY AGN TO HIGH REDSHIFT ...

    Indian Academy of Sciences (India)

    44

    6Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Noida ... We present detailed science cases that a large fraction of the Indian AGN ..... kiloparsec-scale radio study of the MOJAVE6 blazar sample. Kharb et al.

  6. Clustering of galaxies around AGNs in the HSC Wide survey

    Science.gov (United States)

    Shirasaki, Yuji; Akiyama, Masayuki; Nagao, Tohru; Toba, Yoshiki; He, Wanqiu; Ohishi, Masatoshi; Mizumoto, Yoshihiko; Miyazaki, Satoshi; Nishizawa, Atsushi J.; Usuda, Tomonori

    2018-01-01

    We have measured the clustering of galaxies around active galactic nuclei (AGNs) for which single-epoch virial masses of the super-massive black hole (SMBH) are available to investigate the relation between the large-scale environment of AGNs and the evolution of SMBHs. The AGN samples used in this work were derived from the Sloan Digital Sky Survey (SDSS) observations and the galaxy samples were from the 240 deg2 S15b data of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). The investigated redshift range is 0.6-3.0, and the masses of the SMBHs lie in the range 107.5-1010 M⊙. The absolute magnitude of the galaxy samples reaches to Mλ310 ˜ -18 at rest-frame wavelength 310 nm for the low-redshift end of the samples. More than 70% of the galaxies in the analysis are blue. We found a significant dependence of the cross-correlation length on redshift, which primarily reflects the brightness-dependence of the galaxy clustering. At the lowest redshifts the cross-correlation length increases from 7 h-1 Mpc around Mλ310 = -19 mag to >10 h-1 Mpc beyond Mλ310 = -20 mag. No significant dependence of the cross-correlation length on BH mass was found for whole galaxy samples dominated by blue galaxies, while there was an indication of BH mass dependence in the cross-correlation with red galaxies. These results provides a picture of the environment of AGNs studied in this paper being enriched with blue star-forming galaxies, and a fraction of the galaxies are evolving into red galaxies along with the evolution of SMBHs in that system.

  7. Wind influence on a coastal buoyant outflow

    Science.gov (United States)

    Whitney, Michael M.; Garvine, Richard W.

    2005-03-01

    This paper investigates the interplay between river discharge and winds in forcing coastal buoyant outflows. During light winds a plume influenced by the Earth's rotation will flow down shelf (in the direction of Kelvin wave propagation) as a slender buoyancy-driven coastal current. Downwelling favorable winds augment this down-shelf flow, narrow the plume, and mix the water column. Upwelling favorable winds drive currents that counter the buoyancy-driven flow, spread plume waters offshore, and rapidly mix buoyant waters. Two criteria are developed to assess the wind influence on a buoyant outflow. The wind strength index (Ws) determines whether a plume's along-shelf flow is in a wind-driven or buoyancy-driven state. Ws is the ratio of the wind-driven and buoyancy-driven along-shelf velocities. Wind influence on across-shelf plume structure is rated with a timescale (ttilt) for the isopycnal tilting caused by wind-driven Ekman circulation. These criteria are used to characterize wind influence on the Delaware Coastal Current and can be applied to other coastal buoyant outflows. The Delaware buoyant outflow is simulated for springtime high-river discharge conditions. Simulation results and Ws values reveal that the coastal current is buoyancy-driven most of the time (∣Ws∣ Wind events, however, overwhelm the buoyancy-driven flow (∣Ws∣ > 1) several times during the high-discharge period. Strong upwelling events reverse the buoyant outflow; they constitute an important mechanism for transporting fresh water up shelf. Across-shelf plume structure is more sensitive to wind influence than the along-shelf flow. Values of ttilt indicate that moderate or strong winds persisting throughout a day can modify plume width significantly. Plume widening during upwelling events is accompanied by mixing that can erase the buoyant outflow.

  8. Stochastic particle acceleration by plasma waves in AGN jets

    International Nuclear Information System (INIS)

    Li, Hui; Colgate, S.A.; Miller, J.A.

    1997-01-01

    The free energy stored in the stressed magnetic fields in AGN jets could be dissipated via generating turbulent plasma waves. The authors review several key wave-particle resonant interactions and point out the importance of a broad wave spectrum. Under several idealized assumptions, they show that the transit-time damping process can accelerate electrons to TeV energies in an AGN jet environment, and present a preliminary calculation on the evolution of plasma wave, electron, and photon distributions. The authors especially emphasize several open questions on particle acceleration by waves, and argue that a plausible scenario is to energize electrons out of the thermal background via transit-time damping and further accelerate them by the parallel propagating right-handed waves

  9. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    Energy Technology Data Exchange (ETDEWEB)

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph [Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)

    2015-03-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatly suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear.

  10. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph

    2015-01-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatly suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear

  11. Outflow and hot dust emission in broad absorption line quasars

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaohua; Zhou, Hongyan [Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136 (China); Wang, Huiyuan; Wang, Tinggui; Xing, Feijun; Jiang, Peng [Key Laboratory for Research in Galaxies and Cosmology, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Zhang, Kai, E-mail: zhangshaohua@pric.gov.cn, E-mail: whywang@mail.ustc.edu.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2014-05-01

    We have investigated a sample of 2099 broad absorption line (BAL) quasars with z = 1.7-2.2 built from the Sloan Digital Sky Survey Data Release Seven and the Wide-field Infrared Survey. This sample is collected from two BAL quasar samples in the literature and is refined by our new algorithm. Correlations of outflow velocity and strength with a hot dust indicator (β{sub NIR}) and other quasar physical parameters—such as an Eddington ratio, luminosity, and a UV continuum slope—are explored in order to figure out which parameters drive outflows. Here β{sub NIR} is the near-infrared continuum slope, which is a good indicator of the amount of hot dust emission relative to the accretion disk emission. We confirm previous findings that outflow properties moderately or weakly depend on the Eddington ratio, UV slope, and luminosity. For the first time, we report moderate and significant correlations of outflow strength and velocity with β{sub NIR} in BAL quasars. It is consistent with the behavior of blueshifted broad emission lines in non-BAL quasars. The statistical analysis and composite spectra study both reveal that outflow strength and velocity are more strongly correlated with β{sub NIR} than the Eddington ratio, luminosity, and UV slope. In particular, the composites show that the entire C IV absorption profile shifts blueward and broadens as β{sub NIR} increases, while the Eddington ratio and UV slope only affect the high and low velocity part of outflows, respectively. We discuss several potential processes and suggest that the dusty outflow scenario, i.e., that dust is intrinsic to outflows and may contribute to the outflow acceleration, is most likely.

  12. THE LICK AGN MONITORING PROJECT: PHOTOMETRIC LIGHT CURVES AND OPTICAL VARIABILITY CHARACTERISTICS

    International Nuclear Information System (INIS)

    Walsh, Jonelle L.; Bentz, Misty C.; Barth, Aaron J.; Minezaki, Takeo; Sakata, Yu; Yoshii, Yuzuru; Baliber, Nairn; Bennert, Vardha Nicola; Street, Rachel A.; Treu, Tommaso; Li Weidong; Filippenko, Alexei V.; Stern, Daniel; Brown, Timothy M.; Canalizo, Gabriela; Gates, Elinor L.; Greene, Jenny E.; Malkan, Matthew A.; Woo, Jong-Hak

    2009-01-01

    The Lick AGN Monitoring Project targeted 13 nearby Seyfert 1 galaxies with the intent of measuring the masses of their central black holes using reverberation mapping. The sample includes 12 galaxies selected to have black holes with masses roughly in the range 10 6 -10 7 M sun , as well as the well-studied active galactic nucleus (AGN) NGC 5548. In conjunction with a spectroscopic monitoring campaign, we obtained broadband B and V images on most nights from 2008 February through 2008 May. The imaging observations were carried out by four telescopes: the 0.76 m Katzman Automatic Imaging Telescope, the 2 m Multicolor Active Galactic Nuclei Monitoring telescope, the Palomar 60 inch (1.5 m) telescope, and the 0.80 m Tenagra II telescope. Having well-sampled light curves over the course of a few months is useful for obtaining the broad-line reverberation lag and black hole mass, and also allows us to examine the characteristics of the continuum variability. In this paper, we discuss the observational methods and the photometric measurements, and present the AGN continuum light curves. We measure various variability characteristics of each of the light curves. We do not detect any evidence for a time lag between the B- and V-band variations, and we do not find significant color variations for the AGNs in our sample.

  13. The NuSTAR Serendipitous Survey: Hunting for the Most Extreme Obscured AGN at >10 keV

    Science.gov (United States)

    Lansbury, G. B.; Alexander, D. M.; Aird, J.; Gandhi, P.; Stern, D.; Koss, M.; Lamperti, I.; Ajello, M.; Annuar, A.; Assef, R. J.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Brandt, W. N.; Brightman, M.; Chen, C.-T. J.; Civano, F.; Comastri, A.; Del Moro, A.; Fuentes, C.; Harrison, F. A.; Marchesi, S.; Masini, A.; Mullaney, J. R.; Ricci, C.; Saez, C.; Tomsick, J. A.; Treister, E.; Walton, D. J.; Zappacosta, L.

    2017-09-01

    We identify sources with extremely hard X-ray spectra (I.e., with photon indices of {{Γ }}≲ 0.6) in the 13 deg2 NuSTAR serendipitous survey, to search for the most highly obscured active galactic nuclei (AGNs) detected at > 10 {keV}. Eight extreme NuSTAR sources are identified, and we use the NuSTAR data in combination with lower-energy X-ray observations (from Chandra, Swift XRT, and XMM-Newton) to characterize the broadband (0.5-24 keV) X-ray spectra. We find that all of the extreme sources are highly obscured AGNs, including three robust Compton-thick (CT; {N}{{H}}> 1.5× {10}24 cm-2) AGNs at low redshift (z< 0.1) and a likely CT AGN at higher redshift (z = 0.16). Most of the extreme sources would not have been identified as highly obscured based on the low-energy (< 10 keV) X-ray coverage alone. The multiwavelength properties (e.g., optical spectra and X-ray-mid-IR luminosity ratios) provide further support for the eight sources being significantly obscured. Correcting for absorption, the intrinsic rest-frame 10-40 keV luminosities of the extreme sources cover a broad range, from ≈ 5× {10}42 to 1045 erg s-1. The estimated number counts of CT AGNs in the NuSTAR serendipitous survey are in broad agreement with model expectations based on previous X-ray surveys, except for the lowest redshifts (z< 0.07), where we measure a high CT fraction of {f}{CT}{obs}={30}-12+16 % . For the small sample of CT AGNs, we find a high fraction of galaxy major mergers (50% ± 33%) compared to control samples of “normal” AGNs.

  14. ALMA view of a massive spheroid progenitor: a compact rotating core of molecular gas in an AGN host at z = 2.226

    Science.gov (United States)

    Talia, M.; Pozzi, F.; Vallini, L.; Cimatti, A.; Cassata, P.; Fraternali, F.; Brusa, M.; Daddi, E.; Delvecchio, I.; Ibar, E.; Liuzzo, E.; Vignali, C.; Massardi, M.; Zamorani, G.; Gruppioni, C.; Renzini, A.; Mignoli, M.; Pozzetti, L.; Rodighiero, G.

    2018-05-01

    We present ALMA observations at 107.291 GHz (band 3) and 214.532 GHz (band 6) of GMASS 0953, a star-forming galaxy at z = 2.226 hosting an obscured active galactic nucleus (AGN) that has been proposed as a progenitor of compact quiescent galaxies (QGs). We measure for the first time the size of the dust and molecular gas emission of GMASS 0953 that we find to be extremely compact (˜1 kpc). This result, coupled with a very high interstellar medium (ISM) density (n ˜ 105.5 cm-3), a low gas mass fraction (˜0.2), and a short gas depletion time-scale (˜150 Myr), implies that GMASS 0953 is experiencing an episode of intense star formation in its central region that will rapidly exhaust its gas reservoirs, likely aided by AGN-induced feedback, confirming its fate as a compact QG. Kinematic analysis of the CO(6-5) line shows evidence of rapidly rotating gas (Vrot = 320^{+92}_{-53} km s-1), as observed also in a handful of similar sources at the same redshift. On-going quenching mechanisms could either destroy the rotation or leave it intact leading the galaxy to evolve into a rotating QG.

  15. An outflow in the Seyfert ESO 362-G18 revealed by Gemini-GMOS/IFU observations

    Science.gov (United States)

    Humire, Pedro K.; Nagar, Neil M.; Finlez, Carolina; Firpo, Verónica; Slater, Roy; Lena, Davide; Soto-Pinto, Pamela; Muñoz-Vergara, Dania; Riffel, Rogemar A.; Schmitt, Henrique R.; Kraemer, Steven B.; Schnorr-Müller, Allan; Fischer, Travis C.; Robinson, Andrew; Storchi-Bergmann, Thaisa; Crenshaw, Mike; Elvis, Martin S.

    2018-06-01

    We present two-dimensional stellar and gaseous kinematics of the inner 0.7 × 1.2 kpc2 of the Seyfert 1.5 galaxy ESO 362-G18, derived from optical (4092-7338 Å) spectra obtained with the GMOS integral field spectrograph on the Gemini South telescope at a spatial resolution of ≈170 pc and spectral resolution of 36 km s-1. ESO 362-G18 is a strongly perturbed galaxy of morphological type Sa or S0/a, with a minor merger approaching along the NE direction. Previous studies have shown that the [O III] emission shows a fan-shaped extension of ≈10'' to the SE. We detect the [O III] doublet, [N II] and Hα emission lines throughout our field of view. The stellar kinematics is dominated by circular motions in the galaxy plane, with a kinematic position angle of ≈137° and is centred approximately on the continuum peak. The gas kinematics is also dominated by rotation, with kinematic position angles ranging from 122° to 139°, projected velocity amplitudes of the order of 100 km s-1, and a mean velocity dispersion of 100 km s-1. A double-Gaussian fit to the [O III]λ5007 and Hα lines, which have the highest signal to noise ratios of the emission lines, reveal two kinematic components: (1) a component at lower radial velocities which we interpret as gas rotating in the galactic disk; and (2) a component with line of sight velocities 100-250 km s-1 higher than the systemic velocity, interpreted as originating in the outflowing gas within the AGN ionization cone. We estimate a mass outflow rate of 7.4 × 10-2 M⊙ yr-1 in the SE ionization cone (this rate doubles if we assume a biconical configuration), and a mass accretion rate on the supermassive black hole (SMBH) of 2.2 × 10-2 M⊙ yr-1. The total ionized gas mass within 84 pc of the nucleus is 3.3 × 105 M⊙; infall velocities of 34 km s-1 in this gas would be required to feed both the outflow and SMBH accretion. The reduced datacube (FITS file) is only available at the CDS via anonymous ftp to http

  16. Hurricane Agnes rainfall and floods, June-July 1972

    Science.gov (United States)

    Bailey, James F.; Patterson, James Lee; Paulhus, Joseph Louis Hornore

    1975-01-01

    Hurricane Agnes originated in the Caribbean Sea region in mid-June. Circulation barely reached hurricane intensity for a brief period in the Gulf of Mexico. The storm crossed the Florida Panhandle coastline on June 19, 1972, and followed an unusually extended overland trajectory combining with an extratropical system to bring very heavy rain from the Carolinas northward to New York. This torrential rain followed the abnormally wet May weather in the Middle Atlantic States and set the stage for the subsequent major flooding. The record-breaking floods occurred in the Middle Atlantic States in late June and early July 1972. Many streams in the affected area experienced peak discharges several times the previous maxima of record. Estimated recurrence intervals of peak flows at many gaging stations on major rivers and their tributaries exceeded 100 years. The suspended-sediment concentration and load of most flooded streams were also unusually high. The widespread flooding from this storm caused Agnes to be called the most destructive hurricane in United States history, claiming 117 lives and causing damage estimated at $3.1 billion in 12 States. Damage was particularly high in New York, Pennsylvania, Maryland, and Virginia. The detailed life history of Hurricane Agnes, including the tropical depression and tropical storm stages, is traced. Associated rainfalls are analyzed and compared with climatologic recurrence values. These are followed by a detailed description of the flood and streamflows of each affected basin. A summary of peak stages and discharges and comparison data for previous floods at 989 stations are presented. Deaths and flood damage estimates are compiled.

  17. OUTFLOW AND HOT DUST EMISSION IN HIGH-REDSHIFT QUASARS

    International Nuclear Information System (INIS)

    Wang, Huiyuan; Xing, Feijun; Wang, Tinggui; Zhou, Hongyan; Zhang, Kai; Zhang, Shaohua

    2013-01-01

    Correlations of hot dust emission with outflow properties are investigated, based on a large z ∼ 2 non-broad absorption line quasar sample built from the Wide-field Infrared Survey and the Sloan Digital Sky Survey data releases. We use the near-infrared slope and the infrared to UV luminosity ratio to indicate the hot dust emission relative to the emission from the accretion disk. In our luminous quasars, these hot dust emission indicators are almost independent of the fundamental parameters, such as luminosity, Eddington ratio and black hole mass, but moderately dependent on the blueshift and asymmetry index (BAI) and FWHM of C IV lines. Interestingly, the latter two correlations dramatically strengthen with increasing Eddington ratio. We suggest that, in high Eddington ratio quasars, C IV regions are dominated by outflows so the BAI and FWHM (C IV) can reliably reflect the general properties and velocity of outflows, respectively. In low Eddington ratio quasars, on the other hand, C IV lines are primarily emitted by virialized gas so the BAI and FWHM (C IV) become less sensitive to outflows. Therefore, the correlations for the highest Eddington ratio quasars are more likely to represent the true dependence of hot dust emission on outflows and the correlations for the entire sample are significantly diluted by the low Eddington ratio quasars. Our results show that an outflow with a large BAI or velocity can double the hot dust emission on average. We suggest that outflows either contain hot dust in themselves or interact with the dusty interstellar medium or torus

  18. The mm-wave compact component of AGN

    Science.gov (United States)

    Behar, Ehud; Vogel, Stuart; Baldi, Ranieri D.; Smith, Krista L.; Mushotzky, Richard F.

    2018-05-01

    mm-wave emission from Active Galactic Nuclei (AGN) may hold the key to understanding the physical origin of their radio cores. The correlation between radio/mm and X-ray luminosity may suggest a similar physical origin of the two sources. Since synchrotron self absorption decreases with frequency, mm-waves probe smaller length scales than cm-waves. We report on 100 GHz (3 mm) observations with CARMA of 26 AGNs selected from the hard X-ray Swift/BAT survey. 20/26 targets were detected at 100 GHz down to the 1 mJy (3σ) sensitivity, which corresponds to optically thick synchrotron source sizes of 10-4 - 10-3 pc. Most sources show a 100 GHz flux excess with respect to the spectral slope extrapolated from low frequencies. This mm spectral component likely originates from smaller scales than the few-GHz emission. The measured mm sources lie roughly around the Lmm (100 GHz) ˜10-4LX (2-10 keV) relation, similar to a few previously published X-ray selected sources, and hinting perhaps at a common coronal origin.

  19. ALMA Studies of the Disk-Jet-Outflow Connection

    Science.gov (United States)

    Dougados, Catherine; Louvet, F.; Mardones, D.; Cabrit, S.

    2017-06-01

    I will describe in this contribution recent results obtained with ALMA on the origin of the disk/jet/outflow connexion in T Tauri stars. I will first present ALMA observations of the disk associated with the jet source Th 28, which question previous jet rotation measurements in this source and the implications drawn from them. I will then discuss Cycle 2 ALMA observations of the disk and small scale CO outflow associated with the prototypical edge-on HH 30 source. The unprecedented angular resolution of this dataset brings new constraints on the origin of the CO outflows in young stars.

  20. Empirical links between XRB and AGN accretion using the complete z < 0.4 spectroscopic CSC/SDSS catalog

    Energy Technology Data Exchange (ETDEWEB)

    Trichas, Markos [EADS Astrium, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2AS (United Kingdom); Green, Paul J.; Aldcroft, Tom; Sobolewska, Malgosia; Kim, Dong-Woo [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Constantin, Anca [Department of Physics and Astronomy, James Madison University, PHCH, Harrisonburg, VA 22807 (United States); Kalfountzou, Eleni [Center for Astrophysics, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Hyde, Ashley K. [Astrophysics Group, Imperial College London, London SW7 2AZ (United Kingdom); Zhou, Hongyan [Center for Astrophysics, University of Science and Technology of China, Hefei 230026 (China); Haggard, Daryl [Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Kelly, Brandon C., E-mail: markos.trichas@astrium.eads.net [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93107 (United States)

    2013-12-01

    Striking similarities have been seen between accretion signatures of Galactic X-ray binary (XRB) systems and active galactic nuclei (AGNs). XRB spectral states show a V-shaped correlation between X-ray spectral hardness and Eddington ratio as they vary, and some AGN samples reveal a similar trend, implying analogous processes at vastly larger masses and timescales. To further investigate the analogies, we have matched 617 sources from the Chandra Source Catalog to Sloan Digital Sky Survey spectroscopy, and uniformly measured both X-ray and optical spectral characteristics across a broad range of AGN and galaxy types. We provide useful tabulations of X-ray spectral slope for broad- and narrow-line AGNs, star-forming and passive galaxies, and composite systems, also updating relationships between optical (Hα and [O III]) line emission and X-ray luminosity. We further fit broadband spectral energy distributions with a variety of templates to estimate bolometric luminosity. Our results confirm a significant trend in AGNs between X-ray spectral hardness and Eddington ratio expressed in X-ray luminosity, albeit with significant dispersion. The trend is not significant when expressed in the full bolometric or template-estimated AGN luminosity. We also confirm a relationship between the X-ray/optical spectral slope α{sub ox} and Eddington ratio, but it may not follow the trend predicted by analogy with XRB accretion states.

  1. CHANDRA X-RAY AND HUBBLE SPACE TELESCOPE IMAGING OF OPTICALLY SELECTED KILOPARSEC-SCALE BINARY ACTIVE GALACTIC NUCLEI. II. HOST GALAXY MORPHOLOGY AND AGN ACTIVITY

    International Nuclear Information System (INIS)

    Shangguan, Jinyi; Ho, Luis C.; Liu, Xin; Shen, Yue; Peng, Chien Y.; Greene, Jenny E.; Strauss, Michael A.

    2016-01-01

    Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kiloparsec-scale binary AGNs with redshifts between 0.1 and 0.2. Here, we present their host galaxy morphology based on F336W ( U -band) and F105W ( Y -band) images taken by the Wide Field Camera 3 on board the Hubble Space Telescope . Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow-up observations. We find that kiloparsec-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from their host bulge stellar masses and obtain Eddington ratios for each AGN. Compared with a representative control sample drawn at the same redshift and stellar mass, the AGN luminosities and Eddington ratios of our binary AGNs are similar to those of single AGNs. The U − Y color maps indicate that clumpy star-forming regions could significantly affect the X-ray detection of binary AGNs, e.g., the hardness ratio. Considering the weak X-ray emission in AGNs triggered in merger systems, we suggest that samples of X-ray-selected AGNs may be biased against gas-rich mergers.

  2. Alignment between Protostellar Outflows and Filamentary Structure

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Ian W.; Dunham, Michael M.; Myers, Philip C.; Pokhrel, Riwaj; Sadavoy, Sarah I.; Lee, Katherine I.; Goodman, Alyssa A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States); Vorobyov, Eduard I. [Institute of Fluid Mechanics and Heat Transfer, TU Wien, Vienna, A-1060 (Austria); Tobin, John J. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States); Pineda, Jaime E. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching (Germany); Offner, Stella S. R. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Kristensen, Lars E. [Centre for Star and Planet Formation, Niels Bohr Institute and Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K (Denmark); Jørgensen, Jes K. [Niels Bohr Institute and Center for Star and Planet Formation, Copenhagen University, DK-1350 Copenhagen K. (Denmark); Bourke, Tyler L. [SKA Organization, Jodrell Bank Observatory, Lower Withington, Macclesfield, Cheshire SK11 9DL (United Kingdom); Arce, Héctor G. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Plunkett, Adele L., E-mail: ian.stephens@cfa.harvard.edu [European Southern Observatory, Av. Alonso de Cordova 3107, Vitacura, Santiago de Chile (Chile)

    2017-09-01

    We present new Submillimeter Array (SMA) observations of CO(2–1) outflows toward young, embedded protostars in the Perseus molecular cloud as part of the Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) survey. For 57 Perseus protostars, we characterize the orientation of the outflow angles and compare them with the orientation of the local filaments as derived from Herschel observations. We find that the relative angles between outflows and filaments are inconsistent with purely parallel or purely perpendicular distributions. Instead, the observed distribution of outflow-filament angles are more consistent with either randomly aligned angles or a mix of projected parallel and perpendicular angles. A mix of parallel and perpendicular angles requires perpendicular alignment to be more common by a factor of ∼3. Our results show that the observed distributions probably hold regardless of the protostar’s multiplicity, age, or the host core’s opacity. These observations indicate that the angular momentum axis of a protostar may be independent of the large-scale structure. We discuss the significance of independent protostellar rotation axes in the general picture of filament-based star formation.

  3. Misalignment of Magnetic Fields and Outflows in Protostellar Cores

    OpenAIRE

    Hull, Charles L. H.; Plambeck, Richard L.; Bolatto, Alberto D.; Bower, Geoffrey C.; Carpenter, John M.; Crutcher, Richard M.; Fiege, Jason D.; Franzmann, Erika; Hakobian, Nicholas S.; Heiles, Carl; Houde, Martin; Hughes, A. Meredith; Jameson, Katherine; Kwon, Woojin; Lamb, James W.

    2013-01-01

    We present results of λ1.3 mm dust-polarization observations toward 16 nearby, low-mass protostars, mapped with ~2."5 resolution at CARMA. The results show that magnetic fields in protostellar cores on scales of ~1000 AU are not tightly aligned with outflows from the protostars. Rather, the data are consistent with scenarios where outflows and magnetic fields are preferentially misaligned (perpendicular), or where they are randomly aligned. If one assumes that outflows emerge along the rotati...

  4. Transcription regulation of the alpha-glucanase gene agn1 by cell separation transcription factor Ace2p in fission yeast

    NARCIS (Netherlands)

    Dekker, Nick; de Haan, Annett; Hochstenbach, Frans

    2006-01-01

    During the final stage of the cell division cycle in the fission yeast Schizosaccharomyces pombe, transcription factor Ace2p activates expression of genes involved in the separation of newly formed daughter cells, such as agn1+, which encodes the alpha-glucanase Agn1p. The agn1 promoter contains

  5. Explosive Outflows from Forming Massive Stars

    OpenAIRE

    Bally, J.; Ginsburg, A.; Kasliwal, M. M.

    2016-01-01

    AO imaging of the near IR [Fe ii] and H_2 lines and ALMA CO J = 2 − 1 data confirms the explosive nature of the BN/KL outflow in Orion. N-body interactions in compact groups may be responsible for the production of powerful, explosive protostellar outflows and luminous infrared flares. The Orion event may have been triggered by a protostellar merger. First results of a search for Orion-like events in 200 nearby galaxies with the SPitzer InfraRed Intensive Transients Survey (SPIRITS) are brief...

  6. Environment Study of AGNs at z = 0.3 to 3.0 Using the Japanese Virtual Observatory

    Science.gov (United States)

    Shirasaki, Y.; Ohishi, M.; Mizumoto, Y.; Takata, T.; Tanaka, M.; Yasuda, N.

    2010-12-01

    We present a science use case of Virtual Observatory, which was achieved to examine an environment of AGN up to redshift of 3.0. We used the Japanese Virtual Observatory (JVO) to obtain Subaru Suprime-Cam images around known AGNs. According to the hierarchical galaxy formation model, AGNs are expected to be found in an environment of higher galaxy density than that of typical galaxies. The current observations, however, indicate that AGNs do not reside in a particularly high density environment. We investigated ˜1000 AGNs, which is about ten times larger samples than the other studies covering the redshifts larger than 0.6. We successfully found significant excess of galaxies around AGNs at redshifts of 0.3 to 1.8. If this work was done in a classical manner, that is, raw data were retrieved from the archive through a form-based web interface in an interactive way, and the data were reduced on a low performance computer, it might take several years to finish it. Since the Virtual Observatory system is accessible through a standard interface, it is easy to query and retrieve data in an automatic way. We constructed a pipeline for retrieving the data and calculating the galaxy number density around a given coordinate. This procedure was executed in parallel on ˜10 quad core PCs, and it took only one day for obtaining the final result. Our result implies that the Virtual Observatory can be a powerful tool to do an astronomical research based on large amount of data.

  7. Simulation of California's Major Reservoirs Outflow Using Data Mining Technique

    Science.gov (United States)

    Yang, T.; Gao, X.; Sorooshian, S.

    2014-12-01

    The reservoir's outflow is controlled by reservoir operators, which is different from the upstream inflow. The outflow is more important than the reservoir's inflow for the downstream water users. In order to simulate the complicated reservoir operation and extract the outflow decision making patterns for California's 12 major reservoirs, we build a data-driven, computer-based ("artificial intelligent") reservoir decision making tool, using decision regression and classification tree approach. This is a well-developed statistical and graphical modeling methodology in the field of data mining. A shuffled cross validation approach is also employed to extract the outflow decision making patterns and rules based on the selected decision variables (inflow amount, precipitation, timing, water type year etc.). To show the accuracy of the model, a verification study is carried out comparing the model-generated outflow decisions ("artificial intelligent" decisions) with that made by reservoir operators (human decisions). The simulation results show that the machine-generated outflow decisions are very similar to the real reservoir operators' decisions. This conclusion is based on statistical evaluations using the Nash-Sutcliffe test. The proposed model is able to detect the most influential variables and their weights when the reservoir operators make an outflow decision. While the proposed approach was firstly applied and tested on California's 12 major reservoirs, the method is universally adaptable to other reservoir systems.

  8. Obscured AGN at z ~ 1 from the zCOSMOS-Bright Survey. I. Selection and optical properties of a [Ne v]-selected sample

    Science.gov (United States)

    Mignoli, M.; Vignali, C.; Gilli, R.; Comastri, A.; Zamorani, G.; Bolzonella, M.; Bongiorno, A.; Lamareille, F.; Nair, P.; Pozzetti, L.; Lilly, S. J.; Carollo, C. M.; Contini, T.; Kneib, J.-P.; Le Fèvre, O.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Bardelli, S.; Caputi, K.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovač, K.; Le Borgne, J.-F.; Le Brun, V.; Maier, C.; Pellò, R.; Peng, Y.; Perez Montero, E.; Presotto, V.; Silverman, J. D.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Zucca, E.; Bordoloi, R.; Cappi, A.; Cimatti, A.; Koekemoer, A. M.; McCracken, H. J.; Moresco, M.; Welikala, N.

    2013-08-01

    Aims: The application of multi-wavelength selection techniques is essential for obtaining a complete and unbiased census of active galactic nuclei (AGN). We present here a method for selecting z ~ 1 obscured AGN from optical spectroscopic surveys. Methods: A sample of 94 narrow-line AGN with 0.65 advantage of the large amount of data available in the COSMOS field, the properties of the [Ne v]-selected type 2 AGN were investigated, focusing on their host galaxies, X-ray emission, and optical line-flux ratios. Finally, a previously developed diagnostic, based on the X-ray-to-[Ne v] luminosity ratio, was exploited to search for the more heavily obscured AGN. Results: We found that [Ne v]-selected narrow-line AGN have Seyfert 2-like optical spectra, although their emission line ratios are diluted by a star-forming component. The ACS morphologies and stellar component in the optical spectra indicate a preference for our type 2 AGN to be hosted in early-type spirals with stellar masses greater than 109.5 - 10 M⊙, on average higher than those of the galaxy parent sample. The fraction of galaxies hosting [Ne v]-selected obscured AGN increases with the stellar mass, reaching a maximum of about 3% at ≈2 × 1011 M⊙. A comparison with other selection techniques at z ~ 1, namely the line-ratio diagnostics and X-ray detections, shows that the detection of the [Ne v] λ3426 line is an effective method for selecting AGN in the optical band, in particular the most heavily obscured ones, but cannot provide a complete census of type 2 AGN by itself. Finally, the high fraction of [Ne v]-selected type 2 AGN not detected in medium-deep (≈100-200 ks) Chandra observations (67%) is suggestive of the inclusion of Compton-thick (i.e., with NH > 1024 cm-2) sources in our sample. The presence of a population of heavily obscured AGN is corroborated by the X-ray-to-[Ne v] ratio; we estimated, by means of an X-ray stacking technique and simulations, that the Compton-thick fraction in our

  9. Ultraviolet/Optical Emission of the Ionized Gas in AGN: Diagnostics of the Ionizing Source and Gas Properties

    Energy Technology Data Exchange (ETDEWEB)

    Feltre, Anna [Univ Lyon, Univ Lyon1, Ens de Lyon, Centre National de la Recherche Scientifique, Centre de Recherche Astrophysique de Lyon UMR5574, Saint-Genis-Laval (France); Sorbonne Universités, UPMC-Centre National de la Recherche Scientifique, UMR7095, Institut d' Astrophysique de Paris, Paris (France); Charlot, Stephane [Sorbonne Universités, UPMC-Centre National de la Recherche Scientifique, UMR7095, Institut d' Astrophysique de Paris, Paris (France); Mignoli, Marco [INAF-Osservatorio Astronomico di Bologna, Bologna (Italy); Bongiorno, Angela [INAF-Osservatorio Astronomico di Roma, Monteporzio Catone (Italy); Calura, Francesco [INAF-Osservatorio Astronomico di Bologna, Bologna (Italy); Chevallard, Jacopo [Scientific Support Office, Directorate of Science and Robotic Exploration, European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk (Netherlands); Curtis-Lake, Emma [Sorbonne Universités, UPMC-Centre National de la Recherche Scientifique, UMR7095, Institut d' Astrophysique de Paris, Paris (France); Gilli, Roberto [INAF-Osservatorio Astronomico di Bologna, Bologna (Italy); Plat, Adele, E-mail: anna.feltre@univ-lyon1.fr [Sorbonne Universités, UPMC-Centre National de la Recherche Scientifique, UMR7095, Institut d' Astrophysique de Paris, Paris (France)

    2017-11-02

    Spectroscopic studies of active galactic nuclei (AGN) are powerful means of probing the physical properties of the ionized gas within them. In particular, near future observational facilities, such as the James Webb Space Telescope (JWST), will allow detailed statistical studies of rest-frame ultraviolet and optical spectral features of the very distant AGN with unprecedented accuracy. In this proceedings, we discuss the various ways of exploiting new dedicated photoionization models of the narrow-line emitting regions (NLR) of AGN for the interpretation of forthcoming revolutionary datasets.

  10. The infrared medium-deep survey. II. How to trigger radio AGNs? Hints from their environments

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Im, Myungshin; Kim, Jae-Woo; Lee, Seong-Kook; Jeon, Yiseul; Choi, Changsu; Hong, Jueun; Hyun, Minhee; Jun, Hyunsung David; Kim, Dohyeong; Kim, Yongjung; Kim, Ji Hoon; Kim, Duho; Park, Won-Kee; Taak, Yoon Chan; Yoon, Yongmin [CEOU—Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Chapman, Scott [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia (Canada); Pak, Soojong [School of Space Research, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Edge, Alastair, E-mail: mkarouzos@astro.snu.ac.kr [Department of Physics, University of Durham, South Road, Durham, DH1 3LE (United Kingdom)

    2014-12-10

    Activity at the centers of galaxies, during which the central supermassive black hole is accreting material, is nowadays accepted to be rather ubiquitous and most probably a phase of every galaxy's evolution. It has been suggested that galactic mergers and interactions may be the culprits behind the triggering of nuclear activity. We use near-infrared data from the new Infrared Medium-Deep Survey and the Deep eXtragalactic Survey of the VIMOS-SA22 field and radio data at 1.4 GHz from the FIRST survey and a deep Very Large Array survey to study the environments of radio active galactic nuclei (AGNs) over an area of ∼25 deg{sup 2} and down to a radio flux limit of 0.1 mJy and a J-band magnitude of 23 mag AB. Radio AGNs are predominantly found in environments similar to those of control galaxies at similar redshift, J-band magnitude, and (M{sub u} – M{sub r} ) rest-frame color. However, a subpopulation of radio AGNs is found in environments up to 100 times denser than their control sources. We thus preclude merging as the dominant triggering mechanism of radio AGNs. By fitting the broadband spectral energy distribution of radio AGNs in the least and most dense environments, we find that those in the least dense environments show higher radio-loudness, higher star formation efficiencies, and higher accretion rates, typical of the so-called high-excitation radio AGNs. These differences tend to disappear at z > 1. We interpret our results in terms of a different triggering mechanism for these sources that is driven by mass loss through winds of young stars created during the observed ongoing star formation.

  11. Long-Term Monitoring of the Broad-Line Region Properties in a Selected Sample of AGN

    Energy Technology Data Exchange (ETDEWEB)

    Ilić, Dragana [Department of Astronomy, Faculty of Mathematics, University of Belgrade, Belgrade (Serbia); Shapovalova, Alla I. [Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnii Arkhyz (Russian Federation); Popović, Luka Č. [Department of Astronomy, Faculty of Mathematics, University of Belgrade, Belgrade (Serbia); Astronomical Observatory, Belgrade (Serbia); Chavushyan, Vahram [Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla (Mexico); Burenkov, Alexander N. [Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnii Arkhyz (Russian Federation); Kollatschny, Wolfram [Institut fuer Astrophysik, Universitaet Goettingen, Göttingen (Germany); Kovačević, Andjelka [Department of Astronomy, Faculty of Mathematics, University of Belgrade, Belgrade (Serbia); Marčeta-Mandić, Sladjana [Department of Astronomy, Faculty of Mathematics, University of Belgrade, Belgrade (Serbia); Astronomical Observatory, Belgrade (Serbia); Rakić, Nemanja [Department of Astronomy, Faculty of Mathematics, University of Belgrade, Belgrade (Serbia); Faculty of Science, University of Banjaluka, Banjaluka, Republic of Srpska (Bosnia and Herzegovina); La Mura, Giovanni; Rafanelli, Piero, E-mail: dilic@math.rs [Department of Physics and Astronomy, University of Padova, Padova (Italy)

    2017-09-14

    We present the results of the long-term optical monitoring campaign of active galactic nuclei (AGN) coordinated by the Special Astrophysical Observatory of the Russian Academy of Science. This campaign has produced a remarkable set of optical spectra, since we have monitored for several decades different types of broad-line (type 1) AGN, from a Seyfert 1, double-peaked line, radio loud and radio quiet AGN, to a supermassive binary black hole candidate. Our analysis of the properties of the broad line region (BLR) of these objects is based on the variability of the broad emission lines. We hereby give a comparative review of the variability properties of the broad emission lines and the BLR of seven different type 1 AGNs, emphasizing some important results, such as the variability rate, the BLR geometry, and the presence of the intrinsic Baldwin effect. We are discussing the difference and similarity in the continuum and emission line variability, focusing on what is the impact of our results to the supermassive black hole mass determination from the BLR properties.

  12. Long-Term Monitoring of the Broad-Line Region Properties in a Selected Sample of AGN

    Directory of Open Access Journals (Sweden)

    Dragana Ilić

    2017-09-01

    Full Text Available We present the results of the long-term optical monitoring campaign of active galactic nuclei (AGN coordinated by the Special Astrophysical Observatory of the Russian Academy of Science. This campaign has produced a remarkable set of optical spectra, since we have monitored for several decades different types of broad-line (type 1 AGN, from a Seyfert 1, double-peaked line, radio loud and radio quiet AGN, to a supermassive binary black hole candidate. Our analysis of the properties of the broad line region (BLR of these objects is based on the variability of the broad emission lines. We hereby give a comparative review of the variability properties of the broad emission lines and the BLR of seven different type 1 AGNs, emphasizing some important results, such as the variability rate, the BLR geometry, and the presence of the intrinsic Baldwin effect. We are discussing the difference and similarity in the continuum and emission line variability, focusing on what is the impact of our results to the supermassive black hole mass determination from the BLR properties.

  13. Search for gamma-ray emitting AGN among unidentified Fermi-LAT sources using machine learning algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Doert, Marlene [Technische Universitaet Dortmund (Germany); Ruhr-Universitaet Bochum (Germany); Einecke, Sabrina [Technische Universitaet Dortmund (Germany); Errando, Manel [Barnard College, Columbia University, New York City (United States)

    2015-07-01

    The second Fermi-LAT source catalog (2FGL) is the deepest all-sky survey of the gamma-ray sky currently available to the community. Out of the 1873 catalog sources, 576 remain unassociated. We present a search for active galactic nuclei (AGN) among these unassociated objects, which aims at a reduction of the number of unassociated gamma-ray sources and a more complete characterization of the population of gamma-ray emitting AGN. Our study uses two complimentary machine learning algorithms which are individually trained on the gamma-ray properties of associated 2FGL sources and thereafter applied to the unassociated sample. The intersection of the two methods yields a high-confidence sample of 231 AGN candidate sources. We estimate the performance of the classification by taking inherent differences between the samples of associated and unassociated 2FGL sources into account. A search for infra-red counterparts and first results from follow-up studies in the X-ray band using Swift satellite data for a subset of our AGN candidates are also presented.

  14. THE ORION FINGERS: NEAR-IR SPECTRAL IMAGING OF AN EXPLOSIVE OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, Allison; Bally, John [Department of Astrophysical and Planetary Sciences, University of Colorado, UCB 389, Boulder, CO 80309 (United States); Ginsburg, Adam, E-mail: allison.youngblood@colorado.edu [ESO Headquarters, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany)

    2016-06-01

    We present near-IR (1.1–2.4 μ m) position–position–velocity cubes of the 500 year old Orion BN/KL explosive outflow with spatial resolution 1″ and spectral resolution 86 km s{sup −1}. We construct integrated intensity maps free of continuum sources of 15 H{sub 2} and [Fe ii] lines while preserving kinematic information of individual outflow features. Included in the detected H{sub 2} lines are the 1-0 S(1) and 1-0 Q(3) transitions, allowing extinction measurements across the outflow. Additionally, we present dereddened flux ratios for over two dozen outflow features to allow for the characterization of the true excitation conditions of the BN/KL outflow. All of the ratios show the dominance of the shock excitation of the H{sub 2} emission, although some features exhibit signs of fluorescent excitation from stellar radiation or J-type shocks. We also detect tracers of the PDR/ionization front north of the Trapezium stars in [O i] and [Fe ii] and analyze other observed outflows not associated with the BN/KL outflow.

  15. MULTIPLE FAST MOLECULAR OUTFLOWS IN THE PRE-PLANETARY NEBULA CRL 618

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chin-Fei; Huang, Po-Sheng [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Sahai, Raghvendra [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Sánchez Contreras, Carmen [Astrobiology Center (CSIC-INTA), ESAC Campus, E-28691 Villanueva de la Canada, Madrid (Spain); Tay, Jeremy Jian Hao [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore)

    2013-11-01

    CRL 618 is a well-studied pre-planetary nebula. It has multiple highly collimated optical lobes, fast molecular outflows along the optical lobes, and an extended molecular envelope that consists of a dense torus in the equator and a tenuous round halo. Here we present our observations of this source in CO J = 3-2 and HCN J = 4-3 obtained with the Submillimeter Array at up to ∼0.''3 resolutions. We spatially resolve the fast molecular outflow region previously detected in CO near the central star and find it to be composed of multiple outflows that have similar dynamical ages and are oriented along the different optical lobes. We also detect fast molecular outflows further away from the central star near the tips of the extended optical lobes and a pair of equatorial outflows inside the dense torus. We find that two episodes of bullet ejections in different directions are needed, one producing the fast molecular outflows near the central star and one producing the fast molecular outflows near the tips of the extended optical lobes. One possibility to launch these bullets is a magneto-rotational explosion of the stellar envelope.

  16. Long term multiwavelength studies of the corona/disc connection in AGN

    Science.gov (United States)

    Buisson, D.; Lohfink, A.; Alston, W.; Fabian, A.; Gallo, L.; Kara, E.; Zoghbi, A.; Wilkins, D.; Miller, J.; Cackett, E.

    2017-10-01

    One way of increasing our understanding of AGN is determining the nature of the connection between the optical/UV emitting accretion disc and the X-ray emitting corona. Studies of variability in these two bands are a key tool for gaining insight into the processes involved. We will present results from a sample of long-term AGN monitoring campaigns in the optical, UV and X-ray with Swift. In particular, we will explore UV/optical-X-ray correlations and associated time lags. We will compare these measurements and the UV/optical RMS spectra with theoretical reprocessing models and confront recent claims of the observed lags being longer than those which are expected for a standard thin disc. Additionally, a new Swift monitoring campaign of the z=2 quasar PG 1247+267 allows us to probe the shorter wavelengths at the peak of the accretion disc spectrum, providing information on the region of the disc closest to the black hole. However, not all AGN show such correlations, including IRAS 13224-3809, the subject of a recent 1.5 Ms XMM observation. Using this and other examples, we will explore the possible reasons for the lack of observed correlation.

  17. Ultraviolet/Optical Emission of the Ionized Gas in AGN: Diagnostics of the Ionizing Source and Gas Properties

    Directory of Open Access Journals (Sweden)

    Anna Feltre

    2017-11-01

    Full Text Available Spectroscopic studies of active galactic nuclei (AGN are powerful means of probing the physical properties of the ionized gas within them. In particular, near future observational facilities, such as the James Webb Space Telescope (JWST, will allow detailed statistical studies of rest-frame ultraviolet and optical spectral features of the very distant AGN with unprecedented accuracy. In this proceedings, we discuss the various ways of exploiting new dedicated photoionization models of the narrow-line emitting regions (NLR of AGN for the interpretation of forthcoming revolutionary datasets.

  18. STUDYING FAINT ULTRA-HARD X-RAY EMISSION FROM AGN IN GOALS LIRGS WITH SWIFT/BAT

    International Nuclear Information System (INIS)

    Koss, Michael; Casey, Caitlin M.; Mushotzky, Richard; Veilleux, Sylvain; Baumgartner, Wayne; Tueller, Jack; Markwardt, Craig

    2013-01-01

    We present the first analysis of the all-sky Swift Burst Alert Telescope (BAT) ultra-hard X-ray (14-195 keV) data for a targeted list of objects. We find that the BAT data can be studied at three-times-fainter limits than in previous blind detection catalogs based on prior knowledge of source positions and using smaller energy ranges for source detection. We determine the active galactic nucleus (AGN) fraction in 134 nearby (z IR /L ☉ > 11.8) detected. The BAT AGN classification shows 97% (37/38) agreement with Chandra and XMM-Newton AGN classification using hardness ratios or detection of an iron Kα line. This confirms our statistical analysis and supports the use of the Swift/BAT all-sky survey to study fainter populations of any category of sources in the ultra-hard X-ray band. BAT AGNs in LIRGs tend to show higher column densities with 40% ± 9% showing 14-195 keV/2-10 keV hardness flux ratios suggestive of high or Compton-thick column densities (log N H > 24 cm –2 ), compared to only 12% ± 5% of non-LIRG BAT AGNs. We also find that using specific energy ranges of the BAT detector can yield additional sources over total band detections with 24% (5/21) of detections in LIRGs at 24-35 keV not detected at 14-195 keV.

  19. Efficient cold outflows driven by cosmic rays in high-redshift galaxies and their global effects on the IGM

    Science.gov (United States)

    Samui, Saumyadip; Subramanian, Kandaswamy; Srianand, Raghunathan

    2018-05-01

    We present semi-analytical models of galactic outflows in high-redshift galaxies driven by both hot thermal gas and non-thermal cosmic rays. Thermal pressure alone may not sustain a large-scale outflow in low-mass galaxies (i.e. M ˜ 108 M⊙), in the presence of supernovae feedback with large mass loading. We show that inclusion of cosmic ray pressure allows outflow solutions even in these galaxies. In massive galaxies for the same energy efficiency, cosmic ray-driven winds can propagate to larger distances compared to pure thermally driven winds. On an average gas in the cosmic ray-driven winds has a lower temperature which could aid detecting it through absorption lines in the spectra of background sources. Using our constrained semi-analytical models of galaxy formation (that explains the observed ultraviolet luminosity functions of galaxies), we study the influence of cosmic ray-driven winds on the properties of the intergalactic medium (IGM) at different redshifts. In particular, we study the volume filling factor, average metallicity, cosmic ray and magnetic field energy densities for models invoking atomic cooled and molecular cooled haloes. We show that the cosmic rays in the IGM could have enough energy that can be transferred to the thermal gas in presence of magnetic fields to influence the thermal history of the IGM. The significant volume filling and resulting strength of IGM magnetic fields can also account for recent γ-ray observations of blazars.

  20. Fueling the AGN

    Science.gov (United States)

    Combes, F.

    Active Galactic Nuclei are fueled from material (gas or stars) that are in general far away from the gravitational influence of the central black hole, the engine thought to be responsible for their activity. The required material has a lot of angular momentum that, a priori, is quite difficult to evacuate. The various dynamical mechanisms that may play a role in this game are reviewed, including m = 2 perturbations (bars and spirals), m = 1 perturbations (spirals, warps, lopsidedness), and tidal interactions between galaxies and mergers. In the latest stages of the merger, a binary black hole could be formed, and its influence on the dynamics and fueling is discussed. Starbursts are often associated with AGN, and the nature of their particular connection, and their role in the nuclear fueling is described. Evolution of the fueling efficiency with redshift is addressed.

  1. The search for red AGN with 2MASS

    Science.gov (United States)

    Cutri, R. M.; Nelson, B. O.; Kirkpatrick, J. D.; Huchra, J. P.; Smith, P. S.

    2001-01-01

    We present the results of a simple, highly efficient 2MASS color-based survey that has already discovered 140 previously unknown red AGN and QSOs. These objects are near-infrared-bright and relatively nearby; the media redshift of the sample is z=0.25, and all but two have z<0.7.

  2. A Global Three-Dimensional Radiation Hydrodynamic Simulation of a Self-Gravitating Accretion Disk

    Science.gov (United States)

    Phillipson, Rebecca; Vogeley, Michael S.; McMillan, Stephen; Boyd, Patricia

    2018-01-01

    We present three-dimensional, radiation hydrodynamic simulations of initially thin accretion disks with self-gravity using the grid-based code PLUTO. We produce simulated light curves and spectral energy distributions and compare to observational data of X-ray binary (XRB) and active galactic nuclei (AGN) variability. These simulations are of interest for modeling the role of radiation in accretion physics across decades of mass and frequency. In particular, the characteristics of the time variability in various bandwidths can probe the timescales over which different physical processes dominate the accretion flow. For example, in the case of some XRBs, superorbital periods much longer than the companion orbital period have been observed. Smoothed particle hydrodynamics (SPH) calculations have shown that irradiation-driven warping could be the mechanism underlying these long periods. In the case of AGN, irradiation-driven warping is also predicted to occur in addition to strong outflows originating from thermal and radiation pressure driving forces, which are important processes in understanding feedback and star formation in active galaxies. We compare our simulations to various toy models via traditional time series analysis of our synthetic and observed light curves.

  3. Evolution of the outflow activity of protostars

    International Nuclear Information System (INIS)

    Bontemps, Sylvain

    1996-01-01

    After a first part describing the formation of low-mass stars (sites of stellar formation, protostellar evolution) and matter outflows from young objects (molecular flows and their origin, optical and radio jets, outflow mechanisms), this research thesis discusses the evolution of molecular flows by reprinting a published article (Evolution of outflow activity around low-mass embedded young stellar objects), and by outlining some remaining issues (differences between clouds of stellar formation, morphological evolution of molecular flows). The author then discusses the continuous radio centimetre emission: origin, systematic search for Class 0 objects by using the VLA (Very Large Array radio interferometer), presentation of a new Class 0 protostar (HH24MMS). The author reports the study of H_2 emission in the infrared: generalities on protostellar shocks, infrared jet by HH24MMS, H_2 emission at 10 microns by using the ISOCAM camera [fr

  4. Toward a Unified AGN Structure

    Science.gov (United States)

    Kazanas, Demosthenes; Fukumura, Keigo; Shrader, Chris; Behar, Ehud; Contopoulosa, Ioannis

    2012-01-01

    We present a unified model for the structure and appearance of accretion powered sources across their entire luminosity range from galactic X-ray binaries (XRB) to luminous quasars, with emphasis on AG N and their phenomenology. Central to this model is the notion of MHD winds launched by the accretion disks that power these objects. These winds provide the matter that manifests as blueshifted absorption features in the UV and X-ray spectra of a large fraction of these sources; furthermore, their density distribution in the poloidal plane determines their "appearance" (i.e. the column and velocity structure of these absorption features and the obscuration of the continuum source) as a function of the observer inclination angle (a feature to which INTEGRAL has made significant contributions). This work focuses on just the broadest characteristics of these objects; nonetheless, it provides scaling laws that allow one to reproduce within this model the properties of objects extending in luminosity from luminous quasars to XRBs. Our general conclusion is that the AGN phenomenology can be accounted for in terms of three parameters: The wind maSS flux in units of the Eddington value, m(dot), the observers' inclination angle Theta and the logarithmic slope between the 0/UV and X-ray fluxes alpha(sub ox); however because of a correlation between alpha(sub ox) and UV luminosity the number of significant parameters is two. The AGN correlations implied by this model appear to extend to and consistent with the XRB phenomenology, suggesting the presence of a truly unified underlying structure for accretion powered sources.

  5. X-ray surveys - Weighting the dark matter haloes of X-ray AGN: towards a physical description of the accretion history of the Universe

    Science.gov (United States)

    Georgakakis, Antonis; Mountrichas, G.; Fanidakis, N.; Finoguenov, A.; Aegis Collaboration

    2012-09-01

    The masses of the dark matter haloes in which AGN live is powerful diagnostic of the conditions under which supermassive black holes form and evolve across cosmic time. A new clustering estimation method will be presented which requires spectroscopy only for the AGN and uses photometric redshift probability density functions for galaxies to determine the projected real-space AGN/galaxy cross-correlation function. Our method is superior to traditional AGN clustering estimators (e.g. auto-correlation function) because (i) random errors are significantly suppressed when counting AGN/galaxy pairs, (ii) the impact of sample variance is minimized, and (iii) the requirements for spectroscopy are minimal; only spectroscopic redshift measurements for the AGN are needed. This method is applied to the combined AEGIS, COSMOS and ECDFS fields to infer the bias and dark matter halo mass of moderate luminosity (Lx~10^43 erg/s/cm^2) X-ray AGN at z~1 (total of 400). Predictions from the GALFORM semi-analytic model will be compared to the observations to show that a combination of hot and cold-gas accretion (the latter triggered by disk instabilities in spirals rather than mergers) reproduce well the clustering properties of X-ray AGN over a range of redshifts and luminosities.

  6. AGNES - safety reassessment of Paks NPP

    International Nuclear Information System (INIS)

    Gado, J.

    1995-01-01

    The main goal of the AGNES (Advanced General and New Evaluation of Safety) project for the reassessment of the safety of Paks Nuclear Power Plant, Hungary, was to improve the safety culture of the technology at Paks. A report was prepared on the reassessment of the Paks NPP safety. The analysis was divided into four groups: systems analysis, analysis of design basis accidents, severe accident analysis, and level 1 probabilistic safety analysis. Proposed safety enhancement measures are discussed. (N.T.)

  7. Changing-Look AGNs or Short-Lived Radio Sources?

    Energy Technology Data Exchange (ETDEWEB)

    Wołowska, Aleksandra [Toruń Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Toruń (Poland); Kunert-Bajraszewska, Magdalena; Mooley, Kunal [Centre for Astrophysical Surveys, University of Oxford, Oxford (United Kingdom); Hallinan, Gregg, E-mail: ola@astro.umk.pl [Cahill Center for Astronomy, California Institute of Technology, Pasadena, CA (United States)

    2017-11-17

    The evolution of extragalactic radio sources has been a fundamental problem in the study of active galactic nuclei for many years. A standard evolutionary model has been created based on observations of a wide range of radio sources. In the general scenario of the evolution, the younger and smaller Gigahertz-Peaked Spectrum (GPS) and Compact Steep Spectrum (CSS) sources become large-scale FRI and FRII objects. However, a growing number of observations of low power radio sources suggests that the model cannot explain all their properties and there are still some aspects of the evolutionary path that remain unclear. There are indications, that some sources may be short-lived objects on timescales of 10{sup 4}–10{sup 5} years. Those objects represent a new population of active galaxies. Here, we present the discovery of several radio transient sources on timescales of 5–20 yrs, largely associated with renewed AGN (Active Galactic Nucleus) activity. These changing-look AGNs possibly represent behavior typical for many active galaxies.

  8. Mass outflow in the nearby proto-planetary system, Beta Pictoris

    International Nuclear Information System (INIS)

    Bruhweiler, F.C.; Grady, C.A.; Kondo, Yoji

    1991-01-01

    Previous spectral studies of circumstallar dust around the nearby, candidate proto-planetary system, Beta Pictoris, has detected only infalling gas. The lack of detectable mass outflow has been critical in the interpretation of the origin of the circumstellar gas and in our understanding of the evolutionary status of the Beta Pictoris system. IUE high-dispersion spectra are presented which show, in addition to infall, the presence of mass outflow, with a maximum observed outflow velocity of -60 km/s, and a corresponding instantaneous outflow rate of 1.1 x 10 to the -14th solar mass/yr, or 1.1 x 10 to the -11th Jupiter mass/yr. This mass outflow rate and terminal velocity are comparable to the magnitudes of mass infall rates and terminal velocities observed from late 1986 through early 1988. The implications of these observations on our understanding of the mechanisms producing infall from the surrounding circumstellar disk are discussed, as are the implications for our understanding of the evolutionary status of the Beta Pic system. 23 refs

  9. THE TURBULENT ORIGIN OF OUTFLOW AND SPIN MISALIGNMENT IN MULTIPLE STAR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Offner, Stella S. R.; Lee, Katherine I.; Arce, Héctor G.; Fielding, Drummond B. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Dunham, Michael M., E-mail: soffner@astro.umass.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2016-08-10

    The protostellar outflows of wide-separation forming binaries frequently appear misaligned. We use magneto-hydrodynamic simulations to investigate the alignment of protostellar spin and molecular outflows for forming binary pairs. We show that the protostellar pairs, which form from turbulent fragmentation within a single parent core, have randomly oriented angular momentum. Although the pairs migrate to closer separations, their spins remain partially misaligned. We produce {sup 12}CO(2-1) synthetic observations of the simulations and characterize the outflow orientation in the emission maps. The CO-identified outflows exhibit a similar random distribution and are also statistically consistent with the observed distribution of molecular outflows. We conclude that the observed misalignment provides a clear signature of binary formation via turbulent fragmentation. The persistence of misaligned outflows and stellar spins following dynamical evolution may provide a signature of binary origins for more evolved multiple star systems.

  10. THE TURBULENT ORIGIN OF OUTFLOW AND SPIN MISALIGNMENT IN MULTIPLE STAR SYSTEMS

    International Nuclear Information System (INIS)

    Offner, Stella S. R.; Lee, Katherine I.; Arce, Héctor G.; Fielding, Drummond B.; Dunham, Michael M.

    2016-01-01

    The protostellar outflows of wide-separation forming binaries frequently appear misaligned. We use magneto-hydrodynamic simulations to investigate the alignment of protostellar spin and molecular outflows for forming binary pairs. We show that the protostellar pairs, which form from turbulent fragmentation within a single parent core, have randomly oriented angular momentum. Although the pairs migrate to closer separations, their spins remain partially misaligned. We produce 12 CO(2-1) synthetic observations of the simulations and characterize the outflow orientation in the emission maps. The CO-identified outflows exhibit a similar random distribution and are also statistically consistent with the observed distribution of molecular outflows. We conclude that the observed misalignment provides a clear signature of binary formation via turbulent fragmentation. The persistence of misaligned outflows and stellar spins following dynamical evolution may provide a signature of binary origins for more evolved multiple star systems.

  11. PROTOSTELLAR OUTFLOW HEATING IN A GROWING MASSIVE PROTOCLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ke; Wu Yuefang; Zhang Huawei [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Zhang Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Li Huabai, E-mail: kwang@cfa.harvard.edu [Max-Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-02-15

    The dense molecular clump P1 in the infrared dark cloud complex G28.34+0.06 harbors a massive protostellar cluster at its extreme youth. Our previous Submillimeter Array observations revealed several jet-like CO outflows emanating from the protostars, indicative of intense accretion and potential interaction with ambient natal materials. Here, we present the Expanded Very Large Array spectral line observations toward P1 in the NH{sub 3} (J,K) = (1,1), (2,2), (3,3) lines, as well as H{sub 2}O and class I CH{sub 3}OH masers. Multiple NH{sub 3} transitions reveal the heated gas widely spread in the 1 pc clump. The temperature distribution is highly structured; the heated gas is offset from the protostars, and morphologically matches the outflows very well. Hot spots of spatially compact, spectrally broad NH{sub 3} (3,3) emission features are also found coincident with the outflows. A weak NH{sub 3} (3,3) maser is discovered at the interface between an outflow jet and the ambient gas. These findings suggest that protostellar heating may not be effective in suppressing fragmentation during the formation of massive cores.

  12. PROTOSTELLAR OUTFLOW HEATING IN A GROWING MASSIVE PROTOCLUSTER

    International Nuclear Information System (INIS)

    Wang Ke; Wu Yuefang; Zhang Huawei; Zhang Qizhou; Li Huabai

    2012-01-01

    The dense molecular clump P1 in the infrared dark cloud complex G28.34+0.06 harbors a massive protostellar cluster at its extreme youth. Our previous Submillimeter Array observations revealed several jet-like CO outflows emanating from the protostars, indicative of intense accretion and potential interaction with ambient natal materials. Here, we present the Expanded Very Large Array spectral line observations toward P1 in the NH 3 (J,K) = (1,1), (2,2), (3,3) lines, as well as H 2 O and class I CH 3 OH masers. Multiple NH 3 transitions reveal the heated gas widely spread in the 1 pc clump. The temperature distribution is highly structured; the heated gas is offset from the protostars, and morphologically matches the outflows very well. Hot spots of spatially compact, spectrally broad NH 3 (3,3) emission features are also found coincident with the outflows. A weak NH 3 (3,3) maser is discovered at the interface between an outflow jet and the ambient gas. These findings suggest that protostellar heating may not be effective in suppressing fragmentation during the formation of massive cores.

  13. A SEARCH FOR 95 GHz CLASS I METHANOL MASERS IN MOLECULAR OUTFLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Cong-Gui; Chen, Xi; Shen, Zhi-Qiang [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan RD, Shanghai 200030 (China); Xu, Ye; Ju, Bing-Gang, E-mail: cggan@shao.ac.cn [Key Laboratory of Radio Astronomy, Chinese Academy of Sciences (China)

    2013-01-20

    We have observed a sample of 288 molecular outflow sources including 123 high-mass and 165 low-mass sources in order to search for class I methanol masers at the 95 GHz transition and to investigate the relationship between outflow characteristics and class I methanol maser emission with the Purple Mountain Observatory 13.7 m radio telescope. Our survey detected 62 sources with 95 GHz methanol masers above a 3{sigma} detection limit, which includes 47 high-mass sources and 15 low-mass sources. Therefore, the detection rate is 38% for high-mass outflow sources and 9% for low-mass outflow sources, suggesting that class I methanol masers are relatively easily excited in high-mass sources. There are 37 newly detected 95 GHz methanol masers (including 27 high-mass and 10 low-mass sources), 19 of which are newly identified (i.e., first identification) class I methanol masers (including 13 high-mass and 6 low-mass sources). A statistical analysis of the distributions of maser detections with the outflow parameters reveals that the maser detection efficiency increases with the outflow properties (e.g., mass, momentum, kinetic energy, mechanical luminosity of outflows, etc.). Systematic investigations of the relationships between the intrinsic luminosity of methanol masers and the outflow properties (including mass, momentum, kinetic energy, bolometric luminosity, and mass-loss rate of the central stellar sources) indicate a positive correlation. This further supports the theory that class I methanol masers are collisionally pumped and associated with shocks when outflows interact with the surrounding ambient medium.

  14. An Orientation-Based Unification of Young Jetted AGN: The Case of 3C 286

    Energy Technology Data Exchange (ETDEWEB)

    Berton, Marco [Dipartimento di Fisica e Astronomia “G. Galilei,” Università di Padova, Padova (Italy); Brera Astronomical Observatory (INAF), Merate (Italy); Foschini, Luigi; Caccianiga, Alessandro [Brera Astronomical Observatory (INAF), Merate (Italy); Ciroi, Stefano [Dipartimento di Fisica e Astronomia “G. Galilei,” Università di Padova, Padova (Italy); Congiu, Enrico [Dipartimento di Fisica e Astronomia “G. Galilei,” Università di Padova, Padova (Italy); Brera Astronomical Observatory (INAF), Merate (Italy); Cracco, Valentina; Frezzato, Michele; La Mura, Giovanni; Rafanelli, Piero, E-mail: marco.berton@unipd.it [Dipartimento di Fisica e Astronomia “G. Galilei,” Università di Padova, Padova (Italy)

    2017-07-25

    In recent years, the old paradigm according to which only high-mass black holes can launch powerful relativistic jets in active galactic nuclei (AGN) has begun to crumble. The discovery of γ-rays coming from narrow-line Seyfert 1 galaxies (NLS1s), usually considered young and growing AGN harboring a central black hole with mass typically lower than 10{sup 8} M{sub ⊙}, indicated that also these low-mass AGN can produce powerful relativistic jets. The search for parent population of γ-ray emitting NLS1s revealed their connection with compact steep-spectrum sources (CSS). In this proceeding we present a review of the current knowledge of these sources, we present the new important case of 3C 286, classified here for the fist time as NLS1, and we finally provide a tentative orientation based unification of NLS1s and CSS sources.

  15. An Orientation-Based Unification of Young Jetted AGN: The Case of 3C 286

    International Nuclear Information System (INIS)

    Berton, Marco; Foschini, Luigi; Caccianiga, Alessandro; Ciroi, Stefano; Congiu, Enrico; Cracco, Valentina; Frezzato, Michele; La Mura, Giovanni; Rafanelli, Piero

    2017-01-01

    In recent years, the old paradigm according to which only high-mass black holes can launch powerful relativistic jets in active galactic nuclei (AGN) has begun to crumble. The discovery of γ-rays coming from narrow-line Seyfert 1 galaxies (NLS1s), usually considered young and growing AGN harboring a central black hole with mass typically lower than 10 8 M ⊙ , indicated that also these low-mass AGN can produce powerful relativistic jets. The search for parent population of γ-ray emitting NLS1s revealed their connection with compact steep-spectrum sources (CSS). In this proceeding we present a review of the current knowledge of these sources, we present the new important case of 3C 286, classified here for the fist time as NLS1, and we finally provide a tentative orientation based unification of NLS1s and CSS sources.

  16. Infrared-faint radio sources in the SERVS deep fields. Pinpointing AGNs at high redshift

    Science.gov (United States)

    Maini, A.; Prandoni, I.; Norris, R. P.; Spitler, L. R.; Mignano, A.; Lacy, M.; Morganti, R.

    2016-12-01

    Context. Infrared-faint radio sources (IFRS) represent an unexpected class of objects which are relatively bright at radio wavelength, but unusually faint at infrared (IR) and optical wavelengths. A recent and extensive campaign on the radio-brightest IFRSs (S1.4 GHz≳ 10 mJy) has provided evidence that most of them (if not all) contain an active galactic nuclei (AGN). Still uncertain is the nature of the radio-faintest IFRSs (S1.4 GHz≲ 1 mJy). Aims: The scope of this paper is to assess the nature of the radio-faintest IFRSs, testing their classification and improving the knowledge of their IR properties by making use of the most sensitive IR survey available so far: the Spitzer Extragalactic Representative Volume Survey (SERVS). We also explore how the criteria of IFRSs can be fine-tuned to pinpoint radio-loud AGNs at very high redshift (z > 4). Methods: We analysed a number of IFRS samples identified in SERVS fields, including a new sample (21 sources) extracted from the Lockman Hole. 3.6 and 4.5 μm IR counterparts of the 64 sources located in the SERVS fields were searched for and, when detected, their IR properties were studied. Results: We compared the radio/IR properties of the IR-detected IFRSs with those expected for a number of known classes of objects. We found that IR-detected IFRSs are mostly consistent with a mixture of high-redshift (z ≳ 3) radio-loud AGNs. The faintest ones (S1.4 GHz 100 μJy), however, could be also associated with nearer (z 2) dust-enshrouded star-burst galaxies. We also argue that, while IFRSs with radio-to-IR ratios >500 can very efficiently pinpoint radio-loud AGNs at redshift 2 < z < 4, lower radio-to-IR ratios ( 100-200) are expected for higher redshift radio-loud AGNs.

  17. Reduction of the elevator illusion from continued hypergravity exposure and visual error-corrective feedback

    Science.gov (United States)

    Welch, R. B.; Cohen, M. M.; DeRoshia, C. W.

    1996-01-01

    Ten subjects served as their own controls in two conditions of continuous, centrifugally produced hypergravity (+2 Gz) and a 1-G control condition. Before and after exposure, open-loop measures were obtained of (1) motor control, (2) visual localization, and (3) hand-eye coordination. During exposure in the visual feedback/hypergravity condition, subjects received terminal visual error-corrective feedback from their target pointing, and in the no-visual feedback/hypergravity condition they pointed open loop. As expected, the motor control measures for both experimental conditions revealed very short lived underreaching (the muscle-loading effect) at the outset of hypergravity and an equally transient negative aftereffect on returning to 1 G. The substantial (approximately 17 degrees) initial elevator illusion experienced in both hypergravity conditions declined over the course of the exposure period, whether or not visual feedback was provided. This effect was tentatively attributed to habituation of the otoliths. Visual feedback produced a smaller additional decrement and a postexposure negative after-effect, possible evidence for visual recalibration. Surprisingly, the target-pointing error made during hypergravity in the no-visual-feedback condition was substantially less than that predicted by subjects' elevator illusion. This finding calls into question the neural outflow model as a complete explanation of this illusion.

  18. A young bipolar outflow from IRAS 15398-3359

    Science.gov (United States)

    Bjerkeli, P.; Jørgensen, J. K.; Brinch, C.

    2016-03-01

    Context. Changing physical conditions in the vicinity of protostars allow for a rich and interesting chemistry to occur. Heating and cooling of the gas allows molecules to be released from and frozen out on dust grains. These changes in physics, traced by chemistry as well as the kinematical information, allows us to distinguish between different scenarios describing the infall of matter and the launching of molecular outflows and jets. Aims: We aim to determine the spatial distribution of different species that are of different chemical origin. This is to examine the physical processes in play in the observed region. From the kinematical information of the emission lines we aim to determine the nature of the infalling and outflowing gas in the system. We also aim to determine the physical properties of the outflow. Methods: Maps from the Submillimeter Array (SMA) reveal the spatial distribution of the gaseous emission towards IRAS 15398-3359. The line radiative transfer code LIME is used to construct a full 3D model of the system taking all relevant components and scales into account. Results: CO, HCO+, and N2H+ are detected and shown to trace the motions of the outflow. For CO, the circumstellar envelope and the surrounding cloud also have a profound impact on the observed line profiles. N2H+ is detected in the outflow, but is suppressed towards the central region, perhaps because of the competing reaction between CO and H3+ in the densest regions as well as the destruction of N2H+ by CO. N2D+ is detected in a ridge south-west of the protostellar condensation and is not associated with the outflow. The morphology and kinematics of the CO emission suggests that the source is younger than ~1000 years. The mass, momentum, momentum rate, mechanical luminosity, kinetic energy, and mass-loss rate are also all estimated to be low. A full 3D radiative transfer model of the system can explain all the kinematical and morphological features in the system.

  19. Multiple monopolar outflows driven by massive protostars in IRAS 18162-2048

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-López, M. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Girart, J. M. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciencies, Torre C5-parell 2, E-08193 Bellaterra, Catalunya (Spain); Curiel, S.; Fonfría, J. P. [Instituto de Astronomía, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-264, 04510 México, DF (Mexico); Zapata, L. A. [Centro de Radioastronomía y Astrofísica, UNAM, Apartado Postal 3-72, Morelia, Michoacán 58089 (Mexico); Qiu, K., E-mail: manferna@illinois.edu, E-mail: girart@ieec.cat [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2013-11-20

    In this article, we present Combined Array for Research in Millimeter-wave Astronomy (CARMA) 3.5 mm observations and SubMillimeter Array (SMA) 870 μm observations toward the high-mass star-forming region IRAS 18162-2048, which is the core of the HH 80/81/80N system. Molecular emission from HCN, HCO{sup +}, and SiO traces two molecular outflows (the so-called northeast and northwest outflows). These outflows have their origin in a region close to the position of MM2, a millimeter source known to harbor two protostars. For the first time we estimate the physical characteristics of these molecular outflows, which are similar to those of 10{sup 3}-5 × 10{sup 3} L {sub ☉} protostars, and suggest that MM2 harbors high-mass protostars. High-angular resolution CO observations show an additional outflow due southeast. Also for the first time, we identify its driving source, MM2(E), and see evidence of precession. All three outflows have a monopolar appearance, but we link the NW and SE lobes, and explain their asymmetric shape as being a consequence of possible deflection.

  20. Negative feedback loops leading to nitrate homeostasis and oscillatory nitrate assimilation in plants and fungi.

    OpenAIRE

    Huang, Yongshun

    2011-01-01

    Master's thesis in Biological Chemistry Nitrate is an important nutrient for plants and fungi. For plants it has been shown that cytosolic nitrate levels are under homeostatic control. Here we describe two networks that can obtain robust, i.e. perturbation independent, homeostatic behavior in cytosolic nitrate concentration. One of the networks, a member in the family of outflow controllers, is based on a negative feedback loop containing a nitrate-induced activation of a controller molecu...

  1. Effect of nuclear stars gravity on quasar radiation feedback on the parsec-scale

    Science.gov (United States)

    Yang, Xiao-Hong; Bu, De-Fu

    2018-05-01

    It is often suggested that a super massive black hole is embedded in a nuclear bulge of size of a few 102 parsec . The nuclear stars gravity is not negligible near ˜10parsec. In order to study the effect of nuclear stars gravity on quasar radiation feedback on the parsec scale, we have simulated the parsec scale flows irradiated by a quasar by taking into account the gravitational potential of both the black hole and the nuclear star cluster. We find that the effect of nuclear stars gravity on the parsec-scale flows is related to the fraction of X-ray photons in quasar radiation. For the models in which the fraction of X-ray photons is not small (e.g. the X-ray photons contribute to 20% of the quasar radiation), the nuclear stars gravity is very helpful to collimate the outflows driven by UV photons, significantly weakens the outflow power at the outer boundary and significantly enhances the net accretion rate onto the black hole. For the models in which X-ray photons are significantly decreased (e.g. the X-ray photons contribute to 5% of the quasar radiation), the nuclear stars gravity can just slightly change properties of outflow and slightly enhance the net accretion rate onto the black hole.

  2. Variability: A X-ray ruler for the AGN structure model

    Directory of Open Access Journals (Sweden)

    Guainazzi M.

    2012-12-01

    Full Text Available Validating our understanding of the innermost structure of Active Galactic Nuclei (AGN would require resolving sub-parsec scales. Lacking adequate direct imaging, X-ray astronomy can still contribute to this undertaking through the study of spectral variability on time-scales from days to years. This bears information on the location of gaseous and dusty systems in the innermost regions around the accreting supermassive black hole. In this paper I discuss the application of this concept in two specific contexts: a “fast” column density variations in heavily obscured AGN; b reverberation of optically-thick reprocessing. These results lend support to a scenario where obscuration and optically thick reprocessing are due to a variety of different systems, ranging from the Broad Line Regions to a clumpy structure extended on larger scales up to hundreds of parsecs.

  3. The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties

    International Nuclear Information System (INIS)

    Urkac, Emel Sokullu; Oztarhan, Ahmet; Gurhan, Ismet Deliloglu; Iz, Sultan Gulce; Tihminlioglu, Funda; Oks, Efim; Nikolaev, Alexey; Ila, Daryush

    2009-01-01

    Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Ag and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.

  4. Low-redshift Lyman limit systems as diagnostics of cosmological inflows and outflows

    Science.gov (United States)

    Hafen, Zachary; Faucher-Giguère, Claude-André; Anglés-Alcázar, Daniel; Kereš, Dušan; Feldmann, Robert; Chan, T. K.; Quataert, Eliot; Murray, Norman; Hopkins, Philip F.

    2017-08-01

    We use cosmological hydrodynamic simulations with stellar feedback from the FIRE (Feedback In Realistic Environments) project to study the physical nature of Lyman limit systems (LLSs) at z ≤ 1. At these low redshifts, LLSs are closely associated with dense gas structures surrounding galaxies, such as galactic winds, dwarf satellites and cool inflows from the intergalactic medium. Our analysis is based on 14 zoom-in simulations covering the halo mass range Mh ≈ 109-1013 M⊙ at z = 0, which we convolve with the dark matter halo mass function to produce cosmological statistics. We find that the majority of cosmologically selected LLSs are associated with haloes in the mass range 1010 ≲ Mh ≲ 1012 M⊙. The incidence and H I column density distribution of simulated absorbers with columns in the range 10^{16.2} ≤ N_{H I} ≤ 2× 10^{20} cm-2 are consistent with observations. High-velocity outflows (with radial velocity exceeding the halo circular velocity by a factor of ≳ 2) tend to have higher metallicities ([X/H] ˜ -0.5) while very low metallicity ([X/H] standard deviation) [X/H] = -0.9 (0.4) and does not show significant evidence for bimodality, in contrast to recent observational studies, but consistent with LLSs arising from haloes with a broad range of masses and metallicities.

  5. Cosmic evolution of AGN with moderate-to-high radiative luminosity in the COSMOS field

    Science.gov (United States)

    Ceraj, L.; Smolčić, V.; Delvecchio, I.; Delhaize, J.; Novak, M.

    2018-05-01

    We study the moderate-to-high radiative luminosity active galactic nuclei (HLAGN) within the VLA-COSMOS 3 GHz Large Project. The survey covers 2.6 square degrees centered on the COSMOS field with a 1σ sensitivity of 2.3 μJy/beam across the field. This provides the simultaneously largest and deepest radio continuum survey available to date with exquisite multi-wavelength coverage. The survey yields 10,830 radio sources with signal-to-noise ratios >=5. A subsample of 1,604 HLAGN is analyzed here. These were selected via a combination of X-ray luminosity and mid-infrared colors. We derive luminosity functions for these AGN and constrain their cosmic evolution out to a redshift of z ~ 6, for the first time decomposing the star formation and AGN contributions to the radio continuum emission in the AGN. We study the evolution of number density and luminosity density finding a peak at z ~ 1.5 followed by a decrease out to a redshift z ~ 6.

  6. Spitzer mid-IR spectroscopy of powerful 2Jy and 3CRR radio galaxies. II. AGN power indicators and unification

    Energy Technology Data Exchange (ETDEWEB)

    Dicken, D. [CEA-Saclay, F-91191 Gif-sur-Yvette (France); Tadhunter, C. [University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Morganti, R. [ASTRON, P.O. Box 2, 7990 AA Dwingeloo (Netherlands); Axon, D.; Robinson, A.; Magagnoli, M. [Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY 14623 (United States); Kharb, P. [Indian Institute of Astrophysics, II Block, Koramangala, Bangalore 560034 (India); Ramos Almeida, C. [Instituto de Astrofisica de Canarias (IAC), C/V ia Lactea, s/n, E-38205 La Laguna, Tenerife (Spain); Mingo, B. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Hardcastle, M. [School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Nesvadba, N. P. H.; Singh, V. [Institut d' Astrophysique Spatiale, CNRS, Université Paris Sud, F-91405 Orsay (France); Kouwenhoven, M. B. N. [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Haidian Qu, Beijing 100871 (China); Rose, M.; Spoon, H. [224 Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Inskip, K. J. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Holt, J., E-mail: daniel.dicken@cea.fr [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2014-06-20

    It remains uncertain which continuum and emission line diagnostics best indicate the bolometric powers of active galactic nuclei (AGNs), especially given the attenuation caused by the circumnuclear material and the possible contamination by components related to star formation. Here we use mid-IR spectra along with multiwavelength data to investigate the merit of various diagnostics of AGN radiative power, including the mid-IR [Ne III] λ25.89 μm and [O IV] λ25.89 μm fine-structure lines, the optical [O III] λ5007 forbidden line, and mid-IR 24 μm, 5 GHz radio, and X-ray continuum emission, for complete samples of 46 2Jy radio galaxies (0.05 < z < 0.7) and 17 3CRR FRII radio galaxies (z < 0.1). We find that the mid-IR [O IV] line is the most reliable indicator of AGN power for powerful radio-loud AGNs. By assuming that the [O IV] is emitted isotropically, and comparing the [O III] and 24 μm luminosities of the broad- and narrow-line AGNs in our samples at fixed [O IV] luminosity, we show that the [O III] and 24 μm emission are both mildly attenuated in the narrow-line compared to the broad-line objects by a factor of ≈2. However, despite this attenuation, the [O III] and 24 μm luminosities are better AGN power indicators for our sample than either the 5 GHz radio or the X-ray continuum luminosities. We also detect the mid-IR 9.7 μm silicate feature in the spectra of many objects but not ubiquitously: at least 40% of the sample shows no clear evidence for these features. We conclude that, for the majority of powerful radio galaxies, the mid-IR lines are powered by AGN photoionization.

  7. Local starburst galaxies and their descendants. Statistics from the Sloan Digital Sky Survey

    Science.gov (United States)

    Bergvall, Nils; Marquart, Thomas; Way, Michael J.; Blomqvist, Anna; Holst, Emma; Ostlin, Goran; Zackrisson, Erik

    2016-01-01

    ) 10.6, above which the ages are doubled. The starburst and postburst luminosity functions (LFs) follow each other closely until M(sub r ) (is) approximately -21, when active galactic nuclei (AGNs) begin to dominate. The postburst LF continues to follow the AGN LF, while starbursts become less significant. This suggests that the number of luminous starbursts is underestimated by about one dex at high luminosities, because of having large amounts of dust and/or being outshone by an AGN. It also indicates that the starburst phase preceded the AGN phase. Finally, we look at the conditions for global gas outflow caused by stellar feedback and find that massive starburst galaxies are susceptible to such outflows.

  8. Short time-scale optical variability properties of the largest AGN sample observed with Kepler/K2

    Science.gov (United States)

    Aranzana, E.; Körding, E.; Uttley, P.; Scaringi, S.; Bloemen, S.

    2018-05-01

    We present the first short time-scale (˜hours to days) optical variability study of a large sample of active galactic nuclei (AGNs) observed with the Kepler/K2 mission. The sample contains 252 AGN observed over four campaigns with ˜30 min cadence selected from the Million Quasar Catalogue with R magnitude <19. We performed time series analysis to determine their variability properties by means of the power spectral densities (PSDs) and applied Monte Carlo techniques to find the best model parameters that fit the observed power spectra. A power-law model is sufficient to describe all the PSDs of our sample. A variety of power-law slopes were found indicating that there is not a universal slope for all AGNs. We find that the rest-frame amplitude variability in the frequency range of 6 × 10-6-10-4 Hz varies from 1to10 per cent with an average of 1.7 per cent. We explore correlations between the variability amplitude and key parameters of the AGN, finding a significant correlation of rest-frame short-term variability amplitude with redshift. We attribute this effect to the known `bluer when brighter' variability of quasars combined with the fixed bandpass of Kepler data. This study also enables us to distinguish between Seyferts and blazars and confirm AGN candidates. For our study, we have compared results obtained from light curves extracted using different aperture sizes and with and without detrending. We find that limited detrending of the optimal photometric precision light curve is the best approach, although some systematic effects still remain present.

  9. Baldwin Effect and Additional BLR Component in AGN with Superluminal Jets

    Energy Technology Data Exchange (ETDEWEB)

    Patiño-Álvarez, Víctor M.; Torrealba, Janet; Chavushyan, Vahram [Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla (Mexico); Cruz-González, Irene [Instituto de Astronomía, Universidad Nacional Autónoma de México, Mexico City (Mexico); Arshakian, Tigran [Physikalisches Institut, Universität zu Köln, Köln (Germany); Byurakan Astrophysical Observatory, Byurakan (Armenia); Isaac Newton Institute of Chile in Estern Europe and Eurasia, Armenian Branch, Santiago (Chile); León-Tavares, Jonathan [Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla (Mexico); Popović, Luka, E-mail: chavushyanv@gmail.com [Astronomical Observatory, Belgrade (Serbia)

    2016-06-02

    We study the Baldwin Effect (BE) in 96 core-jet blazars with optical and ultraviolet spectroscopic data from a radio-loud AGN sample obtained from the MOJAVE 2 cm survey. A statistical analysis is presented of the equivalent widths (W{sub λ}) of emission lines Hβ λ4861, Mg II λ2798, C IV λ1549, and continuum luminosities at 5100 Å, 3000 Å, and 1350 Å. The BE is found statistically significant (with confidence level c.l.≥ 95%) in Hβ and C IV emission lines, while for Mg II the trend is slightly less significant (c.l. = 94.5%). The slopes of the BE in the studied samples for Hβ and Mg II are found steeper and with statistically significant difference than those of a comparison radio-quiet sample. We present simulations of the expected BE slopes produced by the contribution to the total continuum of the non-thermal boosted emission from the relativistic jet, and by variability of the continuum components. We find that the slopes of the BE between radio-quiet and radio-loud AGN should not be different, under the assumption that the broad line is only being emitted by the canonical broad line region around the black hole. We discuss that the BE slope steepening in radio AGN is due to a jet associated broad-line region.

  10. Baldwin Effect and Additional BLR Component in AGN with Superluminal Jets

    Directory of Open Access Journals (Sweden)

    Víctor Manuel Patiño Álvarez

    2016-06-01

    Full Text Available We study the Baldwin Effect (BE in 96 core-jet blazars with optical and ultraviolet spectroscopic data from a radio-loud AGN sample obtained from the MOJAVE 2cm survey. A statistical analysis is presented of the equivalent widths W_lambda of emission lines H beta 4861, Mg II 2798, C IV 1549, and continuum luminosities at 5100, 3000, and 1350 angstroms. The BE is found statistically significant (with confidence level c.l. > 95% in H beta and C IV emission lines, while for Mg II the trend is slightly less significant (c.l. = 94.5%. The slopes of the BE in the studied samples for H beta and Mg II are found steeper and with statistically significant difference than those of a comparison radio-quiet sample. We present simulations of the expected BE slopes produced by the contribution to the total continuum of the non-thermal boosted emission from the relativistic jet, and by variability of the continuum components. We find that the slopes of the BE between radio-quiet and radio-loud AGN should not be different, under the assumption that the broad line is only being emitted by the canonical broad line region around the black hole. We discuss that the BE slope steepening in radio AGN is due to a jet associated broad-line region.

  11. THE ROLE OF STAR FORMATION AND AN AGN IN DUST HEATING OF z = 0.3–2.8 GALAXIES. I. EVOLUTION WITH REDSHIFT AND LUMINOSITY

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, Allison; Pope, Alexandra [Department of Astronomy, University of Massachusetts, Amherst, MA 01002 (United States); Sajina, Anna; Roebuck, Eric [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Yan, Lin [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Armus, Lee [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Díaz-Santos, Tanio [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Stierwalt, Sabrina, E-mail: kirkpatr@astro.umass.edu [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States)

    2015-11-20

    We characterize infrared spectral energy distributions of 343 (ultra)luminous infrared galaxies from z = 0.3–2.8. We diagnose the presence of an active galactic nucleus (AGN) by decomposing individual Spitzer mid-IR spectroscopy into emission from star formation and an AGN-powered continuum; we classify sources as star-forming galaxies (SFGs), AGNs, or composites. Composites comprise 30% of our sample and are prevalent at faint and bright S{sub 24}, making them an important source of IR AGN emission. We combine spectroscopy with multiwavelength photometry, including Herschel imaging, to create three libraries of publicly available templates (2–1000 μm). We fit the far-IR emission using a two-temperature modified blackbody to measure cold and warm dust temperatures (T{sub c} and T{sub w}). We find that T{sub c} does not depend on mid-IR classification, while T{sub w} shows a notable increase as the AGN grows more luminous. We measure a quadratic relationship between mid-IR AGN emission and total AGN contribution to L{sub IR}. AGNs, composites, and SFGs separate in S{sub 8}/S{sub 3.6} and S{sub 250}/S{sub 24}, providing a useful diagnostic for estimating relative amounts of these sources. We estimate that >40% of IR-selected samples host an AGN, even at faint selection thresholds (S{sub 24} > 100 μJy). Our decomposition technique and color diagnostics are relevant given upcoming observations with the James Webb Space Telescope.

  12. The shape of the cosmic X-ray background: nuclear starburst discs and the redshift evolution of AGN obscuration

    Science.gov (United States)

    Gohil, R.; Ballantyne, D. R.

    2018-04-01

    A significant number of active galactic nuclei (AGNs) are observed to be hidden behind dust and gas. The distribution of material around AGNs plays an important role in modelling the cosmic X-ray background (CXB), especially the fraction of type 2 AGNs (f2). One of the possible explanations for obscuration in Seyfert galaxies at intermediate redshifts is dusty starburst discs. We compute the two-dimensional (2D) hydrostatic structure of 768 nuclear starburst discs (NSDs) under various physical conditions and also the distribution of column density along the line of sight (NH) associated with these discs. Then the NH distribution is evolved with redshift by using the redshift-dependent distribution function of input parameters. Parameter f2 shows a strong positive evolution up to z = 2, but only a weak level of enhancement at higher z. The Compton-thin and Compton-thick AGN fractions associated with these starburst regions increase ∝ (1 + z)δ, where δ is estimated to be 1.12 and 1.45, respectively. The reflection parameter Rf associated with column density NH ≥ 1023.5 cm-2 extends from 0.13 at z = 0 to 0.58 at z = 4. A CXB model employing this evolving NH distribution indicates that more compact (Rout < 120 pc) NSDs provide a better fit to the CXB. In addition to `Seyfert-like' AGNs obscured by nuclear starbursts, we predict that 40-60 per cent of quasars must be Compton-thick to produce a peak of the CXB spectrum within the observational uncertainty. The predicted total number counts of AGNs in 8-24 keV bands are in fair agreement with observations from the Nuclear Spectroscopic Telescope Array (NuSTAR).

  13. Relative outflow enhancements during major geomagnetic storms – Cluster observations

    Directory of Open Access Journals (Sweden)

    A. Schillings

    2017-12-01

    Full Text Available The rate of ion outflow from the polar ionosphere is known to vary by orders of magnitude, depending on the geomagnetic activity. However, the upper limit of the outflow rate during the largest geomagnetic storms is not well constrained due to poor spatial coverage during storm events. In this paper, we analyse six major geomagnetic storms between 2001 and 2004 using Cluster data. The six major storms fulfil the criteria of Dst  < −100 nT or Kp  > 7+. Since the shape of the magnetospheric regions (plasma mantle, lobe and inner magnetosphere are distorted during large magnetic storms, we use both plasma beta (β and ion characteristics to define a spatial box where the upward O+ flux scaled to an ionospheric reference altitude for the extreme event is observed. The relative enhancement of the scaled outflow in the spatial boxes as compared to the data from the full year when the storm occurred is estimated. Only O+ data were used because H+ may have a solar wind origin. The storm time data for most cases showed up as a clearly distinguishable separate peak in the distribution toward the largest fluxes observed. The relative enhancement in the outflow region during storm time is 1 to 2 orders of magnitude higher compared to less disturbed time. The largest relative scaled outflow enhancement is 83 (7 November 2004 and the highest scaled O+ outflow observed is 2  ×  1014 m−2 s−1 (29 October 2003.

  14. Obscured AGN at z similar to 1 from the zCOSMOS-Bright Survey : I. Selection and optical properties of a [Ne v]-selected sample

    NARCIS (Netherlands)

    Mignoli, M.; Vignali, C.; Gilli, R.; Comastri, A.; Zamorani, G.; Bolzonella, M.; Bongiorno, A.; Lamareille, F.; Nair, P.; Pozzetti, L.; Lilly, S. J.; Carollo, C. M.; Contini, T.; Kneib, J. -P.; Le Fevre, O.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Bardelli, S.; Caputi, K.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovac, K.; Le Borgne, J. -F.; Le Brun, V.; Maier, C.; Pello, R.; Peng, Y.; Montero, E. Perez; Presotto, V.; Silverman, J. D.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Zucca, E.; Bordoloi, R.; Cappi, A.; Cimatti, A.; Koekemoer, A. M.; McCracken, H. J.; Moresco, M.; Welikala, N.

    Aims. The application of multi-wavelength selection techniques is essential for obtaining a complete and unbiased census of active galactic nuclei (AGN). We present here a method for selecting z similar to 1 obscured AGN from optical spectroscopic surveys. Methods. A sample of 94 narrow-line AGN

  15. Low-energy ion outflow modulated by the solar wind energy input

    Science.gov (United States)

    Li, Kun; Wei, Yong; Andre, Mats; Eriksson, Anders; Haaland, Stein; Kronberg, Elena; Nilsson, Hans; Maes, Lukas

    2017-04-01

    Due to the spacecraft charging issue, it has been difficult to measure low-energy ions of ionospheric origin in the magnetosphere. A recent study taking advantage of the spacecraft electric potential has found that the previously 'hidden' low-energy ions is dominant in the magnetosphere. This comprehensive dataset of low-energy ions allows us to study the relationship between the ionospheric outflow and energy input from the solar wind (ɛ). In this study, we discuss the ratios of the solar wind energy input to the energy of the ionospheric outflow. We show that the ɛ controls the ionospheric outflow when the ɛ is high, while the ionospheric outflow does not systematically change with the ɛ when the ɛ is low.

  16. SPIDERS: selection of spectroscopic targets using AGN candidates detected in all-sky X-ray surveys

    Science.gov (United States)

    Dwelly, T.; Salvato, M.; Merloni, A.; Brusa, M.; Buchner, J.; Anderson, S. F.; Boller, Th.; Brandt, W. N.; Budavári, T.; Clerc, N.; Coffey, D.; Del Moro, A.; Georgakakis, A.; Green, P. J.; Jin, C.; Menzel, M.-L.; Myers, A. D.; Nandra, K.; Nichol, R. C.; Ridl, J.; Schwope, A. D.; Simm, T.

    2017-07-01

    SPIDERS (SPectroscopic IDentification of eROSITA Sources) is a Sloan Digital Sky Survey IV (SDSS-IV) survey running in parallel to the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) cosmology project. SPIDERS will obtain optical spectroscopy for large numbers of X-ray-selected active galactic nuclei (AGN) and galaxy cluster members detected in wide-area eROSITA, XMM-Newton and ROSAT surveys. We describe the methods used to choose spectroscopic targets for two sub-programmes of SPIDERS X-ray selected AGN candidates detected in the ROSAT All Sky and the XMM-Newton Slew surveys. We have exploited a Bayesian cross-matching algorithm, guided by priors based on mid-IR colour-magnitude information from the Wide-field Infrared Survey Explorer survey, to select the most probable optical counterpart to each X-ray detection. We empirically demonstrate the high fidelity of our counterpart selection method using a reference sample of bright well-localized X-ray sources collated from XMM-Newton, Chandra and Swift-XRT serendipitous catalogues, and also by examining blank-sky locations. We describe the down-selection steps which resulted in the final set of SPIDERS-AGN targets put forward for spectroscopy within the eBOSS/TDSS/SPIDERS survey, and present catalogues of these targets. We also present catalogues of ˜12 000 ROSAT and ˜1500 XMM-Newton Slew survey sources that have existing optical spectroscopy from SDSS-DR12, including the results of our visual inspections. On completion of the SPIDERS programme, we expect to have collected homogeneous spectroscopic redshift information over a footprint of ˜7500 deg2 for >85 per cent of the ROSAT and XMM-Newton Slew survey sources having optical counterparts in the magnitude range 17 < r < 22.5, producing a large and highly complete sample of bright X-ray-selected AGN suitable for statistical studies of AGN evolution and clustering.

  17. THE CLUSTER AND FIELD GALAXY ACTIVE GALACTIC NUCLEUS FRACTION AT z = 1-1.5: EVIDENCE FOR A REVERSAL OF THE LOCAL ANTICORRELATION BETWEEN ENVIRONMENT AND AGN FRACTION

    International Nuclear Information System (INIS)

    Martini, Paul; Miller, E. D.; Bautz, M.; Brodwin, M.; Stanford, S. A.; Gonzalez, Anthony H.; Hickox, R. C.; Stern, D.; Eisenhardt, P. R.; Galametz, A.; Norman, D.; Dey, A.; Jannuzi, B. T.; Murray, S.; Jones, C.; Brown, M. J. I.

    2013-01-01

    The fraction of cluster galaxies that host luminous active galactic nuclei (AGNs) is an important probe of AGN fueling processes, the cold interstellar medium at the centers of galaxies, and how tightly black holes and galaxies co-evolve. We present a new measurement of the AGN fraction in a sample of 13 clusters of galaxies (M ≥ 10 14 M ☉ ) at 1 A = 3.0 +2.4 -1.4 % for AGNs with a rest-frame, hard X-ray luminosity greater than L X, H ≥ 10 44 erg s –1 . This fraction is measured relative to all cluster galaxies more luminous than M * 3.6 (z) + 1, where M * 3.6 (z) is the absolute magnitude of the break in the galaxy luminosity function at the cluster redshift in the IRAC 3.6 μm bandpass. The cluster AGN fraction is 30 times greater than the 3σ upper limit on the value for AGNs of similar luminosity at z ∼ 0.25, as well as more than an order of magnitude greater than the AGN fraction at z ∼ 0.75. AGNs with L X, H ≥ 10 43 erg s –1 exhibit similarly pronounced evolution with redshift. In contrast to the local universe, where the luminous AGN fraction is higher in the field than in clusters, the X-ray and MIR-selected AGN fractions in the field and clusters are consistent at 1 < z < 1.5. This is evidence that the cluster AGN population has evolved more rapidly than the field population from z ∼ 1.5 to the present. This environment-dependent AGN evolution mimics the more rapid evolution of star-forming galaxies in clusters relative to the field.

  18. Transport pathways for Asian pollution outflow over the Pacific: Interannual and seasonal variations

    Science.gov (United States)

    Liu, Hongyu; Jacob, Daniel J.; Bey, Isabelle; Yantosca, Robert M.; Duncan, Bryan N.; Sachse, Glen W.

    2003-10-01

    The meteorological pathways contributing to Asian pollution outflow over the Pacific are examined with a global three-dimensional model analysis of CO observations from the Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission (February-April 2001). The model is used also to place the TRACE-P observations in an interannual (1994-2001) and seasonal context. The major process driving Asian pollution outflow in spring is frontal lifting ahead of southeastward-moving cold fronts (the leading edge of cold surges) and transport in the boundary layer behind the cold fronts. Orographic lifting over central and eastern China combines with the cold fronts to promote the transport of Chinese pollution to the free troposphere. Outflow of seasonal biomass burning in Southeast Asia during spring takes place mostly by deep convection but also by northeastward transport and frontal lifting, mixing with the anthropogenic outflow. Boundary layer outflow over the western Pacific is largely devoid of biomass burning influence. European and African (biomass burning) plumes in Asian outflow during TRACE-P were weak (pollution signal. Spring 2001 (La Niña) was characterized by unusually frequent cold surge events in the Asian Pacific rim and strong convection in Southeast Asia, leading to unusually strong boundary layer outflow of anthropogenic emissions and convective outflow of biomass burning emissions in the upper troposphere. The Asian outflow flux of CO to the Pacific is found to vary seasonally by a factor of 3-4 (maximum in March and minimum in summer). The March maximum results from frequent cold surge events and seasonal biomass burning emissions.

  19. Discovery of a population of bulgeless galaxies with extremely red MID-IR colors: Obscured AGN activity in the low-mass regime?

    Energy Technology Data Exchange (ETDEWEB)

    Satyapal, S.; Secrest, N. J.; McAlpine, W.; Rosenberg, J. L. [School of Physics, Astronomy, and Computational Sciences, George Mason University, MS 3F3, 4400 University Drive, Fairfax, VA 22030 (United States); Ellison, S. L. [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 1A1 (Canada); Fischer, J., E-mail: satyapal@physics.gmu.edu [Naval Research Laboratory, Remote Sensing Division, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2014-04-01

    In contrast to massive, bulge hosting galaxies, very few supermassive black holes (SMBHs) are known in either low-mass or bulgeless galaxies. Such a population could provide clues to the origins of SMBHs and to secular pathways for their growth. Using the all-sky Wide-field Infrared Survey Explorer (WISE ) survey, and bulge-to-disk decompositions from the Sloan Digital Sky Survey (SDSS) Data Release 7, we report the discovery of a population of local (z < 0.3) bulgeless disk galaxies with extremely red mid-infrared colors which are highly suggestive of a dominant active galactic nucleus (AGN), despite having no optical AGN signatures in their SDSS spectra. Using various mid-infrared selection criteria from the literature, there are between 30 and over 300 bulgeless galaxies with possible AGNs. Other known scenarios that can heat the dust to high temperatures do not appear to explain the observed colors of this sample. If these galaxies are confirmed to host AGNs, this study will provide a breakthrough in characterizing the properties of SMBHs in the low bulge mass regime and in understanding their relation with their host galaxies. Mid-infrared selection identifies AGNs that dominate their host galaxy's emission and therefore reveal a different AGN population than that uncovered by optical studies. We find that the fraction of all galaxies identified as candidate AGNs by WISE is highest at lower stellar masses and drops dramatically in higher mass galaxies, in striking contrast to the findings from optical studies.

  20. Discovery of a population of bulgeless galaxies with extremely red MID-IR colors: Obscured AGN activity in the low-mass regime?

    International Nuclear Information System (INIS)

    Satyapal, S.; Secrest, N. J.; McAlpine, W.; Rosenberg, J. L.; Ellison, S. L.; Fischer, J.

    2014-01-01

    In contrast to massive, bulge hosting galaxies, very few supermassive black holes (SMBHs) are known in either low-mass or bulgeless galaxies. Such a population could provide clues to the origins of SMBHs and to secular pathways for their growth. Using the all-sky Wide-field Infrared Survey Explorer (WISE ) survey, and bulge-to-disk decompositions from the Sloan Digital Sky Survey (SDSS) Data Release 7, we report the discovery of a population of local (z < 0.3) bulgeless disk galaxies with extremely red mid-infrared colors which are highly suggestive of a dominant active galactic nucleus (AGN), despite having no optical AGN signatures in their SDSS spectra. Using various mid-infrared selection criteria from the literature, there are between 30 and over 300 bulgeless galaxies with possible AGNs. Other known scenarios that can heat the dust to high temperatures do not appear to explain the observed colors of this sample. If these galaxies are confirmed to host AGNs, this study will provide a breakthrough in characterizing the properties of SMBHs in the low bulge mass regime and in understanding their relation with their host galaxies. Mid-infrared selection identifies AGNs that dominate their host galaxy's emission and therefore reveal a different AGN population than that uncovered by optical studies. We find that the fraction of all galaxies identified as candidate AGNs by WISE is highest at lower stellar masses and drops dramatically in higher mass galaxies, in striking contrast to the findings from optical studies.

  1. Announcment: Conference on Obscured AGN Across Cosmic Time

    Science.gov (United States)

    2006-12-01

    Current deep surveys, notably in X-rays and the mid-IR, are making it possible to carry out a census of essentially all the luminous AGN in the Universe. By pene-trating the obscuration that, in Type 2 sources, hides the nuclear regions in the UV to the near-IR spectrum, these new surveys are finding the radio quiet coun-terparts of the powerful radio galaxies.

  2. THE CLUSTER AND FIELD GALAXY ACTIVE GALACTIC NUCLEUS FRACTION AT z = 1-1.5: EVIDENCE FOR A REVERSAL OF THE LOCAL ANTICORRELATION BETWEEN ENVIRONMENT AND AGN FRACTION

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Paul [Department of Astronomy and Center for Cosmology and Astroparticle Physics, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Miller, E. D.; Bautz, M. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Stanford, S. A. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Hickox, R. C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Stern, D.; Eisenhardt, P. R. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Galametz, A. [INAF-Osservatorio di Roma, Via Frascati 33, I-00040 Monteporzio (Italy); Norman, D.; Dey, A. [NOAO, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Jannuzi, B. T. [Department of Astronomy and Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Murray, S.; Jones, C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Brown, M. J. I., E-mail: martini@astronomy.ohio-state.edu [School of Physics, Monash University, Clayton, Victoria 3800 (Australia)

    2013-05-01

    The fraction of cluster galaxies that host luminous active galactic nuclei (AGNs) is an important probe of AGN fueling processes, the cold interstellar medium at the centers of galaxies, and how tightly black holes and galaxies co-evolve. We present a new measurement of the AGN fraction in a sample of 13 clusters of galaxies (M {>=} 10{sup 14} M{sub Sun }) at 1 < z < 1.5 selected from the Spitzer/IRAC Shallow Cluster Survey, as well as the field fraction in the immediate vicinity of these clusters, and combine these data with measurements from the literature to quantify the relative evolution of cluster and field AGN from the present to z {approx} 3. We estimate that the cluster AGN fraction at 1 < z < 1.5 is f{sub A} = 3.0{sup +2.4}{sub -1.4}% for AGNs with a rest-frame, hard X-ray luminosity greater than L{sub X,{sub H}} {>=} 10{sup 44} erg s{sup -1}. This fraction is measured relative to all cluster galaxies more luminous than M{sup *}{sub 3.6}(z) + 1, where M{sup *}{sub 3.6}(z) is the absolute magnitude of the break in the galaxy luminosity function at the cluster redshift in the IRAC 3.6 {mu}m bandpass. The cluster AGN fraction is 30 times greater than the 3{sigma} upper limit on the value for AGNs of similar luminosity at z {approx} 0.25, as well as more than an order of magnitude greater than the AGN fraction at z {approx} 0.75. AGNs with L{sub X,{sub H}} {>=} 10{sup 43} erg s{sup -1} exhibit similarly pronounced evolution with redshift. In contrast to the local universe, where the luminous AGN fraction is higher in the field than in clusters, the X-ray and MIR-selected AGN fractions in the field and clusters are consistent at 1 < z < 1.5. This is evidence that the cluster AGN population has evolved more rapidly than the field population from z {approx} 1.5 to the present. This environment-dependent AGN evolution mimics the more rapid evolution of star-forming galaxies in clusters relative to the field.

  3. A New Infrared Color Criterion for the Selection of 0 < z < 7 AGNs: Application to Deep Fields and Implications for JWST Surveys

    Science.gov (United States)

    Messias, H.; Afonso, J.; Salvato, M.; Mobasher, B.; Hopkins, A. M.

    2012-08-01

    It is widely accepted that observations at mid-infrared (mid-IR) wavelengths enable the selection of galaxies with nuclear activity, which may not be revealed even in the deepest X-ray surveys. Many mid-IR color-color criteria have been explored to accomplish this goal and tested thoroughly in the literature. Besides missing many low-luminosity active galactic nuclei (AGNs), one of the main conclusions is that, with increasing redshift, the contamination by non-active galaxies becomes significant (especially at z >~ 2.5). This is problematic for the study of the AGN phenomenon in the early universe, the main goal of many of the current and future deep extragalactic surveys. In this work new near- and mid-IR color diagnostics are explored, aiming for improved efficiency—better completeness and less contamination—in selecting AGNs out to very high redshifts. We restrict our study to the James Webb Space Telescope wavelength range (0.6-27 μm). The criteria are created based on the predictions by state-of-the-art galaxy and AGN templates covering a wide variety of galaxy properties, and tested against control samples with deep multi-wavelength coverage (ranging from the X-rays to radio frequencies). We show that the colors Ks - [4.5], [4.5] - [8.0], and [8.0] - [24] are ideal as AGN/non-AGN diagnostics at, respectively, z ~ 2.5-3. However, when the source redshift is unknown, these colors should be combined. We thus develop an improved IR criterion (using Ks and IRAC bands, KI) as a new alternative at z 50%-90% level of successful AGN selection). We also propose KIM (using Ks , IRAC, and MIPS 24 μm bands, KIM), which aims to select AGN hosts from local distances to as far back as the end of reionization (0 ~ 2.5. Overall, KIM shows a ~30%-40% completeness and a >70%-90% level of successful AGN selection. KI and KIM are built to be reliable against a ~10%-20% error in flux, are based on existing filters, and are suitable for immediate use.

  4. Plasma Outflows: Known Knowns, Known Unknowns, and The Unknown

    Science.gov (United States)

    Moore, T. E.

    2012-01-01

    A brief summary is given of i) what we know from observing ionospheric outflows and ii) how outflow parameterizations are being used in global simulations to evaluate their effects on magnetospheric dynamics. Then, a list of unanswered questions and issues to be resolved is given, followed by a description of the known future mission plans expressed in the Heliophysics Roadmap, such as Origin of Near-Earth Plasmas (ONEP), and Ion-Neutral Coupling in the Atmosphere (INCA). Finally, a set of requirements for definitive plasma outflow observations are identified, along with possible methods for fulfilling them in future missions. Since results of the current Heliophysics Decadal Survey are expected soon, it is hoped that future plans can be summarized and discussed without speculation at the GEM 2012 meeting.

  5. The outflow speed of the coma of Halley's comet

    International Nuclear Information System (INIS)

    Combi, M.R.

    1989-01-01

    Data concerning the outflow speed of the coma of Comet Halley are studied in relation to a generalization of the coupled pure-gas-dynamic/Monte Carlo model of Combi and Smyth (1988) to include the dusty-gas dynamics of the inner coma. Measurements made by the Giotto neutral-gas spectrometer, IR water observations from the Kuiper Airborne Observatory, and Doppler radio line profiles of HCN and OH are used to examine the radial dependence of the outflow speed, the asymmetry in the outflow speed, and the overall heliocentric distance dependence of the Doppler profiles, respectively. The results suggest that the model makes it possible to understand the gross long-term behavior and radial structure of the dynamics of the cometary coma. 23 refs

  6. Determinants of Foreign Direct Investments Outflow From a Developing Country: the Case of Turkey

    Directory of Open Access Journals (Sweden)

    Gokhan Onder

    2013-09-01

    Full Text Available Foreign direct investments (FDI outflows of Turkey have remarkably been raising over the last decade. This rapid increase brings about the need for questioning the determinants of FDI outflows. The aim of this paper is to estimate the factors affecting outflow FDI from Turkey from 2002 to 2011 by using Prais-Winsten regression analysis. According to estimation results, population, infrastructure, percapita gross domestic product of the host country, and home country exports to the host country are the factors having positive effects on outflow FDI. We found, on the other hand, that the annual inflation rate of the host country, its tax rate collected from commercial profit, and its distance from Turkey have a negative relation with investment outflows. Moreover our results show that while investment outflows to developed countries are in the form of horizontal investments, investment outflows to developing countries are in the form of vertical investments.

  7. CLASSICAL T TAURI-LIKE OUTFLOW ACTIVITY IN THE BROWN DWARF MASS REGIME

    International Nuclear Information System (INIS)

    Whelan, E. T.; Ray, T. P.; Podio, L.; Bacciotti, F.; Randich, S.

    2009-01-01

    Over the last number of years, spectroscopic studies have strongly supported the assertion that protostellar accretion and outflow activity persist to the lowest masses. Indeed, previous to this work, the existence of three brown dwarf (BD) outflows had been confirmed by us. In this paper, we present the results of our latest investigation of BD outflow activity and report on the discovery of two new outflows. Observations to date have concentrated on studying the forbidden emission line (FEL) regions of young BDs and in all cases data have been collected using the UV-Visual Echelle Spectrometer (UVES) on the ESO Very Large Telescope. Offsets in the FEL regions are recovered using spectro-astrometry. Here, ISO-Oph 32 is shown to drive a blueshifted outflow with a radial velocity of 10-20 km s -1 and spectro-astrometric analysis constrains the position angle of this outflow to 240 0 ± 7 0 . The BD candidate, ISO-ChaI 217 is found to have a bipolar outflow bright in several key forbidden lines (V RAD = -20 km s -1 , +40 km s -1 ) and with a P.A. of 193 0 -209 0 . A striking feature of the ISO-ChaI 217 outflow is the strong asymmetry between the red- and blueshifted lobes. This asymmetry is revealed in the relative brightness of the two lobes (redshifted lobe is brighter), the factor of 2 difference in radial velocity (the redshifted lobe is faster) and the difference in the electron density (again higher in the red lobe). Such asymmetries are common in jets from low-mass protostars and the observation of a marked asymmetry at such a low mass ( sun ) supports the idea that BD outflow activity is scaled down from low-mass protostellar activity. Also note that although asymmetries are unexceptional, it is uncommon for the redshifted lobe to be the brightest as some obscuration by the accretion disk is assumed. This phenomenon has only been observed in one other source, the classical T Tauri (CTTS) star RW Aur. The physical mechanism responsible for the brightening of

  8. Spectral energy distribution variations of nearby Seyfert galaxies during AGN watch monitoring programs

    Science.gov (United States)

    Kilerci Eser, Ece; Vestergaard, M.

    2018-02-01

    We present and analyse quasi-simultaneous multi-epoch spectral energy distributions (SEDs) of seven reverberation-mapped active galactic nuclei (AGNs) for which accurate black hole mass measurements and suitable archival data are available from the `AGN Watch' monitoring programs. We explore the potential of optical-UV and X-ray data, obtained within 2 d, to provide more accurate SED-based measurements of individual AGN and quantify the impact of source variability on key measurements typically used to characterize the black hole accretion process plus on bolometric correction factors at 5100 Å, 1350 Å and for the 2-10 keV X-ray band, respectively. The largest SED changes occur on long time-scales (≳1 year). For our small sample, the 1μm to 10 keV integrated accretion luminosity typically changes by 10 per cent on short time-scales (over 20 d), by ˜30 per cent over a year, but can change by 100 per cent or more for individual AGN. The extreme ultraviolet (EUV) gap is the most uncertain part of the intrinsic SED, introducing a ˜25 per cent uncertainty in the accretion-induced luminosity, relative to the model independent interpolation method that we adopt. That aside, our analysis shows that the uncertainty in the accretion-induced luminosity, the Eddington luminosity ratio and the bolometric correction factors can be reduced (by a factor of two or more) by use of the SEDs built from data obtained within 20 d. However, \\dot{M} and η are mostly limited by the unknown EUV emission and the unknown details of the central engine and our aspect angle.

  9. Cosmological Evolution of the Central Engine in High-Luminosity, High-Accretion Rate AGN

    Directory of Open Access Journals (Sweden)

    Matteo Guainazzi

    2014-12-01

    Full Text Available In this paper I discuss the status of observational studies aiming at probing the cosmological evolution of the central engine in high-luminosity, high-accretion rate Active Galactic Nuclei (AGN. X-ray spectroscopic surveys, supported by extensive multi-wavelength coverage, indicate a remarkable invariance of the accretion disk plus corona system, and of their coupling up to redshifts z≈6. Furthermore, hard X-ray (E >10 keV surveys show that nearby Seyfert Galaxies share the same central engine notwithstanding their optical classication. These results suggest that the high-luminosity, high accretion rate quasar phase of AGN evolution is homogeneous over cosmological times.

  10. Unveiling the molecular bipolar outflow of the peculiar red supergiant VY Canis Majoris

    Science.gov (United States)

    Shinnaga, Hiroko; Claussen, Mark J.; Lim, Jeremy; Dinh-van-Trung; Tsuboi, Masato

    2003-04-01

    We carried out polarimetric spectral-line imaging of the molecular outflow of the peculiar red supergiant VY Canis Majoris in SiO J=1-0 line in the ground vibrational state, which contains highly linearly-polarized velocity components, using the Very Large Array. We succeeded in unveiling the highly linearly polarized bipolar outflow for the first time at subarcsecond spatial resolution. The results clearly show that the direction of linear polarization of the brightest maser components is parallel to the outflow axis. The results strongly suggest that the linear polarization of the SiO maser is closely related to the outflow phenomena of the star. Furthermore, the results indicate that the linear polarization observed in the optical and infrared also occur due to the outflow phenomena.

  11. NuSTAR Reveals Relativistic Reflection But No Ultra-Fast Outflow in the Quasar Pg∼1211+143

    Science.gov (United States)

    Zoghbi, A.; Miller, J. M.; Walton, D. J.; Harrison, F. A.; Fabian, A. C.; Reynolds, C. S.; Boggs, S. E.; Christensen, F. E.; Craig, W.; Hailey, C. J.; Stern, D.; Zhang, W. W.

    2015-01-01

    We report on four epochs of observations of the quasar PG 1211+143 using NuSTAR. The net exposure time is 300 ks. Prior work on this source found suggestive evidence of an ultra-fast outflow (UFO) in the Fe K band with a velocity of approximately 0.1c. The putative flow would carry away a high-mass flux and kinetic power, with broad implications for feedback and black hole--galaxy co-evolution. NuSTAR detects PG 1211+143 out to 30 keV, meaning that the continuum is well-defined both through and above the Fe K band. A characteristic relativistic disk reflection spectrum is clearly revealed via a broad Fe K emission line and Compton back-scattering curvature. The data offer only weak constraints on the spin of the black hole. A careful search for UFOs shows no significant absorption feature above 90% confidence. The limits are particularly tight when relativistic reflection is included. We discuss the statistics and the implications of these results in terms of connections between accretion onto quasars, Seyferts, and stellar-mass black holes, and feedback into their host environments.

  12. NuSTAR REVEALS RELATIVISTIC REFLECTION BUT NO ULTRA-FAST OUTFLOW IN THE QUASAR PG 1211+143

    International Nuclear Information System (INIS)

    Zoghbi, A.; Miller, J. M.; Walton, D. J.; Stern, D.; Harrison, F. A.; Fabian, A. C.; Reynolds, C. S.; Boggs, S. E.; Craig, W.; Christensen, F. E.; Hailey, C. J.; Zhang, W. W.

    2015-01-01

    We report on four epochs of observations of the quasar PG 1211+143 using NuSTAR. The net exposure time is 300 ks. Prior work on this source found suggestive evidence of an ultra-fast outflow (UFO) in the Fe K band with a velocity of approximately 0.1c. The putative flow would carry away a high-mass flux and kinetic power, with broad implications for feedback and black hole--galaxy co-evolution. NuSTAR detects PG 1211+143 out to 30 keV, meaning that the continuum is well-defined both through and above the Fe K band. A characteristic relativistic disk reflection spectrum is clearly revealed via a broad Fe K emission line and Compton back-scattering curvature. The data offer only weak constraints on the spin of the black hole. A careful search for UFOs shows no significant absorption feature above 90% confidence. The limits are particularly tight when relativistic reflection is included. We discuss the statistics and the implications of these results in terms of connections between accretion onto quasars, Seyferts, and stellar-mass black holes, and feedback into their host environments

  13. NuSTAR REVEALS RELATIVISTIC REFLECTION BUT NO ULTRA-FAST OUTFLOW IN THE QUASAR PG 1211+143

    Energy Technology Data Exchange (ETDEWEB)

    Zoghbi, A.; Miller, J. M. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Walton, D. J.; Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Harrison, F. A. [Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Fabian, A. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 OHA (United Kingdom); Reynolds, C. S. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Boggs, S. E.; Craig, W. [Space Science Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, F. E. [DTU Space. National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Zhang, W. W., E-mail: abzoghbi@umich.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-02-01

    We report on four epochs of observations of the quasar PG 1211+143 using NuSTAR. The net exposure time is 300 ks. Prior work on this source found suggestive evidence of an ultra-fast outflow (UFO) in the Fe K band with a velocity of approximately 0.1c. The putative flow would carry away a high-mass flux and kinetic power, with broad implications for feedback and black hole--galaxy co-evolution. NuSTAR detects PG 1211+143 out to 30 keV, meaning that the continuum is well-defined both through and above the Fe K band. A characteristic relativistic disk reflection spectrum is clearly revealed via a broad Fe K emission line and Compton back-scattering curvature. The data offer only weak constraints on the spin of the black hole. A careful search for UFOs shows no significant absorption feature above 90% confidence. The limits are particularly tight when relativistic reflection is included. We discuss the statistics and the implications of these results in terms of connections between accretion onto quasars, Seyferts, and stellar-mass black holes, and feedback into their host environments.

  14. Superluminous Transients at AGN Centers from Interaction between Black Hole Disk Winds and Broad-line Region Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Takashi J.; Tanaka, Masaomi; Ohsuga, Ken [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Morokuma, Tomoki, E-mail: takashi.moriya@nao.ac.jp [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan)

    2017-07-10

    We propose that superluminous transients that appear at central regions of active galactic nuclei (AGNs) such as CSS100217:102913+404220 (CSS100217) and PS16dtm, which reach near- or super-Eddington luminosities of the central black holes, are powered by the interaction between accretion-disk winds and clouds in broad-line regions (BLRs) surrounding them. If the disk luminosity temporarily increases by, e.g., limit–cycle oscillations, leading to a powerful radiatively driven wind, strong shock waves propagate in the BLR. Because the dense clouds in the AGN BLRs typically have similar densities to those found in SNe IIn, strong radiative shocks emerge and efficiently convert the ejecta kinetic energy to radiation. As a result, transients similar to SNe IIn can be observed at AGN central regions. Since a typical black hole disk-wind velocity is ≃0.1 c , where c is the speed of light, the ejecta kinetic energy is expected to be ≃10{sup 52} erg when ≃1 M {sub ⊙} is ejected. This kinetic energy is transformed to radiation energy in a timescale for the wind to sweep up a similar mass to itself in the BLR, which is a few hundred days. Therefore, both luminosities (∼10{sup 44} erg s{sup −1}) and timescales (∼100 days) of the superluminous transients from AGN central regions match those expected in our interaction model. If CSS100217 and PS16dtm are related to the AGN activities triggered by limit–cycle oscillations, they become bright again in coming years or decades.

  15. Biochemical characterization of Paracoccidioides brasiliensis α-1,3-glucanase Agn1p, and its functionality by heterologous Expression in Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Héctor Villalobos-Duno

    Full Text Available α-1,3-Glucan is present as the outermost layer of the cell wall in the pathogenic yeastlike (Y form of Paracoccidioides brasiliensis. Based on experimental evidence, this polysaccharide has been proposed as a fungal virulence factor. To degrade α-1,3-glucan and allow remodeling of the cell wall, α-1,3-glucanase is required. Therefore, the study of this enzyme, its encoding gene, and regulatory mechanisms, might be of interest to understand the morphogenesis and virulence process in this fungus. A single gene, orthologous to other fungal α-1,3-glucanase genes, was identified in the Paracoccidioides genome, and labeled AGN1. Transcriptional levels of AGN1 and AGS1 (α-1,3-glucan synthase-encoding gene increased sharply when the pathogenic Y phase was cultured in the presence of 5% horse serum, a reported booster for cell wall α-1,3-glucan synthesis in this fungus. To study the biochemical properties of P. brasiliensis Agn1p, the enzyme was heterologously overexpressed, purified, and its activity profile determined by means of the degradation of carboxymethyl α-1,3-glucan (SCMG, chemically modified from P. brasiliensis α-1,3-glucan, used as a soluble substrate for the enzymatic reaction. Inhibition assays, thin layer chromatography and enzymatic reactions with alternative substrates (dextran, starch, chitin, laminarin and cellulose, showed that Agn1p displays an endolytic cut pattern and high specificity for SCMG. Complementation of a Schizosaccharomyces pombe agn1Δ strain with the P. brasiliensis AGN1 gene restored the wild type phenotype, indicating functionality of the gene, suggesting a possible role of Agn1p in the remodeling of P. brasiliensis Y phase cell wall. Based on amino acid sequence, P. brasiliensis Agn1p, groups within the family 71 of fungal glycoside hydrolases (GH-71, showing similar biochemical characteristics to other members of this family. Also based on amino acid sequence alignments, we propose a subdivision of fungal

  16. Multipoint analysis of the spatio-temporal coherence of dayside O+ outflows with Cluster

    Directory of Open Access Journals (Sweden)

    P. Puhl-Quinn

    2004-07-01

    Full Text Available The spatial distribution of ionospheric ion outflow from the dayside cusp/cleft has previously been studied in great detail with numerous satellite missions, but only statistically. Between July and November 2001, the orbit configuration of the Cluster multi-satellite system close to its perigee (4 Earth radii allows for delay times between spacecraft of about 4 and 35min in crossing the cusp/cleft. This enables for the first time to assess the spatial and temporal coherence of O+ ion outflow on time scales of the order of the satellite time lag. After presenting two contrasting events in detail, O+ velocities and outflow intensities from three spacecraft, available on 18 events, all with a similar orbit, have been cross-correlated to quantify the degree of coherence in the outflow. The main result from the analysis is that, although dayside outflows are a permanent feature, steady-state conditions are surprisingly never achieved. In particular, a significant variability is found for convection drift and local outflow intensities on small time scales. This variability of local intensities is not found to depend on the total strenghth of the outflow, which is much more stable and increases with the dynamic solar wind pressure.

  17. ON THE ORIGIN OF THE MOLECULAR OUTFLOWS IN IRAS 16293–2422

    Energy Technology Data Exchange (ETDEWEB)

    Girart, Josep M.; Palau, Aina; Torrelles, José M. [Institut de Ciències de l' Espai, (CSIC-IEEC), Campus UAB, Facultat de Ciències, C5p 2, E-08193 Bellaterra, Catalonia (Spain); Estalella, Robert [Departament d' Astronomia i Meteorologia, Institut de Ciències del Cosmos (UB-IEEC), Martí i Franquès, Universitat de Barcelona, E-08028 Barcelona, Catalonia (Spain); Rao, Ramprasad, E-mail: girart@ice.cat [Institute of Astronomy and Astrophysics, Academia Sinica, 645 N. Aohoku Pl., Hilo, HI 96720 (United States)

    2014-01-01

    We present CO 3-2, SiO 8-7, C{sup 34}S 7-6, and 878 μm dust continuum subarcsecond angular resolution observations with the Submillimeter Array (SMA) toward the IRAS 16293–2422 (I16293) multiple low-mass protostellar system. The C{sup 34}S emission traces the 878 μm dust continuum well, and in addition clearly shows a smooth velocity gradient along the major axis of component I16293A. CO shows emission at moderate high velocities arising from two bipolar outflows, which appear to be perpendicular with respect to each other. The high sensitivity and higher angular resolution of these observations allows us to pinpoint well the origin of these two outflows at the center of component I16293A. Interestingly, the most compact outflow appears to point toward I16293B. Our data show that the previously reported monopolar blueshifted CO outflow associated with component I16293B seems to be part of the compact outflow arising from component I16293A. In addition, the SiO emission is also tracing this compact outflow: on the one hand, the SiO emission appears to have a jet-like morphology along the southern redshifted lobe; on the other hand, the SiO emission associated with the blueshifted northern lobe traces a well-defined arc on the border of component I16293B facing I16293A. The blueshifted CO lobe of the compact outflow splits into two lobes around the position of this SiO arc. All these results lead us to propose that the compact outflow from component I16293A is impacting on the circumstellar gas around component I16293B, possibly being diverged as a consequence of the interaction.

  18. The imprints of AGN feedback within a supermassive black hole's sphere of influence

    Science.gov (United States)

    Russell, H. R.; Fabian, A. C.; McNamara, B. R.; Miller, J. M.; Nulsen, P. E. J.; Piotrowska, J. M.; Reynolds, C. S.

    2018-04-01

    We present a new 300 ksChandra observation of M87 that limits pileup to only a few per cent of photon events and maps the hot gas properties closer to the nucleus than has previously been possible. Within the supermassive black hole's gravitational sphere of influence, the hot gas is multiphase and spans temperatures from 0.2 to 1 keV. The radiative cooling time of the lowest temperature gas drops to only 0.1-0.5 Myr, which is comparable to its free fall time. Whilst the temperature structure is remarkably symmetric about the nucleus, the density gradient is steep in sectors to the N and S, with ρ∝r-1.5 ± 0.1, and significantly shallower along the jet axis to the E, where ρ∝r-0.93 ± 0.07. The density structure within the Bondi radius is therefore consistent with steady inflows perpendicular to the jet axis and an outflow directed E along the jet axis. By putting limits on the radial flow speed, we rule out Bondi accretion on the scale resolved at the Bondi radius. We show that deprojected spectra extracted within the Bondi radius can be equivalently fit with only a single cooling flow model, where gas cools from 1.5 keV down below 0.1 keV at a rate of 0.03 M_{⊙} yr^{-1}. For the alternative multi-temperature spectral fits, the emission measures for each temperature component are also consistent with a cooling flow model. The lowest temperature and most rapidly cooling gas in M87 is therefore located at the smallest radii at ˜ 100 pc and may form a mini cooling flow. If this cooling gas has some angular momentum, it will feed into the cold gas disk around the nucleus, which has a radius of ˜ 80 pc and therefore lies just inside the observed transition in the hot gas structure.

  19. Exploring the Dust Content, Metallicity, Star Formation and AGN Activity in Distant Dusty, Star-Forming Galaxies Using Cosmic Telescope

    Science.gov (United States)

    Walth, Gregory; Egami, Eiichi; Clément, Benjamin; Rujopakarn, Wiphu; Rawle, Tim; Richard, Johan; Dessauges, Miroslava; Perez-Gonzalez, Pablo; Ebeling, Harald; Vayner, Andrey; Wright, Shelley; Cosens, Maren; Herschel Lensing Survey

    2018-01-01

    We present our recent ALMA observations of Herschel-detected gravitationally lensed dusty, star-forming galaxies (DSFGs) and how they compliment our near-infrared spectroscopic observations of their rest-frame optical nebular emission. This provides the complete picture of star formation; from the molecular gas that fuels star formation, to the dust emission which are the sites of star formation, and the nebular emission which is the gas excited by the young stars. DSFGs undergo the largest starbursts in the Universe, contributing to the bulk of the cosmic star formation rate density between redshifts z = 1 - 4. Internal processes within high-redshift DSFGs remains largely unexplored; such as feedback from star formation, the role of turbulence, gas surface density of molecular gas, AGN activity, and the rates of metal production. Much that is known about DSFGs star formation properties comes from their CO and dust emission. In order to fully understand the star formation history of DSFGs, it is necessary to observe their optical nebular emission. Unfortunately, UV/optical emission is severely attenuated by dust, making it challenging to detect. With the Herschel Lensing Survey, a survey of the cores of almost 600 massive galaxy clusters, we are able to probe faint dust-attenuated nebular emission. We are currently conducting a new survey using Keck/OSIRIS to resolve a sample of gravitationally lensed DSFGs from the Herschel Lensing Survey (>100 mJy, with SFRs >100 Msun/yr) at redshifts z=1-4 with magnifications >10x all with previously detected nebular emission lines. We present the physical and resolved properties of gravitationally lensed DSFGs at unprecedented spatial scales; such as ionization, metallicity, AGN activity, and dust attenuation.

  20. RADIATIVE AND MOMENTUM-BASED MECHANICAL ACTIVE GALACTIC NUCLEUS FEEDBACK IN A THREE-DIMENSIONAL GALAXY EVOLUTION CODE

    International Nuclear Information System (INIS)

    Choi, Ena; Ostriker, Jeremiah P.; Naab, Thorsten; Johansson, Peter H.

    2012-01-01

    We study the growth of black holes (BHs) in galaxies using three-dimensional smoothed particle hydrodynamic simulations with new implementations of the momentum mechanical feedback, and restriction of accreted elements to those that are gravitationally bound to the BH. We also include the feedback from the X-ray radiation emitted by the BH, which heats the surrounding gas in the host galaxies, and adds radial momentum to the fluid. We perform simulations of isolated galaxies and merging galaxies and test various feedback models with the new treatment of the Bondi radius criterion. We find that overall the BH growth is similar to what has been obtained by earlier works using the Springel, Di Matteo, and Hernquist algorithms. However, the outflowing wind velocities and mechanical energy emitted by winds are considerably higher (v w ∼ 1000-3000 km s –1 ) compared to the standard thermal feedback model (v w ∼ 50-100 km s –1 ). While the thermal feedback model emits only 0.1% of BH released energy in winds, the momentum feedback model emits more than 30% of the total energy released by the BH in winds. In the momentum feedback model, the degree of fluctuation in both radiant and wind output is considerably larger than in standard treatments. We check that the new model of BH mass accretion agrees with analytic results for the standard Bondi problem.

  1. The digital aqueous humor outflow meter: an alternative tool for screening of the human eye outflow facility

    Directory of Open Access Journals (Sweden)

    Vassilios P Kozobolis

    2010-08-01

    Full Text Available Vassilios P Kozobolis, Eleftherios I Paschalis, Nikitas C Foudoulakis, Stavrenia C Koukoula, Georgios LabirisDepartment of Ophthalmology and Eye Institute of Thrace, Democritus University of Thrace, Alexandroupolis, GreecePurpose: To develop, characterize, and validate a prototype digital aqueous humor outflow tonographer (DAHOM.Material and methods: The DAHOM was developed, characterized, and validated in three phases. Phase 1 involved construction of the sensor. This was broadly based on the fundamental design of a typical Schiotz tonographer with a series of improvements, including corneal indentation, which was converted to an electrical signal via a linear variable differential transducer, an analog signal which was converted to digital via ADC circuitry, and digital data acquisition and processing which was made possible by a serial port interface. Phase 2 comprised development of software for automated assessment of the outflow facility. Automated outflow facility assessment incorporated a series of fundamental improvements in comparison with traditional techniques, including software-based filtering of ripple noise and extreme variations, rigidity impact analysis, and evaluation of the impact of patient age, central corneal thickness, and ocular axial length. Phase 3 comprised characterization and validation of DAHOM, for which we developed an experimental setup using porcine cadaver eyes. DAHOM’s repeatability was evaluated by means of Cronbach’s alpha and intraclass correlation coefficient. The level of agreement with a standard Schiotz tonographer was evaluated by means of paired t-tests and Bland-Altman analysis in human eyes.Results: The experimental setup provided the necessary data for the characterization of DAHOM. A fourth order polynomial equation provided excellent fit (R square >0.999. DAHOM demonstrated high repeatability (Cronbach’s alpha ≥0.997; intraclass correlation coefficient ≥0.987 and an adequate level of

  2. 18–22 cm VLBA Observational Evidence for Toroidal B-Field Components in Six AGN Jets

    Directory of Open Access Journals (Sweden)

    Juliana Cristina Motter

    2016-08-01

    Full Text Available The formation of relativistic jets in Active Galactic Nuclei (AGN is related to accretion onto their central supermassive black holes, and magnetic (B fields are believed to play a central role in launching, collimating, and accelerating the jet streams from very compact regions out to kiloparsec scales. We present results of Faraday rotation studies based on Very Long Baseline Array (VLBA data obtained at 18–22 cm for six well known AGN (OJ 287, 3C 279, PKS 1510-089, 3C 345, BL Lac, and 3C 454.3, which probe projected distances out to tens of parsecs from the observed cores. We have identified statistically significant, monotonic, transverse Faraday rotation gradients across the jets of all but one of these sources, indicating the presence of toroidal B fields, which may be one component of helical B fields associated with these AGN jets.

  3. THE LICK AGN MONITORING PROJECT: RECALIBRATING SINGLE-EPOCH VIRIAL BLACK HOLE MASS ESTIMATES

    Energy Technology Data Exchange (ETDEWEB)

    Park, Daeseong; Woo, Jong-Hak [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Treu, Tommaso; Bennert, Vardha N. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Barth, Aaron J.; Walsh, Jonelle [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697-4575 (United States); Bentz, Misty C. [Department of Physics and Astronomy, Georgia State University Atlanta, GA 30303 (United States); Canalizo, Gabriela [Department of Physics and Astronomy, University of California, Riverside, 900 University Ave., Riverside, CA 92521 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Gates, Elinor [Lick Observatory, P.O. Box 85, Mount Hamilton, CA 95140 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Malkan, Matthew A., E-mail: woo@astro.snu.ac.kr [Department of Physics and Astronomy, University of California, Los Angeles, CA 90024 (United States)

    2012-03-01

    We investigate the calibration and uncertainties of black hole (BH) mass estimates based on the single-epoch (SE) method, using homogeneous and high-quality multi-epoch spectra obtained by the Lick Active Galactic Nucleus (AGN) Monitoring Project for nine local Seyfert 1 galaxies with BH masses <10{sup 8} M{sub Sun }. By decomposing the spectra into their AGNs and stellar components, we study the variability of the SE H{beta} line width (full width at half-maximum intensity, FWHM{sub H{beta}} or dispersion, {sigma}{sub H{beta}}) and of the AGN continuum luminosity at 5100 A (L{sub 5100}). From the distribution of the 'virial products' ({proportional_to} FWHM{sub H{beta}}{sup 2} L{sup 0.5}{sub 5100} or {sigma}{sub H{beta}}{sup 2} L{sup 0.5}{sub 5100}) measured from SE spectra, we estimate the uncertainty due to the combined variability as {approx}0.05 dex (12%). This is subdominant with respect to the total uncertainty in SE mass estimates, which is dominated by uncertainties in the size-luminosity relation and virial coefficient, and is estimated to be {approx}0.46 dex (factor of {approx}3). By comparing the H{beta} line profile of the SE, mean, and root-mean-square (rms) spectra, we find that the H{beta} line is broader in the mean (and SE) spectra than in the rms spectra by {approx}0.1 dex (25%) for our sample with FWHM{sub H{beta}} <3000 km s{sup -1}. This result is at variance with larger mass BHs where the difference is typically found to be much less than 0.1 dex. To correct for this systematic difference of the H{beta} line profile, we introduce a line-width dependent virial factor, resulting in a recalibration of SE BH mass estimators for low-mass AGNs.

  4. The Origin and Structure of the Magnetic Fields and Currents of AGN Jets

    Directory of Open Access Journals (Sweden)

    Denise Gabuzda

    2017-02-01

    Full Text Available This paper reviews observational evidence obtained to date about the overall structure of the magnetic fields in the jets of Active Galactic Nuclei (AGN. Because they are sensitive to the line-of-sight magnetic-field component, Faraday rotation observations of AGN jets provide an effective tool for searching for toroidal jet magnetic fields, whose line-of-sight component changes systematically across the jet. Transverse Faraday rotation measure (RM gradients providing direct evidence for helical/toroidal magnetic fields have been reliably detected in nearly 40 AGN on parsec scales. Helical magnetic fields are believed to form due to the combined action of the rotation of the central black hole and accretion disk, and these observations demonstrate that at least some of this helical field survives to distances well beyond the Very Long Baseline Interferometry (VLBI core. Observations of reversals in the direction of the transverse RM gradients in a number of AGN provide evidence for a“return”magnetic field forming a nested helical-field structure with oppositely directed azimuthal components in the inner and outer regions of the helical magnetic field. The collected data now provide firm evidence for a predominance of inward jet currents on parsec scales and outward currents on scales greater than a few tens of parsecs. This suggests a global pattern of magnetic fields and currents with an inward current near the jet axis and an outward current farther from the jet axis, with these currents closing in the accretion disk and far out in the radio lobes, forming a self-consistent set of fields and currents together with the implied nested helical-field structure.

  5. Discovery of a Kiloparsec Extended Hard X-Ray Continuum and Fe-Kα from the Compton Thick AGN ESO 428-G014

    Science.gov (United States)

    Fabbiano, G.; Elvis, M.; Paggi, A.; Karovska, M.; Maksym, W. P.; Raymond, J.; Risaliti, G.; Wang, Junfeng

    2017-06-01

    We report the discovery of kiloparsec-scale diffuse emission in both the hard continuum (3-6 keV) and in the Fe-Kα line in the Compton thick (CT) Seyfert galaxy ESO 428-G014. This extended hard component contains at least ˜24% of the observed 3-8 keV emission, and follows the direction of the extended optical line emission (ionization cone) and radio jet. The extended hard component has ˜0.5% of the intrinsic 2-10 keV luminosity within the bi-cones. A uniform scattering medium of density 1 {{cm}}-3 would produce this luminosity in a 1 kpc path length in the bi-cones. Alternatively, higher column density molecular clouds in the disk of ESO 428-G014 may be responsible for these components. The continuum may also be enhanced by the acceleration of charged particles in the radio jet. The steeper spectrum (Γ ˜ 1.7 ± 0.4) of the hard continuum outside of the central 1.″5 radius nuclear region suggests a contribution of scattered/fluorescent intrinsic Seyfert emission. Ultrafast nuclear outflows cannot explain the extended Fe-Kα emission. This discovery suggests that we may need to revise the picture at the base of our interpretation of CT AGN spectra.

  6. The impact of remittances outflows on the economy of Poland

    OpenAIRE

    LASTOVETSKA ROKSOLANA ORESTIVNA

    2015-01-01

    The impact of remittances outflows on the economy of Poland is analyzed in the article. Based on historical data the vector autoregression model (VAR) was built to examine the effects of the sharp rise in the volume of remittances outflows. The model results are presented for the next macroeconomic indicators: GDP, inflation, interest rate and exchange rate.

  7. AN EXPLORATION OF THE STATISTICAL SIGNATURES OF STELLAR FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Boyden, Ryan D.; Offner, Stella S. R. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Koch, Eric W.; Rosolowsky, Erik W., E-mail: soffner@astro.umass.edu [Department of Physics, University of Alberta, Edmonton, T6G 2E1 (Canada)

    2016-12-20

    All molecular clouds are observed to be turbulent, but the origin, means of sustenance, and evolution of the turbulence remain debated. One possibility is that stellar feedback injects enough energy into the cloud to drive observed motions on parsec scales. Recent numerical studies of molecular clouds have found that feedback from stars, such as protostellar outflows and winds, injects energy and impacts turbulence. We expand upon these studies by analyzing magnetohydrodynamic simulations of molecular clouds, including stellar winds, with a range of stellar mass-loss rates and magnetic field strengths. We generate synthetic {sup 12}CO(1–0) maps assuming that the simulations are at the distance of the nearby Perseus molecular cloud. By comparing the outputs from different initial conditions and evolutionary times, we identify differences in the synthetic observations and characterize these using common astrostatistics. We quantify the different statistical responses using a variety of metrics proposed in the literature. We find that multiple astrostatistics, including the principal component analysis, the spectral correlation function, and the velocity coordinate spectrum (VCS), are sensitive to changes in stellar mass-loss rates and/or time evolution. A few statistics, including the Cramer statistic and VCS, are sensitive to the magnetic field strength. These findings demonstrate that stellar feedback influences molecular cloud turbulence and can be identified and quantified observationally using such statistics.

  8. The unification of powerful radio-loud AGN: the multi-wavelength balance

    NARCIS (Netherlands)

    Podigachoski, Pece; Barthel, Peter; Haas, Martin; Leipski, Christian; Wilkes, Belinda; Rocca-Volmerange, Brigitte; Drouart, Guillaume

    2016-01-01

    Powerful radio-loud AGN, by virtue of their optically-thin low-frequency radio emission, represent unique targets in orientation-based unification studies, and in searches for orientation indicators and orientation invariants. Central in these efforts is the landmark Third Cambridge Catalog of Radio

  9. Constraints on Particles and Fields from Full Stokes Observations of AGN

    Directory of Open Access Journals (Sweden)

    Daniel C. Homan

    2018-01-01

    Full Text Available Combined polarization imaging of radio jets from Active Galactic Nuclei (AGN in circular and linear polarization, also known as full Stokes imaging, has the potential to constrain both the magnetic field structure and particle properties of jets. Although only a small fraction of the emission when detected, typically less than a few tenths of a percent but up to as much as a couple of percent in the strongest resolved sources, circular polarization directly probes the magnetic field and particles within the jet itself and is not expected to be modified by external screens. A key to using full Stokes observations to constrain jet properties is obtaining a better understanding of the emission of circular polarization, including its variability and spectrum. We discuss what we have learned so far from parsec scale monitoring observations in the MOJAVE program and from multi-frequency observations of selected AGN.

  10. Generation of shockwave and vortex structures at the outflow of a boiling water jet

    Science.gov (United States)

    Alekseev, M. V.; Lezhnin, S. I.; Pribaturin, N. A.; Sorokin, A. L.

    2014-12-01

    Results of numerical simulation for shock waves and generation of vortex structures during unsteady outflow of boiling liquid jet are presented. The features of evolution of shock waves and vortex structures formation during unsteady outflow of boiling water are compared with corresponding structures during unsteady gas outflow.

  11. [Surgical treatment of congenital obstruction of the left ventricular outflow tract].

    Science.gov (United States)

    Biocina, B; Sutlić, Z; Husedinović, I; Letica, D; Sokolić, J

    1993-01-01

    This report presents the classification and all types of left ventricular outflow tract obstructions. The possibilities of operative therapies are surveyed as well. Results of surgical treatment in 34 patients with obstruction to left ventricular outflow are shown. The majority of patients underwent operation under extracorporeal circulation (84.4%), while the rest were operated by means of the inflow occlusion technique (14.7%). The obtained results were compared with those from the literature. The importance of echocardiographic evaluation of location of the left ventricular outflow tract obstruction and the appropriate choice of a surgical technique according to the patient's age are emphasized.

  12. Silo outflow of soft frictionless spheres

    Science.gov (United States)

    Ashour, Ahmed; Trittel, Torsten; Börzsönyi, Tamás; Stannarius, Ralf

    2017-12-01

    Outflow of granular materials from silos is a remarkably complex physical phenomenon that has been extensively studied with simple objects like monodisperse hard disks in two dimensions (2D) and hard spheres in 2D and 3D. For those materials, empirical equations were found that describe the discharge characteristics. Softness adds qualitatively new features to the dynamics and to the character of the flow. We report a study of the outflow of soft, practically frictionless hydrogel spheres from a quasi-2D bin. Prominent features are intermittent clogs, peculiar flow fields in the container, and a pronounced dependence of the flow rate and clogging statistics on the container fill height. The latter is a consequence of the ineffectiveness of Janssen's law: the pressure at the bottom of a bin containing hydrogel spheres grows linearly with the fill height.

  13. SPITZER MAPPING OF MOLECULAR HYDROGEN PURE ROTATIONAL LINES IN NGC 1333: A DETAILED STUDY OF FEEDBACK IN STAR FORMATION

    International Nuclear Information System (INIS)

    Maret, Sebastien; Bergin, Edwin A.; Neufeld, David A.; Sonnentrucker, Paule; Yuan Yuan; Green, Joel D.; Watson, Dan M.; Harwit, Martin O.; Kristensen, Lars E.; Melnick, Gary J.; Tolls, Volker; Werner, Michael W.; Willacy, Karen

    2009-01-01

    We present mid-infrared spectral maps of the NGC 1333 star-forming region, obtained with the infrared spectrometer on board the Spitzer Space Telescope. Eight pure H 2 rotational lines, from S(0) to S(7), are detected and mapped. The H 2 emission appears to be associated with the warm gas shocked by the multiple outflows present in the region. A comparison between the observed intensities and the predictions of detailed shock models indicates that the emission arises in both slow (12-24 km s -1 ) and fast (36-53 km s -1 ) C-type shocks with an initial ortho-to-para ratio (opr) ∼ 2 opr exhibits a large degree of spatial variations. In the postshocked gas, it is usually about 2, i.e., close to the equilibrium value (∼3). However, around at least two outflows, we observe a region with a much lower (∼0.5) opr. This region probably corresponds to gas which has been heated up recently by the passage of a shock front, but whose ortho-to-para has not reached equilibrium yet. This, together with the low initial opr needed to reproduce the observed emission, provide strong evidence that H 2 is mostly in para form in cold molecular clouds. The H 2 lines are found to contribute to 25%-50% of the total outflow luminosity, and thus can be used to ascertain the importance of star formation feedback on the natal cloud. From these lines, we determine the outflow mass loss rate and, indirectly, the stellar infall rate, the outflow momentum and the kinetic energy injected into the cloud over the embedded phase. The latter is found to exceed the binding energy of individual cores, suggesting that outflows could be the main mechanism for core disruption.

  14. CORONAL MASS EJECTION INDUCED OUTFLOWS OBSERVED WITH HINODE/EIS

    International Nuclear Information System (INIS)

    Jin, M.; Ding, M. D.; Chen, P. F.; Fang, C.; Imada, S.

    2009-01-01

    We investigate the outflows associated with two halo coronal mass ejections (CMEs) that occurred on 2006 December 13 and 14 in NOAA 10930, using the Hinode/EIS observations. Each CME was accompanied by an EIT wave and coronal dimmings. Dopplergrams in the dimming regions are obtained from the spectra of seven EIS lines. The results show that strong outflows are visible in the dimming regions during the CME eruption at different heights from the lower transition region to the corona. It is found that the velocity is positively correlated with the photospheric magnetic field, as well as the magnitude of the dimming. We estimate the mass loss based on height-dependent EUV dimmings and find it to be smaller than the CME mass derived from white-light observations. The mass difference is attributed partly to the uncertain atmospheric model, and partly to the transition region outflows, which refill the coronal dimmings.

  15. Effects of Energetic Ion Outflow on Magnetospheric Dynamics

    Science.gov (United States)

    Kistler, L. M.; Mouikis, C.; Lund, E. J.; Menz, A.; Nowrouzi, N.

    2016-12-01

    There are two dominant regions of energetic ion outflow: the nightside auroral region and the dayside cusp. Processes in these regions can accelerate ions up to keV energies. Outflow from the nightside has direct access to the plasma sheet, while outflow from the cusp is convected over the polar cap and into the lobes. The cusp population can enter the plasma sheet from the lobe, with higher energy ions entering further down the tail than lower energy ions. During storm times, the O+ enhanced plasma sheet population is convected into the inner magnetosphere. The plasma that does not get trapped in the inner magnetosphere convects to the magnetopause where reconnection is taking place. An enhanced O+ population can change the plasma mass density, which may have the effect of decreasing the reconnection rate. In addition O+ has a larger gyroradius than H+ at the same velocity or energy. Because of this, there are larger regions where the O+ is demagnetized, which can lead to larger acceleration because the O+ can move farther in the direction of the electric field. In this talk we will review results from Cluster, Van Allen Probes, and MMS, on how outflow from the two locations affects magnetospheric dynamics. We will discuss whether enhanced O+ from either population has an effect on the reconnection rate in the tail or at the magnetopause. We will discuss how the two populations impact the inner magnetosphere during storm times. And finally, we will discuss whether either population plays a role in triggering substorms, particularly during sawtooth events.

  16. X-ray/UV Observing Campaign on the Mrk 279 AGN Outflow: A Global Fitting Analysis of the UV Absorption

    Energy Technology Data Exchange (ETDEWEB)

    Gabel, J.

    2005-03-17

    We present an analysis of the intrinsic UV absorption in the Seyfert 1 galaxy Mrk 279 based on simultaneous long observations with the ''Hubble Space Telescope'' (41 ks) and the ''Far Ultraviolet Spectroscopic Explorer'' (91 ks). To extract the line-of-sight covering factors and ionic column densities, we separately fit two groups of absorption lines: the Lyman series and the CNO lithium-like doublets. For the CNO doublets we assume that all three ions share the same covering factors. The fitting method applied here overcomes some limitations of the traditional method using individual doublet pairs; it allows for the treatment of more complex, physically realistic scenarios for the absorption-emission geometry and eliminates systematic errors that we show are introduced by spectral noise. We derive velocity-dependent solutions based on two models of geometrical covering--a single covering factor for all background emission sources, and separate covering factors for the continuum and emission lines. Although both models give good statistical fits to the observed absorption, we favor the model with two covering factors because: (a) the best-fit covering factors for both emission sources are similar for the independent Lyman series and CNO doublet fits; (b) the fits are consistent with full coverage of the continuum source and partial coverage of the emission lines by the absorbers, as expected from the relative sizes of the nuclear emission components; and (c) it provides a natural explanation for variability in the Lya absorption detected in an earlier epoch. We also explore physical and geometrical constraints on the outflow from these results.

  17. A SYSTEMATIC SEARCH FOR MOLECULAR OUTFLOWS TOWARD CANDIDATE LOW-LUMINOSITY PROTOSTARS AND VERY LOW LUMINOSITY OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Kamber R.; Shirley, Yancy L. [Steward Observatory, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Dunham, Michael M. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States)

    2012-10-01

    We present a systematic single-dish search for molecular outflows toward a sample of nine candidate low-luminosity protostars and 30 candidate very low luminosity objects (VeLLOs; L{sub int} {<=} 0.1 L{sub Sun }). The sources are identified using data from the Spitzer Space Telescope cataloged by Dunham et al. toward nearby (D < 400 pc) star-forming regions. Each object was observed in {sup 12}CO and {sup 13}CO J = 2 {yields} 1 simultaneously using the sideband separating ALMA Band-6 prototype receiver on the Heinrich Hertz Telescope at 30'' resolution. Using five-point grid maps, we identify five new potential outflow candidates and make on-the-fly maps of the regions surrounding sources in the dense cores B59, L1148, L1228, and L1165. Of these new outflow candidates, only the map of B59 shows a candidate blue outflow lobe associated with a source in our survey. We also present larger and more sensitive maps of the previously detected L673-7 and the L1251-A-IRS4 outflows and analyze their properties in comparison to other outflows from VeLLOs. The accretion luminosities derived from the outflow properties of the VeLLOs with detected CO outflows are higher than the observed internal luminosity of the protostars, indicating that these sources likely had higher accretion rates in the past. The known L1251-A-IRS3 outflow is detected but not re-mapped. We do not detect clear, unconfused signatures of red and blue molecular wings toward the other 31 sources in the survey indicating that large-scale, distinct outflows are rare toward this sample of candidate protostars. Several potential outflows are confused with the kinematic structure in the surrounding core and cloud. Interferometric imaging is needed to disentangle large-scale molecular cloud kinematics from these potentially weak protostellar outflows.

  18. A SYSTEMATIC SEARCH FOR MOLECULAR OUTFLOWS TOWARD CANDIDATE LOW-LUMINOSITY PROTOSTARS AND VERY LOW LUMINOSITY OBJECTS

    International Nuclear Information System (INIS)

    Schwarz, Kamber R.; Shirley, Yancy L.; Dunham, Michael M.

    2012-01-01

    We present a systematic single-dish search for molecular outflows toward a sample of nine candidate low-luminosity protostars and 30 candidate very low luminosity objects (VeLLOs; L int ≤ 0.1 L ☉ ). The sources are identified using data from the Spitzer Space Telescope cataloged by Dunham et al. toward nearby (D 12 CO and 13 CO J = 2 → 1 simultaneously using the sideband separating ALMA Band-6 prototype receiver on the Heinrich Hertz Telescope at 30'' resolution. Using five-point grid maps, we identify five new potential outflow candidates and make on-the-fly maps of the regions surrounding sources in the dense cores B59, L1148, L1228, and L1165. Of these new outflow candidates, only the map of B59 shows a candidate blue outflow lobe associated with a source in our survey. We also present larger and more sensitive maps of the previously detected L673-7 and the L1251-A-IRS4 outflows and analyze their properties in comparison to other outflows from VeLLOs. The accretion luminosities derived from the outflow properties of the VeLLOs with detected CO outflows are higher than the observed internal luminosity of the protostars, indicating that these sources likely had higher accretion rates in the past. The known L1251-A-IRS3 outflow is detected but not re-mapped. We do not detect clear, unconfused signatures of red and blue molecular wings toward the other 31 sources in the survey indicating that large-scale, distinct outflows are rare toward this sample of candidate protostars. Several potential outflows are confused with the kinematic structure in the surrounding core and cloud. Interferometric imaging is needed to disentangle large-scale molecular cloud kinematics from these potentially weak protostellar outflows.

  19. The HST-pNFL program: Mapping the Fluorescent Emission of Galactic Outflows

    Science.gov (United States)

    Heckman, Timothy

    2017-08-01

    Galactic outflows associated with star formation are believed to play a crucial role in the evolution of galaxies and the IGM. Most of our knowledge about outflows has come from down-the-barrel UV absorption spectroscopy of star-forming galaxies. However, absorption-line data alone provide only indirect information about the radial structure of the gas flows, which introduces large systematic uncertainties in some of the most important quantities, such as the outflow rate, the mass loading factor, and the momentum, metal, and energy fluxes. Recent spectroscopic observations of star-forming galaxies with large (projected physical) apertures have revealed non-resonant (fluorescent) emission in the UV, e.g., FeII* and SiII*, that can be naturally produced by spatially extended emission from the same outflowing material traced in absorption. Encouraged by the most recent observations of FeII* emission by the SDSS-IV/eBOSS survey (Zhu et al. 2015), we propose a pilot program to use narrow-band filter UVIS F280N images to map the extended FeII* 2626 and 2613 fluorescent emission in a carefully-chosen sample of 4 starburst galaxies at z=0.065, and COS G130M to obtain down-the- barrel spectra for SiII absorption and SiII* emission. This HST pilot program can provide unique information about the spatial structure of galactic outflows and can potentially lead to a revolution in our understanding of outflow physics and its impact on galaxies and the IGM.

  20. Testing the AGN Unification Model in the Infrared

    International Nuclear Information System (INIS)

    Ramos Almeida, C; Levenson, N A; Radomski, J T; Alonso-Herrero, A; Asensio Ramos, A; Rodríguez Espinosa, J M; Pérez García, A M; Packham, C; Mason, R; Díaz-Santos, T

    2012-01-01

    We present near-to-mid-infrared spectral energy distributions (SEDs) for 21 Seyfert galaxies, using subarcsecond resolution imaging data. Our aim is to compare the properties Seyfert 1 (Sy1) and Seyfert 2 (Sy2) tori using clumpy torus models and a Bayesian approach to fit the infrared (IR) nuclear SEDs. These dusty tori have physical sizes smaller than 6 pc radius, as derived from our fits. Active galactic nuclei (AGN) unification schemes account for a variety of observational differences in terms of viewing geometry. However, we find evidence that strong unification may not hold, and that the immediate dusty surroundings of Sy1 and Sy2 nuclei are intrinsically different. The Type 2 tori studied here are broader, have more clumps, and these clumps have lower optical depths than those of Type 1 tori. The larger the covering factor of the torus, the smaller the probability of having direct view of the AGN, and vice-versa. In our sample, Sy2 tori have larger covering factors (C T = 0.95±0.02) and smaller escape probabilities than those of Sy1 (C T = 0.5±0.1). Thus, on the basis of the results presented here, the classification of a Seyfert galaxy may depend more on the intrinsic properties of the torus rather than on its mere inclination, in contradiction with the simplest unification model.