WorldWideScience

Sample records for aging tumor suppression

  1. Aging, tumor suppression and cancer: High-wire act!

    Energy Technology Data Exchange (ETDEWEB)

    Campisi, Judith

    2004-08-15

    Evolutionary theory holds that aging is a consequence of the declining force of natural selection with age. We discuss here the evidence that among the causes of aging in complex multicellular organisms, such as mammals, is the antagonistically pleiotropic effects of the cellular responses that protect the organism from cancer. Cancer is relatively rare in young mammals, owing in large measure to the activity of tumor suppressor mechanisms. These mechanisms either protect the genome from damage and/or mutations, or they elicit cellular responses--apoptosis or senescence--that eliminate or prevent the proliferation of somatic cells at risk for neoplastic transformation.We focus here on the senescence response, reviewing its causes, regulation and effects. In addition, we describe recent data that support the idea that both senescence and apoptosis may indeed be the double-edged swords predicted by the evolutionary hypothesis of antagonistic pleiotropy--protecting organisms from cancer early in life, but promoting aging phenotypes, including late life cancer, in older organisms.

  2. A comparison of oncogene-induced senescence and replicative senescence: implications for tumor suppression and aging.

    Science.gov (United States)

    Nelson, David M; McBryan, Tony; Jeyapalan, Jessie C; Sedivy, John M; Adams, Peter D

    2014-06-01

    Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway, the senescence-associated secretory phenotype. However, cellular senescence is initiated by diverse molecular triggers, such as activated oncogenes and shortened telomeres, and is associated with varied and complex physiological endpoints, such as tumor suppression and tissue aging. The extent to which distinct triggers activate divergent modes of senescence that might be associated with different physiological endpoints is largely unknown. To begin to address this, we performed gene expression profiling to compare the senescence programs associated with two different modes of senescence, oncogene-induced senescence (OIS) and replicative senescence (RS [in part caused by shortened telomeres]). While both OIS and RS are associated with many common changes in gene expression compared to control proliferating cells, they also exhibit substantial differences. These results are discussed in light of potential physiological consequences, tumor suppression and aging.

  3. Sox4 Links Tumor Suppression to Accelerated Aging in Mice by Modulating Stem Cell Activation

    Directory of Open Access Journals (Sweden)

    Miguel Foronda

    2014-07-01

    Full Text Available Sox4 expression is restricted in mammals to embryonic structures and some adult tissues, such as lymphoid organs, pancreas, intestine, and skin. During embryogenesis, Sox4 regulates mesenchymal and neural progenitor survival, as well as lymphocyte and myeloid differentiation, and contributes to pancreas, bone, and heart development. Aberrant Sox4 expression is linked to malignant transformation and metastasis in several types of cancer. To understand the role of Sox4 in the adult organism, we first generated mice with reduced whole-body Sox4 expression. These mice display accelerated aging and reduced cancer incidence. To specifically address a role for Sox4 in adult stem cells, we conditionally deleted Sox4 (Sox4cKO in stratified epithelia. Sox4cKO mice show increased skin stem cell quiescence and resistance to chemical carcinogenesis concomitantly with downregulation of cell cycle, DNA repair, and activated hair follicle stem cell pathways. Altogether, these findings highlight the importance of Sox4 in regulating adult tissue homeostasis and cancer.

  4. Aging and repeated thought suppression success.

    Directory of Open Access Journals (Sweden)

    Ann E Lambert

    Full Text Available Intrusive thoughts and attempts to suppress them are common, but while suppression may be effective in the short-term, it can increase thought recurrence in the long-term. Because intentional suppression involves controlled processing, and many aspects of controlled processing decline with age, age differences in thought suppression outcomes may emerge, especially over repeated thought suppression attempts as cognitive resources are expended. Using multilevel modeling, we examined age differences in reactions to thought suppression attempts across four thought suppression sequences in 40 older and 42 younger adults. As expected, age differences were more prevalent during suppression than during free monitoring periods, with younger adults indicating longer, more frequent thought recurrences and greater suppression difficulty. Further, younger adults' thought suppression outcomes changed over time, while trajectories for older adults' were relatively stable. Results are discussed in terms of older adults' reduced thought recurrence, which was potentially afforded by age-related changes in reactive control and distractibility.

  5. Tumor Suppression and Promotion by Autophagy

    Directory of Open Access Journals (Sweden)

    Yenniffer Ávalos

    2014-01-01

    Full Text Available Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.

  6. Tumor suppression and promotion by autophagy.

    Science.gov (United States)

    Ávalos, Yenniffer; Canales, Jimena; Bravo-Sagua, Roberto; Criollo, Alfredo; Lavandero, Sergio; Quest, Andrew F G

    2014-01-01

    Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.

  7. [Punish or cherish: p53, metabolism and tumor suppression].

    Science.gov (United States)

    Albagli, Olivier

    2015-10-01

    The p53 gene is essential for tumor suppression, but how it does so remains unclear. Upon genotoxic or oncogenic stresses, increased p53 activity induces transient cell cycle arrest, senescence or apoptosis, the three cornerstones of the so-called triumvirate. Accordingly, it has long been thought that p53 suppresses tumorigenesis by somehow counteracting cell proliferation or survival. However, several recently described genetically modified mice indicate that p53 can suppress tumorigenesis without triggering these three responses. Rather, as an important mechanism for tumor suppression, these mutant mice point to the ability of p53 to prevent the Warburg effect, that is to dampen glycolysis and foster mitochondrial respiration. Interestingly, these metabolic functions of p53 rely, in part, on its "unstressed" (basal) expression, a feature shared by its mechanistically linked anti-oxydant function. Together, these "conservative" activities of p53 may prevent tumor initiation by promoting and maintaining a normal oxidative metabolism and hence underly the "daily" tumor suppression by p53 in most cells. Conversely, destructive activities elicited by high p53 levels and leading to senescence or apoptosis provide a shield against partially or overtly transformed cells. This last situation, although relatively infrequent throughout life, is usual in experimental settings, which could explain the disproportionally high number of data implicating the triumvirate in tumor suppression by p53. © 2015 médecine/sciences – Inserm.

  8. ARF tumor suppression in the nucleolus.

    Science.gov (United States)

    Maggi, Leonard B; Winkeler, Crystal L; Miceli, Alexander P; Apicelli, Anthony J; Brady, Suzanne N; Kuchenreuther, Michael J; Weber, Jason D

    2014-06-01

    Since its discovery close to twenty years ago, the ARF tumor suppressor has played a pivotal role in the field of cancer biology. Elucidating ARF's basal physiological function in the cell has been the focal interest of numerous laboratories throughout the world for many years. Our current understanding of ARF is constantly evolving to include novel frameworks for conceptualizing the regulation of this critical tumor suppressor. As a result of this complexity, there is great need to broaden our understanding of the intricacies governing the biology of the ARF tumor suppressor. The ARF tumor suppressor is a key sensor of signals that instruct a cell to grow and proliferate and is appropriately localized in nucleoli to limit these processes. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Methanol Extract of Polyopes lancifolius Suppresses Tumor ...

    African Journals Online (AJOL)

    Tumor Necrosis Factor-α-Induced Matrix ... 614-054,4Department of Biomaterial Control (BK21 program) and Blue-Bio Industry Regional Innovation Center,. Dongeui ..... Molecules 2008; 13: ... pancreatic ductal carcinoma is associated with.

  10. Non-cell autonomous or secretory tumor suppression.

    Science.gov (United States)

    Chua, Christelle En Lin; Chan, Shu Ning; Tang, Bor Luen

    2014-10-01

    Many malignancies result from deletions or loss-of-function mutations in one or more tumor suppressor genes, the products of which curb unrestrained growth or induce cell death in those with dysregulated proliferative capacities. Most tumor suppressors act in a cell autonomous manner, and only very few proteins are shown to exert a non-cell autonomous tumor suppressor function on other cells. Examples of these include members of the secreted frizzled-related protein (SFRP) family and the secreted protein acidic and rich in cysteine (SPARC)-related proteins. Very recent findings have, however, considerably expanded our appreciation of non-cell autonomous tumor suppressor functions. Broadly, this may occur in two ways. Intracellular tumor suppressor proteins within cells could in principle inhibit aberrant growth of neighboring cells by conditioning an antitumor microenvironment through secreted factors. This is demonstrated by an apparent non-cell autonomous tumor suppressing property of p53. On the other hand, a tumor suppressor produced by a cell may be secreted extracellularly, and taken up by another cell with its activity intact. Intriguingly, this has been recently shown to occur for the phosphatase and tensin homolog (PTEN) by both conventional and unconventional modes of secretion. These recent findings would aid the development of therapeutic strategies that seek to reinstate tumor suppression activity in therapeutically recalcitrant tumor cells, which have lost it in the first place. © 2014 Wiley Periodicals, Inc.

  11. Tumor radiation responses and tumor oxygenation in aging mice

    International Nuclear Information System (INIS)

    Rockwell, S.

    1989-01-01

    EMT6 mouse mammary tumors transplanted into aging mice are less sensitive to radiation than tumors growing in young adult animals. The experiments reported here compare the radiation dose-response curves defining the survivals of tumor cells in aging mice and in young adult mice. Cell survival curves were assessed in normal air-breathing mice and in mice asphyxiated with N 2 to produce uniform hypoxia throughout the tumors. Analyses of survival curves revealed that 41% of viable malignant cells were severely hypoxic in tumors in aging mice, while only 19% of the tumor cells in young adult animals were radiobiologically hypoxic. This did not appear to reflect anaemia in the old animals. Treatment of aging animals with a perfluorochemical emulsion plus carbogen (95% O 2 /5% CO 2 ) increased radiation response of the tumors, apparently by improving tumor oxygenation and decreasing the number of severely hypoxic, radiation resistant cells in the tumors. (author)

  12. Age related changes in tumor vascularity

    International Nuclear Information System (INIS)

    Loerelius, L.E.; Stridbeck, H.

    1984-01-01

    VX 2 tumors in the rabbit hind leg were investigated at one, two and three weeks of age. Angiograms were compared with vascular casts. The tumors grew rapidly the first two weeks of age. Large variations in vascularity were noted between tumors of different ages. With increasing age arteriovenous shunts at the tumor periphery and areas of avascularity of necrosis in the tumor center increased in size. Possible reasons for tumor necrosis are increased tissue pressure, anoxia caused by arteriovenous shunts and elevation in venous pressure. The natural history of the VX 2 tumor must be considered in every experimental study of the effect of any treatment. (orig.)

  13. Novel "Elements" of Immune Suppression within the Tumor Microenvironment.

    Science.gov (United States)

    Gurusamy, Devikala; Clever, David; Eil, Robert; Restifo, Nicholas P

    2017-06-01

    Adaptive evolution has prompted immune cells to use a wide variety of inhibitory signals, many of which are usurped by tumor cells to evade immune surveillance. Although tumor immunologists often focus on genes and proteins as mediators of immune function, here we highlight two elements from the periodic table-oxygen and potassium-that suppress the immune system in previously unappreciated ways. While both are key to the maintenance of T-cell function and tissue homeostasis, they are exploited by tumors to suppress immuno-surveillance and promote metastatic spread. We discuss the temporal and spatial roles of these elements within the tumor microenvironment and explore possible therapeutic interventions for effective and promising anticancer therapies. Cancer Immunol Res; 5(6); 426-33. ©2017 AACR . ©2017 American Association for Cancer Research.

  14. Identification and Reconstruction of Prostate Tumor-Suppressing Exosomes for Therapeutic Applications

    Science.gov (United States)

    2016-03-01

    to the altered contents of exosomes , those from prostate cancer cells (tumor exosomes ) no longer have tumor suppressive functions. If this... cancer . To develop this concept, exosomes will be isolated from normal prostate epithelial cells by differential centrifugations or affinity...purifications and evaluated for tumor suppressing activities against various prostate cancer cells (Aim 1). Then the components of the tumor suppressing exosomes

  15. Tumor-Derived Exosomes and Their Role in Tumor-Induced Immune Suppression

    Directory of Open Access Journals (Sweden)

    Theresa L. Whiteside

    2016-10-01

    Full Text Available Tumor-derived exosomes (TEX are emerging as critical components of an intercellular information network between the tumor and the host. The tumor escapes from the host immune system by using a variety of mechanisms designed to impair or eliminate anti-tumor immunity. TEX carrying a cargo of immunoinhibitory molecules and factors represent one such mechanism. TEX, which are present in all body fluids of cancer patients, deliver negative molecular or genetic signals to immune cells re-programming their functions. Although TEX can also stimulate immune activity, in the microenvironments dominated by the tumor, TEX tend to mediate immune suppression thus promoting tumor progression. The TEX content, in part resembling that of the parent cell, may serve as a source of cancer biomarkers. TEX also interfere with immune therapies. A better understanding of TEX and their contribution to cancer progression and cancer patients’ response to immune therapies represents a challenging new field of investigation.

  16. Tumor-specific RNA interference targeting Pokemon suppresses tumor growth and induces apoptosis in prostate cancer.

    Science.gov (United States)

    Li, Yining; Xu, Shuxiong; Wang, Xiangwei; Shi, Hua; Sun, Zhaolin; Yang, Zhao

    2013-02-01

    To explore the exact mechanism of Pokemon in prostate cancer. Pokemon is a member of the POK family of transcriptional repressors. Its main function is suppression of the p14ARF (alternate reading frame) tumor suppressor gene. Although Pokemon expression has been found to be increased in various types of lymphoma, the exact mechanism of the gene in prostate cancer is not clear. In the present study, prostate cancer cells were transfected with the specific short hairpin ribonucleic acid (RNA) expression vector targeting Pokemon. The expression of Pokemon messenger RNA and its protein was detected by semiquantitative reverse transcriptase-polymerase chain reaction and Western blotting, respectively. The cell growth and cell apoptosis were also examined using the methyl thiazolyl tetrazolium assay and flow cytometry. The results demonstrated that specific RNA interference (RNAi) could decrease the expression levels of Pokemon gene messenger RNA and protein in prostate cancer cells. In addition, that specific RNAi significantly inhibited the cell proliferation and increased the apoptotic rate. In vivo experiments showed that specific RNAi inhibited the tumorigenicity of prostate cancer cells and significantly suppressed tumor growth. Therefore, an RNAi-targeted Pokemon gene strategy could be a potential approach to prostate cancer therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Withaferin A Suppresses Liver Tumor Growth in a Nude Mouse ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of withaferin A on tumor growth and metastasis in liver in a nude mouse model. Methods: Withaferin A was injected through a portal vein to the orthotopic liver tumor in a nude mice model. Xenogen in vivo imaging system was used to monitor tumor growth and metastasis. The effect of ...

  18. Adoptively transferred immune T cells eradicate established tumors in spite of cancer-induced immune suppression

    Science.gov (United States)

    Arina, Ainhoa; Schreiber, Karin; Binder, David C.; Karrison, Theodore; Liu, Rebecca B.; Schreiber, Hans

    2014-01-01

    Myeloid-derived CD11b+Gr1+ suppressor cells (MDSC) and tumor-associated macrophages (TAM) are considered a major obstacle for effective adoptive T cell therapy. Myeloid cells suppress naive T cell proliferation ex vivo and can prevent the generation of T cell responses in vivo. We find, however, that immune T cells adoptively transferred eradicate well-established tumors in the presence of MDSC and TAM which are strongly immunosuppressive ex vivo. These MDSC and TAM were comparable in levels and immunosuppression among different tumor models. Longitudinal microscopy of tumors in vivo revealed that after T cell transfer tumor vasculature and cancer cells disappeared simultaneously. During T-cell mediated tumor destruction, the tumor stroma contained abundant myeloid cells (mainly TAM) that retained their suppressive properties. Preimmunized but not naive mice resisted immune suppression caused by an unrelated tumor-burden supporting the idea that in vivo, myeloid immunosuppressive cells can suppress naive but not memory T cell responses. PMID:24367029

  19. Intestinal tumor suppression in ApcMin/+ mice by prostaglandin D2 receptor PTGDR

    International Nuclear Information System (INIS)

    Tippin, Brigette L; Kwong, Alan M; Inadomi, Michael J; Lee, Oliver J; Park, Jae Man; Materi, Alicia M; Buslon, Virgilio S; Lin, Amy M; Kudo, Lili C; Karsten, Stanislav L; French, Samuel W; Narumiya, Shuh; Urade, Yoshihiro; Salido, Eduardo; Lin, Henry J

    2014-01-01

    Our earlier work showed that knockout of hematopoietic prostaglandin D synthase (HPGDS, an enzyme that produces prostaglandin D 2 ) caused more adenomas in Apc Min/+ mice. Conversely, highly expressed transgenic HPGDS allowed fewer tumors. Prostaglandin D 2 (PGD 2 ) binds to the prostaglandin D 2 receptor known as PTGDR (or DP1). PGD 2 metabolites bind to peroxisome proliferator-activated receptor γ (PPARG). We hypothesized that Ptgdr or Pparg knockouts may raise numbers of tumors, if these receptors take part in tumor suppression by PGD 2 . To assess, we produced Apc Min/+ mice with and without Ptgdr knockouts (147 mice). In separate experiments, we produced Apc Min/+ mice expressing transgenic lipocalin-type prostaglandin D synthase (PTGDS), with and without heterozygous Pparg knockouts (104 mice). Homozygous Ptgdr knockouts raised total numbers of tumors by 30–40% at 6 and 14 weeks. Colon tumors were not affected. Heterozygous Pparg knockouts alone did not affect tumor numbers in Apc Min/+ mice. As mentioned above, our Pparg knockout assessment also included mice with highly expressed PTGDS transgenes. Apc Min/+ mice with transgenic PTGDS had fewer large adenomas (63% of control) and lower levels of v-myc avian myelocytomatosis viral oncogene homolog (MYC) mRNA in the colon. Heterozygous Pparg knockouts appeared to blunt the tumor-suppressing effect of transgenic PTGDS. However, tumor suppression by PGD 2 was more clearly mediated by receptor PTGDR in our experiments. The suppression mechanism did not appear to involve changes in microvessel density or slower proliferation of tumor cells. The data support a role for PGD 2 signals acting through PTGDR in suppression of intestinal tumors

  20. Dutasteride and enzalutamide synergistically suppress prostate tumor cell proliferation

    NARCIS (Netherlands)

    Hamid, A.R.; Verhaegh, G.W.C.T.; Smit, F.P.; RIjt-van de Westerlo, C.; Armandari, I.; Brandt, A.; Sweep, F.C.; Sedelaar, J.P.M.; Schalken, J.A.

    2015-01-01

    PURPOSE: Dihydrotestosterone is the main active androgen in the prostate and it has a role in prostate cancer progression. After androgen deprivation therapy androgen receptor signaling is still active in tumor cells. Persistent intratumor steroidogenesis and androgen receptor changes are

  1. Differences in the effects of host suppression on the adoptive immunotherapy of subcutaneous and visceral tumors

    International Nuclear Information System (INIS)

    Chang, A.E.; Shu, S.Y.; Chou, T.; Lafreniere, R.; Rosenberg, S.A.

    1986-01-01

    A syngeneic transplantable sarcoma induced in C57BL/6 mice, MCA 105, was used in studies to examine host suppression on the adoptive immunotherapy of established intradermal and experimentally induced pulmonary and hepatic metastases. Fresh immune splenocytes were generated from mice immunized to the MCA 105 tumor by a mixture of viable tumor cells and Corynebacterium parvum. The adoptive immunotherapy of intradermal MCA 105 tumor with immune cells required prior immunosuppression of the recipient by sublethal irradiation with 500 R or T-cell depletion. The effect of whole-body sublethal irradiation appeared to eliminate a systemic host suppression mechanism, since partialbody irradiation involving the tumor-bearing area did not permit successful immunotherapy. Host irradiation was not required to achieve successful immunotherapy of experimentally induced pulmonary or hepatic metastases. In nonirradiated recipients bearing both intradermal and pulmonary tumors, host suppression did not affect the function of transferred immune cells to induce regression of pulmonary metastases. Thus, suppression of adoptive immunotherapy appears to be relevant to tumors confined to the skin and subcutaneous tissue but not to tumor in visceral sites, such as the lung and liver

  2. L-Asparaginase delivered by Salmonella typhimurium suppresses solid tumors

    Directory of Open Access Journals (Sweden)

    Kwangsoo Kim

    Full Text Available Bacteria can be engineered to deliver anticancer proteins to tumors via a controlled expression system that maximizes the concentration of the therapeutic agent in the tumor. L-asparaginase (L-ASNase, which primarily converts asparagine to aspartate, is an anticancer protein used to treat acute lymphoblastic leukemia. In this study, Salmonellae were engineered to express L-ASNase selectively within tumor tissues using the inducible araBAD promoter system of Escherichia coli. Antitumor efficacy of the engineered bacteria was demonstrated in vivo in solid malignancies. This result demonstrates the merit of bacteria as cancer drug delivery vehicles to administer cancer-starving proteins such as L-ASNase to be effective selectively within the microenvironment of cancer tissue.

  3. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy

    International Nuclear Information System (INIS)

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng

    2015-01-01

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. - Highlights: • Oroxin B selectively induces tumor-suppressive ER stress in B-lymphoma cells. • Oroxin B significantly prolonged overall survival of lymphoma-xenografted mice.

  4. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping; Fu, Shilong; Cao, Zhifei; Liao, Huaidong; Huo, Zihe; Pan, Yanyan; Zhang, Gaochuan; Gao, Aidi; Zhou, Quansheng, E-mail: zhouqs@suda.edu.cn

    2015-10-15

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressive ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. - Highlights: • Oroxin B selectively induces tumor-suppressive ER stress in B-lymphoma cells. • Oroxin B significantly prolonged overall survival of lymphoma-xenografted mice.

  5. Withaferin A Suppresses Liver Tumor Growth in a Nude Mouse ...

    African Journals Online (AJOL)

    tumor cell invasiveness in colon cancer [7] and is related to angiogenesis in ... Hsp90, phosphorylated STAT3 and annexin II. [18,20-24]. ..... Herbstritt CJ, Ruiz A, Zhang L, Hanson AD, Conner. BP, Rougas J, Pribluda VS. Withaferin A is a ...

  6. Age-related decline in global form suppression

    DEFF Research Database (Denmark)

    Wiegand, Iris Michaela; Finke, Kathrin; Töllner, Thomas

    2015-01-01

    . Selective attention, i.e., the ability to focus on relevant and ignore irrelevant information, declines with increasing age; however, how this deficit affects selection of global vs. local configurations remains unknown. On this background, the present study examined for age-related differences in a global...... differences in the subsequent (250–500 ms) posterior contralateral negativity (PCN) indicated that attentional resources were allocated faster to Kanisza, as compared to non-Kanisza, targets in both age groups, while the allocation of spatial attention seemed to be generally delayed in older relative...... to younger age. Our results suggest that the enhanced global-local asymmetry in the older age group originated from less effective suppression of global distracter forms on early processing stages – indicative of older observers having difficulties with disengaging from a global default selection mode...

  7. The Analysis of the Adverse Reaction of Traditional Chinese Medicine Tumor Bone Marrow Suppression

    Science.gov (United States)

    Wei, Zhenzhen; Fang, Xiaoyan; Miao, Mingsan

    2018-01-01

    With the rapid increase of cancer patients, chemotherapy is the main method for the clinical treatment of cancer, but also in the treatment of the adverse reactions--bone marrow suppression is often a serious infection caused by patients after chemotherapy and the important cause of mortality. Chinese medicine has obvious advantages in the prevention and treatment of bone marrow depression after chemotherapy. According to tumor bone marrow suppression after chemotherapy of etiology and pathogenesis of traditional Chinese medicine and China national knowledge internet nearly 10 years of traditional Chinese medicine in the prevention and control of the status of clinical and laboratory research of tumor bone marrow suppression, the author analyzed and summarized its characteristics, so as to provide the basis for treating bone marrow suppression of drug research and development, and promote small adverse reactions of the development and utilization of natural medicine and its preparations.

  8. Tissue distribution of aryl hydrocarbon receptor in the intestine: Implication of putative roles in tumor suppression

    International Nuclear Information System (INIS)

    Ikuta, Togo; Kurosumi, Masafumi; Yatsuoka, Toshimasa; Nishimura, Yoji

    2016-01-01

    Intestinal homeostasis is maintained by complex interactions between intestinal microorganisms and the gut immune system. Dysregulation of gut immunity may lead to inflammatory disorders and tumorigenesis. We previously have shown the tumor suppressive effects of aryl hydrocarbon receptor (AhR) in intestinal carcinogenesis. In the present study, we investigated AhR distribution in the mouse and human intestine by histochemical analysis. In the normal intestine, AhR was mainly localized in the stroma containing immune cells in the lamina propria and lymphoid follicles. On the other hand, in the tumor tissue from human colon cancer and that developed in Apc"M"i"n"/"+mice, AhR expression was elevated. AhR immunostaining was found in both stromal and tumor cells. Although AhR was localized in the cytoplasm of tumor cells in most cases, nuclear AhR was also observed in some. AhR knockdown using siRNA resulted in significant promotion of cell growth in colon cancer cell lines. Furthermore, AhR activation by AhR ligands supplemented in culture medium suppressed cell growth. Our study results suggest that tumor suppressive roles of AhR are estimated in two distinct ways: in normal tissue, AhR is associated with tumor prevention by regulating gut immunity, whereas in tumor cells, it is involved in growth suppression. - Highlights: • In the normal intestine, AhR was mainly localized in stroma containing immune cells. • In the tumor tissue, AhR expression was found in both stromal and tumor cells. • AhR knockdown promoted cell growth in colon cancer cell lines.

  9. Rapamycin delays growth of Wnt-1 tumors in spite of suppression of host immunity

    International Nuclear Information System (INIS)

    Svirshchevskaya, Elena V; Mariotti, Jacopo; Wright, Mollie H; Viskova, Natalia Y; Telford, William; Fowler, Daniel H; Varticovski, Lyuba

    2008-01-01

    Rapamycin, an inhibitor of mammalian target of Rapamycin (mTOR), is an immunosuppressive agent that has anti-proliferative effects on some tumors. However, the role of Rapamycin-induced immune suppression on tumor progression has not been examined. We developed a transplantation model for generation of mammary tumors in syngeneic recipients that can be used to address the role of the immune system on tumor progression. We examined the effect of Rapamycin on the immune system and growth of MMTV-driven Wnt-1 mammary tumors which were transplanted into irradiated and bone marrow-reconstituted, or naïve mice. Rapamycin induced severe immunosuppression and significantly delayed the growth of Wnt-1 tumors. T cell depletion in spleen and thymus and reduction in T cell cytokine secretion were evident within 7 days of therapy. By day 20, splenic but not thymic T cell counts, and cytokine secretion recovered. We determined whether adoptive T cell therapy enhances the anti-cancer effect using ex vivo generated Rapamycin-resistant T cells. However, T cell transfer during Rapamycin therapy did not improve the outcome relative to drug therapy alone. Thus, we could not confirm that suppression of T cell immunity contributes to tumor growth in this model. Consistent with suppression of the mTOR pathway, decreased 4E-BP1, p70 S6-kinase, and S6 protein phosphorylation correlated with a decrease in Wnt-1 tumor cell proliferation. Rapamycin has a direct anti-tumor effect on Wnt-1 breast cancer in vivo that involves inhibition of the mTOR pathway at doses that also suppress host immune responses

  10. Tissue distribution of aryl hydrocarbon receptor in the intestine: Implication of putative roles in tumor suppression

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, Togo, E-mail: togo@cancer-c.pref.saitama.jp [Department of Cancer Prevention, Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806 (Japan); Kurosumi, Masafumi, E-mail: mkurosumi@cancer-c.pref.saitama.jp [Division of Pathology, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806 (Japan); Yatsuoka, Toshimasa, E-mail: yatsuoka-gi@umin.ac.jp [Division of Gastroenterological Surgery, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806 (Japan); Nishimura, Yoji, E-mail: yojinish@cancr-c.pref.saitama.jp [Division of Gastroenterological Surgery, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806 (Japan)

    2016-05-01

    Intestinal homeostasis is maintained by complex interactions between intestinal microorganisms and the gut immune system. Dysregulation of gut immunity may lead to inflammatory disorders and tumorigenesis. We previously have shown the tumor suppressive effects of aryl hydrocarbon receptor (AhR) in intestinal carcinogenesis. In the present study, we investigated AhR distribution in the mouse and human intestine by histochemical analysis. In the normal intestine, AhR was mainly localized in the stroma containing immune cells in the lamina propria and lymphoid follicles. On the other hand, in the tumor tissue from human colon cancer and that developed in Apc{sup Min/+}mice, AhR expression was elevated. AhR immunostaining was found in both stromal and tumor cells. Although AhR was localized in the cytoplasm of tumor cells in most cases, nuclear AhR was also observed in some. AhR knockdown using siRNA resulted in significant promotion of cell growth in colon cancer cell lines. Furthermore, AhR activation by AhR ligands supplemented in culture medium suppressed cell growth. Our study results suggest that tumor suppressive roles of AhR are estimated in two distinct ways: in normal tissue, AhR is associated with tumor prevention by regulating gut immunity, whereas in tumor cells, it is involved in growth suppression. - Highlights: • In the normal intestine, AhR was mainly localized in stroma containing immune cells. • In the tumor tissue, AhR expression was found in both stromal and tumor cells. • AhR knockdown promoted cell growth in colon cancer cell lines.

  11. The Methanol Extract of Angelica sinensis Induces Cell Apoptosis and Suppresses Tumor Growth in Human Malignant Brain Tumors

    Directory of Open Access Journals (Sweden)

    Yu-Ling Lin

    2013-01-01

    Full Text Available Glioblastoma multiforme (GBM is a highly vascularized and invasive neoplasm. The methanol extract of Angelica sinensis (AS-M is commonly used in traditional Chinese medicine to treat several diseases, such as gastric mucosal damage, hepatic injury, menopausal symptoms, and chronic glomerulonephritis. AS-M also displays potency in suppressing the growth of malignant brain tumor cells. The growth suppression of malignant brain tumor cells by AS-M results from cell cycle arrest and apoptosis. AS-M upregulates expression of cyclin kinase inhibitors, including p16, to decrease the phosphorylation of Rb proteins, resulting in arrest at the G0-G1 phase. The expression of the p53 protein is increased by AS-M and correlates with activation of apoptosis-associated proteins. Therefore, the apoptosis of cancer cells induced by AS-M may be triggered through the p53 pathway. In in vivo studies, AS-M not only suppresses the growth of human malignant brain tumors but also significantly prolongs patient survival. In addition, AS-M has potent anticancer effects involving cell cycle arrest, apoptosis, and antiangiogenesis. The in vitro and in vivo anticancer effects of AS-M indicate that this extract warrants further investigation and potential development as a new antibrain tumor agent, providing new hope for the chemotherapy of malignant brain cancer.

  12. Limited role of murine ATM in oncogene-induced senescence and p53-dependent tumor suppression.

    Directory of Open Access Journals (Sweden)

    Alejo Efeyan

    Full Text Available Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability.

  13. USP10 Antagonizes c-Myc Transcriptional Activation through SIRT6 Stabilization to Suppress Tumor Formation

    Directory of Open Access Journals (Sweden)

    Zhenghong Lin

    2013-12-01

    Full Text Available The reduced protein expression of SIRT6 tumor suppressor is involved in tumorigenesis. The molecular mechanisms underlying SIRT6 protein downregulation in human cancers remain unknown. Using a proteomic approach, we have identified the ubiquitin-specific peptidase USP10, another tumor suppressor, as one of the SIRT6-interacting proteins. USP10 suppresses SIRT6 ubiquitination to protect SIRT6 from proteasomal degradation. USP10 antagonizes the transcriptional activity of the c-Myc oncogene through SIRT6, as well as p53, to inhibit cell-cycle progression, cancer cell growth, and tumor formation. To support this conclusion, we detected significant reductions in both USP10 and SIRT6 protein expression in human colon cancers. Our study discovered crosstalk between two tumor-suppressive genes in regulating cell-cycle progression and proliferation and showed that dysregulated USP10 function promotes tumorigenesis through SIRT6 degradation.

  14. Complement Receptor 3 Has Negative Impact on Tumor Surveillance through Suppression of Natural Killer Cell Function

    Directory of Open Access Journals (Sweden)

    Cheng-Fei Liu

    2017-11-01

    Full Text Available Complement receptor 3 (CR3 is expressed abundantly on natural killer (NK cells; however, whether it plays roles in NK cell-dependent tumor surveillance is largely unknown. Here, we show that CR3 is an important negative regulator of NK cell function, which has negative impact on tumor surveillance. Mice deficient in CR3 (CD11b−/− mice exhibited a more activated NK phenotype and had enhanced NK-dependent tumor killing. In a B16-luc melanoma-induced lung tumor growth and metastasis model, mice deficient in CR3 had reduced tumor growth and metastases, compared with WT mice. In addition, adaptive transfer of NK cells lacking CR3 (into NK-deficient mice mediated more efficient suppression of tumor growth and metastases, compared with the transfer of CR3 sufficient NK cells, suggesting that CR3 can impair tumor surveillance through suppression of NK cell function. In vitro analyses showed that engagement of CR3 with iC3b (classical CR3 ligand on NK cells negatively regulated NK cell activity and effector functions (i.e. direct tumor cell killing, antibody-dependent NK-mediated tumor killing. Cell signaling analyses showed that iC3b stimulation caused activation of Src homology 2 domain-containing inositol-5-phosphatase-1 (SHIP-1 and JNK, and suppression of ERK in NK cells, supporting that iC3b mediates negative regulation of NK cell function through its effects on SHIP-1, JNK, and ERK signal transduction pathways. Thus, our findings demonstrate a previously unknown role for CR3 in dysregulation of NK-dependent tumor surveillance and suggest that the iC3b/CR3 signaling is a critical negative regulator of NK cell function and may represent a new target for preserving NK cell function in cancer patients and improving NK cell-based therapy.

  15. Triparanol suppresses human tumor growth in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Xinyu [Department of Abdominal Surgical Oncology, Lab of Abdominal Surgical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 (China); Han, Xingpeng [Department of Pathology, Tianjin Chest Hospital, Tianjin 300051 (China); Zhang, Fang [Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, Zhejiang (China); He, Miao [Life Sciences School, Sun Yat-sen University, Guangzhou 510275 (China); Zhang, Yi [Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Zhi, Xiu-Yi, E-mail: xiuyizhi@yahoo.com.cn [Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Zhao, Hong, E-mail: zhaohong9@sina.com [Department of Abdominal Surgical Oncology, Lab of Abdominal Surgical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 (China)

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Demonstrate Triparanol can block proliferation in multiple cancer cells. Black-Right-Pointing-Pointer Demonstrate Triparanol can induce apoptosis in multiple cancer cells. Black-Right-Pointing-Pointer Proved Triparanol can inhibit Hedgehog signaling in multiple cancer cells. Black-Right-Pointing-Pointer Demonstrated Triparanol can impede tumor growth in vivo in mouse xenograft model. -- Abstract: Despite the improved contemporary multidisciplinary regimens treating cancer, majority of cancer patients still suffer from adverse effects and relapse, therefore posing a significant challenge to uncover more efficacious molecular therapeutics targeting signaling pathways central to tumorigenesis. Here, our study have demonstrated that Triparanol, a cholesterol synthesis inhibitor, can block proliferation and induce apoptosis in multiple human cancer cells including lung, breast, liver, pancreatic, prostate cancer and melanoma cells, and growth inhibition can be rescued by exogenous addition of cholesterol. Remarkably, we have proved Triparanol can significantly repress Hedgehog pathway signaling in these human cancer cells. Furthermore, study in a mouse xenograft model of human lung cancer has validated that Triparanol can impede tumor growth in vivo. We have therefore uncovered Triparanol as potential new cancer therapeutic in treating multiple types of human cancers with deregulated Hedgehog signaling.

  16. Triparanol suppresses human tumor growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Bi, Xinyu; Han, Xingpeng; Zhang, Fang; He, Miao; Zhang, Yi; Zhi, Xiu-Yi; Zhao, Hong

    2012-01-01

    Highlights: ► Demonstrate Triparanol can block proliferation in multiple cancer cells. ► Demonstrate Triparanol can induce apoptosis in multiple cancer cells. ► Proved Triparanol can inhibit Hedgehog signaling in multiple cancer cells. ► Demonstrated Triparanol can impede tumor growth in vivo in mouse xenograft model. -- Abstract: Despite the improved contemporary multidisciplinary regimens treating cancer, majority of cancer patients still suffer from adverse effects and relapse, therefore posing a significant challenge to uncover more efficacious molecular therapeutics targeting signaling pathways central to tumorigenesis. Here, our study have demonstrated that Triparanol, a cholesterol synthesis inhibitor, can block proliferation and induce apoptosis in multiple human cancer cells including lung, breast, liver, pancreatic, prostate cancer and melanoma cells, and growth inhibition can be rescued by exogenous addition of cholesterol. Remarkably, we have proved Triparanol can significantly repress Hedgehog pathway signaling in these human cancer cells. Furthermore, study in a mouse xenograft model of human lung cancer has validated that Triparanol can impede tumor growth in vivo. We have therefore uncovered Triparanol as potential new cancer therapeutic in treating multiple types of human cancers with deregulated Hedgehog signaling.

  17. p53 regulates cytoskeleton remodeling to suppress tumor progression.

    Science.gov (United States)

    Araki, Keigo; Ebata, Takahiro; Guo, Alvin Kunyao; Tobiume, Kei; Wolf, Steven John; Kawauchi, Keiko

    2015-11-01

    Cancer cells possess unique characteristics such as invasiveness, the ability to undergo epithelial-mesenchymal transition, and an inherent stemness. Cell morphology is altered during these processes and this is highly dependent on actin cytoskeleton remodeling. Regulation of the actin cytoskeleton is, therefore, important for determination of cell fate. Mutations within the TP53 (tumor suppressor p53) gene leading to loss or gain of function (GOF) of the protein are often observed in aggressive cancer cells. Here, we highlight the roles of p53 and its GOF mutants in cancer cell invasion from the perspective of the actin cytoskeleton; in particular its reorganization and regulation by cell adhesion molecules such as integrins and cadherins. We emphasize the multiple functions of p53 in the regulation of actin cytoskeleton remodeling in response to the extracellular microenvironment, and oncogene activation. Such an approach provides a new perspective in the consideration of novel targets for anti-cancer therapy.

  18. Locoregional injection of F-18 radiopharmaceuticals suppresses tumor xenograft growth in rats

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C -L [The Univ. of Texas M.D. Anderson Cancer Center, Texas (United States)

    2004-07-01

    The energetic positrons (0.633 Mev) from F-18 dissipate kinetic energies before annihilation to produce two 0.511 Mev photons which also contribute to the radiation absorbed dose to the surroundings. In living organism, the contribution from the positron itself to the surrounding tissues (up to 2 mm) is larger than from the 2 photons. Apoptosis has been reported in rat tumors after systemic injection of F-18 FDG although no growth retardation was noted. This study is designed to exploit the pharmacokinetic advantages of locoregional injection of positron emitters in the suppression of tumor growth in rats. Methods: Groups of Fisher 344 adult female rats were inoculated with rat mammary tumors (100,000 cells) intramuscularly (IM) in the thigh. Locoregional injection with F-18 NaF or F-18 FDG was accomplished in days 3 or 7 with single doses of increasing strengths (0.2 to 3 mCi). Tumor growth rates were noted and compared to control (sham injection with saline). The locoregional distribution and clearance of F-18 were estimated from serial tomograms using a Concord MicroPET (R4) after intramuscular injection of 0.1-0.2 mCi of F-18 NaF or F-18 FDG in groups of triplicate rats. Results: A dose-related pattern of tumor suppression is noted with F-18 FDG, whether treatment occurs in day 3 or 7 after inoculation. Additional experiment of injection of 5 mci of F-18 FDG at day 14 also suppressed the growth of a well-formed tumor. Tumor suppression by F-18 NaF is less obvious and only occurs with high dose (2 mCi). MicroPET images demonstrate that F-18 FDG is retained in the injection site while F-18 NaF dissipates rapidly. Conclusion: Locoregional injection of positron-emitters may be sufficient to suppress tumor growth. The mechanism is likely related to the pharmacokinetic profile of the compound within the tissue. Discussion: Locoregional application of radionuclides may provide feasible alternatives to slow tumor growth or prevent tumor recurrence. The use of

  19. 'Obligate' anaerobic Salmonella strain YB1 suppresses liver tumor growth and metastasis in nude mice.

    Science.gov (United States)

    Li, Chang-Xian; Yu, Bin; Shi, Lei; Geng, Wei; Lin, Qiu-Bin; Ling, Chang-Chun; Yang, Mei; Ng, Kevin T P; Huang, Jian-Dong; Man, Kwan

    2017-01-01

    The antitumor properties of bacteria have been demonstrated over the past decades. However, the efficacy is limited and unclear. Furthermore, systemic infection remains a serious concern in bacteria treatment. In this study, the effect of YB1, a rationally designed 'obligate' anaerobic Salmonella typhimurium strain, on liver tumor growth and metastasis in a nude mouse orthotopic liver tumor model was investigated. The orthotopic liver tumor model was established in nude mice using the hepatocellular carcinoma cell line MHCC-97L. Two weeks after orthotopic liver tumor implantation, YB1, SL7207 and saline were respectively administered through the tail vein of the mice. Longitudinal monitoring of tumor growth and metastasis was performed using Xenogen IVIS, and direct measurements of tumor volume were taken 3 weeks after treatment. In vitro , MHCC-97L and PLC cells were incubated with YB1 or SL7207 under anaerobic conditions. YB1 was observed to invade tumor cells and induce tumor cell apoptosis and death. The results revealed that all mice in the YB1 group were alive 3 weeks after YB1 injection while all mice in the SL7207 group died within 11 days of the SL7207 injection. The body weight decreased by ~9% on day 1 after YB1 injection and but subsequently recovered. Liver tumor growth and metastases were significantly inhibited following YB1 treatment. By contrast to the control group, a large number of Gr1-positive cells were detected on days 1 to 21 following YB1 treatment. Furthermore, YB1 also effectively invaded tumor cells and induced tumor cell apoptosis and death. In conclusion, YB1 suppressed liver tumor growth and metastasis in a nude mice liver tumor model. The potential mechanism may be through enhancing innate immune response and inducing tumor cell apoptosis and cell death.

  20. Roles for miR-375 in Neuroendocrine Differentiation and Tumor Suppression via Notch Pathway Suppression in Merkel Cell Carcinoma.

    Science.gov (United States)

    Abraham, Karan J; Zhang, Xiao; Vidal, Ricardo; Paré, Geneviève C; Feilotter, Harriet E; Tron, Victor A

    2016-04-01

    Dysfunction of key miRNA pathways regulating basic cellular processes is a common driver of many cancers. However, the biological roles and/or clinical applications of such pathways in Merkel cell carcinoma (MCC), a rare but lethal cutaneous neuroendocrine (NE) malignancy, have yet to be determined. Previous work has established that miR-375 is highly expressed in MCC tumors, but its biological role in MCC remains unknown. Herein, we show that elevated miR-375 expression is a specific feature of well-differentiated MCC cell lines that express NE markers. In contrast, miR-375 is strikingly down-regulated in highly aggressive, undifferentiated MCC cell lines. Enforced miR-375 expression in these cells induced NE differentiation, and opposed cancer cell viability, migration, invasion, and survival, pointing to tumor-suppressive roles for miR-375. Mechanistically, miR-375-driven phenotypes were caused by the direct post-transcriptional repression of multiple Notch pathway proteins (Notch2 and RBPJ) linked to cancer and regulation of cell fate. Thus, we detail a novel molecular axis linking tumor-suppressive miR-375 and Notch with NE differentiation and cancer cell behavior in MCC. Our findings identify miR-375 as a putative regulator of NE differentiation, provide insight into the cell of origin of MCC, and suggest that miR-375 silencing may promote aggressive cancer cell behavior through Notch disinhibition. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Combining fisetin and ionizing radiation suppresses the growth of mammalian colorectal cancers in xenograft tumor models.

    Science.gov (United States)

    Leu, Jyh-Der; Wang, Bo-Shen; Chiu, Shu-Jun; Chang, Chun-Yuan; Chen, Chien-Chih; Chen, Fu-Du; Avirmed, Shiirevnyamba; Lee, Yi-Jang

    2016-12-01

    Fisetin (3,7,3',4'-tetrahydroxyflavone), which belongs to the flavonoid group of polyphenols and is found in a wide range of plants, has been reported to exhibit a number of biological activities in human cancer cells, including antioxidant, anti-inflammatory, antiangiogenic, anti-invasive and antiproliferative effects. Although previous in vitro studies have shown that fisetin treatment increases the apoptotic rate and enhances the radiosensitivity of human colorectal cancer cells, the in vivo effects of fisetin on tumor growth remain unclear. In the present study a murine xenograft tumor model was employed to investigate the therapeutic effects of fisetin in combination with radiation on CT-26 colon cancer cells and human HCT116 colorectal cancer cells. This revealed that intratumoral injection of fisetin significantly suppressed the growth of CT-26 tumors compared with the untreated control group, but had little effect on the growth of HCT116 tumors. However, fisetin in combination with 2-Gy radiation enhanced tumor suppressor activity in murine colon and human colorectal xenograft tumors, as compared with 2-Gy fractionated radiation administered alone for 5 days and fisetin alone. Interestingly, fisetin downregulated the expression of the oncoprotein securin in a p53-independent manner. However, securin-null HCT116 tumors showed only moderate sensitivity to fisetin treatment, and the combination of fisetin and radiation did not significantly suppress securin-null HCT116 tumor growth compared with normal HCT116 tumors. Therefore, the role of securin in mediating the effect of fisetin on colorectal cancer growth warrants further investigation. In conclusion, the results of the current study provide important preclinical data for evaluating the efficacy of fisetin and radiation combination treatment as an adjuvant chemoradiotherapy for human colorectal cancers.

  2. Star formation suppression and bar ages in nearby barred galaxies

    Science.gov (United States)

    James, P. A.; Percival, S. M.

    2018-03-01

    We present new spectroscopic data for 21 barred spiral galaxies, which we use to explore the effect of bars on disc star formation, and to place constraints on the characteristic lifetimes of bar episodes. The analysis centres on regions of heavily suppressed star formation activity, which we term `star formation deserts'. Long-slit optical spectroscopy is used to determine H β absorption strengths in these desert regions, and comparisons with theoretical stellar population models are used to determine the time since the last significant star formation activity, and hence the ages of the bars. We find typical ages of ˜1 Gyr, but with a broad range, much larger than would be expected from measurement errors alone, extending from ˜0.25 to >4 Gyr. Low-level residual star formation, or mixing of stars from outside the `desert' regions, could result in a doubling of these age estimates. The relatively young ages of the underlying populations coupled with the strong limits on the current star formation rule out a gradual exponential decline in activity, and hence support our assumption of an abrupt truncation event.

  3. Role of Gd-DTPA enhanced fat-suppression MR imaging on ovarian tumors

    International Nuclear Information System (INIS)

    Kang, Heoung Keun; Moon, Woong Jae; Seo, Jeong Jin; Kim, Jae Kyu; Park, Jin Gyoon; Choi, Ho Sun

    1995-01-01

    To determine the value of Gd-DTPA enhanced fat-suppression (GEFS) MR imaging in the characterization and differentiation of benign from malignant ovarian tumors. MRI findings of thirty-seven patients with surgically proved 44 ovarian tumors (30 benign, 14 malignant) were studied retrospectively. MR imaging with conventional spin echo (CSE; T1-weighted image TR/TE 450/20, T2-weighted image TR/TE 3500/30, 90) and GEFS were performed with a 1.5T GE signa. MRI findings of tumors including cystic or solid, wall and septal thickness, necrosis, invasion to adjacent organ, ascites and lymphadenopathy were assessed separately by using CSE and GEFS images, and then tumors were characterized as benign or malignant. Compared with CSE image, GEFS MR image showed better visualization of solid component in 5 malignant lesions, wall thickness in 5 malignant and 1 benign lesions, septal thickness in 3 malignant and 1 benign lesions, necrosis in 1 malignant lesion, and adjacent soft tissue invasion in 5 malignant lesions. Correct characterization of malignant tumors was increased from 71% on CSE image to 93% on GEFS image. However, correct characterization of benign tumors was 93% on both images. GEFS MR imaging could be useful for characterization of ovarian tumors, especially in malignant cases, and employed for differentiation of benign from malignant tumors

  4. Increased suppression of oncolytic adenovirus carrying mutant k5 on colorectal tumor

    International Nuclear Information System (INIS)

    Fan Junkai; Xiao Tian; Gu Jinfa; Wei Na; He Lingfeng; Ding Miao; Liu Xinyuan

    2008-01-01

    Angiogenesis plays a key role in the development of a wide variety of malignant tumors. The approach of targeting antiangiogenesis has become an important field of cancer gene therapy. In this study, the antiangiogenesis protein K5 (the kringle 5 of human plasminogen) has been mutated by changing leucine71 to arginine to form mK5. Then the ZD55-mK5, which is an oncolytic adenovirus expressing mK5, was constructed. It showed stronger inhibition on proliferation of human umbilical vein endothelial cell. Moreover, in tube formation and embryonic chorioallantoic membrane assay, ZD55-mK5 exhibited more effective antiangiogenesis than ZD55-K5. In addition, ZD55-mK5 generated obvious suppression on the growth of colorectal tumor xenografts and prolonged the life span of nude mice. These results indicate that ZD55-mK5 is a potent agent for inhibiting the tumor angiogenesis and tumor growth

  5. Cystatin E/M Suppresses Tumor Cell Growth through Cytoplasmic Retention of NF-κB

    Science.gov (United States)

    Soh, Hendrick; Venkatesan, Natarajan; Veena, Mysore S.; Ravichandran, Sandhiya; Zinabadi, Alborz; Basak, Saroj K.; Parvatiyar, Kislay; Srivastava, Meera; Liang, Li-Jung; Gjertson, David W.; Torres, Jorge Z.; Moatamed, Neda A.

    2016-01-01

    We and others have shown that the cystatin E/M gene is inactivated in primary human tumors, pointing to its role as a tumor suppressor gene. However, the molecular mechanism of tumor suppression is not yet understood. Using plasmid-directed cystatin E/M gene overexpression, a lentivirus-mediated tetracycline-inducible vector system, and human papillomavirus 16 (HPV 16) E6 and E7 gene-immortalized normal human epidermal keratinocytes, we demonstrated intracellular and non-cell-autonomous apoptotic growth inhibition of tumor cell lines and that growth inhibition is associated with cytoplasmic retention of NF-κB. We further demonstrated decreased phosphorylation of IκB kinase (IKKβ) and IκBα in the presence of tumor necrosis factor alpha (TNF-α), confirming the role of cystatin E/M in the regulation of the NF-κB signaling pathway. Growth suppression of nude mouse xenograft tumors carrying a tetracycline-inducible vector system was observed with the addition of doxycycline in drinking water, confirming that the cystatin E/M gene is a tumor suppressor gene. Finally, immunohistochemical analyses of cervical carcinoma in situ and primary tumors have shown a statistically significant inverse relationship between the expression of cystatin E/M and cathepsin L and a direct relationship between the loss of cystatin E/M expression and nuclear expression of NF-κB. We therefore propose that the cystatin E/M suppressor gene plays an important role in the regulation of NF-κB. PMID:27090639

  6. A nonlinear competitive model of the prostate tumor growth under intermittent androgen suppression.

    Science.gov (United States)

    Yang, Jing; Zhao, Tong-Jun; Yuan, Chang-Qing; Xie, Jing-Hui; Hao, Fang-Fang

    2016-09-07

    Hormone suppression has been the primary modality of treatment for prostate cancer. However long-term androgen deprivation may induce androgen-independent (AI) recurrence. Intermittent androgen suppression (IAS) is a potential way to delay or avoid the AI relapse. Mathematical models of tumor growth and treatment are simple while they are capable of capturing the essence of complicated interactions. Game theory models have analyzed that tumor cells can enhance their fitness by adopting genetically determined survival strategies. In this paper, we consider the survival strategies as the competitive advantage of tumor cells and propose a new model to mimic the prostate tumor growth in IAS therapy. Then we investigate the competition effect in tumor development by numerical simulations. The results indicate that successfully IAS-controlled states can be achieved even though the net growth rate of AI cells is positive for any androgen level. There is crucial difference between the previous models and the new one in the phase diagram of successful and unsuccessful tumor control by IAS administration, which means that the suggestions from the models for medication can be different. Furthermore we introduce quadratic logistic terms to the competition model to simulate the tumor growth in the environment with a finite carrying capacity considering the nutrients or inhibitors. The simulations show that the tumor growth can reach an equilibrium state or an oscillatory state with the net growth rate of AI cells being androgen independent. Our results suggest that the competition and the restraint of a limited environment can enhance the possibility of relapse prevention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Extract of Cordyceps militaris inhibits angiogenesis and suppresses tumor growth of human malignant melanoma cells.

    Science.gov (United States)

    Ruma, I Made Winarsa; Putranto, Endy Widya; Kondo, Eisaku; Watanabe, Risayo; Saito, Ken; Inoue, Yusuke; Yamamoto, Ken-Ichi; Nakata, Susumu; Kaihata, Masaji; Murata, Hitoshi; Sakaguchi, Masakiyo

    2014-07-01

    Angiogenesis is essential for tumor development and metastasis. Among several angiogenic factors, vascular endothelial growth factor receptor (VEGF) is important for tumor-derived angiogenesis and commonly overexpressed in solid tumors. Thus, many antitumor strategies targeting VEGF have been developed to inhibit cancer angiogenesis, offering insights into the successful treatment of solid cancers. However, there are a number of issues such as harmful effects on normal vascularity in clinical trials. Taking this into consideration, we employed Cordyceps militaris as an antitumor approach due to its biological safety in vivo. The herbal medicinal mushroom Cordyceps militaris has been reported to show potential anticancer properties including anti-angiogenic capacity; however, its concrete properties have yet to be fully demonstrated. In this study, we aimed to elucidate the biological role of Cordyceps militaris extract in tumor cells, especially in regulating angiogenesis and tumor growth of a human malignant melanoma cell line. We demonstrated that Cordyceps militaris extract remarkably suppressed tumor growth via induction of apoptotic cell death in culture that links to the abrogation of VEGF production in melanoma cells. This was followed by mitigation of Akt1 and GSK-3β activation, while p38α phosphorylation levels were increased. Extract treatment in mouse model xenografted with human melanoma cells resulted in a dramatic antitumor effect with down-regulation of VEGF expression. The results suggest that suppression of tumor growth by Cordyceps militaris extract is, at least, mediated by its anti-angiogenicity and apoptosis induction capacities. Cordyceps militaris extract may be a potent antitumor herbal drug for solid tumors.

  8. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    Science.gov (United States)

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  9. Sunlight suppressing rejection of 280- to 320-nm UV-radiation-induced skin tumors in mice

    International Nuclear Information System (INIS)

    Morison, W.L.; Kelley, S.P.

    1985-01-01

    Repeated exposure of female C3H/HeNCR- mice to sunlight prevented the normal immunologic rejection of a UV-induced tumor. This systemic immunologic alteration was transferred to syngeneic lethally X-irradiated animals with lymphoid cells from mice exposed to sunlight. The lymphoid cells also were able to suppress the capacity of lymphoid cells from normal animals to reject a UV-induced tumor. The 295- to 320-nm wave band appeared to be responsible for this immunosuppressive effect of sunlight because suppression was prevented by filtration of the radiation through Mylar and by application of a sunscreen containing para-aminobenzoic acid. These observations may have importance in understanding the pathogenesis of sunlight-induced skin cancer in humans

  10. Disrupting Hypoxia-Induced Bicarbonate Transport Acidifies Tumor Cells and Suppresses Tumor Growth.

    Science.gov (United States)

    McIntyre, Alan; Hulikova, Alzbeta; Ledaki, Ioanna; Snell, Cameron; Singleton, Dean; Steers, Graham; Seden, Peter; Jones, Dylan; Bridges, Esther; Wigfield, Simon; Li, Ji-Liang; Russell, Angela; Swietach, Pawel; Harris, Adrian L

    2016-07-01

    Tumor hypoxia is associated clinically with therapeutic resistance and poor patient outcomes. One feature of tumor hypoxia is activated expression of carbonic anhydrase IX (CA9), a regulator of pH and tumor growth. In this study, we investigated the hypothesis that impeding the reuptake of bicarbonate produced extracellularly by CA9 could exacerbate the intracellular acidity produced by hypoxic conditions, perhaps compromising cell growth and viability as a result. In 8 of 10 cancer cell lines, we found that hypoxia induced the expression of at least one bicarbonate transporter. The most robust and frequent inductions were of the sodium-driven bicarbonate transporters SLC4A4 and SLC4A9, which rely upon both HIF1α and HIF2α activity for their expression. In cancer cell spheroids, SLC4A4 or SLC4A9 disruption by either genetic or pharmaceutical approaches acidified intracellular pH and reduced cell growth. Furthermore, treatment of spheroids with S0859, a small-molecule inhibitor of sodium-driven bicarbonate transporters, increased apoptosis in the cell lines tested. Finally, RNAi-mediated attenuation of SLC4A9 increased apoptosis in MDA-MB-231 breast cancer spheroids and dramatically reduced growth of MDA-MB-231 breast tumors or U87 gliomas in murine xenografts. Our findings suggest that disrupting pH homeostasis by blocking bicarbonate import might broadly relieve the common resistance of hypoxic tumors to anticancer therapy. Cancer Res; 76(13); 3744-55. ©2016 AACR. ©2016 American Association for Cancer Research.

  11. Inhibition of BRD4 suppresses tumor growth and enhances iodine uptake in thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xuemei [Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province (China); Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, Hubei Province (China); Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province (China); Wu, Xinchao [Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province (China); Zhang, Xiao; Hua, Wenjuan; Zhang, Yajing [Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province (China); Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, Hubei Province (China); Maimaiti, Yusufu [Department of Thyroid and Breast Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province (China); Gao, Zairong, E-mail: gaobonn@163.com [Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province (China); Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, Hubei Province (China); Zhang, Yongxue [Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province (China); Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, Hubei Province (China)

    2016-01-15

    Thyroid cancer is a common malignancy of the endocrine system. Although radioiodine {sup 131}I treatment on differentiated thyroid cancer is widely used, many patients still fail to benefit from {sup 131}I therapy. Therefore, exploration of novel targeted therapies to suppress tumor growth and improve radioiodine uptake remains necessary. Bromodomain-containing protein 4 (BRD4) is an important member of the bromodomain and extra terminal domain family that influences transcription of downstream genes by binding to acetylated histones. In the present study, we found that BRD4 was up-regulated in thyroid cancer tissues and cell lines. Inhibition of BRD4 in thyroid cancer cells by JQ1 resulted in cell cycle arrest at G0/G1 phase and enhanced {sup 131}I uptake in vitro and suppressed tumor growth in vivo. Moreover, JQ1 treatment suppressed C-MYC but enhanced NIS expression. We further demonstrated that BRD4 was enriched in the promoter region of C-MYC, which could be markedly blocked by JQ1 treatment. In conclusion, our findings revealed that the aberrant expression of BRD4 in thyroid cancer is possibly involved in tumor progression, and JQ1 is potentially an effective chemotherapeutic agent against human thyroid cancer. - Highlights: • BRD4 is upregulated in thyroid cancer tissues and cell lines. • Inhibition of BRD4 induced cell cycle arrest and enhanced radioiodine uptake in vitro and impaired tumor growth in vivo. • JQ1 suppressed the expression of C-MYC and promoted the expression of NIS and P21. • JQ1 attenuated the recruitment of BRD4 to MYC promoter in thyroid cancer.

  12. Inhibition of BRD4 suppresses tumor growth and enhances iodine uptake in thyroid cancer

    International Nuclear Information System (INIS)

    Gao, Xuemei; Wu, Xinchao; Zhang, Xiao; Hua, Wenjuan; Zhang, Yajing; Maimaiti, Yusufu; Gao, Zairong; Zhang, Yongxue

    2016-01-01

    Thyroid cancer is a common malignancy of the endocrine system. Although radioiodine "1"3"1I treatment on differentiated thyroid cancer is widely used, many patients still fail to benefit from "1"3"1I therapy. Therefore, exploration of novel targeted therapies to suppress tumor growth and improve radioiodine uptake remains necessary. Bromodomain-containing protein 4 (BRD4) is an important member of the bromodomain and extra terminal domain family that influences transcription of downstream genes by binding to acetylated histones. In the present study, we found that BRD4 was up-regulated in thyroid cancer tissues and cell lines. Inhibition of BRD4 in thyroid cancer cells by JQ1 resulted in cell cycle arrest at G0/G1 phase and enhanced "1"3"1I uptake in vitro and suppressed tumor growth in vivo. Moreover, JQ1 treatment suppressed C-MYC but enhanced NIS expression. We further demonstrated that BRD4 was enriched in the promoter region of C-MYC, which could be markedly blocked by JQ1 treatment. In conclusion, our findings revealed that the aberrant expression of BRD4 in thyroid cancer is possibly involved in tumor progression, and JQ1 is potentially an effective chemotherapeutic agent against human thyroid cancer. - Highlights: • BRD4 is upregulated in thyroid cancer tissues and cell lines. • Inhibition of BRD4 induced cell cycle arrest and enhanced radioiodine uptake in vitro and impaired tumor growth in vivo. • JQ1 suppressed the expression of C-MYC and promoted the expression of NIS and P21. • JQ1 attenuated the recruitment of BRD4 to MYC promoter in thyroid cancer.

  13. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice.

    Science.gov (United States)

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-06-01

    The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcomes compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of preinvasive foci. We investigated the effects of radiation therapy in p48(Cre);LSL-Kras(G12D) (KC) and p48(Cre);LSLKras(G12D);LSL-Trp53(R172H) (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony-stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2 to 12 Gy and analyzed by flow cytometry. Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from radiation treated invasive and preinvasive pancreatic tumors had an immune-suppressive, M2-like phenotype compared with control mice. Pancreata from mice exposed to radiation had fewer CD8(+) T cells than controls, and greater numbers of CD4(+) T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. A neutralizing antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Radiation treatment causes macrophages

  14. Radiation Therapy Induces Macrophages to Suppress Immune Responses Against Pancreatic Tumors in Mice

    Science.gov (United States)

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Ly, Nancy Ngoc Giao; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R.; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-01-01

    Background & Aims The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcome, compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of pre-invasive foci. Methods We investigated the effects of radiation in p48Cre;LSL-KrasG12D (KC) and p48Cre;LSLKrasG12D;LSL-Trp53R172H (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2–12 Gy and analyzed by flow cytometry. Results Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from invasive and pre-invasive pancreatic tumors had an immune-suppressive, M2-like phenotype, compared with control mice. Pancreata from mice exposed to radiation had fewer CD8+ T cells than controls and greater numbers of CD4+ T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. An antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Conclusions Radiation exposure causes macrophages in PDAs

  15. Acetylation Is Crucial for p53-Mediated Ferroptosis and Tumor Suppression

    Directory of Open Access Journals (Sweden)

    Shang-Jui Wang

    2016-10-01

    Full Text Available Although previous studies indicate that loss of p53-mediated cell cycle arrest, apoptosis, and senescence does not completely abrogate its tumor suppression function, it is unclear how the remaining activities of p53 are regulated. Here, we have identified an acetylation site at lysine K98 in mouse p53 (or K101 for human p53. Whereas the loss of K98 acetylation (p53K98R alone has very modest effects on p53-mediated transactivation, simultaneous mutations at all four acetylation sites (p534KR: K98R+ 3KR[K117R+K161R+K162R] completely abolish its ability to regulate metabolic targets, such as TIGAR and SLC7A11. Notably, in contrast to p533KR, p534KR is severely defective in suppressing tumor growth in mouse xenograft models. Moreover, p534KR is still capable of inducing the p53-Mdm2 feedback loop, but p53-dependent ferroptotic responses are markedly abrogated. Together, these data indicate the critical role of p53 acetylation in ferroptotic responses and its remaining tumor suppression activity.

  16. Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression.

    Science.gov (United States)

    Isakov, Noah

    2018-02-01

    The AGC family of serine/threonine kinases (PKA, PKG, PKC) includes more than 60 members that are critical regulators of numerous cellular functions, including cell cycle and differentiation, morphogenesis, and cell survival and death. Mutation and/or dysregulation of AGC kinases can lead to malignant cell transformation and contribute to the pathogenesis of many human diseases. Members of one subgroup of AGC kinases, the protein kinase C (PKC), have been singled out as critical players in carcinogenesis, following their identification as the intracellular receptors of phorbol esters, which exhibit tumor-promoting activities. This observation attracted the attention of researchers worldwide and led to intense investigations on the role of PKC in cell transformation and the potential use of PKC as therapeutic drug targets in cancer diseases. Studies demonstrated that many cancers had altered expression and/or mutation of specific PKC genes. However, the causal relationships between the changes in PKC gene expression and/or mutation and the direct cause of cancer remain elusive. Independent studies in normal cells demonstrated that activation of PKC is essential for the induction of cell activation and proliferation, differentiation, motility, and survival. Based on these observations and the general assumption that PKC isoforms play a positive role in cell transformation and/or cancer progression, many PKC inhibitors have entered clinical trials but the numerous attempts to target PKC in cancer has so far yielded only very limited success. More recent studies demonstrated that PKC function as tumor suppressors, and suggested that future clinical efforts should focus on restoring, rather than inhibiting, PKC activity. The present manuscript provides some historical perspectives on the tumor promoting function of PKC, reviewing some of the observations linking PKC to cancer progression, and discusses the role of PKC in the pathogenesis of cancer diseases and its

  17. miR-137 suppresses tumor growth of malignant melanoma by targeting aurora kinase A

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Xiao; Zhang, Haiping [Department of Dermatology and Venereal Disease, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Lian, Shi [Department of Dermatology and Venereal Disease, Capital Medical University, Beijing 100069 (China); Zhu, Wei, E-mail: zhuwei_2020@163.com [Department of Dermatology and Venereal Disease, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2016-07-01

    As an oncogene, aurora kinase A (AURKA) is overexpressed in various types of human cancers. However, the expression and roles of AURKA in malignant melanoma are largely unknown. In this study, a miR-137-AURKA axis was revealed to regulate melanoma growth. We found a significant increase in levels of AURKA in melanoma. Both genetic knockdown and pharmacologic inhibition of AURKA decreased tumor cell growth in vitro and in vivo. Further found that miR-137 reduced AURKA expression through interaction with its 3′ untranslated region (3′UTR) and that miR-137 was negatively correlated with AURKA expression in melanoma specimens. Overexpression of miR-137 decreased cell proliferation and colony formation in vitro. Notably, re-expression of AURKA significantly rescued miR-137-mediated suppression of cell growth and clonality. In summary, these results reveal that miR-137 functions as a tumor suppressor by targeting AURKA, providing new insights into investigation of therapeutic strategies against malignant melanoma. -- Highlights: •First reported overexpression of AURKA in melanoma. •Targeting AURKA inhibits melanoma growth in vitro and in vivo. •Further found miR-137 suppressed cell growth by binding to AURKA 3′UTR. •Re-expression of AURKA rescued miR-137-mediated suppression. •miR-137-AURKA axis may be potential therapeutic targets of melanoma.

  18. Tetrandrine Suppresses Cancer Angiogenesis and Metastasis in 4T1 Tumor Bearing Mice

    Directory of Open Access Journals (Sweden)

    Jian-Li Gao

    2013-01-01

    Full Text Available Metastasis remains the most deadly aspect of cancer and still evades direct treatment. Thus, there is a great need to develop new treatment regimens to suppress tumor cells that have escaped surgical removal or that may have already disseminated. We have found that tetrandrine (TET exhibits anticolon cancer activity. Here, we investigate the inhibition effect of TET to breast cancer metastasis, angiogenesis and its molecular basis underlying TET’s anticancer activity. We compare TET with chemotherapy drug doxorubicin in 4T1 tumor bearing BALB/c mice model and find that TET exhibits an anticancer metastatic and antiangiogenic activities better than those of doxorubicin. The lung metastatic sites were decreased by TET, which is confirmed by bioluminescence imaging in vivo. On the other hand, laser doppler perfusion imaging (LDI was used for measuring the blood flow of tumor in 4T1-tumor bearing mice. As a result, the local blood perfusion of tumor was markedly decreased by TET after 3 weeks. Mechanistically, TET treatment leads to a decrease in p-ERK level and an increase in NF-κB levels in HUVECs. TET also regulated metastatic and angiogenic related proteins, including vascular endothelial growth factor, hypoxia-inducible factor-1α, integrin β5, endothelial cell specific molecule-1, and intercellular adhesion molecule-1 in vivo.

  19. Type I collagen gene suppresses tumor growth and invasion of malignant human glioma cells

    Directory of Open Access Journals (Sweden)

    Miyata Teruo

    2007-06-01

    Full Text Available Abstract Background Invasion is a hallmark of a malignant tumor, such as a glioma, and the progression is followed by the interaction of tumor cells with an extracellular matrix (ECM. This study examined the role of type I collagen in the invasion of the malignant human glioma cell line T98G by the introduction of the human collagen type I α1 (HCOL1A1 gene. Results The cells overexpressing HCOL1A1 were in a cluster, whereas the control cells were scattered. Overexpression of HCOL1A1 significantly suppressed the motility and invasion of the tumor cells. The glioma cell growth was markedly inhibited in vitro and in vivo by the overexpression of HCOL1A1; in particular, tumorigenicity completely regressed in nude mice. Furthermore, the HCOL1A1 gene induced apoptosis in glioma cells. Conclusion These results indicate that HCOL1A1 have a suppressive biological function in glioma progression and that the introduction of HCOL1A1 provides the basis of a novel therapeutic approach for the treatment of malignant human glioma.

  20. The Yin and Yang of Invariant Natural Killer T Cells in Tumor Immunity—Suppression of Tumor Immunity in the Intestine

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2018-01-01

    Full Text Available CD1d-restricted invariant natural killer T (iNKT cells are known as early responding, potent regulatory cells of immune responses. Besides their established role in the regulation of inflammation and autoimmune disease, numerous studies have shown that iNKT cells have important functions in tumor immunosurveillance and control of tumor metastasis. Tumor-infiltrating T helper 1 (TH1/cytotoxic T lymphocytes have been associated with a positive prognosis. However, inflammation has a dual role in cancer and chronic inflammation is believed to be a driving force in many cancers as exemplified in patients with inflammatory bowel disease that have an increased risk of colorectal cancer. Indeed, NKT cells promote intestinal inflammation in human ulcerative colitis, and the associated animal model, indicating that NKT cells may favor tumor development in intestinal tissue. In contrast to other cancers, recent data from animal models suggest that iNKT cells promote tumor formation in the intestine by supporting an immunoregulatory tumor microenvironment and suppressing TH1 antitumor immunity. Here, we review the role of iNKT cells in suppression of tumor immunity in light of iNKT-cell regulation of intestinal inflammation. We also discuss suppression of immunity in other situations as well as factors that may influence whether iNKT cells have a protective or an immunosuppressive and tumor-promoting role in tumor immunity.

  1. Suppressive versus augmenting effect of the same pretreatment regimen in two murine tumor systems with distinct effector mechanisms

    International Nuclear Information System (INIS)

    Fujiwara, Hiromi; Hamaoka, Toshiyuki; Kitagawa, Masayasu

    1978-01-01

    The effect of presensitization with x-irradiated tumor cells on the development of host's immune resistance against the tumor-associated transplantation antigens (TATA) was investigated in two syngeneic tumor systems with distinct effector mechanisms. When X5563 plasmacytoma, to which immune resistance was mediated exclusively by killer T lymphocytes, was intravenously inoculated into syngeneic C3H/He mice with lower number after 7000 R x-irradiation, the mice failed to exhibit any protective immunity against the subsequent challenge with viable tumor cells. Moreover, these mice lost their capability to develop any immune resistance even after an appropriate immunization procedure. The immunodepression induced by such a pretreatment regimen was specific for X5563 tumor. While no suppressor cell activity was detected in the above pretreated mice, serum factor(s) from these mice was virtually responsible for this suppression. When the serum factor mediating this tumor-specific suppression was fractionated on the Sephadex G-200 column, the suppressive activity was found in albumin-corresponding fraction, free of any immunoglobulin component. In contrast, in MM102 mammary tumor system, in which immune resistance is solely mediated by tumor-specific antibody, the pretreatment with x-irradiated MM102 cells augmented the induction of anti-tumor immunity. These results indicate that while tumor antigens given in the form of x-irradiated tumor cells suppress the induction of killer T cell-mediated immunity in one system, the same presensitization regimen of tumor antigens augments the antibody-mediated immunity in another system, thus giving a divergent effect on the distinct effector mechanisms of syngeneic tumor immunity. (author)

  2. Clinical study on brain tumors in the aged

    International Nuclear Information System (INIS)

    Teramoto, Akira; Manaka, Shinya; Takakura, Kintomo

    1981-01-01

    In order to investigate the clinical features and the prognosis of brain tumors in the aged, 132 cases over 60 years of age were studied from the consecutive series of 1,793 brain tumors in the University of Tokyo Hospital (1963 - 1979). The incidence of brain tumors in the aged was 7.4% on the whole, while it showed a significant increase from 4.8% (1960's) to 11.5% (the later half of 1970's). Histologically, meningiomas were the most common tumors (26%), followed by neurinomas (17%), pituitary adenomas (16%) and metastatic tumors (15%). Malignant gliomas were found more frequently than benign ones. There were more meningiomas as age advanced. The proportion and the number of meningioma cases has obviously increased in recent years when CT scanners became available. Symptoms of intracranial hypertention were found less frequently in aged patients although they were still common in cases of glioblastomas. The duration from onset to surgery was relatively long, especially in cases of neurinomas and pituitary adenomas. Two cases of astrocytomas belonged to the category of silent gliomas. Overall operative mortality rate was 10.6%, while it showed a marked decrease to 4.7% in the 1970's. Five-year survival rates were as follows: meningiomas (58%), pituitary adenomas (70%), neurinomas (80%), glioblastomas (20%) and astrocytomas (25%). As for functional prognoses, 30% of the patients showed poor states on ADL, mostly because of residual psychic disorders. (author)

  3. Implication of p53-dependent cellular senescence related gene, TARSH in tumor suppression

    International Nuclear Information System (INIS)

    Wakoh, Takeshi; Uekawa, Natsuko; Terauchi, Kunihiko; Sugimoto, Masataka; Ishigami, Akihito; Shimada, Jun-ichi; Maruyama, Mitsuo

    2009-01-01

    A novel target of NESH-SH3 (TARSH) was identified as a cellular senescence related gene in mouse embryonic fibroblasts (MEFs) replicative senescence, the expression of which has been suppressed in primary clinical lung cancer specimens. However, the molecular mechanism underlying the regulation of TARSH involved in pulmonary tumorigenesis remains unclear. Here we demonstrate that the reduction of TARSH gene expression by short hairpin RNA (shRNA) system robustly inhibited the MEFs proliferation with increase in senescence-associated β-galactosidase (SA-β-gal) activity. Using p53 -/- MEFs, we further suggest that this growth arrest by loss of TARSH is evoked by p53-dependent p21 Cip1 accumulation. Moreover, we also reveal that TARSH reduction induces multicentrosome in MEFs, which is linked in chromosome instability and tumor development. These results suggest that TARSH plays an important role in proliferation of replicative senescence and may serve as a trigger of tumor development.

  4. Improved MR imaging of head and neck tumors with use of fat suppression with and without Gd-DTPA

    International Nuclear Information System (INIS)

    Tien, R.D.; Hesselink, J.R.; Szumowski, J.; Robbins, K.T.

    1990-01-01

    This paper determines the feasibility of using MR fat-suppression techniques for tumors and lymphadenopathies of the head and neck. To date, 28 patients with various tumors and lymphadenopathies have been evaluated. All patients were studied with standard spin-echo T1-weighted images (T1WI) and T2-weighted images (T2WI), with and without fat-suppression technique. T1WI with Gd-DTPA and fat suppression was performed in 17 patients. Conventional and paired fat-suppression MR images were compared by means of a grading system. The post-Gd-DTPA fat-suppression T1WI and fat-suppression T2WI were found to be most useful. Fat-suppression T2WI were generally even better than post-Gd-DTPA fat-suppression T1WI in cases of squamous cell carcinoma, due to its medium contrast enhancement. Post-Gd-DTPA fat-suppression T1WI were more useful than fat-suppression T2WI in a case of plexiform neurofibroma, due to its fibrous component and lack of protons

  5. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells

    Science.gov (United States)

    2011-01-01

    Background Gum resins obtained from trees of the Burseraceae family (Boswellia sp.) are important ingredients in incense and perfumes. Extracts prepared from Boswellia sp. gum resins have been shown to possess anti-inflammatory and anti-neoplastic effects. Essential oil prepared by distillation of the gum resin traditionally used for aromatic therapy has also been shown to have tumor cell-specific anti-proliferative and pro-apoptotic activities. The objective of this study was to optimize conditions for preparing Boswellea sacra essential oil with the highest biological activity in inducing tumor cell-specific cytotoxicity and suppressing aggressive tumor phenotypes in human breast cancer cells. Methods Boswellia sacra essential oil was prepared from Omani Hougari grade resins through hydrodistillation at 78 or 100 oC for 12 hours. Chemical compositions were identified by gas chromatography-mass spectrometry; and total boswellic acids contents were quantified by high-performance liquid chromatography. Boswellia sacra essential oil-mediated cell viability and death were studied in established human breast cancer cell lines (T47D, MCF7, MDA-MB-231) and an immortalized normal human breast cell line (MCF10-2A). Apoptosis was assayed by genomic DNA fragmentation. Anti-invasive and anti-multicellular tumor properties were evaluated by cellular network and spheroid formation models, respectively. Western blot analysis was performed to study Boswellia sacra essential oil-regulated proteins involved in apoptosis, signaling pathways, and cell cycle regulation. Results More abundant high molecular weight compounds, including boswellic acids, were present in Boswellia sacra essential oil prepared at 100 oC hydrodistillation. All three human breast cancer cell lines were sensitive to essential oil treatment with reduced cell viability and elevated cell death, whereas the immortalized normal human breast cell line was more resistant to essential oil treatment. Boswellia sacra

  6. NF-κB functions as a molecular link between tumor cells and Th1/Tc1 T cells in the tumor microenvironment to exert radiation-mediated tumor suppression

    Science.gov (United States)

    Simon, Priscilla S.; Bardhan, Kankana; Chen, May R.; Paschall, Amy V.; Lu, Chunwan; Bollag, Roni J.; Kong, Feng-Chong; Jin, JianYue; Kong, Feng-Ming; Waller, Jennifer L.; Pollock, Raphael E.; Liu, Kebin

    2016-01-01

    Radiation modulates both tumor cells and immune cells in the tumor microenvironment to exert its anti-tumor activity; however, the molecular connection between tumor cells and immune cells that mediates radiation-exerted tumor suppression activity in the tumor microenvironment is largely unknown. We report here that radiation induces rapid activation of the p65/p50 and p50/p50 NF-κB complexes in human soft tissue sarcoma (STS) cells. Radiation-activated p65/p50 and p50/p50 bind to the TNFα promoter to activate its transcription in STS cells. Radiation-induced TNFα induces tumor cell death in an autocrine manner. A sublethal dose of Smac mimetic BV6 induces cIAP1 and cIAP2 degradation to increase tumor cell sensitivity to radiation-induced cell death in vitro and to enhance radiation-mediated suppression of STS xenografts in vivo. Inhibition of caspases, RIP1, or RIP3 blocks radiation/TNFα-induced cell death, whereas inhibition of RIP1 blocks TNFα-induced caspase activation, suggesting that caspases and RIP1 act sequentially to mediate the non-compensatory cell death pathways. Furthermore, we determined in a syngeneic sarcoma mouse model that radiation up-regulates IRF3, IFNβ, and the T cell chemokines CCL2 and CCL5 in the tumor microenvironment, which are associated with activation and increased infiltration of Th1/Tc1 T cells in the tumor microenvironment. Moreover, tumor-infiltrating T cells are in their active form since both the perforin and FasL pathways are activated in irradiated tumor tissues. Consequently, combined BV6 and radiation completely suppressed tumor growth in vivo. Therefore, radiation-induced NF-κB functions as a molecular link between tumor cells and immune cells in the tumor microenvironment for radiation-mediated tumor suppression. PMID:27014915

  7. Suppression of tumor growth by a new glycosaminoglycan isolated from the African giant snail Achatina fulica.

    Science.gov (United States)

    Lee, Yeon Sil; Yang, Hyun Ok; Shin, Kuk Hyun; Choi, Hyung Seok; Jung, Sang Hoon; Kim, Yong Man; Oh, Deok Kun; Linhardt, Robert J; Kim, Yeong Shik

    2003-03-28

    Acharan sulfate is a new type of glycosaminoglycan from the giant African snail, Achatina fulica. Acharan sulfate, which has a primary repeating disaccharide structure of alpha-D-N-acetylglucosaminyl-2-O-sulfo-alpha-L-iduronic acid, was studied as a potential antitumor agent in both in vivo and in vitro assays. The antiangiogenic activity of acharan sulfate was evaluated in the chorioallantoic membrane assay and by measuring its effect on the proliferation of calf pulmonary artery endothelial cells. In vivo, a matrigel plug assay showed that acharan sulfate suppressed basic fibroblast growth factor (bFGF)-stimulated angiogenesis and lowered the hemoglobin (Hb) content inside the plug. Acharan sulfate was administered s.c. at two doses for 15 days to C57BL/6 mice implanted with murine Lewis lung carcinoma in the back. It was also administered i.p. to ICR mice bearing sarcoma 180 at a dose of 30 mg/kg. Subcutaneous injection of acharan sulfate at doses of 10 and 30 mg/kg decreased tumor weight and tumor volume by 40% without toxicity or resistance. Intraperitoneal injection of acharan sulfate also decreased tumor weight and volume by 40% in sarcoma 180-bearing mice. These results suggest that the antitumor activity of acharan sulfate may be related to the inhibition of angiogenesis.

  8. MiR-30a-5p suppresses tumor growth in colon carcinoma by targeting DTL

    DEFF Research Database (Denmark)

    Baraniskin, Alexander; Birkenkamp-Demtröder, Karin; Maghnouj, Abdelouahid

    2012-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that are involved in different biological processes by suppressing target gene expression. Altered expression of miR-30a-5p has been reported in colon carcinoma. To elucidate its potential biological role in colon cancer, miR-30a-5p was overexpressed via...... with in silico miRNA target prediction, we identified the denticleless protein homolog (DTL) as a potential miRNA-30a-5p target. Subsequent reporter gene assays confirmed the predicted miR-30a-5p binding site in the 3'untranslated region of DTL. Importantly, overexpression of DTL in HCT116 cells partially...... is frequently overexpressed in colorectal cancer. Thus, our data suggest that restoring miR-30a-5p function may prove useful as therapeutic strategy for tumors with reduced miR-30a-5p expression....

  9. CD147 silencing inhibits tumor growth by suppressing glucose transport in melanoma.

    Science.gov (United States)

    Su, Juan; Gao, Tianyuan; Jiang, Minghao; Wu, Lisha; Zeng, Weiqi; Zhao, Shuang; Peng, Cong; Chen, Xiang

    2016-10-04

    Melanoma is a very malignant disease and there are still no effective treatments. CD147 participates in the carcinogenesis of multiple human cancers and GLUT-1, as a glucose transporter, is associated with tumor growth. However, the function of CD147 and GLUT-1 in melanoma have not been completely understood. Thus, in this study we investigated the expression of CD147 and GLUT-1 in melanoma tissue, which were overexpressed compared with that in nevus tissue. In addition, CD147 and GLUT-1 were co-localized in the cytoplasm of human melanoma A375 cells. Immunoprecipitation proved that CD147 interacted with GLUT-1 at D105-199. Silencing CD147 by specific siRNA could downregulate GLUT-1 level via inhibiting PI3K/Akt signaling and decrease glucose uptake in A375 cells. In vivo experiments also supported that CD147 knockdown suppressed the tumor growth in melanoma subcutaneous mice model, observed by micro PET/CT. Our results could help validate CD147 as a new therapeutic target for treating melanoma.

  10. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Dang, Qiang; Song, Wenbin; Xu, Defeng; Ma, Yanmin; Li, Feng; Zeng, Jin; Zhu, Guodong; Wang, Xinyang; Chang, Luke S; He, Dalin; Li, Lei

    2015-09-01

    The effects of the flavonoid compound, kaempferol, which is an inhibitor of cancer cell proliferation and an inducer of cell apoptosis have been shown in various cancers, including lung, pancreatic, and ovarian, but its effect has never been studied in bladder cancer. Here, we investigated the effects of kaempferol on bladder cancer using multiple in vitro cell lines and in vivo mice studies. The MTT assay results on various bladder cancer cell lines showed that kaempferol enhanced bladder cancer cell cytotoxicity. In contrast, when analyzed by the flow cytometric analysis, DNA ladder experiment, and TUNEL assay, kaempferol significantly was shown to induce apoptosis and cell cycle arrest. These in vitro results were confirmed in in vivo mice studies using subcutaneous xenografted mouse models. Consistent with the in vitro results, we found that treating mice with kaempferol significant suppression in tumor growth compared to the control group mice. Tumor tissue staining results showed decreased expressions of the growth related markers, yet increased expressions in apoptosis markers in the kaempferol treated group mice tissues compared to the control group mice. In addition, our in vitro and in vivo data showed kaempferol can also inhibit bladder cancer invasion and metastasis. Further mechanism dissection studies showed that significant down-regulation of the c-Met/p38 signaling pathway is responsible for the kaempferol mediated cell proliferation inhibition. All these findings suggest kaempferol might be an effective and novel chemotherapeutic drug to apply for the future therapeutic agent to combat bladder cancer. © 2014 Wiley Periodicals, Inc.

  11. Gleditsia Saponin C Induces A549 Cell Apoptosis via Caspase-Dependent Cascade and Suppresses Tumor Growth on Xenografts Tumor Animal Model

    Directory of Open Access Journals (Sweden)

    Ye Cheng

    2018-01-01

    Full Text Available Saponins are natural compounds and possess the most promising anti-cancer function. Here, a saponin gleditsia saponin C (GSC, extracted from gleditsiae fructus abnormalis, could induce apoptosis of lung tumor cell line A549 via caspase dependent cascade and this effect could be prevented by the caspase inhibitors. In addition, GSC induced cell death companied with an increase ratio of Bax:Bcl-2 and inhibition of ERK and Akt signaling pathways. Meanwhile, GSC suppressed TNFα inducing NF-κB activation and increased the susceptibility of lung cancer cell to TNFα induced apoptosis. Furthermore, on mouse xenograft model, GSC significantly suppressed tumor growth and induced cancer cell apoptosis, which validated the anti-tumor effect of GSC. Based on these results, GSC might be a promising drug candidate of anti-lung cancer for its potential clinical applications.

  12. The role of TGFBI in mesothelioma and breast cancer: association with tumor suppression

    International Nuclear Information System (INIS)

    Li, Bingyan; Wen, Gengyun; Zhao, Yongliang; Tong, Jian; Hei, Tom K

    2012-01-01

    Transforming growth factor β induced (TGFBI) product, an extracellular matrix (ECM) protein, has been implicated as a putative tumor suppressor in recent studies. Our previous findings revealed that expression of TGFBI gene is down-regulated in a variety of cancer cell lines and clinical tissue samples. In this study, ectopic expression of TGFBI was used to ascertain its role as a tumor suppressor and to determine the underlying mechanism of mesothelioma and breast cancer. Cells were stably transfected with pRc/CMV2-TGFBI and pRc/CMV2-empty vector with Lipofectamine Plus. Ectopic expression of TGFBI was quantified by using quantitative PCR and Western-blotting. Characterization of cell viability was assessed using growth curve, clonogenic survival and soft agar growth. The potential of tumor formation was evaluated by an in vivo mouse model. Cell cycle was analyzed via flow cytometry. Expressions of p21, p53, p16 and p14 were examined using Western-blotting. Senescent cells were sorted by using a Senescence β-Galactosidase Staining Kit. Telomerase activity was measured using quantitative telomerase detection kit. In this study, an ectopic expression of TGFBI in two types of cancer cell lines, a mesothelioma cell line NCI-H28 and a breast cancer cell line MDA-MB-231 was found to have reduced the cellular growth, plating efficiency, and anchorage-independent growth. The tumorigenicity of these cancer cell lines as determined by subcutaneous inoculation in nude mice was similarly suppressed by TGFBI expression. Likewise, TGFBI expression reduced the proportion of S-phase while increased the proportion of G1 phase in these cells. The redistribution of cell cycle phase after re-expression of TGFBI was correspondent with transiently elevated expression of p21 and p53. The activities of senescence-associated β-galactosidase and telomerase were enhanced in TGFBI-transfected cells. Collectively, these results imply that TGFBI plays a suppressive role in the development

  13. Inhibition of IL-17A suppresses enhanced-tumor growth in low dose pre-irradiated tumor beds.

    Directory of Open Access Journals (Sweden)

    Eun-Jung Lee

    Full Text Available Ionizing radiation induces modification of the tumor microenvironment such as tumor surrounding region, which is relevant to treatment outcome after radiotherapy. In this study, the effects of pre-irradiated tumor beds on the growth of subsequently implanted tumors were investigated as well as underlying mechanism. The experimental model was set up by irradiating the right thighs of C3H/HeN mice with 5 Gy, followed by the implantation of HCa-I and MIH-2. Both implanted tumors in the pre-irradiated bed showed accelerated-growth compared to the control. Tumor-infiltrated lymphocyte (TIL levels were increased, as well as pro-tumor factors such as IL-6 and transforming growth factor-beta1 (TGF-β1 in the pre-irradiated group. In particular, the role of pro-tumor cytokine interleukin-17A (IL-17A was investigated as a possible target mechanism because IL-6 and TGF-β are key factors in Th17 cells differentiation from naïve T cells. IL-17A expression was increased not only in tumors, but also in CD4+ T cells isolated from the tumor draining lymph nodes. The effect of IL-17A on tumor growth was confirmed by treating tumors with IL-17A antibody, which abolished the acceleration of tumor growth. These results indicate that the upregulation of IL-17A seems to be a key factor for enhancing tumor growth in pre-irradiated tumor beds.

  14. Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2 polarization

    International Nuclear Information System (INIS)

    Jang, Ji-Young; Lee, Jong-Kuen; Jeon, Yoon-Kyung; Kim, Chul-Woo

    2013-01-01

    Tumor-associated macrophages (TAM) play an important role in tumor microenvironment. Particularly, M2 macrophages contribute to tumor progression, depending on the expression of NF-κB. Tumor-derived exosomes can modulate tumor microenvironment by transferring miRNAs to immune cells. Epigallocatechin gallate (EGCG) has well known anti-tumor effects; however, no data are available on the influence of EGCG on communication with cancer cells and TAM. Murine breast cancer cell lines, 4T1, was used for in vivo and ex vivo studies. Exosome was extracted from EGCG-treated 4T1 cells, and the change of miRNAs was screened using microarray. Tumor cells or TAM isolated from murine tumor graft were incubated with exosomes derived from EGCG-treated and/or miR-16 inhibitor-transfected 4T1 cells. Chemokines for monocytes (CSF-1 and CCL-2), cytokines both with high (IL-6 and TGF-β) and low (TNF-α) expression in M2 macrophages, and molecules in NF-κB pathway (IKKα and Iκ-B) were evaluated by RT-qPCR or western blot. EGCG suppressed tumor growth in murine breast cancer model, which was associated with decreased TAM and M2 macrophage infiltration. Expression of chemokine for monocytes (CSF-1 and CCL-2) were low in tumor cells from EGCG-treated mice, and cytokines of TAM was skewed from M2- into M1-like phenotype by EGCG as evidenced by decreased IL-6 and TGF-β and increased TNF-α. Ex vivo incubation of isolated tumor cells with EGCG inhibited the CSF-1 and CCL-2 expression. Ex vivo incubation of TAM with exosomes from EGCG-treated 4T1 cells led to IKKα suppression and concomitant I-κB accumulation; increase of IL-6 and TGF-β; and, decrease of TNF-α. EGCG up-regulated miR-16 in 4T1 cells and in the exosomes. Treatment of tumor cells or TAM with exosomes derived from EGCG-treated and miR-16-knock-downed 4T1 cells restored the above effects on chemokines, cytokines, and NF-κB pathway elicited by EGCG-treated exosomes. Our data demonstrate that EGCG up-regulates miR-16 in

  15. Regorafenib inhibits tumor progression through suppression of ERK/NF-κB activation in hepatocellular carcinoma bearing mice.

    Science.gov (United States)

    Weng, Mao-Chi; Wang, Mei-Hui; Tsai, Jai-Jen; Kuo, Yu-Cheng; Liu, Yu-Chang; Hsu, Fei-Ting; Wang, Hsin-Ell

    2018-03-13

    Regorafenib has been demonstrated in our previous study to trigger apoptosis through suppression of extracellular signal-regulated kinase (ERK)/nuclear factor-κB (NF-κB) activation in hepatocellular carcinoma (HCC) SK-Hep1 cells in vitro However, the effect of regorafenib on NF-κB-modulated tumor progression in HCC in vivo is ambiguous. The aim of the present study is to investigate the effect of regorafenib on NF-κB-modulated tumor progression in HCC bearing mouse model. pGL4.50 luciferase reporter vector transfected SK-Hep1 (SK-Hep1/ luc2 ) and Hep3B 2.1-7 tumor bearing mice were established and used for this study. Mice were treated with vehicle or regorafenib (20 mg/kg/day by gavage) for 14 days. Effects of regorafenib on tumor growth and protein expression together with toxicity of regorafenib were evaluated with digital caliper and bioluminescence imaging (BLI), ex vivo Western blotting immunohistochemistry (IHC) staining, and measurement of body weight and pathological examination of liver tissue, respectively, in SK-Hep1/ luc2 and Hep3B 2.1-7 tumor bearing mice. The results indicated regorafenib significantly reduced tumor growth and expression of phosphorylated ERK, NF-κB p65 (Ser536), phosphorylated AKT and tumor progression-associated proteins. In addition, we found regorafenib induced both extrinsic and intrinsic apoptotic pathways. Body weight and liver morphology were not affected by regorafenib treatment. Our findings present the mechanism of tumor progression inhibition by regorafenib is linked to suppression of ERK/NF-κB signaling in SK-Hep1/ luc2 and Hep3B 2.1-7 tumor-bearing mice. ©2018 The Author(s).

  16. A stressful microenvironment: opposing effects of the endoplasmic reticulum stress response in the suppression and enhancement of adaptive tumor immunity.

    Science.gov (United States)

    Rausch, Matthew P; Sertil, Aparna Ranganathan

    2015-03-01

    The recent clinical success of immunotherapy in the treatment of certain types of cancer has demonstrated the powerful ability of the immune system to control tumor growth, leading to significantly improved patient survival. However, despite these promising results current immunotherapeutic strategies are still limited and have not yet achieved broad acceptance outside the context of metastatic melanoma. The limitations of current immunotherapeutic approaches can be attributed in part to suppressive mechanisms present in the tumor microenvironment that hamper the generation of robust antitumor immune responses thus allowing tumor cells to escape immune-mediated destruction. The endoplasmic reticulum (ER) stress response has recently emerged as a potent regulator of tumor immunity. The ER stress response is an adaptive mechanism that allows tumor cells to survive in the harsh growth conditions inherent to the tumor milieu such as low oxygen (hypoxia), low pH and low levels of glucose. Activation of ER stress can also alter the cancer cell response to therapies. In addition, the ER stress response promotes tumor immune evasion by inducing the production of protumorigenic inflammatory cytokines and impairing tumor antigen presentation. However, the ER stress response can boost antitumor immunity in some situations by enhancing the processing and presentation of tumor antigens and by inducing the release of immunogenic factors from stressed tumor cells. Here, we discuss the dualistic role of the ER stress response in the modulation of tumor immunity and highlight how strategies to either induce or block ER stress can be employed to improve the clinical efficacy of tumor immunotherapy.

  17. Precise let-7 expression levels balance organ regeneration against tumor suppression

    Science.gov (United States)

    Wu, Linwei; Nguyen, Liem H; Zhou, Kejin; de Soysa, T Yvanka; Li, Lin; Miller, Jason B; Tian, Jianmin; Locker, Joseph; Zhang, Shuyuan; Shinoda, Gen; Seligson, Marc T; Zeitels, Lauren R; Acharya, Asha; Wang, Sam C; Mendell, Joshua T; He, Xiaoshun; Nishino, Jinsuke; Morrison, Sean J; Siegwart, Daniel J; Daley, George Q; Shyh-Chang, Ng; Zhu, Hao

    2015-01-01

    The in vivo roles for even the most intensely studied microRNAs remain poorly defined. Here, analysis of mouse models revealed that let-7, a large and ancient microRNA family, performs tumor suppressive roles at the expense of regeneration. Too little or too much let-7 resulted in compromised protection against cancer or tissue damage, respectively. Modest let-7 overexpression abrogated MYC-driven liver cancer by antagonizing multiple let-7 sensitive oncogenes. However, the same level of overexpression blocked liver regeneration, while let-7 deletion enhanced it, demonstrating that distinct let-7 levels can mediate desirable phenotypes. let-7 dependent regeneration phenotypes resulted from influences on the insulin-PI3K-mTOR pathway. We found that chronic high-dose let-7 overexpression caused liver damage and degeneration, paradoxically leading to tumorigenesis. These dose-dependent roles for let-7 in tissue repair and tumorigenesis rationalize the tight regulation of this microRNA in development, and have important implications for let-7 based therapeutics. DOI: http://dx.doi.org/10.7554/eLife.09431.001 PMID:26445246

  18. Pharmacological blockade of cholesterol trafficking by cepharanthine in endothelial cells suppresses angiogenesis and tumor growth.

    Science.gov (United States)

    Lyu, Junfang; Yang, Eun Ju; Head, Sarah A; Ai, Nana; Zhang, Baoyuan; Wu, Changjie; Li, Ruo-Jing; Liu, Yifan; Yang, Chen; Dang, Yongjun; Kwon, Ho Jeong; Ge, Wei; Liu, Jun O; Shim, Joong Sup

    2017-11-28

    Cholesterol is an important modulator of membrane protein function and signaling in endothelial cells, thus making it an emerging target for anti-angiogenic agents. In this study, we employed a phenotypic screen that detects intracellular cholesterol distribution in endothelial cells (HUVEC) and identified 13 existing drugs as cholesterol trafficking inhibitors. Cepharanthine, an approved drug for anti-inflammatory and cancer management use, was amongst the candidates, which was selected for in-depth mechanistic studies to link cholesterol trafficking and angiogenesis. Cepharanthine inhibited the endolysosomal trafficking of free-cholesterol and low-density lipoprotein in HUVEC by binding to Niemann-Pick disease, type C1 (NPC1) protein and increasing the lysosomal pH. The blockade of cholesterol trafficking led to a cholesterol-dependent dissociation of mTOR from the lysosomes and inhibition of its downstream signaling. Cepharanthine inhibited angiogenesis in HUVEC and in zebrafish in a cholesterol-dependent manner. Furthermore, cepharanthine suppressed tumor growth in vivo by inhibiting angiogenesis and it enhanced the antitumor activity of the standard chemotherapy cisplatin in lung and breast cancer xenografts in mice. Altogether, these results strongly support the idea that cholesterol trafficking is a viable drug target for anti-angiogenesis and that the inhibitors identified among existing drugs, such as cepharanthine, could be potential anti-angiogenic and antitumor agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Differentiation-inducing factor-1 suppresses gene expression of cyclin D1 in tumor cells

    International Nuclear Information System (INIS)

    Yasmin, Tania; Takahashi-Yanaga, Fumi; Mori, Jun; Miwa, Yoshikazu; Hirata, Masato; Watanabe, Yutaka; Morimoto, Sachio; Sasaguri, Toshiyuki

    2005-01-01

    To determine the mechanism by which differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium discoideum, inhibits tumor cell proliferation, we examined the effect of DIF-1 on the gene expression of cyclin D1. DIF-1 strongly reduced the expression of cyclin D1 mRNA and correspondingly decreased the amount of β-catenin in HeLa cells and squamous cell carcinoma cells. DIF-1 activated glycogen synthase kinase-3β (GSK-3β) and inhibition of GSK-3β attenuated the DIF-1-induced β-catenin degradation, indicating the involvement of GSK-3β in this effect. Moreover, DIF-1 reduced the activities of T-cell factor (TCF)/lymphoid enhancer factor (LEF) reporter plasmid and a reporter gene driven by the human cyclin D1 promoter. Eliminating the TCF/LEF consensus site from the cyclin D1 promoter diminished the effect of DIF-1. These results suggest that DIF-1 inhibits Wnt/β-catenin signaling, resulting in the suppression of cyclin D1 promoter activity

  20. Hyaluronan suppresses prostate tumor cell proliferation through diminished expression of N-cadherin and aberrant growth factor receptor signaling

    International Nuclear Information System (INIS)

    Bharadwaj, Alamelu G.; Goodrich, Nathaniel P.; McAtee, Caitlin O.; Haferbier, Katie; Oakley, Gregory G.; Wahl, James K.; Simpson, Melanie A.

    2011-01-01

    Hyaluronan (HA) production has been functionally implicated in prostate tumorigenesis and metastasis. We previously used prostate tumor cells overexpressing the HA synthesizing enzyme HAS3 or the clinically relevant hyaluronidase Hyal1 to show that excess HA production suppresses tumor growth, while HA turnover accelerates spontaneous metastasis from the prostate. Here, we examined pathways responsible for effects of HAS3 and Hyal1 on tumor cell phenotype. Detailed characterization of cell cycle progression revealed that expression of Hyal1 accelerated cell cycle re-entry following synchronization, whereas HAS3 alone delayed entry. Hyal1 expressing cells exhibited a significant reduction in their ability to sustain ERK phosphorylation upon stimulation by growth factors, and in their expression of the cyclin-dependent kinase inhibitor p21. In contrast, HAS3 expressing cells showed prolonged ERK phosphorylation and increased expression of both p21 and p27, in asynchronous and synchronized cultures. Changes in cell cycle regulatory proteins were accompanied by HA-induced suppression of N-cadherin, while E-cadherin expression and β-catenin expression and distribution remained unchanged. Our results are consistent with a model in which excess HA synthesis suppresses cell proliferation by promoting homotypic E-cadherin mediated cell-cell adhesion, consequently signaling to elevate cell cycle inhibitor expression and suppress G1- to S-phase transition.

  1. NF-κB RelA renders tumor-associated macrophages resistant to and capable of directly suppressing CD8+ T cells for tumor promotion.

    Science.gov (United States)

    Li, Liwen; Han, Lei; Sun, Fan; Zhou, Jingjiao; Ohaegbulam, Kim C; Tang, Xudong; Zang, Xingxing; Steinbrecher, Kris A; Qu, Zhaoxia; Xiao, Gutian

    2018-01-01

    Activation of the inflammatory transcription factor NF-κB in tumor-associated macrophages (TAMs) is assumed to contribute to tumor promotion. However, whether and how NF-κB drives the antitumor macrophages to become pro-tumorigenic have not been determined in any cancer type yet. Similarly, how TAMs repress CD8 + cytotoxic T lymphocytes (CTLs) remains largely unknown, although their importance in regulatory T (Treg) cell regulation and tumor promotion has been well appreciated. Here, using an endogenous lung cancer model we uncover a direct crosstalk between TAMs and CTLs. TAMs suppress CTLs through the T-cell inhibitory molecule B7x (B7-H4/B7S1) in a cell-cell contact manner, whereas CTLs kill TAMs in a tumor antigen-specific manner. Remarkably, TAMs secrete the known T-cell suppressive cytokine interleukin-10 (IL-10) to activate, but not to repress, CTLs. Notably, one major role of cell-intrinsic NF-κB RelA is to drive TAMs to suppress CTLs for tumor promotion. It induces B7x expression in TAMs directly, and restricts IL-10 expression indirectly by repressing expression of the NF-κB cofactor Bcl3 and subsequent Bcl3/NF-κB1-mediated transcription of IL-10. It also renders TAMs resistant to CTLs by up-regulating anti-apoptotic genes. These studies help understand how immunity is shaped in lung tumorigenesis, and suggest a RelA-targeted immunotherapy for this deadliest cancer.

  2. PET measurements of hyperthermia-induced suppression of protein synthesis in tumors in relation to effects on tumor growth

    International Nuclear Information System (INIS)

    Daemen, B.J.; Elsinga, P.H.; Mooibroek, J.; Paans, A.M.; Wieringa, A.R.; Konings, A.W.; Vaalburg, W.

    1991-01-01

    Hyperthermia-induced metabolic changes in tumor tissue have been monitored by PET. Uptake of L-[1-11C]tyrosine in rhabdomyosarcoma tissue of Wag/Rij rats was dose-dependently reduced after local hyperthermia treatment at 42, 45, or 47 degrees C. Tumor blood flow, as measured by PET with 13NH3, appeared to be unchanged. The L-[1-11C]tyrosine uptake data were compared to uptake data of L-[1-14C]tyrosine and with data on the incorporation of L-[1-14C]tyrosine into tumor proteins. After intravenous injection, the 14C data were obtained from dissected tumor tissue. Heat-induced inhibition of the incorporation of L-[1-14C]tyrosine into tumor proteins tallied with the L-[1-11C]tyrosine uptake data. Heat-induced inhibition of amino acid uptake in the tumor correlated well with regression of tumor growth. It is concluded that PET using L-[1-11C]tyrosine is eligible for monitoring the effect of hyperthermia on tumor growth

  3. Cinnamic aldehyde suppresses hypoxia-induced angiogenesis via inhibition of hypoxia-inducible factor-1α expression during tumor progression.

    Science.gov (United States)

    Bae, Woom-Yee; Choi, Jae-Sun; Kim, Ja-Eun; Jeong, Joo-Won

    2015-11-01

    During tumor progression, hypoxia-inducible factor 1 (HIF-1) plays a critical role in tumor angiogenesis and tumor growth by regulating the transcription of several genes in response to a hypoxic environment and changes in growth factors. This study was designed to investigate the effects of cinnamic aldehyde (CA) on tumor growth and angiogenesis and the mechanisms underlying CA's anti-angiogenic activities. We found that CA administration inhibits tumor growth and blocks tumor angiogenesis in BALB/c mice. In addition, CA treatment decreased HIF-1α protein expression and vascular endothelial growth factor (VEGF) expression in mouse tumors and Renca cells exposed to hypoxia in vitro. Interestingly, CA treatment did not affect the stability of von Hippel-Lindau protein (pVHL)-associated HIF-1α and CA attenuated the activation of mammalian target of rapamycin (mTOR) pathway. Collectively, these findings strongly indicate that the anti-angiogenic activity of CA is, at least in part, regulated by the mTOR pathway-mediated suppression of HIF-1α protein expression and these findings suggest that CA may be a potential drug for human cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Suppression of tumor growth and angiogenesis by a specific antagonist of the cell-surface expressed nucleolin.

    Directory of Open Access Journals (Sweden)

    Damien Destouches

    Full Text Available BACKGROUND: Emerging evidences suggest that nucleolin expressed on the cell surface is implicated in growth of tumor cells and angiogenesis. Nucleolin is one of the major proteins of the nucleolus, but it is also expressed on the cell surface where is serves as a binding protein for variety of ligands implicated in cell proliferation, differentiation, adhesion, mitogenesis and angiogenesis. METHODOLOGY/PRINCIPAL FINDINGS: By using a specific antagonist that binds the C-terminal tail of nucleolin, the HB-19 pseudopeptide, here we show that the growth of tumor cells and angiogenesis are suppressed in various in vitro and in vivo experimental models. HB-19 inhibited colony formation in soft agar of tumor cell lines, impaired migration of endothelial cells and formation of capillary-like structures in collagen gel, and reduced blood vessel branching in the chick embryo chorioallantoic membrane. In athymic nude mice, HB-19 treatment markedly suppressed the progression of established human breast tumor cell xenografts in nude mice, and in some cases eliminated measurable tumors while displaying no toxicity to normal tissue. This potent antitumoral effect is attributed to the direct inhibitory action of HB-19 on both tumor and endothelial cells by blocking and down regulating surface nucleolin, but without any apparent effect on nucleolar nucleolin. CONCLUSION/SIGNIFICANCE: Our results illustrate the dual inhibitory action of HB-19 on the tumor development and the neovascularization process, thus validating the cell-surface expressed nucleolin as a strategic target for an effective cancer drug. Consequently, the HB-19 pseudopeptide provides a unique candidate to consider for innovative cancer therapy.

  5. ω-3 Polyunsaturated fatty acids and their cytochrome P450-derived metabolites suppress colorectal tumor development in mice.

    Science.gov (United States)

    Wang, Weicang; Yang, Jun; Nimiya, Yoshiki; Lee, Kin Sing Stephen; Sanidad, Katherine; Qi, Weipeng; Sukamtoh, Elvira; Park, Yeonhwa; Liu, Zhenhua; Zhang, Guodong

    2017-10-01

    Many studies have shown that dietary intake of ω-3 polyunsaturated fatty acids (PUFAs) reduces the risks of colorectal cancer; however, the underlying mechanisms are not well understood. Here we used a LC-MS/MS-based lipidomics to explore the role of eicosanoid signaling in the anti-colorectal cancer effects of ω-3 PUFAs. Our results showed that dietary feeding of ω-3 PUFAs-rich diets suppressed growth of MC38 colorectal tumor, and modulated profiles of fatty acids and eicosanoid metabolites in C57BL/6 mice. Notably, we found that dietary feeding of ω-3 PUFAs significantly increased levels of epoxydocosapentaenoic acids (EDPs, metabolites of ω-3 PUFA produced by cytochrome P450 enzymes) in plasma and tumor tissue of the treated mice. We further showed that systematic treatment with EDPs (dose=0.5 mg/kg per day) suppressed MC38 tumor growth in mice, with reduced expressions of pro-oncogenic genes such as C-myc, Axin2, and C-jun in tumor tissues. Together, these results support that formation of EDPs might contribute to the anti-colorectal cancer effects of ω-3 PUFAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model.

    Science.gov (United States)

    Koskimaki, Jacob E; Karagiannis, Emmanouil D; Tang, Benjamin C; Hammers, Hans; Watkins, D Neil; Pili, Roberto; Popel, Aleksander S

    2010-02-01

    Angiogenesis is the formation of neovasculature from a pre-existing vascular network. Progression of solid tumors including lung cancer is angiogenesis-dependent. We previously introduced a bioinformatics-based methodology to identify endogenous anti-angiogenic peptide sequences, and validated these predictions in vitro in human umbilical vein endothelial cell (HUVEC) proliferation and migration assays. One family of peptides with high activity is derived from the alpha-fibrils of type IV collagen. Based on the results from the in vitro screening, we have evaluated the ability of a 20 amino acid peptide derived from the alpha5 fibril of type IV collagen, pentastatin-1, to suppress vessel growth in an angioreactor-based directed in vivo angiogenesis assay (DIVAA). In addition, pentastatin-1 suppressed tumor growth with intraperitoneal peptide administration in a small cell lung cancer (SCLC) xenograft model in nude mice using the NCI-H82 human cancer cell line. Pentastatin-1 decreased the invasion of vessels into angioreactors in vivo in a dose dependent manner. The peptide also decreased the rate of tumor growth and microvascular density in vivo in a small cell lung cancer xenograft model. The peptide treatment significantly decreased the invasion of microvessels in angioreactors and the rate of tumor growth in the xenograft model, indicating potential treatment for angiogenesis-dependent disease, and for translational development as a therapeutic agent for lung cancer.

  7. Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model

    International Nuclear Information System (INIS)

    Koskimaki, Jacob E; Karagiannis, Emmanouil D; Tang, Benjamin C; Hammers, Hans; Watkins, D Neil; Pili, Roberto; Popel, Aleksander S

    2010-01-01

    Angiogenesis is the formation of neovasculature from a pre-existing vascular network. Progression of solid tumors including lung cancer is angiogenesis-dependent. We previously introduced a bioinformatics-based methodology to identify endogenous anti-angiogenic peptide sequences, and validated these predictions in vitro in human umbilical vein endothelial cell (HUVEC) proliferation and migration assays. One family of peptides with high activity is derived from the α-fibrils of type IV collagen. Based on the results from the in vitro screening, we have evaluated the ability of a 20 amino acid peptide derived from the α5 fibril of type IV collagen, pentastatin-1, to suppress vessel growth in an angioreactor-based directed in vivo angiogenesis assay (DIVAA). In addition, pentastatin-1 suppressed tumor growth with intraperitoneal peptide administration in a small cell lung cancer (SCLC) xenograft model in nude mice using the NCI-H82 human cancer cell line. Pentastatin-1 decreased the invasion of vessels into angioreactors in vivo in a dose dependent manner. The peptide also decreased the rate of tumor growth and microvascular density in vivo in a small cell lung cancer xenograft model. The peptide treatment significantly decreased the invasion of microvessels in angioreactors and the rate of tumor growth in the xenograft model, indicating potential treatment for angiogenesis-dependent disease, and for translational development as a therapeutic agent for lung cancer

  8. Wortmannin efficiently suppresses the recovery from radiation-induced damage in pimonidazole-unlabeled quiescent tumor cell population

    International Nuclear Information System (INIS)

    Masunaga, Shin-ichiro; Suzuki, Minoru; Kondo, Natsuko; Narabayashi, Masaru; Ono, Koji; Sakurai, Yoshinori; Tanaka, Hiroki; Maruhashi, Akira

    2013-01-01

    Labeling of proliferating (P) cells in mice bearing EL4 tumors was achieved by continuous administration of 5-bromo-2'-deoxyuridine (BrdU). Tumors were irradiated with γ-rays at 1 h after pimonidazole administration followed by caffeine or wortmannin treatment. Twenty-four hours later, assessment of the responses of quiescent (Q) and total (=P+Q) cell populations were based on the frequencies of micronucleation and apoptosis using immunofluorescence staining for BrdU. The response of the pimonidazole-unlabeled tumor cell fractions was assessed by means of apoptosis frequency using immunofluorescence staining for pimonidazole. The pimonidazole-unlabeled cell fraction showed significantly enhanced radio-sensitivity compared with the whole cell fraction more remarkably in Q cells than total cells. However, a significantly greater decrease in radio-sensitivity in the pimonidazole-unlabeled than the whole cell fraction, evaluated using an assay performed 24 hours after irradiation, was more clearly observed in Q cells than total cells. In both the pimonidazole-unlabeled and the whole cell fractions, wortmannin efficiently suppressed the reduction in sensitivity due to delayed assay. Wortmannin combined with γ-ray irradiation is useful for suppressing the recovery from radiation-induced damage especially in the pimonidazole-unlabeled cell fraction within the total and Q tumor cell populations. (author)

  9. Down-regulation of HSP40 gene family following OCT4B1 suppression in human tumor cell lines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Mirzaei

    2016-02-01

    Full Text Available Objective(s: The OCT4B1, as one of OCT4 variants, is expressed in cancer cell lines and tissues more than other variants and plays an important role in apoptosis and stress (heat shock protein pathways. The present study was designed to determine the effects of OCT4B1 silencing on expressional profile of HSP40 gene family expression in three different human tumor cell lines. Materials and Methods: The OCT4B1 expression was suppressed by specific siRNA transfection in AGS (gastric adenocarcinoma, 5637 (bladder tumor and U-87MG (brain tumor cell lines employing Lipofectamine reagent. Real-time PCR array technique was employed for RNA qualification. The fold changes were calculated using RT2 Profiler PCR array data analysis software version 3.5. Results: Our results indicated that fifteen genes (from 36 studied genes were down-regulated and two genes (DNAJC11 and DNAJC5B were up-regulated in all three studied tumor cell lines by approximately more than two folds. The result of other studied genes (19 genes showed different expressional pattern (up or down-expression based on tumor cell lines. Conclusion: According to the findings of the present study, we may suggest that there is a direct correlation between OCT4B1 expression in tumor cell lines (and tissues and HSP40 family gene expressions to escape from apoptosis and cancer expansion.

  10. A low carbohydrate, high protein diet suppresses intratumoral androgen synthesis and slows castration-resistant prostate tumor growth in mice.

    Science.gov (United States)

    Fokidis, H Bobby; Yieng Chin, Mei; Ho, Victor W; Adomat, Hans H; Soma, Kiran K; Fazli, Ladan; Nip, Ka Mun; Cox, Michael; Krystal, Gerald; Zoubeidi, Amina; Tomlinson Guns, Emma S

    2015-06-01

    likely to be mechanistic drivers behind the observed tumor growth suppression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Voluntary Running Suppresses Tumor Growth through Epinephrine- and IL-6-Dependent NK Cell Mobilization and Redistribution

    DEFF Research Database (Denmark)

    Pedersen, Line; Idorn, Manja; Olofsson, Gitte H.

    2016-01-01

    Regular exercise reduces the risk of cancer and disease recurrence. Yet the mechanisms behind this protection remain to be elucidated. In this study, tumor-bearing mice randomized to voluntary wheel running showed over 60% reduction in tumor incidence and growth across five different tumor models....... Microarray analysis revealed training-induced upregulation of pathways associated with immune function. NK cell infiltration was significantly increased in tumors from running mice, whereas depletion of NK cells enhanced tumor growth and blunted the beneficial effects of exercise. Mechanistic analyses showed...

  12. Age Differences in Attention Lapses Mask Age Differences in Memory Failures: A Methodological Note on Suppression

    OpenAIRE

    James Allan Cheyne; Jonathan S. A. Carriere; Dan eSmilek

    2013-01-01

    Although objective measures of memory performance typically indicate memory declines with age, self-reported memory failures often show no relation to age. In contrast, self-reported attention failures are reliably negatively correlated with age. This contrast suggests the possibility that age-related awareness and reporting of memory failures might be masked by a concurrent decrease in attention failures, which would reduce encoding failures with age and hence reduce perceived memory failure...

  13. miR-129 suppresses tumor cell growth and invasion by targeting PAK5 in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Jian [Department II of Interventional Radiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438 (China); Qu, Shuping [Department II of Special Medical Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438 (China); Li, Xiaowei; Zhong, Jiaming; Chen, Xiaoxia [Department II of Interventional Radiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438 (China); Qu, Zengqiang, E-mail: drquzengqiang@163.com [Department II of Interventional Radiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438 (China); Wu, Dong, E-mail: wudongstc@126.com [Department II of Special Medical Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438 (China)

    2015-08-14

    Emerging evidence suggests that microRNAs (miRNAs) play important roles in regulating HCC development and progression; however, the mechanisms by which their specific functions and mechanisms remained to be further explored. miR-129 has been reported in gastric cancers, lung cancer and colon cancer. In this study, we disclosed a new tumor suppresser function of miR-129 in HCC. We also found the downregulation of miR-129 occurred in nearly 3/4 of the tumors examined (56/76) compared with adjacent nontumorous tissues, which was more importantly, correlated to the advanced stage and vascular invasion. We then demonstrated that miR-129 overexpression attenuated HCC cells proliferation and invasion, inducing apoptosis in vitro. Moreover, we used miR-129 antagonist and found that anti-miR-129 promoted HCC cells malignant phenotypes. Mechanistically, our further investigations revealed that miR-129 suppressed cell proliferation and invasion by targeting the 3’-untranslated region of PAK5, as well as miR-129 silencing up-regulated PAK5 expression. Moreover, miR-129 expression was inversely correlated with PAK5 expression in 76 cases of HCC samples. RNA interference of PAK5 attenuated anti-miR-129 mediated cell proliferation and invasion in HCC cells. Taken together, these results demonstrated that miR-129 suppressed tumorigenesis and progression by directly targeting PAK5, defining miR-129 as a potential treatment target for HCC. - Highlights: • Decreased of miR-129 is found in HCC and associated with advanced stage and metastasis. • miR-129 suppresses proliferation and invasion of HCC cells. • miR-129 directly targets the 3′ UTR of PAK5 and diminishes PAK5 expression. • PAK5 is involved in miR-129 mediated suppression functions.

  14. Benzyl isothiocyanate suppresses pancreatic tumor angiogenesis and invasion by inhibiting HIF-α/VEGF/Rho-GTPases: pivotal role of STAT-3.

    Directory of Open Access Journals (Sweden)

    Srinivas Reddy Boreddy

    Full Text Available Our previous studies have shown that benzyl isothiocyanate (BITC suppresses pancreatic tumor growth by inhibiting STAT-3; however, the exact mechanism of tumor growth suppression was not clear. Here we evaluated the effects and mechanism of BITC on pancreatic tumor angiogenesis. Our results reveal that BITC significantly inhibits neovasularization on rat aorta and Chicken-Chorioallantoic membrane. Furthermore, BITC blocks the migration and invasion of BxPC-3 and PanC-1 pancreatic cancer cells in a dose dependant manner. Moreover, secretion of VEGF and MMP-2 in normoxic and hypoxic BxPC-3 and PanC-1 cells was significantly suppressed by BITC. Both VEGF and MMP-2 play a critical role in angiogenesis and metastasis. Our results reveal that BITC significantly suppresses the phosphorylation of VEGFR-2 (Tyr-1175, and expression of HIF-α. Rho-GTPases, which are regulated by VEGF play a crucial role in pancreatic cancer progression. BITC treatment reduced the expression of RhoC whereas up-regulated the expression of tumor suppressor RhoB. STAT-3 over-expression or IL-6 treatment significantly induced HIF-1α and VEGF expression; however, BITC substantially suppressed STAT-3 as well as STAT-3-induced HIF-1α and VEGF expression. Finally, in vivo tumor growth and matrigel-plug assay show reduced tumor growth and substantial reduction of hemoglobin content in the matrigel plugs and tumors of mice treated orally with 12 µmol BITC, indicating reduced tumor angiogenesis. Immunoblotting of BITC treated tumors show reduced expression of STAT-3 phosphorylation (Tyr-705, HIF-α, VEGFR-2, VEGF, MMP-2, CD31 and RhoC. Taken together, our results suggest that BITC suppresses pancreatic tumor growth by inhibiting tumor angiogenesis through STAT-3-dependant pathway.

  15. Explicit hypoxia targeting with tumor suppression by creating an "obligate" anaerobic Salmonella Typhimurium strain.

    Science.gov (United States)

    Yu, Bin; Yang, Mei; Shi, Lei; Yao, Yandan; Jiang, Qinqin; Li, Xuefei; Tang, Lei-Han; Zheng, Bo-Jian; Yuen, Kwok-Yung; Smith, David K; Song, Erwei; Huang, Jian-Dong

    2012-01-01

    Using bacteria as therapeutic agents against solid tumors is emerging as an area of great potential in the treatment of cancer. Obligate and facultative anaerobic bacteria have been shown to infiltrate the hypoxic regions of solid tumors, thereby reducing their growth rate or causing regression. However, a major challenge for bacterial therapy of cancer with facultative anaerobes is avoiding damage to normal tissues. Consequently the virulence of bacteria must be adequately attenuated for therapeutic use. By placing an essential gene under a hypoxia conditioned promoter, SalmonellaTyphimurium strain SL7207 was engineered to survive only in anaerobic conditions (strain YB1) without otherwise affecting its functions. In breast tumor bearing nude mice, YB1 grew within the tumor, retarding its growth, while being rapidly eliminated from normal tissues. YB1 provides a safe bacterial vector for anti-tumor therapies without compromising the other functions or tumor fitness of the bacterium as attenuation methods normally do.

  16. Explicit hypoxia targeting with tumor suppression by creating an “obligate” anaerobic Salmonella Typhimurium strain

    Science.gov (United States)

    Yu, Bin; Yang, Mei; Shi, Lei; Yao, Yandan; Jiang, Qinqin; Li, Xuefei; Tang, Lei-Han; Zheng, Bo-Jian; Yuen, Kwok-Yung; Smith, David K.; Song, Erwei; Huang, Jian-Dong

    2012-01-01

    Using bacteria as therapeutic agents against solid tumors is emerging as an area of great potential in the treatment of cancer. Obligate and facultative anaerobic bacteria have been shown to infiltrate the hypoxic regions of solid tumors, thereby reducing their growth rate or causing regression. However, a major challenge for bacterial therapy of cancer with facultative anaerobes is avoiding damage to normal tissues. Consequently the virulence of bacteria must be adequately attenuated for therapeutic use. By placing an essential gene under a hypoxia conditioned promoter, Salmonella Typhimurium strain SL7207 was engineered to survive only in anaerobic conditions (strain YB1) without otherwise affecting its functions. In breast tumor bearing nude mice, YB1 grew within the tumor, retarding its growth, while being rapidly eliminated from normal tissues. YB1 provides a safe bacterial vector for anti-tumor therapies without compromising the other functions or tumor fitness of the bacterium as attenuation methods normally do. PMID:22666539

  17. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells.

    Directory of Open Access Journals (Sweden)

    Gang Cheng

    Full Text Available Compressive mechanical stress produced during growth in a confining matrix limits the size of tumor spheroids, but little is known about the dynamics of stress accumulation, how the stress affects cancer cell phenotype, or the molecular pathways involved.We co-embedded single cancer cells with fluorescent micro-beads in agarose gels and, using confocal microscopy, recorded the 3D distribution of micro-beads surrounding growing spheroids. The change in micro-bead density was then converted to strain in the gel, from which we estimated the spatial distribution of compressive stress around the spheroids. We found a strong correlation between the peri-spheroid solid stress distribution and spheroid shape, a result of the suppression of cell proliferation and induction of apoptotic cell death in regions of high mechanical stress. By compressing spheroids consisting of cancer cells overexpressing anti-apoptotic genes, we demonstrate that mechanical stress-induced apoptosis occurs via the mitochondrial pathway.Our results provide detailed, quantitative insight into the role of micro-environmental mechanical stress in tumor spheroid growth dynamics, and suggest how tumors grow in confined locations where the level of solid stress becomes high. An important implication is that apoptosis via the mitochondrial pathway, induced by compressive stress, may be involved in tumor dormancy, in which tumor growth is held in check by a balance of apoptosis and proliferation.

  18. Claudin-1 has tumor suppressive activity and is a direct target of RUNX3 in gastric epithelial cells.

    Science.gov (United States)

    Chang, Ti Ling; Ito, Kosei; Ko, Tun Kiat; Liu, Qiang; Salto-Tellez, Manuel; Yeoh, Khay Guan; Fukamachi, Hiroshi; Ito, Yoshiaki

    2010-01-01

    The transcription factor RUNX3 is a gastric tumor suppressor. Tumorigenic Runx3(-/-) gastric epithelial cells attach weakly to each other, compared with nontumorigenic Runx3(+/+) cells. We aimed to identify RUNX3 target genes that promote cell-cell contact to improve our understanding of RUNX3's role in suppressing gastric carcinogenesis. We compared gene expression profiles of Runx3(+/+) and Runx3(-/-) cells and observed down-regulation of genes associated with cell-cell adhesion in Runx3(-/-) cells. Reporter, mobility shift, and chromatin immunoprecipitation assays were used to examine the regulation of these genes by RUNX3. Tumorigenesis assays and immunohistological analyses of human gastric tumors were performed to confirm the role of the candidate genes in gastric tumor development. Mobility shift and chromatin immunoprecipitation assays revealed that the promoter activity of the gene that encodes the tight junction protein claudin-1 was up-regulated via the binding of RUNX3 to the RUNX consensus sites. The tumorigenicity of gastric epithelial cells from Runx3(-/-) mice was significantly reduced by restoration of claudin-1 expression, whereas knockdown of claudin-1 increased the tumorigenicity of human gastric cancer cells. Concomitant expression of RUNX3 and claudin-1 was observed in human normal gastric epithelium and cancers. The tight junction protein claudin-1 has gastric tumor suppressive activity and is a direct transcriptional target of RUNX3. Claudin-1 is down-regulated during the epithelial-mesenchymal transition; RUNX3 might therefore act as a tumor suppressor to antagonize the epithelial-mesenchymal transition. Copyright 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  19. Receptor for activated protein kinase C 1 suppresses gastric tumor progression through nuclear factor-kB pathway.

    Science.gov (United States)

    Yong-Zheng, X; Wan-Li, M; Ji-Ming, M; Xue-Qun, R

    2015-12-01

    Nuclear factor-kB (NF-kB) activity is crucial for survival and proliferation of many kinds of malignancies, including gastric cancer (GC). The receptor for activated protein kinase C 1 (RACK1) is known to regulate tumor development, whereas the underlined mechanism has not been described clearly. We analyzed expression of RACK1 in paired human GC samples by both real-time polymerase chain reaction (PCR) and western blot. Effects of RACK inhibition with small interfering RNA or its overexpression in cultured GC cell lines were evaluated in cell viabilities. NF-kB signaling was investigated using luciferase reporter assay and real-time PCR. RACK1 was significantly decreased in GC samples. Knockdown of RACK elevated GC cell viabilities, whereas overexpression of RACK1 suppressed tumorigenesis of GC cells. Importantly, NF-kB signaling was enhanced after RACK1 expression was inhibited, suggesting the negative regulation of the pro-oncogenic NF-kB activity by RACK1 might contribute to its tumor suppressor role in GC cells. Our results support that RACK1 suppresses gastric tumor progression through the NF-kB signaling pathway.

  20. 3D view to tumor suppression: Lkb1, polarity and the arrest of oncogenic c-Myc.

    Science.gov (United States)

    Partanen, Johanna I; Nieminen, Anni I; Klefstrom, Juha

    2009-03-01

    Machiavelli wrote, in his famous political treatise Il Principe, about disrupting organization by planting seeds of dissension or by eliminating necessary support elements. Tumor cells do exactly that by disrupting the organized architecture of epithelial cell layers during progression from contained benign tumor to full-blown invasive cancer. However, it is still unclear whether tumor cells primarily break free by activating oncogenes powerful enough to cause chaos or by eliminating tumor suppressor genes guarding the order of the epithelial organization. Studies in Drosophila have exposed genes that encode key regulators of the epithelial apicobasal polarity and which, upon inactivation, cause disorganization of the epithelial layers and promote unscheduled cell proliferation. These polarity regulator/tumor suppressor proteins, which include products of neoplastic tumor suppressor genes (nTSGs), are carefully positioned in polarized epithelial cells to maintain the order of epithelial structures and to impose a restraint on cell proliferation. In this review, we have explored the presence and prevalence of somatic mutations in the human counterparts of Drosophila polarity regulator/tumor suppressor genes across the human cancers. The screen points out LKB1, which is a causal genetic lesion in Peutz-Jeghers cancer syndrome, a gene mutated in certain sporadic cancers and a human homologue of the fly polarity gene par-4. We review the evidence linking Lkb1 protein to polarity regulation in the scope of our recent results suggesting a coupled role for Lkb1 as an architect of organized acinar structures and a suppressor of oncogenic c-Myc. We finally present models to explain how Lkb1-dependent formation of epithelial architecture is coupled to suppression of normal and oncogene-induced proliferation.

  1. Age-stratified analysis of tumor markers and tumor characteristics in adolescents and young women with mature cystic teratoma

    Directory of Open Access Journals (Sweden)

    Huseyin Yesilyurt

    2018-06-01

    Full Text Available Background: Serum tumor markers are widely used for the preoperative evaluation of an adnexal mass. Elevations of cancer antigen (CA 125 and CA 19-9 have been reported in patients with mature cystic teratoma (MCT. The aim of the study is to investigate the relation of serum tumor markers with tumor characteristics in young women with MCT. Methods: We conducted a retrospective review of 157 patients under the age of 35 who underwent laparoscopic surgery for ovarian MCT. Patients were divided into two age groups: Group I (n = 80: adolescents/young adults (aged 13–25 years and Group II (n = 77: women aged 26–35 years. Data were analyzed for serum tumor markers, tumor size, and bilaterality. Results: The rates of elevated CA 125 and CA 19-9 were 10.7% and 31.5%, respectively, for Group I, and 13.9% and 26.5%, respectively, for Group II. The bilaterality rate was higher in Group II compared to Group I (19.5% vs. 8.8%, respectively, p = 0.04. Serum CA 125 and CA 19-9 elevations were not related to tumor size in Group I. In Group II, elevated levels of CA 125 were also unrelated to tumor size. However, significant elevation in CA 19-9 levels was observed when tumor size was larger than 4 cm in this age group (p = 0.004. Elevated CA 125 and CA 19-9 levels were not significantly associated with the presence of bilateral MCT in either group. Conclusion: The results of our study indicate that elevations of CA 19-9 are associated with larger tumor size in women aged 26–35 years, but not in adolescents/young adults. However, elevated serum CA 125 levels are not related to tumor size in either age group. Keywords: Adolescents, Mature cystic teratoma, Tumor marker, Tumor size, Young women

  2. Cystatin C deficiency suppresses tumor growth in a breast cancer model through decreased proliferation of tumor cells.

    Science.gov (United States)

    Završnik, Janja; Butinar, Miha; Prebanda, Mojca Trstenjak; Krajnc, Aleksander; Vidmar, Robert; Fonović, Marko; Grubb, Anders; Turk, Vito; Turk, Boris; Vasiljeva, Olga

    2017-09-26

    Cysteine cathepsins are proteases that, in addition to their important physiological functions, have been associated with multiple pathologies, including cancer. Cystatin C (CstC) is a major endogenous inhibitor that regulates the extracellular activity of cysteine cathepsins. We investigated the role of cystatin C in mammary cancer using CstC knockout mice and a mouse model of breast cancer induced by expression of the polyoma middle T oncoprotein (PyMT) in the mammary epithelium. We showed that the ablation of CstC reduced the rate of mammary tumor growth. Notably, a decrease in the proliferation of CstC knockout PyMT tumor cells was demonstrated ex vivo and in vitro , indicating a role for this protease inhibitor in signaling pathways that control cell proliferation. An increase in phosphorylated p-38 was observed in CstC knockout tumors, suggesting a novel function for cystatin C in cancer development, independent of the TGF-β pathway. Moreover, proteomic analysis of the CstC wild-type and knockout PyMT primary cell secretomes revealed a decrease in the levels of 14-3-3 proteins in the secretome of knock-out cells, suggesting a novel link between cysteine cathepsins, cystatin C and 14-3-3 proteins in tumorigenesis, calling for further investigations.

  3. A reason for intermittent fasting to suppress the awakening of dormant breast tumors.

    Science.gov (United States)

    Lankelma, Jan; Kooi, Bob; Krab, Klaas; Dorsman, Josephine C; Joenje, Hans; Westerhoff, Hans V

    2015-01-01

    For their growth, dormant tumors, which lack angiogenesis may critically depend on gradients of nutrients and oxygen from the nearest blood vessel. Because for oxygen depletion the distance from the nearest blood vessel to depletion will generally be shorter than for glucose depletion, such tumors will contain anoxic living tumor cells. These cells are dangerous, because they are capable of inducing angiogenesis, which will "wake up" the tumor. Anoxic cells are dependent on anaerobic glucose breakdown for ATP generation. The local extracellular glucose concentration gradient is determined by the blood glucose concentration and by consumption by cells closer to the nearest blood vessel. The blood glucose concentration can be lowered by 20-40% during fasting. We calculated that glucose supply to the potentially hazardous anoxic cells can thereby be reduced significantly, resulting in cell death specifically of the anoxic tumor cells. We hypothesize that intermittent fasting will help to reduce the incidence of tumor relapse via reducing the number of anoxic tumor cells and tumor awakening. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. A reason for intermittent fasting to suppress the awakening of dormant breast tumors.

    NARCIS (Netherlands)

    Lankelma, J.; Kooi, B.W.; Krab, K.; Dorsman, J.C.; Joenje, H.; Westerhoff, H.V.

    2015-01-01

    For their growth, dormant tumors, which lack angiogenesis may critically depend on gradients of nutrients and oxygen from the nearest blood vessel. Because for oxygen depletion the distance from the nearest blood vessel to depletion will generally be shorter than for glucose depletion, such tumors

  5. A reason for intermittent fasting to suppress the awakening of dormant breast tumors

    NARCIS (Netherlands)

    Lankelma, J.; Kooi, B.; Krab, K.; Dorsman, J.C.; Joenje, H.; Westerhoff, H.V.

    2015-01-01

    For their growth, dormant tumors, which lack angiogenesis may critically depend on gradients of nutrients and oxygen from the nearest blood vessel. Because for oxygen depletion the distance from the nearest blood vessel to depletion will generally be shorter than for glucose depletion, such tumors

  6. Effect of host age on the transplantation, growth, and radiation response of EMT6 tumors

    International Nuclear Information System (INIS)

    Rockwell, S.

    1981-01-01

    The characteristics of EMT6 tumors in young adult and aged BALB/c KaRw mice were compared. The number of tumor cells implanted s.c. necessary to cause tumors in 50% of the injection sites was lower in aging than in young adult mice. The latent period of intradermally implanted tumors was shorter in aging mice than in young animals; however, the growth curves of established tumors were similar. The number and appearance of lung colonies after injection of cells i.v. and the pattern of spontaneous metastases were similar in young and aged animals. Radiation dose-response curves for the cells of tumors in young and aging mice were different and suggested that the proportion of hypoxic cells was higher in tumors on aging animals. These findings suggest that both immunological and nonimmunological tumor-host interactions differ in young and aged animals and that such factors may influence the natural history of the tumor and the response of the tumor to treatment

  7. Caffeic acid phenethyl ester suppresses melanoma tumor growth by inhibiting PI3K/AKT/XIAP pathway.

    Science.gov (United States)

    Pramanik, Kartick C; Kudugunti, Shashi K; Fofaria, Neel M; Moridani, Majid Y; Srivastava, Sanjay K

    2013-09-01

    Melanoma is highly metastatic and resistant to chemotherapeutic drugs. Our previous studies have demonstrated that caffeic acid phenethyl ester (CAPE) suppresses the growth of melanoma cells and induces reactive oxygen species generation. However, the exact mechanism of the growth suppressive effects of CAPE was not clear. Here, we determined the potential mechanism of CAPE against melanoma in vivo and in vitro. Administration of 10 mg/kg/day CAPE substantially suppressed the growth of B16F0 tumor xenografts in C57BL/6 mice. Tumors from CAPE-treated mice showed reduced phosphorylation of phosphoinositide 3-kinase, AKT, mammalian target of rapamycin and protein level of X-linked inhibitor of apoptosis protein (XIAP) and enhanced the cleavage of caspase-3 and poly (ADP ribose) polymerase. In order to confirm the in vivo observations, melanoma cells were treated with CAPE. CAPE treatment suppressed the activating phosphorylation of phosphoinositide 3-kinase at Tyr 458, phosphoinositide-dependent kinase-1 at Ser 241, mammalian target of rapamycin at Ser 2448 and AKT at Ser 473 in B16F0 and SK-MEL-28 cells in a concentration and time-dependent study. Furthermore, the expression of XIAP, survivin and BCL-2 was downregulated by CAPE treatment in both cell lines. Significant apoptosis was observed by CAPE treatment as indicated by cleavage of caspase-3 and poly (ADP ribose) polymerase. AKT kinase activity was inhibited by CAPE in a concentration-dependent manner. CAPE treatment increased the nuclear translocation of XIAP, indicating increased apoptosis in melanoma cells. To confirm the involvement of reactive oxygen species in the inhibition of AKT/XIAP pathway, cells were treated with antioxidant N-acetyl-cysteine (NAC) prior to CAPE treatment. Our results indicate that NAC blocked CAPE-mediated AKT/XIAP inhibition and protected the cells from apoptosis. Because AKT regulates XIAP, their interaction was examined by immunoprecipitation studies. Our results show that CAPE

  8. Trehalose Liposomes Suppress the Growth of Tumors on Human Lung Carcinoma-bearing Mice by Induction of Apoptosis In Vivo.

    Science.gov (United States)

    Ichihara, Hideaki; Kuwabara, Keiji; Matsumoto, Yoko

    2017-11-01

    Previous evidence demonstrates that trehalose liposomes (DMTreC14) composed of L-α-dimyristoylphosphatidylcholine (DMPC) and α-D-glycopyranosyl-α-D-glucopyranoside monomyristate (TreC14) inhibit proliferation and invasion on lung carcinoma (A549 cells) in vitro. Here, we aimed to investigate suppressive effects of DMTreC14 on the growth of tumor on human lung carcinoma bearing mice. DMTreC14 composed of 30 mol% DMPC and 70 mol% TreC14 were prepared by the sonication method. Anti-tumor activities of DMTreC14 using the subcutaneous and orthotopic graft-bearing mice of A549 cells were investigated in vivo. The remarkable reduction of volume and weight in subcutaneous tumors on subcutaneous lung carcinoma-bearing mice topically administrated with DMTreC14 were obtained. Apoptotic-positive cells in the subcutaneous tumor slice of subcutaneous lung carcinoma-bearing mice topically administrated with DMTreC14 were observed using TUNEL staining. Lung weights on the orthotopic graft-bearing mice of lung carcinoma intravenously administrated with DMTreC14 were markedly decreased compared to those of the control group. Remarkable decrease in dimensions of tumor area of lung on the orthotopic graft-bearing mice of lung carcinoma intravenously administrated with DMTreC14 was obtained in histological analysis using the hematoxylin and eosin staining. Remarkably high anti-tumor activities of DMTreC14 for the subcutaneous and orthotopic graft-bearing mice of lung carcinoma accompanied with apoptosis were revealed for the first time in vivo. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Injury Signals Cooperate with Nf1 Loss to Relieve the Tumor-Suppressive Environment of Adult Peripheral Nerve

    Directory of Open Access Journals (Sweden)

    Sara Ribeiro

    2013-10-01

    Full Text Available Schwann cells are highly plastic cells that dedifferentiate to a progenitor-like state following injury. However, deregulation of this plasticity, may be involved in the formation of neurofibromas, mixed-cell tumors of Schwann cell (SC origin that arise upon loss of NF1. Here, we show that adult myelinating SCs (mSCs are refractory to Nf1 loss. However, in the context of injury, Nf1-deficient cells display opposing behaviors along the wounded nerve; distal to the injury, Nf1−/− mSCs redifferentiate normally, whereas at the wound site Nf1−/− mSCs give rise to neurofibromas in both Nf1+/+ and Nf1+/− backgrounds. Tracing experiments showed that distinct cell types within the tumor derive from Nf1-deficient SCs. This model of neurofibroma formation demonstrates that neurofibromas can originate from adult SCs and that the nerve environment can switch from tumor suppressive to tumor promoting at a site of injury. These findings have implications for both the characterization and treatment of neurofibromas.

  10. Deoxypodophyllotoxin suppresses tumor vasculature in HUVECs by promoting cytoskeleton remodeling through LKB1-AMPK dependent Rho A activatio.

    Science.gov (United States)

    Wang, Yurong; Wang, Bin; Guerram, Mounia; Sun, Li; Shi, Wei; Tian, Chongchong; Zhu, Xiong; Jiang, Zhenzhou; Zhang, Luyong

    2015-10-06

    Angiogenesis plays a critical role in the growth and metastasis of tumors, which makes it an attractive target for anti-tumor drug development. Deoxypodophyllotoxin (DPT), a natural product isolated from Anthriscus sylvestris, inhibits cell proliferation and migration in various cancer cell types. Our previous studies indicate that DPT possesses both anti-angiogenic and vascular-disrupting activities. Although the RhoA/ RhoA kinase (ROCK) signaling pathway is implicated in DPT-stimulated cytoskeleton remodeling and tumor vasculature suppressing, the detailed mechanisms by which DPT mediates these effects are poorly understood. In the current study, we found that DPT promotes cytoskeleton remodeling in human umbilical vein endothelial cells (HUVECs) via stimulation of AMP-activated protein kinase (AMPK) and that this effect is abolished by either treatment with a selective AMPK inhibitor or knockdown. Moreover, the cellular levels of LKB1, a kinase upstream of AMPK, were enhanced following DPT exposure. DPT-induced activation of AMPK in tumor vasculature effect was also verified by transgenic zebrafish (VEGFR2:GFP), Matrigel plug assay, and xenograft model in nude mice. The present findings may lay the groundwork for a novel therapeutic approach in treating cancer.

  11. Enhanced inflammation and attenuated tumor suppressor pathways are associated with oncogene-induced lung tumors in aged mice

    Science.gov (United States)

    Aging is often accompanied by a dramatic increase in cancer susceptibility. To gain insights into how aging affects tumor susceptibility, we generated a conditional mouse model in which oncogenic KrasG12D was activated specifically in lungs of young (3-5 months) and old (19-24 months) mice. Activati...

  12. Immune Suppression in Tumors as a Surmountable Obstacle to Clinical Efficacy of Cancer Vaccines

    International Nuclear Information System (INIS)

    Wieërs, Grégoire; Demotte, Nathalie; Godelaine, Danièle; Bruggen, Pierre van der

    2011-01-01

    Human tumors are usually not spontaneously eliminated by the immune system and therapeutic vaccination of cancer patients with defined antigens is followed by tumor regressions only in a small minority of the patients. The poor vaccination effectiveness could be explained by an immunosuppressive tumor microenvironment. Because T cells that infiltrate tumor metastases have an impaired ability to lyse target cells or to secrete cytokine, many researchers are trying to decipher the underlying immunosuppressive mechanisms. We will review these here, in particular those considered as potential therapeutic targets. A special attention will be given to galectins, a family of carbohydrate binding proteins. These lectins have often been implicated in inflammation and cancer and may be useful targets for the development of new anti-cancer therapies

  13. FAM49B, a novel regulator of mitochondrial function and integrity that suppresses tumor metastasis.

    Science.gov (United States)

    Chattaragada, M S; Riganti, C; Sassoe, M; Principe, M; Santamorena, M M; Roux, C; Curcio, C; Evangelista, A; Allavena, P; Salvia, R; Rusev, B; Scarpa, A; Cappello, P; Novelli, F

    2018-02-08

    Mitochondrial dysregulation plays a central role in cancers and drives reactive oxygen species (ROS)-dependent tumor progression. We investigated the pro-tumoral roles of mitochondrial dynamics and altered intracellular ROS levels in pancreatic ductal adenocarcinoma (PDAC). We identified 'family with sequence similarity 49 member B' (FAM49B) as a mitochondria-localized protein that regulates mitochondrial fission and cancer progression. Silencing FAM49B in PDAC cells resulted in increased fission and mitochondrial ROS generation, which enhanced PDAC cell proliferation and invasion. Notably, FAM49B expression levels in PDAC cells were downregulated by the tumor microenvironment. Overall, the results of this study show that FAM49B acts as a suppressor of cancer cell proliferation and invasion in PDAC by regulating tumor mitochondrial redox reactions and metabolism.

  14. Tumor Suppression and Sensitization to Taxol Induced Apoptosis of E1A in Breast Cancer Cells

    National Research Council Canada - National Science Library

    Liao, Yong

    2002-01-01

    The purpose of this project is to study the molecular mechanisms underlying ElA's proapoptotic effect and anti-tumor activity and to dissect the functional domains of ElA that are critical for its antitumor activity...

  15. Tumor Suppression and Sensitization to Taxol Induces Apoptosis of EIA in Breast Cancer Cells

    National Research Council Canada - National Science Library

    Liao, Yong

    2005-01-01

    The purpose of this project is to study the molecular mechanisms underlying ElA's proapoptotic effect and anti-tumor activity and to dissect the functional domains of ElA that are critical for its antitumor activity...

  16. Relaxin suppresses atrial fibrillation in aged rats by reversing fibrosis and upregulating Na+ channels.

    Science.gov (United States)

    Henry, Brian L; Gabris, Beth; Li, Qiao; Martin, Brian; Giannini, Marianna; Parikh, Ashish; Patel, Divyang; Haney, Jamie; Schwartzman, David S; Shroff, Sanjeev G; Salama, Guy

    2016-04-01

    Atrial fibrillation (AF) contributes significantly to morbidity and mortality in elderly patients and has been correlated with enhanced age-dependent atrial fibrosis. Reversal of atrial fibrosis has been proposed as therapeutic strategy to suppress AF. To test the ability of relaxin to reverse age-dependent atrial fibrosis and suppress AF. Aged F-344 rats (24 months old) were treated with subcutaneous infusion of vehicle or relaxin (0.4 mg/kg/day) for 2 weeks. Rat hearts were excised, perfused on a Langendorff apparatus, and stained with voltage and Ca(2+) indicator dyes. Optical mapping and programmed electrical stimulation was used to test arrhythmia vulnerability and changes in electrophysiological characteristics. Changes in protein expression and Na(+) current density (INa) were measured by tissue immunofluorescence and whole-cell patch clamp technique. In aged rats, sustained AF was readily induced with a premature pulse (n = 7/8) and relaxin treatment suppressed sustained AF by a premature impulse or burst pacing (n = 1/6) (P atrial action potential conduction velocity and decreased atrial fibrosis. Relaxin treatment increased Nav1.5 expression (n = 6; 36% ± 10%) and decreased total collagen and collagen I (n = 5-6; 55%-66% ± 15%) in aged atria (P atrial INa by 46% ± 4% (n = 12-13/group, P atrial conduction velocity by decreasing atrial fibrosis and increasing INa. These data provide compelling evidence that relaxin may serve as an effective therapy to manage AF in geriatric patients by reversing fibrosis and modulating cardiac ionic currents. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  17. Bone Marrow Suppression by c-Kit Blockade Enhances Tumor Growth of Colorectal Metastases through the Action of Stromal Cell-Derived Factor-1

    Directory of Open Access Journals (Sweden)

    Kathrin Rupertus

    2012-01-01

    Full Text Available Background. Mobilization of c-Kit+ hematopoietic cells (HCs contributes to tumor vascularization. Whereas survival and proliferation of HCs are regulated by binding of the stem cell factor to its receptor c-Kit, migration of HCs is directed by stromal cell-derived factor (SDF-1. Therefore, targeting migration of HCs provides a promising new strategy of anti-tumor therapy. Methods. BALB/c mice (=16 were pretreated with an anti-c-Kit antibody followed by implantation of CT26.WT-GFP colorectal cancer cells into dorsal skinfold chambers. Animals (=8 additionally received a neutralizing anti-SDF-1 antibody. Animals (=8 treated with a control antibody served as controls. Investigations were performed using intravital fluorescence microscopy, immunohistochemistry, flow cytometry and western blot analysis. Results. Blockade of c-Kit significantly enhanced tumor cell engraftment compared to controls due to stimulation of tumor cell proliferation and invasion without markedly affecting tumor vascularization. C-Kit blockade significantly increased VEGF and CXCR4 expression within the growing tumors. Neutralization of SDF-1 completely antagonized this anti-c-Kit-associated tumor growth by suppression of tumor neovascularization, inhibition of tumor cell proliferation and reduction of muscular infiltration. Conclusion. Our study indicates that bone marrow suppression via anti-c-Kit pretreatment enhances tumor cell engraftment of colorectal metastases due to interaction with the SDF-1/CXCR4 pathway which is involved in HC-mediated tumor angiogenesis.

  18. Melatonin exerts anti-oral cancer effect via suppressing LSD1 in patient-derived tumor xenograft models

    Science.gov (United States)

    Yang, Cheng-Yu; Lin, Chih-Kung; Tsao, Chang-Huei; Hsieh, Cheng-Chih; Lin, Gu-Jiun; Ma, Kuo-Hsing; Shieh, Yi-Shing; Sytwu, Huey-Kang; Chen, Yuan-Wu

    2017-01-01

    Aberrant activation of histone lysine-specific demethylase (LSD1) increases tumorigenicity; hence, LSD1 is considered a therapeutic target for various human cancers. Although melatonin, an endogenously produced molecule, may defend against various cancers, the precise mechanism involved in its anti-oral cancer effect remains unclear. Patient-derived tumor xenograft (PDTX) models are preclinical models that can more accurately reflect human tumor biology compared with cell line xenograft models. Here, we evaluated the anticancer activity of melatonin by using LSD1-overexpressing oral cancer PDTX models. By assessing oral squamous cell carcinoma (OSCC) tissue arrays through immunohistochemistry, we examined whether aberrant LSD1 overexpression in OSCC is associated with poor prognosis. We also evaluated the action mechanism of melatonin against OSCC with lymphatic metastases by using the PDTX models. Our results indicated that melatonin, at pharmacological concentrations, significantly suppresses cell proliferation in a dose- and time-dependent manner. The observed suppression of proliferation was accompanied by the melatonin-mediated inhibition of LSD1 in oral cancer PDTXs and oral cancer cell lines. In conclusion, we determined that the beneficial effects of melatonin in reducing oral cancer cell proliferation are associated with reduced LSD1 expression in vivo and in vitro. PMID:28422711

  19. The PLA2R1-JAK2 pathway upregulates ERRα and its mitochondrial program to exert tumor-suppressive action.

    Science.gov (United States)

    Griveau, A; Devailly, G; Eberst, L; Navaratnam, N; Le Calvé, B; Ferrand, M; Faull, P; Augert, A; Dante, R; Vanacker, J M; Vindrieux, D; Bernard, D

    2016-09-22

    Little is known about the biological role of the phospholipase A2 receptor (PLA2R1) transmembrane protein. In recent years, PLA2R1 has been shown to have an important role in regulating tumor-suppressive responses via JAK2 activation, but the underlying mechanisms are largely undeciphered. In this study, we observed that PLA2R1 increases the mitochondrial content, judged by increased levels of numerous mitochondrial proteins, of the mitochondrial structural component cardiolipin, of the mitochondrial DNA content, and of the mitochondrial DNA replication and transcription factor TFAM. This effect of PLA2R1 relies on a transcriptional program controlled by the estrogen-related receptor alpha1 (ERRα) mitochondrial master regulator. Expression of ERRα and of its nucleus-encoded mitochondrial targets is upregulated upon PLA2R1 ectopic expression, and this effect is mediated by JAK2. Conversely, downregulation of PLA2R1 decreases the level of ERRα and of its nucleus-encoded mitochondrial targets. Finally, blocking the ERRα-controlled mitochondrial program largely inhibits the PLA2R1-induced tumor-suppressive response. Together, our data document ERRα and its mitochondrial program as downstream effectors of the PLA2R1-JAK2 pathway leading to oncosuppression.

  20. RNAi screening of subtracted transcriptomes reveals tumor suppression by taurine-activated GABAA receptors involved in volume regulation

    Science.gov (United States)

    van Nierop, Pim; Vormer, Tinke L.; Foijer, Floris; Verheij, Joanne; Lodder, Johannes C.; Andersen, Jesper B.; Mansvelder, Huibert D.; te Riele, Hein

    2018-01-01

    To identify coding and non-coding suppressor genes of anchorage-independent proliferation by efficient loss-of-function screening, we have developed a method for enzymatic production of low complexity shRNA libraries from subtracted transcriptomes. We produced and screened two LEGO (Low-complexity by Enrichment for Genes shut Off) shRNA libraries that were enriched for shRNA vectors targeting coding and non-coding polyadenylated transcripts that were reduced in transformed Mouse Embryonic Fibroblasts (MEFs). The LEGO shRNA libraries included ~25 shRNA vectors per transcript which limited off-target artifacts. Our method identified 79 coding and non-coding suppressor transcripts. We found that taurine-responsive GABAA receptor subunits, including GABRA5 and GABRB3, were induced during the arrest of non-transformed anchor-deprived MEFs and prevented anchorless proliferation. We show that taurine activates chloride currents through GABAA receptors on MEFs, causing seclusion of cell volume in large membrane protrusions. Volume seclusion from cells by taurine correlated with reduced proliferation and, conversely, suppression of this pathway allowed anchorage-independent proliferation. In human cholangiocarcinomas, we found that several proteins involved in taurine signaling via GABAA receptors were repressed. Low GABRA5 expression typified hyperproliferative tumors, and loss of taurine signaling correlated with reduced patient survival, suggesting this tumor suppressive mechanism operates in vivo. PMID:29787571

  1. The human ARF tumor suppressor senses blastema activity and suppresses epimorphic tissue regeneration

    Science.gov (United States)

    Hesse, Robert G; Kouklis, Gayle K; Ahituv, Nadav; Pomerantz, Jason H

    2015-01-01

    The control of proliferation and differentiation by tumor suppressor genes suggests that evolution of divergent tumor suppressor repertoires could influence species’ regenerative capacity. To directly test that premise, we humanized the zebrafish p53 pathway by introducing regulatory and coding sequences of the human tumor suppressor ARF into the zebrafish genome. ARF was dormant during development, in uninjured adult fins, and during wound healing, but was highly expressed in the blastema during epimorphic fin regeneration after amputation. Regenerative, but not developmental signals resulted in binding of zebrafish E2f to the human ARF promoter and activated conserved ARF-dependent Tp53 functions. The context-dependent activation of ARF did not affect growth and development but inhibited regeneration, an unexpected distinct tumor suppressor response to regenerative versus developmental environments. The antagonistic pleiotropic characteristics of ARF as both tumor and regeneration suppressor imply that inducing epimorphic regeneration clinically would require modulation of ARF –p53 axis activation. DOI: http://dx.doi.org/10.7554/eLife.07702.001 PMID:26575287

  2. Cooperation of Ad-hING4 and 125I seed in tumor-suppression on human pancreatic cancer xenograft in nude mice

    International Nuclear Information System (INIS)

    Zhai Hongyan; Fa Yihua; Su Chenghai; Yang Jicheng; Sheng Weihua; Xie Yufeng

    2009-01-01

    This work is to investigate the combined tumor-suppression effect of Adenovirus-mediated human ING4 (Ad-hING4) and 125 I seed on human pancreatic cancer xenograft and the possible mechanisms. Ad-hING4 recombinant adenovirus vector was transected into QBI-293A cells and high titre adenovirus was obtained. Subcutaneous tumor models were established with 25 nude mice with human pancreatic cancer cell line PANC-1. They were randomly divided into 5 groups: PBS control group, Ad carrier group, 125 I seed brachytherapy group, Ad-hING4 gene treatment group, combined 125 I seed and Ad-hING4 group. The tumor volumes were measured every 5 days after treatment, and were sacrificed on the 20th day. The tumors were measured and weighed to determine the ratio of tumor-suppression and Jin-Shi q value. Morphological changes of tumor cells,the tissue injury and apoptotic index AI were examined on pathological sections. MVD, Survivin and Caspase3 were tested in immunohistochemistry. The results show that the tumor-suppressive ratio of the 125 I seed group, Ad-hING4 group, combined treatment group were,respectively, 34.19%(P 0.05). It can be concluded that 125 I seed and Ad-hING4 inhibit the growth of PANC-1 pancreatic cancer on nude mice significantly. These indicate a synergy of the combined treatments in tumor-suppression and Ad-hING4 is a promising novel radiosensitizer. The mechanisms of tumor-suppressive may be multi-pathways such as down-regulation the expression of Survivin and up-regulation the expression of Caspase3 to induce apoptosis and inhibit angiogenesis. (authors)

  3. More than Meets the Eye: Age Differences in the Capture and Suppression of Oculomotor Action

    Science.gov (United States)

    Ridderinkhof, K. Richard; Wijnen, Jasper G.

    2011-01-01

    Salient visual stimuli capture attention and trigger an eye-movement toward its location reflexively, regardless of an observer’s intentions. Here we aim to investigate the effect of aging (1) on the extent to which salient yet task-irrelevant stimuli capture saccades, and (2) on the ability to selectively suppress such oculomotor responses. Young and older adults were asked to direct their eyes to a target appearing in a stimulus array. Analysis of overall performance shows that saccades to the target object were disrupted by the appearance of a task-irrelevant abrupt-onset distractor when the location of this distractor did not coincide with that of the target object. Conditional capture function analyses revealed that, compared to young adults, older adults were more susceptible to oculomotor capture, and exhibited deficient selective suppression of the responses captured by task-irrelevant distractors. These effects were uncorrelated, suggesting two independent sources off age-related decline. Thus, with advancing age, salient visual distractors become more distracting; in part because they trigger reflexive eye-movements more potently; in part because of failing top-down control over such reflexes. The fact that these process-specific age effects remained concealed in overall oculomotor performance analyses emphasizes the utility of looking beyond the surface; indeed, there may be more than meets the eye. PMID:22046165

  4. Combination of Bifunctional Alkylating Agent and Arsenic Trioxide Synergistically Suppresses the Growth of Drug-Resistant Tumor Cells

    Directory of Open Access Journals (Sweden)

    Pei-Chih Lee

    2010-05-01

    Full Text Available Drug resistance is a crucial factor in the failure of cancer chemotherapy. In this study, we explored the effect of combining alkylating agents and arsenic trioxide (ATO on the suppression of tumor cells with inherited or acquired resistance to therapeutic agents. Our results showed that combining ATO and a synthetic derivative of 3a-aza-cyclopenta[a]indenes (BO-1012, a bifunctional alkylating agent causing DNA interstrand cross-links, was more effective in killing human cancer cell lines (H460, H1299, and PC3 than combining ATO and melphalan or thiotepa. We further demonstrated that the combination treatment of H460 cells with BO-1012 and ATO resulted in severe G2/M arrest and apoptosis. In a xenograft mouse model, the combination treatment with BO-1012 and ATO synergistically reduced tumor volumes in nude mice inoculated with H460 cells. Similarly, the combination of BO-1012 and ATO effectively reduced the growth of cisplatin-resistant NTUB1/P human bladder carcinoma cells. Furthermore, the repair of BO-1012-induced DNA interstrand cross-links was significantly inhibited by ATO, and consequently, γH2AX was remarkably increased and formed nuclear foci in H460 cells treated with this drug combination. In addition, Rad51 was activated by translocating and forming foci in nuclei on treatment with BO-1012, whereas its activation was significantly suppressed by ATO. We further revealed that ATO might mediate through the suppression of AKT activity to inactivate Rad51. Taken together, the present study reveals that a combination of bifunctional alkylating agents and ATO may be a rational strategy for treating cancers with inherited or acquired drug resistance.

  5. Tumor-suppressive function of miR-139-5p in esophageal squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Ran Liu

    Full Text Available Recent studies have demonstrated the possible function of miR-139-5p in tumorigenesis. However, the exact mechanism of miR-139-5p in cancer remains unclear. In this study, the association of miR-139-5p expression with esophageal squamous cell carcinoma (ESCC was evaluated in 106 pairs of esophageal cancer and adjacent non-cancerous tissue from ESCC patients. The tumor suppressive features of miR-139-5p were measured by evaluating cell proliferation and cell cycle state, migratory activity and invasion capability, as well as apoptosis. Luciferase reporter assay and Western blot analysis were performed to determine the target gene regulated by miR-139-5p. The mRNA level of NR5A2, the target gene of miR-139-5p, was determined in ESCC patients. Results showed that reduced miR-139-5p level was associated with lymph node metastases of ESCC. MiR-139-5p was investigated to induce cell cycle arrest in the G0/G1 phase and to suppress the invasive capability of esophageal carcinoma cells by targeting the 3'UTR of oncogenic NR5A2. Cyclin E1 and MMP9 were confirmed to participate in cell cycle arrest and invasive suppression induced by NR5A2, respectively. Pearson correlation analysis further confirmed the significantly negative correlation between miR-139-5p and NR5A2 expression. The results suggest that miR-139-5p exerts a growth- and invasiveness-suppressing function in human ESCCs, which demonstrates that miR-139-5p is a potential biomarker for early diagnosis and prognosis and is a therapeutic target for ESCC.

  6. A Novel Ras Effector Pathway Found to Play Significant Role in Tumor Suppression | Poster

    Science.gov (United States)

    By Nancy Parrish, Staff Writer; photo by Richard Frederickson, Staff Photographer Normal cells have mechanisms to prevent the development of cancer. Among these is a type of tumor suppressor mechanism known as oncogene-induced senescence, or OIS, which halts the uncontrolled growth of cells caused by mutations in oncogenes. The oncogene Ras plays a crucial role in inducing OIS

  7. p53-Dependent Nestin Regulation Links Tumor Suppression to Cellular Plasticity in Liver Cancer

    DEFF Research Database (Denmark)

    Tschaharganeh, Darjus F; Xue, Wen; Calvisi, Diego F

    2014-01-01

    The p53 tumor suppressor coordinates a series of antiproliferative responses that restrict the expansion of malignant cells, and as a consequence, p53 is lost or mutated in the majority of human cancers. Here, we show that p53 restricts expression of the stem and progenitor-cell-associated protei...... by p53 restricts cellular plasticity and tumorigenesis in liver cancer....

  8. Rb and p53 Liver Functions Are Essential for Xenobiotic Metabolism and Tumor Suppression

    NARCIS (Netherlands)

    Nantasanti, Sathidpak; Toussaint, Mathilda J. M.; Youssef, Sameh A.; Tooten, Peter C. J.; de Bruin, Alain

    2016-01-01

    The tumor suppressors Retinoblastoma (Rb) and p53 are frequently inactivated in liver diseases, such as hepatocellular carcinomas (HCC) or infections with Hepatitis B or C viruses. Here, we discovered a novel role for Rb and p53 in xenobiotic metabolism, which represent a key function of the liver

  9. Tubulin binding cofactor C (TBCC) suppresses tumor growth and enhances chemosensitivity in human breast cancer cells

    International Nuclear Information System (INIS)

    Hage-Sleiman, Rouba; Herveau, Stéphanie; Matera, Eva-Laure; Laurier, Jean-Fabien; Dumontet, Charles

    2010-01-01

    Microtubules are considered major therapeutic targets in patients with breast cancer. In spite of their essential role in biological functions including cell motility, cell division and intracellular transport, microtubules have not yet been considered as critical actors influencing tumor cell aggressivity. To evaluate the impact of microtubule mass and dynamics on the phenotype and sensitivity of breast cancer cells, we have targeted tubulin binding cofactor C (TBCC), a crucial protein for the proper folding of α and β tubulins into polymerization-competent tubulin heterodimers. We developed variants of human breast cancer cells with increased content of TBCC. Analysis of proliferation, cell cycle distribution and mitotic durations were assayed to investigate the influence of TBCC on the cell phenotype. In vivo growth of tumors was monitored in mice xenografted with breast cancer cells. The microtubule dynamics and the different fractions of tubulins were studied by time-lapse microscopy and lysate fractionation, respectively. In vitro sensitivity to antimicrotubule agents was studied by flow cytometry. In vivo chemosensitivity was assayed by treatment of mice implanted with tumor cells. TBCC overexpression influenced tubulin fraction distribution, with higher content of nonpolymerizable tubulins and lower content of polymerizable dimers and microtubules. Microtubule dynamicity was reduced in cells overexpressing TBCC. Cell cycle distribution was altered in cells containing larger amounts of TBCC with higher percentage of cells in G2-M phase and lower percentage in S-phase, along with slower passage into mitosis. While increased content of TBCC had little effect on cell proliferation in vitro, we observed a significant delay in tumor growth with respect to controls when TBCC overexpressing cells were implanted as xenografts in vivo. TBCC overexpressing variants displayed enhanced sensitivity to antimicrotubule agents both in vitro and in xenografts. These

  10. Anti-SEMA3A Antibody: A Novel Therapeutic Agent to Suppress GBM Tumor Growth.

    Science.gov (United States)

    Lee, Jaehyun; Shin, Yong Jae; Lee, Kyoungmin; Cho, Hee Jin; Sa, Jason K; Lee, Sang-Yun; Kim, Seok-Hyung; Lee, Jeongwu; Yoon, Yeup; Nam, Do-Hyun

    2017-11-10

    Glioblastoma (GBM) is classified as one of the most aggressive and lethal brain tumor. Great strides have been made in understanding the genomic and molecular underpinnings of GBM, which translated into development of new therapeutic approaches to combat such deadly disease. However, there are only few therapeutic agents that can effectively inhibit GBM invasion in a clinical framework. In an effort to address such challenges, we have generated anti-SEMA3A monoclonal antibody as a potential therapeutic antibody against GBM progression. We employed public glioma datasets, Repository of Molecular Brain Neoplasia Data and The Cancer Genome Atlas, to analyze SEMA3A mRNA expression in human GBM specimens. We also evaluated for protein expression level of SEMA3A via tissue microarray (TMA) analysis. Cell migration and proliferation kinetics were assessed in various GBM patient-derived cells (PDCs) and U87-MG cell-line for SEMA3A antibody efficacy. GBM patient-derived xenograft (PDX) models were generated to evaluate tumor inhibitory effect of anti-SEMA3A antibody in vivo. By combining bioinformatics and TMA analysis, we discovered that SEMA3A is highly expressed in human GBM specimens compared to non-neoplastic tissues. We developed three different anti-SEMA3A antibodies, in fully human IgG form, through screening phage-displayed synthetic antibody library using a classical panning method. Neutralization of SEMA3A significantly reduced migration and proliferation capabilities of PDCs and U87-MG cell-line in vitro. In PDX models, treatment with anti-SEMA3A antibody exhibited notable tumor inhibitory effect through down-regulation of cellular proliferative kinetics and tumor-associated macrophages recruitment. In present study, we demonstrated tumor inhibitory effect of SEMA3A antibody in GBM progression and present its potential relevance as a therapeutic agent in a clinical framework.

  11. More than meets the eye:age differences in the capture and suppression of oculomotor action

    Directory of Open Access Journals (Sweden)

    K. Richard eRidderinkhof

    2011-10-01

    Full Text Available Salient visual stimuli capture attention and trigger an eye-movement towards its location reflexively, regardless of an observer’s intentions. Here we investigate the effect of aging 1 on the extent to which salient yet task-irrelevant stimuli capture saccades, and 2 on the ability to selectively suppress such oculomotor responses. Young and older adults were asked to direct their eyes to a target appearing in a stimulus array. Analysis of overall performance shows that saccades to the target object were disrupted by the appearance of a task-irrelevant abrupt-onset distractor when the location of this distractor did not coincide with that of the target object. Conditional Capture Function analyses revealed that, compared to young adults, older adults were more susceptible to oculomotor capture, and exhibited deficient selective suppression of the responses captured by task-irrelevant distractors. These effects were uncorrelated, suggesting two independent sources off age-related decline. The fact that these process-specific age effects remained concealed in overall oculomotor performance analyses emphasizes the utility of looking beyond the surface; indeed, there may be more than meets the eye.

  12. B16 melanoma tumor growth is delayed in mice in an age-dependent manner

    Directory of Open Access Journals (Sweden)

    Christina Pettan-Brewer

    2012-08-01

    Full Text Available A major risk factor for cancer is increasing age, which suggests that syngeneic tumor implants in old mice would grow more rapidly. However, various reports have suggested that old mice are not as permissive to implanted tumor cells as young mice. In order to determine and characterize the age-related response to B16 melanoma, we implanted 5×105 tumor cells into 8, 16, 24, and 32-month-old male C57BL/6 (B6 and C57BL/6×BALB/c F1 (CB6 F1 mice subcutaneously in the inguinal and axillary spaces, or intradermally in the lateral flank. Results showed decreased tumor volume with increasing age, which varied according to mouse genetic background and the implanted site. The B6 strain showed robust tumor growth at 8 months of age at the inguinal implantation site, with an average tumor volume of 1341.25 mm3. The 16, 24, and 32-month age groups showed a decrease in tumor growth with tumor volumes of 563.69, 481.02, and 264.55 mm3, respectively (p≤0.001. The axillary implantation site was less permissive in 8-month-old B6 mice with an average tumor volume of 761.52 mm3. The 24- and 32-month age groups showed a similar decrease in tumor growth with tumor volumes of 440 and 178.19 mm3, respectively (p≤0.01. The CB6F1 strain was not as tumor permissive at 8 months of age as B6 mice with average tumor volumes of 446.96 and 426.91 mm3 for the inguinal and axillary sites, respectively. There was a decrease in tumor growth at 24 months of age at both inguinal and axillary sites with an average tumor volume of 271.02 and 249.12 mm3, respectively (p≤0.05. The strain dependence was not apparent in 8-month-old mice injected intradermally with B16 melanoma cells, with average tumor volumes of 736.82 and 842.85 mm3 for B6 and CB6 F1, respectively. However, a strain difference was seen in 32-month-old B6 mice with an average decrease in tumor volume of 250.83 mm3 (p≤0.01. In contrast, tumor growth significantly decreased earlier in CB6 F1 mice with average

  13. Suppression of Peroxiredoxin 4 in Glioblastoma Cells Increases Apoptosis and Reduces Tumor Growth

    Science.gov (United States)

    Kim, Tae Hyong; Song, Jieun; Alcantara Llaguno, Sheila R.; Murnan, Eric; Liyanarachchi, Sandya; Palanichamy, Kamalakannan; Yi, Ji-Yeun; Viapiano, Mariano Sebastian; Nakano, Ichiro; Yoon, Sung Ok; Wu, Hong; Parada, Luis F.; Kwon, Chang-Hyuk

    2012-01-01

    Glioblastoma multiforme (GBM), the most common and aggressive primary brain malignancy, is incurable despite the best combination of current cancer therapies. For the development of more effective therapies, discovery of novel candidate tumor drivers is urgently needed. Here, we report that peroxiredoxin 4 (PRDX4) is a putative tumor driver. PRDX4 levels were highly increased in a majority of human GBMs as well as in a mouse model of GBM. Reducing PRDX4 expression significantly decreased GBM cell growth and radiation resistance in vitro with increased levels of ROS, DNA damage, and apoptosis. In a syngenic orthotopic transplantation model, Prdx4 knockdown limited GBM infiltration and significantly prolonged mouse survival. These data suggest that PRDX4 can be a novel target for GBM therapies in the future. PMID:22916164

  14. Suppression of peroxiredoxin 4 in glioblastoma cells increases apoptosis and reduces tumor growth.

    Directory of Open Access Journals (Sweden)

    Tae Hyong Kim

    Full Text Available Glioblastoma multiforme (GBM, the most common and aggressive primary brain malignancy, is incurable despite the best combination of current cancer therapies. For the development of more effective therapies, discovery of novel candidate tumor drivers is urgently needed. Here, we report that peroxiredoxin 4 (PRDX4 is a putative tumor driver. PRDX4 levels were highly increased in a majority of human GBMs as well as in a mouse model of GBM. Reducing PRDX4 expression significantly decreased GBM cell growth and radiation resistance in vitro with increased levels of ROS, DNA damage, and apoptosis. In a syngenic orthotopic transplantation model, Prdx4 knockdown limited GBM infiltration and significantly prolonged mouse survival. These data suggest that PRDX4 can be a novel target for GBM therapies in the future.

  15. Local administration of siRNA through Microneedle: Optimization, Bio-distribution, Tumor Suppression and Toxicity

    Science.gov (United States)

    Tang, Tao; Deng, Yan; Chen, Jiao; Zhao, Yi; Yue, Ruifeng; Choy, Kwong Wai; Wang, Chi Chiu; Du, Quan; Xu, Yan; Han, Linxiao; Chung, Tony Kwok Hung

    2016-07-01

    Although RNA interference may become a novel therapeutic approach for cancer treatment, target-site accumulation of siRNA to achieve therapeutic dosage will be a major problem. Microneedle represents a better way to deliver siRNAs and we have evaluated for the first time the capability of a silicon microneedle array for delivery of Gapdh siRNA to the skin in vivo and the results showed that the microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively. For the further study in this field, we evaluated the efficacy of the injectable microneedle device for local delivery of siRNA to the mouse xenograft. The results presented here indicate that local administration of siRNA through injectable microneedle could effectively deliver siRNA into the tumor region, and inhibit tumor progression without major adverse effects.

  16. Indoleamine-2,3-dioxygenase elevated in tumor-initiating cells is suppressed by mitocans

    Czech Academy of Sciences Publication Activity Database

    Stapelberg, M.; Zobalová, Renata; Nguyen, M.N.; Walker, T.; Stantic, M.; Goodwin, J.; Pasdar, E.A.; Thai, T.; Prokopová, Kateřina; Yan, B.; Hall, S.; de Pennington, N.; Thomas, S.R.; Grant, G.; Štursa, Jan; Bajziková, Martina; Meedeniya, A.C.B.; Truksa, Jaroslav; Ralph, S. J.; Ansorge, O.; Dong, L.-F.; Neužil, Jiří

    2014-01-01

    Roč. 67, FEB (2014), s. 41-50 ISSN 0891-5849 R&D Projects: GA ČR(CZ) GAP301/10/1937; GA ČR GAP305/12/1708 Institutional support: RVO:86652036 ; RVO:61388963 Keywords : IDO * Tumor-initiating cells * Mitocans * Mitochondrially targeted vitamin E succinate Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.736, year: 2014

  17. FOXD3 suppresses tumor growth and angiogenesis in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Yan, Jun-Hai; Zhao, Chun-Liu; Ding, Lan-Bao; Zhou, Xi

    2015-01-01

    The transcription factor forkhead box D3 (FOXD3), widely studied as a transcriptional repressor in embryogenesis, participates in the carcinogenesis of many cancers. However, the expression pattern and role of FOXD3 in non-small cell lung cancer (NSCLC) have not been well characterized. We report that FOXD3 is significantly downregulated in NSCLC cell lines and clinical tissues. FOXD3 overexpression significantly inhibits cell growth and results in G1 cell cycle arrest in NSCLC A549 and H1299 cells. In a xenograft tumor model, FOXD3 overexpression inhibits tumor growth and angiogenesis. Remarkably, expression of vascular endothelial growth factor (VEGF) was reduced in FOXD3 overexpression models both in vitro and in vivo. These findings suggest that FOXD3 plays a potential tumor suppressor role in NSCLC progression and represents a promising clinical prognostic marker and therapeutic target for this disease. - Highlights: • FOXD3 is downregulated in NSCLC cell lines and tissues. • FOXD3 overexpression inhibited cell proliferation in NSCLC cells. • FOXD3 overexpression led to decreased angiogenesis in NSCLC cells in vitro and in vivo.

  18. Manic fringe inhibits tumor growth by suppressing Notch3 degradation in lung cancer.

    Science.gov (United States)

    Yi, Fuming; Amarasinghe, Baru; Dang, Thao P

    2013-01-01

    Notch signaling plays an essential role in development as well as cancer. We have previously shown that Notch3 is important for lung cancer growth and survival. Notch receptors are activated through the interaction with their ligands, resulting in proteolytic cleavage of the receptors. This interaction is modulated by Fringe, a family of fucose-specific β1,3 N-acetylglucosaminyltransferases that modify the extracellular subunit of Notch receptors. Studies in developmental models showed that Fringe enhances Notch's response to Delta ligands at the expense of Jagged ligands. We observed that Manic Fringe expression is down-regulated in lung cancer. Since Jagged1, a known ligand for Notch3, is often over-expressed in lung cancer, we hypothesized that Fringe negatively regulates Notch3 activation. In this study, we show that re-expression of Manic Fringe down-regulates Notch3 target genes HES1 and HeyL and reduces tumor phenotype in vitro and in vivo. The mechanism for this phenomenon appears to be related to modulation of Notch3 protein stability. Proteasome inhibition reverses Manic Fringe-induced protein turnover. Taken together, our data provide the first evidence that Manic Fringe functions as a tumor suppressor in the lung and that the mechanism of its anti-tumor activity is mediated by inhibition of Notch3 activation.

  19. FOXD3 suppresses tumor growth and angiogenesis in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jun-Hai; Zhao, Chun-Liu [Department of Respiratory Medicine, Luwan Branch of Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 20020 (China); Ding, Lan-Bao [Department of Nuclear Medicine, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Zhou, Xi, E-mail: modelmap@139.com [Department of Respiratory Medicine, Luwan Branch of Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 20020 (China)

    2015-10-09

    The transcription factor forkhead box D3 (FOXD3), widely studied as a transcriptional repressor in embryogenesis, participates in the carcinogenesis of many cancers. However, the expression pattern and role of FOXD3 in non-small cell lung cancer (NSCLC) have not been well characterized. We report that FOXD3 is significantly downregulated in NSCLC cell lines and clinical tissues. FOXD3 overexpression significantly inhibits cell growth and results in G1 cell cycle arrest in NSCLC A549 and H1299 cells. In a xenograft tumor model, FOXD3 overexpression inhibits tumor growth and angiogenesis. Remarkably, expression of vascular endothelial growth factor (VEGF) was reduced in FOXD3 overexpression models both in vitro and in vivo. These findings suggest that FOXD3 plays a potential tumor suppressor role in NSCLC progression and represents a promising clinical prognostic marker and therapeutic target for this disease. - Highlights: • FOXD3 is downregulated in NSCLC cell lines and tissues. • FOXD3 overexpression inhibited cell proliferation in NSCLC cells. • FOXD3 overexpression led to decreased angiogenesis in NSCLC cells in vitro and in vivo.

  20. Selinexor (KPT-330) Induces Tumor Suppression through Nuclear Sequestration of IκB and Downregulation of Survivin.

    Science.gov (United States)

    Nair, Jayasree S; Musi, Elgilda; Schwartz, Gary K

    2017-08-01

    Purpose: Selinexor, a small molecule that inhibits nuclear export protein XPO1, has demonstrated efficacy in solid tumors and hematologic malignancies with the evidence of clinical activity in sarcoma as a single agent. Treatment options available are very few, and hence the need to identify novel targets and strategic therapies is of utmost importance. Experimental Design: The mechanistic effects of selinexor in sarcomas as a monotherapy and in combination with proteasome inhibitor, carfilzomib, across a panel of cell lines in vitro and few in xenograft mouse models were investigated. Results: Selinexor induced IκB nuclear localization as a single agent, and the effect was enhanced by stabilization of IκB when pretreated with the proteasome inhibitor carfilzomib. This stabilization and retention of IκB in the nucleus resulted in inhibition of NFκB and transcriptional suppression of the critical antiapoptotic protein, survivin. Treatment of carfilzomib followed by selinexor caused selinexor-sensitive and selinexor-resistant cell lines to be more sensitive to selinexor as determined by an increase in apoptosis. This was successfully demonstrated in the MPNST xenograft model with enhanced tumor suppression. Conclusions: The subcellular distributions of IκB and NFκB are indicative of carcinogenesis. Inhibition of XPO1 results in intranuclear retention of IκB, which inhibits NFκB and thereby provides a novel mechanism for drug therapy in sarcoma. This effect can be further enhanced in relatively selinexor-resistant sarcoma cell lines by pretreatment with the proteasome inhibitor carfilzomib. Because of these results, a human clinical trial with selinexor in combination with a proteasome inhibitor is planned for the treatment of sarcoma. Clin Cancer Res; 23(15); 4301-11. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. Endogenous leptin contributes to baroreflex suppression within the solitary tract nucleus of aged rats

    Science.gov (United States)

    Arnold, Amy C.

    2014-01-01

    The decline in cardiovagal baroreflex function that occurs with aging is accompanied by an increase in circulating leptin levels. Our previous studies showed that exogenous leptin impairs the baroreflex sensitivity for control of heart rate in younger rats, but the contribution of this hormone to baroreflex dysfunction during aging is unknown. Thus we assessed the effect of bilateral leptin microinjection (500 fmol/60 nl) within the solitary tract nucleus (NTS) on the baroreflex sensitivity in older (66 ± 2 wk of age) urethane/chloralose anesthetized Sprague-Dawley rats with elevated circulating leptin levels. In contrast to the 63% reduction observed in younger rats, leptin did not alter the baroreflex sensitivity for bradycardia evoked by phenylephrine in older rats (0.76 ± 0.19 baseline vs. 0.71 ± 0.15 ms/mmHg after leptin; P = 0.806). We hypothesized that this loss of sensitivity reflected endogenous suppression of the baroreflex by elevated leptin, rather than cardiovascular resistance to the peptide. Indeed, NTS administration of a leptin receptor antagonist (75 pmol/120 nl) improved the baroreflex sensitivity for bradycardia in older rats (0.73 ± 0.13 baseline vs. 1.19 ± 0.26 at 10 min vs. 1.87 ± 0.32 at 60 min vs. 1.22 ± 0.54 ms/mmHg at 120 min; P = 0.002), with no effect in younger rats. There was no effect of the leptin antagonist on the baroreflex sensitivity for tachycardia, responses to cardiac vagal chemosensitive fiber activation, or resting hemodynamics in older rats. These findings suggest that the actions of endogenous leptin within the NTS, either produced locally or derived from the circulation, contribute to baroreflex suppression during aging. PMID:25260611

  2. Epigenetic inactivation of SPINT2 is associated with tumor suppressive function in esophageal squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Dongli [The Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); The Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Fan, Qingxia [The Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Chen, Xinfeng; Li, Feng [The Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Wang, Liping [The Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Huang, Lan [The Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Dong, Wenjie; Chen, Xiaoqi [The Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Zhang, Zhen [The Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Liu, Jinyan; Wang, Fei [The Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); The School of Life Sciences, Zhengzhou University, Zhengzhou 450052, Henan (China); Wang, Meng [The Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); The Department of Gastroenterology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Zhang, Bin [The Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); The Department of Hematology/Oncology, School of Medicine, Northwestern University, Chicago 60611 (United States); and others

    2014-03-10

    Hepatocyte growth factor activator inhibitor type 2 (SPINT2), a Kunitz-type serine proteinase inhibitor, has been identified as a putative tumor suppressor gene silenced by promoter methylation. We aimed to investigate whether SPINT2 might act as an esophageal squamous cell carcinoma (ESCC) tumor suppressor gene. Four ESCC cell lines, Fifty-two ESCC tissues and twenty-nine neighboring non-cancerous tissues were included in this study. The expression of SPINT2 was monitored by real time PCR. Bisulfite genomic sequencing and methylation-specific PCR were used to analyze methylation status. The effect of SPINT2 on cell proliferation and apoptosis in EC109 and EC9706 cells was observed by CCK-8 assay and flow cytometric analysis. We found that silencing of SPINT2 was associated with promoter methylation in ESCC cell lines. The densely methylated SPINT2 promoter region was confirmed by bisulfite genomic sequencing. Ectopic expression of SPINT2 inhibited cell proliferation through inducing cell apoptosis in vitro. Furthermore, methylation-specific PCR analysis revealed that SPINT2 promoter methylation was prominent in carcinoma tissues (52.08%) compared with neighboring non-cancerous tissues (22.58%). Kaplan–Meier analysis showed that patients with SPINT2 hypermethylation had shorter survival time. The tumor suppressor gene of SPINT2 is commonly silenced by promoter hypermethylation in human ESCC and SPINT2 hypermethylation is correlated with poor overall survival, implicating SPINT2 is an underlying prognostic marker for human ESCC. - Highlights: • We firstly found SPINT2 gene may be transcriptionally repressed by promoter hypermethylation in ESCC cells. • SPINT2 overexpressing cells induced proliferation inhibition through promoting apoptosis. • mRNA expression of SPINT2 was significantly higher in ESCC tissues than in neighboring non-cancerous tissues. • Promoter hypermethylation of SPINT2 is significantly linked to TNM stage and poor overall survival.

  3. Treatment Combining X-Irradiation and a Ribonucleoside Anticancer Drug, TAS106, Effectively Suppresses the Growth of Tumor Cells Transplanted in Mice

    International Nuclear Information System (INIS)

    Yasui, Hironobu; Inanami, Osamu; Asanuma, Taketoshi; Iizuka, Daisuke; Nakajima, Takayuki; Kon, Yasuhiro; Matsuda, Akira; Kuwabara, Mikinori

    2007-01-01

    Purpose: To examine the in vivo antitumor efficacy of X-irradiation combined with administration of a ribonucleoside anticancer drug, 1-(3-C-ethynyl-β-D-ribo-pentofuranosyl)cytosine (TAS106, ECyd), to tumor cell-transplanted mice. Methods and Materials: Colon26 murine rectum adenocarcinoma cells and MKN45 human gastric adenocarcinoma cells were inoculated into the footpad in BALB/c mice and severe combined immunodeficient mice, respectively. They were treated with a relatively low dose of X-irradiation (2 Gy) and low amounts of TAS106 (0.1 mg/kg and 0.5 mg/kg). The tumor growth was monitored by measuring the tumor volume from Day 5 to Day 16 for Colon26 and from Day 7 to Day 20 for MKN45. Histologic analyses for proliferative and apoptotic cells in the tumors were performed using Ki-67 immunohistochemical and terminal deoxynucleotidyl transferase-mediated nick end labeling staining. The expression of survivin, a key molecule related to tumor survival, was assessed by quantitative polymerase chain reaction and immunohistochemical analysis. Results: When X-irradiation and TAS106 treatment were combined, significant inhibition of tumor growth was observed in both types of tumors compared with mice treated with X-irradiation or TAS106 alone. Marked inhibition of tumor growth was observed in half of the mice that received the combined treatment three times at 2-day intervals. Parallel to these phenomena, the suppression of survivin expression and appearance of Ki-67-negative and apoptotic cells were observed. Conclusions: X-irradiation and TAS106 effectively suppress tumor growth in mice. The inhibition of survivin expression by TAS106 is thought to mainly contribute to the suppression of the tumor growth

  4. Inhibition of PI3K by ZSTK474 suppressed tumor growth not via apoptosis but G0/G1 arrest

    International Nuclear Information System (INIS)

    Dan, Shingo; Yoshimi, Hisashi; Okamura, Mutsumi; Mukai, Yumiko; Yamori, Takao

    2009-01-01

    Phosphoinositide 3-kinase (PI3K) is a potential target in cancer therapy. Inhibition of PI3K is believed to induce apoptosis. We recently developed a novel PI3K inhibitor ZSTK474 with antitumor efficacy. In this study, we have examined the underlying mode of action by which ZSTK474 exerts its antitumor efficacy. In vivo, ZSTK474 effectively inhibited the growth of human cancer xenografts. In parallel, ZSTK474 treatment suppressed the expression of phospho-Akt, suggesting effective PI3K inhibition, and also suppressed the expression of nuclear cyclin D1 and Ki67, both of which are hallmarks of proliferation. However, ZSTK474 treatment did not increase TUNEL-positive apoptotic cells. In vitro, ZSTK474 induced marked G 0 /G 1 arrest, but did not increase the subdiploid cells or activate caspase, both of which are hallmarks of apoptosis. These results clearly indicated that inhibition of PI3K by ZSTK474 did not induce apoptosis but rather induced strong G 0 /G 1 arrest, which might cause its efficacy in tumor cells.

  5. Cancer-Associated Fibroblasts from lung tumors maintain their immuno-suppressive abilities after high-dose irradiation

    Directory of Open Access Journals (Sweden)

    Laia eGorchs

    2015-05-01

    Full Text Available Accumulating evidence supports the notion that high-dose (>5 Gy radiotherapy (RT regimens are triggering stronger pro-immunogenic effects than standard low-dose (2 Gy regimens. However, the effects of RT on certain immunoregulatory elements in tumors remain unexplored. In this study we have investigated the effects of high-dose irradiation (HD-RT on the immunomodulating functions of cancer-associated fibroblasts (CAFs. Primary CAF cultures were established from lung cancer specimens derived from patients diagnosed for non-small cell lung cancer. Irradiated and non-irradiated CAFs were examined for immunomodulation in experiments with peripheral blood mononuclear cells from random, healthy donors. Regulation of lymphocytes behavior was checked by lymphocyte proliferation assays, lymphocyte migration assays and T-cell cytokine production. Additionally, CAF-secreted immuno-regulatory factors were studied by multiplex protein arrays, ELISAs and by LC-MS/MS proteomics. In all functional assays we observed a powerful immuno-suppressive effect exerted by CAF-conditioned medium on activated T-cells (p>0,001, and this effect was sustained after a single radiation dose of 18 Gy. Relevant immuno-suppressive molecules such as prostaglandin E2, interleukin-6 and -10, or transforming growth factor-β were found in CAF conditioned medium, but their secretion was unchanged after irradiation. Finally, immunogenic cell death responses in CAFs were studied by exploring the release of high motility group box-1 and ATP. Both alarmins remained undetectable before and after irradiation. In conclusion, CAFs play a powerful immuno-suppressive effect over activated T-cells, and this effect remains unchanged after HD-RT. Importantly, CAFs do not switch on immunogenic cell death responses after exposure to HD-RT.

  6. Andrographolide Suppress Tumor Growth by Inhibiting TLR4/NF-κB Signaling Activation in Insulinoma

    Science.gov (United States)

    Zhang, Qian-Qian; Ding, Yi; Lei, Yan; Qi, Cui-Ling; He, Xiao-Dong; Lan, Tian; Li, Jiang-Chao; Gong, Ping; Yang, Xuesong; Geng, Jian-Guo; Wang, Li-Jing

    2014-01-01

    Insulinomas are rare tumors, and approximately 10% of insulinomas are malignant. Accumulating evidence has implicated that we still lack effective therapy to treat the patients who are diagnosed with rare malignant insulinoma. Previous studies have reported that Andrographolide (Andro) could inhibit cell cycle progression, reduce cell invasion and induce cell apoptosis in many common cancer cells. However, the effects of andro are cell type-dependent. So we emplored the β-TC-6 cells and the RIP1-Tag2 transgenic mouse model of endogenously growing insulinoma model to elucidate the possible anti-cancer effect of Andro on insulinoma, an uncommon type of malignant cancers in this study. Our experiments revealed that Andro significantly inhibited tumor growth at both the early-stage and the advanced-stage of insulinoma through targeting the TLR4/NF-κB signaling pathway. This work initially provides the evidence that the TLR4/NF-κB signaling pathway might be vital as a potential therapeutic target, and also indispensable in Andro-mediated anti-cancer effect in insulinoma. PMID:24719558

  7. A Novel Type of Non-coding RNA, nc886, Implicated in Tumor Sensing and Suppression

    Directory of Open Access Journals (Sweden)

    Yong Sun Lee

    2015-06-01

    Full Text Available nc886 (=vtRNA2-1, pre-miR-886, or CBL3 is a newly identified non-coding RNA (ncRNA that represses the activity of protein kinase R (PKR. nc886 is transcribed by RNA polymerase III (Pol III and is intriguingly the first case of a Pol III gene whose expression is silenced by CpG DNA hypermethylation in several types of cancer. PKR is a sensor protein that recognizes evading viruses and induces apoptosis to eliminate infected cells. Like viral infection, nc886 silencing activates PKR and induces apoptosis. Thus, the significance of the nc886:PKR pathway in cancer is to sense and eliminate pre-malignant cells, which is analogous to PKR's role in cellular innate immunity. Beyond this tumor sensing role, nc886 plays a putative tumor suppressor role as supported by experimental evidence. Collectively, nc886 provides a novel example how epigenetic silencing of a ncRNA contributes to tumorigenesis by controlling the activity of its protein ligand.

  8. A Multi-targeted Approach to Suppress Tumor-Promoting Inflammation

    Science.gov (United States)

    Samadi, Abbas K.; Georgakilas, Alexandros G.; Amedei, Amedeo; Amin, Amr; Bishayee, Anupam; Lokeshwar, Bal L.; Grue, Brendan; Panis, Carolina; Boosani, Chandra S.; Poudyal, Deepak; Stafforini, Diana M.; Bhakta, Dipita; Niccolai, Elena; Guha, Gunjan; Rupasinghe, H.P. Vasantha; Fujii, Hiromasa; Honoki, Kanya; Mehta, Kapil; Aquilano, Katia; Lowe, Leroy; Hofseth, Lorne J.; Ricciardiello, Luigi; Ciriolo, Maria Rosa; Singh, Neetu; Whelan, Richard L.; Chaturvedi, Rupesh; Ashraf, S. Salman; Kumara, HMC Shantha; Nowsheen, Somaira; Mohammed, Sulma I.; Helferich, William G.; Yang, Xujuan

    2015-01-01

    Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-kappaB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes. PMID:25951989

  9. siRNA-mediated Erc gene silencing suppresses tumor growth in Tsc2 mutant renal carcinoma model.

    Science.gov (United States)

    Imamura, Osamu; Okada, Hiroaki; Takashima, Yuuki; Zhang, Danqing; Kobayashi, Toshiyuki; Hino, Okio

    2008-09-18

    Silencing of gene expression by small interfering RNAs (siRNAs) is rapidly becoming a powerful tool for genetic analysis and represents a potential strategy for therapeutic product development. However, there are no reports of systemic delivery of siRNAs for stable treatment except short hairpin RNAs (shRNAs). On the other hand, there are many reports of systemic delivery of siRNAs for transient treatment using liposome carriers and others. With regard to shRNAs, a report showed fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Therefore, we decided to use original siRNA microspheres instead of shRNA for stable treatment of disease. In this study, we designed rat-specific siRNA sequences for Erc/mesothelin, which is a tumor-specific gene expressed in the Eker (Tsc2 mutant) rat model of hereditary renal cancer and confirmed the efficacy of gene silencing in vitro. Then, by using siRNA microspheres, we found that the suppression of Erc/mesothelin caused growth inhibition of Tsc2 mutant renal carcinoma cells in tumor implantation experiments in mice.

  10. Age and Space Irradiation Modulate Tumor Progression: Implications for Carcinogenesis Risk

    Data.gov (United States)

    National Aeronautics and Space Administration — Age plays a major role in tumor incidence and is an important consideration when modeling the carcinogenesis process or estimating cancer risks. Epidemiological data...

  11. Replicative Stress and the FHIT Gene: Roles in Tumor Suppression, Genome Stability and Prevention of Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Karras, Jenna R.; Paisie, Carolyn A.; Huebner, Kay, E-mail: kay.huebner@osumc.edu [Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210 (United States)

    2014-06-04

    The fragile FHIT gene, encompassing the chromosomal fragile site FRA3B, is an early target of DNA damage in precancerous cells. While vulnerable to DNA damage itself, FHIT protein expression is essential to protect from DNA damage-induced cancer initiation and progression by modulating genome stability, oxidative stress and levels of accumulating DNA damage. Thus, FHIT, whose expression is lost or reduced in many human cancers, is a tumor suppressor and genome caretaker whose loss initiates genome instability in preneoplastic lesions. Ongoing studies are seeking more detailed understanding of the role of FHIT in the cellular response to oxidative damage. This review discusses the relationship between FHIT, reactive oxygen species production, and DNA damage in the context of cancer initiation and progression.

  12. Tumor-Suppressing Effect of MiR-4458 on Human Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Dan Tang

    2015-03-01

    Full Text Available Background: Besides multiple genetic and epigenetic changes of protein coding genes in hepatocellular carcinoma (HCC, growing evidence indicate that deregulation of miRNAs contribute to HCC development by influencing cell growth, apoptosis, migration, or invasion. IKBKE is amplified and over-expressed in a large percentage of human breast tumors and identified as an oncogene of human breast tumor. Microarray analysis showed that miR-4458 was down-regulated in HCC tissues. Methods: The level of miR-4458 was up-regulated by miR-4458 mimics transfection, or down-regulated by miR-4458 ASO transfection. Cell proliferation was assayed by MTT analysis. MiRNAs and mRNA expression were assayed by qRT-PCR. These potential targeted genes of miR-4458 were predicted by bioinformatic algorithms. Dual luciferase reporter assay system was used to analyze the interaction between miR-4458 and IKBKE. IKBKE protein level was assayed by Western blot. The role of miR-4458 or IKBKE in the survival of HCC patients were revealed by Kaplan-Meier plot of overall survival. Results: Lower miR-4458 expression level or higher IKBKE level in HCC tissues correlated with worse prognosis of HCC patients. Overexpression of miR-4458 inhibited the HCC cells growth and vice versa. MiR-4458 played its role via targeting 3'UTR of IKBKE. Conclusions: MiR-4458 or IKBKE may be potential predictors of HCC prognosis. Restoration of miR-4458 or inhibition of IKBKE could be a prospective therapeutic approach for HCC.

  13. Rb and p53 Liver Functions Are Essential for Xenobiotic Metabolism and Tumor Suppression.

    Directory of Open Access Journals (Sweden)

    Sathidpak Nantasanti

    Full Text Available The tumor suppressors Retinoblastoma (Rb and p53 are frequently inactivated in liver diseases, such as hepatocellular carcinomas (HCC or infections with Hepatitis B or C viruses. Here, we discovered a novel role for Rb and p53 in xenobiotic metabolism, which represent a key function of the liver for metabolizing therapeutic drugs or toxins. We demonstrate that Rb and p53 cooperate to metabolize the xenobiotic 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC. DDC is metabolized mainly by cytochrome P450 (Cyp3a enzymes resulting in inhibition of heme synthesis and accumulation of protoporphyrin, an intermediate of heme pathway. Protoporphyrin accumulation causes bile injury and ductular reaction. We show that loss of Rb and p53 resulted in reduced Cyp3a expression decreased accumulation of protoporphyrin and consequently less ductular reaction in livers of mice fed with DDC for 3 weeks. These findings provide strong evidence that synergistic functions of Rb and p53 are essential for metabolism of DDC. Because Rb and p53 functions are frequently disabled in liver diseases, our results suggest that liver patients might have altered ability to remove toxins or properly metabolize therapeutic drugs. Strikingly the reduced biliary injury towards the oxidative stress inducer DCC was accompanied by enhanced hepatocellular injury and formation of HCCs in Rb and p53 deficient livers. The increase in hepatocellular injury might be related to reduce protoporphyrin accumulation, because protoporphrin is well known for its anti-oxidative activity. Furthermore our results indicate that Rb and p53 not only function as tumor suppressors in response to carcinogenic injury, but also in response to non-carcinogenic injury such as DDC.

  14. Stage dependent expression and tumor suppressive function of FAM134B (JK1) in colon cancer.

    Science.gov (United States)

    Islam, Farhadul; Gopalan, Vinod; Wahab, Riajul; Smith, Robert A; Qiao, Bin; Lam, Alfred King-Yin

    2017-01-01

    The aims of the present study are to investigate sub-cellular location, differential expression in different cancer stages and functional role of FAM134B in colon cancer development. FAM134B expression was studied and quantified at protein and mRNA levels in cell lines using immunocytochemistry, Western blot and real-time PCR. In vitro functional assays and an in vivo xenotransplantation mouse models were used to investigate the molecular role of FAM134B in cancer cell biology in response to FAM134B silencing with shRNA lentiviral particles. FAM134B protein was noted in both cytoplasm and nuclei of cancer cells. In cancer cells derived from stage IV colon cancer, FAM134B expression was remarkably reduced when compared to non-cancer colon cells and cancer cells derived from stage II colon cancer. FAM134B knockdown significantly (P colon cancer cells following lentiviral transfection. Furthermore, FAM134B suppression significantly increased (34-52%; P cancer suppressor gene in colon cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. miR-106a suppresses tumor cells death in colorectal cancer through targeting ATG7.

    Science.gov (United States)

    Hao, Haibin; Xia, Guangfeng; Wang, Chao; Zhong, Fuping; Liu, Laipeng; Zhang, Dong

    2017-06-01

    Autophagy-related gene 7 (ATG7) and miR-106a play an important role in cancer cell autophagy and apoptosis, but the outcome of ATG7 and miR-106a in colorectal cancer (CRC) still remains not clear. In this study, we found that ATG7 and miR-106a expression were mutually related with cell death and prognosis in CRC patients. In addition, we also showed that ATG7 and miR-106a expression were changeable in colorectal cancer cell lines when compared with normal cell lines, but ATG7 and miR-106a mRNA level was negatively correlated. Furthermore, ATG7 protein and mRNA levels decreased after over-expression of miR-106a, whereas the suppression of ATG7 had the opposite effect. We confirmed that miR-106a down-regulated ATG7 mRNA level by binding the specific sequence of ATG7 mRNA 3'UTR region. Moreover, the over-expression of ATG7 induced CRC cells death both in vitro and in vivo. Taken together, our study data demonstrated that ATG7 aggravated the cell death of CRC, which was inhibited by miR-106a.

  16. Own-race and own-age biases facilitate visual awareness of faces under interocular suppression

    Directory of Open Access Journals (Sweden)

    Timo eStein

    2014-08-01

    Full Text Available The detection of a face in a visual scene is the first stage in the face processing hierarchy. Although all subsequent, more elaborate face processing depends on the initial detection of a face, surprisingly little is known about the perceptual mechanisms underlying face detection. Recent evidence suggests that relatively hard-wired face detection mechanisms are broadly tuned to all face-like visual patterns as long as they respect the typical spatial configuration of the eyes above the mouth. Here, we qualify this notion by showing that face detection mechanisms are also sensitive to face shape and facial surface reflectance properties. We used continuous flash suppression (CFS to render faces invisible at the beginning of a trial and measured the time upright and inverted faces needed to break into awareness. Young Caucasian adult observers were presented with faces from their own race or from another race (race experiment and with faces from their own age group or from another age group (age experiment. Faces matching the observers’ own race and age group were detected more quickly. Moreover, the advantage of upright over inverted faces in overcoming CFS, i.e. the face inversion effect, was larger for own-race and own-age faces. These results demonstrate that differences in face shape and surface reflectance influence access to awareness and configural face processing at the initial detection stage. Although we did not collect data from observers of another race or age group, these findings are a first indication that face detection mechanisms are shaped by visual experience with faces from one’s own social group. Such experience-based fine-tuning of face detection mechanisms may equip in-group faces with a competitive advantage for access to conscious awareness.

  17. Anti-progestins suppress the growth of established tumors induced by 7,12-dimethylbenz(a)anthracene: comparison between RU486 and a new 21-substituted-19-nor-progestin.

    Science.gov (United States)

    Wiehle, Ronald D; Christov, Konstantin; Mehta, Rajendra

    2007-07-01

    In this report, we evaluate the effects of a 21-substituted-19-nor-progestin, CDB-4124, on 7,12,-dimethylbenz(a)anthracene (DMBA)-induced mammary carcinogenesis in rats in comparison with RU486. Sprague-Dawley female rats were treated with DMBA at 50 days of age in order to induce mammary tumors. When the tumors reached the size of 10-12 mm, the animals were treated for 28 days with the vehicle, RU486, progesterone, CDB-4124 at various doses, or CDB-4124 plus progesterone. Anti-progestins resulted in the regression in the size of the existing tumors, and in the suppressed development of new tumors and tumor multiplicity. Progesterone treatment, however, increased the size and multiplicity. Progesterone rendered an increased number of growing tumors as compared to the regression in the anti-progesterone treatment groups. The combination of CDB-4124 and high doses of progesterone opposed the efficacy of CDB-4124. The growth inhibitory effects of the anti-progestins were correlated with increased apoptosis and reduced cell proliferation. These results indicate that anti-progestins should be developed for the chemoprevention and treatment of hormone-responsive breast cancer.

  18. The Role of BRCA1 in Suppressing Epithelial Mesenchymal Transition in Mammary Gland and Tumor Development

    Science.gov (United States)

    2016-11-01

    Berton D, Nicholls M, Srinivasan D, Raman R, Girshik S, Kigonya P, Alonso S, Sanbhadti R, Barletta S, Pot D, Sheth M, Demchok JA, Mills Shaw KR, Yang L...443:421–426. 8. Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S, Sharpless NE. p16INK4a induces an age-dependent decline in

  19. MicroRNAs-449a and -449b exhibit tumor suppressive effects in retinoblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Alissa [Division of Hematology, Oncology, and Stem Cell Transplantation, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611 (United States); Jones, Aunica [Cancer Biology and Epigenomics Program, Ann and Robert H. Lurie Children’s Hospital of Chicago Research Center, Chicago, IL 60611 (United States); Bryar, Paul J. [Departments of Ophthalmology and Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 (United States); Mets, Marilyn [Division of Ophthalmology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611 (United States); Department of Ophthalmology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611 (United States); Weinstein, Joanna [Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611 (United States); Division of Hematology, Oncology, and Stem Cell Transplantation, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611 (United States); Zhang, Gang [Biostatistics Research Core, Ann and Robert H. Lurie Children’s Hospital of Chicago Research Center, Chicago, IL 60611 (United States); Laurie, Nikia A., E-mail: n-laurie@northwestern.edu [Cancer Biology and Epigenomics Program, Ann and Robert H. Lurie Children’s Hospital of Chicago Research Center, Chicago, IL 60611 (United States); Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611 (United States)

    2013-11-01

    Highlights: •We validate miR-449a/b expression in primary human retinoblastomas and cell lines. •Exogenous miRs-449a/b inhibited proliferation in retinoblastoma cell lines. •Exogenous miRs-449a/b increased apoptosis in retinoblastoma cell lines. •miRs-449a/b could serve as viable therapeutic targets for retinoblastoma treatment. -- Abstract: Retinoblastoma is the most common pediatric cancer of the eye. Currently, the chemotherapeutic treatments for retinoblastoma are broad-based drugs such as vincristine, carboplatin, or etoposide. However, therapies targeted directly to aberrant signaling pathways may provide more effective therapy for this disease. The purpose of our study is to illustrate the relationship between the expressions of miRs-449a and -449b to retinoblastoma proliferation and apoptosis. We are the first to confirm an inhibitory effect of miR-449a and -449b in retinoblastoma by demonstrating significantly impaired proliferation and increased apoptosis of tumor cells when these miRNAs are overexpressed. This study suggests that these miRNAs could serve as viable therapeutic targets for retinoblastoma treatment.

  20. Ruxolitinib combined with vorinostat suppresses tumor growth and alters metabolic phenotype in hematological diseases.

    Science.gov (United States)

    Civallero, Monica; Cosenza, Maria; Pozzi, Samantha; Sacchi, Stefano

    2017-11-28

    JAK-2 dysregulation plays an important role as an oncogenic driver, and is thus a promising therapeutic target in hematological malignancies. Ruxolitinib is a pyrrolo[2.3-d]pyrimidine derivative with inhibitory activity against JAK1 and JAK2, moderate activity against TYK2, and minor activity against JAK3. Vorinostat is an HDAC inhibitor that reduces JAK-2 expression, thus affecting JAK-2 mRNA expression and increasing JAK-2 proteasomal deterioration. Here we hypothesized that the combination of ruxolitinib and vorinostat could have synergistic effects against hematological disease. We tested combinations of low doses of ruxolitinib and vorinostat in 12 cell lines, and observed highly synergistic cytotoxic action in six cell lines, which was maintained for up to 120 h in the presence of stromal cells. The sensitivity of the six cell lines may be explained by the broad effects of the drug combination, which can affect various targets. Treatment with the combination of ruxolitinib and vorinostat appeared to induce a possible reversal of the Warburg effect, with associated ROS production, apoptotic events, and growth inhibition. Decreased glucose metabolism may have markedly sensitized the six more susceptible cell lines to combined treatment. Therapeutic inhibition of the JAK/STAT pathway seems to offer substantial anti-tumor benefit, and combined therapy with ruxolitinib and vorinostat may represent a promising novel therapeutic modality for hematological neoplasms.

  1. Herbal Extract SH003 Suppresses Tumor Growth and Metastasis of MDA-MB-231 Breast Cancer Cells by Inhibiting STAT3-IL-6 Signaling

    Directory of Open Access Journals (Sweden)

    Youn Kyung Choi

    2014-01-01

    Full Text Available Cancer inflammation promotes cancer progression, resulting in a high risk of cancer. Here, we demonstrate that our new herbal extract, SH003, suppresses both tumor growth and metastasis of MDA-MB-231 breast cancer cells via inhibiting STAT3-IL-6 signaling path. Our new herbal formula, SH003, mixed extract from Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii Maximowicz, suppressed MDA-MB-231 tumor growth and lung metastasis in vivo and reduced the viability and metastatic abilities of MDA-MB-231 cells in vitro. Furthermore, SH003 inhibited STAT3 activation, which resulted in a reduction of IL-6 production. Therefore, we conclude that SH003 suppresses highly metastatic breast cancer growth and metastasis by inhibiting STAT3-IL-6 signaling path.

  2. 3-bromopyruvate and sodium citrate target glycolysis, suppress survivin, and induce mitochondrial-mediated apoptosis in gastric cancer cells and inhibit gastric orthotopic transplantation tumor growth.

    Science.gov (United States)

    Wang, Ting-An; Zhang, Xiao-Dong; Guo, Xing-Yu; Xian, Shu-Lin; Lu, Yun-Fei

    2016-03-01

    Glycolysis is the primary method utilized by cancer cells to produce the energy (adenosine triphosphate, ATP) required for cell proliferation. Therefore, inhibition of glycolysis may inhibit tumor growth. We previously found that both 3-bromopyruvate (3-BrPA) and sodium citrate (SCT) can inhibit glycolysis in vitro; however, the underlying inhibitory mechanisms remain unclear. In the present study, we used a human gastric cancer cell line (SGC-7901) and an orthotopic transplantation tumor model in nude mice to explore the specific mechanisms of 3-BrPA and SCT. We found that both 3-BrPA and SCT effectively suppressed cancer cell proliferation, arrested the cell cycle, induced apoptosis, and decreased the production of lactate and ATP. 3-BrPA significantly reduced the glycolytic enzyme hexokinase activity, while SCT selectively inhibited phosphofructokinase-1 activity. Furthermore, 3-BrPA and SCT upregulated the expression of pro-apoptotic proteins (Bax, cytochrome c, and cleaved caspase-3) and downregulated the expression of anti-apoptotic proteins (Bcl-2 and survivin). Finally, our animal model of gastric cancer indicated that intraperitoneal injection of 3-BrPA and SCT suppressed orthotopic transplantation tumor growth and induced tumor apoptosis. Taken together, these results suggest that 3-BrPA and SCT selectively suppress glycolytic enzymes, decrease ATP production, induce mitochondrial-mediated apoptosis, downregulate survivin, and inhibit tumor growth. Moreover, an intraperitoneal injection is an effective form of administration of 3-BrPA and SCT.

  3. Inflammatory cytokine tumor necrosis factor α suppresses neuroprotective endogenous erythropoietin from astrocytes mediated by hypoxia-inducible factor-2α.

    Science.gov (United States)

    Nagaya, Yoshiaki; Aoyama, Mineyoshi; Tamura, Tetsuya; Kakita, Hiroki; Kato, Shin; Hida, Hideki; Saitoh, Shinji; Asai, Kiyofumi

    2014-12-01

    Interest in erythropoietin (EPO) as a neuroprotective mediator has grown since it was found that systemically administered EPO is protective in several animal models of disease. However, given that the blood-brain barrier limits EPO entry into the brain, alternative approaches that induce endogenous EPO production in the brain may be more effective clinically and associated with fewer untoward side-effects. Astrocytes are the main source of EPO in the central nervous system. In the present study we investigated the effect of the inflammatory cytokine tumor necrosis factor α (TNFα) on hypoxia-induced upregulation of EPO in rat brain. Hypoxia significantly increased EPO mRNA expression in the brain and kidney, and this increase was suppressed by TNFα in vivo. In cultured astrocytes exposed to hypoxic conditions for 6 and 12 h, TNFα suppressed the hypoxia-induced increase in EPO mRNA expression in a concentration-dependent manner. TNFα inhibition of hypoxia-induced EPO expression was mediated primarily by hypoxia-inducible factor (HIF)-2α rather than HIF-1α. The effects of TNFα in reducing hypoxia-induced upregulation of EPO mRNA expression probably involve destabilization of HIF-2α, which is regulated by the nuclear factor (NF)-κB signaling pathway. TNFα treatment attenuated the protective effects of astrocytes on neurons under hypoxic conditions via EPO signaling. The effective blockade of TNFα signaling may contribute to the maintenance of the neuroprotective effects of EPO even under hypoxic conditions with an inflammatory response. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Advanced age negatively impacts survival in an experimental brain tumor model.

    Science.gov (United States)

    Ladomersky, Erik; Zhai, Lijie; Gritsina, Galina; Genet, Matthew; Lauing, Kristen L; Wu, Meijing; James, C David; Wainwright, Derek A

    2016-09-06

    Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, with an average age of 64 years at the time of diagnosis. To study GBM, a number of mouse brain tumor models have been utilized. In these animal models, subjects tend to range from 6 to 12 weeks of age, which is analogous to that of a human teenager. Here, we examined the impact of age on host immunity and the gene expression associated with immune evasion in immunocompetent mice engrafted with syngeneic intracranial GL261. The data indicate that, in mice with brain tumors, youth conveys an advantage to survival. While age did not affect the tumor-infiltrating T cell phenotype or quantity, we discovered that old mice express higher levels of the immunoevasion enzyme, IDO1, which was decreased by the presence of brain tumor. Interestingly, other genes associated with promoting immunosuppression including CTLA-4, PD-L1 and FoxP3, were unaffected by age. These data highlight the possibility that IDO1 contributes to faster GBM outgrowth with advanced age, providing rationale for future investigation into immunotherapeutic targeting in the future. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Enhanced experimental tumor metastasis with age in senescence-accelerated mouse

    International Nuclear Information System (INIS)

    Shimizu, Kosuke; Kinouchi Shimizu, Naomi; Asai, Tomohiro; Oku, Naoto; Tsukada, Hideo

    2008-01-01

    Tumor metastasis is affected by the host immune surveillance system. Since aging may attenuate the host immune potential, the experimental tumor metastasis may be enhanced with age. In the present study, we investigated this alteration of experimental tumor metastasis with age. We used senescence-accelerated mice prone 10 (SAMP10) as a model of aged animals. Natural killer cell (NK) activity, as an indicator of immune surveillance potential, in 8-month-old (aged) SAMP10 mice was observed to be much lower than that in 2-month-old (young) mice. When we examined the in vivo trafficking of lung-metastatic K1735M2 melanoma cells in SAMP10 with positron emission tomography (PET), K1735M2 cells labeled with [2- 18 F]2-deoxy-2-fluoro-D-glucose ([ 18 F]FDG) were observed in both young and aged SAMP10 just after injection of the cells, whereas the clearance of 18 F from the lungs was retarded in aged animals. The accumulation of 5-[ 125 I]iodo-2'-deoxyuridine ([ 125 I]IUdR)-labeled K1735M2 cells in the lungs of SAMP10 at 24 h after injection was significantly higher in aged mice. Corresponding to these results, the number of metastatic colonies in the lung was larger in the aged SAMP10 of the experimental tumor metastasis model. The present study demonstrated that the aging process produced a susceptible environment allowing the tumor cells to metastasize due to decrease in the host immune surveillance potential with age. (author)

  6. Age dependency of primary tumor sites and metastases in patients with Ewing sarcoma.

    Science.gov (United States)

    Worch, Jennifer; Ranft, Andreas; DuBois, Steven G; Paulussen, Michael; Juergens, Heribert; Dirksen, Uta

    2018-06-01

    The median age of patients with Ewing sarcoma (EwS) at diagnosis is around 14-15 years. Older age is associated with a worse outcome. The correlation of age at diagnosis on sites of disease has not been fully described. The goal of this study was to evaluate the differences in sites of primary tumor and metastatic tumor involvement according to age groups. EwS data from the Gesellschaft für Pädiatrische Onkologie und Hämatology (GPOH) database of the Cooperative Ewing Sarcoma Study (CESS) 81/86 and the European Intergroup Cooperative Ewing's Sarcoma Study EICESS 92 and the EUROpean Ewing tumor Working Initiative of National Groups-99-Protocol (EURO-E.W.I.N.G.-99) study were analyzed. Patient and tumor characteristics were evaluated statistically using chi square tests. The study population included 2,635 patients with bone EwS. Sites of primary and metastatic tumors differed according to the age groups of young children (0-9 years), early adolescence (10-14 years), late adolescence (15-19 years), young adults (20-24 years), and adults (more than 24 years). Young children demonstrated the most striking differences in site of disease with a lower proportion of pelvic primary and axial tumors. They presented less often with metastatic disease at diagnosis. Site of primary and metastatic tumor involvement in EwS differs according to patient age. The biological and developmental etiology for these differences requires further investigations. © 2018 Wiley Periodicals, Inc.

  7. Spermidine Suppresses Age-Associated Memory Impairment by Preventing Adverse Increase of Presynaptic Active Zone Size and Release.

    Directory of Open Access Journals (Sweden)

    Varun K Gupta

    2016-09-01

    Full Text Available Memories are assumed to be formed by sets of synapses changing their structural or functional performance. The efficacy of forming new memories declines with advancing age, but the synaptic changes underlying age-induced memory impairment remain poorly understood. Recently, we found spermidine feeding to specifically suppress age-dependent impairments in forming olfactory memories, providing a mean to search for synaptic changes involved in age-dependent memory impairment. Here, we show that a specific synaptic compartment, the presynaptic active zone (AZ, increases the size of its ultrastructural elaboration and releases significantly more synaptic vesicles with advancing age. These age-induced AZ changes, however, were fully suppressed by spermidine feeding. A genetically enforced enlargement of AZ scaffolds (four gene-copies of BRP impaired memory formation in young animals. Thus, in the Drosophila nervous system, aging AZs seem to steer towards the upper limit of their operational range, limiting synaptic plasticity and contributing to impairment of memory formation. Spermidine feeding suppresses age-dependent memory impairment by counteracting these age-dependent changes directly at the synapse.

  8. Cytoplasmic transfer of heritable elements other than mtDNA from SAMP1 mice into mouse tumor cells suppresses their ability to form tumors in C57BL6 mice.

    Science.gov (United States)

    Shimizu, Akinori; Tani, Haruna; Takibuchi, Gaku; Ishikawa, Kaori; Sakurazawa, Ryota; Inoue, Takafumi; Hashimoto, Tetsuo; Nakada, Kazuto; Takenaga, Keizo; Hayashi, Jun-Ichi

    2017-11-04

    In a previous study, we generated transmitochondrial P29mtSAMP1 cybrids, which had nuclear DNA from the C57BL6 (referred to as B6) mouse strain-derived P29 tumor cells and mitochondrial DNA (mtDNA) exogenously-transferred from the allogeneic strain SAMP1. Because P29mtSAMP1 cybrids did not form tumors in syngeneic B6 mice, we proposed that allogeneic SAMP1 mtDNA suppressed tumor formation of P29mtSAMP1 cybrids. To test this hypothesis, current study generated P29mt(sp)B6 cybrids carrying all genomes (nuclear DNA and mtDNA) from syngeneic B6 mice by eliminating SAMP1 mtDNA from P29mtSAMP1 cybrids and reintroducing B6 mtDNA. However, the P29mt(sp)B6 cybrids did not form tumors in B6 mice, even though they had no SAMP1 mtDNA, suggesting that SAMP1 mtDNA is not involved in tumor suppression. Then, we examined another possibility of whether SAMP1 mtDNA fragments potentially integrated into the nuclear DNA of P29mtSAMP1 cybrids are responsible for tumor suppression. We generated P29 H (sp)B6 cybrids by eliminating nuclear DNA from P29mt(sp)B6 cybrids and reintroducing nuclear DNA with no integrated SAMP1 mtDNA fragment from mtDNA-less P29 cells resistant to hygromycin in selection medium containing hygromycin. However, the P29 H (sp)B6 cybrids did not form tumors in B6 mice, even though they carried neither SAMP1 mtDNA nor nuclear DNA with integrated SAMP1 mtDNA fragments. Moreover, overproduction of reactive oxygen species (ROS) and bacterial infection were not involved in tumor suppression. These observations suggest that tumor suppression was caused not by mtDNA with polymorphic mutations or infection of cytozoic bacteria but by hypothetical heritable cytoplasmic elements other than mtDNA from SAMP1 mice. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation.

    Science.gov (United States)

    Zhao, Dong; Zheng, Han-Qiu; Zhou, Zhongmei; Chen, Ceshi

    2010-06-01

    Fbw7 is a tumor suppressor frequently inactivated in cancers. The KLF5 transcription factor promotes breast cell proliferation and tumorigenesis through upregulating FGF-BP. The KLF5 protein degrades rapidly through the ubiquitin proteasome pathway. Here, we show that the Skp1-CUL1-Fbw7 E3 ubiquitin ligase complex (SCF(Fbw7)) targets KLF5 for ubiquitin-mediated degradation in a GSK3beta-mediated KLF5 phosphorylation-dependent manner. Mutation of the critical S303 residue in the KLF5 Cdc4 phospho-degrons motif ((303)SPPSS) abolishes the protein interaction, ubiquitination, and degradation by Fbw7. Inactivation of endogenous Fbw7 remarkably increases the endogenous KLF5 protein abundances. Endogenous Fbw7 suppresses the FGF-BP gene expression and breast cell proliferation through targeting KLF5 for degradation. These findings suggest that Fbw7 inhibits breast cell proliferation at least partially through targeting KLF5 for proteolysis. This new regulatory mechanism of KLF5 degradation may result in useful diagnostic and therapeutic targets for breast cancer and other cancers. Copyright 2010 AACR.

  10. Preserved suppression of salient irrelevant stimuli during visual search in Age-Associated Memory Impairment

    Directory of Open Access Journals (Sweden)

    Laura eLorenzo-López

    2016-01-01

    Full Text Available Previous studies have suggested that older adults with age-associated memory impairment (AAMI may show a significant decline in attentional resource capacity and inhibitory processes in addition to memory impairment. In the present paper, the potential attentional capture by task-irrelevant stimuli was examined in older adults with AAMI compared to healthy older adults using scalp-recorded event-related brain potentials (ERPs. ERPs were recorded during the execution of a visual search task, in which the participants had to detect the presence of a target stimulus that differed from distractors by orientation. To explore the automatic attentional capture phenomenon, an irrelevant distractor stimulus defined by a different feature (color was also presented without previous knowledge of the participants. A consistent N2pc, an electrophysiological indicator of attentional deployment, was present for target stimuli but not for task-irrelevant color stimuli, suggesting that these irrelevant distractors did not attract attention in AAMI older adults. Furthermore, the N2pc for targets was significantly delayed in AAMI patients compared to healthy older controls. Together, these findings suggest a specific impairment of the attentional selection process of relevant target stimuli in these individuals and indicate that the mechanism of top-down suppression of entirely task-irrelevant stimuli is preserved, at least when the target and the irrelevant stimuli are perceptually very different.

  11. Rosmarinic acid inhibits inflammation and angiogenesis of hepatocellular carcinoma by suppression of NF-κB signaling in H22 tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Wen Cao

    2016-10-01

    Full Text Available The aim of this study was to explore the anti-tumor effect and therapeutic potential of rosmarinic acid (RA in the treatment of hepatocellular carcinoma (HCC. RA at 75, 150 and 300 mg/kg was given to H22 tumor-bearing mice by intragastric administration once daily for 10 consecutive days. Levels of inflammatory and angiogenic factors, including interleukin-1β (IL-1β, interleukin-6 (IL-6, tumor necrosis factor-α (TNF-α, vascular endothelial growth factor (VEGF, and transforming growth factor-β (TGF-β were measured by enzyme linked immunosorbent assays (ELISA. Protein levels of phosphorylated NF-κB p65 and p65 were detected by western blot. mRNA level of NF-κB p65 was analyzed by qRT-PCR. The results showed that RA could effectively suppress tumor growth with fewer toxic effects by regulating the secretion of cytokines associated with inflammation and angiogenesis, and suppressing the expression of NF-κB p65 in the xenograft microenvironment. Our findings unveil the possible anti-tumor mechanisms of RA and support RA as a potential drug for the treatment of HCC.

  12. Styrene maleic acid-encapsulated RL71 micelles suppress tumor growth in a murine xenograft model of triple negative breast cancer.

    Science.gov (United States)

    Martey, Orleans; Nimick, Mhairi; Taurin, Sebastien; Sundararajan, Vignesh; Greish, Khaled; Rosengren, Rhonda J

    2017-01-01

    Patients with triple negative breast cancer have a poor prognosis due in part to the lack of targeted therapies. In the search for novel drugs, our laboratory has developed a second-generation curcumin derivative, 3,5-bis(3,4,5-trimethoxybenzylidene)-1-methylpiperidine-4-one (RL71), that exhibits potent in vitro cytotoxicity. To improve the clinical potential of this drug, we have encapsulated it in styrene maleic acid (SMA) micelles. SMA-RL71 showed improved biodistribution, and drug accumulation in the tumor increased 16-fold compared to control. SMA-RL71 (10 mg/kg, intravenously, two times a week for 2 weeks) also significantly suppressed tumor growth compared to control in a xenograft model of triple negative breast cancer. Free RL71 was unable to alter tumor growth. Tumors from SMA-RL71-treated mice showed a decrease in angiogenesis and an increase in apoptosis. The drug treatment also modulated various cell signaling proteins including the epidermal growth factor receptor, with the mechanisms for tumor suppression consistent with previous work with RL71 in vitro. The nanoformulation was also nontoxic as shown by normal levels of plasma markers for liver and kidney injury following weekly administration of SMA-RL71 (10 mg/kg) for 90 days. Thus, we report clinical potential following encapsulation of a novel curcumin derivative, RL71, in SMA micelles.

  13. Chemotherapy in conjoint aging-tumor systems: some simple models for addressing coupled aging-cancer dynamics

    Directory of Open Access Journals (Sweden)

    Witten Tarynn M

    2010-06-01

    Full Text Available Abstract Background In this paper we consider two approaches to examining the complex dynamics of conjoint aging-cancer cellular systems undergoing chemotherapeutic intervention. In particular, we focus on the effect of cells growing conjointly in a culture plate as a precursor to considering the larger multi-dimensional models of such systems. Tumor cell growth is considered from both the logistic and the Gompertzian case, while normal cell growth of fibroblasts (WI-38 human diploid fibroblasts is considered as logistic only. Results We demonstrate, in a simple approach, how the interdependency of different cell types in a tumor, together with specifications of for treatment, can lead to different evolutionary patterns for normal and tumor cells during a course of therapy. Conclusions These results have significance for understanding appropriate pharmacotherapy for elderly patients who are also undergoing chemotherapy.

  14. NF-κB Directly Regulates Fas Transcription to Modulate Fas-mediated Apoptosis and Tumor Suppression*

    Science.gov (United States)

    Liu, Feiyan; Bardhan, Kankana; Yang, Dafeng; Thangaraju, Muthusamy; Ganapathy, Vadivel; Waller, Jennifer L.; Liles, Georgia B.; Lee, Jeffrey R.; Liu, Kebin

    2012-01-01

    Fas is a member of the death receptor family. Stimulation of Fas leads to induction of apoptotic signals, such as caspase 8 activation, as well as “non-apoptotic” cellular responses, notably NF-κB activation. Convincing experimental data have identified NF-κB as a critical promoter of cancer development, creating a solid rationale for the development of antitumor therapy that suppresses NF-κB activity. On the other hand, compelling data have also shown that NF-κB activity enhances tumor cell sensitivity to apoptosis and senescence. Furthermore, although stimulation of Fas activates NF-κB, the function of NF-κB in the Fas-mediated apoptosis pathway remains largely undefined. In this study, we observed that deficiency of either Fas or FasL resulted in significantly increased incidence of 3-methylcholanthrene-induced spontaneous sarcoma development in mice. Furthermore, Fas-deficient mice also exhibited significantly greater incidence of azoxymethane and dextran sodium sulfate-induced colon carcinoma. In addition, human colorectal cancer patients with high Fas protein in their tumor cells had a longer time before recurrence occurred. Engagement of Fas with FasL triggered NF-κB activation. Interestingly, canonical NF-κB was found to directly bind to the FAS promoter. Blocking canonical NF-κB activation diminished Fas expression, whereas blocking alternate NF-κB increased Fas expression in human carcinoma cells. Moreover, although canonical NF-κB protected mouse embryo fibroblast (MEF) cells from TNFα-induced apoptosis, knocking out p65 diminished Fas expression in MEF cells, resulting in inhibition of FasL-induced caspase 8 activation and apoptosis. In contrast, knocking out p52 increased Fas expression in MEF cells. Our observations suggest that canonical NF-κB is a Fas transcription activator and alternate NF-κB is a Fas transcription repressor, and Fas functions as a suppressor of spontaneous sarcoma and colon carcinoma. PMID:22669972

  15. Transformation Resistance in a Premature Aging Disorder Identifies a Tumor-Protective Function of BRD4

    Directory of Open Access Journals (Sweden)

    Patricia Fernandez

    2014-10-01

    Full Text Available Summary: Advanced age and DNA damage accumulation are prominent risk factors for cancer. The premature aging disorder Hutchinson-Gilford progeria syndrome (HGPS provides a unique opportunity for studying the interplay between DNA damage and aging-associated tumor mechanisms, given that HGPS patients do not develop tumors despite elevated levels of DNA damage. Here, we have used HGPS patient cells to identify a protective mechanism to oncogenesis. We find that HGPS cells are resistant to neoplastic transformation. Resistance is mediated by the bromodomain protein BRD4, which exhibits altered genome-wide binding patterns in transformation-resistant cells, leading to inhibition of oncogenic dedifferentiation. BRD4 also inhibits, albeit to a lower extent, the tumorigenic potential of transformed cells from healthy individuals. BRD4-mediated tumor protection is clinically relevant given that a BRD4 gene signature predicts positive clinical outcome in breast and lung cancer. Our results demonstrate a protective function for BRD4 and suggest tissue-specific roles for BRD4 in tumorigenesis. : The premature aging disorder Hutchinson-Gilford progeria syndrome (HGPS provides a unique tool for studying the interplay between DNA damage and aging-associated tumor mechanisms, given that HGPS patients do not develop tumors despite elevated levels of DNA damage. Using a genome-wide RNAi screen, Fernandez et al. now identify the bromodomain protein BRD4 as a mediator of the oncogenic resistance of HGPS cells. This tumor-protective function of BRD4 involves inhibition of oncogenic dedifferentiation and is also active in non-HGPS cells in a tissue-specific manner.

  16. miR-503 suppresses tumor cell proliferation and metastasis by directly targeting RNF31 in prostate cancer

    International Nuclear Information System (INIS)

    Guo, Jia; Liu, Xiuheng; Wang, Min

    2015-01-01

    Microarray data analyses were performed to search for metastasis-associated oncogenes in prostate cancer (PCa). RNF31 mRNA expressions in tumor tissues and benign prostate tissues were evaluated. The RNF31 protein expression levels were also analyzed by western blot and immunohistochemistry. Luciferase reporter assays were used to identify miRNAs that can regulate RNF31. The effect of RNF31 on PCa progression was studied in vitro and in vivo. We found that RNF31 was significantly increased in PCa and its expression level was highly correlated with seminal vesicle invasion, clinical stage, prostate specific antigen (PSA) level, Gleason score, and BCR. Silence of RNF31 suppressed PCa cell proliferation and metastasis in vitro and in vivo. miR-503 can directly regulate RNF31. Enforced expression of miR-503 inhibited the expression of RNF31 significantly and the restoration of RNF31 expression reversed the inhibitory effects of miR-503 on PCa cell proliferation and metastasis. These findings collectively indicated an oncogene role of RNF31 in PCa progression which can be regulated by miR-503, suggesting that RNF31 could serve as a potential prognostic biomarker and therapeutic target for PCa. - Highlights: • RNF31 is a potential metastasis associated gene and is associated with prostate cancer progression. • Silence of RNF31 inhibits PCa cell colony formation, migration and invasion. • RNF31 as a direct target of miR-503. • miR-503 can regulate cell proliferation, invasion and migration by targeting RNF31. • RNF31 plays an important role in PCa growth and metastasis in vivo

  17. Enhanced suppression of tumor growth by concomitant treatment of human lung cancer cells with suberoylanilide hydroxamic acid and arsenic trioxide

    International Nuclear Information System (INIS)

    Chien, Chia-Wen; Yao, Ju-Hsien; Chang, Shih-Yu; Lee, Pei-Chih; Lee, Te-Chang

    2011-01-01

    The efficacy of arsenic trioxide (ATO) against acute promyelocytic leukemia (APL) and relapsed APL has been well documented. ATO may cause DNA damage by generating reactive oxygen intermediates. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, modulates gene and protein expression via histone-dependent or -independent pathways that may result in chromatin decondensation, cell cycle arrest, differentiation, and apoptosis. We investigated whether ATO and SAHA act synergistically to enhance the death of cancer cells. Our current findings showed that combined treatment with ATO and SAHA resulted in enhanced suppression of non-small-cell lung carcinoma in vitro in H1299 cells and in vivo in a xenograft mouse model. Flow cytometric analysis of annexin V+ cells showed that apoptotic cell death was significantly enhanced after combined treatment with ATO and SAHA. At the doses used, ATO did not interfere with cell cycle progression, but SAHA induced p21 expression and led to G1 arrest. A Comet assay demonstrated that ATO, but not SAHA, induced DNA strand breaks in H1299 cells; however, co-treatment with SAHA significantly increased ATO-induced DNA damage. Moreover, SAHA enhanced acetylation of histone H3 and sensitized genomic DNA to DNase I digestion. Our results suggest that SAHA may cause chromatin relaxation and increase cellular susceptibility to ATO-induced DNA damage. Combined administration of SAHA and ATO may be an effective approach to the treatment of lung cancer. -- Highlights: ► ATO and SAHA are therapeutic agents with different action modes. ► Combination of ATO and SAHA synergistically inhibits tumor cell growth. ► SAHA loosens chromatin structure resulting in increased sensitivity to DNase I. ► ATO-induced DNA damage and apoptosis are enhanced by co-treatment with SAHA.

  18. miR-503 suppresses tumor cell proliferation and metastasis by directly targeting RNF31 in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jia; Liu, Xiuheng, E-mail: l_xiuheng@163.com; Wang, Min

    2015-09-04

    Microarray data analyses were performed to search for metastasis-associated oncogenes in prostate cancer (PCa). RNF31 mRNA expressions in tumor tissues and benign prostate tissues were evaluated. The RNF31 protein expression levels were also analyzed by western blot and immunohistochemistry. Luciferase reporter assays were used to identify miRNAs that can regulate RNF31. The effect of RNF31 on PCa progression was studied in vitro and in vivo. We found that RNF31 was significantly increased in PCa and its expression level was highly correlated with seminal vesicle invasion, clinical stage, prostate specific antigen (PSA) level, Gleason score, and BCR. Silence of RNF31 suppressed PCa cell proliferation and metastasis in vitro and in vivo. miR-503 can directly regulate RNF31. Enforced expression of miR-503 inhibited the expression of RNF31 significantly and the restoration of RNF31 expression reversed the inhibitory effects of miR-503 on PCa cell proliferation and metastasis. These findings collectively indicated an oncogene role of RNF31 in PCa progression which can be regulated by miR-503, suggesting that RNF31 could serve as a potential prognostic biomarker and therapeutic target for PCa. - Highlights: • RNF31 is a potential metastasis associated gene and is associated with prostate cancer progression. • Silence of RNF31 inhibits PCa cell colony formation, migration and invasion. • RNF31 as a direct target of miR-503. • miR-503 can regulate cell proliferation, invasion and migration by targeting RNF31. • RNF31 plays an important role in PCa growth and metastasis in vivo.

  19. Curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway.

    Science.gov (United States)

    Tian, Binqiang; Zhao, Yingmei; Liang, Tao; Ye, Xuxiao; Li, Zuowei; Yan, Dongliang; Fu, Qiang; Li, Yonghui

    2017-08-01

    We have previously reported that curcumin inhibits urothelial tumor development in a rat bladder carcinogenesis model. In this study, we report that curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway. Curcumin inhibits IGF2 expression at the transcriptional level and decreases the phosphorylation levels of IGF1R and IRS-1 in bladder cancer cells and N-methyl-N-nitrosourea (MNU)-induced urothelial tumor tissue. Ectopic expression of IGF2 and IGF1R, but not IGF1, in bladder cancer cells restored this process, suggesting that IGF2 is a target of curcumin. Moreover, introduction of constitutively active AKT1 abolished the inhibitory effect of curcumin on cell proliferation, migration, and restored the phosphorylation levels of 4E-BP1 and S6K1, suggesting that curcumin functions via suppressing IGF2-mediated AKT/mTOR signaling pathway. In summary, our results reveal that suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway is one of the mechanisms of action of curcumin. Our findings suggest a new therapeutic strategy against human bladder cancer caused by aberrant activation of IGF2, which are useful for translational application of curcumin.

  20. Inhibition of Calcium-Activated Chloride Channel ANO1/TMEM16A Suppresses Tumor Growth and Invasion in Human Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Linghan Jia

    Full Text Available Lung cancer or pulmonary carcinoma is primarily derived from epithelial cells that are thin and line on the alveolar surfaces of the lung for gas exchange. ANO1/TMEM16A, initially identified from airway epithelial cells, is a member of Ca2+-activated Cl- channels (CaCCs that function to regulate epithelial secretion and cell volume for maintenance of ion and tissue homeostasis. ANO1/TMEM16A has recently been shown to be highly expressed in several epithelium originated carcinomas. However, the role of ANO1 in lung cancer remains unknown. In this study, we show that inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer. ANO1 is upregulated in different human lung cancer cell lines. Knocking-down ANO1 by small hairpin RNAs inhibited proliferation, migration and invasion of GLC82 and NCI-H520 cancel cells evaluated by CCK-8, would-healing, transwell and 3D soft agar assays. ANO1 protein is overexpressed in 77.3% cases of human lung adenocarcinoma tissues detected by immunohistochemistry. Furthermore, the tumor growth in nude mice implanted with GLC82 cells was significantly suppressed by ANO1 silencing. Taken together, our findings provide evidence that ANO1 overexpression contributes to tumor growth and invasion of lung cancer; and suppressing ANO1 overexpression may have therapeutic potential in lung cancer therapy.

  1. Mangiferin, a novel nuclear factor kappa B-inducing kinase inhibitor, suppresses metastasis and tumor growth in a mouse metastatic melanoma model

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tomoya; Tsubaki, Masanobu; Sakamoto, Kotaro; Ichimura, Eri; Enomoto, Aya; Suzuki, Yuri [Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka (Japan); Itoh, Tatsuki [Department of Food Science and Nutrition, Kinki University School of Agriculture, Nara, Nara (Japan); Imano, Motohiro [Department of Surgery, Kinki University School of Medicine, Osakasayama, Osaka (Japan); Tanabe, Genzoh; Muraoka, Osamu [Laboratory of Pharmaceutical Organic Chemistry, School of Pharmacy, Kinki University, Kowakae, Higashi-, Osaka (Japan); Matsuda, Hideaki [Department of Natural Drugs Resources, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka (Japan); Satou, Takao [Department of Pathology, Kinki University School of Medicine, Osakasayama, Osaka (Japan); Nishida, Shozo, E-mail: nishida@phar.kindai.ac.jp [Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-, Osaka (Japan)

    2016-09-01

    Advanced metastatic melanoma, one of the most aggressive malignancies, is currently without reliable therapy. Therefore, new therapies are urgently needed. Mangiferin is a naturally occurring glucosylxanthone and exerts many beneficial biological activities. However, the effect of mangiferin on metastasis and tumor growth of metastatic melanoma remains unclear. In this study, we evaluated the effect of mangiferin on metastasis and tumor growth in a mouse metastatic melanoma model. We found that mangiferin inhibited spontaneous metastasis and tumor growth. Furthermore, mangiferin suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated NF-κB-inducing kinase (NIK), inhibitor of kappa B kinase (IKK), and inhibitor of kappa B (IκB) and increases the expression of IκB protein in vivo. In addition, we found that mangiferin inhibited the expression of matrix metalloproteinases (MMPs) and very late antigens (VLAs) in vivo. Mangiferin treatment also increased the expression of cleaved caspase-3, cleaved Poly ADP ribose polymerase-1 (PARP-1), p53 upregulated modulator of apoptosis (PUMA), p53, and phosphorylated p53 proteins, and decreased the expression of Survivin and Bcl-associated X (Bcl-xL) proteins in vivo. These results indicate that mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation, thereby inhibiting metastasis and tumor growth. Importantly, the number of reported NIK selective inhibitors is limited. Taken together, our data suggest that mangiferin may be a potential therapeutic agent with a new mechanism of targeting NIK for the treatment of metastatic melanoma. - Highlights: • Mangiferin prolongs survival in mice by inhibiting metastasis and tumor growth • Mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation • Mangiferin regulates the expression of MMPs, VLAs, and apoptosis regulatory proteins.

  2. Age and the risk of anaplasia in magnetic resonance-nonenhancing supratentorial cerebral tumors.

    Science.gov (United States)

    Barker, F G; Chang, S M; Huhn, S L; Davis, R L; Gutin, P H; McDermott, M W; Wilson, C B; Prados, M D

    1997-09-01

    It is often assumed that a cerebral lesion that is nonenhancing on a magnetic resonance imaging study with gadolinium contrast is a low grade tumor. Some physicians recommend observation rather than biopsy for such lesions. The authors prospectively evaluated the incidence of anaplastic tumor histology in a consecutive series of patients who presented to a neuro-oncology service with a nonenhancing mass of the cerebral hemisphere. During a 5-month period, the authors evaluated 31 patients who had a nonenhancing lesion in the cerebral hemisphere on initial magnetic resonance images. Thirty patients underwent stereotactic biopsy (27%) or open resection (73%). The median patient age was 36 years (range, 6-63 years). There was no mortality or permanent neurologic morbidity from surgery. Twenty-eight patients had pathologic confirmation of diagnosis while their lesions were still nonenhancing. Of these patients, 9 (32%) had Grade 3 lesions (anaplastic astrocytoma or oligoastrocytoma), 13 (43%) had Grade 2 lesions (astrocytoma, oligodendroglioma, or oligoastrocytoma), and 2 (7%) had Grade 1 lesions (dysembryoplastic neuroepithelial tumors). Two additional patients (ages 33 and 59 years) who developed enhancement within their lesions during preoperative periods of observation had glioblastomas at surgery. Logistic regression was used to relate patient age to the risk of anaplasia in a nonenhancing cerebral mass lesion. Older age predicted a significantly higher risk of anaplasia (P = 0.025). The model predicted that nonenhancing cerebral masses in patients older than 44 years were more likely to be anaplastic tumors than low grade tumors. There was no "safe" age below which low grade histology could be confidently assumed. Magnetic resonance-nonenhancing cerebral lesions may be histologically anaplastic, even in young patients. The risk of anaplasia in magnetic resonance-nonenhancing lesions increases significantly with patient age.

  3. Suppressing an anti-inflammatory cytokine reveals a strong age-dependent survival cost in mice.

    Directory of Open Access Journals (Sweden)

    Virginia Belloni

    Full Text Available BACKGROUND: The central paradigm of ecological immunology postulates that selection acts on immunity as to minimize its cost/benefit ratio. Costs of immunity may arise because the energetic requirements of the immune response divert resources that are no longer available for other vital functions. In addition to these resource-based costs, mis-directed or over-reacting immune responses can be particularly harmful for the host. In spite of the potential importance of immunopathology, most studies dealing with the evolution of the immune response have neglected such non resource-based costs. To keep the immune response under control, hosts have evolved regulatory pathways that should be considered when studying the target of the selection pressures acting on immunity. Indeed, variation in regulation may strongly modulate the negative outcome of immune activation, with potentially important fitness consequences. METHODOLOGY/PRINCIPAL FINDINGS: Here, we experimentally assessed the survival costs of reduced immune regulation by inhibiting an anti-inflammatory cytokine (IL-10 with anti-IL-10 receptor antibodies (anti-IL-10R in mice that were either exposed to a mild inflammation or kept as control. The experiment was performed on young (3 months and old (15 months individuals, as to further assess the age-dependent cost of suppressing immune regulation. IL-10 inhibition induced high mortality in old mice exposed to the mild inflammatory insult, whereas no mortality was observed in young mice. However, young mice experienced a transitory lost in body mass when injected with the anti-IL-10R antibodies, showing that the treatment was to a lesser extent also costly for young individuals. CONCLUSIONS: These results suggest a major role of immune regulation that deserves attention when investigating the evolution of immunity, and indicate that the capacity to down-regulate the inflammatory response is crucial for late survival and longevity.

  4. Psychometric qualities of the Thought Suppression Inventory-Revised in different age groups

    NARCIS (Netherlands)

    van Schie, K.; Wanmaker, Sabine; Yocarini, Iris; Bouwmeester, Samantha

    Intrusive thoughts about negative events are core symptoms of several psychiatric disorders. Because current instruments for the assessment of thought suppression are unsatisfactory, we developed and evaluated the dimensionality and validity of a questionnaire that distinguishes between three major

  5. Aging and insulin signaling differentially control normal and tumorous germline stem cells.

    Science.gov (United States)

    Kao, Shih-Han; Tseng, Chen-Yuan; Wan, Chih-Ling; Su, Yu-Han; Hsieh, Chang-Che; Pi, Haiwei; Hsu, Hwei-Jan

    2015-02-01

    Aging influences stem cells, but the processes involved remain unclear. Insulin signaling, which controls cellular nutrient sensing and organismal aging, regulates the G2 phase of Drosophila female germ line stem cell (GSC) division cycle in response to diet; furthermore, this signaling pathway is attenuated with age. The role of insulin signaling in GSCs as organisms age, however, is also unclear. Here, we report that aging results in the accumulation of tumorous GSCs, accompanied by a decline in GSC number and proliferation rate. Intriguingly, GSC loss with age is hastened by either accelerating (through eliminating expression of Myt1, a cell cycle inhibitory regulator) or delaying (through mutation of insulin receptor (dinR) GSC division, implying that disrupted cell cycle progression and insulin signaling contribute to age-dependent GSC loss. As flies age, DNA damage accumulates in GSCs, and the S phase of the GSC cell cycle is prolonged. In addition, GSC tumors (which escape the normal stem cell regulatory microenvironment, known as the niche) still respond to aging in a similar manner to normal GSCs, suggesting that niche signals are not required for GSCs to sense or respond to aging. Finally, we show that GSCs from mated and unmated females behave similarly, indicating that female GSC-male communication does not affect GSCs with age. Our results indicate the differential effects of aging and diet mediated by insulin signaling on the stem cell division cycle, highlight the complexity of the regulation of stem cell aging, and describe a link between ovarian cancer and aging. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  6. Hepatic Radiofrequency Ablation–induced Stimulation of Distant Tumor Growth Is Suppressed by c-Met Inhibition

    Science.gov (United States)

    Kumar, Gaurav; Moussa, Marwan; Wang, Yuanguo; Rozenblum, Nir; Galun, Eithan; Goldberg, S. Nahum

    2016-01-01

    Purpose To elucidate how hepatic radiofrequency (RF) ablation affects distant extrahepatic tumor growth by means of two key molecular pathways. Materials and Methods Rats were used in this institutional animal care and use committee–approved study. First, the effect of hepatic RF ablation on distant subcutaneous in situ R3230 and MATBIII breast tumors was evaluated. Animals were randomly assigned to standardized RF ablation, sham procedure, or no treatment. Tumor growth rate was measured for 3½ to 7 days. Then, tissue was harvested for Ki-67 proliferative indexes and CD34 microvascular density. Second, hepatic RF ablation was performed for hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and c-Met receptor expression measurement in periablational rim, serum, and distant tumor 24 hours to 7 days after ablation. Third, hepatic RF ablation was combined with either a c-Met inhibitor (PHA-665752) or VEGF receptor inhibitor (semaxanib) and compared with sham or drug alone arms to assess distant tumor growth and growth factor levels. Finally, hepatic RF ablation was performed in rats with c-Met–negative R3230 tumors for comparison with the native c-Met–positive line. Tumor size and immunohistochemical quantification at day 0 and at sacrifice were compared with analysis of variance and the two-tailed Student t test. Tumor growth curves before and after treatment were analyzed with linear regression analysis to determine mean slopes of pre- and posttreatment growth curves on a per-tumor basis and were compared with analysis of variance and paired two-tailed t tests. Results After RF ablation of normal liver, distant R3230 tumors were substantially larger at 7 days compared with tumors treated with the sham procedure and untreated tumors, with higher growth rates and tumor cell proliferation. Similar findings were observed in MATBIII tumors. Hepatic RF ablation predominantly increased periablational and serum HGF and downstream distant tumor

  7. Dual PI3K/mTOR inhibitors, GSK2126458 and PKI-587, suppress tumor progression and increase radiosensitivity in nasopharyngeal carcinoma.

    Science.gov (United States)

    Liu, Tongxin; Sun, Quanquan; Li, Qi; Yang, Hua; Zhang, Yuqin; Wang, Rong; Lin, Xiaoshan; Xiao, Dong; Yuan, Yawei; Chen, Longhua; Wang, Wei

    2015-02-01

    Although combined chemoradiotherapy has provided considerable improvements for nasopharyngeal carcinoma (NPC), recurrence and metastasis are still frequent. The PI3K/Akt/mTOR pathway plays a critical role in tumor formation and tumor cell survival after radiation-induced DNA damage. In the present study, we evaluated whether inhibition of PI3K/mTOR by two novel dual inhibitors, GSK2126458 and PKI-587, could suppress tumor progression and sensitize NPC cells to radiation. Four NPC cell lines (CNE-1, CNE-2, 5-8F, and 6-10B) were used to analyze the effects of GSK216458 and PKI-587 on cell proliferation, migration, invasion, clonogenic survival, amount of residual γ-H2AX foci, cell cycle, and apoptosis after radiation. A 5-8F xenograft model was used to evaluate the in vivo effects of the two compounds in combination with ionizing radiation (IR). Both GSK216458 and PKI-587 effectively inhibited cell proliferation and motility in NPC cells and suppressed phosphorylation of Akt, mTOR, S6, and 4EBP1 proteins in a concentration- and time-dependent manner. Moreover, both compounds sensitized NPC cells to IR by increasing DNA damage, enhancing G2-M cell-cycle delay, and inducing apoptosis. In vivo, the combination of IR with GSK2126458 or PKI-587 significantly inhibited tumor growth. Antitumor effect was correlated with induction of apoptosis and suppression of the phosphorylation of mTOR, Akt, and 4EBP1. These new findings suggest the usefulness of PI3K/mTOR dual inhibition for antitumor and radiosensitizing. The combination of IR with a dual PI3K/mTOR inhibitor, GSK2126458 or PKI-587, might be a promising therapeutic strategy for NPC. ©2014 American Association for Cancer Research.

  8. Systemic agonistic anti-CD40 treatment of tumor bearing mice modulates hepatic myeloid suppressive cells and causes immune-mediated liver damage

    Science.gov (United States)

    Medina-Echeverz, José; Ma, Chi; Duffy, Austin; Eggert, Tobias; Hawk, Nga; Kleiner, David E.; Korangy, Firouzeh; Greten, Tim F.

    2015-01-01

    Immune stimulatory monoclonal antibodies are currently evaluated as anti tumor agents. Although overall toxicity appears to be moderate, liver toxicities have been reported and are not completely understood. We studied the effect of systemic CD40 antibody treatment on myeloid cells in spleen and liver. Naïve and tumor-bearing mice were treated systemically with agonistic anti-CD40 antibody. Immune cell subsets in liver and spleen, serum transaminases and liver histologies were analyzed after antibody administration. Nox2−/−, Cd40−/− as well as bone marrow chimeric mice were used to study the mechanism by which agonistic anti-CD40 mediates its effects in vivo. Suppressor function of murine and human tumor-induced myeloid derived suppressive cells was studied upon CD40 ligation. Agonistic CD40 antibody caused liver damage within 24 hours after injection in two unrelated tumor models and mice strains. Using bone marrow chimeras we demonstrated that CD40 antibody-induced hepatitis in tumor-bearing mice was dependent on the presence of CD40-expressing hematopoietic cells. Agonistic CD40 ligation-dependent liver damage was induced by the generation of reactive oxygen species. Furthermore, agonistic CD40 antibody resulted in increased CD80 and CD40 positive liver CD11b+Gr-1+ immature myeloid cells. CD40 ligation on tumor-induced murine and human CD14+HLA-DRlow PBMC from cancer patients reduced their immune suppressor function. Collectively, agonistic CD40 antibody treatment activated tumor-induced, myeloid cells, caused myeloid dependent hepatotoxicity and ameliorated the suppressor function of murine and human MDSC. Collectively, our data suggests that CD40 may mature immunosuppressive myeloid cells and thereby cause liver damage in mice with an accumulation of tumor-induced hepatic MDSC. PMID:25637366

  9. Stereotactic body radiotherapy for stage I lung cancer and small lung metastasis: evaluation of an immobilization system for suppression of respiratory tumor movement and preliminary results

    Directory of Open Access Journals (Sweden)

    Ayakawa Shiho

    2009-05-01

    Full Text Available Abstract Background In stereotactic body radiotherapy (SBRT for lung tumors, reducing tumor movement is necessary. In this study, we evaluated changes in tumor movement and percutaneous oxygen saturation (SpO2 levels, and preliminary clinical results of SBRT using the BodyFIX immobilization system. Methods Between 2004 and 2006, 53 consecutive patients were treated for 55 lesions; 42 were stage I non-small cell lung cancer (NSCLC, 10 were metastatic lung cancers, and 3 were local recurrences of NSCLC. Tumor movement was measured with fluoroscopy under breath holding, free breathing on a couch, and free breathing in the BodyFIX system. SpO2 levels were measured with a finger pulseoximeter under each condition. The delivered dose was 44, 48 or 52 Gy, depending on tumor diameter, in 4 fractions over 10 or 11 days. Results By using the BodyFIX system, respiratory tumor movements were significantly reduced compared with the free-breathing condition in both craniocaudal and lateral directions, although the amplitude of reduction in the craniocaudal direction was 3 mm or more in only 27% of the patients. The average SpO2 did not decrease by using the system. At 3 years, the local control rate was 80% for all lesions. Overall survival was 76%, cause-specific survival was 92%, and local progression-free survival was 76% at 3 years in primary NSCLC patients. Grade 2 radiation pneumonitis developed in 7 patients. Conclusion Respiratory tumor movement was modestly suppressed by the BodyFIX system, while the SpO2 level did not decrease. It was considered a simple and effective method for SBRT of lung tumors. Preliminary results were encouraging.

  10. Spinal Cord Glioneuronal Tumor with Rosetted Neuropil-Like Islands in Pediatric Age Group

    Directory of Open Access Journals (Sweden)

    Nil Comunoglu

    2014-01-01

    Full Text Available Glioneuronal neoplasms are rare tumors. Recently, an unusual glioneuronal tumor histologically showing neuropil-like islands has been described. Here, we present such a tumor originating from spinal cord of a 14-year-old girl, who has scoliosis and urinary incontinence. Microscopically, the glial component was chiefly fibrillary astrocytic, punctuated by neuropil-like islands. Immunohistochemically, glial tissue was GFAP positive, and neuropil-like areas and big neurons were synaptophysin reactive. For astrocytic component Ki-67 proliferation index was 1% and p53 was immunonegative. This case is unique in that in the literature it is the second reported case in pediatric age group that is located at spinal cord.

  11. The selective Cox-2 inhibitor Celecoxib suppresses angiogenesis and growth of secondary bone tumors: An intravital microscopy study in mice

    International Nuclear Information System (INIS)

    Klenke, Frank Michael; Gebhard, Martha-Maria; Ewerbeck, Volker; Abdollahi, Amir; Huber, Peter E; Sckell, Axel

    2006-01-01

    The inhibition of angiogenesis is a promising strategy for the treatment of malignant primary and secondary tumors in addition to established therapies such as surgery, chemotherapy, and radiation. There is strong experimental evidence in primary tumors that Cyclooxygenase-2 (Cox-2) inhibition is a potent mechanism to reduce angiogenesis. For bone metastases which occur in up to 85% of the most frequent malignant primary tumors, the effects of Cox-2 inhibition on angiogenesis and tumor growth remain still unclear. Therefore, the aim of this study was to investigate the effects of Celecoxib, a selective Cox-2 inhibitor, on angiogenesis, microcirculation and growth of secondary bone tumors. In 10 male severe combined immunodeficient (SCID) mice, pieces of A549 lung carcinomas were implanted into a newly developed cranial window preparation where the calvaria serves as the site for orthotopic implantation of the tumors. From day 8 after tumor implantation, five animals (Celecoxib) were treated daily with Celecoxib (30 mg/kg body weight, s.c.), and five animals (Control) with the equivalent amount of the CMC-based vehicle. Angiogenesis, microcirculation, and growth of A549 tumors were analyzed by means of intravital microscopy. Apoptosis was quantified using the TUNEL assay. Treatment with Celecoxib reduced both microvessel density and tumor growth. TUNEL reaction showed an increase in apoptotic cell death of tumor cells after treatment with Celecoxib as compared to Controls. Celecoxib is a potent inhibitor of tumor growth of secondary bone tumors in vivo which can be explained by its anti-angiogenic and pro-apoptotic effects. The results indicate that a combination of established therapy regimes with Cox-2 inhibition represents a possible application for the treatment of bone metastases

  12. Styrene maleic acid-encapsulated RL71 micelles suppress tumor growth in a murine xenograft model of triple negative breast cancer

    Directory of Open Access Journals (Sweden)

    Martey O

    2017-10-01

    Full Text Available Orleans Martey,1 Mhairi Nimick,1 Sebastien Taurin,1 Vignesh Sundararajan,1 Khaled Greish,2 Rhonda J Rosengren1 1Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand; 2Department of Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain Abstract: Patients with triple negative breast cancer have a poor prognosis due in part to the lack of targeted therapies. In the search for novel drugs, our laboratory has developed a second-generation curcumin derivative, 3,5-bis(3,4,5-trimethoxybenzylidene-1-methylpiperidine-4-one (RL71, that exhibits potent in vitro cytotoxicity. To improve the clinical potential of this drug, we have encapsulated it in styrene maleic acid (SMA micelles. SMA-RL71 showed improved biodistribution, and drug accumulation in the tumor increased 16-fold compared to control. SMA-RL71 (10 mg/kg, intravenously, two times a week for 2 weeks also significantly suppressed tumor growth compared to control in a xenograft model of triple negative breast cancer. Free RL71 was unable to alter tumor growth. Tumors from SMA-RL71-treated mice showed a decrease in angiogenesis and an increase in apoptosis. The drug treatment also modulated various cell signaling proteins including the epidermal growth factor receptor, with the mechanisms for tumor suppression consistent with previous work with RL71 in vitro. The nanoformulation was also nontoxic as shown by normal levels of plasma markers for liver and kidney injury following weekly administration of SMA-RL71 (10 mg/kg for 90 days. Thus, we report clinical potential following encapsulation of a novel curcumin derivative, RL71, in SMA micelles. Keywords: curcumin derivatives, nanomedicine, EGFR, biodistribution

  13. Suppression of human breast tumors in NOD/SCID mice by CD44 shRNA gene therapy combined with doxorubicin treatment

    Directory of Open Access Journals (Sweden)

    Pham PV

    2012-05-01

    Full Text Available Phuc Van Pham1, Ngoc Bich Vu1, Thuy Thanh Duong1, Tam Thanh Nguyen1, Nhung Hai Truong1, Nhan Lu Chinh Phan1, Tue Gia Vuong1, Viet Quoc Pham1, Hoang Minh Nguyen1, Kha The Nguyen1, Nhung Thi Nguyen1, Khue Gia Nguyen1, Lam Tan Khat1, Dong Van Le2, Kiet Dinh Truong1, Ngoc Kim Phan11Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, HCM City, 2Military Medical University, Ha Noi, VietnamBackground: Breast cancer stem cells with a CD44+CD24- phenotype are the origin of breast tumors. Strong CD44 expression in this population indicates its important role in maintaining the stem cell phenotype. Previous studies show that CD44 down-regulation causes CD44+CD24- breast cancer stem cells to differentiate into non-stem cells that are sensitive to antitumor drugs and lose many characteristics of the original cells. In this study, we determined tumor suppression in non-obese severe combined immunodeficiency mice using CD44 shRNA therapy combined with doxorubicin treatment.Methods: Tumor-bearing non-obese severe combined immunodeficiency mice were established by injection of CD44+CD24- cells. To track CD44+CD24- cells, green fluorescence protein was stably transduced using a lentiviral vector prior to injection into mice. The amount of CD44 shRNA lentiviral vector used for transduction was based on CD44 down-regulation by in vitro CD44 shRNA transduction. Mice were treated with direct injection of CD44 shRNA lentiviral vector into tumors followed by doxorubicin administration after 48 hours. The effect was evaluated by changes in the size and weight of tumors compared with that of the control.Results: The combination of CD44 down-regulation and doxorubicin strongly suppressed tumor growth with significant differences in tumor sizes and weights compared with that of CD44 down-regulation or doxorubicin treatment alone. In the combination of CD44 down-regulation and doxorubicin group, the tumor weight was

  14. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    2008-07-01

    Full Text Available MicroRNAs (miRNAs play important roles in cancer development. By cloning and sequencing of a HPV16(+ CaSki cell small RNA library, we isolated 174 miRNAs (including the novel miR-193c which could be grouped into 46 different miRNA species, with miR-21, miR-24, miR-27a, and miR-205 being most abundant. We chose for further study 10 miRNAs according to their cloning frequency and associated their levels in 10 cervical cancer- or cervical intraepithelial neoplasia-derived cell lines. No correlation was observed between their expression with the presence or absence of an integrated or episomal HPV genome. All cell lines examined contained no detectable miR-143 and miR-145. HPV-infected cell lines expressed a different set of miRNAs when grown in organotypic raft cultured as compared to monolayer cell culture, including expression of miR-143 and miR-145. This suggests a correlation between miRNA expression and tissue differentiation. Using miRNA array analyses for age-matched normal cervix and cervical cancer tissues, in combination with northern blot verification, we identified significantly deregulated miRNAs in cervical cancer tissues, with miR-126, miR-143, and miR-145 downregulation and miR-15b, miR-16, miR-146a, and miR-155 upregulation. Functional studies showed that both miR-143 and miR-145 are suppressive to cell growth. When introduced into cell lines, miR-146a was found to promote cell proliferation. Collectively, our data indicate that downregulation of miR-143 and miR-145 and upregulation of miR-146a play a role in cervical carcinogenesis.

  15. Risk of new tumors in von Hippel-Lindau patients depends on age and genotype

    DEFF Research Database (Denmark)

    Binderup, Marie Louise Mølgaard; Budtz-Jørgensen, Esben; Bisgaard, Søs Marie Luise

    2016-01-01

    PURPOSE: The von Hippel-Lindau (vHL) phenotype is variable, which complicates genetic counseling and surveillance. We describe how the rate of new tumor development varies through the lifetimes of vHL patients and how it is influenced by age and genotype. METHODS: In a national cohort study, we i...... 02 April 2015Genetics in Medicine (2015); doi:10.1038/gim.2015.44....

  16. Impact of aging on neurocognitive performance in previously antiretroviral-naive HIV-infected individuals on their first suppressive regimen.

    Science.gov (United States)

    Coban, Hamza; Robertson, Kevin; Smurzynski, Marlene; Krishnan, Supriya; Wu, Kunling; Bosch, Ronald J; Collier, Ann C; Ellis, Ronald J

    2017-07-17

    Despite treatment with virologically suppressive antiretroviral therapy (ART), neurocognitive impairment may persist or develop de novo in aging HIV-infected individuals. We evaluated advancing age as a predictor of neurocognitive impairment in a large cohort of previously ART-naive individuals on long-term ART. The AIDS Clinical Trials Group Longitudinal Linked Randomized Trials was a prospective cohort study of HIV-infected individuals originally enrolled in randomized ART trials. This analysis examined neurocognitive outcomes at least 2 years after ART initiation. All participants underwent annual neurocognitive testing consisting of Trail making A and B, the wechsler adult intelligence scale-revised Digit Symbol and Hopkins Verbal Learning Tests. Uni and multivariable repeated measures regression models evaluated factors associated with neurocognitive performance. Predictors at parent study entry (ART naive) included entry demographics, smoking, injection drug use, hepatitis B surface antigen, hepatitis C virus serostatus, history of stroke, ART regimen type, pre-ART nadir CD4 cell count, and plasma viral load and as well as time-updated plasma viral load and CD4 cell count. The cohort comprised 3313 individuals with median pre-ART age of 38 years, 20% women; 36% Black, non-Hispanic; 22% Hispanic. Virologic suppression was maintained at 91% of follow-up visits. Neurocognitive performance improved with years of ART. After adjusting for the expected effects of age using norms from HIV-negative individuals, the odds of neurocognitive impairment at follow-up visits among the HIV infected increased by nearly 20% for each decade of advancing age. Despite continued virologic suppression and neurocognitive improvement in the cohort as a whole, older individuals were more likely to have neurocognitive impairment than younger individuals.

  17. EGCG Inhibits Proliferation, Invasiveness and Tumor Growth by Up-Regulation of Adhesion Molecules, Suppression of Gelatinases Activity, and Induction of Apoptosis in Nasopharyngeal Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Chih-Yeu Fang

    2015-01-01

    Full Text Available (−-Epigallocatechin-3-gallate (EGCG, a major green tea polyphenol, has been shown to inhibit the proliferation of a variety of tumor cells. Epidemiological studies have shown that drinking green tea can reduce the incidence of nasopharyngeal carcinoma (NPC, yet the underlying mechanism is not well understood. In this study, the inhibitory effect of EGCG was tested on a set of Epstein Barr virus-negative and -positive NPC cell lines. Treatment with EGCG inhibited the proliferation of NPC cells but did not affect the growth of a non-malignant nasopharyngeal cell line, NP460hTert. Moreover, EGCG treated cells had reduced migration and invasive properties. The expression of the cell adhesion molecules E-cadherin and β-catenin was found to be up-regulated by EGCG treatment, while the down-regulation of matrix metalloproteinases (MMP-2 and MMP-9 were found to be mediated by suppression of extracellular signal-regulated kinase (ERK phosphorylation and AP-1 and Sp1 transactivation. Spheroid formation by NPC cells in suspension was significantly inhibited by EGCG. Oral administration of EGCG was capable of suppressing tumor growth in xenografted mice bearing NPC tumors. Treatment with EGCG was found to elevate the expression of p53 and p21, and eventually led to apoptosis of NPC cells via caspase 3 activation. The nuclear translocation of NF-κB and β-catenin was also suppressed by EGCG treatment. These results indicate that EGCG can inhibit the proliferation and invasiveness, and induce apoptosis, of NPC cells, making it a promising agent for chemoprevention or adjuvant therapy of NPC.

  18. Rodlike Supramolecular Nanoassemblies of Degradable Poly(Aspartic Acid) Derivatives and Hydroxyl-Rich Polycations for Effective Delivery of Versatile Tumor-Suppressive ncRNAs.

    Science.gov (United States)

    Song, Hai-Qing; Pan, Wenting; Li, Rui-Quan; Yu, Bingran; Liu, Wenjuan; Yang, Ming; Xu, Fu-Jian

    2018-03-01

    The delivery of tumor-suppressive noncoding RNAs (ncRNAs) including short ncRNAs (i.e., miRNAs) and long ncRNAs (lncRNAs) is put forward to treat tumors. In this work, novel rodlike supramolecular nanoassemblies (CNC @CB[8] @ PGEA) of degradable poly(aspartic acid) (PAsp) derivatives-grafted cellulose nanocrystals (CNCs) and hydroxyl-rich polycations (ethanolamine-functionalized poly(glycidyl methacrylate), PGEA) are proposed via typical cucurbit[8]uril (CB[8])-based host-guest interactions for delivery of different ncRNAs to treat hepatocellular carcinoma (HCC). Spindly CNCs, one kind of natural polysaccharide nanoparticles, possess good biocompatibility and unique physico-chemical properties. PGEA with abundant hydroxyl groups is one promising gene carrier with low cytotoxicity. PAsp can benefit the disassembly and degradability of nanoassemblies within cells. CNC @ CB[8]@PGEA combines the different unique properties of CNC, PGEA, and PAsp. CNC @ CB[8] @ PGEA effectively complexes the expression constructs of miR-101 (plasmid pc3.0-miR-101) and lncRNA MEG3 (plasmid pc3.0-MEG3). CNC @ CB[8] @ PGEA produces much better transfection performances than PGEA-containing assembly units. In addition, the codelivery system of CNC @ CB[8] @ PGEA/(pc3.0-MEG3+pc3.0-miR-101) nanocomplexes demonstrates better efficacy in suppressing HCC than CNC @ CB[8] @ PGEA/pc3.0-MEG3 or CNC @ CB[8] @ PGEA/pc3.0-miR-101 nanocomplexes alone. Such rodlike supramolecular nanoassemblies will provide a promising means to produce efficient delivery vectors of versatile tumor-suppressive nucleic acids. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Chrysin inhibits tumor promoter-induced MMP-9 expression by blocking AP-1 via suppression of ERK and JNK pathways in gastric cancer cells.

    Directory of Open Access Journals (Sweden)

    Yong Xia

    Full Text Available Cell invasion is a crucial mechanism of cancer metastasis and malignancy. Matrix metalloproteinase-9 (MMP-9 is an important proteolytic enzyme involved in the cancer cell invasion process. High expression levels of MMP-9 in gastric cancer positively correlate with tumor aggressiveness and have a significant negative correlation with patients' survival times. Recently, mechanisms suppressing MMP-9 by phytochemicals have become increasingly investigated. Chrysin, a naturally occurring chemical in plants, has been reported to suppress tumor metastasis. However, the effects of chrysin on MMP-9 expression in gastric cancer have not been well studied. In the present study, we tested the effects of chrysin on MMP-9 expression in gastric cancer cells, and determined its underlying mechanism. We examined the effects of chrysin on MMP-9 expression and activity via RT-PCR, zymography, promoter study, and western blotting in human gastric cancer AGS cells. Chrysin inhibited phorbol-12-myristate 13-acetate (PMA-induced MMP-9 expression in a dose-dependent manner. Using AP-1 decoy oligodeoxynucleotides, we confirmed that AP-1 was the crucial transcriptional factor for MMP-9 expression. Chrysin blocked AP-1 via suppression of the phosphorylation of c-Jun and c-Fos through blocking the JNK1/2 and ERK1/2 pathways. Furthermore, AGS cells pretreated with PMA showed markedly enhanced invasiveness, which was partially abrogated by chrysin and MMP-9 antibody. Our results suggest that chrysin may exert at least part of its anticancer effect by controlling MMP-9 expression through suppression of AP-1 activity via a block of the JNK1/2 and ERK1/2 signaling pathways in gastric cancer AGS cells.

  20. Resveratrol Improves Tube Formation in AGE-Induced Late Endothelial Progenitor Cells by Suppressing Syndecan-4 Shedding

    Directory of Open Access Journals (Sweden)

    Han Wu

    2018-01-01

    Full Text Available Dysfunction of endothelial progenitor cells (EPCs contributes to cardiovascular complications in diabetes, and resveratrol has been shown to improve EPC functions. Syndecan-4 (Synd4, a cell surface heparin sulfate proteoglycan, has been shown to promote neovascularization. Thus, the present study was performed to determine whether resveratrol promoted angiogenesis of EPCs by regulating Synd4. Late EPCs were isolated from human peripheral blood and stimulated with AGEs. Western blot showed that AGEs induced Synd4 shedding in a dose- and time-dependent manner. AGE-induced Synd4 shedding was partly reversed by NAC or resveratrol, along with normalized ROS production. Overexpression of Synd4 or pretreatment of resveratrol reversed AGE-impaired tube formation of EPCs and regulated the Akt/eNOS pathway. Furthermore, resveratrol suppressed Synd4 shedding via the inhibition of oxidative stress and improved tube formation of late EPCs via the regulation of the Synd4/Akt/eNOS pathway.

  1. Problems of radiotherapy on the brain tumors in children less than two years of age

    Energy Technology Data Exchange (ETDEWEB)

    Miyagami, Mitsusuke; Tsubokawa, Takashi (Nihon Univ., Tokyo (Japan). School of Medicine); Nishimoto, Hiroshi; Ueno, Yuhichi

    1990-06-01

    Impaired growth and mental or developmental disturbance due to radiotherapy for 10 cases of brain tumors in the children ages less than 2 years old were evaluated. Six cases of brain tumor which did not involve the hypothalamic-pituitary axis, were followed more than 2 years after cranial or craniospinal irradiation. Four cases irradiated greater than 2900 rad to the whole brain all revealed markedly lower body heights than -2 SD of the medium. Growth impairment was found to be progressive over time, and markedly evident after 2 years following cranial or craniospinal radiotherapy. Somatomedin C in the blood was measured in 8 cases of brain tumors in childhood receiving radiotherapy. The measurement of Somatomedin C showed markedly low values measuring 0.19 to 0.54 U/ml (medium; 0.36 U/ml) in children having lower body height than -2 SD. Mental retardation or developmental disturbances were found in IQ or DQ tests in all of 5 infants or children younger than 2 years with brain tumors who got radiotherapy over 2900 rad to the whole brain. A case of craniopharyngioma, which had 5400 rad for tumor localization at the hypothalamus-pituitary axis and showed markedly low height, was given growth hormone and grew to normal height without distinct side effects. It was suggested that radiotherapy for brain tumors in infants or children should have special care in deciding the dose, field and time of radiation. If low height due to radiotherapy results, growth hormone therapy should be used for its treatment in childhood. (author).

  2. MAZ-binding G4-decoy with locked nucleic acid and twisted intercalating nucleic acid modifications suppresses KRAS in pancreatic cancer cells and delays tumor growth in mice

    DEFF Research Database (Denmark)

    Cogoi, Susanna; Zorzet, Sonia; Rapozzi, Valentina

    2013-01-01

    and stability, two polycyclic aromatic hydrocarbon units (TINA or AMANY) were inserted internally, to cap the quadruplex. The most active G4-decoy (2998), which had two para-TINAs, strongly suppressed KRAS expression in Panc-1 cells. It also repressed their metabolic activity (IC50 = 520 nM), and it inhibited...... cell growth and colony formation by activating apoptosis. We finally injected 2998 and control oligonucleotides 5153, 5154 (2 nmol/mouse) intratumorally in SCID mice bearing a Panc-1 xenograft. After three treatments, 2998 reduced tumor xenograft growth by 64% compared with control and increased...

  3. Activated Natural Killer Cells Mediate the Suppressive Effect of Interleukin-4 on Tumor Development via STAT6 Activation in an Atopic Condition Melanoma Model

    OpenAIRE

    Dong Ju Son; Yu Yeon Jung; Mi Hee Park; Hye Lim Lee; Min Ji Song; Hwan-Soo Yoo; Dae Youn Hwang; Sang Bae Han; Jin Tae Hong

    2017-01-01

    A protective effect of allergy for cancer has been suggested, but the results are somewhat conflicting, and the mechanism remains elusive. Interleukin-4 (IL-4) signaling has been identified as a potentially important pathway in the development of allergies and the suppression of cancer development. To evaluate the allergy responses in IL-4?mediated tumor development, we compared the growth of B16F10 melanoma cells in 4% phthalic anhydride (PA)-treated IL-4/Luc/CNS-1 transgenic mice (IL-4 mice...

  4. Both p53-PUMA/NOXA-Bax-mitochondrion and p53-p21cip1 pathways are involved in the CDglyTK-mediated tumor cell suppression

    International Nuclear Information System (INIS)

    Yu, Zhendong; Wang, Hao; Zhang, Libin; Tang, Aifa; Zhai, Qinna; Wen, Jianxiang; Yao, Li; Li, Pengfei

    2009-01-01

    CDglyTK fusion suicide gene has been well characterized to effectively kill tumor cells. However, the exact mechanism and downstream target genes are not fully understood. In our study, we found that CDglyTK/prodrug treatment works more efficiently in p53 wild-type (HONE1) cells than in p53 mutant (CNE1) cells. We then used adenovirus-mediated gene delivery system to either knockdown or overexpress p53 and its target genes in these cells. Consistent results showed that both p53-PUMA/NOXA/Bcl2-Bax and p53-p21 pathways contribute to the CDglyTK induced tumor cell suppression. Our work for the first time addressed the role of p53 related genes in the CDglyTK/prodrug system.

  5. Both p53-PUMA/NOXA-Bax-mitochondrion and p53-p21cip1 pathways are involved in the CDglyTK-mediated tumor cell suppression

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhendong, E-mail: zdyu@hotmail.com [Department of Clinical laboratory, Peking University Shenzhen Hospital, Guangdong (China); Wang, Hao [Department of pathology, The Chinese University of Hong Kong, Hong Kong (China); Zhang, Libin; Tang, Aifa; Zhai, Qinna; Wen, Jianxiang; Yao, Li [Department of Clinical laboratory, Peking University Shenzhen Hospital, Guangdong (China); Li, Pengfei, E-mail: lipengfei@cuhk.edu.hk [Department of pathology, The Chinese University of Hong Kong, Hong Kong (China)

    2009-09-04

    CDglyTK fusion suicide gene has been well characterized to effectively kill tumor cells. However, the exact mechanism and downstream target genes are not fully understood. In our study, we found that CDglyTK/prodrug treatment works more efficiently in p53 wild-type (HONE1) cells than in p53 mutant (CNE1) cells. We then used adenovirus-mediated gene delivery system to either knockdown or overexpress p53 and its target genes in these cells. Consistent results showed that both p53-PUMA/NOXA/Bcl2-Bax and p53-p21 pathways contribute to the CDglyTK induced tumor cell suppression. Our work for the first time addressed the role of p53 related genes in the CDglyTK/prodrug system.

  6. Targeting of GIT1 by miR-149* in breast cancer suppresses cell proliferation and metastasis in vitro and tumor growth in vivo

    Directory of Open Access Journals (Sweden)

    Dong Y

    2017-12-01

    the tumor growth, while restored GIT1 accelerated the tumor growth in nude mice after 35 days of tumor xenograft. Collectively, these findings concluded that miR-149* might exert a tumor suppressive role in breast cancer by targeting GIT1. Keywords: microRNA 149*, miR-149*, G protein-coupled receptor kinase interacting protein 1, GIT1, tumor suppressive role, breast cancer

  7. Phosphorylation of the Mdm2 oncoprotein by the c-Abl tyrosine kinase regulates p53 tumor suppression and the radiosensitivity of mice.

    Science.gov (United States)

    Carr, Michael I; Roderick, Justine E; Zhang, Hong; Woda, Bruce A; Kelliher, Michelle A; Jones, Stephen N

    2016-12-27

    The p53 tumor suppressor acts as a guardian of the genome by preventing the propagation of DNA damage-induced breaks and mutations to subsequent generations of cells. We have previously shown that phosphorylation of the Mdm2 oncoprotein at Ser394 by the ATM kinase is required for robust p53 stabilization and activation in cells treated with ionizing radiation, and that loss of Mdm2 Ser394 phosphorylation leads to spontaneous tumorigenesis and radioresistance in Mdm2 S394A mice. Previous in vitro data indicate that the c-Abl kinase phosphorylates Mdm2 at the neighboring residue (Tyr393) in response to DNA damage to regulate p53-dependent apoptosis. In this present study, we have generated an Mdm2 mutant mouse (Mdm2 Y393F ) to determine whether c-Abl phosphorylation of Mdm2 regulates the p53-mediated DNA damage response or p53 tumor suppression in vivo. The Mdm2 Y393F mice develop accelerated spontaneous and oncogene-induced tumors, yet display no defects in p53 stabilization and activity following acute genotoxic stress. Although apoptosis is unaltered in these mice, they recover more rapidly from radiation-induced bone marrow ablation and are more resistant to whole-body radiation-induced lethality. These data reveal an in vivo role for c-Abl phosphorylation of Mdm2 in regulation of p53 tumor suppression and bone marrow failure. However, c-Abl phosphorylation of Mdm2 Tyr393 appears to play a lesser role in governing Mdm2-p53 signaling than ATM phosphorylation of Mdm2 Ser394. Furthermore, the effects of these phosphorylation events on p53 regulation are not additive, as Mdm2 Y393F/S394A mice and Mdm2 S394A mice display similar phenotypes.

  8. Blockade of A2b Adenosine Receptor Reduces Tumor Growth and Immune Suppression Mediated by Myeloid-Derived Suppressor Cells in a Mouse Model of Melanoma

    Directory of Open Access Journals (Sweden)

    Raffaella Iannone

    2013-12-01

    Full Text Available The A2b receptor (A2bR belongs to the adenosine receptor family. Emerging evidence suggest that A2bR is implicated in tumor progression in some murine tumor models, but the therapeutic potential of targeting A2bR in melanoma has not been examined. This study first shows that melanoma-bearing mice treated with Bay 60-6583, a selective A2bR agonist, had increased melanoma growth. This effect was associated with higher levels of immune regulatory mediators interleukin-10 (IL-10 and monocyte chemoattractant protein 1 (MCP-1 and accumulation of tumor-associated CD11b positive Gr1 positive cells (CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs. Depletion of CD11b+Gr1+ cells completely reversed the protumor activity of Bay 60-6583. Conversely, pharmacological blockade of A2bR with PSB1115 reversed immune suppression in the tumor microenvironment, leading to a significant melanoma growth delay. PSB1115 treatment reduced both levels of IL-10 and MCP-1 and CD11b+Gr1+ cell number in melanoma lesions. These effects were associated with higher frequency of tumor-infiltrating CD8 positive (CD8+ T cells and natural killer T (NKT cells and increased levels of T helper 1 (Th1-like cytokines. Adoptive transfer of CD11b+Gr1+ cells abrogated the antitumor activity of PSB1115. These data suggest that the antitumor activity of PSB1115 relies on its ability to lower accumulation of tumor-infiltrating MDSCs and restore an efficient antitumor T cell response. The antitumor effect of PSB1115 was not observed in melanoma-bearing nude mice. Furthermore, PSB1115 enhanced the antitumor efficacy of dacarbazine. These data indicate that A2bR antagonists such as PSB1115 should be investigated as adjuvants in the treatment of melanoma.

  9. Human Mut T Homolog 1 (MTH1): a roadblock for the tumor-suppressive effects of oncogenic RAS-induced ROS.

    Science.gov (United States)

    Rai, Priyamvada

    2012-01-01

    Oncogenic RAS-induced reactive oxygen species (ROS) trigger barriers to cell transformation and cancer progression through tumor-suppressive responses such as cellular senescence or cell death. We have recently shown that oncogenic RAS-induced DNA damage and attendant premature senescence can be prevented by overexpressing human MutT Homolog 1 (MTH1), the major mammalian detoxifier of the oxidized DNA precursor, 8-oxo-dGTP. Paradoxically, RAS-induced ROS are also able to participate in tumor progression via transformative processes such as mitogenic signaling, the epithelial-mesenchymal transition (EMT), anoikis inhibition, and PI3K/Akt-mediated survival signaling. Here we provide a preliminary insight into the influence of MTH1 levels on the EMT phenotype and Akt activation in RAS-transformed HMLE breast epithelial cells. Within this context, we will discuss the implications of MTH1 upregulation in oncogenic RAS-sustaining cells as a beneficial adaptive change that inhibits ROS-mediated cell senescence and participates in the maintenance of ROS-associated tumor-promoting mechanisms. Accordingly, targeting MTH1 in RAS-transformed tumor cells will not only induce proliferative defects but also potentially enhance therapeutic cytotoxicity by shifting cellular response away from pro-survival mechanisms.

  10. CO2 bubbling-based 'Nanobomb' System for Targetedly Suppressing Panc-1 Pancreatic Tumor via Low Intensity Ultrasound-activated Inertial Cavitation.

    Science.gov (United States)

    Zhang, Kun; Xu, Huixiong; Chen, Hangrong; Jia, Xiaoqing; Zheng, Shuguang; Cai, Xiaojun; Wang, Ronghui; Mou, Juan; Zheng, Yuanyi; Shi, Jianlin

    2015-01-01

    Noninvasive and targeted physical treatment is still desirable especially for those cancerous patients. Herein, we develop a new physical treatment protocol by employing CO2 bubbling-based 'nanobomb' system consisting of low-intensity ultrasound (1.0 W/cm(2)) and a well-constructed pH/temperature dual-responsive CO2 release system. Depending on the temperature elevation caused by exogenous low-intensity therapeutic ultrasound irradiation and the low pH caused by the endogenous acidic-environment around/within tumor, dual-responsive CO2 release system can quickly release CO2 bubbles, and afterwards, the generated CO2 bubbles waves will timely explode before dissolution due to triggering by therapeutic ultrasound waves. Related bio-effects (e.g., cavitation, mechanical, shock waves, etc) caused by CO2 bubbles' explosion effectively induce instant necrosis of panc-1 cells and blood vessel destruction within panc-1 tumor, and consequently inhibit the growth of panc-1 solid tumor, simultaneously minimizing the side effects to normal organs. This new physiotherapy employing CO2 bubbling-based 'nanobomb' system promises significant potentials in targetedly suppressing tumors, especially for those highly deadly cancers.

  11. Epigallocatechin-3-gallate suppresses the expression of HSP70 and HSP90 and exhibits anti-tumor activity in vitro and in vivo

    International Nuclear Information System (INIS)

    Tran, Phan LCHB; Kim, Soo-A; Choi, Hong Seok; Yoon, Jung-Hoon; Ahn, Sang-Gun

    2010-01-01

    Epigallocatechin-3-gallate (EGCG), one of the major catechins in green tea, is a potential chemopreventive agent for various cancers. The aim of this study was to examine the effect of EGCG on the expression of heat shock proteins (HSPs) and tumor suppression. Cell colony formation was evaluated by a soft agar assay. Transcriptional activity of HSP70 and HSP90 was determined by luciferase reporter assay. An EGCG-HSPs complex was prepared using EGCG attached to the cyanogen bromide (CNBr)-activated Sepharose 4B. In vivo effect of EGCG on tumor growth was examined in a xenograft model. Treatment with EGCG decreased cell proliferation and colony formation of MCF-7 human breast cancer cells. EGCG specifically inhibited the expression of HSP70 and HSP90 by inhibiting the promoter activity of HSP70 and HSP90. Pretreatment with EGCG increased the stress sensitivity of MCF-7 cells upon heat shock (44°C for 1 h) or oxidative stress (H 2 O 2 , 500 μM for 24 h). Moreover, treatment with EGCG (10 mg/kg) in a xenograft model resulted in delayed tumor incidence and reduced tumor size, as well as the inhibition of HSP70 and HSP90 expression. Overall, these findings demonstrate that HSP70 and HSP90 are potent molecular targets of EGCG and suggest EGCG as a drug candidate for the treatment of human cancer

  12. Tumor Suppression and Sensitization to Taxol-Induced Apoptosis of E1A in Breast Cancer Cells

    National Research Council Canada - National Science Library

    Liao, Yong

    2003-01-01

    The purpose of this project is to study the molecular mechanisms underlying ElA's proapoptotic effect and anti-tumor activity and to dissect the functional domains of ElA that are critical for its antitumor activity...

  13. EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression.

    Science.gov (United States)

    Gu, Jian-Wei; Makey, Kristina L; Tucker, Kevan B; Chinchar, Edmund; Mao, Xiaowen; Pei, Ivy; Thomas, Emily Y; Miele, Lucio

    2013-05-02

    The role of EGCG, a major green tea catechin in breast cancer therapy is poorly understood. The present study tests the hypothesis that EGCG can inhibit the activation of HIF-1α and NFκB, and VEGF expression, thereby suppressing tumor angiogenesis and breast cancer progression. Sixteen eight-wk-old female mice (C57BL/6 J) were inoculated with 10^6 E0771 (mouse breast cancer) cells in the left fourth mammary gland fat pad. Eight mice received EGCG at 50-100 mg/kg/d in drinking water for 4 weeks. 8 control mice received drinking water only. Tumor size was monitored using dial calipers. At the end of the experiment, blood samples, tumors, heart and limb muscles were collected for measuring VEGF expression using ELISA and capillary density (CD) using CD31 immunohistochemistry. EGCG treatment significantly reduced tumor weight over the control (0.37 ± 0.15 vs. 1.16 ± 0.30 g; P < 0.01), tumor CD (109 ± 20 vs. 156 ± 12 capillary #/mm^2; P < 0.01), tumor VEGF expression (45.72 ± 1.4 vs. 59.03 ± 3.8 pg/mg; P < 0.01), respectively. But, it has no effects on the body weight, heart weight, angiogenesis and VEGF expression in the heart and skeletal muscle of mice. EGCG at 50 μg/ml significantly inhibited the activation of HIF-1α and NFκB as well as VEGF expression in cultured E0771 cells, compared to the control, respectively. These findings support the hypothesis that EGCG, a major green tea catechin, directly targets both tumor cells and tumor vasculature, thereby inhibiting tumor growth, proliferation, migration, and angiogenesis of breast cancer, which is mediated by the inhibition of HIF-1α and NFκB activation as well as VEGF expression.

  14. The suppression of ghrelin signaling mitigates age-associated thermogenic impairment

    Science.gov (United States)

    Aging is associated with severe thermogenic impairment, which contributes to obesity and diabetes in aging. We previously reported that ablation of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), attenuates age-associated obesity and insulin resistance. Ghrelin and obestatin are ...

  15. Hypoxia upregulates Bcl-2 expression and suppresses interferon-gamma induced antiangiogenic activity in human tumor derived endothelial cells.

    LENUS (Irish Health Repository)

    Wang, Jiang Huai

    2012-02-03

    BACKGROUND: Hypoxia in solid tumors potentially stimulates angiogenesis by promoting vascular endothelial growth factor (VEGF) production and upregulating VEGF receptor expression. However, it is unknown whether hypoxia can modulate the effect of anti-angiogenic treatment on tumor-derived endothelium. METHODS: Human tumor-derived endothelial cells (HTDEC) were freshly isolated from surgically removed human colorectal tumors by collagenase\\/DNase digestion and Percol gradient sedimentation. Cell proliferation was assessed by measuring BrdU incorporation, and capillary tube formation was measured using Matrigel. Cell apoptosis was assessed by flow cytometry and ELISA, and Bcl-2 expression was detected by Western blot analysis. RESULTS: Under aerobic culture conditions (5% CO2 plus 21% O2) HTDEC expressed less Bcl-2 and were more susceptible to IFN-gamma-induced apoptosis with significant reductions in both cell proliferation and capillary tube formation, when compared with normal human macrovascular and microvascular EC. Following exposure of HTDEC to hypoxia (5% CO2 plus 2% O2), IFN-gamma-induced cell apoptosis, and antiangiogenic activity (i.e. an inhibition in cell proliferation and capillary tube formation) in HTDEC were markedly attenuated. This finding correlated with hypoxia-induced upregulation of Bcl-2 expression in HTDEC. CONCLUSIONS: These results indicate that hypoxia can protect HTDEC against IFN-gamma-mediated cell death and antiangiogenic activity, and suggest that improvement of tumor oxygenation may potentiate the efficacy of anti-cancer therapies specifically targeting the inhibition of tumor angiogenesis.

  16. Patients with old age or proximal tumors benefit from metabolic syndrome in early stage gastric cancer.

    Directory of Open Access Journals (Sweden)

    Xiao-li Wei

    Full Text Available BACKGROUND: Metabolic syndrome and/or its components have been demonstrated to be risk factors for several cancers. They are also found to influence survival in breast, colon and prostate cancer, but the prognostic value of metabolic syndrome in gastric cancer has not been investigated. METHODS: Clinical data and pre-treatment information of metabolic syndrome of 587 patients diagnosed with early stage gastric cancer were retrospectively collected. The associations of metabolic syndrome and/or its components with clinical characteristics and overall survival in early stage gastric cancer were analyzed. RESULTS: Metabolic syndrome was identified to be associated with a higher tumor cell differentiation (P=0.036. Metabolic syndrome was also demonstrated to be a significant and independent predictor for better survival in patients aged >50 years old (P=0.009 in multivariate analysis or patients with proximal gastric cancer (P=0.047 in multivariate analysis. No association was found between single metabolic syndrome component and overall survival in early stage gastric cancer. In addition, patients with hypertension might have a trend of better survival through a good control of blood pressure (P=0.052 in univariate analysis. CONCLUSIONS: Metabolic syndrome was associated with a better tumor cell differentiation in patients with early stage gastric cancer. Moreover, metabolic syndrome was a significant and independent predictor for better survival in patients with old age or proximal tumors.

  17. Effect of aged garlic extract on immune responses to experimental fibrosarcoma tumor in BALB/c mice.

    Science.gov (United States)

    Tabari, M Abouhosseini; Ebrahimpour, S

    2014-01-01

    Aged garlic extract (AGE) has many biological activities including radical scavenging, antioxidative and immunomodulative effects. In this research work, the antitumor and immunomodulatory effects of AGE against fibrosarcoma implanted tumor were studied. WEHI-164 fibrosarcoma cells were implanted subcutaneously on day 0 into the right flank of 40 BALB/c mice at age of 8 weeks. Mice were randomly categorized in two separate groups: First received AGE (100 mg/kg, IP), second group as the control group received phosphate buffered saline. Treatments were carried out 3 times/week. Tumor growth was measured and morbidity was recorded. Subpopulations of CD4+/CD8+ T cells were determined using flow cytometry. WEHI-164 cell specific cytotoxicity of splenocytes and in vitro production of interferon gamma (IFN-γ) and interleukin-4 cytokines were measured. The mice received AGE had significantly longer survival time compared with the control mice. The inhibitory effect on tumor growth was seen in AGE treated mice. The CD4+/CD8+ ratio and in vitro IFN-γ production of splenocytes were significantly increased in AGE group. WEHI-164 specific cytotoxicity of splenocytes from AGE mice was also significantly increased at 25:1 E: T ratio. Administration of AGE resulted in improved immune responses against experimentally implanted fibrosarcoma tumors in BALB/c mice. AGE showed significant effects on inhibition of tumor growth and longevity of survival times.

  18. EGFR-targeted plasmonic magnetic nanoparticles suppress lung tumor growth by abrogating G2/M cell-cycle arrest and inducing DNA damage

    Directory of Open Access Journals (Sweden)

    Kuroda S

    2014-08-01

    G2/M checkpoint by inhibiting BRCA1, Chk1, and phospho-Cdc2/CDK1 protein expression. In vivo therapy studies showed 225-NP treatment reduced EGFR phosphorylation, increased γH2AX foci, and induced tumor cell apoptosis, resulting in suppression of tumor growth. Conclusion: The 225-NP treatment induces DNA damage and abrogates G2/M phase of the cell cycle, leading to cellular apoptosis and suppression of lung tumor growth both in vitro and in vivo. Our findings provide a rationale for combining 225-NP with other DNA-damaging agents for achieving enhanced anticancer activity. Keywords: lung cancer, epidermal growth factor receptor, autophagy

  19. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth.

    Science.gov (United States)

    Cramer, Shira L; Saha, Achinto; Liu, Jinyun; Tadi, Surendar; Tiziani, Stefano; Yan, Wupeng; Triplett, Kendra; Lamb, Candice; Alters, Susan E; Rowlinson, Scott; Zhang, Yan Jessie; Keating, Michael J; Huang, Peng; DiGiovanni, John; Georgiou, George; Stone, Everett

    2017-01-01

    Cancer cells experience higher oxidative stress from reactive oxygen species (ROS) than do non-malignant cells because of genetic alterations and abnormal growth; as a result, maintenance of the antioxidant glutathione (GSH) is essential for their survival and proliferation. Under conditions of elevated ROS, endogenous L-cysteine (L-Cys) production is insufficient for GSH synthesis. This necessitates uptake of L-Cys that is predominantly in its disulfide form, L-cystine (CSSC), via the xCT(-) transporter. We show that administration of an engineered and pharmacologically optimized human cyst(e)inase enzyme mediates sustained depletion of the extracellular L-Cys and CSSC pool in mice and non-human primates. Treatment with this enzyme selectively causes cell cycle arrest and death in cancer cells due to depletion of intracellular GSH and ensuing elevated ROS; yet this treatment results in no apparent toxicities in mice even after months of continuous treatment. Cyst(e)inase suppressed the growth of prostate carcinoma allografts, reduced tumor growth in both prostate and breast cancer xenografts and doubled the median survival time of TCL1-Tg:p53 -/- mice, which develop disease resembling human chronic lymphocytic leukemia. It was observed that enzyme-mediated depletion of the serum L-Cys and CSSC pool suppresses the growth of multiple tumors, yet is very well tolerated for prolonged periods, suggesting that cyst(e)inase represents a safe and effective therapeutic modality for inactivating antioxidant cellular responses in a wide range of malignancies.

  20. Radiotherapy, especially at young age, increases the risk for de novo brain tumors in patients treated for pituitary tumors

    NARCIS (Netherlands)

    Burman, Pia; Van Beek, André P.; Biller, Beverly M.K.; Camacho-Hubner, Cecilia; Mattsson, Anders F.

    Background: Excess mortality due to de novo malignant brain tumors was recently found in a national study of patients with hypopituitarism following treatment of pituitary tumors. Here, we examined a larger multi-national cohort to corroborate and extend this observation. Objective: To investigate

  1. Prolonged oxidative stress down-regulates Early B cell factor 1 with inhibition of its tumor suppressive function against cholangiocarcinoma genesis

    Directory of Open Access Journals (Sweden)

    Napat Armartmuntree

    2018-04-01

    Full Text Available Early B cell factor 1 (EBF1 is a transcription factor involved in the differentiation of several stem cell lineages and it is a negative regulator of estrogen receptors. EBF1 is down-regulated in many tumors, and is believed to play suppressive roles in cancer promotion and progression. However, the functional roles of EBF1 in carcinogenesis are unclear. Liver fluke-infection-associated cholangiocarcinoma (CCA is an oxidative stress-driven cancer of bile duct epithelium. In this study, we investigated EBF1 expression in tissues from CCA patients, CCA cell lines (KKU-213, KKU-214 and KKU-156, cholangiocyte (MMNK1 and its oxidative stress-resistant (ox-MMNK1-L cell lines. The formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG was used as an oxidative stress marker. Our results revealed that EBF1 expression was suppressed in cancer cells compared with the individual normal bile duct cells at tumor adjacent areas of CCA tissues. CCA patients with low EBF1 expression and high formation of 8-oxodG were shown to correlate with poor survival. Moreover, EBF1 was suppressed in the oxidative stress-resistant cell line and all of CCA cell lines compared to the cholangiocyte cell line. This suggests that prolonged oxidative stress suppressed EBF1 expression and the reduced EBF1 level may facilitate CCA genesis. To elucidate the significance of EBF1 suppression in CCA genesis, EBF1 expression of the MMNK1 cell line was down-regulated by siRNA technique, and its effects on stem cell properties (CD133 and Oct3/4 expressions, tumorigenic properties (cell proliferation, wound healing and cell migration, estrogen responsive gene (TFF1, estrogen-stimulated wound healing, and cell migration were examined. The results showed that CD133, Oct3/4 and TFF1 expression levels, wound healing, and cell migration of EBF1 knockdown-MMNK1 cells were significantly increased. Also, cell migration of EBF1-knockdown cells was significantly enhanced after 17

  2. Tumor-Protective Mechanism Identified from Premature Aging Disease | Center for Cancer Research

    Science.gov (United States)

    Hutchinson-Gilford Progeria Syndrome (HGPS) is an extraordinarily rare genetic disorder caused by a mutation in the LMNA gene, which encodes architectural proteins of the human cell nucleus. The mutation causes the production of a mutant protein called progerin. Patients with HGPS display signs of premature aging, such as hair loss, slowed growth, weakening of bone and joint integrity, and cardiovascular disease. Most die in their mid-teens of heart disease or stroke. Intriguingly, these patients do not develop another aging-related disease, cancer, despite having dramatically elevated levels of DNA damage. Tom Misteli, Ph.D., of CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleagues hypothesized that, rather than patients not living long enough to develop cancer, a resistance mechanism was operating in HGPS cells to prevent cancer formation. To begin testing this idea, the researchers transformed fibroblasts from HGPS patients or age-matched, healthy controls with telomerase, constitutively-activated HRAS, and SV40 large and small T antigens. Transformed HGPS cells displayed morphological changes and increased proliferation similar to transformed controls but formed fewer colonies in soft agar and fewer tumors when injected into mice. When the investigators examined global gene expression in the two populations of cells, they found that transformed HGPS cells failed to activate many of the genes that are induced in response to transformation in controls, including oncogenic and proliferation pathways. In addition the transformed HGPS cells were unable to undergo oncogenic de-differentiation. Importantly, the tumor resistance in HGPS cells was due to the presence of the progerin protein, which was both necessary and sufficient to protect cells from oncogenic transformation. Together these results suggested that HGPS cells resist cancer-inducing stimuli by not undergoing the genetic reprogramming necessary for tumor initiation. The scientists

  3. GF-15, a Novel Inhibitor of Centrosomal Clustering, Suppresses Tumor Cell Growth In Vitro and In Vivo

    DEFF Research Database (Denmark)

    Raab, Marc S.; Breitkreutz, Iris; Anderhub, Simon

    2012-01-01

    In contrast to normal cells, malignant cells are frequently aneuploid and contain multiple centrosomes. To allow for bipolar mitotic division, supernumerary centrosomes are clustered into two functional spindle poles in many cancer cells. Recently, we have shown that griseofulvin forces tumor cells......) for proliferation and survival were in the range of 1 to 5 μmol/L and were associated with apoptotic cell death. Importantly, treatment of mouse xenograft models of human colon cancer and multiple myeloma resulted in tumor growth inhibition and significantly prolonged survival. These results show the in vitro...

  4. Boswellic acid suppresses growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model through modulation of multiple targets.

    Directory of Open Access Journals (Sweden)

    Byoungduck Park

    Full Text Available Pancreatic cancer (PaCa is one of the most lethal cancers, with an estimated 5-year survival of <5% even when patients are given the best treatment available. In addition, these treatments are often toxic and expensive, thus new agents which are safe, affordable and effective are urgently needed. We describe here the results of our study with acetyl-11-keto-β-boswellic acid (AKBA, an agent obtained from an Ayurvedic medicine, gum resin of Boswellia serrata. Whether AKBA has an activity against human PaCa, was examined in in vitro models and in an orthotopic nude mouse model of PaCa. We found that AKBA inhibited the proliferation of four different PaCa cell lines (AsPC-1, PANC-28, and MIA PaCa-2 with K-Ras and p53 mutations, and BxPC-3 with wild-type K-Ras and p53 mutation. These effects correlated with an inhibition of constitutively active NF-κB and suppression of NF-κB regulating gene expression. AKBA also induced apoptosis, and sensitized the cells to apoptotic effects of gemcitabine. In the orthotopic nude mouse model of PaCa, p.o. administration of AKBA alone (100 mg/kg significantly inhibited the tumor growth; this activity was enhanced by gemcitabine. In addition, AKBA inhibited the metastasis of the PaCa to spleen, liver, and lungs. This correlated with decreases in Ki-67, a biomarker of proliferation, and CD31, a biomarker of microvessel density, in the tumor tissue. AKBA produced significant decreases in the expression of NF-κB regulating genes in the tissues. Immunohistochemical analysis also showed AKBA downregulated the expression of COX-2, MMP-9, CXCR4, and VEGF in the tissues. Overall these results demonstrate that AKBA can suppress the growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model that correlates with modulation of multiple targets.

  5. The current status of studies on mitochondrial DNA with tumor, radiation biological effects and aging

    International Nuclear Information System (INIS)

    Liu Qingjie; Sang Lu

    2004-01-01

    The mitochondrial plays a very important role in sustaining the normal physiological function, because it is the center of energy making and mitochondrial DNA (mtDNA) is the only genetic material outside the nuclear. The result of studies showed that many diseases have a close relationship with mtDNA mutation and deletion. This article reviewed the current status of research on mtDNA with tumor, radiation biological effects and aging, in order to initiate the application study of mtDNA in the circle of radiation medicine

  6. Suppression of tumor growth, invasion and angiogenesis of human gastric cancer by adenovirus-mediated expression of NK4

    NARCIS (Netherlands)

    Heideman, Daniëlle A. M.; van Beusechem, Victor W.; Bloemena, Elisabeth; Snijders, Peter J. F.; Craanen, Mikael E.; Offerhaus, G. Johan A.; Derksen, Patrick W. B.; de Bruin, Michiel; Witlox, M. Adhiambo; Molenaar, Bonnie; Meijer, Chris J. L. M.; Gerritsen, Winald R.

    2004-01-01

    Background To improve the prognosis of patients with gastric cancer it is important to develop novel treatment modalities targeting the malignant behavior of tumor cells. Concerning this, NK4, which acts as HGF-antagonist and angiogenesis inhibitor, might be a potential therapeutic agent for gastric

  7. Suppression of tumor development and metastasis formation in mice lacking the S100A4(mts1) gene

    DEFF Research Database (Denmark)

    Grum-Schwensen, Birgitte; Klingelhofer, Jörg; Berg, Christian Hededam

    2005-01-01

    distribution of host-derived stroma cells. Coinjection of CSML100 cells with immortalized S100A4(+/+) fibroblasts partially restored the dynamics of tumor development and the ability to form metastasis. These fibroblasts were characterized by an enhanced motility and invasiveness in comparison with S100A4...

  8. Hypoxia-activated pro-drug TH-302 exhibits potent tumor suppressive activity and cooperates with chemotherapy against osteosarcoma.

    Science.gov (United States)

    Liapis, Vasilios; Labrinidis, Agatha; Zinonos, Irene; Hay, Shelley; Ponomarev, Vladimir; Panagopoulos, Vasilios; DeNichilo, Mark; Ingman, Wendy; Atkins, Gerald J; Findlay, David M; Zannettino, Andrew C W; Evdokiou, Andreas

    2015-02-01

    Tumor hypoxia is a major cause of treatment failure for a variety of malignancies. However, tumor hypoxia also offers treatment opportunities, exemplified by the development compounds that target hypoxic regions within tumors. TH-302 is a pro-drug created by the conjugation of 2-nitroimidazole to bromo-isophosphoramide (Br-IPM). When TH-302 is delivered to regions of hypoxia, Br-IPM, the DNA cross linking toxin, is released. In this study we assessed the cytotoxic activity of TH-302 against osteosarcoma cells in vitro and evaluated its anticancer efficacy as a single agent, and in combination with doxorubicin, in an orthotopic mouse model of human osteosarcoma (OS). In vitro, TH-302 was potently cytotoxic to osteosarcoma cells selectively under hypoxic conditions, whereas primary normal human osteoblasts were protected. Animals transplanted with OS cells directly into their tibiae and left untreated developed mixed osteolytic/osteosclerotic bone lesions and subsequently developed lung metastases. TH-302 reduced tumor burden in bone and cooperated with doxorubicin to protect bone from osteosarcoma induced bone destruction, while it also reduced lung metastases. TH-302 may therefore be an attractive therapeutic agent with strong activity as a single agent and in combination with chemotherapy against OS. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    International Nuclear Information System (INIS)

    Tsang, Chi Man; Cheung, Yuk Chun; Lui, Vivian Wai-Yan; Yip, Yim Ling; Zhang, Guitao; Lin, Victor Weitao; Cheung, Kenneth Chat-Pan; Feng, Yibin; Tsao, Sai Wah

    2013-01-01

    Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC

  10. Radiosynthesis, biodistribution and imaging of [11C]YM155, a novel survivin suppressant, in a human prostate tumor-xenograft mouse model

    International Nuclear Information System (INIS)

    Murakami, Yoshihiro; Matsuya, Takahiro; Kita, Aya; Yamanaka, Kentaro; Noda, Akihiro; Mitsuoka, Keisuke; Nakahara, Takahito; Miyoshi, Sosuke; Nishimura, Shintaro

    2013-01-01

    Introduction: Sepantronium bromide (YM155) is an antitumor drug in development and is a first-in-class chemical entity, which is a survivin suppressant. We developed a radiosynthesis of [ 11 C]YM155 to non-invasively evaluate its tissue and tumor distribution in mice bearing human prostate tumor xenografts. Methods: Methods utilizing [ 11 C]acetyl chloride and [ 11 C]methyl triflate, both accessible with automated radiosynthesis boxes, were evaluated. The O-methylation of ethanolamine-alkolate with [ 11 C]methyl triflate proved to be the key development toward a rapid and efficient process. The whole-body distribution of [ 11 C]YM155 in PC-3 xenografted mice was examined using a planar positron imaging system (PPIS). Results: Sufficient quantities of radiopharmaceutical grade [ 11 C]YM155 were produced for our PET imaging and distribution studies. The decay corrected (EOB) radiochemical yield was 16–22%, within a synthesis time of 47 min. The radiochemical purity was higher than 99%, and the specific activity was 29–60 GBq/μmol (EOS). High uptake levels of radioactivity (%ID/g, mean ± SE) were observed in tumor (0.0613 ± 0.0056), kidneys (0.0513 ± 0.0092), liver (0.0368 ± 0.0043) and cecum (0.0623 ± 0.0070). The highest tumor uptake was observed at an early time point (from 10 min after) following injection. Tumor-to-blood and tumor-to-muscle uptake ratios of [ 11 C]YM155, at 40 min after injection, were 26.5 (± 2.9) and 25.6 (± 3.6), respectively. Conclusion: A rapid method for producing a radiopharmaceutical grade [ 11 C]YM155 was developed. An in vivo distribution study using PPIS showed high uptake of [ 11 C]YM155 in tumor tissue. Our methodology may facilitate the evaluation and prediction of response to YM155, when given as an anti-cancer agent

  11. Norcantharidin inhibits tumor growth and vasculogenic mimicry of human gallbladder carcinomas by suppression of the PI3-K/MMPs/Ln-5γ2 signaling pathway

    International Nuclear Information System (INIS)

    Zhang, Jing-Tao; Sun, Wei; Zhang, Wen-Zhong; Ge, Chun-Yan; Liu, Zhong-Yan; Zhao, Ze-Ming; Lu, Xing-Sui; Fan, Yue-Zu

    2014-01-01

    < 0.01, vs. control group); NCTD down-regulated expression of these VM signaling-related markers in vitro and in vivo. NCTD inhibited tumor growth and VM of human GBCs in vitro and in vivo by suppression of the PI3-K/MMPs/Ln-5γ2 signaling pathway. It is firstly concluded that NCTD may be a potential anti-VM agent for human GBCs

  12. Modeling and Analysis of a Nonlinear Age-Structured Model for Tumor Cell Populations with Quiescence

    Science.gov (United States)

    Liu, Zijian; Chen, Jing; Pang, Jianhua; Bi, Ping; Ruan, Shigui

    2018-05-01

    We present a nonlinear first-order hyperbolic partial differential equation model to describe age-structured tumor cell populations with proliferating and quiescent phases at the avascular stage in vitro. The division rate of the proliferating cells is assumed to be nonlinear due to the limitation of the nutrient and space. The model includes a proportion of newborn cells that enter directly the quiescent phase with age zero. This proportion can reflect the effect of treatment by drugs such as erlotinib. The existence and uniqueness of solutions are established. The local and global stabilities of the trivial steady state are investigated. The existence and local stability of the positive steady state are also analyzed. Numerical simulations are performed to verify the results and to examine the impacts of parameters on the nonlinear dynamics of the model.

  13. Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    Full Text Available Breast cancer is one of the most lethal diseases in women; however, the precise etiological factors are still not clear. Genistein (GE, a natural isoflavone found in soybean products, is believed to be a potent chemopreventive agent for breast cancer. One of the most important mechanisms for GE inhibition of breast cancer may involve its potential in impacting epigenetic processes allowing reversal of aberrant epigenetic events during breast tumorigenesis. To investigate epigenetic regulation for GE impedance of breast tumorigenesis, we monitored epigenetic alterations of several key tumor-related genes in an established breast cancer transformation system. Our results show that GE significantly inhibited cell growth in a dose-dependent manner in precancerous breast cells and breast cancer cells, whereas it exhibited little effect on normal human mammary epithelial cells. Furthermore, GE treatment increased expression of two crucial tumor suppressor genes, p21(WAF1 (p21 and p16(INK4a (p16, although it decreased expression of two tumor promoting genes, BMI1 and c-MYC. GE treatment led to alterations of histone modifications in the promoters of p21 and p16 as well as the binding ability of the c-MYC-BMI1 complex to the p16 promoter contributing to GE-induced epigenetic activation of these tumor suppressor genes. In addition, an orally-fed GE diet prevented breast tumorigenesis and inhibited breast cancer development in breast cancer mice xenografts. Our results suggest that genistein may repress early breast tumorigenesis by epigenetic regulation of p21 and p16 by impacting histone modifications as well as the BMI1-c-MYC complex recruitment to the regulatory region in the promoters of these genes. These studies will facilitate more effective use of soybean product in breast cancer prevention and also help elucidate the mechanisms during the process of early breast tumorigenesis.

  14. Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein.

    Science.gov (United States)

    Li, Yuanyuan; Chen, Huaping; Hardy, Tabitha M; Tollefsbol, Trygve O

    2013-01-01

    Breast cancer is one of the most lethal diseases in women; however, the precise etiological factors are still not clear. Genistein (GE), a natural isoflavone found in soybean products, is believed to be a potent chemopreventive agent for breast cancer. One of the most important mechanisms for GE inhibition of breast cancer may involve its potential in impacting epigenetic processes allowing reversal of aberrant epigenetic events during breast tumorigenesis. To investigate epigenetic regulation for GE impedance of breast tumorigenesis, we monitored epigenetic alterations of several key tumor-related genes in an established breast cancer transformation system. Our results show that GE significantly inhibited cell growth in a dose-dependent manner in precancerous breast cells and breast cancer cells, whereas it exhibited little effect on normal human mammary epithelial cells. Furthermore, GE treatment increased expression of two crucial tumor suppressor genes, p21(WAF1) (p21) and p16(INK4a) (p16), although it decreased expression of two tumor promoting genes, BMI1 and c-MYC. GE treatment led to alterations of histone modifications in the promoters of p21 and p16 as well as the binding ability of the c-MYC-BMI1 complex to the p16 promoter contributing to GE-induced epigenetic activation of these tumor suppressor genes. In addition, an orally-fed GE diet prevented breast tumorigenesis and inhibited breast cancer development in breast cancer mice xenografts. Our results suggest that genistein may repress early breast tumorigenesis by epigenetic regulation of p21 and p16 by impacting histone modifications as well as the BMI1-c-MYC complex recruitment to the regulatory region in the promoters of these genes. These studies will facilitate more effective use of soybean product in breast cancer prevention and also help elucidate the mechanisms during the process of early breast tumorigenesis.

  15. Resveratrol (trans-3,5,4'-trihydroxystilbene) suppresses EL4 tumor growth by induction of apoptosis involving reciprocal regulation of SIRT1 and NF-κB.

    Science.gov (United States)

    Singh, Narendra P; Singh, Udai P; Hegde, Venkatesh L; Guan, Hongbing; Hofseth, Lorne; Nagarkatti, Mitzi; Nagarkatti, Prakash S

    2011-08-01

    Understanding the molecular mechanisms through which natural products and dietary supplements exhibit anticancer properties is crucial and can lead to drug discovery and chemoprevention. The current study sheds new light on the mode of action of resveratrol (RES), a plant-derived polyphenolic compound, against EL-4 lymphoma growth. Immuno-compromised NOD/SCID mice injected with EL-4 tumor cells and treated with RES (100 mg/kg body weight) showed delayed development and progression of tumor growth and increased mean survival time. RES caused apoptosis in EL4 cells through activation of aryl hydrocarbon receptor (AhR) and upregulation of Fas and FasL expression in vitro. Blocking of RES-induced apoptosis in EL4 cells by FasL mAb, cleavage of caspases and PARP, and release of cytochorme c, demonstrated the participation of both extrinsic and intrinsic pathways of apoptosis. RES also induced upregulation of silent mating type information regulation 2 homolog, 1 (SIRT1) and downregulation of nuclear factor kappa B (NF-κB) in EL4 cells. siRNA-mediated downregulation of SIRT1 in EL4 cells increased the activation of NF-κB but decreased RES-mediated apoptosis, indicating the critical role of SIRT1 in apoptosis via blocking activation of NF-κB. These data suggest that RES-induced SIRT1 upregulation promotes tumor cell apoptosis through negative regulation of NF-κB, leading to suppression of tumor growth. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Erucin, the major isothiocyanate in arugula (Eruca sativa, inhibits proliferation of MCF7 tumor cells by suppressing microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Olga Azarenko

    Full Text Available Consumption of cruciferous vegetables is associated with reduced risk of various types of cancer. Isothiocyanates including sulforaphane and erucin are believed to be responsible for this activity. Erucin [1-isothiocyanato-4-(methylthiobutane], which is metabolically and structurally related to sulforaphane, is present in large quantities in arugula (Eruca sativa, Mill., kohlrabi and Chinese cabbage. However, its cancer preventive mechanisms remain poorly understood. We found that erucin inhibits proliferation of MCF7 breast cancer cells (IC50 = 28 µM in parallel with cell cycle arrest at mitosis (IC50 = 13 µM and apoptosis, by a mechanism consistent with impairment of microtubule dynamics. Concentrations of 5-15 µM erucin suppressed the dynamic instability of microtubules during interphase in the cells. Most dynamic instability parameters were inhibited, including the rates and extents of growing and shortening, the switching frequencies between growing and shortening, and the overall dynamicity. Much higher erucin concentrations were required to reduce the microtubule polymer mass. In addition, erucin suppressed dynamic instability of microtubules reassembled from purified tubulin in similar fashion. The effects of erucin on microtubule dynamics, like those of sulforaphane, are similar qualitatively to those of much more powerful clinically-used microtubule-targeting anticancer drugs, including taxanes and the vinca alkaloids. The results suggest that suppression of microtubule dynamics by erucin and the resulting impairment of critically important microtubule-dependent cell functions such as mitosis, cell migration and microtubule-based transport may be important in its cancer preventive activities.

  17. Extension/suppression of allowance for dependent children aged 18 and above - REMINDER

    CERN Multimedia

    Social and Statutory conditions

    2004-01-01

    Members of the personnel with dependent children aged 18 or above (or reaching 18 during the 2004/2005 school year) have received a QUESTIONNAIRE in July. If this questionnaire has not been completed and returned yet, they are requested to do so WITHOUT DELAY. The deadline was 10 September. Social and Statutory conditions Human Resources Department Tel. 72862-74474

  18. REMINDER: Extension/suppression of allowance for dependent children aged 18 and above

    CERN Multimedia

    2003-01-01

    Members of the personnel with dependent children aged 18 or above (or reaching 18 during the 2003/2004 school year) received a QUESTIONNAIRE in July. If this questionnaire has not yet been completed and returned, they are requested to do so without delay. The deadline was 12 September. Human Resources Division Tel. 72862-74474

  19. FINAL REMINDER EXTENSION/SUPPRESSION OF ALLOWANCE FOR A DEPENDENT CHILD AGED 18 AND ABOVE

    CERN Document Server

    Human Resources Division

    2001-01-01

    Members of the personnel with dependent children aged 18 or above (or reaching 18 during the 2001/2002 school year) who have not yet provided a SCHOOL CERTIFICATE must do so as soon as possible. If we have not received this certificate by December 11, 2001 at the latest, the child allowance will be withdrawn retroactively as from September 1, 2001.

  20. REMINDER EXTENSION/SUPPRESSION OF ALLOWANCE FOR DEPENDENT CHILDREN AGED 18 AND ABOVE

    CERN Multimedia

    Social and Statutory conditions; Tel. 72862-74474

    2001-01-01

    Members of the personnel with dependent children aged 18 or above (or reaching 18 during the 2001/2002 school year) have received a QUESTIONNAIRE in July. If this questionnaire has not been completed and returned yet, they are requested to do so IMMEDIATELY.

  1. Reminder EXTENSION/SUPPRESSION OF ALLOWANCE FOR DEPENDENT CHILDREN AGED 18 AND ABOVE

    CERN Multimedia

    Conditions Sociales et Statutaires; Tél. 72862-74474; Social and Statutory conditions; Human Resources Division; Tel. 72862-74474

    2000-01-01

    Members of the personnel with dependent children aged 18 or above (or reaching 18 during the 2000/2001 school year) have received a QUESTIONNAIRE in July . If this questionnaire has not been completed and returned, they are requested to do so IMMEDIATELY.

  2. FINAL REMINDER EXTENSION/SUPPRESSION OF ALLOWANCE FOR A DEPENDENT CHILD AGED 18 AND ABOVE

    CERN Multimedia

    Social and Statutory Conditions; Tel. 72862-74474

    2000-01-01

    Members of the personnel with dependent children aged 18 or above (or reaching 18 during the 2000/2001 school year) who have not yet provided a SCHOOL CERTIFICATE must do so as soon as possible. If we have not received this certificate by November 28, 2000 at the latest, the child allowance will be withdrawn retroactively as from September 1,2000.

  3. Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration.

    Science.gov (United States)

    Yu, Ting; Xu, Bei; He, Lili; Xia, Shan; Chen, Yan; Zeng, Jun; Liu, Yongmei; Li, Shuangzhi; Tan, Xiaoyue; Ren, Ke; Yao, Shaohua; Song, Xiangrong

    2016-01-01

    Anti-angiogenesis has been proposed as an effective therapeutic strategy for cancer treatment. Pigment epithelium-derived factor (PEDF) is one of the most powerful endogenous anti-angiogenic reagents discovered to date and PEDF gene therapy has been recognized as a promising treatment option for various tumors. There is an urgent need to develop a safe and valid vector for its systemic delivery. Herein, a novel gene delivery system based on the newly synthesized copolymer COOH-PEG-PLGA-COOH (CPPC) was developed in this study, which was probably capable of overcoming the disadvantages of viral vectors and cationic lipids/polymers-based nonviral carriers. PEDF gene loaded CPPC nanoparticles (D-NPs) were fabricated by a modified double-emulsion water-in-oil-in-water (W/O/W) solvent evaporation method. D-NPs with uniform spherical shape had relatively high drug loading (~1.6%), probably because the introduced carboxyl group in poly (D,L-lactide-co-glycolide) terminal enhanced the interaction of copolymer with the PEDF gene complexes. An excellent in vitro antitumor effect was found in both C26 and A549 cells treated by D-NPs, in which PEDF levels were dramatically elevated due to the successful transfection of PEDF gene. D-NPs also showed a strong inhibitory effect on proliferation of human umbilical vein endothelial cells in vitro and inhibited the tumor-induced angiogenesis in vivo by an alginate-encapsulated tumor cell assay. Further in vivo antitumor investigation, carried out in a C26 subcutaneous tumor model by intravenous injection, demonstrated that D-NPs could achieve a significant antitumor activity with sharply reduced microvessel density and significantly promoted tumor cell apoptosis. Additionally, the in vitro hemolysis analysis and in vivo serological and biochemical analysis revealed that D-NPs had no obvious toxicity. All the data indicated that the novel CPPC nanoparticles were ideal vectors for the systemic delivery of PEDF gene and might be widely

  4. Tumor necrosis factor alpha is associated with insulin-mediated suppression of free fatty acids and net lipid oxidation in HIV-infected patients with lipodystrophy

    DEFF Research Database (Denmark)

    Haugaard, SB; Andersen, O; Pedersen, Steen Bønløkke

    2006-01-01

    Tumor necrosis factor alpha (TNF-alpha) stimulates lipolysis in man. We examined whether plasma TNF-alpha is associated with the degree by which insulin suppresses markers of lipolysis, for example, plasma free fatty acid (FFA) and net lipid oxidation (LIPOX) rate in HIV-infected patients...... with lipodystrophy (LIPO) and those without (controls). LIPOX was estimated by indirect calorimetry during fasting and steady state of a hyperinsulinemic euglycemic clamp in 36 (18 LIPO and 18 controls) normoglycemic HIV-infected men on highly active antiretroviral therapy. In LIPO, TNF-alpha correlated with clamp...... were significant in controls. In all patients, TNF-alpha correlated with clamp FFA (r = 0.61, P

  5. HBV-specific CD4+ cytotoxic T cells in hepatocellular carcinoma are less cytolytic toward tumor cells and suppress CD8+ T cell-mediated antitumor immunity.

    Science.gov (United States)

    Meng, Fanzhi; Zhen, Shoumei; Song, Bin

    2017-08-01

    In East Asia and sub-Saharan Africa, chronic infection is the main cause of the development of hepatocellular carcinoma, an aggressive cancer with low survival rate. Cytotoxic T cell-based immunotherapy is a promising treatment strategy. Here, we investigated the possibility of using HBV-specific CD4 + cytotoxic T cells to eliminate tumor cells. The naturally occurring HBV-specific cytotoxic CD4 + and CD8 + T cells were identified by HBV peptide pool stimulation. We found that in HBV-induced hepatocellular carcinoma patients, the HBV-specific cytotoxic CD4 + T cells and cytotoxic CD8 + T cells were present at similar numbers. But compared to the CD8 + cytotoxic T cells, the CD4 + cytotoxic T cells secreted less cytolytic factors granzyme A (GzmA) and granzyme B (GzmB), and were less effective at eliminating tumor cells. In addition, despite being able to secrete cytolytic factors, CD4 + T cells suppressed the cytotoxicity mediated by CD8 + T cells, even when CD4 + CD25 + regulator T cells were absent. Interestingly, we found that interleukin 10 (IL-10)-secreting Tr1 cells were enriched in the cytotoxic CD4 + T cells. Neutralization of IL-10 abrogated the suppression of CD8 + T cells by CD4 + CD25 - T cells. Neither the frequency nor the absolute number of HBV-specific CD4 + cytotoxic T cells were correlated with the clinical outcome of advanced stage hepatocellular carcinoma patients. Together, this study demonstrated that in HBV-related hepatocellular carcinoma, CD4 + T cell-mediated cytotoxicity was present naturally in the host and had the potential to exert antitumor immunity, but its capacity was limited and was associated with immunoregulatory properties. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  6. Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration

    Directory of Open Access Journals (Sweden)

    Yu T

    2016-02-01

    Full Text Available Ting Yu,1,* Bei Xu,1,* Lili He,2 Shan Xia,3 Yan Chen,1 Jun Zeng,1 Yongmei Liu,1 Shuangzhi Li,1 Xiaoyue Tan,4 Ke Ren,1 Shaohua Yao,1 Xiangrong Song1 1State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 2College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, 3Central Laboratory, Science Education Department, Chengdu Normal University, Chengdu, Sichuan, 4Department of Pathology/Collaborative Innovation Center of Biotherapy, Medical School of Nankai University, Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: Anti-angiogenesis has been proposed as an effective therapeutic strategy for cancer treatment. Pigment epithelium-derived factor (PEDF is one of the most powerful endogenous anti-angiogenic reagents discovered to date and PEDF gene therapy has been recognized as a promising treatment option for various tumors. There is an urgent need to develop a safe and valid vector for its systemic delivery. Herein, a novel gene delivery system based on the newly synthesized copolymer COOH-PEG-PLGA-COOH (CPPC was developed in this study, which was probably capable of overcoming the disadvantages of viral vectors and cationic lipids/polymers-based nonviral carriers. PEDF gene loaded CPPC nanoparticles (D-NPs were fabricated by a modified double-emulsion water-in-oil-in-water (W/O/W solvent evaporation method. D-NPs with uniform spherical shape had relatively high drug loading (~1.6%, probably because the introduced carboxyl group in poly (D,L-lactide-co-glycolide terminal enhanced the interaction of copolymer with the PEDF gene complexes. An excellent in vitro antitumor effect was found in both C26 and A549 cells treated by D-NPs, in which PEDF levels were dramatically elevated due to the successful transfection of PEDF gene. D-NPs also showed a strong inhibitory effect on

  7. Do tumor size or patient age influence the accuracy of sentinel lymph node (Sn) detection in breast cancer?

    International Nuclear Information System (INIS)

    Cortes, M.; Fernandez, A.; Benito, E.; Azpeitia, D.; Ricart, Y.; Escobedo, A.; Martin-Comin, J.

    2002-01-01

    Full text: The aim was to analyze the influence of the age of the patient and tumor size on the accuracy to identify SN in patients with breast cancer. The whole population are 250 patients with breast cancer. In 236 data on size and age were available. Mean age was 53.6 years, range 28-87 years. Patients were classified 1) depending an age: 40 60 years: 73 p and 2) depending on tumor size (mm): 30: 46 p. Examination protocol: All patients received a peritumoral injection of 111 MBq (3mCi) of 99mTc-HSA-nanocolloid in 1 - 3 ml. 2 h later 300 seconds anterior and lateral thoracic scans were obtained. A 57-Co flood phantom was positioned back to the patient to outline the anatomical contour and help to localize SN. SN was marked on the skin with permanent ink. Intraoperative SN localization was performed using a gamma probe. Histopathologic analysis of SN was done with haematoxylin/eosin, immunohistochemistry and PCR. Histopathology of the SN was compared to the histopathology of all the other lymph nodes drawn out by the surgeon. SN were identified by lymphoscintigraphy in 227 cases of 250 (91 %). 221 of them (97 %) were localized in axyla. In 210 of 221 SN could be localized and drawn out at surgery. The no detection and false negative rate were much higher in patients aged > 60 (29 and 33 %) and in tumors > 30 mm (32 and 19 %) than in patients 60 y and tumors > 30 mm (46 %) and the highest false negative rate appears in patients >60 and tumors > 30 mm (33 %) 1) No FN were found in patients with tumor size <10 mm. 2) No FN were found in patients aged under 40 years. 3) FN rate seems to be higher in older patients. 4) The age of patients and the size of tumor seem to influence an the SN detection rates. (author)

  8. Carnosine inhibits carbonic anhydrase IX-mediated extracellular acidosis and suppresses growth of HeLa tumor xenografts

    International Nuclear Information System (INIS)

    Ditte, Zuzana; Ditte, Peter; Labudova, Martina; Simko, Veronika; Iuliano, Filippo; Zatovicova, Miriam; Csaderova, Lucia; Pastorekova, Silvia; Pastorek, Jaromir

    2014-01-01

    Carbonic anhydrase IX (CA IX) is a transmembrane enzyme that is present in many types of solid tumors. Expression of CA IX is driven predominantly by the hypoxia-inducible factor (HIF) pathway and helps to maintain intracellular pH homeostasis under hypoxic conditions, resulting in acidification of the tumor microenvironment. Carnosine (β-alanyl-L-histidine) is an anti-tumorigenic agent that inhibits the proliferation of cancer cells. In this study, we investigated the role of CA IX in carnosine-mediated antitumor activity and whether the underlying mechanism involves transcriptional and translational modulation of HIF-1α and CA IX and/or altered CA IX function. The effect of carnosine was studied using two-dimensional cell monolayers of several cell lines with endogenous CA IX expression as well as Madin Darby canine kidney transfectants, three-dimensional HeLa spheroids, and an in vivo model of HeLa xenografts in nude mice. mRNA and protein expression and protein localization were analyzed by real-time PCR, western blot analysis, and immunofluorescence staining, respectively. Cell viability was measured by a flow cytometric assay. Expression of HIF-1α and CA IX in tumors was assessed by immunohistochemical staining. Real-time measurement of pH was performed using a sensor dish reader. Binding of CA IX to specific antibodies and metabolon partners was investigated by competitive ELISA and proximity ligation assays, respectively. Carnosine increased the expression levels of HIF-1α and HIF targets and increased the extracellular pH, suggesting an inhibitory effect on CA IX-mediated acidosis. Moreover, carnosine significantly inhibited the growth of three-dimensional spheroids and tumor xenografts compared with untreated controls. Competitive ELISA showed that carnosine disrupted binding between CA IX and antibodies specific for its catalytic domain. This finding was supported by reduced formation of the functional metabolon of CA IX and anion exchanger 2 in the

  9. Recombinant tumor necrosis factor alpha inhibits growth of methylcholanthrene-induced sarcoma and enhances natural killer activity of tumor-infiltrating lymphocytes in aging rats

    International Nuclear Information System (INIS)

    Ziolkowska, Maria; Nowak Joanna, J.; Janiak, Marek; Ryzewska, Alicja

    1994-01-01

    The effect of recombinant human tumor necrosis factors alpha (rHuTNF-α) on the growth of immunogenic, methylcholanthrene-induced sarcoma (MC-Sa) and natural killer (NK) cell activity of tumor-infiltrating lymphocytes (TIL) in adult and aging rats was investigated. In both groups of animals the growth of transplantable MC-Sa was markedly and similarly inhibited by multiple intratumoral (i.t.) injections of rHuTF-α. This effect was accompanied by stimulation of NK activity of tumor-infiltrating lymphocytes in adult as well as in aging rats. Studies ''in vitro'' demonstrated additionally that rHuTNF-α was a potent stimulator of NK but not of ADCC (antibody-dependent cellular cytotoxicity) activity of spleen lymphocytes from healthy animals. Our results indicate that the antitumor effect of TNF-α is comparable in adult and in aging rats bearing immunogenic MC-Sa. The inhibition of MC-Sa growth may be attributed not only to the TNF-α-induced necrosis of the neoplastic tissue but also to the ''in vivo'' stimulatory effect of this cytokine upon the NK-type function of lymphocytes infiltrating the tumor mass. (author). 31 refs, 5 figs, 2 tabs

  10. The Novel miR-9600 Suppresses Tumor Progression and Promotes Paclitaxel Sensitivity in Non–small-cell Lung Cancer Through Altering STAT3 Expression

    Directory of Open Access Journals (Sweden)

    Cheng-Cao Sun

    2016-01-01

    Full Text Available MicroRNAs have been identified to be involved in center stage of cancer biology. They accommodate cell proliferation and migration by negatively regulate gene expression either by hampering the translation of targeted mRNAs or by promoting their degradation. We characterized and identified the novel miR-9600 and its target in human non–small-cell lung cancer (NSCLC. Our results demonstrated that the miR-9600 were downregulated in NSCLC tissues and cells. It is confirmed that signal transducer and activator of transcription 3 (STAT3, a putative target gene, is directly inhibited by miR-9600. The miR-9600 markedly suppressed the protein expression of STAT3, but with no significant influence in corresponding mRNA levels, and the direct combination of miR-9600 and STAT3 was confirmed by a luciferase reporter assay. miR-9600 inhibited cell growth, hampered expression of cell cycle-related proteins and inhibited cell migration and invasion in human NSCLC cell lines. Further, miR-9600 significantly suppressed tumor growth in nude mice. Similarly, miR-9600 impeded tumorigenesis and metastasis through directly targeting STAT3. Furthermore, we identified that miR-9600 augmented paclitaxel and cisplatin sensitivity by downregulating STAT3 and promoting chemotherapy-induced apoptosis. These data demonstrate that miR-9600 might be a useful and novel therapeutic target for NSCLC.

  11. Human recombinant interleukin-1 beta- and tumor necrosis factor alpha-mediated suppression of heparin-like compounds on cultured porcine aortic endothelial cells

    International Nuclear Information System (INIS)

    Kobayashi, M.; Shimada, K.; Ozawa, T.

    1990-01-01

    Cytokines are known to tip the balance of the coagulant-anticoagulant molecules on the endothelial cell surface toward intravascular coagulation. Their effects on endothelial cell surface-associated heparin-like compounds have not been examined yet. Incorporation of [35S]sulfate into heparan sulfate on cultured porcine aortic endothelial cells was suppressed by human recombinant interleukin-1 beta (rIL-1 beta) or tumor necrosis factor alpha (rTNF alpha) in a dose- and time-dependent manner with little effect on cell number, protein content, and [3H]leucine incorporation of cells. Maximal inhibition was achieved by incubation of cells with 100 ng/ml of rIL-1 beta or 5 ng/ml of rTNF alpha for 12-24 hours, resulting in a reduction of the synthesis of heparan sulfate on the cell surface by approximately 50%. The dose dependency was consistent with that seen in the stimulation of endothelial cell procoagulant activity by each cytokine. The suppression of heparan sulfate synthesis was sustained for at least 48 hours after pretreatment of cells with cytokines and was unchanged after the addition of indomethacin or polymyxin B. The rate of degradation of prelabeled 35S-heparan sulfate on the cell surface was not altered by cytokine treatments. Neither the size, the net negative charge, nor the proportion of the molecule with high affinity for antithrombin III of endothelial cell heparan sulfate was changed by cytokines. Furthermore, specific binding of 125I-labeled antithrombin III to the endothelial cell surface was reduced to 40-60% of control by cytokines. In parallel with reduction in binding, antithrombin III cofactor activity was partially diminished in cytokine-treated endothelial cells. Thus, cytokine-mediated suppression of heparin-like substance on endothelial cells appears to be another cytokine-inducible endothelial effects affecting coagulation

  12. FINAL REMINDER - Extension/suppression of allowance for dependent children aged 18 to 25

    CERN Multimedia

    HR Department

    2006-01-01

    Members of the personnel with dependent children aged 18 to 25 (or reaching 18 during the 2006/2007 school year), for whom an allowance for dependent children is paid, must provide the School fees service as soon as possible with a: SCHOOL CERTIFICATE If we have not received this certificate by November 30, 2006 at the latest, the child allowance will be withdrawn retroactively as from July 1, 2006. School fees service (33-1-017) Organization, Procedures and Services Human Resources Department Tel. 72862

  13. Possible Therapeutic Application of Targeting Type II Natural Killer T Cell-Mediated Suppression of Tumor Immunity

    Science.gov (United States)

    Kato, Shingo; Berzofsky, Jay A.; Terabe, Masaki

    2018-01-01

    Natural killer T (NKT) cells are a unique T cell subset that exhibits characteristics from both the innate immune cells and T cells. There are at least two subsets of NKT cells, type I and type II. These two subsets of NKT cells have opposite functions in antitumor immunity. Type I NKT cells usually enhance and type II NKT cells suppress antitumor immunity. In addition, these two subsets of NKT cells cross-regulate each other. In this review, we mainly focus on immunosuppressive NKT cells, type II NKT cells. After summarizing their definition, experimental tools to study them, and subsets of them, we will discuss possible therapeutic applications of type II NKT cell pathway targeted therapies. PMID:29520281

  14. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming, E-mail: wsenming@126.com

    2014-01-10

    Highlight: •We first evaluated the effect of salinomycin on nasopharyngeal carcinoma (NPC). •Salinomycin could inhibit Wnt/β-catenin signaling and induce apoptosis in NPC. •So salinomycin may be a good potential candidate for the chemotherapy of NPC. -- Abstract: Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  15. miRNA-218-loaded carboxymethyl chitosan - Tocopherol nanoparticle to suppress the proliferation of gastrointestinal stromal tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Lin; Wang, Ming; Zhao, Wen-Yi; Zhang, Zi-Zhen; Tang, De-Feng; Zhang, Ye-Qian [Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127 (China); Cao, Hui, E-mail: caohui10281@163.com [Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127 (China); Zhang, Zhi-Gang, E-mail: zhangzhiganggz@hotmail.com [State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200240 (China)

    2017-03-01

    Gastrointestinal stromal tumors (GIST) are one of the most common forms of mesenchymal cancers of the gastrointestinal tract. Although chemotherapeutic drugs inhibited the proliferation of GIST, however, sizable proportion of people developed resistance and therefore difficult to treat. In the present study, O-carboxymethyl chitosan (OCMC)-tocopherol polymer conjugate was synthesized and formulated into stable polymeric nanoparticles. The main aim of present study was to increase the therapeutic efficacy of miR-218 in GIST. The mean size of nanoparticles was ~ 110 nm with a spherical shape. The miR-218 NP has been shown inhibit the cell proliferation and exhibited a superior cell apoptosis. The miR-218 NP inhibited the cell invasion and promoted the apoptosis of GIST cancer cells. In the present study, we have successfully showed that KIT1 is the target gene of miR-218 as shown by the luciferase reporter assay. These findings collectively suggest the miR-218 loaded nanoparticle by virtue of effective transfection could act as a tumor suppressor miRNA in the treatment of GIST. - Highlights: • O-carboxymethyl chitosan (OCMC)-tocopherol polymer conjugate was synthesized and formulated in nanoparticles. • The miR-218 NP has been shown inhibit the cell proliferation and exhibited a superior cell apoptosis. • We have successfully showed that KIT1 is the target gene of miR-218 as shown by the luciferase reporter assay.

  16. Immune physiology in tissue regeneration and aging, tumor growth, and regenerative medicine.

    Science.gov (United States)

    Bukovsky, Antonin; Caudle, Michael R; Carson, Ray J; Gaytán, Francisco; Huleihel, Mahmoud; Kruse, Andrea; Schatten, Heide; Telleria, Carlos M

    2009-02-13

    The immune system plays an important role in immunity (immune surveillance), but also in the regulation of tissue homeostasis (immune physiology). Lessons from the female reproductive tract indicate that immune system related cells, such as intraepithelial T cells and monocyte-derived cells (MDC) in stratified epithelium, interact amongst themselves and degenerate whereas epithelial cells proliferate and differentiate. In adult ovaries, MDC and T cells are present during oocyte renewal from ovarian stem cells. Activated MDC are also associated with follicular development and atresia, and corpus luteum differentiation. Corpus luteum demise resembles rejection of a graft since it is attended by a massive influx of MDC and T cells resulting in parenchymal and vascular regression. Vascular pericytes play important roles in immune physiology, and their activities (including secretion of the Thy-1 differentiation protein) can be regulated by vascular autonomic innervation. In tumors, MDC regulate proliferation of neoplastic cells and angiogenesis. Tumor infiltrating T cells die among malignant cells. Alterations of immune physiology can result in pathology, such as autoimmune, metabolic, and degenerative diseases, but also in infertility and intrauterine growth retardation, fetal morbidity and mortality. Animal experiments indicate that modification of tissue differentiation (retardation or acceleration) during immune adaptation can cause malfunction (persistent immaturity or premature aging) of such tissue during adulthood. Thus successful stem cell therapy will depend on immune physiology in targeted tissues. From this point of view, regenerative medicine is more likely to be successful in acute rather than chronic tissue disorders.

  17. Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA.

    Science.gov (United States)

    Zhang, Haiyang; Wang, Yi; Bai, Ming; Wang, Junyi; Zhu, Kegan; Liu, Rui; Ge, Shaohua; Li, JiaLu; Ning, Tao; Deng, Ting; Fan, Qian; Li, Hongli; Sun, Wu; Ying, Guoguang; Ba, Yi

    2018-03-01

    Exosomes derived from cells have been found to mediate signal transduction between cells and to act as efficient carriers to deliver drugs and small RNA. Hepatocyte growth factor (HGF) is known to promote the growth of both cancer cells and vascular cells, and the HGF-cMET pathway is a potential clinical target. Here, we characterized the inhibitory effect of HGF siRNA on tumor growth and angiogenesis in gastric cancer. In addition, we showed that HGF siRNA packed in exosomes can be transported into cancer cells, where it dramatically downregulates HGF expression. A cell co-culture model was used to show that exosomes loaded with HGF siRNA suppress proliferation and migration of both cancer cells and vascular cells. Moreover, exosomes were able to transfer HGF siRNA in vivo, decreasing the growth rates of tumors and blood vessels. The results of our study demonstrate that exosomes have potential for use in targeted cancer therapy by delivering siRNA. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  18. REMINDER - extension/suppression of allowance for dependent children aged 20 to 25

    CERN Multimedia

    HR Department

    2008-01-01

    Members of the personnel with dependent children aged 20 to 25 (or reaching 20 during the 2008/2009 school year), for whom an allowance for dependent children is paid, must provide the School fees service with a: SCHOOL CERTIFICATE Unless we receive, by 31 October 2008 at the latest, a school certificate or similar written proof (contract of work placement, sandwich courses or apprenticeship) covering your child / children for the school year 2008/2009, we will be obliged to stop payment of the allowance for dependent children as well as affiliation to the health insurance retroactively as of 1 July 2008. School fees service (33-1-017) HR/SPS-SER Tel. 72862

  19. REMINDER - Extension/suppression of allowance for dependent children aged 20 to 25

    CERN Multimedia

    HR Department

    2008-01-01

    Members of the personnel with dependent children aged 20 to 25 (or reaching 20 during the 2008/2009 school year), for whom an allowance for dependent children is paid, must provide the School Fees service with a: SCHOOL CERTIFICATE Unless we receive, by 31 October, 2008 at the latest, a school certificate or similar written proof (contract of work placement, sandwich course or apprenticeship) covering your child / children for the school year 2008/2009, we will be obliged to stop payment of the allowance for dependent children as well as affiliation to the health insurance scheme retroactively as of1st July 2008. School fees service (33-1-017) HR/SPS-SER Tel. 72862

  20. REMINDER: Extension/suppression of allowance for dependent children aged 18 and above

    CERN Multimedia

    HR Department

    2006-01-01

    Members of the personnel with dependent children aged 18 or above (or reaching 18 during the 2006/2007 school year) received an email in July inviting them to fill in a declaration of situation for dependent children in EDH. If this declaration has not yet been completed, you are requested to do so (one declaration for each child concerned) WITHOUT DELAY, by using the following link: https://edh.cern.ch/Document/ChildAllowance/ The deadline was September 30. If no declaration is sent to our service by October 13, 2006, the child allowance, as well as automatic health insurance membership, will cease on the first day of the month following the end of the last school year (according to the school certificate in our possession or, in the absence of precise information, on July 1, 2006). School fees Service Organization, Procedures and Services Human Resources Department Schoolfees.service@cern.ch Tel. 72862

  1. Reminder: extension/suppression of allowance for dependent children aged 20 to 25

    CERN Multimedia

    2013-01-01

    Members of the personnel with dependent children aged 20 to 25 (or reaching 20 during the 2013/2014 school year), for whom an allowance for dependent children is currently paid, are invited to provide the Education Fees service with a SCHOOL CERTIFICATE.   Unless we receive, by October 31, 2013 at the latest, a school certificate or similar written proof (contract of work placement, sandwich course or apprenticeship) covering your child / children for the school year 2013/2014, we will be obliged to stop payment of the allowance for dependent children as well as affiliation to the health insurance at the appropriate date and retroactively if necessary.   Education fees service HR/CB-B Mailbox C20000 schoolfees.service@cern.ch Tel.: 72862 / 71421

  2. REMINDER - Extension/suppression of allowance for dependent children aged 20 to 25

    CERN Multimedia

    HR Department

    2010-01-01

    Members of the personnel with dependent children aged 20 to 25 (or reaching 20 during the 2010/2011 school year), for whom an allowance for dependent children is currently paid, are invited to provide the Education fees service with a: SCHOOL CERTIFICATE Unless we receive, by October 31, 2010 at the latest, a school certificate or similar written proof (contract of work placement, sandwich courses or apprenticeship) covering your child / children for the school year 2010/2011, we will be obliged to stop payment of the allowance for dependent children as well as affiliation to the health insurance at the appropriate date and retroactively if necessary. Education fees service HR/SPS-SER Tel. 72862 / 71421

  3. Reminder - Extension/suppression of allowance for dependent children aged 20 to 25

    CERN Multimedia

    HR Department

    2011-01-01

    Members of the personnel with dependent children aged 20 to 25 (or reaching 20 during the 2011/2012 school year), for whom an allowance for dependent children is currently paid, are invited to provide the Education Fees Service with a: SCHOOL CERTIFICATE Unless we receive, by 31 October 2011 at the latest, a school certificate or similar written proof (contract of work placement, sandwich courses or apprenticeship) covering your child / children for the school year 2011/2012, we will be obliged to stop payment of the allowance for dependent children as well as affiliation to the health insurance at the appropriate date and retroactively if necessary. Education Fees Service Mailbox C20000 schoolfees.service@cern.ch Tel. 72862 / 71421

  4. REMINDER - Extension/suppression of allowance for dependent children aged 20 to 25

    CERN Multimedia

    HR Department

    2010-01-01

    Members of the personnel with dependent children aged 20 to 25 (or reaching 20 during the 2010/2011 school year), for whom an allowance for dependent children is currently paid, are invited to provide the Education Fees Service with a: SCHOOL CERTIFICATE Unless we receive, by 31 October 2010 at the latest, a school certificate or similar written proof (work placement contract, evidence of sandwich courses or apprenticeship) covering your child / children for the school year 2010/2011, we will be obliged to stop payment of the allowance for dependent children as well as membership of the health insurance scheme at the appropriate date, retroactively if necessary. Education Fees Service HR/SPS-SER Tel. 72862 / 71421

  5. REMINDER: Extension/suppression of allowance for dependent children aged 20 to 25

    CERN Multimedia

    2012-01-01

    Members of the personnel with dependent children aged 20 to 25 (or reaching 20 during the 2012/2013 school year), for whom an allowance for dependent children is currently paid, are invited to provide the Education fees service with a   SCHOOL CERTIFICATE.   Unless we receive, by October 31, 2012 at the latest, a school certificate or similar written proof (contract of work placement, sandwich courses or apprenticeship) covering your child / children for the school year 2012/2013, we will be obliged to stop payment of the allowance for dependent children as well as affiliation to the health insurance at the appropriate date and retroactively if necessary.   Education fees service HR/CB-B Mailbox C20000 schoolfees.service@cern.ch Tel. 72862 / 71421

  6. Final reminder - Extension/suppression of allowance for dependent children aged 20 to 25

    CERN Document Server

    HR Department

    2007-01-01

    Members of the personnel with dependent children aged 20 to 25 (or reaching 20 during the 2007/2008 school year), for whom an allowance for dependent children is paid, must provide the School fees service as soon as possible with a: SCHOOL CERTIFICATE Unless we receive, by November 30, 2007 at the latest, a school certificate or similar written proof (contract of work placement, sandwich courses or apprenticeship) covering your child / children for the school year 2007/2008, we will be obliged to stop payment of the allowance for dependent children as well as affiliation to the health insurance retroactively as of July 1, 2007. School fees service (33-1-017) HR/SPS-SER Tel. 72862

  7. Final reminder - Extension/suppression of allowance for dependent children aged 20 to 25

    CERN Document Server

    HR Department

    2007-01-01

    Members of the personnel with dependent children aged 20 to 25 (or reaching 20 during the 2007/2008 school year), for whom an allowance for dependent children is paid, must provide the School Fees service as soon as possible with a: SCHOOL CERTIFICATE Unless we receive, by November 30, 2007 at the latest, a school certificate or similar written proof (contract of work placement, sandwich courses or apprenticeship) covering your child / children for the school year 2007/2008, we will be obliged to stop payment of the allowance for dependent children as well as affiliation to the health insurance scheme retroactively as of 1 July 2007. School Fees service (33-1-017) HR/SPS-SER Tel. 72862

  8. Reminder - Extension/suppression of allowance for dependent children aged 20 to 25

    CERN Multimedia

    HR Department

    2009-01-01

    Members of the personnel with dependent children aged 20 to 25 (or reaching 20 during the 2009/2010 school year), for whom a dependent child’s allowance is currently paid, are invited to provide the Education Fees service with a: SCHOOL CERTIFICATE Unless we receive, by October 31, 2009 at the latest, a school certificate or similar written proof (contract of work placement, sandwich course or apprenticeship) covering your child / children for the 2009/2010 school year, we will be obliged to stop payment of the dependent child’s allowance as well as membership of the health insurance scheme at the appropriate date, retroactively if necessary. Education Fees service (33-1-017) HR Department - Tel. 72862

  9. Transgenic overexpression of ADAM12 suppresses muscle regeneration and aggravates dystrophy in aged mdx mice

    DEFF Research Database (Denmark)

    Jørgensen, Louise Helskov; Jensen, Charlotte Harken; Wewer, Ulla M

    2007-01-01

    mice (ADAM12(+)) after a knife cut lesion and observed that the regeneration process was significantly impaired. ADAM12 seemed to inhibit the satellite cell response and delay myoblast differentiation. These results discourage long-term therapeutic use of ADAM12. They also point to impaired...... effect of ADAM12 was suggested to be mediated via a membrane-stabilizing up-regulation of utrophin, alpha7B integrin, and dystroglycans. Ectopic ADAM12 expression in normal mouse skeletal muscle also improved regeneration after freeze injury, presumably by the same mechanism. Hence, it was suggested...... overexpressing ADAM12 (ADAM12(+)/mdx mice), even though their utrophin levels were mildly elevated compared with age-matched controls. Thus, membrane stabilization was not sufficient to provide protection during prolonged disease. Consequently, we reinvestigated skeletal muscle regeneration in ADAM12 transgenic...

  10. Mechanisms Underlying the Anti-Aging and Anti-Tumor Effects of Lithocholic Bile Acid

    Directory of Open Access Journals (Sweden)

    Anthony Arlia-Ciommo

    2014-09-01

    Full Text Available Bile acids are cholesterol-derived bioactive lipids that play essential roles in the maintenance of a heathy lifespan. These amphipathic molecules with detergent-like properties display numerous beneficial effects on various longevity- and healthspan-promoting processes in evolutionarily distant organisms. Recent studies revealed that lithocholic bile acid not only causes a considerable lifespan extension in yeast, but also exhibits a substantial cytotoxic effect in cultured cancer cells derived from different tissues and organisms. The molecular and cellular mechanisms underlying the robust anti-aging and anti-tumor effects of lithocholic acid have emerged. This review summarizes the current knowledge of these mechanisms, outlines the most important unanswered questions and suggests directions for future research.

  11. Radiation therapy for malignant tumors in patients 80 years of age or older

    International Nuclear Information System (INIS)

    Mitsuhashi, Norio; Niibe, Hideo; Hayakawa, Kazushige; Takahashi, Mitsuhiro; Nozaki, Miwako; Yamakawa, Michitaka

    1992-01-01

    We report here, results of investigation of changes in the condition of elderly patients, 80 years of age or older (EP-80), treated with radiation, and analysis of the results of radiotherapy to assess the value of radiotherapy in treating the elderly. Between 1970 and 1989, 294 EP-80 with various malignant tumors received radiation therapy at the Department of Radiology, Gunma University Hospital. The number of EP-80 treated has increased recently to about thirty per year, and their incidence among newly registered patients has also increased to over 5%. The 5-year cause specific survival rates for male and female were 14% and 32%, respectively. There was a significant difference between the survival rates for male and female (x 2 =11.89, p=0.00056) because of inclusion of a significant proportion of female patients with gynecological malignancies. The 5-year survival rate for patients in the curative radiotherapy group (CRG) was 30%, whereas no patient of the palliative radiotherapy group (PRG) has survived for 5 years (x 2 =90.23, p=0.00000). In the CRG, the survival rate for females was significantly higher than that for males (x 2 =11.48, p=0.00070). Thirty-one patients survived for 5 year. Head and neck cancer and uterine lervix cancer were the most common tumors in 5 year survivors. Age was not a significant prognostic factor in the elderly patients treated with radiation. It is considered that radiation therapy is as valuable in elderly patients as in the younger patient population. (author)

  12. Reversal of oncogene transformation and suppression of tumor growth by the novel IGF1R kinase inhibitor A-928605

    International Nuclear Information System (INIS)

    Pappano, William N; Sheppard, George S; Donawho, Cherrie; Buchanan, Fritz G; Davidsen, Steven K; Bell, Randy L; Wang, Jieyi; Jung, Paul M; Meulbroek, Jonathan A; Wang, Yi-Chun; Hubbard, Robert D; Zhang, Qian; Grudzien, Meagan M; Soni, Niru B; Johnson, Eric F

    2009-01-01

    The insulin-like growth factor (IGF) axis is an important signaling pathway in the growth and survival of many cell and tissue types. This pathway has also been implicated in many aspects of cancer progression from tumorigenesis to metastasis. The multiple roles of IGF signaling in cancer suggest that inhibition of the pathway might yield clinically effective therapeutics. We describe A-928605, a novel pyrazolo [3,4-d]pyrimidine small molecule inhibitor of the receptor tyrosine kinases (IGF1R and IR) responsible for IGF signal transduction. This compound was first tested for its activity and selectivity via conventional in vitro kinome profiling and cellular IGF1R autophosphorylation. Additionally, cellular selectivity and efficacy of A-928605 were analyzed in an IGF1R oncogene-addicted cell line by proliferation, signaling and microarray studies. Finally, in vivo efficacy of A-928605 was assessed in the oncogene-addicted cell line and in a neuroblastoma model as a single agent as well as in combination with clinically approved therapeutics targeting EGFR in models of pancreatic and non-small cell lung cancers. A-928605 is a selective IGF1R inhibitor that is able to abrogate activation of the pathway both in vitro and in vivo. This novel compound dosed as a single agent is able to produce significant growth inhibition of neuroblastoma xenografts in vivo. A-928605 is also able to provide additive effects when used in combination with clinically approved agents directed against EGFR in non-small cell lung and human pancreatic tumor models. These results suggest that a selective IGF1R inhibitor such as A-928605 may provide a useful clinical therapeutic for IGF pathway affected tumors and warrants further investigation

  13. Enhanced seed viability and lipid compositional changes during natural aging by suppressing phospholipase Dα in soybean seed

    Science.gov (United States)

    Lee, Junghoon; Welti, Ruth; Roth, Mary; Schapaugh, William T.; Li, Jiarui; Trick, Harold N.

    2013-01-01

    Summary Changes in phospholipid composition and consequent loss of membrane integrity are correlated with loss of seed viability. Furthermore, phospholipid compositional changes affect the composition of the triacylglycerols, i.e. the storage lipids. Phospholipase D (PLD) catalyzes the hydrolysis of phospholipids to phosphatidic acid, and PLDα is an abundant PLD isoform. Although wild type seeds stored for 33 months were non-viable, 30 to 50% of PLDα-knockdown (PLD-KD) soybean seeds stored for 33 months germinated. Wild type and PLD-KD seeds increased in lysophospholipid levels and in triacylglycerol fatty acid unsaturation during aging, but the levels of lysophospholipids increased more in wild type than in PLD-KD seeds. The loss of viability of wild type seeds was correlated with alterations in ultrastructure, including detachment of the plasma membrane from the cell wall complex and disorganization of oil bodies. The data demonstrate that, during natural aging, PLDα affects the soybean phospholipid profile and the triacylglycerol profile. Suppression of PLD activity in soybean seed has potential for improving seed quality during long-term storage. PMID:21895945

  14. Enhanced seed viability and lipid compositional changes during natural ageing by suppressing phospholipase Dα in soybean seed.

    Science.gov (United States)

    Lee, Junghoon; Welti, Ruth; Roth, Mary; Schapaugh, William T; Li, Jiarui; Trick, Harold N

    2012-02-01

    Changes in phospholipid composition and consequent loss of membrane integrity are correlated with loss of seed viability. Furthermore, phospholipid compositional changes affect the composition of the triacylglycerols (TAG), i.e. the storage lipids. Phospholipase D (PLD) catalyses the hydrolysis of phospholipids to phosphatidic acid, and PLDα is an abundant PLD isoform. Although wild-type (WT) seeds stored for 33 months were non-viable, 30%-50% of PLDα-knockdown (PLD-KD) soybean seeds stored for 33 months germinated. WT and PLD-KD seeds increased in lysophospholipid levels and in TAG fatty acid unsaturation during ageing, but the levels of lysophospholipids increased more in WT than in PLD-KD seeds. The loss of viability of WT seeds was correlated with alterations in ultrastructure, including detachment of the plasma membrane from the cell wall complex and disorganization of oil bodies. The data demonstrate that, during natural ageing, PLDα affects the soybean phospholipid profile and the TAG profile. Suppression of PLD activity in soybean seed has potential for improving seed quality during long-term storage. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  15. Paris polyphylla Suppresses Proliferation and Vasculogenic Mimicry of Human Osteosarcoma Cells and Inhibits Tumor Growth In Vivo.

    Science.gov (United States)

    Yao, Nan; Ren, Ke; Wang, Yimin; Jin, Qiaomei; Lu, Xiao; Lu, Yan; Jiang, Cuihua; Zhang, Dongjian; Lu, Jun; Wang, Chen; Huo, Jiege; Chen, Yong; Zhang, Jian

    2017-01-01

    Paris polyphylla, a traditional antipyretic-detoxicate chinese medicinal herb, has been applied extensively in cancer treatments for nearly 2000 years. The purpose of the present study is to evaluate the potential anti-osteosarcoma effects of Paris polyphylla ethanol extract (PPEE) and to investigate its underlying mechanisms. The antiproliferation activity of PPEE was tested on 143B, MG-63, U-2 OS and hFOB1.19 cells using MTT assay. The pro-apoptotic and cell cycle arrest effects of PPEE were confirmed by Hoechst 33342 staining and flow cytometry. The antimigratory, anti-invasive and antivasculogenic mimicry (VM) effects of PPEE were investigated by wound healing, Transwell and 3D culture assays. Mouse xenograft model was used to examine its anti-osteosarcoma efficacy in vivo. Hematologic profiles and hepatorenal functions were evaluated to assess the toxicity of PPEE. PPEE evidently suppressed cell proliferation of 143B, MG-63 and U-2 OS with IC50 values of 10-60[Formula: see text][Formula: see text]g/mL, but showed little cytotoxicity against normal osteoblastic cell. PPEE promoted apoptosis in 143B cell via caspase activation, increased Bax/Bcl-2 ratio and PARP cleavage. It also induced G2/M phase arrest associated with elevated phosphorylation of CDK1, Cdc25C, Chk2 and down-regulation of cyclin B1, CDK1, Cdc25C expression. Additionally, PPEE inhibited 143B cell migration, invasion and VM formation at noncytotoxic concentrations through decreasing the expression of FAK, Mig-7, MMP2 and MMP9. Finally, daily oral administration of PPEE for four weeks exhibits potent antitumor and anti-VM activity in 143B xenograft model with low toxicity. Taken together, these findings demonstrated PPEE possesses anti-osteosarcoma and anti-VM activity in vitro and in vivo, and therefore is a potential candidate for osteosarcoma treatment.

  16. Differential expression of miR-1, a putative tumor suppressing microRNA, in cancer resistant and cancer susceptible mice

    Directory of Open Access Journals (Sweden)

    Jessica L. Fleming

    2013-04-01

    Full Text Available Mus spretus mice are highly resistant to several types of cancer compared to Mus musculus mice. To determine whether differences in microRNA (miRNA expression account for some of the differences in observed skin cancer susceptibility between the strains, we performed miRNA expression profiling of skin RNA for over 300 miRNAs. Five miRNAs, miR-1, miR-124a-3, miR-133a, miR-134, miR-206, were differentially expressed by array and/or qPCR. miR-1 was previously shown to have tumor suppressing abilities in multiple tumor types. We found miR-1 expression to be lower in mouse cutaneous squamous cell carcinomas (cSCCs compared to normal skin. Based on the literature and our expression data, we performed detailed studies on predicted miR-1 targets and evaluated the effect of miR-1 expression on two murine cSCC cell lines, A5 and B9. Following transfection of miR-1, we found decreased mRNA expression of three validated miR-1 targets, Met, Twf1 and Ets1 and one novel target Bag4. Decreased expression of Ets1 was confirmed by Western analysis and by 3’ reporter luciferase assays containing wildtype and mutated Ets1 3’UTR. We evaluated the effect of miR-1 on multiple tumor phenotypes including apoptosis, proliferation, cell cycle and migration. In A5 cells, expression of miR-1 led to decreased proliferation compared to a control miR. miR-1 expression also led to increased apoptosis at later time points (72 and 96 h and to a decrease in cells in S-phase. In summary, we identified five miRNAs with differential expression between cancer resistant and cancer susceptible mice and found that miR-1, a candidate tumor suppressor, has targets with defined roles in tumorigenesis.

  17. Addressing the selective role of distinct prefrontal areas in response suppression: A study with brain tumor patients.

    Science.gov (United States)

    Arbula, Sandra; Pacella, Valentina; De Pellegrin, Serena; Rossetto, Marta; Denaro, Luca; D'Avella, Domenico; Della Puppa, Alessandro; Vallesi, Antonino

    2017-06-01

    The diverging evidence for functional localization of response inhibition within the prefrontal cortex might be justified by the still unclear involvement of other intrinsically related cognitive processes like response selection and sustained attention. In this study, the main aim was to understand whether inhibitory impairments, previously found in patients with both left and right frontal lesions, could be better accounted for by assessing these potentially related cognitive processes. We tested 37 brain tumor patients with left prefrontal, right prefrontal and non-prefrontal lesions and a healthy control group on Go/No-Go and Foreperiod tasks. In both types of tasks inhibitory impairments are likely to cause false alarms, although additionally the former task requires response selection and the latter target detection abilities. Irrespective of the task context, patients with right prefrontal damage showed frequent Go and target omissions, probably due to sustained attention lapses. Left prefrontal patients, on the other hand, showed both Go and target omissions and high false alarm rates to No-Go and warning stimuli, suggesting a decisional rather than an inhibitory impairment. An exploratory whole-brain voxel-based lesion-symptom mapping analysis confirmed the association of left ventrolateral and dorsolateral prefrontal lesions with target discrimination failure, and right ventrolateral and medial prefrontal lesions with target detection failure. Results from this study show how left and right prefrontal areas, which previous research has linked to response inhibition, underlie broader cognitive control processes, particularly involved in response selection and target detection. Based on these findings, we suggest that successful inhibitory control relies on more than one functionally distinct process which, if assessed appropriately, might help us to better understand inhibitory impairments across different pathologies. Copyright © 2017 The Authors

  18. Effect of Sex Differences on Brain Mitochondrial Function and Its Suppression by Ovariectomy and in Aged Mice.

    Science.gov (United States)

    Gaignard, Pauline; Savouroux, Stéphane; Liere, Philippe; Pianos, Antoine; Thérond, Patrice; Schumacher, Michael; Slama, Abdelhamid; Guennoun, Rachida

    2015-08-01

    Sex steroids regulate brain function in both normal and pathological states. Mitochondria are an essential target of steroids, as demonstrated by the experimental administration of 17β-estradiol or progesterone (PROG) to ovariectomized female rodents, but the influence of endogenous sex steroids remains understudied. To address this issue, mitochondrial oxidative stress, the oxidative phosphorylation system, and brain steroid levels were analyzed under 3 different experimental sets of endocrine conditions. The first set was designed to study steroid-mediated sex differences in young male and female mice, intact and after gonadectomy. The second set concerned young female mice at 3 time points of the estrous cycle in order to analyze the influence of transient variations in steroid levels. The third set involved the evaluation of the effects of a permanent decrease in gonadal steroids in aged male and female mice. Our results show that young adult females have lower oxidative stress and a higher reduced nicotinamide adenine dinucleotide (NADH)-linked respiration rate, which is related to a higher pyruvate dehydrogenase complex activity as compared with young adult males. This sex difference did not depend on phases of the estrous cycle, was suppressed by ovariectomy but not by orchidectomy, and no longer existed in aged mice. Concomitant analysis of brain steroids showed that pregnenolone and PROG brain levels were higher in females during the reproductive period than in males and decreased with aging in females. These findings suggest that the major male/female differences in brain pregnenolone and PROG levels may contribute to the sex differences observed in brain mitochondrial function.

  19. Blocking the chaperone kinome pathway: Mechanistic insights into a novel dual inhibition approach for supra-additive suppression of malignant tumors

    Energy Technology Data Exchange (ETDEWEB)

    Grover, Abhinav [Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016 (India); Shandilya, Ashutosh [Supercomputing Facility for Bioinformatics and Computational Biology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016 (India); Agrawal, Vibhuti; Pratik, Piyush; Bhasme, Divya; Bisaria, Virendra S. [Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016 (India); Sundar, Durai, E-mail: sundar@dbeb.iitd.ac.in [Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016 (India)

    2011-01-07

    Research highlights: {yields} Withaferin A and 17-DMAG synergistically inhibit the Hsp90-Cdc37 chaperone pair. {yields} Binding of WA to Cdc37 cleft suppresses its kinase binding activity. {yields} 17-DMAG binding to the association complex results in H-bonds with 60% clustering. {yields} The ligands' bound complex was found structurally and thermodynamically stable. -- Abstract: The chaperone Hsp90 is involved in regulating the stability and activation state of more than 200 'client' proteins and takes part in the cancer diseased states. The major clientele-protein kinases depend on Hsp90 for their proper folding and functioning. Cdc37, a kinase targeting co-chaperone of Hsp90, mediates the interactions between Hsp90 and protein kinases. Targeting of Cdc37 has the prospect of delivering predominantly kinase-selective molecular responses as compared to the current pharmacologic Hsp90 inhibitors. The present work reports a bio-computational study carried out with the aim of exploring the dual inhibition of Hsp90/Cdc37 chaperone/co-chaperone association complex by the naturally occurring drug candidates withaferin A and 17-DMAG along with their possible modes of action. Our molecular docking studies reveal that withaferin A in combination with 17-DMAG can act as potent chaperone system inhibitors. The structural and thermodynamic stability of the ligands' bound complex was also observed from molecular dynamics simulations in water. Our results suggest a novel tumor suppressive action mechanism of herbal ligands which can be looked forward for further clinical investigations for possible anticancer drug formulations.

  20. Therapeutic effects of a novel tylophorine analog, NK-007, on collagen-induced arthritis through suppressing tumor necrosis factor α production and Th17 cell differentiation.

    Science.gov (United States)

    Wen, Ti; Li, Yangguang; Wu, Meng; Sun, Xiaolin; Bao, Xiucong; Lin, Yuquan; Hao, Jianlei; Han, Lin; Cao, Guangchao; Wang, Ziwen; Liu, Yuxiu; Wu, Zhenzhou; Hong, Zhangyong; Wang, Puyue; Zhao, Liqing; Li, Zhanguo; Wang, Qingmin; Yin, Zhinan

    2012-09-01

    To analyze the effects of a novel compound, NK-007, on the prevention and treatment of collagen-induced arthritis (CIA) and the underlying mechanisms. We determined the effect of NK-007 on lipopolysaccharide (LPS)-triggered tumor necrosis factor α (TNFα) production by murine splenocytes and a macrophage cell line (RAW 264.7) by enzyme-linked immunosorbent assay, intracellular cytokine staining, and Western blotting. The LPS-boosted CIA model was adopted, and NK-007 or vehicle was administered at different time points after immunization. Mice were monitored for clinical severity of arthritis, and joint tissues were used for histologic examination, cytokine detection, and immunohistochemical staining. Finally, stability of TNFα production and Th17 cell differentiation were studied using quantitative polymerase chain reaction and flow cytometry. NK-007 significantly suppressed LPS-induced TNFα production in vitro. Administration of NK-007 completely blocked CIA development and delayed its progression. Furthermore, treatment with NK-007 at the onset of arthritis significantly inhibited the progress of joint inflammation. Administration of NK-007 also suppressed production of TNFα, interleukin-6 (IL-6), and IL-17A in the joint and reduced percentages of IL-17+ cells among CD4+ and γ/δ T cells in draining lymph nodes. We further demonstrated that NK-007 acted on the stability of TNFα messenger RNA and reduced Th17 cell differentiation. In addition, it significantly inhibited levels of IL-6 and IL-17A in human coculture assay. For its effects on the development and progression of CIA and for its therapeutic effect on CIA, NK-007 has great potential to be a therapeutic agent for human rheumatoid arthritis. Copyright © 2012 by the American College of Rheumatology.

  1. COX-2 inhibition is neither necessary nor sufficient for celecoxib to suppress tumor cell proliferation and focus formation in vitro

    Directory of Open Access Journals (Sweden)

    Petasis Nicos A

    2008-05-01

    Full Text Available Abstract Background An increasing number of reports is challenging the notion that the antitumor potential of the selective COX-2 inhibitor celecoxib (Celebrex® is mediated primarily via the inhibition of COX-2. We have investigated this issue by applying two different analogs of celecoxib that differentially display COX-2-inhibitory activity: the first analog, called unmethylated celecoxib (UMC, inhibits COX-2 slightly more potently than its parental compound, whereas the second analog, 2,5-dimethyl-celecoxib (DMC, has lost the ability to inhibit COX-2. Results With the use of glioblastoma and pancreatic carcinoma cell lines, we comparatively analyzed the effects of celecoxib, UMC, and DMC in various short-term (≤48 hours cellular and molecular studies, as well as in long-term (≤3 months focus formation assays. We found that DMC exhibited the most potent antitumor activity; celecoxib was somewhat less effective, and UMC clearly displayed the overall weakest antitumor potential in all aspects. The differential growth-inhibitory and apoptosis-stimulatory potency of these compounds in short-term assays did not at all correlate with their capacity to inhibit COX-2, but was closely aligned with their ability to trigger endoplasmic reticulum stress (ERS, as indicated by the induction of the ERS marker CHOP/GADD153 and activation of the ERS-associated caspase 7. In addition, we found that these compounds were able to restore contact inhibition and block focus formation during long-term, chronic drug exposure of tumor cells, and this was achieved at sub-toxic concentrations in the absence of ERS or inhibition of COX-2. Conclusion The antitumor activity of celecoxib in vitro did not involve the inhibition of COX-2. Rather, the drug's ability to trigger ERS, a known effector of cell death, might provide an alternative explanation for its acute cytotoxicity. In addition, the newly discovered ability of this drug to restore contact inhibition and

  2. MicroRNA-200a-3p suppresses tumor proliferation and induces apoptosis by targeting SPAG9 in renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinsheng; Jiang, Fuquan; Song, Haitao; Li, Xu; Xian, Jiantao; Gu, Xinquan, E-mail: guxqprofessor@163.com

    2016-02-12

    Sperm-associated antigen 9(SPAG9), as a well-recognized oncogene protein, has a critical effect on renal cell carcinoma (RCC) progression. Our study tried to explore the mediator of miR-200a-3p, a tumor suppressing miRNA on SPAG9 expression and renal cell proliferation and apoptosis. We found the expression of miR-200a-3p was significantly lower in RCC specimens. Based on in vitro assays, we found miR-200a-3p significantly inhibit cancer cell proliferation by inducing apoptosis. In addition, our study uncovered that miR-200a-3p directly regulates oncogenic SPAG9 in 786-O and ACHN cells. Silencing of SPAG9 resulted in significantly decreased in the growth and the cell cycle of the renal cancer cell lines. Understanding of oncogenic SPAG9 regulated by miR-200a-3p might be beneficial to reveal new therapeutic targets for RCC. - Highlights: • MiR-200a-3p is downregulated in renal cell carcinoma. • MiR-200a-3p regulates cell proliferation through inducing apoptosis. • MiR-200a-3p is involved in cell cycle regulation. • SPAG9 is a potential target of miR-200a-3p.

  3. Docosahexaenoic Acid Inhibits Tumor Promoter-Induced Urokinase-Type Plasminogen Activator Receptor by Suppressing PKCδ- and MAPKs-Mediated Pathways in ECV304 Human Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Sen Lian

    Full Text Available The overexpression of urokinase-type plasminogen activator receptor (uPAR is associated with inflammation and virtually all human cancers. Despite the fact that docosahexaenoic acid (DHA has been reported to possess anti-inflammatory and anti-tumor properties, the negative regulation of uPAR by DHA is still undefined. Here, we investigated the effect of DHA on 12-O-tetradecanoylphorbol-13-acetate (TPA-induced uPAR expression and the underlying molecular mechanisms in ECV304 human endothelial cells. DHA concentration-dependently inhibited TPA-induced uPAR. Specific inhibitors and mutagenesis studies showed that PKCδ, JNK1/2, Erk1/2, NF-κB, and AP-1 were critical for TPA-induced uPAR expression. Application of DHA suppressed TPA-induced translocation of PKCδ, activation of the JNK1/2 and Erk1/2 signaling pathways, and subsequent AP-1 and NF-κB transactivation. In conclusion, these observations suggest a novel role for DHA in reducing uPAR expression and cell invasion by inhibition of PKCδ, JNK1/2, and Erk1/2, and the reduction of AP-1 and NF-κB activation in ECV304 human endothelial cells.

  4. Synergistic actions of blocking angiopoietin-2 and tumor necrosis factor-α in suppressing remodeling of blood vessels and lymphatics in airway inflammation.

    Science.gov (United States)

    Le, Catherine T K; Laidlaw, Grace; Morehouse, Christopher A; Naiman, Brian; Brohawn, Philip; Mustelin, Tomas; Connor, Jane R; McDonald, Donald M

    2015-11-01

    Remodeling of blood vessels and lymphatics are prominent features of sustained inflammation. Angiopoietin-2 (Ang2)/Tie2 receptor signaling and tumor necrosis factor-α (TNF)/TNF receptor signaling are known to contribute to these changes in airway inflammation after Mycoplasma pulmonis infection in mice. We determined whether Ang2 and TNF are both essential for the remodeling on blood vessels and lymphatics, and thereby influence the actions of one another. Their respective contributions to the initial stage of vascular remodeling and sprouting lymphangiogenesis were examined by comparing the effects of function-blocking antibodies to Ang2 or TNF, given individually or together during the first week after infection. As indices of efficacy, vascular enlargement, endothelial leakiness, venular marker expression, pericyte changes, and lymphatic vessel sprouting were assessed. Inhibition of Ang2 or TNF alone reduced the remodeling of blood vessels and lymphatics, but inhibition of both together completely prevented these changes. Genome-wide analysis of changes in gene expression revealed synergistic actions of the antibody combination over a broad range of genes and signaling pathways involved in inflammatory responses. These findings demonstrate that Ang2 and TNF are essential and synergistic drivers of remodeling of blood vessels and lymphatics during the initial stage of inflammation after infection. Inhibition of Ang2 and TNF together results in widespread suppression of the inflammatory response. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Minichromosome maintenance helicase paralog MCM9 is dispensible for DNA replication but functions in germ-line stem cells and tumor suppression.

    Science.gov (United States)

    Hartford, Suzanne A; Luo, Yunhai; Southard, Teresa L; Min, Irene M; Lis, John T; Schimenti, John C

    2011-10-25

    Effective DNA replication is critical to the health and reproductive success of organisms. The six MCM2-7 proteins, which form the replicative helicase, are essential for high-fidelity replication of the genome. Many eukaryotes have a divergent paralog, MCM9, that was reported to be essential for loading MCM2-7 onto replication origins in the Xenopus oocyte extract system. To address the in vivo role of mammalian MCM9, we created and analyzed the phenotypes of mice with various mutations in Mcm9 and an intronic DNA replication-related gene Asf1a. Ablation of Mcm9 was compatible with cell proliferation and mouse viability, showing that it is nonessential for MCM2-7 loading or DNA replication. Mcm9 mutants underwent p53-independent embryonic germ-cell depletion in both sexes, with males also exhibiting defective spermatogonial stem-cell renewal. MCM9-deficient cells had elevated genomic instability and defective cell cycle reentry following replication stress, and mutant animals were prone to sex-specific cancers, most notably hepatocellular carcinoma in males. The phenotypes of mutant mice and cells suggest that MCM9 evolved a specialized but nonessential role in DNA replication or replication-linked quality-control mechanisms that are especially important for germ-line stem cells, and also for tumor suppression and genome maintenance in the soma.

  6. Use of Aromatase Inhibitors in Large Cell Calcifying Sertoli Cell Tumors: Effects on Gynecomastia, Growth Velocity, and Bone Age

    Science.gov (United States)

    Crocker, Melissa K.; Gourgari, Evgenia; Stratakis, Constantine A.

    2014-01-01

    Context: Large cell calcifying Sertoli cell tumors (LCCSCT) present in isolation or, especially in children, in association with Carney Complex (CNC) or Peutz-Jeghers Syndrome (PJS). These tumors overexpress aromatase (CYP19A1), which leads to increased conversion of delta-4-androstenedione to estrone and testosterone to estradiol. Prepubertal boys may present with growth acceleration, advanced bone age, and gynecomastia. Objective: To investigate the outcomes of aromatase inhibitor therapy (AIT) in prepubertal boys with LCCSCTs. Design: Case series of a very rare tumor and chart review of cases treated at other institutions. Setting: Tertiary care and referral center. Patients: Six boys, five with PJS and one with CNC, were referred to the National Institutes of Health for treatment of LCCSCT. All patients had gynecomastia, testicular enlargement, and advanced bone ages, and were being treated by their referring physicians with AIT. Interventions: Patients were treated for a total of 6–60 months on AIT. Main Outcome Measures: Height, breast tissue mass, and testicular size were all followed; physical examination, scrotal ultrasounds, and bone ages were obtained, and hormonal concentrations and tumor markers were measured. Results: Tumor markers were negative. All patients had decreases in breast tissue while on therapy. Height percentiles declined, and predicted adult height moved closer to midparental height as bone age advancement slowed. Testicular enlargement stabilized until entry into central puberty. Only one patient required unilateral orchiectomy. Conclusions: Patients with LCCSCT benefit from AIT with reduction and/or elimination of gynecomastia and slowing of linear growth and bone age advancement. Further study of long-term outcomes and safety monitoring are needed but these preliminary data suggest that mammoplasty and/or orchiectomy may be foregone in light of the availability of medical therapy. PMID:25226294

  7. Tumor immunology

    International Nuclear Information System (INIS)

    Otter, W. den

    1987-01-01

    Tumor immunology, the use of immunological techniques for tumor diagnosis and approaches to immunotherapy of cancer are topics covered in this multi-author volume. Part A, 'Tumor Immunology', deals with present views on tumor-associated antigens, the initiation of immune reactions of tumor cells, effector cell killing, tumor cells and suppression of antitumor immunity, and one chapter dealing with the application of mathematical models in tumor immunology. Part B, 'Tumor Diagnosis and Imaging', concerns the use of markers to locate the tumor in vivo, for the histological diagnosis, and for the monitoring of tumor growth. In Part C, 'Immunotherapy', various experimental approaches to immunotherapy are described, such as the use of monoclonal antibodies to target drugs, the use of interleukin-2 and the use of drugs inhibiting suppression. In the final section, the evaluation, a pathologist and a clinician evaluate the possibilities and limitations of tumor immunology and the extent to which it is useful for diagnosis and therapy. refs.; figs.; tabs

  8. Is an absolute level of cortical beta suppression required for proper movement? Magnetoencephalographic evidence from healthy aging.

    Science.gov (United States)

    Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2016-07-01

    Previous research has connected a specific pattern of beta oscillatory activity to proper motor execution, but no study to date has directly examined how resting beta levels affect motor-related beta oscillatory activity in the motor cortex. Understanding this relationship is imperative to determining the basic mechanisms of motor control, as well as the impact of pathological beta oscillations on movement execution. In the current study, we used magnetoencephalography (MEG) and a complex movement paradigm to quantify resting beta activity and movement-related beta oscillations in the context of healthy aging. We chose healthy aging as a model because preliminary evidence suggests that beta activity is elevated in older adults, and thus by examining older and younger adults we were able to naturally vary resting beta levels. To this end, healthy younger and older participants were recorded during motor performance and at rest. Using beamforming, we imaged the peri-movement beta event-related desynchronization (ERD) and extracted virtual sensors from the peak voxels, which enabled absolute and relative beta power to be assessed. Interestingly, absolute beta power during the pre-movement baseline was much stronger in older relative to younger adults, and older adults also exhibited proportionally large beta desynchronization (ERD) responses during motor planning and execution compared to younger adults. Crucially, we found a significant relationship between spontaneous (resting) beta power and beta ERD magnitude in both primary motor cortices, above and beyond the effects of age. A similar link was found between beta ERD magnitude and movement duration. These findings suggest a direct linkage between beta reduction during movement and spontaneous activity in the motor cortex, such that as spontaneous beta power increases, a greater reduction in beta activity is required to execute movement. We propose that, on an individual level, the primary motor cortices have an

  9. Age- and Tumor Subtype-Specific Breast Cancer Risk Estimates for CHEK2*1100delC Carriers

    DEFF Research Database (Denmark)

    Schmidt, Marjanka K; Hogervorst, Frans; van Hien, Richard R

    2016-01-01

    PURPOSE: CHEK2*1100delC is a well-established breast cancer risk variant that is most prevalent in European populations; however, there are limited data on risk of breast cancer by age and tumor subtype, which limits its usefulness in breast cancer risk prediction. We aimed to generate tumor...... subtype- and age-specific risk estimates by using data from the Breast Cancer Association Consortium, including 44,777 patients with breast cancer and 42,997 controls from 33 studies genotyped for CHEK2*1100delC. PATIENTS AND METHODS: CHEK2*1100delC genotyping was mostly done by a custom Taqman assay....... Breast cancer odds ratios (ORs) for CHEK2*1100delC carriers versus noncarriers were estimated by using logistic regression and adjusted for study (categorical) and age. Main analyses included patients with invasive breast cancer from population- and hospital-based studies. RESULTS: Proportions...

  10. Molecular inimitability amongst tumors: implications for precision cancer medicine in the age of personalized oncology.

    Science.gov (United States)

    Patel, Sandip P; Schwaederle, Maria; Daniels, Gregory A; Fanta, Paul T; Schwab, Richard B; Shimabukuro, Kelly A; Kesari, Santosh; Piccioni, David E; Bazhenova, Lyudmila A; Helsten, Teresa L; Lippman, Scott M; Parker, Barbara A; Kurzrock, Razelle

    2015-10-20

    Tumor sequencing has revolutionized oncology, allowing for detailed interrogation of the molecular underpinnings of cancer at an individual level. With this additional insight, it is increasingly apparent that not only do tumors vary within a sample (tumor heterogeneity), but also that each patient's individual tumor is a constellation of unique molecular aberrations that will require an equally unique personalized therapeutic regimen. We report here the results of 439 patients who underwent Clinical Laboratory Improvement Amendment (CLIA)-certified next generation sequencing (NGS) across histologies. Among these patients, 98.4% had a unique molecular profile, and aside from three primary brain tumor patients with a single genetic lesion (IDH1 R132H), no two patients within a given histology were molecularly identical. Additionally, two sets of patients had identical profiles consisting of two mutations in common and no other anomalies. However, these profiles did not segregate by histology (lung adenocarcinoma-appendiceal cancer (KRAS G12D and GNAS R201C), and lung adenocarcinoma-liposarcoma (CDK4 and MDM2 amplification pairs)). These findings suggest that most advanced tumors are molecular singletons within and between histologies, and that tumors that differ in histology may still nonetheless exhibit identical molecular portraits, albeit rarely.

  11. State of cellular and humoral immune system in women of reproductive age with tumor-like ovary formations

    Directory of Open Access Journals (Sweden)

    O. S. Shapoval

    2014-12-01

    Full Text Available Aim. Violations occurring in the immune system in women with ovary tumor-like formations are one of the most important factors in the pathogenesis and development of the disease. In order to study features of immune disorders in 105 women of reproductive age with tumor-like ovary formations determination of cellular and humoral immunity indices was carried out. Methods and results. Variants of immunological reactivity in women with tumor-like ovary formations with different possibilities of reproductive function implementing were established. Conclusion. This indicates that the identification of one of the variants of immunological reactivity disorder in the precurative stage is one of the components of the effective prescribed therapy necessary to select the appropriate tactics of medical correction of homeostasis.

  12. Proton irradiation augments the reduction in tumor progression observed with advanced age

    Data.gov (United States)

    National Aeronautics and Space Administration — Proton irradiation is touted for its improved tumor targeting due to the physical advantages of ion beams for radiotherapy. Recent studies from our laboratory have...

  13. Lebein, a snake venom disintegrin, suppresses human colon cancer cells proliferation and tumor-induced angiogenesis through cell cycle arrest, apoptosis induction and inhibition of VEGF expression.

    Science.gov (United States)

    Zakraoui, Ons; Marcinkiewicz, Cezary; Aloui, Zohra; Othman, Houcemeddine; Grépin, Renaud; Haoues, Meriam; Essafi, Makram; Srairi-Abid, Najet; Gasmi, Ammar; Karoui, Habib; Pagès, Gilles; Essafi-Benkhadir, Khadija

    2017-01-01

    Lebein, is an heterodimeric disintegrin isolated from Macrovipera lebetina snake venom that was previously characterized as an inhibitor of ADP-induced platelet aggregation. In this study, we investigated the effect of Lebein on the p53-dependent growth of human colon adenocarcinoma cell lines. We found that Lebein significantly inhibited LS174 (p53wt), HCT116 (p53wt), and HT29 (p53mut) colon cancer cell viability by inducing cell cycle arrest through the modulation of expression levels of the tumor suppression factor p53, cell cycle regulating proteins cyclin D1, CDK2, CDK4, retinoblastoma (Rb), CDK1, and cyclin-dependent kinase inhibitors p21 and p27. Interestingly, Lebein-induced apoptosis of colon cancer cells was dependent on their p53 status. Thus, in LS174 cells, cell death was associated with PARP cleavage and the activation of caspases 3 and 8 while in HCT116 cells, Lebein induced caspase-independent apoptosis through increased expression of apoptosis inducing factor (AIF). In LS174 cells, Lebein triggers the activation of the MAPK ERK1/2 pathway through induction of reactive oxygen species (ROS). It also decreased cell adhesion and migration to fibronectin through down regulation of α5β1 integrin. Moreover, Lebein significantly reduced the expression of two angiogenesis stimulators, Vascular Endothelial Growth Factor (VEGF) and Neuropilin 1 (NRP1). It inhibited the VEGF-induced neovascularization process in the quail embryonic CAM system and blocked the development of human colon adenocarcinoma in nude mice. Overall, our work indicates that Lebein may be useful to design a new therapy against colon cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Age-Associated Methylation Suppresses SPRY1, Leading to a Failure of Re-quiescence and Loss of the Reserve Stem Cell Pool in Elderly Muscle

    Directory of Open Access Journals (Sweden)

    Anne Bigot

    2015-11-01

    Full Text Available The molecular mechanisms by which aging affects stem cell number and function are poorly understood. Murine data have implicated cellular senescence in the loss of muscle stem cells with aging. Here, using human cells and by carrying out experiments within a strictly pre-senescent division count, we demonstrate an impaired capacity for stem cell self-renewal in elderly muscle. We link aging to an increased methylation of the SPRY1 gene, a known regulator of muscle stem cell quiescence. Replenishment of the reserve cell pool was modulated experimentally by demethylation or siRNA knockdown of SPRY1. We propose that suppression of SPRY1 by age-associated methylation in humans inhibits the replenishment of the muscle stem cell pool, contributing to a decreased regenerative response in old age. We further show that aging does not affect muscle stem cell senescence in humans.

  15. Recent results on anomalous J/psi suppression in Pb-Pb collisions at 158 AGeV/c

    CERN Document Server

    Santos, Helena; Alexa, C.; Arnaldi, R.; Atayan, M.; Baglin, C.; Baldit, A.; Bedjidian, M.; Beole, S.; Boldea, V.; Bordalo, P.; Borenstein, S.R.; Borges, G.; Bussiere, A.; Capelli, L.; Castanier, C.; Castor, J.; Chaurand, B.; Cheynis, B.; Chiavassa, E.; Cicalo, C.; Claudino, T.; Comets, M.P.; Constantinescu, S.; Cortese, P.; Cruz, J.; De Falco, A.; De Marco, N.; Dellacasa, G.; Devaux, A.; Dita, S.; Drapier, O.; Espagnon, B.; Fargeix, J.; Force, P.; Gallio, M.; Gavrilov, Y.K.; Gerschel, C.; Giubellino, P.; Golubeva, M.B.; Gonin, M.; Grigorian, A.A.; Grigorian, S.; Grossiord, J.Y.; Guber, F.F.; Guichard, A.; Gulkanyan, H.; Hakobyan, R.; Haroutunian, R.; Idzik, M.; Jouan, D.; Karavitcheva, T.L.; Kluberg, L.; Kurepin, A.B.; Le Bornec, Y.; Lourenco, C.; Macciotta, P.; Cormick, M.Mac; Marzari-Chiesa, A.; Masera, M.; Masoni, A.; Monteno, M.; Musso, A.; Petiau, P.; Piccotti, A.; Pizzi, J.R.; Prado da Silva, W.L.; Prino, F.; Puddu, G.; Quintans, C.; Ramello, L.; Ramos, S.; Rato Mendes, P.; Riccati, L.; Romana, A.; Saturnini, P.; Scalas, E.; Scomparin, E.; Serci, S.; Shahoyan, R.; Sigaudo, F.; Sitta, M.; Sonderegger, P.; Tarrago, X.; Topilskaya, N.S.; Usai, G.L.; Vercellin, E.; Villatte, L.; Willis, N.; Wu, T.

    2002-01-01

    We report our latest results on charmonium suppression as measured at the CERN-SPS in Pb-Pb interactions at an incident beam momentum of 158 GeV/c per nucleon. Preliminary results obtained from the most recent sample of data collected in year 2000 under improved experimental conditions are compared with published results. For the most peripheral Pb-Pb collisions, J/psi suppression agrees with the normal absorption measured from interactions of lighter nuclei while a steady increasing abnormal supression is observed with increasing centrality.

  16. Activation of α7nAChR Promotes Diabetic Wound Healing by Suppressing AGE-Induced TNF-α Production.

    Science.gov (United States)

    Dong, Miao-Wu; Li, Ming; Chen, Jie; Fu, Tong-Tong; Lin, Ke-Zhi; Ye, Guang-Hua; Han, Jun-Ge; Feng, Xiang-Ping; Li, Xing-Biao; Yu, Lin-Sheng; Fan, Yan-Yan

    2016-04-01

    Diabetes frequently presents accumulation of advanced glycation end products (AGEs), which might induce excessive TNF-α production from macrophages to cause impaired wound healing. Recent studies have shown that activation of α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages efficiently suppressed TNF-α synthesis. The aim of this study was to investigate the accumulation of AGEs in the wounds and determine whether PNU282987, an α7nAChR agonist, can improve wound repair by inhibiting AGE-mediated TNF-α production in a streptozotocin (STZ)-induced diabetic mouse model. Animals were assigned into four groups: wounded control group, wounded diabetic group, wounded diabetic group treated intraperitoneally with PNU282987, or wounded diabetic group treated intraperitoneally with vehicle. Compared with the non-diabetic control mice, the diabetic mice exhibited delayed wound healing that was characterized by elevated accumulation of AGEs, increased TNF-α level and macrophage infiltration, and decreased fibroblast number and collagen deposition at the late stage of repair. Besides, macrophages of diabetic wounds showed expression of α7nAChR. During late repair, PNU282987 treatment of diabetic mice significantly reduced the level of TNF-α, accelerated wound healing, and elevated fibroblast number and collagen deposition. To investigate the cellular mechanism of these observations, RAW 264.7 cells, a macrophage cell line, were incubated with AGEs in the presence or absence of PNU282987. TNF-α production from AGE-stimulated macrophages was significantly decreased by PNU282987 in a dose-dependent manner. Furthermore, PNU282987 significantly inhibited AGE-induced nuclear factor-κB (NF-κB) activation and receptor for AGE (RAGE) expression. These results strongly suggest that activating α7nAChR can promote diabetic wound healing by suppressing AGE-induced TNF-α production, which may be closely associated with the blockage of NF-κB activation in macrophages.

  17. Acceleration of leukocytes' epigenetic age as an early tumor and sex-specific marker of breast and colorectal cancer.

    Science.gov (United States)

    Durso, Danielle Fernandes; Bacalini, Maria Giulia; Sala, Claudia; Pirazzini, Chiara; Marasco, Elena; Bonafé, Massimiliano; do Valle, Ítalo Faria; Gentilini, Davide; Castellani, Gastone; Faria, Ana Maria Caetano; Franceschi, Claudio; Garagnani, Paolo; Nardini, Christine

    2017-04-04

    Changes in blood epigenetic age have been associated with several pathological conditions and have recently been described to anticipate cancer development. In this work, we analyze a publicly available leukocytes methylation dataset to evaluate the relation between DNA methylation age and the prospective development of specific types of cancer. We calculated DNA methylation age acceleration using five state-of-the-art estimators (three multi-site: Horvath, Hannum, Weidner; and two CpG specific: ELOV2 and FHL2) in a cohort including 845 subjects from the EPIC-Italy project and we compared 424 samples that remained cancer-free over the approximately ten years of follow-up with 235 and 166 subjects who developed breast and colorectal cancer, respectively. We show that the epigenetic age estimated from blood DNA methylation data is statistically significantly associated to future breast and male colorectal cancer development. These results are corroborated by survival analysis that shows significant association between age acceleration and cancer incidence suggesting that the chance of developing age-related diseases may be predicted by circulating epigenetic markers, with a dependence upon tumor type, sex and age estimator. These are encouraging results towards the non-invasive and perspective usage of epigenetic biomarkers.

  18. The effect of intense intermittent training with and without taking vitamin E on mRNA expression of p53/PTEN tumor suppressing genes in prostate glands of male rats

    Directory of Open Access Journals (Sweden)

    Mohammad Esmaeil Afzalpour

    2016-11-01

    Full Text Available Physical activity and diet are the most important modifiable determinants of cancer risk. The objective of this study was to examine the effect of intense intermittent training with and without taking vitamin E on expression of p53 and PTEN tumor suppressing genes in the prostate gland of male rats. For this purpose, 50 Sprague-Dawley male rats were randomly assigned into 5 groups: [1] control (CON, n = 10, [2] sham (S, n = 10, [3] intense intermittent training (IIT, n = 10, [4] intense intermittent training + vitamin E (IIT + VE, n = 10, [5] vitamin E (VE, n = 10. Protocol of this study was implemented for 6 days per week for 6 weeks, with observing the overload principle on the motorized treadmill. After implementing training protocol, expression rate of p53 and PTEN genes reduced significantly (p<0.000, p<0.031, respectively. Taking vitamin E with intermittent training caused significant reduction in p53 expression (p<0.013, while it caused significant increase in expression of PTEN (p<0.035. These results showed that intense intermittent training reduces expression of p53 and PTEN tumor suppressing genes and taking supplementation vitamin E along with this type of training could cause different effects in expression of these tumor suppressor genes.

  19. S100A4-neutralizing antibody suppresses spontaneous tumor progression, pre-metastatic niche formation and alters T-cell polarization balance

    DEFF Research Database (Denmark)

    Grum-Schwensen, Birgitte; Klingelhöfer, Jörg; Beck, Mette

    2015-01-01

    , decreased vessel density and inhibition of metastases. CONCLUSION: The S100A4 blocking antibody (6B12) reduces tumor growth and metastasis in a model of spontaneous breast cancer. The 6B12 antibody treatment inhibits T cell accumulation at the primary and pre-metastatic tumor sites. The 6B12 antibody acts...

  20. Histological type and grade of breast cancer tumors by parity, age at birth, and time since birth: a register-based study in Norway

    International Nuclear Information System (INIS)

    Albrektsen, Grethe; Heuch, Ivar; Thoresen, Steinar Ø

    2010-01-01

    Some studies have indicated that reproductive factors affect the risk of histological types of breast cancer differently. The long-term protective effect of a childbirth is preceded by a short-term adverse effect. Few studies have examined whether tumors diagnosed shortly after birth have specific histological characteristics. In the present register-based study, comprising information for 22,867 Norwegian breast cancer cases (20-74 years), we examined whether histological type (9 categories) and grade of tumor (2 combined categories) differed by parity or age at first birth. Associations with time since birth were evaluated among 9709 women diagnosed before age 50 years. Chi-square tests were applied for comparing proportions, whereas odds ratios (each histological type vs. ductal, or grade 3-4 vs. grade 1-2) were estimated in polytomous and binary logistic regression analyses. Ductal tumors, the most common histological type, accounted for 81.4% of all cases, followed by lobular tumors (6.3%) and unspecified carcinomas (5.5%). Other subtypes accounted for 0.4%-1.5% of the cases each. For all histological types, the proportions differed significantly by age at diagnoses. The proportion of mucinous and tubular tumors decreased with increasing parity, whereas Paget disease and medullary tumors were most common in women of high parity. An increasing trend with increasing age at first birth was most pronounced for lobular tumors and unspecified carcinomas; an association in the opposite direction was seen in relation to medullary and tubular tumors. In age-adjusted analyses, only the proportions of unspecified carcinomas and lobular tumors decreased significantly with increasing time since first and last birth. However, ductal tumors, and malignant sarcomas, mainly phyllodes tumors, seemed to occur at higher frequency in women diagnosed <2 years after first childbirth. The proportions of medullary tumors and Paget disease were particularly high among women diagnosed 2

  1. Markers of epithelial-to-mesenchymal transition reflect tumor biology according to patient age and Gleason score in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Dorota Jędroszka

    Full Text Available Prostate carcinoma (PRAD is one of the most frequently diagnosed malignancies amongst men worldwide. It is well-known that androgen receptor (AR plays a pivotal role in a vast majority of prostate tumors. However, recent evidence emerged stating that estrogen receptors (ERs may also contribute to prostate tumor development. Moreover, progression and aggressiveness of prostate cancer may be associated with differential expression genes of epithelial-to-mesenchymal transition (EMT. Therefore we aimed to assess the significance of receptors status as well as EMT marker genes expression among PRAD patients in accordance to their age and Gleason score.We analyzed TCGA gene expression profiles of 497 prostate tumor samples according to 43 genes involved in EMT and 3 hormone receptor genes (AR, ESR1, ESR2 as well as clinical characteristic of cancer patients. Then patients were divided into four groups according to their age and 5 groups according to Gleason score. Next, we evaluated PRAD samples according to relationship between the set of variables in different combinations and compared differential expression in subsequent groups of patients. The analysis was applied using R packages: FactoMineR, gplots, RColorBrewer and NMF.MFA analysis resulted in distinct grouping of PRAD patients into four age categories according to expression level of AR, ESR1 and ESR2 with the most distinct group of age less than 50 years old. Further investigations indicated opposite expression profiles of EMT markers between different age groups as well as strong association of EMT gene expression with Gleason score. We found that depending on age of prostate cancer patients and Gleason score EMT genes with distinctly altered expression are: KRT18, KRT19, MUC1 and COL4A1, CTNNB1, SNAI2, ZEB1 and MMP3.Our major observation is that prostate cancer from patients under 50 years old compared to older ones has entirely different EMT gene expression profiles showing potentially

  2. Oral treatment with herbal formula B307 alleviates cardiac failure in aging R6/2 mice with Huntington’s disease via suppressing oxidative stress, inflammation, and apoptosis

    Directory of Open Access Journals (Sweden)

    Lin CL

    2015-07-01

    Full Text Available Ching-Lung Lin,1 Sheue-Er Wang,2 Chih-Hsiang Hsu,1 Shuenn-Jyi Sheu,3 Chung-Hsin Wu1 1Department of Life Science, National Taiwan Normal University, Taipei, 2Department of Pathological Inspection, Soeurs de Saint Paul de Chartres Medical Corporate Body, Taoyuan City, 3Brion Research Institute of Taiwan, New Taipei City, Taiwan Abstract: Cardiac failure is often observed in aging patients with Huntington’s disease (HD. However, conventional pharmacological treatments for cardiac failure in HD patients have rarely been studied. Chinese herbal medicines, especially combined herbal formulas, have been widely used to treat cardiac dysfunctions over the centuries. Thus, we assess whether oral treatment with herbal formula B307 can alleviate cardiac failure in transgenic mice with HD. After oral B307 or vehicle treatment for 2 weeks, cardiac function and cardiomyocytes in 12-week-old male R6/2 HD mice and their wild-type littermate controls (WT were examined and then compared via echocardiography, immunohistochemistry, and Western blotting. We found that cardiac performance in aging R6/2 HD mice had significantly deteriorated in comparison with their WT (P<0.01. Cardiac expressions of superoxide dismutase 2 (SOD2 and B-cell lymphoma 2 (Bcl-2 in aging R6/2 HD mice were significantly lower than their WT (P<0.01, but cardiac expressions of tumor necrosis factor alpha (TNF-α, neurotrophin-3 (3-NT, 4-hydroxynonenal (4-HNE, Bcl-2-associated X protein (Bax, calpain, caspase 12, caspase 9, and caspase 3 of aging R6/2 HD mice were significantly higher than their WT (P<0.05. Furthermore, we found that cardiac performance in aging R6/2 HD mice had significantly improved under oral B307 treatment (P<0.05. Cardiac expressions of SOD2 and Bcl-2 of aging R6/2 HD mice were significantly higher under oral B307 treatment (P<0.01, but cardiac expressions of TNF-α, 3-NT, 4-HNE, Bax, calpain, caspase 12, caspase 9, and caspase 3 of aging R6/2 HD mice were significantly

  3. Reduced miR-433 expression is associated with advanced stages and early relapse of colorectal cancer and restored miR-433 expression suppresses the migration, invasion and proliferation of tumor cells in vitro and in nude mice.

    Science.gov (United States)

    Zhang, Jian; Zhang, Lei; Zhang, Tong; Dong, Xin-Min; Zhu, Yu; Chen, Long-Hua

    2018-05-01

    The expression of microRNA (miR-433) is altered in various types of human cancer. The present study analyzed the prognostic and biological value of miR-433 expression in colorectal cancer using reverse transcription-quantitative polymerase chain reaction in 125 colorectal tissue specimens (including a test cohort of 40 cases of paired colorectal cancer and adjacent normal mucosae and a confirmation cohort of 85 cases of stage I-III colorectal cancer). In vitro and nude mouse xenograft experiments were subsequently used to assess the effects of miR-433 expression on the regulation of colorectal cancer cell proliferation, adhesion, migration, and invasion. The data indicated that miR-433 expression was significantly downregulated in colorectal cancer tissues in the test and confirmation patient cohorts and that low miR-433 expression was associated with advanced tumor stage and early relapse. Furthermore, the restoration of miR-433 expression was able to significantly inhibit the proliferation of tumor cells by inducing G1-S cell cycle arrest, suppressing cyclinD1 and CDK4 expression, and markedly inhibited the migratory and invasive capacities of tumor cells in vitro . The restoration of miR-433 expression or liposome-based delivery of miR-433 mimics suppressed the growth of colorectal cancer cell xenografts in nude mice. In conclusion, miR-433 may be a putative tumor suppressor in colorectal cancer, and the detection of low miR-433 expression will be investigated in further studies as a putative biomarker for the detection of early relapse in patients with colorectal cancer.

  4. Milk fat globule membrane supplementation with voluntary running exercise attenuates age-related motor dysfunction by suppressing neuromuscular junction abnormalities in mice.

    Science.gov (United States)

    Yano, Michiko; Minegishi, Yoshihiko; Sugita, Satoshi; Ota, Noriyasu

    2017-10-15

    Age-related loss of skeletal muscle mass and function attenuates physical performance, and maintaining fine muscle innervation is known to play an important role in its prevention. We had previously shown that consumption of milk fat globule membrane (MFGM) with habitual exercise improves the muscle mass and motor function in humans and mice. Improvement of neuromuscular junction (NMJ) was suggested as one of the mechanisms underlying these effects. In this study, we evaluated the effect of MFGM intake combined with voluntary running (MFGM-VR) on morphological changes of NMJ and motor function in aging mice. Seven months following the intervention, the MFGM-VR group showed a significantly improved motor coordination in the rotarod test and muscle force in the grip strength test compared with the control group at 13 and 14months of age, respectively. In 14-month old control mice, the extensor digitorum longus muscle showed increased abnormal NMJs, such as fragmentation and denervation, compared with 6-month old young mice. However, such age-related deteriorations of NMJs were significantly suppressed in the MFGM-VR group. Increase in the expression of NMJ formation-related genes, such as agrin and LDL Receptor Related Protein 4 (LRP4), might contribute to this beneficial effect. Rotarod performance and grip strength showed significant negative correlation with the status of denervation and fragmentation of NMJs. These results suggest that MFGM intake with voluntary running exercise effectively suppresses age-related morphological deterioration of NMJ, thus contributing to improvement of motor function. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Omega-3 Fatty Acids and a Novel Mammary Derived Growth Inhibitor Fatty Acid Binding Protein MRG in Suppression of Mammary Tumor

    National Research Council Canada - National Science Library

    Liu, Yiliang

    2001-01-01

    We have previously identified and characterized a novel tumor growth inhibitor and a fatty acid binding protein in human mammary gland and named it as Mammary derived growth inhibitor Related Gene MRG...

  6. Evidence for the molecular-scale origin of the suppression of physical ageing in confined polymer: fluorescence and dielectric spectroscopy studies of polymer-silica nanocomposites

    International Nuclear Information System (INIS)

    Priestley, Rodney D; Rittigstein, Perla; Broadbelt, Linda J; Fukao, Koji; Torkelson, John M

    2007-01-01

    Fluorescence spectroscopy was used to characterize the rate of physical ageing at room temperature in nanocomposites of silica (10-15 nm diameter) nanoparticles in poly(methyl methacrylate) (PMMA). The physical ageing rate was reduced by more than a factor of 20 in 0.4 vol% silica-PMMA nanocomposites relative to neat PMMA. The molecular-scale origin of this nearly complete arresting of physical ageing was investigated with dielectric spectroscopy. The strength of the β relaxation process was reduced by nearly 50% in the nanocomposite relative to neat PMMA. This reduced strength of the β process results from dipoles (ester groups) having hindered motions or being virtually immobile on the timescale being probed at a frequency of 100 Hz. This hindered mobility results from hydrogen bonding between PMMA ester side groups and hydroxyl units on the surface of the silica nanoparticles. In contrast, no reduction in physical ageing rate was observed upon addition of silica to polystyrene, which cannot form hydrogen bonds with the silica surfaces. Thus, the molecular origin of the suppressed physical ageing in silica-PMMA nanocomposites is the interfacial hydrogen bonding, which leads to a major reduction in the strength of the β process, i.e., the β process is largely responsible for the observed physical ageing

  7. Decrease in scale invariance of activity fluctuations with aging and in patients with suprasellar tumors

    DEFF Research Database (Denmark)

    Joustra, S. D.; Gu, C.; Rohling, J. H.T.

    2018-01-01

    -matched healthy controls (age range 21.0–70.6 years). Spontaneous wrist locomotor activity was measured for 7 days with actigraphy, and detrended fluctuation analysis was applied to assess correlations over a range of time scales from minutes to 24 h. For all the subjects, complex scale-invariant correlations...... scale invariance. Conversely, activity patterns at time scales between 10 and 24 h were significantly more regular than all other time scales, and this was mostly associated with age. In conclusion, scale invariance is degraded in healthy subjects at the ages of >33 year as characterized by attenuation......Motor activity in healthy young humans displays intrinsic fluctuations that are scale-invariant over a wide range of time scales (from minutes to hours). Human postmortem and animal lesion studies showed that the intact function of the suprachiasmatic nucleus (SCN) is required to maintain...

  8. Peptides Derived from Type IV Collagen, CXC Chemokines, and Thrombospondin-1 Domain-Containing Proteins Inhibit Neovascularization and Suppress Tumor Growth in MDA-MB-231 Breast Cancer Xenografts

    Directory of Open Access Journals (Sweden)

    Jacob E. Koskimaki

    2009-12-01

    Full Text Available Angiogenesis or neovascularization, the process of new blood vessel formation from preexisting microvasculature, involves interactions among several cell types including parenchymal, endothelial cells, and immune cells. The formation of new vessels is tightly regulated by a balance between endogenous proangiogenic and antiangiogenic factors to maintain homeostasis in tissue; tumor progression and metastasis in breast cancer have been shown to be angiogenesis-dependent. We previously introduced a systematic methodology to identify putative endogenous antiangiogenic peptides and validated these predictions in vitro in human umbilical vein endothelial cell proliferation and migration assays. These peptides are derived from several protein families including type IV collagen, CXC chemokines, and thrombospondin-1 domain-containing proteins. On the basis of the results from the in vitro screening, we have evaluated the ability of one peptide selected from each family named pentastatin-1, chemokinostatin-1, and properdistatin, respectively, to suppress angiogenesis in an MDA-MB-231 human breast cancer orthotopic xenograft model in severe combined immunodeficient mice. Peptides were administered intraperitoneally once per day. We have demonstrated significant suppression of tumor growth in vivo and subsequent reductions in microvascular density, indicating the potential of these peptides as therapeutic agents for breast cancer.

  9. Histological type and grade of breast cancer tumors by parity, age at birth, and time since birth: a register-based study in Norway

    Directory of Open Access Journals (Sweden)

    Heuch Ivar

    2010-05-01

    Full Text Available Abstract Background Some studies have indicated that reproductive factors affect the risk of histological types of breast cancer differently. The long-term protective effect of a childbirth is preceded by a short-term adverse effect. Few studies have examined whether tumors diagnosed shortly after birth have specific histological characteristics. Methods In the present register-based study, comprising information for 22,867 Norwegian breast cancer cases (20-74 years, we examined whether histological type (9 categories and grade of tumor (2 combined categories differed by parity or age at first birth. Associations with time since birth were evaluated among 9709 women diagnosed before age 50 years. Chi-square tests were applied for comparing proportions, whereas odds ratios (each histological type vs. ductal, or grade 3-4 vs. grade 1-2 were estimated in polytomous and binary logistic regression analyses. Results Ductal tumors, the most common histological type, accounted for 81.4% of all cases, followed by lobular tumors (6.3% and unspecified carcinomas (5.5%. Other subtypes accounted for 0.4%-1.5% of the cases each. For all histological types, the proportions differed significantly by age at diagnoses. The proportion of mucinous and tubular tumors decreased with increasing parity, whereas Paget disease and medullary tumors were most common in women of high parity. An increasing trend with increasing age at first birth was most pronounced for lobular tumors and unspecified carcinomas; an association in the opposite direction was seen in relation to medullary and tubular tumors. In age-adjusted analyses, only the proportions of unspecified carcinomas and lobular tumors decreased significantly with increasing time since first and last birth. However, ductal tumors, and malignant sarcomas, mainly phyllodes tumors, seemed to occur at higher frequency in women diagnosed Conclusion Our results support previous observations that reproductive factors

  10. Association between vestibulo-ocular reflex suppression, balance, gait, and fall risk in ageing and neurodegenerative disease: protocol of a one-year prospective follow-up study.

    Science.gov (United States)

    Srulijes, Karin; Mack, David J; Klenk, Jochen; Schwickert, Lars; Ihlen, Espen A F; Schwenk, Michael; Lindemann, Ulrich; Meyer, Miriam; Srijana, K C; Hobert, Markus A; Brockmann, Kathrin; Wurster, Isabel; Pomper, Jörn K; Synofzik, Matthis; Schneider, Erich; Ilg, Uwe; Berg, Daniela; Maetzler, Walter; Becker, Clemens

    2015-10-09

    Falls frequency increases with age and particularly in neurogeriatric cohorts. The interplay between eye movements and locomotion may contribute substantially to the occurrence of falls, but is hardly investigated. This paper provides an overview of current approaches to simultaneously measure eye and body movements, particularly for analyzing the association of vestibulo-ocular reflex (VOR) suppression, postural deficits and falls in neurogeriatric risk cohorts. Moreover, VOR suppression is measured during head-fixed target presentation and during gaze shifting while postural control is challenged. Using these approaches, we aim at identifying quantitative parameters of eye-head-coordination during postural balance and gait, as indicators of fall risk. Patients with Progressive Supranuclear Palsy (PSP) or Parkinson's disease (PD), age- and sex-matched healthy older adults, and a cohort of young healthy adults will be recruited. Baseline assessment will include a detailed clinical assessment, covering medical history, neurological examination, disease specific clinical rating scales, falls-related self-efficacy, activities of daily living, neuro-psychological screening, assessment of mobility function and a questionnaire for retrospective falls. Moreover, participants will simultaneously perform eye and head movements (fixating a head-fixed target vs. shifting gaze to light emitting diodes in order to quantify vestibulo-ocular reflex suppression ability) under different conditions (sitting, standing, or walking). An eye/head tracker synchronized with a 3-D motion analysis system will be used to quantify parameters related to eye-head-coordination, postural balance, and gait. Established outcome parameters related to VOR suppression ability (e.g., gain, saccadic reaction time, frequency of saccades) and motor related fall risk (e.g., step-time variability, postural sway) will be calculated. Falls will be assessed prospectively over 12 months via protocols and

  11. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer.

    Science.gov (United States)

    Teschendorff, Andrew E; Menon, Usha; Gentry-Maharaj, Aleksandra; Ramus, Susan J; Weisenberger, Daniel J; Shen, Hui; Campan, Mihaela; Noushmehr, Houtan; Bell, Christopher G; Maxwell, A Peter; Savage, David A; Mueller-Holzner, Elisabeth; Marth, Christian; Kocjan, Gabrijela; Gayther, Simon A; Jones, Allison; Beck, Stephan; Wagner, Wolfgang; Laird, Peter W; Jacobs, Ian J; Widschwendter, Martin

    2010-04-01

    Polycomb group proteins (PCGs) are involved in repression of genes that are required for stem cell differentiation. Recently, it was shown that promoters of PCG target genes (PCGTs) are 12-fold more likely to be methylated in cancer than non-PCGTs. Age is the most important demographic risk factor for cancer, and we hypothesized that its carcinogenic potential may be referred by irreversibly stabilizing stem cell features. To test this, we analyzed the methylation status of over 27,000 CpGs mapping to promoters of approximately 14,000 genes in whole blood samples from 261 postmenopausal women. We demonstrate that stem cell PCGTs are far more likely to become methylated with age than non-targets (odds ratio = 5.3 [3.8-7.4], P cancer solid tissues and a population of bone marrow mesenchymal stem/stromal cells (P < 10(-5)). We find that the age-PCGT methylation signature is present in preneoplastic conditions and may drive gene expression changes associated with carcinogenesis. These findings shed substantial novel insights into the epigenetic effects of aging and support the view that age may predispose to malignant transformation by irreversibly stabilizing stem cell features.

  12. Fibroblast growth factor 21 protects mouse brain against D-galactose induced aging via suppression of oxidative stress response and advanced glycation end products formation.

    Science.gov (United States)

    Yu, Yinhang; Bai, Fuliang; Wang, Wenfei; Liu, Yaonan; Yuan, Qingyan; Qu, Susu; Zhang, Tong; Tian, Guiyou; Li, Siming; Li, Deshan; Ren, Guiping

    2015-06-01

    Fibroblast growth factor 21 (FGF21) is a hormone secreted predominantly in the liver, pancreas and adipose tissue. Recently, it has been reported that FGF21-Transgenic mice can extend their lifespan compared with wild type counterparts. Thus, we hypothesize that FGF21 may play some roles in aging of organisms. In this study d-galactose (d-gal)-induced aging mice were used to study the mechanism that FGF21 protects mice from aging. The three-month-old Kunming mice were subcutaneously injected with d-gal (180mg·kg(-1)·d(-1)) for 8weeks and administered simultaneously with FGF21 (1, 2 or 5mg·kg(-1)·d(-1)). Our results showed that administration of FGF21 significantly improved behavioral performance of d-gal-treated mice in water maze task and step-down test, reduced brain cell damage in the hippocampus, and attenuated the d-gal-induced production of MDA, ROS and advanced glycation end products (AGEs). At the same time, FGF21 also markedly renewed the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and total anti-oxidation capability (T-AOC), and decreased the enhanced total cholinesterase (TChE) activity in the brain of d-gal-treated mice. The expression of aldose reductase (AR), sorbitol dehydrogenase (SDH) and member-anchored receptor for AGEs (RAGE) declined significantly after FGF21 treatment. Furthermore, FGF21 suppressed inflamm-aging by inhibiting IκBα degradation and NF-κB p65 nuclear translocation. The expression levels of pro-inflammatory cytokines, such as TNF-α and IL-6, decreased significantly. In conclusion, these results suggest that FGF21 protects the aging mice brain from d-gal-induced injury by attenuating oxidative stress damage and decreasing AGE formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Tumor suppression effects of bilberry extracts and enzymatically modified isoquercitrin in early preneoplastic liver cell lesions induced by piperonyl butoxide promotion in a two-stage rat hepatocarcinogenesis model.

    Science.gov (United States)

    Hara, Shintaro; Morita, Reiko; Ogawa, Takashi; Segawa, Risa; Takimoto, Norifumi; Suzuki, Kazuhiko; Hamadate, Naobumi; Hayashi, Shim-Mo; Odachi, Ayano; Ogiwara, Isao; Shibusawa, Sakae; Yoshida, Toshinori; Shibutani, Makoto

    2014-08-01

    To investigate the protective effect of bilberry extracts (BBE) and enzymatically modified isoquercitrin (EMIQ) on the hepatocarcinogenic process involving oxidative stress responses, we used a two-stage hepatocarcinogenesis model in N-diethylnitrosamine-initiated and piperonyl butoxide (PBO)-promoted rats. We examined the modifying effect of co-administration with BBE or EMIQ on the liver tissue environment including oxidative stress responses, cell proliferation and apoptosis, and phosphatase and tensin homolog (PTEN)/Akt and transforming growth factor (TGF)-β/Smad signalings on the induction mechanism of preneoplastic lesions during early stages of hepatocellular tumor promotion. PBO increased the numbers and area of glutathione S-transferase placental form (GST-P)(+) liver cell foci and the numbers of Ki-67(+) proliferating cells within GST-P(+) foci. Co-administration of BBE or EMIQ suppressed these effects with the reductions of GST-P(+) foci (area) to 48.9-49.4% and Ki-67(+) cells to 55.5-61.4% of the PBO-promoted cases. Neither BBE nor EMIQ decreased microsomal reactive oxygen species induced by PBO. However, only EMIQ suppressed the level of thiobarbituric acid-reactive substances to 78.4% of the PBO-promoted cases. PBO increased the incidences of phospho-PTEN(-) foci, phospho-Akt substrate(+) foci, phospho-Smad3(-) foci and Smad4(-) foci in GST-P(+) foci. Both BBE and EMIQ decreased the incidences of phospho-PTEN(-) foci in GST-P(+) foci to 59.8-72.2% and Smad4(-) foci to 62.4-71.5% of the PBO-promoted cases, and BBE also suppressed the incidence of phospho-Akt substrate(+) foci in GST-P(+) foci to 75.2-75.7% of the PBO-promoted cases. These results suggest that PBO-induced tumor promotion involves facilitation of PTEN/Akt and disruptive TGF-β/Smad signalings without relation to oxidative stress responses, but this promotion was suppressed by co-treatment with BBE or EMIQ through suppression of cell proliferation activity of preneoplastic liver cells

  14. Spinal tumors

    International Nuclear Information System (INIS)

    Goethem, J.W.M. van; Hauwe, L. van den; Oezsarlak, Oe.; Schepper, A.M.A. de; Parizel, P.M.

    2004-01-01

    Spinal tumors are uncommon lesions but may cause significant morbidity in terms of limb dysfunction. In establishing the differential diagnosis for a spinal lesion, location is the most important feature, but the clinical presentation and the patient's age and gender are also important. Magnetic resonance (MR) imaging plays a central role in the imaging of spinal tumors, easily allowing tumors to be classified as extradural, intradural-extramedullary or intramedullary, which is very useful in tumor characterization. In the evaluation of lesions of the osseous spine both computed tomography (CT) and MR are important. We describe the most common spinal tumors in detail. In general, extradural lesions are the most common with metastasis being the most frequent. Intradural tumors are rare, and the majority is extramedullary, with meningiomas and nerve sheath tumors being the most frequent. Intramedullary tumors are uncommon spinal tumors. Astrocytomas and ependymomas comprise the majority of the intramedullary tumors. The most important tumors are documented with appropriate high quality CT or MR images and the characteristics of these tumors are also summarized in a comprehensive table. Finally we illustrate the use of the new World Health Organization (WHO) classification of neoplasms affecting the central nervous system

  15. Age, tumor size, and in-office ultrasonography are predictive parameters of malignancy in follicular neoplasms of the thyroid.

    Science.gov (United States)

    Paramo, Juan C; Mesko, Thomas

    2008-01-01

    To identify clinical predictors of malignancy in patients with intraoperative frozen-section diagnosis of follicular neoplasm of the thyroid. We performed a retrospective cross-sectional study of 71 patients with intraoperative frozen-section diagnosis of follicular neoplasm who underwent thyroidectomy between January 1992 and December 2000. Age, sex, tumor size, and in-office ultrasonography characteristics of the lesions were assessed. These clinical factors were compared between cases that had benign definitive pathologic findings and those that were found to be carcinomas on permanent sections. Nine (13%) of the 71 follicular neoplasms were found to be carcinomas after definitive pathologic evaluation. The incidence of malignancy was 13% (2/16) in men and 13% (7/55) in women (P>.5). Patients younger than 45 years had a 27% (8/30) incidence of malignancy compared with 2% (1/41) in patients 45 years or older (P4 cm) tumors or if there are suspicious findings on in-office ultrasonography.

  16. Tandem high-dose chemotherapy and auto-SCT for malignant brain tumors in children under 3 years of age.

    Science.gov (United States)

    Sung, K W; Lim, D H; Lee, S H; Yoo, K H; Koo, H H; Kim, J H; Suh, Y-L; Joung, Y S; Shin, H J

    2013-07-01

    In an effort to improve survival and reduce late adverse effects of radiation therapy (RT), 25 children SCT following six cycles of induction chemotherapy. RT was either not given or deferred until 3 years of age if the patient was in CR after tandem HDCT/auto-SCT. Tumors relapsed or progressed in nine patients (five during induction treatment), and two of these patients survived after receiving salvage treatment, including RT. Two patients died due to toxicities during tandem HDCT/auto-SCT. A total of 16 patients survived to a median follow-up period of 52 months (range 18-96) from the time of diagnosis. Four of these patients did not receive RT, two received local RT (L-RT), three received craniospinal RT (CSRT), and seven received both L-RT and CSRT. The 5-year OS and EFS rates were 67.8±9.4% and 55.5±10.0%, respectively. Neuroendocrine and neurocognitive functions evaluated 3 years after tandem HDCT/auto-SCT were acceptable. Our results indicate that tandem HDCT/auto-SCT may improve survival in young children with malignant brain tumors with an acceptable level of risk of long-term toxicity.

  17. Age and Early Graft Function Relate With Risk-Benefit Ratio of Allogenic Islet Transplantation Under Antithymocyte Globulin-Mycophenolate Mofetil-Tacrolimus Immune Suppression.

    Science.gov (United States)

    Lee, DaHae; Keymeulen, Bart; Hilbrands, Robert; Ling, Zhidong; Van de Velde, Ursule; Jacobs-Tulleneers-Thevissen, Daniel; Maleux, Geert; Lapauw, Bruno; Crenier, Laurent; De Block, Christophe; Mathieu, Chantal; Pipeleers, Daniel; Gillard, Pieter

    2017-09-01

    Induction therapy with a T cell-depleting agent followed by mycophenolate mofetil and tacrolimus is presently the most frequently used immune suppression (IS) regimen in islet transplantation. This study assesses its safety and tolerability in nonuremic type 1 diabetic recipients. Fifty-one patients (age, between 29 and 63 years) with high glycemic variability and problematic hypoglycemia received intraportal islet grafts under anti-thymocyte globulin-mycophenolate mofetil-tacrolimus protocol. They were followed up for over 48 months for function of the implant and adverse events. Severe hypoglycemia and diabetic ketoacidosis were absent in patients with functioning graft. Immune suppressive therapy was maintained for 48 months in 29 recipients with sustained function (group A), whereas 16 patients stopped earlier due to graft failure (group B) and in 6 for other reasons. Group A was significantly older at the time of implantation and achieved higher graft function at posttransplantation month 6 under similar dose of IS. Prevalence of IS-related side effects was similar in groups A and B, occurring predominantly during the first year posttransplantation. IS-related serious adverse events (SAE) were reported in 47% of patients, with 4 presenting with cytomegalovirus infection and 4 (age, 42-59 years) diagnosed with cancer. Except in 1 patient with cancer, all SAEs resolved after appropriate treatment. These risk/benefit data serve as a basis for clinical decision-making before entering an intraportal islet transplantation protocol. A longer benefit is observed in recipients of higher age (≥40 years), but it is not associated with more side effects and SAE.

  18. The use of bone age for bone mineral density interpretation in a cohort of pediatric brain tumor patients

    International Nuclear Information System (INIS)

    Morris, E.B.; Shelso, John; Smeltzer, Matthew P.; Li, Chin-Shang; Thomas, Nicole A.; Karimova, E.J.; Merchant, Thomas; Gajjar, Amar; Kaste, Sue C.

    2008-01-01

    Skeletal bone accretion occurs throughout childhood. The integrity of this process can influence future adult bone health and the risk of osteoporosis. Although surveillance of children who are at risk of poor bone accretion is important, the most appropriate method to monitor childhood bone health has not been established. Previous investigators have proposed using bone age (BA) rather than chronological age (CA) when interpreting bone mineral density (BMD) values in children. To investigate the value of BA assessment for BMD measurement in a cohort of children at risk of poor accretion. A cohort of 163 children with brain tumors who completed both a BMD assessment (quantitative computed tomography, QCT) and who had a BA within a 6-month interval were identified. The difference in BMD Z-scores determined by CA and BA was determined. The impact of salient clinical features was assessed. No significant difference between CA and BA Z-scores was detected in the overall cohort (P 0.056). However, the scores in 18 children (all boys between the ages of 11 years and 15 years) were statistically determined to be outliers from the values in the rest of the cohort. Interpretation of BMD with BA measurement might be appropriate and affect treatment decisions in peripubertal males. (orig.)

  19. Abundant immunohistochemical expression of dopamine D{sub 2} receptor and p53 protein in meningiomas: follow-up, relation to gender, age, tumor grade, and recurrence

    Energy Technology Data Exchange (ETDEWEB)

    Trott, G.; Pereira-Lima, J.F.S.; Leães, C.G.S. [Programa de Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Centro de Neuroendocrinologia, Complexo Hospitalar Santa Casa de Porto Alegre, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Ferreira, N.P. [Centro de Neuroendocrinologia, Complexo Hospitalar Santa Casa de Porto Alegre, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Barbosa-Coutinho, L.M. [Programa de Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Oliveira, M.C. [Programa de Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Centro de Neuroendocrinologia, Complexo Hospitalar Santa Casa de Porto Alegre, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil)

    2015-03-03

    Meningiomas are common, usually benign tumors, with a high postoperative recurrence rate. However, the genesis and development of these tumors remain controversial. We aimed to investigate the presence and implications of a mutated p53 protein and dopamine D{sub 2} receptor in a representative series of meningiomas and to correlate these findings with age, gender, tumor grade, and recurrence. Tumor tissue samples of 157 patients diagnosed with meningioma (37 males and 120 females, mean age 53.6±14.3 years) who underwent surgical resection between 2003 and 2012 at our institution were immunohistochemically evaluated for the presence of p53 protein and dopamine D{sub 2} receptor and were followed-up to analyze tumor recurrence or regrowth. Tumors were classified as grades I (n=141, 89.8%), II (n=13, 8.3%), or grade III (n=3, 1.9%). Dopamine D{sub 2} receptor and p53 protein expression were positive in 93.6% and 49.7% of the cases, respectively. Neither of the markers showed significant expression differences among different tumor grades or recurrence or regrowth statuses. Our findings highlight the potential role of p53 protein in meningioma development and/or progression. The high positivity of dopamine D{sub 2} receptor observed in this study warrants further investigation of the therapeutic potential of dopamine agonists in the evolution of meningiomas.

  20. Abundant immunohistochemical expression of dopamine D2 receptor and p53 protein in meningiomas: follow-up, relation to gender, age, tumor grade, and recurrence

    International Nuclear Information System (INIS)

    Trott, G.; Pereira-Lima, J.F.S.; Leães, C.G.S.; Ferreira, N.P.; Barbosa-Coutinho, L.M.; Oliveira, M.C.

    2015-01-01

    Meningiomas are common, usually benign tumors, with a high postoperative recurrence rate. However, the genesis and development of these tumors remain controversial. We aimed to investigate the presence and implications of a mutated p53 protein and dopamine D 2 receptor in a representative series of meningiomas and to correlate these findings with age, gender, tumor grade, and recurrence. Tumor tissue samples of 157 patients diagnosed with meningioma (37 males and 120 females, mean age 53.6±14.3 years) who underwent surgical resection between 2003 and 2012 at our institution were immunohistochemically evaluated for the presence of p53 protein and dopamine D 2 receptor and were followed-up to analyze tumor recurrence or regrowth. Tumors were classified as grades I (n=141, 89.8%), II (n=13, 8.3%), or grade III (n=3, 1.9%). Dopamine D 2 receptor and p53 protein expression were positive in 93.6% and 49.7% of the cases, respectively. Neither of the markers showed significant expression differences among different tumor grades or recurrence or regrowth statuses. Our findings highlight the potential role of p53 protein in meningioma development and/or progression. The high positivity of dopamine D 2 receptor observed in this study warrants further investigation of the therapeutic potential of dopamine agonists in the evolution of meningiomas

  1. Ageing sensitized by iPLA2β deficiency induces liver fibrosis and intestinal atrophy involving suppression of homeostatic genes and alteration of intestinal lipids and bile acids.

    Science.gov (United States)

    Jiao, Li; Gan-Schreier, Hongying; Zhu, Xingya; Wei, Wang; Tuma-Kellner, Sabine; Liebisch, Gerhard; Stremmel, Wolfgang; Chamulitrat, Walee

    2017-12-01

    Ageing is a major risk factor for various forms of liver and gastrointestinal (GI) disease and genetic background may contribute to the pathogenesis of these diseases. Group VIA phospholipase A2 or iPLA 2 β is a homeostatic PLA 2 by playing a role in phospholipid metabolism and remodeling. Global iPLA 2 β -/- mice exhibit aged-dependent phenotypes with body weight loss and abnormalities in the bone and brain. We have previously reported the abnormalities in these mutant mice showing susceptibility for chemical-induced liver injury and colitis. We hypothesize that iPLA 2 β deficiency may sensitize with ageing for an induction of GI injury. Male wild-type and iPLA 2 β -/- mice at 4 and 20-22months of age were studied. Aged, but not young, iPLA 2 β -/- mice showed increased hepatic fibrosis and biliary ductular expansion as well as severe intestinal atrophy associated with increased apoptosis, pro-inflammation, disrupted tight junction, and reduced number of mucin-containing globlet cells. This damage was associated with decreased expression of intestinal endoplasmic stress XBP1 and its regulator HNF1α, FATP4, ACSL5, bile-acid transport genes as well as nuclear receptors LXRα and FXR. By LC/MS-MS profiling, iPLA 2 β deficiency in aged mice caused an increase of intestinal arachidonate-containing phospholipids concomitant with a decrease in ceramides. By the suppression of intestinal FXR/FGF-15 signaling, hepatic bile-acid synthesis gene expression was increased leading to an elevation of secondary and hydrophobic bile acids in liver, bile, and intestine. In conclusions, ageing sensitized by iPLA 2 β deficiency caused a decline of key intestinal homeostatic genes resulting in the development of GI disease in a gut-to-liver manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Salicylate-Induced Suppression of Electrically Driven Activity in Brain Slices from the Auditory Cortex of Aging Mice

    Directory of Open Access Journals (Sweden)

    Minoru Namikawa

    2017-12-01

    Full Text Available The prevalence of tinnitus is known to increase with age. The age-dependent mechanisms of tinnitus may have important implications for the development of new therapeutic treatments. High doses of salicylate can be used experimentally to induce transient tinnitus and hearing loss. Although accumulating evidence indicates that salicylate induces tinnitus by directly targeting neurons in the peripheral and central auditory systems, the precise effect of salicylate on neural networks in the auditory cortex (AC is unknown. Here, we examined salicylate-induced changes in stimulus-driven laminar responses of AC slices with salicylate superfusion in young and aged senescence-accelerated-prone (SAMP and -resistant (SAMR mice. Of the two strains, SAMP1 is known to be a more suitable model of presbycusis. We recorded stimulus-driven laminar local field potential (LFP responses at multi sites in AC slice preparations. We found that for all AC slices in the two strains, salicylate always reduced stimulus-driven LFP responses in all layers. However, for the amplitudes of the LFP responses, the two senescence-accelerated mice (SAM strains showed different laminar properties between the pre- and post-salicylate conditions, reflecting strain-related differences in local circuits. As for the relationships between auditory brainstem response (ABR thresholds and the LFP amplitude ratios in the pre- vs. post-salicylate condition, we found negative correlations in layers 2/3 and 4 for both older strains, and in layer 5 (L5 in older SAMR1. In contrast, the GABAergic agonist muscimol (MSC led to positive correlations between ABR thresholds and LFP amplitude ratios in the pre- vs. post-MSC condition in younger SAM mice from both strains. Further, in younger mice, salicylate decreased the firing rate in AC L4 pyramidal neurons. Thus, salicylate can directly reduce neural excitability of L4 pyramidal neurons and thereby influence AC neural circuit activity. That we

  3. Abberent expression of oncogenic and tumor-suppressive microRNAs and their target genes in human adenocarcinoma alveolar basal epithelial cells

    Directory of Open Access Journals (Sweden)

    Elham Tafsiri

    2016-01-01

    Conclusion: The significant differential expression level of these miRNAs made them as candidate biomarkers in NSCLC tumor tissues of patients. Perhaps Bcl-2 down-regulation and Akt-3 up-regulation can be linked with survival signals in A549 cell line. We can conclude that Bcl-2 and Akt-3 might be therapeutic targets to inhibit cell proliferation in NSCLC.

  4. Thymidine selectively enhances growth suppressive effects of camptothecin/irinotecan in MSI+ cells and tumors containing a mutation of MRE11

    DEFF Research Database (Denmark)

    Rodriguez, Rene; Hansen, Lasse Tengbjerg; Phear, Geraldine

    2008-01-01

    to exploit the altered response of mismatch repair (MMR)-deficient colon cancer cells and tumors to camptothecin or irinotecan and thymidine by combining them to improve therapeutic response. EXPERIMENTAL DESIGN: A panel of colon cancer cell lines was assayed for response to camptothecin...

  5. Sunitinib significantly suppresses the proliferation, migration, apoptosis resistance, tumor angiogenesis and growth of triple-negative breast cancers but increases breast cancer stem cells.

    Science.gov (United States)

    Chinchar, Edmund; Makey, Kristina L; Gibson, John; Chen, Fang; Cole, Shelby A; Megason, Gail C; Vijayakumar, Srinivassan; Miele, Lucio; Gu, Jian-Wei

    2014-01-01

    The majority of triple-negative breast cancers (TNBCs) are basal-like breast cancers. However there is no reported study on anti-tumor effects of sunitinib in xenografts of basal-like TNBC (MDA-MB-468) cells. In the present study, MDA-MB-231, MDA-MB-468, MCF-7 cells were cultured using RPMI 1640 media with 10% FBS. Vascular endothelia growth factor (VEGF) protein levels were detected using ELISA (R & D Systams). MDA-MB-468 cells were exposed to sunitinib for 18 hours for measuring proliferation (3H-thymidine incorporation), migration (BD Invasion Chamber), and apoptosis (ApopTag and ApoScreen Anuexin V Kit). The effect of sunitinib on Notch-1 expression was determined by Western blot in cultured MDA-MB-468 cells. 10(6) MDA-MB-468 cells were inoculated into the left fourth mammary gland fat pad in athymic nude-foxn1 mice. When the tumor volume reached 100 mm(3), sunitinib was given by gavage at 80 mg/kg/2 days for 4 weeks. Tumor angiogenesis was determined by CD31 immunohistochemistry. Breast cancer stem cells (CSCs) isolated from the tumors were determined by flow cytometry analysis using CD44(+)/CD24(-) or low. ELISA indicated that VEGF was much more highly expressed in MDA-MB-468 cells than MDA-MB-231 and MCF-7 cells. Sunitinib significantly inhibited the proliferation, invasion, and apoptosis resistance in cultured basal like breast cancer cells. Sunitinib significantly increased the expression of Notch-1 protein in cultured MDA-MB-468 or MDA-MB-231 cells. The xenograft models showed that oral sunitinib significantly reduced the tumor volume of TNBCs in association with the inhibition of tumor angiogeneisis, but increased breast CSCs. These findings support the hypothesis that the possibility should be considered of sunitinib increasing breast CSCs though it inhibits TNBC tumor angiogenesis and growth/progression, and that effects of sunitinib on Notch expression and hypoxia may increase breast cancer stem cells. This work provides the groundwork for an

  6. Aging Reduces an ERRalpha-Directed Mitochondrial Glutaminase Expression Suppressing Glutamine Anaplerosis and Osteogenic Differentiation of Mesenchymal Stem Cells.

    Science.gov (United States)

    Huang, Tongling; Liu, Renzhong; Fu, Xuekun; Yao, Dongsheng; Yang, Meng; Liu, Qingli; Lu, William W; Wu, Chuanyue; Guan, Min

    2017-02-01

    Aging deteriorates osteogenic capacity of mesenchymal stem/stromal cells (MSCs), contributing to imbalanced bone remodeling and osteoporosis. Glutaminase (Gls) catabolizes glutamine into glutamate at the first step of mitochondrial glutamine (Gln)-dependent anaplerosis which is essential for MSCs upon osteogenic differentiation. Estrogen-related receptor α (ERRα) regulates genes required for mitochondrial function. Here, we found that ERRα and Gls are upregulated by osteogenic induction in human MSCs (hMSCs). In contrast, osteogenic differentiation capacity and glutamine consumption of MSCs, as well as ERRα, Gls and osteogenic marker genes are significantly reduced with age. We demonstrated that ERRα binds to response elements on Gls promoter and affects glutamine anaplerosis through transcriptional induction of Gls. Conversely, mTOR inhibitor rapamycin, ERRα inverse agonist compound 29 or Gls inhibitor BPTES leads to reduced Gln anaplerosis and deteriorated osteogenic differentiation of hMSCs. Importantly, overexpression of ERRα or Gls restored impairment by these inhibitors. Finally, we proved that compensated ERRα or Gls expression indeed potentiated Gln anaplerosis and osteogenic capability of elderly mice MSCs in vitro. Together, we establish that Gls is a novel ERRα target gene and ERRα/Gls signaling pathway plays an important role in osteogenic differentiation of MSCs, providing new sights into novel regenerative therapeutics development. Our findings suggest that restoring age-related mitochondrial Gln-dependent anaplerosis may be beneficial for degenerative bone disorders such as osteoporosis. Stem Cells 2017;35:411-424. © 2016 AlphaMed Press.

  7. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunmao; Ding, Chao; Kong, Minjian [Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China); Dong, Aiqiang, E-mail: dr_dongaiqiang@sina.com [Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China); Qian, Jianfang; Jiang, Daming; Shen, Zhonghua [Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China)

    2011-07-08

    Highlights: {yields} We compared lipofection with magnetofection about difference of transfection efficiency on delivery a therapeutic gene in vitro and in vivo. {yields} We investigated the difference of shRNA induced by magnetofection and lipofection into A549 cell and subcutaneous tumor to knockdown IGF-1R overexpressed in A549 cell and A549 tumor. {yields} We investigated in vivo shRNA silenced IGF-1R overexpression 24, 48, and 72 h after shRNA intravenous injection into tumor-bearing mice by way of magnetofection and lipofection. {yields} Our results showed that magnetofection could achieve therapeutic gene targeted delivery into special site, which contributed to targeted gene therapy of lung cancers. -- Abstract: Liposomal magnetofection potentiates gene transfection by applying a magnetic field to concentrate magnetic lipoplexes onto target cells. Magnetic lipoplexes are self-assembling ternary complexes of cationic lipids with plasmid DNA associated with superparamagnetic iron oxide nanoparticles (SPIONs). Type1insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently overexpressed in lung cancer and mediates cancer cell proliferation and tumor growth. In this study, we evaluated the transfection efficiency (percentage of transfected cells) and therapeutic potential (potency of IGF-1R knockdown) of liposomal magnetofection of plasmids expressing GFP and shRNAs targeting IGF-1R (pGFPshIGF-1Rs) in A549 cells and in tumor-bearing mice as compared to lipofection using Lipofectamine 2000. Liposomal magnetofection provided a threefold improvement in transgene expression over lipofection and transfected up to 64.1% of A549 cells in vitro. In vitro, IGF-1R specific-shRNA transfected by lipofection inhibited IGF-1R protein by 56.1 {+-} 6% and by liposomal magnetofection by 85.1 {+-} 3%. In vivo delivery efficiency of the pGFPshIGF-1R plasmid into the tumor was significantly higher in the liposomal magnetofection group than in the

  8. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Wang, Chunmao; Ding, Chao; Kong, Minjian; Dong, Aiqiang; Qian, Jianfang; Jiang, Daming; Shen, Zhonghua

    2011-01-01

    Highlights: → We compared lipofection with magnetofection about difference of transfection efficiency on delivery a therapeutic gene in vitro and in vivo. → We investigated the difference of shRNA induced by magnetofection and lipofection into A549 cell and subcutaneous tumor to knockdown IGF-1R overexpressed in A549 cell and A549 tumor. → We investigated in vivo shRNA silenced IGF-1R overexpression 24, 48, and 72 h after shRNA intravenous injection into tumor-bearing mice by way of magnetofection and lipofection. → Our results showed that magnetofection could achieve therapeutic gene targeted delivery into special site, which contributed to targeted gene therapy of lung cancers. -- Abstract: Liposomal magnetofection potentiates gene transfection by applying a magnetic field to concentrate magnetic lipoplexes onto target cells. Magnetic lipoplexes are self-assembling ternary complexes of cationic lipids with plasmid DNA associated with superparamagnetic iron oxide nanoparticles (SPIONs). Type1insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently overexpressed in lung cancer and mediates cancer cell proliferation and tumor growth. In this study, we evaluated the transfection efficiency (percentage of transfected cells) and therapeutic potential (potency of IGF-1R knockdown) of liposomal magnetofection of plasmids expressing GFP and shRNAs targeting IGF-1R (pGFPshIGF-1Rs) in A549 cells and in tumor-bearing mice as compared to lipofection using Lipofectamine 2000. Liposomal magnetofection provided a threefold improvement in transgene expression over lipofection and transfected up to 64.1% of A549 cells in vitro. In vitro, IGF-1R specific-shRNA transfected by lipofection inhibited IGF-1R protein by 56.1 ± 6% and by liposomal magnetofection by 85.1 ± 3%. In vivo delivery efficiency of the pGFPshIGF-1R plasmid into the tumor was significantly higher in the liposomal magnetofection group than in the lipofection group. In vivo IGF-1R

  9. [Combined spinal epidural anesthesia during endoprosthetic surgeries for bone tumors in old-age children].

    Science.gov (United States)

    Matinian, N V; Saltanov, A I

    2005-01-01

    Thirty-five patients (ASA II-III) aged 12 to 17 years, diagnosed as having osteogenic sarcoma and Ewing's sarcoma localizing in the femur and tibia, were examined. Surgery was performed as sectoral resection of the affected bone along with knee joint endoprosthesis. Surgical intervention was made under combined spinal and epidural anesthesia (CSEA) with sedation, by using the methods for exact dosing of propofol (6-4 mg/kg x h). During intervention, a child's respiration remains is kept spontaneous with oxygen insufflation through a nasal catheter. CSEA was performed in two-segmental fashion. The epidural space was first catheterized. After administration of a test dose, 0.5% marcaine spinal was injected into dermatomas below the subarachnoidal space, depending on body weight (3.0-4.0 ml). Sensory blockade developed following 3-5 min and lasted 90-120 min, thereafter a local anesthetic (bupivacaine) or its mixture plus promedole was epidurally administered. ??Anesthesia was effective in all cases, motor blockade. During surgery, there was a moderate arterial hypotension that did not require the use of vasopressors. The acid-alkali balance suggested the adequacy of spontaneous respiration. The only significant complication we observed was atony of the bladder that requires its catheterization till the following day. An epidural catheter makes it possible to effect adequate postoperative analgesia.

  10. Nifedipine, a calcium channel blocker, inhibits advanced glycation end product (AGE)-elicited mesangial cell damage by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gamma activation

    International Nuclear Information System (INIS)

    Matsui, Takanori; Yamagishi, Sho-ichi; Takeuchi, Masayoshi; Ueda, Seiji; Fukami, Kei; Okuda, Seiya

    2009-01-01

    The interaction between advanced glycation end products (AGE) and their receptor RAGE mediates the progressive alteration in renal architecture and loss of renal function in diabetic nephropathy. Oxidative stress generation and inflammation also play a central role in diabetic nephropathy. This study investigated whether and how nifedipine, a calcium channel blocker (CCB), blocked the AGE-elicited mesangial cell damage in vitro. Nifedipine, but not amlodipine, a control CCB, down-regulated RAGE mRNA levels and subsequently reduced reactive oxygen species (ROS) generation in AGE-exposed mesangial cells. AGE increased mRNA levels of vascular cell adhesion molecule-1 (VCAM-1) and induced monocyte chemoattractant protein-1 (MCP-1) production in mesangial cells, both of which were prevented by the treatment with nifedipine, but not amlodipine. The beneficial effects of nifedipine on AGE-exposed mesangial cells were blocked by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-γ (PPAR-γ). Although nifedipine did not affect expression levels of PPAR-γ, it increased the PPAR-γ transcriptional activity in mesangial cells. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-inflammatory agent against AGE by suppressing RAGE expression in cultured mesangial cells via PPAR-γ activation.

  11. Androgen-mediated development of irradiation-induced thyroid tumors in rats: dependence on animal age during interval of androgen replacement in castrated males

    International Nuclear Information System (INIS)

    Hofmann, C.; Oslapas, R.; Nayyar, R.; Paloyan, E.

    1986-01-01

    When male Long-Evans rats at age 8 weeks were radiation treated (40 microCi Na131I), thyroid follicular adenomas and carcinomas were observed at age 24 months with a high incidence of 94%. Castration of males prior to irradiation significantly reduced this tumor incidence to 60%. When testosterone (T) was replaced in castrated, irradiated male rats, differentially increased incidences of thyroid tumors occurred. Immediate (age 2-6 mo) or early (age 6-12 mo) T replacement at approximate physiologic levels led to thyroid follicular tumor incidences of 100 and 82%, respectively, whereas intermediate (12-18 mo) or late (18-24 mo) T treatment led to only 70 and 73% incidences, respectively. Continuous T replacement (2-24 mo) in castrated irradiated male rats raised thyroid tumor incidence to 100%. Since elevated thyroid-stimulating hormone (TSH) is a reported requisite for development of radiation-associated thyroid tumors, the effects of T on serum TSH levels were examined. Mean serum TSH values in all irradiated animal groups were significantly elevated above age-matched nonirradiated animals at 6, 12, 18, and 24 months. Serum TSH levels were higher in continuous T-replaced irradiated castrates than in intact, irradiated males, whereas such intact male TSH levels were greater than those for irradiated castrates without T treatment. Interval T replacement in castrated male rats was associated with increased serum TSH levels during the treatment interval and with lowered TSH levels after discontinuation of T treatment, particularly in irradiated rats. However, when irradiated, castrated males received late T replacement (age 18-24 mo), there was no elevation of TSH at the end of the treatment interval. An indirect effect of T via early stimulation of TSH may be partly responsible for the high incidence of irradiation-induced thyroid tumors in rats

  12. Gene silencing of indoleamine 2,3-dioxygenase 2 in melanoma cells induces apoptosis through the suppression of NAD+ and inhibits in vivo tumor growth.

    Science.gov (United States)

    Liu, Yanling; Zhang, Yujuan; Zheng, Xiufen; Zhang, Xusheng; Wang, Hongmei; Li, Qin; Yuan, Keng; Zhou, Nanjing; Yu, Yanrong; Song, Na; Fu, Jiamin; Min, Weiping

    2016-05-31

    Indoleamine 2,3-dioxygenase 2 (IDO2) is a newly discovered enzyme that catalyzes the initial and rate-limiting step in the degradation of tryptophan. As a homologous protein of IDO1, IDO2 plays an inhibitory role in T cell proliferation, and it is essential for regulatory T cell (Treg) generation in healthy conditions. Little is known about the immune-independent functions of IDO2 relevant to its specific contributions to physiology and pathophysiology in cancer cells. The purpose of this study was to assess the impact of IDO2 gene silencing as a way to inhibit B16-BL6 cancer cells in a murine model. Here, for the first time, we show that knockdown of IDO2 using small interfering RNA (siRNA) inhibits cancer cell proliferation, arrests cell cycle in G1, induces greater cell apoptosis, and reduces cell migration in vitro. Knockdown of IDO2 decreased the generation of nicotinamide adenine dinucleotide (NAD+) while increasing the generation of reactive oxygen species (ROS). We further demonstrate that cell apoptosis, induced by IDO2 downregulation, can be weakened by addition of exogenous NAD+, suggesting a novel mechanism by which IDO2 promotes tumor growth through its metabolite product NAD+. In addition to in vitro findings, we also demonstrate that IDO2 silencing in tumor cells using short hairpin RNA (shRNA) delayed tumor formation and arrested tumor growth in vivo. In conclusion, this study demonstrates a new non-immune-associated mechanism of IDO2 in vitro and IDO2 expression in B16-BL6 cells contributes to cancer development and progression. Our research provides evidence of a novel target for gene silencing that has the potential to enhance cancer therapy.

  13. Caffeine suppresses exercise-enhanced long-term and location memory in middle-aged rats: Involvement of hippocampal Akt and CREB signaling.

    Science.gov (United States)

    Cechella, José L; Leite, Marlon R; da Rocha, Juliana T; Dobrachinski, Fernando; Gai, Bibiana M; Soares, Félix A A; Bresciani, Guilherme; Royes, Luiz F F; Zeni, Gilson

    2014-11-05

    The cognitive function decline is closely related with brain changes generated by age. The ability of caffeine and exercise to prevent memory impairment has been reported in animal models and humans. The purpose of the present study was to investigate whether swimming exercise and caffeine administration enhance memory in middle-aged Wistar rats. Male Wistar rats (18months) received caffeine at a dose of 30mg/kg, 5days per week by a period of 4weeks. Animals were subjected to swimming training with a workload (3% of body weight, 20min per day for 4weeks). After 4weeks, the object recognition test (ORT) and the object location test (OLT) were performed. The results of this study demonstrated that caffeine suppressed exercise-enhanced long-term (ORT) and spatial (OLT) memory in middle-aged and this effect may be related to a decrease in hippocampal p-CREB signaling. This study also provided evidence that the effects of this protocol on memory were not accompanied by alterations in the levels of activated Akt. The [(3)H] glutamate uptake was reduced in hippocampus of rats administered with caffeine and submitted to swimming protocol. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Different patterns in the prognostic value of age for bladder cancer-specific survival depending on tumor stages.

    Science.gov (United States)

    Feng, Huan; Zhang, Wei; Li, Jiajun; Lu, Xiaozhe

    2015-01-01

    To compare the pathological features and long-term survival of bladder cancer (BCa) in young patients with elderly counterparts. Using the U.S. National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) population-based data, we identified 93115 patients with non-metastatic bladder cancer diagnosed between 1988 and 2003. Patients were categorized into young (50 years and under) and elderly groups (over 50 years of age). The overall and five-year bladder cancer specific survival (BCSS) data were obtained using Kaplan-Meier plots. Multivariable Cox regression models were built for the analysis of long-term survival outcomes and risk factors. There were significant differences between the two groups in primary site, pathologic grading, histologic type, AJCC stage (pstage patients. The study findings show different patterns in the prognostic value of age for determining BCSS, depending on the tumor stages. Compared with elderly patients, young patients with bladder cancer surgery appear to have unique characteristics and a higher overall and cancer specific survival rate.

  15. MVisAGe Identifies Concordant and Discordant Genomic Alterations of Driver Genes in Squamous Tumors.

    Science.gov (United States)

    Walter, Vonn; Du, Ying; Danilova, Ludmila; Hayward, Michele C; Hayes, D Neil

    2018-06-15

    Integrated analyses of multiple genomic datatypes are now common in cancer profiling studies. Such data present opportunities for numerous computational experiments, yet analytic pipelines are limited. Tools such as the cBioPortal and Regulome Explorer, although useful, are not easy to access programmatically or to implement locally. Here, we introduce the MVisAGe R package, which allows users to quantify gene-level associations between two genomic datatypes to investigate the effect of genomic alterations (e.g., DNA copy number changes on gene expression). Visualizing Pearson/Spearman correlation coefficients according to the genomic positions of the underlying genes provides a powerful yet novel tool for conducting exploratory analyses. We demonstrate its utility by analyzing three publicly available cancer datasets. Our approach highlights canonical oncogenes in chr11q13 that displayed the strongest associations between expression and copy number, including CCND1 and CTTN , genes not identified by copy number analysis in the primary reports. We demonstrate highly concordant usage of shared oncogenes on chr3q, yet strikingly diverse oncogene usage on chr11q as a function of HPV infection status. Regions of chr19 that display remarkable associations between methylation and gene expression were identified, as were previously unreported miRNA-gene expression associations that may contribute to the epithelial-to-mesenchymal transition. Significance: This study presents an important bioinformatics tool that will enable integrated analyses of multiple genomic datatypes. Cancer Res; 78(12); 3375-85. ©2018 AACR . ©2018 American Association for Cancer Research.

  16. Alpinia pricei Rhizome Extracts Induce Cell Cycle Arrest in Human Squamous Carcinoma KB Cells and Suppress Tumor Growth in Nude Mice

    Directory of Open Access Journals (Sweden)

    You-Cheng Hseu

    2011-01-01

    Full Text Available Alpinia pricei has been shown to induce apoptosis in human squamous carcinoma (KB cells. In this study, we report the effectiveness of the ethanol (70% extracts of A. pricei rhizome (AP extracts in terms of tumor regression as determined using both in vitro cell culture and in vivo athymic nude mice models of KB cells. We found that the AP extract (25–200 μg/mL treatment decreased the proliferation of KB cells by arresting progression through the G2/M phase of the cell cycle. This cell cycle blockade was associated with reductions in cyclin A and B1, Cdc2, and Cdc25C, and increased p21/WAF1, Wee1, p53 and phospho-p53 (p-p53 in a dose- and time-dependent manner. Moreover, we found that AP extract treatment decreased metalloproteinase-9 (MMP-9 and urokinase plasminogen activator (u-PA expression, while expression of their endogenous inhibitors, tissue inhibitor of MMP-1 (TIMP-1 and plasminogen activator inhibitor-1 (PAI-1, were increased in KB cells. Furthermore, AP extract treatment effectively delayed tumor incidence in nude mice inoculated with KB cells and reduced the tumor burden. AP extract treatment also induced apoptotic DNA fragmentation, as detected by in situ TUNEL staining. Thus, A. pricei may possess antitumor activity in human squamous carcinoma (KB cells.

  17. Swimming attenuates d-galactose-induced brain aging via suppressing miR-34a-mediated autophagy impairment and abnormal mitochondrial dynamics.

    Science.gov (United States)

    Kou, Xianjuan; Li, Jie; Liu, Xingran; Chang, Jingru; Zhao, Qingxia; Jia, Shaohui; Fan, Jingjing; Chen, Ning

    2017-06-01

    microRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. To explore the regulatory role of miR-34a in aging-related diseases such as Alzheimer's disease (AD) during exercise intervention, we constructed a rat model with d-galactose (d-gal)-induced oxidative stress and cognitive impairment coupled with dysfunctional autophagy and abnormal mitochondrial dynamics, determined the mitigation of cognitive impairment of d-gal-induced aging rats during swimming intervention, and evaluated miR-34a-mediated functional status of autophagy and abnormal mitochondrial dynamics. Meanwhile, whether the upregulation of miR-34a can lead to dysfunctional autophagy and abnormal mitochondrial dynamics was confirmed in human SH-SY5Y cells with silenced miR-34a by the transfection of a miR-34a inhibitor. Results indicated that swimming intervention could significantly attenuate cognitive impairment, prevent the upregulation of miR-34a, mitigate the dysfunctional autophagy, and inhibit the increase of dynamin-related protein 1 (DRP1) in d-gal-induced aging model rats. In contrast, the miR-34a inhibitor in cell model not only attenuated D-gal-induced the impairment of autophagy but also decreased the expression of DRP1 and mitofusin 2 (MFN2). Therefore, swimming training can delay brain aging of d-gal-induced aging rats through attenuating the impairment of miR-34a-mediated autophagy and abnormal mitochondrial dynamics, and miR-34a could be the novel therapeutic target for aging-related diseases such as AD. NEW & NOTEWORTHY In the present study, we have found that the upregulation of miR-34a is the hallmark of aging or aging-related diseases, which can result in dysfunctional autophagy and abnormal mitochondrial dynamics. In contrast, swimming intervention can delay the aging process by rescuing the impaired functional status of autophagy and abnormal mitochondrial dynamics via the suppression of miR-34a. Copyright © 2017 the American Physiological Society.

  18. Targeted silencing of elongation factor 2 kinase suppresses growth and sensitizes tumors to doxorubicin in an orthotopic model of breast cancer.

    Directory of Open Access Journals (Sweden)

    Ibrahim Tekedereli

    Full Text Available Eukaryotic elongation factor 2 kinase (eEF-2K, through its phosphorylation of elongation factor 2 (eEF2, provides a mechanism by which cells can control the rate of the elongation phase of protein synthesis. The activity of eEF-2K is increased in rapidly proliferating malignant cells, is inhibited during mitosis, and may contribute to the promotion of autophagy in response to anti-cancer therapies. The purpose of this study was to examine the therapeutic potential of targeting eEF-2K in breast cancer tumors. Through the systemic administration of liposomal eEF-2K siRNA (twice a week, i.v. 150 µg/kg, the expression of eEF-2K was down-regulated in vivo in an orthotopic xenograft mouse model of a highly aggressive triple negative MDA-MB-231 tumor. This targeting resulted in a substantial decrease in eEF2 phosphorylation in the tumors, and led to the inhibition of tumor growth, the induction of apoptosis and the sensitization of tumors to the chemotherapy agent doxorubicin. eEF-2K down-modulation in vitro resulted in a decrease in the expression of c-Myc and cyclin D1 with a concomitant increase in the expression of p27(Kip1. A decrease in the basal activity of c-Src (phospho-Tyr-416, focal adhesion kinase (phospho-Tyr-397, and Akt (phospho-Ser-473 was also detected following eEF-2K down-regulation in MDA-MB-231 cells, as determined by Western blotting. Where tested, similar results were seen in ER-positive MCF-7 cells. These effects were also accompanied by a decrease in the observed invasive phenotype of the MDA-MB-231 cells. These data support the notion that the disruption of eEF-2K expression in breast cancer cells results in the down-regulation of signaling pathways affecting growth, survival and resistance and has potential as a therapeutic approach for the treatment of breast cancer.

  19. Discovery and validation of the tumor-suppressive function of long noncoding RNA PANDA in human diffuse large B-cell lymphoma through the inactivation of MAPK/ERK signaling pathway.

    Science.gov (United States)

    Wang, Yingjun; Zhang, Mingzhi; Xu, Huanan; Wang, Yifei; Li, Zhaoming; Chang, Yu; Wang, Xinhuan; Fu, Xiaorui; Zhou, Zhiyuan; Yang, Siyuan; Wang, Bei; Shang, Yufeng

    2017-09-22

    Diffuse large B-cell lymphoma (DLBCL) is one of the leading causes of cancer-related mortality, and responds badly to existing treatment. Thus, it is of urgent need to identify novel prognostic markers and therapeutic targets of DLBCL. Recent studies have shown that long non-coding RNAs (lncRNAs) play an important role in the development of cancer. By using the next generation HiSeq sequencing assay, we determined lncRNAs exhibiting differential expression between DLBCL patients and healthy controls. Then, RT-qPCR was performed for identification in clinical samples and cell materials, and lncRNA PANDA was verified to be down-regulated in DLBCL patients and have considerable diagnostic potential. In addition, decreased serum PANDA level was correlated to poorer clinical outcome and lower overall survival in DLBCL patients. Subsequently, we determined the experimental role of lncRNA PANDA in DLBCL progression. Luciferase reporter assay and chromatin immunoprecipitation assay suggested that lncRNA PANDA was induced by p53 and p53 interacts with the promoter region of PANDA. Cell functional assay further indicated that PANDA functioned as a tumor suppressor gene through the suppression of cell growth by a G0/G1 cell cycle arrest in DLBCL. More importantly, Cignal Signal Transduction Reporter Array and western blot assay showed that lncRNA PANDA inactivated the MAPK/ERK signaling pathway. In conclusion, our integrated approach demonstrates that PANDA in DLBCL confers a tumor suppressive function through inhibiting cell proliferation and silencing MAPK/ERK signaling pathway. Thus, PANDA may be a promising therapeutic target for patients with DLBCL.

  20. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo.

    Science.gov (United States)

    Wang, Chunmao; Ding, Chao; Kong, Minjian; Dong, Aiqiang; Qian, Jianfang; Jiang, Daming; Shen, Zhonghua

    2011-07-08

    Liposomal magnetofection potentiates gene transfection by applying a magnetic field to concentrate magnetic lipoplexes onto target cells. Magnetic lipoplexes are self-assembling ternary complexes of cationic lipids with plasmid DNA associated with superparamagnetic iron oxide nanoparticles (SPIONs). Type1 insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently overexpressed in lung cancer and mediates cancer cell proliferation and tumor growth. In this study, we evaluated the transfection efficiency (percentage of transfected cells) and therapeutic potential (potency of IGF-1R knockdown) of liposomal magnetofection of plasmids expressing GFP and shRNAs targeting IGF-1R (pGFPshIGF-1Rs) in A549 cells and in tumor-bearing mice as compared to lipofection using Lipofectamine 2000. Liposomal magnetofection provided a threefold improvement in transgene expression over lipofection and transfected up to 64.1% of A549 cells in vitro. In vitro, IGF-1R specific-shRNA transfected by lipofection inhibited IGF-1R protein by 56.1±6% and by liposomal magnetofection by 85.1±3%. In vivo delivery efficiency of the pGFPshIGF-1R plasmid into the tumor was significantly higher in the liposomal magnetofection group than in the lipofection group. In vivo IGF-1R specific-shRNA by lipofection inhibited IGF-1R protein by an average of 43.8±5.3%; that by liposomal magnetofection inhibited IGF-1R protein by 43.4±5.7%, 56.3±9.6%, and 72.2±6.8%, at 24, 48, and 72 h, respectively, after pGFPshIGF-1R injection. Our findings indicate that liposomal magnetofection may be a promising method that allows the targeting of gene therapy to lung cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. miR-192, miR-194 and miR-215: a convergent microRNA network suppressing tumor progression in renal cell carcinoma.

    Science.gov (United States)

    Khella, H W Z; Bakhet, M; Allo, G; Jewett, M A S; Girgis, A H; Latif, A; Girgis, H; Von Both, I; Bjarnason, G A; Yousef, G M

    2013-10-01

    MicroRNAs (miRNAs) play a crucial role in tumor progression and metastasis. We, and others, recently identified a number of miRNAs that are dysregulated in metastatic renal cell carcinoma compared with primary renal cell carcinoma. Here, we investigated three miRNAs that are significantly downregulated in metastatic tumors: miR-192, miR-194 and miR-215. Gain-of-function analyses showed that restoration of their expression decreases cell migration and invasion in renal cell carcinoma cell line models, whereas knockdown of these miRNAs resulted in enhancing cellular migration and invasion abilities. We identified three targets of these miRNAs with potential role in tumor aggressiveness: murine double minute 2, thymidylate synthase, and Smad Interacting protein 1/zinc finger E-box binding homeobox 2. We observed a convergent effect (the same molecule can be targeted by all three miRNAs) and a divergent effect (the same miRNA can control multiple targets) for these miRNAs. We experimentally validated these miRNA-target interactions using three independent approaches. First, we observed that miRNA overexpression significantly reduces the mRNA and protein levels of their targets. In the second, we observed significant reduction of the luciferase signal of a vector containing the 3'UTR of the target upon miRNA overexpression. Finally, we show the presence of inverse correlation between miRNA changes and the expression levels of their targets in patient specimens. We also examined the prognostic significance of miR-215 in renal cell carcinoma. Lower expression of miR-215 is associated with significantly reduced disease-free survival time. These findings were validated on an independent data set from The Cancer Genome Atlas. These results can pave the way to the clinical use of miRNAs as prognostic markers and therapeutic targets.

  2. Icariin and its derivative, ICT, exert anti-inflammatory, anti-tumor effects, and modulate myeloid derived suppressive cells (MDSCs) functions.

    Science.gov (United States)

    Zhou, Junmin; Wu, Jinfeng; Chen, Xianghong; Fortenbery, Nicole; Eksioglu, Erika; Kodumudi, Krithika N; Pk, Epling-Burnette; Dong, Jingcheng; Djeu, Julie Y; Wei, Sheng

    2011-07-01

    3, 5,7-trihydroxy-4'-methoxy-8-(3-hydroxy-3-methylbutyl)-flavone (ICT) is a novel derivative of Icariin (ICA), the major active ingredient of Herba Epimedii, a herb used in traditional Chinese and alternative medicine. We previously demonstrated its anti-inflammatory effect in murine innate immune cells and activated human PBMCs. We report herein that ICA or ICT treatment reduces the expression of MRP8/MRP14 and toll-like receptor 4 (TLR4) on human PBMCs. Administration of ICA or ICT inhibited tumor growth in 4T1-Neu tumor-bearing mice and considerably decreased MDSC numbers in the spleen of these mice. Further, we saw a restoration of IFN-γ production by CD8+ T cells in tumor bearing mice when treated with ICA or ICT. ICA and ICT significantly decreased the amounts of nitric oxide and reactive oxygen species in MDSC in vivo. When MDSC were treated in vitro with ICT, we saw a significant reduction in the percent of these cells with concomitant differentiation into dendritic cells and macrophages. Concomitant with this cell type conversion was a down-regulation of IL-10, IL-6 and TNF-α production. Decreased expression of S100A8/9 and inhibition of activation of STAT3 and AKT may in part be responsible for the observed results. In conclusion, our results showed that ICA, and more robustly, ICT, directly modulate MDSC signaling and therefore altered the phenotype and function of these cells, in vitro and in vivo. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. RNAi-mediated knockdown of pituitary tumor-transforming gene-1 (PTTG1) suppresses the proliferation and invasive potential of PC3 human prostate cancer cells

    International Nuclear Information System (INIS)

    Huang, S.Q.; Liao, Q.J.; Wang, X.W.; Xin, D.Q.; Chen, S.X.; Wu, Q.J.; Ye, G.

    2012-01-01

    Pituitary tumor-transforming gene-1 (PTTG1) is a proto-oncogene that promotes tumorigenesis and metastasis in numerous cell types and is overexpressed in a variety of human tumors. We have demonstrated that PTTG1 expression was up-regulated in both human prostate cancer specimens and prostate cancer cell lines. For a more direct assessment of the function of PTTG1 in prostate tumorigenesis, RNAi-mediated knockdown was used to selectively decrease PTTG1 expression in PC3 human prostate tumor cells. After three weeks of selection, colonies stably transfected with PTTG1-targeted RNAi (the knockdown PC3 cell line) or empty vector (the control PC3 cell line) were selected and expanded to investigate the role of PTTG1 expression in PC3 cell growth and invasion. Cell proliferation rate was significantly slower (28%) in the PTTG1 knockdown line after 6 days of growth as indicated by an MTT cell viability assay (P < 0.05). Similarly, a soft agar colony formation assay revealed significantly fewer (66.7%) PTTG1 knockdown PC3 cell colonies than control colonies after three weeks of growth. In addition, PTTG1 knockdown resulted in cell cycle arrest at G1 as indicated by fluorescence-activated cell sorting. The PTTG1 knockdown PC3 cell line also exhibited significantly reduced migration through Matrigel in a transwell assay of invasive potential, and down-regulation of PTTG1 could lead to increased sensitivity of these prostate cancer cells to a commonly used anticancer drug, taxol. Thus, PTTG1 expression is crucial for PC3 cell proliferation and invasion, and could be a promising new target for prostate cancer therapy

  4. Rejection of large HPV-16 expressing tumors in aged mice by a single immunization of VacciMax® encapsulated CTL/T helper peptides

    Directory of Open Access Journals (Sweden)

    MacDonald Lisa

    2007-06-01

    Full Text Available Abstract The incidence of cancer increases significantly in later life, yet few pre-clinical studies of cancer immunotherapy use mice of advanced age. A novel vaccine delivery platform (VacciMax®,VM is described that encapsulates antigens and adjuvants in multilamellar liposomes in a water-in-oil emulsion. The therapeutic potential of VM-based vaccines administered as a single dose was tested in HLA-A2 transgenic mice of advanced age (48–58 weeks old bearing large palpable TC1/A2 tumors. The VM-based vaccines contained one or more peptides having human CTL epitopes derived from HPV 16 E6 and E7. VM formulations contained a single peptide, a mixture of four peptides or the same four peptides linked together in a single long peptide. All VM formulations contained PADRE and CpG as adjuvants and ISA51 as the hydrophobic component of the water-in-oil emulsion. VM-formulated vaccines containing the four peptides as a mixture or linked together in one long peptide eradicated 19-day old established tumors within 21 days of immunization. Peptide-specific cytotoxic cellular responses were confirmed by ELISPOT and intracellular staining for IFN-γ producing CD8+ T cells. Mice rendered tumor-free by vaccination were re-challenged in the opposite flank with 10 million HLF-16 tumor cells, another HLA-A2/E6/E7 expressing tumor cell line. None of these mice developed tumors following the re-challenge. In summary, this report describes a VM-formulated therapeutic vaccine with the following unprecedented outcome: a eradication of large tumors (> 700 mm3 b in mice of advanced age c in less than three weeks post-immunization d following a single vaccination.

  5. Lipolysis stimulating peptides of potato protein hydrolysate effectively suppresses high-fat-diet-induced hepatocyte apoptosis and fibrosis in aging rats

    Directory of Open Access Journals (Sweden)

    Wen-Dee Chiang

    2016-07-01

    Full Text Available Background: Non-alcoholic fatty liver disease (NAFLD is one of the most common outcomes of obesity and is characterized by the accumulation of triglycerides, increased tissue apoptosis, and fibrosis. NAFLD is more common among elderly than in younger age groups, and it causes serious hepatic complications. Objective: In this study, alcalase treatment derived potato protein hydrolysate (APPH with lipolysis-stimulating property has been evaluated for its efficiency to provide hepato-protection in a high-fat-diet (HFD-fed aging rats. Design: Twenty-four-month-old SD rats were randomly divided into six groups (n=8: aged rats fed with standard chow, HFD-induced aged obese rats, HFD with low-dose (15 mg/kg/day APPH treatment, HFD with moderate (45 mg/kg/day APPH treatment, HFD with high (75 mg/kg/day APPH treatment, and HFD with probucol. Results: APPH was found to reduce the NAFLD-related effects in rat livers induced by HFD and all of the HFD-fed rats exhibited heavier body weight than those with control chow diet. However, the HFD-induced hepatic fat accumulation was effectively attenuated in rats administered with low (15 mg/kg/day, moderate (45 mg/kg/day, and high (75 mg/kg/day doses of APPH. APPH oral administration also suppressed the hepatic apoptosis- and fibrosis-related proteins induced by HFD. Conclusions: Our results thus indicate that APPH potentially attenuates hepatic lipid accumulation and anti-apoptosis and fibrosis effects in HFD-induced rats. APPH may have therapeutic potential in the amelioration of NAFLD liver damage.

  6. Prefrontal Engagement and Reduced Default Network Suppression Co-occur and Are Dynamically Coupled in Older Adults: The Default-Executive Coupling Hypothesis of Aging.

    Science.gov (United States)

    Turner, Gary R; Spreng, R Nathan

    2015-12-01

    Reduced executive control is a hallmark of neurocognitive aging. Poor modulation of lateral pFC activity in the context of increasing task challenge in old adults and a "failure to deactivate" the default network during cognitive control tasks have been observed. Whether these two patterns represent discrete mechanisms of neurocognitive aging or interact into older adulthood remains unknown. We examined whether altered pFC and default network dynamics co-occur during goal-directed planning over increasing levels of difficulty during performance on the Tower of London task. We used fMRI to investigate task- and age-related changes in brain activation and functional connectivity across four levels of task challenge. Frontoparietal executive control regions were activated and default network regions were suppressed during planning relative to counting performance in both groups. Older adults, unlike young, failed to modulate brain activity in executive control and default regions as planning demands increased. Critically, functional connectivity analyses revealed bilateral dorsolateral pFC coupling in young adults and dorsolateral pFC to default coupling in older adults with increased planning complexity. We propose a default-executive coupling hypothesis of aging. First, this hypothesis suggests that failure to modulate control and default network activity in response to increasing task challenge are linked in older adulthood. Second, functional brain changes involve greater coupling of lateral pFC and the default network as cognitive control demands increase in older adults. We speculate that these changes reflect an adaptive shift in cognitive approach as older adults come to rely more upon stored representations to support goal-directed task performance.

  7. Weight suppression and weight elevation are associated with eating disorder symptomatology in women age 50 and older: Results of the gender and body image study.

    Science.gov (United States)

    Goodman, Erica L; Baker, Jessica H; Peat, Christine M; Yilmaz, Zeynep; Bulik, Cynthia M; Watson, Hunna J

    2018-04-25

    Weight suppression (WS), the difference between highest past non-pregnancy weight and current weight, predicts negative outcomes in eating disorders, but the impact of WS and related weight constructs are understudied in nonclinical, midlife populations. We examined WS (current weight weight) and weight elevation (WE), the opposite of WS (current weight > lowest weight) and their associations with eating psychopathology in women aged 50+. Participants were a community-based sample (N = 1,776, M age  = 59) who completed demographic and eating psychopathology questions via online survey. WS, WE, and WS × WE were tested as predictors of outcome variables; BMI and medical conditions that affect weight were controlled for. Individuals that were higher on WS and WE were most likely to engage in current weight loss attempts, dieting in the past 5 years, and extreme lifetime restriction. Individuals with higher WS were more likely to experience binge eating, greater frequency of weight checking, overvaluation of shape and weight, and lifetime fasting. Individuals with higher WE were more likely to report negative life impacts of eating and dieting. Higher WS and WE each predicted higher levels of skipping meals over the lifetime. This novel study investigated WS in midlife women and introduced a new conceptualization of weight change (WE) that may be more relevant for aging populations given that women tend to gain weight with age. The findings implicate the utility of investigating both WS and WE as factors associated with eating psychopathology in midlife women. © 2018 Wiley Periodicals, Inc.

  8. The influence of age at time of exposure to 239Pu or 226Ra on retention, distribution, survival and tumor induction in Beagles

    International Nuclear Information System (INIS)

    Bruenger, F.W.; Miller, S.C.; Lloyd, R.D.

    1991-01-01

    The influence of age at injection of 226 Ra or 239 Pu on skeletal deposition and local distribution, the pattern of bone tumor formation and post-injection survival were studied in parallel short-term mechanistic and lifetime toxicity experiments. Beagles received a single intravenous injection of 226 Ra or 239 Pu at age 3 months (juveniles), 17-19 months (young adults) or 60 months (mature). Data from short-term mechanistic-dosimetric studies and from one dosage level (41 kBq 226 Ra/kg or 11 kBq 239 Pu/kg body mass) of each of the toxicity experiments were compared. Skeletal growth and turnover produced differential initial deposition and distribution patterns typical for each age group. The highest bone tumor incidence was seen in the young adult groups. Differences were observed in bone tumor location between dogs in the same age group given radium or plutonium and among age groups injected with either radionuclide, and some of these could be explained by differences in local dose distributions (e.g., trabecular vs. cortical bone). Cox regression indicated no significant differences in post-injection survivals (uncorrected for the different pre-injection periods) of Ra-injected groups, but there was a statistically significant difference among the Pu-injected groups. Neutron-induced autoradiography showed that differences in the effects of Pu in the three age groups were due primarily to the age- and time-dependent local distribution of the nuclide

  9. Suppressed Belief

    Directory of Open Access Journals (Sweden)

    Komarine Romdenh-Romluc

    2009-12-01

    Full Text Available Moran’s revised conception of conscious belief requires us to reconceptualise suppressed belief. The work of Merleau-Ponty offers a way to do this. His account of motor-skills allows us to understand suppressed beliefs as pre-reflective ways of dealing with the world.

  10. Fast spin-echo T2-weighted MR imaging of tongue cancer; the value of fat-suppression

    International Nuclear Information System (INIS)

    Kim, Zu Byoung; Na, Dong Gyu; Ryoo, Jae Wook; Kim, Kyeong Ah; Byun, Hong Sik; Baek, Chung Whan; Son, Yong Ik

    2000-01-01

    To compare the diagnostic efficacy of fast spin-echo (FSE) T2-weighted MR imaging with and without fat suppression. Twelve patients (7 men and 5 women; mean age, 48 years) with pathologically proven cancer of the tongue were included in this study. In all of these, FSE T2-weighted MR images with and without fat suppression were obtained in the same imaging planes before surgery or biopsy. Two radiologists visually compared the images thus obtained in terms of detection, extent, and conspicuity of the tumor, and the contrast-to-noise ratio (CNR) of each tumor was also calculated. In all patients, both imaging modalities were equal in terms of tumor detection. In 4 of 12(33%), the extent of the tumor was greater with fat suppression, while in eight (67%), it was almost the same both with and without. In ten patients (83%), the tumor was more conspicuous with fat suppression, and percentage CNRs were significantly higher with fat suppression than without (180±70% and 113±61%, respectively; p=0.02). For the evaluation of patients with tongue cancer, fat-suppressed FSE T2-weighted MR imaging is superior to its conventional equivalent

  11. Downregulation of Smurf2, a tumor-suppressive ubiquitin ligase, in triple-negative breast cancers: Involvement of the RB-microRNA axis

    International Nuclear Information System (INIS)

    Liu, Xianpeng; Gu, Xin; Sun, Limin; Flowers, Ashley B; Rademaker, Alfred W; Zhou, Yiran; Kiyokawa, Hiroaki

    2014-01-01

    The HECT family ubiquitin ligase Smurf2 regulates cell polarity, migration, division, differentiation and death, by targeting diverse substrates that are critical for receptor signaling, cytoskeleton, chromatin remodeling and transcription. Recent studies suggest that Smurf2 functions as a tumor suppressor in mice. However, no inactivating mutation of SMURF2 has been reported in human, and information about Smurf2 expression in human cancer remains limited or complicated. Here we demonstrate that Smurf2 expression is downregulated in human breast cancer tissues, especially of the triple-negative subtype, and address the mechanism of Smurf2 downregulation in triple-negative breast cancer cells. Human breast cancer tissues (47 samples expressing estrogen receptor (ER) and 43 samples with triple-negative status) were examined by immunohistochemistry for the expression of Smurf2. Ten widely-studied human breast cancer cell lines were examined for the expression of Smurf2. Furthermore, microRNA-mediated regulation of Smurf2 was investigated in triple-negative cancer cell lines. Immunohistochemical analysis showed that benign mammary epithelial cells expressed high levels of Smurf2, so did cells in ductal carcinomas in situ. In contrast, invasive ductal carcinomas showed focal or diffuse decrease in Smurf2 expression, which was observed more frequently in triple-negative tumors than in ER-positive tumors. Consistently, human triple-negative breast cancer cell lines such as BT549, MDA-MB-436, DU-4475 and MDA-MB-468 cells showed significantly lower expression of Smurf2 protein, compared to ER + or HER2+ cell lines. Studies using quantitative PCR and specific microRNA inhibitors indicated that increased expression of miR-15a, miR-15b, miR-16 and miR-128 was involved in Smurf2 downregulation in those triple-negative cancer cell lines, which have mutations in the retinoblastoma (RB) gene. Forced expression of RB increased levels of Smurf2 protein with concomitant decreases in

  12. Long term low dose rate irradiation causes recovery from type II diabetes and suppression of aging in type II diabetes-prone mice

    International Nuclear Information System (INIS)

    Namura, T.; Oda, T.

    2003-01-01

    The effects of low dose rate gamma irradiation on model C57BL/KsJ-db/db mice with Type II diabetes mellitus was investigated. These mice develop Type II diabetes by 10 weeks of age, due to obesity, and are characterized by hyperinsulinemia. A group of 12 female 10-week old mice were irradiated at 0.65 mGy/hr in the low dose rate irradiation facility in the Low Dose Radiation Research Center. The urine glucose levels of all of the mice were strongly positive at the beginning of the irradiation. In the irradiated group, a decrease in the glucose level was observed in three mice, one in the 35th week, another in the 52nd week and the third in the 80th week. No recovery from the diabetes was observed in the 12 mice of non-irradiated control group. There was no systematic change of body weight or consumption of food and drinking water between the irradiated group and the non-irradiated group or between the recovered mice and the non-recovered mice. Survival was better in the irradiated group. The surviving fraction at the age of 90 weeks was 75 % in the irradiated group but only 40 % in the non-irradiated. A marked difference was also observed in the appearance of the coat hair, skin and tail. The irradiated group was in much better condition. Mortality was delayed and the healthy appearance was prolonged in the irradiated mice by about 20-30 weeks compared with the control mice. These results suggest that the low dose irradiation modified the condition of the diabetic mice, leading not only to recovery from diabetes, but also to suppression of the aging process

  13. Juvenile nasopharyngeal angiofibroma - study of the tumor extension and vascularization through computerized tomography (CT) scan and angiography and the patient's age

    International Nuclear Information System (INIS)

    Sennes, Luiz Ubirajara

    1997-01-01

    The juvenile nasopharyngeal angiofibroma is a rare benign tumor that affects male adolescents. It is a fibro-vascular tumor with an exuberant intra tumor blood flow and irrigated by several arteries. It originates from the lateral and posterior region of the nasal cavity and, due to its characteristic multidirectional growth, widely affects the paranasal sinuses and skull base, sometimes invading the cranial fossa or the cheek. The determinant factors of its growth and vascularisation are unknown. Attempting to clarify them, 33 patients from the University of Sao Paulo Medicine were studied from 1983 to 1995, with complete history and radiological documentation (CT scan and angiography), as well as with histological confirmation of the diagnosis. In order to take only tumors with natural evolution, patients with recidivant tumor and those already submitted to any previous treatment were excluded. The parameters evaluate were: patient age and tumor extension (by classification, degree of invasion and number of compromised sites in CT scan) and vascularisation (by number and degree of participation of bilateral arteries in angiography). The se data were tabled and correlated one with each other. (author)

  14. Branched-Chain Amino Acids Ameliorate Fibrosis and Suppress Tumor Growth in a Rat Model of Hepatocellular Carcinoma with Liver Cirrhosis

    Science.gov (United States)

    Cha, Jung Hoon; Bae, Si Hyun; Kim, Hye Lim; Park, Na Ri; Choi, Eun Suk; Jung, Eun Sun; Choi, Jong Young; Yoon, Seung Kew

    2013-01-01

    Purpose Recent studies have revealed that branched-chain amino acids (BCAA) reduce the development of hepatocellular carcinoma (HCC) in patients with obesity and hepatitis C virus infection by improving insulin resistance (IR). The aim of this study was to examine the anti-cancer and anti-fibrotic effects of BCAA on the development of diethylnitrosamine (DEN)-induced HCC and liver cirrhosis in a rat model. Methods Male SD rats received weekly intraperitoneal injections of DEN (50 mg/kg of body weight) for 16 weeks to induce HCC. They were fed a diet containing 3% casein, 3% or 6% BCAA for 13 weeks beginning 6 weeks after DEN administration. DEN was used to induce HCC through stepwise development from cirrhosis to HCC. The effect of BCAA was evaluated in tumor tissues by histopathologic analyses, reverse transcription-polymerase chain reaction, and Western blotting. Results The mean area and number of dysplastic nodules (DNs) and tumors in the casein group tended to be larger than those in the BCAA group 16 weeks after DEN administration. The mean fibrotic area in the BCAA group was smaller than that in the casein group. The BCAA group showed decreased mRNA levels for markers of fibrosis, angiogenesis, and apoptosis inhibition. Compared with the casein group, the BCAA group had lower levels of α-smooth muscle actin, vascular endothelial growth factor, p-β-catenin, p-p38 mitogen-activated protein kinase, proliferating cell nuclear antigen, and caspase-3 protein expression, as well as a higher level of cleaved caspase-3 protein expression. Conclusions BCAA supplementation of the diet ameliorated liver fibrosis and HCC development in a DEN-induced rat model of HCC with liver cirrhosis, but not in the IR model. These results provide a rationale for anti-fibrosis and chemoprevention using BCAA treatment for HCC with liver cirrhosis, as well as decreasing the ammonia level. PMID:24223741

  15. Branched-chain amino acids ameliorate fibrosis and suppress tumor growth in a rat model of hepatocellular carcinoma with liver cirrhosis.

    Directory of Open Access Journals (Sweden)

    Jung Hoon Cha

    Full Text Available PURPOSE: Recent studies have revealed that branched-chain amino acids (BCAA reduce the development of hepatocellular carcinoma (HCC in patients with obesity and hepatitis C virus infection by improving insulin resistance (IR. The aim of this study was to examine the anti-cancer and anti-fibrotic effects of BCAA on the development of diethylnitrosamine (DEN-induced HCC and liver cirrhosis in a rat model. METHODS: Male SD rats received weekly intraperitoneal injections of DEN (50 mg/kg of body weight for 16 weeks to induce HCC. They were fed a diet containing 3% casein, 3% or 6% BCAA for 13 weeks beginning 6 weeks after DEN administration. DEN was used to induce HCC through stepwise development from cirrhosis to HCC. The effect of BCAA was evaluated in tumor tissues by histopathologic analyses, reverse transcription-polymerase chain reaction, and Western blotting. RESULTS: The mean area and number of dysplastic nodules (DNs and tumors in the casein group tended to be larger than those in the BCAA group 16 weeks after DEN administration. The mean fibrotic area in the BCAA group was smaller than that in the casein group. The BCAA group showed decreased mRNA levels for markers of fibrosis, angiogenesis, and apoptosis inhibition. Compared with the casein group, the BCAA group had lower levels of α-smooth muscle actin, vascular endothelial growth factor, p-β-catenin, p-p38 mitogen-activated protein kinase, proliferating cell nuclear antigen, and caspase-3 protein expression, as well as a higher level of cleaved caspase-3 protein expression. CONCLUSIONS: BCAA supplementation of the diet ameliorated liver fibrosis and HCC development in a DEN-induced rat model of HCC with liver cirrhosis, but not in the IR model. These results provide a rationale for anti-fibrosis and chemoprevention using BCAA treatment for HCC with liver cirrhosis, as well as decreasing the ammonia level.

  16. A NOTCH-sensitive uPAR-regulated oncolytic adenovirus effectively suppresses pancreatic tumor growth and triggers synergistic anticancer effects with gemcitabine and nab-paclitaxel.

    Science.gov (United States)

    Mato-Berciano, Ana; Raimondi, Giulia; Maliandi, Maria Victoria; Alemany, Ramon; Montoliu, Lluis; Fillat, Cristina

    2017-04-04

    Notch signaling pathway is an embryonic program that becomes reactivated in pancreatic cancer and contributes to cancer stem cell (CSC) maintenance. We explored the concept of oncolytic adenoviral activity in response to Notch activation signaling, in the context of a chimeric promoter with uPAR regulatory sequences, as a strategy to drive its activity in neoplastic and CSC. We explored the advantages of a chemo-virotherapy approach based on synergistic combinations. Regulatory sequences recognized by the transcriptional factor CSL upstream a minimal uPAR promoter were engineered in adenoviral vectors and in the oncolytic adenovirus AdNuPARmE1A. Viral response to Notch signaling, and viral potency in cell lines and pancreatic cancer stem cells (PCSC) was tested. Preclinical toxicity and antitumor efficacy in xenografts and Patient-derived xenografts (PDX) mouse models was evaluated, as unimodal or in combination with gemcitabine+nab-paclitaxel. Mechanistic studies were conducted to explore the synergism of combined therapies.We demonstrate that CSL-binding site optimized-engineered sequences respond to Notch activation in AdNuPARmLuc and AdNuPARmE1A. AdNuPARmE1A showed strong lytic effects in pancreatic cancer cell lines and PCSC. AdNuPARmE1A displayed attenuated activity in normal tissues, but robust antitumor effects in xenograft and PDX models, leading to a reduced capacity of treated tumors to form tumorspheres. Chemo-virotherapy treatment enlarged therapeutic response in both tumor models. Synergistic effects of the combination resulted from viral sensitization of apoptotic cell death triggered by chemotherapy.In summary we present a novel effective oncolytic adenovirus, AdNuPARmE1A that reduces PCSC and presents synergistic effects with gemcitabine and nab-paclitaxel, supporting further clinical development.

  17. Silibinin and Paclitaxel Cotreatment Significantly Suppress the Activity and Lung Metastasis of Triple Negative 4T1 Mammary Tumor Cell in Mice

    Directory of Open Access Journals (Sweden)

    Bing-Ying Ho

    2012-10-01

    Full Text Available The in vitro and in vivo bioactivities of silibinin (SB, paclitaxel (PTX and SB and PTX in combination (SB+PTX against murine metastatic mammary 4T1 cancer cell line were investigated. Isobologram and combination index (CI analyses showed that SB and PTX can function synergistically in the inhibition of 4T1 cell proliferation with a CI value<1. Both SB and PTX alone or SB+PTX treatment inhibited 4T1 cell migration and motility possibly through downregulation of the serpin protease nexin-1 (PN-1 and N-cadherin expression, inhibition of matrix metalloprotease (MMP-9 activity, and upregulation of E-cadherin. Flow cytometry and Western blot analyses demonstrated that both drugs deregulated cell-cycle mediators and induced apoptosis in 4T1 cells. A real-time in vivo bioluminescence imaging system to monitor the breast cancer cell metastasis in syngeneic BALB/c mice was established using a stable 4T1pGL−COX−2/Luc cell clone carrying a COX-2 promoter driven-luciferase reporter gene. In vivo study using the allograft 4T1pGL−COX−2/Luc metastatic mouse model indicated that SB co-treated with PTX can significantly suppress lung metastasis of 4T1 cells likely through inhibiting cell proliferation and angiogenesis. Together, this study demonstrates that SB could act synergistically with PTX in 4T1 cells, providing a therapeutic option for highly metastatic triple negative breast cancer.

  18. microRNA 125a Regulates MHC-I Expression on Esophageal Adenocarcinoma Cells, Associated With Suppression of Anti-tumor Immune Response and Poor Outcomes of Patients.

    Science.gov (United States)

    Mari, Luigi; Hoefnagel, Sanne J M; Zito, Domenico; van de Meent, Marian; van Endert, Peter; Calpe, Silvia; Sancho Serra, Maria Del Carmen; Heemskerk, Mirjam H M; van Laarhoven, Hanneke W M; Hulshof, Maarten C C M; Gisbertz, Susanne S; Medema, Jan Paul; van Berge Henegouwen, Mark I; Meijer, Sybren L; Bergman, Jacques J G H M; Milano, Francesca; Krishnadath, Kausilia K

    2018-06-07

    Immune checkpoint inhibition may affect growth or progression of highly aggressive cancers, such as esophageal adenocarcinoma (EAC). We investigated the regulation of expression of major histocompatibility complex, class 1 (MHC-I) proteins (encoded by HLA-A, HLA-B, and HLA-C) and the immune response to EACs in patient samples. We performed quantitative PCR array analyses of OE33 cells and OE19 cells, which express different levels of the ATP binding cassette subfamily B member 1 (TAP1) and TAP2, required for antigen presentation by MHC-I, to identify microRNAs that regulate their expression. We performed luciferase assays to validate interactions between microRNAs and potential targets. We overexpressed candidate microRNAs in OE33, FLO-1, and OACP4 C cell lines and performed quantitative PCR, immunoblot, and flow cytometry analyses to identify changes in mRNA and protein expression; we studied the effects of cytotoxic T cells. We performed microRNA in situ hybridization, RNA-sequencing, and immunohistochemical analyses of tumor tissues from 51 untreated patients with EAC in the Netherlands. Clinical and survival data were collected for patients, and EACs subtypes were determined. We found OE19 cells to have increased levels of 7 microRNAs. Of these, we found binding sites for microRNA 125a (MIR125a)-5p in the 3'UTR of the TAP2 mRNA and binding sites for MIR148a-3p in 3'UTRs of HLA-A, HLA-B, and HLA-C mRNAs. Overexpression of these microRNAs reduced expression of TAP2 in OE33, FLO-1, and OACP4 C cells, and reduced cell-surface levels of MHC-I. OE33 cells that expressed the viral peptide BZLF1 were killed by cytotoxic T cells, whereas OE33 that overexpressed MIR125a-5p or MIR 148a along with BZLF1 were not. In EAC and non-tumor tissues, levels of MIR125a-5p correlated inversely with levels of TAP2 protein. High expression of TAP1 by EAC correlated with significantly shorter overall survival times of patients. EACs that expressed high levels of TAP1 and genes involved

  19. Pentoxifylline sensitizes human cervical tumor cells to cisplatin-induced apoptosis by suppressing NF-kappa B and decreased cell senescence

    International Nuclear Information System (INIS)

    Hernandez-Flores, Georgina; Bravo-Cuellar, Alejandro; Ortiz-Lazareno, Pablo C; Lerma-Diaz, Jose Manuel; Dominguez-Rodriguez, Jorge R; Jave-Suarez, Luis F; Aguilar-Lemarroy, Adriana del C; Celis-Carrillo, Ruth de; Toro-Arreola, Susana del; Castellanos-Esparza, Yessica C

    2011-01-01

    Worldwide, cervical cancer is the second most common causes of cancer in women and represents an important mortality rate. Cisplatin (CIS) is a very important antitumoral agent and can lead tumor cells toward two important cellular states: apoptosis and senescence. In some types of cancers pentoxifylline (PTX) sensitizes these cells to the toxic action of chemotherapeutics drugs such as adriamycin, inducing apoptosis. In the present work, we studied in vitro whether PTX alone or in combination with CIS induces apoptosis and/or senescence in cervix cancer HeLa and SiHa cell lines infected with HPV types 16 and 18, respectively, as well as in immortalized keratinocytyes HaCaT cells. HeLa (HPV 18+), SiHa (HPV 16+) cervix cancer cells and non-tumorigenic immortalized HaCaT cells (control) were treated with PTX, CIS or both. The cellular toxicity and survival fraction of PTX and CIS were determinate by WST-1 and clonogenic assays respectively. Apoptosis, caspase activation and phosphorylation of ERK1/2, p38, p65 (NF-κB), Bcl-2 and Bcl-XL anti-apoptotic proteins were determinated by flow cytometry. Senescence by microscopy. Phosphorylation of IκBα and IκB total were measured by ELISA. Pro-apoptotic, anti-apoptotic and senescence genes, as well as HPV-E6/7 mRNA expression, were detected by RT-PCR. Our results show that after 24 hours of incubation PTX per se is toxic for cancer cells affecting cell viability and inducing apoptosis. The toxicity in HaCaT cells was minimal. CIS induces apoptosis in HeLa and SiHa cells and its effect was significantly increases when the cells were treated with PTX + CIS. In all studies there was a direct correlation with levels of caspases (-3, -6, -7, -9 and -8) activity and apoptosis. CIS induces important levels of senescence and phosphorylation of ERK1/2, p38, p65/RELA, and IκBα, and decreased the expression of anti-apoptotic protein Bcl-XL. Surprisingly these levels were significantly reduced by PTX in tumor cells, and at the same

  20. Inhibition of Mitochondrial Cytochrome c Release and Suppression of Caspases by Gamma-Tocotrienol Prevent Apoptosis and Delay Aging in Stress-Induced Premature Senescence of Skin Fibroblasts

    Directory of Open Access Journals (Sweden)

    Suzana Makpol

    2012-01-01

    Full Text Available In this study, we determined the molecular mechanism of γ-tocotrienol (GTT in preventing cellular aging by focusing on its anti-apoptotic effect in stress-induced premature senescence (SIPS model of human diploid fibroblasts (HDFs. Results obtained showed that SIPS exhibited senescent-phenotypic characteristic, increased expression of senescence-associated β-galactosidase (SA β-gal and promoted G0/G1 cell cycle arrest accompanied by shortening of telomere length with decreased telomerase activity. Both SIPS and senescent HDFs shared similar apoptotic changes such as increased Annexin V-FITC positive cells, increased cytochrome c release and increased activation of caspase-9 and caspase-3 (P<0.05. GTT treatment resulted in a significant reduction of Annexin V-FITC positive cells, inhibited cytochrome c release and decreased activation of caspase-9 and caspase-3 (P<0.05. Gene expression analysis showed that GTT treatment down regulated BAX mRNA, up-regulated BCL2A1 mRNA and decreased the ratio of Bax/Bcl-2 protein expression (P<0.05 in SIPS. These findings suggested that GTT inhibits apoptosis by modulating the upstream apoptosis cascade, causing the inhibition of cytochrome c release from the mitochondria with concomitant suppression of caspase-9 and caspase-3 activation. In conclusion, GTT delays cellular senescence of human diploid fibroblasts through the inhibition of intrinsic mitochondria-mediated pathway which involved the regulation of pro- and anti-apoptotic genes and proteins.

  1. Liver cancer-derived hepatitis C virus core proteins shift TGF-beta responses from tumor suppression to epithelial-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Serena Battaglia

    Full Text Available BACKGROUND: Chronic hepatitis C virus (HCV infection and associated liver cirrhosis represent a major risk factor for hepatocellular carcinoma (HCC development. TGF-beta is an important driver of liver fibrogenesis and cancer; however, its actual impact in human cancer progression is still poorly known. The aim of this study was to investigate the role of HCC-derived HCV core natural variants on cancer progression through their impact on TGF-beta signaling. PRINCIPAL FINDINGS: We provide evidence that HCC-derived core protein expression in primary human or mouse hepatocyte alleviates TGF-beta responses in terms or growth inhibition or apoptosis. Instead, in these hepatocytes TGF-beta was still able to induce an epithelial to mesenchymal transition (EMT, a process that contributes to the promotion of cell invasion and metastasis. Moreover, we demonstrate that different thresholds of Smad3 activation dictate the TGF-beta responses in hepatic cells and that HCV core protein, by decreasing Smad3 activation, may switch TGF-beta growth inhibitory effects to tumor promoting responses. CONCLUSION/SIGNIFICANCE: Our data illustrate the capacity of hepatocytes to develop EMT and plasticity under TGF-beta, emphasize the role of HCV core protein in the dynamic of these effects and provide evidence for a paradigm whereby a viral protein implicated in oncogenesis is capable to shift TGF-beta responses from cytostatic effects to EMT development.

  2. CSF1R+ Macrophages Sustain Pancreatic Tumor Growth through T Cell Suppression and Maintenance of Key Gene Programs that Define the Squamous Subtype.

    Science.gov (United States)

    Candido, Juliana B; Morton, Jennifer P; Bailey, Peter; Campbell, Andrew D; Karim, Saadia A; Jamieson, Thomas; Lapienyte, Laura; Gopinathan, Aarthi; Clark, William; McGhee, Ewan J; Wang, Jun; Escorcio-Correia, Monica; Zollinger, Raphael; Roshani, Rozita; Drew, Lisa; Rishi, Loveena; Arkell, Rebecca; Evans, T R Jeffry; Nixon, Colin; Jodrell, Duncan I; Wilkinson, Robert W; Biankin, Andrew V; Barry, Simon T; Balkwill, Frances R; Sansom, Owen J

    2018-05-01

    Pancreatic ductal adenocarcinoma (PDAC) is resistant to most therapies including single-agent immunotherapy and has a dense desmoplastic stroma, and most patients present with advanced metastatic disease. We reveal that macrophages are the dominant leukocyte population both in human PDAC stroma and autochthonous models, with an important functional contribution to the squamous subtype of human PDAC. We targeted macrophages in a genetic PDAC model using AZD7507, a potent selective inhibitor of CSF1R. AZD7507 caused shrinkage of established tumors and increased mouse survival in this difficult-to-treat model. Malignant cell proliferation diminished, with increased cell death and an enhanced T cell immune response. Loss of macrophages rewired other features of the TME, with global changes in gene expression akin to switching PDAC subtypes. These changes were markedly different to those elicited when neutrophils were targeted via CXCR2. These results suggest targeting the myeloid cell axis may be particularly efficacious in PDAC, especially with CSF1R inhibitors. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Mobile phones, cordless phones and rates of brain tumors in different age groups in the Swedish National Inpatient Register and the Swedish Cancer Register during 1998-2015.

    Directory of Open Access Journals (Sweden)

    Lennart Hardell

    Full Text Available We used the Swedish Inpatient Register (IPR to analyze rates of brain tumors of unknown type (D43 during 1998-2015. Average Annual Percentage Change (AAPC per 100,000 increased with +2.06%, 95% confidence interval (CI +1.27, +2.86% in both genders combined. A joinpoint was found in 2007 with Annual Percentage Change (APC 1998-2007 of +0.16%, 95% CI -0.94, +1.28%, and 2007-2015 of +4.24%, 95% CI +2.87, +5.63%. Highest AAPC was found in the age group 20-39 years. In the Swedish Cancer Register the age-standardized incidence rate per 100,000 increased for brain tumors, ICD-code 193.0, during 1998-2015 with AAPC in men +0.49%, 95% CI +0.05, +0.94%, and in women +0.33%, 95% CI -0.29, +0.45%. The cases with brain tumor of unknown type lack morphological examination. Brain tumor diagnosis was based on cytology/histopathology in 83% for men and in 87% for women in 1980. This frequency increased to 90% in men and 88% in women in 2015. During the same time period CT and MRI imaging techniques were introduced and morphology is not always necessary for diagnosis. If all brain tumors based on clinical diagnosis with CT or MRI had been reported to the Cancer Register the frequency of diagnoses based on cytology/histology would have decreased in the register. The results indicate underreporting of brain tumor cases to the Cancer Register. The real incidence would be higher. Thus, incidence trends based on the Cancer Register should be used with caution. Use of wireless phones should be considered in relation to the change of incidence rates.

  4. MicroRNA-128b suppresses tumor growth and promotes apoptosis by targeting A2bR in gastric cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ping; Guo, Xueyan; Zong, Wei [Department of Gastroenterology, The Third Affiliated Hospital, College of Medicine, Xi' an Jiaotong University, Xi' an 710068 (China); Song, Bin [Department of General Surgery, The Third Affiliated Hospital, College of Medicine, Xi' an Jiaotong University, Xi' an 710068 (China); Liu, Guisheng [Department of Gastroenterology, The Third Affiliated Hospital, College of Medicine, Xi' an Jiaotong University, Xi' an 710068 (China); He, Shuixiang, E-mail: fisrstsxianghe@163.com [Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Xi' an Jiaotong University, Xi' an 710061 (China)

    2015-11-27

    MicroRNAs (miRNAs) play crucial roles in the development and progression of human cancers, including gastric cancer (GC). The discovery of miRNAs may provide a new and powerful tool for studying the mechanism, diagnosis, and treatment of GC. In this study, we aimed to investigate the role and mechanism of miR-128b in the development and progression of GC. Quantitative real-time PCR (qRT-PCR) was used to measure the expression level of miR-128b in GC tissues and cell lines. We found that miR-128b was significantly down-regulated in GC tissues and cell lines. In addition, over-expression of miR-128b inhibited GC cell proliferation, migration and invasion of GC cells in vitro. Gain-of-function in vitro experiments further showed that the miR-128b mimic significantly promoted GC cell apoptosis. Subsequent dual-luciferase reporter assay identified one of the proto-oncogene A2bR as direct target of miR-128b. Therefore, our results indicate that miR-128b is a proto-oncogene miRNA that can suppresses GC proliferation and migration through down-regulation of the oncogene gene A2bR. Taken together, our results indicate that miR-128b could serve as a potential diagnostic biomarker and therapeutic option for human GC in the near future. - Highlights: • The expression of MiR-128b is significantly down-regulated in GC tissues and cell lines. • Ectopic expression of miR-128b directly affects cell proliferation, migration and invasion in vitro. • Overexpression of miR-128b increases apoptosis in GC cells. • A2bR is a candidate target gene of miR-128b. • MiR-128b represses cell proliferation, migration and invasion and promotes apoptosis by targeting A2bR in GC.

  5. Human mesenchymal stromal cells transiently increase cytokine production by activated T cells before suppressing T-cell proliferation: effect of interferon-γ and tumor necrosis factor-α stimulation.

    Science.gov (United States)

    Cuerquis, Jessica; Romieu-Mourez, Raphaëlle; François, Moïra; Routy, Jean-Pierre; Young, Yoon Kow; Zhao, Jing; Eliopoulos, Nicoletta

    2014-02-01

    Mesenchymal stromal cells (MSCs) suppress T-cell proliferation, especially after activation with inflammatory cytokines. We compared the dynamic action of unprimed and interferon (IFN)-γ plus tumor necrosis factor (TNF)-α-pretreated human bone marrow-derived MSCs on resting or activated T cells. MSCs were co-cultured with allogeneic peripheral blood mononuclear cells (PBMCs) at high MSC-to-PBMC ratios in the absence or presence of concomitant CD3/CD28-induced T-cell activation. The kinetic effects of MSCs on cytokine production and T-cell proliferation, cell cycle and apoptosis were assessed. Unprimed MSCs increased the early production of IFN-γ and interleukin (IL)-2 by CD3/CD28-activated PBMCs before suppressing T-cell proliferation. In non-activated PBMC co-cultures, low levels of IL-2 and IL-10 synthesis were observed with MSCs in addition to low levels of CD69 expression by T cells and no T-cell proliferation. MSCs also decreased apoptosis in resting and activated T cells and inhibited the transition of these cells into the sub-G0/G1 and the S phases. With inhibition of indoleamine 2,3 dioxygenase, MSCs increased CD3/CD28-induced T-cell proliferation. After priming with IFN-γ plus TNF-α, MSCs were less potent at increasing cytokine production by CD3/CD28-activated PBMCs and more effective at inhibiting T-cell proliferation but had preserved anti-apoptotic functions. Unprimed MSCs induce a transient increase in IFN-γ and IL-2 synthesis by activated T cells. Pre-treatment of MSCs with IFN-γ plus TNF-α may increase their effectiveness and safety in vivo. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  6. TPL2 (Therapeutic Targeting Tumor Progression Locus-2)/ATF4 (Activating Transcription Factor-4)/SDF1α (Chemokine Stromal Cell-Derived Factor-α) Axis Suppresses Diabetic Retinopathy.

    Science.gov (United States)

    Lai, De-Wei; Lin, Keng-Hung; Sheu, Wayne Huey-Herng; Lee, Maw-Rong; Chen, Chung-Yu; Lee, Wen-Jane; Hung, Yi-Wen; Shen, Chin-Chang; Chung, Tsung-Ju; Liu, Shing-Hwa; Sheu, Meei-Ling

    2017-09-01

    Diabetic retinopathy is characterized by vasopermeability, vascular leakage, inflammation, blood-retinal barrier breakdown, capillary degeneration, and neovascularization. However, the mechanisms underlying the association between diabetes mellitus and progression retinopathy remain unclear. TPL2 (tumor progression locus 2), a serine-threonine protein kinase, exerts a pathological effect on vascular angiogenesis. This study investigated the role of N ε -(carboxymethyl)lysine, a major advanced glycation end products, and the involved TPL2-related molecular signals in diabetic retinopathy using models of in vitro and in vivo and human samples. Serum N ε -(carboxymethyl)lysine levels and TPL2 kinase activity were significantly increased in clinical patients and experimental animals with diabetic retinopathy. Intravitreal administration of pharmacological blocker or neutralizing antibody inhibited TPL2 and effectively suppressed the pathological characteristics of retinopathy in streptozotocin-induced diabetic animal models. Intravitreal VEGF (vascular endothelial growth factor) neutralization also suppressed the diabetic retinopathy in diabetic animal models. Mechanistic studies in primary human umbilical vein endothelial cells and primary retinal microvascular endothelial cells from streptozotocin-diabetic rats, db/db mice, and samples from patients with diabetic retinopathy revealed a positive parallel correlation between N ε -(carboxymethyl)lysine and the TPL2/chemokine SDF1α (stromal cell-derived factor-α) axis that is dependent on endoplasmic reticulum stress-related molecules, especially ATF4 (activating transcription factor-4). This study demonstrates that inhibiting the N ε -(carboxymethyl)lysine-induced TPL2/ATF4/SDF1α axis can effectively prevent diabetes mellitus-mediated retinal microvascular dysfunction. This signaling axis may include the therapeutic potential for other diseases involving pathological neovascularization or macular edema. © 2017

  7. The effect of age at exposure on the inactivating mechanisms and relative contributions of key tumor suppressor genes in radiation-induced mouse T-cell lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Sunaoshi, Masaaki [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Department of Biological Sciences, College of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 (Japan); Amasaki, Yoshiko; Hirano-Sakairi, Shinobu; Blyth, Benjamin J. [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Morioka, Takamitsu [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kaminishi, Mutsumi [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shang, Yi [Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Nishimura, Mayumi; Shimada, Yoshiya [Radiobiology for Children' s Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Radiation Effect Accumulation and Prevention Project, Fukushima Project Headquarters, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Tachibana, Akira [Department of Biological Sciences, College of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 (Japan); and others

    2015-09-15

    Highlights: • T-cell lymphoma incidence, latency and weight did not change with age at exposure. • Lymphomas had frequent loss of heterozygosity on chromosomes 4, 11 and 19. • These lesions targeted the Cdkn2a, Ikaros and Pten tumor suppressor genes. • Age at exposure may influence which tumor suppressor genes are lost in each tumor. • The mechanisms of tumor suppressor gene loss were different at each locus. - Abstract: Children are considered more sensitive to radiation-induced cancer than adults, yet any differences in genomic alterations associated with age-at-exposure and their underlying mechanisms remain unclear. We assessed genome-wide DNA copy number and mutation of key tumor suppressor genes in T-cell lymphomas arising after weekly irradiation of female B6C3F1 mice with 1.2 Gy X-rays for 4 consecutive weeks starting during infancy (1 week old), adolescence (4 weeks old) or as young adults (8 weeks old). Although T-cell lymphoma incidence was similar, loss of heterozygosity at Cdkn2a on chromosome 4 and at Ikaros on chromosome 11 was more frequent in the two older groups, while loss at the Pten locus on chromosome 19 was more frequent in the infant-irradiated group. Cdkn2a and Ikaros mutation/loss was a common feature of the young adult-irradiation group, with Ikaros frequently (50%) incurring multiple independent hits (including deletions and mutations) or suffering a single hit predicted to result in a dominant negative protein (such as those lacking exon 4, an isoform we have designated Ik12, which lacks two DNA binding zinc-finger domains). Conversely, Pten mutations were more frequent after early irradiation (60%) than after young adult-irradiation (30%). Homozygous Pten mutations occurred without DNA copy number change after irradiation starting in infancy, suggesting duplication of the mutated allele by chromosome mis-segregation or mitotic recombination. Our findings demonstrate that while deletions on chromosomes 4 and 11 affecting Cdkn2

  8. The influence of age at time of exposure to 226Ra or 239Pu on distribution, retention, postinjection survival, and tumor induction in beagle dogs

    International Nuclear Information System (INIS)

    Bruenger, F.W.; Lloyd, R.D.; Miller, S.C.

    1991-01-01

    The influence of age at injection of 226Ra or 239Pu on skeletal deposition and local distribution, the pattern of bone tumor formation, and postinjection survival was assessed in parallel short-term studies of mechanisms and lifetime toxicity. Beagles received a single intravenous injection of 226Ra or 239Pu at 3 months (juveniles), 17-19 months (young adults) or 60 months (mature). Data from short-term studies of mechanisms and dosimetry and from one dosage level of each of the toxicity experiments were compared. Skeletal growth and turnover produced differential initial deposition and distribution patterns typical for each age group. At 1 week after injection, skeletal retention of 226Ra or 239Pu was 68 and 68%, respectively, in the juveniles, 32 and 46% in the young adults, and 31 and 43% in the mature dogs. Comparing individual bones in the juveniles, gradients in the concentration of 239Pu were small since all bones were actively growing, but substantial gradients, corresponding to centers of ossification, were present within individual bones. In other age groups, local concentration gradients were less pronounced, but much larger differences were present among the various bones. In the toxicity study all animals injected with either 41 kBq 226Ra/kg or 11 kBq 239Pu/kg have died. The cumulative average skeletal doses to the presumed time of start of tumor growth (1 year before death) were 25 and 4 Gy, respectively, for the juveniles, 22 and 5 Gy for the young adults, and 15 and 4 Gy for the mature dogs. The highest bone tumor incidence was seen in the young adult groups. Differences were observed in location of bone tumors between dogs in the same age group given radium or plutonium and among age groups injected with either radionuclide, some of which could be explained by differences in local dose distributions

  9. c-Myc Represses Tumor-Suppressive microRNAs, let-7a, miR-16 and miR-29b, and Induces Cyclin D2-Mediated Cell Proliferation in Ewing's Sarcoma Cell Line.

    Directory of Open Access Journals (Sweden)

    Masanori Kawano

    Full Text Available Myc oncogenic transcription factor is known to inhibit tumor suppressive microRNAs (miRNAs, resulting in greater expression of their target protein related to cell cycle, invasion or anti-apoptotic factors in human cancer cells. To explore possible oncogenic factors in Ewing's sarcoma (ES, we conducted microarray-based approach to profile the changes in the expression of miRNAs and its downstream mRNAs in five ES cell lines and human mesenchymal stem cells (hMSCs. Three miRNAs, let-7a, miR-16 and miR-29b were significantly down-regulated, whereas c-Myc and cyclin D2 (CCND2 were significantly up-regulated in all tested ES cells compared with hMSCs. To verify that let-7a, miR-16 and miR-29b were the targets of c-Myc in ES cell lines, we transfected siRNA against c-Myc and confirmed the coordinate up-regulation of let-7a, miR-16 and miR-29b through the repression of c-Myc. The ES cells transfected with c-Myc-siRNA and let-7a, miR-16 and miR-29b exhibited the inhibition of the cell cycle progression. The increased expression of let-7a, miR-16 and miR-29b resulted in the reduction of CCND2 protein expression. We also demonstrated that c-Myc-siRNA treatment of ES cells was associated with the decreased expression of CCND2 as a down-stream of three miRNAs. Furthermore, the introduction of let-7a, miR-16 and miR-29b in ES cells could inhibit the c-Myc-mediated up-regulation of CCND2 resulted in the prevention of cell cycle progression. In addition, the transfection of let-7a, miR-16 and miR-29b in ES cells suppressed tumor growth ex vivo treatment. These findings suggests that the up-regulation of c-Myc inhibited the expression of let-7a, miR-16 and miR-29b subsequently induced CCND2 expression in ES cells. The present study might identify a novel oncogenic axis that c-Myc regulates the expression of CCND2 via let-7a, miR-16 and miR-29b, leading to the development new therapeutic targets for ES.

  10. Suppressive Effects of Insulin on Tumor Necrosis Factor-Dependent Early Osteoarthritic Changes Associated With Obesity and Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Hamada, Daisuke; Maynard, Robert; Schott, Eric; Drinkwater, Christopher J; Ketz, John P; Kates, Stephen L; Jonason, Jennifer H; Hilton, Matthew J; Zuscik, Michael J; Mooney, Robert A

    2016-06-01

    Obesity is a state of chronic inflammation that is associated with insulin resistance and type 2 diabetes mellitus (DM), as well as an increased risk of osteoarthritis (OA). This study was undertaken to define the links between obesity-associated inflammation, insulin resistance, and OA, by testing the hypotheses that 1) tumor necrosis factor (TNF) is critical in mediating these pathologic changes in OA, and 2) insulin has direct effects on the synovial joint that are compromised by insulin resistance. The effects of TNF and insulin on catabolic gene expression were determined in fibroblast-like synoviocytes (FLS) isolated from human OA synovium. Synovial TNF expression and OA progression were examined in 2 mouse models, high-fat (HF) diet-fed obese mice with type 2 DM and TNF-knockout mice. Insulin resistance was investigated in synovium from patients with type 2 DM. Insulin receptors (IRs) were abundant in both mouse and human synovial membranes. Human OA FLS were insulin responsive, as indicated by the dose-dependent phosphorylation of IRs and Akt. In cultures of human OA FLS with exogenous TNF, the expression and release of MMP1, MMP13, and ADAMTS4 by FLS were markedly increased, whereas after treatment with insulin, these effects were selectively inhibited by >50%. The expression of TNF and its abundance in the synovium were elevated in samples from obese mice with type 2 DM. In TNF-knockout mice, increases in osteophyte formation and synovial hyperplasia associated with the HF diet were blunted. The synovium from OA patients with type 2 DM contained markedly more macrophages and showed elevated TNF levels as compared to the synovium from OA patients without diabetes. Moreover, insulin-dependent phosphorylation of IRs and Akt was blunted in cultures of OA FLS from patients with type 2 DM. TNF appears to be involved in mediating the advanced progression of OA seen in type 2 DM. While insulin plays a protective, antiinflammatory role in the synovium, insulin

  11. Sulforaphane suppresses the growth of glioblastoma cells, glioblastoma stem cell-like spheroids, and tumor xenografts through multiple cell signaling pathways.

    Science.gov (United States)

    Bijangi-Vishehsaraei, Khadijeh; Reza Saadatzadeh, M; Wang, Haiyan; Nguyen, Angie; Kamocka, Malgorzata M; Cai, Wenjing; Cohen-Gadol, Aaron A; Halum, Stacey L; Sarkaria, Jann N; Pollok, Karen E; Safa, Ahmad R

    2017-12-01

    OBJECTIVE Defects in the apoptotic machinery and augmented survival signals contribute to drug resistance in glioblastoma (GBM). Moreover, another complexity related to GBM treatment is the concept that GBM development and recurrence may arise from the expression of GBM stem cells (GSCs). Therefore, the use of a multifaceted approach or multitargeted agents that affect specific tumor cell characteristics will likely be necessary to successfully eradicate GBM. The objective of this study was to investigate the usefulness of sulforaphane (SFN)-a constituent of cruciferous vegetables with a multitargeted effect-as a therapeutic agent for GBM. METHODS The inhibitory effects of SFN on established cell lines, early primary cultures, CD133-positive GSCs, GSC-derived spheroids, and GBM xenografts were evaluated using various methods, including GSC isolation and the sphere-forming assay, analysis of reactive oxygen species (ROS) and apoptosis, cell growth inhibition assay, comet assays for assessing SFN-triggered DNA damage, confocal microscopy, Western blot analysis, and the determination of in vivo efficacy as assessed in human GBM xenograft models. RESULTS SFN triggered the significant inhibition of cell survival and induced apoptotic cell death, which was associated with caspase 3 and caspase 7 activation. Moreover, SFN triggered the formation of mitochondrial ROS, and SFN-triggered cell death was ROS dependent. Comet assays revealed that SFN increased single- and double-strand DNA breaks in GBM. Compared with the vehicle control cells, a significantly higher amount of γ-H2AX foci correlated with an increase in DNA double-strand breaks in the SFN-treated samples. Furthermore, SFN robustly inhibited the growth of GBM cell-induced cell death in established cell cultures and early-passage primary cultures and, most importantly, was effective in eliminating GSCs, which play a major role in drug resistance and disease recurrence. In vivo studies revealed that SFN

  12. Interocular suppression

    Science.gov (United States)

    Tuna, Ana Rita; Almeida Neves Carrega, Filipa; Nunes, Amélia Fernandes

    2017-08-01

    The objective of this work is to quantify the suppressive imbalance, based on the manipulation of ocular luminance, between a group of subjects with normal binocular vision and a group of subjects with amblyopia. The result reveals that there are statistically significant differences in interocular dominance between two groups, evidencing a greater suppressive imbalance in amblyopic subjects. The technique used, proved to be a simple, easy to apply and economic method, for quantified ocular dominance. It is presented as a technique with the potential to accompany subjects with a marked dominance in one of the eyes that makes fusion difficult.

  13. Inhibition of GLO1 in Glioblastoma Multiforme Increases DNA-AGEs, Stimulates RAGE Expression, and Inhibits Brain Tumor Growth in Orthotopic Mouse Models

    Directory of Open Access Journals (Sweden)

    Rahul Jandial

    2018-01-01

    Full Text Available Cancers that exhibit the Warburg effect may elevate expression of glyoxylase 1 (GLO1 to detoxify the toxic glycolytic byproduct methylglyoxal (MG and inhibit the formation of pro-apoptotic advanced glycation endproducts (AGEs. Inhibition of GLO1 in cancers that up-regulate glycolysis has been proposed as a therapeutic targeting strategy, but this approach has not been evaluated for glioblastoma multiforme (GBM, the most aggressive and difficult to treat malignancy of the brain. Elevated GLO1 expression in GBM was established in patient tumors and cell lines using bioinformatics tools and biochemical approaches. GLO1 inhibition in GBM cell lines and in an orthotopic xenograft GBM mouse model was examined using both small molecule and short hairpin RNA (shRNA approaches. Inhibition of GLO1 with S-(p-bromobenzyl glutathione dicyclopentyl ester (p-BrBzGSH(Cp2 increased levels of the DNA-AGE N2-1-(carboxyethyl-2′-deoxyguanosine (CEdG, a surrogate biomarker for nuclear MG exposure; substantially elevated expression of the immunoglobulin-like receptor for AGEs (RAGE; and induced apoptosis in GBM cell lines. Targeting GLO1 with shRNA similarly increased CEdG levels and RAGE expression, and was cytotoxic to glioma cells. Mice bearing orthotopic GBM xenografts treated systemically with p-BrBzGSH(Cp2 exhibited tumor regression without significant off-target effects suggesting that GLO1 inhibition may have value in the therapeutic management of these drug-resistant tumors.

  14. Inhibition of GLO1 in Glioblastoma Multiforme Increases DNA-AGEs, Stimulates RAGE Expression, and Inhibits Brain Tumor Growth in Orthotopic Mouse Models.

    Science.gov (United States)

    Jandial, Rahul; Neman, Josh; Lim, Punnajit P; Tamae, Daniel; Kowolik, Claudia M; Wuenschell, Gerald E; Shuck, Sarah C; Ciminera, Alexandra K; De Jesus, Luis R; Ouyang, Ching; Chen, Mike Y; Termini, John

    2018-01-30

    Cancers that exhibit the Warburg effect may elevate expression of glyoxylase 1 (GLO1) to detoxify the toxic glycolytic byproduct methylglyoxal (MG) and inhibit the formation of pro-apoptotic advanced glycation endproducts (AGEs). Inhibition of GLO1 in cancers that up-regulate glycolysis has been proposed as a therapeutic targeting strategy, but this approach has not been evaluated for glioblastoma multiforme (GBM), the most aggressive and difficult to treat malignancy of the brain. Elevated GLO1 expression in GBM was established in patient tumors and cell lines using bioinformatics tools and biochemical approaches. GLO1 inhibition in GBM cell lines and in an orthotopic xenograft GBM mouse model was examined using both small molecule and short hairpin RNA (shRNA) approaches. Inhibition of GLO1 with S -( p -bromobenzyl) glutathione dicyclopentyl ester ( p- BrBzGSH(Cp)₂) increased levels of the DNA-AGE N ²-1-(carboxyethyl)-2'-deoxyguanosine (CEdG), a surrogate biomarker for nuclear MG exposure; substantially elevated expression of the immunoglobulin-like receptor for AGEs (RAGE); and induced apoptosis in GBM cell lines. Targeting GLO1 with shRNA similarly increased CEdG levels and RAGE expression, and was cytotoxic to glioma cells. Mice bearing orthotopic GBM xenografts treated systemically with p -BrBzGSH(Cp)₂ exhibited tumor regression without significant off-target effects suggesting that GLO1 inhibition may have value in the therapeutic management of these drug-resistant tumors.

  15. A comparative study of proliferative activity and tumor stage of pregnancy-associated melanoma (PAM) and non-PAM in gestational age women.

    Science.gov (United States)

    Merkel, Emily A; Martini, Mary C; Amin, Sapna M; Yélamos, Oriol; Lee, Christina Y; Sholl, Lauren M; Rademaker, Alfred W; Guitart, Joan; Gerami, Pedram

    2016-01-01

    The influence of pregnancy on the development, progression, and prognosis of melanoma is controversial. We sought to compare clinical characteristics, histologic features, and proliferative activity in pregnancy-associated melanoma (PAM) and melanoma in nonpregnant women of reproductive age (non-PAM). In this retrospective cohort study, we reviewed medical records and pathology reports from women given a diagnosis of melanoma between 2006 and 2015. We also examined tumor proliferation rates using mitotic count and 2 immunohistochemical markers of proliferation, phosphohistone H3 and Ki-67. In 50 PAM and 122 non-PAM cases, a diagnosis of melanoma in situ was associated with PAM. Among invasive melanomas, there was no difference in proliferative activity between groups. Pregnancy status was also not associated with age at diagnosis, tumor site, Breslow depth, Clark level, ulceration, or overall stage. This was a retrospective study with a small sample size of mostly patients with early-stage melanoma. In our study of primarily early-stage melanoma, pregnancy did not have a significant impact on tumor proliferation. Particularly for patients given a diagnosis of stage I melanoma who are undergoing close surveillance, a history of PAM should not outweigh traditional factors, such as advanced maternal age, in planning future pregnancies. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  16. Metaphyseal giant cell tumor

    International Nuclear Information System (INIS)

    Pereira, L.F.; Hemais, P.M.P.G.; Aymore, I.L.; Carmo, M.C.R. do; Cunha, M.E.P.R. da; Resende, C.M.C.

    1986-01-01

    Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed. (Author) [pt

  17. Intrinsic subtypes from PAM50 gene expression assay in a population-based breast cancer cohort: differences by age, race, and tumor characteristics.

    Science.gov (United States)

    Sweeney, Carol; Bernard, Philip S; Factor, Rachel E; Kwan, Marilyn L; Habel, Laurel A; Quesenberry, Charles P; Shakespear, Kaylynn; Weltzien, Erin K; Stijleman, Inge J; Davis, Carole A; Ebbert, Mark T W; Castillo, Adrienne; Kushi, Lawrence H; Caan, Bette J

    2014-05-01

    Data are lacking to describe gene expression-based breast cancer intrinsic subtype patterns for population-based patient groups. We studied a diverse cohort of women with breast cancer from the Life After Cancer Epidemiology and Pathways studies. RNA was extracted from 1 mm punches from fixed tumor tissue. Quantitative reverse-transcriptase PCR was conducted for the 50 genes that comprise the PAM50 intrinsic subtype classifier. In a subcohort of 1,319 women, the overall subtype distribution based on PAM50 was 53.1% luminal A, 20.5% luminal B, 13.0% HER2-enriched, 9.8% basal-like, and 3.6% normal-like. Among low-risk endocrine-positive tumors (i.e., estrogen and progesterone receptor positive by immunohistochemistry, HER2 negative, and low histologic grade), only 76.5% were categorized as luminal A by PAM50. Continuous-scale luminal A, luminal B, HER2-enriched, and normal-like scores from PAM50 were mutually positively correlated. Basal-like score was inversely correlated with other subtypes. The proportion with non-luminal A subtype decreased with older age at diagnosis, P Trend < 0.0001. Compared with non-Hispanic Whites, African American women were more likely to have basal-like tumors, age-adjusted OR = 4.4 [95% confidence intervals (CI), 2.3-8.4], whereas Asian and Pacific Islander women had reduced odds of basal-like subtype, OR = 0.5 (95% CI, 0.3-0.9). Our data indicate that over 50% of breast cancers treated in the community have luminal A subtype. Gene expression-based classification shifted some tumors categorized as low risk by surrogate clinicopathologic criteria to higher-risk subtypes. Subtyping in a population-based cohort revealed distinct profiles by age and race. ©2014 AACR.

  18. THE CHOICE OF TREATMENT OF SINGLE BRAIN METASTASIS SHOULD BE BASED ON EXTRACRANIAL TUMOR-ACTIVITY AND AGE

    NARCIS (Netherlands)

    NOORDIJK, EM; VECHT, CJ; HAAXMAREICHE, H; PADBERG, GW; VOORMOLEN, JHC; HOEKSTRA, FH; TANS, JTJ; LAMBOOIJ, N; METSAARS, JAL; WATTENDORFF, AR; BRAND, R; HERMANS, J

    1994-01-01

    Purpose: To determine if in patients with single brain metastasis the addition of neurosurgery to radiotherapy leads to lengthening of survival or to better quality of life. Methods and Materials: From 1985 to 1990, 66 patients with single brain metastasis from a solid tumor were entered in a

  19. Bronchial carcinoid tumors: A rare malignant tumor

    African Journals Online (AJOL)

    2015-02-03

    Feb 3, 2015 ... Nigerian Journal of Clinical Practice • Sep-Oct 2015 • Vol 18 • Issue 5. Abstract. Bronchial carcinoid tumors (BCTs) are an uncommon group of lung tumors. They commonly affect the young adults and the middle aged, the same age group affected by other more common chronic lung conditions such as ...

  20. Ketamine inhibits tumor necrosis factor-α and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation

    International Nuclear Information System (INIS)

    Wu, G.-J.; Chen, T.-L.; Ueng, Y.-F.; Chen, R.-M.

    2008-01-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 μM ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 μM of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-α and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-α and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 μM) significantly inhibited LPS-induced TNF-α and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-α and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-α and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through suppression of TLR4-mediated

  1. Psychometric Analysis of the Three-Factor Eating Questionnaire-R18V2 in Adolescent and Young Adult-Aged Central Nervous System Tumor Survivors.

    Science.gov (United States)

    Swartz, Maria C; Basen-Engquist, Karen M; Markham, Christine; Lyons, Elizabeth J; Cox, Matthew; Chandra, Joya; Ater, Joann L; Askins, Martha A; Scheurer, Michael E; Lupo, Philip J; Hill, Rachel; Murray, Jeffrey; Chan, Wenyaw; Swank, Paul R

    2016-09-01

    Adolescent and young adult (AYA)-aged central nervous system (CNS) tumor survivors are an understudied population that is at risk of developing adverse health outcomes, such as obesity. Long-term follow-up guidelines recommend monitoring those at risk of obesity, thus motivating the need for an eating behavior questionnaire. An abbreviated online version of the Three-Factor Eating Questionnaire (TFEQ-R18v2) has been developed, but its applicability to this population is not yet known. This study investigated the instrument's factor structure and reliability in this population. AYA-aged CNS tumor survivors (n = 114) aged 15-39 years completed the TFEQ-R18V2 questionnaire online. Confirmatory factor analysis was used to examine the fit of the three-factor structure (uncontrollable eating, cognitive restraint, and emotional eating [EE]) and reliability (internal consistency of the TFEQ-R18v2). Associations between the three factors and body mass index (BMI) were assessed by linear regression. The theorized three-factor structure was supported in our population (RMSEA = 0.056 and CFI = 0.98) and demonstrated good reliability (α of 0.81-0.93). EE (β = 0.07, 95% CI 0.02-0.13) was positively associated with BMI, whereas the other two subscale scores were not. The TFEQ-R18v2 instrument holds promise for research and clinical use among AYA-aged CNS tumor survivors. The instrument may be a useful tool for researchers to develop tailored weight management strategies. It also may be a valuable tool for clinicians to monitor survivors who are at risk of obesity and to facilitate referral. Our results also suggest that EE in this population should be further investigated as a potential target for intervention.

  2. Patient Age and Tumor Subtype Predict the Extent of Axillary Surgery Among Breast Cancer Patients Eligible for the American College of Surgeons Oncology Group Trial Z0011.

    Science.gov (United States)

    Ong, Cecilia T; Thomas, Samantha M; Blitzblau, Rachel C; Fayanju, Oluwadamilola M; Park, Tristen S; Plichta, Jennifer K; Rosenberger, Laura H; Hyslop, Terry; Shelley Hwang, E; Greenup, Rachel A

    2017-11-01

    The American College of Surgeons Oncology Group (ACOSOG) Z0011 trial established the safety of omitting axillary lymph node dissection (ALND) for early-stage breast cancer patients with limited nodal disease undergoing lumpectomy. We examined the extent of axillary surgery among women eligible for Z0011 based on patient age and tumor subtype. Patients with cT1-2, cN0 breast cancers and one or two positive nodes diagnosed from 2009 to 2014 and treated with lumpectomy were identified in the National Cancer Data Base. Sentinel lymph node biopsy (SLNB) was defined as the removal of 1-5 nodes and ALND as the removal of 10 nodes or more. Tumor subtype was categorized as luminal, human epidermal growth factor 2-positive (HER2+), or triple-negative. Logistic regression was used to estimate the odds of receiving SLNB alone versus ALND. The inclusion criteria were met by 28,631 patients (21,029 SLNB-alone and 7602 ALND patients). Patients 70 years of age or older were more likely to undergo SLNB alone than ALND (27.0% vs 20.1%; p alone and 89.7% after ALND. In the multivariate analysis, the uptake of Z0011 recommendations increased over time (2014 vs 2009: odds ratio [OR] 13.02; p alone than older patients (age alone than those with luminal subtypes. Among women potentially eligible for ACOSOG Z0011, the use of SLNB alone increased over time in all groups, but the extent of axillary surgery differed by patient age and tumor subtype.

  3. Growth-inhibiting effect of tumor necrosis factor on human umbilical vein endothelial cells is enhanced with advancing age in vitro

    International Nuclear Information System (INIS)

    Shimada, Y.; Kaji, K.; Ito, H.; Noda, K.; Matsuo, M.

    1990-01-01

    We have examined the effects of in vitro aging on the growth capacity of human umbilical vein endothelial cells (HUVECs) under the influence of tumor necrosis factor (TNF) with or without interferon-gamma (IFN-gamma). The growth and colony-forming abilities of control cells were impaired with advancing age in vitro, especially at later stages (more than 70-80% of life span completed). It was found that treatment with TNF inhibited growth and colony-forming efficiency at any in vitro age. The effects of TNF were shown to increase with increasing in vitro age, as reflected by a more pronounced increase in doubling times, a decrease in saturation density, and a reduction in colony-forming efficiency. However, the characteristics of TNF receptors, including the dissociation constant, and the number of TNF-binding sites per cell-surface area remained rather constant. The effect of TNF was augmented by IFN-gamma at a dose that alone affected growth and colony formation only slightly. The augmentation by IFN-gamma was also found to depend on in vitro age; the synergy with TNF in the deterioration of colony-forming ability was observed only in aged cells. These results suggest that the intrinsic responsiveness of HUVECs to growth-inhibiting factors, as well as to growth-stimulating factors, changes during aging in vitro

  4. Tumor Volume Changes on 1.5 Tesla Endorectal MRI During Neoadjuvant Androgen Suppression Therapy for Higher-Risk Prostate Cancer and Recurrence in Men Treated Using Radiation Therapy Results of the Phase II CALGB 9682 Study

    International Nuclear Information System (INIS)

    D'Amico, Anthony V.; Halabi, Susan; Tempany, Clare; Titelbaum, David; Philips, George K.; Loffredo, Marian; McMahon, Elizabeth; Sanford, Ben; Vogelzang, Nicholas J.; Small, Eric J.

    2008-01-01

    Purpose: We prospectively determined whether the change in tumor volume (TV) during 2 months of neoadjuvant androgen suppression therapy (nAST) measured using conventional 1.5 Tesla endorectal magnetic resonance imaging (eMRI) was associated with the risk of recurrence after radiation (RT) and 6 months of AST. Patients and Methods: Between 1997 and 2001, 180 men with clinical stage T1c-T3cN0M0 adenocarcinoma of the prostate were registered. Fifteen were found to be ineligible and the institutional MR radiologist could not assess the TV in 32, leaving 133 for analysis. Multivariable Cox regression analysis was used to assess whether a significant association existed between eMRI-defined TV progression during nAST and time to recurrence adjusting for prostate-specific antigen (PSA) level, Gleason score (8 to 10 or 7 vs. 6 or less) and stage (T3 vs. T1-2). Results: After a median follow up of 6.7 years and adjusting for known prognostic factors, there was a significant increase in the risk of PSA failure (HR, 2.3 [95% CI, 1.1-4.5; p = 0.025) in men with eMRI-defined TV progression during nAST. Specifically, adjusted estimates of PSA failure were significantly higher (p = 0.032) in men with, compared with men without, eMRI-defined TV progression reaching 38% vs. 19%, respectively, by 5 years. Conclusion: Eradicating intraprostatic hormone refractory prostate cancer (HRPC) by maximizing local control and randomized trials assessing whether survival is improved when agents active against HRPC are combined with maximal local therapy are needed in men who progress based on eMRI during nAST

  5. Degree of thyrotropin suppression as a prognostic determinant in differentiated thyroid cancer.

    Science.gov (United States)

    Pujol, P; Daures, J P; Nsakala, N; Baldet, L; Bringer, J; Jaffiol, C

    1996-12-01

    We investigate whether the prognosis of patients with differentiated thyroid cancer is improved by maintaining a greater level of TSH suppression. One hundred and forty-one patients who underwent hormone therapy after thyroidectomy were followed up from 1970 to 1993 (mean, 95 months). Patients received levothyroxine (L-T4; mean dose, 2.6 micrograms/kg-day). TSH suppression was evaluated by TRH stimulation test until 1986 and thereafter by a second generation immunoradiometric assay. As TSH underwent fluctuation over time in most patients, we focused on subgroups of patients with relatively constant TSH levels during the follow-up. The relapse-free survival (RFS) was longer in the group with constantly suppressed TSH (all TSH values, or = 1 mU/L; n = 15; P 90% of undetectable TSH values; n = 19) had a trend toward a longer RFS than the remaining population (n = 102; P = 0.14). The patients with a lesser degree of TSH suppression (< 10% of undetectable TSH values; n = 27) had a shorter RFS than the remaining patients (n = 94; P < 0.01). In multivariate analysis that included TSH suppression, age, sex, histology, and tumor node metastasis stage, the degree of TSH suppression predicted RFS independently of other factors (P = 0.02). This study shows that a lesser degree of TSH suppression is associated with an increased incidence of relapse, supporting the hypothesis that a high level of TSH suppression is required for the endocrine management of thyroid cancer.

  6. [Immune system and tumors].

    Science.gov (United States)

    Terme, Magali; Tanchot, Corinne

    2017-02-01

    Despite having been much debated, it is now well established that the immune system plays an essential role in the fight against cancer. In this article, we will highlight the implication of the immune system in the control of tumor growth and describe the major components of the immune system involved in the antitumoral immune response. The immune system, while exerting pressure on tumor cells, also will play a pro-tumoral role by sculpting the immunogenicity of tumors cells as they develop. Finally, we will illustrate the numerous mechanisms of immune suppression that take place within the tumoral microenvironment which allow tumor cells to escape control from the immune system. The increasingly precise knowledge of the brakes to an effective antitumor immune response allows the development of immunotherapy strategies more and more innovating and promising of hope. Copyright © 2016. Published by Elsevier Masson SAS.

  7. Bone tumor

    Science.gov (United States)

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor; Bone tumor - benign ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  8. Mobile phones, cordless phones and rates of brain tumors in different age groups in the Swedish National Inpatient Register and the Swedish Cancer Register during 1998-2015

    OpenAIRE

    Hardell, Lennart; Carlberg, Michael

    2017-01-01

    We used the Swedish Inpatient Register (IPR) to analyze rates of brain tumors of unknown type (D43) during 1998-2015. Average Annual Percentage Change (AAPC) per 100,000 increased with +2.06%, 95% confidence interval (CI) +1.27, +2.86% in both genders combined. A joinpoint was found in 2007 with Annual Percentage Change (APC) 1998-2007 of +0.16%, 95% CI -0.94, +1.28%, and 2007-2015 of +4.24%, 95% CI +2.87, +5.63%. Highest AAPC was found in the age group 20-39 years. In the Swedish Cancer Regi...

  9. Effects of chronic vs. intermittent calorie restriction on mammary tumor incidence and serum adiponectin and leptin levels in MMTV-TGF-α mice at different ages

    Science.gov (United States)

    DOGAN, SONER; ROGOZINA, OLGA P.; LOKSHIN, ANNA E.; GRANDE, JOSEPH P.; CLEARY, MARGOT P.

    2010-01-01

    Calorie restriction prevents mammary tumor (MT) development in rodents. Usually, chronic calorie restriction (CCR) has been implemented. In contrast, intermittent calorie restriction (ICR) has been less frequently used. Recent studies indicate that when a direct comparison of the same degree of CCR vs. ICR was made using MMTV-TGF-α mice which develop MTs in the second year of life, ICR provided greater protection than CCR in delaying MT detection and reducing tumor incidence. Adiponectin and leptin are two adipocytokines secreted from adipose tissue which have opposite effects on many physiological functions, including proliferation of human breast cancer cells. A recent study indicated that a low adiponectin/leptin ratio was associated with breast cancer. We evaluated the relationship of adiponectin and leptin to MT development in MMTV-TGF-α calorie-restricted mice at several ages. Mice were enrolled at 10 weeks of age and subjected to 25% caloric reduction implemented either chronically or intermittently. Mice were euthanized at designated time points up to 74 weeks of age. Serum samples were collected to measure adiponectin and leptin concentrations. Both CCR and ICR mice had significantly reduced MT incidence. For the groups studied, serum leptin increased over time, while there was a trend for an increase in serum adiponectin levels in ad libitum and ICR mice, with no change in CCR mice between 10 and 74 weeks of age. The adiponectin/leptin ratio was significantly reduced as mice aged, but this ratio in ICR mice was significantly higher than that for ad libitum and CCR mice. No correlation was noted between serum adiponectin and leptin. These findings demonstrate that intermittent calorie restriction delays the early development of MTs. This delay was associated with reduced serum leptin levels following the restriction phases of the protocol. Additionally, serum leptin levels correlated with body weight and body fat in the groups studied. PMID:22966277

  10. Age

    Science.gov (United States)

    ... adults? How can you reduce anesthesia risks in older patients? Age Age may bring wisdom but it also brings ... Ask your physician to conduct a pre-surgery cognitive test — an assessment of your mental function. The physician can use the results as a ...

  11. Arginase-II Promotes Tumor Necrosis Factor-α Release From Pancreatic Acinar Cells Causing β-Cell Apoptosis in Aging.

    Science.gov (United States)

    Xiong, Yuyan; Yepuri, Gautham; Necetin, Sevil; Montani, Jean-Pierre; Ming, Xiu-Fen; Yang, Zhihong

    2017-06-01

    Aging is associated with glucose intolerance. Arginase-II (Arg-II), the type-II L -arginine-ureahydrolase, is highly expressed in pancreas. However, its role in regulation of pancreatic β-cell function is not known. Here we show that female (not male) mice deficient in Arg-II (Arg-II -/- ) are protected from age-associated glucose intolerance and reveal greater glucose induced-insulin release, larger islet size and β-cell mass, and more proliferative and less apoptotic β-cells compared with the age-matched wild-type (WT) controls. Moreover, Arg-II is mainly expressed in acinar cells and is upregulated with aging, which enhances p38 mitogen-activated protein kinase (p38 MAPK) activation and release of tumor necrosis factor-α (TNF-α). Accordingly, conditioned medium of isolated acinar cells from old WT (not Arg-II -/- ) mice contains higher TNF-α levels than the young mice and stimulates β-cell apoptosis and dysfunction, which are prevented by a neutralizing anti-TNF-α antibody. In acinar cells, our study demonstrates an age-associated Arg-II upregulation, which promotes TNF-α release through p38 MAPK leading to β-cell apoptosis, insufficient insulin secretion, and glucose intolerance in female rather than male mice. © 2017 by the American Diabetes Association.

  12. Elastic-modulus enhancement during room-temperature aging and its suppression in metastable Ti–Nb-Based alloys with low body-centered cubic phase stability

    International Nuclear Information System (INIS)

    Tane, M.; Hagihara, K.; Ueda, M.; Nakano, T.; Okuda, Y.

    2016-01-01

    Changes in the elastic properties during room-temperature aging (RT aging) of metastable Ti–Nb-based alloy single crystals with low body-centered cubic (bcc)-phase stability were investigated. The elastic stiffness components of Ti–Nb–Ta–Zr alloys with different Nb concentrations were measured by resonant ultrasound spectroscopy during RT aging; the results revealed that shear moduli c ′ and c 44 were increased by RT aging. In the alloy with the lowest Nb concentration, i.e., with the lowest bcc phase stability, shear moduli c ′ and c 44 were enhanced by the largest amount. The increase rates were ∼5% for 1.1 × 10 7  s (127 days), whereas the bulk modulus was hardly changed by aging. In Ti–Nb–Ta–Zr–O alloys with different oxygen concentrations, shear moduli c ′ and c 44 of the alloy with the lowest oxygen concentration increased most significantly. Moreover, the electrical resistivity of Ti–Nb–Ta–Zr and Ti–Nb–Ta–Zr–O alloys was increased by RT aging. Importantly, the enhancements of shear moduli and electrical resistivity were suppressed by increases in the bcc-phase stability (i.e., increase in the Nb concentration) and oxygen concentration; these factors are known to suppress ω (hexagonal) phase formation. However, transmission electron microscopy (TEM) observations revealed that only a diffuse ω structure—an ω-like lattice distortion—was formed after RT aging. On the basis of alloying element effects, TEM observations, and analysis of the changes in elastic properties by using a micromechanics model, it was deduced that the enhancements of shear moduli and electrical resistivity were possibly caused by the formation of a diffuse ω structure.

  13. Aging

    International Nuclear Information System (INIS)

    Sasaki, Hideo; Kodama, Kazunori; Yamada, Michiko

    1991-01-01

    The hypothesis that exposure to ionizing radiation accelerates the aging process has been actively investigated at ABCC-RERF since 1958, when longitudinal cohort studies of the Adult Health Study (AHS) and the Life Span Study (LSS) were initiated. In their 1975 overall review of aging studies related to the atomic bomb (A-bomb) survivors, Finch and Beebe concluded that while most studies had shown no correlation between aging and radiation exposure, they had not involved the large numbers of subjects required to provide strong evidence for or against the hypothesis. Extending LSS mortality data up to 1978 did not alter the earlier conclusion that any observed life-shortening was associated primarily with cancer induction rather than with any nonspecific cause. The results of aging studies conducted during the intervening 15 years using data from the same populations are reviewed in the present paper. Using clinical, epidemiological, and laboratory techniques, a broad spectrum of aging parameters have been studied, such as postmortem morphological changes, tests of functional capacity, physical tests and measurements, laboratory tests, tissue changes, and morbidity. With respect to the aging process, the overall results have not been consistent and are generally thought to show no relation to radiation exposure. Although some preliminary results suggest a possible radiation-induced increase in atherosclerotic diseases and acceleration of aging in the T-cell-related immune system, further study is necessary to confirm these findings. In the future, applying the latest gerontological study techniques to data collected from subjects exposed 45 years ago to A-bomb radiation at relatively young ages will present a new body of data relevant to the study of late radiation effects. (author) 103 refs

  14. Aging

    International Nuclear Information System (INIS)

    Finch, S.C.; Beebe, G.W.

    1975-01-01

    The hypothesis that ionizing radiation accelerates natural aging has been under investigation at the Atomic Bomb Casualty Commission since 1959. Postmortem observations of morphologic and chemical changes, tests of functional capacity, physical tests and measurements, clinical laboratory tests, tissue changes, morbidity, and mortality have all been examined by ABCC investigators interested in this hypothesis. These studies have been beset with conceptual difficulties centered on the definition and measurement of aging. An empirical approach early led to the calculation of an index of physiologic age as a linear combination of age-related tests of various organ systems. Most studies have been negative but have not involved the large numbers that might be required to provide strong evidence for or against the hypothesis. Mortality, however, has been examined on the basis of a large sample and over the period 1950-1972 had provided no support for the hypothesis of radiation-accelerated aging. Ionizing radiation dose, of course shorten human life, but its life-shortening effect appears to be the result of specific radiation-induced disease, especially neoplasms. The hypothesis is now much less attractive than it was 10-20 years ago but still has some value in stimulating research on aging. The experience of the A-bomb survivors provides an unusual opportunity for a definitive test of the hypothesis. (auth.)

  15. HTP Nutraceutical Screening for Histone Deacetylase Inhibitors and Effects of HDACis on Tumor-suppressing miRNAs by Trichostatin A and Grapeseed (Vitis vinifera) in HeLa cells.

    Science.gov (United States)

    Mazzio, Elizabeth A; Soliman, Karam F A

    2017-01-02

    ), with several miRNAs overlapping in the upward direction by both GSE and TSA (e.g. hsa-miR-23b-5p, hsa-miR-27b-5p, hsa-miR-1180-3p, hsa-miR-6880-5p and hsa-mir-943). Using DIANA miRNA online tools, it was determined that GSE and TSA simultaneously cause overexpression of similar miRNAs predicted to destroy the following influential oncogenes: NFkB, NRAS, KRAS, HRAS, MYC, TGFBR1, E2F1, E2F2, BCL21, CDKN1A, CDK6, HIF1a, and VEGFA. The data from this study show that plant- based HDACis are relatively rare, and can elicit a similar pattern to TSA in up-regulating miRNAs involved with tumor suppression of HeLa cervical carcinoma. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Randomized trial of adjuvant ovarian suppression in 926 premenopausal patients with early breast cancer treated with adjuvant chemotherapy.

    Science.gov (United States)

    Arriagada, R; Lê, M G; Spielmann, M; Mauriac, L; Bonneterre, J; Namer, M; Delozier, T; Hill, C; Tursz, T

    2005-03-01

    The aim of this multicenter trial was to evaluate the role of ovarian suppression in patients with early breast cancer previously treated with local surgery and adjuvant chemotherapy. Nine hundred and twenty-six premenopausal patients with completely resected breast cancer and either axillary node involvement or histological grade 2 or 3 tumors were randomized after surgery to adjuvant chemotherapy alone (control arm) or adjuvant chemotherapy plus ovarian suppression (ovarian suppression arm). Ovarian suppression was obtained by either radiation-induced ovarian ablation or triptorelin for 3 years. The analyses were performed with Cox models stratified by center. Median follow-up was 9.5 years. Mean age was 43 years. Ninety per cent of patients had histologically proven positive axillary nodes, 63% positive hormonal receptors and 77% had received an anthracycline-based chemotherapy regimen. Ovarian suppression was by radiation-induced ovarian ablation (45% of patients) or with triptorelin (48%). At the time of randomization, all patients had regular menses or their follicle-stimulating hormone and estradiol levels indicated a premenopausal status. The 10-year disease-free survival rates were 49% [95% confidence interval (CI) 44% to 54%] in both arms (P = 0.51). The 10-year overall survival rates were 66% (95% CI 61% to 70%) for the ovarian suppression arm and 68% (95% CI 63% to 73%) for the control arm (P = 0.19). There were no variations in the treatment effect according to age, hormonal receptor status or ovarian suppression modality. However, in patients suppression significantly decreased the risk of recurrence (P = 0.01). The results of this trial, after at least 10 years of follow-up, do not favor the use of ovarian suppression after adjuvant chemotherapy. The potential beneficial effect in younger women with hormono-dependent tumors should be further assessed.

  17. Bone tumors

    International Nuclear Information System (INIS)

    Unni, K.K.

    1988-01-01

    This book contains the proceedings on bone tumors. Topics covered include: Bone tumor imaging: Contribution of CT and MRI, staging of bone tumors, perind cell tumors of bone, and metastatic bone disease

  18. Wilms tumors: genotypes and phenotypes

    NARCIS (Netherlands)

    H. Segers (Heidi)

    2013-01-01

    textabstractWilms tumor, or nephroblastoma, represents about 90% of all pediatric renal tumors and about 7% of all pediatric malignancies. Most Wilms tumors are unilateral, although in 5-10 % of the patients both kidneys are infected. Wilms tumor typically occurs between the age of 2 and 4 years,

  19. HIV infection and aging: enhanced Interferon- and Tumor Necrosis Factor-alpha production by the CD8+ CD28- T subset

    Directory of Open Access Journals (Sweden)

    Colón-Martinez Sol

    2001-10-01

    Full Text Available Abstract Background T cells from HIV+ and aged individuals show parallels in terms of suppressed proliferative activity and interleukin-2 (I1-2 production and an increased number of CD8+ CD28- T cells. In order to compare cytokine production from T cells from these two states, CD4+ and CD8+ T cells from HIV+ aged, and normal young donors (controls were monitored for cytokine production by flow cytometry, quantitative PCR and ELISA upon activation by PMA and anti-CD3. In addition, the CD8+ T cell subsets CD28+ and CD28- from the HIV+ and the aged groups were evaluated for cytokine production by flow cytometry, and compared with those from young controls. Results Flow cytometric analysis indicated that CD8+ T cells from both HIV+ and aged donors showed an increase of approximately 2–3 fold over controls in percentage of cells producing inflammatory cytokines IFN-γ and TNF-α. Similar analysis also revealed that the production of interleukins-4,6 and 10, production was very low (1–2% of cells and unchanged in these cells. Quantitative PCR also showed a substantial increase (4–5 fold in IFN-γ and TNF-α mRNA from HIV+ and aged CD8+ T cells, as did ELISA for secreted IFN-γ and TNF-α (2.3–4 fold. Flow cytometric analysis showed that the CD8+ CD28- T cell subset accounts for approximately 80–86% of the IFN-γ and TNF-α production from the CD8+ subset in the aged and HIV+ states. The CD4+ T cell, while not significantly changed in the HIV+ or aged states in terms of IFN-γ production, showed a small but significant increase in TNF-α production in both states. Conclusions Our data appear compatible with physiologic conditions existing in HIV+ and aged individuals, i.e. elevated serum levels and elevated CD8+ T cell production of IFN-γ and TNF-α. Thus, the capacity for increased production of cytokines IFN-γ and TNF-α in the aged individual by the dominant CD8+ CD28- subset may have a profound influence on the clinical state by

  20. Cellular senescence and organismal aging.

    Science.gov (United States)

    Jeyapalan, Jessie C; Sedivy, John M

    2008-01-01

    Cellular senescence, first observed and defined using in vitro cell culture studies, is an irreversible cell cycle arrest which can be triggered by a variety of factors. Emerging evidence suggests that cellular senescence acts as an in vivo tumor suppression mechanism by limiting aberrant proliferation. It has also been postulated that cellular senescence can occur independently of cancer and contribute to the physiological processes of normal organismal aging. Recent data have demonstrated the in vivo accumulation of senescent cells with advancing age. Some characteristics of senescent cells, such as the ability to modify their extracellular environment, could play a role in aging and age-related pathology. In this review, we examine current evidence that links cellular senescence and organismal aging.

  1. Suppressed retinal degeneration in aged wild type and APPswe/PS1ΔE9 mice by bone marrow transplantation.

    Directory of Open Access Journals (Sweden)

    Yue Yang

    Full Text Available Alzheimer's disease (AD is an age-related condition characterized by accumulation of neurotoxic amyloid β peptides (Aβ in brain and retina. Because bone marrow transplantation (BMT results in decreased cerebral Aβ in experimental AD, we hypothesized that BMT would mitigate retinal neurotoxicity through decreased retinal Aβ. To test this, we performed BMT in APPswe/PS1ΔE9 double transgenic mice using green fluorescent protein expressing wild type (wt mice as marrow donors. We first examined retinas from control, non-transplanted, aged AD mice and found a two-fold increase in microglia compared with wt mice, prominent inner retinal Aβ and paired helical filament-tau, and decreased retinal ganglion cell layer neurons. BMT resulted in near complete replacement of host retinal microglia with BMT-derived cells and normalized total AD retinal microglia to non-transplanted wt levels. Aβ and paired helical filament-tau were reduced (61.0% and 44.1% respectively in BMT-recipient AD mice, which had 20.8% more retinal ganglion cell layer neurons than non-transplanted AD controls. Interestingly, aged wt BMT recipients also had significantly more neurons (25.4% compared with non-transplanted aged wt controls. Quantitation of retinal ganglion cell layer neurons in young mice confirmed age-related retinal degeneration was mitigated by BMT. We found increased MHC class II expression in BMT-derived microglia and decreased oxidative damage in retinal ganglion cell layer neurons. Thus, BMT is neuroprotective in age-related as well as AD-related retinal degeneration, and may be a result of alterations in innate immune function and oxidative stress in BMT recipient mice.

  2. Overnight Dexamethasone Suppression Test in the Diagnosis of Cushing's Disease

    Directory of Open Access Journals (Sweden)

    Fatemeh Esfahanian

    2010-08-01

    Full Text Available Realizing the cause of Cushing's Syndrome (CS is one of the most challenging processes in clinical endocrinology. The long high dose dexamethasone suppression test (standard test is costly and need an extended inpatient stay. In this study we want to show the clinical utility of the overnight 8 mg dexamethasone suppression test (DST for differential diagnosis of CS in a referral center. Retrospectively from 2002-2005 we selected the patients of endocrinology ward in Imam hospital who were admitted with the diagnosis of Cushing syndrome and had 8 mg DST (modified test along with classic DST. In modified test a decrease in an 8 AM serum cortisol level of 50% or more is thought to indicate suppression and we compared the results of modified test with standard test. This test had been done on 42 patients: 10 male (23% and 32 female (76%. The mean age of patients was 31.39 (15-63, 32 with proven pituitary Cushing's disease, 7 with primary adrnal tumors and 3 with ectopic ACTH syndrome. The standard test according to 50% suppression of UFC had 90.62% sensitivity, and according to 90% suppression had 43.75% sensitivity. The sensitivity of this test was 71.85% for serum cortisol suppression. The modified test (8 mg overnight DST had 78% sensitivity. All of these tests had 100% specificity for the diagnosis of Cushing's disease. The positive predictive vale (PPV of all of these tests was 100%. The negative predictive value (NPV of modified test for the diagnosis of Cushing's disease was 58.82%. In standard test the NPV of serum cortisol was 52.6%, UFC 50% had 76.9% NPV and UFC 90% had 35.7% NPV. The results of serum cortisol suppression in modified test is better than standard test. Although 50% suppression of UFC in standard test had greater sensitivity than modified test, collecting of urine is difficult, time consuming and needing hospitalization, so we advice modified test that is much simpler and more convenient instead of standard test in the first

  3. Imaging of pancreatic tumors

    International Nuclear Information System (INIS)

    Brambs, Hans-Juergen; Juchems, Markus

    2010-01-01

    Ductal adenocarcinoma is the most frequent solid tumor of the pancreas. This tumor has distinct features including early obstruction of the pancreatic duct, diminished enhancement after administration of contrast material due to desmoplastic growth, high propensity to infiltrate adjacent structures and to metastasize into the liver and the peritoneum. Hormone active endocrine tumors cause specific clinical symptoms. Imaging is aimed at localization of these hypervascular tumors. Non hormone active tumors are most frequently malignant and demonstrate very varying features. Cystic pancreatic tumors are increasingly detected by means of cross sectional imaging. Exact classification can be achieved with knowledge of the macropathology and considering clinical presentation as well as age and gender of the patients. (orig.)

  4. Temporal order of RNase IIIb and loss-of-function mutations during development determines phenotype in pleuropulmonary blastoma / DICER1 syndrome: a unique variant of the two-hit tumor suppression model [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Mark Brenneman

    2018-01-01

    Full Text Available Pleuropulmonary blastoma (PPB is the most frequent pediatric lung tumor and often the first indication of a pleiotropic cancer predisposition, DICER1 syndrome, comprising a range of other individually rare, benign and malignant tumors of childhood and early adulthood. The genetics of DICER1-associated tumorigenesis are unusual in that tumors typically bear neomorphic missense mutations at one of five specific “hotspot” codons within the RNase IIIb domain of DICER 1, combined with complete loss of function (LOF in the other allele. We analyzed a cohort of 124 PPB children for predisposing DICER1 mutations and sought correlations with clinical phenotypes. Over 70% have inherited or de novo germline LOF mutations, most of which truncate the DICER1 open reading frame. We identified a minority of patients who have no germline mutation, but are instead mosaic for predisposing DICER1 mutations. Mosaicism for RNase IIIb domain hotspot mutations defines a special category of DICER1 syndrome patients, clinically distinguished from those with germline or mosaic LOF mutations by earlier onsets and numerous discrete foci of neoplastic disease involving multiple syndromic organ sites. A final category of PBB patients lack predisposing germline or mosaic mutations and have sporadic (rather than syndromic disease limited to a single PPB tumor bearing tumor-specific RNase IIIb and LOF mutations. We propose that acquisition of a neomorphic RNase IIIb domain mutation is the rate limiting event in DICER1-associated tumorigenesis, and that distinct clinical phenotypes associated with mutational categories reflect the temporal order in which LOF and RNase IIIb domain mutations are acquired during development.

  5. Tumor mismatch repair immunohistochemistry and DNA MLH1 methylation testing of patients with endometrial cancer diagnosed at age younger than 60 years optimizes triage for population-level germline mismatch repair gene mutation testing.

    Science.gov (United States)

    Buchanan, Daniel D; Tan, Yen Y; Walsh, Michael D; Clendenning, Mark; Metcalf, Alexander M; Ferguson, Kaltin; Arnold, Sven T; Thompson, Bryony A; Lose, Felicity A; Parsons, Michael T; Walters, Rhiannon J; Pearson, Sally-Ann; Cummings, Margaret; Oehler, Martin K; Blomfield, Penelope B; Quinn, Michael A; Kirk, Judy A; Stewart, Colin J; Obermair, Andreas; Young, Joanne P; Webb, Penelope M; Spurdle, Amanda B

    2014-01-10

    Clinicopathologic data from a population-based endometrial cancer cohort, unselected for age or family history, were analyzed to determine the optimal scheme for identification of patients with germline mismatch repair (MMR) gene mutations. Endometrial cancers from 702 patients recruited into the Australian National Endometrial Cancer Study (ANECS) were tested for MMR protein expression using immunohistochemistry (IHC) and for MLH1 gene promoter methylation in MLH1-deficient cases. MMR mutation testing was performed on germline DNA of patients with MMR-protein deficient tumors. Prediction of germline mutation status was compared for combinations of tumor characteristics, age at diagnosis, and various clinical criteria (Amsterdam, Bethesda, Society of Gynecologic Oncology, ANECS). Tumor MMR-protein deficiency was detected in 170 (24%) of 702 cases. Germline testing of 158 MMR-deficient cases identified 22 truncating mutations (3% of all cases) and four unclassified variants. Tumor MLH1 methylation was detected in 99 (89%) of 111 cases demonstrating MLH1/PMS2 IHC loss; all were germline MLH1 mutation negative. A combination of MMR IHC plus MLH1 methylation testing in women younger than 60 years of age at diagnosis provided the highest positive predictive value for the identification of mutation carriers at 46% versus ≤ 41% for any other criteria considered. Population-level identification of patients with MMR mutation-positive endometrial cancer is optimized by stepwise testing for tumor MMR IHC loss in patients younger than 60 years, tumor MLH1 methylation in individuals with MLH1 IHC loss, and germline mutations in patients exhibiting loss of MSH6, MSH2, or PMS2 or loss of MLH1/PMS2 with absence of MLH1 methylation.

  6. Radiotherapy, Especially at Young Age, Increases the Risk for De Novo Brain Tumors in Patients Treated for Pituitary/Sellar Lesions

    NARCIS (Netherlands)

    Burman, Pia; van Beek, Andre P.; Biller, Beverly M.K.; Camacho-Hubner, Cecilia; Mattsson, Anders F.

    2017-01-01

    Context: De novo brain tumors developing after treatment of pituitary/sellar lesions have been reported, but it is unknown whether this is linked to any of the treatment modalities. Objective: To study the occurrence of malignant brain tumors and meningiomas in a large cohort of patients treated for

  7. MRI diagnosis of embryonal tumors in the spinal canal

    International Nuclear Information System (INIS)

    Sun Jilin; Zhang Xinchuan; Zhang Huaning; Liu Lianxiang; Wu Yujin

    1997-01-01

    To evaluate MRI diagnostic value of the embryonal tumors in the spinal canal. Materials and methods: The MRI appearances of 15 cases of histologically confirmed embryonal tumors in the spinal canal were analyzed. (1) Lipoma (3 cases) had characteristic MRI appearance, demonstrating high signal intensity on T 1 WI, and moderately high signal on T 2 WI. High signal intensity of the lipoma was turned into low signal intensity by fat suppression technique. (2) Dermoids (2 cases) and epidermoid (7 cases) exhibiting low or iso-low signal on T 1 WI and high or iso-high signal on T 2 WI. All had an iso-intense capsule on T 1 WI. However, the two tumors could not be distinguished from each other. (3) Teratoma (3 cases) appeared as a mass of inhomo-generous signals in the spinal canal including soft tissue, fatty tissue and calcification within the same tumor. The diagnosis of embryonal tumors in the spinal canal mainly depend on their MRI appearances, specific tumor location and patient's age

  8. Dexamethasone suppression test

    Science.gov (United States)

    DST; ACTH suppression test; Cortisol suppression test ... During this test, you will receive dexamethasone. This is a strong man-made (synthetic) glucocorticoid medicine. Afterward, your blood is drawn ...

  9. Deconstructing continuous flash suppression

    OpenAIRE

    Yang, Eunice; Blake, Randolph

    2012-01-01

    In this paper, we asked to what extent the depth of interocular suppression engendered by continuous flash suppression (CFS) varies depending on spatiotemporal properties of the suppressed stimulus and CFS suppressor. An answer to this question could have implications for interpreting the results in which CFS influences the processing of different categories of stimuli to different extents. In a series of experiments, we measured the selectivity and depth of suppression (i.e., elevation in co...

  10. Imaging findings of sacral tumors

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Hong, Sung Hwan; Choi, Ja Young; Koh, Sung Hye; Chung, Hye Won; Choi, Jung Ah; Kang, Heung Sik

    2003-01-01

    The various pathologic conditions detected at CT and MRI and subsumed by the term 'sacral tumor' include primary bone tumors, sacral canal tumors and metastases. Among these, metastases are much more common than primary bone tumors, of which chordoma is the most common. Although the imaging findings of sacral tumors are nonspecific, a patient's age and sex, and specific findings such as calcification or fluid-fluid levels, can help radiologists in their differential diagnosis. We describe the imaging findings of primary sacral tumors, emphasizing the MRI findings

  11. Juvenile nasopharyngeal angiofibroma - study of the tumor extension and vascularization through computerized tomography (CT) scan and angiography and the patient's age; Nasoangiofibroma juvenil - estudo da extensao e vascularizacao do tumor pela tomografia computadorizada e angiografia, e da idade do paciente

    Energy Technology Data Exchange (ETDEWEB)

    Sennes, Luiz Ubirajara

    1997-07-01

    The juvenile nasopharyngeal angiofibroma is a rare benign tumor that affects male adolescents. It is a fibro-vascular tumor with an exuberant intra tumor blood flow and irrigated by several arteries. It originates from the lateral and posterior region of the nasal cavity and, due to its characteristic multidirectional growth, widely affects the paranasal sinuses and skull base, sometimes invading the cranial fossa or the cheek. The determinant factors of its growth and vascularisation are unknown. Attempting to clarify them, 33 patients from the University of Sao Paulo Medicine were studied from 1983 to 1995, with complete history and radiological documentation (CT scan and angiography), as well as with histological confirmation of the diagnosis. In order to take only tumors with natural evolution, patients with recidivant tumor and those already submitted to any previous treatment were excluded. The parameters evaluate were: patient age and tumor extension (by classification, degree of invasion and number of compromised sites in CT scan) and vascularisation (by number and degree of participation of bilateral arteries in angiography). The se data were tabled and correlated one with each other. (author)

  12. Blockade of Tumor Necrosis Factor-Alpha: A Role for Adalimumab in Neovascular Age-Related Macular Degeneration Refractory to Anti-Angiogenesis Therapy

    Directory of Open Access Journals (Sweden)

    Beatriz Fernández-Vega

    2016-03-01

    Full Text Available Aims: To report a case of wet age-related macular degeneration (wet-AMD refractory to intravitreal anti-vascular endothelial growth factor (anti-VEGF therapy in a patient who showed visual and anatomical improvement and stabilization after starting a subcutaneous treatment course with adalimumab, an anti-tumor necrosis factor-alpha (TNF-α drug, for concomitant Crohn's disease. Methods: Observational case report of a female patient. Ophthalmological evaluation was performed by slit lamp and ophthalmoscopy (posterior pole and anterior segment. Best-corrected visual acuity (BCVA was determined, and imaging was performed by fluorescein angiography, indocyanine green angiography, and optical coherence tomography (OCT. Intravitreal therapies used and treatment with anti-TNF-α were recorded. Results: A 64-year-old woman with wet-AMD was treated with fourteen intravitreal injections of ranibizumab (0.5 mg for a period of 40 months with intervals of 1-6 months. She initially showed a good visual and anatomical response to periodic anti-VEGF treatment but during check visits, anatomical and functional responses deteriorated. At the 40-month follow-up, the patient had developed Crohn's disease, and her rheumatologist started treatment with adalimumab (40 mg subcutaneously every 2 weeks. During the 25 months of treatment with adalimumab, the patient did not require any additional intravitreal anti-VEGF treatments because her BCVA, clinical, and OCT findings improved and remained stable. Conclusions: We described a case of a patient with wet-AMD refractory to anti-VEGF therapy, which clinically benefited from subcutaneous adalimumab therapy. Treatment with subcutaneous anti-TNF-α in combination with anti-VEGF therapy avoids the high cost and risks related to multiple intravitreal anti-VEGF injections with good functional and anatomic outcomes.

  13. Sinus Tumors

    Science.gov (United States)

    ... RESOURCES Medical Societies Patient Education About this Website Font Size + - Home > CONDITIONS > Sinus Tumors Adult Sinusitis Pediatric ... and they vary greatly in location, size and type. Care for these tumors is individualized to each ...

  14. Tumors markers

    International Nuclear Information System (INIS)

    Yamaguchi-Mizumoto, N.H.

    1989-01-01

    In order to study blood and cell components alterations (named tumor markers) that may indicate the presence of a tumor, several methods are presented. Aspects as diagnostic, prognostic, therapeutic value and clinical evaluation are discussed. (M.A.C.)

  15. Wilms tumor

    Science.gov (United States)

    ... suggested. Alternative Names Nephroblastoma; Kidney tumor - Wilms Images Kidney anatomy Wilms tumor References Babaian KN, Delacroix SE, Wood CG, Jonasch E. Kidney cancer. In: Skorecki K, Chertow GM, Marsden PA, ...

  16. Wilm's tumor in adulthood

    International Nuclear Information System (INIS)

    Matveev, B.P.; Bukharkin, B.V.; Gotsadze, D.T.

    1984-01-01

    Wilms' tumor occurs extremely rarely in adults. There is no consensus in the literature on the problems of clinical manifestations, diagnosis and treatment of the diseasa. Ten adult patients (aged 16-29) with Wilms' tumor formed the study group. They made up 0.9 per cent of the total number of kidney tumor patients. The peculiarities of the clinical course that distinguish adult nephroblastoma from renal cancer and Wilms' tumor of the infancy were analysed. The latent period appeared to be long. Problems of diagnosis are discussed. Angiography proved to be of the highest diagnostic value. Complex treatment including transperitoneal nephrectory, radiation and chemotherapy was carried out in 7 cases, palliative radiation treatmenchemotherapy andn 3. Unlike pediatric nephroblastomt - i Wilms' tumor in adults was resistant to radiation. Treatment results still remained unsatisfactory: 6 patients died 7-19 months after the beginning of treatment

  17. Brain Tumors

    Science.gov (United States)

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  18. Urogenital tumors

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.

    1994-03-01

    An overview is provided for veterinary care of urogenital tumors in companion animals, especially the dog. Neoplasms discussed include tumors of the kidney, urinary bladder, prostate, testis, ovary, vagina, vulva and the canine transmissible venereal tumor. Topics addressed include description, diagnosis and treatment.

  19. Cinnamaldehyde inhibits the tumor necrosis factor-α-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-κB activation: Effects upon IκB and Nrf2

    International Nuclear Information System (INIS)

    Liao, B.-C.; Hsieh, C.-W.; Liu, Y.-C.; Tzeng, T.-T.; Sun, Y.-W.; Wung, B.-S.

    2008-01-01

    The production of adhesion molecules and subsequent attachment of leukocytes to endothelial cells (ECs) are critical early events in atherogenesis. These adhesion molecules thus play an important role in the development of this disease. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of cinnamaldehyde, a Cinnamomum cassia Presl-specific diterpene. In our current study, we have examined the effects of both cinnamaldehyde and extracts of C. cassia on cytokine-induced monocyte/human endothelial cell interactions. We find that these compounds inhibit the adhesion of TNFα-induced monocytes to endothelial cells and suppress the expression of the cell adhesion molecules, VCAM-1 and ICAM-1, at the transcriptional level. Moreover, in TNFα-treated ECs, the principal downstream signal of VCAM-1 and ICAM-1, NF-κB, was also found to be abolished in a time-dependent manner. Interestingly, cinnamaldehyde exerts its anti-inflammatory effects by blocking the degradation of the inhibitory protein IκB-α, but only in short term pretreatments, whereas it does so via the induction of Nrf2-related genes, including heme-oxygenase-1 (HO-1), over long term pretreatments. Treating ECs with zinc protoporphyrin, a HO-1 inhibitor, partially blocks the anti-inflammatory effects of cinnamaldehyde. Elevated HO-1 protein levels were associated with the inhibition of TNFα-induced ICAM-1 expression. In addition to HO-1, we also found that cinnamaldehyde can upregulate Nrf2 in nuclear extracts, and can increase ARE-luciferase activity and upregulate thioredoxin reductase-1, another Nrf2-related gene. Moreover, cinnamaldehyde exposure rapidly reduces the cellular GSH levels in ECs over short term treatments but increases these levels after 9 h exposure. Hence, our present findings indicate that cinnamaldehyde suppresses TNF-induced singling pathways via two distinct mechanisms that are activated by different pretreatment periods

  20. The K-Ras 4A isoform promotes apoptosis but does not affect either lifespan or spontaneous tumor incidence in aging mice

    International Nuclear Information System (INIS)

    Plowman, Sarah J.; Arends, Mark J.; Brownstein, David G.; Luo Feijun; Devenney, Paul S.; Rose, Lorraine; Ritchie, Ann-Marie; Berry, Rachel L.; Harrison, David J.; Hooper, Martin L.; Patek, Charles E.

    2006-01-01

    Ras proteins function as molecular switches in signal transduction pathways, and, here, we examined the effects of the K-ras4A and 4B splice variants on cell function by comparing wild-type embryonic stem (ES) cells with K-ras tmΔ4A/tmΔ4A (exon 4A knock-out) ES cells which express K-ras4B only and K-ras -/- (exons 1-3 knock-out) ES cells which express neither splice variant, and intestinal epithelium from wild-type and K-ras tmΔ4A/tmΔ4A mice. RT-qPCR analysis found that K-ras4B expression was reduced in K-ras tmΔ4A/tmΔ4A ES cells but unaffected in small intestine. K-Ras deficiency did not affect ES cell growth, and K-Ras4A deficiency did not affect intestinal epithelial proliferation. K-ras tmΔ4A/tmΔ4A and K-ras -/- ES cells showed a reduced capacity for differentiation following LIF withdrawal, and K-ras -/- cells were least differentiated. K-Ras4A deficiency inhibited etoposide-induced apoptosis in ES cells and intestinal epithelial cells. However, K-ras tmΔ4A/tmΔ4A ES cells were more resistant to etoposide-induced apoptosis than K-ras -/- cells. The results indicate that (1) K-Ras4A promotes apoptosis while K-Ras4B inhibits it, and (2) K-Ras4B, and possibly K-Ras4A, promotes differentiation. The findings raise the possibility that alteration of the K-Ras4A/4B isoform ratio modulates tumorigenesis by differentially affecting stem cell survival and/or differentiation. However, K-Ras4A deficiency did not affect life expectancy or spontaneous overall tumor incidence in aging mice

  1. Pseudoanaplastic tumors of bone

    Energy Technology Data Exchange (ETDEWEB)

    Bahk, Won-Jong [Uijongbu St. Mary Hospital, The Catholic University of Korea, Department of Orthopaedic Surgery, Gyunggido, 480-821 (Korea); Mirra, Joseph M. [Orthopaedic Hospital, Orthopedic Oncology, Los Angeles, California (United States)

    2004-11-01

    To discuss the concept of pseudoanaplastic tumors of bone, which pathologically show hyperchromatism and marked pleomorphism with quite enlarged, pleomorphic nuclei, but with no to extremely rare, typical mitoses, and to propose guidelines for their diagnosis. From a database of 4,262 bone tumors covering from 1971 to 2001, 15 cases of pseudoanaplastic bone tumors (0.35% of total) were retrieved for clinical, radiographic and pathologic review. Postoperative follow-up after surgical treatment was at least 3 years and a maximum of 7 years. There were eight male and seven female patients. Their ages ranged from 10 to 64 years with average of 29.7 years. Pathologic diagnoses of pseudoanaplastic variants of benign bone tumors included: osteoblastoma (4 cases), giant cell tumor (4 cases), chondromyxoid fibroma (3 cases), fibrous dysplasia (2 cases), fibrous cortical defect (1 case) and aneurysmal bone cyst (1 case). Radiography of all cases showed features of a benign bone lesion. Six cases, one case each of osteoblastoma, fibrous dysplasia, aneurysmal bone cyst, chondromyxoid fibroma, giant cell tumor and osteoblastoma, were initially misdiagnosed as osteosarcoma. The remaining cases were referred for a second opinion to rule out sarcoma. Despite the presence of significant cytologic aberrations, none of our cases showed malignant behavior following simple curettage or removal of bony lesions. Our observation justifies the concept of pseudoanaplasia in some benign bone tumors as in benign soft tissue tumors, especially in their late evolutionary stage when bizarre cytologic alterations strongly mimic a sarcoma. (orig.)

  2. Deconstructing continuous flash suppression.

    Science.gov (United States)

    Yang, Eunice; Blake, Randolph

    2012-03-08

    In this paper, we asked to what extent the depth of interocular suppression engendered by continuous flash suppression (CFS) varies depending on spatiotemporal properties of the suppressed stimulus and CFS suppressor. An answer to this question could have implications for interpreting the results in which CFS influences the processing of different categories of stimuli to different extents. In a series of experiments, we measured the selectivity and depth of suppression (i.e., elevation in contrast detection thresholds) as a function of the visual features of the stimulus being suppressed and the stimulus evoking suppression, namely, the popular "Mondrian" CFS stimulus (N. Tsuchiya & C. Koch, 2005). First, we found that CFS differentially suppresses the spatial components of the suppressed stimulus: Observers' sensitivity for stimuli of relatively low spatial frequency or cardinally oriented features was more strongly impaired in comparison to high spatial frequency or obliquely oriented stimuli. Second, we discovered that this feature-selective bias primarily arises from the spatiotemporal structure of the CFS stimulus, particularly within information residing in the low spatial frequency range and within the smooth rather than abrupt luminance changes over time. These results imply that this CFS stimulus operates by selectively attenuating certain classes of low-level signals while leaving others to be potentially encoded during suppression. These findings underscore the importance of considering the contribution of low-level features in stimulus-driven effects that are reported under CFS.

  3. Dynamic Alu Methylation during Normal Development, Aging, and Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Yanting Luo

    2014-01-01

    Full Text Available DNA methylation primarily occurs on CpG dinucleotides and plays an important role in transcriptional regulations during tissue development and cell differentiation. Over 25% of CpG dinucleotides in the human genome reside within Alu elements, the most abundant human repeats. The methylation of Alu elements is an important mechanism to suppress Alu transcription and subsequent retrotransposition. Decades of studies revealed that Alu methylation is highly dynamic during early development and aging. Recently, many environmental factors were shown to have a great impact on Alu methylation. In addition, aberrant Alu methylation has been documented to be an early event in many tumors and Alu methylation levels have been associated with tumor aggressiveness. The assessment of the Alu methylation has become an important approach for early diagnosis and/or prognosis of cancer. This review focuses on the dynamic Alu methylation during development, aging, and tumor genesis. The cause and consequence of Alu methylation changes will be discussed.

  4. Proinflammatory cytokine tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) suppresses satellite cell self-renewal through inversely modulating Notch and NF-κB signaling pathways.

    Science.gov (United States)

    Ogura, Yuji; Mishra, Vivek; Hindi, Sajedah M; Kuang, Shihuan; Kumar, Ashok

    2013-12-06

    Satellite cell self-renewal is an essential process to maintaining the robustness of skeletal muscle regenerative capacity. However, extrinsic factors that regulate self-renewal of satellite cells are not well understood. Here, we demonstrate that TWEAK cytokine reduces the proportion of Pax7(+)/MyoD(-) cells (an index of self-renewal) on myofiber explants and represses multiple components of Notch signaling in satellite cell cultures. The number of Pax7(+) cells is significantly increased in skeletal muscle of TWEAK knock-out (KO) mice compared with wild-type in response to injury. Furthermore, Notch signaling is significantly elevated in cultured satellite cells and in regenerating myofibers of TWEAK-KO mice. Forced activation of Notch signaling through overexpression of the Notch1 intracellular domain (N1ICD) rescued the TWEAK-mediated inhibition of satellite cell self-renewal. TWEAK also activates the NF-κB transcription factor in satellite cells and inhibition of NF-κB significantly improved the number of Pax7(+) cells in TWEAK-treated cultures. Furthermore, our results demonstrate that a reciprocal interaction between NF-κB and Notch signaling governs the inhibitory effect of TWEAK on satellite cell self-renewal. Collectively, our study demonstrates that TWEAK suppresses satellite cell self-renewal through activating NF-κB and repressing Notch signaling.

  5. What is a pediatric tumor?

    Directory of Open Access Journals (Sweden)

    Mora J

    2012-11-01

    Full Text Available Jaume Mora1,21Department of Oncology, 2Developmental Tumor Biology Laboratory, Hospital Sant Joan de Deu, Fundacio Sant Joan de Deu, Barcelona, SpainAbstract: Working together with medical oncologists, the question of whether a Ewing sarcoma in a 25-year-old is a pediatric tumor comes up repeatedly. Like Ewing's, some tumors present characteristically at ages that cross over what has been set as the definition of pediatrics (15 years, 18 years, or 21 years?. Pediatric oncology textbooks, surprisingly, do not address the subject of defining a pediatric tumor. They all begin with an epidemiology chapter defining the types of tumors appearing at distinct stages of childhood, adolescence, and young adulthood. Describing the epidemiology of tumors in relation to age, it becomes clear that the disease is related to the phenomenon of aging. The question, however, remains: is there a biological definition of what pediatric age is? And if so, will tumors occurring during this period of life have anything to do with such biological definition? With the aim of finding an objective definition, the fundamental concepts of what defines "pediatrics" was reviewed and then the major features of tumors arising during development were analyzed. The tumors were explored from the perspective of a host immersed in the normal process of growth and development. This physiological process, from pluripotential and undifferentiated cells, makes possible the differentiation, maturation, organization, and function of tissues, organs, and apparatus. A biological definition of pediatric tumors and the infancy–childhood–puberty classification of developmental tumors according to the infancy–childhood–puberty model of normal human development are proposed.Keywords: growth and development, pediatric tumor, infant, childhood and adolescence, pubertal tumors

  6. Epilepsy and brain tumors

    Science.gov (United States)

    ENGLOT, DARIO J.; CHANG, EDWARD F.; VECHT, CHARLES J.

    2016-01-01

    Seizures are common in patients with brain tumors, and epilepsy can significantly impact patient quality of life. Therefore, a thorough understanding of rates and predictors of seizures, and the likelihood of seizure freedom after resection, is critical in the treatment of brain tumors. Among all tumor types, seizures are most common with glioneuronal tumors (70–80%), particularly in patients with frontotemporal or insular lesions. Seizures are also common in individuals with glioma, with the highest rates of epilepsy (60–75%) observed in patients with low-grade gliomas located in superficial cortical or insular regions. Approximately 20–50% of patients with meningioma and 20–35% of those with brain metastases also suffer from seizures. After tumor resection, approximately 60–90% are rendered seizure-free, with most favorable seizure outcomes seen in individuals with glioneuronal tumors. Gross total resection, earlier surgical therapy, and a lack of generalized seizures are common predictors of a favorable seizure outcome. With regard to anticonvulsant medication selection, evidence-based guidelines for the treatment of focal epilepsy should be followed, and individual patient factors should also be considered, including patient age, sex, organ dysfunction, comorbidity, or cotherapy. As concomitant chemotherapy commonly forms an essential part of glioma treatment, enzyme-inducing anticonvulsants should be avoided when possible. Seizure freedom is the ultimate goal in the treatment of brain tumor patients with epilepsy, given the adverse effects of seizures on quality of life. PMID:26948360

  7. Regional Extent of Peripheral Suppression in Amblyopia.

    Science.gov (United States)

    Babu, Raiju J; Clavagnier, Simon; Bobier, William R; Thompson, Benjamin; Hess, Robert F

    2017-04-01

    Previously, we have mapped amblyopic eye suppression within the central 20° of the visual field and observed a gradient of suppression that is strongest in central vision and weakens with increasing eccentricity. In this study, using a large dichoptic display, we extend our novel suppression mapping approach further into the periphery (from 20°-60°) to assess whether suppression continues to decline with eccentricity or plateaus. Sixteen participants with amblyopia (10 with strabismus, 6 with anisometropia without strabismus; mean age: 37.9 ± 11 years) and six normal observers (mean age: 28.3 ± 5 years) took part. The visual stimulus (60° diameter), viewed from 57 cm, was composed of four concentric annuli (5° radius) with alternate contrast polarities starting from an eccentricity of 10°. Each annulus was divided into eight sectors subtending 45° of visual angle. Participants adjusted the contrast of a single sector presented to the fellow eye to match the perceived contrast of the remaining stimulus elements that were presented to the amblyopic eye. A matching contrast that was lower in the fellow eye than the amblyopic eye indicated suppression. Patients with strabismus exhibited significantly stronger interocular suppression than controls across all eccentricities (P = 0.01). Patients with anisometropia did not differ from controls (P = 0.58). Suppression varied significantly with eccentricity (P = 0.005) but this effect did not differ between patient groups (P = 0.217). In amblyopia, suppression is present beyond the central 10° in patients with strabismus. Suppression becomes weaker at greater eccentricities and this may enable peripheral fusion that could be used by binocular treatment methods.

  8. Protection against septic shock and suppression of tumor necrosis factor alpha and nitric oxide production on macrophages and microglia by a standard aqueous extract of Mangifera indica L. (VIMANG). Role of mangiferin isolated from the extract.

    Science.gov (United States)

    Garrido, Gabino; Delgado, René; Lemus, Yeny; Rodríguez, Janet; García, Dagmar; Núñez-Sellés, Alberto J

    2004-08-01

    The present study illustrates the effects of a standard aqueous extract, used in Cuba under the brand name of VIMANG, from the stem bark of Mangifera indica L. on the production of tumor necrosis factor alpha (TNFalpha) and nitric oxide (NO) in in vivo and in vitro experiments. In vivo was determined by the action of the extract and its purified glucosylxanthone (mangiferin) on TNFalpha in a murine model of endotoxic shock using Balb/c mice pre-treated with lipopolysaccharide (LPS) 0.125 mg kg(-1), i.p. In vitro, M. indica extract and mangiferin were tested on TNFalpha and NO production in activated macrophages (RAW264.7 cell line) and microglia (N9 cell line) stimulated with LPS (10ng ml(-1)) and interferon gamma (IFNgamma, 2U ml(-1)). M. indica extract reduced dose-dependently TNFalpha production in the serum (ED50 = 64.5 mg kg(-1)) and the TNFalpha mRNA expression in the lungs and livers of mice. Mangiferin also inhibited systemic TNFalpha at 20 mg kg(-1). In RAW264.7, the extract inhibited TNFalpha (IC50 = 94.1 microg ml(-1)) and NO (IC50 = 64.4 microg ml(-1)). In microglia the inhibitions of the extract were IC50 = 76.0 microg ml(-1) (TNFalpha) and 84.0 microg ml(-1) (NO). These findings suggest that the anti-inflammatory response observed during treatment with M. indica extract must be related with inhibition of TNFalpha and NO production. Mangiferin, a main component in the extract, is involved in these effects. The TNFalpha and NO inhibitions by M. indica extract and mangiferin on endotoxic shock and microglia are reported here for the first time. Copyright 2004 Elsevier Ltd.

  9. Tumoral tracers

    International Nuclear Information System (INIS)

    Camargo, E.E.

    1979-01-01

    Direct tumor tracers are subdivided in the following categories:metabolite tracers, antitumoral tracers, radioactive proteins and cations. Use of 67 Ga-citrate as a clinically important tumoral tracer is emphasized and gallium-67 whole-body scintigraphy is discussed in detail. (M.A.) [pt

  10. Off and back-on again: a tumor suppressor's tale.

    Science.gov (United States)

    Acosta, Jonuelle; Wang, Walter; Feldser, David M

    2018-06-01

    Tumor suppressor genes play critical roles orchestrating anti-cancer programs that are both context dependent and mechanistically diverse. Beyond canonical tumor suppressive programs that control cell division, cell death, and genome stability, unexpected tumor suppressor gene activities that regulate metabolism, immune surveillance, the epigenetic landscape, and others have recently emerged. This diversity underscores the important roles these genes play in maintaining cellular homeostasis to suppress cancer initiation and progression, but also highlights a tremendous challenge in discerning precise context-specific programs of tumor suppression controlled by a given tumor suppressor. Fortunately, the rapid sophistication of genetically engineered mouse models of cancer has begun to shed light on these context-dependent tumor suppressor activities. By using techniques that not only toggle "off" tumor suppressor genes in nascent tumors, but also facilitate the timely restoration of gene function "back-on again" in disease specific contexts, precise mechanisms of tumor suppression can be revealed in an unbiased manner. This review discusses the development and implementation of genetic systems designed to toggle tumor suppressor genes off and back-on again and their potential to uncover the tumor suppressor's tale.

  11. CT and MR imaging features in phosphaturic mesenchymal tumor-mixed connective tissue: A case report.

    Science.gov (United States)

    Shi, Zhenshan; Deng, Yiqiong; Li, Xiumei; Li, Yueming; Cao, Dairong; Coossa, Vikash Sahadeo

    2018-04-01

    Phosphaturic mesenchymal tumor-mixed connective tissue (PMT-MCT) is rare and usually benign and slow-growing. The majority of these tumors is associated with sporadic tumor-induced osteomalacia (TIO) or rickets, affect middle-aged individuals and are located in the extremities. Previous imaging studies often focused on seeking the causative tumors of TIO, not on the radiological features of these tumors, especially magnetic resonance imaging (MRI) features. PMT-MCT remains a largely misdiagnosed, ignored or unknown entity by most radiologists and clinicians. In the present case report, a review of the known literature of PMT-MCT was conducted and the CT and MRI findings from three patient cases were described for diagnosing the small subcutaneous tumor. Typical MRI appearances of PMT-MCT were isointense relative to the muscles on T1-weighted imaging, and markedly hyperintense on T2-weighted imaging containing variably flow voids, with markedly heterogeneous/homogenous enhancement on post contrast T1-weighted fat-suppression imaging. Short time inversion recovery was demonstrated to be the optimal sequence in localizing the tumor.

  12. Animal tumors

    International Nuclear Information System (INIS)

    Gillette, E.L.

    1983-01-01

    There are few trained veterinary radiation oncologists and the expense of facilities has limited the extent to which this modality is used. In recent years, a few cobalt teletherapy units and megavoltage x-ray units have been employed in larger veterinary institutions. In addition, some radiation oncologists of human medical institutions are interested and willing to cooperate with veterinarians in the treatment of animal tumors. Carefully designed studies of the response of animal tumors to new modalities serve two valuable purposes. First, these studies may lead to improved tumor control in companion animals. Second, these studies may have important implications to the improvement of therapy of human tumors. Much remains to be learned of animal tumor biology so that appropriate model systems can be described for such studies. Many of the latter studies can be sponsored by agencies interested in the improvement of cancer management

  13. Pediatric liver tumors - a pictorial review

    International Nuclear Information System (INIS)

    Jha, Priyanka; Tavri, Sidhartha; Patel, Chirag; Gooding, Charles; Daldrup-Link, Heike; Chawla, Soni C.

    2009-01-01

    Hepatic masses constitute about 5-6% of all intra-abdominal masses in children. The majority of liver tumors in children are malignant; these malignant liver tumors constitute the third most common intra-abdominal malignancy in the pediatric age group after Wilms' tumor and neuroblastoma. Only about one third of the liver tumors are benign. A differential diagnosis of liver tumors in children can be obtained based on the age of the child, clinical information (in particular AFP) and imaging characteristics. The purpose of this review is to report typical clinical and imaging characteristics of benign and malignant primary liver tumors in children. (orig.)

  14. CD8+ Tumor-Infiltrating T Cells Are Trapped in the Tumor-Dendritic Cell Network

    Directory of Open Access Journals (Sweden)

    Alexandre Boissonnas

    2013-01-01

    Full Text Available Chemotherapy enhances the antitumor adaptive immune T cell response, but the immunosuppressive tumor environment often dominates, resulting in cancer relapse. Antigen-presenting cells such as tumor-associated macrophages (TAMs and tumor dendritic cells (TuDCs are the main protagonists of tumor-infiltrating lymphocyte (TIL immuno-suppression. TAMs have been widely investigated and are associated with poor prognosis, but the immuno-suppressive activity of TuDCs is less well understood. We performed two-photon imaging of the tumor tissue to examine the spatiotemporal interactions between TILs and TuDCs after chemotherapy. In a strongly immuno-suppressive murine tumor model, cyclophosphamide-mediated chemotherapy transiently enhanced the antitumor activity of adoptively transferred ovalbumin-specific CD8+ T cell receptor transgenic T cells (OTI but barely affected TuDC compartment within the tumor. Time lapse imaging of living tumor tissue showed that TuDCs are organized as a mesh with dynamic interconnections. Once infiltrated into the tumor parenchyma, OTI T cells make antigen-specific and long-lasting contacts with TuDCs. Extensive analysis of TIL infiltration on histologic section revealed that after chemotherapy the majority of OTI T cells interact with TuDCs and that infiltration is restricted to TuDC-rich areas. We propose that the TuDC network exerts antigen-dependent unproductive retention that trap T cells and limit their antitumor effectiveness.

  15. Sodium fire suppression

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J C [DSN/SESTR, Centre de Cadarache, Saint-Paul-lez-Durance (France)

    1979-03-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  16. Sodium fire suppression

    International Nuclear Information System (INIS)

    Malet, J.C.

    1979-01-01

    Ignition and combustion studies have provided valuable data and guidelines for sodium fire suppression research. The primary necessity is to isolate the oxidant from the fuel, rather than to attempt to cool the sodium below its ignition temperature. Work along these lines has led to the development of smothering tank systems and a dry extinguishing powder. Based on the results obtained, the implementation of these techniques is discussed with regard to sodium fire suppression in the Super-Phenix reactor. (author)

  17. Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells.

    Science.gov (United States)

    Payne, Kyle K; Keim, Rebecca C; Graham, Laura; Idowu, Michael O; Wan, Wen; Wang, Xiang-Yang; Toor, Amir A; Bear, Harry D; Manjili, Masoud H

    2016-09-01

    Two major barriers to cancer immunotherapy include tumor-induced immune suppression mediated by myeloid-derived suppressor cells and poor immunogenicity of the tumor-expressing self-antigens. To overcome these barriers, we reprogrammed tumor-immune cell cross-talk by combined use of decitabine and adoptive immunotherapy, containing tumor-sensitized T cells and CD25(+) NKT cells. Decitabine functioned to induce the expression of highly immunogenic cancer testis antigens in the tumor, while also reducing the frequency of myeloid-derived suppressor cells and the presence of CD25(+) NKT cells rendered T cells, resistant to remaining myeloid-derived suppressor cells. This combinatorial therapy significantly prolonged survival of animals bearing metastatic tumor cells. Adoptive immunotherapy also induced tumor immunoediting, resulting in tumor escape and associated disease-related mortality. To identify a tumor target that is incapable of escape from the immune response, we used dormant tumor cells. We used Adriamycin chemotherapy or radiation therapy, which simultaneously induce tumor cell death and tumor dormancy. Resultant dormant cells became refractory to additional doses of Adriamycin or radiation therapy, but they remained sensitive to tumor-reactive immune cells. Importantly, we discovered that dormant tumor cells contained indolent cells that expressed low levels of Ki67 and quiescent cells that were Ki67 negative. Whereas the former were prone to tumor immunoediting and escape, the latter did not demonstrate immunoediting. Our results suggest that immunotherapy could be highly effective against quiescent dormant tumor cells. The challenge is to develop combinatorial therapies that could establish a quiescent type of tumor dormancy, which would be the best target for immunotherapy. © The Author(s).

  18. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    International Nuclear Information System (INIS)

    Tucker, Jo A.; Jochems, Caroline; Gulley, James L.; Schlom, Jeffrey; Tsang, Kwong Y.

    2012-01-01

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies

  19. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Jo A.; Jochems, Caroline [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Gulley, James L. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Schlom, Jeffrey, E-mail: js141c@nih.gov; Tsang, Kwong Y. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2012-12-11

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies.

  20. Pituitary Tumors

    Science.gov (United States)

    ... Association (ABTA) International RadioSurgery Association National Brain Tumor Society National Institute of Child Health and Human Development ... Definition The pituitary is a small, bean-sized gland ...

  1. Hypothalamic tumor

    Science.gov (United States)

    ... in the brain to reduce spinal fluid pressure. Risks of radiation therapy include damage to healthy brain cells when tumor cells are destroyed. Common side effects from chemotherapy include loss of appetite, nausea and vomiting, and fatigue.

  2. VEGF-dependent mechanism of anti-angiogenic action of diamond nanoparticles in Glioblastoma Multiforme tumor

    DEFF Research Database (Denmark)

    Grodzik, M.; Sawosz, E.; Wierzbicki, M.

    2012-01-01

    Malignant gliomas are highly lethal cancers dependent on angiogenesis. The concept of treating tumors by inhibiting tumor angiogenesis was first articulated almost 30 years ago. Inhibition of tumor angiogenesis suppresses both tumor growth and metastasis. We determined the inhibition effect of di...

  3. [Diagnostic aspects of pharyngeal tumors].

    Science.gov (United States)

    Savin, A A; Kradinov, A I; Vasil'ev, A Iu; Rogozhin, V A; Ivankov, A P

    1999-01-01

    In the work there are summarized the results of the examination of the 28 patients suffering with the pharynx tumors (angiophybroma of the pharynx, tumor of rhinopharynx with spreading to the cells of ethmoidal labyrinth and maxillary sinus, tumor of the pharynx spreading upon the rhinopharynx and intracranially) aged from 14 till 62. There are described the methods of roentgenologic investigation, computed and magnetic resonance tomography. There are shown the possibilities of different diagnostic methods in pharynx tumors, in estimation of the localization specification, prevalence, structure, degree of invasion into the neoplasms gathering round the cells, as well as the definition of the bony destruction.

  4. Tumor carcinoide apendicular Appendiceal carcinoid tumor

    Directory of Open Access Journals (Sweden)

    Julio Vázquez Palanco

    2008-12-01

    Full Text Available El objetivo de este trabajo fue dar a conocer un interesante caso de tumor carcinoide que se presentó con cuadro clínico de apendicitis aguda. El paciente fue un varón de 8 años de edad, al cual se realizó apendicectomía a causa de una apendicitis aguda. El resultado anatomopatológico confirmó un tumor de células endocrinas (argentafinoma, tumor carcinoide en el tercio distal del órgano, que infiltraba hasta la serosa, y apendicitis aguda supurada. El paciente fue enviado a un servicio de oncohematología para tratamiento oncoespecífico. Por lo inusual de estos tumores en edades tempranas y por lo que puede representar para el niño una conducta no consecuente, decidimos presentar este caso a la comunidad científica nacional e internacional. Es extremadamente importante el seguimiento de los pacientes con apendicitis aguda y de las conclusiones del examen histológico, por lo que puede representar para el niño una conducta inadecuada en una situación como esta.The objective of this paper was to make known an interesting case of carcinoid tumor that presented a clinical picture of acute appendicitis.The patient was an eight-year-old boy that underwent appendectomy due to an acute appendicitis. The anatomopathological report confirmed an endocrine cell tumor (argentaffinoma, carcinoid tumor in the distal third of the organ that infiltrated up to the serosa, and acute suppurative appendicitis. The patient was referred to an oncohematology service for oncospecific treatment. As it is a rare tumor at early ages, and taking into account what a inconsequent behavior may represent for the child, it was decided to present this case to the national and international scientific community. The follow-up of the patients with acute appendicitis and of the conclusions of the histological examination is extremely important considering what an inadequate conduct may represent for the child in a situation like this.

  5. Tumor Types: Understanding Brain Tumors

    Science.gov (United States)

    ... May cause excessive secretion of hormones Common among men and women in their 50s-80s Accounts for about 13 percent of all brain tumors Symptoms Headache Depression Vision loss Nausea or vomiting Behavioral and cognitive ...

  6. Pressure suppression device

    International Nuclear Information System (INIS)

    Mizumachi, Wataru; Fukuda, Akira; Kitaguchi, Hidemi; Shimizu, Toshiaki.

    1976-01-01

    Object: To relieve and absorb impact wave vibrations caused by steam and non-condensed gases releasing into the pressure suppression chamber at the time of an accident. Structure: The reactor container is filled with inert gases. A safety valve attached main steam pipe is provided to permit the excessive steam to escape, the valve being communicated with the pressure suppression chamber through an exhaust pipe. In the pressure suppression chamber, a doughnut-like cylindrical outer wall is filled at its bottom with pool water to condense the high temperature vapor released through the exhaust pipe. A head portion of a vent tube which leads the exhaust pipe is positioned at the top, and a down comer and an exhaust vent tube are locked by means of steady rests. At the bottom is mounted a pressure adsorber device which adsorbs a pressure from the pool water. (Kamimura, M.)

  7. Thyroxin hormone suppression treatment

    International Nuclear Information System (INIS)

    Samuel, A.M.

    1999-01-01

    One of the important modalities of treatment of thyroid cancer (TC) after surgery is the administration of thyroxin as an adjuvant treatment. The analysis supports the theory that thyroid suppression plays an important role in patient management. 300 μg of thyroxin, as this is an adequate dose for suppression is given. Ideally the dose should be tailored by testing s-TSH levels. However, since a large number of the patients come from out station cities and villages this is impractical. We therefore depend on clinical criteria of hyperthyroid symptoms and adjust the dose. Very few patients need such adjustment

  8. Tumor immunology.

    Science.gov (United States)

    Mocellin, Simone; Lise, Mario; Nitti, Donato

    2007-01-01

    Advances in tumor immunology are supporting the clinical implementation of several immunological approaches to cancer in the clinical setting. However, the alternate success of current immunotherapeutic regimens underscores the fact that the molecular mechanisms underlying immune-mediated tumor rejection are still poorly understood. Given the complexity of the immune system network and the multidimensionality of tumor/host interactions, the comprehension of tumor immunology might greatly benefit from high-throughput microarray analysis, which can portrait the molecular kinetics of immune response on a genome-wide scale, thus accelerating the discovery pace and ultimately catalyzing the development of new hypotheses in cell biology. Although in its infancy, the implementation of microarray technology in tumor immunology studies has already provided investigators with novel data and intriguing new hypotheses on the molecular cascade leading to an effective immune response against cancer. Although the general principles of microarray-based gene profiling have rapidly spread in the scientific community, the need for mastering this technique to produce meaningful data and correctly interpret the enormous output of information generated by this technology is critical and represents a tremendous challenge for investigators, as outlined in the first section of this book. In the present Chapter, we report on some of the most significant results obtained with the application of DNA microarray in this oncology field.

  9. Pancreatic islet cell tumor

    Science.gov (United States)

    ... cell tumors; Islet of Langerhans tumor; Neuroendocrine tumors; Peptic ulcer - islet cell tumor; Hypoglycemia - islet cell tumor ... stomach acid. Symptoms may include: Abdominal pain Diarrhea ... and small bowel Vomiting blood (occasionally) Glucagonomas make ...

  10. Brain tumors and syndromes in children

    NARCIS (Netherlands)

    Bleeker, Fonnet E.; Hopman, Saskia M. J.; Merks, Johannes H. M.; Aalfs, Cora M.; Hennekam, Raoul C. M.

    2014-01-01

    (Brain) tumors are usually a disorder of aged individuals. If a brain tumor occurs in a child, there is a possible genetic susceptibility for this. Such genetic susceptibilities often show other signs and symptoms. Therefore, every child with a brain tumor should be carefully evaluated for the

  11. An HRE-Binding Py-Im Polyamide Impairs Hypoxic Signaling in Tumors.

    Science.gov (United States)

    Szablowski, Jerzy O; Raskatov, Jevgenij A; Dervan, Peter B

    2016-04-01

    Hypoxic gene expression contributes to the pathogenesis of many diseases, including organ fibrosis, age-related macular degeneration, and cancer. Hypoxia-inducible factor-1 (HIF1), a transcription factor central to the hypoxic gene expression, mediates multiple processes including neovascularization, cancer metastasis, and cell survival. Pyrrole-imidazole polyamide 1: has been shown to inhibit HIF1-mediated gene expression in cell culture but its activity in vivo was unknown. This study reports activity of polyamide 1: in subcutaneous tumors capable of mounting a hypoxic response and showing neovascularization. We show that 1: distributes into subcutaneous tumor xenografts and normal tissues, reduces the expression of proangiogenic and prometastatic factors, inhibits the formation of new tumor blood vessels, and suppresses tumor growth. Tumors treated with 1: show no increase in HIF1α and have reduced ability to adapt to the hypoxic conditions, as evidenced by increased apoptosis in HIF1α-positive regions and the increased proximity of necrotic regions to vasculature. Overall, these results show that a molecule designed to block the transcriptional activity of HIF1 has potent antitumor activity in vivo, consistent with partial inhibition of the tumor hypoxic response. Mol Cancer Ther; 15(4); 608-17. ©2015 AACR. ©2015 American Association for Cancer Research.

  12. The regional extent of suppression: strabismics versus nonstrabismics.

    Science.gov (United States)

    Babu, Raiju Jacob; Clavagnier, Simon R; Bobier, William; Thompson, Benjamin; Hess, Robert F

    2013-10-09

    Evidence is accumulating that suppression may be the cause of amblyopia rather than a secondary consequence of mismatched retinal images. For example, treatment interventions that target suppression may lead to better binocular and monocular outcomes. Furthermore, it has recently been demonstrated that the measurement of suppression may have prognostic value for patching therapy. For these reasons, the measurement of suppression in the clinic needs to be improved beyond the methods that are currently available, which provide a binary outcome. We describe a novel quantitative method for measuring the regional extent of suppression that is suitable for clinical use. The method involves a dichoptic perceptual matching procedure at multiple visual field locations. We compare a group of normal controls (mean age: 28 ± 5 years); a group with strabismic amblyopia (four with microesotropia, five with esotropia, and one with exotropia; mean age: 35 ± 10 years); and a group with nonstrabismic anisometropic amblyopia (mean age: 33 ± 12 years). The extent and magnitude of suppression was similar for observers with strabismic and nonstrabismic amblyopia. Suppression was strongest within the central field and extended throughout the 20° field that we measured. Suppression extends throughout the central visual field in both strabismic and anisometropic forms of amblyopia. The strongest suppression occurs within the region of the visual field corresponding to the fovea of the fixing eye.

  13. Imaging of brain tumors

    International Nuclear Information System (INIS)

    Gaensler, E.H.L.

    1995-01-01

    The contents are diagnostic approaches, general features of tumors -hydrocephalus, edema, attenuation and/or intensity value, hemorrhage, fat, contrast enhancement, intra-axial supratentorial tumors - tumors of glial origin, oligodendrogliomas, ependymomas, subependymomas, subependymal giant cell astrocytomas, choroid plexus papilloma; midline tumors - colloid cysts, craniopharyngiomas; pineal region tumors and miscellaneous tumors i.e. primary intracerebral lymphoma, primitive neuroectodermal tumors, hemangioblastomas; extraaxial tumors - meningiomas; nerve sheath tumors -schwannomas, epidermoids, dermoids, lipomas, arachnoid cysts; metastatic tumors (8 refs.)

  14. Imaging of brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Gaensler, E H.L. [California Univ., San Francisco, CA (United States). Dept. of Radiology

    1996-12-31

    The contents are diagnostic approaches, general features of tumors -hydrocephalus, edema, attenuation and/or intensity value, hemorrhage, fat, contrast enhancement, intra-axial supratentorial tumors - tumors of glial origin, oligodendrogliomas, ependymomas, subependymomas, subependymal giant cell astrocytomas, choroid plexus papilloma; midline tumors - colloid cysts, craniopharyngiomas; pineal region tumors and miscellaneous tumors i.e. primary intracerebral lymphoma, primitive neuroectodermal tumors, hemangioblastomas; extraaxial tumors - meningiomas; nerve sheath tumors -schwannomas, epidermoids, dermoids, lipomas, arachnoid cysts; metastatic tumors (8 refs.).

  15. Pressure suppressing device

    International Nuclear Information System (INIS)

    Naito, Makoto.

    1980-01-01

    Purpose: To prevent the pressure in the reactor container from excessively increasing even when vapor leaks from the dry well to a space of the suppression chamber, without passing though the suppression pool at the time of loss of coolant accident. Constitution: When vapor of a high temperature and a high pressure at the time of loss of coolant accident flows from the dry well to the suppression chamber without passing through suppression pool water, vapor dose not condense with pool water, and therefore the pressure within the chamber abnormally increases. For this reason, this abnormal pressure is detected by a pressure detector thereby to start the operations of a blower and a pump. By starting the blower, the pressure in the dry well becomes lower than the pressure in the chamber, and vapor entirely passes through the pool water and entirely condenses with the pool water. By starting the pump, the pool water is sprayed over the space of the chamber, and vapor in the space is condensed. (Yoshino, Y.)