WorldWideScience

Sample records for aggregation induces phosphorylation

  1. SDF-1α/CXCR4 Signaling in Lipid Rafts Induces Platelet Aggregation via PI3 Kinase-Dependent Akt Phosphorylation

    Science.gov (United States)

    Hayashi, Moyuru; Kaneda, Mizuho; Iida, Kazuko; Shimonaka, Motoyuki; Hara, Takahiko; Arai, Morio; Koike, Yuichi; Yamamoto, Naomasa; Kasahara, Kohji

    2017-01-01

    Stromal cell-derived factor-1α (SDF-1α)-induced platelet aggregation is mediated through its G protein-coupled receptor CXCR4 and phosphatidylinositol 3 kinase (PI3K). Here, we demonstrate that SDF-1α induces phosphorylation of Akt at Thr308 and Ser473 in human platelets. SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the CXCR4 antagonist AMD3100 or the PI3K inhibitor LY294002. SDF-1α also induces the phosphorylation of PDK1 at Ser241 (an upstream activator of Akt), GSK3β at Ser9 (a downstream substrate of Akt), and myosin light chain at Ser19 (a downstream element of the Akt signaling pathway). SDF-1α-induced platelet aggregation is inhibited by pretreatment with the Akt inhibitor MK-2206 in a dose-dependent manner. Furthermore, SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the raft-disrupting agent methyl-β-cyclodextrin. Sucrose density gradient analysis shows that 35% of CXCR4, 93% of the heterotrimeric G proteins Gαi-1, 91% of Gαi-2, 50% of Gβ and 4.0% of PI3Kβ, and 4.5% of Akt2 are localized in the detergent-resistant membrane raft fraction. These findings suggest that SDF-1α/CXCR4 signaling in lipid rafts induces platelet aggregation via PI3K-dependent Akt phosphorylation. PMID:28072855

  2. SDF-1α/CXCR4 Signaling in Lipid Rafts Induces Platelet Aggregation via PI3 Kinase-Dependent Akt Phosphorylation.

    Science.gov (United States)

    Ohtsuka, Hiroko; Iguchi, Tomohiro; Hayashi, Moyuru; Kaneda, Mizuho; Iida, Kazuko; Shimonaka, Motoyuki; Hara, Takahiko; Arai, Morio; Koike, Yuichi; Yamamoto, Naomasa; Kasahara, Kohji

    2017-01-01

    Stromal cell-derived factor-1α (SDF-1α)-induced platelet aggregation is mediated through its G protein-coupled receptor CXCR4 and phosphatidylinositol 3 kinase (PI3K). Here, we demonstrate that SDF-1α induces phosphorylation of Akt at Thr308 and Ser473 in human platelets. SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the CXCR4 antagonist AMD3100 or the PI3K inhibitor LY294002. SDF-1α also induces the phosphorylation of PDK1 at Ser241 (an upstream activator of Akt), GSK3β at Ser9 (a downstream substrate of Akt), and myosin light chain at Ser19 (a downstream element of the Akt signaling pathway). SDF-1α-induced platelet aggregation is inhibited by pretreatment with the Akt inhibitor MK-2206 in a dose-dependent manner. Furthermore, SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the raft-disrupting agent methyl-β-cyclodextrin. Sucrose density gradient analysis shows that 35% of CXCR4, 93% of the heterotrimeric G proteins Gαi-1, 91% of Gαi-2, 50% of Gβ and 4.0% of PI3Kβ, and 4.5% of Akt2 are localized in the detergent-resistant membrane raft fraction. These findings suggest that SDF-1α/CXCR4 signaling in lipid rafts induces platelet aggregation via PI3K-dependent Akt phosphorylation.

  3. Chlorin e6 Prevents ADP-Induced Platelet Aggregation by Decreasing PI3K-Akt Phosphorylation and Promoting cAMP Production

    Directory of Open Access Journals (Sweden)

    Ji Young Park

    2013-01-01

    Full Text Available A number of reagents that prevent thrombosis have been developed but were found to have serious side effects. Therefore, we sought to identify complementary and alternative medicinal materials that are safe and have long-term efficacy. In the present studies, we have assessed the ability of chlorine e6 (CE6 to inhibit ADP-induced aggregation of rat platelets and elucidated the underlying mechanism. CE6 inhibited platelet aggregation induced by 10 µM ADP in a concentration-dependent manner and decreased intracellular calcium mobilization and granule secretion (i.e., ATP and serotonin release. Western blotting revealed that CE6 strongly inhibited the phosphorylations of PI3K, Akt, c-Jun N-terminal kinase (JNK, and different mitogen-activated protein kinases (MAPKs including extracellular signal-regulated kinase 1/2 (ERK1/2 as well as p38-MAPK. Our study also demonstrated that CE6 significantly elevated intracellular cAMP levels and decreased thromboxane A2 formation in a concentration-dependent manner. Furthermore, we determined that CE6 initiated the activation of PKA, an effector of cAMP. Taken together, our findings indicate that CE6 may inhibit ADP-induced platelet activation by elevating cAMP levels and suppressing PI3K/Akt activity. Finally, these results suggest that CE6 could be developed as therapeutic agent that helps prevent thrombosis and ischemia.

  4. Covalent modifications of ribosomal proteins in growing and aggregation-competent dictyostelium discoideum: phosphorylation and methylation.

    Science.gov (United States)

    Ramagopal, S

    1991-04-01

    Phosphorylated and methylated ribosomal proteins were identified in vegetatively growing amoebae and in the starvation-induced, aggregation-competent cells of Dictyostelium discoideum. Of the 15 developmentally regulated cell-specific ribosomal proteins reported earlier, protein A and the acidic proteins A1, A2, and A3 were identified as phosphoproteins, and S5, S6, S10, and D were identified as methylated proteins. Three other ribosomal proteins were phosphorylated and 19 others methylated. S19, L13, A1, A2, and A3 were the predominant phosphoproteins in growing amoebae, whereas S20 and A were the predominant ones in the aggregation-competent cells. Among the methylated proteins, eight (S6, S10, S13, S30, D, L1, L2, and L31) were modified only during growth phase, six (S5, S7, S8, S24, S31, and L36) were altered only during aggregation-competent phase, and nine (S9, S27, S28, S29, S34, L7, L35, L41, and L42) were modified under both phases. Five proteins (S6, S24, L7, L41, and L42) were heavily methylated and of these, the large subunit proteins were present in both growing amoebae and aggregation-competent cells. These findings demonstrate that covalent modification of specific ribosomal proteins is regulated during cell differentiation in D. discoideum.

  5. Glycation alter the process of Tau phosphorylation to change Tau isoforms aggregation property.

    Science.gov (United States)

    Liu, Kefu; Liu, Yutong; Li, Lingyun; Qin, Peibin; Iqbal, Javed; Deng, Yulin; Qing, Hong

    2016-02-01

    The risk of tauopathies depends in part on the levels and modified composition of six Tau isoforms in the human brain. Abnormal phosphorylation of the Tau protein and the shift of the ratio of 3R Tau to 4R Tau are presumed to result in neurofibrillary pathology and neurodegeneration. Glycation has recently been linked to dementia and metabolic syndrome. To determine the contribution of Tau protein glycation and phosphorylation on Tau aggregation propensity, the assembled kinetics were examined in vitro using Thioflavin T fluorescence assays. We found that glycation and phosphorylation have different effects on aggregation propensity in different Tau isoforms. Different Tau proteins play important parts in each tauopathies, but 3R0N, fetal Tau protein, has no effect on tauopathies. Conversely, 4R2N has more modified sites and a higher tendency to aggregate, playing the most important role in 4R tauopathies. Finally, Glycation, which could modulate Tau phosphorylation, may occur before any other modification. It also regulates the 3R to 4R ratio and promotes 4R2N Tau protein aggregation. Decreasing the sites of glycation, as well as shifting other Tau proteins to 3R0N Tau proteins has potential therapeutic implications for tauopathies.

  6. PPM1A regulates antiviral signaling by antagonizing TBK1-mediated STING phosphorylation and aggregation.

    Directory of Open Access Journals (Sweden)

    Zexing Li

    2015-03-01

    Full Text Available Stimulator of interferon genes (STING, also known as MITA and ERIS is critical in protecting the host against DNA pathogen invasion. However, the molecular mechanism underlying the regulation of STING remains unclear. Here, we show that PPM1A negatively regulates antiviral signaling by targeting STING in its phosphatase activity-dependent manner, and in a line with this, PPM1A catalytically dephosphorylates STING and TBK1 in vitro. Importantly, we provide evidence that whereas TBK1 promotes STING aggregation in a phosphorylation-dependent manner, PPM1A antagonizes STING aggregation by dephosphorylating both STING and TBK1, emphasizing that phosphorylation is crucial for the efficient activation of STING. Our findings demonstrate a novel regulatory circuit in which STING and TBK1 reciprocally regulate each other to enable efficient antiviral signaling activation, and PPM1A dephosphorylates STING and TBK1, thereby balancing this antiviral signal transduction.

  7. Neuroinflammation is not a prerequisite for diabetes-induced tau phosphorylation

    Directory of Open Access Journals (Sweden)

    Judith M Van Der Harg

    2015-11-01

    Full Text Available Abnormal phosphorylation and aggregation of tau is a key hallmark of Alzheimer's disease (AD. AD is a multifactorial neurodegenerative disorder for which Diabetes Mellitus (DM is a risk factor. In animal models for DM, the phosphorylation and aggregation of tau is induced or exacerbated, however the underlying mechanism is unknown. In addition to the metabolic dysfunction, DM is characterized by chronic low-grade inflammation. This was reported to be associated with a neuroinflammatory response in the hypothalamus of DM animal models. Neuroinflammation is also implicated in the development and progression of AD. It is unknown whether DM also induces neuroinflammation in brain areas affected in AD, the cortex and hippocampus. Here we investigated whether neuroinflammation could be the mechanistic trigger to induce tau phosphorylation in the brain of DM animals. Two distinct diabetic animal models were used; rats on free-choice high-fat high-sugar (fcHFHS diet that are insulin resistant and streptozotocin-treated rats that are insulin deficient. The streptozotocin-treated animals demonstrated increased tau phosphorylation in the brain as expected, whereas the fcHFHS diet fed animals did not. Remarkably, neither of the diabetic animal models showed reactive microglia or increased GFAP and COX-2 levels in the cortex or hippocampus. From this, we conclude: 1. DM does not induce neuroinflammation in brain regions affected in AD, and 2. Neuroinflammation is not a prerequisite for tau phosphorylation. Neuroinflammation is therefore not the mechanism that explains the close connection between DM and AD.

  8. Control of aggregation-induced emission by DNA hybridization

    OpenAIRE

    Li, Shaoguang; Langenegger, Simon Matthias; Häner, Robert

    2013-01-01

    Aggregation-induced emission (AIE) was studied by hybridization of dialkynyl-tetraphenylethylene (DATPE) modified DNA strands. Molecular aggregation and fluorescence of DATPEs are controlled by duplex formation.

  9. Inflammation Induces TDP-43 Mislocalization and Aggregation.

    Directory of Open Access Journals (Sweden)

    Ana Sofia Correia

    Full Text Available TAR DNA-binding protein 43 (TDP-43 is a major component in aggregates of ubiquitinated proteins in amyotrophic lateral sclerosis (ALS and frontotemporal lobar degeneration (FTLD. Here we report that lipopolysaccharide (LPS-induced inflammation can promote TDP-43 mislocalization and aggregation. In culture, microglia and astrocytes exhibited TDP-43 mislocalization after exposure to LPS. Likewise, treatment of the motoneuron-like NSC-34 cells with TNF-alpha (TNF-α increased the cytoplasmic levels of TDP-43. In addition, the chronic intraperitoneal injection of LPS at a dose of 1mg/kg in TDP-43(A315T transgenic mice exacerbated the pathological TDP-43 accumulation in the cytoplasm of spinal motor neurons and it enhanced the levels of TDP-43 aggregation. These results suggest that inflammation may contribute to development or exacerbation of TDP-43 proteinopathies in neurodegenerative disorders.

  10. Non-aggregating tau phosphorylation by cyclin-dependent kinase 5 contributes to motor neuron degeneration in spinal muscular atrophy.

    Science.gov (United States)

    Miller, Nimrod; Feng, Zhihua; Edens, Brittany M; Yang, Ben; Shi, Han; Sze, Christie C; Hong, Benjamin Taige; Su, Susan C; Cantu, Jorge A; Topczewski, Jacek; Crawford, Thomas O; Ko, Chien-Ping; Sumner, Charlotte J; Ma, Long; Ma, Yong-Chao

    2015-04-15

    Mechanisms underlying motor neuron degeneration in spinal muscular atrophy (SMA), the leading inherited cause of infant mortality, remain largely unknown. Many studies have established the importance of hyperphosphorylation of the microtubule-associated protein tau in various neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. However, tau phosphorylation in SMA pathogenesis has yet to be investigated. Here we show that tau phosphorylation on serine 202 (S202) and threonine 205 (T205) is increased significantly in SMA motor neurons using two SMA mouse models and human SMA patient spinal cord samples. Interestingly, phosphorylated tau does not form aggregates in motor neurons or neuromuscular junctions (NMJs), even at late stages of SMA disease, distinguishing it from other tauopathies. Hyperphosphorylation of tau on S202 and T205 is mediated by cyclin-dependent kinase 5 (Cdk5) in SMA disease condition, because tau phosphorylation at these sites is significantly reduced in Cdk5 knock-out mice; genetic knock-out of Cdk5 activating subunit p35 in an SMA mouse model also leads to reduced tau phosphorylation on S202 and T205 in the SMA;p35(-/-) compound mutant mice. In addition, expression of the phosphorylation-deficient tauS202A,T205A mutant alleviates motor neuron defects in a zebrafish SMA model in vivo and mouse motor neuron degeneration in culture, whereas expression of phosphorylation-mimetic tauS202E,T205E promotes motor neuron defects. More importantly, genetic knock-out of tau in SMA mice rescues synapse stripping on motor neurons, NMJ denervation, and motor neuron degeneration in vivo. Altogether, our findings suggest a novel mechanism for SMA pathogenesis in which hyperphosphorylation of non-aggregating tau by Cdk5 contributes to motor neuron degeneration.

  11. Intracerebroventricular administration of okadaic acid induces hippocampal glucose uptake dysfunction and tau phosphorylation.

    Science.gov (United States)

    Broetto, Núbia; Hansen, Fernanda; Brolese, Giovana; Batassini, Cristiane; Lirio, Franciane; Galland, Fabiana; Dos Santos, João Paulo Almeida; Dutra, Márcio Ferreira; Gonçalves, Carlos-Alberto

    2016-06-01

    Intraneuronal aggregates of neurofibrillary tangles (NFTs), together with beta-amyloid plaques and astrogliosis, are histological markers of Alzheimer's disease (AD). The underlying mechanism of sporadic AD remains poorly understood, but abnormal hyperphosphorylation of tau protein is suggested to have a role in NFTs genesis, which leads to neuronal dysfunction and death. Okadaic acid (OKA), a strong inhibitor of protein phosphatase 2A, has been used to induce dementia similar to AD in rats. We herein investigated the effect of intracerebroventricular (ICV) infusion of OKA (100 and 200ng) on hippocampal tau phosphorylation at Ser396, which is considered an important fibrillogenic tau protein site, and on glucose uptake, which is reduced early in AD. ICV infusion of OKA (at 200ng) induced a spatial cognitive deficit, hippocampal astrogliosis (based on GFAP increment) and increase in tau phosphorylation at site 396 in this model. Moreover, we observed a decreased glucose uptake in the hippocampal slices of OKA-treated rats. In vitro exposure of hippocampal slices to OKA altered tau phosphorylation at site 396, without any associated change in glucose uptake activity. Taken together, these findings further our understanding of OKA neurotoxicity, in vivo and vitro, particularly with regard to the role of tau phosphorylation, and reinforce the importance of the OKA dementia model for studying the neurochemical alterations that may occur in AD, such as NFTs and glucose hypometabolism.

  12. Cell entry of Lassa virus induces tyrosine phosphorylation of dystroglycan.

    Science.gov (United States)

    Moraz, Marie-Laurence; Pythoud, Christelle; Turk, Rolf; Rothenberger, Sylvia; Pasquato, Antonella; Campbell, Kevin P; Kunz, Stefan

    2013-05-01

    The extracellular matrix (ECM) receptor dystroglycan (DG) serves as a cellular receptor for the highly pathogenic arenavirus Lassa virus (LASV) that causes a haemorrhagic fever with high mortality in human. In the host cell, DG provides a molecular link between the ECM and the actin cytoskeleton via the adapter proteins utrophin or dystrophin. Here we investigated post-translational modifications of DG in the context of LASV cell entry. Using the tyrosine kinase inhibitor genistein, we found that tyrosine kinases are required for efficient internalization of virus particles, but not virus-receptor binding. Engagement of cellular DG by LASV envelope glycoprotein (LASV GP) in human epithelial cells induced tyrosine phosphorylation of the cytoplasmic domain of DG. LASV GP binding to DG further resulted in dissociation of the adapter protein utrophin from virus-bound DG. This virus-induced dissociation of utrophin was affected by genistein treatment, suggesting a role of receptor tyrosine phosphorylation in the process.

  13. Phosphorylation by Cdk1 induces Plk1-mediated vimentin phosphorylation during mitosis

    NARCIS (Netherlands)

    Yamaguchi, Tomoya; Goto, Hidemasa; Yokoyama, Tomoya; Silljé, Herman; Hanisch, Anja; Uldschmid, Andreas; Takai, Yasushi; Oguri, Takashi; Nigg, Erich A; Inagaki, Masaki

    2005-01-01

    Several kinases phosphorylate vimentin, the most common intermediate filament protein, in mitosis. Aurora-B and Rho-kinase regulate vimentin filament separation through the cleavage furrow-specific vimentin phosphorylation. Cdk1 also phosphorylates vimentin from prometaphase to metaphase, but its si

  14. Adriamycin induces H2AX phosphorylation in human spermatozoa

    Institute of Scientific and Technical Information of China (English)

    Zhong-Xiang Li; Ting-Ting Wang; Yan-Ting Wu; Chen-Ming Xu; Min-Yue Dong; Jian-Zhong Sheng; He-Feng Huang

    2008-01-01

    Aim: To investigate whether adriamycin induces DNA damage and the formation of γH2AX (the phosphorylated form of histone H2AX) foci in mature spermatozoa. Methods: Human spermatozoa were treated with adriamycin at different concentrations. γH2AX was analyzed by immunofluorescent staining and flow cytometry and double- strand breaks (DSB) were detected by the comet assay. Results: The neutral comet assay revealed that the treatment with adriamycin at 2 μg/mL for different times (0.5, 2, 8 and 24 h), or for 8 h at different concentrations (0.4, 2 and 10 μg/mL), induced significant DSB in spermatozoa. Immunofluorent staining and flow cytometry showed that the expression of γH2AX was increased in a dose-dependent and time-dependant manner after the treatment of adriamycin. Adriamycin also induced the concurrent appearance of DNA maintenance/repair proteins RAD50 and 53BP1 with γH2AX in spermatozoa. Wortmannin, an inhibitor of the phosphatidylinositol 3-kinase (PI3K) family, abolished the co-appearance of these two proteins with γH2AX. Conclusion: Human mature spermatozoa have the same response to DSB-induced H2AX phosphorylation and subsequent recruitment of DNA maintenance/repair proteins as somatic cells.

  15. Phosphorylation of Ser8 promotes zinc-induced dimerization of the amyloid-β metal-binding domain.

    Science.gov (United States)

    Kulikova, Alexandra A; Tsvetkov, Philipp O; Indeykina, Maria I; Popov, Igor A; Zhokhov, Sergey S; Golovin, Andrey V; Polshakov, Vladimir I; Kozin, Sergey A; Nudler, Evgeny; Makarov, Alexander A

    2014-10-01

    Zinc-induced aggregation of the amyloid-β peptide (Aβ) is a hallmark molecular feature of Alzheimer's disease (AD). Recently it was shown that phosphorylation of Aβ at Ser8 promotes the formation of toxic aggregates. In this work, we have studied the impact of Ser8 phosphorylation on the mode of zinc interaction with the Aβ metal-binding domain 1-16 using isothermal titration calorimetry, electrospray ionization mass spectrometry and NMR spectroscopy. We have discovered a novel zinc binding site ((6)HDpS(8)) in the phosphorylated peptide, in which the zinc ion is coordinated by the imidazole ring of His6, the phosphate group attached to Ser8 and a backbone carbonyl group of His6 or Asp7. Interaction of the zinc ion with this site involves His6, thereby withdrawing it from the interaction pattern observed in the non-modified peptide. This event was found to stimulate dimerization of peptide chains through the (11)EVHH(14) site, where the zinc ion is coordinated by the two pairs of Glu11 and His14 in the two peptide subunits. The proposed molecular mechanism of zinc-induced dimerization could contribute to the understanding of initiation of pathological Aβ aggregation, and the (11)EVHH(14) tetrapeptide can be considered as a promising drug target for the prevention of amyloidogenesis.

  16. Selective phosphorylation of cationic polypeptide aggregated with phosphatidylserine/diacylglycerol/Ca2+/detergent mixed micelles by Ca(2+)-independent but not Ca(2+)-dependent protein kinase C isozymes.

    Science.gov (United States)

    Mahoney, C W; Huang, K P

    1995-03-14

    Mixed micelles containing Nonidet P40 (NP-40) (829 microM or 4.8 mM), phosphatidylserine (PS) (14.5 or 8 mol%), and 1,2-diacylglycerol (DG) (0.5 or 1 mol%) when preincubated with protein kinase C (PKC) assay mixture containing cationic substrate and CaCl2 (400 microM) formed aggregates in a time-, temperature-, and substrate concentration-dependent manner with a t1/2 approximately 3-12 min (22 degrees C). Concomitant with the formation of these aggregates there was a substantial loss of substrate phosphorylation catalyzed by the Ca(2+)-dependent PKC alpha, beta, and gamma but not the Ca(2+)-independent PKC, delta and epsilon. All cationic PKC substrates tested, neurogranin peptide analog, neurogranin, and histone III-S, formed aggregates with PS/DG/NP-40/Ca2+ mixed micelles in a time-dependent fashion. The poly(cationic-anionic) PKC substrate protamine sulfate also forms aggregates with the mixed micelles in the presence of Ca2+, but without affecting the substrate phosphorylation by the kinase. Under similar conditions, but at 4 degrees C, neither aggregation nor loss of cationic substrate phosphorylation was observed. Another nonionic detergent, octyl glucoside, behaved similarly to NP-40. Phosphatidylinositol (PI) and phosphatidylglycerol like PS, were effective in forming aggregates with NP-40/cationic polypeptide/DG/Ca2+ as monitored by light scattering, yet without affecting substrate phosphorylation. Phosphorylation of cationic substrates by M-kinase, derived from trypsinized PKC beta, was also greatly diminished by the aggregation. In contrast, [3H]phorbol 12,13-dibutyrate binding to PKC beta was unaffected. Formation of the aggregates that were selectively utilized by the Ca(2+)-independent PKCs was dependent on the ratio of cationic substrate to the number of mixed micelles.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Phosphorylation modifies the molecular stability of β-amyloid deposits

    Science.gov (United States)

    Rezaei-Ghaleh, Nasrollah; Amininasab, Mehriar; Kumar, Sathish; Walter, Jochen; Zweckstetter, Markus

    2016-04-01

    Protein aggregation plays a crucial role in neurodegenerative diseases. A key feature of protein aggregates is their ubiquitous modification by phosphorylation. Little is known, however, about the molecular consequences of phosphorylation of protein aggregates. Here we show that phosphorylation of β-amyloid at serine 8 increases the stability of its pathogenic aggregates against high-pressure and SDS-induced dissociation. We further demonstrate that phosphorylation results in an elevated number of hydrogen bonds at the N terminus of β-amyloid, the region that is critically regulated by a variety of post-translational modifications. Because of the increased lifetime of phosphorylated β-amyloid aggregates, phosphorylation can promote the spreading of β-amyloid in Alzheimer pathogenesis. Our study suggests that regulation of the molecular stability of protein aggregates by post-translational modifications is a crucial factor for disease progression in the brain.

  18. Effects of Suilysin on Streptococcus suis-induced platelet aggregation

    Directory of Open Access Journals (Sweden)

    Shengwei Zhang

    2016-10-01

    Full Text Available Blood platelets play important roles during pathological thrombocytopenia in streptococcal toxic shock syndrome (STSS. Streptococcus suis (S. suis an emerging human pathogen, can cause STSS similarly to S. pyogenes. However, S. suis interactions with platelets are poorly understood. Here, we found that suilysin (SLY, different from other bacterial cholesterol-dependent cytolysins (CDCs, was the sole stimulus that induced platelet aggregation. Furthermore, the inside-out activation of GPIIb/IIIa of platelets mediated SLY-induced platelet aggregation. This process was triggered by Ca2+ influx that depend on the pore forming on platelets by SLY. Additionally, although SLY induced α-granule release occurred via the MLCK-dependent pathway, PLC-β-IP3/DAG-MLCK and Rho-ROCK-MLCK signaling were not involved in SLY-induced platelet aggregation. Interestingly, the pore dependent Ca2+ influx was also found to participate in the induction of platelet aggregation with pneumolysin (PLY and streptolysin O (SLO, two other CDCs. It is possible that the CDC-mediated platelet aggregation we observed in S. suis is a similar response mechanism to that used by a wide range of bacteria. These findings might lead to the discovery of potential therapeutic targets for S. suis-associated STSS.

  19. Effects of Suilysin on Streptococcus suis-Induced Platelet Aggregation

    Science.gov (United States)

    Zhang, Shengwei; Wang, Junping; Chen, Shaolong; Yin, Jiye; Pan, Zhiyuan; Liu, Keke; Li, Lin; Zheng, Yuling; Yuan, Yuan; Jiang, Yongqiang

    2016-01-01

    Blood platelets play important roles during pathological thrombocytopenia in streptococcal toxic shock syndrome (STSS). Streptococcus suis (S. suis) an emerging human pathogen, can cause STSS similarly to S. pyogenes. However, S. suis interactions with platelets are poorly understood. Here, we found that suilysin (SLY), different from other bacterial cholesterol-dependent cytolysins (CDCs), was the sole stimulus that induced platelet aggregation. Furthermore, the inside-out activation of GPIIb/IIIa of platelets mediated SLY-induced platelet aggregation. This process was triggered by Ca2+ influx that depend on the pore forming on platelets by SLY. Additionally, although SLY induced α-granule release occurred via the MLCK-dependent pathway, PLC-β-IP3/DAG-MLCK and Rho-ROCK-MLCK signaling were not involved in SLY-induced platelet aggregation. Interestingly, the pore dependent Ca2+ influx was also found to participate in the induction of platelet aggregation with pneumolysin (PLY) and streptolysin O (SLO), two other CDCs. It is possible that the CDC-mediated platelet aggregation we observed in S. suis is a similar response mechanism to that used by a wide range of bacteria. These findings might lead to the discovery of potential therapeutic targets for S. suis-associated STSS. PMID:27800304

  20. Kit- and Fc epsilonRI-induced differential phosphorylation of the transmembrane adaptor molecule NTAL/LAB/LAT2 allows flexibility in its scaffolding function in mast cells

    DEFF Research Database (Denmark)

    Iwaki, Shoko; Spicka, Jiri; Tkaczyk, Christine;

    2008-01-01

    The transmembrane adaptor protein (TRAP), NTAL, is phosphorylated in mast cells following FcvarepsilonRI aggregation whereby it cooperates with LAT to induce degranulation. The Kit ligand, stem cell factor (SCF), enhances antigen-induced degranulation and this also appears to be NTAL......-knock down-human mast cells. The observations reported herein support the conclusion that NTAL may be differentially utilized by specific receptors for relaying alternative signals and this suggests a flexibility in the function of TRAPs not previously appreciated....

  1. Tumor suppressor PTEN affects tau phosphorylation: deficiency in the phosphatase activity of PTEN increases aggregation of an FTDP-17 mutant Tau

    Directory of Open Access Journals (Sweden)

    Zhang Xue

    2006-07-01

    Full Text Available Abstract Background Aberrant hyperphosphorylation of tau protein has been implicated in a variety of neurodegenerative disorders. Although a number of protein kinases have been shown to phosphorylate tau in vitro and in vivo, the molecular mechanisms by which tau phosphorylation is regulated pathophysiologically are largely unknown. Recently, a growing body of evidence suggests a link between tau phosphorylation and PI3K signaling. In this study, phosphorylation, aggregation and binding to the microtubule of a mutant frontal temporal dementia and parkinsonism linked to chromosome 17 (FTDP-17 tau in the presence of tumor suppressor PTEN, a major regulatory component in PI3K signaling, were investigated. Results Phosphorylation of the human mutant FTDP-17 tau, T40RW, was evaluated using different phospho-tau specific antibodies in the presence of human wild-type or phosphatase activity null mutant PTEN. Among the evaluated phosphorylation sites, the levels of Ser214 and Thr212 phospho-tau proteins were significantly decreased in the presence of wild-type PTEN, and significantly increased when the phosphatase activity null mutant PTEN was ectopically expressed. Fractionation of the mutant tau transfected cells revealed a significantly increased level of soluble tau in cytosol when wild-type PTEN was expressed, and an elevated level of SDS-soluble tau aggregates in the presence of the mutant PTEN. In addition, the filter/trap assays detected more SDS-insoluble mutant tau aggregates in the cells overexpressing the mutant PTEN compared to those in the cells overexpressing wild-type PTEN and control DNA. This notion was confirmed by the immunocytochemical experiment which demonstrated that the overexpression of the phosphatase activity null mutant PTEN caused the mutant tau to form aggregates in the COS-7 cells. Conclusion Tumor suppressor PTEN can alleviate the phosporylation of the mutant FTDP-17 tau at specific sites, and the phosphatase activity

  2. Formaldehyde-induced histone H3 phosphorylation via JNK and the expression of proto-oncogenes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ikuma; Ibuki, Yuko, E-mail: ibuki@u-shizuoka-ken.ac.jp

    2014-12-15

    Graphical abstract: - Highlights: • Formaldehyde modified histones. • The phosphorylation of H3S10 was increased at the promoter regions of proto-oncogenes. • The phosphorylation of H2AXS139 was attributed to FA-induced DNA damage. • The FA-induced initiation and promotion of cancer could be judged by these modifications. - Abstract: Formaldehyde (FA) is a very reactive compound that forms DNA adducts and DNA-protein crosslinks, which are known to contribute to FA-induced mutations and carcinogenesis. Post-translational modifications to histones have recently attracted attention due to their link with cancer. In the present study, we examined histone modifications following a treatment with FA. FA significantly phosphorylated histone H3 at serine 10 (H3S10), and at serine 28 (H3S28), the time-course of which was similar to the phosphorylation of H2AX at serine 139 (γ-H2AX), a marker of DNA double strand breaks. The temporal deacetylation of H3 was observed due to the reaction of FA with the lysine residues of histones. The phosphorylation mechanism was then analyzed by focusing on H3S10. The nuclear distribution of the phosphorylation of H3S10 and γ-H2AX did not overlap, and the phosphorylation of H3S10 could not be suppressed with an inhibitor of ATM/ATR, suggesting that the phosphorylation of H3S10 was independent of the DNA damage response. ERK and JNK in the MAPK pathways were phosphorylated by the treatment with FA, in which the JNK pathway was the main target for phosphorylation. The phosphorylation of H3S10 increased at the promoter regions of c-fos and c-jun, indicating a relationship between FA-induced tumor promotion activity and phosphorylation of H3S10. These results suggested that FA both initiates and promotes cancer, as judged by an analysis of histone modifications.

  3. Rubrene analogues with the aggregation-induced emission enhancement behaviour

    DEFF Research Database (Denmark)

    Zhang, Xiaoxu; Sørensen, Jakob Kryger; Fu, Xiaowei;

    2014-01-01

    In the light of the principle of aggregation-induced emission enhancement (AIEE), the rubrene analogue with orange light-emitting properties is designed and synthesized by substituting the phenyl side groups of rubrene with thienyl groups. To the best of our knowledge, this is the first report...

  4. Light-Induced Phosphorylation of Crystallins in the Retinal Pigment Epithelium

    Science.gov (United States)

    Lee, Hyunju; Chung, Hyewon; Lee, Sung Haeng; Jahng, Wan Jin

    2017-01-01

    Protein phosphorylations have essential regulatory roles in visual signaling. Previously, we found that phosphorylation of several proteins in the retina and the retinal pigment epithelium (RPE) is involved in anti-apoptotic signaling under oxidative stress conditions, including light exposure. In this study, we used a phosphoprotein enrichment strategy to evaluate the light-induced phosphoproteome of primary bovine RPE cells. Phosphoprotein-enriched extracts from bovine RPE cells exposed to light or dark conditions for 1 hour were separated by 2D SDS-PAGE. Serine and tyrosine phosphorylation were visualized by 2D phospho western blotting and specific phosphorylation sites were analyzed by tandem mass spectrometry. Light induced a marked increase in tyrosine phosphorylation of beta crystallin A3 and A4. The most abundant light-induced up-regulated phosphoproteins were crystallins of 15–25-kDa, including beta crystallin S and zeta crystallin. Phosphorylation of beta crystallin suggests an anti-apoptotic chaperone function in the RPE. Other chaperones, cytoskeletal proteins, and proteins involved in energy balance were expressed at higher levels in the dark. A detailed analysis of RPE phosphoproteins provides a molecular basis for understanding light-induced signal transduction and anti-apoptosis mechanisms. Our data indicates that phosphorylation of crystallins likely represents an important mechanism for RPE shielding from physiological and pathophysiological light-induced oxidative injury. PMID:21094180

  5. VerifyNow and VASP phosphorylation assays give similar results for patients receiving clopidogrel, but they do not always correlate with platelet aggregation.

    Science.gov (United States)

    Bidet, Audrey; Jais, Catherine; Puymirat, Etienne; Coste, Pierre; Nurden, Alan; Jakubowski, Joseph; Nurden, Paquita

    2010-01-01

    Point-of-care testing permits an evaluation of the efficacy of drugs used in the treatment of acute coronary syndromes (ACS). An increased risk of thrombosis after coronary stenting for ACS patients treated with aspirin and clopidogrel has been linked to high platelet reactivity and, for certain patients, poor drug response. The objective of our study was to compare the VerifyNow-P2Y12 device with the VASP (vasodilator-stimulated phosphoprotein) phosphorylation assay and ADP-induced platelet aggregation as assessed by light transmission aggregometry in a group of 81 ACS patients (100 tests) treated in our hospital. There was a good correlation between VerifyNow-P2Y12 and VASP especially during the chronic phase of one month or more after the ischemic event, whereas discordance was sometimes seen with platelet aggregometry. The rapidity and ease of use of the VerifyNow device suggests that it has a valuable place in point-of-care testing of ACS patients.

  6. Deferoxamine inhibits iron induced hippocampal tau phosphorylation in the Alzheimer transgenic mouse brain.

    Science.gov (United States)

    Guo, Chuang; Wang, Pu; Zhong, Man-Li; Wang, Tao; Huang, Xue-Shi; Li, Jia-Yi; Wang, Zhan-You

    2013-01-01

    Prior work has shown that iron interacts with hyperphosphorylated tau, which contributes to the formation of neurofibrillary tangles (NFTs) in Alzheimer's disease (AD), whereas iron chelator desferrioxamine (DFO) slows down the clinical progression of the cognitive decline associated with this disease. However, the effects of DFO on tau phosphorylation in the presence or absence of iron have yet to be determined. Using amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mouse brain as a model system, we investigated the effects and potential mechanisms of intranasal administration of DFO on iron induced abnormal tau phosphorylation. High-dose iron treatment markedly increased the levels of tau phosphorylation at the sites of Thr205, Thr231 and Ser396, whereas highly induced tau phosphorylation was abolished by intranasal administration of DFO in APP/PS1 transgenic mice. Moreover, DFO intranasal administration also decreases Fe-induced the activities of cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3β (GSK3β), which in turn suppressing tau phosphorylation. Cumulatively, our data show that intranasal DFO treatment exerts its suppressive effects on iron induced tau phosphorylation via CDK5 and GSK3β pathways. More importantly, elucidation of DFO mechanism in suppressing tau phosphorylation may provide insights for developing therapeutic strategies to combat AD.

  7. EBP50 inhibits EGF-induced breast cancer cell proliferation by blocking EGFR phosphorylation.

    Science.gov (United States)

    Yao, Wenfang; Feng, Duiping; Bian, Weihua; Yang, Longyan; Li, Yang; Yang, Zhiyu; Xiong, Ying; Zheng, Junfang; Zhai, Renyou; He, Junqi

    2012-11-01

    Ezrin-radixin-moesin-binding phosphoprotein-50 (EBP50) suppresses breast cancer cell proliferation, potentially through its regulatory effect on epidermal growth factor receptor (EGFR) signaling, although the mechanism by which this occurs remains unknown. Thus in our studies, we aimed to determine the effect of EBP50 expression on EGF-induced cell proliferation and activation of EGFR signaling in the breast cancer cell lines, MDA-MB-231 and MCF-7. In MDA-MB-231 cells, which express low levels of EBP50, EBP50 overexpression inhibited EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. In MCF-7 cells, which express high levels of EBP50, EBP50 knockdown promoted EGF-induced cell proliferation, ERK1/2 and AKT phosphorylation. Knockdown of EBP50 in EBP50-overexpressed MDA-MB-231 cells abrogated the inhibitory effect of EBP50 on EGF-stimulated ERK1/2 phosphorylation and restoration of EBP50 expression in EBP50-knockdown MCF-7 cells rescued the inhibition of EBP50 on EGF-stimulated ERK1/2 phosphorylation, further confirming that the activation of EGF-induced downstream molecules could be specifically inhibited by EBP50 expression. Since EGFR signaling was triggered by EGF ligands via EGFR phosphorylation, we further detected the phosphorylation status of EGFR in the presence or absence of EBP50 expression. Overexpression of EBP50 in MDA-MB-231 cells inhibited EGF-stimulated EGFR phosphorylation, whereas knockdown of EBP50 in MCF-7 cells enhanced EGF-stimulated EGFR phosphorylation. Meanwhile, total expression levels of EGFR were unaffected during EGF stimulation. Taken together, our data shows that EBP50 can suppress EGF-induced proliferation of breast cancer cells by inhibiting EGFR phosphorylation and blocking EGFR downstream signaling in breast cancer cells. These results provide further insight into the molecular mechanism by which EBP50 regulates the development and progression of breast cancer.

  8. Formaldehyde-induced histone H3 phosphorylation via JNK and the expression of proto-oncogenes.

    Science.gov (United States)

    Yoshida, Ikuma; Ibuki, Yuko

    2014-12-01

    Formaldehyde (FA) is a very reactive compound that forms DNA adducts and DNA-protein crosslinks, which are known to contribute to FA-induced mutations and carcinogenesis. Post-translational modifications to histones have recently attracted attention due to their link with cancer. In the present study, we examined histone modifications following a treatment with FA. FA significantly phosphorylated histone H3 at serine 10 (H3S10), and at serine 28 (H3S28), the time-course of which was similar to the phosphorylation of H2AX at serine 139 (γ-H2AX), a marker of DNA double strand breaks. The temporal deacetylation of H3 was observed due to the reaction of FA with the lysine residues of histones. The phosphorylation mechanism was then analyzed by focusing on H3S10. The nuclear distribution of the phosphorylation of H3S10 and γ-H2AX did not overlap, and the phosphorylation of H3S10 could not be suppressed with an inhibitor of ATM/ATR, suggesting that the phosphorylation of H3S10 was independent of the DNA damage response. ERK and JNK in the MAPK pathways were phosphorylated by the treatment with FA, in which the JNK pathway was the main target for phosphorylation. The phosphorylation of H3S10 increased at the promoter regions of c-fos and c-jun, indicating a relationship between FA-induced tumor promotion activity and phosphorylation of H3S10. These results suggested that FA both initiates and promotes cancer, as judged by an analysis of histone modifications.

  9. Dexmedetomidine-Induced Contraction Involves CPI-17 Phosphorylation in Isolated Rat Aortas

    Science.gov (United States)

    Ok, Seong-Ho; Kwon, Seong-Chun; Baik, Jiseok; Hong, Jeong-Min; Oh, Jiah; Han, Jeong Yeol; Sohn, Ju-Tae

    2016-01-01

    Dexmedetomidine, a highly selective α-2 adrenoceptor agonist, produces vasoconstriction, which leads to transiently increased blood pressure. The goal of this study was to investigate specific protein kinases and the associated cellular signal pathways responsible for the increased calcium sensitization induced by dexmedetomidine in isolated rat aortas, with a particular focus on phosphorylation-dependent inhibitory protein of myosin phosphatase (CPI-17). The effect of Y-27632 and chelerythrine on the dexmedetomidine-induced intracellular calcium concentration ([Ca2+]i) and tension were assessed using fura-2-loaded aortic strips. The effects of rauwolscine, Y-27632, chelerythrine, and ML-7 hydrochloride on the dexmedetomidine-induced phosphorylation of CPI-17 or of the 20-kDa regulatory light chain of myosin (MLC20) were investigated in rat aortic vascular smooth muscle cells. The effects of rauwolscine, Y-27632, and chelerythrine on the membrane translocation of Rho-kinase and protein kinase C (PKC) phosphorylation induced by dexmedetomidine were assessed. Y-27632 and chelerythrine each reduced the slopes of the [Ca2+]i-tension curves of dexmedetomidine-induced contraction, and Y-27632 more strongly reduced these slopes than did chelerythrine. Rauwolscine, Y-27632, chelerythrine, and ML-7 hydrochloride attenuated the dexmedetomidine-induced phosphorylation of CPI-17 and MLC20. Taken together, these results suggest that dexmedetomidine-induced contraction involves calcium sensitization, which appears to be mediated by CPI-17 phosphorylation via Rho-kinase or PKC. PMID:27706026

  10. Aluminum induces tau aggregation in vitro but not in vivo.

    Science.gov (United States)

    Mizoroki, Tatsuya; Meshitsuka, Shunsuke; Maeda, Sumihiro; Murayama, Miyuki; Sahara, Naruhiko; Takashima, Akihiko

    2007-07-01

    Etiological studies suggest that aluminum (Al) intake might increase an individual's risk of developing Alzheimer's disease (AD). Biochemical analysis data on the effects of Al, however, are inconsistent. Hence, the pathological involvement of Al in AD remains unclear. If Al is involved in AD, then it is reasonable to hypothesize that Al might be involved in the formation of either amyloid plaques or neurofibrillary tangles (NFTs). Here, we investigated whether Al might be involved in NFT formation by using an in vitro tau aggregation paradigm, a tau-overexpressing neuronal cell line (N2a), and a tau-overexpressing mouse model. Although Al induced tau aggregation in a heparin-induced tau assembly assay, these aggregates were neither thioflavin T positive nor did they resemble tau fibrils seen in human AD brains. With cell lysates from stable cell lines overexpressing tau, the accumulation of SDS-insoluble tau increased when the lysates were treated with at least 100 muM Al-maltolate. Yet Al-maltolate caused illness or death in transgenic mice overexpressing human tau and in non-transgenic littermates well before the Al concentration in the brain reached 100 muM. These results indicate that Al has no direct link to AD pathology.

  11. Complement-induced equine neutrophil adhesiveness and aggregation.

    Science.gov (United States)

    Slauson, D O; Skrabalak, D S; Neilsen, N R; Zwahlen, R D

    1987-05-01

    Equine neutrophils (PMN) were isolated from citrated normal blood by density gradient separation on Ficoll-Hypaque to greater than 96% purity and 98% viability and an average of 3.78 x 10(7) PMN/ml. The agonist C5a des Arg was used in serial dilutions of whole zymosan-activated equine plasma (ZAP) or was partially purified from ZAP by column chromatography. Purified equine PMN exhibited rapid aggregation following incubation with C5a des Arg which was further dependent on the availability of divalent cations, especially Mg++. The microfilament disruptive agent cytochalasin B (5 micrograms/50 microliters) greatly augmented aggregation responses to C5a des Arg. Subaggregating doses of C5a des Arg promoted PMN adhesiveness as assayed on 0.5 x 10 cm borosilicate glass columns containing a 2.0 cm bed of Sephadex G-25. This C5a des Arg-induced increased adhesiveness was inhibitable by prior incubation of the PMN with either non-steroidal (0.065 M phenylbutazone) or steroidal (0.005 M dexamethasone) anti-inflammatory agents. Ultrastructural studies correlated well with functional assays and revealed marked organelle-free lamellipodia formation without PMN-PMN contact at subaggregating doses of the agonist and progressive PMN-PMN contact at aggregating doses. Equine PMN are responsive to C5a des Arg, and induced adhesiveness responses can be manipulated by anti-inflammatory agents.

  12. Aggregation-induced emission—fluorophores and applications

    Science.gov (United States)

    Hong, Yuning

    2016-06-01

    Aggregation-induced emission (AIE) is a novel photophysical phenomenon found in a group of luminogens that are not fluorescent in solution but are highly emissive in the aggregate or solid state. Since the first publication of AIE luminogens in 2001, AIE has become a hot research area in which the number of research papers regarding new AIE molecules and their applications has been increasing in an exponential manner. Thomson Reuters Essential Science Indicators ranked AIE no.3 among the Top 100 Research Frontiers in the field of Chemistry and Materials Science in 2013. In this review, I will give a general introduction of the AIE phenomenon, discuss the structure-property relationship of the AIE lumingens and summarize the recent progress in the applications including as light-emitting materials in optoelectronics, as chemosensors and bioprobes, and for bioimaging (total 69 references cited).

  13. Alzheimer—like phosphorylation of tau and neurofilament induced by cocaine in vivo

    Institute of Scientific and Technical Information of China (English)

    LIUShi-Jie; FANGZheng-Yu; YANGYing; DENGHeng-Mei; WANGJian-Zhi

    2003-01-01

    AIM:To explore the relationship between cocaine-induced cyclin-dependent kinase-5(CDK5) overexpression or overactivation and Alzheimer-like hyperphosphorylation of cytoskeletal protein. METHODS: Cocaine was injected (ip,20mg·kg-1·d-1) into rats and the phosphorylation of neuronal cytoskeletal proteins was measured by Western blotting.RESULTS:The levels of phosphorylated tau at PHF-1 epitope and phosphorylated neurofilament determined by SMI31 were elevated in rat brain hippocampus, cortex, and caudatoputamen on d 8 and d 16 after the injection of cocaine, when compared with saline control rat at the same brain regions. On the other hand, the levels of tau non-phosphorylated at tau-1 site and non-phosphorylated neurofilament determined by SIM32 were decreased in same brain regions at the same time points examined. No significant difference of phosphorylated tau and neurofilament at those epitopes was seen on d 4. Although cocaine injection could induce significant hyperphosphorylation of neuronal cytoskeletal proteins, the overexpression of CDK5 and p35 was not detected. CONCLUSION:Peritoneal injection of cocaine induces Alzheimer-like hyperphosphorylation of tau and neurofilament in rat brain, and the effect may be not relevant to an increase in overexpression or overactivation of CDK5.

  14. Doubly Phosphorylated Peptide Vaccines to Protect Transgenic P301S Mice against Alzheimer’s Disease Like Tau Aggregation

    Directory of Open Access Journals (Sweden)

    Monique Richter

    2014-07-01

    Full Text Available Intracellular neurofibrillary tangles and extracellular senile plaques are potential targets for active and passive immunotherapies. In this study we used the transgenic mouse model P301S for active immunizations with peptide vaccines composed of a double phosphorylated tau neoepitope (pSer202/pThr205, pThr212/pSer214, pThr231/pSer235 and an immunomodulatory T cell epitope from the tetanus toxin or tuberculosis antigen Ag85B. Importantly, the designed vaccine combining Alzheimer’s disease (AD specific B cell epitopes with foreign (bacterial T cell epitopes induced fast immune responses with high IgG1 titers after prophylactic immunization that subsequently decreased over the observation period. The effectiveness of the immunization was surveyed by evaluating the animal behavior, as well as the pathology in the brain by biochemical and histochemical techniques. Immunized mice clearly lived longer with reduced paralysis than placebo-treated mice. Additionally, they performed significantly better in rotarod and beam walk tests at the age of 20 weeks, indicating that the disease development was slowed down. Forty-eight weeks old vaccinated mice passed the beam walk test significantly better than control animals, which together with the increased survival rates undoubtedly prove the treatment effect. In conclusion, the data provide strong evidence that active immune therapies can reduce toxic effects of deposits formed in AD.

  15. Rapamycin induces Bad phosphorylation in association with its resistance to human lung cancer cells.

    Science.gov (United States)

    Liu, Yan; Sun, Shi-Yong; Owonikoko, Taofeek K; Sica, Gabriel L; Curran, Walter J; Khuri, Fadlo R; Deng, Xingming

    2012-01-01

    Inhibition of mTOR signaling by rapamycin has been shown to activate extracellular signal-regulated kinase 1 or 2 (ERK1/2) and Akt in various types of cancer cells, which contributes to rapamycin resistance. However, the downstream effect of rapamycin-activated ERKs and Akt on survival or death substrate(s) remains unclear. We discovered that treatment of human lung cancer cells with rapamycin results in enhanced phosphorylation of Bad at serine (S) 112 and S136 but not S155 in association with activation of ERK1/2 and Akt. A higher level of Bad phosphorylation was observed in rapamycin-resistant cells compared with parental rapamycin-sensitive cells. Thus, Bad phosphorylation may contribute to rapamycin resistance. Mechanistically, rapamycin promotes Bad accumulation in the cytosol, enhances Bad/14-3-3 interaction, and reduces Bad/Bcl-XL binding. Rapamycin-induced Bad phosphorylation promotes its ubiquitination and degradation, with a significant reduction of its half-life (i.e., from 53.3-37.5 hours). Inhibition of MEK/ERK by PD98059 or depletion of Akt by RNA interference blocks rapamycin-induced Bad phosphorylation at S112 or S136, respectively. Simultaneous blockage of S112 and S136 phosphorylation of Bad by PD98059 and silencing of Akt significantly enhances rapamycin-induced growth inhibition in vitro and synergistically increases the antitumor efficacy of rapamycin in lung cancer xenografts. Intriguingly, either suppression of Bad phosphorylation at S112 and S136 sites or expression of the nonphosphorylatable Bad mutant (S112A/S136A) can reverse rapamycin resistance. These findings uncover a novel mechanism of rapamycin resistance, which may promote the development of new strategies for overcoming rapamycin resistance by manipulating Bad phosphorylation at S112 and S136 in human lung cancer.

  16. N-Terminus of the Protein Kinase CLK1 Induces SR Protein Hyper-Phosphorylation

    Science.gov (United States)

    Aubol, Brandon E.; Plocinik, Ryan M.; Keshwani, Malik M.; McGlone, Maria L.; Hagopian, Jonathan C.; Ghosh, Gourisankar; Fu, Xiang-Dong; Adams, Joseph A.

    2016-01-01

    SR proteins are essential splicing factors that are regulated through multisite phosphorylation of their RS (arginine-serine-rich) domains by two major families of protein kinases. The SRPKs efficiently phosphorylate the arginine-serine dipeptides in the RS domain using a conserved docking groove in the kinase domain. In contrast, CLKs lack a docking groove and phosphorylate both arginine-serine and serine-proline dipeptides, modifications that generate a hyper-phosphorylated state important for unique SR protein-dependent splicing activities. All CLKs contain long, flexible N-terminal extensions (140-300 residues) that resemble the RS domains present in their substrate SR proteins. We showed that the N-terminus in CLK1 contacts both the kinase domain and the RS domain of the SR protein SRSF1. This interaction not only is essential for facilitating hyper-phosphorylation but also induces cooperative binding of SRSF1 to RNA. The N-terminus of CLK1 enhances the total phosphoryl contents of a panel of physiological substrates including SRSF1, SRSF2, SRSF5 and Tra2β1 by 2–3-fold. These findings suggest that CLK1-dependent hyper-phosphorylation is the result of a general mechanism in which the N-terminus acts as a bridge connecting the kinase domain and the RS domain of the SR protein. PMID:24869919

  17. Salt-induced redox-independent phosphorylation of light harvesting chlorophyll a/b proteins in Dunaliella salina thylakoid membranes.

    Science.gov (United States)

    Liu, Xian-De; Shen, Yun-Gang

    2005-02-17

    This study investigated the regulation of the major light harvesting chlorophyll a/b protein (LHCII) phosphorylation in Dunaliella salina thylakoid membranes. We found that both light and NaCl could induce LHCII phosphorylation in D. salina thylakoid membranes. Treatments with oxidants (ferredoxin and NADP) or photosynthetic electron flow inhibitors (DCMU, DBMIB, and stigmatellin) inhibited LHCII phosphorylation induced by light but not that induced by NaCl. Furthermore, neither addition of CuCl(2), an inhibitor of cytochrome b(6)f complex reduction, nor oxidizing treatment with ferricyanide inhibited light- or NaCl-induced LHCII phosphorylation, and both salts even induced LHCII phosphorylation in dark-adapted D. salina thylakoid membranes as other salts did. Together, these results indicate that the redox state of the cytochrome b(6)f complex is likely involved in light- but not salt-induced LHCII phosphorylation in D. salina thylakoid membranes.

  18. The cell aggregating propensity of probiotic actinobacterial isolates: isolation and characterization of the aggregation inducing peptide pheromone.

    Science.gov (United States)

    Muthu Selvam, Ramu; Vinothini, Gopal; Palliyarai Thaiyammal, Sethuramalingam; Latha, Selvanathan; Chinnathambi, Arunachalam; Dhanasekaran, Dharumadurai; Padmanabhan, Parasuraman; Ali Alharbi, Sulaiman; Archunan, Govindaraju

    2016-01-01

    The auto-aggregating ability of a probiotic is a prerequisite for colonization and protection of the gastrointestinal tract, whereas co-aggregation provides a close interaction with pathogenic bacteria. Peptide pheromone mediated signaling has been studied in several systems. However, it has not yet been explored in prokaryotes, especially actinobacteria. Hence, in the present study, the diffusible aggregation promoting factor was purified from the culture supernatant of a potent actinobacterial probiont and characterized using 20 different actinobacterial cultures isolated from the gut region of chicken and goat. The results showed that the pheromone-like compound induces the aggregation propensity of treated isolates. The factor was found to be a heat stable, acidic pH resistant, low molecular weight peptide which enhances the biofilm forming ability of other actinobacterial isolates. The aggregation promoting factor represents a bacterial sex factor (pheromone) and its characterization confirms its usage in the probiotic formulation.

  19. Leptin signaling plays a critical role in the geniposide-induced decrease of tau phosphorylation.

    Science.gov (United States)

    Liu, Jianhui; Liu, Zixuan; Zhang, Yonglan; Yin, Fei

    2015-12-01

    We have previously demonstrated that geniposide attenuates the production of Aβ1-42 both in vitro and in vivo via enhancing leptin receptor signaling. But the role played by geniposide in the phosphorylation of tau and its underlying molecular mechanisms remain unclear. In this study, we investigated the effect of geniposide on the phosphorylation of tau and the role of leptin signaling in this process. Our data suggested that, accompanied by the up-regulation of leptin receptor expression, geniposide significantly decreased the phosphorylation of tau in rat primary cultured cortical neurons and in APP/PS1 transgenic mice, and this geniposide-induced decrease of tau phosphorylation could be prevented by leptin antagonist (LA). Furthermore, LA also prevented the phosphorylation of Akt at Ser-473 site and GSK-3β at Ser-9 site induced by geniposide. All these results indicate that geniposide may regulate tau phosphorylation through leptin signaling, and geniposide may be a promising therapeutic compound for the treatment of Alzheimer's disease in the future.

  20. Methylglyoxal-induced modification causes aggregation of myoglobin

    Science.gov (United States)

    Banerjee, Sauradipta; Maity, Subhajit; Chakraborti, Abhay Sankar

    2016-02-01

    Post-translational modification of proteins by Maillard reaction, known as glycation, is thought to be the root cause of different complications, particularly in diabetes mellitus and age-related disorders. Methylglyoxal (MG), a reactive α-oxoaldehyde, increases in diabetic condition and reacts with proteins to form advanced glycation end products (AGEs) following Maillard-like reaction. We have investigated the in vitro effect of MG (200 μM) on the monomeric heme protein myoglobin (Mb) (100 μM) in a time-dependent manner (7 to 18 days incubation at 25 °C). MG induces significant structural alterations of the heme protein, including heme loss, changes in tryptophan fluorescence, decrease of α-helicity with increased β-sheet content etc. These changes occur gradually with increased period of incubation. Incubation of Mb with MG for 7 days results in formation of the AGE adducts: carboxyethyllysine at Lys-16, carboxymethyllysine at Lys-87 and carboxyethyllysine or pyrraline-carboxymethyllysine at Lys-133. On increasing the period of incubation up to 14 days, additional AGEs namely, carboxyethyllysine at Lys-42 and hydroimidazolone or argpyrimidine at Arg-31 and Arg-139 have been detected. MG also induces aggregation of Mb, which is clearly evident with longer period of incubation (18 days), and appears to have amyloid nature. MG-derived AGEs may thus have an important role as the precursors of protein aggregation, which, in turn, may be associated with physiological complications.

  1. Temperature Induced Aggregation and Clouding in Humic Acid Solutions

    Directory of Open Access Journals (Sweden)

    Leah Shaffer

    2015-01-01

    Full Text Available Humic acids in aqueous solution demonstrate inverse temperature-solubility relationships when solution conditions are manipulated to reduce coulombic repulsion among the humic polyanions. These effects were followed by dynamic light scattering (DLS measurements of the resulting aggregates, as well as the addition of a polarity sensitive fluorescent probe (pyrene. The humic solutions could be primed for temperature induced clouding by carefully lowering the pH to a point where hydration effects became dominant. The exact value of the cloud point (CP was a function of both pH and humate concentration. The CPs mostly lay in the range 50–90°C, but DLS showed that temperature induced aggregation proceeded from approximately 30°C onward. Similar effects could be achieved by adding multivalent cations at concentrations below those which cause spontaneous precipitation. The declouding of clouded humate solutions could be affected by lowering the temperature combined with mechanical agitation to disentangle the humic polymers.

  2. Aggregation of Ribosomal Protein S6 at Nucleolus Is Cell Cycle-Controlled and Its Function in Pre-rRNA Processing Is Phosphorylation Dependent.

    Science.gov (United States)

    Zhang, Duo; Chen, Hui-Peng; Duan, Hai-Feng; Gao, Li-Hua; Shao, Yong; Chen, Ke-Yan; Wang, You-Liang; Lan, Feng-Hua; Hu, Xian-Wen

    2016-07-01

    Ribosomal protein S6 (rpS6) has long been regarded as one of the primary r-proteins that functions in the early stage of 40S subunit assembly, but its actual role is still obscure. The correct forming of 18S rRNA is a key step in the nuclear synthesis of 40S subunit. In this study, we demonstrate that rpS6 participates in the processing of 30S pre-rRNA to 18S rRNA only when its C-terminal five serines are phosphorylated, however, the process of entering the nucleus and then targeting the nucleolus does not dependent its phosphorylation. Remarkably, we also find that the aggregation of rpS6 at the nucleolus correlates to the phasing of cell cycle, beginning to concentrate in the nucleolus at later S phase and disaggregate at M phase. J. Cell. Biochem. 117: 1649-1657, 2016. © 2015 Wiley Periodicals, Inc.

  3. p53 Aggregates penetrate cells and induce the co-aggregation of intracellular p53.

    Directory of Open Access Journals (Sweden)

    Karolyn J Forget

    Full Text Available Prion diseases are unique pathologies in which the infectious particles are prions, a protein aggregate. The prion protein has many particular features, such as spontaneous aggregation, conformation transmission to other native PrP proteins and transmission from an individual to another. Protein aggregation is now frequently associated to many human diseases, for example Alzheimer's disease, Parkinson's disease or type 2 diabetes. A few proteins associated to these conformational diseases are part of a new category of proteins, called prionoids: proteins that share some, but not all, of the characteristics associated with prions. The p53 protein, a transcription factor that plays a major role in cancer, has recently been suggested to be a possible prionoid. The protein has been shown to accumulate in multiple cancer cell types, and its aggregation has also been reproduced in vitro by many independent groups. These observations suggest a role for p53 aggregates in cancer development. This study aims to test the «prion-like» features of p53. Our results show in vitro aggregation of the full length and N-terminally truncated protein (p53C, and penetration of these aggregates into cells. According to our findings, the aggregates enter cells using macropinocytosis, a non-specific pathway of entry. Lastly, we also show that once internalized by the cell, p53C aggregates can co-aggregate with endogenous p53 protein. Together, these findings suggest prion-like characteristics for p53 protein, based on the fact that p53 can spontaneously aggregate, these aggregates can penetrate cells and co-aggregate with cellular p53.

  4. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52

    Science.gov (United States)

    Jo, Chulman; Gundemir, Soner; Pritchard, Susanne; Jin, Youngnam N.; Rahman, Irfan; Johnson, Gail V. W.

    2014-03-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor in the defence against oxidative stress. Here we provide evidence that activation of the Nrf2 pathway reduces the levels of phosphorylated tau by induction of an autophagy adaptor protein NDP52 (also known as CALCOCO2) in neurons. The expression of NDP52, which we show has three antioxidant response elements (AREs) in its promoter region, is strongly induced by Nrf2, and its overexpression facilitates clearance of phosphorylated tau in the presence of an autophagy stimulator. In Nrf2-knockout mice, phosphorylated and sarkosyl-insoluble tau accumulates in the brains concurrent with decreased levels of NDP52. Moreover, NDP52 associates with phosphorylated tau from brain cortical samples of Alzheimer disease cases, and the amount of phosphorylated tau in sarkosyl-insoluble fractions is inversely proportional to that of NDP52. These results suggest that NDP52 plays a key role in autophagy-mediated degradation of phosphorylated tau in vivo.

  5. Mineral trioxide aggregate induces osteoblastogenesis via Atf6

    Directory of Open Access Journals (Sweden)

    Toyonobu Maeda

    2015-06-01

    Full Text Available Mineral trioxide aggregate (MTA has been recommended for various uses in endodontics. To understand the effects of MTA on alveolar bone, we examined whether MTA induces osteoblastic differentiation using MC3T3-E1 cells. MTA enhanced mineralization concomitant with alkaline phosphatase activity in a dose- and time-dependent manner. MTA increased production of collagens (Type I and Type III and matrix metalloproteinases (MMP-9 and MMP-13, suggesting that MTA affects bone matrix remodeling. MTA also induced Bglap (osteocalcin but not Bmp2 (bone morphogenetic protein-2 mRNA expression. We observed induction of Atf6 (activating transcription factor 6, an endoplasmic reticulum (ER stress response transcription factor mRNA expression and activation of Atf6 by MTA treatment. Forced expression of p50Atf6 (active form of Atf6 markedly enhanced Bglap mRNA expression. Chromatin immunoprecipitation assay was performed to investigate the increase in p50Atf6 binding to the Bglap promoter region by MTA treatment. Furthermore, knockdown of Atf6 gene expression by introduction of Tet-on Atf6 shRNA expression vector abrogated MTA-induced mineralization. These results suggest that MTA induces in vitro osteoblastogenesis through the Atf6–osteocalcin axis as ER stress signaling. Therefore, MTA in endodontic treatment may affect alveolar bone healing in the resorbed region caused by pulpal infection.

  6. Gelation process visualized by aggregation-induced emission fluorogens

    Science.gov (United States)

    Wang, Zhengke; Nie, Jingyi; Qin, Wei; Hu, Qiaoling; Tang, Ben Zhong

    2016-06-01

    Alkaline-urea aqueous solvent system provides a novel and important approach for the utilization of polysaccharide. As one of the most important polysaccharide, chitosan can be well dissolved in this solvent system, and the resultant hydrogel material possesses unique and excellent properties. Thus the sound understanding of the gelation process is fundamentally important. However, current study of the gelation process is still limited due to the absence of direct observation and the lack of attention on the entire process. Here we show the entire gelation process of chitosan LiOH-urea aqueous system by aggregation-induced emission fluorescent imaging. Accompanied by other pseudo in situ investigations, we propose the mechanism of gelation process, focusing on the formation of junction points including hydrogen bonds and crystalline.

  7. p38MAPK, Rho/ROCK and PKC pathways are involved in influenza-induced cytoskeletal rearrangement and hyperpermeability in PMVEC via phosphorylating ERM.

    Science.gov (United States)

    Zhang, Chenyue; Wu, Ying; Xuan, Zinan; Zhang, Shujing; Wang, Xudan; Hao, Yu; Wu, Jun; Zhang, Shu

    2014-11-04

    Severe influenza infections are featured by acute lung injury, a syndrome of pulmonary microvascular leak. A growing number of evidences have shown that the pulmonary microvascular endothelial cells (PMVEC) are critical target of influenza virus, promoting microvascular leak. It is reported that there are multiple mechanisms by which influenza virus could elicit increased pulmonary endothelial permeability, in both direct and indirect manners. Ezrin/radixin/moesin family proteins, the linkers between plasma membrane and actin cytoskeleton, have been reported to be involved in cell adhesion, motility and may modulate endothelial permeability. Studies have also shown that ERM is phosphorylated in response to various stimuli via p38MAPK, Rho/ROCK or PKC pathways. However, it is unclear that whether influenza infection could induce ERM phosphorylation and its relocalization. In the present study, we have found that there are cytoskeletal reorganization and permeability increases in the course of influenza virus infection, accompanied by upregulated levels of p-ERM. p-ERM's aggregation along the periphery of PMVEC upon influenza virus infection was detected via confocal microscopy. Furthermore, we sought to determine the role of p38MAPK, Rho/ROCK and PKC pathways in ERM phosphorylation as well as their involvement in influenza virus-induced endothelial malfunction. The activation of p38MAPK, Rho/ROCK and PKC pathways upon influenza virus stimulation were observed, as evidenced by the evaluation of phosphorylated p38 (p-p38), phosphorylated MKK (p-MKK) in p38MAPK pathway, ROCK1 in Rho/ROCK pathway and phosphorylated PKC (p-PKC) in PKC pathway. We also showed that virus-induced ERM phosphorylation was reduced by using p38MAPK inhibitor, SB203580 (20 μM), Rho/ROCK inhibitor, Y27632 (20 μM), PKC inhibitor, LY317615 (10 μM). Additionally, influenza virus-induced F-actin reorganization and hyperpermeability were attenuated by pretreatment with SB203580, Y27632 and LY317615

  8. Fe65 Is Phosphorylated on Ser289 after UV-Induced DNA Damage.

    Directory of Open Access Journals (Sweden)

    Hannah Langlands

    Full Text Available Fe65 undergoes a phosphatase-sensitive gel mobility shift after DNA damage, consistent with protein phosphorylation. A recent study identified Ser228 as a specific site of phosphorylation, targeted by the ATM and ATR protein kinases, with phosphorylation inhibiting the Fe65-dependent transcriptional activity of the amyloid precursor protein (APP. The direct binding of Fe65 to APP not only regulates target gene expression, but also contributes to secretase-mediated processing of APP, producing cytoactive proteolytic fragments including the APP intracellular domain (AICD and cytotoxic amyloid β (Aβ peptides. Given that the accumulation of Aβ peptides in neural plaques is a pathological feature of Alzheimer's disease (AD, it is essential to understand the mechanisms controlling Aβ production. This will aid in the development of potential therapeutic agents that act to limit the deleterious production of Aβ peptides. The Fe65-APP complex has transcriptional activity and the complex is regulated by multiple post-translational modifications and other protein binding partners. In the present study, we have identified Ser289 as a novel site of UV-induced phosphorylation. Interestingly, this phosphorylation was mediated by ATM, rather than ATR, and occurred independently of APP. Neither phosphorylation nor mutation of Ser289 affected the Fe65-APP interaction, though this was markedly decreased after UV treatment, with a concomitant decrease in the protein levels of APP in cells. Using mutagenesis, we demonstrated that Fe65 Ser289 phosphorylation did not affect the transcriptional activity of the Fe65-APP complex, in contrast to the previously described Ser228 site.

  9. Reversible NaCl-induced aggregation of a monoclonal antibody at low pH: Characterization of aggregates and factors affecting aggregation.

    Science.gov (United States)

    Bickel, Fabian; Herold, Eva Maria; Signes, Alba; Romeijn, Stefan; Jiskoot, Wim; Kiefer, Hans

    2016-10-01

    We investigated the influence of pH and sodium chloride concentration on aggregation kinetics of a monoclonal antibody. Aggregation was induced by sodium chloride addition at low pH. Protein conformation before and after salt addition was determined as well as the reversibility of aggregation. Aggregation was monitored at pH values between 2 and 7 with NaCl up to 1.5M by turbidity measurement and size-exclusion chromatography. Particle size distribution was assessed by using size-exclusion chromatography as well as nanoparticle tracking analysis and flow imaging microscopy. Structural changes were monitored by circular dichroism, Fourier transform infrared and fluorescence spectroscopy. Thermal stability was measured by differential scanning fluorimetry. Aggregation propensity was maximal at low pH and high ionic strength. While thermal stability decreased with pH, the secondary structure remained unchanged down to pH 3.5 and up to 1.5M NaCl. Precipitated protein could be largely reverted to monomers by dilution into salt-free buffer. The re-solubilized antibody was indistinguishable in structure, solubility and monodispersity from the unstressed protein. Also, binding to Protein A was steady. Aggregation could be reduced in the presence of trehalose. The results suggest a reversible aggregation mechanism characterized by a limited change in tertiary structure at low pH and a subsequent loss of colloidal stability resulting from electrostatic repulsion once salt is added to the sample. The experimental setup is robust and allows high-throughput quantification of the effect of additives on aggregation kinetics.

  10. Patterns of gravity induced aggregate migration during casting of fluid concretes

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Roussel, N.; Hattel, Jesper Henri

    2012-01-01

    In this paper, aggregate migration patterns during fluid concrete castings are studied through experiments, dimensionless approach and numerical modeling. The experimental results obtained on two beams show that gravity induced migration is primarily affecting the coarsest aggregates resulting in...... that it finds its origin in the non Newtonian nature of fresh concrete and that increasing casting rate shall decrease the magnitude of gravity induced particle migration.......In this paper, aggregate migration patterns during fluid concrete castings are studied through experiments, dimensionless approach and numerical modeling. The experimental results obtained on two beams show that gravity induced migration is primarily affecting the coarsest aggregates resulting...

  11. Ohmefentanyl stereoisomers induce changes of CREB phosphorylation in hippocampus of mice in conditioned place preference paradigm

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The present study was designed to determine the changes of phosphorylation of cAMP- response ele-ment binding protein (CREB) in hippocampus induced by ohmefentanyl stereoisomers (F9202 and F9204)in conditioned place preference (CPP) paradigm. The results showed that mice receiving F9202 and F9204displayed obvious CPP. They could all significantly stimulate CREB phosphorylation and maintained for along time without affecting total CREB protein levels. The effect of F9204 was similar to morphine whicheffect was more potent and longer than F9202. We also examined the effects of ketamine, a noncompetitiveN-mthyl-D-aspartate receptor (NR) antagonist, on morphine-, F9202- and F9204- induced CPP and phos-phorylation of CREB in hippocampus. Ketamine could suppress not only the place preference but also thephosphorylation of CREB produced by morphine, F9202 and F9204. These findings suggest that alterationsin the phosphorylation of CREB be relevant to opiates signaling and the development of opiates dependence.NR antagonists may interfere with opiates dependence and may have potential therapeutic implications.

  12. Regulatory light chain phosphorylation increases eccentric contraction-induced injury in skinned fast-twitch fibers.

    Science.gov (United States)

    Childers, Martin K; McDonald, Kerry S

    2004-02-01

    During contraction, activation of Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) results in phosphorylation of myosin's regulatory light chain (RLC), which potentiates force and increases speed of force development over a wide range of [Ca(2+)]. We tested the hypothesis that RLC phosphorylation by MLCK mediates the extent of eccentric contraction-induced injury as measured by force deficit in skinned fast-twitch skeletal muscle fibers. Results indicated that RLC phosphorylation in single skinned rat psoas fibers significantly increased Ca(2+) sensitivity of isometric force; isometric force from 50 +/- 16 to 59 +/- 18 kN/m(2) during maximal Ca(2+) activation; peak absolute power output from 38 +/- 15 to 48 +/- 14 nW during maximal Ca(2+) activation; and the magnitude of contraction-induced force deficit during maximal (pCa 4.5) activation from 26 +/- 9.8 to 35 +/- 9.6%. We conclude that RLC phosphorylation increases force deficits following eccentric contractions, perhaps by increasing the number of force-generating cross-bridges.

  13. The role of eNOS phosphorylation in causing drug-induced vascular injury.

    Science.gov (United States)

    Tobin, Grainne A McMahon; Zhang, Jun; Goodwin, David; Stewart, Sharron; Xu, Lin; Knapton, Alan; González, Carlos; Bancos, Simona; Zhang, Leshuai; Lawton, Michael P; Enerson, Bradley E; Weaver, James L

    2014-06-01

    Previously we found that regulation of eNOS is an important part of the pathogenic process of Drug-induced vascular injury (DIVI) for PDE4i. The aims of the current study were to examine the phosphorylation of eNOS in mesentery versus aorta at known regulatory sites across DIVI-inducing drug classes and to compare changes across species. We found that phosphorylation at S615 in rats was elevated 35-fold 2 hr after the last dose of CI-1044 in mesentery versus 3-fold in aorta. Immunoprecipitation studies revealed that many of the upstream regulators of eNOS activation were associated with eNOS in 1 or more signalosome complexes. Next rats were treated with drugs from 4 other classes known to cause DIVI. Each drug was given alone and in combination with SIN-1 (NO donor) or L-NAME (eNOS inhibitor), and the level of eNOS phosphorylation in mesentery and aorta tissue was correlated with the extent of vascular injury and measured serum nitrite. Drugs or combinations produced altered serum nitrite levels as well as vascular injury score in the mesentery. The results suggested that phosphorylation of S615 may be associated with DIVI activity. Studies with the species-specific A2A adenosine agonist CI-947 in rats versus primates showed a similar pattern.

  14. Involvement of Protein Phosphorylation in Water Stress-induced Antioxidant Defense in Maize Leaves

    Institute of Scientific and Technical Information of China (English)

    Shu-cheng Xu; Hai-dong Ding; Feng-xia Su; A-ying Zhang; Ming-yi Jiang

    2009-01-01

    Using pharmacological and biochemical approaches, the role of protein phosphorylation and the interrelationship between water stress-enhanced kinase activity, antioxidant enzyme activity, hydrogen peroxide (H2O2) accumulation and endogenous abscisic acid in maize (Zea mays L.) leaves were investigated. Water-stress upregulated the activities of total protein phosphorylation and Ca2+ -dependent protein kinase, and the upregulation was blocked in abscisic acid-deficient vp5 mutant. Furthermore, pretreatments with a nicotinamide adenine dinucleotide phosphate oxidase inhibitor and a scavenger of H2O2 significantly reduced the increased activities of total protein kinase and Ca2+-dependent protein kinase in maize leaves exposed to water stress. Pretreatments with different protein kinase inhibitors also reduced the water stress-induced H2O2 production and the water stress-enhanced activities of antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase. The data suggest that protein phosphorylation and H2O2 generation are required for water stress-induced antioxidant defense in maize leaves and that crosstalk between protein phosphorylation and H2O2 generation may occur.

  15. Phosphorylation of AMPA receptors is required for sensory deprivation-induced homeostatic synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Anubhuti Goel

    Full Text Available Sensory experience, and the lack thereof, can alter the function of excitatory synapses in the primary sensory cortices. Recent evidence suggests that changes in sensory experience can regulate the synaptic level of Ca(2+-permeable AMPA receptors (CP-AMPARs. However, the molecular mechanisms underlying such a process have not been determined. We found that binocular visual deprivation, which is a well-established in vivo model to produce multiplicative synaptic scaling in visual cortex of juvenile rodents, is accompanied by an increase in the phosphorylation of AMPAR GluR1 (or GluA1 subunit at the serine 845 (S845 site and the appearance of CP-AMPARs at synapses. To address the role of GluR1-S845 in visual deprivation-induced homeostatic synaptic plasticity, we used mice lacking key phosphorylation sites on the GluR1 subunit. We found that mice specifically lacking the GluR1-S845 site (GluR1-S845A mutants, which is a substrate of cAMP-dependent kinase (PKA, show abnormal basal excitatory synaptic transmission and lack visual deprivation-induced homeostatic synaptic plasticity. We also found evidence that increasing GluR1-S845 phosphorylation alone is not sufficient to produce normal multiplicative synaptic scaling. Our study provides concrete evidence that a GluR1 dependent mechanism, especially S845 phosphorylation, is a necessary pre-requisite step for in vivo homeostatic synaptic plasticity.

  16. Phosphorylation of AMPA receptors is required for sensory deprivation-induced homeostatic synaptic plasticity.

    Science.gov (United States)

    Goel, Anubhuti; Xu, Linda W; Snyder, Kevin P; Song, Lihua; Goenaga-Vazquez, Yamila; Megill, Andrea; Takamiya, Kogo; Huganir, Richard L; Lee, Hey-Kyoung

    2011-03-31

    Sensory experience, and the lack thereof, can alter the function of excitatory synapses in the primary sensory cortices. Recent evidence suggests that changes in sensory experience can regulate the synaptic level of Ca(2+)-permeable AMPA receptors (CP-AMPARs). However, the molecular mechanisms underlying such a process have not been determined. We found that binocular visual deprivation, which is a well-established in vivo model to produce multiplicative synaptic scaling in visual cortex of juvenile rodents, is accompanied by an increase in the phosphorylation of AMPAR GluR1 (or GluA1) subunit at the serine 845 (S845) site and the appearance of CP-AMPARs at synapses. To address the role of GluR1-S845 in visual deprivation-induced homeostatic synaptic plasticity, we used mice lacking key phosphorylation sites on the GluR1 subunit. We found that mice specifically lacking the GluR1-S845 site (GluR1-S845A mutants), which is a substrate of cAMP-dependent kinase (PKA), show abnormal basal excitatory synaptic transmission and lack visual deprivation-induced homeostatic synaptic plasticity. We also found evidence that increasing GluR1-S845 phosphorylation alone is not sufficient to produce normal multiplicative synaptic scaling. Our study provides concrete evidence that a GluR1 dependent mechanism, especially S845 phosphorylation, is a necessary pre-requisite step for in vivo homeostatic synaptic plasticity.

  17. Phytochelatins inhibit the metal-induced aggregation of alpha-crystallin.

    Science.gov (United States)

    Hori, Yasuhisa; Yoshikawa, Tomoaki; Tsuji, Naoki; Bamba, Takeshi; Aso, Yoshikazu; Kudou, Motonori; Uchida, Yoshiki; Takagi, Masahiro; Harada, Kazuo; Hirata, Kazumasa

    2009-02-01

    Phytochelatins (PCs) are heavy-metal-binding peptides found in some eukaryotes. This study investigates the use of plant-derived PCs for the inhibition of metal-induced protein aggregation. The results of this study show that PCs inhibit zinc-induced alpha-crystallin aggregation, and suggest that PCs might be useful as anti-cataract agents.

  18. AKT inhibitor suppresses hyperthermia-induced Ndrg2 phosphorylation in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Yurong; Guo, Yan; Liu, Wenchao [Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, The Fourth Military Medical University, Shaanxi, Xi' an (China); Zhang, Jian; Li, Xia; Shen, Lan; Ru, Yi [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Shaanxi, Xi' an (China); Xue, Yan [Department of Oncology, State Key Discipline of Cell Biology, Xijing Hospital, The Fourth Military Medical University, Shaanxi, Xi' an (China); Zheng, Jin [Department of Traditional Chinese and Western Medicine of Oncology, Tangdu Hospital, The Fourth Military Medical University, Shaanxi, Xi' an (China); Liu, Xinping; Zhang, Jing; Yao, Libo [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Shaanxi, Xi' an (China)

    2013-04-05

    Hyperthermia is one of the most effective adjuvant treatments for various cancers with few side effects. However, the underlying molecular mechanisms still are not known. N-myc downstream-regulated gene 2 (NDRG2), a tumor suppressor, has been shown to be involved in diverse cellular stresses including hypoxia, lipotoxicity, etc. In addition, Ndrg2 has been reported to be related to progression of gastric cancer. In the current study, our data showed that the apoptosis rate of MKN28 cells increased relatively rapidly to 13.4% by 24 h after treatment with hyperthermia (42°C for 1 h) compared to 5.1% in control cells (P < 0.05). Nevertheless, there was no obvious change in the expression level of total Ndrg2 during this process. Further investigation demonstrated that the relative phosphorylation levels of Ndrg2 at Ser332, Thr348 increased up to 3.2- and 1.9-fold (hyperthermia group vs control group) at 3 h in MKN28 cells, respectively (P < 0.05). We also found that heat treatment significantly increased AKT phosphorylation. AKT inhibitor VIII (10 µM) decreased the phosphorylation level of Ndrg2 induced by hyperthermia. Accordingly, the apoptosis rate rose significantly in MKN28 cells (16.4%) treated with a combination of AKT inhibitor VIII and hyperthermia compared to that (6.8%) of cells treated with hyperthermia alone (P < 0.05). Taken together, these data demonstrated that Ndrg2 phosphorylation could be induced by hyperthermia in an AKT-dependent manner in gastric cancer cells. Furthermore, AKT inhibitor VIII suppressed Ndrg2 phosphorylation and rendered gastric cancer cells susceptible to apoptosis induced by hyperthermia.

  19. UVC-induced apoptosis in Dubca cells is independent of JNK activation and p53{sup Ser-15} phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Chathoth, Shahanas; Thayyullathil, Faisal; Hago, Abdulkader [Cell Signaling Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain (United Arab Emirates); Shahin, Allen [Department of Medical Microbiology, Faculty of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain (United Arab Emirates); Patel, Mahendra [Cell Signaling Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain (United Arab Emirates); Galadari, Sehamuddin, E-mail: sehamuddin@uaeu.ac.ae [Cell Signaling Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain (United Arab Emirates)

    2009-06-12

    Ultraviolet C (UVC) irradiation in mammalian cell lines activates a complex signaling network that leads to apoptosis. By using Dubca cells as a model system, we report the presence of a UVC-induced apoptotic pathway that is independent of c-Jun N-terminal kinases (JNKs) activation and p53 phosphorylation at Ser{sup 15}. Irradiation of Dubca cells with UVC results in a rapid JNK activation and phosphorylation of its downstream target c-Jun, as well as, phosphorylation of activating transcription factor 2 (ATF2). Pre-treatment with JNK inhibitor, SP600125, inhibited UVC-induced c-Jun phosphorylation without preventing UVC-induced apoptosis. Similarly, inhibition of UVC-induced p53 phosphorylation did not prevent Dubca cell apoptosis, suggesting that p53{sup Ser-15} phosphorylation is not associated with UVC-induced apoptosis signaling. The pan-caspase inhibitor z-VAD-fmk inhibited UVC-induced PARP cleavage, DNA fragmentation, and ultimately apoptosis of Dubca cells. Altogether, our study clearly indicates that UVC-induced apoptosis is independent of JNK and p53 activation in Dubca cells, rather, it is mediated through a caspase dependent pathway. Our findings are not in line with the ascribed critical role for JNKs activation, and downstream phosphorylation of targets such as c-Jun and ATF2 in UVC-induced apoptosis.

  20. Suppressive effect of CORM-2 on LPS-induced platelet activation by glycoprotein mediated HS1 phosphorylation interference.

    Directory of Open Access Journals (Sweden)

    Dadong Liu

    Full Text Available In recent years, it has been discovered that septic patients display coagulation abnormalities. Platelets play a major role in the coagulation system. Studies have confirmed that carbon monoxide (CO has important cytoprotective and anti-inflammatory function. However, whether CO could alter abnormal activation of platelets and coagulation and thereby reduce the incidence of mortality during sepsis has not been defined. In this report, we have used CO-releasing molecules (CORM-2 to determine whether CO inhibits LPS-induced abnormal activation of platelets and have explored the potential mechanisms. LPS was used to induce activation of platelets in vitro, which were purified from the peripheral venous blood of healthy adult donors. CORM-2 was applied as a potential therapeutic agent. CORM-2 preconditioning and delayed treatment were also studied. We found that in the LPS groups, the function of platelets such as spreading, aggregation, and release were enhanced abnormally. By contrast, the platelets in the CORM-2 group were gently activated. Further studies showed that the expression of platelet membrane glycoproteins increased in the LPS group. Coincidently, both hematopoietic lineage cell-specific protein 1 and its phosphorylated form also increased dramatically. These phenomena were less dramatically seen in the CORM-2 groups. Taken together, we conclude that during LPS stimulation, platelets were abnormally activated, and this functional state may be associated with the signal that is transmitted between membrane glycoproteins and HS1. CORM-released CO suppresses the abnormal activation of platelets by interfering with glycoprotein-mediated HS1 phosphorylation.

  1. Induced Interval-Valued Intuitionistic Fuzzy Hybrid Aggregation Operators with TOPSIS Order-Inducing Variables

    Directory of Open Access Journals (Sweden)

    Jun-Ling Zhang

    2012-01-01

    Full Text Available Two induced aggregation operators with novelly designed TOPSIS order-inducing variables are proposed: Induced Interval-valued Intuitionistic Fuzzy Hybrid Averaging (I-IIFHA operator and Induced Interval-valued Intuitionistic Fuzzy Hybrid Geometric (I-IIFHG operator. The merit of two aggregation operators is that they can consider additional preference information of decision maker’s attitudinal characteristics besides argument-dependent information and argument-independent information. Some desirable properties of I-IIFHA and I-IIFHG are studied and theoretical analysis also shows that they can include a wide range of aggregation operators as special cases. Further, we extend these operators to form a novel group decision-making method for selecting the most desirable alternative in multiple attribute multi-interest group decision-making problems with attribute values and decision maker’s interest values taking the form of interval-valued intuitionistic fuzzy numbers, and application research to real estate purchase selection shows its practicality.

  2. Engagement of CD81 induces ezrin tyrosine phosphorylation and its cellular redistribution with filamentous actin

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, Greg P.; Rajapaksa, Ranjani; Liu, Raymond; Sharpe, Orr; Kuo, Chiung-Chi; Wald Krauss, Sharon; Sagi, Yael; Davis, R. Eric; Staudt, Louis M.; Sharman, Jeff P.; Robinson, William H.; Levy, Shoshana

    2009-06-09

    CD81 is a tetraspanin family member involved in diverse cellular interactions in the immune and nervous systems and in cell fusion events. However, the mechanism of action of CD81 and of other tetraspanins has not been defined. We reasoned that identifying signaling molecules downstream of CD81 would provide mechanistic clues. We engaged CD81 on the surface of Blymphocytes and identified the induced tyrosine-phosphorylated proteins by mass spectrometry. This analysis showed that the most prominent tyrosine phosphorylated protein was ezrin, an actin binding protein and a member of the ezrin-radixin-moesin family. We also found that CD81 engagement induces spleen tyrosine kinase (Syk) and that Syk was involved in tyrosine phosphorylation of ezrin. Ezrin colocalized with CD81 and F-actin upon stimulation and this association was disrupted when Syk activation was blocked. Taken together, these studies suggest a model in which CD81 interfaces between the plasma membrane and the cytoskeleton by activating Syk, mobilizing ezrin, and recruiting F-actin to facilitate cytoskeletal reorganization and cell signaling. This may be a mechanism explaining the pleiotropic effects induced in response to stimulating cells by anti-CD81 antibodies or by the hepatitis C virus, which uses this molecule as its key receptor.

  3. Activation of TORC1 transcriptional coactivator through MEKK1-induced phosphorylation.

    Science.gov (United States)

    Siu, Yeung-Tung; Ching, Yick-Pang; Jin, Dong-Yan

    2008-11-01

    CREB is a prototypic bZIP transcription factor and a master regulator of glucose metabolism, synaptic plasticity, cell growth, apoptosis, and tumorigenesis. Transducers of regulated CREB activity (TORCs) are essential transcriptional coactivators of CREB and an important point of regulation on which various signals converge. In this study, we report on the activation of TORC1 through MEKK1-mediated phosphorylation. MEKK1 potently activated TORC1, and this activation was independent of downstream effectors MEK1/MEK2, ERK2, JNK, p38, protein kinase A, and calcineurin. MEKK1 induced phosphorylation of TORC1 both in vivo and in vitro. Expression of the catalytic domain of MEKK1 alone in cultured mammalian cells sufficiently caused phosphorylation and subsequent activation of TORC1. MEKK1 physically interacted with TORC1 and stimulated its nuclear translocation. An activation domain responsive to MEKK1 stimulation was mapped to amino acids 431-650 of TORC1. As a physiological activator of CREB, interleukin 1alpha triggered MEKK1-dependent phosphorylation of TORC1 and its consequent recruitment to the cAMP response elements in the interleukin 8 promoter. Taken together, our findings suggest a new mechanism for regulated activation of TORC1 transcriptional coactivator and CREB signaling.

  4. UV Light–Induced Aggregation of Titania Submicron Particles

    Directory of Open Access Journals (Sweden)

    Can Zhou

    2016-11-01

    Full Text Available In this study, aggregation of TiO2 (rutile and anatase submicron particles in deionized (DI water under ultra-violet (UV light irradiation was investigated. While no aggregation was observed in the dark, rutile and anatase submicron particles started aggregating upon application of UV light and ceased aggregation in about 2 and 8.4 h, respectively. It has been demonstrated that UV light directly mitigated the particle mobility of TiO2, resulting in a neutralization effect of the Zeta potential. It was also observed that rutile particles aggregated much faster than anatase particles under UV radiation, indicating that the Zeta potential of as-prepared rutile is less than that of anatase in deionized (DI water. In addition, the interaction energy of rutile and anatase particles was simulated using the Derjaguin–Landau–Verwey–Overbeek (DLVO model. The results showed a significant reduction of barrier energy from 118.2 kBT to 33.6 kBT for rutile and from 333.5 kBT to 46.1 kBT for anatase, respectively, which further validated the remarkable influence of UV irradiation on the aggregation kinetics of rutile and anatase submicron particles. This work presents a further understanding of the aggregation mechanism of light-controlled submicron particles and has a promising potential application in environmental remediation.

  5. Multivalent scaffolds induce galectin-3 aggregation into nanoparticles

    Directory of Open Access Journals (Sweden)

    Candace K. Goodman

    2014-07-01

    Full Text Available Galectin-3 meditates cell surface glycoprotein clustering, cross linking, and lattice formation. In cancer biology, galectin-3 has been reported to play a role in aggregation processes that lead to tumor embolization and survival. Here, we show that lactose-functionalized dendrimers interact with galectin-3 in a multivalent fashion to form aggregates. The glycodendrimer–galectin aggregates were characterized by dynamic light scattering and fluorescence microscopy methodologies and were found to be discrete particles that increased in size as the dendrimer generation was increased. These results show that nucleated aggregation of galectin-3 can be regulated by the nucleating polymer and provide insights that improve the general understanding of the binding and function of sugar-binding proteins.

  6. Multivalent scaffolds induce galectin-3 aggregation into nanoparticles

    Science.gov (United States)

    Goodman, Candace K; Wolfenden, Mark L; Nangia-Makker, Pratima; Michel, Anna K; Raz, Avraham

    2014-01-01

    Summary Galectin-3 meditates cell surface glycoprotein clustering, cross linking, and lattice formation. In cancer biology, galectin-3 has been reported to play a role in aggregation processes that lead to tumor embolization and survival. Here, we show that lactose-functionalized dendrimers interact with galectin-3 in a multivalent fashion to form aggregates. The glycodendrimer–galectin aggregates were characterized by dynamic light scattering and fluorescence microscopy methodologies and were found to be discrete particles that increased in size as the dendrimer generation was increased. These results show that nucleated aggregation of galectin-3 can be regulated by the nucleating polymer and provide insights that improve the general understanding of the binding and function of sugar-binding proteins. PMID:25161713

  7. Ralstonia insidiosa induces cell aggregation by Listeria monocytogenes

    Science.gov (United States)

    Biofilm formation is an important strategy for foodborne bacterial pathogens to survive in stressful environments such as fresh produce processing facilities. Bacterial cell aggregation strongly promotes the initiation of microcolonies and the formation of biofilms on abiological surfaces. We previ...

  8. Spontaneous and Induced Platelet Aggregation during Pregnancy and Labor

    Directory of Open Access Journals (Sweden)

    T. P. Bondar

    2016-01-01

    Full Text Available Objective: to evaluate changes in characteristics of spontaneous platelet (Pt aggregation in patients with obstetric complications associated with hereditary thrombophilia.Materials and methods. Blood samples were taken from 52 recently confined women on the first day after labor; at that, ethic regulations for the preanalytical phase were followed. Determination of PlA1/ PlA2 polymorphism enotype was performed by means of amplificationrestriction analysis. Geometrical characteristics of patients' peripheral blood Pt aggregation were studied by means of AFM Integra Prima. The degree of confidence of the parameters under test was determined using the ttest, and the significance level was considered valid at P<0.05.Results. A statistical analysis of the findings demonstrated that the length of Pt aggregates in healthy pregnant women was significantly higher than that in healthy nonpregnant women at all study phases. Patients with the P1A1/P1A2 polymorphism in the GP IIb/IIIa Pt receptor gene demonstrated increased widthm height, and density of Pt aggregates. The changes were most significant during the incubation phase lasting for 15 and 30 minutes. The study of geometric parameters of different exposures demonstrated the following: the longer the incubation period, the greater the difference between geometric parameters of the aggregates (e.g. height, length, and width. Conclusion. The analysis of obtained data demonstrated that the presence of P1A1/P1A2 polymorphism in GP IIb/IIIa Pt gene receptor contributes to the decrease in the platelet response threshold and enhances the spontaneous Pt aggregation. The imaging of aggregates provides strong evidence for the accelerated growth of the aggregates in thrombotic complications of pregnancy.

  9. Inhibition of phosphorylated tyrosine hydroxylase attenuates ethanol-induced hyperactivity in adult zebrafish (Danio rerio).

    Science.gov (United States)

    Nowicki, Magda; Tran, Steven; Chatterjee, Diptendu; Gerlai, Robert

    2015-11-01

    Zebrafish have been successfully employed in the study of the behavioural and biological effects of ethanol. Like in mammals, low to moderate doses of ethanol induce motor hyperactivity in zebrafish, an effect that has been attributed to the activation of the dopaminergic system. Acute ethanol exposure increases dopamine (DA) in the zebrafish brain, and it has been suggested that tyrosine hydroxylase, the rate-limiting enzyme of DA synthesis, may be activated in response to ethanol via phosphorylation. The current study employed tetrahydropapaveroline (THP), a selective inhibitor of phosphorylated tyrosine hydroxylase, for the first time, in zebrafish. We treated zebrafish with a THP dose that did not alter baseline motor responses to examine whether it can attenuate or abolish the effects of acute exposure to alcohol (ethanol) on motor activity, on levels of DA, and on levels of dopamine's metabolite 3,4-dihydroxyphenylacetic acid (DOPAC). We found that 60-minute exposure to 1% alcohol induced motor hyperactivity and an increase in brain DA. Both of these effects were attenuated by pre-treatment with THP. However, no differences in DOPAC levels were found among the treatment groups. These findings suggest that tyrosine hydroxylase is activated via phosphorylation to increase DA synthesis during alcohol exposure in zebrafish, and this partially mediates alcohol's locomotor stimulant effects. Future studies will investigate other potential candidates in the molecular pathway to further decipher the neurobiological mechanism that underlies the stimulatory properties of this popular psychoactive drug.

  10. Phosphorylation-induced mechanical regulation of intrinsically disordered neurofilament protein assemblies

    CERN Document Server

    Malka-Gibor, Eti; Laser-Azogui, Adi; Doron, Ofer; Zingerman-Koladko, Irena; Medalia, Ohad; Beck, Roy

    2016-01-01

    The biological function of protein assemblies was conventionally equated with a unique three-dimensional protein structure and protein-specific interactions. However, in the past 20 years it was found that some assemblies contain long flexible regions that adopt multiple structural conformations. These include neurofilament (NF) proteins that constitute the stress-responsive supportive network of neurons. Herein, we show that NF networks macroscopic properties are tuned by enzymatic regulation of the charge found on the flexible protein regions. The results reveal an enzymatic (phosphorylation) regulation of macroscopic properties such as orientation, stress-response and expansion in flexible protein assemblies. Together with a model explaining the attractive electrostatic interactions induced by enzymatically added charges, we demonstrate that phosphorylation-regulation is far richer and versatile than previously considered.

  11. Epicuticular lipids induce aggregation in Chagas disease vectors

    Directory of Open Access Journals (Sweden)

    Juárez M Patricia

    2009-01-01

    Full Text Available Abstract Background The triatomine bugs are vectors of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Aggregation behavior plays an important role in their survival by facilitating the location of refuges and cohesion of aggregates, helping to keep them safely assembled into shelters during daylight time, when they are vulnerable to predators. There are evidences that aggregation is mediated by thigmotaxis, by volatile cues from their faeces, and by hexane-extractable contact chemoreceptive signals from their cuticle surface. The epicuticular lipids of Triatoma infestans include a complex mixture of hydrocarbons, free and esterified fatty acids, alcohols, and sterols. Results We analyzed the response of T. infestans fifth instar nymphs after exposure to different amounts either of total epicuticular lipid extracts or individual lipid fractions. Assays were performed in a circular arena, employing a binary choice test with filter papers acting as aggregation attractive sites; papers were either impregnated with a hexane-extract of the total lipids, or lipid fraction; or with the solvent. Insects were significantly aggregated around papers impregnated with the epicuticular lipid extracts. Among the lipid fractions separately tested, only the free fatty acid fraction promoted significant bug aggregation. We also investigated the response to different amounts of selected fatty acid components of this fraction; receptiveness varied with the fatty acid chain length. No response was elicited by hexadecanoic acid (C16:0, the major fatty acid component. Octadecanoic acid (C18:0 showed a significant assembling effect in the concentration range tested (0.1 to 2 insect equivalents. The very long chain hexacosanoic acid (C26:0 was significantly attractant at low doses (≤ 1 equivalent, although a repellent effect was observed at higher doses. Conclusion The detection of contact aggregation pheromones has practical

  12. Antimicrobial preservatives induce aggregation of interferon alpha-2a: the order in which preservatives induce protein aggregation is independent of the protein.

    Science.gov (United States)

    Bis, Regina L; Mallela, Krishna M G

    2014-09-10

    Antimicrobial preservatives (APs) are included in liquid multi-dose protein formulations to combat the growth of microbes and bacteria. These compounds have been shown to cause protein aggregation, which leads to serious immunogenic and toxic side-effects in patients. Our earlier work on a model protein cytochrome c (Cyt c) demonstrated that APs cause protein aggregation in a specific manner. The aim of this study is to validate the conclusions obtained from our model protein studies on a pharmaceutical protein. Interferon α-2a (IFNA2) is available as a therapeutic treatment for numerous immune-compromised disorders including leukemia and hepatitis C, and APs have been used in its multi-dose formulation. Similar to Cyt c, APs induced IFNA2 aggregation, demonstrated by the loss of soluble monomer and increase in solution turbidity. The extent of IFNA2 aggregation increased with the increase in AP concentration. IFNA2 aggregation also depended on the nature of AP, and followed the order m-cresol>phenol>benzyl alcohol>phenoxyethanol. This specific order exactly matched with that observed for the model protein Cyt c. These and previously published results on antibodies and other recombinant proteins suggest that the general mechanism by which APs induce protein aggregation may be independent of the protein.

  13. Protein kinase C {alpha} activity is important for contraction-induced FXYD1 phosphorylation in skeletal muscle

    DEFF Research Database (Denmark)

    Thomassen, Martin; Rose, Adam John; Jensen, Thomas Elbenhardt

    2011-01-01

    Exercise induced phosphorylation of FXYD1 is a potential important regulator of Na(+), K(+) pump activity. It was investigated if skeletal muscle contractions induce phosphorylation of FXYD1 and if Protein Kinase C a (PKCa) activity is a prerequisite for this possible mechanism. In part 1, human...... muscle biopsies were obtained at rest, after 30 s of high intensity exercise (166±31% of VO(2max)) and after a subsequent 20 min of moderate intensity exercise (79±8% of VO(2max)). In general, FXYD1 phosphorylation was increased compared to rest both after 30 s (P...

  14. Reproductive stage and modulation of stress-induced tau phosphorylation in female rats

    Science.gov (United States)

    Steinmetz, Danielle; Ramos, Eugenia; Campbell, Shannon N.; Morales, Teresa; Rissman, Robert A.

    2015-01-01

    Chronic stress is implicated as a risk factor for Alzheimer's disease (AD) and other neurodegenerative disorders. While the specific mechanisms linking stress exposure and AD vulnerability have yet to be fully elucidated, our lab and others have shown that acute and repeated restraint stress in rodents leads to an increase in hippocampal tau phosphorylation (tau-P) and tau insolubility, a critical component of tau pathology in AD. Tau phosphorylation induced by a psychological stressor is reversible and is thought to be dependent on intact signaling through the type 1 corticotropin-releasing factor receptor, but how sex steroids or other modulators may also modulate this effect are unknown. A naturally occurring attenuation of stress response is observed in female rats at the end of pregnancy and throughout lactation. To test the hypothesis that decreased sensitivity to stress during lactation modulates stress-induced tau-P, cohorts of virgin, lactating, and weaned female rats were subjected to 30 minutes of restraint stress or no stress (control), and were sacrificed at 20 minutes or 24 hours after the episode. Exposure to restraint stress induced a significant decrease in tau-P in the hippocampus of lactating rats sacrificed 20 minutes after stress compared to lactating controls and virgins subjected to stress treatment. Lactating rats sacrificed 24 hours after exposure to restraint stress showed a significant increase in tau-P compared to the restraint-stressed lactating rats sacrificed only 20 minutes after stress exposure, expressing phosphorylation levels similar to control animals. Further, GSK3-α levels were significantly decreased in stressed lactating animals at both timepoints. This suggests a steep, yet transient stress-induced dephosphorylation of tau, influenced by GSK3, in the hippocampus of lactating rats. PMID:26510116

  15. CaMKII induces permeability transition through Drp1 phosphorylation during chronic β-AR stimulation

    Science.gov (United States)

    Xu, Shangcheng; Wang, Pei; Zhang, Huiliang; Gong, Guohua; Gutierrez Cortes, Nicolas; Zhu, Weizhong; Yoon, Yisang; Tian, Rong; Wang, Wang

    2016-01-01

    Mitochondrial permeability transition pore (mPTP) is involved in cardiac dysfunction during chronic β-adrenergic receptor (β-AR) stimulation. The mechanism by which chronic β-AR stimulation leads to mPTP openings is elusive. Here, we show that chronic administration of isoproterenol (ISO) persistently increases the frequency of mPTP openings followed by mitochondrial damage and cardiac dysfunction. Mechanistically, this effect is mediated by phosphorylation of mitochondrial fission protein, dynamin-related protein 1 (Drp1), by Ca2+/calmodulin-dependent kinase II (CaMKII) at a serine 616 (S616) site. Mutating this phosphorylation site or inhibiting Drp1 activity blocks CaMKII- or ISO-induced mPTP opening and myocyte death in vitro and rescues heart hypertrophy in vivo. In human failing hearts, Drp1 phosphorylation at S616 is increased. These results uncover a pathway downstream of chronic β-AR stimulation that links CaMKII, Drp1 and mPTP to bridge cytosolic stress signal with mitochondrial dysfunction in the heart. PMID:27739424

  16. Phosphorylation of p53 by LRRK2 induces microglial tumor necrosis factor α-mediated neurotoxicity.

    Science.gov (United States)

    Ho, Dong Hwan; Seol, Wongi; Eun, Jin Hwan; Son, Il-Hong

    2017-01-22

    Leucine-rich repeat kinase (LRRK2), a major causal gene of Parkinson's disease (PD), functions as a kinase. The most prevalent mutation of LRRK2 is G2019S. It exhibits increased kinase activity compared to the wildtype LRRK2. Previous studies have shown that LRRK2 can phosphorylate p53 at T304 and T377 of threonine-X-arginine (TXR) motif in neurons. Reduction of LRRK2 expression or inhibition of LRRK2 kinase activity has been shown to be able to alleviate LPS-induced neuroinflammation in microglia cells. In this study, we found that LRRK2 could also phosphorylate p53 in microglia model BV2 cells. Transfection of BV2 with phosphomimetic p53 T304/377D significantly increased the secretion of pro-inflammatory cytokine TNFα compared to BV2 transfected with p53 wild type after LPS treatment. In addition, conditioned media from these transfected cells increased the death of dopaminergic neuronal SN4741 cells. Moreover, such neurotoxic effect was rescued by co-treatment with the conditioned media and etanercept, a TNFα blocking antibody. Furthermore, TNFα secretion was significantly increased in primary microglia derived from G2019S transgenic mice treated with LPS compared to that in cells derived from their littermates. These results suggest that LRRK2 kinase activity in microglia can contribute to neuroinflammation in PD via phosphorylating p53 at T304 and T377 site.

  17. MAPKs and Mst1/Caspase-3 pathways contribute to H2B phosphorylation during UVB-induced apoptosis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Apoptosis is a highly coordinated or programmed cell suicide mechanism in eukaryotes.Histone modification is associated with nuclear events in apoptotic cells.Specifically H2B phosphorylation at serine 14 (Ser14) catalyzed by Mst1 kinase has been linked to chromatin condensation during apoptosis.We report that activation of MAPKs (ERK1/2,JNK1/2 and p38) together with Mst1 and caspase-3 is required for phosphorylation of H2B (Ser14) during ultraviolet B light (UVB)-induced apoptosis.UVB can trigger activation of MAPKs and induce H2B phosphorylation at Ser14 but not acetylation in a time-dependent manner.Inhibition of ERK1/2,JNK1/2 or p38 activity blocked H2B phosphorylation (Ser14).Furthermore,caspase-3 was activated by UVB to regulate Mst1 activity,which phosphorylates H2B at Ser14,leading to chromatin condensation.Full inhibition of caspase-3 activity reduced Mst1 activation and partially inhibited H2B phosphorylation (Ser14),but ERK1/2,JNK1/2 and p38 activities were not affected.Taken together,these data revealed that H2B phosphorylation is regulated by both MAPKs and caspase-3/Mst1 pathways during UVB-induced apoptosis.

  18. Does ocean acidification induce an upward flux of marine aggregates?

    Directory of Open Access Journals (Sweden)

    X. Mari

    2008-07-01

    Full Text Available The absorption of anthropogenic atmospheric carbon dioxide (CO2 by the ocean provokes its acidification. This acidification may alter several oceanic processes, including the export of biogenic carbon from the upper layer of the ocean, hence providing a feedback on rising atmospheric carbon concentrations. The effect of seawater acidification on transparent exopolymeric particles (TEP driven aggregation and sedimentation processes were investigated by studying the interactions between latex beads and TEP precursors collected in the lagoon of New Caledonia. A suspension of TEP and beads was prepared and the formation of mixed aggregates was monitored as a function of pH under increasing turbulence intensities. The pH was controlled by addition of sulfuric acid. Aggregation and sedimentation processes driven by TEP were drastically reduced when the pH of seawater decreases within the expected limits imposed by increased anthropogenic CO2 emissions. In addition to the diminution of TEP sticking properties, the diminution of seawater pH led to a significant increase of the TEP pool, most likely due to swollen structures. A diminution of seawater pH by 0.2 units or more led to a stop or a reversal of the downward flux of particles. If applicable to oceanic conditions, the sedimentation of marine aggregates may slow down or even stop as the pH decreases, and the vertical flux of organic carbon may reverse. This would enhance both rising atmospheric carbon and ocean acidification.

  19. Does ocean acidification induce an upward flux of marine aggregates?

    Directory of Open Access Journals (Sweden)

    X. Mari

    2008-04-01

    Full Text Available The adsorption of anthropogenic atmospheric carbon dioxide (CO2 by the ocean provokes its acidification. This acidification may alter several oceanic processes, including the export of biogenic carbon from the upper layer of the ocean, hence providing a feedback on rising atmospheric carbon concentrations. The effect of seawater acidification on transparent exopolymeric particles (TEP driven aggregation and sedimentation processes were investigated by studying the interactions between latex beads and TEP precursors collected in the lagoon of New Caledonia. A suspension of TEP and beads was prepared and the formation of mixed aggregates was monitored as a function of pH under increasing turbulence intensities. The pH was controlled by addition of sulfuric acid. Aggregation and sedimentation processes driven by TEP were drastically reduced when the pH of seawater decreases within the expected limits imposed by increased anthropogenic CO2 emissions. In addition to the diminution of TEP sticking properties, the diminution of seawater pH led to a significant increase of the TEP pool, most likely due to swollen structures. A diminution of seawater pH by 0.2 units or more led to a stop or a reversal of the downward flux of particles. If applicable to oceanic conditions, the sedimentation of marine aggregates may slow down or even stop as the pH decreases, and the vertical flux of organic carbon may reverse. This would enhance both rising atmospheric carbon and ocean acidification.

  20. Towards meso -Ester BODIPYs with Aggregation-Induced Emission Properties: The Effect of Substitution Positions

    KAUST Repository

    Chua, Ming Hui

    2015-06-17

    Three meso-ester boron dipyrromethene (BODIPY) dyes have been synthesized and functionalized with aggregation-induced emission (AIE)-active tetraphenylethene or triphenylethene moieties. It was found that functionalizing at the different positions of the BODIPY core resulted in the final dye having different emission properties in response to aggregation: from aggregation-induced quenching (ACQ) to being AIE active. X-ray crystallographic analysis was thus performed to provide an explanation for these differences. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The Down syndrome-related protein kinase DYRK1A phosphorylates p27(Kip1) and Cyclin D1 and induces cell cycle exit and neuronal differentiation.

    Science.gov (United States)

    Soppa, Ulf; Schumacher, Julian; Florencio Ortiz, Victoria; Pasqualon, Tobias; Tejedor, Francisco J; Becker, Walter

    2014-01-01

    A fundamental question in neurobiology is how the balance between proliferation and differentiation of neuronal precursors is maintained to ensure that the proper number of brain neurons is generated. Substantial evidence implicates DYRK1A (dual specificity tyrosine-phosphorylation-regulated kinase 1A) as a candidate gene responsible for altered neuronal development and brain abnormalities in Down syndrome. Recent findings support the hypothesis that DYRK1A is involved in cell cycle control. Nonetheless, how DYRK1A contributes to neuronal cell cycle regulation and thereby affects neurogenesis remains poorly understood. In the present study we have investigated the mechanisms by which DYRK1A affects cell cycle regulation and neuronal differentiation in a human cell model, mouse neurons, and mouse brain. Dependent on its kinase activity and correlated with the dosage of overexpression, DYRK1A blocked proliferation of SH-SY5Y neuroblastoma cells within 24 h and arrested the cells in G₁ phase. Sustained overexpression of DYRK1A induced G₀ cell cycle exit and neuronal differentiation. Furthermore, we provide evidence that DYRK1A modulated protein stability of cell cycle-regulatory proteins. DYRK1A reduced cellular Cyclin D1 levels by phosphorylation on Thr286, which is known to induce proteasomal degradation. In addition, DYRK1A phosphorylated p27(Kip1) on Ser10, resulting in protein stabilization. Inhibition of DYRK1A kinase activity reduced p27(Kip1) Ser10 phosphorylation in cultured hippocampal neurons and in embryonic mouse brain. In aggregate, these results suggest a novel mechanism by which overexpression of DYRK1A may promote premature neuronal differentiation and contribute to altered brain development in Down syndrome.

  2. Wnt3A Induces GSK-3β Phosphorylation and β-Catenin Accumulation Through RhoA/ROCK.

    Science.gov (United States)

    Kim, Jae-Gyu; Kim, Myoung-Ju; Choi, Won-Ji; Moon, Mi-Young; Kim, Hee-Jun; Lee, Jae-Yong; Kim, Jaebong; Kim, Sung-Chan; Kang, Seung Goo; Seo, Goo-Young; Kim, Pyeung-Hyeun; Park, Jae-Bong

    2017-05-01

    In canonical pathway, Wnt3A has been known to stabilize β-catenin through the dissociation between β-catenin and glycogen synthase kinase-3β (GSK-3β) that suppresses the phosphorylation and degradation of β-catenin. In non-canonical signaling pathway, Wnt was known to activate Rho GTPases and to induce cell migration. The cross-talk between canonical and non-canonical pathways by Wnt signaling; however, has not been fully elucidated. Here, we revealed that Wnt3A induces not only the phosphorylation of GSK-3β and accumulation of β-catenin but also RhoA activation in RAW264.7 and HEK293 cells. Notably, sh-RhoA and Tat-C3 abolished both the phosphorylation of GSK-3β and accumulation of β-catenin. Y27632, an inhibitor of Rho-associated coiled coil kinase (ROCK) and si-ROCK inhibited both GSK-3β phosphorylation and β-catenin accumulation. Furthermore, active domain of ROCK directly phosphorylated the purified recombinant GSK-3β in vitro. In addition, Wnt3A-induced cell proliferation and migration, which were inhibited by Tat-C3 and Y27632. Taken together, we propose the cross-talk between canonical and non-canonical signaling pathways of Wnt3A, which induces GSK-3β phosphorylation and β-catenin accumulation through RhoA and ROCK activation. J. Cell. Physiol. 232: 1104-1113, 2017. © 2016 Wiley Periodicals, Inc.

  3. Global protein phosphorylation dynamics during deoxynivalenol-induced ribotoxic stress response in the macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Xiao [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Whitten, Douglas A. [Research Technology Support Facility, Proteomics Core, Michigan State University, East Lansing, MI 48824 (United States); Wu, Ming [Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824 (United States); Chan, Christina [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824 (United States); Wilkerson, Curtis G. [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Research Technology Support Facility, Proteomics Core, Michigan State University, East Lansing, MI 48824 (United States); Pestka, James J., E-mail: pestka@msu.edu [Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States); Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 (United States)

    2013-04-15

    Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium that commonly contaminates food, is capable of activating mononuclear phagocytes of the innate immune system via a process termed the ribotoxic stress response (RSR). To encapture global signaling events mediating RSR, we quantified the early temporal (≤ 30 min) phosphoproteome changes that occurred in RAW 264.7 murine macrophage during exposure to a toxicologically relevant concentration of DON (250 ng/mL). Large-scale phosphoproteomic analysis employing stable isotope labeling of amino acids in cell culture (SILAC) in conjunction with titanium dioxide chromatography revealed that DON significantly upregulated or downregulated phosphorylation of 188 proteins at both known and yet-to-be functionally characterized phosphosites. DON-induced RSR is extremely complex and goes far beyond its prior known capacity to inhibit translation and activate MAPKs. Transcriptional regulation was the main target during early DON-induced RSR, covering over 20% of the altered phosphoproteins as indicated by Gene Ontology annotation and including transcription factors/cofactors and epigenetic modulators. Other biological processes impacted included cell cycle, RNA processing, translation, ribosome biogenesis, monocyte differentiation and cytoskeleton organization. Some of these processes could be mediated by signaling networks involving MAPK-, NFκB-, AKT- and AMPK-linked pathways. Fuzzy c-means clustering revealed that DON-regulated phosphosites could be discretely classified with regard to the kinetics of phosphorylation/dephosphorylation. The cellular response networks identified provide a template for further exploration of the mechanisms of trichothecenemycotoxins and other ribotoxins, and ultimately, could contribute to improved mechanism-based human health risk assessment. - Highlights: ► Mycotoxin deoxynivalenol (DON) induces immunotoxicity via ribotoxic stress response. ► SILAC phosphoproteomics using

  4. PKC-Mediated ZYG1 Phosphorylation Induces Fusion of Myoblasts as well as of Dictyostelium Cells

    Directory of Open Access Journals (Sweden)

    Aiko Amagai

    2012-01-01

    Full Text Available We have previously demonstrated that a novel protein ZYG1 induces sexual cell fusion (zygote formation of Dictyostelium cells. In the process of cell fusion, involvements of signal transduction pathways via Ca2+ and PKC (protein kinase C have been suggested because zygote formation is greatly enhanced by PKC activators. In fact, there are several deduced sites phosphorylated by PKC in ZYG1 protein. Thereupon, we designed the present work to examine whether or not ZYG1 is actually phosphorylated by PKC and localized at the regions of cell-cell contacts where cell fusion occurs. These were ascertained, suggesting that ZYG1 might be the target protein for PKC. A humanized version of zyg1 cDNA (mzyg1 was introduced into myoblasts to know if ZYG1 is also effective in cell fusion of myoblasts. Quite interestingly, enforced expression of ZYG1 in myoblasts was found to induce markedly their cell fusion, thus strongly suggesting the existence of a common signaling pathway for cell fusion beyond the difference of species.

  5. The Co-chaperone BAG2 Mediates Cold-Induced Accumulation of Phosphorylated Tau in SH-SY5Y Cells.

    Science.gov (United States)

    de Paula, Cesar Augusto Dias; Santiago, Fernando Enrique; de Oliveira, Adriele Silva Alves; Oliveira, Fernando Augusto; Almeida, Maria Camila; Carrettiero, Daniel Carneiro

    2016-05-01

    Inclusions of phosphorylated tau (p-tau) are a hallmark of many neurodegenerative disorders classified as "tauopathy," of which Alzheimer's disease is the most prevalent form. Dysregulation of tau phosphorylation disrupts neuron structure and function, and hyperphosphorylated tau aggregates to form neurotoxic inclusions. The abundance of ubiquitin in tau inclusions suggests a defect in ubiquitin-mediated tau protein degradation by the proteasome. Under the temperature of 37 °C, the co-chaperone BAG2 protein targets phosphorylated tau for degradation via by a more-efficient, ubiquitin-independent pathway. In both in vivo and in vitro studies, cold exposure induces the accumulation of phosphorylated tau protein. The SH-SY5Y cell line differentiates into neuron-like cells on treatment with retinoic acid and is an established model for research on the effects of cold on tau phosphorylation. The aim of the present study was to investigate whether BAG2 mediates the cold-induced accumulation of phosphorylated tau protein. Our findings show that cold exposure causes a decrease in BAG2 expression in undifferentiated cells. Conversely, BAG2 expression is increased in differentiated cells exposed to cold. Further, undifferentiated cells exposed to cold had an increased proportion of p-tau to total tau, suggesting an accumulation of p-tau that is consistent with decreased levels of BAG2. Overexpression of BAG2 in cold-exposed undifferentiated cells restored levels of p-tau to those of 37 °C undifferentiated control. Interestingly, although BAG2 expression increased in differentiated cells, this increase was not accompanied by a decrease in the proportion of p-tau to total tau. Further, overexpression of BAG2 in cold exposed differentiated cells showed no significant difference in p-tau levels compared to 37 °C controls. Taken together, these data show that expression of BAG2 is differently regulated in a differentiation-dependent context. Our results suggest that

  6. Amyloid-β peptide (1-42) aggregation induced by copper ions under acidic conditions

    Institute of Scientific and Technical Information of China (English)

    Yannan Bin; Xia Li; Yonghui He; Shu Chen; Juan Xiang

    2013-01-01

    It is well known that the aggregation of amyloid-β peptide (Aβ) induced by Cu2+ is related to incubation time,solution pH,and temperature.In this work,the aggregation of Aβ1-42 in the presence of Cu2+ under acidic conditions was studied at different incubation time and temperature (e.g.25 and 37℃).Incubation temperature,pH,and the presence of Cu2+ in Aβ solution were confirmed to alter the morphology of aggregation (fibrils or amorphous aggregates),and the morphology is pivotal for Aβ neurotoxicity and Alzheimer disease (AD) development.The results of atomic force microscopy (AFM) indicated that the formation of Aβ fibrous morphology is preferred at lower pH,but Cu2+ induced the formation of amorphous aggregates.The aggregation rate of Aβ was increased with the elevation of temperature.These results were further confirmed by fluorescence spectroscopy and circular dichroism spectroscopy and it was found that the formation of β-sheet structure was inhibited by Cu2+ binding to Aβ.The result was consistent with AFM observation and the fibrillation process was restrained.We believe that the local charge state in hydrophilic domain of Aβ may play a dominant role in the aggregate morphology due to the strong steric hindrance.This research will be valuable for understanding of Aβ toxicity in AD.

  7. Amyloid-β peptide (1-42) aggregation induced by copper ions under acidic conditions.

    Science.gov (United States)

    Bin, Yannan; Li, Xia; He, Yonghui; Chen, Shu; Xiang, Juan

    2013-07-01

    It is well known that the aggregation of amyloid-β peptide (Aβ) induced by Cu²⁺ is related to incubation time, solution pH, and temperature. In this work, the aggregation of Aβ₁₋₄₂ in the presence of Cu²⁺ under acidic conditions was studied at different incubation time and temperature (e.g. 25 and 37°C). Incubation temperature, pH, and the presence of Cu²⁺ in Aβ solution were confirmed to alter the morphology of aggregation (fibrils or amorphous aggregates), and the morphology is pivotal for Aβ neurotoxicity and Alzheimer disease (AD) development. The results of atomic force microscopy (AFM) indicated that the formation of Aβ fibrous morphology is preferred at lower pH, but Cu²⁺ induced the formation of amorphous aggregates. The aggregation rate of Aβ was increased with the elevation of temperature. These results were further confirmed by fluorescence spectroscopy and circular dichroism spectroscopy and it was found that the formation of β-sheet structure was inhibited by Cu²⁺ binding to Aβ. The result was consistent with AFM observation and the fibrillation process was restrained. We believe that the local charge state in hydrophilic domain of Aβ may play a dominant role in the aggregate morphology due to the strong steric hindrance. This research will be valuable for understanding of Aβ toxicity in AD.

  8. Mechanism of neem limonoids-induced cell death in cancer: Role of oxidative phosphorylation.

    Science.gov (United States)

    Yadav, Neelu; Kumar, Sandeep; Kumar, Rahul; Srivastava, Pragya; Sun, Leimin; Rapali, Peter; Marlowe, Timothy; Schneider, Andrea; Inigo, Joseph R; O'Malley, Jordan; Londonkar, Ramesh; Gogada, Raghu; Chaudhary, Ajay K; Yadava, Nagendra; Chandra, Dhyan

    2016-01-01

    We have previously reported that neem limonoids (neem) induce multiple cancer cell death pathways. Here we dissect the underlying mechanisms of neem-induced apoptotic cell death in cancer. We observed that neem-induced caspase activation does not require Bax/Bak channel-mediated mitochondrial outer membrane permeabilization, permeability transition pore, and mitochondrial fragmentation. Neem enhanced mitochondrial DNA and mitochondrial biomass. While oxidative phosphorylation (OXPHOS) Complex-I activity was decreased, the activities of other OXPHOS complexes including Complex-II and -IV were unaltered. Increased reactive oxygen species (ROS) levels were associated with an increase in mitochondrial biomass and apoptosis upon neem exposure. Complex-I deficiency due to the loss of Ndufa1-encoded MWFE protein inhibited neem-induced caspase activation and apoptosis, but cell death induction was enhanced. Complex II-deficiency due to the loss of succinate dehydrogenase complex subunit C (SDHC) robustly decreased caspase activation, apoptosis, and cell death. Additionally, the ablation of Complexes-I, -III, -IV, and -V together did not inhibit caspase activation. Together, we demonstrate that neem limonoids target OXPHOS system to induce cancer cell death, which does not require upregulation or activation of proapoptotic Bcl-2 family proteins.

  9. Nutrient deprivation induces α-synuclein aggregation through endoplasmic reticulum stress response and SREBP2 pathway

    OpenAIRE

    Jiang, Peizhou; Gan, Ming; Lin, Wen-Lang; Yen, Shu-Hui C.

    2014-01-01

    Abnormal accumulation of filamentous α-synuclein (α-syn) in neurons, regarded as Lewy bodies (LBs), are a hallmark of Parkinson disease (PD). Although the exact mechanism(s) underlying LBs formation remains unknown, autophagy and ER stress response have emerged as two important pathways affecting α-syn aggregation. In present study we tested whether cells with the tetracycline-off inducible overexpression of α-syn and accumulating α-syn aggregates can benefit from autophagy activation elicite...

  10. Nutrient deprivation induces α-synuclein aggregation through endoplasmic reticulum stress response and SREBP2 pathway

    OpenAIRE

    Peizhou eJiang; Ming eGan; Wen-Lang eLin; Yen, Shu-Hui C.

    2014-01-01

    Abnormal accumulation of filamentous α-synuclein (α-syn) in neurons, regarded as Lewy bodies(LBs), are a hallmark of Parkinson disease (PD). Although the exact mechanism(s) underlying LBs formation remains unknown, autophagy and ER stress response have emerged as two important pathways affecting α-syn aggregation. In present study we tested whether cells with the tetracycline-off inducible overexpression of α-syn and accumulating α-syn aggregates can benefit from autophagy activation elicited...

  11. Bacillus pasteurii urease shares with plant ureases the ability to induce aggregation of blood platelets.

    Science.gov (United States)

    Olivera-Severo, D; Wassermann, G E; Carlini, C R

    2006-08-15

    Ureases (EC 3.5.1.5) are highly homologous enzymes found in plants, bacteria and fungi. Canatoxin, an isoform Canavalia ensiformis urease, has several biological properties unrelated to its ureolytic activity, like platelet-aggregating and pro-inflammatory effects. Here, we describe that Bacillus pasteurii urease (BPU) also induces aggregation of rabbit platelets, similar to the canatoxin-induced effect (ED(50) 0.4 and 0.015 mg/mL, respectively). BPU induced-aggregation was blocked in platelets pretreated with dexamethasone and esculetin, a phospholipase A(2) and a lipoxygenase inhibitor, respectively, while platelets treated with indomethacin, a cyclooxygenase inhibitor, showed increased response to BPU. Methoxyverapamil (Ca(2+) channel blocker) and AMP (ADP antagonist) abrogated urease-induced aggregation, whereas the PAF-acether antagonist Web2170 had no effect. We concluded that platelet aggregation induced by BPU is mediated by lipoxygenase-derived eicosanoids and secretion of ADP from the platelets through a calcium-dependent mechanism. Potential relevance of these findings for bacterium-plant interactions and pathogenesis of bacterial infections are discussed.

  12. Platelet-collagen adhesion enhances platelet aggregation induced by binding of VWF to platelets

    Energy Technology Data Exchange (ETDEWEB)

    Laduca, F.M.; Bell, W.R.; Bettigole, R.E. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA) State Univ. of New York, Buffalo (USA))

    1987-11-01

    Ristocetin-induced platelet aggregation (RIPA) was evaluated in the presence of platelet-collagen adhesion. RIPA of normal donor platelet-rich plasma (PRP) demonstrated a primary wave of aggregation mediated by the binding of von Willebrand factor (VWF) to platelets and a secondary aggregation wave, due to a platelet-release reaction, initiated by VWF-platelet binding and inhibitable by acetylsalicylic acid (ASA). An enhanced RIPA was observed in PRP samples to which collagen had been previously added. These subthreshold concentrations of collagen, which by themselves were insufficient to induce aggregation, caused measurable platelet-collagen adhesion. Subthreshold collagen did not cause microplatelet aggregation, platelet release of ({sup 3}H)serotonin, or alter the dose-responsive binding of {sup 125}I-labeled VWF to platelets, which occurred with increasing ristocetin concentrations. However, ASA inhibition of the platelet release reaction prevented collagen-enhanced RIPA. These results demonstrate that platelet-collagen adhesion altered the platelet-release reaction induced by the binding of VWF to platelets causing a platelet-release reaction at a level of VWF-platelet binding not normally initiating a secondary aggregation. These findings suggest that platelet-collagen adhesion enhances platelet function mediated by VWF.

  13. Evaluation of butyrate-induced production of a mannose-6-phosphorylated therapeutic enzyme using parallel bioreactors.

    Science.gov (United States)

    Madhavarao, Chikkathur N; Agarabi, Cyrus D; Wong, Lily; Müller-Loennies, Sven; Braulke, Thomas; Khan, Mansoor; Anderson, Howard; Johnson, Gibbes R

    2014-01-01

    Bioreactor process changes can have a profound effect on the yield and quality of biotechnology products. Mannose-6-phosphate (M6P) glycan content and the enzymatic catalytic kinetic parameters are critical quality attributes (CQAs) of many therapeutic enzymes used to treat lysosomal storage diseases (LSDs). Here, we have evaluated the effect of adding butyrate to bioreactor production cultures of human recombinant β-glucuronidase produced from CHO-K1 cells, with an emphasis on CQAs. The β-glucuronidase produced in parallel bioreactors was quantified by capillary electrophoresis, the catalytic kinetic parameters were measured using steady-state analysis, and mannose-6-phosphorylation status was assessed using an M6P-specific single-chain antibody fragment. Using this approach, we found that butyrate treatment increased β-glucuronidase production up to approximately threefold without significantly affecting the catalytic properties of the enzyme. However, M6P content in β-glucuronidase was inversely correlated with the increased enzyme production induced by butyrate treatment. This assessment demonstrated that although butyrate dramatically increased β-glucuronidase production in bioreactors, it adversely impacted the mannose-6-phosphorylation of this LSD therapeutic enzyme. This strategy may have utility in evaluating manufacturing process changes to improve therapeutic enzyme yields and CQAs.

  14. Primary WWOX phosphorylation and JNK activation during etoposide induces cytotoxicity in HEK293 cells

    Directory of Open Access Journals (Sweden)

    M Jamshidiha

    2010-06-01

    Full Text Available "n  "nBackground and the purpose of the study: Etoposide is an antineoplastic agent used in multiple cancers. It is known that etoposide induce cell death via interaction with topoisomerase II; however, the etopoisde cellular response is poorly understood. Upon etoposide induced DNA damage, many stress signaling pathways including JNK are activated. In response to DNA damage, it has been shown that WWOX, a recently introduced tumor suppressor, can be activated. In this study the activation of WWOX and JNK and their interaction following etoposide treatment were evaluated. "nMaterials and Methods:HEK293 cells treated with etoposide were lysed in a time course manner. The whole cell lysates were used to evaluate JNK and WWOX activation pattern using Phospho specific antibodies on western blots. The viability of cells treated with etoposide, JNK specific inhibitor and their combination was examined using MTT assay. "nResults:Findings of this study indicate that WWOX and JNK are activated in a simultaneous way in response to DNA damage. Moreover, JNK inhibition enhances etoposide induced cytotoxicity in HEK293. "nConclusion:Taken together, our results indicate that etoposide induces cytotoxicity and WWOX phosphorylation and the cytotoxicty is augmented by blocking JNK pathway.

  15. Nodularin Exposure Induces SOD1 Phosphorylation and Disrupts SOD1 Co-localization with Actin Filaments

    Directory of Open Access Journals (Sweden)

    Kari E. Fladmark

    2012-12-01

    Full Text Available Apoptotic cell death is induced in primary hepatocytes by the Ser/Thr protein phosphatase inhibiting cyanobacterial toxin nodularin after only minutes of exposure. Nodularin-induced apoptosis involves a rapid development of reactive oxygen species (ROS, which can be delayed by the Ca2+/calmodulin protein kinase II inhibitor KN93. This apoptosis model provides us with a unique population of highly synchronized dying cells, making it possible to identify low abundant phosphoproteins participating in apoptosis signaling. Here, we show that nodularin induces phosphorylation and possibly also cysteine oxidation of the antioxidant Cu,Zn superoxide dismutase (SOD1, without altering enzymatic SOD1 activity. The observed post-translational modifications of SOD1 could be regulated by Ca2+/calmodulin protein kinase II. In untreated hepatocytes, a high concentration of SOD1 was found in the sub-membranous area, co-localized with the cortical actin cytoskeleton. In the early phase of nodularin exposure, SOD1 was found in high concentration in evenly distributed apoptotic buds. Nodularin induced a rapid reorganization of the actin cytoskeleton and, at the time of polarized budding, SOD1 and actin filaments no longer co-localized.

  16. Inhibitory effect of copper nanoparticles on rosin modified surfactant induced aggregation of lysozyme.

    Science.gov (United States)

    Ishtikhar, Mohd; Usmani, Salman Sadullah; Gull, Nuzhat; Badr, Gamal; Mahmoud, Mohamed H; Khan, Rizwan Hasan

    2015-01-01

    Protein aggregation is associated with many serious diseases including Parkinson's and Alzheimer's. Protein aggregation is a primary problem related with the health of industrial workers who work with the surfactants, metal ions, and cosolvents. We have synthesized rosin-based surfactants, i.e., quaternary amines of rosin diethylaminoethyl esters (QRMAE), which is an ester of rosin acid with polyethylene glycol monomethyl ether. Here, we report the thermal aggregation of lysozyme induced by QRMAE at 65 °C and pH 7.4 for a given time period in which amorphous aggregates are formed and confirm that copper-nanoparticles have the ability to inhibit QRMAE-induced aggregation compared with zinc and silver-nanoparticles. Aggregation experiments was evaluated using several spectroscopic methods and dye binding assay, such as turbidity, Rayleigh light scattering, 1-anilino-8-naphthalene sulfonate (ANS), Thioflavin T (Th T), congo red (CR) and circular dichroism (CD), that was further supported by scanning electron microscopy (SEM) and SEM with EDX. The therapeutic use of nanoparticles and the fact that rosin possesses excellent film-forming properties, and that its derivatives have pharmaceuticals application such as micro encapsulation, coating and film forming, it's matrix materials are used for sustained and controlled release tablets, renders importance and application to the present study.

  17. UV irradiation induced transformation of TiO2 nanoparticles in water: aggregation and photoreactivity.

    Science.gov (United States)

    Sun, Jing; Guo, Liang-Hong; Zhang, Hui; Zhao, Lixia

    2014-10-21

    Transformation of nanomaterials in aqueous environment has significant impact on their behavior in engineered application and natural system. In this paper, UV irradiation induced transformation of TiO2 nanoparticles in aqueous solutions was demonstrated, and its effect on the aggregation and photocatalytic reactivity of TiO2 was investigated. UV irradiation of a TiO2 nanoparticle suspension accelerated nanoparticle aggregation that was dependent on the irradiation duration. The aggregation rate increased from UV irradiation which might be responsible for the change of surface charge and aggregation rate. UV irradiation also changed the photocatalytic degradation rate of Rhodamine B by TiO2, which initially increased with irradiation time, then decreased. Based on the photoluminescence decay and photocurrent collection data, the change was attributed to the variation in interparticle charge transfer kinetics. These results highlight the importance of light irradiation on the transformation and reactivity of TiO2 nanomaterials.

  18. Raman studies of gluten proteins aggregation induced by dietary fibres.

    Science.gov (United States)

    Nawrocka, Agnieszka; Szymańska-Chargot, Monika; Miś, Antoni; Kowalski, Radosław; Gruszecki, Wiesław I

    2016-03-01

    Interactions between gluten proteins and dietary fibre preparations are crucial in the baking industry. The addition of dietary fibre to bread causes significant reduction in its quality which is influenced by changes in the structure of gluten proteins. Fourier transform Raman spectroscopy was applied to determine changes in the structure of gluten proteins modified by seven dietary fibres. The commercially available gluten proteins without starch were mixed with the fibres in three concentrations: 3%, 6% and 9%. The obtained results showed that all fibres, regardless of their origin, caused the same kind of changes i.e. decrease in the α-helix content with a simultaneous increase in the content of antiparallel-β-sheet. The results indicated that presence of cellulose was the probable cause of these changes, and lead to aggregation or abnormal folding of the gluten proteins. Other changes observed in the gluten structure concerning β-structures, conformation of disulphide bridges, and aromatic amino acid environment, depended on the fibres chemical composition.

  19. Mdm2 Phosphorylation Regulates Its Stability and Has Contrasting Effects on Oncogene and Radiation-Induced Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Michael I. Carr

    2016-09-01

    Full Text Available ATM phosphorylation of Mdm2-S394 is required for robust p53 stabilization and activation in DNA-damaged cells. We have now utilized Mdm2S394A knockin mice to determine that phosphorylation of Mdm2-S394 regulates p53 activity and the DNA damage response in lymphatic tissues in vivo by modulating Mdm2 stability. Mdm2-S394 phosphorylation delays lymphomagenesis in Eμ-myc transgenic mice, and preventing Mdm2-S394 phosphorylation obviates the need for p53 mutation in Myc-driven tumorigenesis. However, irradiated Mdm2S394A mice also have increased hematopoietic stem and progenitor cell functions, and we observed decreased lymphomagenesis in sub-lethally irradiated Mdm2S394A mice. These findings document contrasting effects of ATM-Mdm2 signaling on p53 tumor suppression and reveal that destabilizing Mdm2 by promoting its phosphorylation by ATM would be effective in treating oncogene-induced malignancies, while inhibiting Mdm2-S394 phosphorylation during radiation exposure or chemotherapy would ameliorate bone marrow failure and prevent the development of secondary hematological malignancies.

  20. Effect of polymer aggregation on the open circuit voltage in organic photovoltaic cells: aggregation-induced conjugated polymer gel and its application for preventing open circuit voltage drop.

    Science.gov (United States)

    Kim, Bong-Gi; Jeong, Eun Jeong; Park, Hui Joon; Bilby, David; Guo, L Jay; Kim, Jinsang

    2011-03-01

    To investigate the structure-dependent aggregation behavior of conjugated polymers and the effect of aggregation on the device performance of conjugated polymer photovoltaic cells, new conjugated polymers (PVTT and CN-PVTT) having the same regioregularity but different intermolecular packing were prepared and characterized by means of UV-vis spectroscopy and atomic force microscopy (AFM). Photovoltaic devices were prepared with these polymers under different polymer-aggregate conditions. Polymer aggregation induced by thermal annealing increases the short circuit current but provides no advantage in the overall power conversion efficiency because of a decrease in the open circuit voltage. The device fabricated from a pre-aggregated polymer suspension, acquired from ultrasonic agitation of a conjugated polymer gel, showed enhanced performance because of better phase separation and reduced recombination between polymer/PCBM.

  1. Suppression of ERK phosphorylation through oxidative stress is involved in the mechanism underlying sevoflurane-induced toxicity in the developing brain

    Science.gov (United States)

    Yufune, Shinya; Satoh, Yasushi; Akai, Ryosuke; Yoshinaga, Yosuke; Kobayashi, Yasushi; Endo, Shogo; Kazama, Tomiei

    2016-01-01

    In animal models, neonatal exposure to general anesthetics significantly increased neuronal apoptosis with subsequent behavioral deficits in adulthood. Although the underlying mechanism is largely unknown, involvement of extracellular signal-regulated kinases (ERKs) is speculated since ERK phosphorylation is decreased by neonatal anesthetic exposure. Importance of ERK phosphorylation for neuronal development is underscored by our recent finding that transient suppression of ERK phosphorylation during the neonatal period significantly increased neuronal apoptosis and induced behavioral deficits. However, it is still unknown as to what extent decreased ERK phosphorylation contributes to the mechanism underlying anesthetic-induced toxicity. Here we investigated the causal relationship of decreased ERK phosphorylation and anesthetic-induced toxicity in the developing brain. At postnatal day 6 (P6), mice were exposed to sevoflurane (2%) or the blood-brain barrier-penetrating MEK inhibitor, α-[amino[(4-aminophenyl)thio]methylene]-2-(trifluoromethyl)benzeneacetonitrile (SL327) (50 mg/kg). Transient suppression of ERK phosphorylation by an intraperitoneal injection of SL327 at P6 significantly increased apoptosis similar to sevoflurane-induced apoptosis. Conversely, SL327 administration at P14 or P21 did not induce apoptosis, even though ERK phosphorylation was inhibited. Restoring ERK phosphorylation by administration of molecular hydrogen ameliorated sevoflurane-induced apoptosis. Together, our results strongly suggests that suppressed ERK phosphorylation is critically involved in the mechanism underlying anesthetic-induced toxicity in the developing brain. PMID:26905012

  2. Cyclooxygenase-2-dependent phosphorylation of the pro-apoptotic protein Bad inhibits tonicity-induced apoptosis in renal medullary cells.

    Science.gov (United States)

    Küper, Christoph; Bartels, Helmut; Beck, Franz-X; Neuhofer, Wolfgang

    2011-11-01

    During antidiuresis, cell survival in the renal medulla requires cyclooxygenase-2 (COX-2) activity. We have recently found that prostaglandin E2 (PGE2) promotes cell survival by phosphorylation and, hence, inactivation of the pro-apoptotic protein Bad during hypertonic stress in Madin-Darby canine kidney (MDCK) cells in vitro. Here we determine the role of COX-2-derived PGE(2) on phosphorylation of Bad and medullary apoptosis in vivo using COX-2-deficient mice. Both wild-type and COX-2-knockout mice constitutively expressed Bad in tubular epithelial cells of the renal medulla. Dehydration caused a robust increase in papillary COX-2 expression, PGE2 excretion, and Bad phosphorylation in wild-type, but not in the knockout mice. The abundance of cleaved caspase-3, a marker of apoptosis, was significantly higher in papillary homogenates, especially in tubular epithelial cells of the knockout mice. Knockdown of Bad in MDCK cells decreased tonicity-induced caspase-3 activation. Furthermore, the addition of PGE2 to cells with knockdown of Bad had no effect on caspase-3 activation; however, PGE2 caused phosphorylation of Bad and substantially improved cell survival in mock-transfected cells. Thus, tonicity-induced COX-2 expression and PGE2 synthesis in the renal medulla entails phosphorylation and inactivation of the pro-apoptotic protein Bad, thereby counteracting apoptosis in renal medullary epithelial cells.

  3. PROLACTIN-INDUCED TYROSINE PHOSPHORYLATION, ACTIVATION AND RECEPTOR ASSOCIATION OF FOCAL ADHESION KINASE (FAK) IN MAMMARY EPITHELIAL CELLS

    Science.gov (United States)

    Prolactin-Induced Tyrosine Phosphorylation, Activation and ReceptorAssociation of Focal Adhesion Kinase (FAK) in Mammary Epithelial Cells. Suzanne E. Fenton1 and Lewis G. Sheffield2. 1U.S. Environmental ProtectionAgency, MD-72, Research Triangle Park, NC 27711, and

  4. Photo-induced reduction of Noble metal ions to metal nanoparticles on tubular J-aggregates

    Directory of Open Access Journals (Sweden)

    Stefan Kirstein

    2006-01-01

    Full Text Available Palladium and silver nanoparticles are formed on the surface of tubular J-aggregates of an amphiphilic tetrachlorobenzimidacarbocyanine dye by reduction of the respective metal cations in aqueous solution. Upon addition of the palladium complex Na2PdCl4 to the aggregate solution, the absorption spectrum shows significant changes which is explained by partial destruction of the aggregates. Cryogenic transmission electron microscopy (cryo-TEM images show that the tubular J-aggregates are randomly covered by well-separated Pd nanoparticles of approximately 1–3 nm size. Larger particles and higher particle density along the aggregates are obtained when an auxiliary reducing agent is added to the solution. The presence of the metallic particles leads to efficient fluorescence quenching giving clear evidence for super quenching. In similar experiments using AgNO3, silver nanoparticles are grown which are larger in size but less dense distributed along the aggregates. At least in the case of the silver particles, the spontaneous formation of metal nanoparticles is assumed to be initiated by a photo-induced electron transfer process (PET.

  5. Fractal aggregates induced by liposome-liposome interaction in the presence of Ca2+.

    Science.gov (United States)

    Sabín, J; Prieto, G; Ruso, J M; Sarmiento, F

    2007-10-01

    We present a study of the fractal dimension of clusters of large unilamellar vesicles (LUVs) formed by egg yolk phosphatidylcholine (EYPC), dimyristoylphosphocholine (DMPC) and dipalmitoylphosphocholine (DPPC) induced by Ca2+ . Fractal dimensions were calculated by application of two methods, measuring the angular dependency of the light scattered by the clusters and following the evolution of the cluster size. In all cases, the fractal dimensions fell in the range from 2.1 to 1.8, corresponding to two regimes: diffusion-limited cluster aggregation (DLCA) and reaction-limited cluster aggregation (RLCA). Whereas DMPC clusters showed a typical transition from the RLCA to the DLCA aggregation, EYPC exhibited an unusual behaviour, since the aggregation was limited for a higher concentration than the critical aggregation concentration. The behaviour of DPPC was intermediate, with a transition from the RLCA to the DLCA regimes with cluster sizes depending on Ca2+ concentration. Studies on the reversibility of the aggregates show that EYPC and DPPC clusters can be re-dispersed by dilution with water. DMPC does not present reversibility. Reversibility is evidence of the existence of secondary minima in the DLVO potential between two liposomes. To predict these secondary minima, a correction of the DLVO model was necessary taking into account a repulsive force of hydration.

  6. Enzyme-induced aggregation of whey proteins with Bacillus licheniformis protease

    NARCIS (Netherlands)

    Creusot, N.P.

    2006-01-01

    Whey proteins are commonly used as ingredient in food. In relation with the gelation properties of whey proteins, this thesis deals with understanding the mechanism of peptide-induced aggregation of whey protein hydrolysates made with Bacillus licheniformis protease (BLP). The results show that BLP

  7. The clinical usefulness of the platelet aggregation test for the diagnosis of heparin-induced thrombocytopenia

    NARCIS (Netherlands)

    Chong, B H; Burgess, J; Ismail, F

    1993-01-01

    The platelet aggregation test is widely used for the diagnosis of heparin-induced thrombocytopenia (HIT), a potentially serious complication of heparin therapy. We have evaluated its sensitivity and specificity in comparison with those of the 14C-serotonin release test. The sensitivity of the platel

  8. The inhibitory activity of ginsenoside Rp4 in adenosine diphosphate-induced platelet aggregation

    Directory of Open Access Journals (Sweden)

    Young-Min Son

    2017-01-01

    Conclusion: G-Rp4 significantly inhibited ADP-induced platelet aggregation and this is mediated via modulating the intracellular signaling molecules. These results indicate that G-Rp4 could be a potential candidate as a therapeutic agent against platelet-related cardiovascular diseases.

  9. Platelet-derived growth factor-induced Akt phosphorylation requires mTOR/Rictor and phospholipase C-γ1, whereas S6 phosphorylation depends on mTOR/Raptor and phospholipase D

    Directory of Open Access Journals (Sweden)

    Razmara Masoud

    2013-01-01

    Full Text Available Abstract Mammalian target of rapamycin (mTOR can be found in two multi-protein complexes, i.e. mTORC1 (containing Raptor and mTORC2 (containing Rictor. Here, we investigated the mechanisms by which mTORC1 and mTORC2 are activated and their downstream targets in response to platelet-derived growth factor (PDGF-BB treatment. Inhibition of phosphatidylinositol 3-kinase (PI3K inhibited PDGF-BB activation of both mTORC1 and mTORC2. We found that in Rictor-null mouse embryonic fibroblasts, or after prolonged rapamycin treatment of NIH3T3 cells, PDGF-BB was not able to promote phosphorylation of Ser473 in the serine/threonine kinase Akt, whereas Thr308 phosphorylation was less affected, suggesting that Ser473 in Akt is phosphorylated in an mTORC2-dependent manner. This reduction in Akt phosphorylation did not influence the phosphorylation of the S6 protein, a well established protein downstream of mTORC1. Consistently, triciribine, an inhibitor of the Akt pathway, suppressed PDGF-BB-induced Akt phosphorylation without having any effect on S6 phosphorylation. Thus, mTORC2 does not appear to be upstream of mTORC1. We could also demonstrate that in Rictor-null cells the phosphorylation of phospholipase Cγ1 (PLCγ1 and protein kinase C (PKC was impaired, and the PKCα protein levels strongly reduced. Furthermore, interfering with the PLCγ/Ca2+/PKC pathway inhibited PDGF-BB-induced Akt phosphorylation. In addition, PDGF-BB-induced activation of mTORC1, as measured by phosphorylation of the downstream S6 protein, was dependent on phospholipase D (PLD. It has been shown that Erk1/2 MAP-kinase directly phosphorylates and activates mTORC1; in partial agreement with this finding, we found that a Mek1/2 inhibitor delayed S6 phosphorylation in response to PDGF-BB, but it did not block it. Thus, whereas both mTORC1 and mTORC2 are activated in a PI3K-dependent manner, different additional signaling pathways are needed. mTORC1 is activated in a PLD-dependent manner

  10. Aggregation of phospholipid vesicles induced by the ribosome inactivating protein saporin.

    Science.gov (United States)

    Hao, Q; Yan, L; Yang, H; Zhang, Y; Gao, G; Yao, Q; Li, Q

    1996-04-01

    Saporin-S6(SO-6) is a single chain ribosome inactivating protein, which can inhibit protein synthesis by inactivating eukaryotic ribosomes. The interaction of SO-6 with phospholipid model systems was described. SO-6 can specifically interact with negatively-charged phospholipid vesicles and it induces the aggregation of the lipid vesicles. The kinetics of the vesicle aggregation induced by SO-6 was studied. The saturating protein/lipid molar ratio was determined to be 1:100 based on titration experiments. The aggregation is dependent on the temperature in a range that was many times higher than the phase transition temperature of the phospholipid. The effect of pH on the aggregation of the vesicles can not be explained by simple deprotonation of side chain amino groups of the protein, and may be related to conformational changes of the protein. The maintenance of physiological ionic strength was required for the aggregation of SO-6 with vesicles. Finally, the interaction was prompted by Ca2+ ions, and was totally inhibited by EDTA, which suggests that SO-6 may interact with phospholipid vesicles in a Ca(2+)-dependent manner.

  11. Nitric Oxide and Brassinosteroids Mediated Fungal Endophyte-Induced Volatile Oil Production Through Protein Phosphorylation Pathways in Atractylodes lancea Plantlets

    Institute of Scientific and Technical Information of China (English)

    Cheng-Gang Ren; Chuan-Chao Dai

    2013-01-01

    Fungal endophytes have been isolated from almost every plant, infecting their hosts without causing visible disease symptoms, and yet have still proved to be involved in plant secondary metabolites accumulation. To decipher the possible physiological mechanisms of the endophytic fungus-host interaction, the role of protein phosphorylation and the relationship between endophytic fungus-induced kinase activity and nitric oxide (NO) and brassinolide (BL) in endophyte-enhanced volatile oil accumulation in Atractylodes lancea plantlets were investigated using pharmacological and biochemical approaches. Inoculation with the endophytic fungus Gilmaniella sp. AL12 enhanced the activities of total protein phosphorylation, Ca2þ-dependent protein kinase, and volatile oil accumulation in A. lancea plantlets. The upregulation of protein kinase activity could be blocked by the BL inhibitor brassinazole. Furthermore, pretreatments with the NO-specific scavenger cPTIO significantly reduced the increased activities of protein kinases in A. lancea plantlets inoculated with endophytic fungus. Pretreatments with different protein kinase inhibitors also reduced fungus-induced NO production and volatile oil accumulation, but had barely no effect on the BL level. These data suggest that protein phosphorylation is required for endophyte-induced volatile oil production in A. lancea plantlets, and that crosstalk between protein phosphorylation and the NO pathway may occur and act as a downstream signaling event of the BL pathway.

  12. Molecular dynamics simulation of phosphorylation-induced conformational transitions in the mycobacterium tuberculosis response regulator PrrA

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guo [Los Alamos National Laboratory; Mcmahon, Benjamin H [Los Alamos National Laboratory; Tung, Chang - Shung [Los Alamos National Laboratory

    2008-01-01

    Phosphorylation-activated modulation of response regulators (RR) is predominantly used by bacteria as a strategy in regulating their two-component signaling (TCS) systems, the underlying molecular mechanisms are however far from fully understood. In this work we have conducted a molecular dynamics (MD) simulation of the phosphorylation-induced conformational transitions of RRs with the Mycobacterium Tuberculosis PrrA as a particular example. Starting from the full-length inactive structure of PrrA we introduced a local disturbance by phosphorylating the conserved aspartic acid residue, Asp-58, in the regulatory domain. A Go-model-type algorithm packaged with AMBER force fields was then applied to simulate the dynamics upon phosphorylation. The MD simulation shows that the phosphorylation of Asp-58 facilitates PrrA, whose inactive state has a compact conformation with a closed interdomain interface, to open up with its interdomain separation being increased by an average of about 1.5 {angstrom} for a simulation of 20 ns. The trans-activation loop, which is completely buried within the interdomain interface in the inactive PrrA, is found to become more exposed with the phosphorylated structure as well. These results provide more structural details of how the phosphorylation of a local aspartate activates PrrA to undergo a global conformational rearrangement toward its extended active state. This work also indicates that MD simulations can serve as a fast tool to unravel the regulation mechanisms of all RRs, which is especially valuable when the structures of full-length active RRs are currently unavailable.

  13. Theoretical study on electromagnetically induced transparency in molecular aggregate models using quantum Liouville equation method

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Takuya; Nakano, Masayoshi [Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan)

    2015-01-22

    Electromagnetically induced transparency (EIT), which is known as an efficient control method of optical absorption property, is investigated using the polarizability spectra and population dynamics obtained by solving the quantum Liouville equation. In order to clarify the intermolecular interaction effect on EIT, we examine several molecular aggregate models composed of three-state monomers with the dipole-dipole coupling. On the basis of the present results, we discuss the applicability of EIT in molecular aggregate systems to a new type of optical switch.

  14. Chlamydia trachomatis serovar L2 induces protein tyrosine phosphorylation during uptake by HeLa cells

    DEFF Research Database (Denmark)

    Birkelund, Svend; Johnsen, H; Christiansen, Gunna

    1994-01-01

    . By use of a monoclonal antibody against phosphotyrosine, we showed that three classes of proteins are tyrosine phosphorylated: a triple band of 68, 66, and 64 kDa, a 97-kDa band, and a 140-kDa band. The phosphorylation could be detected by immunoblotting from 15 min after infection of HeLa cells. We...

  15. Vasopressin induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter in the distal convoluted tubule

    DEFF Research Database (Denmark)

    Pedersen, Nis Borbye; Hofmeister, Marlene Vind; Rosenbaek, Lena L;

    2010-01-01

    The thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC) is important for renal electrolyte balance and its phosphorylation causes an increase in its transport activity and cellular localization. Here, we generated phospho-specific antibodies against two conserved N-terminal phosphorylation sites...

  16. PPARγ ligands decrease hydrostatic pressure-induced platelet aggregation and proinflammatory activity.

    Directory of Open Access Journals (Sweden)

    Fang Rao

    Full Text Available Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ. We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg or increased (120, 180, 240 mmHg hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg. The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs. These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure.

  17. Molecular Dynamics Simulation of Tau Peptides for the Investigation of Conformational Changes Induced by Specific Phosphorylation Patterns.

    Science.gov (United States)

    Gandhi, Neha S; Kukic, Predrag; Lippens, Guy; Mancera, Ricardo L

    2017-01-01

    The Tau protein plays an important role due to its biomolecular interactions in neurodegenerative diseases. The lack of stable structure and various posttranslational modifications such as phosphorylation at various sites in the Tau protein pose a challenge for many experimental methods that are traditionally used to study protein folding and aggregation. Atomistic molecular dynamics (MD) simulations can help around deciphering relationship between phosphorylation and various intermediate and stable conformations of the Tau protein which occur on longer timescales. This chapter outlines protocols for the preparation, execution, and analysis of all-atom MD simulations of a 21-amino acid-long phosphorylated Tau peptide with the aim of generating biologically relevant structural and dynamic information. The simulations are done in explicit solvent and starting from nearly extended configurations of the peptide. The scaled MD method implemented in AMBER14 was chosen to achieve enhanced conformational sampling in addition to a conventional MD approach, thereby allowing the characterization of folding for such an intrinsically disordered peptide at 293 K. Emphasis is placed on the analysis of the simulation trajectories to establish correlations with NMR data (i.e., chemical shifts and NOEs). Finally, in-depth discussions are provided for commonly encountered problems.

  18. Micelle depletion-induced vs. micelle-mediated aggregation in nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ray, D., E-mail: debes.phys@gmail.com; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2015-06-24

    The phase behavior anionic silica nanoparticle (Ludox LS30) with non-ionic surfactants decaethylene glycol monododecylether (C12E10) and cationic dodecyltrimethyl ammonium bromide (DTAB) in aqueous electrolyte solution has been studied by small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations of nanoparticle (1 wt%), surfactants (1 wt%) and electrolyte (0.1 M NaCl). Each of these nanoparticle–surfactant systems has been examined for different contrast conditions where individual components (nanoparticle or surfactant) are made visible. It is observed that the nanoparticle-micelle system in both the cases lead to the aggregation of nanoparticles. The aggregation is found to be micelle depletion-induced for C12E10 whereas micelle-mediated aggregation for DTAB. Interestingly, it is also found that phase behavior of mixed surfactant (C12E10 + DTAB) system is similar to that of C12E10 (unlike DTAB) micelles with nanoparticles.

  19. Observation of fine particle aggregating behavior induced by high intensity conditioning using high speed CCD

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The aggregating behavior between bubbles and particles induced by high intensity conditioning (HIC) was studied using high speed CCD technique. Bubble size measurement was conducted, and the attachment behavior between bubbles and particles in HIC cell and flotation cell were observed. The results show that in HIC cell, high intensity conditioning creates an advantage environment for the formation of small size bubble due to hydrodynamic cavitations, and these fine bubbles have high probability of bubble-particle collision,which will enhance fine particle flotation. The bubble-particle attachment experiments indicate that in high intensity conditioning cell, a lot of fine bubbles are produced in situ on the surface of fine particles, and most of fine particles are aggregated under the bridging action of fine bubbles. The observation of bubble-particle interaction in flotation cell illustrates that aggregates created by HIC can be loaded more easily by big air bubble in flotation cell than those created by normal conditioning.

  20. Hepatitis C virus blocks interferon effector function by inducing protein kinase R phosphorylation.

    Science.gov (United States)

    Garaigorta, Urtzi; Chisari, Francis V

    2009-12-17

    Hepatitis C virus (HCV) is a single-stranded RNA virus encoding a single polyprotein whose translation is driven by an internal ribosome entry site (IRES). HCV infection strongly induces antiviral interferon-stimulated gene (ISG) expression in the liver, yet it persists, suggesting that HCV can block ISG effector function. We now show that HCV infection triggers phosphorylation and activation of the RNA-dependent protein kinase PKR, which inhibits eukaryotic translation initiation factor eIF2 alpha and attenuates ISG protein expression despite normal ISG mRNA induction. ISG protein induction is restored and the antiviral effects of interferon are enhanced when PKR expression is suppressed in interferon-treated infected cells. Whereas host protein translation, including antiviral ISGs, is suppressed by activated PKR, HCV IRES-dependent translation is not. These results suggest that the ability of HCV to activate PKR may, paradoxically, be advantageous for the virus during an IFN response by preferentially suppressing the translation of ISGs.

  1. Mitochondrial Complex I Inhibitors and Forced Oxidative Phosphorylation Synergize in Inducing Cancer Cell Death

    Directory of Open Access Journals (Sweden)

    Roberta Palorini

    2013-01-01

    Full Text Available Cancer cells generally rely mostly on glycolysis rather than oxidative phosphorylation (OXPHOS for ATP production. In fact, they are particularly sensitive to glycolysis inhibition and glucose depletion. On the other hand mitochondrial dysfunctions, involved in the onset of the Warburg effect, are sometimes also associated with the resistance to apoptosis that characterizes cancer cells. Therefore, combined treatments targeting both glycolysis and mitochondria function, exploiting peculiar tumor features, might be lethal for cancer cells. In this study, we show that glucose deprivation and mitochondrial Complex I inhibitors synergize in inducing cancer cell death. In particular, our results reveal that low doses of Complex I inhibitors, ineffective on immortalized cells and in high glucose growth, become specifically cytotoxic on cancer cells deprived of glucose. Importantly, the cytotoxic effect of the inhibitors on cancer cells is strongly enhanced by forskolin, a PKA pathway activator, that we have previously shown to stimulate OXPHOS. Taken together, we demonstrate that induction in cancer cells of a switch from a glycolytic to a more respirative metabolism, obtained by glucose depletion or mitochondrial activity stimulation, strongly increases their sensitivity to low doses of mitochondrial Complex I inhibitors. Our findings might be a valuable approach to eradicate cancer cells.

  2. N-acetyl-L-cysteine prevents stress-induced desmin aggregation in cellular models of desminopathy.

    Directory of Open Access Journals (Sweden)

    Bertrand-David Segard

    Full Text Available Mutations within the human desmin gene are responsible for a subcategory of myofibrillar myopathies called desminopathies. However, a single inherited mutation can produce different phenotypes within a family, suggesting that environmental factors influence disease states. Although several mouse models have been used to investigate organ-specific desminopathies, a more general mechanistic perspective is required to advance our knowledge toward patient treatment. To improve our understanding of disease pathology, we have developed cellular models to observe desmin behaviour in early stages of disease pathology, e.g., upon formation of cytoplasmic desmin aggregates, within an isogenic background. We cloned the wildtype and three mutant desmin cDNAs using a Tet-On Advanced® expression system in C2C12 cells. Mutations were selected based on positioning within desmin and capacity to form aggregates in transient experiments, as follows: DesS46Y (head domain; low aggregation, DesD399Y (central rod domain; high aggregation, and DesS460I (tail domain; moderate aggregation. Introduction of these proteins into a C2C12 background permitted us to compare between desmin variants as well as to determine the role of external stress on aggregation. Three different types of stress, likely encountered during muscle activity, were introduced to the cell models-thermal (heat shock, redox-associated (H2O2 and cadmium chloride, and mechanical (stretching stresses-after which aggregation was measured. Cells containing variant DesD399Y were more sensitive to stress, leading to marked cytoplasmic perinuclear aggregations. We then evaluated the capacity of biochemical compounds to prevent this aggregation, applying dexamethasone (an inducer of heat shock proteins, fisetin or N-acetyl-L-cysteine (antioxidants before stress induction. Interestingly, N-acetyl-L-cysteine pre-treatment prevented DesD399Y aggregation during most stress. N-acetyl-L-cysteine has recently been

  3. Serum- and glucocorticoid-induced protein kinase 1 (SGK1) increases the cystic fibrosis transmembrane conductance regulator (CFTR) in airway epithelial cells by phosphorylating Shank2E protein.

    Science.gov (United States)

    Koeppen, Katja; Coutermarsh, Bonita A; Madden, Dean R; Stanton, Bruce A

    2014-06-13

    The glucocorticoid dexamethasone increases cystic fibrosis transmembrane conductance regulator (CFTR) abundance in human airway epithelial cells by a mechanism that requires serum- and glucocorticoid-induced protein kinase 1 (SGK1) activity. The goal of this study was to determine whether SGK1 increases CFTR abundance by phosphorylating Shank2E, a PDZ domain protein that contains two SGK1 phosphorylation consensus sites. We found that SGK1 phosphorylates Shank2E as well as a peptide containing the first SGK1 consensus motif of Shank2E. The dexamethasone-induced increase in CFTR abundance was diminished by overexpression of a dominant-negative Shank2E in which the SGK1 phosphorylation sites had been mutated. siRNA-mediated reduction of Shank2E also reduced the dexamethasone-induced increase in CFTR abundance. Taken together, these data demonstrate that the glucocorticoid-induced increase in CFTR abundance requires phosphorylation of Shank2E at an SGK1 consensus site.

  4. Sorbitol crystallization-induced aggregation in frozen mAb formulations.

    Science.gov (United States)

    Piedmonte, Deirdre Murphy; Hair, Alison; Baker, Priti; Brych, Lejla; Nagapudi, Karthik; Lin, Hong; Cao, Wenjin; Hershenson, Susan; Ratnaswamy, Gayathri

    2015-02-01

    Sorbitol crystallization-induced aggregation of mAbs in the frozen state was evaluated. The effect of protein aggregation resulting from sorbitol crystallization was measured as a function of formulation variables such as protein concentration and pH. Long-term studies were performed on both IgG1 and IgG2 mAbs over the protein concentration range of 0.1-120 mg/mL. Protein aggregation was measured by size-exclusion HPLC (SE-HPLC) and further characterized by capillary-electrophoresis SDS. Sorbitol crystallization was monitored and characterized by subambient differential scanning calorimetry and X-ray diffraction. Aggregation due to sorbitol crystallization is inversely proportional to both protein concentration and formulation pH. At high protein concentrations, sorbitol crystallization was suppressed, and minimal aggregation by SE-HPLC resulted, presumably because of self-stabilization of the mAbs. The glass transition temperature (Tg ') and fragility index measurements were made to assess the influence of molecular mobility on the crystallization of sorbitol. Tg ' increased with increasing protein concentration for both mAbs. The fragility index decreased with increasing protein concentration, suggesting that it is increasingly difficult for sorbitol to crystallize at high protein concentrations.

  5. Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy.

    Science.gov (United States)

    Das, Falguni; Ghosh-Choudhury, Nandini; Mariappan, Meenalakshmi M; Kasinath, Balakuntalam S; Choudhury, Goutam Ghosh

    2016-04-01

    PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy.

  6. The mitosis-regulating and protein-protein interaction activities of astrin are controlled by aurora-A-induced phosphorylation.

    Science.gov (United States)

    Chiu, Shao-Chih; Chen, Jo-Mei Maureen; Wei, Tong-You Wade; Cheng, Tai-Shan; Wang, Ya-Hui Candice; Ku, Chia-Feng; Lian, Chiao-Hsuan; Liu, Chun-Chih Jared; Kuo, Yi-Chun; Yu, Chang-Tze Ricky

    2014-09-01

    Cells display dramatic morphological changes in mitosis, where numerous factors form regulatory networks to orchestrate the complicated process, resulting in extreme fidelity of the segregation of duplicated chromosomes into two daughter cells. Astrin regulates several aspects of mitosis, such as maintaining the cohesion of sister chromatids by inactivating Separase and stabilizing spindle, aligning and segregating chromosomes, and silencing spindle assembly checkpoint by interacting with Src kinase-associated phosphoprotein (SKAP) and cytoplasmic linker-associated protein-1α (CLASP-1α). To understand how Astrin is regulated in mitosis, we report here that Astrin acts as a mitotic phosphoprotein, and Aurora-A phosphorylates Astrin at Ser(115). The phosphorylation-deficient mutant Astrin S115A abnormally activates spindle assembly checkpoint and delays mitosis progression, decreases spindle stability, and induces chromosome misalignment. Mechanistic analyses reveal that Astrin phosphorylation mimicking mutant S115D, instead of S115A, binds and induces ubiquitination and degradation of securin, which sequentially activates Separase, an enzyme required for the separation of sister chromatids. Moreover, S115A fails to bind mitosis regulators, including SKAP and CLASP-1α, which results in the mitotic defects observed in Astrin S115A-transfected cells. In conclusion, Aurora-A phosphorylates Astrin and guides the binding of Astrin to its cellular partners, which ensures proper progression of mitosis.

  7. Stress-induced apoptosis in Spodoptera frugiperda (Sf9) cells: baculovirus p35 mitigates eIF2 alpha phosphorylation.

    Science.gov (United States)

    Aparna, Gunda; Bhuyan, Abani K; Sahdev, Sudhir; Hasnain, Seyed E; Kaufman, Randal J; Ramaiah, Kolluru V A

    2003-12-30

    Spodoptera frugiperda (Sf9) ovarian cells, natural hosts for baculovirus, are good model systems to study apoptosis and also heterologous gene expression. We report that uninfected Sf9 cells readily undergo apoptosis and show increased phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) in the presence of agents such as UVB light, etoposide, high concentrations of cycloheximide, and EGTA. In contrast, tunicamycin, A23187, and low concentrations of cycloheximide promoted eIF2alpha phosphorylation in Sf9 cells but without apoptosis. These findings therefore suggest that increased eIF2alpha phosphorylation does not always necessarily lead to apoptosis, but it is a characteristic hallmark of stressed cells and also of cells undergoing apoptosis. Cell death induced by the above agents was abrogated by infection of Sf9 cells with wild-type (wt) AcNPV. In contrast, Sf9 cells when infected with vAcdelta35, a virus carrying deletion of the antiapoptotic p35 gene, showed increased apoptosis and enhanced eIF2alpha phosphorylation. Further, a recombinant wt virus vAcS51D expressing human S51D, a phosphomimetic form of eIF2alpha, induced apoptosis in UVB pretreated Sf9 cells. However, infection with vAcS51A expressing a nonphosphorylatable form (S51A) of human eIF2alpha partially reduced apoptosis. Consistent with these findings, it has been observed here that caspase activation has led to increased eIF2alpha phosphorylation, while caspase inhibition by z-VAD-fmk reduced eIF2alpha phosphorylation selectively in cells exposed to proapoptotic agents. These findings therefore suggest that the stress signaling pathway determines apoptosis, and caspase activation is a prerequisite for increased eIF2alpha phosphorylation in Sf9 cells undergoing apoptosis. The findings also reinforce the conclusion for the first time that the "pancaspase inhibitor" baculovirus p35 mitigates eIF2alpha phosphorylation.

  8. Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer

    Science.gov (United States)

    Sun, Mengmeng; Liu, Fei; Zhu, Yukun; Wang, Wansheng; Hu, Jin; Liu, Jing; Dai, Zhifei; Wang, Kun; Wei, Yen; Bai, Jing; Gao, Weiping

    2016-02-01

    The challenge in photothermal therapy (PTT) is to develop biocompatible photothermal transducers that can absorb and convert near-infrared (NIR) light into heat with high efficiency. Herein, we report salt-induced aggregation of gold nanoparticles (GNPs) in biological media to form highly efficient and biocompatible NIR photothermal transducers for PTT and photothermal/photoacoustic (PT/PA) imaging of cancer. The GNP depots in situ formed by salt-induced aggregation of GNPs show strong NIR absorption induced by plasmonic coupling between adjacent GNPs and very high photothermal conversion efficiency (52%), enabling photothermal destruction of tumor cells. More interestingly, GNPs in situ aggregate in tumors to form GNP depots, enabling simultaneous PT/PA imaging and PTT of the tumors. These findings may provide a simple and effective way to develop a new class of intelligent and biocompatible NIR photothermal transducers with high efficiency for PT/PA imaging and PTT.The challenge in photothermal therapy (PTT) is to develop biocompatible photothermal transducers that can absorb and convert near-infrared (NIR) light into heat with high efficiency. Herein, we report salt-induced aggregation of gold nanoparticles (GNPs) in biological media to form highly efficient and biocompatible NIR photothermal transducers for PTT and photothermal/photoacoustic (PT/PA) imaging of cancer. The GNP depots in situ formed by salt-induced aggregation of GNPs show strong NIR absorption induced by plasmonic coupling between adjacent GNPs and very high photothermal conversion efficiency (52%), enabling photothermal destruction of tumor cells. More interestingly, GNPs in situ aggregate in tumors to form GNP depots, enabling simultaneous PT/PA imaging and PTT of the tumors. These findings may provide a simple and effective way to develop a new class of intelligent and biocompatible NIR photothermal transducers with high efficiency for PT/PA imaging and PTT. Electronic supplementary

  9. Inhibitory Effect of Waste Glass Powder on ASR Expansion Induced by Waste Glass Aggregate

    Directory of Open Access Journals (Sweden)

    Shuhua Liu

    2015-10-01

    Full Text Available Detailed research is carried out to ascertain the inhibitory effect of waste glass powder (WGP on alkali-silica reaction (ASR expansion induced by waste glass aggregate in this paper. The alkali reactivity of waste glass aggregate is examined by two methods in accordance with the China Test Code SL352-2006. The potential of WGP to control the ASR expansion is determined in terms of mean diameter, specific surface area, content of WGP and curing temperature. Two mathematical models are developed to estimate the inhibitory efficiency of WGP. These studies show that there is ASR risk with an ASR expansion rate over 0.2% when the sand contains more than 30% glass aggregate. However, WGP can effectively control the ASR expansion and inhibit the expansion rate induced by the glass aggregate to be under 0.1%. The two mathematical models have good simulation results, which can be used to evaluate the inhibitory effect of WGP on ASR risk.

  10. Constitutive phosphorylation of aurora-a on ser51 induces its stabilization and consequent overexpression in cancer.

    Directory of Open Access Journals (Sweden)

    Shojiro Kitajima

    Full Text Available BACKGROUND: The serine/threonine kinase Aurora-A (Aur-A is a proto-oncoprotein overexpressed in a wide range of human cancers. Overexpression of Aur-A is thought to be caused by gene amplification or mRNA overexpression. However, recent evidence revealed that the discrepancies between amplification of Aur-A and overexpression rates of Aur-A mRNA were observed in breast cancer, gastric cancer, hepatocellular carcinoma, and ovarian cancer. We found that aggressive head and neck cancers exhibited overexpression and stabilization of Aur-A protein without gene amplification or mRNA overexpression. Here we tested the hypothesis that aberration of the protein destruction system induces accumulation and consequently overexpression of Aur-A in cancer. PRINCIPAL FINDINGS: Aur-A protein was ubiquitinylated by APC(Cdh1 and consequently degraded when cells exited mitosis, and phosphorylation of Aur-A on Ser51 was observed during mitosis. Phosphorylation of Aur-A on Ser51 inhibited its APC(Cdh1-mediated ubiquitylation and consequent degradation. Interestingly, constitutive phosphorylation on Ser51 was observed in head and neck cancer cells with protein overexpression and stabilization. Indeed, phosphorylation on Ser51 was observed in head and neck cancer tissues with Aur-A protein overexpression. Moreover, an Aur-A Ser51 phospho-mimetic mutant displayed stabilization of protein during cell cycle progression and enhanced ability to cell transformation. CONCLUSIONS/SIGNIFICANCE: Broadly, this study identifies a new mode of Aur-A overexpression in cancer through phosphorylation-dependent inhibition of its proteolysis in addition to gene amplification and mRNA overexpression. We suggest that the inhibition of Aur-A phosphorylation can represent a novel way to decrease Aur-A levels in cancer therapy.

  11. Expression and radiation-induced phosphorylation of histone H2AX in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kayo; Morita, Takashi [Osaka City Univ. (Japan). Graduate School of Medicine; Yoshida, Shu-hei; Shimoda, Chikashi [Osaka City Univ. (Japan). Graduate School of Science

    2003-03-01

    The mouse histone H2AX (H2AX) has unique C-terminal Ser residues, which are phosphorylated in response to DNA double-strand breaks (DSBs) by ionizing radiation, suggesting that it plays a role in the maintenance of genomic stability. Here, we show that the H2AX protein was detected in most cells in various tissues, and was abundant in the S phase of the cell cycle. Following X-ray irradiation, H2AX was phosphorylated ({gamma}-H2AX) in the thymus, small intestine and testis. However, H2AX in epithelial cells in the villi of the small intestine were not strongly phosphorylated, even after X-irradiation. Thus, H2AX was expressed in almost all cells. However, the cells that expressed H2AX were not always phosphorylated by X-irradiation, suggesting a different mechanism of kination in those cells. (author)

  12. A Requirement for SOCS-1 and SOCS-3 Phosphorylation in Bcr-Abl-Induced Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Xiaoxue Qiu

    2012-06-01

    Full Text Available Suppressors of cytokine signaling 1 and 3 (SOCS-1 and SOCS-3 are inhibitors of the Janus tyrosine kinase (JAK/signal transducers and activators of transcription (STAT pathway and function in a negative feedback loop during cytokine signaling. Abl transformation is associated with constitutive activation of JAK/STAT-dependent signaling. However, the mechanism by which Abl oncoproteins bypass SOCS inhibitory regulation remains poorly defined. Here, we demonstrate that coexpression of Bcr-Abl with SOCS-1 or SOCS-3 results in tyrosine phosphorylation of these SOCS proteins. Interestingly, SOCS-1 is highly tyrosine phosphorylated in one of five primary chronic myelogenous leukemia samples. Bcr-Abl-dependent tyrosine phosphorylation of SOCS-1 and SOCS-3 occurs mainly on Tyr 155 and Tyr 204 residues of SOCS-1 and on Tyr 221 residue of SOCS-3. We observed that phosphorylation of these SOCS proteins was associated with their binding to Bcr-Abl. Bcr-Abl-dependent phosphorylation of SOCS-1 and SOCS-3 diminished their inhibitory effects on the activation of JAK and STAT5 and thereby enhanced JAK/STAT5 signaling. Strikingly, disrupting the tyrosine phosphorylation of SOCS-1 or SOCS-3 impaired the expression of Bcl-XL protein and sensitized K562 leukemic cells to undergo apoptosis. Moreover, selective mutation of tyrosine phosphorylation sites of SOCS-1 or SOCS-3 significantly blocked Bcr-Abl-mediated tumorigenesis in nude mice and inhibited Bcr-Abl-mediated murine bone marrow transformation. Together, these results reveal a mechanism of how Bcr-Abl may overcome SOCS-1 and SOCS-3 inhibition to constitutively activate the JAK/STAT-dependent signaling, and suggest that Bcr-Abl may critically requires tyrosine phosphorylation of SOCS-1 and SOCS-3 to mediate tumorigenesis when these SOCS proteins are present in cells.

  13. Regulation of Estrogen Receptor Nuclear Export by Ligand-Induced and p38-Mediated Receptor Phosphorylation

    OpenAIRE

    Lee, Heehyoung; Bai, Wenlong

    2002-01-01

    Estrogen receptors are phosphoproteins which can be activated by ligands, kinase activators, or phosphatase inhibitors. Our previous study showed that p38 mitogen-activated protein kinase was involved in estrogen receptor activation by estrogens and MEKK1. Here, we report estrogen receptor-dependent p38 activation by estrogens in endometrial adenocarcinoma cells and in vitro and in vivo phosphorylation of the estrogen receptor α mediated through p38. The phosphorylation site was identified as...

  14. Formaldehyde at low concentration induces protein tau into globular amyloid-like aggregates in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Chun Lai Nie

    Full Text Available Recent studies have shown that neurodegeneration is closely related to misfolding and aggregation of neuronal tau. Our previous results show that neuronal tau aggregates in formaldehyde solution and that aggregated tau induces apoptosis of SH-SY5Y and hippocampal cells. In the present study, based on atomic force microscopy (AFM observation, we have found that formaldehyde at low concentrations induces tau polymerization whilst acetaldehyde does not. Neuronal tau misfolds and aggregates into globular-like polymers in 0.01-0.1% formaldehyde solutions. Apart from globular-like aggregation, no fibril-like polymerization was observed when the protein was incubated with formaldehyde for 15 days. SDS-PAGE results also exhibit tau polymerizing in the presence of formaldehyde. Under the same experimental conditions, polymerization of bovine serum albumin (BSA or alpha-synuclein was not markedly detected. Kinetic study shows that tau significantly misfolds and polymerizes in 60 minutes in 0.1% formaldehyde solution. However, presence of 10% methanol prevents protein tau from polymerization. This suggests that formaldehyde polymerization is involved in tau aggregation. Such aggregation process is probably linked to the tau's special "worm-like" structure, which leaves the epsilon-amino groups of Lys and thiol groups of Cys exposed to the exterior. Such a structure can easily bond to formaldehyde molecules in vitro and in vivo. Polymerizing of formaldehyde itself results in aggregation of protein tau. Immunocytochemistry and thioflavin S staining of both endogenous and exogenous tau in the presence of formaldehyde at low concentrations in the cell culture have shown that formaldehyde can induce tau into amyloid-like aggregates in vivo during apoptosis. The significant protein tau aggregation induced by formaldehyde and the severe toxicity of the aggregated tau to neural cells may suggest that toxicity of methanol and formaldehyde ingestion is related to

  15. Hyperosmotic stress induces Rho/Rho kinase/LIM kinase-mediated cofilin phosphorylation in tubular cells: key role in the osmotically triggered F-actin response

    DEFF Research Database (Denmark)

    Thirone, Ana C P; Speight, Pam; Zulys, Matthew;

    2009-01-01

    we investigated whether hyperosmolarity regulates cofilin, a key actin-severing protein, whose activity is inhibited by phosphorylation. Since the small GTPases Rho and Rac are sensitive to cell volume changes, and can regulate cofilin phosphorylation, we also asked if they might link osmostress...... in the hyperosmotic stress-induced F-actin increase. Key words: cytoskeleton, hypertonicity, cell volume, small GTPases....

  16. IL-7 Induces SAMHD1 Phosphorylation in CD4+ T Lymphocytes, Improving Early Steps of HIV-1 Life Cycle

    Directory of Open Access Journals (Sweden)

    Mayte Coiras

    2016-03-01

    Full Text Available HIV-1 post-integration latency in CD4+ lymphocytes is responsible for viral persistence despite treatment, but mechanisms involved in the establishment of latent viral reservoirs are not fully understood. We determined that both interleukin 2 (IL-2 and IL-7 induced SAMHD1 phosphorylation in T592, abrogating its antiviral activity. However, IL-7 caused a much more profound stimulatory effect on HIV-1 reverse transcription and integration than IL-2 that required chemokine co-stimulation. Both cytokines barely induced transcription due to low NF-κB induction, favoring the establishment of latent reservoirs. Effect of IL-7 on SAMHD1 phosphorylation was confirmed in IL-7-treated patients (ACTG 5214 study. Dasatinib—a tyrosine-kinase inhibitor—blocked SAMHD1 phosphorylation induced by IL-2 and IL-7 and restored HIV-1 restriction. We propose that γc-cytokines play a major role in the reservoir establishment not only by driving homeostatic proliferation but also by increasing susceptibility of CD4+ lymphocytes to HIV-1 infection through SAMHD1 inactivation.

  17. Chronic morphine administration induces over-expression of aldolase C with reduction of CREB phosphorylation in the mouse hippocampus.

    Science.gov (United States)

    Yang, Hai-Yu; Pu, Xiao-Ping

    2009-05-01

    In recent studies, alterations in the activity and expression of metabolic enzymes, such as those involved in glycolysis, have been detected in morphine-dependent patients and animals. Increasing evidence demonstrates that the hippocampus is an important brain region associated with morphine dependence, but the molecular events occurring in the hippocampus following chronic exposure to morphine are poorly understood. Aldolase C is the brain-specific isoform of fructose-1, 6-bisphosphate aldolase which is a glycolytic enzyme catalyzing reactions in the glycolytic, gluconeogenic, and fructose metabolic pathways. Using Western blot and immunofluorescence assays, we found the expression of aldolase C was markedly increased in the mouse hippocampus following chronic morphine treatment. Naloxone pretreatment before morphine administration suppressed withdrawal jumping, weight loss, and overexpression of aldolase C. CREB is a transcription factor regulated through phosphorylation on Ser133, which is known to play a key role in the mechanism of morphine dependence. When detecting the expression of phosphorylated CREB (p-CREB) in the mouse hippocampus using Western blot and immunohistochemistry, we found CREB phosphorylation was clearly decreased following chronic morphine treatment. Interestingly, laser-confocal microscopy showed that overexpression of aldolase C in mouse hippocampal neurons was concomitant with the decreased immunoreactivity of p-CREB. The results suggest potential links between the morphine-induced alteration of aldolase C and the regulation of CREB phosphorylation, a possible mechanism of morphine dependence.

  18. Kinome analysis of receptor-induced phosphorylation in human natural killer cells.

    Directory of Open Access Journals (Sweden)

    Sebastian König

    Full Text Available BACKGROUND: Natural killer (NK cells contribute to the defense against infected and transformed cells through the engagement of multiple germline-encoded activation receptors. Stimulation of the Fc receptor CD16 alone is sufficient for NK cell activation, whereas other receptors, such as 2B4 (CD244 and DNAM-1 (CD226, act synergistically. After receptor engagement, protein kinases play a major role in signaling networks controlling NK cell effector functions. However, it has not been characterized systematically which of all kinases encoded by the human genome (kinome are involved in NK cell activation. RESULTS: A kinase-selective phosphoproteome approach enabled the determination of 188 kinases expressed in human NK cells. Crosslinking of CD16 as well as 2B4 and DNAM-1 revealed a total of 313 distinct kinase phosphorylation sites on 109 different kinases. Phosphorylation sites on 21 kinases were similarly regulated after engagement of either CD16 or co-engagement of 2B4 and DNAM-1. Among those, increased phosphorylation of FYN, KCC2G (CAMK2, FES, and AAK1, as well as the reduced phosphorylation of MARK2, were reproducibly observed both after engagement of CD16 and co-engagement of 2B4 and DNAM-1. Notably, only one phosphorylation on PAK4 was differentally regulated. CONCLUSIONS: The present study has identified a significant portion of the NK cell kinome and defined novel phosphorylation sites in primary lymphocytes. Regulated phosphorylations observed in the early phase of NK cell activation imply these kinases are involved in NK cell signaling. Taken together, this study suggests a largely shared signaling pathway downstream of distinct activation receptors and constitutes a valuable resource for further elucidating the regulation of NK cell effector responses.

  19. Laminopathy-inducing lamin A mutants can induce redistribution of lamin binding proteins into nuclear aggregates.

    Science.gov (United States)

    Hübner, S; Eam, J E; Hübner, A; Jans, D A

    2006-01-15

    Lamins, members of the family of intermediate filaments, form a supportive nucleoskeletal structure underlying the nuclear envelope and can also form intranuclear structures. Mutations within the A-type lamin gene cause a variety of degenerative diseases which are collectively referred to as laminopathies. At the molecular level, laminopathies have been shown to be linked to a discontinuous localization pattern of A-type lamins, with some laminopathies containing nuclear lamin A aggregates. Since nuclear aggregate formation could lead to the mislocalization of proteins interacting with A-type lamins, we set out to examine the effects of FLAG-lamin A N195K and R386K protein aggregate formation on the subnuclear distribution of the retinoblastoma protein (pRb) and the sterol responsive element binding protein 1a (SREBP1a) after coexpression as GFP-fusion proteins in HeLa cells. We observed strong recruitment of both proteins into nuclear aggregates. Nuclear aggregate recruitment of the NPC component nucleoporin NUP153 was also observed and found to be dependent on the N-terminus. That these effects were specific was implied by the fact that a number of other coexpressed karyophilic GFP-fusion proteins, such as the nucleoporin NUP98 and kanadaptin, did not coaggregate with FLAG-lamin A N195K or R386K. Immunofluorescence analysis further indicated that the precursor form of lamin A, pre-lamin A, could be found in intranuclear aggregates. Our results imply that redistribution into lamin A-/pre-lamin A-containing aggregates of proteins such as pRb and SREBP1a could represent a key aspect underlying the molecular pathogenesis of certain laminopathies.

  20. Mechanical agitation induces counterintuitive aggregation of pre-dispersed carbon nanotubes.

    Science.gov (United States)

    Fernandes, Ricardo M F; Buzaglo, Matat; Regev, Oren; Furó, István; Marques, Eduardo F

    2017-05-01

    Mechanical agitation is commonly used to fragment and disperse insoluble materials in liquids. However, here we show that when pristine single-walled carbon nanotubes pre-dispersed in water are subject to vortex-shaking for very short periods (typically 10-60s, power density ∼0.002WmL(-1)), re-aggregation counterintuitively occurs. The initial dispersions are produced using surfactants as dispersants and powerful tip sonication (∼1WmL(-1)) followed by centrifugation. Detailed imaging by light and electron microscopies shows that the vortex-induced aggregates consist of loose networks (1-10(2)μm in size) of intertwined tubes and thin bundles. The average aggregate size increases with vortexing time in an apparently logarithmic manner and depends on the dispersant used, initial concentration of nanotubes and size distribution of bundles. The aggregation is, nonetheless, reversible: if the vortex-shaken dispersions are mildly bath-sonicated (∼0.03WmL(-1)), the flocs break down and re-dispersal occurs. Molecular insight for the mechanism behind this surprising phenomenon is put forth.

  1. Useful multivariate kinetic analysis: Size determination based on cystein-induced aggregation of gold nanoparticles

    Science.gov (United States)

    Rabbani, Faride; Hormozi Nezhad, Mohammad Reza; Abdollahi, Hamid

    2013-11-01

    This study describes spectrometric monitored kinetic processes to determine the size of citrate-capped Au nanoparticles (Au NPs) based on aggregation induced by L-cysteine (L-Cys) as a molecular linker. The Au NPs association process is thoroughly dependent on pH, concentration and size of nanoparticles. Size dependency of aggregation inspirits to determine the average diameters of Au NPs. For this aim the procedure is achieved in aqueous medium at pH 7 (phosphate buffer), and multivariate data including kinetic spectra of Au NPs are collected during aggregation process. Subsequently partial least squares (PLS) modeling is carried out analyzing the obtained data. The model is built on the basis of relation between the kinetics behavior of aggregation and different Au NPs sizes. Training the model was performed using latent variables (LVs) of the original data. The analytical performance of the model was characterized by relative standard error. The proposed method was applied to determination of size in unknown samples. The predicted sizes of unknown samples that obtained by the introduced method are interestingly in agreement with the sizes measured by Transmission Electron Microscopy (TEM) images and Dynamic Light Scattering (DLS) measurement.

  2. Manganese exposure induces α-synuclein aggregation in the frontal cortex of non-human primates.

    Science.gov (United States)

    Verina, Tatyana; Schneider, Jay S; Guilarte, Tomás R

    2013-03-13

    Aggregation of α-synuclein (α-syn) in the brain is a defining pathological feature of neurodegenerative disorders classified as synucleinopathies. They include Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Occupational and environmental exposure to manganese (Mn) is associated with a neurological syndrome consisting of psychiatric symptoms, cognitive impairment and parkinsonism. In this study, we examined α-syn immunoreactivity in the frontal cortex of Cynomolgus macaques as part of a multidisciplinary assessment of the neurological effects produced by exposure to moderate levels of Mn. We found increased α-syn-positive cells in the gray matter of Mn-exposed animals, typically observed in pyramidal and medium-sized neurons in deep cortical layers. Some of these neurons displayed loss of Nissl staining with α-syn-positive spherical aggregates. In the white matter we also observed α-syn-positive glial cells and in some cases α-syn-positive neurites. These findings suggest that Mn exposure promotes α-syn aggregation in neuronal and glial cells that may ultimately lead to degeneration in the frontal cortex gray and white matter. To our knowledge, this is the first report of Mn-induced neuronal and glial cell α-syn accumulation and aggregation in the frontal cortex of non-human primates.

  3. Enzymatic hydrolysis of heat-induced aggregates of whey protein isolate.

    Science.gov (United States)

    O'Loughlin, I B; Murray, B A; Kelly, P M; FitzGerald, R J; Brodkorb, A

    2012-05-16

    The effects of heat-induced denaturation and subsequent aggregation of whey protein isolate (WPI) solutions on the rate of enzymatic hydrolysis was investigated. Both heated (60 °C, 15 min; 65 °C, 5 and 15 min; 70 °C, 5 and 15 min, 75 °C, 5 and 15 min; 80 °C, 10 min) and unheated WPI solutions (100 g L(-1) protein) were incubated with a commercial proteolytic enzyme preparation, Corolase PP, until they reached a target degree of hydrolysis (DH) of 5%. WPI solutions on heating were characterized by large aggregate formation, higher viscosity, and surface hydrophobicity and hydrolyzed more rapidly (P whey proteins exhibited differences in their susceptibility to hydrolysis. Both viscosity and surface hydrophobicity along with insolubility declined as hydrolysis progressed. However, microstructural changes observed by light and confocal laser scanning microscopy (CLSM) provided insights to suggest that aggregate size and porosity may be complementary to denaturation in promoting faster enzymatic hydrolysis. This could be clearly observed in the course of aggregate disintegration, gel network breakdown, and improved solution clarification.

  4. Quantification of alginate by aggregation induced by calcium ions and fluorescent polycations.

    Science.gov (United States)

    Zheng, Hewen; Korendovych, Ivan V; Luk, Yan-Yeung

    2016-01-01

    For quantification of polysaccharides, including heparins and alginates, the commonly used carbazole assay involves hydrolysis of the polysaccharide to form a mixture of UV-active dye conjugate products. Here, we describe two efficient detection and quantification methods that make use of the negative charges of the alginate polymer and do not involve degradation of the targeted polysaccharide. The first method utilizes calcium ions to induce formation of hydrogel-like aggregates with alginate polymer; the aggregates can be quantified readily by staining with a crystal violet dye. This method does not require purification of alginate from the culture medium and can measure the large amount of alginate that is produced by a mucoid Pseudomonas aeruginosa culture. The second method employs polycations tethering a fluorescent dye to form suspension aggregates with the alginate polyanion. Encasing the fluorescent dye in the aggregates provides an increased scattering intensity with a sensitivity comparable to that of the conventional carbazole assay. Both approaches provide efficient methods for monitoring alginate production by mucoid P. aeruginosa.

  5. Investigation into process-induced de-aggregation of cohesive micronised API particles.

    Science.gov (United States)

    Hoffmann, Magnus; Wray, Patrick S; Gamble, John F; Tobyn, Mike

    2015-09-30

    The aim of this study was to assess the impact of unit processes on the de-aggregation of a cohesive micronised API within a pharmaceutical formulation using near-infrared chemical imaging. The impact on the primary API particles was also investigated using an image-based particle characterization system with integrated Raman analysis. The blended material was shown to contain large, API rich domains which were distributed in-homogeneously across the sample, suggesting that the blending process was not aggressive enough to disperse aggregates of micronised drug particles. Cone milling, routinely used to improve the homogeneity of such cohesive formulations, was observed to substantially reduce the number and size of API rich domains; however, several smaller API domains survived the milling process. Conveyance of the cone milled formulation through the Alexanderwerk WP120 powder feed system completely dispersed all remaining aggregates. Importantly, powder feed transmission of the un-milled formulation was observed to produce an equally homogeneous API distribution. The size of the micronised primary drug particles remained unchanged during powder feed transmission. These findings provide further evidence that this powder feed system does induce shear, and is in fact better able to disperse aggregates of a cohesive micronised API within a blend than the blend-mill-blend step.

  6. Differential inhibition of lipopolysaccharide-induced granulocyte aggregation and prostanoid production by emoxypin.

    Science.gov (United States)

    Kubatiev, A; Turgiev, A; Smirnov, L; Pomoynetsky, V; Dumaev, K

    1990-01-01

    Emoxypin is known to be an effective membrane-stabilizing 3-oxy-pyridine derivative. We attempted to evaluate its influence on lipopolysaccharide (LPS)-induced granulocyte aggregation and prostanoid production. Granulocytes isolated from rabbit venous blood by dextran sedimentation and Pezcoll gradient centrifugation were stirred in the aggregometer cuvette with emoxypin (5mM), indomethacin (50 microM) or their solvents at 37 degrees C for 2 min. Then S. typhimurium LPS (200 micrograms/ml) was added and the aggregation was traced for 5 min. Thromboxane B2 (TxB2), prostaglandins (PG) E, F2 alpha and 13,14-dihydro-15-keto-PGF2 alpha were determined in supernatants radioimmunochemically. Indomethacin did not affect the pattern of aggregation, whereas emoxypin virtually precluded the response. Granulocytes incubated with LPS produced by the 15th sec and 5th min 1.3 and 2.5 times as much TxB2 respectively as did the intact cells (p less than 0.01). LPS had no effect on PGE production. Fifteen-sec contact of granulocytes with LPS had no significant influence on the formation of PGF2 alpha and its 13,14-dihydro-15-keto metabolite. The amount of PGF2 alpha released into the medium by the end of the 5th min of incubation with LPS was 1.5 times higher than in the control (p less than 0.05); the level of 13,14-dihydro-15-keto-PGF2 alpha was decreased 1.6 times (p less than 0.01). Emoxypin abolished totally LPS-induced TxB2 and PGF2 alpha production. We conclude that aggregation and eicosanoid production are independent manifestations of LPS-induced rabbit granulocyte activation.

  7. Double-stranded RNA induces biphasic STAT1 phosphorylation by both type I interferon (IFN)-dependent and type I IFN-independent pathways.

    Science.gov (United States)

    Dempoya, Junichi; Matsumiya, Tomoh; Imaizumi, Tadaatsu; Hayakari, Ryo; Xing, Fei; Yoshida, Hidemi; Okumura, Ken; Satoh, Kei

    2012-12-01

    Upon viral infection, pattern recognition receptors sense viral nucleic acids, leading to the production of type I interferons (IFNs), which initiate antiviral activities. Type I IFNs bind to their cognate receptor, IFNAR, resulting in the activation of signal-transducing activators of transcription 1 (STAT1). Thus, it has long been thought that double-stranded RNA (dsRNA)-induced STAT1 phosphorylation is mediated by the transactivation of type I IFN signaling. Foreign RNA, such as viral RNA, in cells is sensed by the cytoplasmic sensors retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA-5). In this study, we explored the molecular mechanism responsible for STAT1 phosphorylation in response to the sensing of dsRNA by cytosolic RNA sensors. Polyinosinic-poly(C) [poly(I:C)], a synthetic dsRNA that is sensed by both RIG-I and MDA-5, induces STAT1 phosphorylation. We found that the poly(I:C)-induced initial phosphorylation of STAT1 is dependent on the RIG-I pathway and that MDA-5 is not involved in STAT1 phosphorylation. Furthermore, pretreatment of the cells with neutralizing antibody targeting the IFN receptor suppressed the initial STAT1 phosphorylation in response to poly(I:C), suggesting that this initial phosphorylation event is predominantly type I IFN dependent. In contrast, neither the known RIG-I pathway nor type I IFN is involved in the late phosphorylation of STAT1. In addition, poly(I:C) stimulated STAT1 phosphorylation in type I IFN receptor-deficient U5A cells with delayed kinetics. Collectively, our study provides evidence of a comprehensive regulatory mechanism in which dsRNA induces STAT1 phosphorylation, indicating the importance of STAT1 in maintaining very tight regulation of the innate immune system.

  8. Contractions induce phosphorylation of the AMPK site Ser565 in hormone-sensitive lipase in muscle

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia;

    2004-01-01

    Intramyocellular triglyceride is an important energy store which is related to insulin resistance. Mobilization of fatty acids from this pool is probably regulated by hormone-sensitive lipase (HSL), which has recently been shown to exist in muscle and to be activated by epinephrine via PKA...... and by contractions via PKC and ERK. 5' AMP-activated protein kinase (AMPK) is an intracellular fuel gauge which regulates metabolism. In this study we incubated rat soleus muscle to investigate if AMPK influences HSL during 5min of repeated tetanic contractions. An eightfold increase in AMPK activity was accompanied...... by a 2.5-fold increase in phosphorylation of the AMPK-site Ser(565) in HSL (pHSL activation while HSL-Ser(565) phosphorylation was not reduced. The study indicates that during contractions AMPK phosphorylates HSL in Ser(565...

  9. Phosphorylation of β-actin by protein kinase C-delta in camptothecin analog-induced leukemic cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Shuang WANG; Ying ZHENG; Yun YU; Li XIA; Guo-qiang CHEN; Yong-zong YANG; Li-shun WANG

    2008-01-01

    Aim: This study was conducted to reveal new proteins involved in acute myeloid leukemia (AML) cell apoptosis. Methods: Using camptothecin analog NSC606985-induced leukemic U937 cell apoptosis as a model, this study performed a differen-tial proteomic analysis during apoptosis induction. The significantly modulated protein was underwent further investigation in the apoptotic process. Results: We found that β-actin protein presented two different spots on the two-dimen-sional electrophoresis (2-DE) map, which shared similar molecular weight and different pI. Those two spots demonstrated contrary changes (disappeared on the basic-end and increased on the acid-end spot) during apoptosis induction, although the total level of β-actin kept constant. This observation was further confirmed by immunoblot analysis on 2-DE gel. When NSC606985-treated cell iysate was incubated with alkaline phosphotase, β-actin on the basic-end spot was restored, indicating increased phosphorylation of β-actin during NSC606985-induced apoptosis. Moreover, the polymerization of actin also decreased after NSC606985 treatment. The increased β-actin phosphorylation and decreased ac-tin polymerization was antagonized by pre-treatment of rottlerin, a specific protein kinase C-delta (PKCδ) inhibitor. Conclusion: All these results indicate that β-actin was phosphorylated during apoptosis induction, which was mediated by acti-vated PKCδ.

  10. Accumulation of phosphorylated beta-catenin enhances ROS-induced cell death in presenilin-deficient cells.

    Directory of Open Access Journals (Sweden)

    Jung H Boo

    Full Text Available Presenilin (PS is involved in many cellular events under physiological and pathological conditions. Previous reports have revealed that PS deficiency results in hyperproliferation and resistance to apoptotic cell death. In the present study, we investigated the effects of PS on beta-catenin and cell mortality during serum deprivation. Under these conditions, PS1/PS2 double-knockout MEFs showed aberrant accumulation of phospho-beta-catenin, higher ROS generation, and notable cell death. Inhibition of beta-catenin phosphorylation by LiCl reversed ROS generation and cell death in PS deficient cells. In addition, the K19/49R mutant form of beta-catenin, which undergoes normal phosphorylation but not ubiquitination, induced cytotoxicity, while the phosphorylation deficient S37A beta-catenin mutant failed to induce cytotoxicity. These results indicate that aberrant accumulation of phospho-beta-catenin underlies ROS-mediated cell death in the absence of PS. We propose that the regulation of beta-catenin is useful for identifying therapeutic targets of hyperproliferative diseases and other degenerative conditions.

  11. Cordycepin-Enriched WIB801C from Cordyceps militaris Inhibits Collagen-Induced [Ca2+]i Mobilization via cAMP-Dependent Phosphorylation of Inositol 1, 4, 5-Trisphosphate Receptor in Human Platelets

    Science.gov (United States)

    Lee, Dong-Ha; Kim, Hyun-Hong; Cho, Hyun-Jeong; Yu, Young-Bin; Kang, Hyo-Chan; Kim, Jong-Lae; Lee, Jong-Jin; Park, Hwa-Jin

    2014-01-01

    In this study, we prepared cordycepin-enriched (CE)-WIB801C, a n-butanol extract of Cordyceps militaris-hypha, and investigated the effect of CE-WIB801C on collagen-induced human platelet aggregation. CE-WIB801C dose-dependently inhibited collagen-induced platelet aggregation, and its IC50 value was 175 μg/ml. CE-WIB801C increased cAMP level more than cGMP level, but inhibited collagen-elevated [Ca2+]i mobilization and thromboxane A2 (TXA2) production. cAMP-dependent protein kinase (A-kinase) inhibitor Rp-8-Br-cAMPS increased the CE-WIB801C-downregulated [Ca2+]i level in a dose dependent manner, and strongly inhibited CE-WIB801C-induced inositol 1, 4, 5-trisphosphate receptor (IP3R) phosphorylation. These results suggest that the inhibition of [Ca2+]i mobilization by CE-WIB801C is resulted from the cAMP/A-kinase-dependent phosphorylation of IP3R. CE-WIB801C suppressed TXA2 production, but did not inhibit the activities of cyclooxygenase-1 (COX-1) and TXA2 synthase (TXAS). These results suggest that the inhibition of TXA2 production by WIB801C is not resulted from the direct inhibition of COX-1 and TXAS. In this study, we demonstrate that CE-WIB801C with cAMP-dependent Ca2+-antagonistic antiplatelet effects may have preventive or therapeutic potential for platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease. PMID:25009703

  12. Gingival tissue-produced inhibition of platelet aggregation and the loss of inhibition in streptozotocin-induced diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Keiichiroh; Tamai, Kazuharu; Shirakawa, Masaharu; Okamoto, Hiroshi; Dohi, Toshihiro; Tsujimoto, Akira

    1988-01-01

    Addition of medium incubated with normal rat gingival tissue to platelet-rich plasma inhibited ADP-induced platelet aggregation. The ability of rat gingiva to produce activity inhibiting platelet aggregation was enhanced by the addition of arachidonic acid. Diabetic rat gingiva failed to inhibit platelet aggregation but did produce the anti-platelet aggregating activity in the presence of arachidonic acid. Indomethacin blocked the production of anti-platelet aggregating activity. There was no difference in conversion of (1-/sup 14/C)arachidonic acid to prostaglandins by normal and diabetic rat gingiva. These results suggest that an arachidonic acid metabolite released from gingiva during incubation inhibits platelet aggregation, and the synthesis of the metabolite is impaired in diabetic rat gingiva. A decrease in availability of arachidonic acid may be a causal factor of the defect in diabetic rat gingiva.

  13. Cofilin phosphorylation is elevated after F-actin disassembly induced by Rac1 depletion

    DEFF Research Database (Denmark)

    Liu, Linna; Li, Jing; Zhang, Liwang

    2015-01-01

    that actin filaments disassembled. In the epidermis of mice in which Rac1 was knocked out only in keratinocytes, cofilin phosphorylation was aberrantly elevated, corresponding to repression of the phosphatase slingshot1 (SSH1). These effects were independent of the signaling pathways for p21-activated kinase....../LIM kinase (Pak/LIMK), protein kinase C, or protein kinase D or generation of reactive oxygen species. Similarly, when actin polymerization was specifically inhibited or Rac1 was knocked down, cofilin phosphorylation was enhanced and SSH1 was repressed. Repression of SSH1 partially blocked actin...

  14. Calcium-induced aggregation of archaeal bipolar tetraether liposomes derived from the thermoacidophilic archaeon Sulfolobus acidocaldarius

    Directory of Open Access Journals (Sweden)

    Roby Kanichay

    2003-01-01

    Full Text Available Previously, we showed that the proton permeability of small unilamellar vesicles (SUVs composed of polar lipid fraction E (PLFE from the thermoacidophilic archaeon Sulfolobus acidocaldarius was remarkably low and insensitive to temperature (Komatsu and Chong 1998. In this study, we used photon correlation spectroscopy to investigate the time dependence of PLFE SUV size as a function of Ca2+ concentration. In the absence of Ca2+, vesicle diameter changed little over 6 months. Addition of Ca2+, however, immediately induced formation of vesicle aggregates with an irregular shape, as revealed by confocal fluorescence microscopy. Aggregation was reversible upon addition of EDTA; however, the reversibility varied with temperature as well as incubation time with Ca2+. Freeze-fracture electron microscopy showed that, after a long period of incubation (2 weeks with Ca2+, the PLFE vesicles had not just aggregated, but had fused or coalesced. The initial rate of vesicle aggregation varied sigmoidally with Ca2+ concentration. At pH 6.6, the threshold calcium concentration (Cr for vesicle aggregation at 25 and 40 °C was 11 and 17 mM, respectively. At pH 3.0, the Cr at 25 °C increased to 25 mM. The temperature dependence of Cr may be attributable to changes in membrane surface potential, which was –22.0 and –13.2 mV at 25 and 40 °C, respectively, at pH 6.6, as determined by 2-(p-toluidinylnaphthalene-6-sulfonic acid fluorescence. The variation in surface potential with temperature is discussed in terms of changes in lipid conformation and membrane organization.

  15. Calcium-induced aggregation of archaeal bipolar tetraether liposomes derived from the thermoacidophilic archaeon Sulfolobus acidocaldarius.

    Science.gov (United States)

    Kanichay, Roby; Boni, Lawrence T; Cooke, Peter H; Khan, Tapan K; Chong, Parkson Lee-Gau

    2003-10-01

    Previously, we showed that the proton permeability of small unilamellar vesicles (SUVs) composed of polar lipid fraction E (PLFE) from the thermoacidophilic archaeon Sulfolobus acidocaldarius was remarkably low and insensitive to temperature (Komatsu and Chong 1998). In this study, we used photon correlation spectroscopy to investigate the time dependence of PLFE SUV size as a function of Ca2+ concentration. In the absence of Ca2+, vesicle diameter changed little over 6 months. Addition of Ca2+, however, immediately induced formation of vesicle aggregates with an irregular shape, as revealed by confocal fluorescence microscopy. Aggregation was reversible upon addition of EDTA; however, the reversibility varied with temperature as well as incubation time with Ca2+. Freeze-fracture electron microscopy showed that, after a long period of incubation (2 weeks) with Ca2+, the PLFE vesicles had not just aggregated, but had fused or coalesced. The initial rate of vesicle aggregation varied sigmoidally with Ca2+ concentration. At pH 6.6, the threshold calcium concentration (Cr) for vesicle aggregation at 25 and 40 degrees C was 11 and 17 mM, respectively. At pH 3.0, the Cr at 25 degrees C increased to 25 mM. The temperature dependence of Cr may be attributable to changes in membrane surface potential, which was -22.0 and -13.2 mV at 25 and 40 degrees C, respectively, at pH 6.6, as determined by 2-(p-toluidinyl)naphthalene-6-sulfonic acid fluorescence. The variation in surface potential with temperature is discussed in terms of changes in lipid conformation and membrane organization.

  16. [Research on expression and function of phosphorylated DARPP-32 on pentylenetetrazol-induced epilepsy model of rat].

    Science.gov (United States)

    Wang, Weiwen; Liao, Xiaoyang; Yang, Zhenghui; Lin, Hang; Wang, Qingsong; Wu, Yuxian; Liu, Yu

    2014-06-01

    The present study is to explore the change process and distribution of phosphorylated DARPP-32 (p-DARPP-32) in rat brain including cortex, hippocampus and striatum and to further deduce whether p-DARPP-32 was possibly involved in epilepsy induced by repetitive low doses of pentylenetetrazol (PTZ). PTZ-induced epilepsy model in rat was established with 30 male SD rats randomly divided into 6 groups, control group and five trial groups [PTZ 1 h, PTZ 6 h, PTZ 24 h, PTZ 48 h and PTZ 72 h respectively, after onset of status epilepticus (SE)]. Immunohistochemistry and immunofluorescence double-labeling were used to detect the temporal time change and distribution of p-DARPP-32 expression and to analyze the coexpression of DARPP-32 and p-DARPP-32 in rat brain after the onset of PTZ-induced generalized SE. The results showed that there was a temporal time change of p-DARPP-32 expression in rat brain after the onset of SE. The number of p-DARPP-32-positive cells increased significantly and reached the peaks at the ends of 1 hour and 6 hours after the onset of SE, but decreased at the end of 24 hours. The moderate to strong p-DARPP-32-immunopositive neurons were observed in cortex, hippocampus and striatum, and located in cell cytoplasm and cell nucleus. Further immunofluorescence double-labeling revealed that denser colocalization of p-DARPP-32 and DARPP-32 in the neurons existed in the area mentioned above. Therefore, PTZ-induced SE may cause phosphorylation of DARPP-32 in rat brain. The temporal time change and distribution of p-DARPP-32 suggest that phosphorylation of DARPP-32 may be involved in PTZ-induced epilepsy in rat brain including cortex, hippocampus and striatum, and p-DARPP-32 may play a central role in the onset of SE.

  17. Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) induces initiation factor 2 alpha phosphorylation and translation inhibition in PC12 cells.

    Science.gov (United States)

    Muñoz, F; Martín, M E; Salinas, M; Fando, J L

    2001-03-09

    We have investigated the effect of the mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) on protein synthesis rate and initiation factor 2 (eIF2) phosphorylation in PC12 cells differentiated with nerve growth factor. FCCP treatment induced a very rapid 2-fold increase in intracellular Ca(2+) concentration that was accompanied by a strong protein synthesis rate inhibition (68%). The translation inhibition correlated with an increased phosphorylation of the alpha subunit of eIF2 (eIF2 alpha) (25% vs. 7%, for FCCP-treated and control cells, respectively) and a 1.7-fold increase in the double-stranded RNA-dependent protein kinase activity. No changes in the PKR endoplasmic reticulum-related kinase or eIF2 alpha phosphatase were found. Translational regulation may play a significant role in the process triggered by mitochondrial calcium mobilization.

  18. Adenosine diphosphate-induced aggregation of human platelets in flow through tubes. I. Measurement of concentration and size of single platelets and aggregates.

    Science.gov (United States)

    Bell, D N; Spain, S; Goldsmith, H L

    1989-11-01

    A double infusion flow system and particle sizing technique were developed to study the effect of time and shear rate on adenosine diphosphate-induced platelet aggregation in Poiseuille flow. Citrated platelet-rich plasma, PRP, and 2 microM ADP were simultaneously infused into a 40-microliters cylindrical mixing chamber at a fixed flow ratio, PRP/ADP = 9:1. After rapid mixing by a rotating magnetic stirbar, the platelet suspension flowed through 1.19 or 0.76 mm i.d. polyethylene tubing for mean transit times, t, from 0.1 to 86 s, over a range of mean tube shear rate, G, from 41.9 to 1,000 s-1. Known volumes of suspension were collected into 0.5% buffered glutaraldehyde, and all particles in the volume range 1-10(5) microns 3 were counted and sized using a model ZM particle counter (Coulter Electronics Inc., Hialeah, FL) and a logarithmic amplifier. The decrease in the single platelet concentration served as an overall index of aggregation. The decrease in the total particle concentration was used to calculate the collision capture efficiency during the early stages of aggregation, and aggregate growth was followed by changes in the volume fraction of particles of successively increasing size. Preliminary results demonstrate that both collision efficiency and particle volume fraction reveal important aspects of the aggregation process not indicated by changes in the single platelet concentration alone.

  19. Shear-induced reaction-limited aggregation kinetics of brownian particles at arbitrary concentrations.

    Science.gov (United States)

    Zaccone, Alessio; Gentili, Daniele; Wu, Hua; Morbidelli, Massimo

    2010-04-07

    The aggregation of interacting brownian particles in sheared concentrated suspensions is an important issue in colloid and soft matter science per se. Also, it serves as a model to understand biochemical reactions occurring in vivo where both crowding and shear play an important role. We present an effective medium approach within the Smoluchowski equation with shear which allows one to calculate the encounter kinetics through a potential barrier under shear at arbitrary colloid concentrations. Experiments on a model colloidal system in simple shear flow support the validity of the model in the concentration range considered. By generalizing Kramers' rate theory to the presence of shear and collective hydrodynamics, our model explains the significant increase in the shear-induced reaction-limited aggregation kinetics upon increasing the colloid concentration.

  20. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy

    Science.gov (United States)

    Gary, Ramla; Carbone, Giovani; Petriashvili, Gia; De Santo, Maria Penelope; Barberi, Riccardo

    2016-01-01

    The gold nanoparticle (GNP) aggregation growth induced by deoxyribonucleic acid (DNA) is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster resonance energy transfer. The environmental scanning electron microscopy images show that DNA molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs and DNA. PMID:26907286

  1. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Ramla Gary

    2016-02-01

    Full Text Available The gold nanoparticle (GNP aggregation growth induced by deoxyribonucleic acid (DNA is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster resonance energy transfer. The environmental scanning electron microscopy images show that DNA molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs and DNA.

  2. Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Zhou Bihong

    2011-02-01

    Full Text Available Abstract Background In recent years, it has been gradually realized that bacterial inclusion bodies (IBs could be biologically active. In particular, several proteins including green fluorescent protein, β-galactosidase, β-lactamase, alkaline phosphatase, D-amino acid oxidase, polyphosphate kinase 3, maltodextrin phosphorylase, and sialic acid aldolase have been successfully produced as active IBs when fused to an appropriate partner such as the foot-and-mouth disease virus capsid protein VP1, or the human β-amyloid peptide Aβ42(F19D. As active IBs may have many attractive advantages in enzyme production and industrial applications, it is of considerable interest to explore them further. Results In this paper, we report that an ionic self-assembling peptide ELK16 (LELELKLK2 was able to effectively induce the formation of cytoplasmic inclusion bodies in Escherichia coli (E. coli when attached to the carboxyl termini of four model proteins including lipase A, amadoriase II, β-xylosidase, and green fluorescent protein. These aggregates had a general appearance similar to the usually reported cytoplasmic inclusion bodies (IBs under transmission electron microscopy or fluorescence confocal microscopy. Except for lipase A-ELK16 fusion, the three other fusion protein aggregates retained comparable specific activities with the native counterparts. Conformational analyses by Fourier transform infrared spectroscopy revealed the existence of newly formed antiparallel beta-sheet structures in these ELK16 peptide-induced inclusion bodies, which is consistent with the reported assembly of the ELK16 peptide. Conclusions This has been the first report where a terminally attached self-assembling β peptide ELK16 can promote the formation of active inclusion bodies or active protein aggregates in E. coli. It has the potential to render E. coli and other recombinant hosts more efficient as microbial cell factories for protein production. Our observation might

  3. Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks.

    Science.gov (United States)

    Zhou, Chunshui; Elia, Andrew E H; Naylor, Maria L; Dephoure, Noah; Ballif, Bryan A; Goel, Gautam; Xu, Qikai; Ng, Aylwin; Chou, Danny M; Xavier, Ramnik J; Gygi, Steven P; Elledge, Stephen J

    2016-06-28

    The DNA damage response (DDR) is regulated by a protein kinase signaling cascade that orchestrates DNA repair and other processes. Identifying the substrate effectors of these kinases is critical for understanding the underlying physiology and mechanism of the response. We have used quantitative mass spectrometry to profile DDR-dependent phosphorylation in budding yeast and genetically explored the dependency of these phosphorylation events on the DDR kinases MEC1, RAD53, CHK1, and DUN1. Based on these screens, a database containing many novel DDR-regulated phosphorylation events has been established. Phosphorylation of many of these proteins has been validated by quantitative peptide phospho-immunoprecipitation and examined for functional relevance to the DDR through large-scale analysis of sensitivity to DNA damage in yeast deletion strains. We reveal a link between DDR signaling and the metabolic pathways of inositol phosphate and phosphatidyl inositol synthesis, which are required for resistance to DNA damage. We also uncover links between the DDR and TOR signaling as well as translation regulation. Taken together, these data shed new light on the organization of DDR signaling in budding yeast.

  4. MYB75 phosphorylation by MPK4 is required for light-induced anthocyanin accumulation in arabidopsis

    DEFF Research Database (Denmark)

    Li, Shengnan; Wang, Wenyi; Gao, Jinlan

    2016-01-01

    anthocyanin pigments is light dependent, and the R2R3 MYB transcription factor MYB75/PAP1 regulates anthocyanin accumulation. Here, we report that MYB75 interacts with and is phosphorylated by MAP KINASE4 (MPK4). Their interaction is dependent on MPK4 kinase activity and is required for full function of MYB75...

  5. Reconstruction and analysis of nutrient-induced phosphorylation networks in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Guangyou eDuan

    2013-12-01

    Full Text Available Elucidating the dynamics of molecular processes in living organisms in response to external perturbations is a central goal in modern systems biology. We investigated the dynamics of protein phosphorylation events in Arabidopsis thaliana exposed to changing nutrient conditions. Phosphopeptide expression levels were detected at five consecutive time points over a time interval of 30 minutes after nutrient resupply following prior starvation. The three tested inorganic, ionic nutrients NH4+, NO3-, PO43- elicited similar phosphosignaling responses that were distinguishable from those invoked by the sugars mannitol, sucrose. When embedded in the protein-protein interaction network of Arabidopsis thaliana, phosphoproteins were found to exhibit a higher degree compared to average proteins. Based on the time-series data, we reconstructed a network of regulatory interactions mediated by phosphorylation. The performance of different network inference methods was evaluated by the observed likelihood of physical interactions within and across different subcellular compartments and based on gene ontology semantic similarity. The dynamic phosphorylation network was then reconstructed using a Pearson correlation method with added directionality based on partial variance differences. The topology of the inferred integrated network corresponds to an information dissemination architecture, in which the phosphorylation signal is passed on to an increasing number of phosphoproteins stratified into an initiation, processing, and effector layer. Specific phosphorylation peptide motifs associated with the distinct layers were identified indicating the action of layer-specific kinases. Despite the limited temporal resolution, combined with information on subcellular location, the available time-series data proved useful for reconstructing the dynamics of the molecular signaling cascade in response to nutrient stress conditions in the plant Arabidopsis thaliana.

  6. Myeloid differentiation factor-2 interacts with Lyn kinase and is tyrosine phosphorylated following lipopolysaccharide-induced activation of the TLR4 signaling pathway.

    Science.gov (United States)

    Gray, Pearl; Dagvadorj, Jargalsaikhan; Michelsen, Kathrin S; Brikos, Constantinos; Rentsendorj, Altan; Town, Terrence; Crother, Timothy R; Arditi, Moshe

    2011-10-15

    Stimulation with LPS induces tyrosine phosphorylation of numerous proteins involved in the TLR signaling pathway. In this study, we demonstrated that myeloid differentiation factor-2 (MD-2) is also tyrosine phosphorylated following LPS stimulation. LPS-induced tyrosine phosphorylation of MD-2 is specific; it is blocked by the tyrosine kinase inhibitor, herbimycin A, as well as by an inhibitor of endocytosis, cytochalasin D, suggesting that MD-2 phosphorylation occurs during trafficking of MD-2 and not on the cell surface. Furthermore, we identified two possible phospho-accepting tyrosine residues at positions 22 and 131. Mutant proteins in which these tyrosines were changed to phenylalanine had reduced phosphorylation and significantly diminished ability to activate NF-κB in response to LPS. In addition, MD-2 coprecipitated and colocalized with Lyn kinase, most likely in the endoplasmic reticulum. A Lyn-binding peptide inhibitor abolished MD-2 tyrosine phosphorylation, suggesting that Lyn is a likely candidate to be the kinase required for MD-2 tyrosine phosphorylation. Our study demonstrated that tyrosine phosphorylation of MD-2 is important for signaling following exposure to LPS and underscores the importance of this event in mediating an efficient and prompt immune response.

  7. Frizzled-Induced Van Gogh Phosphorylation by CK1ε Promotes Asymmetric Localization of Core PCP Factors in Drosophila

    Directory of Open Access Journals (Sweden)

    Lindsay K. Kelly

    2016-07-01

    Full Text Available Epithelial tissues are polarized along two axes. In addition to apical-basal polarity, they are often polarized within the plane of the epithelium, so-called Planar Cell Polarity (PCP. PCP depends upon Wnt/Frizzled (Fz signaling factors, including Fz itself and Van Gogh (Vang/Vangl. We sought to understand how Vang interaction with other core PCP factors affects Vang function. We find that Fz induces Vang phosphorylation in a cell-autonomous manner. Vang phosphorylation occurs on conserved N-terminal serine/threonine residues, is mediated by CK1ε/Dco, and is critical for polarized membrane localization of Vang and other PCP proteins. This regulatory mechanism does not require Fz signaling through Dishevelled and thus represents a cell-autonomous upstream interaction between Fz and Vang. Furthermore, this signaling event appears to be related to Wnt5a-mediated Vangl2 phosphorylation during mouse limb patterning and may thus be a general mechanism underlying Wnt-regulated PCP establishment.

  8. White-Light Electroluminescence with Tetraphenylethylene as Emitting Layer of Aggregation-Induced Emissions Enhancement

    Institute of Scientific and Technical Information of China (English)

    罗建芳; 王晓宏; 王筱梅; 苏文明; 陶绪堂; 陈志刚

    2012-01-01

    Tetraphenylethylene (TPE) based molecules with easy synthesis, good thermal stability, and especially their aggregation-induced emissions enhancement (AIEE) effect recently become attractive organic emitting materials due to their potentially practical application in OLEDs. Herein, the AIEE behaviors of tetraphenylethylene dyes (TMTPE and TBTPE) were investigated. Fabricated luminesent device using TMTPE dye as emitting layer displays two strong emitting bands: the blue emission coming from the first-step aggregation and the yellow emission attrib- uted to the second-step aggregation. Thus, it can be utilized to fabricate the white-light OLEDs (WOLEDs) of the single-emitting-component. A three-layer device with the brightness of 1200 cd·m^-2 and current efficiency of 0.78 cd·A^-1 emits the close to white light with the CIE coordinates of x=0.333 and y=0.358, when applied voltage from 8-13 V, verifying that the TPE-based dyes of AIEE effect can be effectively applied in single-emitting- component WOLEDs fabrication.

  9. Crk adaptor protein-induced phosphorylation of Gab1 on tyrosine 307 via Src is important for organization of focal adhesions and enhanced cell migration

    Institute of Scientific and Technical Information of China (English)

    Takuya Watanabe; Masumi Tsuda; Yoshinori Makino; Tassos Konstantinou; Hiroshi Nishihara; Tokifumi Majima; Akio Minami; Stephan M Feller; Shinya Tanaka

    2009-01-01

    Upon growth factor stimulation, the scaffold protein, Gabl, is tyrosine phosphorylated and subsequently the adaptor protein, Crk, transmits signals from Gabl. We have previously shown that Crk overexpression, which is detectable in various human cancers, induces tyrosine phosphorylation of Gab1 without extraceilular stimuli. In the present study, the underlying mechanisms were further investigated. Mutational analyses of Crkll demonstrated that the SH2 domain, but not the SH3(N) or the regulatory Y221 residue of Crkll, is critical for the induction of Gabl-Y307 phosphorylation. SH2 mutation of Crkll also decreased the interaction with Gab1. In GST pull-down assay, Crk-SH2 bound to wild-type Gabl, whereas Crk-SH3(N) interacted with the Gabl mutant, which lacks the clus-tered tyrosine region (residues 242-410). Tyrosine phosphorylation of Gabl was induced by all Crk family proteins, but not other SH2-containing signalling adaptors. Src-family kinase inhibitor, PP2, abrogates Crk-induced tyrosine phosphorylations of Gabl. Y307 phosphorylation was undetectable in fibroblasts lacking Src, Yes, and Fyn, even upon overexpression of Crk, whereas cells lacking only Yes and Fyn still contained Gabl with phosphorylated Y307. Furthermore, Crk induced the phosphorylation of Src-Y416; accordingly the interaction between Crk and Csk was increased. The GabI-Y307F mutant failed to localize near the plasma membrane even upon HGF stimulation and decreased cell migration. Moreover, Gabl-Y307F disturbed the localization of Crk, FAK, and paxiilin, which are the typical components of focal adhesions. Taken together, these results indicate that Crk facilitates tyrosine phosphory-lation of Gabl-Y307 through Src, contributing to the organization of focal adhesions and enhanced cell migration, thereby possibly promoting human cancer development.

  10. Compressive stress induces dephosphorylation of the myosin regulatory light chain via RhoA phosphorylation by the adenylyl cyclase/protein kinase A signaling pathway.

    Directory of Open Access Journals (Sweden)

    Kenji Takemoto

    Full Text Available Mechanical stress that arises due to deformation of the extracellular matrix (ECM either stretches or compresses cells. The cellular response to stretching has been actively studied. For example, stretching induces phosphorylation of the myosin regulatory light chain (MRLC via the RhoA/RhoA-associated protein kinase (ROCK pathway, resulting in increased cellular tension. In contrast, the effects of compressive stress on cellular functions are not fully resolved. The mechanisms for sensing and differentially responding to stretching and compressive stress are not known. To address these questions, we investigated whether phosphorylation levels of MRLC were affected by compressive stress. Contrary to the response in stretching cells, MRLC was dephosphorylated 5 min after cells were subjected to compressive stress. Compressive loading induced activation of myosin phosphatase mediated via the dephosphorylation of myosin phosphatase targeting subunit 1 (Thr853. Because myosin phosphatase targeting subunit 1 (Thr853 is phosphorylated only by ROCK, compressive loading may have induced inactivation of ROCK. However, GTP-bound RhoA (active form increased in response to compressive stress. The compression-induced activation of RhoA and inactivation of its effector ROCK are contradictory. This inconsistency was due to phosphorylation of RhoA (Ser188 that reduced affinity of RhoA to ROCK. Treatment with the inhibitor of protein kinase A that phosphorylates RhoA (Ser188 induced suppression of compression-stimulated MRLC dephosphorylation. Incidentally, stretching induced phosphorylation of MRLC, but did not affect phosphorylation levels of RhoA (Ser188. Together, our results suggest that RhoA phosphorylation is an important process for MRLC dephosphorylation by compressive loading, and for distinguishing between stretching and compressing cells.

  11. Prefoldin Plays a Role as a Clearance Factor in Preventing Proteasome Inhibitor-induced Protein Aggregation*

    Science.gov (United States)

    Abe, Akira; Takahashi-Niki, Kazuko; Takekoshi, Yuka; Shimizu, Takashi; Kitaura, Hirotake; Maita, Hiroshi; Iguchi-Ariga, Sanae M. M.; Ariga, Hiroyoshi

    2013-01-01

    Prefoldin is a molecular chaperone composed of six subunits, PFD1–6, and prevents misfolding of newly synthesized nascent polypeptides. Although it is predicted that prefoldin, like other chaperones, modulates protein aggregation, the precise function of prefoldin against protein aggregation under physiological conditions has never been elucidated. In this study, we first established an anti-prefoldin monoclonal antibody that recognizes the prefoldin complex but not its subunits. Using this antibody, it was found that prefoldin was localized in the cytoplasm with dots in co-localization with polyubiquitinated proteins and that the number and strength of dots were increased in cells that had been treated with lactacystin, a proteasome inhibitor, and thapsigargin, an inducer of endoplasmic reticulum stress. Knockdown of prefoldin increased the level of SDS-insoluble ubiquitinated protein and reduced cell viability in lactacystin and thapsigargin-treated cells. Opposite results were obtained in prefoldin-overexpressed cells. It has been reported that mice harboring a missense mutation L110R of MM-1α/PFD5 exhibit neurodegeneration in the cerebellum. Although the prefoldin complex containing L110R MM-1α was properly formed in vitro and in cells derived from L110R MM-1α mice, the levels of ubiquitinated proteins and cytotoxicity were higher in L110R MM-1α cells than in wild-type cells under normal conditions and were increased by lactacystin and thapsigargin treatment, and growth of L110R MM-1α cells was attenuated. Furthermore, the polyubiquitinated protein aggregation level was increased in the brains of L110R MM-1α mice. These results suggest that prefoldin plays a role in quality control against protein aggregation and that dysfunction of prefoldin is one of the causes of neurodegenerative diseases. PMID:23946485

  12. Structural Characterizations of Glycerol Kinase: Unraveling Phosphorylation-Induced Long-Range Activation

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Joanne I.; Kettering, Regina; Saxl, Ruth; Bourand, Alexa; Darbon, Emmanuelle; Joly, Nathalie; Briozzo, Pierre; Deutscher, Josef; (Pitt); (CNRS-CRMD)

    2009-09-11

    Glycerol metabolism provides a central link between sugar and fatty acid catabolism. In most bacteria, glycerol kinase plays a crucial role in regulating channel/facilitator-dependent uptake of glycerol into the cell. In the firmicute Enterococcus casseliflavus, this enzyme's activity is enhanced by phosphorylation of the histidine residue (His232) located in its activation loop, approximately 25 A from its catalytic cleft. We reported earlier that some mutations of His232 altered enzyme activities; we present here the crystal structures of these mutant GlpK enzymes. The structure of a mutant enzyme with enhanced enzymatic activity, His232Arg, reveals that residues at the catalytic cleft are more optimally aligned to bind ATP and mediate phosphoryl transfer. Specifically, the position of Arg18 in His232Arg shifts by approximately 1 A when compared to its position in wild-type (WT), His232Ala, and His232Glu enzymes. This new conformation of Arg18 is more optimally positioned at the presumed gamma-phosphate location of ATP, close to the glycerol substrate. In addition to structural changes exhibited at the active site, the conformational stability of the activation loop is decreased, as reflected by an approximately 35% increase in B factors ('thermal factors') in a mutant enzyme displaying diminished activity, His232Glu. Correlating conformational changes to alteration of enzymatic activities in the mutant enzymes identifies distinct localized regions that can have profound effects on intramolecular signal transduction. Alterations in pairwise interactions across the dimer interface can communicate phosphorylation states over 25 A from the activation loop to the catalytic cleft, positioning Arg18 to form favorable interactions at the beta,gamma-bridging position with ATP. This would offset loss of the hydrogen bonds at the gamma-phosphate of ATP during phosphoryl transfer to glycerol, suggesting that appropriate alignment of the second substrate of

  13. Phosphorylation of DGCR8 increases its intracellular stability and induces a progrowth miRNA profile.

    Science.gov (United States)

    Herbert, Kristina M; Pimienta, Genaro; DeGregorio, Suzanne J; Alexandrov, Andrei; Steitz, Joan A

    2013-11-27

    During miRNA biogenesis, the microprocessor complex (MC), which is composed minimally of Drosha, an RNase III enzyme, and DGCR8, a double-stranded RNA-binding protein, cleaves the primary miRNA (pri-miRNA) in order to release the pre-miRNA stem-loop structure. Using phosphoproteomics, we mapped 23 phosphorylation sites on full-length human DGCR8 expressed in insect or mammalian cells. DGCR8 can be phosphorylated by mitogenic ERK/MAPK, indicating that DGCR8 phosphorylation may respond to and integrate extracellular cues. The expression of phosphomimetic DGCR8 or inhibition of phosphatases increased the cellular levels of DGCR8 and Drosha proteins. Increased levels of phosphomimetic DGCR8 were not due to higher mRNA levels, altered DGCR8 localization, or DGCR8's ability to self-associate, but rather to an increase in protein stability. MCs incorporating phosphomutant or phosphomimetic DGCR8 were not altered in specific processing activity. However, HeLa cells expressing phosphomimetic DGCR8 exhibited a progrowth miRNA expression profile and increased proliferation and scratch closure rates relative to cells expressing phosphomutant DGCR8.

  14. Phosphorylation of DGCR8 Increases Its Intracellular Stability and Induces a Progrowth miRNA Profile

    Directory of Open Access Journals (Sweden)

    Kristina M. Herbert

    2013-11-01

    Full Text Available During miRNA biogenesis, the microprocessor complex (MC, which is composed minimally of Drosha, an RNase III enzyme, and DGCR8, a double-stranded RNA-binding protein, cleaves the primary miRNA (pri-miRNA in order to release the pre-miRNA stem-loop structure. Using phosphoproteomics, we mapped 23 phosphorylation sites on full-length human DGCR8 expressed in insect or mammalian cells. DGCR8 can be phosphorylated by mitogenic ERK/MAPK, indicating that DGCR8 phosphorylation may respond to and integrate extracellular cues. The expression of phosphomimetic DGCR8 or inhibition of phosphatases increased the cellular levels of DGCR8 and Drosha proteins. Increased levels of phosphomimetic DGCR8 were not due to higher mRNA levels, altered DGCR8 localization, or DGCR8’s ability to self-associate, but rather to an increase in protein stability. MCs incorporating phosphomutant or phosphomimetic DGCR8 were not altered in specific processing activity. However, HeLa cells expressing phosphomimetic DGCR8 exhibited a progrowth miRNA expression profile and increased proliferation and scratch closure rates relative to cells expressing phosphomutant DGCR8.

  15. Cryopreservation-induced alterations in protein tyrosine phosphorylation of spermatozoa from different portions of the boar ejaculate.

    Science.gov (United States)

    Kumaresan, A; Siqueira, A P; Hossain, M S; Bergqvist, A S

    2011-12-01

    Previous studies have shown that boar sperm quality after cryopreservation differs depending on the ejaculate fraction used and that spermatozoa contained in the first 10mL (P1) of the sperm-rich fraction (SRF) show better cryosurvival than those in the SRF-P1. Since protein tyrosine phosphorylation (PTP) in spermatozoa is related with the tolerance of spermatozoa to frozen storage and cryocapacitation, we assessed the dynamics of cryopreservation-induced PTP and intracellular calcium ([Ca(2+)]i) in spermatozoa, using flow cytometry, from P1 and SRF-P1 of the boar ejaculate at different stages of cryopreservation. Sperm kinetics, assessed using a computer-assisted semen analyzer, did not differ between P1 and SRF-P1 during cryopreservation but the decrease in sperm velocity during cryopreservation was significant (Psperm PTP. The proportion of spermatozoa with PTP did not differ significantly between portions of the boar ejaculate. However at any given step during cryopreservation the percentage of spermatozoa with PTP was comparatively higher in SRF-P1 than P1. A 32kDa tyrosine phosphorylated protein, associated with capacitation, appeared after cooling suggesting that cooling induces capacitation-like changes in boar spermatozoa. In conclusion, the study has shown that the cryopreservation process induced PTP in spermatozoa and their proportions were similar between portions of SRF.

  16. Ascorbic acid inhibits TPA-induced HL-60 cell differentiation by decreasing cellular H₂O₂ and ERK phosphorylation.

    Science.gov (United States)

    Yiang, Giou-Teng; Chen, Jen-Ni; Wu, Tsai-Kun; Wang, Hsueh-Fang; Hung, Yu-Ting; Chang, Wei-Jung; Chen, Chinshuh; Wei, Chyou-Wei; Yu, Yung-Luen

    2015-10-01

    Retinoic acid (RA), vitamin D and 12-O‑tetradecanoyl phorbol-13-acetate (TPA) can induce HL-60 cells to differentiate into granulocytes, monocytes and macrophages, respectively. Similar to RA and vitamin D, ascorbic acid also belongs to the vitamin family. High‑dose ascorbic acid (>100 µM) induces HL‑60 cell apoptosis and induces a small fraction of HL‑60 cells to express the granulocyte marker, CD66b. In addition, ascorbic acid exerts an anti‑oxidative stress function. Oxidative stress is required for HL‑60 cell differentiation following treatment with TPA, however, the effect of ascorbic acid on HL‑60 cell differentiation in combination with TPA treatment remains to be fully elucidated. The aim of the present study was to investigate the cellular effects of ascorbic acid treatment on TPA-differentiated HL-60 cells. TPA-differentiated HL-60 cells were used for this investigation, this study and the levels of cellular hydrogen peroxide (H2O2), caspase activity and ERK phosphorylation were determined following combined treatment with TPA and ascorbic acid. The results demonstrated that low‑dose ascorbic acid (5 µM) reduced the cellular levels of H2O2 and inhibited the differentiation of HL‑60 cells into macrophages following treatment with TPA. In addition, the results of the present study further demonstrated that low‑dose ascorbic acid inactivates the ERK phosphorylation pathway, which inhibited HL‑60 cell differentiation following treatment with TPA.

  17. Phosphorylation of PTEN increase in pathological right ventricular hypertrophy in rats with chronic hypoxia induced pulmonary hypertension

    Institute of Scientific and Technical Information of China (English)

    Nie Xin; Shi Yiwei; Yu Wenyan; Xu Jianying; Hu Xiaoyun; Du Yongcheng

    2014-01-01

    Background Phosphatase and tensin homologue on chromosome ten (PTEN) acts as a convergent nodal signalling point for cardiomyocyte hypertrophy,growth and survival.However,the role of PTEN in cardiac conditions such as right ventricular hypertrophy caused by chronic hypoxic pulmonary,hypertension remains unclear.This study preliminarily discussed the role of PTEN in the cardiac response to increased pulmonary vascular resistance using the hypoxia-induced PH rats.Methods Male Sprague Dawley rats were exposed to 10% oxygen for 1,3,7,14 or 21 days to induce hypertension and right ventricular hypertrophy.Right ventricular systolic pressure was measured via catheterization.Hypertrophy index was calculated as the ratio of right ventricular mass to left ventricle plus septum mass.Tissue morphology and fibrosis were measured using hematoxylin,eosin and picrosirius red staining.The expression and phosphorylation levels of PTEN in ventricles were determined by real time PCR and Western blotting.Results Hypoxic exposure of rats resulted in pathological hypertrophy,interstitial fibrosis and remodelling of the right ventricle.The phosphorylation of PTEN increased significantly in the hypertrophic right ventricle compared to the normoxic control group.There were no changes in protein expression in either ventricle.Conclusion Hypoxia induced pulmonary hypertension developed pathological right ventricular hypertrophy and remodelling probablv related to an increased phosohorvlation of PTEN.

  18. H2AX phosphorylation regulated by p38 is involved in Bim expression and apoptosis in chronic myelogenous leukemia cells induced by imatinib.

    Science.gov (United States)

    Dong, Yaqiong; Xiong, Min; Duan, Lianning; Liu, Ze; Niu, Tianhui; Luo, Yuan; Wu, Xinpin; Xu, Chengshan; Lu, Chengrong

    2014-08-01

    Increasing evidence suggests that histone H2AX plays a critical role in regulation of tumor cell apoptosis and acts as a novel human tumor suppressor protein. However, the action of H2AX in chronic myelogenous leukemia (CML) cells is unknown. The detailed mechanism and epigenetic regulation by H2AX remain elusive in cancer cells. Here, we report that H2AX was involved in apoptosis of CML cells. Overexpression of H2AX increased apoptotic sensitivity of CML cells (K562) induced by imatinib. However, overexpression of Ser139-mutated H2AX (blocking phosphorylation) decreased sensitivity of K562 cells to apoptosis. Similarly, knockdown of H2AX made K562 cells resistant to apoptotic induction. These results revealed that the function of H2AX involved in apoptosis is strictly related to its phosphorylation (Ser139). Our data further indicated that imatinib may stimulate mitogen-activated protein kinase (MAPK) family member p38, and H2AX phosphorylation followed a similar time course, suggesting a parallel response. H2AX phosphorylation can be blocked by p38 siRNA or its inhibitor. These data demonstrated that H2AX phosphorylation was regulated by p38 MAPK pathway in K562 cells. However, the p38 MAPK downstream, mitogen- and stress-activated protein kinase-1 and -2, which phosphorylated histone H3, were not required for H2AX phosphorylation during apoptosis. Finally, we provided epigenetic evidence that H2AX phosphorylation regulated apoptosis-related gene Bim expression. Blocking of H2AX phosphorylation inhibited Bim gene expression. Taken together, these data demonstrated that H2AX phosphorylation regulated by p38 is involved in Bim expression and apoptosis in CML cells induced by imatinib.

  19. The roles of phosphorylation and SHAGGY-like protein kinases in geminivirus C4 protein induced hyperplasia.

    Directory of Open Access Journals (Sweden)

    Katherine Mills-Lujan

    Full Text Available Even though plant cells are highly plastic, plants only develop hyperplasia under very specific abiotic and biotic stresses, such as when exposed to pathogens like Beet curly top virus (BCTV. The C4 protein of BCTV is sufficient to induce hyperplasia and alter Arabidopsis development. It was previously shown that C4 interacts with two Arabidopsis Shaggy-like protein kinases, AtSK21 and 23, which are negative regulators of brassinosteroid (BR hormone signaling. Here we show that the C4 protein interacts with five additional AtSK family members. Bikinin, a competitive inhibitor of the seven AtSK family members that interact with C4, induced hyperplasia similar to that induced by the C4 protein. The Ser49 residue of C4 was found to be critical for C4 function, since: 1 mutagenesis of Ser49 to Ala abolished the C4-induced phenotype, abolished C4/AtSK interactions, and resulted in a mutant protein that failed to induce changes in the BR signaling pathway; 2 Ser49 is phosphorylated in planta; and 3 plant-encoded AtSKs must be catalytically active to interact with C4. A C4 N-myristoylation site mutant that does not localize to the plasma membrane and does not induce a phenotype, retained the ability to bind AtSKs. Taken together, these results suggest that plasma membrane associated C4 interacts with and co-opts multiple AtSKs to promote its own phosphorylation and activation to subsequently compromise cell cycle control.

  20. Effect of molecular aggregation on the photo-induced anisotropy in amorphous polymethacrylate bearing an aminonitroazobenzene moiety

    CERN Document Server

    Kim, B J; Choi, D H

    2001-01-01

    We investigated H-type molecular aggregation in a simply spin-coated amorphous homopolymer film of polymethacrylate containing push-pull azobenzene moieties. It was found that the aggregate formation was strongly influenced by thermal treatment and that the aggregate created in the polymer film could be easily disrupted by irradiation of a linearly polarized light. In the first writing cycle of aggregated polymer film, photo-induced birefringence showed a steep increase to the highest value followed by a gradual decrease to the certain asymptotic value under longer irradiation of linearly polarized light. This unique behavior could be attributed to the cooperative motion and the disruption of the aggregated molecules under continuous irradiation of light.

  1. Nocturnal activation of aurora C in rat pineal gland: its role in the norepinephrine-induced phosphorylation of histone H3 and gene expression.

    Science.gov (United States)

    Price, D M; Kanyo, R; Steinberg, N; Chik, C L; Ho, A K

    2009-05-01

    We have shown previously that Ser10 phosphorylation of histone H3 occurs in rat pinealocytes after stimulation with norepinephrine (NE) and that histone modifications such as acetylation appear to play an important role in pineal gene transcription. Here we report the nocturnal phosphorylation of a Ser10 histone H3 kinase, Aurora C, in the rat pineal gland. The time profile of this phosphorylation parallels the increase in the level of phospho-Ser10 histone H3. Studies with cultured pinealocytes indicate that Aurora C phosphorylation is induced by NE and this induction can be blocked by cotreatment with propranolol or KT5720, a protein kinase A inhibitor. Moreover, only treatment with dibutyryl cAMP, but not other kinase activators, mimics the effect of NE on Aurora C phosphorylation. These results indicate that Aurora C is phosphorylated primarily by a beta-adrenergic/protein kinase A-mediated mechanism. Treatment with an Aurora C inhibitor reduces the NE-induced histone H3 phosphorylation and suppresses the NE-stimulated induction of arylalkylamine N-acetyltransferase (AA-NAT), the rhythm-controlling enzyme of melatonin synthesis, and melatonin production. The effects of Aurora C inhibitors on adrenergic-induced genes in rat pinealocytes are gene specific: inhibitory for Aa-nat and inducible cAMP repressor but stimulatory for c-fos. Together our results support a role for the NE-stimulated phosphorylation of Aurora C and the subsequent remodeling of chromatin in NE-stimulated Aa-nat transcription. This phenomenon suggests that activation of this mitotic kinase can be induced by extracellular signals to participate in the transcriptional induction of a subset of genes in the rat pineal gland.

  2. Thrombin Receptor-Activating Protein (TRAP-Activated Akt Is Involved in the Release of Phosphorylated-HSP27 (HSPB1 from Platelets in DM Patients

    Directory of Open Access Journals (Sweden)

    Haruhiko Tokuda

    2016-05-01

    Full Text Available It is generally known that heat shock protein 27 (HSP27 is phosphorylated through p38 mitogen-activated protein (MAP kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP on the release of HSP27 in platelets in type 2 diabetes mellitus (DM patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78 were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC of small aggregates (9–25 µm induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25–50 µm, large aggregates (50–70 µm and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients.

  3. Synthesis and Properties of Gelators Derived from Tetraphenylethylene and Gallic Acid with Aggregation-Induced Emission

    Science.gov (United States)

    Luo, Miao; Zhou, Xie; Chi, Zhenguo; Ma, Chunping; Zhang, Yi; Liu, Siwei; Xu, Jiarui

    2013-09-01

    Two novel organogelators (TEG and TAG) based on tetraphenylethylene and 3,4,5-tris(dodecyloxy) benzoic acid were synthesized through ester bond and amido bond linkages, respectively. Compounds TEG and TAG were able to induce gelation in ethanol. Aggregation-induced enhanced emission was observed in these organogelator molecules, with increased fluorescence intensity from the solutions to the gels. The completely thermoreversible gelation occurred due to the aggregation of the organogelators. In the process, a fibrous network was formed by a combination of intermolecular hydrogen bonding, π-π stacking and van der Waals interactions. These phenomena were observed in the xerogels by field-emission scanning electron microscopy and Fourier-transform infrared spectroscopy. The results of differential scanning calorimetry and polarized optical microscopy indicated that compound TAG exhibited stable liquid crystalline phases over a wide temperature range. The linking groups have severe influence on the properties of the organogelators, which was mainly attributed to the hydrogen bonding interaction in compound TAG.

  4. Changes of conformation and aggregation state induced by binding of lanthanide ions to insulin

    Institute of Scientific and Technical Information of China (English)

    程驿; 李荣昌; 王夔

    2002-01-01

    To clarify the mechanism of lanthanide ions (Ln3+) on the across-membrane transport of insulin and subsequent reducing blood glucose, the interactions of Ln3+ with Zn-insulin and Zn-free insulin are investigated by spectroscopic methods. The results reveal that the binding of Ln3+ to insulin can induce its structure changes from secondary to quaternary structure, depending on the Ln3+ concentration. In the lower concentration, it triggers the conformational changes of insulin monomer in the binding region with insulin receptor (B(24-30)). It would affect insulin-insulin receptor interaction. Moreover, Ln3+ binding promotes the assembly of insulin monomer from dimer to polymer. The potency of Ln3+ in inducing insulin's aggregation is stronger than that of Zn2+. Furthermore, the aggregation can be reversed partly by EDTA-treatment, indicating that it is not due to denaturation. Similar to Zn2+ effect, Ln3+ can stabilize insulin hexamer in a certain range of concentration, but is stronger than the former.

  5. Suppression of Kasha's rule as a mechanism for fluorescent molecular rotors and aggregation-induced emission

    Science.gov (United States)

    Qian, Hai; Cousins, Morgan E.; Horak, Erik H.; Wakefield, Audrey; Liptak, Matthew D.; Aprahamian, Ivan

    2017-01-01

    Although there are some proposed explanations for aggregation-induced emission, a phenomenon with applications that range from biosensors to organic light-emitting diodes, current understanding of the quantum-mechanical origin of this photophysical behaviour is limited. To address this issue, we assessed the emission properties of a series of BF2-hydrazone-based dyes as a function of solvent viscosity. These molecules turned out to be highly efficient fluorescent molecular rotors. This property, in addition to them being aggregation-induced emission luminogens, enabled us to probe deeper into their emission mechanism. Time-dependent density functional theory calculations and experimental results showed that the emission is not from the S1 state, as predicted from Kasha's rule, but from a higher energy (>S1) state. Furthermore, we found that suppression of internal conversion to the dark S1 state by restricting the rotor rotation enhances fluorescence, which leads to the proposal that suppression of Kasha's rule is the photophysical mechanism responsible for emission in both viscous solution and the solid state.

  6. Changes of conformation and aggregation state induced by binding of lanthanide ions to insulin

    Institute of Scientific and Technical Information of China (English)

    程驿; 李荣昌; 王夔

    2002-01-01

    To clarify the mechanism of lanthanide ions (Ln3+) on the across-membrane transport of insulin and subsequent reducing blood glucose, the interactions of Ln3+with Zn-insulin and Zn-free insulin are investigated by spectroscopic methods. The results reveal that the binding of Ln3+ to insulin can induce its structure changes from secondary to quaternary structure, depending on the Ln3+ concentration. In the lower concentration, it triggers the conformational changes of insulin monomer in the binding region with insulin receptor (B(24-30)). It would affect insulin-insulin receptor interaction. Moreover, Ln3+ binding promotes the assembly of insulin monomer from dimer to polymer. The potency of Ln3+ in inducing insulin’s aggregation is stronger than that of Zn2+. Furthermore, the aggregation can be reversed partly by EDTA-treatment, indicating that it is not due to denaturation. Similar to Zn2+ effect, Ln3+ can stabilize insulin hexamer in a certain range of concentration, but is stronger than the former.

  7. Effect of nitric oxide-induced tyrosine phosphorylation of calcium-activated potassium channel α subunit on vascular hyporesponsiveness in rats

    Institute of Scientific and Technical Information of China (English)

    ZHOU Rong; LIU Liang-ming; HU De-yao

    2005-01-01

    Objective: To study the effect of nitric oxide-induced tyrosine phosphorylation of large-conductance calcium-activated potassium (BKCa) channel α subunit on vascular hyporesponsiveness in rats. Methods: A total of 46 Wistar rats of either sex, weighing 250 g±20 g, were used in this study. Models of vascular hyporesponsiveness induced by hemorrhagic shock (30 mm Hg for 2 hours) in vivo and by L-arginine in vitro were established respectively. The vascular responsiveness of isolated superior mesenteric arteries to norepinephrine was observed. Tyrosine phosphorylation of BKCa α subunit was evaluated with methods of immunoprecipitation and Western blotting. Results: In the smooth muscle cells of the superior mesenteric arteries, the expression of BKCa α subunit tyrosine phosphorylation increased following hemorrhagic shock, and L-arginine could induce BKCa channel α subunit tyrosine phosphorylation in a time- and dose-dependent manner. L-NAME (Nω-nitro-L-arginine-methyl-ester), a nitric oxide synthetase inhibitor, could partly restore the decreased vasoresponsiveness of the superior mesenteric arteries after hemorrhagic shock in rats. Down-regulating the protein tyrosine phosphorylation with genistein, a widely-used special protein tyrosine kinase inhibitor, could partly improve the decreased vasoresponsiveness of the superior mesenteric arteries induced by L-arginine in vitro, while up-regulating the protein tyrosine phosphorylation with Na3VO4, a protein tyrosine phosphatase inhibitor, could further decrease the nitric oxide-induced vascular hyporesponsiveness, which could be partly ameliorated by 0.1 mmol/L tetrabutylammonium chloride (TEA), a selective BKCa inhibitor at this concentration. Conclusions: Nitric oxide can induce the tyrosine phosphorylation of BKCa α subunit, which influences the vascular hyporesponsiveness in hemorrhagic shock rats or induced by L-arginine in vitro.

  8. MD-2 interacts with Lyn kinase and is tyrosine phosphorylated following LPS-induced activation of the Toll-like receptor 4 signaling pathway

    Science.gov (United States)

    Gray, Pearl; Dagvadorj, Jargalsaikhan; Michelsen, Kathrin S.; Brikos, Constantinos; Rentsendorj, Altan; Town, Terrence; Crother, Timothy R.; Arditi, Moshe

    2011-01-01

    Stimulation with LPS induces tyrosine phosphorylation of numerous proteins involved in the TLR signaling pathway. In this study, we demonstrate that MD-2 is also tyrosine phosphorylated following LPS stimulation. LPS-induced tyrosine phosphorylation of MD-2 is specific, it is blocked by the tyrosine kinase inhibitor, Herbimycin A, and by an inhibitor of endocytosis, Cytochalsin-D, suggesting that MD-2 phosphorylation occurs during trafficking of MD2 and not on cell surface. Furthermore, we identify two possible phospho-accepting tyrosine residues at positions 22 and 131. Mutant proteins in which these tyrosines were changed to phenylalanine have reduced phosphorylation and significantly diminished ability to activate NF-κB in response to LPS. In addition, MD2 co-precipitates and colocalizes with Lyn kinase, most likely in ER. A Lyn-binding peptide inhibitor abolished MD2 tyrosine phosphorylation, suggesting that Lyn is a likely candidate to be the kinase required for MD-2 tyrosine phophorylation. Our study demonstrates that tyrosine phosphorylation of MD-2 is important for signaling following exposure to LPS and underscores the importance of this event in mediating an efficient and prompt immune response. PMID:21918188

  9. Involvement of myristoylated alanine-rich C kinase substrate phosphorylation and translocation in cholecystokinin-induced amylase release in rat pancreatic acini.

    Science.gov (United States)

    Satoh, Keitaro; Narita, Takanori; Katsumata-Kato, Osamu; Sugiya, Hiroshi; Seo, Yoshiteru

    2016-03-15

    Cholecystokinin (CCK) is a gastrointestinal hormone that induces exocytotic amylase release in pancreatic acinar cells. The activation of protein kinase C (PKC) is involved in the CCK-induced pancreatic amylase release. Myristoylated alanine-rich C kinase substrate (MARCKS) is a ubiquitously expressed substrate of PKC. MARCKS has been implicated in membrane trafficking in several cell types. The phosphorylation of MARCKS by PKC results in the translocation of MARCKS from the membrane to the cytosol. Here, we studied the involvement of MARCKS in the CCK-induced amylase release in rat pancreatic acini. Employing Western blotting, we detected MARCKS protein in the rat pancreatic acini. CCK induced MARCKS phosphorylation. A PKC-δ inhibitor, rottlerin, inhibited the CCK-induced MARCKS phosphorylation and amylase release. In the translocation assay, we also observed CCK-induced PKC-δ activation. An immunohistochemistry study showed that CCK induced MARCKS translocation from the membrane to the cytosol. When acini were lysed by a detergent, Triton X-100, CCK partially induced displacement of the MARCKS from the GM1a-rich detergent-resistant membrane fractions (DRMs) in which Syntaxin2 is distributed. A MARCKS-related peptide inhibited the CCK-induced amylase release. These findings suggest that MARCKS phosphorylation by PKC-δ and then MARCKS translocation from the GM1a-rich DRMs to the cytosol are involved in the CCK-induced amylase release in pancreatic acinar cells.

  10. Alkali silica reaction in concrete induced by mortar adhered to recycled aggregate

    Directory of Open Access Journals (Sweden)

    Etxeberria, M.

    2010-02-01

    Full Text Available The durability of recycled concrete must be determined before this material can be used in construction. In this paper the alkali-silica reaction in recycled concrete is analyzed. The recycled concrete is made with recycled aggregates, composed by original limestone aggregates and adhered mortar with reactive silica sand, and high alkali content cement. Due to the manufacturing process used for concrete production and the high water absorption capacity of recycled aggregates, cement accumulation happens in the interface (ITZ. The concentration of alkalis on the surface of recycled aggregates- ITZ and the presence of reactive sand in the mortar adhering to the recycled aggregate induce an alkali-silica reaction in 6-month concrete. The existence of this reaction is confirmed by environmental scanning electron microscopy (ESEM and EDX analysis. The mechanical properties of 6-month recycled concrete were similar to those values at 28-days of curing.

    La durabilidad del hormigón fabricado con árido reciclado es necesario determinarla antes de su utilización como material de construcción. En este artículo se analiza la reacción álcali-sílice manifestada en el hormigón fabricado con árido reciclado procedente de hormigón (compuesto de árido original calizo y mortero adherido de arena sílice reactiva, y cemento de alto contenido en álcalis. Debido al proceso de fabricación del hormigón y la alta capacidad de absorción del árido reciclado se produce una acumulación del cemento en la Interfase (ITZ. Debido al contacto directo de los álcalis del cemento con la arena sílice reactiva se produce una reacción álcali sílice a los 6 meses de edad del hormigón. Se realiza un análisis mediante microscopio electrónico de barrido ambiental (ESEM y sistema analítico de EDX. Se determina que las propiedades mecánicas del hormigón reciclado a 6 meses son similares a las obtenidas a los 28 días de curado.

  11. The secondary and aggregation structural changes of BSA induced by trivalent chromium: A biophysical study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mingmao [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, Fujian (China); Liu, Yan, E-mail: liuyan@fjirsm.ac.cn [The State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian (China); Cao, Huan [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, Fujian (China); Song, Ling [The State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian (China); Zhang, Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, Fujian (China)

    2015-02-15

    Trivalent chromium Cr(III), which was originally considered to be innocuous as a nutriment, has been suspected to induce some abnormalities in human body recently. In the present work, the effects of Cr(III) on the structural state of BSA were comprehensively investigated through a series of appropriate methods in combination, including X-ray photoelectron spectroscopy (XPS), fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), UV–vis absorption, synchronous fluorescence, fluorescence lifetime analysis, resonance light scattering (RLS), dynamic light scattering (DLS) and excitation–emission matrix spectroscopy (EEMS) methods. XPS accurately described the binding activity of Cr(III) with protein C, N and O atoms. The structural analysis according to FTIR and CD methods showed that the Cr(III) binding altered BSA conformation with a major reduction of α-helix. RLS and DLS analyses demonstrated that the presence of Cr(III) with low concentration could induce the aggregation structural changes of BSA. UV–vis absorption, EEMS and synchronous fluorescence suggested that the interaction between Cr(III) and BSA induced a slight unfolding of the polypeptide backbone and altered the microenvironments of Trp and Tyr residues in BSA. This research is helpful for understanding the structure-function relationship involved in metal ion-protein bioconjugate process. - Highlights: • The effect of Cr(III) on the conformational state of BSA was comprehensively studied. • XPS described the binding activity of Cr(III) with protein C, N and O atoms. • FTIR and CD data revealed secondary structural alteration in BSA. • Cr(III) complexation induced microenvironmental changes of Trp and Tyr. • RLS, DLS and EEMS presented the aggregational states of Cr(III)–BSA complex.

  12. Inhibition of Emodin on LPS-induced Nitric Oxide Generation by Suppressing PLC-γ Phosphorylation in Rat Peritoneal Macrophages

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-yu; CAI Shou-guang; WU Yi-fen; LI Jun-ying; YANG Wen-xiu; HU Fen

    2010-01-01

    Objective To investigate the inhibitory mechanism of emodin on lipopolysaccharide(LPS)-induced nitric oxide(NO)generation in rat peritoneal macrophages.Methods NO production and iNOS expression were measured through nitrite assay and Western blotting assay,respectively.NF-kB activity and nuclei P65 expression were estimated by dual-luciferase and Western blotting assay,respectively.Intracellular free Ca2+([Ca2+]i)was detected using the ratiometric fluorescent calcium indicator dye,Fura-2,and a microspectrofluorometer.PLC-γphosporylation was analyzed by Western blotting assay.Results First,emodin was found playing active roles in suppressing LPS-induced NF-kB activation in rat peritoneal macrophages.Second,emodin down-regulated transient[Ca2*]i and could increase in NF-kB upstream signal.Finally,emodin suppressed phosphorylation of PLC-γ by LPS stimulation in the upstream of[Ca2+]i.Conclusion Suppression of PLC-γ phosphorylation is involved in emodin inhibiting NO generation by LPS stimulation in rat peritoneal macrophages.

  13. Protein phosphorylation is involved in the water stress induced ABA accumulation in the roots of Malus hupehensis Rehd

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Water stress-induced ABA accumulation plays a key role in the root to shoot communication and/or the cell to cell signaling under the soil stresses. The signaling of the water stress itself that leads to the accumulation, however, is less known. In this study, we subjected the roots of Malus hupehensis seedlings to water stress treatment and investigated the ABA accumulation in relation to protein phosphorylation. Our results showed that ABA accumulation could be substantially triggered in 40 min and reached 4 folds in 100 min after treatment with 30% PEG 6000 (polyethylene glycol). The water stress treatment also led to a substantial enhancement of total kinase activity, assessed with histone-Ⅲ as substrate, in 15 min and a maximum enhancement in 30 min before it declined to initial level. The Ca2+-dependent kinase activity showed a similar, if not more sensitive, trend. When the roots were fed with labeled 32pATP, water stress enhanced the labeling of proteins, which showed a maximum labeling at 40 min. Two inhibitors of protein kinases, Quercetin and H7, effectively diminished or completely blocked the ABA accumulation under the stress treatment. It is therefore suggest that protein phosphorylation is involved in the signaling of the water stress-induced ABA accumulation.

  14. STIM1 Phosphorylation at Y361 Recruits Orai1 to STIM1 Puncta and Induces Ca2+ Entry

    Science.gov (United States)

    Yazbeck, Pascal; Tauseef, Mohammad; Kruse, Kevin; Amin, Md-Ruhul; Sheikh, Rayees; Feske, Stefan; Komarova, Yulia; Mehta, Dolly

    2017-01-01

    Store-operated Ca2+ entry (SOCE) mediates the increase in intracellular calcium (Ca2+) in endothelial cells (ECs) that regulates several EC functions including tissue-fluid homeostasis. Stromal-interaction molecule 1 (STIM1), upon sensing the depletion of (Ca2+) from the endoplasmic reticulum (ER) store, organizes as puncta that trigger store-operated Ca2+ entry (SOCE) via plasmalemmal Ca2+-selective Orai1 channels. While the STIM1 and Orai1 binding interfaces have been mapped, signaling mechanisms activating STIM1 recruitment of Orai1 and STIM1-Orai1 interaction remains enigmatic. Here, we show that ER Ca2+-store depletion rapidly induces STIM1 phosphorylation at Y361 via proline-rich kinase 2 (Pyk2) in ECs. Surprisingly, the phospho-defective STIM1-Y361F mutant formed puncta but failed to recruit Orai1, thereby preventing. SOCE Furthermore, studies in mouse lungs, expression of phosphodefective STIM1-Y361F mutant in ECs prevented the increase in vascular permeability induced by the thrombin receptor, protease activated receptor 1 (PAR1). Hence, Pyk2-dependent phosphorylation of STIM1 at Y361 is a critical phospho-switch enabling recruitment of Orai1 into STIM1 puncta leading to SOCE. Therefore, Y361 in STIM1 represents a novel target for limiting SOCE-associated vascular leak. PMID:28218251

  15. Spinal D1-like dopamine receptors modulate NMDA receptor-induced hyperexcitability and NR1 subunit phosphorylation at serine 889.

    Science.gov (United States)

    Aira, Zigor; Barrenetxea, Teresa; Buesa, Itsaso; Martínez, Endika; Azkue, Jon Jatsu

    2016-04-01

    Activation of the N-methyl-d-aspartate receptor (NMDAR) in dorsal horn neurons is recognized as a fundamental mechanism of central sensitization and pathologic pain. This study assessed the influence of dopaminergic, D1-like receptor-mediated input to the spinal dorsal horn on NMDAR function. Spinal superfusion with selective NMDAR agonist cis-ACPD significantly increased C-fiber-evoked field potentials in rats subjected to spinal nerve ligation (SNL), but not in sham-operated rats. Simultaneous application of D1LR antagonist SCH 23390 dramatically reduced hyperexcitability induced by cis-ACPD. Furthermore, cis-ACPD-induced hyperexcitability seen in nerve-ligated rats could be mimicked in unin-jured rats during stimulation of D1LRs by agonist SKF 38393 at subthreshold concentration. Phosphorylation of NMDAR subunit NR1 at serine 889 at postsynaptic sites was found to be increased in dorsal horn neurons 90 min after SNL, as assessed by increased co-localization with postsynaptic marker PSD-95. Increased NR1 phosphorylation was attenuated in the presence of SCH 23390 in the spinal superfusate. The present results support that D1LRs regulate most basic determinants of NMDAR function in dorsal horn neurons, suggesting a potential mechanism whereby dopaminergic input to the dorsal horn can modulate central sensitization and pathologic pain.

  16. Cigarette sidestream smoke induces histone H3 phosphorylation via JNK and PI3K/Akt pathways, leading to the expression of proto-oncogenes.

    Science.gov (United States)

    Ibuki, Yuko; Toyooka, Tatsushi; Zhao, Xiaoxu; Yoshida, Ikuma

    2014-06-01

    Post-translational modifications in histones have been associated with cancer. Although cigarette sidestream smoke (CSS) as well as mainstream smoke are carcinogens, the relationship between carcinogenicity and histone modifications has not yet been clarified. Here, we demonstrated that CSS induced phosphorylation of histones, involving a carcinogenic process. Treatment with CSS markedly induced the phosphorylation of histone H3 at serine 10 and 28 residues (H3S10 and H3S28), which was independent from the cell cycle, in the human pulmonary epithelial cell model, A549 and normal human lung fibroblasts, MRC-5 and WI-38. Using specific inhibitors and small interfering RNA, the phosphorylation of H3S10 was found to be mediated by c-jun N-terminal kinase (JNK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. These pathways were different from that of the CSS-induced phosphorylation of histone H2AX (γ-H2AX) mediated by Ataxia telangiectasia-mutated (ATM) and ATM-Rad3-related (ATR) protein kinases. A chromatin immunoprecipitation assay revealed that the phosphorylation of H3S10 was increased in the promoter sites of the proto-oncogenes, c-fos and c-jun, which indicated that CSS plays a role in tumor promotion. Because the phosphorylation of H3S10 was decreased in the aldehyde-removed CSS and was significantly induced by treatment with formaldehyde, aldehydes are suspected to partially contribute to this phosphorylation. These findings suggested that any chemicals in CSS, including aldehydes, phosphorylate H3S10 via JNK and PI3K/Akt pathways, which is different from the DNA damage response, resulting in tumor promotion.

  17. Protein kinase Ciota promotes nicotine-induced migration and invasion of cancer cells via phosphorylation of micro- and m-calpains.

    Science.gov (United States)

    Xu, Lijun; Deng, Xingming

    2006-02-17

    Nicotine is a major component in cigarette smoke that activates the growth-promoting pathways to facilitate the development of lung cancer. However, it is not clear whether nicotine affects cell motility to facilitate tumor metastasis. Here we discovered that nicotine potently induces phosphorylation of both mu- and m-calpains via activation of protein kinase Ciota (PKCiota), which is associated with accelerated migration and invasion of human lung cancer cells. Purified PKCiota directly phosphorylates mu- and m-calpains in vitro. Overexpression of PKCiota results in increased phosphorylation of both mu- and m-calpains in vivo. Nicotine also induces activation of c-Src, which is a known PKCiota upstream kinase. Treatment of cells with the alpha(7) nicotinic acetylcholine receptor inhibitor alpha-bungarotoxin can block nicotine-induced calpain phosphorylation with suppression of calpain activity, wound healing, cell migration, and invasion, indicating that nicotine-induced calpain phosphorylation occurs, at least in part, through a signaling pathway involving the upstream alpha(7) nicotinic acetylcholine receptor. Intriguingly, depletion of PKCiota by RNA interference suppresses nicotine-induced calpain phosphorylation, calpain activity, cell migration, and invasion, indicating that PKCiota is a necessary component in nicotine-mediated cell motility signaling. Importantly, nicotine potently induces secretion of mu- and m-calpains from lung cancer cells into culture medium, which may have potential to cleave substrates in the extracellular matrix. These findings reveal a novel role for PKCiota as a nicotine-activated, physiological calpain kinase that directly phosphorylates and activates calpains, leading to enhanced migration and invasion of human lung cancer cells.

  18. Suppression of Aggrus/podoplanin-induced platelet aggregation and pulmonary metastasis by a single-chain antibody variable region fragment.

    Science.gov (United States)

    Miyata, Kenichi; Takagi, Satoshi; Sato, Shigeo; Morioka, Hiroshi; Shiba, Kiyotaka; Minamisawa, Tamiko; Takami, Miho; Fujita, Naoya

    2014-12-01

    Almost all highly metastatic tumor cells possess high platelet aggregating abilities, thereby form large tumor cell-platelet aggregates in the microvasculature. Embolization of tumor cells in the microvasculature is considered to be the first step in metastasis to distant organs. We previously identified the platelet aggregation-inducing factor expressed on the surfaces of highly metastatic tumor cells and named as Aggrus. Aggrus was observed to be identical to the marker protein podoplanin (alternative names, T1α, OTS-8, and others). Aggrus is frequently overexpressed in several types of tumors and enhances platelet aggregation by interacting with the platelet receptor C-type lectin-like receptor 2 (CLEC-2). Here, we generated a novel single-chain antibody variable region fragment (scFv) by linking the variable regions of heavy and light chains of the neutralizing anti-human Aggrus monoclonal antibody MS-1 with a flexible peptide linker. Unfortunately, the generated KM10 scFv failed to suppress Aggrus-induced platelet aggregation in vitro. Therefore, we performed phage display screening and finally obtained a high-affinity scFv, K-11. K-11 scFv was able to suppress Aggrus-induced platelet aggregation in vitro. Moreover, K-11 scFv prevented the formation of pulmonary metastasis in vivo. These results suggest that K-11 scFv may be useful as metastasis inhibitory scFv and is expected to aid in the development of preclinical and clinical examinations of Aggrus-targeted cancer therapies.

  19. Role of pH-induced structural change in protein aggregation in foam fractionation of bovine serum albumin

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-03-01

    Full Text Available For reducing protein aggregation in foam fractionation, the role of pH-induced structural change in the interface-induced protein aggregation was analyzed using bovine serum albumin (BSA as a model protein. The results show that the decrease in pH from 7.0 to 3.0 gradually unfolded the BSA structure to increase the molecular size and the relative content of β-sheet and thus reduced the stability of BSA in the aqueous solution. At the isoelectric point (pH 4.7, BSA suffered the lowest level in protein aggregation induced by the gas–liquid interface. In the pH range from 7.0 to 4.7, most BSA aggregates were formed in the defoaming process while in the pH range from 4.7 to 3.0, the BSA aggregates were formed at the gas–liquid interface due to the unfolded BSA structure and they further aggregated to form insoluble ones in the desorption process.

  20. Phosphorylation-triggered CUEDC2 degradation promotes UV-induced G1 arrest through APC/C(Cdh1) regulation.

    Science.gov (United States)

    Zhang, Wei-Na; Zhou, Jie; Zhou, Tao; Li, Ai-Ling; Wang, Na; Xu, Jin-Jing; Chang, Yan; Man, Jiang-Hong; Pan, Xin; Li, Tao; Li, Wei-Hua; Mu, Rui; Liang, Bing; Chen, Liang; Jin, Bao-Feng; Xia, Qing; Gong, Wei-Li; Zhang, Xue-Min; Wang, Li; Li, Hui-Yan

    2013-07-02

    DNA damage triggers cell cycle arrest to provide a time window for DNA repair. Failure of arrest could lead to genomic instability and tumorigenesis. DNA damage-induced G1 arrest is generally achieved by the accumulation of Cyclin-dependent kinase inhibitor 1 (p21). However, p21 is degraded and does not play a role in UV-induced G1 arrest. The mechanism of UV-induced G1 arrest thus remains elusive. Here, we have identified a critical role for CUE domain-containing protein 2 (CUEDC2) in this process. CUEDC2 binds to and inhibits anaphase-promoting complex/cyclosome-Cdh1 (APC/C(Cdh1)), a critical ubiquitin ligase in G1 phase, thereby stabilizing Cyclin A and promoting G1-S transition. In response to UV irradiation, CUEDC2 undergoes ERK1/2-dependent phosphorylation and ubiquitin-dependent degradation, leading to APC/C(Cdh1)-mediated Cyclin A destruction, Cyclin-dependent kinase 2 inactivation, and G1 arrest. A nonphosphorylatable CUEDC2 mutant is resistant to UV-induced degradation. Expression of this stable mutant effectively overrides UV-induced G1-S block. These results establish CUEDC2 as an APC/C(Cdh1) inhibitor and indicate that regulated CUEDC2 degradation is critical for UV-induced G1 arrest.

  1. Imatinib induces H2AX phosphorylation and apoptosis in chronic myelogenous leukemia cells in vitro via caspase-3/Mst1 pathway

    Institute of Scientific and Technical Information of China (English)

    Yan-jun ZHANG; Lian-ning DUAN; Cheng-rong LU; Yan CAO; Yuan LUO; Rong-feng BAO; Shu YAN; Mei XUE; Feng ZHU; Zhe WANG

    2012-01-01

    Aim:Histone H2AX is a novel tumor suppressor and its phosphorylation at the C terminus (Ser139 and Tyr142)is required for tumor cell apoptosis.The aim of the present study was to elucidate the mechanisms underlying imatinib-induced C-terminal phosphorylation of H2AX in chronic myelogenous leukemia cells in vitro.Methods:BCR-ABL-positive K562 cells were used.Microscopy,Western blotting and flow cytometry were used to study the signaling pathways that regulate imatinib-induced H2AX phosphorylation and the apoptotic mechanisms.Results:Treatment of K562 cells with imatinib (1-8 μmol/L)induced phosphorylation of H2AX at Ser139 and Tyr142 in time-and dose-dependent manners.In contrast,imatinib at the same concentrations did not affect H2AX acetylation at Lys 5,and the acetylated H2AX maintained a higher level in the cells.Meanwhile,imatinib (1-8 μmol/L)activated caspase-3 and its downstream mammalian STE20-like kinase 1 (Mst1),and induced apoptosis of K562 cells.The caspase-3 inhibitor Z-VAD (40 μmol/L)reduced imatinibinduced H2AX phosphorylation at Ser139 and Tyr142 and blocked imatinib-induced apoptosis of K562 cells.Imatinib (4 μmol/L)induced expression of Williams-Beuren syndrome transcription factor (WSTF),but not wild-type p53-induced phosphatase 1 (Wip1)in K562 cells.Conclusion:The caspase-3/Mst1 pathway is required for H2AX C-terminal phosphorylation at Ser139 and Tyr142 and subsequent apoptosis in Bcr-Abl-positive K562 cells induced by imatinib.

  2. Interplay between desolvation and secondary structure in mediating cosolvent and temperature induced alpha-synuclein aggregation

    Science.gov (United States)

    Anderson, V. L.; Webb, W. W.; Eliezer, D.

    2012-10-01

    Both increased temperature and moderate concentrations of fluorinated alcohols enhance aggregation of the Parkinson's disease-associated protein α-synuclein (αS). Here, we investigate the secondary structural rearrangements induced by heating and trifluoroethanol [TFE]. At low TFE concentrations, CD spectra feature a negative peak characteristic of disordered polypeptides near 200 nm and a slight shoulder around 220 nm suggesting some polyproline-II content. Upon heating, these peaks weaken, while a weak negative signal develops at 222 nm. At high TFE concentrations, the spectra show distinct minima at 208 and 222 nm, indicative of considerable α-helical structure, which diminish upon heating. We observe a crossover between the low-TFE and high-TFE behavior near 15% TFE, where we previously showed that a partially helical intermediate is populated. We postulate that the protein is well solvated by water at low TFE concentrations and by TFE at high TFE concentrations, but may become desolvated at the crossover point. We discuss the potential roles and interplay of desolvation and helical secondary structure in driving αS aggregation.

  3. Aggregation-induced emissive nanoparticles for fluorescence signaling in a low cost paper-based immunoassay.

    Science.gov (United States)

    Engels, Jan F; Roose, Jesse; Zhai, Demi Shuang; Yip, Ka Man; Lee, Mei Suet; Tang, Ben Zhong; Renneberg, Reinhard

    2016-07-01

    Low cost paper based immunoassays are receiving interest due to their fast performance and small amounts of biomolecules needed for developing an immunoassay complex. In this work aggregation-induced emissive (AIE) nanoparticles, obtained from a diastereoisomeric mixture of 1,2-di-(4-hydroxyphenyl)-1,2-diphenylethene (TPEDH) in a one-step top-down method, are characterized through Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Zeta potential. By measuring the Zeta potential before and after labeling the nanoparticles with antibodies we demonstrate that the colloidal system is stable in a wide pH-range. The AIE-active nanoparticles are deposited on chitosan and glutaraldehyde modified paper pads overcoming the common aggregation-caused quenching (ACQ) effect. Analyte concentrations from 1000ng and below are applied in a model immunocomplex using Goat anti-Rabbit IgG and Rabbit IgG. In the range of 7.81ng-250ng, linear trends with a high R(2) are observed, which leads to a strong increase of the blue fluorescence from the TPEDH nanoparticles.

  4. Flow-induced Expression and Phosphorylation of VASP in Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    Lei WEI; Jing-Ping OU YANG; Muller SYLYAINE; Jean-Fran(c)ois SYOLTZ; Xiong WANG

    2005-01-01

    @@ 1 Introduction It is well known that mechanical forces have important influence on endothelial cells, in particular, on cytoskeleton reorganization. VASP (vasodilator stimulated phosphoprotein) is a 46 KD actin associated protein. It is a member of Ena/VASP protein family and composed of EVH1, proline-rich and EVH2 domains. It is considered as an important component of the sub-cellular regions where remodelling of the actin cytoskeleton takes place,such as the front of spreading lamellipodia in motile cells,focal adhesions, and cell-cell junctions[1 ~ 3] . The aim of this study was to investigate the effects of laminar shear stress on the expression and phosphorylation of VASP associated with actin remodelling in cultured human umbilical endothelial cells (HUVECs).

  5. Trichothecin induces cell death in NF-κB constitutively activated human cancer cells via inhibition of IKKβ phosphorylation.

    Directory of Open Access Journals (Sweden)

    Jia Su

    Full Text Available Constitutive activation of the transcription factor nuclear factor-κB (NF-κB is involved in tumorigenesis and chemo-resistance. As the key regulator of NF-κB, IKKβ is a major therapeutic target for various cancers. Trichothecin (TCN is a metabolite isolated from an endophytic fungus of the herbal plant Maytenus hookeri Loes. In this study, we evaluated the anti-tumor activity of TCN and found that TCN markedly inhibits the growth of cancer cells with constitutively activated NF-κB. TCN induces G0/G1 cell cycle arrest and apoptosis in cancer cells, activating pro-apoptotic proteins, including caspase-3, -8 and PARP-1, and decreasing the expression of anti-apoptotic proteins Bcl-2, Bcl-xL, and survivin. Reporter activity assay and target genes expression analysis illustrated that TCN works as a potent inhibitor of the NF-κB signaling pathway. TCN inhibits the phosphorylation and degradation of IκBα and blocks the nuclear translocation of p65, and thus inhibits the expression of NF-κB target genes XIAP, cyclin D1, and Bcl-xL. Though TCN does not directly interfere with IKKβ kinase, it suppresses the phosphorylation of IKKβ. Overexpression of constitutively activated IKKβ aborted TCN induced cancer cell apoptosis, whereas knockdown of endogenous IKKβ with siRNA sensitized cancer cells toward apoptosis induced by TCN. Moreover, TCN showed a markedly weaker effect on normal cells. These findings suggest that TCN may be a potential therapeutic candidate for cancer treatment, targeting NF-κB signaling.

  6. The influence of the crystal structure on aggregation-induced luminescence of derivatives of aminobenzoic acid

    Science.gov (United States)

    Nosova, D. A.; Zarochentseva, E. P.; Vysotskaya, S. O.; Klemesheva, N. A.; Korotkov, V. I.

    2014-12-01

    The luminescence of three derivatives of 2-(phenylamino)-benzoic acid (N-phenylanthranilic, mefenamic, and niflumic acids) in benzene solution, in the polycrystalline state, and in the hexamethylbenzene matrix is studied. In the crystalline state, these compounds exhibit intense aggregation-induced luminescence. An increase in luminescence is also observed in the impurity crystal. The hexamethylbenzene crystal lattice restricts the mobility of molecules, thus ensuring the rigidity of the molecular structure of acids, which decreases the efficiency of nonradiative electron energy degradation. The main reason for the increase in the luminescence intensity in the case of fixation in a crystalline matrix is the formation of intramolecular hydrogen bonds and dimers of acid molecules.

  7. A Robust Damage-Reporting Strategy for Polymeric Materials Enabled by Aggregation-Induced Emission.

    Science.gov (United States)

    Robb, Maxwell J; Li, Wenle; Gergely, Ryan C R; Matthews, Christopher C; White, Scott R; Sottos, Nancy R; Moore, Jeffrey S

    2016-09-28

    Microscopic damage inevitably leads to failure in polymers and composite materials, but it is difficult to detect without the aid of specialized equipment. The ability to enhance the detection of small-scale damage prior to catastrophic material failure is important for improving the safety and reliability of critical engineering components, while simultaneously reducing life cycle costs associated with regular maintenance and inspection. Here, we demonstrate a simple, robust, and sensitive fluorescence-based approach for autonomous detection of damage in polymeric materials and composites enabled by aggregation-induced emission (AIE). This simple, yet powerful system relies on a single active component, and the general mechanism delivers outstanding performance in a wide variety of materials with diverse chemical and mechanical properties.

  8. Polyamines induce aggregation of LHC II and quenching of fluorescence in vitro.

    Science.gov (United States)

    Tsiavos, Theodoros; Ioannidis, Nikolaos E; Kotzabasis, Kiriakos

    2012-05-01

    Dissipation of excess excitation energy within the light-harvesting complex of Photosystem II (LHC II) is a main process in plants, which is measured as the non-photochemical quenching of chlorophyll fluorescence or qE. We showed in previous works that polyamines stimulate qE in higher plants in vivo and in eukaryotic algae in vitro. In the present contribution we have tested whether polyamines can stimulate quenching in trimeric LHC II and monomeric light-harvesting complex b proteins from higher plants. The tetramine spermine was the most potent quencher and induced aggregation of LHC II trimers, due to its highly cationic character. Two transients are evident at 100 μM and 350 μM for the fluorescence and absorbance signals of LHC II respectively. On the basis of observations within this work, some links between polyamines and the activation of qE in vivo is discussed.

  9. Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 in human skeletal muscle

    DEFF Research Database (Denmark)

    Treebak, Jonas Thue; Pehmøller, Christian; Kristensen, Jonas Møller

    2014-01-01

    We investigated the phosphorylation signatures of two Rab GTPase activating proteins TBC1D1 and TBC1D4 in human skeletal muscle in response to physical exercise and physiological insulin levels induced by a carbohydrate rich meal using a paired experimental design. Eight healthy male volunteers...... in response to physiological stimuli in human skeletal muscle and support the idea that Akt and AMPK are upstream kinases. TBC1D1 phosphorylation signatures were comparable between in vitro contracted mouse skeletal muscle and exercised human muscle, and we show that AMPK was regulating phosphorylation...... of these sites in mouse muscle. Contraction and exercise elicited a different phosphorylation pattern of TBC1D4 in mouse compared with human muscle, and although different circumstances in our experimental setup may contribute to this difference, the observation exemplifies that transferring findings between...

  10. The differential DRP1 phosphorylation and mitochondrial dynamics in the regional specific astroglial death induced by status epilepticus

    Directory of Open Access Journals (Sweden)

    Ah-Reum eKo

    2016-05-01

    Full Text Available The response and susceptibility to astroglial degenerations are relevant to the distinctive properties of astrocytes in a hemodynamic-independent manner following status epilepticus (SE.Since impaired mitochondrial fission plays an important role in mitosis, apoptosis and programmed necrosis, we investigated whether the unique pattern of mitochondrial dynamics is involved in the characteristics of astroglial death induced by SE. In the present study, SE induced astroglial apoptosis in the molecular layer of the dentate gyrus, accompanied by decreased mitochondrial length. In contrast, clasmatodendritic (autophagic astrocytes in the CA1 region showed mitochondrial elongation induced by SE. Mdivi-1 (an inhibitor of mitochondrial fission effectively attenuated astroglial apoptosis, but WY14643 (an enhancer of mitochondrial fissionaggravated it. In addition, Mdivi-1accelerated clasmatodendritic changes in astrocytes. These regional specific mitochondrial dynamics in astrocytes were closely correlated with dynamin-related protein (DRP1, a mitochondrial fission protein phosphorylation, not optic atrophy 1 (a mitochondrial fusion protein expression. To the best of our knowledge, the present data demonstrate for the first time the novel role of DRP1-mediated mitochondrial fission in astroglial loss. Thus, the present findings suggest that the differential astroglial mitochondrial dynamics may participate in the distinct characteristics of astroglial death induced by SE.

  11. Time-dependent inhibitory effects of cGMP-analogues on thrombin-induced platelet-derived microparticles formation, platelet aggregation, and P-selectin expression.

    Science.gov (United States)

    Nygaard, Gyrid; Herfindal, Lars; Kopperud, Reidun; Aragay, Anna M; Holmsen, Holm; Døskeland, Stein Ove; Kleppe, Rune; Selheim, Frode

    2014-07-01

    In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigated whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.

  12. Phosphorylation of tau by death-associated protein kinase 1 antagonizes the kinase-induced cell apoptosis.

    Science.gov (United States)

    Duan, Dong-Xiao; Chai, Gao-Shang; Ni, Zhong-Fei; Hu, Yu; Luo, Yu; Cheng, Xiang-Shu; Chen, Ning-Ning; Wang, Jian-Zhi; Liu, Gong-Ping

    2013-01-01

    The intracellular accumulation of hyperphosphorylated tau plays a crucial role in neurodegeneration of Alzheimer's disease (AD), but the mechanism is not fully understood. From the observation that tau hyperphosphorylation renders cells more resistant to chemically-induced cell apoptosis, we have proposed that tau-involved apoptotic abortion may be the trigger of neurodegeneration. Here, we further studied whether this phenomenon is also applicable for the cell death induced by constitutively expressed factors, such as death-associated protein kinase 1 (DAPK1). We found that DAPK1 was upregulated and accumulated in the brain of human tau transgenic mice. Overexpression of DAPK1 in HEK293 and N2a cells decreased cell viability with activation of caspase-3, whereas simultaneous expression of tau antagonized DAPK1-induced apoptotic cell death. Expression of DAPK1 induced tau hyperphosphorylation at Thr231, Ser262, and Ser396 with no effects on protein phosphatase 2A, glycogen synthase kinase-3β, protein kinase A, calcium/calmodulin dependent protein kinase II, cell division cycle 2, or cyclin dependent protein kinase 5. The phosphorylation level of microtubule affinity-regulating kinase 2 (MARK2) was increased by expression of DAPK1, but simultaneous downregulation of MARK2 did not affect the DAPK1-induced tau hyperphosphorylation. DAPK1 was co-immunoprecipitated with tau proteins both in vivo and in vitro, and expression of the kinase domain-truncated DAPK1 did not induce tau hyperphosphorylation. These data suggest that tau hyperphosphorylation at Thr231, Ser262, and Ser396 by DAPK1 renders the cells more resistant to the kinase-induced apoptotic cell death, providing new insights into the tau-involved apoptotic abortion in the course of chronic neurodegeneration.

  13. Ligand-induced Ordering of the C-terminal Tail Primes STING for Phosphorylation by TBK1

    Directory of Open Access Journals (Sweden)

    Yuko Tsuchiya

    2016-07-01

    Full Text Available The innate immune protein Stimulator of interferon genes (STING promotes the induction of interferon beta (IFN-β production via the phosphorylation of its C-terminal tail (CTT by TANK-binding kinase 1 (TBK1. Potent ligands of STING are, therefore, promising candidates for novel anti-cancer drugs or vaccine adjuvants. However, the intrinsically flexible CTT poses serious problems in in silico drug discovery. Here, we performed molecular dynamics simulations of the STING fragment containing the CTT in ligand-bound and unbound forms and observed that the binding of a potent ligand cyclic GMP-AMP (cGAMP induced a local structure in the CTT, reminiscent of the known structure of a TBK1 substrate. The subsequent molecular biological experiments confirmed the observed dynamics of the CTT and identified essential residues for the activation of the IFN-β promoter, leading us to propose a new mechanism of STING activation.

  14. Intense resistance exercise induces early and transient increases in ryanodine receptor 1 phosphorylation in human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Sebastian Gehlert

    Full Text Available BACKGROUND: While ryanodine receptor 1 (RyR1 critically contributes to skeletal muscle contraction abilities by mediating Ca²⁺ion oscillation between sarcoplasmatic and myofibrillar compartments, AMP-activated protein kinase (AMPK senses contraction-induced energetic stress by phosphorylation at Thr¹⁷². Phosphorylation of RyR1 at serine²⁸⁴³ (pRyR1Ser²⁸⁴³ results in leaky RyR1 channels and impaired Ca²⁺homeostasis. Because acute resistance exercise exerts decreased contraction performance in skeletal muscle, preceded by high rates of Ca²⁺-oscillation and energetic stress, intense myofiber contractions may induce increased RyR1 and AMPK phosphorylation. However, no data are available regarding the time-course and magnitude of early RyR1 and AMPK phosphorylation in human myofibers in response to acute resistance exercise. PURPOSE: Determine the effects and early time-course of resistance exercise on pRyR1Ser²⁸⁴³ and pAMPKThr¹⁷² in type I and II myofibers. METHODS: 7 male subjects (age 23±2 years, height: 185±7 cm, weight: 82±5 kg performed 3 sets of 8 repetitions of maximum eccentric knee extensions. Muscle biopsies were taken at rest, 15, 30 and 60 min post exercise. pRyR1Ser²⁸⁴³ and pAMPKThr¹⁷² levels were determined by western blot and semi-quantitative immunohistochemistry techniques. RESULTS: While total RyR1 and total AMPK levels remained unchanged, RyR1 was significantly more abundant in type II than type I myofibers. pRyR1Ser²⁸⁴³ increased 15 min and peaked 30 min (p<0.01 post exercise in both myofiber types. Type I fibers showed relatively higher increases in pRyR1Ser²⁸⁴³ levels than type II myofibers and remained elevated up to 60 min post resistance exercise (p<0.05. pAMPKThr¹⁷² also increased 15 to 30 min post exercise (p<0.01 in type I and II myofibers and in whole skeletal muscle. CONCLUSION: Resistance exercise induces acutely increased pRyR1Ser²⁸⁴³ and

  15. PKC phosphorylates residues in the N-terminal of the DA transporter to regulate amphetamine-induced DA efflux.

    Science.gov (United States)

    Wang, Qiang; Bubula, Nancy; Brown, Jason; Wang, Yunliang; Kondev, Veronika; Vezina, Paul

    2016-05-27

    The DA transporter (DAT), a phosphoprotein, controls extracellular dopamine (DA) levels in the central nervous system through transport or reverse transport (efflux). Multiple lines of evidence support the claim that PKC significantly contributes to amphetamine-induced DA efflux. Other signaling pathways, involving CaMKII and ERK, have also been shown to regulate DAT mediated efflux. Here we assessed the contribution of putative PKC residues (S4, S7, S13) in the N-terminal of the DAT to amphetamine-induced DA efflux by transfecting DATs containing different serine to alanine (S-A) point mutations into DA pre-loaded HEK-293 cells and incubating these cells in amphetamine (2μM). The effects of a S-A mutation at the non-PKC residue S12 and a threonine to alanine (T-A) mutation at the ERK T53 residue were also assessed for comparison. WT-DATs were used as controls. In an initial experiment, we confirmed that inhibiting PKC with Go6976 (130nM) significantly reduced amphetamine-induced DA efflux. In subsequent experiments, cells transfected with the S4A, S12A, S13A, T53A and S4,7,13A mutants showed a reduction in amphetamine-induced DA efflux similar to that observed with Go6976. Interestingly, cells transfected with the S7A mutant, identified by some as a PKC-PKA residue, showed unperturbed WT-DAT levels of amphetamine-induced DA efflux. These results indicate that phosphorylation by PKC of select residues in the DAT N-terminal can regulate amphetamine-induced efflux. PKC can act either independently or in concert with other kinases such as ERK to produce this effect.

  16. Phosphocreatine protects against LPS-induced human umbilical vein endothelial cell apoptosis by regulating mitochondrial oxidative phosphorylation.

    Science.gov (United States)

    Sun, Zhengwu; Lan, Xiaoyan; Ahsan, Anil; Xi, Yalin; Liu, Shumin; Zhang, Zonghui; Chu, Peng; Song, Yushu; Piao, Fengyuan; Peng, Jinyong; Lin, Yuan; Han, Guozhu; Tang, Zeyao

    2016-03-01

    Phosphocreatine (PCr) is an exogenous energy substance, which provides phosphate groups for adenosine triphosphate (ATP) cycle and promotes energy metabolism in cells. However, it is still unclear whether PCr has influenced on mitochondrial energy metabolism as well as oxidative phosphorylation (OXPHO) in previous studies. Therefore, the aim of the present study was to investigate the regulation of PCr on lipopolsaccharide (LPS)-induced human umbilical vein endothelial cells (HUVECs) and mitochondrial OXPHO pathway. PCr protected HUVECs against LPS-induced apoptosis by suppressing the mitochondrial permeability transition, cytosolic release of cytochrome c (Cyt C), Ca(2+), reactive oxygen species and subsequent activation of caspases, and increasing Bcl2 expression, while suppressing Bax expression. More importantly, PCr significantly improved mitochondrial swelling and membrane potential, enhanced the activities of ATP synthase and mitochondrial creatine kinase (CKmt) in creatine shuttle, influenced on respiratory chain enzymes, respiratory control ratio, phosphorus/oxygen ratio and ATP production of OXPHO. Above PCr-mediated mitochondrial events were effectively more favorable to reduced form of flavin adenine dinucleotide (FADH2) pathway than reduced form of nicotinamide-adenine dinucleotid pathway in the mitochondrial respiratory chain. Our results revealed that PCr protects against LPS-induced HUVECs apoptosis, which probably related to stabilization of intracellular energy metabolism, especially for FADH2 pathway in mitochondrial respiratory chain, ATP synthase and CKmt. Our findings suggest that PCr may play a certain role in the treatment of atherosclerosis via protecting endothelial cell function.

  17. Serine 105 phosphorylation of transcription factor GATA4 is necessary for stress-induced cardiac hypertrophy in vivo.

    Science.gov (United States)

    van Berlo, Jop H; Elrod, John W; Aronow, Bruce J; Pu, William T; Molkentin, Jeffery D

    2011-07-26

    Cardiac hypertrophy is an adaptive growth process that occurs in response to stress stimulation or injury wherein multiple signal transduction pathways are induced, culminating in transcription factor activation and the reprogramming of gene expression. GATA4 is a critical transcription factor in the heart that is known to induce/regulate the hypertrophic program, in part, by receiving signals from MAPKs. Here we generated knock-in mice in which a known MAPK phosphorylation site at serine 105 (S105) in Gata4 that augments activity was mutated to alanine. Homozygous Gata4-S105A mutant mice were viable as adults, although they showed a compromised stress response of the myocardium. For example, cardiac hypertrophy in response to phenylephrine agonist infusion for 2 wk was largely blunted in Gata4-S105A mice, as was the hypertrophic response to pressure overload at 1 and 2 wk of applied stimulation. Gata4-S105A mice were also more susceptible to heart failure and cardiac dilation after 2 wk of pressure overload. With respect to the upstream pathway, hearts from Gata4-S105A mice did not efficiently hypertrophy following direct ERK1/2 activation using an activated MEK1 transgene in vivo. Mechanistically, GATA4 mutant protein from these hearts failed to show enhanced DNA binding in response to hypertrophic stimulation. Moreover, hearts from Gata4-S105A mice had significant changes in the expression of hypertrophy-inducible, fetal, and remodeling-related genes.

  18. Mutant GDF5 enhances ameloblast differentiation via accelerated BMP2-induced Smad1/5/8 phosphorylation

    Science.gov (United States)

    Liu, Jia; Saito, Kan; Maruya, Yuriko; Nakamura, Takashi; Yamada, Aya; Fukumoto, Emiko; Ishikawa, Momoko; Iwamoto, Tsutomu; Miyazaki, Kanako; Yoshizaki, Keigo; Ge, Lihong; Fukumoto, Satoshi

    2016-01-01

    Bone morphogenetic proteins (BMPs) regulate hard tissue formation, including bone and tooth. Growth differentiation factor 5 (GDF5), a known BMP, is expressed in cartilage and regulates chondrogenesis, and mutations have been shown to cause osteoarthritis. Notably, GDF5 is also expressed in periodontal ligament tissue; however, its role during tooth development is unclear. Here, we used cell culture and in vivo analyses to determine the role of GDF5 during tooth development. GDF5 and its associated BMP receptors are expressed at the protein and mRNA levels during postnatal tooth development, particularly at a stage associated with enamel formation. Furthermore, whereas BMP2 was observed to induce evidently the differentiation of enamel-forming ameloblasts, excess GDF5 induce mildly this differentiation. A mouse model harbouring a mutation in GDF5 (W408R) showed enhanced enamel formation in both the incisors and molars, but not in the tooth roots. Overexpression of the W408R GDF5 mutant protein was shown to induce BMP2-mediated mRNA expression of enamel matrix proteins and downstream phosphorylation of Smad1/5/8. These results suggest that mutant GDF5 enhances ameloblast differentiation via accelerated BMP2-signalling. PMID:27030100

  19. Orally given gastroprotective capsaicin does not modify aspirin-induced platelet aggregation in healthy male volunteers (human phase I examination).

    Science.gov (United States)

    Sandor, B; Papp, J; Mozsik, Gy; Szolcsanyi, J; Keszthelyi, Zs; Juricskay, I; Toth, K; Habon, Tamas

    2014-12-01

    Capsaicin is a well-known component of red pepper. Recent studies have shown that capsaicin could prevent gastric ulcer provoked by various NSAID-s like acetylsalicylic acid (ASA). Primary objective of this human clinical phase I trial was to investigate whether two different doses of capsaicin co-administered with ASA could alter the inhibitory effect of ASA on platelet aggregation. 15 healthy male subjects were involved in the study and treated orally with 400 μg capsaicin, 800 μg capsaicin, 500 mg ASA, 400 μg capsaicin+500 mg ASA and 800 μg capsaicin+500 mg ASA. Blood was drawn before and 1, 2, 6 and 24 hours after the drug administration. After that epinephrine induced platelet aggregation was measured by optical aggregometry. Between treatments, volunteers had a 6-day wash-out period. Our results showed that capsaicin had no effect on platelet aggregation, while as expected, ASA monotherapy resulted in a significant and clinically effective platelet aggregation inhibition (p ≤ 0.001). The combined ASA-capsaicin therapies reached equivalent effectiveness in platelet aggregation inhibition as ASA monotherapy. Our investigation proved that capsaicin did not influence the inhibitory effect of ASA on platelet aggregation, thus the capsaicin-ASA treatment would combine the antiplatelet effect of ASA with the possible gastroprotection of capsaicin.

  20. Liquid-Crystalline Star-Shaped Supergelator Exhibiting Aggregation-Induced Blue Light Emission.

    Science.gov (United States)

    Pathak, Suraj Kumar; Pradhan, Balaram; Gupta, Monika; Pal, Santanu Kumar; Sudhakar, Achalkumar Ammathnadu

    2016-09-13

    A family of closely related star-shaped stilbene-based molecules containing an amide linkage are synthesized, and their self-assembly in liquid-crystalline and gel states was investigated. The number and position of the peripheral alkyl tails were systematically varied to understand the structure-property relation. Interestingly, one of the molecules with seven peripheral chains was bimesomorphic, exhibiting columnar hexagonal and columnar rectangular phases, whereas the rest of them stabilized the room-temperature columnar hexagonal phase. The self-assembly of these molecules in liquid-crystalline and organogel states is extremely sensitive to the position and number of alkoxy tails in the periphery. Two of the compounds with six and seven peripheral tails exhibited supergelation behavior in long-chain hydrocarbon solvents. One of these compounds with seven alkyl chains was investigated further, and it has shown higher stability and moldability in the gel state. The xerogel of the same compound was characterized with the help of extensive microscopic and X-ray diffraction studies. The nanofibers in the xerogel are found to consist of molecules arranged in a lamellar fashion. Furthermore, this compound shows very weak emission in solution but an aggregation-induced emission property in the gel state. Considering the dearth of solid-state blue-light-emitting organic materials, this molecular design is promising where the self-assembly and emission in the aggregated state can be preserved. The nonsymmetric design lowers the phase-transition temperatures.The presence of an amide bond helps to stabilize columnar packing over a long range because of its polarity and intermolecular hydrogen bonding in addition to promoting organogelation.

  1. DNA packaging induced by micellar aggregates: a novel in vitro DNA condensation system.

    Science.gov (United States)

    Ghirlando, R; Wachtel, E J; Arad, T; Minsky, A

    1992-08-11

    Evidence for a conceptually novel DNA packaging process is presented. X-ray scattering, electron microscopy, and circular dichroism measurements indicate that in the presence of positively charged micellar aggregates and flexible anionic polymers, such as negatively charged polypeptides or single-stranded RNA species, a complex is formed in which DNA molecules are partially embedded within a micellar scaffold and partially condensed into highly packed chiral structures. Based on studies of micelle-DNA and micelle-flexible anionic polymer systems, as well as on the known effects of a high charge density upon the micellar organization, a DNA packaging model is proposed. According to this model, the DNA induces the elongation of the micelles into rodlike aggregates, forming a closely packed matrix in which the DNA molecules are immobilized. In contrast, the flexible anionic polymers stabilize clusters of spherical micelles which are proposed to effect a capping of the rodlike micelles, thus arresting their elongation and creating surfactant-free segments of the DNA that are able to converge and collapse. Thus, unlike other in vitro DNA packaging systems, in which condensation follows encounters between charge-neutralized DNA molecules, a prepackaging phase where the DNA is immobilized within a matrix is proposed in this case. Cellular and nuclear membranes have been implicated in DNA packaging processes in vivo, and negatively charged polyelectrolytes were shown to be involved in the processes. These observations, combined with the basic tenets of the DNA condensation system described here, allow for the progression to the study of more elaborate model systems and thus might lead to insights into the nature and roles of the intricate in vivo DNA-membrane complexes.

  2. Temperature induced structural transitions from native to unfolded aggregated states of tobacco etch virus protease

    Science.gov (United States)

    Zhu, Guo-Fei; Ren, Si-Yan; Xi, Lei; Du, Lin-Fang; Zhu, Xiao-Feng

    2015-02-01

    Tobacco etch virus protease (TEVp) is widely used to remove fusion tags from recombinant proteins because of its high and unique specificity. This work describes the conformational and the thermodynamic properties in the unfolding/refolding process of TEVp3M (three-point mutant: L56V/S135G/S219V) induced by temperature. With temperature increasing from 20 to 100 °C, the CD spectra showed a transition trend from α-helix to β-sheet, and the fluorescence emission, synchronous fluorescence, ANS and RLS spectroscopy consistently revealed that the temperature-induced unfolding process behaved in a three-state manner, for there was a relatively stable intermediate state observed around 50 °C. The reversibility of thermal unfolding of TEVp3M further showed that the transition from the native to the intermediate state was reversible (below 50 °C), however the transition from the intermediate to the unfolded state was irreversible (above 60 °C). Moreover, aggregates were observed above 60 °C as revealed by SDS-PAGE, Thioflavin-T fluorescence and Congo red absorbance.

  3. Exercise-induced TBC1D1 Ser237 phosphorylation and 14-3-3 protein binding capacity in human skeletal muscle

    DEFF Research Database (Denmark)

    Frøsig, Christian; Pehmøller, Christian; Birk, Jesper Bratz

    2010-01-01

    TBC1D1 is a Rab-GTPase activating protein involved in regulation of GLUT4 translocation in skeletal muscle. We here evaluated exercise-induced regulation of TBC1D1 Ser237 phosphorylation and 14-3-3 protein binding capacity in human skeletal muscle. In separate experiments healthy men performed all......-out cycle exercise lasting either 30 sec, 2 min or 20 min. After all exercise protocols, TBC1D1 Ser237 phosphorylation increased (~70 - 230%, Pprotein showed a similar pattern of regulation...... increasing 60 - 250% (Pprotein kinase (AMPK) induced both Ser237 phosphorylation and 14-3-3 binding properties on human TBC1D1 when evaluated in vitro. To further characterize the role of AMPK as an upstream kinase regulating TBC1D1, extensor digitorum longus...

  4. Protective effects of Nitraria retusa extract and its constituent isorhamnetin against amyloid β-induced cytotoxicity and amyloid β aggregation.

    Science.gov (United States)

    Iida, Akihisa; Usui, Takeo; Zar Kalai, Feten; Han, Junkyu; Isoda, Hiroko; Nagumo, Yoko

    2015-01-01

    Nitraria retusa is a halophyte species that is distributed in North Africa and used as a traditional medicinal plant. In this study, N. retusa ethanol extract and its constituent isorhamnetin (IRA) protected against amyloid β (Aβ)-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. An in vitro Aβ aggregation assay suggested that IRA destabilizes Aβ fibrils.

  5. Blockade of the formation of insoluble ubiquitinated protein aggregates by EGCG3"Me in the alloxan-induced diabetic kidney.

    Directory of Open Access Journals (Sweden)

    Shuxian Cai

    Full Text Available BACKGROUND: Renal accumulation of reactive carbonyl compounds (RCCs has been linked to the progression of diabetic nephropathy. We previously demonstrated that carbonyl stress induces the formation of amino-carbonyl cross-links and sharply increases the content of β-sheet-rich structures, which is the seed of insoluble aggregates formation, and tea catechin (--epigallocatechin 3-gallate (EGCG can reverse this process in vitro and in vivo. In this study, methylated derivative (--epigallocatechin-3-O-(3-O-methyl-gallate (EGCG3"Me was hypothesized to neutralize carbonyl stress mediating the formation of insoluble ubiquitinated protein (IUP aggregates, and reduce the early development of diabetic nephropathy. METHODS AND RESULTS: Diabetes was induced in mice by intraperitoneally injecting alloxan monohydrate (200 mg/kg/d twice and administering EGCG3"Me by gavage for 15 d. Reagent case and western blot results showed that, in diabetic kidneys, the carbonyl proteins in the serum increased; and in insoluble protein fraction, 4-hydroxynonenal-modified proteins, IUP aggregates and p62 accumulated; FT-IR study demonstrated that the lipid content, anti-parallel β-sheet structure and aggregates increased. EGCG3"Me treatment could effectively reverse this process, even better than the negative control treatment. CONCLUSIONS: EGCG3"Me exhibiting anti-β-sheet-rich IUP aggregate properties, maybe represents a new strategy to impede the progression of diabetic nephropathy and other diabetic complications.

  6. Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors

    OpenAIRE

    Sunhyo Kim; Ki Ju Choi; Sun-Jung Cho; Sang-Moon Yun; Jae-Pil Jeon; Young Ho Koh; Jihyun Song; Johnson, Gail V.W.; Chulman Jo

    2016-01-01

    The neuronal accumulation of phosphorylated tau plays a critical role in the pathogenesis of Alzheimer’s disease (AD). Here, we examined the effect of fisetin, a flavonol, on tau levels. Treatment of cortical cells or primary neurons with fisetin resulted in significant decreases in the levels of phosphorylated tau. In addition, fisetin decreased the levels of sarkosyl-insoluble tau in an active GSK-3β-induced tau aggregation model. However, there was no difference in activities of tau kinase...

  7. Gefitinib induces apoptosis in human glioma cells by targeting Bad phosphorylation.

    Science.gov (United States)

    Chang, Cheng-Yi; Shen, Chiung-Chyi; Su, Hong-Lin; Chen, Chun-Jung

    2011-12-01

    Gefitinib, a selective epidermal growth factor receptor tyrosine kinase inhibitor, is under clinical testing and use in cancer patients, including glioma. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma remain largely uncharacterized. Gefitinib inhibits cell growth and induces apoptosis in human glioma cells. Gefitinib also induces death of H4 cells with characteristics of the intrinsic apoptotic pathway, including Bax mitochondrial translocation, mitochondrial outer membrane permeabilization, cytochrome c cytosolic release, and caspase-9/caspase-3 activation. The importance of Bax in mediating gefitinib-induced apoptosis was confirmed by the attenuation of apoptosis by Bax siRNA and Bax channel blocker. Gefitinib caused Bad dephosphorylation, particularly in serine-112, and increased its binding preference to Bcl-2 and Bcl-xL. The dephosphorylation of Bad in gefitinib-treated cells was accompanied by reduced intracellular cyclic AMP content and protein kinase A (PKA) activity. Adenylyl cyclase activator forskolin attenuated, but PKA inhibitor H89 augmented, gefitinib-induced Bad dephosphorylation, Bax mitochondrial translocation, caspase-9/caspase-3 activation, and viability loss. Intriguingly, a nonselective protein phosphatase inhibitor okadaic acid alleviated gefitinib-induced alterations, except Bad dephosphorylation. In parallel with the higher basal PKA activity, response of U87 cells to gefitinib treatment was delayed and relatively resistant compared with that of H4 and T98G cells. Inactivation of PKA sensitized H4, T98G, and U87 cells to gefitinib cytotoxicity, Bad dephosphorylation in serine-112, and caspase-9/caspase-3 activation. Our findings suggest the involvement of the Bad/Bax signaling pathway in gefitinib-induced glioma apoptosis. Furthermore, the inactivation of PKA was shown to play a role in triggering the proapoptotic function of Bad.

  8. Nonlinear Absorption Spectroscopy of Porphyrin J-aggregates in Aqueous Solution: Evidence for Control of Degree of Association by Light-Induced Force

    Science.gov (United States)

    Shirakawa, Masayuki; Nakata, Kazuaki; Suzuki, Masaya; Kobayashi, Takayoshi; Tokunaga, Eiji

    2017-04-01

    Spectroscopic evidence was obtained for molecular aggregation states to be controlled by the irradiation of light, which is off-resonant below the peak absorption energies of both monomers and well-grown J-aggregates. In low (undersaturated)-concentration aqueous solutions of porphyrin molecules (tetraphenyl porphyrin tetrasulfonic acid; TPPS) where the monomer absorbance dominates, irradiation with a 532 nm laser induces a decrease in the monomer absorbance and an increase in the aggregate absorbance. The increase in the absorbance of J-aggregates occurs in a broad spectral range associated with the increase in the number of not only variously sized oligomer aggregates but also aggregates structurally different from well-grown stable J-aggregates. In high-concentration solutions where the J-aggregate absorbance dominates, a blue shift of the absorption peak of J-aggregates is induced at the same 532 nm irradiation, corresponding to a decrease in the aggregation number or in the association energy. By contrast, for spin-coated polymer films of monomers and J-aggregates where molecules are immobile, these features are not observed. It is remarkable that the gradient force potential is smaller by more than seven orders of magnitude than the kinetic energy of the thermal motion of the molecule at room temperature, but the absorption change in solution indicating the increase in the number of aggregates is as large as ΔA ˜ 10-3 in magnitude.

  9. Focal adhesion kinase and Src phosphorylations in HGF-induced proliferation and invasion of human cholangiocarcinoma cell line, HuCCA-1

    Institute of Scientific and Technical Information of China (English)

    Urai Pongchairerk; Jun-Lin Guan; Vijittra Leardkamolkarn

    2005-01-01

    AIM: To study the role of focal adhesion kinase (FAK) and its association with Src in hepatocyte growth factor (HGF)-induced cell signaling in cholangiocarcinoma progression.METHODS: Previously isolated HuCCA-1 cells were re-characterized by immunofluorescent staining and reverse transcriptase-polymerase chain reaction assay for the expression of cytokeratin 19, HGF and c-Met mRNA. Cultured HuCCA-1 cells were treated with HGF and determined for cell proliferation and invasion effects by MTT and invasion assays. Western blotting, immunoprecipitation, and co-immunoprecipitation were also performed to study the phosphorylation and interaction of FAK and Src. A novel Src inhibitor (AZM555130) was applied in cultures to investigate the effects on FAK phosphorylation inhibition and on cell proliferation and invasion.RESULTS: HGF enhanced HuCCA-1 cell proliferation and invasion by mediating FAK and Src phosphorylations.FAK-Src interaction occurred in a time-dependent manner that Src was proved to be an upstream signaling molecule to FAK. The inhibitor to Src decreased FAK phosphorylation level in correlation with the reduction of cell proliferation and invasion.CONCLUSION: FAK plays a significant role in signaling pathway of HGF-responsive cell line derived from cholangiocarcinoma. Autophosphorylated Src, induced by HGF, mediates Src kinase activation, which subsequently phosphorylates its substrate, FAK, and signals to cell proliferation and invasion.

  10. Effect of the crude extract of Cestrum parqui on carrageenin-induced rat paw oedema and aggregation of human blood platelets.

    Science.gov (United States)

    Shehnaz, D; Hamid, F; Baqai, F T; Uddin Ahmad, V

    1999-08-01

    An extract of Cestrum parqui aerial parts in methanol:water (1:1) showed inhibition of carrageenin-induced oedema. The aggregation of human blood platelets induced by adenosine diphosphate and platelet activating factor was also inhibited (IC(50)s were 3 and 2 mg/mL, respectively). On the contrary, the extract did not inhibit arachidonic acid-mediated platelet aggregation.

  11. The unfolded protein response mediates reversible tau phosphorylation induced by metabolic stress

    NARCIS (Netherlands)

    van der Harg, J. M.; Nolle, A.; Zwart, R.; Boerema, A. S.; van Haastert, E. S.; Strijkstra, A. M.; Hoozemans, J. J. M.; Scheper, W.

    2014-01-01

    The unfolded protein response (UPR) is activated in neurodegenerative tauopathies such as Alzheimer's disease (AD) in close connection with early stages of tau pathology. Metabolic disturbances are strongly associated with increased risk for AD and are a potent inducer of the UPR. Here, we demonstra

  12. Aggregation-induced fluorescence behavior of triphenylamine-based Schiff bases: the combined effect of multiple forces.

    Science.gov (United States)

    Yang, Mingdi; Xu, Dongling; Xi, Wengang; Wang, Lianke; Zheng, Jun; Huang, Jing; Zhang, Jingyan; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2013-10-18

    Eight triphenylamine (TPA)-based Schiff bases that exhibit different aggregation-induced emission (AIE) or aggregation-caused quenching (ACQ) behavior in tetrahydrofuran (THF)/water mixtures have been synthesized and characterized. The photophysical properties in solution, aqueous suspension, film, and the crystalline state along with their relationships were comparatively investigated. The single-crystal structures of 1-8 indicate that compact π···π stacking or excimers induce fluorescence quenching of 1, 2, 5, and 7. However, the existence of J aggregates or multiple intra- and intermolecular interactions restrict the intramolecular vibration and rotation, enabling compounds 3, 4, 6, and 8 to exhibit good AIE character. The size and growth process of particles with different water fractions were studied using scanning electron microscopy, which demonstrated that smaller uniformly dispersed nanoparticles in the THF/water mixtures favor fluorescence emission. The above results suggest that the combined effects of multiple forces caused by structural variation have a great influence on their molecular packing, electronic structure, and aggregation-induced fluorescence properties. In addition, piezofluorochromic experiments verified the potential applications of 4 and 6.

  13. Inhibitory effects and mechanisms of high molecular-weight phlorotannins from Sargassum thunbergii on ADP-induced platelet aggregation

    Institute of Scientific and Technical Information of China (English)

    WEI Yuxi; WANG Changyun; LI Jing; GUO Qi; QI Hongtao

    2009-01-01

    We evaluated the effects of high molecular-weight phlorotannins from Sargassum thunbergii (STP) on ADP-induced platelet aggregation and arachidonic acid (AA) metabolism in New Zealand white rabbits and Wistar rats. The inhibition of STP on platelet aggregation was investigated using a turbidimetric method, and the levels of the terminal products of AA metabolism were measured using the corresponding kits for maleic dialdehyde (MDA), thromboxane B2 (TXB2) and 6-keto-prostaglandin F1α (6-keto-PGF1α) by colorimetry and radioimmunoassay, as appropriate. We found that STP could inhibit ADP-induced platelet aggregation, and the inhibitory ratio was 91.50% at the STP concentration of 4.0 mg/mL. Furthermore, STP markedly affected AA metabolism by decreasing the synthesis of MDA (P<0.01) and increasing the synthesis of 6-keto-PGF1α, thus changing the plasma TXB2/6-keto-PGF1α balance when the platelets were activated (P<0.01). Therefore, STP altered AA metabolism and these findings partly revealed the molecular mechanism by which STP inhibits ADP-induced platelet aggregation.

  14. Quantitative Label-Free Phosphoproteomics Reveals Differentially Regulated Protein Phosphorylation Involved in West Nile Virus-Induced Host Inflammatory Response.

    Science.gov (United States)

    Zhang, Hao; Sun, Jun; Ye, Jing; Ashraf, Usama; Chen, Zheng; Zhu, Bibo; He, Wen; Xu, Qiuping; Wei, Yanming; Chen, Huanchun; Fu, Zhen F; Liu, Rong; Cao, Shengbo

    2015-12-01

    West Nile virus (WNV) can cause neuro-invasive and febrile illness that may be fatal to humans. The production of inflammatory cytokines is key to mediating WNV-induced immunopathology in the central nervous system. Elucidating the host factors utilized by WNV for productive infection would provide valuable insights into the evasion strategies used by this virus. Although attempts have been made to determine these host factors, proteomic data depicting WNV-host protein interactions are limited. We applied liquid chromatography-tandem mass spectrometry for label-free, quantitative phosphoproteomics to systematically investigate the global phosphorylation events induced by WNV infection. Quantifiable changes to 1,657 phosphoproteins were found; of these, 626 were significantly upregulated and 227 were downregulated at 12 h postinfection. The phosphoproteomic data were subjected to gene ontology enrichment analysis, which returned the inflammation-related spliceosome, ErbB, mitogen-activated protein kinase, nuclear factor kappa B, and mechanistic target of rapamycin signaling pathways. We used short interfering RNAs to decrease the levels of glycogen synthase kinase-3 beta, bifunctional polynucleotide phosphatase/kinase, and retinoblastoma 1 and found that the activity of nuclear factor kappa B (p65) is significantly decreased in WNV-infected U251 cells, which in turn led to markedly reduced inflammatory cytokine production. Our results provide a better understanding of the host response to WNV infection and highlight multiple targets for the development of antiviral and anti-inflammatory therapies.

  15. Pentoxifylline Regulates Plasminogen Activator Inhibitor-1 Expression and Protein Kinase A Phosphorylation in Radiation-Induced Lung Fibrosis

    Science.gov (United States)

    Bae, Chang-Hwan; Jin, Young-Woo; Lee, Seung-Sook

    2017-01-01

    Purpose. Radiation-induced lung fibrosis (RILF) is a serious late complication of radiotherapy. In vitro studies have demonstrated that pentoxifylline (PTX) has suppressing effects in extracellular matrix production in fibroblasts, while the antifibrotic action of PTX alone using clinical dose is yet unexplored. Materials and Methods. We used micro-computed tomography (micro-CT) and histopathological analysis to evaluate the antifibrotic effects of PTX in a rat model of RILF. Results. Micro-CT findings showed that lung density, volume loss, and mediastinal shift are significantly increased at 16 weeks after irradiation. Simultaneously, histological analysis demonstrated thickening of alveolar walls, destruction of alveolar structures, and excessive collagen deposition in the irradiated lung. PTX treatment effectively attenuated the fibrotic changes based on both micro-CT and histopathological analyses. Western analysis also revealed increased levels of plasminogen activator inhibitor- (PAI-) 1 and fibronectin (FN) and PTX treatment reduced expression of PAI-1 and FN by restoring protein kinase A (PKA) phosphorylation but not TGF-β/Smad in both irradiated lung tissues and epithelial cells. Conclusions. Our results demonstrate the antifibrotic effect of PTX on radiation-induced lung fibrosis and its effect on modulation of PKA and PAI-1 expression as possible antifibrotic mechanisms.

  16. Social isolation stress induces ATF-7 phosphorylation and impairs silencing of the 5-HT 5B receptor gene.

    Science.gov (United States)

    Maekawa, Toshio; Kim, Seungjoon; Nakai, Daisuke; Makino, Chieko; Takagi, Tsuyoshi; Ogura, Hiroo; Yamada, Kazuyuki; Chatton, Bruno; Ishii, Shunsuke

    2010-01-06

    Many symptoms induced by isolation rearing of rodents may be relevant to neuropsychiatric disorders, including depression. However, identities of transcription factors that regulate gene expression in response to chronic social isolation stress remain elusive. The transcription factor ATF-7 is structurally related to ATF-2, which is activated by various stresses, including inflammatory cytokines. Here, we report that Atf-7-deficient mice exhibit abnormal behaviours and increased 5-HT receptor 5B (Htr5b) mRNA levels in the dorsal raphe nuclei. ATF-7 silences the transcription of Htr5B by directly binding to its 5'-regulatory region, and mediates histone H3-K9 trimethylation via interaction with the ESET histone methyltransferase. Isolation-reared wild-type (WT) mice exhibit abnormal behaviours that resemble those of Atf-7-deficient mice. Upon social isolation stress, ATF-7 in the dorsal raphe nucleus is phosphorylated via p38 and is released from the Htr5b promoter, leading to the upregulation of Htr5b. Thus, ATF-7 may have a critical role in gene expression induced by social isolation stress.

  17. Cordycepin Induces Apoptosis and Inhibits Proliferation of Human Lung Cancer Cell Line H1975 via Inhibiting the Phosphorylation of EGFR.

    Science.gov (United States)

    Wang, Zheng; Wu, Xue; Liang, Yan-Ni; Wang, Li; Song, Zhong-Xing; Liu, Jian-Li; Tang, Zhi-Shu

    2016-09-27

    Cordycepin is an active component of the traditional Chinese medicine Cordyceps sinensis and Cordyceps militaris with notable anticancer activity. Though the prominent inhibitory activity was reported in different kinds of cancer cell lines, the concrete mechanisms remain elusive. It was reported that cordycepin could be converted into tri-phosphates in vivo to confuse a number of enzymes and interfere the normal cell function. For the inhibitory mechanism of EGFR inhibitors and the structure similarity of ATP and tri-phosphated cordycepin, human lung cancer cell line H1975 was employed to investigate the inhibitory effect of cordycepin. The results showed that cordycepin could inhibit cell proliferation and induce apoptosis in a dose-dependent manner. Cell cycle analysis revealed that H1975 cells could be arrested at the G₀/G₁ phase after cordycepin treatment. The expression levels of apoptosis-related protein Caspase-3 and Bcl-2 and phosphorylated expression levels of EGFR, AKT and ERK1/2 were all decreased compared with the control group stimulated with EGF. However, the protein expression levels of proapoptotic protein Bax and cleaved caspase-3 were increased. These results implied that cordycepin could inhibit cell proliferation and induce apoptosis via the EGFR signaling pathway. Our results indicated that there was potential to seek a novel EGFR inhibitor from cordycepin and its chemical derivatives.

  18. Cordycepin Induces Apoptosis and Inhibits Proliferation of Human Lung Cancer Cell Line H1975 via Inhibiting the Phosphorylation of EGFR

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    2016-09-01

    Full Text Available Cordycepin is an active component of the traditional Chinese medicine Cordyceps sinensis and Cordyceps militaris with notable anticancer activity. Though the prominent inhibitory activity was reported in different kinds of cancer cell lines, the concrete mechanisms remain elusive. It was reported that cordycepin could be converted into tri-phosphates in vivo to confuse a number of enzymes and interfere the normal cell function. For the inhibitory mechanism of EGFR inhibitors and the structure similarity of ATP and tri-phosphated cordycepin, human lung cancer cell line H1975 was employed to investigate the inhibitory effect of cordycepin. The results showed that cordycepin could inhibit cell proliferation and induce apoptosis in a dose-dependent manner. Cell cycle analysis revealed that H1975 cells could be arrested at the G0/G1 phase after cordycepin treatment. The expression levels of apoptosis-related protein Caspase-3 and Bcl-2 and phosphorylated expression levels of EGFR, AKT and ERK1/2 were all decreased compared with the control group stimulated with EGF. However, the protein expression levels of proapoptotic protein Bax and cleaved caspase-3 were increased. These results implied that cordycepin could inhibit cell proliferation and induce apoptosis via the EGFR signaling pathway. Our results indicated that there was potential to seek a novel EGFR inhibitor from cordycepin and its chemical derivatives.

  19. Pentoxifylline Regulates Plasminogen Activator Inhibitor-1 Expression and Protein Kinase A Phosphorylation in Radiation-Induced Lung Fibrosis

    Directory of Open Access Journals (Sweden)

    Jong-Geol Lee

    2017-01-01

    Full Text Available Purpose. Radiation-induced lung fibrosis (RILF is a serious late complication of radiotherapy. In vitro studies have demonstrated that pentoxifylline (PTX has suppressing effects in extracellular matrix production in fibroblasts, while the antifibrotic action of PTX alone using clinical dose is yet unexplored. Materials and Methods. We used micro-computed tomography (micro-CT and histopathological analysis to evaluate the antifibrotic effects of PTX in a rat model of RILF. Results. Micro-CT findings showed that lung density, volume loss, and mediastinal shift are significantly increased at 16 weeks after irradiation. Simultaneously, histological analysis demonstrated thickening of alveolar walls, destruction of alveolar structures, and excessive collagen deposition in the irradiated lung. PTX treatment effectively attenuated the fibrotic changes based on both micro-CT and histopathological analyses. Western analysis also revealed increased levels of plasminogen activator inhibitor- (PAI- 1 and fibronectin (FN and PTX treatment reduced expression of PAI-1 and FN by restoring protein kinase A (PKA phosphorylation but not TGF-β/Smad in both irradiated lung tissues and epithelial cells. Conclusions. Our results demonstrate the antifibrotic effect of PTX on radiation-induced lung fibrosis and its effect on modulation of PKA and PAI-1 expression as possible antifibrotic mechanisms.

  20. Ilex latifolia Prevents Amyloid β Protein (25-35)-Induced Memory Impairment by Inhibiting Apoptosis and Tau Phosphorylation in Mice.

    Science.gov (United States)

    Kim, Joo Youn; Lee, Hong Kyu; Jang, Ji Yeon; Yoo, Jae Kuk; Seong, Yeon Hee

    2015-12-01

    Ilex latifolia Thunb. (Aquifoliaceae), a Chinese bitter tea called "kudingcha," has been widely consumed as a health beverage and found to possess antioxidant, antidiabetic, antihypertensive, anti-inflammatory, and anti-ischemic activities. The aim of the present study was to investigate the neuroprotective effects of an ethanol extract of I. latifolia against amyloid β protein (Aβ)-induced memory impairment in mice and neurotoxicity in cultured rat cortical neurons. Memory impairment in mice was induced by intracerebroventricular injection of 15 nmol Aβ (25-35) and measured by the passive avoidance test and Morris water maze test. Chronic administration of I. latifolia (25-100 mg/kg, p.o.) significantly prevented Aβ (25-35)-induced memory loss. I. latifolia also prevented the decrease of glutathione concentrations, increased lipid peroxidation, expression of phosphorylated tau (p-tau), and changes in apoptosis-associated proteins in the memory-impaired mouse brain. Exposure of cultured cortical neurons to 10 μM Aβ (25-35) for 36 h induced neuronal apoptotic death. The neuronal cell death, elevation of intracellular Ca(2+) concentration, generation of reactive oxygen species, and expression of proapoptotic proteins caused by Aβ (25-35) in the cultured neurons were inhibited by treatment with I. latifolia (1-50 μg/mL). These results suggest that I. latifolia may have a possible therapeutic role in managing cognitive impairment associated with Alzheimer's disease. The underlying mechanism might involve the antiapoptotic effects mediated by antioxidant activity and inhibition of p-tau formation.

  1. Acute phencyclidine treatment induces extensive and distinct protein phosphorylation in rat frontal cortex

    DEFF Research Database (Denmark)

    Palmowski, Pawel; Rogowska-Wrzesinska, Adelina; Williamson, James

    2014-01-01

    assessment of the regulated proteins biological function revealed that PCP perturbs key processes in the frontal cortex including calcium homeostasis, organization of cytoskeleton, endo/exocytosis, and energy metabolism. This study on acute PCP treatment provides the largest proteomics and phosphoproteomics......Phencyclidine (PCP), a noncompetitive N-methyl-d-aspartate receptor antagonist, induces psychotomimetic effects in humans and animals. Administration of PCP to rodents is used as a preclinical model for schizophrenia; however, the molecular mechanisms underlying the symptoms remain largely unknown....... Acute PCP treatment rapidly induces behavioral and cognitive deficits; therefore, post-translational regulation of protein activity is expected to play a role at early time points. We performed mass-spectrometry- driven quantitative analysis of rat frontal cortex 15, 30, or 240 min after...

  2. Proteasome inhibition-induced p38 MAPK/ERK signaling regulates autophagy and apoptosis through the dual phosphorylation of glycogen synthase kinase 3{beta}

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Cheol-Hee [Research Center for Resistant Cells, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of); Department of Pharmacology, College of Medicine, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of); Lee, Byung-Hoon [College of Pharmacy and Multiscreening Center for Drug Development, Seoul National University, Seoul 151-742 (Korea, Republic of); Ahn, Sang-Gun [Department of Pathology, College of Dentistry, Chosun University, Gwangju 501-759 (Korea, Republic of); Oh, Seon-Hee, E-mail: oshccw@hanmail.net [Research Center for Resistant Cells, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer MG132 induces the phosphorylation of GSK3{beta}{sup Ser9} and, to a lesser extent, of GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer MG132 induces dephosphorylation of p70S6K{sup Thr389} and phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 dephosphorylates GSK3{beta}{sup Ser9} and phosphorylates GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer Inactivation of p38 phosphorylates p70S6K{sup Thr389} and increases the phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 decreases autophagy and increases apoptosis induced by MG132. -- Abstract: Proteasome inhibition is a promising approach for cancer treatment; however, the underlying mechanisms involved have not been fully elucidated. Here, we show that proteasome inhibition-induced p38 mitogen-activated protein kinase regulates autophagy and apoptosis by modulating the phosphorylation status of glycogen synthase kinase 3{beta} (GSK3{beta}) and 70 kDa ribosomal S6 kinase (p70S6K). The treatment of MDA-MB-231 cells with MG132 induced endoplasmic reticulum stress through the induction of ATF6a, PERK phosphorylation, and CHOP, and apoptosis through the cleavage of Bax and procaspase-3. MG132 caused the phosphorylation of GSK3{beta} at Ser{sup 9} and, to a lesser extent, Thr{sup 390}, the dephosphorylation of p70S6K at Thr{sup 389}, and the phosphorylation of p70S6K at Thr{sup 421} and Ser{sup 424}. The specific p38 inhibitor SB203080 reduced the p-GSK3{beta}{sup Ser9} and autophagy through the phosphorylation of p70S6K{sup Thr389}; however, it augmented the levels of p-ERK, p-GSK3{beta}{sup Thr390}, and p-70S6K{sup Thr421/Ser424} induced by MG132, and increased apoptotic cell death. The GSK inhibitor SB216763, but not lithium, inhibited the MG132-induced phosphorylation of p38, and the downstream signaling pathway was consistent with that in SB203580-treated cells. Taken together, our

  3. Disruption of δ-opioid receptor phosphorylation at Threonine 161 attenuates morphine tolerance in rats with CFA-induced inflammatory hypersensitivity

    Institute of Scientific and Technical Information of China (English)

    Hai-Jing Chen; Wei-Yan Xie; Fang Hu; Ying Zhang; Jun Wang; Yun Wang

    2012-01-01

    Objective Our previous study identified Threonine 161 (Thr-161),located in the second intracellular loop of the δ-opioid receptor (DOR),as the only consensus phosphorylation site for cyclin-dependent kinase 5 (Cdk5).The aim of this study was to assess the function of DOR phosphorylation by Cdk5 in complete Freund's adjuvant (CFA)-induced inflammatory pain and morphine tolerance.Methods Dorsal root ganglion (DRG) neurons of rats with CFA-induced inflammatory pain were acutely dissociated and the biotinylation method was used to explore the membrane localization of phosphorylated DOR at Thr-161 (pThr-161-DOR),and paw withdrawal latency was measured after intrathecal delivery of drugs or Tat-peptide,using a radiant heat stimulator in rats with CFA-induced inflammatory pain.Results Both the total amount and the surface localization of pThr-161-DOR were significantly enhanced in the ipsilateral DRG following CFA injection.Intrathecal delivery of the engineered Tat fusion-interefering peptide corresponding to the second intracellular loop of DOR (Tat-DOR-2L) increased inflammatory hypersensitivity,and inhibited DOR-but not μ-opioid receptor-mediated spinal analgesia in CFA-treated rats.However,intrathecal delivery of Tat-DOR-2L postponed morphine antinociceptive tolerance in rats with CFA-induced inflammatory pain.Conclusion Phosphorylation of DOR at Thr-161 by Cdk5 attenuates hypersensitivity and potentiates morphine tolerance in rats with CFA-induced inflammatory pain,while disruption of the phosphorylation of DOR at Thr-161 attenuates morphine tolerance.

  4. Duration of exposure to high fluid shear stress is critical in shear-induced platelet activation-aggregation.

    Science.gov (United States)

    Zhang, Jian-ning; Bergeron, Angela L; Yu, Qinghua; Sun, Carol; McBride, Latresha; Bray, Paul F; Dong, Jing-fei

    2003-10-01

    Platelet functions are increasingly measured under flow conditions to account for blood hydrodynamic effects. Typically, these studies involve exposing platelets to high shear stress for periods significantly longer than would occur in vivo. In the current study, we demonstrate that the platelet response to high shear depends on the duration of shear exposure. In response to a 100 dyn/cm2 shear stress for periods less than 10-20 sec, platelets in PRP or washed platelets were aggregated, but minimally activated as demonstrated by P-selectin expression and binding of the activation-dependent alphaIIbbeta3 antibody PAC-1 to sheared platelets. Furthermore, platelet aggregation under such short pulses of high shear was subjected to rapid disaggregation. The disaggregated platelets could be re-aggregated by ADP in a pattern similar to unsheared platelets. In comparison, platelets that are exposed to high shear for longer than 20 sec are activated and aggregated irreversibly. In contrast, platelet activation and aggregation were significantly greater in whole blood with significantly less disaggregation. The enhancement is likely via increased collision frequency of platelet-platelet interaction and duration of platelet-platelet association due to high cell density. It may also be attributed to the ADP release from other cells such as red blood cells because increased platelet aggregation in whole blood was partially inhibited by ADP blockage. These studies demonstrate that platelets have a higher threshold for shear stress than previously believed. In a pathologically relevant timeframe, high shear alone is likely to be insufficient in inducing platelet activation and aggregation, but acts synergistically with other stimuli.

  5. Reaction-induced fracturing in a hot pressed calcite-periclase aggregate

    Science.gov (United States)

    Kuleci, H.; Ulven, O. I.; Rybacki, E.; Wunder, B.; Abart, R.

    2017-01-01

    The chemo-mechanical feedbacks associated with hydration of periclase immersed in a calcite matrix were investigated experimentally. Dense calcite-periclase aggregates with calcite to periclase ratio of 90/10 and 95/5 by volume were prepared by hot isostatic pressing. Subsequent hydration experiments were performed in a hydrothermal apparatus at temperatures of 580-610 °C and a pressure of 200 MPa for run durations of 5-60 min. The rate of the periclase to brucite transformation was primarily controlled by the access of fluid. Where fluid was present, the reaction was too fast for the associated positive volume increase of the solids of about 100% to be accommodated by creep of the calcite matrix, and fracturing was induced. The newly formed cracks greatly enhanced the access of fluid leading to a positive feedback between hydration and fracturing. Mostly the newly formed cracks follow pre-existing grain boundaries in the calcite matrix. Comparison of experimental results with numerical 2D discrete element modelling (DEM) of crack formation revealed that the geometry of the crack pattern around a reacting particle depends on the shape of the original periclase particle, on the mechanical strength of the particle-matrix interface and on the mechanical strength and arrangement of grain boundaries in the calcite matrix in the immediate vicinity of the swelling particle.

  6. Synthesis, Aggregation Induced Emission and Mechanochromic Luminescence of New β-Diketone Derivatives Bearing Tetraphenylene Moieties.

    Science.gov (United States)

    Shi, Haijie; Liu, Rui; Zhu, Senqiang; Gong, Qiqi; Shi, Hong; Zhu, Xiaolin; Zhu, Hongjun

    2016-11-01

    A series of β-diketone derivatives bearing tetraphenylene (TPE) moieties were synthesized and characterized. Their photophysical properties were investigated systematically via spectroscopic and theoretical methods. All compounds exhibit broad absorption bands between 300 and 450 nm, which are assigned to the (1)π-π* transition of the conjugated system mixed intramolecular charge-transfer (ICT) transitions. Meanwhile, the emission of these compounds in solution at room temperature (λ em = 458 ~ 509 nm) can be attributed to the (1)π,π*/(1)ICT state. Introduction of freely rotatable TPE to conventional β-diketone luminophors quenches their light emissions in the solutions, but endows these molecules with aggregation-induced emission (AIE) characteristics in the condensed phase due to the restriction of intramolecular rotation. The spectroscopic studies and theoretical calculations indicate that the photophysical properties of these β-diketone derivatives can be tuned by the appended substituents, which would be useful for rational design of AIE compounds with high solid state luminescence performance. Furthermore, these AIE-active compounds exhibited distinct piezofluorochromic properties and switched reversibly upon grinding-fuming. Their photophysical properties have been investigated with the aim to provide a basis for elucidating the structure-property correlations and developing new multi-stimuli responsive luminescent materials.

  7. Thermally-induced aggregation and fusion of protein-free lipid vesicles.

    Science.gov (United States)

    Ibarguren, Maitane; Bomans, Paul H H; Ruiz-Mirazo, Kepa; Frederik, Peter M; Alonso, Alicia; Goñi, Félix M

    2015-12-01

    Membrane fusion is an important phenomenon in cell biology and pathology. This phenomenon can be modeled using vesicles of defined size and lipid composition. Up to now fusion models typically required the use of chemical (polyethyleneglycol, cations) or enzymatic catalysts (phospholipases). We present here a model of lipid vesicle fusion induced by heat. Large unilamellar vesicles consisting of a phospholipid (dioleoylphosphatidylcholine), cholesterol and diacylglycerol in a 43:57:3 mol ratio were employed. In this simple system, fusion was the result of thermal fluctuations, above 60 °C. A similar system containing phospholipid and cholesterol but no diacylglycerol was observed to aggregate at and above 60 °C, in the absence of fusion. Vesicle fusion occurred under our experimental conditions only when (31)P NMR and cryo-transmission electron microscopy of the lipid mixtures used in vesicle preparation showed non-lamellar lipid phase formation (hexagonal and cubic). Non-lamellar structures are probably the result of lipid reassembly of the products of individual fusion events, or of fusion intermediates. A temperature-triggered mechanism of lipid reassembly might have occurred at various stages of protocellular evolution.

  8. Astrocyte-derived tissue Transglutaminase affects fibronectin deposition, but not aggregation, during cuprizone-induced demyelination

    Science.gov (United States)

    Espitia Pinzon, Nathaly; Sanz-Morello, Berta; Brevé, John J. P.; Bol, John G. J. M.; Drukarch, Benjamin; Bauer, Jan; Baron, Wia; van Dam, Anne-Marie

    2017-01-01

    Astrogliosis as seen in Multiple Sclerosis (MS) develops into astroglial scarring, which is beneficial because it seals off the site of central nervous system (CNS) damage. However, astroglial scarring also forms an obstacle that inhibits axon outgrowth and (re)myelination in brain lesions. This is possibly an important cause for incomplete remyelination in the CNS of early stage MS patients and for failure in remyelination when the disease progresses. In this study we address whether under demyelinating conditions in vivo, tissue Transglutaminase (TG2), a Ca2+ -dependent enzyme that catalyses posttranslational modification of proteins, contributes to extracellular matrix (ECM) deposition and/or aggregation. We used the cuprizone model for de- and remyelination. TG2 immunoreactivity and enzymatic activity time-dependently appeared in astrocytes and ECM, respectively, in the corpus callosum of cuprizone-treated mice. Enhanced presence of soluble monomeric and multimeric fibronectin was detected during demyelination, and fibronectin immunoreactivity was slightly decreased in cuprizone-treated TG2−/− mice. In vitro TG2 overexpression in astrocytes coincided with more, while knock-down of TG2 with less fibronectin production. TG2 contributes, at least partly, to fibronectin production, and may play a role in fibronectin deposition during cuprizone-induced demyelination. Our observations are of interest in understanding the functional implications of TG2 during astrogliosis. PMID:28128219

  9. Synthetic Quorum Sensing and Induced Aggregation in Model Microcapsule Colonies with Repressilator Feedback

    Science.gov (United States)

    Shum, Henry; Yashin, Victor; Balazs, Anna

    We model a system of synthetic microcapsules that communicate chemically by releasing nanoparticles or signaling molecules. These signaling species bind to receptors on the shells of capsules and modulate the target shell's permeability, thereby controlling nanoparticle release from the target capsule. Using the repressilator regulatory network motif, whereby three species suppress the production of the next in a cyclic fashion, we show that large amplitude oscillations in nanoparticle release can emerge when many capsules are close together. This exemplifies quorum sensing, which is the ability of cells to gauge their population density and collectively initiate a new behavior once a critical density is reached. We present a physically realizable model in which the oscillations exhibited in crowded populations induce aggregation of the microcapsules, mimicking complex biological behavior of the slime mold Dictyostelium discoideum with only simple, synthetic components. We also show that the clusters can be dispersed and reformed repeatedly and controllably by addition of chemical stimuli, demonstrating possible applications in creating reconfigurable or programmable materials.

  10. Depletion induced encapsulation by dumbbell-shaped patchy colloids stabilize microspheres against aggregation.

    Science.gov (United States)

    Wolters, Joost Robert; Verweij, Joanne E; Avvisati, Guido; Dijkstra, Marjolein; Kegel, Willem K

    2017-03-08

    In this paper, we demonstrate the stabilization of polystyrene microspheres by encapsulating them with dumbbell-shaped colloids with a sticky and a non-sticky lobe. Upon adding a depletant, an effective short ranged attraction is induced between the microspheres and the smaller, smooth lobes of the dumbbells, making those specifically sticky, whereas the interaction with the larger lobes of the dumbbells is considerably less attractive due to their rough surface, which reduces the overlap volume and leaves them non-sticky. The encapsulation of the microspheres by these rough-smooth patchy dumbbells is investigated using a combination of experiments and computer simulations, both resulting in partial coverage of the template particles. For larger microspheres, the depletion attraction is stronger, resulting in a larger fraction of dumbbells that are attached with both lobes to the surface of microspheres. We thus find a template curvature dependent orientation of the dumbbells. In the Monte Carlo simulations, the introduction of such a small, curvature dependent attraction between the rough lobes of the dumbbells resulted in an increased coverage. However, kinetic constraints imposed by the dumbbell geometry seem to prevent optimal packing of the dumbbells on the template particles under all investigated conditions in experiments and simulations. Despite the incomplete coverage, the encapsulation by dumbbell particles does prevent aggregation of the microspheres, thus acting as a colloid-sized steric stabilizer.

  11. Membrane aggregation and perturbation induced by antimicrobial peptide of S-thanatin

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guoqiu, E-mail: guoqiuwu@163.com [Center of Clinical Laboratory Medicine of Zhongda Hospital, Southeast University, Nanjing (China); Wu, Hongbin; Li, Linxian; Fan, Xiaobo; Ding, Jiaxuan; Li, Xiaofang; Xi, Tao [Biotechnology Center, Department of Life Science and Biotechnology, China Pharmaceutical University, Nanjing 210009 (China); Shen, Zilong, E-mail: Zilongshen@sina.com [Biotechnology Center, Department of Life Science and Biotechnology, China Pharmaceutical University, Nanjing 210009 (China)

    2010-04-23

    Thanatin, a 21-residue peptide, is an inducible insect peptide. In our previous study, we have identified a novel thanatin analog of S-thanatin, which exhibited a broad antimicrobial activity against bacteria and fungi with low hemolytic activity. This study was aimed to delineate the antimicrobial mechanism of S-thanatin and identify its interaction with bacterial membranes. In this study, membrane phospholipid was found to be the target for S-thanatin. In the presence of vesicles, S-thanatin interestingly led to the aggregation of anionic vesicles and sonicated bacteria. Adding S-thanatin to Escherichia coli suspension would result in the collapse of membrane and kill bacteria. The sensitivity assay of protoplast elucidated the importance of outer membrane (OM) for S-thanatin's antimicrobial activity. Compared with other antimicrobial peptide, S-thanatin produced chaotic membrane morphology and cell debris in electron microscopic appearance. These results supported our hypothesis that S-thanatin bound to negatively charged LPS and anionic lipid, impeded membrane respiration, exhausted the intracellular potential, and released periplasmic material, which led to cell death.

  12. Inflammation-induced loss of Pdcd4 is mediated by phosphorylation-dependent degradation.

    Science.gov (United States)

    Schmid, Tobias; Bajer, Magdalena M; Blees, Johanna S; Eifler, Lisa K; Milke, Larissa; Rübsamen, Daniela; Schulz, Kathrin; Weigert, Andreas; Baker, Alyson R; Colburn, Nancy H; Brüne, Bernhard

    2011-10-01

    The tumor suppressor programmed cell death 4 (Pdcd4) is lost in various tumor tissues. Loss of Pdcd4 has been associated with increased tumorigenic potential and tumor progression. While various mechanisms of Pdcd4 regulation have been described, the effect of an inflammatory tumor microenvironment on Pdcd4 protein expression has not been characterized so far. In the present study, we aimed to elucidate the molecular mechanisms of Pdcd4 protein regulation in tumor cells under inflammatory conditions. 12-O-tetradecanoylphorbol 13-acetate-induced differentiation of human U937 monocytes increased the expression and secretion of inflammatory cytokines such as tumor necrosis factor α, interleukin (IL)-6 and IL-8. Exposure to conditioned medium (CM) of these activated macrophages markedly decreased Pdcd4 protein expression in various tumor cells. Similarly, indirect coculture with such activated U937 monocyte-derived macrophages resulted in the loss of Pdcd4 protein in tumor cells. Decreased Pdcd4 protein levels were attributable to enhanced proteasomal degradation, diminishing Pdcd4 protein half-life. Proteasomal degradation required activation of phosphatidylinositol-3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling. Since macrophage-CM sufficed to induce Pdcd4 degradation, Pdcd4 downregulation was determined to be an indirect unidirectional effect of the macrophages on the tumor cells. Pdcd4 protein expression was also attenuated in vivo in mouse colon tissue in response to dextran sodium sulfate-induced colitis. In summary, we characterized PI3K-mTOR-dependent proteasome-mediated Pdcd4 degradation in tumor cells in the inflammatory tumor microenvironment. Consequently, stabilization of Pdcd4 protein could provide a promising novel avenue for therapeutics targeting inflammation-associated tumors.

  13. Comparison of Tooth Discoloration Induced by Calcium-Enriched Mixture and Mineral Trioxide Aggregate

    Science.gov (United States)

    Rouhani, Armita; Akbari, Majid; Farhadi-faz, Aida

    2016-01-01

    Introduction: The aim of this in vitro study was to evaluate the tooth discoloration induced by calcium-enriched mixture (CEM) cement and mineral trioxide aggregate (MTA). Methods and Materials: Forty five endodontically treated human maxillary central incisors were selected and divided into three groups (n=15) after removing the coronal 3 mm of the obturating materials. In the MTA group, white MTA plug was placed in pulp chamber and coronal zone of the root canal. In CEM cement group, CEM plug was placed in the tooth in the same manner. In both groups, a wet cotton pellet was placed in the access cavity and the teeth were temporarily sealed. After 24 h the teeth were restored with resin composite. In the negative control group the teeth were also restored with resin composite. The color change in the cervical third of teeth was measured with a colorimeter and was repeated 3 times for each specimen. The teeth were kept in artificial saliva for 6 months. After this period, the color change was measured again. Data were collected by Commission International de I'Eclairage's L*a*b color values, and corresponding ΔE values were calculated. The results were analyzed using the one-way ANOVA and post-hoc Tukey’s test with the significance level defined as 0.05. Results: There was no significant differences between CEM group and control group in mean discoloration. The mean tooth discoloration in MTA group was significantly greater than CEM and control groups (P<0.05). Conclusion: According to the result of the present study CEM cement did not induce tooth discoloration after six months. Therefore it can be used in vital pulp therapy of esthetically sensitive teeth. PMID:27471526

  14. Vascular pentraxin 3 controls arterial thrombosis by targeting collagen and fibrinogen induced platelets aggregation

    Science.gov (United States)

    Bonacina, F.; Barbieri, S.S.; Cutuli, L.; Amadio, P.; Doni, A.; Sironi, M.; Tartari, S.; Mantovani, A.; Bottazzi, B.; Garlanda, C.; Tremoli, E.; Catapano, A.L.; Norata, G.D.

    2016-01-01

    Aim The long pentraxin PTX3 plays a non-redundant role during acute myocardial infarction, atherosclerosis and in the orchestration of tissue repair and remodeling during vascular injury, clotting and fibrin deposition. The aim of this work is to investigate the molecular mechanisms underlying the protective role of PTX3 during arterial thrombosis. Methods and results PTX3 KO mice transplanted with bone marrow from WT or PTX3 KO mice presented a significant reduction in carotid artery blood flow following FeCl3 induced arterial thrombosis (− 80.36 ± 11.5% and − 95.53 ± 4.46%), while in WT mice transplanted with bone marrow from either WT or PTX3 KO mice, the reduction was less dramatic (− 45.55 ± 1.37% and − 53.39 ± 9.8%), thus pointing to a protective effect independent of a hematopoietic cell's derived PTX3. By using P-selectin/PTX3 double KO mice, we further excluded a role for P-selectin, a target of PTX3 released by neutrophils, in vascular protection played by PTX3. In agreement with a minor role for hematopoietic cell-derived PTX3, platelet activation (assessed by flow cytometric expression of markers of platelet activation) was similar in PTX3 KO and WT mice as were haemostatic properties. Histological analysis indicated that PTX3 localizes within the thrombus and the vessel wall, and specific experiments with the N-terminal and the C-terminal PTX3 domain showed the ability of PTX3 to selectively dampen either fibrinogen or collagen induced platelet adhesion and aggregation. Conclusion PTX3 interacts with fibrinogen and collagen and, by dampening their pro-thrombotic effects, plays a protective role during arterial thrombosis. PMID:26976330

  15. Rosin Surfactant QRMAE Can Be Utilized as an Amorphous Aggregate Inducer: A Case Study of Mammalian Serum Albumin.

    Directory of Open Access Journals (Sweden)

    Mohd Ishtikhar

    Full Text Available Quaternary amine of diethylaminoethyl rosin ester (QRMAE, chemically synthesized biocompatible rosin based cationic surfactant, has various biological applications including its use as a food product additive. In this study, we examined the amorphous aggregation behavior of mammalian serum albumins at pH 7.5, i.e., two units above their isoelectric points (pI ~5.5, and the roles played by positive charge and hydrophobicity of exogenously added rosin surfactant QRMAE. The study was carried out on five mammalian serum albumins, using various spectroscopic methods, dye binding assay, circular dichroism and electron microscopy. The thermodynamics of the binding of mammalian serum albumins to cationic rosin modified surfactant were established using isothermal titration calorimetry (ITC. It was observed that a suitable molar ratio of protein to QRMAE surfactant enthusiastically induces amorphous aggregate formation at a pH above two units of pI. Rosin surfactant QRMAE-albumins interactions revealed a unique interplay between the initial electrostatic and the subsequent hydrophobic interactions that play an important role towards the formation of hydrophobic interactions-driven amorphous aggregate. Amorphous aggregation of proteins is associated with varying diseases, from the formation of protein wine haze to the expansion of the eye lenses in cataract, during the expression and purification of recombinant proteins. This study can be used for the design of novel biomolecules or drugs with the ability to neutralize factor(s responsible for the aggregate formation, in addition to various other industrial applications.

  16. Milk protein suspensions enriched with three essential minerals: Physicochemical characterization and aggregation induced by a novel enzymatic pool.

    Science.gov (United States)

    Lombardi, Julia; Spelzini, Darío; Corrêa, Ana Paula Folmer; Brandelli, Adriano; Risso, Patricia; Boeris, Valeria

    2016-04-01

    Structural changes of casein micelles and their aggregation induced by a novel enzymatic pool isolated from Bacillus spp. in the presence of calcium, magnesium or zinc were investigated. The effect of cations on milk protein structure was studied using fluorescence and dynamic light scattering. In the presence of cations, milk protein structure rearrangements and larger casein micelle size were observed. The interaction of milk proteins with zinc appears to be of a different nature than that with calcium or magnesium. Under the experimental conditions assayed, the affinity of each cation for some groups present in milk proteins seems to play an important role, besides electrostatic interaction. On the other hand, the lowest aggregation times were achieved at the highest calcium and zinc concentrations (15 mM and 0.25 mM, respectively). The study found that the faster the aggregation of casein micelles, the less compact the gel matrix obtained. Cation concentrations affected milk protein aggregation kinetics and the structure of the aggregates formed.

  17. Effect of carbon sources on the aggregation of photo fermentative bacteria induced by L-cysteine for enhancing hydrogen production.

    Science.gov (United States)

    Xie, Guo-Jun; Liu, Bing-Feng; Ding, Jie; Wang, Qilin; Ma, Chao; Zhou, Xu; Ren, Nan-Qi

    2016-12-01

    Poor flocculation of photo fermentative bacteria resulting in continuous biomass washout from photobioreactor is a critical challenge to achieve rapid and stable hydrogen production. In this work, the aggregation of Rhodopseudomonas faecalis RLD-53 was successfully developed in a photobioreactor and the effects of different carbon sources on hydrogen production and aggregation ability were investigated. Extracellular polymeric substances (EPS) production by R. faecalis RLD-53 cultivated using different carbon sources were stimulated by addition of L-cysteine. The absolute ζ potentials of R. faecalis RLD-53 were considerably decreased with addition of L-cysteine, and aggregation barriers based on DLVO dropped to 15-43 % of that in control groups. Thus, R. faecalis RLD-53 flocculated effectively, and aggregation abilities of strain RLD-53 cultivated with acetate, propionate, lactate and malate reached 29.35, 32.34, 26.07 and 24.86 %, respectively. In the continuous test, hydrogen-producing activity was also promoted and reached 2.45 mol H2/mol lactate, 3.87 mol H2/mol propionate and 5.10 mol H2/mol malate, respectively. Therefore, the aggregation of R. faecalis RLD-53 induced by L-cysteine is independent on the substrate types, which ensures the wide application of this technology to enhance hydrogen recovery from wastewater dominated by different organic substrates.

  18. Thiosemicarbazone modification of 3-acetyl coumarin inhibits Aβ peptide aggregation and protect against Aβ-induced cytotoxicity.

    Science.gov (United States)

    Ranade, Dnyanesh S; Bapat, Archika M; Ramteke, Shefali N; Joshi, Bimba N; Roussel, Pascal; Tomas, Alain; Deschamps, Patrick; Kulkarni, Prasad P

    2016-10-01

    Aggregation of amyloid β peptide (Aβ) is an important event in the progression of Alzheimer's disease. Therefore, among the available therapeutic approaches to fight with disease, inhibition of Aβ aggregation is widely studied and one of the promising approach for the development of treatments for Alzheimer's disease. Thiosemicarbazone compounds are known for their variety of biological activities. However, the potential of thiosemicarbazone compounds towards inhibition of Aβ peptide aggregation and the subsequent toxicity is little explored. Herein, we report synthesis and x-ray crystal structure of novel compound 3-acetyl coumarin thiosemicarbazone and its efficacy toward inhibition of Aβ(1-42) peptide aggregation. Our results indicate that 3-acetyl coumarin thiosemicarbazone inhibits Aβ(1-42) peptide aggregation up to 80% compared to the parent 3-acetyl coumarin which inhibits 52%. Further, 3-acetyl coumarin thiosemicarbazone provides neuroprotection against Aβ-induced cytotoxicity in SH-SY5Y cell line. These findings indicate that thiosemicarbazone modification renders 3-acetyl coumarin neuroprotective properties.

  19. Rosin Surfactant QRMAE Can Be Utilized as an Amorphous Aggregate Inducer: A Case Study of Mammalian Serum Albumin.

    Science.gov (United States)

    Ishtikhar, Mohd; Chandel, Tajjali Ilm; Ahmad, Aamir; Ali, Mohd Sajid; Al-Lohadan, Hamad A; Atta, Ayman M; Khan, Rizwan Hasan

    2015-01-01

    Quaternary amine of diethylaminoethyl rosin ester (QRMAE), chemically synthesized biocompatible rosin based cationic surfactant, has various biological applications including its use as a food product additive. In this study, we examined the amorphous aggregation behavior of mammalian serum albumins at pH 7.5, i.e., two units above their isoelectric points (pI ~5.5), and the roles played by positive charge and hydrophobicity of exogenously added rosin surfactant QRMAE. The study was carried out on five mammalian serum albumins, using various spectroscopic methods, dye binding assay, circular dichroism and electron microscopy. The thermodynamics of the binding of mammalian serum albumins to cationic rosin modified surfactant were established using isothermal titration calorimetry (ITC). It was observed that a suitable molar ratio of protein to QRMAE surfactant enthusiastically induces amorphous aggregate formation at a pH above two units of pI. Rosin surfactant QRMAE-albumins interactions revealed a unique interplay between the initial electrostatic and the subsequent hydrophobic interactions that play an important role towards the formation of hydrophobic interactions-driven amorphous aggregate. Amorphous aggregation of proteins is associated with varying diseases, from the formation of protein wine haze to the expansion of the eye lenses in cataract, during the expression and purification of recombinant proteins. This study can be used for the design of novel biomolecules or drugs with the ability to neutralize factor(s) responsible for the aggregate formation, in addition to various other industrial applications.

  20. Ligand-induced tyrosine phosphorylation of cysteinyl leukotriene receptor 1 triggers internalization and signaling in intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ladan Parhamifar

    Full Text Available BACKGROUND: Leukotriene D(4 (LTD(4 belongs to the bioactive lipid group known as eicosanoids and has implications in pathological processes such as inflammation and cancer. Leukotriene D(4 exerts its effects mainly through two different G-protein-coupled receptors, CysLT(1 and CysLT(2. The high affinity LTD(4 receptor CysLT(1R exhibits tumor-promoting properties by triggering cell proliferation, survival, and migration in intestinal epithelial cells. In addition, increased expression and nuclear localization of CysLT(1R correlates with a poorer prognosis for patients with colon cancer. METHODOLOGY/PRINCIPAL FINDINGS: Using a proximity ligation assay and immunoprecipitation, this study showed that endogenous CysLT(1R formed heterodimers with its counter-receptor CysLT(2R under basal conditions and that LTD(4 triggers reduced dimerization of CysLTRs in intestinal epithelial cells. This effect was dependent upon a parallel LTD(4-induced increase in CysLT(1R tyrosine phosphorylation. Leukotriene D(4 also led to elevated internalization of CysLT(1Rs from the plasma membrane and a simultaneous increase at the nucleus. Using sucrose, a clathrin endocytic inhibitor, dominant-negative constructs, and siRNA against arrestin-3, we suggest that a clathrin-, arrestin-3, and Rab-5-dependent process mediated the internalization of CysLT(1R. Altering the CysLT(1R internalization process at either the clathrin or the arrestin-3 stage led to disruption of LTD(4-induced Erk1/2 activation and up-regulation of COX-2 mRNA levels. CONCLUSIONS/SIGNIFICANCE: Our data suggests that upon ligand activation, CysLT(1R is tyrosine-phosphorylated and released from heterodimers with CysLT(2R and, subsequently, internalizes from the plasma membrane to the nuclear membrane in a clathrin-, arrestin-3-, and Rab-5-dependent manner, thus, enabling Erk1/2 signaling and downstream transcription of the COX-2 gene.

  1. Tunneling electron induced molecular electroluminescence from individual porphyrin J-aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qiushi; Zhang, Chao; Zhang, Yang, E-mail: zhyangnano@ustc.edu.cn, E-mail: zcdong@ustc.edu.cn; Zhang, Yao; Liao, Yuan; Dong, Zhenchao, E-mail: zhyangnano@ustc.edu.cn, E-mail: zcdong@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-07-27

    We investigate molecular electroluminescence from individual tubular porphyrin J-aggregates on Au(111) by tunneling electron excitations in an ultrahigh-vacuum scanning tunneling microscope (STM). High-resolution STM images suggest a spiral tubular structure for the porphyrin J-aggregate with highly ordered “brickwork”-like arrangements. Such aggregated nanotube is found to behave like a self-decoupled molecular architecture and shows red-shifted electroluminescence characteristics of J-aggregates originated from the delocalized excitons. The positions of the emission peaks are found to shift slightly depending on the excitation sites, which, together with the changes in the observed spectral profiles with vibronic progressions, suggest a limited exciton coherence number within several molecules. The J-aggregate electroluminescence is also found unipolar, occurring only at negative sample voltages, which is presumably related to the junction asymmetry in the context of molecular excitations via the carrier injection mechanism.

  2. Inhibition of ALK enzymatic activity in T-cell lymphoma cells induces apoptosis and suppresses proliferation and STAT3 phosphorylation independently of Jak3

    DEFF Research Database (Denmark)

    Marzec, Michal; Kasprzycka, Monika; Ptasznik, Andrzej;

    2005-01-01

    Aberrant expression of the ALK tyrosine kinase as a chimeric protein with nucleophosmin (NPM) and other partners plays a key role in malignant cell transformation of T-lymphocytes and other cells. Here we report that two small-molecule, structurally related, quinazoline-type compounds, WHI-131...... and WHI-154, directly inhibit enzymatic activity of NPM/ALK as demonstrated by in vitro kinase assays using a synthetic tyrosine-rich oligopeptide and the kinase itself as the substrates. The inhibition of NPM/ALK activity resulted in malignant T cells in suppression of their growth, induction...... of apoptosis and inhibition of tyrosine phosphorylation of STAT3, the key effector of the NPM/ALK-induced oncogenesis. We also show that the STAT3 tyrosine phosphorylation is mediated in the malignant T cells by NPM/ALK independently of Jak3 kinase as evidenced by the presence of STAT3 phosphorylation...

  3. Glutamine supplementation prevents exercise-induced neutrophil apoptosis and reduces p38 MAPK and JNK phosphorylation and p53 and caspase 3 expression.

    Science.gov (United States)

    Lagranha, Claudia J; Hirabara, Sandro M; Curi, Rui; Pithon-Curi, Tania C

    2007-01-01

    We have previously shown that a single session of exercise induces DNA fragmentation, mitochondrial membrane depolarization, increases expression of pro-apoptotic genes (bax and bcl-xS) and decreases expression of anti-apoptotic genes (bcl-xL) in rat neutrophils. Glutamine supplementation had a protective effect in the apoptosis induced by a single session of exercise. The mechanism involved in the effect of single session of exercise to induce apoptosis was investigated by measuring expression of p53 and caspase 3 and phosphorylation of p38 mitogen-activated protein kinases (MAPK) and cJun NH(2)-terminal kinase (JNK) in neutrophils from rats supplemented or not with glutamine. Exercise was carried out on a treadmill for 1 h and the rats were killed by decapitation. Neutrophils were obtained by intraperitoneal (i.p.) lavage with PBS, 4 h after injection of oyster glycogen solution. Glutamine supplementation (1g per Kg b.w.) was given by gavage 1 h before the exercise session. Gene expression and protein phosphorylation were then analyzed by reverse transcriptase chain reaction (RT-PCR) and Western blotting, respectively. A single session of exercise increased p38 MAPK and JNK phosphorylation and p53 and caspase 3 expression. Glutamine supplementation partially prevented the increase in p38 MAPK and JNK phosphorylation and p53 expression, and fully abolished the increase in caspase 3 expression. Thus, neutrophil apoptosis induced by a single session of exercise is accompanied by increased p53 and caspase 3 expression and p38 MAPK and JNK phosphorylation. Glutamine supplementation prevents these effects of exercise and reduces apoptosis.

  4. Differential inhibition of tumour cell-induced platelet aggregation by the nicotinate aspirin prodrug (ST0702) and aspirin

    Science.gov (United States)

    Medina, Carlos; Harmon, Shona; Inkielewicz, Iwona; Santos-Martinez, Maria Jose; Jones, Michael; Cantwell, Paula; Bazou, Despina; Ledwidge, Mark; Radomski, Marek W; Gilmer, John F

    2012-01-01

    BACKGROUND AND PURPOSE Tumour cell-induced platelet aggregation (TCIPA) facilitates cancer cell invasion, angiogenesis and the formation of metastatic foci. TCIPA can be modulated by pharmacological inhibitors of MMP-2 and ADP; however, the COX inhibitor aspirin did not prevent TCIPA. In this study, we have tested the pharmacological effects of a new group of isosorbide-based aspirin prodrugs on TCIPA. EXPERIMENTAL APPROACH TCIPA was induced in human platelets by mixing with human adenocarcinoma or fibrosarcoma cells under no flow and flow conditions. The release of gelatinases and P-selectin expression during TCIPA were studied by zymography and flow cytometry respectively. KEY RESULTS Tumour cells caused platelet aggregation. This aggregation resulted in the release of MMP-2 and a significant up-regulation of P-selectin on platelets, indicative of platelet activation. Pharmacological modulation of TCIPA revealed that ST0702, one of the aspirin prodrugs, down-regulated TCIPA while aspirin was ineffective. The deacetylated metabolite of ST0702, 5-nicotinate salicylate (ST0702 salicylate), down-regulated both ADP-stimulated platelet aggregation and TCIPA. CONCLUSIONS AND IMPLICATIONS Our results show that ST0702 was an effective inhibitor of TCIPA in vitro. Its deacetylated metabolite may contribute to the effects of ST0702 by inhibiting ADP-mediated TCIPA. PMID:22122360

  5. Neutrophil Cathepsin G, but Not Elastase, Induces Aggregation of MCF-7 Mammary Carcinoma Cells by a Protease Activity-Dependent Cell-Oriented Mechanism

    Directory of Open Access Journals (Sweden)

    Satoru Yui

    2014-01-01

    Full Text Available We previously found that a neutrophil serine protease, cathepsin G, weakens adherence to culture substrates and induces E-cadherin-dependent aggregation of MCF-7 human breast cancer cells through its protease activity. In this study, we examined whether aggregation is caused by degradation of adhesion molecules on the culture substrates or through an unidentified mechanism. We compared the effect of treatment with cathepsin G and other proteases, including neutrophil elastase against fibronectin- (FN- coated substrates. Cathepsin G and elastase potently degraded FN on the substrates and induced aggregation of MCF-7 cells that had been subsequently seeded onto the substrate. However, substrate-bound cathepsin G and elastase may have caused cell aggregation. After inhibiting the proteases on the culture substrates using the irreversible inhibitor phenylmethylsulfonyl fluoride (PMSF, we examined whether aggregation of MCF-7 cells was suppressed. PMSF attenuated cell aggregation on cathepsin G-treated substrates, but the effect was weak in cells pretreated with high concentrations of cathepsin G. In contrast, PMSF did not suppress cell aggregation on elastase-treated FN. Moreover, cathepsin G, but not elastase, induced aggregation on poly-L-lysine substrates which are not decomposed by these enzymes, and the action of cathepsin G was nearly completely attenuated by PMSF. These results suggest that cathepsin G induces MCF-7 aggregation through a cell-oriented mechanism.

  6. A Lipid Emulsion Reverses Toxic-Dose Bupivacaine-Induced Vasodilation during Tyrosine Phosphorylation-Evoked Contraction in Isolated Rat Aortae

    Directory of Open Access Journals (Sweden)

    Seong-Ho Ok

    2017-02-01

    Full Text Available The goal of this in vitro study was to examine the effect of a lipid emulsion on toxic-dose bupivacaine-induced vasodilation in a model of tyrosine phosphatase inhibitor sodium orthovanadate-induced contraction in endothelium-denuded rat aortae and to elucidate the associated cellular mechanism. The effect of a lipid emulsion on vasodilation induced by a toxic dose of a local anesthetic during sodium orthovanadate-induced contraction was examined. In addition, the effects of various inhibitors, either bupivacaine alone or a lipid emulsion plus bupivacaine, on protein kinase phosphorylation induced by sodium orthovanadate in rat aortic vascular smooth muscle cells was examined. A lipid emulsion reversed the vasodilation induced by bupivacaine during sodium orthovanadate-induced contraction. The lipid emulsion attenuated the bupivacaine-mediated inhibition of the sodium orthovanadate-induced phosphorylation of protein tyrosine, c-Jun NH2-terminal kinase (JNK, myosin phosphatase target subunit 1 (MYPT1, phospholipase C (PLC γ-1 and extracellular signal-regulated kinase (ERK. These results suggest that a lipid emulsion reverses toxic-dose bupivacaine-induced vasodilation during sodium orthovanadate-induced contraction via the activation of a pathway involving either tyrosine kinase, JNK, Rho-kinase and MYPT1 or tyrosine kinase, PLC γ-1 and ERK, and this reversal is associated with the lipid solubility of the local anesthetic and the induction of calcium sensitization.

  7. A Lipid Emulsion Reverses Toxic-Dose Bupivacaine-Induced Vasodilation during Tyrosine Phosphorylation-Evoked Contraction in Isolated Rat Aortae

    Science.gov (United States)

    Ok, Seong-Ho; Lee, Soo Hee; Kwon, Seong-Chun; Choi, Mun Hwan; Shin, Il-Woo; Kang, Sebin; Park, Miyeong; Hong, Jeong-Min; Sohn, Ju-Tae

    2017-01-01

    The goal of this in vitro study was to examine the effect of a lipid emulsion on toxic-dose bupivacaine-induced vasodilation in a model of tyrosine phosphatase inhibitor sodium orthovanadate-induced contraction in endothelium-denuded rat aortae and to elucidate the associated cellular mechanism. The effect of a lipid emulsion on vasodilation induced by a toxic dose of a local anesthetic during sodium orthovanadate-induced contraction was examined. In addition, the effects of various inhibitors, either bupivacaine alone or a lipid emulsion plus bupivacaine, on protein kinase phosphorylation induced by sodium orthovanadate in rat aortic vascular smooth muscle cells was examined. A lipid emulsion reversed the vasodilation induced by bupivacaine during sodium orthovanadate-induced contraction. The lipid emulsion attenuated the bupivacaine-mediated inhibition of the sodium orthovanadate-induced phosphorylation of protein tyrosine, c-Jun NH2-terminal kinase (JNK), myosin phosphatase target subunit 1 (MYPT1), phospholipase C (PLC) γ-1 and extracellular signal-regulated kinase (ERK). These results suggest that a lipid emulsion reverses toxic-dose bupivacaine-induced vasodilation during sodium orthovanadate-induced contraction via the activation of a pathway involving either tyrosine kinase, JNK, Rho-kinase and MYPT1 or tyrosine kinase, PLC γ-1 and ERK, and this reversal is associated with the lipid solubility of the local anesthetic and the induction of calcium sensitization. PMID:28208809

  8. Cathepsin G Induces Cell Aggregation of Human Breast Cancer MCF-7 Cells via a 2-Step Mechanism: Catalytic Site-Independent Binding to the Cell Surface and Enzymatic Activity-Dependent Induction of the Cell Aggregation

    Directory of Open Access Journals (Sweden)

    Riyo Morimoto-Kamata

    2012-01-01

    Full Text Available Neutrophils often invade various tumor tissues and affect tumor progression and metastasis. Cathepsin G (CG is a serine protease secreted from activated neutrophils. Previously, we have shown that CG induces the formation of E-cadherin-mediated multicellular spheroids of human breast cancer MCF-7 cells; however, the molecular mechanisms involved in this process are unknown. In this study, we investigated whether CG required its enzymatic activity to induce MCF-7 cell aggregation. The cell aggregation-inducing activity of CG was inhibited by pretreatment of CG with the serine protease inhibitors chymostatin and phenylmethylsulfonyl fluoride. In addition, an enzymatically inactive S195G (chymotrypsinogen numbering CG did not induce cell aggregation. Furthermore, CG specifically bound to the cell surface of MCF-7 cells via a catalytic site-independent mechanism because the binding was not affected by pretreatment of CG with serine protease inhibitors, and cell surface binding was also detected with S195G CG. Therefore, we propose that the CG-induced aggregation of MCF-7 cells occurs via a 2-step process, in which CG binds to the cell surface, independently of its catalytic site, and then induces cell aggregation, which is dependent on its enzymatic activity.

  9. Activation of H2O2-induced VSOR Cl- currents in HTC cells require phospholipase Cgamma1 phosphorylation and Ca2+ mobilisation

    DEFF Research Database (Denmark)

    Varela, Diego; Simon, Felipe; Olivero, Pablo

    2007-01-01

    Volume-sensitive outwardly rectifying (VSOR) Cl(-) channels participate in several physiological processes such as regulatory volume decrease, cell cycle regulation, proliferation and apoptosis. Recent evidence points to a significant role of hydrogen peroxide (H(2)O(2)) in VSOR Cl(-) channel...... activation. The aim of this study was to determine the signalling pathways responsible for H(2)O(2)-induced VSOR Cl(-) channel activation. In rat hepatoma (HTC) cells, H(2)O(2) elicited a transient increase in tyrosine phosphorylation of phospholipase Cgamma1 (PLCgamma1) that was blocked by PP2, a Src......)R) blocker 2-APB. In line with these results, manoeuvres that prevented PLCgamma1 activation and/or [Ca(2+)](i) rise, abolished H(2)O(2)-induced VSOR Cl(-) currents. Furthermore, in cells that overexpress a phosphorylation-defective dominant mutant of PLCgamma1, H(2)O(2) did not induce activation...

  10. Tyrosine phosphorylation of the N-Methyl-D-Aspartate receptor 2B subunit in spinal cord contributes to remifentanil-induced postoperative hyperalgesia: the preventive effect of ketamine

    Directory of Open Access Journals (Sweden)

    Cui Songqin

    2009-12-01

    Full Text Available Abstract Background Experimental and clinical studies showed that intraoperative infusionof remifentanil has been associated with postoperative hyperalgesia. Previous reports suggested that spinal N-methyl-D-aspartate (NMDA receptors may contribute to the development and maintenance of opioid-induced hyperalgesia. In the present study, we used a rat model of postoperative pain to investigate the role of tyrosine phosphorylation of NMDA receptor 2B (NR2B subunit in spinal cord in the postoperative hyperalgesia induced by remifentanil and the intervention of pretreatment with ketamine. Results Intraoperative infusion of remifentanil (0.04 mg/kg, subcutaneous significantly enhanced mechanical allodynia and thermal hyperalgesia induced by the plantar incision during the postoperative period (each lasting between 2 h and 48 h, which was attenuated by pretreatment with ketamine (10 mg/kg, subcutaneous. Correlated with the pain behavior changes, immunocytochemical and western blotting experiments in our study revealed that there was a marked increase in NR2B phosphorylation at Tyr1472 in the superficial dorsal horn after intraoperative infusion of remifentanil, which was attenuated by pretreatment with ketamine. Conclusions This study provides direct evidence that tyrosine phosphorylation of the NR2B at Tyr1472 in spinal dosal horn contributes to postoperative hyperalgesia induced by remifentanil and supports the potential therapeutic value of ketamine for improving postoperative hyperalgesia induced by remifentanil.

  11. Retinol-induced changes in the phosphorylation levels of histones and high mobility group proteins from Sertoli cells

    Directory of Open Access Journals (Sweden)

    J.C.F. Moreira

    2000-03-01

    Full Text Available Chromatin proteins play a role in the organization and functions of DNA. Covalent modifications of nuclear proteins modulate their interactions with DNA sequences and are probably one of the multiple factors involved in the process of switch on/off transcriptionally active regions of DNA. Histones and high mobility group proteins (HMG are subject to many covalent modifications that may modulate their capacity to bind to DNA. We investigated the changes induced in the phosphorylation pattern of cultured Wistar rat Sertoli cell histones and high mobility group protein subfamilies exposed to 7 µM retinol for up to 48 h. In each experiment, 6 h before the end of the retinol treatment each culture flask received 370 KBq/ml [32P]-phosphate. The histone and HMGs were isolated as previously described [Moreira et al. Medical Science Research (1994 22: 783-784]. The total protein obtained by either method was quantified and electrophoresed as described by Spiker [Analytical Biochemistry (1980 108: 263-265]. The gels were stained with Coomassie brilliant blue R-250 and the stained bands were cut and dissolved in 0.5 ml 30% H2O2 at 60oC for 12 h. The vials were chilled and 5.0 ml scintillation liquid was added. The radioactivity in each vial was determined with a liquid scintillation counter. Retinol treatment significantly changed the pattern of each subfamily of histone and high mobility group proteins.

  12. A Diffusion Model of Field-Induced Aggregation in Ferrofluid Film

    Institute of Scientific and Technical Information of China (English)

    FANG Wen-Xiao; HE Zhen-Hui; CHEN Di-Hu; ZHAO Yan-E

    2008-01-01

    By introducing Arrhenius behaviour to the ferroparticles on the surface of the aggregated columnar structure in a diffusion model, equilibrium equations are set up. The solution of the equations shows that to keep the aggregated structures stable, a characteristic fleld is needed. The aggregation is enhanced by magnetic fields, yet suppressed as the temperature increases. Analysing the influence of the magnetic field on the interaction energy between the dipolar particles, we estimate the portion of the diffusing particles, and provide the agreeable ratio of the column radius over the centre-to-centre spacing between columns in a hexagonal columnar structure formed under a perpendicular magnetic field.

  13. Kinetics of self-induced aggregation of Brownian particles: non-Markovian and non-Gaussian features

    CERN Document Server

    Ghosh, Pulak Kumar; Bag, Bidhan Chandra

    2012-01-01

    In this paper we have studied a model for self-induced aggregation in Brownian particle incorporating the non-Markovian and non-Gaussian character of the associated random noise process. In this model the time evolution of each individual is guided by an over-damped Langevin equation of motion with a non-local drift resulting from the local unbalance distributions of the other individuals. Our simulation result shows that colored nose can induce the cluster formation even at large noise strength. Another observation is that critical noise strength grows very rapidly with increase of noise correlation time for Gaussian noise than non Gaussian one. However, at long time limit the cluster number in aggregation process decreases with time following a power law. The exponent in the power law increases remarkable for switching from Markovian to non Markovian noise process.

  14. Modulation of opiate-related signaling molecules in morphine-dependent conditioned behavior: conditioned place preference to morphine induces CREB phosphorylation.

    Science.gov (United States)

    Morón, José A; Gullapalli, Srinivas; Taylor, Chirisse; Gupta, Achla; Gomes, Ivone; Devi, Lakshmi A

    2010-03-01

    Opiate addiction is a chronic, relapsing behavioral disorder where learned associations that develop between the abused opiate and the environment in which it is consumed are brought about through Pavlovian (classical) conditioning processes. However, the signaling mechanisms/pathways regulating the mechanisms that underlie the responses to opiate-associated cues or the development of sensitization as a consequence of repeated context-independent administration of opiates are unknown. In this study we examined the phosphorylation levels of various classic signaling molecules in brain regions implicated in addictive behaviors after acute and repeated morphine administration. An unbiased place conditioning protocol was used to examine changes in phosphorylation that are associated with (1) the expression of the rewarding effects of morphine and (2) the sensitization that develops to this effect. We also examined the effects of a delta-receptor antagonist on morphine-induced conditioned behavior and on the phosphorylation of classic signaling molecules in view of data showing that blockade of delta-opioid receptor (deltaOR) prevents the development of sensitization to the rewarding effects of morphine. We find that CREB phosphorylation is specifically induced upon the expression of a sensitized response to morphine-induced conditioned behavior in brain areas related to memory consolidation, such as the hippocampus and cortex. A similar effect is also observed, albeit to a lesser extent, in the case of the GluR1 subunit of AMPA glutamate receptor. These increases in the phosphorylation levels of CREB and pGluR1 are significantly blocked by pretreatment with a deltaOR antagonist. These results indicate a critical role for phospho-CREB, AMPA, and deltaOR activities in mediating the expression of a sensitized response to morphine-dependent conditioned behavior.

  15. Enhanced Shear-induced Platelet Aggregation Due to Low-temperature Storage

    Science.gov (United States)

    2013-07-01

    pathogen inactivation technologies.4,5 In principle, storage of PLTs under refrigeration (4°C), which is standard practice for red blood cells (RBCs), can...by more than 100% (i.e., twofold) compared to freshly isolated PLTs at high shear rates. Effect of cell – cell collisions and fluid shear stress on...in aggregating stored PLTs. PLT aggregation under shear is controlled by cell – cell collision frequency and the force applied to the cells .26 These

  16. Stabilization of tetanus and diphtheria toxoids against moisture-induced aggregation.

    OpenAIRE

    Schwendeman, S P; Costantino, H R; Gupta, R.K.; Siber, G R; Klibanov, A M; Langer, R.

    1995-01-01

    The progress toward single-dose vaccines has been limited by the poor solid-state stability of vaccine antigens within controlled-release polymers, such as poly(lactide-co-glycolide). For example, herein we report that lyophilized tetanus toxoid aggregates during incubation at 37 degrees C and elevated humidity--i.e., conditions relevant to its release from such systems. The mechanism and extent of this aggregation are dependent on the moisture level in the solid protein, with maximum aggrega...

  17. Protein folding, unfolding and aggregation. Pressure induced intermediate states on the refolding pathway of horseradish peroxidase

    Science.gov (United States)

    Smeller, László; Fidy, Judit; Heremans, Karel

    2004-04-01

    We studied the refolding and aggregation of pressure unfolded proteins. Horseradish peroxidase was found to be very stable and no partially folded intermediates were populated during the refolding. However, the removal of the haem group or the Ca2+ ions or reduction of the disulfide bridge destabilized the protein, resulting in a significant amount of aggregation prone intermediate conformation. Substitution of the haem for fluorescent porphyrin however did not influence the refolding of the protein.

  18. Ectoine and hydroxyectoine inhibit thermal-induced aggregation and increase thermostability of recombinant human interferon Alfa2b.

    Science.gov (United States)

    Salmannejad, Faranak; Nafissi-Varcheh, Nastaran

    2017-01-15

    This study is to investigate whether ectoines (ectoine and hydroxyectoine) can reduce aggregation of rhIFNα2b in aqueous solutions on thermal stress. The effect of thermal stress condition on the stability was therefore investigated using size exclusion-high performance liquid chromatography (SE-HPLC), different spectroscopic measurements, dynamic light scattering (DLS), electrophoresis, and differential scanning calorimetry (DSC). All experiments were performed in a sodium phosphate buffer system (100mM, pH7). The protein samples (100μg/ml) were incubated at 50°C for 14days in the absence or presence (1, 10, 20, and 100mM) of ectoines. In summary, thermal-induced aggregation was reduced in the presence of ectoines, regardless of the ectoines concentration in different periods of incubation time by analyzing with SE-HPLC and turbidity measurement. The inhibitory effect of ectoines on the aggregation was shown by other techniques used. The optimal ectoines concentration was 10mM for aggregation reduction, so samples containing of 10mM of ectoines were selected for further evaluation. Secondary structural and conformational stability increased in presence of ectoines as measured by far-UV circular dichroism and fluorescence spectroscopy, respectively. DSC showed slight increase in Tm of interferon in the presence of ectoines. Hydroxyectoine had superior protein-stabilizing properties than ectoine. In conclusion, this study demonstrates that ectoine and hydroxyectoine are highly effective excipients which can significantly reduce the thermal-induced aggregation of rhIFNα2b at low concentration.

  19. Priming effects in aggregate size fractions induced by glucose addition and grinding

    Science.gov (United States)

    Tian, Jing; Blagodatskaya, Evgenia; Pausch, Johanna; Kuzaykov, Yakov

    2014-05-01

    It is widely recognized that soil organic matter (SOM) mineralization can be accelerated (positive priming) or retarded (negative priming) by addition of easily available substrates to soil. SOM is a heterogeneous mixture, which contains numerous compounds with different degradability and turnover rates times. Nevertheless, so far, there is still lack of knowledge on identifying single fractions of the SOM as the source of C and N released by priming effects. The aim of this study was to determine the priming effect as related to different aggregate fractions, aggregate disruption and the amounts of substrate. In a 49 days incubation experiment, the soil samples were separated into three aggregate fractions (>2 mm, 2-0.25 mm and 0.25 mm) than in the microaggregates (priming effect increased as added glucose increased in all intact aggregate size, and highest priming effect was observed in >2 mm fraction. However, the magnitude of priming effect response to glucose addition depended on the aggregate size after grinding. This study demonstrates that substrate amounts, aggregate fractionation and grinding can have obvious impacts on priming effect, indicating important implications for understanding SOM cycling and stability.

  20. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Yogi, Alvaro; Callera, Glaucia E. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Mecawi, André S. [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Batalhão, Marcelo E.; Carnio, Evelin C. [Department of General and Specialized Nursing, College of Nursing of Ribeirão Preto, USP, São Paulo (Brazil); Antunes-Rodrigues, José [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Queiroz, Regina H. [Department of Clinical, Toxicological and Food Science Analysis, Faculty of Pharmaceutical Sciences, USP, São Paulo (Brazil); Touyz, Rhian M. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Tirapelli, Carlos R., E-mail: crtirapelli@eerp.usp.br [Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP (Brazil)

    2012-11-01

    Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin–angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT{sub 1} receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase‐mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT{sub 1}-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. -- Highlights: ► Acute ethanol intake stimulates RAS activity and vascular oxidative stress. ► RAS plays a role in acute ethanol-induced oxidative damage via AT{sub 1} receptor activation.

  1. p38 mitogen-activated protein kinase up-regulates NF-{kappa}B transcriptional activation through RelA phosphorylation during stretch-induced myogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Guoping [Department of Orthodontics, College of Stomatology, Ninth People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai 200011 (China); Liu, Dongxu [Department of Orthodontics, College of Stomatology, Shandong University, Jinan, Shandong Province 250012 (China); Liu, Jing [Department of Orthodontics, The Affiliated Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong Province 266075 (China); Gao, Hui [Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin 300041 (China); Yuan, Xiao, E-mail: yuanxiaoqd@163.com [Department of Orthodontics, The Affiliated Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong Province 266075 (China); Shen, Gang, E-mail: ganshen2007@163.com [Department of Orthodontics, College of Stomatology, Ninth People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai 200011 (China)

    2010-01-01

    p38 MAPK and nuclear factor-B (NF-B) signaling pathways play an indispensable role in the control of skeletal myogenesis. The specific contribution of these signaling pathways to the response of myoblast to the mechanical stimulation and the molecular mechanisms underlying this response remain unresolved. Using an established in vitro model, we now show that p38 MAP kinase activity regulates the transcriptional activation of NF-{kappa}B in response to mechanical stimulation of myoblasts. Furthermore, SB203580 blocked stretch-induced NF-{kappa}B activation during myogenesis, not through down-regulation of degradation of I{kappa}B-{alpha}, and consequent translocation of the p65 subunit of NF-{kappa}B to the nucleus. It is likely that stretch-induced NF-{kappa}B activation by phosphorylation of p65 NF-{kappa}B. Moreover, depletion of p38{alpha} using siRNA significantly reduces stretch-induced phosphorylation of RelA and NF-{kappa}B activity. These results provides the first evidence of a cross-talk between p38 MAPK and NF-{kappa}B signaling pathways during stretch-induced myogenesis, with phosphorylation of RelA being one of the effectors of this promyogenic mechanism. The {alpha} isoform of p38MAP kinase regulates the transcriptional activation of NF-{kappa}B following stimulation with cyclic stretch.

  2. Arginine-aromatic interactions and their effects on arginine-induced solubilization of aromatic solutes and suppression of protein aggregation

    KAUST Repository

    Shah, Dhawal

    2011-09-21

    We examine the interaction of aromatic residues of proteins with arginine, an additive commonly used to suppress protein aggregation, using experiments and molecular dynamics simulations. An aromatic-rich peptide, FFYTP (a segment of insulin), and lysozyme and insulin are used as model systems. Mass spectrometry shows that arginine increases the solubility of FFYTP by binding to the peptide, with the simulations revealing the predominant association of arginine to be with the aromatic residues. The calculations further show a positive preferential interaction coefficient, Γ XP, contrary to conventional thinking that positive Γ XP\\'s indicate aggregation rather than suppression of aggregation. Simulations with lysozyme and insulin also show arginine\\'s preference for aromatic residues, in addition to acidic residues. We use these observations and earlier results reported by us and others to discuss the possible implications of arginine\\'s interactions with aromatic residues on the solubilization of aromatic moieties and proteins. Our results also highlight the fact that explanations based purely on Γ XP, which measures average affinity of an additive to a protein, could obscure or misinterpret the underlying molecular mechanisms behind additive-induced suppression of protein aggregation. © 2011 American Institute of Chemical Engineers (AIChE).

  3. Aggregation-induced reversal of transport distances of soil organic matter: are our balances correct?

    Science.gov (United States)

    Hu, Yaxian; Kuhn, Nikolaus

    2014-05-01

    The effect of soil erosion on global carbon cycling, especially as a source or sink of green-house gases (GHGs), is the subject of intense debate. The controversy arises mostly from the lack of information on the fate of eroded soil organic carbon (SOC) as it moves from the site of erosion to the site of longer-term deposition. This requires improved understanding the transport distances of eroded SOC, which is principally related to the settling velocities of sediment fractions that carry the eroded SOC. For aggregated soils, settling velocities are affected by their actual aggregate size rather than the mineral grain size distribution. Aggregate stability is, in turn, strongly influenced by soil organic matter. This study aims at identifying the effect of aggregation on the transport distances of eroded SOC and its susceptibility to mineralization after transport and deposition. A rainfall simulation was carried out on a silty loam soil. The eroded sediments were fractionated by a settling tube apparatus into six different size classes according to their settling velocities and likely transport distances. Weight, SOC concentration and instantaneous respiration rates of the fractions of the six classes were measured. Our results show that: 1) 41% of the eroded SOC was transported with coarse aggregates that would be likely re-distributed across landscapes; 2) erosion was prone to accelerate the mineralization of eroded organic carbon immediately after erosion, compared to undisturbed aggregates; 3) erosion might make a higher contribution to atmospheric CO2 than the estimation made without considering the effects of aggregation and extra SOC mineralization during transport.

  4. Adenovirus-induced extracellular signal-regulated kinase phosphorylation during the late phase of infection enhances viral protein levels and virus progeny

    DEFF Research Database (Denmark)

    Schümann, Michael; Dobbelstein, Matthias

    2006-01-01

    during the late phase of infection. Pharmacologic inhibition of ERK phosphorylation reduced virus recovery by >100-fold. Blocking MEK/ERK signaling affected virus DNA replication and mRNA levels only weakly but strongly reduced the amount of viral proteins, independently of the kinases MNK1 and PKR....... Hence, adenovirus induces the oncogenic Raf/MEK/ERK signaling pathway to enhance viral progeny by sustaining the levels of viral proteins. Concerning therapy, our results suggest that the use of Raf/MEK/ERK inhibitors will interfere with the propagation of oncolytic adenoviruses.......The Raf/mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK signaling cascade enhances tumor cell proliferation in many cases. Here, we show that adenovirus type 5, a small DNA tumor virus used in experimental cancer therapy, strongly induces ERK phosphorylation...

  5. Cdk5 phosphorylates non-genotoxically overexpressed p53 following inhibition of PP2A to induce cell cycle arrest/apoptosis and inhibits tumor progression

    Directory of Open Access Journals (Sweden)

    Kumari Ratna

    2010-07-01

    Full Text Available Abstract Background p53 is the most studied tumor suppressor and its overexpression may or may not cause cell death depending upon the genetic background of the cells. p53 is degraded by human papillomavirus (HPV E6 protein in cervical carcinoma. Several stress activated kinases are known to phosphorylate p53 and, among them cyclin dependent kinase 5 (Cdk5 is one of the kinase studied in neuronal cell system. Recently, the involvement of Cdk5 in phosphorylating p53 has been shown in certain cancer types. Phosphorylation at specific serine residues in p53 is essential for it to cause cell growth inhibition. Activation of p53 under non stress conditions is poorly understood. Therefore, the activation of p53 and detection of upstream kinases that phosphorylate non-genotoxically overexpressed p53 will be of therapeutic importance for cancer treatment. Results To determine the non-genotoxic effect of p53; Tet-On system was utilized and p53 inducible HPV-positive HeLa cells were developed. p53 overexpression in HPV-positive cells did not induce cell cycle arrest or apoptosis. However, we demonstrate that overexpressed p53 can be activated to upregulate p21 and Bax which causes G2 arrest and apoptosis, by inhibiting protein phosphatase 2A. Additionally, we report that the upstream kinase cyclin dependent kinase 5 interacts with p53 to phosphorylate it at Serine20 and Serine46 residues thereby promoting its recruitment on p21 and bax promoters. Upregulation and translocation of Bax causes apoptosis through intrinsic mitochondrial pathway. Interestingly, overexpressed activated p53 specifically inhibits cell-growth and causes regression in vivo tumor growth as well. Conclusion Present study details the mechanism of activation of p53 and puts forth the possibility of p53 gene therapy to work in HPV positive cervical carcinoma.

  6. Time-dependent inhibitory effects of cGMP-analogues on thrombin-induced platelet-derived microparticles formation, platelet aggregation, and P-selectin expression

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, Gyrid [Proteomic Unit at University of Bergen (PROBE), University of Bergen, Bergen (Norway); Department of Biomedicine, University of Bergen, Bergen (Norway); Herfindal, Lars; Kopperud, Reidun [Department of Biomedicine, University of Bergen, Bergen (Norway); Aragay, Anna M. [Department of Biomedicine, University of Bergen, Bergen (Norway); Molecular Biology Institute of Barcelona (IBMB, CSIC), Barcelona (Spain); Holmsen, Holm; Døskeland, Stein Ove; Kleppe, Rune [Department of Biomedicine, University of Bergen, Bergen (Norway); Selheim, Frode, E-mail: Frode.Selheim@biomed.uib.no [Proteomic Unit at University of Bergen (PROBE), University of Bergen, Bergen (Norway); Department of Biomedicine, University of Bergen, Bergen (Norway)

    2014-07-04

    Highlights: • We investigated the impact of cyclic nucleotide analogues on platelet activation. • Different time dependence were found for inhibition of platelet activation. • Additive effect was found using PKA- and PKG-activating analogues. • Our results may explain some of the discrepancies reported for cNMP signalling. - Abstract: In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigated whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.

  7. Mucin 3 is involved in intestinal epithelial cell apoptosis via N-(3-oxododecanoyl)-L-homoserine lactone-induced suppression of Akt phosphorylation.

    Science.gov (United States)

    Taguchi, Ryoko; Tanaka, Shinya; Joe, Ga-Hyun; Maseda, Hideaki; Nomura, Nobuhiko; Ohnishi, Junji; Ishizuka, Satoshi; Shimizu, Hidehisa; Miyazaki, Hitoshi

    2014-07-15

    N-acyl-homoserine lactones (AHL) are quorum-sensing molecules in bacteria that play important roles in regulating virulence gene expression in pathogens such as Pseudomonas aeruginosa. The present study compared responses between undifferentiated and differentiated Caco-2 cells to N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL). A low concentration of 3-oxo-C12-HSL (30 μM) is sufficient to reduce viability accompanied by apoptosis via the suppression of phosphorylation by Akt in undifferentiated Caco-2 cells. The suppression of Akt phosphorylation appears specific in 3-oxo-C12-HSL, because other AHLs did not influence the phosphorylation status of Akt. The reduced viability induced by 3-oxo-C12-HSL was partially recovered by constitutively active Akt overexpression in undifferentiated Caco-2 cells. Since mucin is considered a vital component of the gut barrier, we investigated whether mucin protects cellular functions induced by 3-oxo-C12-HSL in undifferentiated Caco-2 cells. The results showed that mucin protected undifferentiated Caco-2 cells from apoptosis induced by 3-oxo-C12-HSL. 3-Oxo-C12-HSL did not induce cell death in differentiated Caco-2 cells that expressed higher levels of mucin 3 (MUC3) than undifferentiated Caco-2 cells. In addition, 3-oxo-C12-HSL promoted cell death in undifferentiated Caco-2 cells transfected with MUC3 siRNA and reduced MUC3 expression in undifferentiated Caco-2 cells. Therefore, MUC3 might be responsible for the survival of undifferentiated intestinal epithelial cells in the presence of 3-oxo-C12-HSL through regulating Akt phosphorylation. In conclusion, 3-oxo-C12-HSL might influence the survival of undifferentiated intestinal epithelial cells as well as interactions between these cells and pathogens.

  8. Epigallocatechin-3-gallate induces oxidative phosphorylation by activating cytochrome c oxidase in human cultured neurons and astrocytes.

    Science.gov (United States)

    Castellano-González, Gloria; Pichaud, Nicolas; Ballard, J William O; Bessede, Alban; Marcal, Helder; Guillemin, Gilles J

    2016-02-16

    Mitochondrial dysfunction and resulting energy impairment have been identified as features of many neurodegenerative diseases. Whether this energy impairment is the cause of the disease or the consequence of preceding impairment(s) is still under discussion, however a recovery of cellular bioenergetics would plausibly prevent or improve the pathology. In this study, we screened different natural molecules for their ability to increase intracellular adenine triphosphate purine (ATP). Among them, epigallocatechin-3-gallate (EGCG), a polyphenol from green tea, presented the most striking results. We found that it increases ATP production in both human cultured astrocytes and neurons with different kinetic parameters and without toxicity. Specifically, we showed that oxidative phosphorylation in human cultured astrocytes and neurons increased at the level of the routine respiration on the cells pre-treated with the natural molecule. Furthermore, EGCG-induced ATP production was only blocked by sodium azide (NaN3) and oligomycin, inhibitors of cytochrome c oxidase (CcO; complex IV) and ATP synthase (complex V) respectively. These findings suggest that the EGCG modulates CcO activity, as confirmed by its enzymatic activity. CcO is known to be regulated differently in neurons and astrocytes. Accordingly, EGCG treatment is acting differently on the kinetic parameters of the two cell types. To our knowledge, this is the first study showing that EGCG promotes CcO activity in human cultured neurons and astrocytes. Considering that CcO dysfunction has been reported in patients having neurodegenerative diseases such as Alzheimer's disease (AD), we therefore suggest that EGCG could restore mitochondrial function and prevent subsequent loss of synaptic function.

  9. Inhibitory effect of puerarin on vascular smooth muscle cells proliferation induced by oxidised low-density lipoprotein via suppressing ERK 1/2 phosphorylation and PCNA expression.

    Science.gov (United States)

    Hu, Yanwu; Liu, Kai; Bo, Sun; Yan, Mengtong; Zhang, Yang; Miao, Chunsheng; Ren, Liqun

    2016-02-01

    Puerarin, an isoflavonoid isolated from the traditional Chinese herbal medicine Pueraria lobata (Wild.) Ohwi, has been shown to process antioxidant, anti-inflammatory, anti-cancer, anti-hypercholesterolemic, and anti-hyperglycemic activities in vivo and in vitro. The aim of the present study was to investigate the antiproliferative effects and the possible mechanisms of puerarin in vascular smooth muscle cells (VSMCs) stimulated with oxidised low-density lipoprotein (ox-LDL). VSMCs were cultured and pretreated with different concentrations of puerarin (0, 1, 10, 50 µM) before stimulated by ox-LDL (50 µg/mL). Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of puerarin on cell cycle. Proliferating cell nuclear antigen (PCNA) expression and phosphorylation levels of extracellular signal-regulated kinase (ERK) 1/2 were detected by western blotting analysis. The results indicated that puerarin significantly inhibited VSMCs proliferation induced by ox-LDL and phosphorylation of ERK 1/2. Furthermore, puerarin also blocked the ox-LDL-induced cell-cycle progression at G1/S-interphase and down-regulated the expression of PCNA of VSMCs. The results suggest puerarin inhibits ox-LDL-induced proliferation of VSMCs by suppressing ERK 1/2 phosphorylation and PCNA expression.

  10. Gab2 is phosphorylated on tyrosine upon interleukin-2/interleukin-15 stimulation in mycosis-fungoides-derived tumor T cells and associates inducibly with SHP-2 and Stat5a

    DEFF Research Database (Denmark)

    Brockdorff, J L; Gu, H; Mustelin, T

    2001-01-01

    Cutaneous T cell lymphomas (CTCLs) often show abnormal interleukin-2 (IL-2) receptor signaling. In this study, we investigated the role of Gab2, a recently identified adaptor molecule involved in IL-2 receptor signaling in CTCLs. We show that Gab2 was transiently phosphorylated by tyrosine in human...... mycosis fungoides (MF) tumor T cells upon IL-2 stimulation and that SHP2 as well as Stat5a associated inducibly with Gab2. IL-15, but not IL-4, also induced tyrosine phosphorylation of Gab2, suggesting that the IL-2 receptor beta-chain is important for IL-2-induced Gab2 phosphorylation. Preincubation...

  11. Peripheral inflammation induces tumor necrosis factor dependent AMPA receptor trafficking and Akt phosphorylation in spinal cord in addition to pain behavior.

    Science.gov (United States)

    Choi, Jeong Il; Svensson, Camilla I; Koehrn, Fred J; Bhuskute, Aditi; Sorkin, Linda S

    2010-05-01

    In the present study, intraplantar carrageenan induced increased mechanical allodynia, phosphorylation of PKB/Akt and GluR1 ser 845 (PKA site) as well as GluR1, but not GluR2 movement into neuronal membranes. This change in membrane GluR1/GluR2 ratio is indicative of Ca(2+) permeable AMPA receptor insertion. Pain behavior was reduced and biochemical changes blocked by spinal pretreatment, but not post-treatment, with a tumor necrosis factor (TNF) antagonist, Etanercept (100microg). Pain behavior was also reduced by spinal inhibition of phosphatidylinositol 3-kinase (PI-3K) (wortmannin; 1 and 5microg) and LY294002; 50 and 100microg) and Akt (Akt inhibitor IV; 3microg). Phosphorylated Akt was found exclusively in neurons in grey matter and in oligodendrocytes in white matter. Interestingly, this increase was seen first in superficial dorsal horn and alpha-motor neurons (peak 45min) and later (peak 2h post-injection) in deep dorsal horn neurons. Akt and GluR1 phosphorylation, AMPA receptor trafficking and mechanical allodynia were all TNF dependent. Whether phosphorylation of Akt and of GluR1 are in series or in parallel or upstream of pain behavior remains to be determined. Certainly, TNF-mediated GluR1 trafficking appears to play a major role in inflammatory pain and TNF-mediated effects such as these could represent a path by which glia contribute to neuronal sensitization (spinal LTP) and pathological pain.

  12. Aggregation of soy protein-isoflavone complexes and gel formation induced by glucono-δ-lactone in soymilk

    Science.gov (United States)

    Hsia, Sheng-Yang; Hsiao, Yu-Hsuan; Li, Wen-Tai; Hsieh, Jung-Feng

    2016-10-01

    This study investigated the glucono-δ-lactone (GDL)-induced aggregation of isoflavones and soy proteins in soymilk. High-performance liquid chromatography (HPLC) analysis indicated that isoflavones mixed with β-conglycinin (7S) and glycinin (11S) proteins formed 7S-isoflavone and 11S-isoflavone complexes in soymilk supernatant fraction (SSF). Most of the soy protein-isoflavone complexes then precipitated into the soymilk pellet fraction (SPF) following the addition of 4 mM GDL, whereupon the pH value of the soymilk dropped from 6.6 to 5.9. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and HPLC analysis suggest that the addition of 4 mM GDL induced the aggregation of most 7S (α’, α and β subunits), 11S acidic and 11S basic proteins as well as isoflavones, including most aglycones, including daidzein, glycitein, genistein and a portion of glucosides, including daidzin, glycitin, genistin, malonyldaidzin and malonylgenistin. These results provide an important reference pertaining to the effects of GDL on the aggregation of soy protein-isoflavone complexes and could benefit future research regarding the production of tofu from soymilk.

  13. Nitric oxide inhibited the melanophore aggregation induced by extracellular calcium concentration in snakehead fish, Channa punctatus.

    Science.gov (United States)

    Biswas, Saikat P; Palande, Nikhil V; Jadhao, Arun G

    2011-12-01

    We studied the role of nitric oxide (NO) and extra-cellular Ca(2+) on the melanophores in Indian snakehead teleost, Channa punctatus. Increase of Ca(2+) level in the external medium causes pigment aggregation in melanophores. This pigment-aggregating effect was found to be inhibited when the external medium contained spontaneous NO donor, sodium nitro prusside (SNP) at all the levels of concentration tested. Furthermore, it has been observed that SNP keeps the pigment in dispersed state even after increasing the amount of Ca(2+). In order to test whether NO donor SNP causes dispersion of pigments or not is checked by adding the inhibitor of nitric oxide synthase, N-omega-Nitro-L-arginine (L-NNA) in the medium. It has been noted that the inhibitor L-NNA blocked the effect of NO donor SNP causing aggregation of pigments. In that way NO is inhibiting the effect of extracellular Ca(2+), keeping the pigment dispersed.

  14. Role of amorphous and aggregate phases on field-induced exciton dissociation in a conjugated polymer

    Science.gov (United States)

    Mróz, Marta M.; Lüer, Larry; Houarner-Rassin, Coralie; Anderson, Harry L.; Cabanillas-Gonzalez, Juan

    2013-01-01

    We have applied electric field assisted pump-probe spectroscopy in order to unravel the interplay of amorphous and aggregate phases on the polaron-pair photogeneration process in a conjugated porphyrin polymer. We find that excitons photogenerated in both phases are precursors for polaron pairs with different yields. Kinetic modeling indicates a substantially larger barrier for exciton dissociation in aggregates compared to amorphous areas. The majority of polaron pairs are however formed in aggregate phases due to efficient energy transfer from the amorphous phase. Based on the change in the Stark shift associated with the photogenerated polaron density, we provide a picture of the motion of polaron pairs under the external electric field.

  15. HMG-CoA reductase inhibitors, statins, induce phosphorylation of Mdm2 and attenuate the p53 response to DNA damage.

    Science.gov (United States)

    Pääjärvi, Gerd; Roudier, Emilie; Crisby, Milita; Högberg, Johan; Stenius, Ulla

    2005-03-01

    3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibitors, statins, are widely used cholesterol-lowering drugs and have been shown to have anticancer effects in many models. We have investigated the effect of statins on Mdm2, a p53-specific ubiquitin ligase. It was found that pravastatin induced Mdm2 phosphorylation at Ser166 and at 2A10 antibody-specific epitopes in HepG2 cells, while mRNA levels were unchanged. Furthermore, pravastatin was found to induce phosphorylation of mTOR at Ser2448. Ser166 phosphorylation of Mdm2 was abrogated by an inhibitor of mTOR, rapamycin, but not by the PI3-kinase inhibitors LY294002 and wortmannin. Ser166 phosphorylation of Mdm2 has been associated to active Mdm2 and has been shown to increase its ubiquitin ligase activity and lead to increased p53 degradation. Our data show that statins attenuated the p53 response to DNA damage. Thus, in HepG2 cells pravastatin and simvastatin pretreatment attenuated the p53 response to DNA damage induced by 5-fluorouracil and benzo(a)pyrene. Similar attenuation was induced when p53 stabilization was induced by the inhibitor of nuclear export, leptomycin B. Furthermore, in the DNA-damaged cells, half-lives of Mdm2 and p53 were decreased by statins, indicating a more rapid formation of p53/Mdm2 complexes and facilitated p53 degradation. The induction of p53 responsive genes and apoptosis was attenuated. Mdm2 and p53 were also studied in vivo in rat liver employing immunohistochemistry, and it was found that constitutive Mdm2 expression was changed in livers of pravastatin-treated rats. We also show that the p53 response to a challenging dose of diethylnitrosamine was attenuated in hepatocytes in situ and in primary cultures of hepatocytes by pravastatin pretreatment. Taken together, these data indicate that statins induce an mTOR-dependent Ser166 phosphorylation of Mdm2, and this effect may attenuate the duration and intensity of the p53 response to DNA damage in hepatocytes.

  16. IL-2 induces beta2-integrin adhesion via a wortmannin/LY294002-sensitive, rapamycin-resistant pathway. Phosphorylation of a 125-kilodalton protein correlates with induction of adhesion, but not mitogenesis

    DEFF Research Database (Denmark)

    Nielsen, M; Svejgaard, A; Skov, S;

    1996-01-01

    beta2-integrin-dependent, homotypic adhesion in Ag-specific, human T cell lines. The IL-2 adhesion response is blocked by wortmannin and LY294002, inhibitors of phosphatidylinositol-3 (PI-3) kinase activity. In contrast, rapamycin strongly inhibits IL-2-induced proliferation without inhibiting IL-2......, and cytochalasin E almost completely inhibit cytokine-induced tyrosine phosphorylation of p125, whereas tyrosine phosphorylation of PI-3 kinase, Janus kinases, Stat3, Stat5, and other proteins is unaffected. In contrast, rapamycin has little effect on IL-2-induced phosphorylation of p125. Taken together......, these data suggest that 1) IL-2R ligation induces homotypic adhesion through a wortmannin/LY294002-sensitive, rapamycin-resistant pathway, 2) tyrosine kinases play a critical role in cytokine-induced adhesion, and 3) adhesion, but not mitogenesis, correlates with enhanced tyrosine phosphorylation...

  17. Nestin+cells forming spheroids aggregates resembling tumorspheres in experimental ENU-induced gliomas.

    Science.gov (United States)

    García-Blanco, Alvaro; Bulnes, Susana; Pomposo, Iñigo; Carrasco, Alex; Lafuente, José Vicente

    2016-12-01

    Nestin+cells from spheroid aggregates display typical histopathological features compatible with cell stemness. Nestin and CD133+cells found in glioblastomas, distributed frequently around aberrant vessels, are considered as potential cancer stem cells. They are possible targets for antitumoral therapy because they lead the tumorigenesis, invasiveness and angiogenesis. However, little is known about their role and presence in low-grade gliomas. The aim of this work is to localize and characterize the distribution of these cells inside tumors during the development of experimental endogenous glioma. For this study, a single dose of Ethyl-nitrosourea was injected into pregnant rats. Double immunofluorescences were performed in order to identify stem-like and differentiated cells. Low-grade gliomas display Nestin+cells distributed throughout the tumor. More malignant gliomas show, in addition to that, a perivascular location with some Nestin+cells co-expressing CD133 or VEGF, and the intratumoral spheroid aggregates of Nestin/CD133+cells. These structures are encapsulated by well-differentiated VEGF/GFAP+cells. Spheroid aggregates increase in size in the most malignant stages. Spheroid aggregates have morphological and phenotypic similarities to in vitro neurospheres and could be an in vivo analogue of them. These arrangements could be a reservoir of undifferentiated cells formed to escape adverse microenvironments.

  18. Roles of autophagy in MPP+-induced neurotoxicity in vivo: the involvement of mitochondria and α-synuclein aggregation.

    Directory of Open Access Journals (Sweden)

    Kai-Chih Hung

    Full Text Available Macroautophagy (also known as autophagy is an intracellular self-eating mechanism and has been proposed as both neuroprotective and neurodestructive in the central nervous system (CNS neurodegenerative diseases. In the present study, the role of autophagy involving mitochondria and α-synuclein was investigated in MPP+ (1-methyl-4-phenylpyridinium-induced oxidative injury in chloral hydrate-anesthetized rats in vivo. The oxidative mechanism underlying MPP+-induced neurotoxicity was identified by elevated lipid peroxidation and heme oxygenase-1 levels, a redox-regulated protein in MPP+-infused substantia nigra (SN. At the same time, MPP+ significantly increased LC3-II levels, a hallmark protein of autophagy. To block MPP+-induced autophagy in rat brain, Atg7siRNA was intranigrally infused 4 d prior to MPP+ infusion. Western blot assay showed that in vivo Atg7siRNA transfection not only reduced Atg7 levels in the MPP+-infused SN but attenuated MPP+-induced elevation in LC3-II levels, activation of caspase 9 and reduction in tyrosine hydroxylase levels, indicating that autophagy is pro-death. The immunostaining study demonstrated co-localization of LC3 and succinate dehydrogenase (a mitochondrial complex II as well as LC3 and α-synuclein, suggesting that autophagy may engulf mitochondria and α-synuclein. Indeed, in vivo Atg7siRNA transfection mitigated MPP+-induced reduction in cytochrome c oxidase. In addition, MPP+-induced autophagy differentially altered the α-synuclein aggregates in the infused SN. In conclusion, autophagy plays a prodeath role in the MPP+-induced oxidative injury by sequestering mitochondria in the rat brain. Moreover, our data suggest that the benefits of autophagy depend on the levels of α-synuclein aggregates in the nigrostriatal dopaminergic system of the rat brain.

  19. HDAC2 phosphorylation-dependent KIf5 deacetylation and RARα acetylation induced by RAR agonist switch the transcription regulatory programs of p21 in VSMCs

    Institute of Scientific and Technical Information of China (English)

    Bin Zheng; Mei Han; Ya-nan Shu; Yimg-jie Li; Sui-bing Miao; Xin-hua Zhang; Hui-jing Shi; Tian zhang; Jin-kun Wen

    2011-01-01

    Abnormal proliferation of vascular smooth muscle cells (VSMCs) occurs in hypertension,atherosclerosis and restenosis after angioplasty,leading to pathophysiological vascular remodeling.As an important growth arrest gene,p21 plays critical roles in vascular remodeling.Regulation of p21 expression by retinoic acid receptor (RAR) and its ligand has important implications for control of pathological vascular remodeling.Nevertheless,the mechanism of RAR-mediated p21 expression in VSMCs remains poorly understood.Here,we show that,under basal conditions,RARa forms a complex with histone deacetylase 2 (HDAC2) and Krüppel-like factor 5 (KIf5) at the p21 promoter to inhibit its expression.Upon RARα agonist stimulation,HDAC2 is phosphorylated by CK2α.Phosphorylation of HDAC2,on the one hand,promotes its dissociation from RARα,thus allowing the liganded-RARα to interact with co-activators; on the other hand,it increases its interaction with KIf5,thus leading to deacetylation of Klf5.Deacetylation of KIf5 facilitates its dissociation from thep21 promoter,relieving its repressive effect on thep21 promoter.Interference with HDAC2 phosphorylation by either CK2α knockdown or the use of phosphorylation-deficient mutant of HDAC2 prevents the dissociation of KIf5 from the p21 promoter and impairs RAR agonist-induced p21 activation.Our results reveal a novel mechanism involving a phosphorylation-deacetylation cascade that functions to remove the basal repression complex from the p21 promoter upon RAR agonlst treatment,allowing for optimum agonistinduced p21 expression.

  20. Dopamine-induced Tyrosine Phosphorylation of NR2B (Tyr1472 is Essential for ERK1/2 Activation and Processing of Novel Taste Information

    Directory of Open Access Journals (Sweden)

    Orit eDavid

    2014-07-01

    Full Text Available Understanding the heterosynaptic interaction between glutamatergic and neuromodulatory synapses is highly important for revealing brain function in health and disease. For instance, the interaction between dopamine and glutamate neurotransmission is vital for memory and synaptic plasticity consolidation, and is known to converge on ERK-MAPK signaling in neurons. Previous studies suggest that dopamine induces NMDA receptor phosphorylation at the NR2B Y1472 subunit, influencing receptor internalization at the synaptic plasma membrane. However, it is unclear whether this phosphorylation is upstream to and/or necessary for ERK1/2 activation, which is known to be crucial for synaptic plasticity and memory consolidation. Here, we tested the hypothesis that tyrosine phosphorylation of NR2B at Y1472 is correlated with ERK1/2 activation by dopamine and necessary for it as well. We find that dopamine receptor D1, but not D2, activates ERK1/2 and leads to NR2BY1472 phosphorylation in the mature hippocampus and cortex. Moreover, our results indicate that NR2B Y1472 phosphorylation is necessary for ERK1/2 activation. Importantly, application of dopamine or the D1 receptor agonist SKF38393 to hippocampal slices from NR2B F1472 mutant mice did not result in ERK1/2 activation, suggesting this site is not only correlated with ERK1/2 activation by dopamine stimulation, but also necessary for it. In addition, NR2B F1472 mice show impairment in learning of attenuation of taste neophobia, but not associative taste learning. Our study shows that the dopaminergic and glutamatergic transmission converge on the NMDA receptor itself, at the Y1472 site of the NR2B subunit, and that this convergence is essential for ERK1/2 activation in the mature brain and for processing new sensory information in the cortex.

  1. Sodium butyrate modulates pRb phosphorylation and induces cell death in human vestibular schwannomas in vitro.

    Science.gov (United States)

    Mitra, Rohan; Devi, B Indira; Gope, Mohan L; Subbakrishna, D K; Gope, Rajalakshmi

    2012-01-01

    In the present study, effect of Na-Bu on the pRb phosphorylation was analysed in the primary cultures of 12 VS tumors. Primary cultures of VS tumors were established from the fresh tumor tissues removed surgically and were treated with Na-Bu. Na-Bu treatment for 48 h led to morphological changes and apoptotic cell death in VS tumor cells. Na-Bu treatment decreased level of total pRb and phosphorylated form of pRb and caused specific dephosphorylation at Ser 249/Thr 252 and Ser 567. In the untreated and Na-Bu treated cells (when present), pRb was localised in the nucleus. Moreover, in Na-Bu treated cells the nucleus appeared highly condensed as compared to untreated cells. Results of the present study indicated that Na-Bu treatment modulated pRb phosphorylation status and caused apoptotic cell death in VS tumors.

  2. ADHESION-INDUCE PROTEIN TYROSINE PHOSPHORY-LATION IS ASSOCIATED WITH INVASIVE AND METASTATIC POTENTIALS IN B16-BL6 MELANOMA CELLS

    Institute of Scientific and Technical Information of China (English)

    Yan Chunhong; Han Rui

    1998-01-01

    Objective: The interaction of cancer cell with extracellular matrix (ECM) happens as an earlier and specific event in the invasive and metastatic cascade. To explore the key element(s) in cancer metastasis and observe the cell-ECM interaction and its role. Methods:To interrupt the cell-ECM interaction by suppression of adhesion-induced protein tyrosine phosphorylation with protein tyrosine kinase inhibitor genistein in B16-B16mouse melanoma cells. Results: When B16-BL6 cells attached to Matrigel, a solubilized basement membrane preparation from EHS sarcoma, a 125 kDa protein increased its phosphotyrosine content dramatically. In contrast, when the cells were pretreated with 20μM or 30μM genistein for 3 days, it was revealed a less increase in the phosphotyrosine content of this 125 kDa protein inresponse to cell attachment to ECM was revealed with immunoblot analysis. Accompanied by the lower level of adhesion-induced protein tyrosine phosphorylation the genistein-treated cells exhibited a decrease in their capabilities of adhesion to Matrigel and invasion through reconstituted basement membrane. The potentials of and forming lung metastatic nodules were also shown to be decreased dramatically in these genistein-treated cells.Conclusion: It was suggested that protein tyrosine phosphorylation in cell-ECM interaction might be associated with invasive and metastatic potentials in cancer cells.

  3. Cyclin-dependent kinase 5 contributes to endoplasmic reticulum stress induced podocyte apoptosis via promoting MEKK1 phosphorylation at Ser280 in diabetic nephropathy.

    Science.gov (United States)

    Zhang, Yue; Gao, Xiang; Chen, Shuanggang; Zhao, Min; Chen, Jing; Liu, Rui; Cheng, Shengyang; Qi, Mengyuan; Wang, Shuo; Liu, Wei

    2017-02-01

    Endoplasmic reticulum (ER) stress has been reported to be associated with podocyte apoptosis in diabetic nephropathy, but the mechanism of ER signaling in podocyte apoptosis hasn't been fully understood. Our previous studies have demonstrated that Cyclin-dependent kinase 5 (Cdk5) was associated with podocyte apoptosis in diabetic nephropathy. The present study was designed to examine whether and how Cdk5 activity plays a role in ER stress induced podocyte apoptosis in diabetic nephropathy. The results showed that along with induction of Cdk5 and apoptosis, GRP78 and its two sensors as well as CHOP and cleaved caspase-12 were induced in high glucose treated podocytes. These responses were attenuated by treated salubrinal. The ER stress inducer, tunicamycin, also up-regulated the kinase activity and protein expression of Cdk5 in podocytes accompanied with the increasing of GRP78. On the other hand, Cdk5 phosphorylates MEKK1 at Ser280 in tunicamycin treated podocytes, and together, they increase the JNK phosphorylation. Moreover, disruption of this pathway can decrease the podocyte apoptosis induced by tunicamycin. Therefore, our study proved that Cdk5 may play an important role in ER stress induced podocyte apoptosis through MEKK1/JNK pathway in diabetic nephropathy.

  4. SB203580 Modulates p38 MAPK Signaling and Dengue Virus-Induced Liver Injury by Reducing MAPKAPK2, HSP27, and ATF2 Phosphorylation.

    Directory of Open Access Journals (Sweden)

    Gopinathan Pillai Sreekanth

    Full Text Available Dengue virus (DENV infection causes organ injuries, and the liver is one of the most important sites of DENV infection, where viral replication generates a high viral load. The molecular mechanism of DENV-induced liver injury is still under investigation. The mitogen activated protein kinases (MAPKs, including p38 MAPK, have roles in the hepatic cell apoptosis induced by DENV. However, the in vivo role of p38 MAPK in DENV-induced liver injury is not fully understood. In this study, we investigated the role of SB203580, a p38 MAPK inhibitor, in a mouse model of DENV infection. Both the hematological parameters, leucopenia and thrombocytopenia, were improved by SB203580 treatment and liver transaminases and histopathology were also improved. We used a real-time PCR microarray to profile the expression of apoptosis-related genes. Tumor necrosis factor α, caspase 9, caspase 8, and caspase 3 proteins were significantly lower in the SB203580-treated DENV-infected mice than that in the infected control mice. Increased expressions of cytokines including TNF-α, IL-6 and IL-10, and chemokines including RANTES and IP-10 in DENV infection were reduced by SB203580 treatment. DENV infection induced the phosphorylation of p38MAPK, and its downstream signals including MAPKAPK2, HSP27 and ATF-2. SB203580 treatment did not decrease the phosphorylation of p38 MAPK, but it significantly reduced the phosphorylation of MAPKAPK2, HSP27, and ATF2. Therefore, SB203580 modulates the downstream signals to p38 MAPK and reduces DENV-induced liver injury.

  5. Hippocampal expression of synaptic structural proteins and phosphorylated cAMP response element-binding protein in a rat model of vascular dementia induced by chronic cerebral hypoperfusion

    Institute of Scientific and Technical Information of China (English)

    Hui Zhao; Zhiyong Li; Yali Wang; Qiuxia Zhang

    2012-01-01

    The present study established a rat model of vascular dementia induced by chronic cerebral hy-poperfusion through permanent ligation of bilateral common carotid arteries. At 60 days after mod-eling, escape latency and swimming path length during hidden-platform acquisition training in Morris water maze significantly increased in the model group. In addition, the number of accurate crossings over the original platform significantly decreased, hippocampal CA1 synaptophysin and growth-associated protein 43 expression significantly decreased, cAMP response element-binding protein expression remained unchanged, and phosphorylated cAMP response element-binding protein expression significantly decreased. Results suggested that abnormal expression of hippo-campal synaptic structural protein and cAMP response element-binding protein phosphorylation played a role in cognitive impairment following chronic cerebral hypoperfusion.

  6. Effect of phosphate buffer on aggregation kinetics of citrate-coated silver nanoparticles induced by monovalent and divalent electrolytes.

    Science.gov (United States)

    Afshinnia, K; Baalousha, M

    2017-03-01

    The attachment efficiency (α) is an important parameter that can be used to characterize nanoparticle (NPs) aggregation behavior and has been a topic of discussion of several papers in the past few years. The importance of α is because it is one of the key parameters that can be used to model NP environmental fate and behavior. This study uses UV-vis and laser Doppler electrophoresis to monitor the aggregation behavior of citrate-coated silver nanoparticles (cit-AgNPs) induced by Na(+) and Ca(2+) as counter ions in the presence and absence of Suwannee River fulvic acid (SRFA) as a surrogate of natural organic matter and different concentrations of phosphate buffer (0-1mM). Results demonstrate that phosphate buffer, which serves to maintain pH nearly constant over the course of a reaction, is an important determinant of NP aggregation behavior. Increasing phosphate buffer concentration results in a decrease in the critical coagulation concentrations (CCC) of cit-AgNPs to lower counter ion concentration and an increase of α at the same counter ion concentration, both in the absence and presence of SRFA. SRFA stabilizes AgNPs and increases the CCC to higher counter ion concentrations. The outcome of this study can be used to rationalize the variation in α and CCC values reported in the literature for NPs with similar physicochemical properties, where different α and CCC values are reported when different types of buffers and buffer concentrations are used in different studies.

  7. The Kinetics of Dislocation Loop Formation in Ferritic Alloys Through the Aggregation of Irradiation Induced Defects

    Science.gov (United States)

    Kohnert, Aaron Anthony

    The mechanical properties of materials are often degraded over time by exposure to irradiation environments, a phenomenon that has hindered the development of multiple nuclear reactor design concepts. Such property changes are the result of microstructural changes induced by the collision of high energy particles with the atoms in a material. The lattice defects generated in these recoil events migrate and interact to form extended damage structures. This study has used theoretical models based on the mean field chemical reaction rate theory to analyze the aggregation of isolated lattice defects into larger microstructural features that are responsible for long term property changes, focusing on the development of black dot damage in ferritic iron based alloys. The purpose of such endeavors is two-fold. Primarily, such models explain and quantify the processes through which these microstructures form. Additionally, models provide insight into the behavior and properties of the point defects and defect clusters which drive general microstructural evolution processes. The modeling effort presented in this work has focused on physical fidelity, drawing from a variety of sources of information to characterize the unobservable defect generation and agglomeration processes that give rise to the observable features reported in experimental data. As such, the models are based not solely on isolated point defect creation, as is the case with many older rate theory approaches, but instead on realistic estimates of the defect cluster population produced in high energy cascade damage events. Experimental assessments of the microstructural changes evident in transmission electron microscopy studies provide a means to measure the efficacy of the kinetic models. Using common assumptions of the mobility of defect clusters generated in cascade damage conditions, an unphysically high density of damage features develops at the temperatures of interest with a temperature dependence

  8. Human enhancer of filamentation 1-induced colorectal cancer cell migration: Role of serine phosphorylation and interaction with the breast cancer anti-estrogen resistance 3 protein.

    Science.gov (United States)

    Ibrahim, Rama; Lemoine, Antoinette; Bertoglio, Jacques; Raingeaud, Joël

    2015-07-01

    Human enhancer of filamentation 1 (HEF1) is a member of the p130Cas family of docking proteins involved in integrin-mediated cytoskeleton reorganization associated with cell migration. Elevated expression of HEF1 promotes invasion and metastasis in multiple cancer cell types. To date, little is known on its role in CRC tumor progression. HEF1 is phosphorylated on several Ser/Thr residues but the effects of these post-translational modifications on the functions of HEF1 are poorly understood. In this manuscript, we investigated the role of HEF1 in migration of colorectal adeno-carcinoma cells. First, we showed that overexpression of HEF1 in colo-carcinoma cell line HCT116 increases cell migration. Moreover, in these cells, HEF1 increases Src-mediated phosphorylation of FAK on Tyr-861 and 925. We then showed that HEF1 mutation on Ser-369 enhances HEF1-induced migration and FAK phosphorylation as a result of protein stabilization. We also, for the first time characterized a functional mutation of HEF1 on Arg-367 which mimics the effect of Ser-369 to Ala mutation. Finally through mass spectrometry experiments, we identified BCAR3 as an essential interactor and mediator of HEF1-induced migration. We demonstrated that single amino acid mutations that prevent formation of the HEF1-BCAR3 complex impair HEF1-mediated migration. Therefore, amino-acid substitutions that impede Ser-369 phosphorylation stabilize HEF1 which increases the migration of CRC cells and this latter effect requires the interaction of HEF1 with the NSP family adaptor protein BCAR3. Collectively, these data reveal the importance of HEF1 expression level in cancer cell motility and then support the utilization of HEF1 as a biomarker of tumor progression.

  9. Zinc induces unfolding and aggregation of dimeric arginine kinase by trapping reversible unfolding intermediate.

    Science.gov (United States)

    Liu, Taotao; Wang, Xicheng

    2010-11-01

    Arginine kinase plays an important role in the cellular energy metabolism of invertebrates. Dimeric arginine kinase (dAK) is unique in some marine invertebrates. The effects of Zn²(+) on the unfolding and aggregation of dAK from the sea cucumber Stichopus japonicus were investigated. Our results indicated that Zn²(+) caused dAK inactivation accompanied by conformational unfolding, the exposure of hydrophobic surface, and aggregation. Kinetic studies showed the inactivation and unfolding of dAK followed biphasic kinetic courses. Zn²(+) can affect unfolding and refolding of dAK by trapping the reversible intermediate. Our study provides important information regarding the effect of Zn²(+) on metabolic enzymes in marine invertebrates.

  10. Bivalent Copper Ions Promote Fibrillar Aggregation of KCTD1 and Induce Cytotoxicity.

    Science.gov (United States)

    Liu, Zhepeng; Song, Feifei; Ma, Zhi-Li; Xiong, Qiushuang; Wang, Jingwen; Guo, Deyin; Sun, Guihong

    2016-01-01

    Potassium channel tetramerization domain containing 1 (KCTD1) family members have a BTB/POZ domain, which can facilitate protein-protein interactions involved in the regulation of different signaling pathways. KCTD proteins have potential Zn(2+)/Cu(2+) binding sites with currently unknown structural and functional roles. We investigated potential Cu(2+)-specific effects on KCTD1 using circular dichroism, turbidity measurement, fluorescent dye binding, proteinase K (PK) digestion, cell proliferation and apoptosis assays. These experiments indicate that the KCTD1 secondary structure assumes greater β-sheet content and the proteins aggregate into a PK-resistant form under 20 μM Cu(2+), and this β-sheet-rich aggregation with Cu(2+) promotes fibril formation, which results in increased cell toxicity by apoptosis. Our results reveal a novel role for Cu(2+) in determining the structure and function of KCTD1.

  11. α-Synuclein-induced Aggregation of Cytoplasmic Vesicles in Saccharomyces cerevisiae

    OpenAIRE

    Soper, James H.; Roy, Subhojit; Stieber, Anna; Lee, Eliza; Wilson, Robert B.; Trojanowski, John Q.; Burd, Christopher G.; Lee, Virginia M.-Y.

    2008-01-01

    Aggregated α-synuclein (α-syn) fibrils form Lewy bodies (LBs), the signature lesions of Parkinson's disease (PD) and related synucleinopathies, but the pathogenesis and neurodegenerative effects of LBs remain enigmatic. Recent studies have shown that when overexpressed in Saccharomyces cerevisiae, α-syn localizes to plasma membranes and forms cytoplasmic accumulations similar to human α-syn inclusions. However, the exact nature, composition, temporal evolution, and underlying mechanisms of ye...

  12. The yeast peroxiredoxin Tsa1 protects against protein-aggregate-induced oxidative stress

    OpenAIRE

    2014-01-01

    ABSTRACT Peroxiredoxins are ubiquitous thiol-specific proteins that have multiple functions in stress protection, including protection against oxidative stress. Tsa1 is the major yeast peroxiredoxin and we show that it functions as a specific antioxidant to protect the cell against the oxidative stress caused by nascent-protein misfolding and aggregation. Yeast mutants lacking TSA1 are sensitive to misfolding caused by exposure to the proline analogue azetidine-2-carboxylic acid (AZC). AZC pr...

  13. Inhibition of protein phosphatase 2A induces serine/threonine phosphorylation, subcellular redistribution, and functional inhibition of STAT3

    DEFF Research Database (Denmark)

    Woetmann, A; Nielsen, M; Christensen, S T;

    1999-01-01

    Signal transducers and activators of transcription (STATs) are rapidly phosphorylated on tyrosine residues in response to cytokine and growth factor stimulation of cell surface receptors. STATs hereafter are translocated to the nucleus where they act as transcription factors. Recent reports sugge...

  14. Jack bean (Canavalia ensiformis) urease induces eicosanoid-modulated hemocyte aggregation in the Chagas' disease vector Rhodnius prolixus.

    Science.gov (United States)

    Defferrari, M S; da Silva, R; Orchard, I; Carlini, C R

    2014-05-01

    Ureases are multifunctional proteins that display biological activities independently of their enzymatic function, such as induction of exocytosis and insecticidal effects. Rhodnius prolixus, a major vector of Chagas' disease, is a model for studies on the entomotoxicity of jack bean urease (JBU). We have previously shown that JBU induces the production of eicosanoids in isolated tissues of R. prolixus. In insects, the immune response comprises cellular and humoral reactions, and is centrally modulated by eicosanoids. Cyclooxygenase products signal immunity in insects, mainly cellular reactions, such as hemocyte aggregation. In searching for a link between JBU's toxic effects and immune reactions in insects, we have studied the effects of this toxin on R. prolixus hemocytes. JBU triggers aggregation of hemocytes after injection into the hemocoel and when applied to isolated cells. On in vitro assays, the eicosanoid synthesis inhibitors dexamethasone (phospholipase A2 indirect inhibitor) and indomethacin (cyclooxygenase inhibitor) counteracted JBU's effect, indicating that eicosanoids, more specifically cyclooxygenase products, are likely to mediate the aggregation response. Contrarily, the inhibitors esculetin and baicalein were inactive, suggesting that lipoxygenase products are not involved in JBU's effect. Extracellular calcium was also necessary for JBU's effect, in agreement to other cell models responsive to ureases. A progressive darkening of the medium of JBU-treated hemocytes was observed, suggestive of a humoral response. JBU was immunolocalized in the cultured cells upon treatment along with cytoskeleton damage. The highest concentration of JBU tested on cultured cells also led to nuclei aggregation of adherent hemocytes. This is the first time urease has been shown to affect insect hemocytes, contributing to our understanding of the entomotoxic mechanisms of action of this protein.

  15. Role of Au nanoparticle aggregation in laser induced anisotropy of ITO transparent substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kityk, I.V., E-mail: iwank74@gmail.com [Electrical Engineering Department, Czetochowa University Technology, Armii Krajowej 17, Czestochowa (Poland); Ebothe, J.; Bercu, N-B. [Laboratoire de Recherche en Nanosciences, E.A. 4682, Université de Reims, 21 rue Clément Ader, 51685 Reims cedex 02 (France); Aziz, Md. Abdul [Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Oyama, Munetaka [Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 (Japan)

    2014-02-05

    Highlights: • Principal role of Au NP surface aggregation on the output photoinduced birefringence is shown. • The higher changes are obtained for the samples with sizes 30 nm. • The process is slowly relaxed. -- Abstract: A principal possibility to achieve the photoinduced anisotropy in the Au NP deposited onto the ITO substrate is experimentally shown. The sizes of the Au NP forming the corresponding nanocomposites were 20 nm, 30 nm and 40 nm. As a photoinducing light source we have used two coherent beam originating from the Er:glass laser generating at 1540 nm with frequency repetition 15 Hz as well as its second harmonic doubled frequency signal at 770 nm. The effect is sensitive to the angle between the two laser beams as well as to the Au NP sizes, inter-particle distances and topology connected with their aggregation. The effect shows slow relaxation to the initial state. The optimal conditions are achieved for nanocomposites formed by 30 nm despite the expected 20 nm. This one may be caused by crucial role of the partial aggregation which even changes the effective grain sizes. The contribution of the dipole–dipole as well as quadrupole–dipole interactions to the changes of the anisotropy is discussed. The excitation is far from the resonance which allow to predict that effective role play overlap with nanotrapping levels. So principal role may belongs to surface topology and which is studied using the birefringence directly connected with the anisotropy.

  16. Amino acid induced fractal aggregation of gold nanoparticles: Why and how.

    Science.gov (United States)

    Doyen, Matthieu; Goole, Jonathan; Bartik, Kristin; Bruylants, Gilles

    2016-02-15

    Gold colloids are the object of many studies as they are reported to have potential biological sensing, imaging and drug delivery applications. In the presence of certain amino acids the aggregation of the gold nanoparticles into linear structures is observed, as highlighted by the appearance of a second plasmon band in the UV-Vis spectra of the colloid. The mechanism behind this phenomenon is still under debate. In order to help elucidate this issue, the interaction between gold colloids and different amino acids, modified amino acids and molecules mimicking their side-chain was monitored by UV-Vis absorption, DLS and TEM. The results show that phenomenon can be rationalized in terms of the Diffusion Limited Colloid Aggregation (DLCA) model which gives rise to the fractal aggregation colloids. The global charge of the compound, which influences the ionic strength of the solution, and the ease with which the compound can interact with the GNPs and affect their surface potential, are, the two parameters which control the DLCA regime. Calculations based on the Derjaguin, Landau, Verwey and Overbeek (DLVO) theory confirm all the experimental observations.

  17. Solvents induced ZnO nanoparticles aggregation associated with their interfacial effect on organic solar cells.

    Science.gov (United States)

    Li, Pandeng; Jiu, Tonggang; Tang, Gang; Wang, Guojie; Li, Jun; Li, Xiaofang; Fang, Junfeng

    2014-10-22

    ZnO nanofilm as a cathode buffer layer has surface defects due to the aggregations of ZnO nanoparticles, leading to poor device performance of organic solar cells. In this paper, we report the ZnO nanoparticles aggregations in solution can be controlled by adjusting the solvents ratios (chloroform vs methanol). These aggregations could influence the morphology of ZnO film. Therefore, compact and homogeneous ZnO film can be obtained to help achieve a preferable power conversion efficiency of 8.54% in inverted organic solar cells. This improvement is attributed to the decreased leakage current and the increased electron-collecting efficiency as well as the improved interface contact with the active layer. In addition, we find the enhanced maximum exciton generation rate and exciton dissociation probability lead to the improvement of device performance due to the preferable ZnO dispersion. Compared to other methods of ZnO nanofilm fabrication, it is the more convenient, moderate, and effective to get a preferable ZnO buffer layer for high-efficiency organic solar cells.

  18. Predictive response surface model for heat-induced rheological changes and aggregation of whey protein concentrate.

    Science.gov (United States)

    Alvarez, Pedro A; Emond, Charles; Gomaa, Ahmed; Remondetto, Gabriel E; Subirade, Muriel

    2015-02-01

    Whey proteins are now far more than a by-product of cheese processing. In the last 2 decades, food manufacturers have developed them as ingredients, with the dairy industry remaining as a major user. For many applications, whey proteins are modified (denatured) to alter their structure and functional properties. The objective of this research was to study the influence of 85 to 100 °C, with protein concentration of 8% to 12%, and treatment times of 5 to 30 min, while measuring rheological properties (storage modulus, loss modulus, and complex viscosity) and aggregation (intermolecular beta-sheet formation) in dispersions of whey protein concentrate (WPC). A Box-Behnken Response Surface Methodology modeled the heat denaturation of liquid sweet WPC at 3 variables and 3 levels. The model revealed a very significant fit for viscoelastic properties, and a lesser fit for protein aggregation, at temperatures not previously studied. An exponential increase of rheological parameters was governed by protein concentration and temperature, while a modest linear relationship of aggregation was governed by temperature. Models such as these can serve as valuable guides to the ingredient and dairy industries to develop target products, as whey is a major ingredient in many functional foods.

  19. Varicella-zoster virus induces the formation of dynamic nuclear capsid aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, Marielle [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium); Thelen, Nicolas; Thiry, Marc [University of Liege (ULg), GIGA-Neurosciences, Laboratory of Cellular and Tissular Biology, Liege (Belgium); Riva, Laura; Ote, Isabelle; Condé, Claude; Vandevenne, Patricia [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium); Di Valentin, Emmanuel [University of Liege (ULg), GIGA-Viral Vectors Platform, Liege (Belgium); Bontems, Sébastien [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium); Sadzot-Delvaux, Catherine, E-mail: csadzot@ulg.ac.be [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium)

    2014-04-15

    The first step of herpesviruses virion assembly occurs in the nucleus. However, the exact site where nucleocapsids are assembled, where the genome and the inner tegument are acquired, remains controversial. We created a recombinant VZV expressing ORF23 (homologous to HSV-1 VP26) fused to the eGFP and dually fluorescent viruses with a tegument protein additionally fused to a red tag (ORF9, ORF21 and ORF22 corresponding to HSV-1 UL49, UL37 and UL36). We identified nuclear dense structures containing the major capsid protein, the scaffold protein and maturing protease, as well as ORF21 and ORF22. Correlative microscopy demonstrated that the structures correspond to capsid aggregates and time-lapse video imaging showed that they appear prior to the accumulation of cytoplasmic capsids, presumably undergoing the secondary egress, and are highly dynamic. Our observations suggest that these structures might represent a nuclear area important for capsid assembly and/or maturation before the budding at the inner nuclear membrane. - Highlights: • We created a recombinant VZV expressing the small capsid protein fused to the eGFP. • We identified nuclear dense structures containing capsid and procapsid proteins. • Correlative microscopy showed that the structures correspond to capsid aggregates. • Procapsids and partial capsids are found within the aggregates of WT and eGFP-23 VZV. • FRAP and FLIP experiments demonstrated that they are dynamic structures.

  20. Aristolochia manshuriensis Kom ethyl acetate extract protects against high-fat diet-induced non-alcoholic steatohepatitis by regulating kinase phosphorylation in mouse

    Science.gov (United States)

    Kwak, Dong Hoon; Kim, Ji-Su; Chang, Kyu-Tae

    2016-01-01

    Aristolochia manshuriensis Kom (AMK) is an herb used as a traditional medicine; however, it causes side effects such as nephrotoxicity and carcinogenicity. Nevertheless, AMK can be applied in specific ways medicinally, including via ingestion of low doses for short periods of time. Non-alcoholic steatohepatitis (NASH) induced the hepatocyte injury and inflammation. The protective effects of AMK against NASH are unclear; therefore, in this study, the protective effects of AMK ethyl acetate extract were investigated in a high-fat diet (HFD)-induced NASH model. We found decreased hepatic steatosis and inflammation, as well as increased levels of lipoproteins during AMK extract treatment. We also observed decreased hepatic lipid peroxidation and triglycerides, as well as suppressed hepatic expression of lipogenic genes in extract-treated livers. Treatment with extract decreased the activation of c-jun N-terminal kinase 1/2 (JNK1/2) and increased the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). These results demonstrate that the protective effect of the extract against HFD-induced NASH occurred via reductions in reactive oxygen species production, inflammation suppression, and apoptosis related to the suppression of JNK1/2 activation and increased ERK1/2 phosphorylation. Taken together, these results indicate that that ethyl acetate extract of AMK has potential therapeutic effects in the HFD-induced NASH mouse model. PMID:26726030

  1. Hydrogen sulfide prevents OGD/R-induced apoptosis by suppressing the phosphorylation of p38 and secretion of IL-6 in PC12 cells.

    Science.gov (United States)

    Li, Chong; Liu, Yue; Tang, Peng; Liu, Peng; Hou, Chen; Zhang, Xin; Chen, Li; Zhang, Lina; Gu, Chaochao

    2016-03-01

    Hydrogen sulfide (H2S), a well-known endogenous mediator, has been shown to exert protective effects against neuronal damage caused by brain ischemia, but the mechanism of its action remains unclear. We have reported the neuroprotective properties of H2S against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury by inhibiting the phosphorylation of p38. The present study evaluates the effect of H2S on OGD/R-induced cell injury or apoptosis and the mechanisms for its action in PC12 cells. Pretreatment of PC12 cells with exogenous sodium hydrosulfide (NaHS) (a H2S donor, 100 or 300 µM) for 12 h before exposure to OGD/R markedly attenuated p38 phosphorylation. Activation of p38 MAPK by transfection of activated p38α, but not p38β, reversed the protective effect of NaHS, as measured by enzyme-linked immunosorbent assay analysis. Importantly, SB203580 (a p38 MAPK inhibitor) also reversed the protective effects of p38α-activated p38 MAPK. Interleukin-6 secretion after OGD/R decreased significantly with NaHS compared with without NaHS. Taken together, we show that the p38 pathway contributes toward OGD/R-induced cell death and p38α plays a key role in OGD/R-induced interleukin-6 secretion.

  2. Pistacia chinensis Methanolic Extract Attenuated MAPK and Akt Phosphorylations in ADP Stimulated Rat Platelets In Vitro

    Directory of Open Access Journals (Sweden)

    Ji Young Park

    2012-01-01

    (2.5–20 μg/mL inhibited ADP-induced platelet aggregation. While PCME diminished [Ca2+]i, ATP, and TXA2 release in ADP-activated platelets, it enhanced cAMP production in resting platelets. Likewise, PCME inhibited fibrinogen binding to αIIbβ3 and downregulated JNK, ERK, and Akt phosphorylations. Thus, PCME contains potential antiplatelet compounds that could be deployed for their therapeutic values in cardiovascular pathology.

  3. Effect of alginate on the aggregation kinetics of copper oxide nanoparticles (CuO NPs): bridging interaction and hetero-aggregation induced by Ca(2.).

    Science.gov (United States)

    Miao, Lingzhan; Wang, Chao; Hou, Jun; Wang, Peifang; Ao, Yanhui; Li, Yi; Lv, Bowen; Yang, Yangyang; You, Guoxiang; Xu, Yi

    2016-06-01

    The stability of CuO nanoparticles (NPs) is expected to play a key role in the environmental risk assessment of nanotoxicity in aquatic systems. In this study, the effect of alginate (model polysaccharides) on the stability of CuO NPs in various environmentally relevant ionic strength conditions was investigated by using time-resolved dynamic light scattering. Significant aggregation of CuO NPs was observed in the presence of both monovalent and divalent cations. The critical coagulation concentrations (CCC) were 54.5 and 2.9 mM for NaNO3 and Ca(NO3)2, respectively. The presence of alginate slowed nano-CuO aggregation rates over the entire NaNO3 concentration range due to the combined electrostatic and steric effect. High concentrations of Ca(2+) (>6 mM) resulted in stronger adsorption of alginate onto CuO NPs; however, enhanced aggregation of CuO NPs occurred simultaneously under the same conditions. Spectroscopic analysis revealed that the bridging interaction of alginate with Ca(2+) might be an important mechanism for the enhanced aggregation. Furthermore, significant coagulation of the alginate molecules was observed in solutions of high Ca(2+) concentrations, indicating a hetero-aggregation mechanism between the alginate-covered CuO NPs and the unabsorbed alginate. These results suggested a different aggregation mechanism of NPs might co-exist in aqueous systems enriched with natural organic matter, which should be taken into consideration in future studies. Graphical abstract Hetero-aggregation mechanism of CuO nanoparticles and alginate under high concentration of Ca(2.)

  4. Arecoline-induced phosphorylated p53 and p21(WAF1) protein expression is dependent on ATM/ATR and phosphatidylinositol-3-kinase in clone-9 cells.

    Science.gov (United States)

    Chou, Wen-Wen; Guh, Jinn-Yuh; Tsai, Jung-Fa; Hwang, Chi-Ching; Chiou, Shean-Jaw; Chuang, Lea-Yea

    2009-06-01

    Betel-quid use is associated with liver cancer whereas its constituent arecoline is cytotoxic, genotoxic, and induces p53-dependent p21(WAF1) protein expression in Clone-9 cells (rat hepatocytes). The ataxia telangiectasia mutated (ATM)/rad3-related (ATR)-p53-p21(WAF1) and the phosphatidylinositol-3-kinase (PI3K)-mammalian target of rapamycin (mTOR) pathways are involved in the DNA damage response and the pathogenesis of cancers. Thus, we studied the role of ATM/ATR and PI3K in arecoline-induced p53 and p21(WAF1) protein expression in Clone-9 cells. We found that arecoline (0.5 mM) activated the ATM/ATR kinase at 30 min. The arecoline-activated ATM/ATR substrate contained p-p53Ser15. Moreover, arecoline only increased the levels of the p-p53Ser6, p-p53Ser15, and p-p53Ser392 phosphorylated p53 isoforms among the known isoforms. ATM shRNA attenuated arecoline-induced p-p53Ser15 and p21(WAF1) at 24 h. Arecoline (0.5 mM) increased phosphorylation levels of p-AktSer473 and p-mTORSer2448 at 30-60 min. Dominant-negative PI3K plasmids attenuated arecoline-induced p21(WAF1), but not p-p53Ser15, at 24 h. Rapamycin attenuated arecoline-induced phosphrylated p-p53Ser15, but not p21(WAF1), at 24 h. ATM shRNA, but not dominant-negative PI3K plasmids, attenuated arecoline-induced p21(WAF1) gene transcription. We conclude that arecoline activates the ATM/ATR-p53-p21(WAF1) and the PI3K/Akt-mTOR-p53 pathways in Clone-9 cells. Arecoline-induced phosphorylated p-p53Ser15 expression is dependent on ATM whereas arecoline-induced p21(WAF1) protein expression is dependent on ATM and PI3K. Moreover, p21(WAF1) gene is transcriptionally induced by arecoline-activated ATM.

  5. A novel method for study of the aggregation of protein induced by metal ion aluminum(III) using resonance Rayleigh scattering technique

    Science.gov (United States)

    Long, Xiufen; Zhang, Caihua; Cheng, Jiongjia; Bi, Shuping

    2008-01-01

    We present a novel method for the study of the aggregation of protein induced by metal ion aluminum(III) using resonance Rayleigh scattering (RRS) technique. In neutral Tris-HCl medium, the effect of this aggregation of protein results in the enhancement of RRS intensity and the relationship between the enhancement of the RRS signal and the Al concentration is nonlinear. On this basis, we established a new method for the determination of the critical induced-aggregation concentrations ( CCIAC) of metal ion Al(III) inducing the protein aggregation. Our results show that many factors, such as, pH value, anions, salts, temperature and solvents have obvious effects. We also studied the extent of aggregation and structural changes using ultra-violet spectrometry, protein intrinsic fluorescence and circular dichroism to further understand the exact mechanisms of the aggregation characteristics of proteins induced by metal ion Al(III) at the molecular level, to help us to develop effective methods to investigate the toxicity of metal ion Al, and to provide theoretical and quantitative evidences for the development of appropriate treatments for neurodementia such as Parkinson's disease, Alzheimer's disease and dementia related to dialysis.

  6. Studies on the photophysical properties of 1,8-naphthalimide derivative and aggregation induced emission recognition for casein

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yang, E-mail: 66160692@qq.com [Department of Chemistry and Chemical Engineering, Xi' an University of Arts and Science, No. 168, Taibai South Road, Xi' an, Shaanxi 710065 (China); Liang, Xuhua; Fan, Jun [School of Chemical Engineering, Northwest University, No. 229, Taibai North Road, Xi' an, Shaanxi 710069 (China); Han, Quan, E-mail: xahanq@hotmail.com [Department of Chemistry and Chemical Engineering, Xi' an University of Arts and Science, No. 168, Taibai South Road, Xi' an, Shaanxi 710065 (China)

    2013-09-15

    A novel water-soluble 1,8-naphthalimide derivative 1, bearing two acetic carboxylic groups, exhibited fluorescent turn-on recognition for casein micelle based on the aggregation induced emission (AIE) character. The photophysical properties of 1 consisting of donor and acceptor units were investigated by the solvation effect. Changing from polar to non-polar solvent increased the solvent interaction; both the excitation and emission spectra were shifted to shorter wavelength and intensity decreased through taking advantage of twisted intramolecular charge transfer (TICT) and self-association fluorescence emission. Moreover, the red-shift and quenching in protic solvent were caused by the excited-state hydrogen bond strengthening effect. The density functional theory (DFT) and time dependent density functional theory (TDDFT) were used to obtain the most stable structure, electronic excitation energy, dipole moments and charge distribution. The AIE mechanism of 1 with casein micelle was due to 1 docked in the hydrophobic cavity between sub-micelles and bound with amino acid residues, resulting in the aggregation of 1 on the casein micelle surface and emission enhancement, based on which, a novel casein assay method was developed. The proposed method exhibited a good linear range from 0.1 to 10.5 μg mL{sup −1}, with the detection limit of 3.0 ng mL{sup −1}. Satisfactory reproducibility, reversibility and a short response time were realized. This method was applied for the determination of casein in milk powder samples, avoiding the interferences from other components and illegal additives in milk. -- Highlights: • A water-soluble 1,8-naphthalimide-based fluorescent probe 1 was synthesized. • Photophysical characterization of 1 was studied. • Aggregation induced emission enhancement of 1 with casein was investigated. • A novel casein quantification method was developed.

  7. Melatonin rescues 3T3-L1 adipocytes from FFA-induced insulin resistance by inhibiting phosphorylation of IRS-1 on Ser307.

    Science.gov (United States)

    She, Meihua; Hou, Hongjie; Wang, Zongbao; Zhang, Chi; Laudon, Moshe; Yin, Weidong

    2014-08-01

    Melatonin is biosynthesized in the pineal gland and secreted into the bloodstream. Evidences indicate a role of melatonin in the regulation of glucose metabolism. The objective of this study was to investigate the effect of melatonin on insulin sensitivity in insulin resistant adipocytes. Following a preincubation with melatonin or vehicle for 30 min, insulin resistant cells of 3T3-L1 adipocytes were induced by palmitic acids (300 μM, 6 h). Our results showed that palmitic acids inhibited both the basal and insulin-stimulated uptake of [(3)H]-2-Deoxyglucose, down-regulated the levels of IRS-1 and GLUT-4. However, compared to the vehicle group, melatonin pre-treatment increased significantly the uptake of [(3)H]-2-Deoxyglucose as well as the level of GLUT-4, and decreased phosphorylated IRS-1 (Ser307) although total IRS-1 did not change significantly. These data suggest that palmitic acids impair insulin signal via down-regulating the expressions of IRS-1 and GLUT-4; whereas melatonin can ameliorate insulin sensitivity by inhibiting Ser307 phosphorylation in IRS-1 and increasing GLUT-4 expressions in insulin resistant 3T3-L1 adipocytes. We conclude that melatonin regulates the insulin sensitivity and glucose homeostasis via inhibiting Ser-phosphorylation and improving function of IRS-1.

  8. Creation of reduced fat foods: influence of calcium-induced droplet aggregation on microstructure and rheology of mixed food dispersions.

    Science.gov (United States)

    Wu, Bi-cheng; Degner, Brian; McClements, David Julian

    2013-12-15

    The impact of calcium-induced fat droplet aggregation on the microstructure and physicochemical properties of model mixed colloidal dispersions was investigated. These systems consisted of 2 wt% whey protein-coated fat droplets and 4 wt% modified starch granules heated to induce starch swelling (pH 7). Optical and confocal microscopy showed that the fat droplets were dispersed within the interstitial region between the swollen starch granules. The structural organisation of the fat droplets within these interstitial regions could be modulated by controlling the calcium concentration: (i) at a low calcium concentration the droplets were evenly distributed; (ii) at an intermediate calcium concentration they formed a layer around the starch granules; (iii) at a high calcium concentration they formed a network of aggregated droplets. Paste-like materials were produced when the fat droplets formed a three-dimensional network in the interstitial region. The properties of fat droplet-starch granule suspensions can be modulated by altering the electrostatic interactions to alter microstructure.

  9. In vitro platelet activation, aggregation and platelet-granulocyte complex formation induced by surface modified single-walled carbon nanotubes.

    Science.gov (United States)

    Fent, János; Bihari, Péter; Vippola, Minnamari; Sarlin, Essi; Lakatos, Susan

    2015-08-01

    Surface modification of single-walled carbon nanotubes (SWCNTs) such as carboxylation, amidation, hydroxylation and pegylation is used to reduce the nanotube toxicity and render them more suitable for biomedical applications than their pristine counterparts. Toxicity can be manifested in platelet activation as it has been shown for SWCNTs. However, the effect of various surface modifications on the platelet activating potential of SWCNTs has not been tested yet. In vitro platelet activation (CD62P) as well as the platelet-granulocyte complex formation (CD15/CD41 double positivity) in human whole blood were measured by flow cytometry in the presence of 0.1mg/ml of pristine or various surface modified SWCNTs. The effect of various SWCNTs was tested by whole blood impedance aggregometry, too. All tested SWCNTs but the hydroxylated ones activate platelets and promote platelet-granulocyte complex formation in vitro. Carboxylated, pegylated and pristine SWCNTs induce whole blood aggregation as well. Although pegylation is preferred from biomedical point of view, among the samples tested by us pegylated SWCNTs induced far the most prominent activation and a well detectable aggregation of platelets in whole blood.

  10. CD147 and CD98 complex-mediated homotypic aggregation attenuates the CypA-induced chemotactic effect on Jurkat T cells.

    Science.gov (United States)

    Guo, Na; Zhang, Kui; Lv, Minghua; Miao, Jinlin; Chen, Zhinan; Zhu, Ping

    2015-02-01

    Homotypic cell aggregation plays important roles in physiological and pathological processes, including embryogenesis, immune responses, angiogenesis, tumor cell invasion and metastasis. CD147 has been implicated in most of these phenomena, and it was identified as a T cell activation-associated antigen due to its obvious up-regulation in activated T cells. However, the explicit function and mechanism of CD147 in T cells have not been fully elucidated. In this study, large and compact aggregates were observed in Jurkat T cells after treatment with the specific CD147 monoclonal antibody HAb18 or after the expression of CD147 was silenced by RNA interference, which indicated an inhibitory effect of CD147 in T cell homotypic aggregation. Knocking down CD147 expression resulted in a significant decrease in CD98, along with prominent cell aggregation, similar to that treated by CD98 and CD147 monoclonal antibodies. Furthermore, decreased cell chemotactic activity was observed following CD147- and CD98-mediated cell aggregation, and increased aggregation was correlated with a decrease in the chemotactic ability of the Jurkat T cells, suggesting that CD147- and CD98-mediated homotypic cell aggregation plays a negative role in T cell chemotaxis. Our data also showed that p-ERK, p-ZAP70, p-CD3ζ and p-LCK were significantly decreased in the CD147- and CD98-knocked down Jurkat T cells, which suggested that decreased CD147- and/or CD98-induced homotypic T cell aggregation and aggregation-inhibited chemotaxis might be associated with these signaling pathways. A role for CD147 in cell aggregation and chemotaxis was further indicated in primary CD4(+) T cells. Similarly, low expression of CD147 in primary T cells induced prominent cell aggregation and this aggregation attenuated primary T cell chemotactic ability in response to CypA. Our results have demonstrated the correlation between homotypic cell aggregation and the chemotactic response of T cells to CypA, and these data

  11. A Piscine Birnavirus Induces Inhibition of Protein Synthesis in CHSE-214 Cells Primarily through the Induction of eIF2α Phosphorylation

    Directory of Open Access Journals (Sweden)

    Amr A.A. Gamil

    2015-04-01

    Full Text Available Inhibition of protein synthesis represents one of the antiviral mechanisms employed by cells and it is also used by viruses for their own propagation. To what extent members of the Birnaviridae family employ such strategies is not well understood. Here we use a type-strain of the Aquabirnavirus, infectious pancreatic necrosis virus (IPNV, to investigate this phenomenon in vitro. CHSE-214 cells were infected with IPNV and at 3, 12, 24, and 48 hours post infection (hpi before the cells were harvested and labeled with S35 methionine to assess protein synthesis. eIF2α phosphorylation was examined by Western blot while RT-qPCR was used to assess virus replication and the expression levels of IFN-α, Mx1 and PKR. Cellular responses to IPNV infection were assessed by DNA laddering, Caspase-3 assays and flow cytometry. The results show that the onset and kinetics of eIF2α phosphorylation was similar to that of protein synthesis inhibition as shown by metabolic labeling. Increased virus replication and virus protein formation was observed by 12 hpi, peaking at 24 hpi. Apoptosis was induced in a small fraction (1−2% of IPNV-infected CHSE cells from 24 hpi while necrotic/late apoptotic cells increased from 10% by 24 hpi to 59% at 48 hpi, as shown by flow cytometry. These results were in accordance with a small decline in cell viability by 24hpi, dropping below 50% by 48 hpi. IPNV induced IFN-α mRNA upregulation by 24 hpi while no change was observed in the expression of Mx1 and PKR mRNA. Collectively, these findings show that IPNV induces inhibition of protein synthesis in CHSE cells through phosphorylation of eIF2α with minimal involvement of apoptosis. The anticipation is that protein inhibition is used by the virus to evade the host innate antiviral responses.

  12. Intrathecal administration of rapamycin inhibits the phosphorylation of DRG Nav1.8 and attenuates STZ-induced painful diabetic neuropathy in rats.

    Science.gov (United States)

    He, Wan-You; Zhang, Bin; Xiong, Qing-Ming; Yang, Cheng-Xiang; Zhao, Wei-Cheng; He, Jian; Zhou, Jun; Wang, Han-Bing

    2016-04-21

    The mammalian target of rapamycin (mTOR) is a key regulator of mRNA translation and protein synthesis, and it is specifically inhibited by rapamycin. In chronic pain conditions, mTOR-mediated local protein synthesis is crucial for neuronal hyperexcitability and synaptic plasticity. The tetrodotoxin-resistant (TTX-R) sodium channel Nav1.8 plays a major role in action potential initiation and propagation and cellular excitability in DRG (dorsal root ganglion) neurons. In this study, we investigated if mTOR modulates the phosphorylation of Nav1.8 that is associated with neuronal hyperexcitability and behavioral hypersensitivity in STZ-induced diabetic rats. Painful diabetic neuropathy (PDN) was induced in Sprague-Dawley rats by intraperitoneal injection with streptozotocin (STZ) at 60mg/kg. After the onset of PDN, the rats received daily intrathecal administrations of rapamycin (1μg, 3μg, or 10μg/day) for 7 days; other diabetic rats received the same volumes of dimethyl sulfoxide (DMSO). Herein, we demonstrate a marked increase in protein expression of total mTOR and phospho-mTOR (p-mTOR) together with the up-regulation of phosphor-Nav1.8 (p-Nav1.8) prior to the mechanical withdrawal threshold reaching a significant reduction in dorsal root ganglions (DRGs). Furthermore, the intrathecal administration of rapamycin, inhibiting the activity of mTOR, suppressed the phosphorylation of DRG Nav1.8, reduced the TTX-R current density, heightened the voltage threshold for activation and lowered the voltage threshold for inactivation and relieved mechanical hypersensitivity in diabetic rats. An intrathecal injection (i.t.) of rapamycin inhibited the phosphorylation and enhanced the functional availability of DRG Nav1.8 attenuated STZ-induced hyperalgesia. These results suggest that rapamycin is a potential therapeutic intervention for clinical PDN.

  13. Early stages of salmon calcitonin aggregation: effect induced by ageing and oxidation processes in water and in the presence of model membranes.

    Science.gov (United States)

    Gaudiano, Maria Cristina; Colone, Marisa; Bombelli, Cecilia; Chistolini, Pietro; Valvo, Luisa; Diociaiuti, Marco

    2005-06-30

    The natural ageing- and hydrogen peroxide-induced aggregation of salmon calcitonin were studied in water and in the presence of dipalmitoylphosphatidylcholine (DPPC) liposomes. The early stages of the aggregation process at low protein concentration were investigated by means of Circular Dichroism spectroscopy (CD) and conventional and immunogold labelling Transmission Electron Microscopy (TEM). In buffered water solution, salmon calcitonin showed a two-stage conformational variation related to fibril formation and phase-separation of larger aggregates. A first stage, characterised by small conformational changes but a decrease in dichroic band intensity, was followed by a second stage, 6 days after, leading to higher conformational variations and aggregations. Salmon calcitonin showed a distinct modification in the secondary structure and aggregate morphology in the presence of hydrogen peroxide with respect to natural ageing, indicating that the two aggregation processes (natural and chemical-induced) followed a distinct mechanism. The oxidised forms of the peptide were separated by liquid chromatography. The same study was performed in the presence of DPPC liposomes. The results obtained by conventional and immunogold labelling TEM evidenced that salmon calcitonin in buffered water solution essentially does not enter the liposomes but forms around them a fibril network characterised by the same conformational changes after 6 days. The oxidised sample in the presence of liposomes showed a "fibrils hank", separated from liposomes. The presence of liposomes did not affect either the aggregation or the conformational modifications yet observed by TEM and CD in water solution.

  14. Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels.

    Science.gov (United States)

    Mertins, Philipp; Yang, Feng; Liu, Tao; Mani, D R; Petyuk, Vladislav A; Gillette, Michael A; Clauser, Karl R; Qiao, Jana W; Gritsenko, Marina A; Moore, Ronald J; Levine, Douglas A; Townsend, Reid; Erdmann-Gilmore, Petra; Snider, Jacqueline E; Davies, Sherri R; Ruggles, Kelly V; Fenyo, David; Kitchens, R Thomas; Li, Shunqiang; Olvera, Narciso; Dao, Fanny; Rodriguez, Henry; Chan, Daniel W; Liebler, Daniel; White, Forest; Rodland, Karin D; Mills, Gordon B; Smith, Richard D; Paulovich, Amanda G; Ellis, Matthew; Carr, Steven A

    2014-07-01

    Protein abundance and phosphorylation convey important information about pathway activity and molecular pathophysiology in diseases including cancer, providing biological insight, informing drug and diagnostic development, and guiding therapeutic intervention. Analyzed tissues are usually collected without tight regulation or documentation of ischemic time. To evaluate the impact of ischemia, we collected human ovarian tumor and breast cancer xenograft tissue without vascular interruption and performed quantitative proteomics and phosphoproteomics after defined ischemic intervals. Although the global expressed proteome and most of the >25,000 quantified phosphosites were unchanged after 60 min, rapid phosphorylation changes were observed in up to 24% of the phosphoproteome, representing activation of critical cancer pathways related to stress response, transcriptional regulation, and cell death. Both pan-tumor and tissue-specific changes were observed. The demonstrated impact of pre-analytical tissue ischemia on tumor biology mandates caution in interpreting stress-pathway activation in such samples and motivates reexamination of collection protocols for phosphoprotein analysis.

  15. Ischemia in Tumors Induces Early and Sustained Phosphorylation Changes in Stress Kinase Pathways but Does Not Affect Global Protein Levels*

    Science.gov (United States)

    Mertins, Philipp; Yang, Feng; Liu, Tao; Mani, D. R.; Petyuk, Vladislav A.; Gillette, Michael A.; Clauser, Karl R.; Qiao, Jana W.; Gritsenko, Marina A.; Moore, Ronald J.; Levine, Douglas A.; Townsend, Reid; Erdmann-Gilmore, Petra; Snider, Jacqueline E.; Davies, Sherri R.; Ruggles, Kelly V.; Fenyo, David; Kitchens, R. Thomas; Li, Shunqiang; Olvera, Narciso; Dao, Fanny; Rodriguez, Henry; Chan, Daniel W.; Liebler, Daniel; White, Forest; Rodland, Karin D.; Mills, Gordon B.; Smith, Richard D.; Paulovich, Amanda G.; Ellis, Matthew; Carr, Steven A.

    2014-01-01

    Protein abundance and phosphorylation convey important information about pathway activity and molecular pathophysiology in diseases including cancer, providing biological insight, informing drug and diagnostic development, and guiding therapeutic intervention. Analyzed tissues are usually collected without tight regulation or documentation of ischemic time. To evaluate the impact of ischemia, we collected human ovarian tumor and breast cancer xenograft tissue without vascular interruption and performed quantitative proteomics and phosphoproteomics after defined ischemic intervals. Although the global expressed proteome and most of the >25,000 quantified phosphosites were unchanged after 60 min, rapid phosphorylation changes were observed in up to 24% of the phosphoproteome, representing activation of critical cancer pathways related to stress response, transcriptional regulation, and cell death. Both pan-tumor and tissue-specific changes were observed. The demonstrated impact of pre-analytical tissue ischemia on tumor biology mandates caution in interpreting stress-pathway activation in such samples and motivates reexamination of collection protocols for phosphoprotein analysis. PMID:24719451

  16. PDGF-induced phosphorylation of Tyr28 in the N-terminus of Fyn affects Fyn activation

    DEFF Research Database (Denmark)

    Hansen, Klaus; Alonso, G; Courtneidge, S A;

    1997-01-01

    Binding of platelet-derived growth factor (PDGF) to its receptors leads to the activation of members of the Src family of protein tyrosine kinases. We show here that Fyn, a member of the Src family, is phosphorylated on Tyr28 in the unique N-terminal part of the molecule after interaction...... with the intracellular domain of the PDGF beta-receptor. Activated Fyn furthermore undergoes autophosphorylation on Tyr30, Tyr39 and Tyr420. When Fyn mutants with Tyr28, Tyr30 or Tyr39 replaced with phenylalanine residues were transfected into NIH3T3 cells a decreased activation after PDGF stimulation was seen......, suggesting a functional importance of the N-terminal tyrosine phosphorylation of Fyn....

  17. Squamocin modulates histone H3 phosphorylation levels and induces G1 phase arrest and apoptosis in cancer cells

    Directory of Open Access Journals (Sweden)

    Wu Yang-Chang

    2011-02-01

    Full Text Available Abstract Background Histone modifications in tumorigenesis are increasingly recognized as important epigenetic factors leading to cancer. Increased phosphorylation levels of histone H3 as a result of aurora B and pMSK1 overexpression were observed in various tumors. We selected aurora B and MSK1 as representatives for testing various compounds and drugs, and found that squamocin, a bis-tetrahydrofuran annonaceous acetogenin, exerted a potent effect on histone H3 phosphorylation. Methods GBM8401, Huh-7, and SW620 cells were incubated with 15, 30, and 60 μM squamocin for 24 h. The expressions of mRNA and proteins were analyzed by qRT-PCR and Western blotting, respectively. The cell viability was determined by an MTT assay. Cell cycle distribution and apoptotic cells were analyzed by flow cytometry. Results Our results showed that squamocin inhibited the proliferation of GBM8401, Huh-7, and SW620 cells, arrested the cell cycle at the G1 phase, and activated both intrinsic and extrinsic pathways to apoptosis. In addition, we demonstrated that squamocin had the ability to modulate the phosphorylation levels of H3S10 (H3S10p and H3S28 (H3S28p in association with the downregulation of aurora B and pMSK1 expressions. Conclusions This study is the first to show that squamocin affects epigenetic alterations by modulating histone H3 phosphorylation at S10 and S28, providing a novel view of the antitumor mechanism of squamocin.

  18. Treatment of colon cancer cells using the cytosine deaminase/5-fluorocytosine suicide system induces apoptosis, modulation of the proteome, and Hsp90beta phosphorylation.

    Science.gov (United States)

    Negroni, Luc; Samson, Michel; Guigonis, Jean-Marie; Rossi, Bernard; Pierrefite-Carle, Valérie; Baudoin, Christian

    2007-10-01

    The bacterial cytosine deaminase (CD) gene, associated with the 5-fluorocytosine (5FC) prodrug, is one of the most widely used suicide systems in gene therapy. Introduction of the CD gene within a tumor induces, after 5FC treatment of the animal, a local production of 5-fluorouracil resulting in intratumor chemotherapy. Destruction of the gene-modified tumor is then followed by the triggering of an antitumor immune reaction resulting in the regression of distant wild-type metastasis. The global effects of 5FC on colorectal adenocarcinoma cells expressing the CD gene were analyzed using the proteomic method. Application of 5FC induced apoptosis and 19 proteins showed a significant change in 5FC-treated cells compared with control cells. The up-regulated and down-regulated proteins include cytoskeletal proteins, chaperones, and proteins involved in protein synthesis, the antioxidative network, and detoxification. Most of these proteins are involved in resistance to anticancer drugs and resistance to apoptosis. In addition, we show that the heat shock protein Hsp90beta is phosphorylated on serine 254 upon 5FC treatment. Our results suggest that activation of Hsp90beta by phosphorylation might contribute to tumor regression and tumor immunogenicity. Our findings bring new insights into the mechanism of the anticancer effects induced by CD/5FC treatment.

  19. The role of Golgi reassembly and stacking protein 65 phosphorylation in H2O2-induced cell death and Golgi morphological changes.

    Science.gov (United States)

    Ji, Guang; Zhang, Weiwei; Quan, Moyuan; Chen, Yang; Qu, Hui; Hu, Zhiping

    2016-12-01

    This study aimed to investigate the effects of H2O2-induced oxidative stress on cell viability and survival, as well as changes in the distribution of Golgi apparatus and in the level of Golgi reassembly and stacking protein 65 (GRASP65). Cell viability of cultured N2a cells treated with H2O2 was measured by the MTT assay. Apoptosis was measured by flow cytometry analyses. Cells labeled by indirect immunofluorescence were observed under confocal microscope to detect any Golgi morphological alterations; electron microscopy of Golgi apparatus was also done. Expression of GRASP65 and phospho-GRASP65 was examined by immunoblotting. H2O2 treatment reduced the cell viability and raised the cell mortality of N2a cells in a time-dependent manner. Notable changes were only observed in the distribution and morphology of Golgi apparatus at 6 h after H2O2 treatment. The expression of GRASP65 showed no significant changes at different time points; the phosphorylated GRASP65 level was significantly increased after H2O2 treatment, peaked at 3 h, and finally dropped at 6 h. Taken together, GRASP65 phosphorylation may have a critical role in inducing cell death at the early stage after H2O2 treatment, while its role in H2O2-induced Golgi morphological changes may be complex.

  20. Root Cause Analysis of Tungsten-Induced Protein Aggregation in Pre-filled Syringes.

    Science.gov (United States)

    Liu, Wei; Swift, Rob; Torraca, Gianni; Nashed-Samuel, Yasser; Wen, Zai-Qing; Jiang, Yijia; Vance, Aylin; Mire-Sluis, Anthony; Freund, Erwin; Davis, Janice; Narhi, Linda

    2010-01-01

    Particles isolated from a pre-filled syringe containing a protein-based solution were identified as aggregated protein and tungsten. The origin of the tungsten was traced to the tungsten pins used in the supplier's syringe barrel forming process. A tungsten recovery study showed that the vacuum stopper placement process has a significant impact on the total amount of tungsten in solutions. The air gap formed in the syringe funnel area (rich in residual tungsten) becomes accessible to solutions when the vacuum is pulled. Leachable tungsten deposits that were not removed by the supplier's wash process are concentrated in this small area. Extraction procedures used to measure residual tungsten in empty syringes would under-report the tungsten quantity unless the funnel area is wetted during the extraction. Improved syringe barrel forming and washing processes at the supplier have lowered the residual tungsten content and significantly reduced the risk of protein aggregate formation. This experience demonstrates that packaging component manufacturing processes, which are outside the direct control of drug manufacturers, can have an impact on the drug product quality. Thus close technical communication with suppliers of product contact components plays an important role in making a successful biotherapeutic.

  1. The use of quartz crystal microbalance with dissipation (QCM-D for studying nanoparticle-induced platelet aggregation

    Directory of Open Access Journals (Sweden)

    Santos-Martinez MJ

    2012-01-01

    Full Text Available Maria Jose Santos-Martinez1–3, Iwona Inkielewicz-Stepniak1,4, Carlos Medina1, Kamil Rahme5,6, Deirdre M D'Arcy1, Daniel Fox3, Justin D Holmes3,5, Hongzhou Zhang3, Marek Witold Radomski3,51School of Pharmacy and Pharmaceutical Sciences, 2School of Medicine, 3Center for Research on Adaptive Nanostructures and Nanodevices, Trinity College Dublin, Dublin, Ireland; 4Department of Medicinal Chemistry, Medical University of Gdansk, Gdansk, Poland; 5Materials and Supercritical Fluids Group, Department of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland; 6Department of Sciences, Faculty of Natural and Applied Science, Notre Dame University, Zouk Mosbeh, LebanonAbstract: Interactions between blood platelets and nanoparticles have both pharmacological and toxicological significance and may lead to platelet activation and aggregation. Platelet aggregation is usually studied using light aggregometer that neither mimics the conditions found in human microvasculature nor detects microaggregates. A new method for the measurement of platelet microaggregation under flow conditions using a commercially available quartz crystal microbalance with dissipation (QCM-D has recently been developed. The aim of the current study was to investigate if QCM-D could be used for the measurement of nanoparticle-platelet interactions. Silica, polystyrene, and gold nanoparticles were tested. The interactions were also studied using light aggregometry and flow cytometry, which measured surface abundance of platelet receptors. Platelet activation was imaged using phase contrast and scanning helium ion microscopy. QCM-D was able to measure nanoparticle-induced platelet microaggregation for all nanoparticles tested at concentrations that were undetectable by light aggregometry and flow cytometry. Microaggregates were measured by changes in frequency and dissipation, and the presence of platelets on the sensor surface was confirmed and imaged by

  2. Modelling Ser129 phosphorylation inhibits membrane binding of pore-forming alpha-synuclein oligomers.

    Directory of Open Access Journals (Sweden)

    Georg Sebastian Nübling

    Full Text Available BACKGROUND: In several neurodegenerative diseases, hyperphosphorylation at position Ser129 is found in fibrillar deposits of alpha-synuclein (asyn, implying a pathophysiological role of asyn phosphorylation in neurodegeneration. However, recent animal models applying asyn phosphorylation mimics demonstrated a protective effect of phosphorylation. Since metal-ion induced asyn oligomers were identified as a potential neurotoxic aggregate species with membrane pore-forming abilities, the current study was undertaken to determine effects of asyn phosphorylation on oligomer membrane binding. METHODS: We investigated the influence of S129 phosphorylation on interactions of metal-ion induced asyn oligomers with small unilamellar lipid vesicles (SUV composed of POPC and DPPC applying the phosphorylation mimic asyn129E. Confocal single-particle fluorescence techniques were used to monitor membrane binding at the single-particle level. RESULTS: Binding of asyn129E monomers to gel-state membranes (DPPC-SUV is slightly reduced compared to wild-type asyn, while no interactions with membranes in the liquid-crystalline state (POPC-SUV are seen for both asyn and asyn129E. Conversely, metal-ion induced oligomer formation is markedly increased in asyn129E. Surprisingly, membrane binding to POPC-SUV is nearly absent in Fe(3+ induced asyn129E oligomers and markedly reduced in Al(3+ induced oligomers. CONCLUSION: The protective effect of pseudophosphorylation seen in animal models may be due to impeded oligomer membrane binding. Phosphorylation at Ser129 may thus have a protective effect against neurotoxic asyn oligomers by preventing oligomer membrane binding and disruption of the cellular electrophysiological equilibrium. Importantly, these findings put a new complexion on experimental pharmaceutical interventions against POLO-2 kinase.

  3. pH-Induced aggregated melanin nanoparticles for photoacoustic signal amplification

    Science.gov (United States)

    Ju, Kuk-Youn; Kang, Jeeun; Pyo, Jung; Lim, Joohyun; Chang, Jin Ho; Lee, Jin-Kyu

    2016-07-01

    We present a new melanin-like nanoparticle (MelNP) and its performance evaluation results. This particle is proposed as an exogenous contrast agent for photoacoustic (PA) imaging. Conventional PA contrast agents are based on non-biological materials. In contrast, the MelNPs are organic nanoparticles inspired by natural melanin. Melanin is an endogenous chromophore that has the ability to produce a PA signal in vivo. The developed MelNPs are capable of aggregating with one another under mildly acidic conditions after introducing hydrolysis-susceptible citraconic amide on the surface of bare MelNPs. We ascertained that the physical aggregation of the MelNPs resulted in an increased PA signal strength in the near-infrared window of biological tissue (i.e., 700 nm) without absorption tuning. This phenomenon is likely because of the overlapping thermal fields of the developed MelNPs. The PA signal produced from the developed MelNPs, after exposure to mildly acidic conditions (i.e., pH 6), is 8.1 times stronger than under neutral conditions. This unique characteristic found in this study can be utilized in a practical strategy for highly sensitive in vivo cancer target imaging in response to its acidic microenvironment. This approach to amplify the PA response of MelNPs in clusters could accelerate the use of MelNPs as an alternative to non-biological nanoprobes, so that MelNPs may be applicable in PA imaging and functional PA imaging such as stimuli sensitive, multimodal, and theranostic imaging.We present a new melanin-like nanoparticle (MelNP) and its performance evaluation results. This particle is proposed as an exogenous contrast agent for photoacoustic (PA) imaging. Conventional PA contrast agents are based on non-biological materials. In contrast, the MelNPs are organic nanoparticles inspired by natural melanin. Melanin is an endogenous chromophore that has the ability to produce a PA signal in vivo. The developed MelNPs are capable of aggregating with one

  4. Overexpression of KAI1 induces autophagy and increases MiaPaCa-2 cell survival through the phosphorylation of extracellular signal-regulated kinases

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chun-Yan [State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital of Digestive Disease, Fourth Military Medical University, Xi' an 710032 (China); Department of Gastroenterology, Shenyang General Hospital of PLA, 83 Wenhua Road, Shenyang 110016 (China); Yan, Jun; Yang, Yue-Feng; Xiao, Feng-Jun; Li, Qing-Fang; Zhang, Qun-Wei; Wang, Li-Sheng [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Guo, Xiao-Zhong, E-mail: guoxiaozhong1962@163.com [Department of Gastroenterology, Shenyang General Hospital of PLA, 83 Wenhua Road, Shenyang 110016 (China); Wang, Hua, E-mail: wanghua@bmi.ac.cn [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China)

    2011-01-21

    Research highlights: {yields} We first investigate the effects of KAI1 on autophagy in MiaPaCa-2 cells. {yields} Our findings demonstrate that KAI1 induces autophagy, which in turn inhibits KAI1-induced apoptosis. {yields} This study also supplies a possible novel therapeutic method for the treatment of pancreatic cancer using autophagy inhibitors. -- Abstract: KAI1, a metastasis-suppressor gene belonging to the tetraspanin family, is known to inhibit cancer metastasis without affecting the primary tumorigenicity by inhibiting the epidermal growth factor (EGF) signaling pathway. Recent studies have shown that hypoxic conditions of solid tumors induce high-level autophagy and KAI1 expression. However, the relationship between autophagy and KAI1 remains unclear. By using transmission electron microscopy, confocal microscopy, and Western blotting, we found that KAI1 can induce autophagy in a dose- and time-dependent manner in the human pancreatic cell line MiaPaCa-2. KAI1-induced autophagy was confirmed by the expression of autophagy-related proteins LC3 and Beclin 1. KAI1 induces autophagy through phosphorylation of extracellular signal-related kinases rather than that of AKT. KAI1-induced autophagy protects MiaPaCa-2 cells from apoptosis and proliferation inhibition partially through the downregulation of poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP) cleavage and caspase-3 activation.

  5. Activation of mTOR signaling leads to orthopedic surgery-induced cognitive decline in mice through β-amyloid accumulation and tau phosphorylation.

    Science.gov (United States)

    Shen, Wenzhen; Lu, Keliang; Wang, Jiawan; Wu, Anshi; Yue, Yun

    2016-10-01

    Postoperative cognitive dysfunction (POCD) is a serious complication following surgery, however, the mechanism of POCD remains to be elucidated. Previous evidence has revealed that POCD may be associated with the pathogenesis of neurodegenerative processes. The mammalian target of rapamycin (mTOR) signaling pathway has been reported to be crucial in the pathophysiology of neurodegenerative diseases. However, the implications of mTOR in POCD remains to be fully elucidated. In the present study, western blotting and enzyme‑linked immunosorbent assay were used to determine the expression of mTOR and any associated downstream targets; contextual fear conditioning was used to estimate the learning and memory ability of mice. Using an animal model of orthopedic surgery, it was found that surgical injury impaired hippocampal‑dependent memory and enhanced the levels of phosphorylated mTOR at Serine‑2448, phosphorylated 70‑kDa ribosomal protein S6 kinase (p70S6K) at Threonine‑389 with accumulation of β‑amyloid (Aβ) and hyperphosphorylated tau at Serine-396, compared with the control group. Pretreatment with rapamycin, an mTOR inhibitor, restored the abnormal mTOR/p70S6K signaling induced by surgery, attenuated the accumulation of Aβ and reduced the phosphorylation of tau protein. Rapamycin also reversed the surgery‑induced cognitive dysfunction. The results of the present study suggested that the surgical stimulus activated mTOR/p70S6K signaling excessively, and that the inhibition of mTOR signaling with rapamycin may prevent postoperative cognitive deficits, partly through attenuating the accumulation of Aβ and hyperphosphorylation of tau protein.

  6. Neurotensin-induced Erk1/2 phosphorylation and growth of human colonic cancer cells are independent from growth factors receptors activation

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Fabienne; Tormo, Aurelie; Beraud-Dufour, Sophie; Coppola, Thierry [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France); Mazella, Jean, E-mail: mazella@ipmc.cnrs.fr [Institut de Pharmacologie Moleculaire et Cellulaire, Universite de Nice-Sophia Antipolis, CNRS UMR 6097, 660 route des Lucioles, 06560 Valbonne (France)

    2011-10-14

    Highlights: {yields} We compare intracellular pathways of NT and EGF in HT29 cells. {yields} NT does not transactivate EGFR. {yields} Transactivation of EGFR is not a general rule in cancer cell growth. -- Abstract: Neurotensin (NT) promotes the proliferation of human colonic cancer cells by undefined mechanisms. We already demonstrated that, in the human colon adenocarcinoma cell line HT29, the effects of NT were mediated by a complex formed between the NT receptor-1 (NTSR1) and-3 (NTSR3). Here we examined cellular mechanisms that led to NT-induced MAP kinase phosphorylation and growth factors receptors transactivation in colonic cancer cells and proliferation in HT29 cells. With the aim to identify upstream signaling involved in NT-elicited MAP kinase activation, we found that the stimulatory effects of the peptide were totally independent from the activation of the epidermal growth factor receptor (EGFR) both in the HT29 and the HCT116 cells. NT was unable to promote phosphorylation of EGFR and to compete with EGF for its binding to the receptor. Pharmacological approaches allowed us to differentiate EGF and NT signaling in HT29 cells since only NT activation of Erk1/2 was shown to be sensitive to PKC inhibitors and since only NT increased the intracellular level of calcium. We also observed that NT was not able to transactivate Insulin-like growth factor receptor. Our findings indicate that, in the HT29 and HCT116 cell lines, NT stimulates MAP kinase phosphorylation and cell growth by a pathway which does not involve EGF system but rather NT receptors which transduce their own intracellular effectors. These results indicate that depending on the cell line used, blocking EGFR is not the general rule to inhibit NT-induced cancer cell proliferation.

  7. Serotonin2C receptor stimulation inhibits cocaine-induced Fos expression and DARPP-32 phosphorylation in the rat striatum independently of dopamine outflow.

    Science.gov (United States)

    Devroye, Céline; Cathala, Adeline; Maitre, Marlène; Piazza, Pier Vincenzo; Abrous, Djoher Nora; Revest, Jean-Michel; Spampinato, Umberto

    2015-02-01

    The serotonin(2C) receptor (5-HT(2C)R) is known to control dopamine (DA) neuron function by modulating DA neuronal firing and DA exocytosis at terminals. Recent studies assessing the influence of 5-HT(2C)Rs on cocaine-induced neurochemical and behavioral responses have shown that 5-HT2CRs can also modulate mesoaccumbens DA pathway activity at post-synaptic level, by controlling DA transmission in the nucleus accumbens (NAc), independently of DA release itself. A similar mechanism has been proposed to occur at the level of the nigrostriatal DA system. Here, using in vivo microdialysis in freely moving rats and molecular approaches, we assessed this hypothesis by studying the influence of the 5-HT(2C)R agonist Ro 60-0175 on cocaine-induced responses in the striatum. The intraperitoneal (i.p.) administration of 1 mg/kg Ro 60-0175 had no effect on the increase in striatal DA outflow induced by cocaine (15 mg/kg, i.p.). Conversely, Ro 60-0175 inhibited cocaine-induced Fos immunoreactivity and phosphorylation of the DA and c-AMP regulated phosphoprotein of Mr 32 kDa (DARPP-32) at threonine 75 residue in the striatum. Finally, the suppressant effect of Ro 60-0175 on cocaine-induced DARPP-32 phosphorylation was reversed by the selective 5-HT(2C)R antagonist SB 242084 (0.5 mg/kg, i.p.). In keeping with the key role of DARPP-32 in DA neurotransmission, our results demonstrate that 5-HT(2C)Rs are capable of modulating nigrostriatal DA pathway activity at post-synaptic level, by specifically controlling DA signaling in the striatum.

  8. The use of quartz crystal microbalance with dissipation (QCM-D) for studying nanoparticle-induced platelet aggregation

    Science.gov (United States)

    Santos-Martinez, Maria Jose; Inkielewicz-Stepniak, Iwona; Medina, Carlos; Rahme, Kamil; D’Arcy, Deirdre M; Fox, Daniel; Holmes, Justin D; Zhang, Hongzhou; Radomski, Marek Witold

    2012-01-01

    Interactions between blood platelets and nanoparticles have both pharmacological and toxicological significance and may lead to platelet activation and aggregation. Platelet aggregation is usually studied using light aggregometer that neither mimics the conditions found in human microvasculature nor detects microaggregates. A new method for the measurement of platelet microaggregation under flow conditions using a commercially available quartz crystal microbalance with dissipation (QCM-D) has recently been developed. The aim of the current study was to investigate if QCM-D could be used for the measurement of nanoparticle-platelet interactions. Silica, polystyrene, and gold nanoparticles were tested. The interactions were also studied using light aggregometry and flow cytometry, which measured surface abundance of platelet receptors. Platelet activation was imaged using phase contrast and scanning helium ion microscopy. QCM-D was able to measure nanoparticle-induced platelet microaggregation for all nanoparticles tested at concentrations that were undetectable by light aggregometry and flow cytometry. Microaggregates were measured by changes in frequency and dissipation, and the presence of platelets on the sensor surface was confirmed and imaged by phase contrast and scanning helium ion microscopy. PMID:22275839

  9. Boron-doped graphene quantum dots for selective glucose sensing based on the "abnormal" aggregation-induced photoluminescence enhancement.

    Science.gov (United States)

    Zhang, Li; Zhang, Zhi-Yi; Liang, Ru-Ping; Li, Ya-Hua; Qiu, Jian-Ding

    2014-05-06

    A hydrothermal approach for the cutting of boron-doped graphene (BG) into boron-doped graphene quantum dots (BGQDs) has been proposed. Various characterizations reveal that the boron atoms have been successfully doped into graphene structures with the atomic percentage of 3.45%. The generation of boronic acid groups on the BGQDs surfaces facilitates their application as a new photoluminescence (PL) probe for label free glucose sensing. It is postulated that the reaction of the two cis-diol units in glucose with the two boronic acid groups on the BGQDs surfaces creates structurally rigid BGQDs-glucose aggregates, restricting the intramolecular rotations and thus resulting in a great boost in the PL intensity. The present unusual "aggregation-induced PL increasing" sensing process excludes any saccharide with only one cis-diol unit, as manifested by the high specificity of BGQDs for glucose over its close isomeric cousins fructose, galactose, and mannose. It is believed that the doping of boron can introduce the GQDs to a new kind of surface state and offer great scientific insights to the PL enhancement mechanism with treatment of glucose.

  10. Drosophila UNC-45 prevents heat-induced aggregation of skeletal muscle myosin and facilitates refolding of citrate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Melkani, Girish C.; Lee, Chi F.; Cammarato, Anthony [Department of Biology and the Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614 (United States); Bernstein, Sanford I., E-mail: sbernst@sciences.sdsu.edu [Department of Biology and the Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614 (United States)

    2010-05-28

    UNC-45 belongs to the UCS (UNC-45, CRO1, She4p) domain protein family, whose members interact with various classes of myosin. Here we provide structural and biochemical evidence that Escherichia coli-expressed Drosophila UNC-45 (DUNC-45) maintains the integrity of several substrates during heat-induced stress in vitro. DUNC-45 displays chaperone function in suppressing aggregation of the muscle myosin heavy meromyosin fragment, the myosin S-1 motor domain, {alpha}-lactalbumin and citrate synthase. Biochemical evidence is supported by electron microscopy, which reveals the first structural evidence that DUNC-45 prevents inter- or intra-molecular aggregates of skeletal muscle heavy meromyosin caused by elevated temperatures. We also demonstrate for the first time that UNC-45 is able to refold a denatured substrate, urea-unfolded citrate synthase. Overall, this in vitro study provides insight into the fate of muscle myosin under stress conditions and suggests that UNC-45 protects and maintains the contractile machinery during in vivo stress.

  11. Rickettsiae induce microvascular hyperpermeability via phosphorylation of VE-cadherins: evidence from atomic force microscopy and biochemical studies.

    Directory of Open Access Journals (Sweden)

    Bin Gong

    Full Text Available The most prominent pathophysiological effect of spotted fever group (SFG rickettsial infection of microvascular endothelial cells (ECs is an enhanced vascular permeability, promoting vasogenic cerebral edema and non-cardiogenic pulmonary edema, which are responsible for most of the morbidity and mortality in severe cases. To date, the cellular and molecular mechanisms by which SFG Rickettsia increase EC permeability are largely unknown. In the present study we used atomic force microscopy (AFM to study the interactive forces between vascular endothelial (VE-cadherin and human cerebral microvascular EC infected with R. montanensis, which is genetically similar to R. rickettsii and R. conorii, and displays a similar ability to invade cells, but is non-pathogenic and can be experimentally manipulated under Biosafety Level 2 (BSL2 conditions. We found that infected ECs show a significant decrease in VE-cadherin-EC interactions. In addition, we applied immunofluorescent staining, immunoprecipitation phosphorylation assay, and an in vitro endothelial permeability assay to study the biochemical mechanisms that may participate in the enhanced vascular permeability as an underlying pathologic alteration of SFG rickettsial infection. A major finding is that infection of R. montanensis significantly activated tyrosine phosphorylation of VE-cadherin beginning at 48 hr and reaching a peak at 72 hr p.i. In vitro permeability assay showed an enhanced microvascular permeability at 72 hr p.i. On the other hand, AFM experiments showed a dramatic reduction in VE-cadherin-EC interactive forces at 48 hr p.i. We conclude that upon infection by SFG rickettsiae, phosphorylation of VE-cadherin directly attenuates homophilic protein-protein interactions at the endothelial adherens junctions, and may lead to endothelial paracellular barrier dysfunction causing microvascular hyperpermeability. These new approaches should prove useful in characterizing the antigenically

  12. Differential Regulation of MAPK Phosphorylation in the Dorsal Hippocampus in Response to Prolonged Morphine Withdrawal-Induced Depressive-Like Symptoms in Mice.

    Directory of Open Access Journals (Sweden)

    Wei Jia

    Full Text Available Depression is one of the most frequent neuropsychiatric comorbidities associated with opiate addiction. Mitogen activated protein kinase (MAPK and MAPK phosphatase (MKP are involved in drug addiction and depression. However, the potential role of MAPK and MKP in depression caused by morphine withdrawal remains unclear. We utilized a mouse model of repeated morphine administration to examine the molecular mechanisms that contribute to prolonged withdrawal induced depressive-like behaviors. Depressive-like behaviors were significant at 1 week after withdrawal and worsened over time. Phospho-ERK (extracellular signal-regulated protein kinase was decreased and MKP-1 was elevated in the hippocampus, and JNK (c-Jun N-terminal protein kinase, p38 (p38 protein kinase and MKP-3 were unaffected. A pharmacological blockade of MKP-1 by intra-hippocampal sanguinarine (SA infusion prevented the development of depressive-like behaviors and resulted in relatively normal levels of MKP-1 and phospho-ERK after withdrawal. Our findings support the association between hippocampal MAPK phosphorylation and prolonged morphine withdrawal-induced depression, and emphasize the MKP-1 as an negative regulator of the ERK phosphorylation that contributes to depression.

  13. A novel BH3 mimetic efficiently induces apoptosis in melanoma cells through direct binding to anti-apoptotic Bcl-2 family proteins, including phosphorylated Mcl-1.

    Science.gov (United States)

    Liu, Yubo; Xie, Mingzhou; Song, Ting; Sheng, Hongkun; Yu, Xiaoyan; Zhang, Zhichao

    2015-03-01

    The Bcl-2 family modulates sensitivity to chemotherapy in many cancers, including melanoma, in which the RAS/BRAF/MEK/ERK pathway is constitutively activated. Mcl-1, a major anti-apoptotic protein in the Bcl-2 family, is extensively expressed in melanoma and contributes to melanoma's well-documented chemoresistance. Here, we provide the first evidence that Mcl-1 phosphorylation at T163 by ERK1/2 and JNK is associated with the resistance of melanoma cell lines to the existing BH3 mimetics gossypol, S1 and ABT-737, and a novel anti-apoptotic mechanism of phosphorylated Mcl-1 (pMcl-1) is revealed. pMcl-1 antagonized the known BH3 mimetics by sequestering pro-apoptotic proteins that were released from Bcl-2/Mcl-1. Furthermore, an anthraquinone BH3 mimetic, compound 6, was identified to be the first small molecule to that induces endogenous apoptosis in melanoma cells by directly binding Bcl-2, Mcl-1, and pMcl-1 and disrupting the heterodimers of these proteins. Although compound 6 induced upregulation of the pro-apoptotic protein Noxa, its apoptotic induction was independent of Noxa. These data reveal the promising therapeutic potential of targeting pMcl-1 to treat melanoma. Compound 6 is therefore a potent drug that targets pMcl-1 in melanoma.

  14. Loganin protects against hydrogen peroxide-induced apoptosis by inhibiting phosphorylation of JNK, p38, and ERK 1/2 MAPKs in SH-SY5Y cells.

    Science.gov (United States)

    Kwon, Seung-Hwan; Kim, Ji-Ah; Hong, Sa-Ik; Jung, Yang-Hee; Kim, Hyoung-Chun; Lee, Seok-Yong; Jang, Choon-Gon

    2011-03-01

    We investigated the mechanisms underlying the protective effects of loganin against hydrogen peroxide (H(2)O(2))-induced neuronal toxicity in SH-SY5Y cells. The neuroprotective effect of loganin was investigated by treating SH-SY5Y cells with H(2)O(2) and then measuring the reduction in H(2)O(2)-induced apoptosis using 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release assays. Following H(2)O(2) exposure, Hoechst 33258 staining indicated nuclear condensation in a large proportion of SH-SY5Y cells, along with an increase in reactive oxygen species (ROS) production and an intracellular decrease in mitochondria membrane potential (MMP). Loganin was effective in attenuating all the above-stated phenotypes induced by H(2)O(2). Pretreatment with loganin significantly increased cell viability, reduced H(2)O(2)-induced LDH release and ROS production, and effectively increased intracellular MMP. Pretreatment with loganin also significantly decreased the nuclear condensation induced by H(2)O(2). Western blot data revealed that loganin inhibited the H(2)O(2)-induced up-regulation of cleaved poly (ADP-ribose) polymerase (PARP) and cleaved caspase-3, increased the H(2)O(2)-induced decrease in the Bcl-2/Bax ratio, and attenuated the H(2)O(2)-induced release of cytochrome c from mitochondria to the cytosol. Furthermore, pretreatment with loganin significantly attenuated the H(2)O(2)-induced phosphorylation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and extracellular signal-regulated kinase 1/2 (ERK 1/2). These results suggest that the protective effects of loganin against H(2)O(2)-induced apoptosis may be due to a decrease in the Bcl-2/Bax ratio expression due to the inhibition of the phosphorylation of JNK, p38, and ERK 1/2 MAPKs. Loganin's neuroprotective properties indicate that this compound may be a potential therapeutic agent for the treatment of neurodegenerative diseases.

  15. The phosphorylated C-terminus of cAR1 plays a role in cell-type-specific gene expression and STATa tyrosine phosphorylation.

    Science.gov (United States)

    Briscoe, C; Moniakis, J; Kim, J Y; Brown, J M; Hereld, D; Devreotes, P N; Firtel, R A

    2001-05-01

    cAMP receptors mediate some signaling pathways via coupled heterotrimeric G proteins, while others are G-protein-independent. This latter class includes the activation of the transcription factors GBF and STATa. Within the cellular mounds formed by aggregation of Dictyostelium, micromolar levels of cAMP activate GBF function, thereby inducing the transcription of postaggregative genes and initiating multicellular differentiation. Activation of STATa, a regulator of culmination and ecmB expression, results from cAMP receptor-dependent tyrosine phosphorylation and nuclear localization, also in mound-stage cells. During mound development, the cAMP receptor cAR1 is in a low-affinity state and is phosphorylated on multiple serine residues in its C-terminus. This paper addresses possible roles of cAMP receptor phosphorylation in the cAMP-mediated stimulation of GBF activity, STATa tyrosine phosphorylation, and cell-type-specific gene expression. To accomplish this, we have expressed cAR1 mutants in a strain in which the endogenous cAMP receptors that mediate postaggregative gene expression in vivo are deleted. We then examined the ability of these cells to undergo morphogenesis and induce postaggregative and cell-type-specific gene expression and STATa tyrosine phosphorylation. Analysis of cAR1 mutants in which the C-terminal tail is deleted or the ligand-mediated phosphorylation sites are mutated suggests that the cAR1 C-terminus is not essential for GBF-mediated postaggregative gene expression or STATa tyrosine phosphorylation, but may play a role in regulating cell-type-specific gene expression and morphogenesis. A mutant receptor, in which the C-terminal tail is constitutively phosphorylated, exhibits constitutive activation of STATa tyrosine phosphorylation in pulsed cells in suspension and a significantly impaired ability to induce cell-type-specific gene expression. The constitutively phosphorylated receptor also exerts a partial dominant negative effect on

  16. Fabrication of aggregation-induced emission based fluorescent nanoparticles and their biological imaging application: recent progress and perspectives

    Directory of Open Access Journals (Sweden)

    Bin Yang

    2016-06-01

    Full Text Available Aggregation-induced emission (AIE dyes have received wide-spread concern since their inception. Several types of AIE-based fluorescent nanoparticle (FNP have been developed, and the potential applications of these FNPs have also been explored. Recent studies of AIE-based FNPs in biological areas have suggested that they show promise as bio-materials for cell imaging and other biomedical applications. This article reviews recent progress in the synthesis of AIE-based FNPs via non-covalent, covalent and novel one-pot strategies, and the subsequent cell-imaging of those AIE-based FNPs. Many successes have been achieved, and there is still plenty of space for the development of AIE-based FNPs as new bio-materials.

  17. Phosphorylated Peptides from Antarctic Krill (Euphausia superba) Prevent Estrogen Deficiency Induced Osteoporosis by Inhibiting Bone Resorption in Ovariectomized Rats.

    Science.gov (United States)

    Xia, Guanghua; Zhao, Yanlei; Yu, Zhe; Tian, Yingying; Wang, Yiming; Wang, Shanshan; Wang, Jingfeng; Xue, Changhu

    2015-11-04

    In the current study, we investigated the improvement of phosphorylated peptides from Antarctic krill Euphausia superba (PP-AKP) on osteoporosis in ovariectomized rats. PP-AKP was supplemented to ovariectomized Sprague-Dawley rats for 90 days. The results showed that PP-AKP treatment remarkably prevented the reduction of bone mass and improved cancellous bone structure and biochemical properties. PP-AKP also significantly decreased serum contents of tartrate-resistant acid phosphatase (TRACP), cathepsin K (Cath-k), matrix metalloproteinases-9 (MMP-9), deoxypyridinoline (DPD), C-terminal telopeptide of collagen I (CTX-1), Ca, and P. Mechanism investigation revealed that PP-AKP significantly increased the osteoprotegerin (OPG)/receptor activator of nuclear factor κB ligand (RANKL) ratio in mRNA expression, protein expression, and serum content. Further research suggested that NF-κB signaling pathways were inhibited by suppressing the mRNA and protein expressions of nuclear factor of activated T-cells (NFATc1) and tumor necrosis factor receptor-associated factor 6 (TRAF6), diminishing the mRNA expression and phosphorylation of nuclear factor κB p65 (NF-κB p65), three key transcription factors in NF-κB pathways. These results suggest that PP-AKP can improve osteoporosis by inhibiting bone resorption via suppressing the activation of osteoclastogenesis related NF-κB pathways.

  18. UV Damage-Induced Phosphorylation of HBO1 Triggers CRL4DDB2-Mediated Degradation To Regulate Cell Proliferation.

    Science.gov (United States)

    Matsunuma, Ryoichi; Niida, Hiroyuki; Ohhata, Tatsuya; Kitagawa, Kyoko; Sakai, Satoshi; Uchida, Chiharu; Shiotani, Bunsyo; Matsumoto, Masaki; Nakayama, Keiichi I; Ogura, Hiroyuki; Shiiya, Norihiko; Kitagawa, Masatoshi

    2015-11-16

    Histone acetyltransferase binding to ORC-1 (HBO1) is a critically important histone acetyltransferase for forming the prereplicative complex (pre-RC) at the replication origin. Pre-RC formation is completed by loading of the MCM2-7 heterohexameric complex, which functions as a helicase in DNA replication. HBO1 recruited to the replication origin by CDT1 acetylates histone H4 to relax the chromatin conformation and facilitates loading of the MCM complex onto replication origins. However, the acetylation status and mechanism of regulation of histone H3 at replication origins remain elusive. HBO1 positively regulates cell proliferation under normal cell growth conditions. Whether HBO1 regulates proliferation in response to DNA damage is poorly understood. In this study, we demonstrated that HBO1 was degraded after DNA damage to suppress cell proliferation. Ser50 and Ser53 of HBO1 were phosphorylated in an ATM/ATR DNA damage sensor-dependent manner after UV treatment. ATM/ATR-dependently phosphorylated HBO1 preferentially interacted with DDB2 and was ubiquitylated by CRL4(DDB2). Replacement of endogenous HBO1 in Ser50/53Ala mutants maintained acetylation of histone H3K14 and impaired cell cycle regulation in response to UV irradiation. Our findings demonstrate that HBO1 is one of the targets in the DNA damage checkpoint. These results show that ubiquitin-dependent control of the HBO1 protein contributes to cell survival during UV irradiation.

  19. (-)-Epigallocatechin-3-gallate decreases thrombin/paclitaxel-induced endothelial tissue factor expression via the inhibition of c-Jun terminal NH2 kinase phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huang-Joe [Institute of Biotechnology, National Tsing Hua University, No. 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan (China); Division of Cardiology, Department of Medicine, China Medical University Hospital, No. 2, Yuh-Der Road, Taichung 40447, Taiwan (China); Lo, Wan-Yu [Department of Medical Research, China Medical University Hospital, No. 2, Yuh-Der Road, Taichung 40447, Taiwan (China); Graduate Integration of Chinese and Western Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan (China); Lu, Te-Ling [School of Pharmacy, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan (China); Huang, Haimei, E-mail: hmhuang@life.nthu.edu.tw [Institute of Biotechnology, National Tsing Hua University, No. 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan (China)

    2010-01-01

    Patients with paclitaxel-eluting stents are concerned with stent thrombosis caused by premature discontinuation of dual antiplatelet therapy or clopidogrel resistance. This study investigates the effect of (-)-epigallocatechin-3-gallate (EGCG) on the expression of thrombin/paclitaxel-induced endothelial tissue factor (TF) expressions in human aortic endothelial cells (HAECs). EGCG was nontoxic to HAECs at 6 h up to a concentration of 25 {mu}mol/L. At a concentration of 25 {mu}mol/L, EGCG pretreatment potently inhibited both thrombin-stimulated and thrombin/paclitaxel-stimulated endothelial TF protein expression. Thrombin and thrombin/paclitaxel-induced 2.6-fold and 2.9-fold increases in TF activity compared with the control. EGCG pretreatment caused a 29% and 38% decrease in TF activity on thrombin and thrombin/paclitaxel treatment, respectively. Real-time polymerase chain reaction (PCR) showed that thrombin and thrombin/paclitaxel-induced 3.0-fold and 4.6-fold TF mRNA expressions compared with the control. EGCG pretreatment caused an 82% and 72% decrease in TF mRNA expression on thrombin and thrombin/paclitaxel treatment, respectively. The c-Jun terminal NH2 kinase (JNK) inhibitor SP600125 reduced thrombin/paclitaxel-induced TF expression. Furthermore, EGCG significantly inhibited the phosphorylation of JNK to 49% of thrombin/paclitaxel-stimulated HAECs at 60 min. Immunofluorescence assay did not show an inhibitory effect of EGCG on P65 NF-{kappa}B nuclear translocation in the thrombin/paclitaxel-stimulated endothelial cells. In conclusion, EGCG can inhibit TF expression in thrombin/paclitaxel-stimulated endothelial cells via the inhibition of JNK phosphorylation. The unique property of EGCG may be used to develop a new drug-eluting stent by co-coating EGCG and paclitaxel.

  20. Detection of adenosine triphosphate through polymerization-induced aggregation of actin-conjugated gold/silver nanorods

    Science.gov (United States)

    Liao, Yu-Ju; Shiang, Yen-Chun; Chen, Li-Yi; Hsu, Chia-Lun; Huang, Chih-Ching; Chang, Huan-Tsung

    2013-11-01

    We have developed a simple and selective nanosensor for the optical detection of adenosine triphosphate (ATP) using globular actin-conjugated gold/silver nanorods (G-actin-Au/Ag NRs). By simply mixing G-actin and Au/Ag NRs (length ˜56 nm and diameter ˜12 nm), G-actin-Au/Ag NRs were prepared which were stable in physiological solutions (25 mM Tris-HCl, 150 mM NaCl, 5.0 mM KCl, 3.0 mM MgCl2 and 1.0 mM CaCl2; pH 7.4). Introduction of ATP into the G-actin-Au/Ag NR solutions in the presence of excess G-actin induced the formation of filamentous actin-conjugated Au/Ag NR aggregates through ATP-induced polymerization of G-actin. When compared to G-actin-modified spherical Au nanoparticles having a size of 13 nm or 56 nm, G-actin-Au/Ag NRs provided better sensitivity for ATP, mainly because the longitudinal surface plasmon absorbance of the Au/Ag NR has a more sensitive response to aggregation. This G-actin-Au/Ag NR probe provided high sensitivity (limit of detection 25 nM) for ATP with remarkable selectivity (>10-fold) over other adenine nucleotides (adenosine, adenosine monophosphate and adenosine diphosphate) and nucleoside triphosphates (guanosine triphosphate, cytidine triphosphate and uridine triphosphate). It also allowed the determination of ATP concentrations in plasma samples without conducting tedious sample pretreatments; the only necessary step was simple dilution. Our experimental results are in good agreement with those obtained from a commercial luciferin-luciferase bioluminescence assay. Our simple, sensitive and selective approach appears to have a practical potential for the clinical diagnosis of diseases (e.g. cystic fibrosis) associated with changes in ATP concentrations.

  1. Latent heat induced rotation limited aggregation in 2D ice nanocrystals

    CERN Document Server

    Bampoulis, Pantelis; Kooij, E Stefan; Lohse, Detlef; Zandvliet, Harold J W; Poelsema, Bene

    2016-01-01

    The basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene. Based on our Scanning Tunneling Spectroscopy (STS) data we provide compelling evidence that these fractals are 2D ice. They grow while they are in material contact with the atmosphere at 20 $^{\\circ}$C and without significant thermal contact to the ambient. The growth is studied in-situ, in real time and space at the nanoscale. We find that the growing 2D ice nanocrystals assume a fractal shape, which is conventionally attributed to Diffusion Limited Aggregation (DLA). However, DLA requires a low mass density mother phase, in contrast to the actual currently present high mass density mother phase. Latent heat effects and conse...

  2. Alpha-synuclein-induced aggregation of cytoplasmic vesicles in Saccharomyces cerevisiae.

    Science.gov (United States)

    Soper, James H; Roy, Subhojit; Stieber, Anna; Lee, Eliza; Wilson, Robert B; Trojanowski, John Q; Burd, Christopher G; Lee, Virginia M-Y

    2008-03-01

    Aggregated alpha-synuclein (alpha-syn) fibrils form Lewy bodies (LBs), the signature lesions of Parkinson's disease (PD) and related synucleinopathies, but the pathogenesis and neurodegenerative effects of LBs remain enigmatic. Recent studies have shown that when overexpressed in Saccharomyces cerevisiae, alpha-syn localizes to plasma membranes and forms cytoplasmic accumulations similar to human alpha-syn inclusions. However, the exact nature, composition, temporal evolution, and underlying mechanisms of yeast alpha-syn accumulations and their relevance to human synucleinopathies are unknown. Here we provide ultrastructural evidence that alpha-syn accumulations are not comprised of LB-like fibrils, but are associated with clusters of vesicles. Live-cell imaging showed alpha-syn initially localized to the plasma membrane and subsequently formed accumulations in association with vesicles. Imaging of truncated and mutant forms of alpha-syn revealed the molecular determinants and vesicular trafficking pathways underlying this pathological process. Because vesicular clustering is also found in LB-containing neurons of PD brains, alpha-syn-mediated vesicular accumulation in yeast represents a model system to study specific aspects of neurodegeneration in PD and related synucleinopathies.

  3. Reparative Dentinogenesis Induced by Mineral Trioxide Aggregate: A Review from the Biological and Physicochemical Points of View

    Directory of Open Access Journals (Sweden)

    Takashi Okiji

    2009-01-01

    Full Text Available This paper aims to review the biological and physicochemical properties of mineral trioxide aggregate (MTA with respect to its ability to induce reparative dentinogenesis, which involves complex cellular and molecular events leading to hard-tissue repair by newly differentiated odontoblast-like cells. Compared with that of calcium hydroxide-based materials, MTA is more efficient at inducing reparative dentinogenesis in vivo. The available literature suggests that the action of MTA is attributable to the natural wound healing process of exposed pulps, although MTA can stimulate hard-tissue-forming cells to induce matrix formation and mineralization in vitro. Physicochemical analyses have revealed that MTA not only acts as a “calcium hydroxide-releasing” material, but also interacts with phosphate-containing fluids to form apatite precipitates. MTA also shows better sealing ability and structural stability, but less potent antimicrobial activity compared with that of calcium hydroxide. The clinical outcome of direct pulp capping and pulpotomy with MTA appears quite favorable, although the number of controled prospective studies is still limited. Attempts are being conducted to improve the properties of MTA by the addition of setting accelerators and the development of new calcium silicate-based materials.

  4. Inhibitory Effects of Cytosolic Ca2+ Concentration by Ginsenoside Ro Are Dependent on Phosphorylation of IP3RI and Dephosphorylation of ERK in Human Platelets

    Directory of Open Access Journals (Sweden)

    Hyuk-Woo Kwon

    2015-01-01

    Full Text Available Intracellular Ca2+ ([Ca2+]i is platelet aggregation-inducing molecule and is involved in activation of aggregation associated molecules. This study was carried out to understand the Ca2+-antagonistic effect of ginsenoside Ro (G-Ro, an oleanane-type saponin in Panax ginseng. G-Ro, without affecting leakage of lactate dehydrogenase, dose-dependently inhibited thrombin-induced platelet aggregation, and the half maximal inhibitory concentration was approximately 155 μM. G-Ro inhibited strongly thrombin-elevated [Ca2+]i, which was strongly increased by A-kinase inhibitor Rp-8-Br-cAMPS compared to G-kinase inhibitor Rp-8-Br-cGMPS. G-Ro increased the level of cAMP and subsequently elevated the phosphorylation of inositol 1, 4, 5-triphosphate receptor I (IP3RI (Ser1756 to inhibit [Ca2+]i mobilization in thrombin-induced platelet aggregation. Phosphorylation of IP3RI (Ser1756 by G-Ro was decreased by PKA inhibitor Rp-8-Br-cAMPS. In addition, G-Ro inhibited thrombin-induced phosphorylation of ERK 2 (42 kDa, indicating inhibition of Ca2+ influx across plasma membrane. We demonstrate that G-Ro upregulates cAMP-dependent IP3RI (Ser1756 phosphorylation and downregulates phosphorylation of ERK 2 (42 kDa to decrease thrombin-elevated [Ca2+]i, which contributes to inhibition of ATP and serotonin release, and p-selectin expression. These results indicate that G-Ro in Panax ginseng is a beneficial novel Ca2+-antagonistic compound and may prevent platelet aggregation-mediated thrombotic disease.

  5. Effect of a Korean traditional formulation, Hwaotang, on superoxide generation in human neutrophils, platelet aggregation in human blood, and nitric oxide, prostaglandin E2 production and paw oedema induced by carrageenan in mice.

    Science.gov (United States)

    Park, Won-Hwan; Park, Soo-Young; Kim, Hyung-Min; Kim, Cheorl-Ho

    2004-02-01

    Hwaotang, a traditional Korean medicinal formulation, is a dried decoctum of a mixture of 7 herbal medicines, consisting of Angelica gigantis Radix, Rehmanniae radix, Paeoniae radix, Ciniamomi cortex, Cnidii rhizoma, Persicae semen and Carthami flos. We have investigated that Hwaotang water extract (HOT) has various effects on stimulus-induced superoxide generation in human neutrophils. The effects of HOT on superoxide generation in human neutrophils were investigated. HOT significantly inhibited N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced superoxide generation in a concentration-dependent manner, but not that induced by arachidonic acid (AA). On the other hand, HOT enhanced superoxide generation induced by phorbol 12-myristate 13-acetate (PMA) in a concentration-dependent manner. The superoxide generation induced by PMA with HOT was suppressed by staurosporine, an inhibitor of protein kinase C, but was not suppressed by genistein, an inhibitor of protein tyrosine kinase. Tyrosyl phosphorylation of a 58 kDa protein, which was increased by fMLP, was inhibited by HOT. HOT also inhibited the generation of a 47 kDa protein and platelet aggregation in human blood. The results suggest that protein tyrosine kinase participates in fMLP-mediated superoxide generation by HOT-treated human neutrophils. HOT inhibited neutrophil functions, including degranulation, superoxide generation, and leukotriene B4 production, without any effect on 5-lipoxygenase activity. HOT reduced nitric oxide (NO) and prostaglandin E2 production in mouse peritoneal macrophages stimulated with lipopolysaccharide, whereas no influence on the activity of iNOS, COX-2 or COX-1 was observed. HOT significantly reduced mouse paw oedema induced by carrageenan. Western blot analysis showed that HOT reduced the expression of iNOS and COX-2. The results indicate that HOT exerts anti-inflammatory effects related to the inhibition of neutrophil functions and of NO and prostaglandin E2 production, which

  6. Calcium absorption by Cav1.3 induces terminal web myosin II phosphorylation and apical GLUT2 insertion in rat intestine.

    Science.gov (United States)

    Mace, Oliver J; Morgan, Emma L; Affleck, Julie A; Lister, Norma; Kellett, George L

    2007-04-15

    Glucose absorption in rat jejunum involves Ca(2+)- and PKC betaII-dependent insertion of GLUT2 into the apical membrane. Ca(2+)-induced rearrangement of the enterocyte cytoskeleton is thought to enhance paracellular flow. We have therefore investigated the relationships between myosin II regulatory light chain phosphorylation (RLC(20)), absorption of glucose, water and calcium, and mannitol clearance. ML-7, an inhibitor of myosin light chain kinase, diminished the phloretin-sensitive apical GLUT2 but not the phloretin-insensitive SGLT1 component of glucose absorption in rat jejunum perfused with 75 mM glucose. Western blotting and immunocytochemistry revealed marked decreases in RLC(20) phosphorylation in the terminal web and in the levels of apical GLUT2 and PKC betaII, but not SGLT1. Perfusion with phloridzin or 75 mM mannitol, removal of luminal Ca(2+), or inhibition of unidirectional (45)Ca(2+) absorption by nifedipine exerted similar effects. ML-7 had no effect on the absorption of 10 mM Ca(2+), nor clearance of [(14)C]-mannitol, which was less than 0.7% of the rate of glucose absorption. Water absorption did not correlate with (45)Ca(2+) absorption or mannitol clearance. We conclude that the Ca(2+) necessary for contraction of myosin II in the terminal web enters via an L-type channel, most likely Ca(v)1.3, and is dependent on SGLT1. Moreover, terminal web RLC(20) phosphorylation is necessary for apical GLUT2 insertion. The data confirm that glucose absorption by paracellular flow is negligible, and show further that paracellular flow makes no more than a minimal contribution to jejunal Ca(2+) absorption at luminal concentrations prevailing after a meal.

  7. Melatonin Attenuates Aortic Endothelial Permeability and Arteriosclerosis in Streptozotocin-Induced Diabetic Rats: Possible Role of MLCK- and MLCP-Dependent MLC Phosphorylation.

    Science.gov (United States)

    Tang, Song-tao; Su, Huan; Zhang, Qiu; Tang, Hai-qin; Wang, Chang-jiang; Zhou, Qing; Wei, Wei; Zhu, Hua-qing; Wang, Yuan

    2016-01-01

    The development of diabetic macrovascular complications is a multifactorial process, and melatonin may possess cardiovascular protective properties. This study was designed to evaluate whether melatonin attenuates arteriosclerosis and endothelial permeability by suppressing the myosin light-chain kinase (MLCK)/myosin light-chain phosphorylation (p-MLC) system via the mitogen-activated protein kinase (MAPK) signaling pathway or by suppressing the myosin phosphatase-targeting subunit phosphorylation (p-MYPT)/p-MLC system in diabetes mellitus (DM). Rats were randomly divided into 4 groups, including control, high-fat diet, DM, and DM + melatonin groups. Melatonin was administered (10 mg/kg/d) by gavage for 12 weeks. The DM significantly increased the serum fasting blood glucose and lipid levels, as well as insulin resistance and endothelial dysfunction, which were attenuated by melatonin therapy to various extents. Importantly, the aortic endothelial permeability was significantly increased in DM rats but was dramatically reversed following treatment with melatonin. Our findings further indicated that hyperglycemia and hyperlipidemia enhanced the expressions of MLCK, p-MYPT, and p-MLC, which were partly associated with decreased membrane type 1 expression, increased extracellular signal-regulated kinase (ERK) phosphorylation, and increased p38 expression. However, these changes in protein expression were also significantly reversed by melatonin. Thus, our results are the first to demonstrate that the endothelial hyperpermeability induced by DM is associated with increased expressions of MLCK, p-MYPT, and p-MLC, which can be attenuated by melatonin at least partly through the ERK/p38 signaling pathway.

  8. Ketamine plus imipramine treatment induces antidepressant-like behavior and increases CREB and BDNF protein levels and PKA and PKC phosphorylation in rat brain.

    Science.gov (United States)

    Réus, Gislaine Z; Stringari, Roberto B; Ribeiro, Karine F; Ferraro, Ana K; Vitto, Marcelo F; Cesconetto, Patrícia; Souza, Claúdio T; Quevedo, João

    2011-08-01

    A growing body of evidence has pointed to the N-methyl-d-aspartate (NMDA) receptor antagonists as a potential therapeutic target for the treatment of major depression. The present study investigated the possibility of synergistic interactions between antidepressant imipramine with the uncompetitive NMDA receptor antagonist ketamine. Wistar rats were acutely treated with ketamine (5 and 10mg/kg) and imipramine (10 and 20mg/kg) and then subjected to forced swimming tests. The cAMP response element bindig (CREB) and brain-derived neurotrophic factor (BDNF) protein levels and protein kinase C (PKC) and protein kinase A (PKA) phosphorylation were assessed in the prefrontal cortex, hippocampus and amygdala by imunoblot. Imipramine at the dose of 10mg/kg and ketamine at the dose of 5mg/kg did not have effect on the immobility time; however, the effect of imipramine (10 and 20mg/kg) was enhanced by both doses of ketamine. Ketamine and imipramine alone or in combination at all doses tested did not modify locomotor activity. Combined treatment with ketamine and imipramine produced stronger increases of CREB and BDNF protein levels in the prefrontal cortex, hippocampus and amygdala, and PKA phosphorylation in the hippocampus and amygdala and PKC phosphorylation in prefrontal cortex. The results described indicate that co-administration of antidepressant imipramine with ketamine may induce a more pronounced antidepressant activity than treatment with each antidepressant alone. This finding may be of particular importance in the case of drug-resistant patients and could suggest a method of obtaining significant antidepressant actions whilst limiting side effects.

  9. Expression of a phosphorylated substrate domain of p130Cas promotes PyMT-induced c-Src-dependent murine breast cancer progression.

    Science.gov (United States)

    Zhao, Yingshe; Kumbrink, Joerg; Lin, Bor-Tyh; Bouton, Amy H; Yang, Shi; Toselli, Paul A; Kirsch, Kathrin H

    2013-12-01

    Elevated expression of p130Cas (Crk-associated substrate)/BCAR1 (breast cancer antiestrogen resistance 1) in human breast tumors is a marker of poor prognosis and poor overall survival. p130Cas is a downstream target of the tyrosine kinase c-Src. Signaling mediated by p130Cas through its phosphorylated substrate domain (SD) and interaction with effector molecules directly promotes tumor progression. We previously developed a constitutively phosphorylated p130Cas SD molecule, Src*/SD (formerly referred to as Src*/CasSD), which acts as decoy molecule and attenuates the transformed phenotype in v-crk-transformed murine fibroblasts and human breast cancer cells. To test the function of this molecule in vivo, we established mouse mammary tumor virus (MMTV)-long terminal repeat-Src*/SD transgenic mice in which mammary gland development and tumor formation were analyzed. Transgenic expression of the Src*/SD molecule under the MMTV-long terminal repeat promoter did not interfere with normal mammary gland development or induce tumors in mice observed for up to 11 months. To evaluate the effects of the Src*/SD molecule on tumor development in vivo, we utilized the MMTV-polyoma middle T-antigen (PyMT) murine breast cancer model that depends on c-Src. PyMT mice crossed with Src*/SD mice displayed accelerated tumor formation. The earlier onset of tumors can be explained by the interaction of the Src* domain with PyMT and targeting the fused phosphorylated SD to the membrane. At membrane compartments, it might integrate membrane-associated active signaling complexes leading to increased proliferation measured by phospho-Histone H3 staining. Although these results were unexpected, they emphasize the importance of preventing the membrane association of Src*/SD when employed as decoy molecule.

  10. Glycosylated asterisks are among the most potent low valency inducers of Concanavalin A aggregation.

    Science.gov (United States)

    Sleiman, Mazen; Varrot, Annabelle; Raimundo, Jean-Manuel; Gingras, Marc; Goekjian, Peter G

    2008-12-28

    A new class of sulfurated, semi-rigid, radial and low-valent glycosylated asterisk ligands with potential dual function as ligand and probe has some of the highest inhibition potencies of Con A-induced hemagglutination, by using a cross-linking mechanism of Con A which amplifies the enhancement to near nanomolar concentrations with the alpha-d-mannose asterisk.

  11. UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation

    NARCIS (Netherlands)

    Froels, Sabrina; Ajon, Malgorzata; Wagner, Michaela; Teichmann, Daniela; Zolghadr, Behnam; Folea, Mihaela; Boekema, Egbert J.; Driessen, Arnold J. M.; Schleper, Christa; Albers, Sonja-Verena

    2008-01-01

    The hyperthermophilic archaeon Sulfolobus solfataricus has been shown to exhibit a complex transcriptional response to UV irradiation involving 55 genes. Among the strongest UV-induced genes was a putative pili biogenesis operon encoding a potential secretion ATPase, two pre-pilins, a putative trans

  12. Different magnitudes of tensile strain induce human osteoblasts differentiation associated with the activation of ERK1/2 phosphorylation.

    Science.gov (United States)

    Zhu, Junfeng; Zhang, Xiaoling; Wang, Chengtao; Peng, Xiaochun; Zhang, Xianlong

    2008-12-01

    Mechanical factors are related to periprosthetic osseointegration following total hip arthroplasty. However, osteoblast response to strain in implanted femurs is unclear because of the absence of accurate stress-measuring methods. In our study, finite element analysis was performed to calculate strain distribution in implanted femurs. 0.8-3.2% tensile strain was then applied to human osteoblasts. Higher magnitudes of strain enhanced the expression of osteocalcin, type I collagen, and Cbfa1/Runx2. Lower magnitudes significantly increased ALP activity. Among these, type I collagen expression increased with the activation of ERK1/2 phosphorylation in a strain-magnitude-dependent manner. Our study marks the first investigation of osteoblast response at different magnitudes of periprosthetic strain. The results indicate that the functional status of human osteoblasts is determined by strain magnitude. The strain distribution in the proximal region of implanted femur should be improved for osseointegration.

  13. Vitamin B₂ Sensitizes Cancer Cells to Vitamin-C-Induced Cell Death via Modulation of Akt and Bad Phosphorylation.

    Science.gov (United States)

    Chen, Ni; Yin, Shutao; Song, Xinhua; Fan, Lihong; Hu, Hongbo

    2015-08-01

    Vitamin C is an essential dietary nutrient that has a variety of biological functions. Recent studies have provided promising evidence for its additional health benefits, including anticancer activity. Vitamin B2, another essential dietary nutrient, often coexists with vitamin C in some fruits, vegetables, or dietary supplements. The objective of the present study is to determine whether the combination of vitamin C and B2 can achieve a synergistic anticancer activity. MDA-MB-231, MCF-7, and A549 cells were employed to evaluate the combinatory effects of vitamin C and B2. We found that the combination of vitamin C and B2 resulted in a synergistic cell death induction in all cell lines tested. Further mechanistic investigations revealed that vitamin B2 sensitized cancer cells to vitamin C through inhibition of Akt and Bad phosphorylation. Our findings identified vitamin B2 as a promising sensitizer for improving the efficacy of vitamin-C-based cancer chemoprevention and chemotherapy.

  14. NR2B phosphorylation at tyrosine 1472 in spinal dorsal horn contributed to N-methyl-D-aspartate-induced pain hypersensitivity in mice.

    Science.gov (United States)

    Li, Shuai; Cao, Jing; Yang, Xian; Suo, Zhan-Wei; Shi, Lei; Liu, Yan-Ni; Yang, Hong-Bin; Hu, Xiao-Dong

    2011-11-01

    Calcium influx via N-methyl-D-aspartate (NMDA)-subtype glutamate receptors (NMDARs) regulates the intracellular trafficking of NMDARs, leading to long-lasting modification of NMDAR-mediated synaptic transmission that is involved in development, learning, and synaptic plasticity. The present study investigated the contribution of such NMDAR-dependent synaptic trafficking in spinal dorsal horn to the induction of pain hypersensitivity. Our data showed that direct activation of NMDARs by intrathecal NMDA application elicited pronounced mechanical allodynia in intact mice, which was concurrent with a specific increase in the abundance of NMDAR subunits NR1 and NR2B at the postsynaptic density (PSD)-enriched fraction. Selective inhibition of NR2B-containing NMDARs (NR2BR) by ifenprodil dose dependently attenuated the mechanical allodynia in NMDA-injected mice, suggesting the importance of NR2BR synaptic accumulation in NMDA-induced pain sensitization. The NR2BR redistribution at synapses after NMDA challenge was associated with a significant increase in NR2B phosphorylation at Tyr1472, a catalytic site by Src family protein tyrosine kinases (SFKs) that has been shown to prevent NR2B endocytosis. Intrathecal injection of a specific SFKs inhibitor, PP2, to block NR2B tyrosine phosphorylation eliminated NMDA-induced NR2BR synaptic expression and also attenuated the mechanical allodynia. These data suggested that activation of spinal NMDARs was able to accumulate NR2BR at synapses via SFK signaling, which might exaggerate NMDAR-dependent nociceptive transmission and contribute to NMDA-induced nociceptive behavioral hyperresponsiveness.

  15. Constraint-induced movement therapy promotes motor function recovery and downregulates phosphorylated extracellular regulated protein kinase expression in ischemic brain tissue of rats.

    Science.gov (United States)

    Zhang, Bei; He, Qiang; Li, Ying-Ying; Li, Ce; Bai, Yu-Long; Hu, Yong-Shan; Zhang, Feng

    2015-12-01

    Motor function impairment is a common outcome of stroke. Constraint-induced movement therapy (CIMT) involving intensive use of the impaired limb while restraining the unaffected limb is widely used to overcome the effects of 'learned non-use' and improve limb function after stroke. However, the underlying mechanism of CIMT remains unclear. In the present study, rats were randomly divided into a middle cerebral artery occlusion (model) group, a CIMT + model (CIMT) group, or a sham group. Restriction of the affected limb by plaster cast was performed in the CIMT and sham groups. Compared with the model group, CIMT significantly improved the forelimb functional performance in rats. By western blot assay, the expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi of cerebral ischemic rats in the CIMT group was significantly lower than that in the model group, and was similar to sham group levels. These data suggest that functional recovery after CIMT may be related to decreased expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi.

  16. Constraint-induced movement therapy promotes motor function recovery and downregulates phosphorylated extracellular regulated protein kinase expression in ischemic brain tissue of rats

    Directory of Open Access Journals (Sweden)

    Bei Zhang

    2015-01-01

    Full Text Available Motor function impairment is a common outcome of stroke. Constraint-induced movement therapy (CIMT involving intensive use of the impaired limb while restraining the unaffected limb is widely used to overcome the effects of ′learned non-use′ and improve limb function after stroke. However, the underlying mechanism of CIMT remains unclear. In the present study, rats were randomly divided into a middle cerebral artery occlusion (model group, a CIMT + model (CIMT group, or a sham group. Restriction of the affected limb by plaster cast was performed in the CIMT and sham groups. Compared with the model group, CIMT significantly improved the forelimb functional performance in rats. By western blot assay, the expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi of cerebral ischemic rats in the CIMT group was significantly lower than that in the model group, and was similar to sham group levels. These data suggest that functional recovery after CIMT may be related to decreased expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi.

  17. Gomisin A enhances tumor necrosis factor-α-induced G1 cell cycle arrest via signal transducer and activator of transcription 1-mediated phosphorylation of retinoblastoma protein.

    Science.gov (United States)

    Waiwut, Pornthip; Shin, Myoung-Sook; Yokoyama, Satoru; Saiki, Ikuo; Sakurai, Hiroaki

    2012-01-01

    Gomisin A, a dibenzocyclooctadiene lignan isolated from the fruit of Schisandra chinensis, has been reported as an anti-cancer substance. In this study, we investigated the effects of gomisin A on cancer cell proliferation and cell cycle arrest in HeLa cells. Gomisin A significantly inhibited cell proliferation in a dose-dependent manner after 72 h treatment, especially in the presence of tumor necrosis factor-α (TNF-α), due to cell cycle arrest in the G1 phase with the downregulation of cyclin D1 expression and Retinoblastoma (RB) phosphorylation. In addition, gomisin A in combination with TNF-α strongly suppressed the expression of signal transducer and activator of transcription 1 (STAT1). Inhibition of STAT1 pathways by a small-interfering RNA against STAT1 and AG490 Janus kinase (JAK) kinase inhibitor AG490 reduced the cyclin D1 expression and RB phosphorylation, indicating that JAK-mediated STAT1 activation is involved in gomisin A-induced G1 cell cycle arrest.

  18. Pulsed electric field (PEF)-induced aggregation between lysozyme, ovalbumin and ovotransferrin in multi-protein system.

    Science.gov (United States)

    Wu, Li; Zhao, Wei; Yang, Ruijin; Yan, Wenxu

    2015-05-15

    The aggregation of multi-proteins is of great interest in food processing and a good understanding of the formation of aggregates during PEF processing is needed for the application of the process to pasteurize protein-based foods. The aggregates formation of a multi-protein system (containing ovalbumin, ovotransferrin and lysozyme) was studied through turbidity, size exclusion chromatography and SDS-PAGE patterns for interaction studies and binding forces. Results from size exclusion chromatography indicated that there was no soluble aggregates formed during PEF processing. The existence of lysozyme was important to form insoluble aggregates in the chosen ovalbumin solution. The results of SDS-PAGE patterns indicated that lysozyme was prone to precipitate, and was relatively the higher component of aggregates. Citric acid could be effective in inhibiting lysozyme from interacting with other proteins during PEF processing. Blocking the free sulphydryl by N-ethylmaleimide (NEM) did not affect aggregation inhibition.

  19. Enhanced aggregation of androgen receptor in induced pluripotent stem cell-derived neurons from spinal and bulbar muscular atrophy.

    Science.gov (United States)

    Nihei, Yoshihiro; Ito, Daisuke; Okada, Yohei; Akamatsu, Wado; Yagi, Takuya; Yoshizaki, Takahito; Okano, Hideyuki; Suzuki, Norihiro

    2013-03-22

    Spinal and bulbar muscular atrophy (SBMA) is an X-linked motor neuron disease caused by a CAG repeat expansion in the androgen receptor (AR) gene. Ligand-dependent nuclear accumulation of mutant AR protein is a critical characteristic of the pathogenesis of SBMA. SBMA has been modeled in AR-overexpressing animals, but precisely how the polyglutamine (polyQ) expansion leads to neurodegeneration is unclear. Induced pluripotent stem cells (iPSCs) are a new technology that can be used to model human diseases, study pathogenic mechanisms, and develop novel drugs. We established SBMA patient-derived iPSCs, investigated their cellular biochemical characteristics, and found that SBMA-iPSCs can differentiate into motor neurons. The CAG repeat numbers in the AR gene of SBMA-iPSCs and also in the atrophin-1 gene of iPSCs derived from another polyQ disease, dentato-rubro-pallido-luysian atrophy (DRPLA), remain unchanged during reprogramming, long term passage, and differentiation, indicating that polyQ disease-associated CAG repeats are stable during maintenance of iPSCs. The level of AR expression is up-regulated by neuronal differentiation and treatment with the AR ligand dihydrotestosterone. Filter retardation assays indicated that aggregation of ARs following dihydrotestosterone treatment in neurons derived from SBMA-iPSCs increases significantly compared with neurological control iPSCs, easily recapitulating the pathological feature of mutant ARs in SBMA-iPSCs. This phenomenon was not observed in iPSCs and fibroblasts, thereby showing the neuron-dominant phenotype of this disease. Furthermore, the HSP90 inhibitor 17-allylaminogeldanamycin sharply decreased the level of aggregated AR in neurons derived from SBMA-iPSCs, indicating a potential for discovery and validation of candidate drugs. We found that SBMA-iPSCs possess disease-specific biochemical features and could thus open new avenues of research into not only SBMA, but also other polyglutamine diseases.

  20. Kaempferol Suppresses Transforming Growth Factor-β1-Induced Epithelial-to-Mesenchymal Transition and Migration of A549 Lung Cancer Cells by Inhibiting Akt1-Mediated Phosphorylation of Smad3 at Threonine-179.

    Science.gov (United States)

    Jo, Eunji; Park, Seong Ji; Choi, Yu Sun; Jeon, Woo-Kwang; Kim, Byung-Chul

    2015-07-01

    Kaempferol, a natural dietary flavonoid, is well known to possess chemopreventive and therapeutic anticancer efficacy; however, its antimetastatic effects have not been mechanistically studied so far in any cancer model. This study was aimed to investigate the inhibitory effect and accompanying mechanisms of kaempferol on epithelial-to-mesenchymal transition (EMT) and cell migration induced by transforming growth factor-β1 (TGF-β1). In human A549 non-small lung cancer cells, kaempferol strongly blocked the enhancement of cell migration by TGF-β1-induced EMT through recovering the loss of E-cadherin and suppressing the induction of mesenchymal markers as well as the upregulation of TGF-β1-mediated matrix metalloproteinase-2 activity. Interestingly, kaempferol reversed TGF-β1-mediated Snail induction and E-cadherin repression by weakening Smad3 binding to the Snail promoter without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation under TGF-β1 stimulation. Mechanism study revealed that the phosphorylation of Smad3 linker region induced by TGF-β1 was required for the induction of EMT and cell migration, and selective downregulation of the phosphorylation of Smad3 at Thr179 residue (not Ser204, Ser208, and Ser213) in the linker region was responsible for the inhibition by kaempferol of TGF-β1-induced EMT and cell migration. Furthermore, Akt1 was required for TGF-β1-mediated induction of EMT and cell migration and directly phosphorylated Smad3 at Thr179, and kaempferol completely abolished TGF-β1-induced Akt1 phosphorylation. In summary, kaempferol blocks TGF-β1-induced EMT and migration of lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Thr179 residue, providing the first evidence of a molecular mechanism for the anticancer effect of kaempferol.

  1. Some Induced Correlated Aggregating Operators with Interval Grey Uncertain Linguistic Information and Their Application to Multiple Attribute Group Decision Making

    Directory of Open Access Journals (Sweden)

    Zu-Jun Ma

    2013-01-01

    Full Text Available We propose the interval grey uncertain linguistic correlated ordered arithmetic averaging (IGULCOA operator and the induced interval grey uncertain linguistic correlated ordered arithmetic averaging (I-IGULCOA operator based on the correlation properties of the Choquet integral and the interval grey uncertain linguistic variables to investigate the multiple attribute group decision making (MAGDM problems, in which both the attribute weights and the expert weights are correlative. Firstly, the relative concepts of interval grey uncertain linguistic variables are defined and the operation rules between the two interval grey uncertain linguistic variables are established. Then, two new aggregation operators: the interval grey uncertain linguistic correlated ordered arithmetic averaging (IGULCOA operator and the induced interval grey uncertain linguistic correlated ordered arithmetic averaging (I-IGULCOA operator are developed and some desirable properties of the I-IGULCOA operator are studied, such as commutativity, idempotency, monotonicity, and boundness. Furthermore, the IGULCOA and I-IGULCOA operators based approach is developed to solve the MAGDM problems, in which both the attribute weights and the expert weights are correlative and the attribute values take the form of the interval grey uncertain linguistic variables. Finally, an illustrative example is given to verify the developed approach and to demonstrate its practicality and effectiveness.

  2. Effect of extraction pH on heat-induced aggregation, gelation and microstructure of protein isolate from quinoa (Chenopodium quinoa Willd)

    NARCIS (Netherlands)

    Ruiz, Geraldine Avila; Xiao, Wukai; Boekel, van Tiny; Minor, Marcel; Stieger, Markus

    2016-01-01

    The aim of this study was to determine the influence of extraction pH on heat-induced aggregation, gelation and microstructure of suspensions of protein isolates extracted from quinoa (Chenopodium quinoa Willd). Quinoa seed protein was extracted by alkaline treatment at various pH values (pH 8 (E

  3. Synthesis of huaicarbon A/B and their activating effects on platelet glycoprotein VI receptor to mediate collagen-induced platelet aggregation

    Science.gov (United States)

    Yu, Hongli; Chen, Yeqing; Wu, Hao; Wang, Kuilong; Liu, Liping; Zhang, Xingde

    2017-01-01

    Quercetin and rhamnose were efficiently converted into huaicarbon A/B by heating at 250°C for 10-15 min or at 200°C for 25-30 min. With the optimum molar ratio of quercetin/rhamnose (1:3), huaicarbon A and B yields reached 25% and 16% respectively after heating at 250°C, with 55% quercetin conversion. Huaicarbon A/B both promoted washed platelet aggregation dose-dependently, which was antagonized by an inhibitor of glycoprotein VI (GPVI) receptor. Similarly, they both promoted collagen-induced platelet aggregation in platelet-rich plasma in dose-dependent manners. According to the S type dose-response model, EC50 values of huaicarbon A and huaicarbon B were calculated as 33.48 μM and 48.73 μM respectively. They induced intracellular Ca2+ accumulation that was specifically blocked by GPVI antagonist. Huaicarbon A/B enhanced intracellular Ca2+ accumulation and facilitated collagen-induced platelet aggregation, which were blocked by GPVI antagonist. They were conducive to collagen-induced platelet aggregation by activating platelet GPVI receptor. PMID:28337278

  4. Small-angle X-ray scattering studies of metastable intermediates of beta-lactoglobulin isolated after heat-induced aggregation

    DEFF Research Database (Denmark)

    Carrotta, R.; Arleth, L.; Pedersen, J.S.

    2003-01-01

    Small-angle x-ray scattering was used for studying intermediate species, isolated after heat-induced aggregation of the A variant of bovine P-lactoglobulin. The intermediates were separated in two fractions, the heated metastable dimer and heated metastable oligomers larger than the dimer. The pa...

  5. Incorporation of an aggregation-induced-emissive tetraphenylethene derivative into cationic gene delivery vehicles manifested the nuclear translocation of uncomplexed DNA.

    Science.gov (United States)

    Han, Xiongqi; Chen, Qixian; Lu, Hongguang; Guo, Pan; Li, Wei; Wu, Guolin; Ma, Jianbiao; Gao, Hui

    2016-03-11

    A fluorophore displaying aggregation-induced emission was introduced at the terminus of branched polyethylenimine (PEI). The formulated polyplex not only demonstrated an improved safety profile and preserved transfection activity but also importantly indicated that the uncomplexed naked DNA rather than the polyplexes translocated into the nucleus.

  6. PKCη/Rdx-driven phosphorylation of PDK1: a novel mechanism promoting cancer cell survival and permissiveness for parvovirus-induced lysis.

    Directory of Open Access Journals (Sweden)

    Séverine Bär

    2015-03-01

    Full Text Available The intrinsic oncotropism and oncosuppressive activities of rodent protoparvoviruses (PVs are opening new prospects for cancer virotherapy. Virus propagation, cytolytic activity, and spread are tightly connected to activation of the PDK1 signaling cascade, which delays stress-induced cell death and sustains functioning of the parvoviral protein NS1 through PKC(η-driven modifications. Here we reveal a new PV-induced intracellular loop-back mechanism whereby PKCη/Rdx phosphorylates mouse PDK1:S138 and activates it independently of PI3-kinase signaling. The corresponding human PDK1phosphoS135 appears as a hallmark of highly aggressive brain tumors and may contribute to the very effective targeting of human gliomas by H-1PV. Strikingly, although H-1PV does not trigger PDK1 activation in normal human cells, such cells show enhanced viral DNA amplification and NS1-induced death upon expression of a constitutively active PDK1 mimicking PDK1phosphoS135. This modification thus appears as a marker of human glioma malignant progression and sensitivity to H-1PV-induced tumor cell killing.

  7. The probiotic mixture VSL#3 dampens LPS-induced chemokine expression in human dendritic cells by inhibition of STAT-1 phosphorylation.

    Directory of Open Access Journals (Sweden)

    Rob Mariman

    Full Text Available VSL#3, a mixture of 8 different probiotic bacteria, has successfully been used in the clinic to treat Ulcerative Colitis. We previously identified the modulation of chemokines as a major mechanism in the protective effect of the VSL#3 in a mouse model of colitis. This was supported by in vitro studies that implicated a role for VSL#3 in the suppression of LPS-induced chemokine production by mouse bone marrow-derived dendritic cells (DC. Herein, we validated these findings employing human monocyte-derived DC. Stimulation of human DC with LPS, VSL#3, or a combination of both resulted in their maturation, evident from enhanced expression of activation markers on the cell-surface, as well as the induction of various chemokines and cytokines. Interestingly, a set of LPS-induced chemokines was identified that were suppressed by VSL#3. These included CXCL9, CXCL10, CCL2, CCL7, and CCL8. In silico approaches identified STAT-1 as a dominant regulator of these chemokines, and this was confirmed by demonstrating that LPS-induced phosphorylation of this transcription factor was inhibited by VSL#3. This indicates that VSL#3 may contribute to the control of inflammation by selective suppression of STAT-1 induced chemokines.

  8. Transferases for alkylation, glycosylation and phosphorylation

    NARCIS (Netherlands)

    Auriol, D.; ter Halle, R.; Lefèvre, F.; Visser, D.F.; Gordon, G.E.R.; Bode, M.L.; Mathiba, K.; Brady, D.; De Winter, K.; Desmet, T.; Cerdobbel, A.; Soetaert, W.; van Herk, T.; Hartog, A.F.; Wever, R.; Brzezińska-rodak, M.; Klimek-Ochab, M.; Żymańczyk-Duda, E.; Mukherjee, J.; Gupta, M.N.; Yin, W.B.; Li, S.M.; Gruber-Khadjawi, M.; Whittall, J.; Sutton, P.W.

    2012-01-01

    This chapter contains sections titled: Industrial Production of Caffeic Acid-α-D-O-Glucoside Enzymatic Synthesis of 5-Methyluridine by Transglycosylation of Guanosine and Thymine Preparation and Use of Sucrose Phosphorylase as Cross-Linked Enzyme Aggregate (CLEA) Enzymatic Synthesis of Phosphorylate

  9. Genistein inhibits phorbol ester-induced NF-κB transcriptional activity and COX-2 expression by blocking the phosphorylation of p65/RelA in human mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Myung-Hoon; Kim, Do-Hee [Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul (Korea, Republic of); Na, Hye-Kyung [Department of Food and Nutrition, Sungshin Women' s University, Seoul (Korea, Republic of); Kim, Jung-Hwan; Kim, Ha-Na [Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul (Korea, Republic of); Haegeman, Guy [LEGEST, University of Gent (Belgium); Surh, Young-Joon, E-mail: surh@snu.ac.kr [Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul (Korea, Republic of); Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul (Korea, Republic of); Cancer Research Institute, Seoul National University, Seoul (Korea, Republic of)

    2014-10-15

    Genistein, an isoflavone present in soy products, has chemopreventive effects on mammary carcinogenesis. In the present study, we have investigated the effects of genistein on phorbol ester-induced expression of cyclooxygenase-2 (COX-2) that plays an important role in the pathophysiology of inflammation-associated carcinogenesis. Pretreatment of cultured human breast epithelial (MCF10A) cells with genistein reduced COX-2 expression induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). There are multiple lines of evidence supporting that the induction of COX-2 is regulated by the eukaryotic transcription factor NF-κB. Genistein failed to inhibit TPA-induced nuclear translocation and DNA binding of NF-κB as well as degradation of IκB. However, genistein abrogated the TPA-induced transcriptional activity of NF-κB as determined by the luciferase reporter gene assay. Genistein inhibited phosphorylation of the p65 subunit of NF-κB and its interaction with cAMP regulatory element-binding protein-binding protein (CBP)/p300 and TATA-binding protein (TBP). TPA-induced NF-κB phosphorylation was abolished by pharmacological inhibition of extracellular signal-regulated kinase (ERK). Likewise, pharmacologic inhibition or dominant negative mutation of ERK suppressed phosphorylation of p65. The above findings, taken together, suggest that genistein inhibits TPA-induced COX-2 expression in MCF10A cells by blocking ERK-mediated phosphorylation of p65 and its subsequent interaction with CBP and TBP.

  10. BAFF induces spleen CD4{sup +} T cell proliferation by down-regulating phosphorylation of FOXO3A and activates cyclin D2 and D3 expression

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Fang; Chen, Rongjing [Department of Orthodontics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Liu, Baojun [Laboratory of Lung, Inflammation and Cancers, Huashan Hospital, Fudan University, Shanghai (China); Zhang, Xiaoping [Department of Nuclear Medicine, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Han, Junli; Wang, Haining [Department of General Dentistry, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Shen, Gang [Department of Orthodontics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Tao, Jiang, E-mail: taojiang2012@yahoo.cn [Department of General Dentistry, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Firstly analyze the mechanism of BAFF and anti-CD3 co-stimulation on purified mouse splenic CD4{sup +} T cells. Black-Right-Pointing-Pointer Carrying out siRNA technology to study FOXO3A protein function. Black-Right-Pointing-Pointer Helpful to understand the T cell especially CD4{sup +} T cell's role in immunological reaction. -- Abstract: The TNF ligand family member 'B cell-activating factor belonging to the TNF family' (BAFF, also called BLyS, TALL-1, zTNF-4, and THANK) is an important survival factor for B and T cells. In this study, we show that BAFF is able to induce CD4{sup +} spleen T cell proliferation when co-stimulated with anti-CD3. Expression of phosphorylated FOXO3A was notably down-regulated and cyclins D2 and D3 were up-regulated and higher in the CD4{sup +} T cells when treated with BAFF and anti-CD3, as assessed by Western blotting. Furthermore, after FOXO3A was knocked down, expression of cyclin D1 was unchanged, compared with control group levels, but the expression of cyclins D2 and D3 increased, compared with the control group. In conclusion, our results suggest that BAFF induced CD4{sup +} spleen T cell proliferation by down-regulating the phosphorylation of FOXO3A and then activating cyclin D2 and D3 expression, leading to CD4{sup +} T cell proliferation.

  11. Flavonoids targeting of IκB phosphorylation abrogates carcinogen-induced MMP-9 and COX-2 expression in human brain endothelial cells

    Directory of Open Access Journals (Sweden)

    Tahanian E

    2011-05-01

    Full Text Available Elizabeth Tahanian¹, Luis Arguello Sanchez¹, Tze Chieh Shiao², René Roy², Borhane Annabi¹¹Centre de Recherche BioMED, ²Centre de Recherche PharmaQAM, Département de chimie, Université du Québec à Montréal, QC, CanadaAbstract: Brain endothelial cells play an essential role as structural and functional components of the blood–brain barrier (BBB. Increased BBB breakdown and brain injury are associated with neuroinflammation and are thought to trigger mechanisms involving matrix metalloproteinase upregulation. Emerging evidence also indicates that cyclooxygenase (COX inhibition limits BBB disruption, but the mechanisms linking metalloproteinase to COX remain unknown. In this study, we sought to investigate the nuclear factor-kappa B (NF-κB signaling pathway, a common pathway in both the regulation of matrix metalloproteinase-9 (MMP-9 and COX-2 expression, and the inhibitory properties of several chemopreventive flavonoids. Human brain microvascular endothelial cells were treated with a combination of phorbol 12-myristate 13-acetate (PMA, a carcinogen documented to increase MMP-9 and COX-2 through NF-κB, and several naturally occurring flavonoids. Among the molecules tested, we found that fisetin, apigenin, and luteolin specifically and dose-dependently antagonized PMA-induced COX-2 and MMP-9 gene and protein expressions as assessed by qRT-PCR, immunoblotting, and zymography respectively. We further demonstrate that flavonoids impact on IκK-mediated phosphorylation activity as demonstrated by the inhibition of PMA-induced IκB phosphorylation levels. Our results suggest that BBB disruption during neuroinflammation could be pharmacologically reduced by a specific class of flavonoids acting as NF-κB signal transduction inhibitors.Keywords: blood–brain barrier, flavonoids, neuroinflammation, NF-κB signal transduction inhibitors

  12. Suppressing Akt phosphorylation and activating Fas by safrole oxide inhibited angiogenesis and induced vascular endothelial cell apoptosis in the presence of fibroblast growth factor-2 and serum.

    Science.gov (United States)

    Zhao, Jing; Miao, Junying; Zhao, Baoxiang; Zhang, Shangli; Yin, Deling

    2006-01-01

    At present, vascular endothelial cell (VEC) apoptosis induced by deprivation of fibroblast growth factor-2 (FGF-2) and serum has been well studied. But how to trigger VEC apoptosis in the presence of FGF-2 and serum is not well known. To address this question, in this study, the effects of safrole oxide on angiogenesis and VEC growth stimulated by FGF-2 were investigated. The results showed that safrole oxide inhibited angiogenesis and induced VEC apoptosis in the presence of FGF-2 and serum. To understand the possible mechanism of safrole oxide acting, we first examined the phosphorylation of Akt and the activity of nitric oxide synthase (NOS); secondly, we analyzed the expressions and distributions of Fas and P53; then we measured the activity of phosphatidylcholine specific phospholipase C (PC-PLC) in the VECs treated with and without safrole oxide. The results showed that this small molecule obviously suppressed Akt phosphorylation and the activity of NOS, and promoted the expressions of Fas and P53 markedly. Simultaneously, Fas protein clumped on cell membrane, instead of homogenously distributed. The activity of PC-PLC was not changed obviously. The data suggested that safrole oxide effectively inhibited angiogenesis and triggered VEC apoptosis in the presence of FGF-2 and serum, and it might perform its functions by suppressing Akt/NOS signal pathway, upregulating the expressions of Fas and P53 and modifying the distributing pattern of Fas in VEC. This finding provided a powerful chemical probe for promoting VEC apoptosis during angiogenesis stimulated by FGF-2.

  13. Multifunctional 8-hydroxyquinoline-appended cyclodextrins as new inhibitors of metal-induced protein aggregation.

    Science.gov (United States)

    Oliveri, Valentina; Attanasio, Francesco; Puglisi, Antonino; Spencer, John; Sgarlata, Carmelo; Vecchio, Graziella

    2014-07-14

    Mounting evidence suggests a pivotal role of metal imbalances in protein misfolding and amyloid diseases. As such, metal ions represent a promising therapeutic target. In this context, the synthesis of chelators that also contain complementary functionalities to combat the multifactorial nature of neurodegenerative diseases is a highly topical issue. We report two new 8-hydroxyquinoline-appended cyclodextrins and highlight their multifunctional properties, including their Cu(II) and Zn(II) binding abilities, and capacity to act as antioxidants and metal-induced antiaggregants. In particular, the latter property has been applied in the development of an effective assay that exploits the formation of amyloid fibrils when β-lactoglobulin A is heated in the presence of metal ions.

  14. β淀粉样蛋白1-42促进α-突触核蛋白在Ser129位点磷酸化和聚集%Amyloid-β1-42 Promotes the Phosphorylation of α-synuclein and Its Aggregation at Serine 129 Site

    Institute of Scientific and Technical Information of China (English)

    喻哲明; 丁正同; 任惠民; 邬剑军; 王坚; 陈嬿

    2012-01-01

    Aim: To explore the effect of amyloid-β1-42 (AP,.42) on the phosphorylation and aggregation of α-synuclein(a-syn) at serine 129 site in A53T-PC12 cells, which were made from the PC12 cells transfected with human A53T mutant SNCA gene. Methods: Reactive oxygen species(ROS) in A53T-PC12 cells treated by H2O2, PBS, Aβ1-42, Aβ1-42 + vitamin C were detected, and the changes of α-syn aggregation were also detected by the double immunofluorescence dyeing, respectively. Then phosphorylated α-syn at serine 129 (Pα-syn), the aggregation of a-syn were analyzed by Western blot. Results: The amount of ROS increased in A53T-PC12 cells treated respectively with H2O2 and Aβ1-42, while decreased in the cells treated with Aβ1-42 + vitamin C. Immunofluorescence showed that Aβ1-42 promoted the aggregation of a-syn in A53T-PC12 cells. Compared with the PBS group, Aβ1-42 could significantly increase the relative amount of Pa-syn (p<0.001) and a-syn aggregations (P<0.05). Conclusion: Aβ1-42 could enhance a-syn phosphorylation at serine 129 and promote aggregation of a-syn in A53T-PC12 cells.%目的:通过转染人α-突触核蛋白(α-syn)A53T突变基因的PC12细胞(A53T-PC12细胞)模型,探讨β-淀粉样蛋白1-42(Aβ1-42)对A53T-PC12细胞在Ser29位点α-syn磷酸化(Pα-syn)水平、聚集程度的影响.方法:分别予H2O2、PBS、Aβ1-42干预A53T-PC12细胞(将A53T-PC12细胞分为:PBS干预组; 5μmol·L-1 Aβ1-42干预组; 5μmol·L-1 Aβ1-42+300 μmol·L-1维生素C干预组;200μmol·L-1 H2O2干预组),观察细胞内活性氧自由基(ROS)水平变化.并通过双重免疫荧光染色观察A53T-PC12细胞内α-syn聚集情况,并通过Western blot半定量分析A53T-PC12细胞内Ser129位点磷酸化Pα-syn水平.结果:Aβ1-42增加细胞内ROS.免疫荧光染色提示Aβ1-42干预后促进A53T-PC12细胞内α-syn聚集;Western blot半定量分析显示Pα-syn较PBS干预组升高(P<0.001,P<0.05).结论:Aβ1-42促进A53T-PC12细胞内α-syn 在Ser129位点磷酸化和聚集.

  15. Methyl 9-Oxo-(10E,12E)-octadecadienoate Isolated from Fomes fomentarius Attenuates Lipopolysaccharide-Induced Inflammatory Response by Blocking Phosphorylation of STAT3 in Murine Macrophages.

    Science.gov (United States)

    Choe, Ji-Hyun; Yi, Young-Joo; Lee, Myeong-Seok; Seo, Dong-Won; Yun, Bong-Sik; Lee, Sang-Myeong

    2015-09-01

    Fomes fomentarius is a fungus of the Polyporaceae family and is used in traditional oriental therapies. Although the anti-inflammatory activities of this species have been previously reported, the identity of the bioactive compounds responsible for this activity remains unknown. Here, we investigated whether methyl 9-oxo-(10E,12E)-octadecadienoate (FF-8) purified from F. fomentarius exerts anti-inflammatory activity in murine macrophages stimulated with lipopolysaccharide (LPS). FF-8 suppressed secretion of nitric oxide (NO) and prostaglandin E2 through downregulation of inducible NO synthase and cyclooxygenase-2 expression induced by LPS. In addition, pretreatment of cells with FF-8 led to a reduction in levels of secreted inflammatory cytokines such as tumor necrosis factor-α and interleukin-6 in macrophages stimulated with LPS. Conversely, FF-8 did not affect nuclear factor κB, p38, c-Jun NH2-terminal kinase, and extracellular signal-regulated kinase pathways. Instead, FF-8 specifically interfered with signal transducer and activator of transcription 3 (STAT3) phosphorylation induced by LPS. Collectively, this study demonstrated that FF-8 purified from F. fomentarius suppresses inflammatory responses in macrophages stimulated with LPS by inhibiting STAT3 activation. Further studies will be required to elucidate the anti-inflammatory effect of FF-8 in vivo.

  16. Zinc sulfate inhibited inflammation of Der p2-induced airway smooth muscle cells by suppressing ERK1/2 and NF-κB phosphorylation.

    Science.gov (United States)

    Shih, Chia-Ju; Chiou, Ya-Ling

    2013-06-01

    Inflammation of airway smooth muscle cells (ASMCs) is believed to be important in causing airway hyperresponsiveness. However, zinc has been reported to be implicated in many kinds of cell inflammation. Little is known about the effect of zinc treatment on Der p2 (group II Dermatophagoides pteronyssinus)-induced inflammation from ASMCs. This study investigated effects and mechanisms of zinc in Der p2-treated ASMCs. Der p2-treated primary ASMCs were cultured with various concentrations of zinc sulfate (ZnSO₄) 6 μM, 12 μM, 24 μM, and 96 μM. The proteins and mRNAs of cytokines in ASMCs were examined by ELISA and real-time PCR. Intracellular zinc was stained with Zinquin fluorescence. The cell signaling protein expression was detected by Western blot. Der p2 was used to induce interleukin (IL)-6, IL-8, IL-1, and monocyte chemotactic protein-1 production of ASMCs. However, we found that 24 μM ZnSO₄ reduced these inflammatory mediators production of Der p2-treated primary ASMCs. Der p2-induced extracellular signal-regulated kinases (ERK) and nuclear factor-kappa B (NF-κB) phosphorylation were suppressed by supplementation of 24 μM ZnSO₄. Zinc is an anti-inflammatory agent that reduces inflammation of Der p2-treated ASMCs through the suppression of the ERK and NF-κB pathway. The results may be helpful for the development of effective treatments.

  17. p35/Cyclin-dependent kinase 5 is required for protection against beta-amyloid-induced cell death but not tau phosphorylation by ceramide.

    Science.gov (United States)

    Seyb, Kathleen I; Ansar, Sabah; Li, Guibin; Bean, Jennifer; Michaelis, Mary L; Dobrowsky, Rick T

    2007-01-01

    Ceramide is a bioactive sphingolipid that can prevent calpain activation and beta-amyloid (A beta) neurotoxicity in cortical neurons. Recent evidence supports A beta induction of a calpain-dependent cleavage of the cyclin-dependent kinase 5 (cdk5) regulatory protein p35 that contributes to tau hyperphosphorylation and neuronal death. Using cortical neurons isolated from wild-type and p35 knockout mice, we investigated whether ceramide required p35/cdk5 to protect against A beta-induced cell death and tau phosphorylation. Ceramide inhibited A beta-induced calpain activation and cdk5 activity in wild-type neurons and protected against neuronal death and tau hyperphosphorylation. Interestingly, A beta also increased cdk5 activity in p35-/- neurons, suggesting that the alternate cdk5 regulatory protein, p39, might mediate this effect. In p35 null neurons, ceramide blocked A beta-induced calpain activation but did not inhibit cdk5 activity or cell death. However, ceramide blocked tau hyperphosphorylation potentially via inhibition of glycogen synthase kinase-3beta. These data suggest that ceramide can regulate A beta cell toxicity in a p35/cdk5-dependent manner.

  18. Phosphorylated extracellular signal-regulated kinase up-regulated p53 expression in shikonin-induced HeLa cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    WU Zhen; WU Li-jun; TASHIRO Shinichi; ONODERA Satoshi; IKEJIMA Takashi

    2005-01-01

    Background The role of extracellular signal-regulated kinase 1/2 (ERK1/2) in shikonin-induced HeLa cells apoptosis remains vague. This study was to investigate the activation of caspase pathways and the role of ERK1/2 in human cervical cancer cells, HeLa, by shikonin.Methods The inhibitory effect of shikonin on the growth of HeLa cells was measured by MTT assay. Fluorescent microscopic analysis of apoptotic cells stained with 4’,6’-oliiamiclino-2-phenylindole C (DAPI) and Hoechst 33258 was carried out. Caspase-3 and -8 activities were detected using caspase-3 substrate and caspase-8 substrate as substrates, respectively. The protein levels of ERK, p53 and p-ERK were determined by Western blot analysis.Results Shikonin inhibited cell growth in a time- and dose-dependent manner. Caspase-3 and caspase-8 were activated in the apoptotic process and caspase inhibitors effectively reversed shikonin-induced apoptosis. Phosphorylation of ERK resulted in up-regulation of p53 expression, which was blocked by mitogen-activated protein kinase (MEK), inhibitor PD 98059.Conclusion Shikonin induces HeLa cell apoptosis through the ERK, p53 and caspase pathways.

  19. Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels

    Energy Technology Data Exchange (ETDEWEB)

    Mertins, Philipp; Yang, Feng; Liu, Tao; Mani, DR; Petyuk, Vladislav A.; Gillette, Michael; Clauser, Karl; Qiao, Jana; Gritsenko, Marina A.; Moore, Ronald J.; Levine, Douglas; Townsend, Reid; Erdmann-Gilmore, Petra; Snider, Jacqueline E.; Davies, Sherri; Ruggles, Kelly; Fenyo, David; Kitchens, R. T.; Li, Shunqiang; Olvera, Narcisco; Dao, Fanny; Rodriguez, Henry; Chan, Daniel W.; Liebler, Daniel; White, Forest; Rodland, Karin D.; Mills, Gordon; Smith, Richard D.; Paulovich, Amanda G.; Ellis, Matthew; Carr, Steven A.

    2014-07-01

    Advances in quantitative mass spectrometry (MS)-based proteomics have sparked efforts to characterize the proteomes of tumor samples to provide complementary and unique information inaccessible by genomics. Tumor samples are usually not accrued with proteomic characterization in mind, raising concerns regarding effects of undocumented sample ischemia on protein abundance and phosphosite stoichiometry. Here we report the effects of cold ischemia time on clinical ovarian cancer samples and patient-derived basal and luminal breast cancer xenografts. Tumor tissues were excised and collected prior to vascular ligation, subjected to accurately defined ischemia times up to 60 min, and analyzed by quantitative proteomics and phosphoproteomics using isobaric tags and high-performance, multidimensional LC-MS/MS. No significant changes were detected at the protein level in each tumor type after 60 minutes of ischemia, and the majority of the >25,000 phosphosites detected were also stable. However, large, reproducible increases and decreases in protein phosphorylation at specific sites were observed in up to 24% of the phosphoproteome starting as early as 5 minutes post-excision. Early and sustained activation of stress response, transcriptional regulation and cell death pathways were observed in common across tumor types. Tissue-specific changes in phosphosite stability were also observed suggesting idiosyncratic effects of ischemia in particular lineages. Our study provides insights into the information that may be obtained by proteomic characterization of tumor samples after undocumented periods of ischemia, and suggests caution especially in interpreting activation of stress pathways in such samples as they may reflect sample handling rather than tumor physiology.

  20. CysLT1 receptor-induced human airway smooth muscle cells proliferation requires ROS generation, EGF receptor transactivation and ERK1/2 phosphorylation

    Directory of Open Access Journals (Sweden)

    Capra Valérie

    2006-03-01

    Full Text Available Abstract Background Cysteine-containing leukotrienes (cysteinyl-LTs are pivotal inflammatory mediators that play important roles in the pathophysiology of asthma, allergic rhinitis, and other inflammatory conditions. In particular, cysteinyl-LTs exert a variety of effects with relevance to the aetiology of asthma such as smooth muscle contraction, eosinophil recruitment, increased microvascular permeability, enhanced mucus secretion and decreased mucus transport and, finally, airway smooth muscle cells (ASMC proliferation. We used human ASMC (HASMC to identify the signal transduction pathway(s of the leukotriene D4 (LTD4-induced DNA synthesis. Methods Proliferation of primary HASMC was measured by [3H]thymidine incorporation. Phosphorylation of EGF receptor (EGF-R and ERK1/2 was assessed with a polyclonal anti-EGF-R or anti-phosphoERKl/2 monoclonal antibody. A Ras pull-down assay kit was used to evaluate Ras activation. The production of reactive oxygen species (ROS was estimated by measuring dichlorodihydrofluorescein (DCF oxidation. Results We demonstrate that in HASMC LTD4-stimulated thymidine incorporation and potentiation of EGF-induced mitogenic signaling mostly depends upon EGF-R transactivation through the stimulation of CysLT1-R. Accordingly, we found that LTD4 stimulation was able to trigger the increase of Ras-GTP and, in turn, to activate ERK1/2. We show here that EGF-R transactivation was sensitive to pertussis toxin (PTX and phosphoinositide 3-kinase (PI3K inhibitors and that it occurred independently from Src activity, despite the observation of a strong impairment of LTD4-induced DNA synthesis following Src inhibition. More interestingly, CysLT1-R stimulation increased the production of ROS and N-acetylcysteine (NAC abolished LTD4-induced EGF-R phosphorylation and thymidine incorporation. Conclusion Collectively, our data demonstrate that in HASMC LTD4 stimulation of a Gi/o coupled CysLT1-R triggers the transactivation of the EGF

  1. The CB1 cannabinoid receptor agonist reduces L-DOPA-induced motor fluctuation and ERK1/2 phosphorylation in 6-OHDA-lesioned rats.

    Science.gov (United States)

    Song, Lu; Yang, Xinxin; Ma, Yaping; Wu, Na; Liu, Zhenguo

    2014-01-01

    The dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA) has been used as an effective drug for treating dopamine depletion-induced Parkinson's disease (PD). However, long-term administration of L-DOPA produces motor complications. L-DOPA has also been found to modify the two key signaling cascades, protein kinase A/dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), in striatal neurons, which are thought to play a pivotal role in forming motor complications. In the present study, we tested the possible effect of a CB1 cannabinoid receptor agonist on L-DOPA-stimulated abnormal behavioral and signaling responses in vivo. Intermittent L-DOPA administration for 3 weeks induced motor fluctuation in a rat model of PD induced by intrastriatal infusion of dopamine-depleting neurotoxin 6-hydroxydopamine (6-OHDA). A single injection of a CB1 cannabinoid receptor agonist WIN-55,212-2 had no effect on L-DOPA-induced motor fluctuation. However, chronic injections of WIN-55,212-2 significantly attenuated abnormal behavioral responses to L-DOPA in 6-OHDA-lesioned rats. Similarly, chronic injections of WIN-55,212-2 influence the L-DOPA-induced alteration of DARPP-32 and ERK1/2 phosphorylation status in striatal neurons. These data provide evidence for the active involvement of CB1 cannabinoid receptors in the regulation of L-DOPA action during PD therapy.

  2. SuHeXiang Wan essential oil alleviates amyloid beta induced memory impairment through inhibition of tau protein phosphorylation in mice.

    Science.gov (United States)

    Jeon, Songhee; Hur, Jinyoung; Jeong, Ha Jin; Koo, Byung-Soo; Pak, Sok Cheon

    2011-01-01

    SuHeXiang Wan (SHXW), a traditional Chinese medicine, has been used orally for the treatment of seizures, infantile convulsions and stroke. Previously, we reported the effects of a modified SHXW essential oil in terms of sedative effect, anticonvulsant activity and antioxidative activity. The purpose of this study was to evaluate the potential beneficial effects of SHXW essential oil in neurodegenerative diseases such as Alzheimer's disease (AD). SHXW essential oil was extracted from nine herbs. The mouse AD model was induced by a single injection of amyloid β protein (Aβ(1-42)) into the hippocampus. The animals were divided into four groups, the negative control group injected with Aβ(42-1), the Aβ group injected with Aβ(1-42), the SHXW group inhaled SHXW essential oil and received Aβ(1-42) injection, and the positive control group administered with docosahexaenoic acid (DHA, 10 mg/kg) and with subsequent Aβ(1-42) injection. Mice were analyzed by behavioral tests and immunological examination in the hippocampus. An additional in vitro investigation was performed to examine whether SHXW essential oil inhibits Aβ(1-42) induced neurotoxicity in a human neuroblastoma cell line, SH-SY5Y cells. Pre-inhalation of SHXW essential oil improved the Aβ(1-42) induced memory impairment and suppressed Aβ(1-42) induced JNK, p38 and Tau phosphorylation in the hippocampus. SHXW essential oil suppressed Aβ-induced apoptosis and ROS production via an up-regulation of HO-1 and Nrf2 expression in SH-SY5Y cells. The present study suggests that SHXW essential oil may have potential as a therapeutic inhalation drug for the prevention and treatment of AD.

  3. Design and application of anthracene derivative with aggregation-induced emission charateristics for visualization and monitoring of erythropoietin unfolding.

    Science.gov (United States)

    Sun, Binjie; Yang, Xiaojun; Ma, Lin; Niu, Caixia; Wang, Fangfang; Na, Na; Wen, Jiying; Ouyang, Jin

    2013-02-12

    Erythropoietin (EPO) is an attractive protein-unfolding/folding model because of its high degree of unfolding and folding reversibility and intermediate size. Due to its function for regulating red blood cell production by stimulating late erythroid precursor cells, EPO presents obvious values to biological research. A nonemissive anthracene derivative, that is 9,10-bis[4-(3-sulfonatopropoxyl)-styryl]anthracene sodium salt (BSPSA), with aggregation-induced emission (AIE) charateristics shows a novel phenomenon of AIE when EPO is added. The AIE biosensor for EPO shows the limit of detection is 1 × 10(-9) M. Utilizing the AIE feature of BSPSA, the unfolding process of EPO using guanidine hydrochloride is monitored, which indicates three steps for the folding structures of EPO to transform to random coil. Computational modeling suggests that the BSPSA luminogens prefer docking in the hydrophobic cavity in the EPO folding structures, and the assembly of BSPSA in this cavity makes the AIE available, making the monitoring of unfolding of EPO possible.

  4. Tel, a Frequent Target of Leukemic Translocations, Induces Cellular Aggregation and Influences Expression of Extracellular Matrix Components

    Directory of Open Access Journals (Sweden)

    L. Van Rompaey

    1999-12-01

    Full Text Available Tel is an Ets transcription factor that is the target of chromosome translocations in lymphoid and myeloid leukemias and in solid tumors. It contains two functional domains, a pointed oligomerization domain and a DNAbinding domain. Retroviral transduction of a wild-type Tel cDNA into a clonal subline of NIH3T3 fibroblasts resulted in a striking morphologic change: at confluency, the cells reorganized into a specific “bridge-like” pattern over the entire surface of the culture dish, started migrating, thereby leaving circular holes in the monolayer. Thereafter, formation of cellular cords became apparent. This sequence of events was inhibited by coating the culture dishes with fibronectin and collagen IV. Retroviral transduction of Tel into MS1 endothelial cells reproduced the aggregation phenotype, but not the cellular cord formation. Tel -mutagenesis showed that both the pointed domain and the DNAbinding domain of Tel are required for the morphologic change. Other Ets family genes, Fli-1 and Ets-1 that are both endogenously expressed in endothelial cells, could not induce this morphologic change. Exogenous Tel expression is associated with transcriptional upregulation of entactin/nidogen, Smad5, Col3a1, CD44 and fibronectin, downregulation of Coliai and secretory leukocyte protease inhibitor. Interestingly, Tel, Smad5, fibronectin, Coliai and Col3a1 all have essential roles during vascular development.

  5. Gadolinium-functionalized aggregation-induced emission dots as dual-modality probes for cancer metastasis study.

    Science.gov (United States)

    Li, Kai; Ding, Dan; Prashant, Chandrasekharan; Qin, Wei; Yang, Chang-Tong; Tang, Ben Zhong; Liu, Bin

    2013-12-01

    Understanding the localization and engraftment of tumor cells at postintravasation stage of metastasis is of high importance in cancer diagnosis and treatment. Advanced fluorescent probes and facile methodologies for cell tracing play a key role in metastasis studies. In this work, we design and synthesize a dual-modality imaging dots with both optical and magnetic contrast through integration of a magnetic resonance imaging reagent, gadolinium(III), into a novel long-term cell tracing probe with aggregation-induced emission (AIE) in far-red/near-infrared region. The obtained fluorescent-magnetic AIE dots have both high fluorescence quantum yield (25%) and T1 relaxivity (7.91 mM(-1) s(-1) ) in aqueous suspension. After further conjugation with a cell membrane penetrating peptide, the dual-modality dots can be efficiently internalized into living cells. The gadolinium(III) allows accurate quantification of biodistribution of cancer cells via intraveneous injection, while the high fluorescence provides engraftment information of cells at single cellular level. The dual-modality AIE dots show obvious synergistic advantages over either single imaging modality and hold great promises in advanced biomedical studies.

  6. In vitro cytotoxicity of fluorescent silica nanoparticles hybridized with aggregation-induced emission luminogens for living cell imaging.

    Science.gov (United States)

    Xia, Yun; Li, Min; Peng, Tao; Zhang, Weijie; Xiong, Jun; Hu, Qinggang; Song, Zifang; Zheng, Qichang

    2013-01-07

    Fluorescent silica nanoparticles (FSNPs) can provide high-intensity and photostable fluorescent signals as a probe for biomedical analysis. In this study, FSNPs hybridized with aggregation-induced emission (AIE) luminogens (namely FSNP-SD) were successfully fabricated by a surfactant-free sol-gel method. The FSNP-SD were spherical, monodisperse and uniform in size, with an average diameter of approximately 100 nm, and emitted strong fluorescence at the peak of 490 nm. The FSNP-SD selectively stained the cytoplasmic regions and were distributed in the cytoplasm. Moreover, they can stay inside cells, enabling the tacking of cells over a long period of time. The intracellular vesicles and multinucleated cells were increase gradually with the rise of FSNP-SD concentration. Both cell viability and survival only lost less than 20% when the cells were exposed to the high concentration of 100 μg/mL FSNP-SD. Additionally, the cell apoptosis and intracellular ROS assay indicated that FSNP-SD had no significant toxic effects at the maximum working concentration of 80 μg/mL. This study demonstrated that the FSNP-SD are promising biocompatible fluorescent probes for living cell imaging.

  7. In Vitro Cytotoxicity of Fluorescent Silica Nanoparticles Hybridized with Aggregation-Induced Emission Luminogens for Living Cell Imaging

    Directory of Open Access Journals (Sweden)

    Yun Xia

    2013-01-01

    Full Text Available Fluorescent silica nanoparticles (FSNPs can provide high-intensity and photostable fluorescent signals as a probe for biomedical analysis. In this study, FSNPs hybridized with aggregation-induced emission (AIE luminogens (namely FSNP-SD were successfully fabricated by a surfactant-free sol-gel method. The FSNP-SD were spherical, monodisperse and uniform in size, with an average diameter of approximately 100 nm, and emitted strong fluorescence at the peak of 490 nm. The FSNP-SD selectively stained the cytoplasmic regions and were distributed in the cytoplasm. Moreover, they can stay inside cells, enabling the tacking of cells over a long period of time. The intracellular vesicles and multinucleated cells were increase gradually with the rise of FSNP-SD concentration. Both cell viability and survival only lost less than 20% when the cells were exposed to the high concentration of 100 μg/mL FSNP-SD. Additionally, the cell apoptosis and intracellular ROS assay indicated that FSNP-SD had no significant toxic effects at the maximum working concentration of 80 μg/mL. This study demonstrated that the FSNP-SD are promising biocompatible fluorescent probes for living cell imaging.

  8. Acid-Induced Cold Gelation of Globular Proteins: Effects of Protein Aggregate Characteristics and Disulfide Bonding on Rheological Properties

    NARCIS (Netherlands)

    Alting, A.C.; Weijers, M.; Hoog, E.H.A. de; Pijpekamp, A.M. van de; Cohen Stuart, M.A.; Hamer, R.J.; Kruif, C.G. de; Visschers, R.W.

    2004-01-01

    The process of cold gelation of ovalbumin and the properties of the resulting cold-set gels were compared to those of whey protein isolate. Under the chosen heating conditions, most protein was organized in aggregates. For both protein preparations, the aggregates consisted of covalently linked mono

  9. Acid-induced cold gelation of globular proteins: effects of protein aggregate characteristics ans disulfide bonding on Rheological properties.

    NARCIS (Netherlands)

    Alting, A.C.; Weijers, M.; Hoog, de E.H.A.; Pijpekamp, A.M.; Cohen Stuart, M.A.; Hamer, R.J.; Kruif, de C.G.; Visschers, R.W.

    2004-01-01

    The process of cold gelation of ovalbumin and the properties of the resulting cold-set gels were compared to those of whey protein isolate. Under the chosen heating conditions, most protein was organized in aggregates. For both protein preparations, the aggregates consisted of covalently linked mono

  10. Inhibition of the processing of miR-25 by HIPK2-Phosphorylated-MeCP2 induces NOX4 in early diabetic nephropathy

    Science.gov (United States)

    Oh, Hyung Jung; Kato, Mitsuo; Deshpande, Supriya; Zhang, Erli; Sadhan, Das; Lanting, Linda; Wang, Mei; Natarajan, Rama

    2016-01-01

    Phosphorylated methyl-CpG binding protein2 (p-MeCP2) suppresses the processing of several microRNAs (miRNAs). Homeo-domain interacting protein kinase2 (HIPK2) phosphorylates MeCP2, a known transcriptional repressor. However, it is not known if MeCP2 and HIPK2 are involved in processing of miRNAs implicated in diabetic nephropathy. p-MeCP2 and HIPK2 levels were significantly increased, but Seven in Absentia Homolog1 (SIAH1), which mediates proteasomal degradation of HIPK2, was decreased in the glomeruli of streptozotocin injected diabetic mice. Among several miRNAs, miR-25 and its precursor were significantly decreased in diabetic mice, whereas primary miR-25 levels were significantly increased. NADPH oxidase4 (NOX4), a target of miR-25, was significantly increased in diabetic mice. Protein levels of p-MeCP2, HIPK2, and NOX4 were increased in high glucose (HG)- or TGF-β-treated mouse glomerular mesangial cells (MMCs). miR-25 (primary, precursor, and mature) and mRNA levels of genes indicated in the in vivo study showed similar trends of regulation in MMCs treated with HG or TGF-β. The HG- or TGF-β-induced upregulation of p-MeCP2, NOX4 and primary miR-25, but downregulation of precursor and mature miR-25, were attenuated by Hipk2 siRNA. These results demonstrate a novel role for the SIAH1/HIPK2/MeCP2 axis in suppressing miR-25 processing and thereby upregulating NOX4 in early diabetic nephropathy. PMID:27941951

  11. UPR induces transient burst of apoptosis in islets of early lactating rats through reduced AKT phosphorylation via ATF4/CHOP stimulation of TRB3 expression.

    Science.gov (United States)

    Bromati, Carla R; Lellis-Santos, Camilo; Yamanaka, Tatiana S; Nogueira, Tatiane C A; Leonelli, Mauro; Caperuto, Luciana C; Gorjão, Renata; Leite, Adriana R; Anhê, Gabriel F; Bordin, Silvana

    2011-01-01

    Endocrine pancreas from pregnant rats undergoes several adaptations that comprise increase in β-cell number, mass and insulin secretion, and reduction of apoptosis. Lactogens are the main hormones that account for these changes. Maternal pancreas, however, returns to a nonpregnant state just after the delivery. The precise mechanism by which this reversal occurs is not settled but, in spite of high lactogen levels, a transient increase in apoptosis was already reported as early as the 3rd day of lactation (L3). Our results revealed that maternal islets displayed a transient increase in DNA fragmentation at L3, in parallel with decreased RAC-alpha serine/threonine-protein kinase (AKT) phosphorylation (pAKT), a known prosurvival kinase. Wortmannin completely abolished the prosurvival action of prolactin (PRL) in cultured islets. Decreased pAKT in L3-islets correlated with increased Tribble 3 (TRB3) expression, a pseudokinase inhibitor of AKT. PERK and eIF2α phosphorylation transiently increased in islets from rats at the first day after delivery, followed by an increase in immunoglobulin heavy chain-binding protein (BiP), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) in islets from L3 rats. Chromatin immunoprecipitation (ChIP) and Re-ChIP experiments further confirmed increased binding of the heterodimer ATF4/CHOP to the TRB3 promoter in L3 islets. Treatment with PBA, a chemical chaperone that inhibits UPR, restored pAKT levels and inhibited the increase in apoptosis found in L3. Moreover, PBA reduced CHOP and TRB3 levels in β-cell from L3 rats. Altogether, our study collects compelling evidence that UPR underlies the physiological and transient increase in β-cell apoptosis after delivery. The UPR is likely to counteract prosurvival actions of PRL by reducing pAKT through ATF4/CHOP-induced TRB3 expression.

  12. Injection of bradykinin or/and cyclosporine A to hippocampus induces Alzheimer-like phosphorylation of tau and abnormal behavior in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Bradykinin (BK) is a calcium/calmodulin dependent protein kinase Ⅱ (CaMKⅡ) specific activator, and Cyclosporin A (CSA) is reported to suppress protein phosphotase (PP)-2B activity. In vitro studies have shown that CaMKⅡ and PP-2B play an important role in Alzheimer-like phosphorylation of microtube-associated protein tau. To reconstitute an animal model based on the imbalance of protein kinase (s) and protein phosphatase (s) seen in Alzheimer brain, we injected BK and/or CSA into rat hippocampus. The results from behavioral study showed that an obvious disturbance in learning and memory was seen with BK or BK plus CSA injected rats. Moreover, the behavior abnormality appeared earlier in aged rats than young adults of the same kind after the injection. On the other hand, no obvious dysfunction in living and behavior was observed with CSA alone injected rats. The results obtained by immunohistochemical assay indicated that the staining for M4\\, 12E8\\, PHF-1 and CaMKⅡ was stronger, and for Tau-1 was weaker in BK injected rats compared with Control group. It was also found that the binding of M4 and PHF-1 but not 12E8 to tau was significantly increased in CSA injected rats. As the same as BK injection, binding of Tau-1 to tau was decreased after CSA injection. The immunostaining for 12E8\\,PHF-1 and CaMKⅡ was increased, whereas for Tau-1\\, M4\\, and GSK-3 was decreased after combination injection of BK and CSA. In addition, the staining of PP-2B decreased in all the three models. To our knowledge, this is the first data shown in vivo that the activation of CaMKⅡ induces both Alzheimer-like tau phosphorylation and behavioral disturbance.

  13. Amyloid beta dimers/trimers potently induce cofilin-actin rods that are inhibited by maintaining cofilin-phosphorylation

    Directory of Open Access Journals (Sweden)

    Podlisny Marcia

    2011-01-01

    Full Text Available Abstract Background Previously we reported 1 μM synthetic human amyloid beta1-42 oligomers induced cofilin dephosphorylation (activation and formation of cofilin-actin rods within rat hippocampal neurons primarily localized to the dentate gyrus. Results Here we demonstrate that a gel filtration fraction of 7PA2 cell-secreted SDS-stable human Aβ dimers and trimers (Aβd/t induces maximal neuronal rod response at ~250 pM. This is 4,000-fold more active than traditionally prepared human Aβ oligomers, which contain SDS-stable trimers and tetramers, but are devoid of dimers. When incubated under tyrosine oxidizing conditions, synthetic human but not rodent Aβ1-42, the latter lacking tyrosine, acquires a marked increase (620 fold for EC50 in rod-inducing activity. Gel filtration of this preparation yielded two fractions containing SDS-stable dimers, trimers and tetramers. One, eluting at a similar volume to 7PA2 Aβd/t, had maximum activity at ~5 nM, whereas the other, eluting at the void volume (high-n state, lacked rod inducing activity at the same concentration. Fractions from 7PA2 medium containing Aβ monomers are not active, suggesting oxidized SDS-stable Aβ1-42 dimers in a low-n state are the most active rod-inducing species. Aβd/t-induced rods are predominantly localized to the dentate gyrus and mossy fiber tract, reach significance over controls within 2 h of treatment, and are reversible, disappearing by 24 h after Aβd/t washout. Overexpression of cofilin phosphatases increase rod formation when expressed alone and exacerbate rod formation when coupled with Aβd/t, whereas overexpression of a cofilin kinase inhibits Aβd/t-induced rod formation. Conclusions Together these data support a mechanism by which Aβd/t alters the actin cytoskeleton via effects on cofilin in neurons critical to learning and memory.

  14. Molecular Level Insights into Thermally Induced [alpha]-Chymotrypsinogen A Amyloid Aggregation Mechanism and Semiflexible Protofibril Morphology

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Aming; Jordan, Jacob L.; Ivanova, Magdalena I.; Weiss, IV., William F.; Roberts, Christopher J.; Fernandez, Erik J. (UCLA); (Delaware); (UV)

    2010-12-07

    Understanding nonnative protein aggregation is critical not only to a number of amyloidosis disorders but also for the development of effective and safe biopharmaceuticals. In a series of previous studies [Weiss et al. (2007) Biophys. J. 93, 4392-4403; Andrews et al. (2007) Biochemistry 46, 7558-7571; Andrews et al. (2008) Biochemistry 47, 2397-2403], {alpha}-chymotrypsinogen A (aCgn) and bovine granulocyte colony stimulating factor (bG-CSF) have been shown to exhibit the kinetic and morphological features of other nonnative aggregating proteins at low pH and ionic strength. In this study, we investigated the structural mechanism of aCgn aggregation. The resultant aCgn aggregates were found to be soluble and exhibited semiflexible filamentous aggregate morphology under transmission electron microscopy. In addition, the filamentous aggregates were demonstrated to possess amyloid characteristics by both Congo red binding and X-ray diffraction. Peptide level hydrogen exchange (HX) analysis suggested that a buried native {beta}-sheet comprised of three peptide segments (39-46, 51-64, and 106-114) reorganizes into the cross-{beta} amyloid core of aCgn aggregates and that at least 50% of the sequence adopts a disordered structure in the aggregates. Furthermore, the equimolar, bimodal HX labeling distribution observed for three reported peptides (65-102, 160-180, and 229-245) suggested a heterogeneous assembly of two molecular conformations in aCgn aggregates. This demonstrates that extended {beta}-sheet interactions typical of the amyloid are sufficiently strong that a relatively small fraction of polypeptide sequence can drive formation of filamentous aggregates even under conditions favoring colloidal stability.

  15. Resolvin D1 reverses chronic pancreatitis-induced mechanical allodynia, phosphorylation of NMDA receptors, and cytokines expression in the thoracic spinal dorsal horn

    Directory of Open Access Journals (Sweden)

    Quan-Xin Feng

    2012-10-01

    Full Text Available Abstract Background We previously reported that immune activation in the spinal dorsal horn contributes to pain induced by chronic pancreatitis (CP. Targeting immune response in the CNS may provide effective treatments for CP-induced pain. Recent findings demonstrate that resolvin D1 (RvD1 can potently dampen inflammatory pain. We hypothesized that intrathecal injection of RvD1 may inhibit pain of CP. Methods Rat CP model was built through intrapancreatic infusion of trinitrobenzene sulfonic acid (TNBS. All the rats were divided into three groups: TNBS, sham, and naïve controls and were further divided for intrathecal RvD1 administration. Pain behavior of rats was tested with von Frey filaments. Anxiety-like behavior and free locomotor and exploration of rats were evaluated by open field test and elevated plus maze. Pancreatic histology was evaluated with hematoxylin and eosin staining. Phosphorylation of NMDA receptor and expression of inflammatory cytokines were examined with Western blot, real-time RT-PCR and ELISA. Results Behavioral study indicated that compared to the vehicle control, RvD1 (100 ng/kg significantly decreased TNBS-induced mechanical allodynia at 2 h after administration (response frequencies: 49.2 ± 3.7% vs 71.3 ± 6.1%, and this effect was dose-dependent. Neither CP nor RvD1 treatment could affect anxiety-like behavior. CP or RvD1 treatment could not affect free locomotor and exploration of rats. Western blot analysis showed that compared with that of naïve group, phosphorylated NR1 (pNR1 and pNR2B in TNBS rats were significantly increased in the spinal cord (pNR1: 3.87±0.31 folds of naïve control, pNR2B: 4.17 ± 0.24 folds of naïve control. Compared to vehicle control, 10 ng/kg of RvD1 could significantly block expressions of pNR1 (2.21 ± 0.26 folds of naïve and pNR2B (3.31 ± 0.34 folds of naïve. Real-time RT-PCR and ELISA data showed that RvD1 (10 ng/kg but not vehicle could significantly block expressions of

  16. Validation of the Antidiabetic and Hypolipidemic Effects of Clitocybe nuda by Assessment of Glucose Transporter 4 and Gluconeogenesis and AMPK Phosphorylation in Streptozotocin-Induced Mice

    Directory of Open Access Journals (Sweden)

    Chun-Ching Shih

    2014-01-01

    Full Text Available The study was designed to investigate the effects of extract of Clitocybe nuda (CNE on type 1 diabetes mellitus and dyslipidemia in streptozotocin- (STZ- induced diabetic mice. Diabetes was induced by injection of STZ. Diabetic mice were randomly divided into five groups and given orally CNE (C1: 0.2, C2: 0.5, and C3: 1.0 g/kg body weight or metformin (Metf or vehicle for 4 weeks. STZ induction decreased in the levels of insulin, body weight, and the weight of skeletal muscle, whereas the levels of blood glucose, hemoglobin nonenzymatically (percent HbA1c, and circulating triglyceride (P < 0.001, P < 0.001, and P < 0.01, resp. were increased. CNE decreased the levels of blood glucose, HbA1c, and triglyceride levels, whereas it increased the levels of insulin and leptin compared with the vehicle-treated STZ group. STZ induction caused a decrease in the protein contents of skeletal muscular and hepatic phosphorylation of AMP-activated protein kinase (phospho-AMPK and muscular glucose transporter 4 (GLUT4. Muscular phospho-AMPK contents were increased in C2-, C3-, and Metf-treated groups. CNE and Metf significantly increased the muscular proteins of GLUT4. Liver phospho-AMPK showed an increase in all CNE- and Metf-treated groups combined with the decreased hepatic glucose production by decreasing phosphenolpyruvate carboxykinase (PEPCK, glucose-6-phosphatase (G6Pase, and 11beta hydroxysteroid dehydroxygenase (11β-HSD1 gene, which contributed to attenuating diabetic state. The study indicated that the hypoglycemic properties of CNE were related to both the increased muscular glucose uptake and the reduction in hepatic gluconeogenesis. CNE exerts hypolipidemic effect by increasing gene expressions of peroxisome proliferator-activated receptor α (PPARα and decreasing expressions of fatty acid synthesis, including acyl-coenzyme A: diacylglycerol acyltransferase (DGAT 2. Therefore, amelioration of diabetic and dyslipidemic state by CNE in STZ-induced

  17. Apigenin Attenuates Atherogenesis through Inducing Macrophage Apoptosis via Inhibition of AKT Ser473 Phosphorylation and Downregulation of Plasminogen Activator Inhibitor-2.

    Science.gov (United States)

    Zeng, Ping; Liu, Bin; Wang, Qun; Fan, Qin; Diao, Jian-Xin; Tang, Jing; Fu, Xiu-Qiong; Sun, Xue-Gang

    2015-01-01

    Macrophage survival is believed to be a contributing factor in the development of early atherosclerotic lesions. Dysregulated apoptosis of macrophages is involved in the inflammatory process of atherogenesis. Apigenin is a flavonoid that possesses various clinically relevant properties such as anti-inflammatory, antiplatelet, and antitumor activities. Here we showed that apigenin attenuated atherogenesis in apoE (-/-) mice in an in vivo test. In vitro experiments suggested that apigenin induced apoptosis of oxidized low density lipoprotein- (OxLDL-) loaded murine peritoneal macrophages (MPMs). Proteomic analysis showed that apigenin reduced the expression of plasminogen activator inhibitor 2 (PAI-2). PAI-2 has antiapoptotic effects in OxLDL-loaded MPMs. Enhancing PAI-2 expression significantly reduced the proapoptosis effects of apigenin. Molecular docking assay with AutoDock software predicted that residue Ser473 of Akt1 is a potential binding site for apigenin. Lentiviral-mediated overexpression of Akt1 wild type weakened the proapoptosis effect of apigenin in OxLDL-loaded MPMs. Collectively, apigenin executes its anti-atherogenic effects through inducing OxLDL-loaded MPMs apoptosis. The proapoptotic effects of apigenin were at least partly attributed to downregulation of PAI-2 through suppressing phosphorylation of AKT at Ser473.

  18. Apigenin Attenuates Atherogenesis through Inducing Macrophage Apoptosis via Inhibition of AKT Ser473 Phosphorylation and Downregulation of Plasminogen Activator Inhibitor-2

    Directory of Open Access Journals (Sweden)

    Ping Zeng

    2015-01-01

    Full Text Available Macrophage survival is believed to be a contributing factor in the development of early atherosclerotic lesions. Dysregulated apoptosis of macrophages is involved in the inflammatory process of atherogenesis. Apigenin is a flavonoid that possesses various clinically relevant properties such as anti-inflammatory, antiplatelet, and antitumor activities. Here we showed that apigenin attenuated atherogenesis in apoE-/- mice in an in vivo test. In vitro experiments suggested that apigenin induced apoptosis of oxidized low density lipoprotein- (OxLDL- loaded murine peritoneal macrophages (MPMs. Proteomic analysis showed that apigenin reduced the expression of plasminogen activator inhibitor 2 (PAI-2. PAI-2 has antiapoptotic effects in OxLDL-loaded MPMs. Enhancing PAI-2 expression significantly reduced the proapoptosis effects of apigenin. Molecular docking assay with AutoDock software predicted that residue Ser473 of Akt1 is a potential binding site for apigenin. Lentiviral-mediated overexpression of Akt1 wild type weakened the proapoptosis effect of apigenin in OxLDL-loaded MPMs. Collectively, apigenin executes its anti-atherogenic effects through inducing OxLDL-loaded MPMs apoptosis. The proapoptotic effects of apigenin were at least partly attributed to downregulation of PAI-2 through suppressing phosphorylation of AKT at Ser473.

  19. cAMP elevators inhibit LPS-induced IL-12 p40 expression by interfering with phosphorylation of p38 MAPK in Murine Peritoneal Macrophages

    Institute of Scientific and Technical Information of China (English)

    WEI; GUO; FENG; YI; BING; WANG; JIN; SONG; ZHANG; XING; YU; WANG; CHANG; LIN; LI; ZONG; LIANG; CHANG

    2002-01-01

    cAMP mediated signaling may play a suppressive role in immune response. We previously found thatthe cAMP-elevators (CTx and 8-Br-cAMP) inhibited IL-12, IL-la, IL-6 gene expression, but increasedthe transcriptional levels of IL-10 and IL-1Ra in LPS-treated murine peritoneal macrophages. The presentstudy examined a possible molecular mechanism involved in cAMP elevators-induced inhibition of IL-12 p40expression in response to LPS. Our data demonstrated that cAMP elevators downregulated IL-12 p40 mRNAexpression and IL-12 p70 production in murine peritoneal macrophages. Subsequent studies revealed thatcAMP-elevators blocked phosphorylation of p38 MAPK, but did not affect the activity of NF-κB bindingto IL-12 promoter (-136/-112). This is the first report that cAMP elevators inhibit LPS-induced IL-12production by a mechanism that is associated, at least in part, with p38-dependent inhibition by cAMPsignaling pathways.

  20. Phosphorylation of the GluN1 subunit in dorsal horn neurons by remifentanil: a mechanism for opioid-induced hyperalgesia.

    Science.gov (United States)

    Zhang, C; Li, S S; Zhao, N; Yu, C

    2015-03-13

    Remifentanil (an ultra-short acting μ-opioid receptor agonist) use has been associated with acute opioid tolerance and hyperalgesia. Previous electrophysiological studies have shown that remifentanil elicits rapid and prolonged upregulation of N-methyl-D-aspartate receptor (NMDAR) currents. However, the effect of remifentanil on the levels of the GluN1 subunit of the NMDAR in dorsal horn neurons (DHNs) has not been reported. We investigated the effect of remifentanil, along with ketamine (NMDAR antagonist) and naloxone (μ-opioid receptor antagonist), on GluN1 mRNA levels and the amount of phosphorylated GluN1 in primary cultures of embryonic rat DHNs. DHNs were isolated from 18-19-day rat embryos and treated with remifentanil or vehicle for 1 h. GluN1 mRNA and protein levels, determined by real time reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively, were significantly and persistently increased by remifentanil exposure compared with the control group (P < 0.05). These results may partially account for the mechanism of remifentanil-induced hyperalgesia. This increase was prevented by ketamine (NMDAR antagonist) and naloxone (μ-opioid receptors antagonist), thus providing a potential therapeutic mechanism for the prevention of opioid-induced hyperalgesia.

  1. Dexmedetomidine Dose-Dependently Attenuates Ropivacaine-Induced Seizures and Negative Emotions Via Inhibiting Phosphorylation of Amygdala Extracellular Signal-Regulated Kinase in Mice.

    Science.gov (United States)

    Zhai, Ming-Zhu; Wu, Huang-Hui; Yin, Jun-Bin; Cui, Yuan-Yuan; Mei, Xiao-Peng; Zhang, Han; Zhu, Xia; Shen, Xue-Feng; Kaye, Alan David; Chen, Guo-Zhong

    2016-05-01

    Ropivacaine (Ropi), one of the newest and safest amino amide local anesthetics, is linked to toxicity, including the potential for seizures, changes in behavior, and even cardiovascular collapse. Dexmedetomidine (Dex), an α2-adrenergic receptor agonist, has been widely used in anesthesia and critical care practice. To date, the underlying mechanisms of the effects of Dex premedication on Ropi-induced toxicity have not been clearly identified. In the current study, we investigated the effects of increasing doses of Dex premedication on 50% convulsive dose (CD50) of Ropi. With increasing doses of intraperitoneal (i.p.) Dex 10 min prior to each i.p. RopiCD50, the latency and duration of seizure activity were recorded. Open-field (OF) and elevated plus maze (EPM) test were used to measure negative behavioral emotions such as depression and anxiety. Immunohistochemistry and Western blot were utilized to investigate phosphorylation-extracellular regulated protein kinases (p-ERK) expression in the basolateral amygdala (BLA) on 2 h and in the central amygdala (CeA) on 24 h after convulsion in mice. The results of our investigation demonstrated that Dex dose-dependently increased RopiCD50, prolonged the latency and shortened the duration of each RopiCD50-induced seizure, improved the negative emotions revealed by both OF and EPM test, and inhibited p-ERK expression in the BLA and the CeA.

  2. Effect of Sodium Tanshinone Ⅱ A Sulfonate on Phosphorylation of Extracellular Signal-regulated Kinase1/2 in Angiotensin Ⅱ-induced Hypertrophy of Myocardial Cells

    Institute of Scientific and Technical Information of China (English)

    LI Shu-sheng; FENG Jun; ZHENG Zhi; LIANG Qian-sheng

    2008-01-01

    Objective:To observe the effects of sodium tanshinone Ⅱ A sulfonate(STS)on angiotensin Ⅱ(Ang Ⅱ)-induced hypertrophy of myocardial cells through the expression of phosphorylated extracellular signal-regulated kinase(P-ERK1/2).Methods:In the primary culture of neonatal rat myocardial cells.the total protein content in myocardial cells was determined by coomassie brilliant blue and the protein synthesis rate was measured by[3H]-Leucine incorporation as indexes for hypertrophy of myocardial cells.The expression of p-ERK1/2 was determined using Western blot and immunofluorescence Iabeling.Results:(1)The totaI protein and protein synthesis rate increased significantly in contrast to the control group after the myocardial cells were stimulated by Ang Ⅱ (1 μmol/L)for 24 h;STS markedly inhibited the increment of the total protein level induced by Ang Ⅱ and the syntheses of protein.(2)After pretreatment of myocardial cells with Ang Ⅱ(1 μ mol/L)for 5 min,the p-ERK1/2 protein expression was increased,with the most obvious effect shown at about 10 min;pretreatment of myocardial cells with STS at different doses(2,10,50 μ mol/L)for 30 min resulted in obvious inhibition of the expression of p-ERK1/2 stimulated by Ang Ⅱ in a dose-dependent manner.(3)After the myocardial cells were stimulated by Ang Ⅱ(1 μ mol/L),the immunofluorescence of ERK1/2 rapidly appeared in the nucleus.The activation and translocation process of ERK1/2 induced by Ang Ⅱ was blocked distinctly by STS.Conclusion:STS inhibited the myocardial cell hypertrophy induced by Ang Ⅱ,and the mechanism may be associated with the inhibition of p-ERK1/2 expression.

  3. A critical role for the regulation of Syk from agglutination to aggregation in human platelets.

    Science.gov (United States)

    Shih, Chun-Ho; Chiang, Tin-Bin; Wang, Wen-Jeng

    2014-01-10

    Agglucetin, a tetrameric glycoprotein (GP) Ibα agonist from Formosan Agkistrodon acutus venom, has been characterized as an agglutination inducer in human washed platelets (WPs). In platelet-rich plasma (PRP), agglucetin dramatically elicits a biphasic response of agglutination and subsequent aggregation. For clarifying the intracellular signaling events from agglutination to aggregation in human platelets, we examined the essential signaling molecules involved through the detection of protein tyrosine phosphorylation (PTP). In WPs, an anti-GPIbα monoclonal antibody (mAb) AP1, but not a Src kinase inhibitor PP1, completely inhibited agglucetin-induced agglutination. However, PP1 but not AP1 had a potent suppression on platelet aggregation by a GPVI activator convulxin. The PTP analyses showed agglucetin alone can cause a weak pattern involving sequential phosphorylation of Lyn/Fyn, Syk, SLP-76 and phospholipase Cγ2 (PLCγ2). Furthermore, a Syk-selective kinase inhibitor, piceatannol, significantly suppressed the aggregating response in agglucetin-activated PRP. Analyzed by flow cytometry, the binding capacity of fluorophore-conjugated PAC-1, a mAb recognizing activated integrin αIIbβ3, was shown to increase in agglucetin-stimulated platelets. Again, piceatannol but not PP1 had a concentration-dependent suppression on agglucetin-induced αIIbβ3 exposure. Moreover, the formation of signalosome, including Syk, SLP-76, VAV, adhesion and degranulation promoting adapter protein (ADAP) and PLCγ2, are required for platelet aggregation in agglucetin/fibrinogen-activated platelets. In addition, GPIbα-ligation via agglucetin can substantially promote the interactions between αIIbβ3 and fibrinogen. Therefore, the signal pathway of Lyn/Fyn/Syk/SLP-76/ADAP/VAV/PLCγ2/PKC is sufficient to trigger platelet aggregation in agglucetin/fibrinogen-pretreated platelets. Importantly, Syk may function as a major regulator for the response from GPIbα-initiated agglutination to

  4. Propofol directly increases tau phosphorylation.

    Directory of Open Access Journals (Sweden)

    Robert A Whittington

    Full Text Available In Alzheimer's disease (AD and other tauopathies, the microtubule-associated protein tau can undergo aberrant hyperphosphorylation potentially leading to the development of neurofibrillary pathology. Anesthetics have been previously shown to induce tau hyperphosphorylation through a mechanism involving hypothermia-induced inhibition of protein phosphatase 2A (PP2A activity. However, the effects of propofol, a common clinically used intravenous anesthetic, on tau phosphorylation under normothermic conditions are unknown. We investigated the effects of a general anesthetic dose of propofol on levels of phosphorylated tau in the mouse hippocampus and cortex under normothermic conditions. Thirty min following the administration of propofol 250 mg/kg i.p., significant increases in tau phosphorylation were observed at the AT8, CP13, and PHF-1 phosphoepitopes in the hippocampus, as well as at AT8, PHF-1, MC6, pS262, and pS422 epitopes in the cortex. However, we did not detect somatodendritic relocalization of tau. In both brain regions, tau hyperphosphorylation persisted at the AT8 epitope 2 h following propofol, although the sedative effects of the drug were no longer evident at this time point. By 6 h following propofol, levels of phosphorylated tau at AT8 returned to control levels. An initial decrease in the activity and expression of PP2A were observed, suggesting that PP2A inhibition is at least partly responsible for the hyperphosphorylation of tau at multiple sites following 30 min of propofol exposure. We also examined tau phosphorylation in SH-SY5Y cells transfected to overexpress human tau. A 1 h exposure to a clinically relevant concentration of propofol in vitro was also associated with tau hyperphosphorylation. These findings suggest that propofol increases tau phosphorylation both in vivo and in vitro under normothermic conditions, and further studies are warranted to determine the impact of this anesthetic on the acceleration of

  5. Dexmedetomidine Increases Tau Phosphorylation Under Normothermic Conditions In Vivo and In Vitro

    Science.gov (United States)

    Whittington, Robert A.; Virág, László; Gratuze, Maud; Petry, Franck R.; Noël, Anastasia; Poitras, Isabelle; Truchetti, Geoffrey; Marcouiller, François; Papon, Marie-Amélie; Khoury, Noura El; Wong, Kevin; Bretteville, Alexis; Morin, Françoise; Planel, Emmanuel

    2015-01-01

    There is developing interest in the potential association between anesthesia and the onset and progression of Alzheimer's disease. Several anesthetics have thus been demonstrated to induce tau hyperphosphorylation, an effect mostly mediated by anesthesia-induced hypothermia. Here, we tested the hypothesis that acute normothermic administration of dexmedetomidine, an intravenous sedative used in intensive care units, would result in tau hyperphosphorylation in vivo and in vitro. When administered to non-transgenic mice, dexmedetomidine induced tau hyperphosphorylation persisting up to 6h in the hippocampus for the AT8 epitope. Pretreatment with atipamezole, a highly specific α2-adrenergic receptor (α2-AR) antagonist, blocked dexmedetomidine-induced tau hyperphosphorylation. Furthermore, dexmedetomidine dose-dependently increased tau phosphorylation at AT8 in SH-SY5Y cells, impaired mice spatial memory in the Barnes maze, and promoted tau hyperphosphorylation and aggregation in transgenic hTau mice. These findings suggest that dexmedetomidine: i) increases tau phosphorylation, in vivo and in vitro, in the absence of anesthetic-induced hypothermia and through α2-AR activation, ii) promotes tau aggregation in a mouse model of tauopathy, and iii) impacts spatial reference memory. PMID:26058840

  6. Phosphorylation of CRTC3 by the salt-inducible kinases controls the interconversion of classically activated and regulatory macrophages.

    Science.gov (United States)

    Clark, Kristopher; MacKenzie, Kirsty F; Petkevicius, Kasparas; Kristariyanto, Yosua; Zhang, Jiazhen; Choi, Hwan Geun; Peggie, Mark; Plater, Lorna; Pedrioli, Patrick G A; McIver, Ed; Gray, Nathanael S; Arthur, J Simon C; Cohen, Philip

    2012-10-16

    Macrophages acquire strikingly different properties that enable them to play key roles during the initiation, propagation, and resolution of inflammation. Classically activated (M1) macrophages produce proinflammatory mediators to combat invading pathogens and respond to tissue damage in the host, whereas regulatory macrophages (M2b) produce high levels of anti-inflammatory molecules, such as IL-10, and low levels of proinflammatory cytokines, like IL-12, and are important for the resolution of inflammatory responses. A central problem in this area is to understand how the formation of regulatory macrophages can be promoted at sites of inflammation to prevent and/or alleviate chronic inflammatory and autoimmune diseases. Here, we demonstrate that the salt-inducible kinases (SIKs) restrict the formation of regulatory macrophages and that their inhibition induces striking increases in many of the characteristic markers of regulatory macrophages, greatly stimulating the production of IL-10 and other anti-inflammatory molecules. We show that SIK inhibitors elevate IL-10 production by inducing the dephosphorylation of cAMP response element-binding protein (CREB)-regulated transcriptional coactivator (CRTC) 3, its dissociation from 14-3-3 proteins and its translocation to the nucleus where it enhances a gene transcription program controlled by CREB. Importantly, the effects of SIK inhibitors on IL-10 production are lost in macrophages that express a drug-resistant mutant of SIK2. These findings identify SIKs as a key molecular switch whose inhibition reprograms macrophages to an anti-inflammatory phenotype. The remarkable effects of SIK inhibitors on macrophage function suggest that drugs that target these protein kinases may have therapeutic potential for the treatment of inflammatory and autoimmune diseases.

  7. Resistance exercise, but not endurance exercise, induces IKKβ phosphorylation in human skeletal muscle of training-accustomed individuals

    DEFF Research Database (Denmark)

    Møller, Andreas Buch; Vendelbo, Mikkel Holm; Rahbek, Stine Klejs

    2013-01-01

    The mammalian target of rapamycin complex 1 (mTORC1) is considered an important role in the muscular adaptations to exercise. It has been proposed that exercise-induced signaling to mTORC1 do not require classic growth factor PI3K/Akt signaling. Activation of IKKβ and the mitogen-activated protein...... kinases (MAPKs) Erk1/2 and p38 has been suggested to link inflammation and cellular stress to activation of mTORC1 through the tuberous sclerosis 1 (TSC1)/tuberous sclerosis 2 (TSC2) complex. Consequently, activation of these proteins constitutes potential alternative mechanisms of mTORC1 activation...

  8. Protein tyrosine phosphorylation, hyperactivation and progesterone-induced acrosome reaction are enhanced in IVF media: an effect that is not associated with an increase in protein kinase A activation.

    Science.gov (United States)

    Moseley, F L C; Jha, K N; Björndahl, Lars; Brewis, I A; Publicover, S J; Barratt, C L R; Lefièvre, L

    2005-07-01

    Sperm capacitation is a prerequisite for successful in vitro fertilization (IVF) and therefore a focus of sperm preparation in IVF laboratories. The technology of IVF is, therefore, potentially valuable in advancing our understanding of the molecular processes that occur during sperm capacitation. We have investigated sperm capacitation induced by a commercial IVF medium compared to that occurring in standard capacitating medium (CM) typically used in a nonclinical setting. Percoll-washed spermatozoa were resuspended in Cook Sydney IVF medium, Cook Sydney IVF sperm buffer, Earle's balanced salt medium (capacitating medium) or a modified Earle's balanced salt medium [non-capacitating medium (NCM)] for up to 120 min at 37 degrees C and, if applicable, in the presence of 5% CO2 in air. Sperm protein kinase A (PKA) activity, PKA-dependent serine/threonine phosphorylation, tyrosine phosphorylation, hyperactivation and progesterone-induced acrosome reaction were evaluated. IVF medium was shown to accelerate sperm capacitation (compared with capacitating medium) as determined by tyrosine phosphorylation, sperm hyperactivation and progesterone-induced acrosome reaction. This effect was not associated with enhanced activation of PKA or increased levels of serine/threonine phosphorylation. In contrast, IVF sperm buffer (used for sperm preparation) did not stimulate sperm capacitation when incubated for up to 90 min. We have shown that different capacitating media vary strikingly in their efficacy and that this difference reflects activation of a pathway other than the well-characterized activation of soluble adenylyl cyclase/cAMP/PKA.

  9. RhoA Kinase (Rock) and p90 Ribosomal S6 Kinase (p90Rsk) phosphorylation of the sodium hydrogen exchanger (NHE1) is required for lysophosphatidic acid-induced transport, cytoskeletal organization and migration.

    Science.gov (United States)

    Wallert, Mark A; Hammes, Daniel; Nguyen, Tony; Kiefer, Lea; Berthelsen, Nick; Kern, Andrew; Anderson-Tiege, Kristina; Shabb, John B; Muhonen, Wallace W; Grove, Bryon D; Provost, Joseph J

    2015-03-01

    The sodium hydrogen exchanger isoform one (NHE1) plays a critical role coordinating asymmetric events at the leading edge of migrating cells and is regulated by a number of phosphorylation events influencing both the ion transport and cytoskeletal anchoring required for directed migration. Lysophosphatidic acid (LPA) activation of RhoA kinase (Rock) and the Ras-ERK growth factor pathway induces cytoskeletal reorganization, activates NHE1 and induces an increase in cell motility. We report that both Rock I and II stoichiometrically phosphorylate NHE1 at threonine 653 in vitro using mass spectrometry and reconstituted kinase assays. In fibroblasts expressing NHE1 alanine mutants for either Rock (T653A) or ribosomal S6 kinase (Rsk; S703A) we show that each site is partially responsible for the LPA-induced increase in transport activity while NHE1 phosphorylation by either Rock or Rsk at their respective site is sufficient for LPA stimulated stress fiber formation and migration. Furthermore, mutation of either T653 or S703 leads to a higher basal pH level and a significantly higher proliferation rate. Our results identify the direct phosphorylation of NHE1 by Rock and suggest that both RhoA and Ras pathways mediate NHE1-dependent ion transport and migration in fibroblasts.

  10. Thrombin induces Egr-1 expression in fibroblasts involving elevation of the intracellular Ca2+ concentration, phosphorylation of ERK and activation of ternary complex factor

    Directory of Open Access Journals (Sweden)

    Thiel Gerald

    2009-05-01

    Full Text Available Abstract Background The serine protease thrombin catalyzes fibrin clot formation by converting fibrinogen into fibrin. Additionally, thrombin stimulation leads to an activation of stimulus-responsive transcription factors in different cell types, indicating that the gene expression pattern is changed in thrombin-stimulated cells. The objective of this study was to analyze the signaling cascade leading to the expression of the zinc finger transcription factor Egr-1 in thrombin-stimulated lung fibroblasts. Results Stimulation of 39M1-81 fibroblasts with thrombin induced a robust and transient biosynthesis of Egr-1. Reporter gene analysis revealed that the newly synthesized Egr-1 was biologically active. The signaling cascade connecting thrombin stimulation with Egr-1 gene expression required elevated levels of cytosolic Ca2+, the activation of diacylgycerol-dependent protein kinase C isoenzymes, and the activation of extracellular signal-regulated protein kinase (ERK. Stimulation of the cells with thrombin triggered the phosphorylation of the transcription factor Elk-1. Expression of a dominant-negative mutant of Elk-1 completely prevented Egr-1 expression in stimulated 39M1-81 cells, indicating that Elk-1 or related ternary complex factors connect the intracellular signaling cascade elicited by activation of protease-activated receptors with transcription of the Egr-1 gene. Lentiviral-mediated expression of MAP kinase phosphatase-1, a dual-specific phosphatase that dephosphorylates and inactivates ERK in the nucleus, prevented Elk-1 phosphorylation and Egr-1 biosynthesis in thrombin stimulated 39M1-81 cells, confirming the importance of nuclear ERK and Elk-1 for the upregulation of Egr-1 expression in thrombin-stimulated lung fibroblasts. 39M1-81 cells additionally express M1 muscarinic acetylcholine receptors. A comparison between the signaling cascades induced by thrombin or carbachol showed no differences, except that signal transduction via M

  11. Influence of heat and shear induced protein aggregation on the in vitro digestion rate of whey proteins.

    Science.gov (United States)

    Singh, Tanoj K; Øiseth, Sofia K; Lundin, Leif; Day, Li

    2014-11-01

    Protein intake is essential for growth and repair of body cells, the normal functioning of muscles, and health related immune functions. Most food proteins are consumed after undergoing various degrees of processing. Changes in protein structure and assembly as a result of processing impact the digestibility of proteins. Research in understanding to what extent the protein structure impacts the rate of proteolysis under human physiological conditions has gained considerable interest. In this work, four whey protein gels were prepared using heat processing at two different pH values, 6.8 and 4.6, with and without applied shear. The gels showed different protein network microstructures due to heat induced unfolding (at pH 6.8) or lack of unfolding, thus resulting in fine stranded protein networks. When shear was applied during heating, particulate protein networks were formed. The differences in the gel microstructures resulted in considerable differences in their rheological properties. An in vitro gastric and intestinal model was used to investigate the resulting effects of these different gel structures on whey protein digestion. In addition, the rate of digestion was monitored by taking samples at various time points throughout the in vitro digestion process. The peptides in the digesta were profiled using SDS-polyacrylamide gel electrophoresis, reversed-phase-HPLC and LC-MS. Under simulated gastric conditions, whey proteins in structured gels were hydrolysed faster than native proteins in solution. The rate of peptides released during in vitro digestion differed depending on the structure of the gels and extent of protein aggregation. The outcomes of this work highlighted that changes in the network structure of the protein can influence the rate and pattern of its proteolysis under gastrointestinal conditions. Such knowledge could assist the food industry in designing novel food formulations to control the digestion kinetics and the release of biologically

  12. A multifunctional probe with aggregation-induced emission characteristics for selective fluorescence imaging and photodynamic killing of bacteria over mammalian cells.

    Science.gov (United States)

    Gao, Meng; Hu, Qinglian; Feng, Guangxue; Tomczak, Nikodem; Liu, Rongrong; Xing, Bengang; Tang, Ben Zhong; Liu, Bin

    2015-04-02

    A multifunctional probe aggregation-induced emission-Zinc(II)-dipicolylamine (AIE-ZnDPA) is developed for selective targeting, fluorescence imaging, and photodynamic killing of both Gram-positive and Gram-negative bacteria over mammalian cells. The probe has significant advantages in simple probe design, enhanced fluorescence upon bacteria binding, excellent photostability, and broad-spectrum antibacterial activity with almost no harm to mammalian cells.

  13. Blood Plasma of Patients with Parkinson's Disease Increases Alpha-Synuclein Aggregation and Neurotoxicity

    Science.gov (United States)

    Wang, Peng; Li, Xin; Li, Xuran; Yang, Weiwei

    2016-01-01

    A pathological hallmark of Parkinson's disease (PD) is formation of Lewy bodies in neurons of the brain. This has been attributed to the spread of α-synuclein (α-syn) aggregates, which involves release of α-syn from a neuron and its reuptake by a neighboring neuron. We found that treatment with plasma from PD patients induced more α-syn phosphorylation and oligomerization than plasma from normal subjects (NS). Compared with NS plasma, PD plasma added to primary neuron cultures caused more cell death in the presence of extracellular α-syn. This was supported by the observations that phosphorylated α-syn oligomers entered neurons, rapidly increased accumulated thioflavin S-positive inclusions, and induced a series of metabolic changes that included activation of polo-like kinase 2, inhibition of glucocerebrosidase and protein phosphatase 2A, and reduction of ceramide levels, all of which have been shown to promote α-syn phosphorylation and aggregation. We also analyzed neurotoxicity of α-syn oligomers relative to plasma from different patients. Neurotoxicity was not related to age or gender of the patients. However, neurotoxicity was positively correlated with H&Y staging score. The modification in the plasma may promote spreading of α-syn aggregates via an alternative pathway and accelerate progression of PD. PMID:27965913

  14. [Induction of native platelets aggregation by incubation media of the UV irradiated leukocytes: possible role of the photo-induced ADP release].

    Science.gov (United States)

    Anosov, A K; Gorbach, M M

    2014-01-01

    It is shown that during incubation after UV irradiation (22-24 hours at 7-9 degrees C) irradiated isolated rabbit leukocytes release the compound(s) which induces platelets aggregation in the native platelet rich plasma. Treatment of the incubation media of irradiated leukocytes by heat (5 minutes at 100 degrees C) does not significantly change its pro-aggregation activity. Treatment of the platelet-rich plasma by the incubation media of irradiated leukocytes without stirring induces the refractoriness of platelets to ADP. The platelets treated by ADP without stirring do not react to the incubation media of irradiated leukocytes. The absorption spectrum of the incubation media of irradiated leukocytes has the maximum at 260 nm similar to that of the absorption spectra of ADP. It is possible that UVradiation induces the ADP release from leukocytes during post-irradiation incubation. Accumulation of this substance in the incubation media may be the cause of its pro-aggregation activity for native blood platelets.

  15. Fluorescence characterization of co-immobilization-induced multi-enzyme aggregation in a polymer matrix using Förster resonance energy transfer (FRET): toward the metabolon biomimic.

    Science.gov (United States)

    Wu, Fei; Minteer, Shelley D

    2013-08-12

    Sequential metabolic enzymes can form supramolecular complexes named metabolons in vivo through enzyme-enzyme association or aggregation to facilitate efficient substrate channeling. By separately labeling enzymes with lysine-targeting carboxylic acid succinimidyl ester fluorophores of distinct excitation wavelengths, this research presents a quantitative study of polymer-entrapment-induced in vitro multi-enzyme aggregation from three Krebs cycle enzymes using Förster resonance energy transfer (FRET) to find potential polymer materials for immobilizing enzyme cascades and inducing the metabolon biomimic formation on electrodes. The effect of hydrophobic modification of linear polyethylenimine, Nafion, and chitosan polymers on metabolon formation has been investigated through photobleaching FRET imaging in addition to traditional steady-state fluorescence spectroscopy. By partially destroying FRET acceptors of longer excitation wavelength, increased fluorescence from dequenched donors of shorter excitation wavelength was measured and enzyme interactions in terms of energy-transfer efficiencies were mapped point by point. Results show that trimethyloctadecylammonium-modified Nafion works best in inducing multi-enzyme aggregation and exhibits a promising future in immobilized metabolon biomimics with the most uniform enzyme organization, as indicated by the protein distance distribution.

  16. Thiophene functionalized silicon-containing aggregation-induced emission enhancement materials: applications as fluorescent probes for the detection of nitroaromatic explosives in aqueous-based solutions.

    Science.gov (United States)

    Wang, Xuefeng; Bian, Jiangyan; Xu, Lichao; Wang, Hua; Feng, Shengyu

    2015-12-28

    Two novel aggregation-induced emission enhancement (AIEE) molecules, namely, 3,4-diphenyl-2,5-di(2-thienyl)phenyltrimethylsilane (DPTB-TMS) and bis[3,4-diphenyl- 2,5-di(2-thienyl)phenyl]methylphenylsilane (DPTB-TMS) were designed and synthesized. The optical properties of the two silanes were completely opposite to the traditional luminescent materials. Unlike the aggregation caused quenching, they all emit faint fluorescence in the dispersed state, while emission intensity increased sharply in aggregate states. Fluorescence spectra showed that the two compounds exhibited AIEE properties and that is due to the weak π-π stacking caused by the restriction of intramolecular rotations of dye segments, particularly the -SiMe3 and thienyl groups in the aggregate state. As fluorescent (FL) probes, the fluorescence quenching behavior was further investigated. Thanks to the richer-electron thiophene groups, both compounds showed good performance in detecting nitroaromatics, especially picric acid (PA). The two AIEE FL probes exhibited better quenching efficiency in aqueous-based than in organic-based solutions. For DPTB-MPS, the addition of 80 μM nitrobenzene, 60 μM m-nitrobenzene and 40 μM PA resulted in about 50% quenching in aqueous solutions. The quenching mechanism would be electron transfer from silanes to nitroaromatics. This work provides a basis for designing organic-silanes with "abnormal" but useful optical properties and FL probes with AIEE properties for the detection of nitroaromatics.

  17. Protein-peptide interaction: study of heat-induced aggregation and gelation of β-lactoglobulin in the presence of two peptides from its own hydrolysate.

    Science.gov (United States)

    Kosters, Hans A; Wierenga, Peter A; de Vries, Renko; Gruppen, Harry

    2013-05-08

    Two peptides, [f135-158] and [f135-162]-SH, were used to study the binding of the peptides to native β-lactolobulin, as well as the subsequent effects on aggregation and gelation of β-lactoglobulin. The binding of the peptide [f135-158] to β-lactoglobulin at room temperature was confirmed by SELDI-TOF-MS. It was further illustrated by increased turbidity of mixed solutions of peptide and protein (at pH 7), indicating association of proteins and peptides in larger complexes. At pH below the isoelectric point of the protein, the presence of peptides did not lead to an increased turbidity, showing the absence of complexation. The protein-peptide complexes formed at pH 7 were found to dissociate directly upon heating. After prolonged heating, extensive aggregation was observed, whereas no aggregation was seen for the pure protein or pure peptide solutions. The presence of the free sulfhydryl group in [f135-162]-SH resulted in a 10 times increase in the amount of aggregation of β-lactoglobulin upon heating, illustrating the additional effect of the free sulfhydryl group. Subsequent studies on the gel strength of heat-induced gels also showed a clear difference between these two peptides. The replacement of additional β-lactoglobulin by [f135-158] resulted in a decrease in gel strength, whereas replacement by peptide [f135-162]-SH increased gel strength.

  18. Myocardial ischemia and reperfusion-induced cell death depends on JNK activation and leads to phosphorylation of mitochondrial p46

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ Multiple signaling pathways, including the c-Jun N-terminal kinase (JNK) pathway, are activated in myocardial ischemia and reperfusion (MI/R) and correlate with cell death. However, the role of the JNK pathway with respect to protection or destruction in MI/R-induced cell death is poorly understood. In a rabbit model, we found that ischemia followed by reperfusion resulted in JNK activation which could be detected in cytosol as well as in mitochondria. To address the functional role of the JNK activation, we examined the consequences of blockade of JNK activation in isolated cardiomyocytes under conditions of simulated ischemia. The JNK activity was stimulated ~6-fold by simulated ischemia and reperfusion (simulated MI). When a dominant negative mutant of JNK kinase-2(dnJNKK2), an upstream regulator of JNK, and JNK-interacting protein-1 (JIP-1) were expressed in myocytes by recombinant adenovirus, the activation of JNK by simulated MI was reduced 53%. Furthermore, the TNFα-activated JNK activity in H9c2 cells was completely abolished by dnJNKK2 and JIP-1. In correlation, when dnJNKK2 and JIP-1 were expressed in cardiomyocytes, both constructs significantly reduced cell death after simulated MI compared to vector controls.

  19. Lipid and insulin infusion-induced skeletal muscle insulin resistance is likely due to metabolic feedback and not changes in IRS-1, Akt, or AS160 phosphorylation.

    Science.gov (United States)

    Hoy, Andrew J; Brandon, Amanda E; Turner, Nigel; Watt, Matthew J; Bruce, Clinton R; Cooney, Gregory J; Kraegen, Edward W

    2009-07-01

    Type 2 diabetes is characterized by hyperlipidemia, hyperinsulinemia, and insulin resistance. The aim of this study was to investigate whether acute hyperlipidemia-induced insulin resistance in the presence of hyperinsulinemia was due to defective insulin signaling. Hyperinsulinemia (approximately 300 mU/l) with hyperlipidemia or glycerol (control) was produced in cannulated male Wistar rats for 0.5, 1 h, 3 h, or 5 h. The glucose infusion rate required to maintain euglycemia was significantly reduced by 3 h with lipid infusion and was further reduced after 5 h of infusion, with no difference in plasma insulin levels, indicating development of insulin resistance. Consistent with this finding, in vivo skeletal muscle glucose uptake (31%, P lipid infusion. Despite the development of insulin resistance, there was no difference in the phosphorylation state of multiple insulin-signaling intermediates or muscle diacylglyceride and ceramide content over the same time course. However, there was an increase in cumulative exposure to long-chain acyl-CoA (70%) with lipid infusion. Interestingly, although muscle pyruvate dehydrogenase kinase 4 protein content was decreased in hyperinsulinemic glycerol-infused rats, this decrease was blunted in muscle from hyperinsulinemic lipid-infused rats. Decreased pyruvate dehydrogenase complex activity was also observed in lipid- and insulin-infused animals (43%). Overall, these results suggest that acute reductions in muscle glucose metabolism in rats with hyperlipidemia and hyperinsulinemia are more likely a result of substrate competition than a significant early defect in insulin action or signaling.

  20. pERK 1/2 inhibit Caspase-8 induced apoptosis in cancer cells by phosphorylating it in a cell cycle specific manner.

    Science.gov (United States)

    Mandal, Ranadip; Raab, Monika; Matthess, Yves; Becker, Sven; Knecht, Rainald; Strebhardt, Klaus

    2014-03-01

    ERK 1/2 are found to be hyperactive in many cancers. Active ERK 1/2 (pERK 1/2) are known to protect cancer cells from undergoing death receptor-mediated apoptosis, although the mechanism(s) behind this is poorly understood. Through in vitro kinase assays and mass-spectrometry we demonstrate that pERK 1/2 can phosphorylate pro-Caspase-8 at S387. Also, in EGFR-overexpressing Type I and II ovarian and breast cancer cell lines respectively, ERK 1/2 remain active only during the interphase. During this period, pERK 1/2 could inhibit Trail-induced apoptosis, most effectively during the G1/S phase. By knocking-down the endogenous pro-Caspase-8 using RNAi and replacing it with its non-phosphorylatable counterpart (S387A), a significant increase in Caspase-8 activity upon Trail stimulation was observed, even in the presence of pERK 1/2. Taken together, we propose that a combination of Trail and an inhibitor of ERK 1/2 activities could potentially enhance of Trail's effectiveness as an anti-cancer agent in ERK 1/2 hyperactive cancer cells.

  1. Fucoidan induces G1 arrest of the cell cycle in EJ human bladder cancer cells through down-regulation of pRB phosphorylation

    Directory of Open Access Journals (Sweden)

    Hye Young Park

    2015-06-01

    Full Text Available AbstractFucoidan, a sulfated polysaccharide found in marine algae and brown seaweeds, has been shown to inhibit the in vitro growth of human cancer cells. This study was conducted in cultured human bladder cancer EJ cells to elucidate the possible mechanisms by which fucoidan exerts its anti-proliferative activity, which until now has remained poorly understood. Fucoidan treatment of EJ cells resulted in dose-dependent inhibition of cell growth and induced apoptotic cell death. Flow cytometric analysis revealed that fucoidan led to G1 arrest in cell cycle progression. It was associated with down-regulation of cyclin D1, cyclin E, and cyclin-dependent-kinases (Cdks in a concentration-dependent manner, without any change in Cdk inhibitors, such as p21 and p27. Furthermore, dephosphorylation of retinoblastoma protein (pRB by this compound was associated with enhanced binding of pRB with the transcription factors E2F-1 and E2F-4. Overall, our results demonstrate that fucoidan possesses anticancer activity potential against bladder cancer cells by inhibiting pRB phosphorylation.

  2. Corepressor SMRT promotes oxidative phosphorylation in adipose tissue and protects against diet-induced obesity and insulin resistance.

    Science.gov (United States)

    Fang, Sungsoon; Suh, Jae Myoung; Atkins, Annette R; Hong, Suk-Hyun; Leblanc, Mathias; Nofsinger, Russell R; Yu, Ruth T; Downes, Michael; Evans, Ronald M

    2011-02-22

    The ligand-dependent competing actions of nuclear receptor (NR)-associated transcriptional corepressor and coactivator complexes allow for the precise regulation of NR-dependent gene expression in response to both temporal and environmental cues. Here we report the mouse model termed silencing mediator of retinoid and thyroid hormone receptors (SMRT)(mRID1) in which targeted disruption of the first receptor interaction domain (RID) of the nuclear corepressor SMRT disrupts interactions with a subset of NRs and leads to diet-induced superobesity associated with a depressed respiratory exchange ratio, decreased ambulatory activity, and insulin resistance. Although apparently normal when chow fed, SMRT(mRID1) mice develop multiple metabolic dysfunctions when challenged by a high-fat diet, manifested by marked lipid accumulation in white and brown adipose tissue and the liver. The increased weight gain of SMRT(mRID1) mice on a high-fat diet occurs predominantly in fat with adipocyte hypertrophy evident in both visceral and s.c. depots. Importantly, increased inflammatory gene expression was detected only in the visceral depots. SMRT(mRID1) mice are both insulin-insensitive and refractory to the glucose-lowering effects of TZD and AICAR. Increased serum cholesterol and triglyceride levels were observed, accompanied by increased leptin and decreased adiponectin levels. Aberrant storage of lipids in the liver occurred as triglycerides and cholesterol significantly compromised hepatic function. Lipid accumulation in brown adipose tissue was associated with reduced thermogenic capacity and mitochondrial biogenesis. Collectively, these studies highlight the essential role of NR corepressors in maintaining metabolic homeostasis and describe an essential role for SMRT in regulating the progression, severity, and therapeutic outcome of metabolic diseases.

  3. Dynamic alteration in H3 serine 10 phosphorylation is G1-phase specific during ionization radiation induced DNA damage response in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ajit K.; Bhattacharya, Saikat; Khan, Shafqat A.; Khade, Bharat; Gupta, Sanjay, E-mail: sgupta@actrec.gov.in

    2015-03-15

    Highlights: • Loss of H3S10P in response to DNA damage is a universal phenomenon from G1 cells. • The loss happens predominantly from histone H3.3, a transcription activation mark. • Compaction of chromatin occurs during repair stage of DDR. • The alteration of H3S10P shows an inverse correlation with γH2AX. - Abstract: Chromatin acts as a natural barrier in DNA-damage recognition and repair. Histones undergo differential post-translational modification(s) to facilitate DNA damage response (DDR). Importance of modifications like phosphorylation of histone variant H2A.X in DNA repair is very well understood, however, ambiguous results exist in literature regarding the levels of certain histone modifications and their possible role in repair. In the present study, we have investigated in depth the alteration in the level of the highly dynamic histone mark H3S10P as it plays a dual role in different phases of the cell cycle. We show here that H3S10P decreases specifically from irradiated G1-enriched cells irrespective of the damaging agent or the cell line used in the study. Interestingly, the loss occurs predominantly from H3.3 variant which is a transcription activation mark like H3S10P itself, suggesting that the alteration might be implicated in transcription repression. The decrease in other transcription marks like H3K9Ac, H3K14Ac, H3K56Ac and H3S28P along with the occurrence of chromatin condensation in response to DNA damage in G1 phase strengthens the hypothesis. In addition, the alteration in the level of H3S10P shows an inverse correlation with that of γH2AX in a dose-dependent manner and probably occurs from the same mononucleosome. We propose that the drop in the levels of histone H3S10 phosphorylation is a universal phenomenon in response to DNA damage and is a trigger to induce transcription repressive state to facilitate repair.

  4. Poor efficacy of the phosphorylated high-molecular-weight neurofilament heavy subunit serum level, a biomarker of axonal damage, as a marker of chemotherapy-induced peripheral neuropathy

    Science.gov (United States)

    SUMITANI, MASAHIKO; OGATA, TORU; NATORI, AKINA; HOZUMI, JUN; SHIMOJO, NOBUTAKE; KIDA, KUMIKO; YAMAUCHI, HIDEKO; YAMAUCHI, TERUO

    2016-01-01

    The phosphorylated form of the high-molecular-weight neurofilament heavy subunit (pNF-H) is a major structural protein in axons. The pNF-H level is elevated in the serum of certain patients with central nervous disorders, including chemotherapy-induced cognitive impairment. The present study was conducted to elucidate the potential role of pNF-H as a marker of chemotherapy-induced peripheral neuropathy (CIPN). A total of 71 patients with early breast cancer in various stages of treatment (following 1, 3 or 7 cycles of chemotherapy, or a previous history of breast cancer chemotherapy) were assessed with a self-administered PainDETECT questionnaire [pain location, pain intensity on an 11-point numeric rating scale (NRS), and various pain qualities] and a single serum pNF-H measurement. Patients were divided into two groups based on the presence or absence of bilateral symmetric pain in the distal portions of the extremities [CIPN(+) or CIPN(−)]. The χ2 and Mann-Whitney tests were used for statistical analyses. Among the participants, only 8 patients complained of CIPN. Their pain intensity was 3.5±1.9 (mean ± standard deviation) compared with 1.5±1.8 in the CIPN(−) group (P<0.01). The NRS of numbness in the CIPN(+) group was significantly higher (2.4±1.4) than that of the CIPN(−) group (1.0±1.0). Increased pNF-H levels were observed in 37.5% of the CIPN(+) patients and in 23.8% of CIPN(−) patients (P=0.40). In conclusion, CIPN is observed in the most distal portions of the peripheral nerves that are composed of dendrites but not axons. Although serum pNF-H is a biomarker of axonal damage, it is not useful as a marker of CIPN. PMID:27284419

  5. Identification of an RNA-binding protein that is phosphorylated by PTH and potentially mediates PTH-induced destabilization of Npt2a mRNA.

    Science.gov (United States)

    Murray, Rebecca D; Merchant, Michael L; Hardin, Ericka; Clark, Barbara; Khundmiri, Syed J; Lederer, Eleanor D

    2016-02-01

    Parathyroid hormone (PTH) is a key regulator of the expression and function of the type IIa sodium-phosphate cotransporter (Npt2a), the protein responsible for regulated renal phosphate reabsorption. We previously showed that PTH induces rapid decay of Npt2a mRNA through posttranscriptional mechanisms. We hypothesized that PTH-induced changes in RNA-binding protein (RBP) activity mediate the degradation of Npt2a mRNA. To address this aim, we treated opossum kidney (OK) cells, a PTH-sensitive proximal tubule cell culture model, with 100 nM PTH for 30 min and 2 h, followed by mass spectrometry characterization of the PTH-stimulated phosphoproteome. We identified 1,182 proteins differentially phosphorylated in response to PTH, including 68 RBPs. Preliminary analysis identified a phospho-RBP, hnRNPK-homology-type-splicing regulatory protein (KSRP), with predicted binding sites for the 3'-untranslated region (UTR) of Npt2a mRNA. Western blot analysis confirmed expression of KSRP in OK cells and showed PTH-dependent translocation to the nucleus. Immunoprecipitation of KSRP from control and PTH-treated cells followed by RNA isolation and RT-quantitative PCR analysis identified Npt2a mRNA from both control and PTH-treated KSRP pulldowns. Knockdown of KSRP followed by PTH treatment showed that KSRP is required for mediating PTH-stimulated reduction in sodium/hydrogen exchanger 3 mRNA, but not Npt2a mRNA. We conclude that 1) PTH is a major regulator of both transcription and translation, and 2) KSRP binds Npt2a mRNA but its role in PTH regulation of Npt2a mRNA is not clear.

  6. A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy

    Directory of Open Access Journals (Sweden)

    Watanabe Hirotsuna

    2009-11-01

    Full Text Available Abstract Background The chemopreventive effects of dietary phytochemicals on malignant tumors have been studied extensively because of a relative lack of toxicity. To achieve desirable effects, however, treatment with a single agent mostly requires high doses. Therefore, studies on effective combinations of phytochemicals at relatively low concentrations might contribute to chemopreventive strategies. Results Here we found for the first time that co-treatment with I3C and genistein, derived from cruciferous vegetables and soy, respectively, synergistically suppressed the viability of human colon cance