WorldWideScience

Sample records for aggregates by relationship to concrete

  1. Alkali silica reaction in concrete induced by mortar adhered to recycled aggregate

    Directory of Open Access Journals (Sweden)

    Etxeberria, M.

    2010-02-01

    Full Text Available The durability of recycled concrete must be determined before this material can be used in construction. In this paper the alkali-silica reaction in recycled concrete is analyzed. The recycled concrete is made with recycled aggregates, composed by original limestone aggregates and adhered mortar with reactive silica sand, and high alkali content cement. Due to the manufacturing process used for concrete production and the high water absorption capacity of recycled aggregates, cement accumulation happens in the interface (ITZ. The concentration of alkalis on the surface of recycled aggregates- ITZ and the presence of reactive sand in the mortar adhering to the recycled aggregate induce an alkali-silica reaction in 6-month concrete. The existence of this reaction is confirmed by environmental scanning electron microscopy (ESEM and EDX analysis. The mechanical properties of 6-month recycled concrete were similar to those values at 28-days of curing.

    La durabilidad del hormigón fabricado con árido reciclado es necesario determinarla antes de su utilización como material de construcción. En este artículo se analiza la reacción álcali-sílice manifestada en el hormigón fabricado con árido reciclado procedente de hormigón (compuesto de árido original calizo y mortero adherido de arena sílice reactiva, y cemento de alto contenido en álcalis. Debido al proceso de fabricación del hormigón y la alta capacidad de absorción del árido reciclado se produce una acumulación del cemento en la Interfase (ITZ. Debido al contacto directo de los álcalis del cemento con la arena sílice reactiva se produce una reacción álcali sílice a los 6 meses de edad del hormigón. Se realiza un análisis mediante microscopio electrónico de barrido ambiental (ESEM y sistema analítico de EDX. Se determina que las propiedades mecánicas del hormigón reciclado a 6 meses son similares a las obtenidas a los 28 días de curado.

  2. Thermal Proprieties of Concrete Lightened by Wood Aggregates

    Directory of Open Access Journals (Sweden)

    D. Taoukil

    2011-02-01

    Full Text Available It is about an experimental study of the thermal proprieties of a concrete lightened by wood aggregates stemming from waste products of the carpentry work. We were especially interested in the comparison between the proprieties of concretes lightened by sawdust and those lightened by wood shavings. The determination of the thermal conductivity and diffusivity of various samples allowed us to demonstrate that the incorporation of wood aggregates in the concrete increases considerably its thermal insulation capacity. Also, we found that, at equal mass percentage of wood aggregates, the concretes elaborated from shavings present thermal insulation capacities better than those obtained from sawdust. On other hand, we have examined the influence of the water content on the thermophysical properties of the studied concretes. So, we have demonstrated and confirmed that the thermal conductivity and diffusivity of the studied materials are strongly dependent on the water content.

  3. Structural Concrete Prepared with Coarse Recycled Concrete Aggregate: From Investigation to Design

    Directory of Open Access Journals (Sweden)

    Valeria Corinaldesi

    2011-01-01

    Full Text Available An investigation of mechanical behaviour and elastic properties of recycled aggregate concrete (RAC is presented. RACs were prepared by using a coarse aggregate fraction made of recycled concrete coming from a recycling plant in which rubble from concrete structure demolition is collected and suitably treated. Several concrete mixtures were prepared by using either the only virgin aggregates (as reference or 30% coarse recycled aggregate replacing gravel and by using two different kinds of cement. Different water-to-cement ratios were adopted ranging from 0.40 to 0.60. Concrete workability was always in the range 190–200 mm. Concrete compressive strength, elastic modulus, and drying shrinkage were evaluated. Results obtained showed that structural concrete up to C32/40 strength class can be manufactured with RAC. Moreover, results obtained from experimentation were discussed in order to obtain useful information for RAC structure design, particularly in terms of elastic modulus and drying shrinkage prediction.

  4. The influence of recycled concrete aggregates in pervious concrete

    Directory of Open Access Journals (Sweden)

    L. M. TAVARES

    Full Text Available The expansion of urban areas under constant changes in the hydrological cycle directly affects the drainage of rainwater. The problems of urban drainage become major engineering problems to be solved in order to avoid negative consequences for local populations. Another urban problem is the excessive production of construction and demolition waste (CDW, in which , even with a increasingly policy of waste management , have been an end up being thrown in inappropriate disposal sites. Alternatively aiming to a minimization of the problems presented, we propose the study of permeable concrete using recycled concrete aggregate. In this study, there were evaluated the performance of concrete by means of permeability, consistency, strength, and interface conditions of the materials . Satisfactory relationships of resistance/permeability of concrete with recycled aggregate in relation to the concrete with natural aggregates was obtained, showing their best potential.

  5. Influence of uncoated and coated plastic waste coarse aggregates to concrete compressive strength

    Directory of Open Access Journals (Sweden)

    Purnomo Heru

    2017-01-01

    Full Text Available The use of plastic waste as coarse aggregates in concrete is part of efforts to reduce environmental pollution. In one hand the use of plastic as aggregates can provide lighter weight of the concrete than concrete using natural aggregates, but on the other hand bond between plastic coarse aggregates and hard matrix give low concrete compressive strength. Improvement of the bond between plastic coarse aggregate and hard matrix through a sand coating to plastic coarse aggregate whole surface is studied. Sand used to coat the plastic aggregates are Merapi volcanic sand which are taken in Magelang. Three mixtures of polypropylene (PP coarse plastic aggregates, Cimangkok river sand as fine aggregates, water and Portland Cement Composite with a water-cement ratio of 0.28, 0.3 and 0.35 are conducted. Compression test are performed on concrete cylindrical specimens with a diameter of 10 cm and a height of 20 cm. The results in general show that concrete specimens using plastic aggregates coated with sand have higher compressive strength compared to those of concrete specimens using plastic aggregates without sand coating. The bond improvement is indirectly indicated by the betterment of concrete compressive strength.

  6. Effect of water absorption by the aggregate on properties of high-strength lightweight concrete

    Energy Technology Data Exchange (ETDEWEB)

    Punkki, J.

    1995-12-31

    Recently, high-strength lightweight concrete has become an interesting building material for the offshore oil industry. This doctoral thesis presents an experimental investigation of the effect of water absorption by three different types of lightweight aggregates. One type did not show any water absorption ability at all and so represented no problem to the concrete production. For the two other high-strength aggregates, which were of more conventional types, the water absorption depended not only on the properties of the aggregates, but also on the concrete mixing procedure and the properties of the fresh cement paste. When water absorbing lightweight aggregate was used in a dry condition, the workability of the concrete was significantly reduced by the water absorption of the aggregate. This effect was not present when prewetted aggregate was used. The water absorption by the lightweight aggregate also affected the early compressive strength of concrete. After one day, dry aggregate gave on the average 10 MPa higher compressive strength than did prewetted aggregate. The strength-density ratio was affected by the moisture condition of the aggregate. Dry lightweight aggregate gave 9 MPa higher compressive strength at a density of 2000 kg/m{sup 3} compared to that of prewetted aggregate. The water absorption by the lightweight also affected the microstructure of the hardened concrete. Dry lightweight aggregate gave a slightly better microstructure than normal weight aggregate. The results indicate that the use of prewetted aggregate adversely affected the transition zone between the aggregate and the cement paste. 69 refs., 58 figs., 42 tabs.

  7. Strength Characteristics of Concrete with Partial Replacement of Coarse Aggregate By Laterite Stone and Fine Aggregate by Quarry Dust

    Directory of Open Access Journals (Sweden)

    M. Venkata Rao

    2016-10-01

    Full Text Available This paper presents the results of concrete mix with partial replacement of fine aggregate by quarry dust and simultaneous partial replacement of coarse aggregate by laterite stone aggregate respectively on compressive strength, split tensile strength, flexural strength and workability of concrete. Concrete mixes containing 0%, 10%, 20%, 25 % and 30%, replacement (by weight of fine aggregate with quarry dust and simultaneously 25% replacement of coarse aggregate (by weight with laterite stone were casted in lab and checked for compressive strength, split tensile strength ,flexure strength and workability .This replacement results in making the concrete more economically available.

  8. Natural aggregate totally replacement by mechanically treated concrete waste

    Directory of Open Access Journals (Sweden)

    Junak Jozef

    2015-06-01

    Full Text Available This paper presents the results obtained from the research focused on the utilization of crushed concrete waste aggregates as a partial or full replacement of 4/8 and 8/16 mm natural aggregates fraction in concrete strength class C 16/20. Main concrete characteristics such as workability, density and compressive strength were studied. Compressive strength testing intervals for samples with recycled concrete aggregates were 2, 7, 14 and 28 days. The amount of water in the mixtures was indicative. For mixture resulting consistency required slump grade S3 was followed. Average density of all samples is in the range of 2250 kg/m3 to 2350 kg/m3. The highest compressive strength after 28 days of curing, 34.68 MPa, reached sample, which contained 100% of recycled material in 4/8 mm fraction and 60% of recycled aggregates in 8/16 mm fraction. This achieved value was only slightly different from the compressive strength 34.41 MPa of the reference sample.

  9. Recycled Concrete as Aggregate for Structural Concrete Production

    Directory of Open Access Journals (Sweden)

    Mirjana Malešev

    2010-04-01

    Full Text Available A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper. Recycled aggregate was made by crushing the waste concrete of laboratory test cubes and precast concrete columns. Three types of concrete mixtures were tested: concrete made entirely with natural aggregate (NAC as a control concrete and two types of concrete made with natural fine and recycled coarse aggregate (50% and 100% replacement of coarse recycled aggregate. Ninety-nine specimens were made for the testing of the basic properties of hardened concrete. Load testing of reinforced concrete beams made of the investigated concrete types is also presented in the paper. Regardless of the replacement ratio, recycled aggregate concrete (RAC had a satisfactory performance, which did not differ significantly from the performance of control concrete in this experimental research. However, for this to be fulfilled, it is necessary to use quality recycled concrete coarse aggregate and to follow the specific rules for design and production of this new concrete type.

  10. RESIDUAL FLEXURAL STRENGTH OF RECYCLED BRICK AGGREGATE CONCRETE EXPOSED TO HIGH TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Kasi Rekha

    2015-12-01

    Full Text Available The practice of using crushed brick in concrete is picking up due to its value addition to the mechanical properties of concrete. In the present experimental investigation the brick from the demolition waste is used as a coarse aggregate to study the flexural behaviour of recycled brick aggregate (RBA concrete after exposure to high temperatures. The recycled brick aggregate is replaced to granite aggregate up to 25% by its volume to produce RBA concrete. Beam specimens of size 100mm × 100mm × 500mm were used to study the flexural strength (modulus of rupture of both RBA concrete and granite aggregate (GA concrete. Both the concretes were heated to desired temperatures from 100oC to 1000oC in an interval of 100oC for three hours in bogie hearth furnace. The residual flexural strengths of both heated RBA and GA concretes were presented in this research to study the performance of RBAconcrete at high temperatures. The RBA concrete performed better than that of GA concrete in flexure at high temperatures by exhibiting higher residual strength.

  11. The effect of fly ash to self-compactability of pumice aggregate lightweight concrete

    Indian Academy of Sciences (India)

    Murat Kurt; Abdulkadir Cüneyt Aydin; Muhammed Said Gül; Rüstem Gül; Türkay Kotan

    2015-06-01

    This paper presents the results of an experimental study on the effects of fly ash, different water/(cement + mineral additive) ratios and pumice aggregates to some physical and mechanical properties of self-compacting lightweight aggregate concrete. In this study, pumice had been used as lightweight aggregates. Several properties of self-compacting pumice aggregate lightweight concretes like the unit weight, flow diameter, T50 time, flow diameter after an hour, V-funnel time, and L-box tests, 7, 28, 90 and 180-day compressive strength, 28-day splitting tensile strength, dry unit weight, water absorption, thermal conductivity and ultrasonic pulse velocity tests were investigated. For this purpose, 18 series of concrete samples were prepared in two groups. Pumice aggregate was used as a replacement of natural aggregate, at the levels of 0, 20, 40, 60, 80, and 100% by volume. Furthermore, a second series of 100% pumice aggregate was used for the production of self-compacting lightweight aggregate concrete with constant w/(c+m) ratios as 0.35, 0.40, and 0.45 by weight. The flow diameters, T50 times, paste volumes, 28-day compressive strengths, dry unit weights and thermal conductivities of self-compacting lightweight aggregate concrete were obtained in the range of 600–800 mm, 2–8 s, 471–572 lt/m3, 9.2–53.26 MPa, 839–2156 kg/m3 and 0.321–1.508 W/mk, respectively, which satisfies not only the strength requirement of semi-structural lightweight concrete but also the flowing ability requirements and thermal conductivity requirements of self-compacting lightweight aggregate concrete.

  12. Studies on Strength and Behaviors of Concrete by using Pond Ash as Fine Aggregate

    Directory of Open Access Journals (Sweden)

    K. Arumugam

    2014-03-01

    Full Text Available Common river sand is expensive due to excessive cost of transportation from natural resources. Also large scale depletion of these sources creates environmental problems. In such a situation the pond ash can be an economical alternative to the river sand. Pond ash can be defined as residue and by-product of thermal power plant stations to form fine particles less than 4.75 mm. Usually, Pond ash is used in a large scale for manufacturing of bricks. Use of pond ash as a fine aggregate in concrete mortar draws serious attention of researchers. This study reports the results of some experimental studies on the use of pond ash as Fine Aggregate (FA in concrete. Super plasticiser is used to increase the workability of concrete with lower water cement ratio. The percentage of pond ash added by weight was 0, 20, 30, 40 and 50, respectively as replacement of FA used in concrete. Experiments were carried out to determine the compressive, splitting tensile and flexural strength with those of conventional concrete made with pond ash as fine aggregate. The various mechanical properties were studied and compared with natural fine aggregate. The test results obtained indicate that pond ash of marginal quantity as partial sand replacement has beneficial effect on the mechanical properties. The strength development for various percentages (0-50% replacement of fine aggregate with pond ash can easily be equated to the strength development of normal concrete with various ages. The properties of aggregates were also compared. Test result indicates that the workability of pond ash concrete is good and the strength characteristics are comparable to those of conventional concrete.

  13. Recycled aggregates concrete: aggregate and mix properties

    Directory of Open Access Journals (Sweden)

    González-Fonteboa, B.

    2005-09-01

    Full Text Available This study of structural concrete made with recycled concrete aggregate focuses on two issues: 1. The characterization of such aggregate on the Spanish market. This involved conducting standard tests to determine density, water absorption, grading, shape, flakiness and hardness. The results obtained show that, despite the considerable differences with respect to density and water absorption between these and natural aggregates, on the whole recycled aggregate is apt for use in concrete production. 2. Testing to determine the values of basic concrete properties: mix design parameters were established for structural concrete in non-aggressive environments. These parameters were used to produce conventional concrete, and then adjusted to manufacture recycled concrete aggregate (RCA concrete, in which 50% of the coarse aggregate was replaced by the recycled material. Tests were conducted to determine the physical (density of the fresh and hardened material, water absorption and mechanical (compressive strength, splitting tensile strength and modulus of elasticity properties. The results showed that, from the standpoint of its physical and mechanical properties, concrete in which RCA accounted for 50% of the coarse aggregate compared favourably to conventional concrete.

    Se aborda el estudio de hormigones estructurales fabricados con áridos reciclados procedentes de hormigón, incidiéndose en dos aspectos: 1. Caracterización de tales áridos, procedentes del mercado español. Para ello se llevan a cabo ensayos de densidad, absorción, granulometría, coeficiente de forma, índice de lajas y dureza. Los resultados obtenidos han puesto de manifiesto que, a pesar de que existen diferencias notables (sobre todo en cuanto a densidad y absorción con los áridos naturales, las características de los áridos hacen posible la fabricación de hormigones. 2. Ensayos sobre propiedades básicas de los hormigones: se establecen parámetros de dosificaci

  14. SHAPE CHARACTERIZATION OF CONCRETE AGGREGATE

    Directory of Open Access Journals (Sweden)

    Jing Hu

    2011-05-01

    Full Text Available As a composite material, the performance of concrete materials can be expected to depend on the properties of the interfaces between its two major components, aggregate and cement paste. The microstructure at the interfacial transition zone (ITZ is assumed to be different from the bulk material. In general, properties of conventional concrete have been found favoured by optimum packing density of the aggregate. Particle size is a common denominator in such studies. Size segregation in the ITZ among the binder particles in the fresh state, observed in simulation studies by concurrent algorithm-based SPACE system, additionally governs density as well as physical bonding capacity inside these shell-like zones around aggregate particles. These characteristics have been demonstrated qualitatively pertaining also after maturation of the concrete. Such properties of the ITZs have direct impact on composite properties. Despite experimental approaches revealed effects of aggregate grain shape on different features of material structure (among which density, and as a consequence on mechanical properties, it is still an underrated factor in laboratory studies, probably due to the general feeling that a suitable methodology for shape characterization is not available. A scientific argument hindering progress is the interconnected nature of size and shape. Presently, a practical problem preventing shape effects to be emphasized is the limitation of most computer simulation systems in concrete technology to spherical particles. New developments at Delft University of Technology will make it possible in the near future to generate jammed states, or other high-density fresh particle mixtures of non-spherical particles, which thereupon can be subjected to hydration algorithms. This paper will sketch the outlines of a methodological approach for shape assessment of loose (non-embedded aggregate grains, and demonstrate its use for two types of aggregate, allowing

  15. Towards Better Understanding of Concrete Containing Recycled Concrete Aggregate

    Directory of Open Access Journals (Sweden)

    Hisham Qasrawi

    2013-01-01

    Full Text Available The effect of using recycled concrete aggregates (RCA on the basic properties of normal concrete is studied. First, recycled aggregate properties have been determined and compared to those of normal aggregates. Except for absorption, there was not a significant difference between the two. Later, recycled aggregates were introduced in concrete mixes. In these mixes, natural coarse aggregate was partly or totally replaced by recycled aggregates. Results show that the use of recycled aggregates has an adverse effect on the workability and air content of fresh concrete. Depending on the water/cement ratio and on the percent of the normal aggregate replaced by RCA, the concrete strength is reduced by 5% to 25%, while the tensile strength is reduced by 4% to 14%. All results are compared with previous research. As new in this research, the paper introduces a simple formula for the prediction of the modulus of elasticity of RCA concrete. Furthermore, the paper shows the variation of the air content of RAC.

  16. Study of recycled concrete aggregate quality and its relationship with recycled concrete compressive strength using database analysis

    Directory of Open Access Journals (Sweden)

    González-Taboada, I.

    2016-09-01

    Full Text Available This work studies the physical and mechanical properties of recycled concrete aggregate (recycled aggregate from concrete waste and their influence in structural recycled concrete compressive strength. For said purpose, a database has been developed with the experimental results of 152 works selected from over 250 international references. The processed database results indicate that the most sensitive properties of recycled aggregate quality are density and absorption. Moreover, the study analyses how the recycled aggregate (both percentage and quality and the mixing procedure (pre-soaking or adding extra water influence the recycled concrete strength of different categories (high or low water to cement ratios. When recycled aggregate absorption is low (under 5%, pre-soaking or adding extra water to avoid loss in workability will negatively affect concrete strength (due to the bleeding effect, whereas with high water absorption this does not occur and both of the aforementioned correcting methods can be accurately employed.El estudio analiza las propiedades físico-mecánicas de los áridos reciclados de hormigón (procedentes de residuos de hormigón y su influencia en la resistencia a compresión del hormigón reciclado estructural. Para ello se ha desarrollado una base de datos con resultados de 152 trabajos seleccionados a partir de más de 250 referencias internacionales. Los resultados del tratamiento de la base indican que densidad y absorción son las propiedades más sensibles a la calidad del árido reciclado. Además, este estudio analiza cómo el árido reciclado (porcentaje y calidad y el procedimiento de mezcla (presaturación o adición de agua extra influyen en la resistencia del hormigón reciclado de diferentes categorías (alta o baja relación agua-cemento. Cuando la absorción es baja (inferior al 5% presaturar o añadir agua para evitar pérdidas de trabajabilidad afectan negativamente a la resistencia (debido al bleeding

  17. Early age shrinkage pattern of concrete on replacement of fine aggregate with industrial by-product

    Directory of Open Access Journals (Sweden)

    R.K. Mishra

    2016-10-01

    Full Text Available This is an experimental work carried out to investigate early age shrinkage pattern of concrete, prepared, on 50% replacement of industrial by-product (like pond ash and granulated blast furnace slag as fine aggregate using OPC, PPC and PSC as a binder. This is to observe the effect of pond ash and slag as they are having some cementitious properties and effect of cement type is also discussed. All the mixes were prepared keeping in view of pumpable concrete without any super plasticizers. Higher shrinkage value indicates the presence of more bleed water or internal moisture. It is concluded that slag is the best option for fine aggregate replacement for concrete making and durable structure.

  18. Mechanical and Microstructural Evaluations of Lightweight Aggregate Geopolymer Concrete before and after Exposed to Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Mohammed Binhussain

    2013-10-01

    Full Text Available This paper presents the mechanical and microstructural characteristics of a lightweight aggregate geopolymer concrete (LWAGC synthesized by the alkali-activation of a fly ash source (FA before and after being exposed to elevated temperatures, ranging from 100 to 800 °C. The results show that the LWAGC unexposed to the elevated temperatures possesses a good strength-to-weight ratio compared with other LWAGCs available in the published literature. The unexposed LWAGC also shows an excellent strength development versus aging times, up to 365 days. For the exposed LWAGC to the elevated temperatures of 100 to 800 °C, the results illustrate that the concretes gain compressive strength after being exposed to elevated temperatures of 100, 200 and 300 °C. Afterward, the strength of the LWAGC started to deteriorate and decrease after being exposed to elevated temperatures of 400 °C, and up to 800 °C. Based on the mechanical strength results of the exposed LWAGCs to elevated temperatures of 100 °C to 800 °C, the relationship between the exposure temperature and the obtained residual compressive strength is statistically analyzed and achieved. In addition, the microstructure investigation of the unexposed LWAGC shows a good bonding between aggregate and mortar at the interface transition zone (ITZ. However, this bonding is subjected to deterioration as the LWAGC is exposed to elevated temperatures of 400, 600 and 800 °C by increasing the microcrack content and swelling of the unreacted silicates.

  19. Residual Mechanical Properties of Concrete Made with Crushed Clay Bricks and Roof Tiles Aggregate after Exposure to High Temperatures

    Directory of Open Access Journals (Sweden)

    Ivana Miličević

    2016-04-01

    Full Text Available This paper presents the residual mechanical properties of concrete made with crushed bricks and clay roof tile aggregates after exposure to high temperatures. One referent mixture and eight mixtures with different percentages of replacement of natural aggregate by crushed bricks and roof tiles are experimentally tested. The properties of the concrete were measured before and after exposure to 200, 400, 600 and 800 °C. In order to evaluate the basic residual mechanical properties of concrete with crushed bricks and roof tiles after exposure to high temperatures, ultrasonic pulse velocity is used as a non-destructive test method and the results are compared with those of a destructive method for validation. The mixture with the highest percentage of replacement of natural aggregate by crushed brick and roof tile aggregate has the best physical, mechanical, and thermal properties for application of such concrete in precast concrete elements exposed to high temperatures.

  20. Application of Base Force Element Method to Mesomechanics Analysis for Recycled Aggregate Concrete

    Directory of Open Access Journals (Sweden)

    Yijiang Peng

    2013-01-01

    Full Text Available The base force element method (BFEM on potential energy principle is used to analyze recycled aggregate concrete (RAC on mesolevel. The model of BFEM with triangular element is derived. The recycled aggregate concrete is taken as five-phase composites consisting of natural coarse aggregate, new mortar, new interfacial transition zone (ITZ, old mortar, and old ITZ on meso-level. The random aggregate model is used to simulate the mesostructure of recycled aggregate concrete. The mechanics properties of uniaxial compression and tension tests for RAC are simulated using the BFEM, respectively. The simulation results agree with the test results. This research method is a new way for investigating fracture mechanism and numerical simulation of mechanics properties for recycled aggregate concrete.

  1. Pre-Saturation Technique of the Recycled Aggregates: Solution to the Water Absorption Drawback in the Recycled Concrete Manufacture

    Directory of Open Access Journals (Sweden)

    Julia García-González

    2014-09-01

    Full Text Available The replacement of natural aggregates by recycled aggregates in the concrete manufacturing has been spreading worldwide as a recycling method to counteract the large amount of construction and demolition waste. Although legislation in this field is still not well developed, many investigations demonstrate the possibilities of success of this trend given that concrete with satisfactory mechanical and durability properties could be achieved. However, recycled aggregates present a low quality compared to natural aggregates, the water absorption being their main drawback. When used untreated in concrete mix, the recycled aggregate absorb part of the water initially calculated for the cement hydration, which will adversely affect some characteristics of the recycled concrete. This article seeks to demonstrate that the technique of pre-saturation is able to solve the aforementioned problem. In order to do so, the water absorption of the aggregates was tested to determine the necessary period of soaking to bring the recycled aggregates into a state of suitable humidity for their incorporation into the mixture. Moreover, several concrete mixes were made with different replacement percentages of natural aggregate and various periods of pre-saturation. The consistency and compressive strength of the concrete mixes were tested to verify the feasibility of the proposed technique.

  2. Influence of the Aggregate Volume on the Eleetrieal Resistivity and Properties of Portland Cement Concretes

    Institute of Scientific and Technical Information of China (English)

    WEI Xiaosheng; XIAO Lianzhen

    2011-01-01

    The electrical resistivity of concretes with various aggregate volume fractions (Va) of 0%-70%at water/cement (W/C) ratios of 0.4 and 0.5 during l day was monitored.It is found that the addition of normal aggregate to cement paste leads to a regular increase in concrete resistivity at each hydration stage and the electrical resistivity has a deeper increase for the lower W/C at a fixed aggregate volume fraction.The number of normalized resistivity (NR) of concrete to its paste matrix was introduced,which is only a function of aggregate volume fraction (Va).The quantitative relationships give an alternative method for the prediction of aggregate volume in the concrete.A logarithmic relation is established between the elastic modulus of concrete at 7 days or 28 days and the electrical resistivity of concrete at 1 day.The equations are obtained,the compressive strength of concrete at 7 days or 28 days can be determined by the electrical resistivity of concrete at 1 day and the used aggregate content in the concrete.The quantitative relationships give a non-destructive test (NDT) method for prediction of concrete elastic modulus and compressive strength.

  3. Frost resistance of concrete with crushed brick as aggregate

    Directory of Open Access Journals (Sweden)

    Janković Ksenija

    2010-01-01

    Full Text Available The investigation included concrete made by using recycled brick as aggregate. Experimental work included several types of concrete made with the same cement content (385 kg/m3, and same consistency (slump about 1 cm. Recycled brick and combination of natural river aggregate and recycled brick were used as aggregates. The influence of percentage and grain size of crushed brick aggregate on concrete compressive strength, water absorption and frost resistance were observed. On the basis of the results obtained during experimental research, a general conclusion can be drawn that the application of recycled concrete as aggregate can lead to new composites with satisfactory physical-mechanical properties.

  4. Concretes with red mud coarse aggregates

    Directory of Open Access Journals (Sweden)

    Dênio Ramam Carvalho de Oliveira

    2012-06-01

    Full Text Available Red mud (RM is a mineral waste, residue of the Bayer process used to obtain alumina from bauxite. While the exploration of rolled pebble damages the environment and is much more controlled by the government, the huge RM disposal areas do not stop increasing and polluting soil, rivers and groundwater sources in Amazon. In this work, the material mixtures used to produce coarse aggregates presented up to 80% of RM, 30% of metakaolin and 30% of active silica as recycled waste. Several tests were carried out to determine the aggregates physical properties and to evaluate the mechanical performance of the concretes with the new aggregates, including hydraulic abrasion strength, and the results were compared to the reference ones, i.e. rolled pebble concretes. Additionally, the sintering process neutralizes any toxic substance as occur in some RM products like tiles and bricks, and these results have encouraged an industrial or semi-industrial production of RM aggregates for concretes.

  5. Effectiveness of lithium-based products in concrete made with Canadian aggregates susceptible to ASR

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, C.; Berube, M.A. [Laval Univ., Quebec City, PQ (Canada). Dept. of Geology and Geological Engineering; Fournier, B. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Lab; Thomas, M.D.A. [New Brunswick Univ., Fredericton, NB (Canada). Dept. of Civil Engineering

    2006-07-01

    The durability and service-life of concrete structures is affected by the alkali-silica reaction (ASR) that occurs in some siliceous aggregates. During ASR, a swelling gel is produced that causes the expansion and premature deterioration of the concrete elements. Studies have indicated that lithium-based products can suppress the ASR expansion when used at an adequate dosage. The efficacy of LiNO{sub 3} has been recognized because it is not susceptible to pessimum effects, and does not increasing the pH of the pore solution compared to some LiOH and other lithium salts. The alkali content of concrete is a critical parameter for the ASR and also impacts significantly on the efficacy of the lithium-based products. This paper presented the results of a 3 year study in which the feasibility of combining lithium admixture and supplementary cementing materials (SCMs) was investigated. In the study, 87 concrete mixtures were subjected to concrete prism expansion tests in humid air at 38 degrees C for 2 years and up to 9 months at 60 degrees C. The mixtures incorporated 12 different Canadian reactive aggregates and one non-reactive aggregate along with different amounts of lithium-based admixtures. The pore solution of these mixtures was extracted under high pressure at different times for chemical analysis. The combination of lithium admixture and SCMs proved to be beneficial in reducing ASR. The required dosage of LiNO{sub 3} was not related to the degree of reactivity of the aggregate to counteract expansion. 22 refs., 11 tabs., 7 figs.

  6. Mechanical Characteristic of Pervious Concrete Considering the Gradation and Size of Coarse Aggregates

    Directory of Open Access Journals (Sweden)

    Alireza Joshaghani

    2014-09-01

    Full Text Available Pervious concrete is a kind of sustainable pavement with high permeability which is becoming more common as a storm water management. The purpose of this study was to investigate the effects of coarse aggregate on physical and mechanical properties of the pervious concrete such as density, strength, porosity and permeability at 7, 28, 56 days. This experimental investigation conducted by comparing nine different mixtures. Taguchi design of experiments used to optimize the performance of these characteristics. To test the influence of aggregate systematically, water to cement ratio (w/c, paste content and coarse aggregate size were kept constant at 3 levels. 9.5, 12.5 and 19.0 mm were used for maximum aggregate sizes. The relationship between strength and porosity for pervious concrete are found to be dependent on coarse aggregate size. The test results demonstrated when the maximum size of the coarse aggregate increased, the strength decreases and the permeability and porosity grows up. An increased aggregate amount resulted in a significant decrease in compressive strength due to the subsequent decrease in paste amount. Age and coarse aggregate size had effect on the pervious concrete characteristic. To meet the specification requirements in the mix design of pervious concrete, considering both compressive strength and permeability is necessary. Finally, a parametric study is conducted to investigate the influence of design factors on the properties of porous concrete. The general equations for pervious concrete are related to compressive strength and void ratio for different aggregate sizes.

  7. Recycling of PET bottles as fine aggregate in concrete.

    Science.gov (United States)

    Frigione, Mariaenrica

    2010-06-01

    An attempt to substitute in concrete the 5% by weight of fine aggregate (natural sand) with an equal weight of PET aggregates manufactured from the waste un-washed PET bottles (WPET), is presented. The WPET particles possessed a granulometry similar to that of the substituted sand. Specimens with different cement content and water/cement ratio were manufactured. Rheological characterization on fresh concrete and mechanical tests at the ages of 28 and 365days were performed on the WPET/concretes as well as on reference concretes containing only natural fine aggregate in order to investigate the influence of the substitution of WPET to the fine aggregate in concrete. It was found that the WPET concretes display similar workability characteristics, compressive strength and splitting tensile strength slightly lower that the reference concrete and a moderately higher ductility.

  8. Fundamental Study on the Development of Structural Lightweight Concrete by Using Normal Coarse Aggregate and Foaming Agent

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2014-06-01

    Full Text Available Structural lightweight concrete (SLWC has superior properties that allow the optimization of super tall structure systems for the process of design. Because of the limited supply of lightweight aggregates in Korea, the development of structural lightweight concrete without lightweight aggregates is needed. The physical and mechanical properties of specimens that were cast using normal coarse aggregates and different mixing ratios of foaming agent to evaluate the possibility of creating structural lightweight concrete were investigated. The results show that the density of SLWC decreases as the dosage of foaming agent increases up to a dosage of 0.6%, as observed by SEM. It was also observed that the foaming agent induced well separated pores, and that the size of the pores ranged from 50 to 100 μm. Based on the porosity of concrete specimens with foaming agent, compressive strength values of structural lightweight foam concrete (SLWFC were obtained. It was also found that the estimated values from proposed equations for compressive strength and modulus of elasticity of SLWFC, and values obtained by actual measurements were in good agreement. Thus, this study confirms that new structural lightweight concrete using normal coarse aggregates and foaming agent can be developed successfully.

  9. Study on Concrete Containing Recycled Aggregates Immersed in Epoxy Resin

    Directory of Open Access Journals (Sweden)

    Adnan Suraya Hani

    2017-01-01

    Full Text Available In recent decades, engineers have sought a more sustainable method to dispose of concrete construction and demolition waste. One solution is to crush this waste concrete into a usable gradation for new concrete mixes. This not only reduces the amount of waste entering landfills but also alleviates the burden on existing sources of quality natural concrete aggregates. There are too many kinds of waste but here constructions waste will be the priority target that should be solved. It could be managed by several ways such as recycling and reusing the concrete components, and the best choice of these components is the aggregate, because of the ease process of recycle it. In addition, recycled aggregates and normal aggregates were immersed in epoxy resin and put in concrete mixtures with 0%, 5%, 10% and 20% which affected the concrete mixtures properties. The strength of the concrete for both normal and recycled aggregates has increased after immersed the aggregates in epoxy resin. The percentage of water absorption and the coefficient of water permeability decreased with the increasing of the normal and the recycled aggregates immersed in epoxy resin. Generally the tests which have been conducted to the concrete mixtures have a significant results after using the epoxy resin with both normal and recycled aggregates.

  10. Modeling compressive strength of recycled aggregate concrete by Artificial Neural Network, Model Tree and Non-linear Regression

    Directory of Open Access Journals (Sweden)

    Neela Deshpande

    2014-12-01

    Full Text Available In the recent past Artificial Neural Networks (ANN have emerged out as a promising technique for predicting compressive strength of concrete. In the present study back propagation was used to predict the 28 day compressive strength of recycled aggregate concrete (RAC along with two other data driven techniques namely Model Tree (MT and Non-linear Regression (NLR. Recycled aggregate is the current need of the hour owing to its environmental friendly aspect of re-use of the construction waste. The study observed that, prediction of 28 day compressive strength of RAC was done better by ANN than NLR and MT. The input parameters were cubic meter proportions of Cement, Natural fine aggregate, Natural coarse Aggregates, recycled aggregates, Admixture and Water (also called as raw data. The study also concluded that ANN performs better when non-dimensional parameters like Sand–Aggregate ratio, Water–total materials ratio, Aggregate–Cement ratio, Water–Cement ratio and Replacement ratio of natural aggregates by recycled aggregates, were used as additional input parameters. Study of each network developed using raw data and each non dimensional parameter facilitated in studying the impact of each parameter on the performance of the models developed using ANN, MT and NLR as well as performance of the ANN models developed with limited number of inputs. The results indicate that ANN learn from the examples and grasp the fundamental domain rules governing strength of concrete.

  11. Properties of Concrete partially replaced with Coconut Shell as Coarse aggregate and Steel fibres in addition to its Concrete volume

    Science.gov (United States)

    Kalyana Chakravarthy, P. R.; Janani, R.; Ilango, T.; Dharani, K.

    2017-03-01

    Cement is a binder material with various composition of Concrete but instantly it posses low tensile strength. The study deals with mechanical properties of that optimized fiber in comparison with conventional and coconut shell concrete. The accumulation of fibers arbitrarily dispersed in the composition increases the resistance to cracking, deflection and other serviceability conditions substantially. The steel fiber in extra is one of the revision in coconut shell concrete and the outcome of steel fiber in coconut shell concrete was to investigate and compare with the conventional concrete. For the given range of steel fibe from 0.5 to 2.0%, 12 beams and 36 cylindrical specimens were cast and tested to find the mechanical properties like flexural strength, split tensile, impact resistance and the modulus of elasticity of both conventional and coconut shell concrete has been studied and the test consequences are compared with the control concrete and coconut shell concrete for M25 Grade. It is fulfilled that, the steel fibers used in this venture has shown significant development in all the properties of conventional and coconut shell concrete while compared to controlled conventional and coconut shell concrete like, Flexural strength by 6.67 % for 1.0 % of steel fiber in conventional concrete and by 5.87 % for 1.5 % of steel fiber in coconut shell concrete.

  12. Aspects Concerning the Use of Recycled Concrete Aggregates

    Science.gov (United States)

    Robu, I.; Mazilu, C.; Deju, R.

    2016-11-01

    Natural aggregates (gravel and crushed) are essential non-renewable resources which are used for infrastructure works and civil engineering. Using recycled concrete aggregates (RCA) is a matter of high priority in the construction industry worldwide. This paper presents a study on the use of recycled aggregates, from a concrete of specified class, to acquire new cement concrete with different percentages of recycled aggregates.

  13. Ceramic ware waste as coarse aggregate for structural concrete production.

    Science.gov (United States)

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia M; Guerra-Romero, M Ignacio

    2015-01-01

    The manufacture of any kind of product inevitably entails the production of waste. The quantity of waste generated by the ceramic industry, a very important sector in Spain, is between 5% and 8% of the final output and it is therefore necessary to find an effective waste recovery method. The aim of the study reported in the present article was to seek a sustainable means of managing waste from the ceramic industry through the incorporation of this type of waste in the total replacement of conventional aggregate (gravel) used in structural concrete. Having verified that the recycled ceramic aggregates met all the technical requirements imposed by current Spanish legislation, established in the Code on Structural Concrete (EHE-08), then it is prepared a control concrete mix and the recycled concrete mix using 100% recycled ceramic aggregate instead of coarse natural aggregate. The concretes obtained were subjected to the appropriate tests in order to conduct a comparison of their mechanical properties. The results show that the concretes made using ceramic sanitary ware aggregate possessed the same mechanical properties as those made with conventional aggregate. It is therefore possible to conclude that the reuse of recycled ceramic aggregate to produce recycled concrete is a feasible alternative for the sustainable management of this waste.

  14. Performance of Light-Weight Concrete with Plastic Aggregate

    Directory of Open Access Journals (Sweden)

    Anju Ramesan

    2015-08-01

    Full Text Available This study is intended to explore the suitability of recycled plastics (high density polyethylene as coarse aggregate in concrete by conducting various tests like workability by slump test, compressive strength of cube and cylinder, splitting tensile strength test of cylinder, flexural strength of R.C.C as well as P.CC. beams to determine the properties and behaviour in concrete. Effect of replacement of coarse aggregate with various percentages (0% to 40% of plastic aggregate on behaviour of concrete was experimentally investigated and the optimum replacement of coarse aggregate was found out. The results showed that the addition of plastic aggregate to the concrete mixture improved the properties of the resultant mix.

  15. Mechanical Properties and Compression Sensibility of Ironstone Aggregate Concrete

    Institute of Scientific and Technical Information of China (English)

    DING Shijing; GE Debiao; ZHAO Yuezhi; YANG Jixiang

    2009-01-01

    Radiation-shielding concrete was made with ironstone aggregate.The compressive strength is affected by multi factors.The electrical conductive properties and smart performance was discovered and investigated.Experimental results show that concrete conductivity rapidly declines with increasing loading,and the conductivity is much lower than the initial value of conductive aggregate of concrete,which may be related to special characters of ironstone.This kind of concrete has widely potential applications due to its special characters and low cost.

  16. Radiation shielding concrete made of Basalt aggregates.

    Science.gov (United States)

    Alhajali, S; Yousef, S; Kanbour, M; Naoum, B

    2013-04-01

    In spite of the fact that Basalt is a widespread type of rock, there is very little available information on using it as aggregates for concrete radiation shielding. This paper investigates the possibility of using Basalt for the aforementioned purpose. The results have shown that Basalt could be used successfully for preparing radiation shielding concrete, but some attention should be paid to the choice of the suitable types of Basalt and for the neutron activation problem that could arise in the concrete shield.

  17. Effect of Chipped Rubber Aggregates on Performance of Concrete

    Directory of Open Access Journals (Sweden)

    Sunil N. Shah

    2014-12-01

    Full Text Available Due to rapid growth in automobile industry, use of tyre increases day to day and there is no reuse of the same to decrease the environmental pollution. The decomposition and disposing of waste tyre rubber is harmful to environment. This research reflects the reuse of waste tyre rubber into concrete after observing their properties. In that experimental work chipped rubber aggregates replaced to the natural coarse aggregates by varying percentage of 3, 6, 9 and 12 with comparison of 0% replacement. Silica fume is replaced in 10% with cement for improving the bond properties between cement paste and rubber. In evaluation, test has been carried out to determine the properties of concrete such as workability, unit weight, flexural strength and split tensile strength. The workability of fresh concrete is observed with the help of compaction factor test. From the test of compaction factor, workability is decrease with increasing percentage of chipped rubber. The specific gravity of chipped rubber aggregates is lower as compared to natural aggregates therefore decrease the unit weight of rubber mix concrete. Increasing chipped rubber aggregates as partial replacement into concrete reduces compressive strength. So these can use in non-primary structural applications of medium to low strength requirements. The overall results of study show that it is possible to use recycled rubber tyre aggregates in concrete construction as partial replacement to natural coarse aggregates.

  18. Use of Recycled Aggregate and Fly Ash in Concrete Pavement

    Directory of Open Access Journals (Sweden)

    Myle N. James

    2011-01-01

    Full Text Available Problem statement: Recycled materials aggregate from the demolished concrete structures and fly ash from burning coal shows the possible application as structural and non structural components in concrete structures. This research aims to evaluate the feasibility of using concrete containing recycled concrete aggregate and fly ash in concrete pavement. Approach: Two water cement ratio (0.45 and 0.55 the compressive strength, modulus of electricity and flexural strength for concrete with recycled aggregate and fly ash with 0, 25% replacing cement in mass were considered. Results: The material properties of recycled aggregate concrete with fly ash indicate comparable results with that of concrete with natural aggregate and without fly ash. Conclusion/Recommendations: The recycled materials could be used in concrete pavement and it will promote the sustainability of concrete.

  19. Lightweight concrete with Algerian limestone dust. Part II: study on 50% and 100% replacement to normal aggregate at timely age

    Directory of Open Access Journals (Sweden)

    S. Kitouni

    2015-12-01

    Full Text Available Abstract A control lightweight concrete (LWC mixture made with 50% and 100% of limestone as a replacement of coarse aggregates in weight was prepared. Limestone is used for economical and environmental concern. The concrete samples were cured at 65% relative humidity at 20 ºC. The compressive and flexural tensile strengths, elastic modulus and Poisson's ratio of hardened concrete were measured. Laboratory compressive and tensile strength tests results showed that LWC can be produced by the use of limestone. The aim of this study is twofold: one is to design a lightweight concrete with the use of limestone that will provide an advantage of reduction in dead weight of a structure; and second is to obtain a more economical LWC mixture with the use of limestone.

  20. Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate.

    Science.gov (United States)

    Erdem, Savaş; Blankson, Marva Angela

    2014-01-15

    The overall objective of this research project was to investigate the feasibility of incorporating 100% recycled aggregates, either waste precast concrete or waste asphalt planning, as replacements for virgin aggregates in structural concrete and to determine the mechanical and environmental performance of concrete containing these aggregates. Four different types of concrete mixtures were designed with the same total water cement ratio (w/c=0.74) either by using natural aggregate as reference or by totally replacing the natural aggregate with recycled material. Ground granulated blast furnace slag (GGBS) was used as a mineral addition (35%) in all mixtures. The test results showed that it is possible to obtain satisfactory performance for strength characteristics of concrete containing recycled aggregates, if these aggregates are sourced from old precast concrete. However, from the perspective of the mechanical properties, the test results indicated that concrete with RAP aggregate cannot be used for structural applications. In terms of leaching, the results also showed that the environmental behaviour of the recycled aggregate concrete is similar to that of the natural aggregate concrete.

  1. Investigation of the effect of aggregates' morphology on concrete creep properties by numerical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lavergne, F. [Université Paris-Est, Laboratoire Navier (ENPC, IFSTTAR, CNRS), 77455 Marne-la-Vallée Cedex (France); Sab, K., E-mail: karam.sab@enpc.fr [Université Paris-Est, Laboratoire Navier (ENPC, IFSTTAR, CNRS), 77455 Marne-la-Vallée Cedex (France); Sanahuja, J. [Département Mécanique des Matériaux et des Composants, EDF R& D, Site des Renardières, Avenue des Renardières, 77818 Moret-Sur-Loing Cedex (France); Bornert, M. [Université Paris-Est, Laboratoire Navier (ENPC, IFSTTAR, CNRS), 77455 Marne-la-Vallée Cedex (France); Toulemonde, C. [Département Mécanique des Matériaux et des Composants, EDF R& D, Site des Renardières, Avenue des Renardières, 77818 Moret-Sur-Loing Cedex (France)

    2015-05-15

    Prestress losses due to creep of concrete is a matter of interest for long-term operations of nuclear power plants containment buildings. Experimental studies by Granger (1995) have shown that concretes with similar formulations have different creep behaviors. The aim of this paper is to numerically investigate the effect of size distribution and shape of elastic inclusions on the long-term creep of concrete. Several microstructures with prescribed size distribution and spherical or polyhedral shape of inclusions are generated. By using the 3D numerical homogenization procedure for viscoelastic microstructures proposed by Šmilauer and Bažant (2010), it is shown that the size distribution and shape of inclusions have no measurable influence on the overall creep behavior. Moreover, a mean-field estimate provides close predictions. An Interfacial Transition Zone was introduced according to the model of Nadeau (2003). It is shown that this feature of concrete's microstructure can explain differences between creep behaviors.

  2. Influence of aggregate size and free water on the dynamic behaviour of concrete subjected to impact loading

    Science.gov (United States)

    Erzar, B.; Forquin, P.; Pontiroli, C.; Buzaud, E.

    2010-06-01

    Concrete is a material widely used in civil engineering. Thus the knowledge of its mechanical behaviour is a major safety issue to evaluate the ability of a structure to resist to an intense dynamic loading. In this study, two experimental techniques have been applied to a micro-concrete and a common concrete to assess the influence of the aggregate size on the dynamic response. First, spalling tests on dry and wet specimens have been performed to characterize the tensile strength of concrete at strain rates in the range 30 - 150/s. Then, edge-on impact tests in sarcophagus configuration have been conducted. The cracking pattern of the micro-concrete and the concrete plates in wet and dry conditions have been compared to appraise the influence of aggregate size and free water on the damaging process.

  3. Mechanical and physical properties of polyester polymer concrete using recycled aggregates from concrete sleepers.

    Science.gov (United States)

    Carrión, Francisco; Montalbán, Laura; Real, Julia I; Real, Teresa

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.

  4. Mechanical and Physical Properties of Polyester Polymer Concrete Using Recycled Aggregates from Concrete Sleepers

    Directory of Open Access Journals (Sweden)

    Francisco Carrión

    2014-01-01

    Full Text Available Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate, and waste aggregates (basalt and limestone coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%, and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.

  5. Properties of Industrial Slag as Fine Aggregate in Concrete

    Directory of Open Access Journals (Sweden)

    A. Ananthi

    2015-04-01

    Full Text Available The main objective of this paper is to use the industrial waste such as bottom ash and Weld Slag (WS as the partial replacement for fine aggregates in concrete. This paper presents the chemical analysis and strength properties of industrial solid waste such as bottom ash, weld slag 1 (WS 1 and weld slag 2 (WS 2. Their chemical compositions were identified by X-ray powder diffraction (XRD analysis. The qualitative and quantitative elemental analysis of the bottom ash and weld slag was recognized by energy dispersive X-ray analysis and their morphology were studied by Scanning Electron Microscope (SEM. The compressive strength of concrete with 10% replacement of fine aggregate to the industrial waste shows higher strength than the normal concrete and hence this industrial waste can be used as fine aggregate in concrete.

  6. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates.

    Science.gov (United States)

    Siringi, Gideon; Abolmaali, Ali; Aswath, Pranesh B

    2015-01-01

    Tire derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength) based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA.

  7. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates

    Science.gov (United States)

    Siringi, Gideon; Abolmaali, Ali; Aswath, Pranesh B.

    2015-01-01

    Tire derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength) based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA. PMID:26161440

  8. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates

    Directory of Open Access Journals (Sweden)

    Gideon Siringi

    2015-01-01

    Full Text Available Tire derived aggregate (TDA has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA.

  9. Use of recycled fine aggregate in concretes with durable requirements.

    Science.gov (United States)

    Zega, Claudio Javier; Di Maio, Angel Antonio

    2011-11-01

    The use of construction waste materials as aggregates for concrete production is highly attractive compared to the use of non-renewable natural resources, promoting environmental protection and allowing the development of a new raw material. Several countries have recommendations for the use of recycled coarse aggregate in structural concrete, whereas the use of the fine fraction is limited because it may produce significant changes in some properties of concrete. However, during the last decade the use of recycled fine aggregates (RFA) has achieved a great international interest, mainly because of economic implications related to the shortage of natural sands suitable for the production of concrete, besides to allow an integral use of this type of waste. In this study, the durable behaviour of structural concretes made with different percentage of RFA (0%, 20%, and 30%) is evaluated. Different properties related to the durability of concretes such as absorption, sorptivity, water penetration under pressure, and carbonation are determined. In addition, the results of compressive strength, static modulus of elasticity and drying shrinkage are presented. The obtained results indicate that the recycled concretes have a suitable resistant and durable behaviour, according to the limits indicated by different international codes for structural concrete.

  10. Study Concerning Characterization of Some Recycled Concrete Aggregates

    Directory of Open Access Journals (Sweden)

    Robu Ion

    2016-03-01

    Full Text Available Using recycled concrete aggregates (RCA is a matter of high priority in the construction industry worldwide. In countries like the Netherlands, Denmark, Germany, USA, Japan, France recycled concrete aggregates obtained from demolition are valorized up to 90%, mainly for road construction and less in the manufacture of new concrete.

  11. Basic Properties of Concrete Incorporating Recycled Ceramic Aggregate and Ultra-fine Sand

    Institute of Scientific and Technical Information of China (English)

    LIU Fengli; LIU Junhua; MA Baoguo; HUANG Jian; LI Hainan

    2015-01-01

    Recycled ceramic mixed sand (RCMS) was obtained by partially replacing ultra-fine sand with recycled ceramic coarse sand (RCCS). The effects of RCCS replacement rate on the apparent density, workability, compressive strength and splitting tensile strength of recycled ceramic concrete (RCC) were investigated. In addition, the relationship between the water-cement ratio and compressive strength of RCC was also studied. The experimental results indicate that the reusing of recycled ceramic aggregate can improve the cohesiveness and water retentiveness of fresh concrete and benefit the mechanical properties development. When the RCCS replacement rate is not less than 40%, the mechanical properties of RCC are superior to those of the reference concrete. Moreover, when recycled ceramic medium sand was completely used as fine aggregate, the maximum increase in both compressive strength and splitting tensile strength were obtained, comparing with those of reference concrete, the increment ratio was 19.85% and 32.73%, respectively. The microscopic analysis shows that the using of recycled ceramic aggregate can meliorate distinctly the structure of the interfacial transition zone (ITZ) and increase the compaction degree of cement paste. Furthermore, an expression of the compressive strength of RCC and the cement-water ratio is regressed and gains a good linear relativity. It is an effective way to recycle waste ceramic, and the consumption of recycled ceramic aggregate could reach from 26.9%to 47.6%of the total weight of aggregate in producing concrete.

  12. Evaluation of Colemanite Waste as Aggregate Hot Mix Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Nihat MOROVA

    2015-09-01

    Full Text Available In this study usability of waste colemanite which is obtained after cutting block colemanite for giving proper shape to blocks as an aggregate in hot mix asphalt. For this aim asphalt concrete samples were prepared with four different aggregate groups and optimum bitumen content was determined. First of all only limestone was used as an aggregate. After that, only colemanite aggregate was used with same aggregate gradation. Then, the next step of the study, Marshall samples were produced by changing coarse and fine aggregate gradation as limestone and colemanite and Marshall test were conducted. When evaluated the results samples which produced with only limestone aggregate gave the maximum Marshall Stability value. When handled other mixture groups (Only colemanite, colemanite as coarse aggregate-limestone as fine aggregate, colemanite as fine aggregate-limestone as coarse aggregate all groups were verified specification limits. As a result, especially in areas where there is widespread colemanite waste, if transportation costs did not exceed the cost of limestone, colemanite stone waste could be used instead of limestone in asphalt concrete mixtures as fine aggregate

  13. Applicability of recycled aggregates in concrete piles for soft soil improvement.

    Science.gov (United States)

    Medeiros-Junior, Ronaldo A; Balestra, Carlos Et; Lima, Maryangela G

    2017-01-01

    The expressive generation of construction and demolition waste is stimulating several studies for reusing this material. The improvement of soft soils by concrete compaction piles has been widely applied for 40 years in some Brazilian cities. This technique is used to improve the bearing capacity of soft soils, allowing executing shallow foundations instead of deep foundations. The compaction piles use a high volume of material. This article explored the possibility of using recycled aggregates from construction waste to replace the natural aggregates in order to improve the bearing capacity of the soft soil, regarding its compressive strength. Construction wastes from different stages of a construction were used in order to make samples of concrete with recycled aggregates. The strength of concretes with natural aggregates was compared with the strength of concretes with recycled (fine and coarse) aggregates. Results show that all samples met the minimum compressive strength specified for compaction piles used to improve the bearing capacity of soft soils. The concrete with recycled aggregate from the structural stage had even higher resistances than the concrete with natural aggregates. This behaviour was attributed to the large amount of cementitious materials in the composition of this type of concrete. It was also observed that concrete with recycled fine aggregate has a superior resistance to concrete with recycled coarse aggregate.

  14. Leaching assessment of concrete made of recycled coarse aggregate: physical and environmental characterisation of aggregates and hardened concrete.

    Science.gov (United States)

    Galvín, A P; Agrela, F; Ayuso, J; Beltrán, M G; Barbudo, A

    2014-09-01

    Each year, millions of tonnes of waste are generated worldwide, partially through the construction and demolition of buildings. Recycling the resulting waste could reduce the amount of materials that need to be manufactured. Accordingly, the present work has analysed the potential reuse of construction waste in concrete manufacturing by replacing the natural aggregate with recycled concrete coarse aggregate. However, incorporating alternative materials in concrete manufacturing may increase the pollutant potential of the product, presenting an environmental risk via ground water contamination. The present work has tested two types of concrete batches that were manufactured with different replacement percentages. The experimental procedure analyses not only the effect of the portion of recycled aggregate on the physical properties of concrete but also on the leaching behaviour as indicative of the contamination degree. Thus, parameters such as slump, density, porosity and absorption of hardened concrete, were studied. Leaching behaviour was evaluated based on the availability test performed to three aggregates (raw materials of the concrete batches) and on the diffusion test performed to all concrete. From an environmental point of view, the question of whether the cumulative amount of heavy metals that are released by diffusion reaches the availability threshold was answered. The analysis of concentration levels allowed the establishment of different groups of metals according to the observed behaviour, the analysis of the role of pH and the identification of the main release mechanisms. Finally, through a statistical analysis, physical parameters and diffusion data were interrelated. It allowed estimating the relevance of porosity, density and absorption of hardened concrete on diffusion release of the metals in study.

  15. Performance of Recycled Aggregate Concrete Containing Micronised Biomass Silica

    Directory of Open Access Journals (Sweden)

    Suraya Hani Adnan

    2011-07-01

    Full Text Available This paper presents a study on Micronised Biomass Silica (MBS that was produced from the controlled burning of waste Rice Husk. The MBS was used as pozzolan material to enhance the performance of Recycled Aggregate Concrete (RAC. Various percentages by mass of Micronised Biomass Silica were applied in the normal and recycled aggregate concrete cube samples. Compressive strength and water permeability tested on the samples at the age of 7, 14, 28 and 90 days showed that concrete containing MBS has attained higher compressive strength. Furthermore, the test on MBS also showed its ability to enhance the concrete water permeability. Lengthen to this; the study established a good correlation between the MBS content with compressive strength and water permeability coefficient.

  16. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths

    Directory of Open Access Journals (Sweden)

    Hongying Dong

    2014-12-01

    Full Text Available In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete’s compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.

  17. 再生骨料混凝土路面耐磨性的研究%Research on Abrasion Resistance of Recycled Aggregate Concrete by Response Surface Methodology

    Institute of Scientific and Technical Information of China (English)

    杨宁; 赵美霞

    2011-01-01

    采用单因素扫描法系统考察了再生粗骨料的取代率、水胶比、砂率、胶凝材料的总用量等因素对再生混凝土耐磨性能的影响,分析了其产生的原因.在单因素试验的基础上,通过响应面法对影响再生混凝土耐磨性能的显著因素进行了更进一步的研究,并建立了相应的预测模型.结果表明:再生骨料的取代率和水胶比对再生混凝土耐磨性影响最为显著,砂率和胶凝材料的总用量对再生混凝土耐磨性有一定的影响,且再生骨料取代率为43%、水胶比为0.38、砂率为35%时再生混凝土耐磨性能最佳,研究结果为再生混凝土耐磨性的深入研究提供了一定的借鉴和参考.%The single factor scanning method was used to analyze the effects of replacement ratio of recycled coarse aggregate, water-binder ratio, sand-coarse aggregate ratio, the total amount of gelled material on the wear resistance of recycled aggregate concrete, and its reasons were analyzed. On the basis of the single-factor test, the significant influence factors of the wear resistance of recycled aggregate concrete were further studied by the response surface methodology ( RSM ) , and a correlation model on the optimized wear resistance of recycled aggregate concrete was presented. The analysis results show that replacement ratio of recycled coarse aggregate, water-binder ratio exert tremendous influence on wear resistance of recycled aggregate concrete, sand-coarse aggregate ratio and the total amount of gelled material exert certain influence. Wear resistance of recycled aggregate concrete is best when replacement ratio of recycled coarse aggregate is 43% , water-binder ratio is 0. 38, sand-coarse aggregate ratio is 0. 35. The test results also can provide a reference for future further study on abrasion resistance of recycled aggregate concrete.

  18. The Influence of Crushed Concrete Demolition Waste Aggregates on the Hardening Process of Concrete Mixtures

    Directory of Open Access Journals (Sweden)

    Olga FINOŽENOK

    2013-03-01

    Full Text Available Concrete – complex structure composite material consisting of the components with various structure and size. Not only coarse and fine aggregates are used in concrete production, but also filler aggregates. Aggregates of natural, man-made origin or aggregates, produced from recycled materials, can be utilised in concrete production. Aggregates can be produced from recycled materials by reprocessing of concrete and reinforced concrete waste. The influence of the filler aggregates produced from the crushed concrete waste on the characteristics of binder’s paste, when part of the binder (5; 10; 15; 20; 25; 30 % is replaced by such filler aggregate, is analysed in the research. Concrete mixtures with natural aggregates and crushed concrete waste were selected and concrete mixtures of required consistence were produced during the research. Exothermic reactions take place during the hardening of concrete mixture, at that time the heat is dissipated, which increases the temperature of the concrete sample. Thus the exothermic processes were investigated during the concrete’s mixture hardening period and the temperatures of exothermic reactions were determined.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3833

  19. A Study of Concrete Made with Fine and Coarse Aggregates Recycled from Fresh Concrete Waste

    Directory of Open Access Journals (Sweden)

    Mamery Sérifou

    2013-01-01

    Full Text Available This paper deals with the possibility of using fresh concrete waste as recycled aggregates in concrete. An experimental program based on two variables (proportion of fine aggregates replacement and proportion of coarse aggregates replacement was implemented. The proportions of replacement were 0%, 50%, and 100% by mass of aggregates. Several mechanical properties were tested as compressive and tensile strengths. The results show a good correlation between aggregates replacement percentage and concrete properties. Concerning mechanical properties, a gradual decrease in compressive, splitting, and flexural strengthn with the increase in recycled aggregate percentage is shown.

  20. SHAPE ANALYSIS OF FINE AGGREGATES USED FOR CONCRETE

    Directory of Open Access Journals (Sweden)

    Huan He

    2016-12-01

    Full Text Available Fine aggregate is one of the essential components in concrete and significantly influences the material properties. As parts of natures, physical characteristics of fine aggregate are highly relevant to its behaviors in concrete. The most of previous studies are mainly focused on the physical properties of coarse aggregate due to the equipment limitations. In this paper, two typical fine aggregates, i.e. river sand and crushed rock, are selected for shape characterization. The new developed digital image analysis systems are employed as the main approaches for the purpose. Some other technical methods, e.g. sieve test, laser diffraction method are also used for the comparable references. Shape characteristics of fine aggregates with different origins but in similar size ranges are revealed by this study. Compared with coarse aggregate, fine grains of different origins generally have similar shape differences. These differences are more significant in surface texture properties, which can be easily identified by an advanced shape parameter: bluntness. The new image analysis method is then approved to be efficient for the shape characterization of fine aggregate in concrete.

  1. Effects of maximum aggregate size on UPV of brick aggregate concrete.

    Science.gov (United States)

    Mohammed, Tarek Uddin; Mahmood, Aziz Hasan

    2016-07-01

    Investigation was carried out to study the effects of maximum aggregate size (MAS) (12.5mm, 19.0mm, 25.0mm, 37.5mm, and 50.0mm) on ultrasonic pulse velocity (UPV) of concrete. For investigation, first class bricks were collected and broken to make coarse aggregate. The aggregates were tested for specific gravity, absorption capacity, unit weight, and abrasion resistance. Cylindrical concrete specimens were made with different sand to aggregate volume ratio (s/a) (0.40 and 0.45), W/C ratio (0.45, 0.50, and 0.55), and cement content (375kg/m(3) and 400kg/m(3)). The specimens were tested for compressive strength and Young's modulus. UPV through wet specimen was measured using Portable Ultrasonic Non-destructive Digital Indicating Tester (PUNDIT). Results indicate that the pulse velocity through concrete increases with an increase in MAS. Relationships between UPV and compressive strength; and UPV and Young's modulus of concrete are proposed for different maximum sizes of brick aggregate.

  2. Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates

    OpenAIRE

    2016-01-01

    This paper presents mechanical and durability properties of geopolymer concrete containing recycled coarse aggregate (RCA). The RCA is sourced from local construction and demolition (C&D) waste in Perth, Australia. The RCA is used as a partial replacement of natural coarse aggregate (NCA) in geopolymer concrete at 15%, 30% and 50% by wt. which corresponds to series two, three and four, respectively, while the geopolymer concrete containing 100% NCA is control and is considered as the first se...

  3. Study on performance of concrete with over-burnt bricks aggregates and micro-silica admixture

    Science.gov (United States)

    Praveen, K.; Sathyan, Dhanya; Mini, K. M.

    2016-09-01

    Concrete is made by mixing cement, sand, aggregates and water in required proportion, where aggregates occupy the major volume. Addition of aggregates in concrete improves properties of concrete. With the natural resources depleting rapidly, limiting the use of natural resources and enhancing the use of waste materials is very important for sustainable development. Over-burnt bricks are a waste material which cannot be used in construction directly because of their irregular shape and dark colour. Use of over-burnt bricks helps to preserve natural aggregate source. The present study focuses on the effects of microsilica at various percentages as a partial cement replacement in concrete with over-burnt bricks as coarse aggregates. The mechanical properties of hardened concrete such as splitting tensile strength, flexural strength and compressive strength are studied and analyzed.

  4. Performance of Recycled Asphalt Pavement as Coarse Aggregate in Concrete

    Directory of Open Access Journals (Sweden)

    Fidelis O. OKAFOR

    2010-12-01

    Full Text Available Recycled asphalt pavement (RAP is the reclaimed and reprocessed pavement material containing asphalt and aggregate. Most RAP is recycled back into pavements, and as a result there is a general lack of data pertaining to the mechanical properties for RAP in other possible applications such as Portland cement concrete. In the present study, some mechanical properties of Portland cement concrete containing RAP as coarse aggregate were investigated in the laboratory. Six concrete mixes of widely differing water/cement ratios and mix proportions were made using RAP as coarse aggregate. The properties tested include the physical properties of the RAP aggregate, the compressive and flexural strengths of the concrete. These properties were compared with those of similar concretes made with natural gravel aggregate. Results of the tests suggest that the strength of concrete made from RAP is dependent on the bond strength of the “asphalt-mortar” (asphalt binder-sand-filler matrix coatings on the aggregates and may not produce concrete with compressive strength above 25 MPa. However, for middle and low strength concrete, the material was found to compare favorably with natural gravel aggregate.

  5. Properties of concrete with tire derived aggregate and crumb rubber as a lighthweight substitute for mineral aggregates in the concrete mix

    Science.gov (United States)

    Siringi, Gideon Momanyi

    Scrap tires continue to be a nuisance to the environment and this research proposes one way of recycling them as a lightweight aggregate which can substitute for mineral aggregates in concrete. Aggregates derived from scrap tires are often referred to as Tire Derived Aggregate (TDA). First, the focus is how much mineral aggregate can be replaced by these waste tires and how the properties of concrete are affected with the introduction of rubber. This is being mindful of the fact that for a new material to be acceptable as an engineering material, its properties and behavior has to be well understood, the materials must perform properly and be acceptable to the regulating agencies. The role played by the quantity of TDA and Crumb Rubber replacing coarse aggregate and fine aggregate respectively as well as different treatment and additives in concrete on its properties are examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, Splitting Tensile Strength based on ASTM C496, Modulus of Rupture (flexural strength) based on ASTM C78 and Bond strength of concrete developed with reinforcing steel based on ASTM C234.Through stress-strain plots, the rubberized concrete is compared in terms of change in ductility, toughness and Elastic Modulus. Results indicate that while replacement of mineral aggregates with TDA results in reduction in compressive strength, this may be mitigated by addition of silica fume or using a smaller size of TDA to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product with lower density while utilizing recycled TDA. From the results, it is observed that 7-10% of weight of mineral aggregates can be replaced by an equal volume of TDA to produce concrete with compressive strength of up to 4000 psi (27.5 MPa). Rubberized concrete would have higher ductility and toughness with

  6. Increased Durability of Concrete Made with Fine Recycled Concrete Aggregates Using Superplasticizers

    Directory of Open Access Journals (Sweden)

    Francisco Cartuxo

    2016-02-01

    Full Text Available This paper evaluates the influence of two superplasticizers (SP on the durability properties of concrete made with fine recycled concrete aggregate (FRCA. For this purpose, three families of concrete were tested: concrete without SP, concrete made with a regular superplasticizer and concrete made with a high-performance superplasticizer. Five volumetric replacement ratios of natural sand by FRCA were tested: 0%, 10%, 30%, 50% and 100%. Two natural gravels were used as coarse aggregates. All mixes had the same particle size distribution, cement content and amount of superplasticizer. The w/c ratio was calibrated to obtain similar slump. The results showed that the incorporation of FRCA increased the water absorption by immersion, the water absorption by capillary action, the carbonation depth and the chloride migration coefficient, while the use of superplasticizers highly improved these properties. The incorporation of FRCA jeopardized the SP’s effectiveness. This research demonstrated that, from a durability point of view, the simultaneous incorporation of FRCA and high-performance SP is a viable sustainable solution for structural concrete production.

  7. Evaluation of recycled concrete aggregates for their suitability in construction activities: An experimental study.

    Science.gov (United States)

    Puthussery, Joseph V; Kumar, Rakesh; Garg, Anurag

    2017-02-01

    Construction and demolition waste disposal is a major challenge in developing nations due to its ever increasing quantities. In this study, the recycling potential of waste concrete as aggregates in construction activities was studied. The metal leaching from the recycled concrete aggregates (RCA) collected from the demolition site of a 50year old building, was evaluated by performing three different leaching tests (compliance, availability and Toxic Characteristic Leaching Procedure). The metal leaching was found mostly within the permissible limit except for Hg. Several tests were performed to determine the physical and mechanical properties of the fine and coarse aggregates produced from recycled concrete. The properties of recycled aggregates were found to be satisfactory for their utilization in road construction activities. The suitability of using recycled fine and coarse aggregates with Portland pozzolanic cement to make a sustainable and environmental friendly concrete mix design was also analyzed. No significant difference was observed in the compressive strength of various concrete mixes prepared by natural and recycled aggregates. However, only the tensile strength of the mix prepared with 25% recycled fine aggregates was comparable to that of the control concrete. For other mixes, the tensile strength of the concrete was found to drop significantly. In summary, RCA should be considered seriously as a building material for road construction, mass concrete works, lightly reinforced sections, etc. The present work will be useful for the waste managers and policy makers particularly in developing nations where proper guidelines are still lacking.

  8. Effect of Aggregate Gradation with Fuller Distribution on Properties of Sulphoaluminate Cement Concrete

    Institute of Scientific and Technical Information of China (English)

    GONG Chenchen; ZHANG Jie; WANG Shoude; LU Lingchao

    2015-01-01

    Experimental investigations on mechanical property and durability of sulphoaluminate cement concrete with aggregate gradations according to Fuller distribution are presented in this paper. Compressive strength, water impermeability and resistance capability to sulfate attack of SACC have the same trend of concrete with fine aggregates of Fuller distribution gradation<concrete with coarse aggregates of Fuller distribution gradation<concrete with total aggregates of Fuller distribution gradation. The relationship between bulk density of aggregate and water penetration depth obeyed the second-order polynomialy=0.002x2-6.863 8x+5 862.3, and had a notable correlationR2=0.979 9. The sulphoaluminate cement concrete with total aggregate gradation with Fuller distribution forh=0.50 had the best resistance capability to sulfate attack. It was a second-order polynomial relationship between bulk density of aggregates and water penetration depth of y=0.002x2-6.863 8x+5 862.3 withR2=0.979 9, which indicated notable correlation. The iftting formula between bulk density of aggregates and sulfate resistance coefifcient of SACC wasy=0.000 5x+0.370 4 withR2=0.958 5.

  9. Acid Resistance of Concrete Containing Laterite Aggregate as Partial Coarse Aggregate Replacement

    Directory of Open Access Journals (Sweden)

    K. Muthusamy

    2014-05-01

    Full Text Available In Malaysia, issues of granite aggregate depletion in future due to increasing use in concrete industry and the availability of laterite aggregate locally has initiated studies on concrete produced using laterite aggregate as partial coarse aggregate replacement. Although, replacement of laterite aggregate up to 30% able to produce concrete with the targeted strength but durability of this concrete towards acid attack yet to be investigated. Thus, this study presents and discusses the performance of concrete consisting various percentage of laterite aggregate integrated as partial coarse aggregate replacement upon exposure to acidic environment. Mixes consisting various content of laterite aggregate as partial coarse aggregate replacement ranging from 0, 10, 20, 30, 40 and 50%, respectively were prepared in form of cubes and then subjected to water curing for 28 days before immersed in hydrochloric acid solution for 1800 h. Performance of the specimens were observed through mass loss and strength reduction. Generally, durability performance of concrete produced using up to 20% of laterite aggregate is comparable to plain concrete.

  10. Concrete density estimation by rebound hammer method

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Mohamad Pauzi bin, E-mail: pauzi@nm.gov.my; Masenwat, Noor Azreen bin; Sani, Suhairy bin; Mohd, Shukri [NDT Group, Nuclear Malaysia, Bangi, Kajang, Selangor (Malaysia); Jefri, Muhamad Hafizie Bin; Abdullah, Mahadzir Bin [Material Technology Program, Faculty of Applied Sciences, UiTM, Shah Alam, Selangor (Malaysia); Isa, Nasharuddin bin; Mahmud, Mohamad Haniza bin [Pusat Penyelidikan Mineral, Jabatan Mineral dan Geosains, Ipoh, Perak (Malaysia)

    2016-01-22

    Concrete is the most common and cheap material for radiation shielding. Compressive strength is the main parameter checked for determining concrete quality. However, for shielding purposes density is the parameter that needs to be considered. X- and -gamma radiations are effectively absorbed by a material with high atomic number and high density such as concrete. The high strength normally implies to higher density in concrete but this is not always true. This paper explains and discusses the correlation between rebound hammer testing and density for concrete containing hematite aggregates. A comparison is also made with normal concrete i.e. concrete containing crushed granite.

  11. Concrete density estimation by rebound hammer method

    Science.gov (United States)

    Ismail, Mohamad Pauzi bin; Jefri, Muhamad Hafizie Bin; Abdullah, Mahadzir Bin; Masenwat, Noor Azreen bin; Sani, Suhairy bin; Mohd, Shukri; Isa, Nasharuddin bin; Mahmud, Mohamad Haniza bin

    2016-01-01

    Concrete is the most common and cheap material for radiation shielding. Compressive strength is the main parameter checked for determining concrete quality. However, for shielding purposes density is the parameter that needs to be considered. X- and -gamma radiations are effectively absorbed by a material with high atomic number and high density such as concrete. The high strength normally implies to higher density in concrete but this is not always true. This paper explains and discusses the correlation between rebound hammer testing and density for concrete containing hematite aggregates. A comparison is also made with normal concrete i.e. concrete containing crushed granite.

  12. Corrosion Behavior of Steel Reinforcement in Concrete with Recycled Aggregates, Fly Ash and Spent Cracking Catalyst

    Directory of Open Access Journals (Sweden)

    Hebé Gurdián

    2014-04-01

    Full Text Available The main strategy to reduce the environmental impact of the concrete industry is to reuse the waste materials. This research has considered the combination of cement replacement by industrial by-products, and natural coarse aggregate substitution by recycled aggregate. The aim is to evaluate the behavior of concretes with a reduced impact on the environment by replacing a 50% of cement by industrial by-products (15% of spent fluid catalytic cracking catalyst and 35% of fly ash and a 100% of natural coarse aggregate by recycled aggregate. The concretes prepared according to these considerations have been tested in terms of mechanical strengths and the protection offered against steel reinforcement corrosion under carbonation attack and chloride-contaminated environments. The proposed concrete combinations reduced the mechanical performance of concretes in terms of elastic modulus, compressive strength, and flexural strength. In addition, an increase in open porosity due to the presence of recycled aggregate was observed, which is coherent with the changes observed in mechanical tests. Regarding corrosion tests, no significant differences were observed in the case of the resistance of these types of concretes under a natural chloride attack. In the case of carbonation attack, although all concretes did not stand the highly aggressive conditions, those concretes with cement replacement behaved worse than Portland cement concretes.

  13. Properties of Recycled Aggregate Concrete Reinforced with Polypropylene Fibre

    Directory of Open Access Journals (Sweden)

    Wan Mohammad Wan Nur Syazwani

    2016-01-01

    Full Text Available This research work is aimed to investigate how the addition of various proportion of polypropylene fibre affects the mechanical strength and permeability characteristics of recycled aggregate concrete (RAC which has been produced with treated coarse recycled concrete aggregate (RCA. Further research on RAC properties and their applications is of great importance as the scarcity of virgin aggregate sources in close proximity to major urban centers is becoming a worldwide problem. In this study, the hardened RAC properties at the curing age of 7 and 28 days such as compressive strength, flexural strength, ultrasonic pulse velocity (UPV, water absorption and total porosity were evaluated and compare with control specimens. Experimental result indicates that although the inclusion of the treated coarse RCA can enhance the mechanical strength and permeability properties of RAC, Further modification by addition of polypropylene fibre can optimize the results.

  14. Lithuanian Quarry Aggregates Concrete Effects of Alkaline Corrosion Tests

    Directory of Open Access Journals (Sweden)

    Aurimas Rutkauskas

    2016-02-01

    Full Text Available Aggregate alkaline corrosion of cement in concrete is going to respond in sodium and potassium hydroxide (lye with active SiO2 found in some aggregates. During this reaction, the concrete has resulted in significant internal stresses which cause deformation of the concrete, cracking and disintegration. The reaction is slow and concrete signs of decomposition appear only after a few months or years. The study used two different aggregates quarries. Studies show that Lithuania gravel contaminated with reactive particles having amorphous silicon dioxide reacting with cement in sodium and potassium hydroxide and the resulting alkaline concrete corrosion. It was found that, according to AAR 2 large aggregates include Group II – potentially reactive because of their expansion after 14 days, higher than 0.1%.

  15. Porosity of the recycled concrete with substitution of recycled concrete aggregate. An experimental study

    OpenAIRE

    Gómez Soberón, José Manuel Vicente

    2002-01-01

    In this paper, we present the experimental analysis of samples of recycled concrete (RC) with replacement of natural aggregate (NA) by recycled aggregate originating from concrete (RCA). The results of the tests of mechanical properties of RC were used for comparison with tests of mercury intrusion porosimetry (MIP), in which the distribution of the theoretical pore radius, critical pore ratio, the surface area of the concrete, threshold ratio and average pore radius were studied at ages of 7...

  16. Study of the fracture behavior of mortar and concretes with crushed rock or pebble aggregates

    Directory of Open Access Journals (Sweden)

    Sebastião Ribeiro

    2011-03-01

    Full Text Available The objective of this work was to compare the fracture energy of mortar and concretes produced with crushed rock and pebble aggregates using zero, 10, 20, 30 and 40% of aggregates mixed with standard mortar and applying the wedge splitting method to achieve stable crack propagation. The samples were cast in a special mold and cured for 28 days, after which they were subjected to crack propagation tests by the wedge splitting method to determine the fracture energies of the mortar and concrete. The concretes showed higher fracture energy than the mortar, and the concretes containing crushed rock showed higher resistance to crack propagation than all the compositions containing pebbles. The fracture energy varied from 38 to 55 J.m-2. A comparison of the number of aggregates that separated from the two concrete matrices with the highest fracture energies indicated that the concrete containing pebbles crumbled more easily and was therefore less resistant to crack propagation.

  17. Study of Biomass Calcite as Fine Aggregate of Concrete

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; YU Yan

    2012-01-01

    The possibility of using crushed oyster shell to partly replace the fine aggregate of concrete was evaluated. The compressive strength and slump of concrete mixture with different amount of crushed oyster shell were tested and thus the appropriate dosage was determined. Additionally, the compatibility with super plasticizer and the stability in NazSO4 solution were also discussed to prove the feasibility of oyster shell as fine aggregate of concrete. The microstructure of concrete was observed with XRD and SEM techniques. This research provides the basis for the application of waste biomass calcite.

  18. Exploratory Study of Palm Oil Fuel Ash as Partial Cement Replacement in Oil Palm Shell Lightweight Aggregate Concrete

    OpenAIRE

    Muthusamy, K.; Z. Nur Azzimah

    2014-01-01

    In Malaysia, issue of environmental pollution resulting from disposal of Palm Oil Fuel Ash (POFA) which is a by-product from palm oil mill has initiated research to incorporate this waste in Oil Palm Shell (OPS) lightweight aggregate concrete production. The current study investigates the effect of palm oil fuel ash content as partial cement replacement towards compressive strength OPS lightweight aggregate concrete. Several OPS lightweight aggregate concrete mixes were produced by replacing ...

  19. Evaluation of the Properties of Bituminous Concrete Prepared from Brick-Stone Mix Aggregate

    Directory of Open Access Journals (Sweden)

    Dipankar Sarkar

    2016-01-01

    Full Text Available The paper describes an investigation into mechanical properties of brick-stone bituminous concrete mix. The effect of brick-stone mix on various mechanical properties of the bituminous concrete such as Marshall stability, flow, Marshall Quotient (stability to flow ratio, Indirect Tensile Strength, stripping, rutting, and fatigue life of bituminous concrete overlay has been evaluated. In this study over-burnt brick aggregate (OBBA and stone aggregate (SA have been mixed in different ratios (by weight such as 20 : 80, 40 : 60, 60 : 40, and 80 : 20, respectively. The laboratory results indicate that bituminous concrete, prepared by 20% brick aggregate and 80% stone aggregate, gives the highest Marshall stability. This bituminous concrete mix shows considerable improvement in various mechanical properties of the mix as compared to the other mixes.

  20. Durability of recycled aggregate concrete using pozzolanic materials.

    Science.gov (United States)

    Ann, K Y; Moon, H Y; Kim, Y B; Ryou, J

    2008-01-01

    In this study, pulverized fuel ash (PFA) and ground granulated blast furnace slag (GGBS) were used to compensate for the loss of strength and durability of concrete containing recycled aggregate. As a result, 30% PFA and 65% GGBS concretes increased the compressive strength to the level of control specimens cast with natural granite gravel, but the tensile strength was still lowered at 28 days. Replacement with PFA and GGBS was effective in raising the resistance to chloride ion penetrability into the concrete body, measured by a rapid chloride ion penetration test based on ASTM C 1202-91. It was found that the corrosion rate of 30% PFA and 65% GGBS concretes was kept at a lower level after corrosion initiation, compared to the control specimens, presumably due to the restriction of oxygen and water access. However, it was less effective in increasing the chloride threshold level for steel corrosion. Hence, it is expected that the corrosion time for 30% PFA and 65% GGBS concrete containing recycled aggregate mostly equates to the corrosion-free life of control specimens.

  1. Stress wave communication in concrete: I. Characterization of a smart aggregate based concrete channel

    Science.gov (United States)

    Siu, Sam; Ji, Qing; Wu, Wenhao; Song, Gangbing; Ding, Zhi

    2014-12-01

    In this paper, we explore the characteristics of a concrete block as a communication medium with piezoelectric transducers. Lead zirconate titanate (PZT) is a piezoceramic material used in smart materials intended for structural health monitoring (SHM). Additionally, a PZT based smart aggregate (SA) is capable of implementing stress wave communications which is utilized for investigating the properties of an SA based concrete channel. Our experiments characterize single-input single-output and multiple-input multiple-output (MIMO) concrete channels in order to determine the potential capacity limits of SAs for stress wave communication. We first provide estimates and validate the concrete channel response. Followed by a theoretical upper bound for data rate capacity of our two channels, demonstrating a near-twofold increase in channel capacity by utilizing multiple transceivers to form an MIMO system. Our channel modeling techniques and results are also helpful to researchers using SAs with regards to SHM, energy harvesting and stress wave communications.

  2. Performance Degradation of the Repeated Recycled Aggregate Concrete with 70% Replacement of Three-generation Recycled Coarse Aggregate

    Institute of Scientific and Technical Information of China (English)

    ZHU Pinghua; ZHANG Xinxin; WU Junyong; WANG Xinjie

    2016-01-01

    The feasibility of using different generations recycled coarse aggregate (RCA) on structural concrete was fully evaluated by studying the performance of the recycled coarse aggregates and their corresponding concretes, the different generations of RCA were recycled by following the repeated mode of ‘concrete-waste concrete-coarse aggregate-concrete’. Moreover, the focus was on ‘three generations’ of repeated RCAs, the RCA was produced by crushing and regenerating the artiifcial accelerated degraded concrete, the process was designed to follow the nature degradation of the concrete with a coupling action of accelerated carbonation and bending load. The properties ofx-generation (x=1, 2 or 3) of repeated RCA were systematically investigated and the compressive and splitting tensile strengths of relating structural concretes(with 70% replacement ofx-generation of RCA) were studied accordingly. The results show a competent compressive and splitting tensile strength of 30 MPa at 28th day of structural concretes with all generations of repeated RAC. And the gradual degraded performance of the repeated RCAs was observed with an increased numbers of repetition (1﹥2﹥3 generations), the overall performances of all repeated RCAs fulifll the ClassⅢaccording to Chinese Standards GB25177-2010. Our gained insight demonstrates a feasibility of using at least 3 generations of repeated RCA for the production of normal structural concrete.

  3. Theoretical Analysis on Mechanical Behavior of Axially Loaded Recycled Aggregate Concrete Filled Steel Tubes

    Directory of Open Access Journals (Sweden)

    Yijie Huang

    2015-01-01

    Full Text Available A new mechanical model for analysing the behaviour of axially loaded recycled aggregate concrete filled steel tubes (RACFSTs stub columns is presented in this study. The model is derived from the typical elastoplasticity, the nonlinear elastic mechanics, and the properties of materials. Based on the mechanical model, a novel numerical program is developed. The mechanical model and the numerical program are adopted to study the effect of recycled coarse aggregate (RCA replacement percentage on RACFST mechanical behaviour. The complete load-deformation relationship of specimens, the steel tube axial and circumferential stresses, and the performance of the confined core concrete and the variation of interaction are also investigated. The analytical results indicate that this model is able to capture the mechanical behaviour of RACFST. It is also found that the axial and circumferential stresses of steel tube change nonlinearly during the loading stages. It is concluded that the behaviour of the confined core concrete is significantly influenced by the confining pressure. The steel tube confinement could improve the mechanical behaviour of RAC effectively and the RCA replacement percentage slightly changes the response of core concrete. Finally, the relations between confined core concrete and confining pressure are analysed.

  4. The Value Compressive Strength and Split Tensile Strength on Concrete Mixture With Expanded Polystyrene Coated by Surfactant Span 80 as a Partial Substitution of Fine Aggregate

    Directory of Open Access Journals (Sweden)

    Hidayat Irpan

    2014-03-01

    Full Text Available The value of the density normal concrete which ranges between 2200–2400 kg/m3. Therefore the use of Expanded Polystyrene (EPS as a subitute to fine aggregate can reduce the density of concrete. The purpose this research is to reduce the density of normal concrete but increase compressive strength of EPS concrete, with use surfactant as coating for the EPS. Variables of substitution percentage of EPS and EPS coated by surfactant are 5%,10%,15%,20%,25%. Method of concrete mix design based on SNI 03-2834-2000 “Tata Cara Pembuatan Rencana Campuran Beton Normal (Provisions for Proportioning Normal Concrete Mixture”. The result of testing, every increase percentage of EPS substitution will decrease the compressive strength around 1,74 MPa and decrease density 34,03 kg/m3. Using Surfactant as coating of EPS , compressive strength increase from the EPS’s compressive strength. Average of increasing compressive strength 0,19 MPa and increase the density 20,03 kg/m3,average decrease of the tensile split strength EPS coated surfaktan is 0,84 MPa.

  5. The Value Compressive Strength and Split Tensile Strength on Concrete Mixture With Expanded Polystyrene Coated by Surfactant Span 80 as a Partial Substitution of Fine Aggregate

    Science.gov (United States)

    Hidayat, Irpan; Siauwantara, Alice

    2014-03-01

    The value of the density normal concrete which ranges between 2200-2400 kg/m3. Therefore the use of Expanded Polystyrene (EPS) as a subitute to fine aggregate can reduce the density of concrete. The purpose this research is to reduce the density of normal concrete but increase compressive strength of EPS concrete, with use surfactant as coating for the EPS. Variables of substitution percentage of EPS and EPS coated by surfactant are 5%,10%,15%,20%,25%. Method of concrete mix design based on SNI 03-2834-2000 "Tata Cara Pembuatan Rencana Campuran Beton Normal (Provisions for Proportioning Normal Concrete Mixture)". The result of testing, every increase percentage of EPS substitution will decrease the compressive strength around 1,74 MPa and decrease density 34,03 kg/m3. Using Surfactant as coating of EPS , compressive strength increase from the EPS's compressive strength. Average of increasing compressive strength 0,19 MPa and increase the density 20,03 kg/m3,average decrease of the tensile split strength EPS coated surfaktan is 0,84 MPa.

  6. Numerical Simulation of Recycled Concrete Using Convex Aggregate Model and Base Force Element Method

    Directory of Open Access Journals (Sweden)

    Yijiang Peng

    2016-01-01

    Full Text Available By using the Base Force Element Method (BFEM on potential energy principle, a new numerical concrete model, random convex aggregate model, is presented in this paper to simulate the experiment under uniaxial compression for recycled aggregate concrete (RAC which can also be referred to as recycled concrete. This model is considered as a heterogeneous composite which is composed of five mediums, including natural coarse aggregate, old mortar, new mortar, new interfacial transition zone (ITZ, and old ITZ. In order to simulate the damage processes of RAC, a curve damage model was adopted as the damage constitutive model and the strength theory of maximum tensile strain was used as the failure criterion in the BFEM on mesomechanics. The numerical results obtained in this paper which contained the uniaxial compressive strengths, size effects on strength, and damage processes of RAC are in agreement with experimental observations. The research works show that the random convex aggregate model and the BFEM with the curve damage model can be used for simulating the relationship between microstructure and mechanical properties of RAC.

  7. Mechanical and thermal properties of prepacked aggregate concrete incorporating palm oil fuel ash

    Indian Academy of Sciences (India)

    HOSSEIN MOHAMMADHOSSEINI; A S M ABDUL AWAL; ABDUL RAHMAN MOHD SAM

    2016-10-01

    Prepacked aggregate concrete (PAC) is a special type of concrete which is made by placing coarse aggregate in a formwork and injecting a grout either by pump or under the gravity force to fill the voids. Use of pozzolanic materials in conventional concrete has become increasingly extensive, and this trend is expected to continue in PAC as well. Palm oil fuel ash (POFA) is one of these pozzolanic ash, which has been recognized as a good pozzolanic material. This paper presents the experimental results of the performance behaviour of POFA in developing physical and mechanical properties of prepacked aggregate concrete. Four concrete mixes namely,prepacked concrete with 100% OPC as a control, and PAC with 10, 20 and 30% POFA were cast, and thetemperature growth due to heat of hydration and heat transfer in all the mixtures was recorded. It has been found that POFA significantly reduces the temperature rise in prepacked aggregate concrete and delay the transfer of heat to the concrete body. The compressive and tensile strengths, however, increased with replacement up to20% POFA. The results obtained and the observation made in this study suggest that the replacement of OPC by POFA is beneficial, particularly for prepacked mass concrete where thermal cracking due to extreme heat rise is of great concern.

  8. Comparison of different forms of gravel as aggregate in concrete

    Directory of Open Access Journals (Sweden)

    Sikiru ORITOLA

    2014-11-01

    Full Text Available Gradation plays an important role in the workability, segregation, and pump ability of concrete. Uniformly distributed aggregates require less paste which will also decrease bleeding, creep and shrinkage while producing better workability, more durable concrete and higher packing. This attempt looks at the effect of particle size distribution pattern for five types of gravel aggregate forms, angular, elongated, smooth rounded, irregular and flaky as related to the strength of concrete produced. Different forms of naturally existing gravel aggregate were collected from a particular location and tests were carried out on them to determine their gradation. Based on the gradation the aggregates were used to prepare different samples of grade 20 concrete with water-cement ratio of 0.5. The particle size distribution resulted in coefficients of uniformity ranging from 1.24 to 1.44. The granite aggregate, which serves as a reference, had a coefficient of uniformity of 1.47. Tests were conducted on fresh and hardened concrete cube samples. The concrete sample CT5 recorded a slump of 32mm and highest compressive strength value of 21.7 N/mm2, among the concrete produced from different forms of gravel.

  9. Mechanical properties of structural concrete with partial replacement of fine aggregate by tire rubber - doi: 10.4025/actascitechnol.v35i1.11283

    Directory of Open Access Journals (Sweden)

    Laura Granzotto

    2013-01-01

    Full Text Available The urbanization of big cities, the reduced number and size of landfills, the population growth rate, and the increased use of disposables have generated an expressive volume of waste in the environment. Some waste materials have been reused in recent years, as for example, those generated by the civil construction. However, other types of waste are not experiencing the same situation, such as tire rubbers. One alternative for the reutilization of this material consists of using their powder to replace the fine aggregate in the composition of concrete. This study presents experiments on normal strength concrete mixed with different rates of rubber powder. Results reveal the possibility of obtaining an optimum rate of powder incorporation without harming the compressive and tensile strength of concrete.  

  10. Quality Assessment of Mixed and Ceramic Recycled Aggregates from Construction and Demolition Wastes in the Concrete Manufacture According to the Spanish Standard

    Directory of Open Access Journals (Sweden)

    Desirée Rodríguez-Robles

    2014-08-01

    Full Text Available Construction and demolition waste (CDW constitutes an increasingly significant problem in society due to the volume generated, rendering sustainable management and disposal problematic. The aim of this study is to identify a possible reuse option in the concrete manufacturing for recycled aggregates with a significant ceramic content: mixed recycled aggregates (MixRA and ceramic recycled aggregates (CerRA. In order to do so, several tests are conducted in accordance with the Spanish Code on Structural Concrete (EHE-08 to determine the composition in weight and physic-mechanical characteristics (particle size distributions, fine content, sand equivalent, density, water absorption, flakiness index, and resistance to fragmentation of the samples for the partial inclusion of the recycled aggregates in concrete mixes. The results of these tests clearly support the hypothesis that this type of material may be suitable for such partial replacements if simple pretreatment is carried out. Furthermore, this measure of reuse is in line with European, national, and regional policies on sustainable development, and presents a solution to the environmental problem caused by the generation of CDW.

  11. Properties of Self-Compacting Concrete with Recycled Coarse Aggregate

    Directory of Open Access Journals (Sweden)

    W. C. Tang

    2016-01-01

    Full Text Available The utilisation of recycled concrete aggregate (RCA in Self-Compacting Concrete (SCC has the potential to reduce both the environmental impact and financial cost associated with this increasingly popular concrete type. However, to date limited research exists exploring the use of coarse RCA in SCC. The work presented in this paper seeks to build on the existing knowledge in this area by examining the workability, strength, and fracture properties of SCCs containing 0%, 25%, 50%, 75%, and 100% coarse RCA. The experimental programme indicated that at RCA utilisation levels of 25% to 50% little or no negative impact was observed for strength, workability, or fracture properties, with the exception of a slight reduction in Young’s modulus.

  12. Strength and durability of concrete with ash aggregate

    Energy Technology Data Exchange (ETDEWEB)

    Basheer, P.A.M.; Bai, Y. [Queens University Belfast, Belfast (United Kingdom)

    2005-06-01

    A previous investigation to replace natural sand in concrete with furnace bottom ash (FBA) from a coal-fired thermal power plant in Northern Ireland, UK indicated that the water demand of fresh concrete decreases with the increase of the FBA content. Therefore, in the current study the water content was decreased for concretes containing FBA for a given slump and a constant cement content of 382 kg/m{sup 3}. The natural sand was replaced with the FBA at 0, 30, 50, 70 and 100% by mass and three slump ranges, 0-10, 10-30 and 30-60 mm, were considered. The water content of the mixes was determined by carrying out trials. The effect of FBA on water demand, density, compressive strength, pull-off tensile strength, abrasion resistance, drying shrinkage, air permeability, sorptivity, carbonation, chloride diffusion and salt scaling resistance of concretes containing FBA was studied. The results indicated that the water demand of fresh concrete decreases with an increase of FBA content while it has no significant effect on density, compressive strength, pull-off tensile strength or abrasion resistance. The air permeability, sorptivity and drying shrinkage increases beyond 30% FBA content, but the resistance to chloride ingress and salt scaling improves. The depth of carbonation also increases with an increase in the FBA content beyond the 30% replacement level. Overall, FBA content up to 30% as fine aggregate can be incorporated in structural concrete with mostly beneficial effects to various properties of concrete, provided the cement content is kept constant and the water content corresponds to that for low-slump concrete mixes.

  13. Critical chloride content for reinforced concrete and its relationship to concrete resistivity

    NARCIS (Netherlands)

    Polder, R.B.

    2009-01-01

    The critical chloride content for initiation of reinforcement corrosion is an essential element in service life design and modelling of concrete structures.The critical content is laden with questions regarding its definition, experimental assessment and practical aspects. It should be addressed by

  14. Evaluation of Concrete Made from Recycled Coarse Aggregates by Pulsed Power Discharge

    OpenAIRE

    Narahara, Shouta; Namihira, Takao; Nakashima, Kazuyuki; Inone, Syouta; Iizasa, S.; Maeda, S.; Shigeishi, M.; Ohtsu, M.; Akiyama, Hidenori; ナラハラ, ショウタ; ナミヒラ, タカオ; ナカシマ, カズユキ; イノウエ, ショウタ; アキヤマ, ヒデノリ; 楢原, 翔太

    2007-01-01

    In Japan, the most of waste concrete scraps have beenreused as roadbed materials and the recycling ratio ofwaste concrete scraps has been kept over 95 % from 2000.However, it is expected that the demands of wasteconcrete scraps as roadbed materials would decrease eventhough the waste concrete scraps increase with the pullingdown buildings in next decade. These facts mean that therecycling of waste concrete scraps would be in thenegative situation. Therefore, the development of newrecycling te...

  15. Influence of recycled aggregate on resistance of concrete to chloride penetration%再生骨料对混凝土的抗氯离子渗透性能影响

    Institute of Scientific and Technical Information of China (English)

    韦庆东; 孙俊; 黄沛增; 张磊; 徐莹

    2014-01-01

    Mixing Class III recycled coarse and fine aggregate,C30 and C40 degree concrete recycled aggregate concrete were prepared with 0 and 30%fly ash amount of cementitious material respectively.Concrete electric fluxes were measured and analyzed for the rule of influence of Class III recycled aggregate on resistance of concrete to chloride penetration.The results indicate that with the increase of re-placement ratio of recycled aggregate,resistance of concrete to chloride penetration gradually reduced.Compared with C30 degree con-crete,C40 degree concrete was less affected by replacement ratio of recycled concrete.Resistance of C30 concrete to chloride penetration was significantly affected when replacement ratio of recycled aggregate beyond 15%.Recycled aggregate concrete incorporates with 30%amount of bonding materials,which can effectively improve resistance of concrete to chloride ion penetration.%利用III级再生粗、细骨料制备C30和C40两种强度等级再生骨料混凝土,并分别掺加0和30%粉煤灰。测定该混凝土电通量,并分析再生粗、细骨料对混凝土抗氯离子性能影响规律。试验结果表明:随着再生骨料替代率增加,混凝土抗氯离子渗透性能逐渐减低,且对C40混凝土抗氯离子渗透性能影响较小;再生骨料混凝土中掺入30%粉煤灰,可有效改善其抗氯离子渗透性能。

  16. Influence of Mineral Admixtures on the Permeability of Lightweight Aggregate Concrete

    Institute of Scientific and Technical Information of China (English)

    WANG Fazhou; HU Shuguang; DING Qingjun; PENG yanzhou

    2005-01-01

    The permeability of lightweight aggregate concrete was studied. Some efforts were taken to increase the resistance of lightweight aggregate concrete (LC) to water penetration by using the mineral admixtures of fly ash, granulated blast furnace slag or silica fume. Accelerated chloride penetrability test and liquid atmosphere press method were used to study the anti-permeability of lightweight aggregate concrete. The experimental results show that fly ash, granulated blast furnace slag and silica fume can decrease the permeability of lightweight aggregate concrete, but the effect of granulated blast furnace slag is poor. According to the SEM and pore structure analyzing results,an interface self-reinforcing effect model was presented and the reinforced mechanism of mineral mixture on LC was discussed according to the model described by authors.

  17. Application of Image Analysis to Identify Quartz Grains in Heavy Aggregates Susceptible to ASR in Radiation Shielding Concrete

    Directory of Open Access Journals (Sweden)

    Daria Jóźwiak-Niedźwiedzka

    2016-03-01

    Full Text Available Alkali-silica reaction (ASR is considered as a potential aging-related degradation phenomenon that might impair the durability of concrete in nuclear containments. The objective of this paper is the application of digital analysis of microscopic images to identify the content and size of quartz grains in heavy mineral aggregates. The range of investigation covered magnetite and hematite aggregates, known as good absorbers of gamma radiation. Image acquisition was performed using thin sections observed in transmitted cross-polarized light with λ plate. Image processing, consisting of identification of ferrum oxide and epoxy resin, and the subsequent application of a set of filtering operations resulted in an adequate image reduction allowing the grain size analysis. Quartz grains were classified according to their mean diameter so as to identify the reactive range. Accelerated mortar bar tests were performed to evaluate the ASR potential of the aggregates. The SiO2 content in the heavyweight aggregates determined using the image analysis of thin sections was similar to XRF test result. The content of reactive quartz hematite was 2.7%, suggesting that it would be prone to ASR. The expansion test, according to ASTM C1260, confirmed the prediction obtained using the digital image analysis.

  18. Influence of Fly Ash, Bottom Ash, and Light Expanded Clay Aggregate on Concrete

    Directory of Open Access Journals (Sweden)

    S. Sivakumar

    2015-01-01

    Full Text Available Invention of new methods in strengthening concrete is under work for decades. Developing countries like India use the extensive reinforced construction works materials such as fly ash and bottom ash and other ingredients in RCC construction. In the construction industry, major attention has been devoted to the use of fly ash and bottom ash as cement and fine aggregate replacements. In addition, light expanded clay aggregate has been introduced instead of coarse aggregate to make concrete have light weight. This paper presents the results of a real-time work carried out to form light weight concrete made with fly ash, bottom ash, and light expanded clay aggregate as mineral admixtures. Experimental investigation on concrete mix M20 is done by replacement of cement with fly ash, fine aggregate with bottom ash, and coarse aggregate with light expanded clay aggregate at the rates of 5%, 10%, 15%, 20%, 25%, 30%, and 35% in each mix and their compressive strength and split tensile strength of concrete were discussed for 7, 28, and 56 days and flexural strength has been discussed for 7, 28, and 56 days depending on the optimum dosage of replacement in compressive strength and split tensile strength of concrete.

  19. Mineral processing and characterization of coal waste to be used as fine aggregates for concrete paving blocks

    Directory of Open Access Journals (Sweden)

    C. R. Santos

    Full Text Available Commercial coal production in the southern region of Brazil has been occurring since the beginning of the twentieth century. Due to the geological characteristics of the region, large amounts of solid wastes are generated. The aim of this work was to evaluate the use of coal waste to produce concrete paving blocks. A procedure to process the coal waste with the purpose of reducing the sulfur content and changing the particle size distribution of the material to meet the specification of fine aggregates was developed. The methodology considered the following steps: (a sampling of a coal mining waste; (b gravity separation of the fraction with specific gravity between 2.4 and 2.8; (c comminution of the material and particle size analysis; (d technological characterization of the material and production of concrete paving blocks; and (e acidity generation prediction (environmental feasibility. The results showed that the coal waste considered in this work can be used to replace conventional sand as a fine aggregate for concrete paving blocks in a proportion of up to 50%. This practice can result in cleaner coal production and reduce the demand for exploitation of sand deposits.

  20. Application of recycled aggregates in concrete -- Experiences from the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Pietersen, H. S.; Fraay, A. L. A.; Hendriks, C. F.

    1998-12-31

    Experiences with the use of recycled aggregates obtained from demolition waste are described. The practice is particularly well developed in the Netherlands due the lack of landfill space available. The emphasis is on recycled aggregates in concrete, as opposed to recycled aggregates in road construction. Mix design, strength, durability, (chloride ingress and freeze-thaw resistance), environmental performance, product standardization, quality control, and quality certification are some of the topics covered.

  1. A closed-loop life cycle assessment of recycled aggregate concrete utilization in China.

    Science.gov (United States)

    Ding, Tao; Xiao, Jianzhuang; Tam, Vivian W Y

    2016-10-01

    This paper studies the potential environmental impact of recycled coarse aggregate (RCA) for concrete production in China. According to the cradle-to-cradle theory, a closed-loop life cycle assessment (LCA) on recycled aggregate concrete (RAC) utilization in China with entire local life cycle inventory (LCI) is performed, regarding the environmental influence of cement content, aggregate production, transportation and waste landfilling. Special attention is paid on the primary resource and energy conservation, as well as climate protection induced by RAC applications. Environmental impact between natural aggregate concrete (NAC) and RAC are also compared. It is shown that cement proportion and transportation are the top two contributors for carbon dioxide (CO2) emissions and energy consumption for both NAC and RAC. Sensitivity analysis also proves that long delivery distances for natural coarse aggregate (NCA) leave a possible opportunity for lowering environmental impact of RAC in China.

  2. Effect of the aggregate grading on the concrete air permeability

    Directory of Open Access Journals (Sweden)

    Argiz, C.

    2014-09-01

    Full Text Available Great durability problems are being found in concrete structures related to the penetrability of aggressive agents through the concrete (ie. chloride penetration, sulphate attack, carbonation, freezing and thawing, and so on. Air permeability coefficient is used as an effective tool to estimate the potential durability of concrete structures due to its direct relation with the microstructure and the moisture content. This paper discusses the effect of the aggregate grading and water/cement ratio on the air permeability coefficient. An aggregate grading with more sand than coarse aggregates has resulted more beneficial from the point of view of concrete air permeability. This fact can be attributed to a denser skeleton formed by the finer aggregates. With fine aggregates, the higher water/cement ratio, the lower air permeability. However, the contrary was found with coarse aggregates. Overall, a temperature increase from 20 °C to 60 °C during preconditioning led to a Dair increase of 40–80%.Se han encontrado una gran cantidad de problemas de durabilidad de estructuras de hormigón relacionados con la penetración de agentes agresivos externos (es decir, penetración de cloruros, ataque por sulfatos, carbonatación, hielo-deshielo, etc.. El coeficiente de permeabilidad al aire se utiliza como una herramienta eficaz para estimar la durabilidad potencial de las estructuras de hormigón debido a su relación directa con su microestructura y contenido de humedad. Se discute el efecto de la gradación de los áridos y relación agua/cemento en el coeficiente de permeabilidad al aire. Con áridos más finos que gruesos, el resultado es más beneficioso, lo que se atribuye a que la arena forma un esqueleto más denso. Con áridos más finos, al aumentar la relación agua/cemento, disminuye la permeabilidad al aire; pero con áridos más gruesos se ha observado lo contrario. Cuando se pre-acondiciona de 20 °C a 60 °C, se produce un aumento del Dair

  3. The Aggregate Gradation for the Porous Concrete Pervious Road Base Material

    Institute of Scientific and Technical Information of China (English)

    YANG Zhifeng; MA Wei; SHEN Weiguo; ZHOU Mingkai

    2008-01-01

    The effects of the proportion of fine aggregate, the maximum size of the aggregate and the proportion of the 9.5mm to 4.75mm particle in the coarse aggregate on the properties of the porous concrete are investigated. Results indicate that the porous concrete with a cement dosage only 150kg/m3 has high strength and satisfying permeability when the aggregate has a passing percentage of 4.75mm around 10% to 5%, with the increase of the maximum size of the aggregate, the strength of the porous concrete decreases and the permeability increases. When the proportion of the 9.5mm to 4.75mm particle in the coarse aggregate is about 20%, there are no interference among the particles by Weymouth theory, the strength of the pervious porous concrete reaches the peak value. The optimum continues gradation limit of the aggregate for porous concrete pervious road base material is recommended according to the theoretical calculation and experimental results.

  4. Particulate structure and microstructure evolution of concrete investigated by DEM: Part 1: Aggregate and binder packing

    NARCIS (Netherlands)

    He, H.; Le, N.L.B.; Stroeven, P.

    2012-01-01

    Experimental approaches in concrete technology are time-consuming, laborious and thus expensive. Developments in computer facilities render possible nowadays realistically simulating the particulate structure and microstructure of cementitious materials. For that purpose, discrete element methods (D

  5. Assesment of Alkali Resistance of Basalt Used as Concrete Aggregates

    Directory of Open Access Journals (Sweden)

    al-Swaidani Aref M.

    2015-11-01

    Full Text Available The objective of this paper is to report a part of an ongoing research on the influence of using crushed basalt as aggregates on one of durability-related properties of concrete (i.e. alkali-silica reaction which is the most common form of Alkali-Aggregate Reaction. Alkali resistance has been assessed through several methods specified in the American Standards. Results of petrographic examination, chemical test (ASTM C289 and accelerated mortar bar test (ASTM C1260 have particularly been reported. In addition, the weight change and compressive strength of 28 days cured concrete containing basaltic aggregates were also reported after 90 days of exposure to 10% NaOH solution. Dolomite aggregate were used in the latter test for comparison. The experimental results revealed that basaltic rocks quarried from As-Swaida’a region were suitable for production of aggregates for concrete. According to the test results, the studied basalt aggregates can be classified as innocuous with regard to alkali-silica reaction. Further, the 10% sodium hydroxide attack did not affect the compressive strength of concrete.

  6. EFFECT OF USING STEEL SLAG AGGREGATE ON MECHANICAL PROPERTIES OF CONCRETE

    Directory of Open Access Journals (Sweden)

    Sultan A. Tarawneh

    2014-01-01

    Full Text Available This study presents an evaluation of the physical and mechanical properties and characteristics of steel slag aggregate concrete in comparison with the typical crushed limestone stone aggregate concrete. Hardened concrete consist of more than 70% aggregate due to the high demand in building construction and the increase of the amount of disposed waste material, suppliers and researchers are exploring the use of alternative materials which could preserve natural sources and save the environment. In this study, steel slag was used as an aggregate replacement in conventional concrete mixes. Steel slag which is mainly consists of calcium carbonate is produced as a by-product during the oxidation process in steel industry. Steel slag was selected due to its characteristics, which are almost similar to conventional aggregates and the fact that it is easily obtainable as a by-product of the steel industry. As a result, utilization of steel slag will save natural resources and clean environment. Furthermore, results have shown that slag aggregate has better abrasion factor and impact value than conventional aggregate. Thorough investigation of the results have indicated that the amount of increase in compressive strength at age of 7 days are much more than that of age 28 days for all types of aggregate replacement. This indicates that the added slag could work as accelerator at early age while at 28 days age, the effect is reduced. The fine slag replacement scores the highest effect.

  7. Use Of Crushed Bricks As Coarse Aggregate In Concrete

    Directory of Open Access Journals (Sweden)

    Fadia S. Kalak

    2013-05-01

    Full Text Available The investigation reported in this paper is carried out to study the feasibility of using crushed bricks to substitute the coarse aggregate (gravel in concrete. Two types of concrete mixing are prepared. The first one is a mixture of  1:2:4 without crushed bricks and is used as a reference mixture .The second one is made of different weight of crushed bricks (as a percentage from the weight of the coarse aggregate. A total of 30 numbers of concrete specimens are casted with and without crushed bricks and  tested under compression and split tension as per relevant to British standard specifications.Test results indicated that using crushed bricks reduces the strength of concrete. Also, the percentage of water to cement ratio increases for constant slump when the percentage of crushed bricks increased.

  8. Compressive Strength, Pore Size Distribution and Chloride-ion Penetration of Recycled Aggregate Concrete Incorporating Class-F Fly Ash

    Institute of Scientific and Technical Information of China (English)

    KOU Shicong; C S Poon

    2006-01-01

    The effects of fly ash on the compressive strength, pore size distribution ard chloride-ion penetration of recycled aggregate concrete were investigated. Two series of concrete mixtures were prepared. The concrete mixtures in series I had a water-to-binder ratio and a cement content of 0.55 and 410 kg/m3 , respectively. The concrete mixtures in series Ⅱ had a water-to-binder ratio and a cement content of 0.45 and 400 kg/m3 respectively. Recycled aggregate was used as 20% , 50% , and 100% replacements of natural coarse aggregate in the concrete mixtures in both series. In addition, fly ash was used as 0% , 25% and 35% by weight replacements of cement. The results show that the compressive strengths of the concrete decreased as the recycled aggregate and the fly ash contents increased. The total porosity and average porosity diameter of the concrete increased as the recycled aggregate content increased. Furthermore, an increase in the recycled aggregate content decreased the resistance to chloride ion penetration. Nevertheless, the replacement of cement by 25% fly ash improved the resistance to chloride ion penetration and pore diameters and reduced the total porosity of the recycled aggregate concrete.

  9. Microstructure and Mechanical Properties of Recycled Aggregate Concrete in Seawater Environment

    Directory of Open Access Journals (Sweden)

    Pengjun Yue

    2013-01-01

    Full Text Available This study aims to conduct research about the microstructure and basic properties of recycled aggregate concrete under seawater corrosion. Concrete specimens were fabricated and tested with different replacement percentages of 0%, 30%, and 60% after immersing in seawater for 4, 8, 12, and 16 months, respectively. The basic properties of recycled aggregate concrete (RAC including the compressive strength, the elastic modulus, and chloride penetration depth were explicitly investigated. And the microstructure of recycled concrete aggregate (RCA was revealed to find the seawater corrosion by using scanning electron microscope (SEM. The results showed that higher amount of the RCA means more porosity and less strength, which could lower both the compressive strength and resistance to chloride penetration. This research could be a guide in theoretical and numerical analysis for the design of RAC structures.

  10. Structural recycled concrete: utilization of recycled aggregate from construction and demolition wastes; Hormigon reciclado estructural: utilizacion de arido reciclado procedente de escombros de hormigon

    Energy Technology Data Exchange (ETDEWEB)

    Alaejos Gutierrez, P.; Sanchez de Juan, M.

    2015-07-01

    This paper aims to present the main results of CEDEX research works concerning the use of recycled aggregates for structural concretes. By way of conclusion, recommendations on the requirements of the recycled aggregates have been established, providing information about the influence of these aggregates on the properties of structural concrete. (Author)

  11. Chemical-mineralogical characterisation of coarse recycled concrete aggregate.

    Science.gov (United States)

    Limbachiya, M C; Marrocchino, E; Koulouris, A

    2007-01-01

    The construction industry is now putting greater emphasis than ever before on increasing recycling and promoting more sustainable waste management practices. In keeping with this approach, many sectors of the industry have actively sought to encourage the use of recycled concrete aggregate (RCA) as an alternative to primary aggregates in concrete production. The results of a laboratory experimental programme aimed at establishing chemical and mineralogical characteristics of coarse RCA and its likely influence on concrete performance are reported in this paper. Commercially produced coarse RCA and natural aggregates (16-4 mm size fraction) were tested. Results of X-ray fluorescence (XRF) analyses showed that original source of RCA had a negligible effect on the major elements and a comparable chemical composition between recycled and natural aggregates. X-ray diffraction (XRD) analyses results indicated the presence of calcite, portlandite and minor peaks of muscovite/illite in recycled aggregates, although they were directly proportioned to their original composition. The influence of 30%, 50%, and 100% coarse RCA on the chemical composition of equal design strength concrete has been established, and its suitability for use in a concrete application has been assessed. In this work, coarse RCA was used as a direct replacement for natural gravel in concrete production. Test results indicated that up to 30% coarse RCA had no effect on the main three oxides (SiO2, Al2O3 and CaO) of concrete, but thereafter there was a marginal decrease in SiO2 and increase in Al2O3 and CaO contents with increase in RCA content in the mix, reflecting the original constituent's composition.

  12. DURABILITY OF GREEN CONCRETE WITH TERNARY CEMENTITIOUS SYSTEM CONTAINING RECYCLED AGGREGATE CONCRETE AND TIRE RUBBER WASTES

    Directory of Open Access Journals (Sweden)

    MAJID MATOUQ ASSAS

    2016-06-01

    Full Text Available All over the world billions of tires are being discarded and buried representing a serious ecological threat. Up to now a small part is recycled and millions of tires are just stockpiled, landfilled or buried. This paper presents results about the properties and the durability of green concrete contains recycled concrete as a coarse aggregate with partial replacement of sand by tire rubber wastes for pavement use. Ternary cementious system, Silica fume, Fly ash and Cement Kiln Dust are used as partial replacement of cement by weight. Each one replaced 10% of cement weight to give a total replacement of 30%. The durability performance was assessed by means of water absorption, chloride ion permeability at 28 and 90 days, and resistance to sulphuric acid attack at 1, 7, 14 and 28 days. Also to the compression behaviors for the tested specimens at 7, 14, 28 and 90 days were detected. The results show the existence of ternary cementitious system, silica fly ash and Cement Kiln Dust minimizes the strength loss associated to the use of rubber waste. In this way, up to 10% rubber content and 30% ternary cementious system an adequate strength class value (30 MPa, as required for a wide range of common structural uses, can be reached both through natural aggregate concrete and recycled aggregate concrete. Results also show that, it is possible to use rubber waste up to 15% and still maintain a high resistance to acid attack. The mixes with 10%silica fume, 10% fly ash and 10% Cement Kiln Dust show a higher resistance to sulphuric acid attack than the reference mix independently of the rubber waste content. The mixes with rubber waste and ternary cementious system was a lower resistance to sulphuric acid attack than the reference mix.

  13. DURABILITY OF ASPHALT CONCRETE MIXTURES USING DOLOMITE AGGREGATES

    Directory of Open Access Journals (Sweden)

    Imad Al-Shalout

    2015-12-01

    Full Text Available This study deals with the durability of asphalt concrete, including the effects of different gradations, compaction temperatures and immersion time on the durability potential of mixtures. The specific objectives of this study are: to investigate the effect of compaction temperature on the mechanical properties of asphalt concrete mixtures; investigate the effect of bitumen content and different aggregate gradations on the durability potential of bituminous mixtures.

  14. UTILIZING WASTE PLASTIC POLYPROPYLENE AND POLYETHYLENE TEREPHTHALATE AS ALTERNATIVE AGGREGATES TO PRODUCE LIGHTWEIGHT CONCRETE: A REVIEW

    Directory of Open Access Journals (Sweden)

    IBRAHIM H. ALFAHDAWI

    2016-08-01

    Full Text Available In recent times, there is an increasing need for the fabrication of mortar and concrete that can be characterised as sustainable and environmentally friendly. Ideally, this concrete should be inexpensive, lightweight, and outstanding in terms of its physical and mechanical specifications. Plastic materials have increasingly been used in the fabrication of different types of concrete admixtures and mortar constituents. These plastic materials take the form of fillers or shredded fibres derived from polypropylene and polyethylene terephthalate. The use of plastic materials presents the following benefits: (i enhanced mixture quality and (ii a reduction in the amount of accumulated single-use plastic materials that negatively impact the environment. This work reviews several previous studies on the utilisation and preparations of plastic materials and their effects on the physical and mechanical properties of concrete. Other topics, including hardened concrete, fresh concrete, application, and thermo-physical characteristics, are also elaborated.

  15. Flexural Behaviour Of Reinforced Concrete Beams Containing Expanded Glass As Lightweight Aggregates

    Science.gov (United States)

    Khatib, Jamal; Jefimiuk, Adrian; Khatib, Sammy

    2015-12-01

    The flexural properties of reinforced concrete beams containing expanded glass as a partial fine aggregate (sand) replacement are investigated. Four concrete mixes were employed to conduct this study. The fine aggregate was replaced with 0%, 25%, 50% and 100% (by volume) expanded glass. The results suggest that the incorporation of 50% expanded glass increased the workability of the concrete. The compressive strength was decreasing linearly with the increasing amount of expanded glass. The ductility of the concrete beam significantly improved with the incorporation of the expanded glass. However, the load-carrying capacity of the beam and load at which the first crack occurs was reduced. It was concluded that the inclusion of expanded glass in structural concrete applications is feasible.

  16. Study on Strength of Concrete Using Robo Sand as a Partial Replacement of Fine Aggregate

    Directory of Open Access Journals (Sweden)

    S.Rukmangadhara Rao,

    2015-12-01

    Full Text Available Robo sand is one of the most used among such materials to replace river sand, which can be used as an alternative to fine aggregate in concrete. In the present investigation workability and strength of concrete was evaluated by replacement of natural sand by Robo sand in proportions of 0%, 50%, 75%, and 100% is studied for M25and M35grade concrete cubes, cylinders and prisms. Slump cone method is taken for finding workability. For strength parameters for each grade of concrete Cubes, Cylinders and Prisms were casted and tested at the age of 7 and 28 days. In this present experimental study on concrete having grades of M25 and M35 are prepared by replacing natural sand by Robo sand. Concrete specimens were tested for evaluation of compressive strength and water absorption.

  17. Study on Expansion Cracking of Hydration in Concrete Aggregates

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In accordance with a fresh accident by severe expansion cracks of structural elements,based on systematic detection and analyses such as X-ray diffraction,differential thermal analysis,scanning electron microscory,chemical analysis,petrographic analysis, electronic probe analysis,and atomic absorption spectroscopy analysis, it is pointed out that the dominant reasons lie in the hydration reaction of magnesia in concrete aggregates, resulting in a volume expansion in structure members.A wholly new corresponding strengthening method is applied to the cracked elements and turned out to be effective.

  18. Studies on eco-friendly concrete incorporating industrial waste as aggregates

    Directory of Open Access Journals (Sweden)

    Nitendra Palankar

    2015-12-01

    Full Text Available The present day research is focussed on development of alternative binder materials to Ordinary Portland Cement (OPC due to huge emissions of green house gases associated with production of OPC. GGBFS-FA based geopolymer binders are an innovative alternative to OPC which can obtain high strengths apart from being eco-friendly; since its production does not involve high energy and also contributes to sustainability by using the industrial waste materials. Steel slag, an industrial by-product obtained from manufacture of steel can be identified as an alternative to natural aggregates for concrete production, since there is a possibility of acute shortage of natural aggregates in future. The present study is conducted to evaluate the performance of weathered steel slag coarse aggregates in GGBFS-FA based geopolymer concrete. GGBFS-FA geopolymer concrete with steel slag coarse aggregates are prepared by replacing natural granite aggregates at different replacement levels i.e. 0%, 25%, 50%, 75% and 100% (by volume and various fresh and mechanical properties are studied. The flexural fatigue behaviour of GGBFS-FA geopolymer concrete with steel slag is also studied in detail. Efforts are also made to model the probabilistic distribution of fatigue data of GGBFS-FA geopolymer concrete at different stress levels using two parameters Weibull distribution. The results indicated that incorporation of steel slag in GGBFS-FA geopolymer concrete resulted in slight reduction in mechanical strength. The water absorption and volume of permeable voids displayed higher values with inclusion of steel slag. Reduction in number of cycles for fatigue failure was observed in geopolymer concrete mixes containing steel slag as compared to granite aggregates. Overall, the performance of steel slag was found to be satisfactory for structural and pavement application and steel slag can be recognised as new construction material.

  19. Neutron attenuation characteristics of polyethylene, polyvinyl chloride, and heavy aggregate concrete and mortars.

    Science.gov (United States)

    Abdul-Majid, S; Othman, F

    1994-03-01

    Polyethylene and polyvinyl chloride pellets were introduced into concrete to improve its neutron attenuation characteristics while several types of heavy coarse aggregates were used to improve its gamma ray attenuation properties. Neutron and gamma ray attenuation were studied in concrete samples containing coarse aggregates of barite, pyrite, basalt, hematite, and marble as well as polyethylene and polyvinyl chloride pellets in narrow-beam geometry. The highest neutron attenuation was shown by polyethylene mortar, followed by polyvinyl chloride mortar; barite and pyrite concrete showed higher gamma ray attenuation than ordinary concrete. Broad-beam and continuous (infinite) medium geometries were used to study the neutron attenuation of samples containing polymers at different concentrations with and without heavy aggregates, the fitting equations were established, and from these the neutron removal coefficients were deduced. In a radiation field of neutrons and gamma rays, the appropriate concentration of polymer and heavy aggregate can be selected to give the optimum total dose attenuation depending on the relative intensities of each type of radiation. This would give much better design flexibility over ordinary concrete. The compressive strength tests performed on mortar and concrete samples showed that their value, in general, decreases as polymer concentration increases and that the polyvinyl chloride mortar showed higher values than the polyethylene mortar. For general construction purposes, the compression strength was considered acceptable in these samples.

  20. The Feasibility of Palm Kernel Shell as a Replacement for Coarse Aggregate in Lightweight Concrete

    Science.gov (United States)

    Itam, Zarina; Beddu, Salmia; Liyana Mohd Kamal, Nur; Ashraful Alam, Md; Issa Ayash, Usama

    2016-03-01

    Implementing sustainable materials into the construction industry is fast becoming a trend nowadays. Palm Kernel Shell is a by-product of Malaysia’s palm oil industry, generating waste as much as 4 million tons per annum. As a means of producing a sustainable, environmental-friendly, and affordable alternative in the lightweight concrete industry, the exploration of the potential of Palm Kernel Shell to be used as an aggregate replacement was conducted which may give a positive impact to the Malaysian construction industry as well as worldwide concrete usage. This research investigates the feasibility of PKS as an aggregate replacement in lightweight concrete in terms of compressive strength, slump test, water absorption, and density. Results indicate that by using PKS for aggregate replacement, it increases the water absorption but decreases the concrete workability and strength. Results however, fall into the range acceptable for lightweight aggregates, hence it can be concluded that there is potential to use PKS as aggregate replacement for lightweight concrete.

  1. FRP-Confined Recycled Coarse Aggregate Concrete: Experimental Investigation and Model Comparison

    Directory of Open Access Journals (Sweden)

    Yingwu Zhou

    2016-10-01

    Full Text Available The in situ application of recycled aggregate concrete (RAC is of great significance in environmental protection and construction resources sustainability. However, it has been limited to nonstructural purposes due to its poor mechanical performance. External confinement using steel tubes and fiber-reinforced polymer (FRP can significantly improve the mechanical performance of RAC and thus the first-ever study on the axial compressive behavior of glass FRP (GFRP-confined RAC was recently reported. To have a full understanding of FRP-confined RAC, this paper has extended the type of FRP and presents a systematic experimental study on the axial compressive performance of carbon FRP (CFRP-confined RAC. The mechanical properties of CFRP-confined RAC from the perspective of the failure mode, ultimate strength and strain, and stress–strain relationship responses were analyzed. Integrated with existing experimental data of FRP-confined RAC, the paper compiles a database for the mechanical properties of FRP-confined RAC. Based on the database, the effects of FRP type (i.e., GFRP and CFRP and the replacement ratio of recycled coarse aggregate were investigated. The results indicated that the stress–stain behavior of FRP-confined RAC depended heavily on the unconfined concrete strength and the FRP confining pressure instead of the replacement ratio. Therefore, this study adopted eleven high-performance ultimate strength and strain models developed for FRP-confined normal aggregate concrete (NAC to predict the mechanical properties of FRP-confined RAC. All the predictions had good agreement with the test results, which further confirmed similar roles played by FRP confinement in improving the mechanical properties of RAC and improving those of NAC. On this basis, this paper finally recommended a stress–strain relationship model for FRP-confined RAC.

  2. Cement treated recycled crushed concrete and masonry aggregates for pavements

    NARCIS (Netherlands)

    Xuan, D.X.

    2012-01-01

    This research is focusing on the characterization of the mechanical and deformation properties of cement treated mixtures made of recycled concrete and masonry aggregates (CTMiGr) in relation to their mixture variables. An extensive laboratory investigation was carried out, in which the mechanical p

  3. Effect of fine to coarse aggregate ratio on the rheology and fracture energy of steel fibre reinforced self-compacting concretes

    Indian Academy of Sciences (India)

    Mert Yücel Yardimci; Bülent Baradan; Mehmet Alı Taşdemır

    2014-12-01

    In this study, the influence of aggregate grading and steel fibre properties on the flow properties and fracture energy of steel fibre reinforced self-compacting concrete (SFRSCC) has been investigated. Two types of hooked-end steel fibres at three different dosages (20, 40 and 60 kg/m3) were incorporated into self-compacting mixtures having similar paste contents but different fine to coarse aggregate (FA/CA) ratios (0.94, 1.72 and 2.50 by weight). Besides the flowability and passing ability of fresh concrete, the mechanical properties of hardened concrete including the fracture energy have also been investigated. The relations between flexural parameters and fibre orientation were established by image analysis technique. Test results showed that hooked-end steel fibre inclusion into the plain self-compacting concrete negatively affects the flowability and passing ability of themixture. Increasing FA/CA ratio enhances these rheological parameters and provides better fibre orientation. On the other hand, increasing FA/CA ratio decreases the fracture energy of plain SCC mixtures and the fibre incorporated series which were less affected from fibre inclusion follow the same trend with the plain SCC. The proper FA/CA ratio for the best rheological and mechanical performance depends on the fibre content, aspect ratio and their influence on the flowability of the mixture. In order to obtain better fibre orientation and hence higher fracture energy, relatively higher FA/CA ratios should be used when the fibre content and aspect ratio are relatively high.

  4. Size-dependent enrichment of waste slag aggregate fragments abraded from asphalt concrete.

    Science.gov (United States)

    Takahashi, Fumitake; Shimaoka, Takayuki; Gardner, Kevin; Kida, Akiko

    2011-10-30

    Authors consider the environmental prospects of using melted waste slag as the aggregate for asphalt pavement. In particular, the enrichment of slag-derived fragments in fine abrasion dust particles originated from slag asphalt concrete and its size dependency were concerned. A series of surface abrasion tests for asphalt concrete specimens, containing only natural aggregates as reference or 30 wt% of substituted slag aggregates, were performed. Although two of three slag-asphalt concretes generated 1.5-3.0 times larger amount of abrasion dust than the reference asphalt concrete did, it could not be explained only by abrasion resistance of slag. The enrichment of slag-derived fragments in abrasion dust, estimated on the basis of the peak intensity of quartz and heavy metal concentrations, had size dependency for all slag-asphalt concretes. Slag-derived fragments were enriched in abrasion dust particles with diameters of 150-1000 μm. Enrichment factors were 1.4-2.1. In contrast, there was no enrichment in abrasion dust particles with diameter less than 75 μm. This suggests that prior airborne-size fragmentation of substituted slag aggregates does not need to be considered for tested slag aggregates when environmental risks of abrasion dust of slag-asphalt pavement are assessed.

  5. Study of Compressive Strength of Concrete with Coal Power Plant Fly Ash as Partial Replacement of Cement and Fine Aggregate

    Directory of Open Access Journals (Sweden)

    FAREED AHMED MEMON

    2010-10-01

    Full Text Available This research study comprises of concrete cubes made with Ordinary Portland Cement and with different configurations of fly ash by replacing cement and fine aggregate. To achieve the aim of this study, total 81 concrete cubes were cast. Among 81 cubes, 9 cubes were made with normal concrete, 36 cubes were made by replacing 25%, 50%, 75% and 100% of fine aggregate with fly ash and 36 cubes were made by replacing 10%, 25%, 50%, and 75% of cement with fly ash. The cubes were 6\\" x 6\\" in cross-section, and the mix design was aimed for 5000 psi. After proper curing of all 81 cubes, they were tested at 3, 7 and 28 days curing age. The cubes were tested in Forney Universal Testing Machine. By analyzing the test results of all the concrete cubes, the following main findings have been drawn. The compressive strength of concrete cubes made by replacing 100 % fine aggregate by fly ash was higher than the concrete cubes made with Ordinary Portland Cement at all 3, 7 and 28 days curing ages. On the other hand, the compressive strength of concrete cubes made by replacing 10 % and 25 % cement by fly ash was slightly lower than the concrete cubes made with Ordinary Portland Cement at all curing ages, whereas, the compressive strength of concrete cubes made by replacing 50 % and 75 % of cement by fly ash were quite lower than the concrete cubes made with Ordinary Portland Cement at all curing ages.

  6. Polymer Waste Material as Partial Replacement of Fine Aggregate in Concrete Production

    Directory of Open Access Journals (Sweden)

    D. Dahiru

    2014-05-01

    Full Text Available The aim of the study is to assess the quality of concrete produced with polymer waste as partial replacement of fine aggregate with a view to establishing areas where such concrete can be used. It is an experimental research that entails the following steps: First, the polymer waste material, PWM, was collected from dumps and processed; then its melting point determined. A varying proportion of PWM was used as partial replacement of fine aggregate A nominal mix of 1:3:6 was used to prepare 150×150×150 mm concrete cubes specimens with different proportion of 0, 10, 20 and 30%, respectively PWM partial substitution of fine aggregate. Samples were subjected to workability, compressive and tensile strength tests. Results show that PWM content has inverse relationship with the workability, compressive and tensile strengths. For example, an increase of 30% PWM results to about 53 and 73.3% decrease in compressive and tensile strengths, respectively. The compressive strength of the samples is in the range of 22.8-12.3 N/mm2 while the tensile strength ranges from 1.10-0.56 N/mm2. It is recommended that the concrete should not be used for structural work but such concrete has high water retention capacity. As such, the possibility of using it as a nuclear radiation shield should be investigated.

  7. Compression Dispersion Efficiency of Recycled Aggregate Concrete Struts At Different Load Concentration Ratios

    Directory of Open Access Journals (Sweden)

    Dr. Rakesh Kumar, Dr.P.K Mehta,Devbrat Singh, Anup Kumar Pandey, Sarvesh Kumar

    2014-06-01

    Full Text Available Infrastructure development activities in India have increased many folds in recent times. This has resulted in increase in the demand of construction materials like cement, coarse aggregate, fine aggregate etc. Huge quantities of concrete wastes are produced due to demolition of old structures. If recycled aggregate from this waste is used for construction purpose, it will not only make the structures economical and eco-friendly butwill also solve the problem of waste disposal.Recycling old waste concrete by crushing and grading into coarse aggregates for use in new structural concrete is drawing the attention of engineers, environmentalists and researchers since last three decades. In this paper, an attempt has been made to study the compression dispersion behaviour of struts of natural coarse aggregate (NCA and recycle coarse aggregate (RCA at different load concentration ratio and aspect ratio. For the study, struts of 450 mm height and 75mm thickness with varying widths starting from 75mm to 450mm, using NCA and RCA concrete, were cast. The testing of struts was carriedout on loading frame of capacity 500 kN. The struts were tested to failure under in-plane compressive load applied through symmetrically placed steel plate (75×75×10 mm at top andbottom of the struts.

  8. Flexural Toughness Characteristics of Steel Synthetic Fibers-Lightweight Aggregate Concrete

    OpenAIRE

    2016-01-01

    In general, the steel synthetic fibers improve the durability of concrete by providing crackarresting mechanism and minimizing it’s possible to cracking. In this study, an experimental program was undertaken to investigate the effect of steel synthetic fibers content volume fractions on the compressive, tensile, modulus of elasticity, and flexural toughness of lightweight aggregate concrete (LAWC). The tested specimens were divided into five groups based on steel synthetic fibers conten...

  9. The alkali–aggregate reaction for various aggregates used in concrete

    Directory of Open Access Journals (Sweden)

    Calderón, V.

    2010-09-01

    Full Text Available The aim of this work is to contribute to the knowledge of the interactions between aggregates and the components of the interstitial phase of concrete and to determine whether those aggregates that are subsequently used in the manufacture of concrete are reagents and are therefore likely to undergo a progressive deterioration of their initial properties. An initial petrographic study of each aggregate is performed in order to be able to determine its subsequent behaviour and reactivity under the influence of various factors. The potential reactivity of different silicaceous aggregates (slates, gneiss, hornfels, granites, quartzite and serpentine is then determined by a chemical method for evaluating the potential reactivity of aggregates and an accelerated method in mortar specimens, and finally the surface reactivity is investigated. The results of these studies suggest that some aggregates are able to react with the components of the interstitial phase of concrete. The existence of this kind of interaction is confirmed by the results of the surface investigations before and after the basic reaction.

    Este trabajo pretende contribuir al conocimiento de las reacciones de interacción entre los áridos y los componentes de la fase intersticial del hormigón y determinar si estos áridos, empleados posteriormente en la fabricación del hormigón, son reactivos y por tanto susceptibles de provocar una disminución progresiva de sus propiedades iniciales. Para la caracterización de cada árido se ha realizado un estudio petrográfico, fundamental a la hora de determinar su posterior comportamiento en términos de reactividad frente a diversos factores. Seguidamente, se ha analizado la reactividad potencial de diferentes áridos silicatados (pizarras, gneis, corneanas, granitos, cuarcita y serpentina mediante los dos métodos normalizados existentes: el método químico para la determinación de la reactividad potencial de áridos y

  10. Sustainable High Quality Recycling of Aggregates from Waste-to-Energy, Treated in a Wet Bottom Ash Processing Installation, for Use in Concrete Products

    Directory of Open Access Journals (Sweden)

    Philip Van den Heede

    2015-12-01

    Full Text Available Nowadays, more efforts towards sustainability are required from the concrete industry. Replacing traditional aggregates by recycled bottom ash (BA from municipal solid waste incineration can contribute to this goal. Until now, only partial replacement has been considered to keep the concrete workability, strength and durability under control. In this research, the feasibility of a full aggregate replacement was investigated for producing prefabricated Lego bricks. It was found that the required compressive strength class for this purpose (C20/25 could be achieved. Nevertheless, a thorough understanding of the BA properties is needed to overcome other issues. As BA is highly absorptive, the concrete’s water demand is high. This workability issue can be dealt with by subjecting the fine BA fraction to a crushing operation to eliminate the porous elements and by pre-wetting the fine and coarse BA fractions in a controlled manner. In addition, a reactive NaOH washing is needed to avoid formation of longitudinal voids and the resulting expansion due to the metallic aluminum present in the BA. Regarding the long-term behavior, heavy metal leaching and freeze-thaw exposure are not problematic, though there is susceptibility to acetic and lactic acid attack and maybe increased sensitivity to alkali-silica reaction.

  11. Effect of NGBFS and CBA as fine aggregate on the chloride permeability of concrete

    Directory of Open Access Journals (Sweden)

    İsa Yüksel

    2013-09-01

    Full Text Available This paper presents the results of an investigation which was about influence of non-ground Coal Bottom Ash (CBA and Non-Ground Granulated Blast-Furnace Slag (NGBFS as fine aggregate on rapid chloride permeability of concrete. Series of Rapid Chloride Permeability Test (RCPT were conducted with concrete specimens containing NGBFS and CBA in varying percentages from 10 to 50% with the step of 10% of fine aggregate by weight. Two basic series concrete specimens were prepared in laboratory. The first series (G was contained NGBFS, the second series (B was contained CBA as fine aggregate. Test results indicated that NGBFS or CBA improves the resistance to chloride ion penetration tosome extent. 30% and 10% replacement ratios were selected as optimum replacement ratios for G and B series. It was concluded that GBFS was more impressive then CBA for blocking chloride ion movements.

  12. Microstructure and its relationship to fracture in portland cement mortar and concrete

    Science.gov (United States)

    Abell, Anne Bernadine

    This research explores the relationship between the geometry of crack propagation and mechanical properties of mortar and concrete. The crack deflection and branching are measured using several microscopy techniques along with image analysis of crack profiles intruded by a low melting-point alloy. The toughness measured by mechanical testing, the fracture surface geometry, phases and elastic properties identified by image analysis and microscopy, along with the crack branching relationships are used to predict the increase in the toughness of these materials with respect to the flat-crack toughness using a micromechanical model. The effect of the model parameters, microscopy techniques, material elastic properties, void modeling and branching ratio were investigated. The parametric analysis and modeling conditions determine a nearly uniform flat-crack toughness for the cement matrix of the mortar samples and a higher flat-wrack toughness for the cement matrix of the concrete samples. The trend toward a single toughness value may be an indication that there is a single material parameter to describe the fracture energy of these materials.

  13. Compressive and Tensile Capacity of Recycled Aggregate Concrete (RAC with Glass as Supplement Material

    Directory of Open Access Journals (Sweden)

    Suraya Hani Adnan

    2013-12-01

    Full Text Available The amount of construction waste is increased significantly over the years due to reconstruction and the demolition of old buildings. One of the major challenges of our present society is to protect the environment by recycling the existing construction waste. This study concerned on two types of variable in the production of concrete which are the utilization of coarse recycled aggregate and utilization of different supplement ratio of fine glass wastes to cement. To evaluate the viability of this study, an experimental work was performed in order to monitor the mechanical behavior of such concrete. The compression and splitting tensile strength of concrete were determined on this study. From the result, it is conclude that the utilization of recycled aggregate does not much affect in the uniaxial compressive strength and splitting tensile strength of concrete, for replacement ratio up to 25 %. However, the utilization of fine glass as supplement material to cement is increase the uniaxial compressive and splitting tensile strength of concrete, for supplement ratio up to 5 %. Thus, it can be stated that the optimum concrete mixture is the mixture of 25 % recycled aggregate and 5% glass.

  14. An Exploratory Compressive Strength Of Concrete Containing Modified Artificial Polyethylene Aggregate (MAPEA)

    Science.gov (United States)

    Hadipramana, J.; Mokhatar, S. N.; Samad, A. A. A.; Hakim, N. F. A.

    2016-11-01

    Concrete is widely used in the world as building and construction material. However, the constituent materials used in concrete are high cost when associated with the global economic recession. This exploratory aspires to have an alternative source of replacing natural aggregate with plastic wastes. An investigation of the Modified Artificial Polyethylene Aggregate (MAPEA) as natural aggregate replacement in concrete through an experimental work was conducted in this study. The MAPEA was created to improve the bonding ability of Artificial Polyethylene Aggregate (APEA) with the cement paste. The concrete was mixed with 3%, 6%, 9%, and 12% of APEA and MAPEA for 14 and 28 curing days, respectively. Furthermore, the compressive strength test was conducted to find out the optimum composition of MAPEA in concrete and compared to the APEA concrete. Besides, this study observed the influence and behaviour of MAPEA in concrete. Therefore, the Scanning Electron Microscopy was applied to observe the microstructure of MAPEA and APEA concrete. The results showed the use of high composition of an artificial aggregate resulted inferior strength on the concrete and 3% MAPEA in the concrete mix was highest compressive strength than other content. The modification of APEA (MAPEA) concrete increased its strength due to its surface roughness. However, the interfacial zone cracking was still found and decreased the strength of MAPEA concrete especially when it was age 28 days.

  15. Durability of recycled aggregate concrete designed with the Equivalent Mortar Volume (EMV method: Validation under the Spanish context and its adaptation to Bolomey methodology

    Directory of Open Access Journals (Sweden)

    Jiménez, C.

    2014-03-01

    Full Text Available Some durability properties are analyzed in concretes made with a novel method for recycled aggregates concrete (RAC proportioning, in order to validate it under the Spanish context. Two types of concrete mixes were elaborated; one following the guidelines of the named method, and other based on an adaptation of the method to Bolomey methodology. Two types of recycled concrete aggregates (RCA were used. RCA replacement for natural aggregates (NA ranged from 20% to 100%. The 20% was chosen in order to comply with Spanish recommendations. Water penetration under pressure, water absorption and chlorides attack were the studied properties. It is verified that the new method and the developed adaptation results in concrete mixes of better or similar properties to those of the natural aggregates concrete (NAC and the conventional RAC, saving important amounts of cement.Algunas propiedades de durabilidad son analizadas en hormigones elaborados con el nuevo método para la dosificación de hormigones con árido reciclado (HAR para validarlo bajo el contexto español. Se elaboraron dos tipos de hormigones; uno siguiendo las directrices del nuevo método y otro basado en una adaptación del anterior a la metodología Bolomey. Se utilizaron dos tipos de árido reciclado (ARH. Los reemplazos de áridos variaron entre 20% y 100%. El 20% ha sido elegido para cumplir con recomendaciones españolas sobre HAR. Las propiedades estudiadas fueron: penetración de agua bajo presión, absorción de agua y susceptibilidad al ataque de cloruros. Se verifica que el nuevo método y la adaptación desarrollada resultan en hormigones con mejores o similares características que las de un hormigón con áridos naturales (HAN y las de HAR convencional, ahorrando, además, importantes cantidades de cemento.

  16. 再生细骨料取代率对混凝土工作性的影响%Effects on Substitution Rate of Recycled Fine Aggregate to Concrete Workability

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    以不同流动性的混凝土再生细骨料取代率为变化因素,对混凝土初始坍落度、1 h 坍落度、快速工作度以及28 d 抗压强度进行了测试。研究表明,不同流动性的再生混凝土再生细骨料总比例在30%~40%左右变化时,对混凝土工作性影响不大,再生混凝土的强度甚至高于基准混凝土;在保持再生混凝土配合比其他掺量不变条件下,再生细骨料对坍落度要求较高的混凝土适应性较好,最高取代率为30%。通过快速工作度测定方法建立了混凝土快速工作度与坍落度之间的关系,为快速推算混凝土坍落度并实时监控混凝土施工状态提供参考。%The initial concrete slump,1 h slump ,fast workability and 28 day compressive strength were tested,re-spectively on the substitution rate of the recycled fine aggregate with the different mobility of concrete.The research showed that the influence on the workability of concrete was little,recycled concrete strength even higher than that of the reference concrete,at the recycled aggregate proportion in the change of 30%~40%.In the condition of the con-stant concrete mixture proportion keeping other content of the recycled concrete,it was more suitable for the fine ag-gregate to the concrete with higher slump,the highest substitution rate of 30%.Through the method of fast workabili-ty determination,the relationship between the concrete fast workability and slump was established .It was provided for the rapid calculation of concrete slump and monitoring the concrete construction in real-time.

  17. RILEM recommendations for the prevention of damage by alkali-aggregate reactions in new concrete structures state-of-the-art report of the RILEM technical committee 219-ACS

    CERN Document Server

    Sims, Ian

    2016-01-01

    This book contains the full set of RILEM Recommendations which have been produced to enable engineers, specifiers and testing houses to design and produce concrete which will not suffer damage arising from alkali reactions in the concrete. There are five recommended test methods for aggregates (designated AAR-1 to AAR-5), and an overall recommendation which describes how these should be used to enable a comprehensive aggregate assessment (AAR-0). Additionally, there are two Recommended International Specifications for concrete (AAR-7.1 & 7.2) and a Preliminary International Specification for dams and other hydro structures (AAR-7.3), which describe how the aggregate assessment can be combined with other measures in the design of the concrete to produce a concrete with a minimised risk of developing damage from alkali-aggregate reactions.

  18. COIN Project: Towards a zero-waste technology for concrete aggregate production in Norway

    Science.gov (United States)

    Cepuritis, Rolands; Willy Danielsen, Svein

    2014-05-01

    COIN Project: Towards a zero-waste technology for concrete aggregate production in Norway Rolands Cepuritis, Norcem/NTNU and Svein Willy Danielsen, SINTEF Aggregate production is a mining operation where no purification of the "ore" is necessary. Still it is extremely rare that an aggregate production plant is operating on the basis of zero-waste concept. This is since historically the fine crushed aggregate (particles with a size of less than 2, 4 or sometimes 8 mm) has been regarded as a by-product or waste of the more valuable coarse aggregate production. The reason is that the crushed coarse aggregates can easily replace coarse rounded natural stones in almost any concrete composition; while, the situation with the sand is different. The production of coarse aggregate normally yields fine fractions with rough surface texture, flaky or elongated particles an inadequate gradation. When such a material replaces smooth and rounded natural sand grains in a concrete mix, the result is usually poor and much more water and cement has to be used to achieve adequate concrete flow. The consequences are huge stockpiles of the crushed fine fractions that can't be sold (mass balance problems) for the aggregate producers, sustainability problems for the whole industry and environmental issues for society due to dumping and storing of the fine co-generated material. There have been attempts of utilising the material in concrete before; however, they have mostly ended up in failure. There have been attempts to adjust the crushed sand to the properties of the natural sand, which would still give a lot of waste, especially if the grading would have to be adjusted and the high amounts of fines abundantly present in the crushed sand would have to be removed. Another fundamental reason for failure has been that historically such attempts have mainly ended up in a research carried out by people (both industrial and academic) with aggregate background (= parties willing to find market

  19. Effect of Stress Amplitude on the Damping of Recycled Aggregate Concrete

    Directory of Open Access Journals (Sweden)

    Chaofeng Liang

    2015-08-01

    Full Text Available Damping characterizes the energy dissipation capacity of materials and structures, and it is affected by several external factors such as vibrating frequency, stress history, temperature, and stress amplitude. This study investigates the relationship between the damping and the stress amplitude of environment-friendly recycled aggregate concrete (RAC. First, a function model of a member’s loss factor and stress amplitude was derived based on Lazan’s damping-stress function. Then, the influence of stress amplitude on the loss tangent of RAC was experimentally investigated. Finally, parameters used to determine the newly derived function were obtained by numerical fitting. It is shown that the member’s loss factor is affected not only by the stress amplitude but also by factors such as the cross section shapes, boundary conditions, load types, and loading positions. The loss tangent of RAC increases with the stress amplitude, even at low stress amplitude. The damping energy exponent of RAC is not identically equal to 2.0, indicating that the damping is nonlinear. It is also found that the energy dissipation capacity of RAC is superior to that of natural aggregate concrete (NAC, and the energy dissipation capacity can be further improved by adding modified admixtures.

  20. Anchorage of Main Reinforcement in Lightweight Aggregate Concrete Beams

    DEFF Research Database (Denmark)

    Larsen, Henning

    1999-01-01

    The paper deals with the anchorage of reinforcement bars at end supports in beam component made of lightweight aggregate concrete with open structure.......The paper deals with the anchorage of reinforcement bars at end supports in beam component made of lightweight aggregate concrete with open structure....

  1. A Novel Method to Quantify Soil Aggregate Stability by Measuring Aggregate Bond Energies

    Science.gov (United States)

    Efrat, Rachel; Rawlins, Barry G.; Quinton, John N.; Watts, Chris W.; Whitmore, Andy P.

    2016-04-01

    Soil aggregate stability is a key indicator of soil quality because it controls physical, biological and chemical functions important in cultivated soils. Micro-aggregates are responsible for the long term sequestration of carbon in soil, therefore determine soils role in the carbon cycle. It is thus vital that techniques to measure aggregate stability are accurate, consistent and reliable, in order to appropriately manage and monitor soil quality, and to develop our understanding and estimates of soil as a carbon store to appropriately incorporate in carbon cycle models. Practices used to assess the stability of aggregates vary in sample preparation, operational technique and unit of results. They use proxies and lack quantification. Conflicting results are therefore drawn between projects that do not provide methodological or resultant comparability. Typical modern stability tests suspend aggregates in water and monitor fragmentation upon exposure to an un-quantified amount of ultrasonic energy, utilising a laser granulometer to measure the change in mean weight diameter. In this project a novel approach has been developed based on that of Zhu et al., (2009), to accurately quantify the stability of aggregates by specifically measuring their bond energies. The bond energies are measured operating a combination of calorimetry and a high powered ultrasonic probe, with computable output function. Temperature change during sonication is monitored by an array of probes which enables calculation of the energy spent heating the system (Ph). Our novel technique suspends aggregates in heavy liquid lithium heteropolytungstate, as opposed to water, to avoid exposing aggregates to an immeasurable disruptive energy source, due to cavitation, collisions and clay swelling. Mean weight diameter is measured by a laser granulometer to monitor aggregate breakdown after successive periods of calculated ultrasonic energy input (Pi), until complete dispersion is achieved and bond

  2. Flexural fatigue characteristics of steel fiber reinforced recycled aggregate concrete (SFRRAC

    Directory of Open Access Journals (Sweden)

    Heeralal M.

    2009-01-01

    Full Text Available This research work is aimed at investigating the flexural fatigue behavior of Steel Fiber Reinforced Recycled Aggregate Concrete (SFRRAC. This study gains importance in view of the wide potential for demolished concrete to serve as a source of quality aggregate feed stock in a variety of structural and non-structural applications. This is a continuation of a series of investigations being conducted aimed at optimizing the utilization of recycled aggregate concrete in rigid pavements. A total of 72 standard flexure specimens of 100mm x 100mm x 450mm were cast and tested for flexure under both static and fatigue loading. The parameters of the investigation included the different replacements of recycled aggregate in natural aggregate, presence of steel fiber and different stress levels. The study showed that the recycled aggregates can be used in rigid pavements also and the inclusion of fibers can benefit the fatigue performance of recycled aggregate concrete.

  3. Practical approach for production of bacteria-based agent-contained light weight aggregates to make concrete self-healing

    NARCIS (Netherlands)

    Mors, R.M.; Jonkers, H.M.

    2013-01-01

    A functional experimental concrete system has been developed in our lab, in which a two component bacteria-based healing agent contained in a protective reservoir is included in the concrete mixture. Incorporated bacteria have the potential to produce copious amounts of calcium carbonate based cryst

  4. Sequestering Lead in Paint by Utilizing Deconstructed Masonry Materials as Recycled Aggregate in Concrete. Revision 1

    Science.gov (United States)

    2008-05-27

    at Holcim Ltd. donated masonry materials and cement, respectively, to the project. ix EXECUTIVE SUMMARY A systematic study has been conducted to... Holcim Type I ordinary portland cement (which meets the requirements of ASTM [American Society for Testing and Materials] C150) and Polar Bear CSAcement

  5. Influence of sand to coarse aggregate ratio on the interfacial bond strength of steel fibers in concrete for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Jin, E-mail: jjinslow@nate.com [Department of Civil and Environmental Engineering, SeJong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Kim, Dong Joo, E-mail: djkim75@sejong.ac.kr [Department of Civil and Environmental Engineering, SeJong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747 (Korea, Republic of); Kang, Su Tae, E-mail: stkang@daegu.ac.kr [Department of Civil Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan, Gyeongbuk 712-714 (Korea, Republic of); Lee, Jang Hwa, E-mail: jhlee@kict.re.kr [Korea Institute of Construction Technology, 2311 Daewha-Dong, Ilsan-Gu, Goyang-Si, Gyeonggi-Do 411-712 (Korea, Republic of)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The final goal is to develop a fiber reinforced concrete for containment buildings. Black-Right-Pointing-Pointer We investigated the effect of S/a on the bond strength of steel fibers. Black-Right-Pointing-Pointer Deformed steel fibers produced much higher interfacial bond strength. Black-Right-Pointing-Pointer As S/a increased, twisted fiber showed a significant enhancement in bond strength. Black-Right-Pointing-Pointer Smooth and hooked fiber showed no clear difference as S/a increased. - Abstract: The interfacial bond strength of three high strength steel fibers (smooth, hooked, and twisted fiber) in concrete of nuclear power plants was investigated to develop fiber reinforced concrete for containment building. Sand to aggregate ratio (S/a) was adjusted to compensate reduction in the workability due to adding fibers; the influence of S/a ratio on the interfacial bond strength was investigated. As the S/a ratio increased from 0.444 to 0.615, the bond strength of twisted steel fiber was significantly improved while smooth and hooked steel fiber showed no clear difference. The different sensitivity according to the S/a ratio results from the different pullout mechanism: twisted steel fiber generates more mechanical interaction during fiber pullout at the interface between fiber and matrix than smooth and hooked fibers. The microscopic observation by scanning electron microscope back-scattered electrons images discovered lower porosity at the interfacial transition zone between fiber and concrete with higher S/a ratio.

  6. Cellular Concrete Bricks with Recycled Expanded Polystyrene Aggregate

    OpenAIRE

    Juan Bosco Hernández-Zaragoza; Teresa López-Lara; Jaime Horta-Rangel; Carlos López-Cajún; Eduardo Rojas-González; García-Rodríguez, F. J.; Jorge Adue

    2013-01-01

    Cellular concrete bricks were obtained by using a lightweight mortar with recycled expanded polystyrene aggregate instead of sandy materials. After determining the block properties (absorption, compressive strength, and tensile stresses), it was found that this brick meets the requirements of the masonry standards used in Mexico. The obtained material is lighter than the commercial ones, which facilitates their rapid elaboration, quality control, and transportation. It is less permeable, whic...

  7. Effect of lightweight aggregate intrinsic Strength on lightweight concrete compressive strength and modulus of elasticity

    Directory of Open Access Journals (Sweden)

    Videla, C.

    2002-03-01

    Full Text Available The study of Structural Lightweight Concrete (SLC, which is a material generally composed of cement, water and lightweight aggregate, has been mainly focused on developing particular cases. Then, the main objective of this research was to generalise the knowledge of this type of material. Particularly, the effect of replacing conventional coarse aggregate by lightweight aggregate on mechanical properties of concrete was studied. SLC may be conceived as a two -phase material. The first phase, composed of cement, water and siliceous natural sand, is called the "resistant phase", and contributes to the structural strength. The second phase is the lightweight phase, comprised of coarse lightweight aggregate, and it is meant to decrease the concrete density. In this way it would be possible to describe the mechanical behaviour of concrete, based on lightweight aggregate and the cement mortar parameters. The obtained results allow for the proposition of relationships between mechanical properties of SLC (such as compressive strength and modulus of elasticity and the constituent materials properties and amount. At the same time, an easily measured index representing the structural capability of lightweight aggregate is also proposed, this index allows to estimate the potential mechanical properties of concrete which could be obtained by using a particular aggregate.

    El estudio del Hormigón Ligero Estructural (HLE, material compuesto generalmente por cemento, agua y árido ligero, ha estado enfocado principalmente al desarrollo de casos particulares. Por lo anterior, el objetivo principal de esta investigación fue generalizar el conocimiento sobre este material. En particular, la meta de este trabajo fue estudiar el efecto que tiene el reemplazo de árido convencional por un árido ligero, en las propiedades mecánicas del hormigón. El modelo aplicado conceptualiza al HLE como un material de dos fases, una denominada "soportante", constituida

  8. Cellular Concrete Bricks with Recycled Expanded Polystyrene Aggregate

    Directory of Open Access Journals (Sweden)

    Juan Bosco Hernández-Zaragoza

    2013-01-01

    Full Text Available Cellular concrete bricks were obtained by using a lightweight mortar with recycled expanded polystyrene aggregate instead of sandy materials. After determining the block properties (absorption, compressive strength, and tensile stresses, it was found that this brick meets the requirements of the masonry standards used in Mexico. The obtained material is lighter than the commercial ones, which facilitates their rapid elaboration, quality control, and transportation. It is less permeable, which helps prevent moisture formation retaining its strength due to the greater adherence shown with dry polystyrene. It was more flexible, which makes it less vulnerable to cracking walls due to soil displacements. Furthermore, it is economical, because it uses recyclable material and has properties that prevent deterioration increasing its useful life. We recommend the use of the fully dry EP under a dry environment to obtain the best properties of brick.

  9. Evaluation of the Properties of Bituminous Concrete Prepared from Brick-Stone Mix Aggregate

    OpenAIRE

    Dipankar Sarkar; Manish Pal; Sarkar, Ashoke K.; Umesh Mishra

    2016-01-01

    The paper describes an investigation into mechanical properties of brick-stone bituminous concrete mix. The effect of brick-stone mix on various mechanical properties of the bituminous concrete such as Marshall stability, flow, Marshall Quotient (stability to flow ratio), Indirect Tensile Strength, stripping, rutting, and fatigue life of bituminous concrete overlay has been evaluated. In this study over-burnt brick aggregate (OBBA) and stone aggregate (SA) have been mixed in different ratios ...

  10. Brittleness Generation Mechanism and Failure Model of High Strength Lightweight Aggregate Concrete

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The brittleness generation mechanism of high strength lightweight aggregate concrete(HSLWAC) was presented, and it was indicated that lightweight aggregate was the vulnerable spot,initiating brittleness. Based on the analysis of the brittleness failure by the load-deflection curve, the brittleness presented by HSLWAC was more prominent compared with ordinary lightweight aggregate concrete of the same strength grade. The model of brittleness failure was also established.

  11. Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates

    Directory of Open Access Journals (Sweden)

    Faiz Uddin Ahmed Shaikh

    2016-12-01

    Full Text Available This paper presents mechanical and durability properties of geopolymer concrete containing recycled coarse aggregate (RCA. The RCA is sourced from local construction and demolition (C&D waste in Perth, Australia. The RCA is used as a partial replacement of natural coarse aggregate (NCA in geopolymer concrete at 15%, 30% and 50% by wt. which corresponds to series two, three and four, respectively, while the geopolymer concrete containing 100% NCA is control and is considered as the first series. Class F fly ash is used as the source material for the geopolymer and 8 M sodium hydroxide and sodium silicate alkali activators are used to synthesise the fly ash geopolymer in this study. In all four series a constant alkali activator to fly ash ratio is used. Compressive strength, indirect tensile strength and elastic modulus of above geopolymer concrete are measured at 7 and 28 days, while sorptivity, immersed water absorption and volume of permeable voids of above geopolymer concrete are measured at 28 days. Relevant Australian standards are used to measure all the above properties except the sorptivity which is measured according to ASTM standard. Results show that the compressive strength, indirect tensile strength and elastic modulus of geopolymer concrete decrease with an increase in RCA contents, which is also true for both 7 and 28 days. Excellent correlations of compressive strength with indirect tensile strength and elastic modulus are also observed in geopolymer concrete containing RCA. Existing empirical models for cement concrete and geopolymer concrete containing NCA underestimate and overestimate the indirect tensile strength and elastic modulus, respectively of geopolymer concrete containing RCA. The measured durability properties such as sorptivity, water absorption and volume of permeable voids of geopolymer concrete were also adversely affected by the incorporation of RCA and these properties increase with an increase in RCA

  12. Computational investigation of the neutron shielding and activation characteristics of borated concrete with polyethylene aggregate

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.J.; Jang, J.G.; Lee, H.K., E-mail: leeh@kaist.ac.kr

    2014-09-15

    This paper presents the result of a computational study to investigate the neutron shielding and activation characteristics of concretes containing boron carbide and polyethylene. Various mixes were considered with changes in the contents of boron carbide and polyethylene aggregate. The Monte Carlo simulation code MCNP-5 was utilized to determine the transmission of neutron through concrete at different energies from 0.1 eV to 1 MeV, and ORIGEN-S code was then used to predict activation characteristics of the concretes. It was shown that the replacement of polyethylene in borated concrete greatly enhanced the shielding efficiency of the concrete, and total activity levels of the concrete were considerably decreased with this replacement. Furthermore, double-layered structures having the first layer of polyethylene aggregate-replaced concrete and the second layer of 2 wt% borated concrete are shown to improve shielding efficiency more significantly than monolithic structures.

  13. Carbonation Coefficients from Concrete Made with High-Absorption Limestone Aggregate

    Directory of Open Access Journals (Sweden)

    Eric I. Moreno

    2013-01-01

    Full Text Available Normal aggregates employed in concrete have absorption levels in the range of 0.2% to 4% for coarse aggregate and 0.2 to 2% for fine aggregate. However, some aggregates have absorption levels above these values. As the porosity of concrete is related to the porosity of both the cement paste and the aggregate and the carbonation rate is a function, among other things, of the porosity of the material, there is concern about the effect of this high porosity material in achieving good quality concrete from the durability point of view. Thus, the objective of this investigation was to study the carbonation rates of concrete specimens made with high-absorption limestone aggregate. Four different water/cement ratios were used, and cylindrical concrete specimens were exposed to accelerated carbonation. High porosity values were obtained for concrete specimens beyond the expected limits for durable concrete. However, carbonation coefficients related to normal quality concrete were obtained for the lowest water/cement ratio employed suggesting that durable concrete may be obtained with this material despite the high porosity.

  14. Green Concrete from Sustainable Recycled Coarse Aggregates: Mechanical and Durability Properties

    Directory of Open Access Journals (Sweden)

    Neeraj Jain

    2015-01-01

    Full Text Available Present investigations deal with the development of green concrete (M 30 grade using recycled coarse aggregates for sustainable development. Characterization of recycled coarse aggregates showed that physical and mechanical properties are of inferior quality and improvement in properties was observed after washing due to removal of old weak mortar adhered on its surface. The influence of natural coarse aggregates replacement (50 and 100% with recycled coarse aggregate on various mechanical and durability properties of hardened concrete were discussed and compared with controls at different w/c ratio. Improvements in all the engineering properties of hardened concrete were observed using washed recycled coarse aggregates. The compressive strength of 28-day hardened concrete containing 100% washed recycled aggregate was slightly lower (7% than concrete prepared with natural aggregates. Water absorption, carbonation, and rapid chloride penetration test were conducted to assess the durability of the concrete. Concrete was found moderately permeable for chloride ions penetration and no carbonation was observed in all the concrete mixes studied.

  15. Study on Behaviour of Concrete Mix Replaceing Fine Aggregate With Steel Slag At Different Properties

    Directory of Open Access Journals (Sweden)

    P.Sateesh Kumar

    2015-11-01

    Full Text Available This paper aims to study experimentally, the effect of partial replacement of fine aggregate by steel slag (ss, on the various strength and durability properties of concrete by using the mix designs .the optimum percentage of replacement of fine aggregate by steel slag is found. Workability of concrete gradually decreases, as the percentage of replacement increases which is found using slump test. Compressive strength, tensile strength, flexural strength and durability tests such as acid resistant’s, using HCL,H2SO4 and rapid chloride penetration, are experimentally investigated. The results indicate that for conventional concrete, partial replacement of concrete by steel slag improves the compressive, tensile, flexural strength. The mass loss in cubes after immersion in acids is found to be very low. Deflection in the RCC beams gradually increases, as the load on the beam increases, for the replacement. The degree of fluoride ion penetrability is assessed based on the limits given in ASTM C 1202. The viability of use of steel slag in concrete is found. Waste management is one of the most common and challenging problems in the world. The steel making industry has generated substantially solid waste. Steel slag is a residue obtained in steel making operation. This paper deals with the implementation of steel slag as an effective replacement for sand. Steel slag ,which is consider as the solid waste pollutant, can be used for road construction ,clinker raw materials, filling materials etc. In this work, steel slag used as replacement for sand, which is also major component concrete mixture. This method can be implement for producing hallow blocks, solid blocks, paver blocks, concrete structures etc. Accordingly, advantages can be achieved by using steel slag instead of natural aggregates this will also encourage other researchers to find another field of using steel slag.

  16. Properties of Concrete on Replacement of Coarse Aggregate and Cementitious Materials with Styfoam And Rice Husk Ash Respectively

    Directory of Open Access Journals (Sweden)

    Ananya Sheth

    2016-07-01

    Full Text Available This paper reports an experimental investigation on the influence of Rice Husk Ash (RHAand Expanded Poly Styrene (EPS on the mechanical properties and the properties of fresh concrete of the produced RHA and EPS blended concrete. EPS aggregates were used to replace coarse aggregates by volume with an aim to decrease the unit weight. Locally produced RHA was used to replace cement by its weight with an aim to increase workability. Mixture proportioning was performed to produce target strength of 65 MPa. Past researches regarding complete replacement of coarse aggregates with EPS aggregates have shown strength of less than 10 MPa. Hence, our aim is to achieve strength of 25-30 MPa thereby utilizing environmentally sustainable concrete in the rapidly developing low cost housing sectors of developing countries.

  17. Performance estimation for concretes made with recycled aggregates of construction and demolition waste of some Brazilian cities

    Directory of Open Access Journals (Sweden)

    Antonio Eduardo Bezerra Cabral

    2012-12-01

    Full Text Available The aim of this paper is to verify the influence of composition variability of recycled aggregates (RA of construction and demolition wastes (CDW on the performance of concretes. Performance was evaluated building mathematical models for compressive strength, modulus of elasticity and drying shrinkage. To obtain such models, an experimental program comprising 50 concrete mixtures was carried out. Specimens were casted, tested and results for compressive strength, modulus of elasticity and drying shrinkage were statistically analyzed. Models inputs are CDW composition observed at seven Brazilian cities. Results confirm that using RA from CDW for concrete building is quite feasible, independently of its composition, once compressive strength and modulus of elasticity still reached considerable values. We concluded the variability presented by recycled aggregates of CDW does not compromise their use for concrete building. However, this information must be used with caution, and experimental tests should always be performed to certify concrete properties.

  18. Mechanical Properties of High Strength Concrete Containing Coal Bottom Ash and Oil-Palm Boiler Clinker as Fine Aggregates

    Directory of Open Access Journals (Sweden)

    Soofinajafi Mahmood

    2016-01-01

    Full Text Available This research aims to utilize Coal Furnace Bottom ash (CBA and Oil-Palm Boiler Clinker (OPBC as fine aggregate in concrete mix proportions. They are solid wastes from power plant and Oil Palm industry, respectively. Since these by-products do not have any primary use and are pure waste, an opportunity to use them as aggregate in concrete industry not only is economical but also will be an environmental friendly opportunity leading towards a more sustainable production chain. CBA and OPBC sands had similar grading to normal sand but have lower density and higher water absorption. In a high strength concrete, normal sand was replaced up to 25% with either CBA or OPBC. Test results showed that although water absorption of these wastes was more than normal sand but the slump value of concrete containing each of these wastes showed that these concretes had good workability. All mixes containing these wastes had slightly lower compressive strength at early ages and equivalent or higher compressive strength at later ages compared to control mix. The 28-day compressive strength of these concretes was in the range of 69–76 MPa which can be categorized as high strength concrete. In general, the performance of OPBC was better than CBA at 25% replacement level. However, it is recommended that at least 12.5% of total volume of fine aggregate in a high strength concrete is used of CBA or OPBC.

  19. Lightweight Aggregate Concrete Beams. Load-bearing Capacity

    DEFF Research Database (Denmark)

    Larsen, Henning; Goltermann, Per; Ingholt, N.U.

    1997-01-01

    This paper deals with the load-bearing capacity of reinforced beams made of lightweight aggregate concrete with open structure and documents formulas for the moment capacity as well as the shear force capacity.......This paper deals with the load-bearing capacity of reinforced beams made of lightweight aggregate concrete with open structure and documents formulas for the moment capacity as well as the shear force capacity....

  20. Lightweight Aggregate Concrete Components. Load-bearing Capacity

    DEFF Research Database (Denmark)

    Larsen, Henning; Ingholt, N.U.; Goltermann, Per

    1996-01-01

    The project presented here deals with the load-bearing capacity of reinforced beams made of lightweight aggregate concrete with open structure and documents expressions for the moment capacity as well as the shear force capacity......The project presented here deals with the load-bearing capacity of reinforced beams made of lightweight aggregate concrete with open structure and documents expressions for the moment capacity as well as the shear force capacity...

  1. Generation of urban road dust from anti-skid and asphalt concrete aggregates.

    Science.gov (United States)

    Tervahattu, Heikki; Kupiainen, Kaarle J; Räisänen, Mika; Mäkelä, Timo; Hillamo, Risto

    2006-04-30

    Road dust forms an important component of airborne particulate matter in urban areas. In many winter cities the use of anti-skid aggregates and studded tires enhance the generation of mineral particles. The abrasion particles dominate the PM10 during springtime when the material deposited in snow is resuspended. This paper summarizes the results from three test series performed in a test facility to assess the factors that affect the generation of abrasion components of road dust. Concentrations, mass size distribution and composition of the particles were studied. Over 90% of the particles were aluminosilicates from either anti-skid or asphalt concrete aggregates. Mineral particles were observed mainly in the PM10 fraction, the fine fraction being 12% and submicron size being 6% of PM10 mass. The PM10 concentrations increased as a function of the amount of anti-skid aggregate dispersed. The use of anti-skid aggregate increased substantially the amount of PM10 originated from the asphalt concrete. It was concluded that anti-skid aggregate grains contribute to pavement wear. The particle size distribution of the anti-skid aggregates had great impact on PM10 emissions which were additionally enhanced by studded tires, modal composition, and texture of anti-skid aggregates. The results emphasize the interaction of tires, anti-skid aggregate, and asphalt concrete pavement in the production of dust emissions. They all must be taken into account when measures to reduce road dust are considered. The winter maintenance and springtime cleaning must be performed properly with methods which are efficient in reducing PM10 dust.

  2. 应用固定砂石总体积法配制大粒径自密实混凝土%Preparation of self-compacting concrete with large diameter aggregate by fixed total volume of sand and gravel

    Institute of Scientific and Technical Information of China (English)

    危加阳; 罗竹容

    2014-01-01

    The method of fixed volume of sand and gravel is commonly used in mixture proportion design of self-compacting concrete. In order to return to the natural properties of aggregate, the method of fixed total volume of sand and gravel that is dif-ferent from the traditional concept is proposed, i. e. , in the mixture proportion design of self-compacting concrete, we should ensure it completely enwrapped, separated and suspended by cementing material. Moreover, this method is also applied in the preparation of self-compacting concrete with the maximum size of 31. 5 mm of coarse aggregate. The practices show that the self-compacting concrete still has good stability of anti-segregation and demonstrates that the preparation of self-compacting con-crete with large diameter aggregate by fixed total volume of sand and gravel is feasible.%固定砂石体积法是设计自密实混凝土配合比的常用方法。为回归骨料的天然属性,提出了有别于传统概念的固定砂石总体积法,即在配制自密实混凝土时,按胶凝材料浆包裹、分隔、悬浮总骨料为目标进行配比计算。同时,在工程实际中,利用该方法尝试将最大粒径为31.5 mm且具有较好抗离析稳定性的粗骨料用于自密实混凝土配制。实践证明,利用固定砂石总体积法配制较大粒径骨料自密实混凝土是可行的。

  3. Rio 2016 sustainable construction commitments lead to new developments in recycled aggregate concrete

    NARCIS (Netherlands)

    Toledo Filho, R.D.; Koenders, E.A.B.; Pepe, M.; Cordeiro, G.C.; Fairbairn, E.; Martinelli, E.

    2013-01-01

    The Brazilian construction industry is committed to delivering the venues and infrastructure of the Rio 2016 Olympic and Paralympic Games with zero increase in carbon dioxide emissions, reduced consumption of raw materials, increased use of renewable materials and 100% local recycling of constructio

  4. Feasibility Study of Applying Recycled Aggregate from Building Debris in Concrete

    Institute of Scientific and Technical Information of China (English)

    PENG Yuzhu

    2011-01-01

    Coarse and fine aggregate constitutes an average of approximately 55% to 80% of the total volume of concrete materials.Concrete remains the most commonly-used building material worldwide.As a result,the massive use of aggregate will have a direct impact on the earth's natural resources if an appropriate replacement material is not found,violating the spirit of sustainable development.This study makes a preliminary examination of using coarse and fine aggregate produced from discarded construction materials in concrete.Results indicate that the compressive strength of densified mixture concrete at 28 days can reach 56.88MPa( recycled materials used as coarse aggregate,and natural sand used as fine aggregate)and 53.33 MPa (recycled materials used as both coarse and fine aggregate).While this type of material is not yet fully understood,further research into this area should enable feasible applications in concrete.However,unsuitable mixtures have serious impact on the durability and overall economy of concrete.Pending further research on suitable mixture designs,a complete application of recycled aggregate in concrete can be expected.

  5. Characterization of concrete made with recycled aggregate from concrete demolition waste

    Directory of Open Access Journals (Sweden)

    Terán Gilmore, A.

    2007-12-01

    Full Text Available The present study aimed: to characterize the physical, chemical and mechanical properties of recycled aggregate from construction and concrete structure demolition waste, processed before and after crushing; to characterize fresh and hardened concrete made with such recycled aggregate; and to design different doses varying the water/cement ratio, the amount of cement and the use of superplasticizing admixtures to offset the effects of absorption. The ultimate objective was to provide a broader perspective of the use of recycled aggregate in the manufacture of new concrete.El presente estudio nos permite caracterizar las propiedades físicas, químicas y mecánicas de los áridos reciclados, producto de residuos de la construcción y demolición de estructuras de hormigón, tratándolos antes y después de triturar; caracterizar el hormigón elaborado con áridos reciclados, en su estado fresco y endurecido, diseñando diferentes dosificaciones variando la relación agua/cemento, la cantidad de cemento y el uso de aditivos súper plastificantes para disminuir el efecto de la absorción; caracterización que nos permite tener una mayor perspectiva sobre el uso de áridos reciclados en la elaboración de nuevos hormigones.

  6. Ambiguity of exhaustive diagnosing of alkali-aggregate reaction for concrete revetments subjected to more aggressive factors

    Energy Technology Data Exchange (ETDEWEB)

    Olteanu, A.; Dragomir, D. [ISPH, Design and Studies Institute for Hydro Power Projects, Bucharest (Romania); Hulea, D. [Romanian Electricity Authority, Bucharest (Romania)

    1995-12-31

    On the Bistrita river, in the downstream section of Bicaz gravity dam that is 125 m high and creates a 1,500 hm{sup 3} reservoir, have been additionally built eight low head power stations interconnected by headrace and tailrace channels. These channels of 61 km total length convey water to and from the power stations and have been performed using embankment and excavation. The ground where these channels were located is of sandy clay nature with gypseous layers intercalation. The geometrical characteristics of the channels are as follows: trapezoidal section of 1V:2H slope and 6 m width at base, the water head ranging between 4 and 6 m. Both the apron and the channels slopes have been sealed using 5 x 4 m and 15 cm thick concrete slabs. Two or three slab rows are located under the water level. Channels were commissioned in 1964, and shortly after their commissioning, failures came forth and aggravated, calling for several repairs in more than 30 operation years. Concrete was exclusively damaged within the upper slabs in the area of variable water level in channel. All along the paper, there are mentioned only these slabs because the other ones in the submerged rows of slabs are practically undamaged.

  7. 再生骨料特性对再生混凝土强度和碳化性能的影响%Influence of Recycled Aggregate on Strength and Anti-carbonation Properties of Recycled Aggregate Concrete

    Institute of Scientific and Technical Information of China (English)

    崔正龙; 路沙沙; 汪振双

    2012-01-01

    Influence of surface mortar strength and adhesive rate around coarse aggregate on recycled aggregate concrete(RAC) were investigated. Concrete of different strength were prepared with recycled aggregate of different surface mortar strength and adhesive rate to investigate their properties. It has been shown that, for low strength recycled aggregate concrete with higher strength ordinary concrete, the strength of recycled aggregate concrete and ordinary concrete are nearly the same, and the effect of surface mortar strength and adhesive rate around coarse aggregate on recycled aggregate concrete is low, while the carbonization depth of recycled aggregate concrete is higher than that of ordinary concrete; on the other hand, for recycled aggregate concrete prepared by low strength ordinary concrete, there are great differences between recycled aggregate concrete and ordinary concrete, the effect of surface mortar strength and adhesive rate around coarse aggregate on recycled aggregate concrete is significant and carbonization depth is increasing.%为了评价再生骨料表面砂浆的强度及附着率对再生混凝土性能的影响,以再生骨科表面不同的砂浆强度及附着率为变量,配制了不同强度等级的再生骨料混凝土,通过对比性强度试验和碳化试验评价了再生混凝土内部存在的2个界面过渡区与混凝土性能的关系.结果表明:以高强度原生混凝土为再生骨料配制相对较低强度等级的再生骨料混凝土时,其强度与普通混凝土几乎相同,再生骨料表面砂浆的强度及附着率对再生骨料混凝土强度影响不大,但碳化深度有所增大;以相对较低强度原生混凝土为再生骨料配制同强度等级以上的再生骨科混凝土时,其强度与普通混凝土相差较大,再生骨料表面砂浆的强度及附着率对再生混凝土强度影响较大,碳化深度也相应增大.

  8. The Dependence of Physical Mechanical Properties of Concrete Pavement Blocks on Coarse Aggregate Type

    Directory of Open Access Journals (Sweden)

    Malaiškienė Jurgita

    2014-12-01

    Full Text Available The aim of this research is to determine the dependences of the physical mechanical properties of vibropressed concrete (pavement blocks on the type of coarse aggregate used in the main layer. Sustainability of concrete pavement blocks is a really important matter. Five different batches of pavement blocks were produced, changing the consistence ratio of coarse aggregate in the main layer. There are two types of course aggregate: crushed gravel and granite. The consistence of a facing layer was not changed. All tests: density, tensile split strength, water absorption for vibro-pressed concrete units were made according to EN 1338:2003+AC2006.

  9. The effect of blast furnace slag on the self-compactability of pumice aggregate lightweight concrete

    Indian Academy of Sciences (India)

    Murat Kurt; Türkay Kotan; Muhammed Said Gül; Rüstem Gül; Abdulkadir Cüneyt Aydin

    2016-02-01

    This paper presents the results of an experimental study of the effects of blast furnace slag, different water/(cement+mineral additive) ratios and pumice aggregates on some physical and mechanical properties of self-compacting lightweight aggregate concrete. In this study, pumice was used as lightweight aggregate. Several properties of self-compacting pumice aggregate lightweight concretes, such as unit weight, flow diameter, T50 time, flow diameter after an hour, V-funnel time, and L-box tests, 7, 28, 90 and 180-day compressive strength, 28-day splitting tensile strength, dry unit weight, water absorption, thermal conductivity and ultrasonic pulse velocity tests, were conducted. For this purpose, 18 series of concrete samples were prepared in two groups. In the first group, pumice aggregate at 100% replacement of natural aggregate was used in the production of self-compacting lightweight aggregate concrete with constant w/(c+m) ratios as 0.35, 0.40, and 0.45 by weight. Furthermore, as a second group, pumice aggregate was used as a replacement of natural aggregate, at the levels of 0, 20, 40, 60, 80, and 100% by volume. Flow diameters, T50 times, paste volumes, 28-day compressive strengths, dry unit weights, thermal conductivities and ultrasonic pulse velocity of self-compacting lightweight aggregate concrete were obtained over the range of 600–770 mm, 3–9 s, 435–540 l/m3, 10.6–65.0 MPa, 845–2278 kg/m3, 0.363–1.694 W/mK and 2617–4770 m/s respectively, which satisfies not only the strength requirement of semistructural lightweight concrete but also the flowing ability requirements and thermal conductivity requirements of self-compacting lightweight aggregate concrete.

  10. Autogenous Shrinkage of High Strength Lightweight Aggregate Concrete

    Institute of Scientific and Technical Information of China (English)

    DING Qingjun; TIAN Yaogang; WANG Fazhou; ZHANG Feng; HU Shuguang

    2005-01-01

    The characteristic of autogenous shrinkage ( AS ) and its effect on high strength lightweight aggregate concrete (HSLAC) were studied. The experimental results show that the main shrinkage of high strength concrete is AS and the amount of cement can affect the AS of HSLAC remarkably. At the early stage the AS of HSLAC is lower than that of high strength normal concrete, but it has a large growth at the later stage. The AS of high strength normal concrete becomes stable at 90d age, but HSLAC still has a high AS growth. It is found that adjusting the volume rate of lightweight aggregate, mixing with a proper dosage of fly ash and raising the water saturation degree of lightweight aggregate can markedly reduce the AS rate of HSLAC.

  11. Exploratory Study of Palm Oil Fuel Ash as Partial Cement Replacement in Oil Palm Shell Lightweight Aggregate Concrete

    Directory of Open Access Journals (Sweden)

    K. Muthusamy

    2014-07-01

    Full Text Available In Malaysia, issue of environmental pollution resulting from disposal of Palm Oil Fuel Ash (POFA which is a by-product from palm oil mill has initiated research to incorporate this waste in Oil Palm Shell (OPS lightweight aggregate concrete production. The current study investigates the effect of palm oil fuel ash content as partial cement replacement towards compressive strength OPS lightweight aggregate concrete. Several OPS lightweight aggregate concrete mixes were produced by replacing various percentage of POFA ranging from 10, 20, 30, 40 and 50%, respectively by weight of cement. All the mixes were cast in form of cubes and then subjected to water curing until the testing date. The compressive strength test is conducted in accordance to BSEN 12390 (2009 at 7 and 28 days. From the results, it was observed that the combination of appropriate POFA content would enhance the compressive strength of OPS lightweight aggregate concrete. Specimen produced using 20% POFA as partial cement replacement exhibit higher value of compressive strength than that of control OPS lightweight aggregate concrete. However, mixes consisting POFA up to 50% is also suitable for structural application.

  12. Lightweight Aggregate Concrete. The materials in the precast elements

    DEFF Research Database (Denmark)

    Goltermann, Per; Larsen, Henning; Ingholt, N.U.

    1996-01-01

    The precast lightweight aggregate concrete (LAC) elements are used extensively in Denmark, where the use of precast elements domonates the building structures. Similar elements are used in other parts of Nothern Europe, which have lead to development of an European standard for precast LAC elements...... of LAC with open structure (prEN1520).The test results have shown that the formulas in prEN1520's revision are fairly correct and lead to slightly conservative estimates of the modulus of elasticity and flexural strength....

  13. 利用预处理法制备高强轻骨料混凝土的研究%Research on appIying pretreatment to prepare high-strength Iightweight aggregate concrete

    Institute of Scientific and Technical Information of China (English)

    麻建锁; 元敬顺; 闫杰; 张巧伟; 温小凯

    2015-01-01

    To obtain lightweight aggregate concrete with good workability and high strength,measures such as pre-treatment and mix-ing with mineral admixtures were applied to prepare high-strength lightweight aggregate concrete. According to characteristics of mineral admixture,the mix proportion of gravel-type lightweight aggregate concrete was designed and the effect of the pretreating aggregate method on workability and strength of concrete was compared in the test. Then,the measures optimized in formulation design and process were taken to prepare sphere-type high-strength lightweight aggregate concrete. The test results show that the pretreating aggre-gate method can improve the workability and compressive strength of concrete mixture. The mix proportion of cement,coal ash,silica fume,lightweight aggregate,sand and water is 350:150:50:530:577:168.The dosage of water-reducing agent is 0.85%.The slump of gravel-type lightweight aggregate concrete prepared by pretreatment method reaches 270 mm.The loss amount after one hour is 0mm.No segregation or bleeding occurs in the mixture,and there is no flotation of lightweight aggregate. The dry apparent density of lightweight concrete is less than 1 740 kg/m3 ,and the 28d compressive strength reaches 52.6 MPa.%为了得到和易性好、强度高的轻骨料混凝土,采用预处理法、掺加矿物掺合料等措施,制备高强轻骨料混凝土。试验根据矿物掺合料的特性,设计了碎石型轻骨料混凝土的配合比,对比了预处理骨料方法对混凝土和易性和强度的影响。试验结果表明:预处理骨料方法可以提高混凝土拌合物的和易性和抗压强度。配合比为水泥:粉煤灰:硅灰:轻骨料:砂:水=300:187.5:75:554:540:182,减水剂掺量0.85%,采用预处理法制备的碎石型轻骨料混凝土坍落度达270 mm,1 h经时损失量为0 mm,拌合物无离析、泌水、轻骨料无上浮现象,轻骨料

  14. Influence of Aggregate Coated with Modified Sulfur on the Properties of Cement Concrete

    Directory of Open Access Journals (Sweden)

    Swoo-Heon Lee

    2014-06-01

    Full Text Available This paper proposes the mixing design of concrete having modified sulfur-coated aggregate (MSCA to enhance the durability of Portland cement concrete. The mechanical properties and durability of the proposed MSCA concrete were evaluated experimentally. Melting-modified sulfur was mixed with aggregate in order to coat the aggregate surface at a speed of 20 rpm for 120 s. The MSCA with modified sulfur corresponding to 5% of the cement weight did not significantly affect the flexural strength in a prism concrete beam specimen, regardless of the water-cement ratio (W/C. However, a dosage of more than 7.5% decreased the flexural strength. On the other hand, the MSCA considerably improved the resistance to the sulfuric acid and the freezing-thawing, regardless of the sulfur dosage in the MSCA. The coating modified sulfur of 5% dosage consequently led to good results for the mechanical properties and durability of MSCA concrete.

  15. Recycled construction debris as an aggregates. Production of concrete blocks

    Directory of Open Access Journals (Sweden)

    Sousa, J. G. G.

    2003-12-01

    Full Text Available This paper analyzes the use of recycled construction and demolition debris as aggregate for the construction of concrete blocks to be used in sealing masonry. Initial studies addressed the definition of parameters used in the mix of conventional materials (traditionally used in the production of concrete blocks, involving cylindrical test specimens (100x200 mm, molded with the help of a vibratory table. In addition to these definitions, and based on the mixes showing the best results, a new granulometric range was established, against which the granulometry of the recycled aggregates was adjusted. After the initial studies, concrete blocks were molded with the following dimensions: 100x190x390 mm. Studies have determined the behavior of aggregates in relation to mold humidity specific mass, water absorption, and compression resistance in view of the percentage of recycled debris that composes the total aggregate. For the most part, results suggest that construction and demolition debris can potentially be used in the production of concrete blocks, as well as in other pre-molded artefacts.

    El objetivo de esta investigación es contribuir en la producción de bloques de hormigón para muros de albañilería mediante el aprovechamiento de áridos provenientes del reciclaje de residuos de la construcción civil. Los estudios preliminares tuvieron inicio con la definición de los parámetros de mezcla para los materiales convencionales (tradicionalmente utilizados en la construcción de bloques de hormigón, donde se emplearon probetas cilíndricas (100x200 mm, moldeadas con la ayuda de una mesa vibratoria. Cumplidas estas definiciones, se estableció un rango granulométrico a partir de las composiciones de mejores resultados, donde se buscó ajustar la granulometría de los áridos reciclados. Concluidos los estudios preliminares, se moldearon los bloques de hormigón con dimensiones (100x190x390 mm. Los estudios presentan como resultado el

  16. A multiphase mesostructure mechanics approach to the study of the fracture-damage behavior of concrete

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A multiphase mesostructure mechanical model is proposed to study the deformation and failure process of concrete considering its heterogeneity at the meso scopic level.Herein,concrete is taken as a type of three-component composite material composed of mortar matrix,aggregates and interfaces on the meso-scale.First,an efficient approach to the disposition of aggregates of concrete and a state matrix method to generate mesh coordinates for aggregates are proposed.Secondly,based on the nonlinear continuum damage mechanics,a meso-scale finite element model is presented with damage softening stress-strain relationship for describing the mechanical behavior of different components of concrete.In this method,heterogeneities of each component in the concrete are considered by assuming the material properties of three components conform to the Weibull distribution law.Finally,based on this multiphase meso-mechanics model,a simulation analysis of fracture behavior of a rock-fill concrete(RFC) beam is accomplished.The study includes experimental tests for determining basic mechanical parameters of three components of RFC and four-point flexural beam tests for verification of the model.It is preliminarily shown that the numerical model is applicable to studying failure mechanisms and process of concrete type material.

  17. Fracture resistance on aggregate bridging crack in concrete

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiufang; XU Shilang

    2007-01-01

    Fracture toughening exhibited in quasi-brittle materials such as concrete is often mainly related to the action of aggregate bridging,which leads to the presence of a fracture process zone ahead of stress-free cracks in such materials.In this investigation,the fracture resistance induced by aggregate bridging,denoted by GI-bridging,is the primary focus.In order to quantitatively determine it,a general analytical formula is firstly developed,based on the definition of fracture energy by Hillerborg.After this,we further present the calculated procedures of determining this fracture resistance from the recorded load vs.crack opening displacement curve.Then,both numerical simulations and fracture experiments are performed on concrete three-point bending beams.Utilizing the obtained load against crack opening displacement curve,the value of GI-bridging at any crack extension as well as the change of GI-bridging with the crack extension is examined.It is found that GI-bridging will firstly increase with the development of crack and then stay constant once the initial crack tip opening displacement reaches the characteristic crack opening displacement w0.The effects of material strength and specimen depth on this fracture resistance are also investigated.The results reveal that the values of GI-bridging of different specimens at any crack propagation are strongly associated with the values of fracture energy of specimens.If the values of fracture energy between different specimens are comparable,the differences between GI-bridging are ignored.Instead,if values of fracture energy are different,the GI-bridging will be different.This shows that for specimens with different strengths,GI-bridging will change greatly whereas for specimens that are different in depth,whether GI-bridging exhibits size effect depends on whether the fracture energy of specimens considered in the calculation of GI-bridging is assumed to be a size-dependent material parameter.

  18. Recycled Coarse Aggregate Produced by Pulsed Discharge in Water

    Science.gov (United States)

    Namihira, Takao; Shigeishi, Mitsuhiro; Nakashima, Kazuyuki; Murakami, Akira; Kuroki, Kaori; Kiyan, Tsuyoshi; Tomoda, Yuichi; Sakugawa, Takashi; Katsuki, Sunao; Akiyama, Hidenori; Ohtsu, Masayasu

    In Japan, the recycling ratio of concrete scraps has been kept over 98 % after the Law for the Recycling of Construction Materials was enforced in 2000. In the present, most of concrete scraps were recycled as the Lower Subbase Course Material. On the other hand, it is predicted to be difficult to keep this higher recycling ratio in the near future because concrete scraps increase rapidly and would reach to over 3 times of present situation in 2010. In addition, the demand of concrete scraps as the Lower Subbase Course Material has been decreased. Therefore, new way to reuse concrete scraps must be developed. Concrete scraps normally consist of 70 % of coarse aggregate, 19 % of water and 11 % of cement. To obtain the higher recycling ratio, the higher recycling ratio of coarse aggregate is desired. In this paper, a new method for recycling coarse aggregate from concrete scraps has been developed and demonstrated. The system includes a Marx generator and a point to hemisphere mesh electrode immersed in water. In the demonstration, the test piece of concrete scrap was located between the electrodes and was treated by the pulsed discharge. After discharge treatment of test piece, the recycling coarse aggregates were evaluated under JIS and TS and had enough quality for utilization as the coarse aggregate.

  19. Effect of Lightweight Aggregate Pre-wetting on Micro-structure and Permeability of Mixed Aggregate Concrete

    Institute of Scientific and Technical Information of China (English)

    GE Yong; KONG Lijuan; ZHANG Baosheng; YUAN Jie

    2009-01-01

    The influence of lightweight aggregate(LWA)pre-wetting on the chemical bound water and pore structure of the paste around aggregate as well as concrete permeability were investi-gated.The results show that,in early age the dry LWA has significant effect on the formation of dense paste around it and improving the concrete impermeability.However the prewetted LWA has strong water-releasing effect in later age,which increases the hydration degree of the paste around it, and makes the adjacent paste develop a structure with low porosity and finer aperture,furthermore the concrete impermeability can be improved.It is suggested that,as for concrete with low durability requirement,the LWA without pre-wetting treatment can be used as long as meet the workability re-quirement of fresh concrete,the good impermeability of concrete can be gained as well.As for con-crete with high durability requirement,the prewetted LWA should be used,and the pre-wetting time should be extended as long as possible,in order to optimize the concrete structure in long term,and improve the concrete durability.

  20. The Application of Equivalent Age Concept to Sand Concrete Compared to Ordinary Concrete

    Directory of Open Access Journals (Sweden)

    Nabil Bella

    2016-01-01

    Full Text Available In this research the equivalent age concept was used, in order to simulate strength development of heat treated sand concrete compared with ordinary concrete at different temperature, 35, 55, and 70°C, and validate the simulation results with our experimental results. Sand concrete is a concrete with a lower or without coarse aggregate dosage; it is used to realize thin element as small precast prestressed beams, in injected concrete or in regions where sand is in extra quantity and the coarse aggregate in penury. This concrete is composed by principally sand, filler, superplasticizer, water, and cement. The results show that the simulation of ordinary concrete was acceptable with an error lower than 20%. But the error was considerable for the sand concrete. The error was due to large superplasticizer dosage, which modified the hardening of sand concrete; the most influent parameter in Arrhenius law is apparent energy activation, to search for the value of the activation energy which gives the best simulation; a superposition is used of two curves of different temperature and with superplasticizer dosage 4% and several values of activation energy, 15, 20, 25, and 30 × 10 kcal. The simulation becomes ameliorated with the adequate value of activation energy.

  1. Intermediate-scale tests of sodium interactions with calcite and dolomite aggregate concretes. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Randich, E.; Acton, R.U.

    1983-09-01

    Two intermediate-scale tests were performed to compare the behavior of calcite and dolomite aggregate concretes when attacked by molten sodium. The tests were performed as part of an interlaboratory comparison between Sandia National Laboratories and Hanford Engineering Development Laboratories. Results of the tests at Sandia National Laboratories are reported here. The results show that both concretes exhibit similar exothermic reactions with molten sodium. The large difference in reaction vigor suggested by thermodynamic considerations of CO/sub 2/ release from calcite and dolomite was not realized. Penetration rates of 1.4 to 1.7 mm/min were observed for short periods of time with reaction zone temperatures in excess of 800/sup 0/C during the energetic attack. The penetration was not uniform over the entire sodium-concrete contact area. Rapid attack may be localized due to inhomogeneities in the concrete. The chemical reaction zone is less then one cm thick for the calcite concrete but is about seven cm thick for the dolomite concrete.

  2. Pore Structure and Influence of Recycled Aggregate Concrete on Drying Shrinkage

    OpenAIRE

    Yuanchen Guo; Jueshi Qian; Xue Wang

    2013-01-01

    Pore structure plays an important role in the drying shrinkage of recycled aggregate concrete (RAC). High-precision mercury intrusion and water evaporation were utilized to study the pore structure of RAC, which has a different replacement rate of recycled concrete aggregate (RCA), and to analyze its influence on drying shrinkage. Finally, a fractal-dimension calculation model was established based on the principles of mercury intrusion and fractal-geometry theory. Calculations were performed...

  3. Finite Element Analysis of Synergy Effect on Concrete Beams Incorporated with Coated Reinforcement and Alternate Aggregates

    Directory of Open Access Journals (Sweden)

    Sakthivel Pandiaraj

    2016-01-01

    Full Text Available The purpose of this study is to compare the ultimate load carrying capacity of conventional reinforced concrete beams with that of investigation specimen incorporated with coated reinforcement and partially with recycled aggregate and quarry dust. A novel technique of coated reinforcement delays the onset of corrosion with enhanced durability of structures. Results show that not even a film of corrosion (white rust can be seen in the investigation specimen. There is a progressive increase in stiffness from the state of the first crack to ultimate stage and a negligible difference in ultimate load carrying capacity of the investigation specimen, when compared with the controlled specimen. Incorporation of galvanization, recycled aggregate, and quarry dust seemed to be compatible with the existing conservative concreting procedures. Experimental results are compared with the numerical solutions aided by finite element analysis (FEA by using ABAQUS.

  4. Microstructure of Concrete with Aggregates from Construction and Demolition Waste Recycling Plants.

    Science.gov (United States)

    Bravo, Miguel; Santos Silva, António; de Brito, Jorge; Evangelista, Luís

    2016-02-01

    This paper intends to analyze the microstructure of concrete with recycled aggregates (RA) from construction and demolition waste from various Portuguese recycling plants. To that effect, several scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyses were performed. Various concrete mixes were evaluated in order to analyze the influence of the RA's collection point and consequently of their composition on the mixes' characteristics. Afterward all the mixes were subjected to the capillary water absorption test in order to quantitatively evaluate their porosity. Results from the SEM/EDS analysis were compared with those from capillary water absorption test. The SEM/EDS analysis showed that the bond capacity of aggregates to the new cement paste is greatly influenced by the RA's nature. On the other hand, there was an increase in porosity with the incorporation of RA.

  5. Load-carrying capacity of lightly reinforced, prefabricated walls of lightweight aggregate concrete with open structure

    DEFF Research Database (Denmark)

    Goltermann, Per

    2009-01-01

    The paper presents and evaluates the results of a coordinated testing of prefabricated, lightly reinforced walls of lightweight aggregate concrete with open structure. The coordinated testing covers all wall productions in Denmark and will therefore provide a representative assessment of the qual...... of the quality actually produced. Existing and new formulas for the capacity are evaluated by comparison to the test results and a new model with a good correlation with the test results is presented....

  6. The use of the chrysotile cement waste as the secondary aggregate for the concrete

    Science.gov (United States)

    Semenov, V.; Pligina, A.; Rozovskaya, T.

    2015-01-01

    The article presents the results of research on the effective concrete with secondary chrysotile cement aggregate. One of the important problems of modern science of construction materials is the use of secondary resources for the production of construction materials, and a considerable part of them are the chrysotile cement waste and scrapped chrysotile cement products. The aim of presented research is the development of effective concrete for the production of foundation wall blocks with the use of crushed chrysotile cement products as a secondary aggregate. The main characteristics of the secondary chrysotile cement aggregate have been determined. The concrete with different compositions and with different content of secondary chrysotile cement rubble has been studied. The dependences of the strength and the specific strength of concrete with a constant W/C ratio and constant binder consumption on the consumption of the secondary aggregate have been obtained. It is stated that the introduction of secondary chrysotile cement aggregate does not significantly effect the water resistance and frost resistance of the concrete. It is shown that the variation of the fractions of secondary aggregates and the binder makes it possible to obtain the effective concrete with a wide range of strength values.

  7. Impact Resistance of Recycled Aggregate Concrete with Single and Hybrid Fibers

    Directory of Open Access Journals (Sweden)

    Ismail Sallehan

    2016-01-01

    Full Text Available This paper presents a recycled aggregate concrete (RAC mix that has been modified by adding treated recycled concrete aggregate (RCA and various types of fiber-reinforced systems. The effectiveness of these modifications in terms of energy absorption and impact resistance was evaluated and compared with that of the corresponding regular concrete, as well as with unmodified RAC specimens. Results clearly indicate that although modification of the RAC mix with treated RCA significantly enhances the impact resistance of RAC, further diversification with additional fiber, particularly those in hybrid form, can optimize the results.

  8. Laboratory Investigation on the Strength Gaining of Brick Aggregate Concrete Using Ordinary Portland Cement and Portland Composite Cement

    Directory of Open Access Journals (Sweden)

    Hoque M H, Numen E H, Islam N., Mohammed

    2014-05-01

    Full Text Available This study focused on the laboratory investigation of strength variation of brick aggregate concrete made with ordinary Portland cement (OPC and Portland composite cement (PCC.The investigation was conducted by testing concrete cylinder specimens at different ages of concrete with concrete mix ratios: 1:1.5:3 and 1:2:4 by volume and with water cement ratios=0.45 and 0.60. The test result reveals that at the early age, concrete composed with OPC attained larger compressive strength than the concrete made of PCC. However, in the later age concrete made with PCC achieved higher strength than OPC.

  9. Durability and Shrinkage Characteristics of Self-Compacting Concretes Containing Recycled Coarse and/or Fine Aggregates

    Directory of Open Access Journals (Sweden)

    Mehmet Gesoglu

    2015-01-01

    Full Text Available This paper addresses durability and shrinkage performance of the self-compacting concretes (SCCs in which natural coarse aggregate (NCA and/or natural fine aggregate (NFA were replaced by recycled coarse aggregate (RCA and/or recycled fine aggregate (RFA, respectively. A total of 16 SCCs were produced and classified into four series, each of which included four mixes designed with two water to binder (w/b ratios of 0.3 and 0.43 and two silica fume replacement levels of 0 and 10%. Durability properties of SCCs were tested for rapid chloride penetration, water sorptivity, gas permeability, and water permeability at 56 days. Also, drying shrinkage accompanied by the water loss and restrained shrinkage of SCCs were monitored over 56 days of drying period. Test results revealed that incorporating recycled coarse and/or fine aggregates aggravated the durability properties of SCCs tested in this study. The drying shrinkage and restrained shrinkage cracking of recycled aggregate (RA concretes had significantly poorer performance than natural aggregate (NA concretes. The time of cracking greatly prolonged as the RAs were used along with the increase in water/binder ratio.

  10. Effect of Pre-wetted Light-weight Aggregate on Internal Relative Humidity and Autogenous Shrinkage of Concrete

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This research indicates that the gradient of internal relative humidity (IRH) decreases rapidly within 7-day curing age in HPC.The amount of water imported by pre-wetted light-weight aggregate can regulate IRH of concrete.By importing a proper amount of water, the process of the decline of IRH can be delayed and the antogenous shrinkage can be reduced.The relationship among the amount of water imported by pre- wetted lightweight aggregate, IRH and AS was established.The result provides a new method of reducing early AS and enhancing early cracking resistance of HPC.

  11. A Study on the Bond Behavior of Corroded Reinforced Concrete Containing Recycled Aggregates

    Directory of Open Access Journals (Sweden)

    Haifeng Yang

    2015-01-01

    Full Text Available This paper investigated bond-slip characteristics of chloride-induced corroded reinforced concrete incorporating different levels of recycled concrete aggregates (RCA. Pullout tests were adopted to evaluate the bonding and debonding behaviors of the embedded rebar experiencing different corrosion levels. Both high- and low-strength concrete were considered. Bond-slip curves were recorded to determine the influences of rebar corrosion levels and RCA replacements on the bond strength and debonding energy of the specimens. Test results indicate that increasing rebar corrosion level gradually weakens the antisliding ability of reinforced recycled aggregate concrete (RAC except for a small level corrosion and the degradation rate of ultimate bond strength increases with a decrease of compressive strength at 0.5% rebar corrosion. The results also demonstrate that the ultimate bond strength of reinforced RAC slightly decreases with an increase of RCA replacement. However, the relative bond strength between uncorroded rebar and RAC is little affected by RCA content, while it decreases with an increase of RCA replacement in high-strength specimens after rebar corrosion. The debonding energy between deformed rebar and RAC is found decreasing with the increment of the rebar corrosion level and increasing with an increase of RAC content.

  12. RELATIONSHIPS BETWEEN SOIL MICROBIAL BIOMASS, AGGREGATE STABILITY AND AGGREGATE ASSOCIATED-C: A MECHANISTIC APPROACH

    Directory of Open Access Journals (Sweden)

    Patrizia Guidi

    2014-01-01

    Full Text Available For the identification of C pools involved in soil aggregation, a physically-based aggregate fractionation was proposed, and  additional pretreatments were used in the measurement of the 1-2 mm aggregate stability in order to elucidate the relevance of the role of soil microorganisms with respect to the different aggregate breakdown mechanisms. The study was carried out on three clay loam Regosols, developed on calcareous shales, known history of organic cultivation.Our results showed that the soil C pool controlling the process of stabilisation of aggregates was related to the microbial community. We identified the resistance to fast wetting as the major mechanism of aggregate stability driven by microorganims. The plausible hypothesis is that organic farming promotes fungi growth, improving water repellency of soil aggregates by fungal hydrophobic substances. By contrast, we failed in the identification of C pools controlling the formation of aggregates, probably because of the disturbance of mechanical tillage which contributes to the breakdown of soil aggregates.The physically-based aggregate fractionation proposed in this study resulted useful in the  mechanistically understanding of the role of microorganisms in soil aggregation and it might be suggested for studying the impact of management on C pools, aggregates properties and their relationships in agricultural soils.

  13. Mechanical Properties of Recycled Aggregate Concrete at Low and High Water/Binder Ratios

    Directory of Open Access Journals (Sweden)

    Gai-Fei Peng

    2013-01-01

    Full Text Available This paper presents an experimental research on mechanical properties of recycled aggregate concrete (RAC at low and high water/binder (W/B ratios. Concrete at two W/B ratios (0.255 and 0.586 was broken into recycled concrete aggregates (RCA. A type of thermal treatment was employed to remove mortar attached to RCA. The RAC at a certain (low or high W/B ratio was prepared with RCA made from demolished concrete of the same W/B ratio. Tests were conducted on aggregate to measure water absorption and crushing values and on both RAC and natural aggregate concrete (NAC to measure compressive strength, tensile splitting strength, and fracture energy. The mechanical properties of RAC were lower than those of NAC at an identical mix proportion. Moreover, the heating process caused a decrease in compressive strength and fracture energy in the case of low W/B ratio but caused an increase in those properties in the case of high W/B ratio. The main type of flaw in RCA from concrete at a low W/B ratio should be microcracks in gravel, and the main type of flaw in RCA from concrete at a high W/B ratio should be attached mortar.

  14. Research on the relationship between water stability and aggregate gradation of asphalt pavement

    OpenAIRE

    Zhao Bing; Zhao Bo

    2015-01-01

    In the early destruction of asphalt pavement, water damage is the most major form.In this paper, experimental study was conducted on the composition of asphalt concrete,Marshall specimens were made in different types of aggregate gradation with the same kind of asphalt. Water immersion tests were conducted in order to analysis the relationship between the water stability and aggregate gradation of asphalt pavement.

  15. Research on the relationship between water stability and aggregate gradation of asphalt pavement

    Directory of Open Access Journals (Sweden)

    Zhao Bing

    2015-05-01

    Full Text Available In the early destruction of asphalt pavement, water damage is the most major form.In this paper, experimental study was conducted on the composition of asphalt concrete,Marshall specimens were made in different types of aggregate gradation with the same kind of asphalt. Water immersion tests were conducted in order to analysis the relationship between the water stability and aggregate gradation of asphalt pavement.

  16. Time-dependent behaviour of high performance concrete: influence of coarse aggregate characteristics

    Directory of Open Access Journals (Sweden)

    Escadeillas G.

    2010-06-01

    Full Text Available This paper examines the influence of coarse aggregate characteristics on the time-dependent deformations of High Performances Concretes (HPC. Four concretes made using the same cement paste but incorporating different types of aggregate (rolled siliceous gravel, crushed granite, crushed limestone and crushed siliceous gravels were studied in order to investigate the effect of aggregate properties on the compressive strength, modulus of elasticity, shrinkage and creep. The results indicate that the aggregate type has a significant effect on creep and shrinkage deformations of HPC. An influence of the shape of aggregate on time-dependent deformations has also been observed. On the basis of these results, long-term behaviour seems to be correlated to the characteristics of the Interfacial Transition Zone (ITZ strongly depending on the mineralogical nature and properties of aggregates. The experimental results are compared with the values calculated using the current Eurocode 2 model in order to assess the accuracy of the predictions.

  17. Time-dependent behaviour of high performance concrete: influence of coarse aggregate characteristics

    Science.gov (United States)

    Makani, A.; Vidal, T.; Pons, G.; Escadeillas, G.

    2010-06-01

    This paper examines the influence of coarse aggregate characteristics on the time-dependent deformations of High Performances Concretes (HPC). Four concretes made using the same cement paste but incorporating different types of aggregate (rolled siliceous gravel, crushed granite, crushed limestone and crushed siliceous gravels) were studied in order to investigate the effect of aggregate properties on the compressive strength, modulus of elasticity, shrinkage and creep. The results indicate that the aggregate type has a significant effect on creep and shrinkage deformations of HPC. An influence of the shape of aggregate on time-dependent deformations has also been observed. On the basis of these results, long-term behaviour seems to be correlated to the characteristics of the Interfacial Transition Zone (ITZ) strongly depending on the mineralogical nature and properties of aggregates. The experimental results are compared with the values calculated using the current Eurocode 2 model in order to assess the accuracy of the predictions.

  18. Environmental evaluation of green concretes versus conventional concrete by means of LCA.

    Science.gov (United States)

    Turk, Janez; Cotič, Zvonko; Mladenovič, Ana; Šajna, Aljoša

    2015-11-01

    A number of green concrete mixes having similar basic properties were evaluated from the environmental point of view by means of the Life Cycle Assessment method, and compared with a corresponding conventional concrete mix. The investigated green concrete mixes were prepared from three different types of industrial by-products, i.e. (1) foundry sand, and (2) steel slag, both of which were used as manufactured aggregates, and (3) fly ash, which was used as a mineral admixture. Some green concrete mixes were also prepared from a recycled aggregate, which was obtained from reinforced concrete waste. In some of the green concrete mixes the recycled aggregate was used in combination with the above-mentioned types of manufactured aggregate and fly ash. All of these materials are able, to some extent, to replace natural aggregate or Portland cement in concrete mixes, thus providing an environmental benefit from the point of view of the saving of natural resources. Taking into account consequential modelling, the credit related to the avoidance of the need to dispose of the waste materials is considered as a benefit. In case of the recycling of waste concrete into aggregate, credit is attributed to the recovery of scrap iron from the steel reinforcement. In the case of the use of steel slag, credit is attributed to the recovery of metals, which are extracted from the slag before being used as an alternative material. The disadvantage of using alternative materials and recycled aggregates can sometimes be their relatively long delivery distance. For this reason, a transport sensitivity analysis was carried out. The results indicate that the use of the discussed alternative and recycled materials is beneficial in the concrete production industry. Preference is given to the fly ash and foundry sand scenarios, and especially to those scenarios which are based on the combined use of recycled aggregate with these two alternative materials. It was found that longer delivery

  19. 再生混凝土中氯离子渗透性能试验研究%Experimental Study on Chloride Ion Penetration into Recycled Aggregate Concrete

    Institute of Scientific and Technical Information of China (English)

    吴相豪; 岳鹏君

    2011-01-01

    In order to investigate the effects of recycled concrete aggregate, wet and dry cycles, fly ash replacement on chloride ion penetration of recycled aggregate concrete, the chloride ion concentration in recycled aggregate concrete was measured during chloride natural diffusion test. The results show that the a-bility to resist chloride ion penetrate into recycled aggregate concrete is weaker than that for natural aggregate concrete; the resistance to chloride ion penetration into recycled aggregate concrete can be improved by replacing cement with fly ash, 20%(by mass> replacement of cement with fly ash is optimum; the rate . Of chloride ion penetration into recycled aggregate concrete under wet and dry cycles is higher than that into saturated recycled aggregate concrete.%通过氯离子自然扩散试验,测定再生混凝土试件中的氯离子浓度,分析了再生骨料、粉煤灰掺量、全浸泡与干湿循环方式对再生混凝土中氯离子渗透性能的影响.结果表明:再生混凝土抗氯离子渗透能力比普通混凝土差;掺入粉煤灰能提高再生混凝土抗氯离子渗透能力,粉煤灰最佳掺量为20%(质量分数);干湿循环方式可加快再生混凝土中氯离子的渗透速度.

  20. Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete

    Directory of Open Access Journals (Sweden)

    Antonio López-Uceda

    2016-02-01

    Full Text Available This research aims to produce non-structural concrete with mixed recycled aggregates (MRA in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%, using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors’ knowledge, there have not been any upscaled applications of concrete with MRA and low cement content.

  1. Eco-friendly porous concrete using bottom ash aggregate for marine ranch application.

    Science.gov (United States)

    Lee, Byung Jae; Prabhu, G Ganesh; Lee, Bong Chun; Kim, Yun Yong

    2016-03-01

    This article presents the test results of an investigation carried out on the reuse of coal bottom ash aggregate as a substitute material for coarse aggregate in porous concrete production for marine ranch applications. The experimental parameters were the rate of bottom ash aggregate substitution (30%, 50% and 100%) and the target void ratio (15%, 20% and 25%). The cement-coated granular fertiliser was substituted into a bottom ash aggregate concrete mixture to improve marine ranch applications. The results of leaching tests revealed that the bottom ash aggregate has only a negligible amount of the ten deleterious substances specified in the Ministry of Environment - Enforcement Regulation of the Waste Management Act of Republic Korea. The large amount of bubbles/air gaps in the bottom ash aggregate increased the voids of the concrete mixtures in all target void ratios, and decreased the compressive strength of the porous concrete mixture; however, the mixture substituted with 30% and 10% of bottom ash aggregate and granular fertiliser, respectively, showed an equal strength to the control mixture. The sea water resistibility of the bottom ash aggregate substituted mixture was relatively equal to that of the control mixture, and also showed a great deal of improvement in the degree of marine organism adhesion compared with the control mixture. No fatality of fish was observed in the fish toxicity test, which suggested that bottom ash aggregate was a harmless material and that the combination of bottom ash aggregate and granular fertiliser with substitution rates of 30% and 10%, respectively, can be effectively used in porous concrete production for marine ranch application.

  2. Performance Evaluation of Stone Mastic Asphalt and Hot Mix Asphalt Mixtures Containing Recycled Concrete Aggregate

    Directory of Open Access Journals (Sweden)

    Mohammad Saeed Pourtahmasb

    2014-01-01

    Full Text Available Environmental and economic considerations have encouraged civil engineers to find ways to reuse recycled materials in new constructions. The current paper presents an experimental research on the possibility of utilizing recycled concrete aggregates (RCA in stone mastic asphalt (SMA and hot mix asphalt (HMA mixtures. Three categories of RCA in various percentages were mixed with virgin granite aggregates to produce SMA and HMA specimens. The obtained results indicated that, regardless of the RCA particular sizes, the use of RCA to replace virgin aggregates increased the needed binder content in the asphalt mixtures. Moreover, it was found that even though the volumetric and mechanical properties of the asphalt mixtures are highly affected by the sizes and percentages of the RCA but, based on the demands of the project and traffic volume, utilizing specific amounts of RCA in both types of mixtures could easily satisfy the standard requirements.

  3. Influence of mineral aggregates on the rheological properties of concrete mixture

    Science.gov (United States)

    Klovas, A.; Daukšys, M.

    2015-04-01

    The aim of this research was to determine how the change of concrete mixture constituents: concentration of fine and coarse aggregate as well as the amount of fine particles, not exceeding 0.25 mm, influence concrete mixture's rheological properties. Firstly, inner- concentration of fine aggregate (sand, fraction of 0/1 and 0/4) was changed. Secondly, coarse aggregate (gravel, fraction of 4/16) concentration was changed and finally, the amount of fine particles was changed. Results have shown that with the increase of sand (fraction of 0/1) quantity, the plastic viscosity also increased. On the other hand, yield stress, at the beginning decreased, but eventually - increased. The increase of coarse aggregate quantity acted differently: plastic viscosity and yield stress decreased. Finally, the increase of fine particles quantity decreased the plastic viscosity as well as yield stress of concrete mixture.

  4. Modeling chloride penetration into concrete with light-weight aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Maage, M.; Helland, S.; Carlsen, J. E. [SELMER ASA, Oslo (Norway)

    2000-07-01

    Results of a program of studies designed to provide input to a model for estimating the initiation period of reinforcement corrosion and to document chloride ingress into various practical concretes made with light-weight aggregates, depending on a number of variables in curing and exposure conditions, as well as concrete composition and materials, are discussed. Variables included curing time before exposure; curing temperature; exposure temperature and time; type of exposure; and type of binder. Results achieved correlate well with the initial hypothesis i.e. that the achieved chloride coefficient decreases with increasing exposure time and also with increasing curing time.Surface chloride content as the environmental load, was shown to increase with exposure time during the first years, and decrease with increased curing time and exposure temperature. The achieved diffusion coefficient was found to be independent of curing and exposure temperature, but decreased with longer exposure time and the addition of slag. Increasing the salt concentration in the exposure water and the introduction of slag increased the time dependency of the achieved diffusion coefficient. 11 refs., 2 tabs., 7 figs.

  5. Predicting strength of recycled aggregate concrete using Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System and Multiple Linear Regression

    Directory of Open Access Journals (Sweden)

    Faezehossadat Khademi

    2016-12-01

    Full Text Available Compressive strength of concrete, recognized as one of the most significant mechanical properties of concrete, is identified as one of the most essential factors for the quality assurance of concrete. In the current study, three different data-driven models, i.e., Artificial Neural Network (ANN, Adaptive Neuro-Fuzzy Inference System (ANFIS, and Multiple Linear Regression (MLR were used to predict the 28 days compressive strength of recycled aggregate concrete (RAC. Recycled aggregate is the current need of the hour owing to its environmental pleasant aspect of re-using the wastes due to construction. 14 different input parameters, including both dimensional and non-dimensional parameters, were used in this study for predicting the 28 days compressive strength of concrete. The present study concluded that estimation of 28 days compressive strength of recycled aggregate concrete was performed better by ANN and ANFIS in comparison to MLR. In other words, comparing the test step of all the three models, it can be concluded that the MLR model is better to be utilized for preliminary mix design of concrete, and ANN and ANFIS models are suggested to be used in the mix design optimization and in the case of higher accuracy necessities. In addition, the performance of data-driven models with and without the non-dimensional parameters is explored. It was observed that the data-driven models show better accuracy when the non-dimensional parameters were used as additional input parameters. Furthermore, the effect of each non-dimensional parameter on the performance of each data-driven model is investigated. Finally, the effect of number of input parameters on 28 days compressive strength of concrete is examined.

  6. Comminution and sizing processes of concrete block waste as recycled aggregates.

    Science.gov (United States)

    Gomes, P C C; Ulsen, C; Pereira, F A; Quattrone, M; Angulo, S C

    2015-11-01

    Due to the environmental impact of construction and demolition waste (CDW), recycling is mandatory. It is also important that recycled concrete aggregates (RCA) are used in concrete to meet market demands. In the literature, the influence of RCAs on concrete has been investigated, but very limited studies have been conducted on how the origin of concrete waste and comminution processes influence RCA characteristics. This paper aims to investigate the influence of three different comminution and sizing processes (simple screening, crushing and grinding) on the composition, shape and porosity characteristics of RCA obtained from concrete block waste. Crushing and grinding implies a reduction of RCA porosity. However, due to the presence of coarse quartz rounded river pebbles in the original concrete block mixtures, the shape characteristics deteriorated. A large amount of powder (<0.15 mm) without detectable anhydrous cement was also generated.

  7. Seismic Performance of Composite Shear Walls Constructed Using Recycled Aggregate Concrete and Different Expandable Polystyrene Configurations

    Directory of Open Access Journals (Sweden)

    Wenchao Liu

    2016-03-01

    Full Text Available The seismic performance of recycled aggregate concrete (RAC composite shear walls with different expandable polystyrene (EPS configurations was investigated. Six concrete shear walls were designed and tested under cyclic loading to evaluate the effect of fine RAC in designing earthquake-resistant structures. Three of the six specimens were used to construct mid-rise walls with a shear-span ratio of 1.5, and the other three specimens were used to construct low-rise walls with a shear-span ratio of 0.8. The mid-rise and low-rise shear walls consisted of an ordinary recycled concrete shear wall, a composite wall with fine aggregate concrete (FAC protective layer (EPS modules as the external insulation layer, and a composite wall with sandwiched EPS modules as the insulation layer. Several parameters obtained from the experimental results were compared and analyzed, including the load-bearing capacity, stiffness, ductility, energy dissipation, and failure characteristics of the specimens. The calculation formula of load-bearing capacity was obtained by considering the effect of FAC on composite shear walls as the protective layer. The damage process of the specimen was simulated using the ABAQUS Software, and the results agreed quite well with those obtained from the experiments. The results show that the seismic resistance behavior of the EPS module composite for shear walls performed better than ordinary recycled concrete for shear walls. Shear walls with sandwiched EPS modules had a better seismic performance than those with EPS modules lying outside. Although the FAC protective layer slightly improved the seismic performance of the structure, it undoubtedly slowed down the speed of crack formation and the stiffness degradation of the walls.

  8. Recycling ground granulated blast furnace slag as cold bonded artificial aggregate partially used in self-compacting concrete.

    Science.gov (United States)

    Gesoğlu, Mehmet; Güneyisi, Erhan; Mahmood, Swara Fuad; Öz, Hatice Öznur; Mermerdaş, Kasım

    2012-10-15

    Ground granulated blast furnace slag (GGBFS), a by-product from iron industry, was recycled as artificial coarse aggregate through cold bonding pelletization process. The artificial slag aggregates (ASA) replaced partially the natural coarse aggregates in production of self-compacting concrete (SCC). Moreover, as being one of the most widely used mineral admixtures in concrete industry, fly ash (FA) was incorporated as a part of total binder content to impart desired fluidity to SCCs. A total of six concrete mixtures having various ASA replacement levels (0%, 20%, 40%, 60%, and 100%) were designed with a water-to-binder (w/b) ratio of 0.32. Fresh properties of self-compacting concretes (SCC) were observed through slump flow time, flow diameter, V-funnel flow time, and L-box filling height ratio. Compressive strength of hardened SCCs was also determined at 28 days of curing. It was observed that increasing the replacement level of ASA resulted in decrease in the amount of superplasticizer to achieve a constant slump flow diameter. Moreover, passing ability and viscosity of SCC's enhanced with increasing the amount of ASA in the concrete. The maximum compressive strength was achieved for the SCC having 60% ASA replacement.

  9. A Review on the Use of Agriculture Waste Material as Lightweight Aggregate for Reinforced Concrete Structural Members

    Directory of Open Access Journals (Sweden)

    Kim Hung Mo

    2014-01-01

    Full Text Available The agriculture industry is one of the main industries in the Southeast Asia region due to its favourable conditions for plantations. In fact, Southeast Asia region is the world’s largest producer of palm oil and coconut. Nevertheless, vast plantation of these agriculture products leads to equally large amount of waste materials emanating from these industries. Previously, researchers have attempted to utilize the resulting waste materials such as oil palm shell, palm oil clinker, and coconut shell from these industries as lightweight aggregate to produce structural grade lightweight aggregate concrete. In order to promote the concept of using such concrete for actual structural applications, this paper reviews the use of such agriculture-based lightweight aggregate concrete in reinforced concrete structural members such as beam and slab, which were carried out by researchers in the past. The behaviour of the structural members under flexural, shear, and torsional load was also summarized. It is hoped that the knowledge attained from the paper will provide design engineers with better idea and proper application of design criteria for structural members using such agriculture waste as lightweight aggregate.

  10. Documentation for Calculations of Standard Fire Resistance of Slabs and Walls of Concrete with Expanded Clay Aggregate

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    that the methods are applicable for slabs and walls of light weight aggregate concrete. It is shown that the temperatures for standard fire exposed cross sections can be calculated, that the ultimate moment capacity can be calculated for slabs, and that the anchorage capacity and the shear tension capacity can......A number of full-scale tests are made in order to document calculation methods for fire-exposed slabs and walls derived during a previous project on fire exposed light-weight aggregate concrete constructions. The calculation methods are derived, and thus have a logical connection...... with the calculation methods used for other load cases. In addition the methods are shown to be valid for heavy concrete constructions by cooperation with tests for beams and columns, and a few slabs and walls. The two test series phase 1 and 2 of this report can therefore be seen as a necessary supplement to show...

  11. Evaluation of Concrete Compressive Strength by incorporating Used Foundry Sand

    Directory of Open Access Journals (Sweden)

    Khuram Rashid

    2016-07-01

    Full Text Available The main objective of this study was to evaluate the compressive strength of concrete by utilizing three types of used foundry sand; with bentonite clay, with sodium silicate & with phenolic resin as partial replacement of fine aggregates. To accomplish the research an experimental program was conducted in which ten concrete mixtures were casted, by keeping all other parameters for concrete proportioning as constant and only change made was in the amount of fine aggregates. Ten, Twenty and Thirty percent replacement level of river sand by used foundry sands was maintained in this study. All fine aggregates were selected after achieving desired physical and chemical tests. Work ability, compressive strength and modulus of elasticity were measured and compared with the conventional concrete termed as control mixture. It was observed that work ability increased with replacement levels. The cubes were crushed at 7, 28 and 63 days of standard moist curing. The compressive strength of all concrete specimens increased with increase in curing age. With exception to foundry sand with phenolic resin, compressive strength of concrete mixtures was decreased with increase in replacement level at all ages. Similar trends were observed in modulus of elasticity of concrete.

  12. Bond slip detection of steel plate and concrete beams using smart aggregates

    Science.gov (United States)

    Qin, Feng; Kong, Qingzhao; Li, Mo; Mo, Y. L.; Song, Gangbing; Fan, Feng

    2015-11-01

    The newly emerged steel plate concrete (SC), benefited from a composite effect of steel and concrete materials, has been applied to shield building and internal structures of AP1000 nuclear power plants. The detection of bond-slip between steel plate and concrete is of great importance to provide early warnings of steel plate and concrete debonding and to ensure the safety of SC structures. In this paper, an active sensing approach using smart aggregates (SAs) is developed to detect the initiation and to monitor the development of bond-slip. A SA, designed by sandwiching a fragile piezoceramic patch between protection materials, can be utilized as both actuator and sensor by taking advantage of the piezoelectricity of piezoceramic material. Two SC beams with distinct shear reinforcement ratios ≤ft({ρ }t\\right) were experimentally investigated. Based on the wavelet packet decomposition of the received signals from SAs, the initiation of bond-slip is detected, and the development of bond-slip is quantitatively monitored to better understand the structural performance of SC beams, including the stiffness and capacity. The bond-slip severities of the two SC beams are compared to study the improvement of bond-slip condition rendered by providing more shear reinforcement.

  13. Temperature-Dependent Thermal Conductivity of High Strength Lightweight Raw Perlite Aggregate Concrete

    Science.gov (United States)

    Tandiroglu, Ahmet

    2010-06-01

    Twenty-four types of high strength lightweight concrete have been designed with raw perlite aggregate (PA) from the Erzincan Mollaköy region as new low-temperature insulation material. The effects of the water/cement ratio, the amount of raw PA, and the temperature on high strength lightweight raw perlite aggregate concrete (HSLWPAC) have been investigated. Three empirical equations were derived to correlate the thermal conductivity of HSLWPAC as a function of PA percentage and temperature depending on the water/cement ratio. Experimentally observed thermal conductivities of concrete samples were predicted 92 % of the time for each set of concrete matrices within 97 % accuracy and over the range from 1.457 W · m-1 · K-1 to 1.777 W · m-1 · K-1. The experimental investigation revealed that the usage of raw PA from the Erzincan Mollaköy region in concrete production reduces the concrete unit mass, increases the concrete strength, and furthermore, the thermal conductivity of the concrete has been improved. The proposed empirical correlations of thermal conductivity were considered to be applicable within the range of temperatures 203.15 K ≤ T ≤ 303.15 K in the form of λ = a( PAP b ) + c( T d ).

  14. Uniaxial Compressive Constitutive Relationship of Concrete Confined by Special-Shaped Steel Tube Coupled with Multiple Cavities

    Directory of Open Access Journals (Sweden)

    Haipeng Wu

    2016-01-01

    Full Text Available A method is presented to predict the complete stress-strain curves of concrete subjected to triaxial stresses, which were caused by axial load and lateral force. The stress can be induced due to the confinement action inside a special-shaped steel tube having multiple cavities. The existing reinforced confined concrete formulas have been improved to determine the confinement action. The influence of cross-sectional shape, of cavity construction, of stiffening ribs and of reinforcement in cavities has been considered in the model. The parameters of the model are determined on the basis of experimental results of an axial compression test for two different kinds of special-shaped concrete filled steel tube (CFT columns with multiple cavities. The complete load-strain curves of the special-shaped CFT columns are estimated. The predicted concrete strength and the post-peak behavior are found to show good agreement within the accepted limits, compared with the experimental results. In addition, the parameters of proposed model are taken from two kinds of totally different CFT columns, so that it can be concluded that this model is also applicable to concrete confined by other special-shaped steel tubes.

  15. Evaluating Deterioration of Concrete by Sulfate Attack

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Effects of factors such as water to cement ratio, fly ash and silica fume on the resistance of concrete to sulfate attack were investigated by dry-wet cycles and immersion method. The index of the resistance to sulfate attack was used to evaluate the deterioration degree of concrete damaged by sulfate. The relationship between the resistance of concrete to sulfate attack and its permeability/porosity were analyzed as well as its responding mechanism. Results show that the depth of sulfate crystal attack from surface to inner of concrete can be reduced by decreasing w/c and addition of combining fly ash with silica fume. The variation of relative elastic modulus ratio and relative flexural strength ratio of various specimens before and after being subjected to sulfate attack was compared.

  16. Optimizing the Mixing Proportion with Neural Networks Based on Genetic Algorithms for Recycled Aggregate Concrete

    Directory of Open Access Journals (Sweden)

    Sangyong Kim

    2013-01-01

    Full Text Available This research aims to optimize the mixing proportion of recycled aggregate concrete (RAC using neural networks (NNs based on genetic algorithms (GAs for increasing the use of recycled aggregate (RA. NN and GA were used to predict the compressive strength of the concrete at 28 days. And sensitivity analysis of the NN based on GA was used to find the mixing ratio of RAC. The mixing criteria for RAC were determined and the replacement ratio of RAs was identified. This research reveal that the proposed method, which is NN based on GA, is proper for optimizing appropriate mixing proportion of RAC. Also, this method would help the construction engineers to utilize the recycled aggregate and reduce the concrete waste in construction process.

  17. The estimation of compressive strength of normal and recycled aggregate concrete

    Directory of Open Access Journals (Sweden)

    Janković Ksenija

    2011-01-01

    Full Text Available Estimation of concrete strength is an important issue in ready-mixed concrete industry, especially, in proportioning new mixtures and for the quality assurance of the concrete produced. In this article, on the basis of the existing experimental data of compressive strength of normal and recycled aggregate concrete and equation for compressive strength calculating given in Technical regulation are compared. The accuracies of prediction by experimental data obtained in laboratory as well as by EN 1992-1-1, ACI 209 and SRPS U.M1.048 are compared on the basis of the coefficient of determination. The determination of the compressive strengths by the equation described here relies on determination of type of cement and age of concrete with the constant curing temperature.

  18. Properties of Non-Structural Concrete Made with Mixed Recycled Aggregates and Low Cement Content

    Directory of Open Access Journals (Sweden)

    Antonio López-Uceda

    2016-01-01

    Full Text Available In spite of not being legally accepted in most countries, mixed recycled aggregates (MRA could be a suitable raw material for concrete manufacturing. The aims of this research were as follows: (i to analyze the effect of the replacement ratio of natural coarse aggregates with MRA, the amount of ceramic particles in MRA, and the amount of cement, on the mechanical and physical properties of a non-structural concrete made with a low cement content; and (ii to verify if it is possible to achieve a low-strength concrete that replaces a greater amount of natural aggregate with MRA and that has a low cement content. Two series of concrete mixes were manufactured using 180 and 200 kg/m3 of CEM II/A-V 42.5 R type Portland cement. Each series included seven concrete mixes: one with natural aggregates; two MRA with different ceramic particle contents; and one for each coarse aggregate replacement ratio (20%, 40%, and 100%. To study their properties, compressive and splitting tensile strength, modulus of elasticity, density, porosity, water penetration, and sorptivity, tests were performed. The results confirmed that the main factors affecting the properties analyzed in this research are the amount of cement and the replacement ratio; the two MRAs used in this work presented a similar influence on the properties. A non-structural, low-strength concrete (15 MPa with an MRA replacement ratio of up to 100% for 200 kg/m3 of cement was obtained. This type of concrete could be applied in the construction of ditches, sidewalks, and other similar civil works.

  19. The shakeout scenario: Meeting the needs for construction aggregates, asphalt, and concrete

    Science.gov (United States)

    Langer, W.H.

    2011-01-01

    An Mw 7.8 earthquake as described in the ShakeOut Scenario would cause significantdamage to buildings and infrastructure. Over 6 million tons of newly mined aggregate would be used for emergency repairs and for reconstruction in the five years following the event. This aggregate would be applied mostly in the form of concrete for buildings and bridges, asphalt or concrete for pavement, and unbound gravel for applications such as base course that goes under highway pavement and backfilling for foundations and pipelines. There are over 450 aggregate, concrete, and asphalt plants in the affected area, some of which would be heavily damaged. Meeting the increased demand for construction materials would require readily available permitted reserves, functioning production facilities, a supply of cement and asphalt, a source of water, gas, and electricity, and a trained workforce. Prudent advance preparations would facilitate a timely emergency response and reconstruction following such an earthquake. ?? 2011, Earthquake Engineering Research Institute.

  20. Engineering properties of sintered waste sludge as lightweight aggregate in a densified concrete mixture

    Institute of Scientific and Technical Information of China (English)

    彭予柱

    2009-01-01

    The global trend towards carbon reduction,energy conservation,and sustainable use of resources has led to an increased focus on the use of waste sludge in construction.We used waste sludge from a reservoir to produce high-strength sintered lightweight aggregate,and then used the densified mixture design algorithm to create high-performance concrete from the sintered aggregate with only small amounts of mixing water and cement.Ultrasonic,electrical resistance and concrete strength efficiency tests were perfo...

  1. Effect of surrogate aggregates on the thermal conductivity of concrete at ambient and elevated temperatures.

    Science.gov (United States)

    Yun, Tae Sup; Jeong, Yeon Jong; Youm, Kwang-Soo

    2014-01-01

    The accurate assessment of the thermal conductivity of concretes is an important part of building design in terms of thermal efficiency and thermal performance of materials at various temperatures. We present an experimental assessment of the thermal conductivity of five thermally insulated concrete specimens made using lightweight aggregates and glass bubbles in place of normal aggregates. Four different measurement methods are used to assess the reliability of the thermal data and to evaluate the effects of the various sensor types. The concrete specimens are also assessed at every 100 °C during heating to ~800 °C. Normal concrete is shown to have a thermal conductivity of ~2.25 W m(-1) K(-1). The surrogate aggregates effectively reduce the conductivity to ~1.25 W m(-1) K(-1) at room temperature. The aggregate size is shown not to affect thermal conduction: fine and coarse aggregates each lead to similar results. Surface contact methods of assessment tend to underestimate thermal conductivity, presumably owing to high thermal resistance between the transducers and the specimens. Thermogravimetric analysis shows that the stages of mass loss of the cement paste correspond to the evolution of thermal conductivity upon heating.

  2. Study about the capillary absorption and the sorptivity of concretes with Cuban limestone aggregates

    OpenAIRE

    Howland, J. J.; Martín, A. R.

    2013-01-01

    The objective of this study was to demonstrate the possibility to obtain concretes in Cuba with values of effective porosity below of 10%, using limestone aggregates with high levels of absorption (higher than 1% in many cases), and values of Sorptivity below of 5 x 10-5 m/s1/2 as is established in the document prepared by the DURAR Latin Working Group, for structures exposed to very aggressive environments. The experimental results showed that the use of the trial method of capillary absorpt...

  3. 再生粗骨料混凝土性能的研究%Researching of using waste concrete as coarse aggregate

    Institute of Scientific and Technical Information of China (English)

    段献智

    2012-01-01

    Use the waste concrete taken from several different locations and different service lives as the coarse aggregate,and make those coarse aggregate into the recycled concrete that have several different water-cement ratio and slump by different match,then test and compare the early properties of the fresh concrete.The results show that under the same conditions,the mobility of the recycled concrete poorer than the ordinary concrete.The setting time of the recycled concrete shorter than the ordinary concrete.And generally,the compressive strength of recycled concrete decreased with the recycled aggregate dosage increased.The higher water absorption of recycled aggregate,the lower compressive strength of recycled concrete.By the use of various complexed methods,we can get more higher compressive strength of the recycled concrete.The recycled coarse aggregate that mixed to the recycled aggregate concrete,in which the strength of the original concrete is low,has different effect to the recycled concrete with lower water-cement ratio and higher water-cement ratio.%将几种取自不同地点的废弃混凝土破碎制成粗骨料,然后通过不同搭配,配制成几种不同水灰比、坍落度的再生混凝土,并对其新拌混凝土早期的性能进行测试比较,研究结果表明,在相同条件下,再生混凝土的流动性比普通混凝土的差;再生混凝土的凝结时间比普通混凝土要短;再生混凝土的抗压强度一般随再生骨料掺量的增加而降低;吸水率高的再生骨料对应的再生混凝土强度低;通过各种方法的复合运用,可配得较高抗压强度的再生混凝土;混合再生骨料配制的再生混凝土,其中原始混凝土强度低的再生骨料,对低水灰比和高水灰比的再生混凝土有不同的影响效果。

  4. High performance of treated and washed MSWI bottom ash granulates as natural aggregate replacement within earth-moist concrete.

    Science.gov (United States)

    Keulen, A; van Zomeren, A; Harpe, P; Aarnink, W; Simons, H A E; Brouwers, H J H

    2016-03-01

    Municipal solid waste incineration bottom ash was treated with specially designed dry and wet treatment processes, obtaining high quality bottom ash granulate fractions (BGF) suitable for up to 100% replacement of natural gravel in concrete. The wet treatment (using only water for separating and washing) significantly lowers the leaching of e.g. chloride and sulfate, heavy metals (antimony, molybdenum and copper) and dissolved organic carbon (DOC). Two potential bottom ash granulate fractions, both in compliance with the standard EN 12620 (aggregates for concrete), were added into earth-moist concrete mixtures. The fresh and hardened concrete physical performances (e.g. workability, strength and freeze-thaw) of high strength concrete mixtures were maintained or improved compared with the reference mixtures, even after replacing up to 100% of the initial natural gravel. Final element leaching of monolithic and crushed granular state BGF containing concretes, showed no differences with the gravel references. Leaching of all mixtures did not exceed the limit values set by the Dutch Soil Quality Degree. In addition, multiple-life-phase emission (pH static test) for the critical elements of input bottom ash, bottom ash granulate (BGF) and crushed BGF containing concrete were assessed. Simulation pH lowering or potential carbonation processes indicated that metal (antimony, barium, chrome and copper) and sulfate element leaching behavior are mainly pH dominated and controlled, although differ in mechanism and related mineral abundance.

  5. Application of Compactness Detection to Complicated Concrete-Filled Steel Tube by Ultrasonic Method

    Institute of Scientific and Technical Information of China (English)

    杨建江; 王飞; 陆苏亮; 王川

    2014-01-01

    An example of using ultrasonic method to detect the compactness of complicated concrete-filled steel tube in certain high-rise building was discussed in this study. Because of the particularity of the complicated concrete-filled steel tubular column, the plane detection method and embedded sounding pipe method were adopted in the process of effectively detecting the column. According to the results of the plane detection method and embedded sounding pipe method, the cementing status of steel tube and concrete can be concluded, which cannot be judged by the hammering method in the rectangular steel tube-reinforced concrete.

  6. Experimental study on microstructure and structural behaviour of recycled aggregate concrete

    OpenAIRE

    Etxeberria Larrañaga, Miren

    2004-01-01

    The use of recycled aggregates in concrete opens a whole new range of possibilities in the reuse of materials in the building industry. This could be an important breakthrough for our society in our endeavours towards sustainable development. The trend of the utilisation of recycled aggregates is the solution to the problem of an excess of waste material, not forgetting the parallel trend of improvement of final product quality. The utilisation of waste construction materials has to be relat...

  7. Experimental and Numerical Analysis of Thermal and Hygrometric Characteristics of Building Structures Employing Recycled Plastic Aggregates and Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Francesco Colangelo

    2013-11-01

    Full Text Available The correct estimation of building energy consumptions is assuming an always increasing importance, and a detailed reproduction of building structures, with all the single components involved, is necessary to achieve this aim. In addition, the current ecological development tries to limit the use of natural raw materials as building components, in favor of alternative (waste materials, which ensure significant advantages from the economic, energetic and environmental point of views. In this work, dynamic heat and vapor transport in a typical three-dimensional (3D building structure, involving different types of environmental-friendly concrete mixtures, have been simulated by using finite elements. In particular, the authors propose to substitute part of the aggregates with plastic waste and to use a fly ash based geopolymeric binder for the production of low conductivity concrete, to be employed in eco-efficient buildings. Concrete produced with natural limestone aggregates has been considered as the reference benchmark. The whole characterization of the different types of concrete tested in the present work has been obtained through laboratory experiments. The structure taken into account in the simulations is a 3D thermal bridge, typical of building envelopes. The thermal and hygrometric transient behavior of this structure, employing plastic waste in different percentages and geopolymer concrete, has been analyzed by the authors.

  8. Effects of Magnetite Aggregate and Steel Powder on Thermal Conductivity and Porosity in Concrete for Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2016-01-01

    Full Text Available Among many engineering advantages in concrete, low thermal conductivity is an attractive property. Concrete has been widely used for nuclear vessels and plant facilities for its excellent radiation shielding. The heat isolation through low thermal conductivity is actually positive for nuclear power plant concrete; however the property may cause adverse effect when fires and melt-down occur in nuclear vessel since cooling down from outer surface is almost impossible due to very low thermal conductivity. If concrete containing atomic reactor has higher thermal conductivity, the explosion risk of conductive may be partially reduced. This paper presents high thermally conductive concrete development. For the work, magnetite with varying replacements of normal aggregates and steel powder of 1.5% of volume are considered, and the equivalent thermal conductivity is evaluated. Only when the replacement ratio goes up to 30%, thermal conductivity increases rapidly to 2.5 times. Addition of steel powder is evaluated to be effective by 1.08~1.15 times. In order to evaluate the improvement of thermal conductivity, several models like ACI, DEMM, and MEM are studied, and their results are compared with test results. In the present work, the effects of steel powder and magnetite aggregate are studied not only for strength development but also for thermal behavior based on porosity.

  9. Influence of Bottom Ash Replacements as Fine Aggregate on the Property of Cellular Concrete with Various Foam Contents

    Directory of Open Access Journals (Sweden)

    Patchara Onprom

    2015-01-01

    Full Text Available This research focuses on evaluating the feasibility of utilizing bottom ash from coal burning power plants as a fine aggregate in cellular concrete with various foam contents. Flows of all mixtures were controlled within 45 ± 5% and used foam content at 30%, 40%, 50%, 60%, and 70% by volume of mixture. Bottom ash from Mae Moh power plant in Thailand was used to replace river sand at the rates of 0%, 25%, 50%, 75%, and 100% by volume of sand. Compressive strength, water absorption, and density of cellular concretes were determined at the ages of 7, 14, and 28 days. Nonlinear regression technique was developed to construct the mathematical models for predicting the compressive strength, water absorption, and density of cellular concrete. The results revealed that the density of cellular concrete decreased while the water absorption increased with an increase in replacement level of bottom ash. From the experimental results, it can be concluded that bottom ash can be used as fine aggregate in the cellular concrete. In addition, the nonlinear regression models give very high degree of accuracy (R2>0.99.

  10. STUDY ON COMPRESSIVE STRENGTH OF RECYCLED AGGREGATE CONCRETE%再生混凝土抗压强度试验研究

    Institute of Scientific and Technical Information of China (English)

    孙晓雪; 赵吉坤; 张永兴; 杜林勇

    2011-01-01

    通过对实验室及室外等3种不同的废弃混凝土再生后进行抗压强度试验,研究了取代率分别为0,40%,70%,100%的再生粗骨料混凝土及再生细骨料混凝土抗压强度.研究结果表明,再生混凝土的取代率对再生混凝土的抗压强度影响很大.室内与室外骨料再生混凝土的抗压强度变化规律不同.针对实验提出了再生混凝土抗压强度与取代率关系的公式.%We studied compressive strength of recycled aggregate concrete with 0, 40% , 70% and 100% replacement rates. The results indicated that the recycled aggregate concrete replacement rate has a remarkable influence on the compressive strength of recycled aggregate concrete. According to the ex-periment, formula of the relationship between recycled aggregate replacement rate and compressive strength of recycled aggregate concrete is present.

  11. Fiber-reinforced polymer concrete: Property improvement by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Martinez B, G. [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados, Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Km. 12 Carretera Toluca-Atlacomulco, San Cayetano 50200, Estado de Mexico (Mexico); Brostow, W. [Laboratory of Advanced Polymers and Optimized Materials, Department of Materials Science and Engineering, University of North Texas, Denton TX 76203-5310 (United States)], e-mail: gonzomartinez02@yahoo.com.mx

    2009-07-01

    Polymer concrete (PC) is a particulate composite in which a thermoset resin forms a polymeric matrix and binds inorganic aggregates (dispersed particles of strengthening phases). This in contrast to Portland cement concrete (PCC) in which the binding is a result of interaction of cement with water. Adding polymeric materials to the concrete one can obtain high compressive and flexural strength, high impact and abrasion resistance, lower weight and lower costs. Moreover, PC is a very good repair material for structure elements damaged by trapping water inside the structure and by acid attacks which take place in the PCC. In the present chapter we discuss uses of polymer concrete and the importance of using gamma radiation as a novel technology for manufacturing fiber-reinforced polymer concrete. Our technology is different from the costly and time consuming current procedures such as chemical attack or thermal treatment. (Author)

  12. 不同因素对再生骨料混凝土抗冻性的影响%Effect of Different Factors on Frost Resistance of Recycled Aggregate Concrete

    Institute of Scientific and Technical Information of China (English)

    陈德玉; 刘来宝; 严云; 谭克锋; 刘欢

    2011-01-01

    研究了改性和未改性再生骨料、硅灰及引气剂等因素对C40再生骨料混凝土抗冻性能的影响.结果表明:经300次冻融循环后,与天然骨料混凝土相比,随着再生骨料取代率的增加,再生混凝土的抗冻性有所下降;改性骨料能在一定程度上改善混凝土的抗冻性,有机硅防水剂改性后的再生骨料效果较好;硅灰和引气剂掺加都能较明显地改善再生混凝土的抗冻性.%The influence of modified and unmodified aggregate, silica fume and air-entraining agent on the frost resistance of C40 recycled aggregate concrete has been studied. The results show that the frost resistance of the recycled aggregate concrete with various replacement of recycled aggregate through 300 cycles of freezing and thawing, compared to natural aggregate concrete (control concrete). Moreover, the frost resistance of recycled aggregate concrete falls with the increase of the replacement of recycled aggregate. The frost resistance of recycled aggregate concrete can be improved through either addition of the modified recycled aggregate by organic-silicon or an appropriate amount of silica fume or entrained air agent, and it can be attributed to the improvement of the microstructure of recycled aggregate concrete. Silica fume and air-entraining agent can obviously improve the frost resistance of recycled aggregate concrete.

  13. Pore Structure and Influence of Recycled Aggregate Concrete on Drying Shrinkage

    Directory of Open Access Journals (Sweden)

    Yuanchen Guo

    2013-01-01

    Full Text Available Pore structure plays an important role in the drying shrinkage of recycled aggregate concrete (RAC. High-precision mercury intrusion and water evaporation were utilized to study the pore structure of RAC, which has a different replacement rate of recycled concrete aggregate (RCA, and to analyze its influence on drying shrinkage. Finally, a fractal-dimension calculation model was established based on the principles of mercury intrusion and fractal-geometry theory. Calculations were performed to study the pore-structure fractal dimension of RAC. Results show the following. (1 With the increase in RCA content, the drying shrinkage values increase gradually. (2 Pores with the greatest impact on concrete shrinkage are those whose sizes ranging from 2.5 nm to 50 nm and from 50 nm to 100 nm. In the above two ranges, the proportions of RAC are greater than those of RC0 (natural aggregate concrete, NAC, which is the main reason the shrinkage values of RAC are greater than those of NAC. (3 The pore structure of RAC has good fractal feature, and the addition of RCA increases the complexity of the pore surface of concrete.

  14. In-plane Shear Joint Capacity of Pracast Lightweight Aggregate Concrete Elements

    DEFF Research Database (Denmark)

    Larsen, Henning; Goltermann, Per; Scherfig, Søren;

    1996-01-01

    The paper establishes and documents formulas for the in-plane shear capacity between precast elements of lightweight aggregate concrete with open structure. The joints investigated are rough or toothed and have all been precracked prior to the testing in order to obtain realistic test results...

  15. STUDIES ON STRENGTH CHARACTERISTICS ON UTILIZATION OF WASTE MATERIALS AS COARSE AGGREGATE IN CONCRETE

    Directory of Open Access Journals (Sweden)

    DR. T. SEKAR

    2011-07-01

    Full Text Available Depletion of natural resources is a common phenomenon in developing countries like India due to rapid urbanization and Industrialization involving construction of Infrastructure and other amenities. In view of this, people have started searching for suitable other viable alternative materials for concrete so that the existing natural resources could be preserved to the possible extent, for the future generation. In this process, different industrial waste materials such as fly ash, blast furnace slag, quarry dust, tile waste, brick bats, broken glass waste, waste aggregate from demolition of structures, ceramic insulator waste, etc. have been tried as a viablesubstitute material to the conventional materials in concrete and has also been succeeded. This paper describes the studies conducted on strength characteristics of concrete made with utilizing waste materials viz: ceramic tiles, ceramic insulator waste, and broken glass pieces. A total number of 24cubes, 24 cylinders and 24 beamswere cast and tested for compressive strength, splitting tensile strength and flexural strength using industrial wastes and the results presented. It was found that, the concrete made of waste ceramic tile aggregate produced more strength in compression, split tensile and flexure than ceramic insulator scrap and broken glass material. This paper recommends that waste ceramic tiles can be used as an alternate construction material to coarse aggregate in concrete.

  16. Sustainable use of industrial-waste as partial replacement of fine aggregate for preparation of concrete – A review

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Dash

    2016-12-01

    Full Text Available Utilisation of industrial waste materials in concrete compensates the lack of natural resources, solving the disposal problem of waste and to find alternative technique to safeguard the nature. There are a number of industrial wastes used as fully or partial replacement of coarse aggregate or fine aggregate. This review carries out a thorough assessment about industrial waste substances, which can be adequately utilised in concrete as fine aggregate substitution. This paper reviewed some of these industrial wastes like waste foundry sand, steel slag, copper slag, imperial smelting furnace slag (ISF slag, blast furnace slag, coal bottom ash, ferrochrome slag, palm oil clinker etc. Out of these materials, maximum number of experiments have been conducted using waste foundry sand and copper slag as fine aggregate replacement, but still more examinations are required for other waste materials as replacement of sand in concrete. Different physical and mechanical properties of industrial waste as well as of industrial waste concrete, in which natural sand is substituted have been reviewed and comparisons are made between them. Deflection and leaching study review are carried out additionally and compared. It can be observed that the concrete where sand is replaced by copper slag, imperial smelting furnace slag, class F fly ash exhibits improved strength and durability properties, but it’s slump increases as the rate of replacement increases in the case of copper slag and the slump decreases in the case of class F fly ash. There is a less research work reported on ferrochrome slag and palm oil clinker used as sand substitution, so it is felt that further detailed investigations are required.

  17. Lightweight concrete blocks with EVA recycled aggregate: a contribution to the thermal efficiency of building external walls

    Directory of Open Access Journals (Sweden)

    De Melo, A. B.

    2013-12-01

    Full Text Available The regions with lots of shoe production suffer environmental impacts from waste generation during manufacturing of insoles and outsoles. Research conducted in Brazil has demonstrated the technical feasibility to recycle these wastes, especially Ethylene Vinyl Acetate (EVA, as lightweight aggregate, in the production of non-structural cement blocks. This article presents an evaluation of thermal performance with measurements of temperature variation in mini walls (1 m2 built with different materials, including various kinds of EVA block and ceramic bricks. Tests have shown efficient thermal performance for masonry blocks with EVA. These results and supplementary estimates contribute to add value to the EVA block, considering that there are good expectations that the component, with the new geometry proposed, can contribute to the energy efficiency of buildings, highlighting its suitability to most Brazilian bioclimatic regions.Las regiones con una gran producción de calzado sufren impactos ambientales derivados de la generación de residuos durante la producción de plantillas y suelas. Investigaciones realizadas en Brasil han demostrado la viabilidad técnica para el reciclaje de estos residuos, especialmente el Etileno Vinil Acetato (EVA, como agregado ligero en la fabricación de bloques de hormigón no estructurales. Este trabajo presenta una evaluación del rendimiento térmico, con mediciones de la variación de la temperatura en pequeñas paredes (1 m2 construidas con diversos materiales, incluyendo algunos tipos de bloques EVA y ladrillos de cerámica. Las pruebas demostraron actuaciones térmicas eficientes para las muestras con bloques EVA. Estos resultados y cálculos adicionales contribuyen con un aporte de valor añadido al bloque EVA, considerando que existen buenas expectativas del componente, con una nueva propuesta de geometría, pudiendo contribuir a la eficiencia energética de edificios, especialmente por su adecuación a la

  18. Caracterização microestrutural da argila expandida para aplicação como agregado em concreto estrutural leve Microstructural evaluation of expanded clay to be used as lightweight aggregate in structural concrete

    Directory of Open Access Journals (Sweden)

    W. G. Moravia

    2006-06-01

    Full Text Available A utilização da argila expandida como agregado graúdo é economicamente viável na fabricação de concretos devido à redução da massa especifica que estes agregados proporcionam, minimizando os carregamentos atuantes nas estruturas. O objetivo deste trabalho é caracterizar a microestrutura do agregado leve de argila expandida visando sua utilização na fabricação de concretos. Na caracterização física da argila expandida foram avaliadas a massa unitária, a granulometria e a absorção de água por imersão total do agregado. Na caracterização microestrutural, foram realizadas análise química, microscopia eletrônica de varredura, difração de raios X e porosimetria por intrusão de mercúrio. A argila expandida apresentou granulometria entre as britas com graduação 0 e 1, e apresentou alta absorção de água devido à elevada porosidade deste agregado. Na análise de difração de raios X evidenciou-se a presença de sílica na forma mineral de alfa-quartzo, silicato de magnésio e óxido de alumínio e magnésio.The use of expanded clay as aggregate is economically feasible in the manufacturing of concrete due to the decrease in bulk density, provided by these aggregates, minimizing the total weight of the structures. The objective of this work is to characterize the microstructure of expanded clay aggregates which are used in the manufacturing of lightweight concretes. The expanded clay was evaluated concerning of the density, the granulometry and water absorption after total immersion of the aggregate. The chemical analysis, scanning electron microscopy, X-ray diffraction and mercury intrusion porosimetry were used as well. The expanded clay presented granulometry between the aggregates grades 0 and 1 and high water absorption due to the high porosity of the aggregate. The X-ray diffraction data showed the presence of alpha-quartz, magnesium silicate and magnesium aluminum oxide.

  19. Flexural Toughness Characteristics of Steel Synthetic Fibers-Lightweight Aggregate Concrete

    Directory of Open Access Journals (Sweden)

    Rajai

    2016-06-01

    Full Text Available In general, the steel synthetic fibers improve the durability of concrete by providing crackarresting mechanism and minimizing it’s possible to cracking. In this study, an experimental program was undertaken to investigate the effect of steel synthetic fibers content volume fractions on the compressive, tensile, modulus of elasticity, and flexural toughness of lightweight aggregate concrete (LAWC. The tested specimens were divided into five groups based on steel synthetic fibers content volume fractions (0, 0.3, 0.6, 0.9 and 1.2%. The experimental results show that steel synthetic fibers content volume fractions considerably enhanced the mechanical properties of concrete in terms of compressive strength (2.8 for 0.3% fiber to 11.3% for 1.2% fiber, splitting tensile strength (3.9 for 0.3% fiber to 35.9% for 1.2% fiber, and flexural strength (21.8 for 0.3% fiber to 56.8% for 1.2% fiber. Also, the tested results show that the flexural toughness indexes and post-cracking toughness especially on the first crack and failure deflections were extensively enhanced by the addition of fibers. The improvement in post-cracking toughness could be due to the crack arresting effect of steel synthetic fibers because it continued to exhibit residual strength after the first crack creation and needed higher energy for the fiber pull out.

  20. Durability and acoustics of concrete with slag of cupola furnace as fine aggregate replacement

    Directory of Open Access Journals (Sweden)

    Ricardo Alfredo Cruz Hernández

    2015-01-01

    Full Text Available In this paper, it was evaluated the performance of concrete with crushed slag of cupola furnace (SCF as sand replacement in percentages of 0 %, 10 %, 15 % and 20 %, subjected to accelerated chemical attacks of carbonation, sulfation and alkali-aggregate reaction (AAR. The sound absorption characteristics of the material were determined through the sound absorption coefficient (α, and the noise reduction coefficient (NRC. Carbonation was evaluated through a closed camera with the 70 % concentration of carbon dioxide and conditions of relative humidity between 50 % and 70 %. The results indicated that the penetration depth of CO2 is lower when greater the percentage of substitution is. To accelerate the attack by sulfates, specimens were immersed in aqueous solution of sodium sulfate anhydrous (Na2SO4 1N with cycles of wetting and drying. It determined that the impairment presented in concrete paste is directly proportional to the percentage of sand replacement. The acceleration of the AAR in the concrete was carried out by immersing specimens in an aqueous solution of sodium hydroxide (NaOH for 16 days. The test concluded that the inclusion of SCF is not favorable for AAR. The measurement of sound absorption coefficient was taken by the method of impedance tube, relating minimum and maximum values of stationary wave amplitude. The results showed that SCF with higher sand replacement are favorable for the noise absorption in buildings.

  1. Application of micro X-ray diffraction to investigate the reaction products formed by the alkali silica reaction in concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Dähn, R.; Arakcheeva, A.; Schaub, Ph.; Pattison, P.; Chapuis, G.; Grolimund, D.; Wieland, E.; Leemann, A. (Ecole); (PSI); (Phase Solutions); (ESRF)

    2015-12-21

    Alkali–silica reaction (ASR) is one of the most important deterioration mechanisms in concrete leading to substantial damages of structures worldwide. Synchrotron-based micro-X-ray diffraction (micro-XRD) was employed to characterize the mineral phases formed in micro-cracks of concrete aggregates as a consequence of ASR. This particular high spatial resolution technique enables to directly gain structural information on ASR products formed in a 40-year old motorway bridge damaged due to ASR. Micro-X-ray-fluorescence was applied on thin sections to locate the reaction products formed in veins within concrete aggregates. Micro-XRD pattern were collected at selected points of interest along a vein by rotating the sample. Rietveld refinement determined the structure of the ASR product consisting of a new layered framework similar to mountainite and rhodesite. Furthermore, it is conceivable that understanding the structure of the ASR product may help developing new technical treatments inhibiting ASR.

  2. Chapter K: Progress in the Evaluation of Alkali-Aggregate Reaction in Concrete Construction in the Pacific Northwest, United States and Canada

    Science.gov (United States)

    Shrimer, Fred H.

    2005-01-01

    users of the concrete aggregates mined from these deposits. This situation is complicated by the length of time typically required for AAR to become noticeable in concrete construction in the Pacific Northwest, commonly on such a scale that other deterioration mechanisms may have masked the effects of AAR. Distinguishing between the effects of AAR and those related to other problems in concrete is important for understanding the nature and severity of AAR throughout the Pacific Northwest. Furthermore, developing an understanding of the extent of the problem will assist efforts to maximize the intelligent and stewardly use of aggregate resources in the Pacific Northwest. This chapter illustrates the current 'state of the art' of AAR studies in the Pacific Northwest, a region with a common geologic heritage as well as many distinct geologic elements. The optimal use of aggregates in the construction of concrete structures that will achieve their design life is possible through an understanding of the engineering and geologic properties of these aggregates and of their geologic setting.

  3. Production of Controlled Low Strength Material Utilizing Waste Paper Sludge Ash and Recycled Aggregate Concrete

    Directory of Open Access Journals (Sweden)

    Azmi A. N.

    2016-01-01

    Full Text Available Recently, the best method to make the concrete industry more sustainable was using the waste materials to replace the natural resources. Currently waste paper sludge is a major economic and environmental problem in this country. In this research, the alternative method is to dwindle the usage of natural resources and the usage of cement in the construction. This method is to replace the usage of cement with the waste paper sludge ash (WPSA and to use the recycle aggregate collected from the construction is used. The WPSA has ingredient likely cement such as self-cementation but for a low strength. The research was conducted at heavy laboratory UITM Pulau Pinang. Meanwhile, the WPSA is collected at MNI Industries at Mentakab, Pahang. The recycle aggregate is a separated half, which were fine aggregate and the coarse aggregate with the specific size. In this research, the ratio is divided into two (2 which is 1:1 and 1:2 for the aggregate and difference percentage levels of WPSA. The percentage levels of WPSA that use in this research are 10%, 20%, 30%, 40%, 50%, and 60%. A total of 36 cubes were prepared. Aim of this research is to develop a simple design approach for the mixture proportioning of WPSA and recycle concrete aggregate (RCA within the concrete and to assess the effect of concrete mix with different percentage of WPSA and RCA ratio on the properties. It is found that the best design mix that achieves control low strength material (CLSM is on 30% of WPSA with the ratio 1:2 on day 28 of compression test.

  4. Mechanical Strength Properties of RCA Concrete Made by a Modified EMV Method

    Directory of Open Access Journals (Sweden)

    Namho Kim

    2016-09-01

    Full Text Available This study used two types of Recycled Concrete Aggregates (RCAs with the same original virgin aggregate, but with different amounts of residual mortars. To verify that the mechanical properties of the concrete were affected by changing the unit volume of residual mortar, fresh mortar, and total mortar of the concrete, a series of paving concrete mixes were made using a modified equivalent mortar volume (EMV mix design, along with a conventional American Concrete Institute (ACI mix design. The test results showed that the RCA concrete with the conventional mix design, which led to a prominent decrease in compressive strength and elastic modulus at each age, had 10% greater total mortar volume than that with the modified EMV mix design. As for the conventional ACI mix, it appears that the replacement ratio of RCA and the volume of the residual mortar in RCA directly affect the modulus of elasticity as well as the compressive strength of concrete. However, for the modified EMV mix, the modulus of elasticity of the concrete may be increased to be equivalent to the companion concrete with natural aggregate by controlling the new mortar volume so that the total mortar volume remains the same regardless of the RCA replacement ratio. It was observed that the smaller new volume requirement makes the RCA paving concrete more environmentally friendly and economically profitable.

  5. The response of farmland bird communities to agricultural intensity as influenced by its spatial aggregation.

    Directory of Open Access Journals (Sweden)

    Félix Teillard

    Full Text Available The shape of the relationship between biodiversity and agricultural intensity determines the range of intensities that should be targeted by conservation policies to obtain the greatest environmental benefits. Although preliminary evidence of this relationship exists, the influence of the spatial arrangement of intensity on biodiversity remains untested. We conducted a nationwide study linking agricultural intensity and its spatial arrangement to a farmland bird community of 22 species. Intensity was described with a continuous indicator based on Input Cost per hectare, which was relevant for both livestock and crop production. We used the French Breeding Bird Survey to compute several descriptors of the farmland bird community along the intensity gradient and tested for the significance of an interaction effect between intensity and its spatial aggregation on these descriptors. We found that the bird community was comprised of both winner and loser species with regard to intensity. The community composition descriptors (trophic level, specialisation, and specialisation for grassland indices displayed non-linear relationships to intensity, with steeper slopes in the lower intensity range. We found a significant interaction effect between intensity and its spatial aggregation on the grassland specialisation index of the bird community; the effect of agricultural intensity was strengthened by its spatial aggregation. We suggest that an opportunity to improve the effectiveness of conservation policies exists by targeting measures in areas where intensity is moderate to low and aggregated. The effect of the aggregation of agricultural intensity on biodiversity should be considered in other scales and taxa when developing optimal policy targeting and intensity allocation strategies.

  6. A Comparative Analysis of Modulus of Rupture and Splitting Tensile Strength of Recycled Aggregate Concrete

    Directory of Open Access Journals (Sweden)

    Akinkurolere Olufunke Olanike

    2016-07-01

    Full Text Available - In this experimental investigation, an attempt is made to report the comparative analysis of the modulus of rupture and the splitting tensile strength of recycled aggregate concrete. The two properties are usually used to estimate the tensile strength of concrete; however, they don’t usually yield the same results hence need to investigate each of the properties. Taguchi optimization technique was employed to reduce the number of trials needed to get the results. The results showed that the splitting tensile strength ranges between 60-80% of the modulus of rupture which is also known as the flexural strength.

  7. Physical Model of Drying Shrinkage of Recycled Aggregate Concrete

    Institute of Scientific and Technical Information of China (English)

    GUO Yuanchen; WANG Xue; QIAN Jueshi

    2015-01-01

    We prepared concretes (RC0, RC30, and RC100) with three different mixes. The pore-size distribution parameters of RAC were examined by high-precision mercury intrusion method (MIM) and nuclear magnetic resonance (NMR) imaging. A capillary-bundle physical model with random-distribution pores (improved model, IM) was established according to the parameters, and dry-shrinkage strain values were calculated and verified. Results show that in all pore types, capillary pores, and gel pores have the greatest impacts on concrete shrinkage, especially for pores 2.5-50 and 50-100 nm in size. The median radii are 34.2, 31, and 34 nm for RC0, RC30, and RC100, respectively. Moreover, the internal micropore size distribution of RC0 differs from that of RC30 and RC100, and the pore descriptions of MIM and NMR are consistent both in theory and in practice. Compared with the traditional capillary-bundle model, the calculated results of IM have higher accuracy as demonstrated by experimental veriifcation.

  8. Structural Lightweight Concrete Production by Using Oil Palm Shell

    Directory of Open Access Journals (Sweden)

    Habibur Rahman Sobuz

    2014-01-01

    Full Text Available Conventional building materials are widely used in a developing country like Malaysia. This type of material is costly. Oil palm shell (OPS is a type of farming solid waste in the tropical region. This paper aims to investigate strength characteristics and cost analysis of concrete produced using the gradation of OPS 0–50% on conventional coarse aggregate with the mix proportions 1 : 1.65 : 2.45, 1 : 2.5 : 3.3, and 1 : 3.3 : 4.2 by the weight of ordinary Portland cement, river sand, crushed stone, and OPS as a substitution for coarse aggregate. The corresponding w/c ratios were used: 0.45, 0.6, and 0.75, respectively, for the defined mix proportions. Test results indicate that compressive strength of concrete decreased as the percentage of the OPS increased in each mix ratio. Other properties of OPS concrete, namely, modulus of rupture, modulus of elasticity, splitting tensile strength, and density, were also determined and compared to the corresponding properties of conventional concrete. Economic analysis also indicates possible cost reduction of up to 15% due to the use of OPS as coarse aggregate. Finally, it is concluded that the use of OPS has great potential in the production of structural lightweight concrete.

  9. The Accelerated Test of Chloride Permeability of Concrete

    Institute of Scientific and Technical Information of China (English)

    TAN Ke-feng; ODD E Gjφrv

    2003-01-01

    The availability of accelerated chloride permeability test and the effect of w/c ratio, incorporation of silica fume, maximum aggregate size and aggregate type on the chloride permeability were studied. The mathematic analysis certifies that there is a linear relationship between accelerated test and natural diffusion. Test results show that the chloride permeability of concrete increases as w/c ratio increases whilst a limited amount of replacement of cement with silica fume, the chloride permeability decreases dramatically. The maximum aggregate size in the range of 8 to 25 mm seems also affect chloride permeability but with a much less significant level. The chloride permeability of silica fume lightweight aggregate concrete is very low, especially the concrete made with dry lightweight concrete. The chloride permeability can be evaluated by this accelerated test method.

  10. The Simple Lamb Wave Analysis to Characterize Concrete Wide Beams by the Practical MASW Test

    OpenAIRE

    Young Hak Lee; Taekeun Oh

    2016-01-01

    In recent years, the Lamb wave analysis by the multi-channel analysis of surface waves (MASW) for concrete structures has been an effective nondestructive evaluation, such as the condition assessment and dimension identification by the elastic wave velocities and their reflections from boundaries. This study proposes an effective Lamb wave analysis by the practical application of MASW to concrete wide beams in an easy and simple manner in order to identify the dimension and elastic wave veloc...

  11. Mineralogy, size, morphology and porosity of aggregates and their relationship with soil susceptibility to water erosion

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, M. do A, E-mail: mucfig@hotmail.com; Augustin, C.H.R.R. [Instituto de Geociencias, Universidade Federal de Minas Gerais, Departamento de Geografia (Brazil)], E-mail: mucfig@hotmail.com; Fabris, J.D. [Universidade Federal de Minas Gerais, Departamento de Quimica, Instituto de Ciencias Exatas (Brazil)], E-mail: fabris@dedalus.lcc.ufmg.br

    1999-11-15

    Soil erosion has been considered as the main process related to losses of soil mass and decrease of productivity in cultivated lands as well as on e of the most important processes in landscape evolution. Attention has been paid to many pedological variables affecting intensity of erosion, but little to the influence of iron compounds on the type, size, shape and porosity of soil aggregates. In the present study, three lithopedodomains which were assumed to be closely related to the dominant lithology of the soil parent material, varying in the degree of water erosion intensity, were selected for further analysis which focused mainly on the influence of iron oxide mineralogy on the soil aggregation. Powder X-ray diffractometry, 80 K Moessbauer data and SEM images are used to correlate all these variables with observed erosion activity in the field. The present data indicate that the more the soil is rich in iron (hematite and/or goethite) or aluminium (gibbsite) (hydr)oxide, the smaller are its aggregates and is porous. Soils derived from metabasic rocks are much more susceptible to collapse under wetting than those from other lithologies. They have the highest iron and clay content. Schist-derived soil is richer in muscovite, has bigger aggregates and porous and are less prone to collapse, while the granite-derived soil presents relatively intermediate resistance, when humid.

  12. Effect of Glass Powder on Chloride Ion Transport and Alkali-aggregate Reaction Expansion of Lightweight Aggregate Concrete

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi; SHI Caijun; SONG Jianming

    2009-01-01

    The effects of glass powder on the strength development, chloride permeability and potential alkali-aggregate reaction expansion of lightweight aggregate concrete were investigated.Ground blast furnace slag, coal fly ash and silica fume were used as reference materials. The re-placement of cement with 25% glass powder slightly decreases the strengthes at 7 and 28 d, but shows no effect on 90 d's. Silica fume is very effective in improving both the strength and chloride penetra-tion resistance, while ground glass powder is much more effective than blast furnace slag and fly ash in improving chloride penetration resistance of the concrete. When expanded shale or clay is used as coarse aggregate, the concrete containing glass powder does not exhibit deleterious expansion even if alkali-reactive sand is used as fine aggregate of the concrete.

  13. The Compression-deformation Behaviour of Concrete with Various Modified Recycled Aggregates

    Institute of Scientific and Technical Information of China (English)

    DU Ting; LI Huiqiang; WU Xianguo; QIN Yawei

    2005-01-01

    Modified recycled aggregates were prepared with three different cement-admixture grouts. The physical properties, such as water absorption, apparent density, crushing index, slump and compressive strength of the recycled aggregate and the recycled concretes were tested, and the tests for the compression-deformation behavior of the concretes were also performed. The experimental results show that the cement-Kim powder grout is satisfied for enhancing the recycled concrete, and the modification of the recycled aggregate with the grouts can improve the toughness and the deformation ability of the concretes.

  14. Discussion on “Malešev, M.; Radonjanin, V.; Marinković, S. Recycled Concrete as Aggregate for Structural Concrete Production. Sustainability, 2010, 2, 1204-1225”

    Directory of Open Access Journals (Sweden)

    Gholamreza Fathifazl

    2011-02-01

    Full Text Available The authors are to be congratulated for their comprehensive research work on the use of RCA as aggregate in structural grade concrete [1], but some of their conclusions with regard to the effect of aggregate type and RCA content on the fresh and hardened properties of concrete made with coarse RCA, termed RAC for brevity, need discussion.

  15. Influencing Factors on the Interface Microhardness of Lightweight Aggregate Concrete Consisting of Glazed Hollow Bead

    Directory of Open Access Journals (Sweden)

    Gang Ma

    2015-01-01

    Full Text Available Lightweight aggregate concrete consisting of glazed hollow bead (GHB as lightweight aggregate is studied for the influence of nanosilica (NS content, prewetting time for GHB, water-cement ratio, and curing humidity, on the interface structure between GHB and cement paste. This research analyzed the influences of various factors on the interface zone structure by measuring microhardness (HV and hydration degree of cement paste (HD nearby the interface zone (1 mm between GHB and cement paste at different periods of aging. Due to the sampling limitation, the interface zone in this test is within 1 mm away from the surface of lightweight aggregate. The HD of cement paste was determined through chemically combined water (CCW test. The results were expected to reflect the influence of various factors on the interface zone structure. Results showed that the rational control of the four factors studied could fully mobilize the water absorption and desorption properties of GHB to improve the characteristics of the interfacial transition zone.

  16. Research on properties of fine recycled aggregate for structural concrete from repeatedly recycling concrete waste%循环再生高性能混凝土细骨料性能研究

    Institute of Scientific and Technical Information of China (English)

    牟晓芳; 郑俊健; 李浩然; 朱平华

    2014-01-01

    In order to explore the possibility of repeatedly recycling the waste concrete from different sources for structural concrete ag-gregate,the experiment researched the performance of recycled fine aggregate from both secondary renewable single sources and mixed sources,analysing the mineral and chemical component,grading the test results according to Japanese technical standards for recycled ag-gregate,ASTM and China GB/T 25177-2010 and other relevant recycled aggregate standards,establishing a relationship between aggre-gate indicators through the data fitting.The experimental results show that:with the increase of the cycle,the apparent density of recycled fine aggregate,the water absorption and water demand ratio decreases while the intensity ratio increases;the surface absorption mortar con-tent of circulation recycled aggregate increases;compared with natural fine aggregate,the mass fraction of CaO from first recycled fine ag-gregate increased by an average of 5 times,which from the second recycled fine aggregate increased by an average of 10 times;the com-pressive strength radio of recycled mortar and the absorption mortar content shows a quadratic relationship ,the curve down first then up shows that with the increase of regeneration frequencies,the compressive strength radio of recycled mortar elevates;The secondary recy-cled aggregates are satisfied with the performance requirements of structural concrete with fine aggregate regardless of what the standards and criteria taken.%系统研究了由废弃混凝土二次再生制备的结构混凝土细骨料性能,分析了矿物与化学成分,依据日本JISA、美国ASTM和中国GB/T 25176-2010等相关再生细骨料标准对试验结果进行了等级评定,并建立了表观密度、胶砂强度与吸附砂浆含量之间的关系。结果表明:随着循环次数的增加,再生细骨料表观密度、吸水率、需水量比降低,胶砂强度比与细度模数增大,吸附的砂浆含量

  17. Studies on Pumice Lightweight Aggregate Concrete with Quarry Dust Using Mathematical Modeling Aid of ACO Techniques

    Directory of Open Access Journals (Sweden)

    J. Rex

    2016-01-01

    Full Text Available The lightweight aggregate is an aggregate that weighs less than the usual rock aggregate and the quarry dust is a rock particle used in the concrete for the experimentation. The significant intention of the proposed technique is to frame a mathematical modeling with the aid of the optimization techniques. The mathematical modeling is done by minimizing the cost and time consumed in the case of extension of the real time experiment. The proposed mathematical modeling is utilized to predict four output parameters such as compressive strength (Mpa, split tensile strength (Mpa, flexural strength (Mpa, and deflection (in mm. Here, the modeling is carried out with three different optimization techniques like genetic algorithm (GA, particle swarm optimization (PSO, and ant colony optimization (ACO with 80% of data from experiment utilized for the training and the remaining 20% for the validation. Finally, while testing, the error value is minimized and the performance obtained in the ACO for the parameters such as compressive strength, split tensile strength, flexural strength, and deflection is 91%, 98%, 87%, and 94% of predicted values, respectively, in the mathematical modeling.

  18. Patterns of gravity induced aggregate migration during casting of fluid concretes

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Roussel, N.; Hattel, Jesper Henri

    2012-01-01

    In this paper, aggregate migration patterns during fluid concrete castings are studied through experiments, dimensionless approach and numerical modeling. The experimental results obtained on two beams show that gravity induced migration is primarily affecting the coarsest aggregates resulting in...... that it finds its origin in the non Newtonian nature of fresh concrete and that increasing casting rate shall decrease the magnitude of gravity induced particle migration.......In this paper, aggregate migration patterns during fluid concrete castings are studied through experiments, dimensionless approach and numerical modeling. The experimental results obtained on two beams show that gravity induced migration is primarily affecting the coarsest aggregates resulting...

  19. Metaconcrete: designed aggregates to enhance dynamic performance

    Science.gov (United States)

    Mitchell, Stephanie J.; Pandolfi, Anna; Ortiz, Michael

    2014-04-01

    We propose a new type of concrete for the attenuation of elastic waves induced by dynamic excitation. In this metamaterial, which we call metaconcrete, the stone, sand, and gravel aggregates of standard concrete are replaced with spherical inclusions consisting of a heavy metal core coated with a soft outer layer. These engineered aggregates can be tuned so that particular frequencies of a propagating blast wave will activate resonant oscillations of the heavy mass within the inclusions. The resonant behavior causes the system to exhibit negative effective mass, and this interaction between the wave motion and the resonant aggregates results in the attenuation of the applied dynamic loading. We introduce the concept of negative mass by deriving the effective momentum mass for the system and we define the geometrical and material parameters for the design of resonant aggregates. We develop finite element models for the analysis of metaconcrete behavior, defining a section of slab containing a periodic arrangement of inclusions. By computing the energy histories for the system when subject to a blast load, we show that there is a transfer of energy between the inclusions and the surrounding mortar. The inclusions are able to absorb a significant portion of the applied energy, resulting in a reduction in the amount of stress carried by the mortar phase and greatly improving the ability of the material to resist damage under explosive dynamic loading.

  20. Development of a stress-mode sensitive viscoelastic constitutive relationship for asphalt concrete: experimental and numerical modeling

    Science.gov (United States)

    Karimi, Mohammad M.; Tabatabaee, Nader; Jahanbakhsh, H.; Jahangiri, Behnam

    2016-11-01

    Asphalt binder is responsible for the thermo-viscoelastic mechanical behavior of asphalt concrete. Upon application of pure compressive stress to an asphalt concrete specimen, the stress is transferred by mechanisms such as aggregate interlock and the adhesion/cohesion properties of asphalt mastic. In the pure tensile stress mode, aggregate interlock plays a limited role in stress transfer, and the mastic phase plays the dominant role through its adhesive/cohesive and viscoelastic properties. Under actual combined loading patterns, any coordinate direction may experience different stress modes; therefore, the mechanical behavior is not the same in the different directions and the asphalt specimen behaves as an anisotropic material. The present study developed an anisotropic nonlinear viscoelastic constitutive relationship that is sensitive to the tension/compression stress mode by extending Schapery's nonlinear viscoelastic model. The proposed constitutive relationship was implemented in Abaqus using a user material (UMAT) subroutine in an implicit scheme. Uniaxial compression and indirect tension (IDT) testing were used to characterize the viscoelastic properties of the bituminous materials and to calibrate and validate the proposed constitutive relationship. Compressive and tensile creep compliances were calculated using uniaxial compression, as well as IDT test results, for different creep-recovery loading patterns at intermediate temperature. The results showed that both tensile creep compliance and its rate were greater than those of compression. The calculated deflections based on these IDT test simulations were compared with experimental measurements and were deemed acceptable. This suggests that the proposed viscoelastic constitutive relationship correctly demonstrates the viscoelastic response and is more accurate for analysis of asphalt concrete in the laboratory or in situ.

  1. System Chemistry to Control Potential Environmental and Safety Hazards of Recycled Concrete Aggregate With Lead-Based Paint

    Science.gov (United States)

    2010-01-01

    microwave digestion procedure in which nitric acid, hydrogen peroxide, and hydrofluoric acid were used. This modified microwave digestion procedure is...30 minutes and stirred for 5 minutes with a glass-stirring rod. A nitric acid microwave (Milestone, Model Ethos, Monroe, CT) digestion procedure...of heavy metals. However, the degree of mobility varies by specie, e.g., cobalt, zinc, cadmium, nickel are more mobile in an acid environ- ment. Lead

  2. Investigation of Self Consolidating Concrete Containing High Volume of Supplementary Cementitious Materials and Recycled Asphalt Pavement Aggregates

    Science.gov (United States)

    Patibandla, Varun chowdary

    The use of sustainable technologies such as supplementary cementitiuous materials (SCMs), and/or recycled materials is expected to positively affect the performance of concrete mixtures. However, it is important to study and qualify such mixtures and check if the required specifications of their intended application are met before they can be implemented in practice. This study presents the results of a laboratory investigation of Self Consolidating concrete (SCC) containing sustainable technologies. A total of twelve concrete mixtures were prepared with various combinations of fly ash, slag, and recycled asphalt pavement (RAP). The mixtures were divided into three groups with constant water to cementitiuous materials ratio of 0.37, and based on the RAP content; 0, 25, and 50% of coarse aggregate replaced by RAP. All mixtures were prepared to achieve a target slump flow equal to or higher than 500 mm (24in). A control mixture for each group was prepared with 100% Portland cement whereas all other mixtures were designed to have up to 70% of portland cement replaced by a combination of supplementary cementitiuous materials (SCMs) such as class C fly ash and granulated blast furnace slag. The properties of fresh concrete investigated in this study include flowability, deformability; filling capacity, and resistance to segregation. In addition, the compressive strength at 3, 14, and 28 days, the tensile strength, and the unrestrained shrinkage up to 80 days was also investigated. As expected the inclusion of the sustainable technologies affected both fresh and hardened concrete properties. Analysis of the experimental data indicated that inclusion of RAP not only reduces the ultimate strength, but it also affected the compressive strength development rate. Moreover, several mixes satisfied compressive strength requirements for pavements and bridges; those mixes included relatively high percentages of SCMs and RAP. Based on the results obtained in this study, it is not

  3. Petro-chemical features and source areas of volcanic aggregates used in ancient Roman maritime concretes

    Science.gov (United States)

    Marra, F.; Anzidei, M.; Benini, A.; D'Ambrosio, E.; Gaeta, M.; Ventura, G.; Cavallo, A.

    2016-12-01

    We present and discuss data from petrographic observation at the optical microscope, electron microprobe analyses on selected glass shards, and trace-element analyses on 14 mortar aggregates collected at the ancient harbors and other maritime structures of Latium and Campania, spanning the third century BCE through the second CE, aimed at identify the volcanic products employed in the concretes and their area of exploitation. According to Latin author Vitruvius assertion about the ubiquitous use of Campanian pozzolan in the ancient Roman sea-water concretes, results of this study show a very selective and homogeneous choice in the material employed to produce the concretes for the different investigated maritime structures, evidencing three main pumice compositions, all corresponding to those of the products of the post-Neapolitan Yellow Tuff activity of the Phlegraean Fields, and a systematic use of the local Neapolitan Yellow Tuff to produce the coarse aggregate of these concretes. However, mixing with local products of the Colli Albani volcanic district, located 20 km east of Rome, has been evidenced at two fishponds of Latium, in Punta della Vipera and Torre Astura. Based on these petrographic and geochemical data, we conclude that the selective use of pozzolan from Campania, rather than of unproved different chemical properties, was the consequence of a series of logistic, economic, industrial and historical reasons.

  4. Feasibility study of using smart aggregates as embedded acoustic emission sensors for health monitoring of concrete structures

    Science.gov (United States)

    Li, Weijie; Kong, Qingzhao; Ho, Siu Chun Michael; Lim, Ing; Mo, Y. L.; Song, Gangbing

    2016-11-01

    Acoustic emission (AE) is a nondestructive evaluation technique that is capable of monitoring the damage evolution of concrete structures in real time. Conventionally, AE sensors are surface mounted on the host structures, however, the AE signals attenuate quickly due to the high attenuation properties of concrete structures. This study conducts a feasibility study of using smart aggregates (SAs), which are a type of embedded piezoceramic transducers, as embedded AE sensors for the health monitoring of concrete structures. A plain concrete beam with two surface mounted AE sensors and two embedded SAs was fabricated in laboratory and loaded under a designed three-point-bending test. The performance of embedded SAs were compared with the traditional surface mounted AE sensors in their ability to detect and evaluate the damage to the concrete structure. The results verified the feasibility of using smart aggregates as embedded AE sensors for monitoring structural damage in concrete. Potentially, the low cost smart aggregates could function as embedded AE sensors, providing great sensitivity and high reliability in applications for the structural health monitoring of concrete structures.

  5. Exploratory Study of Rubber Seed Shell as Partial Coarse Aggregate Replacement in Concrete

    Directory of Open Access Journals (Sweden)

    K. Muthusamy

    2014-02-01

    Full Text Available Malaysia being a major rubber trees growing country has been generating a large amount of rubber seed shell which regarded as waste. At the same time, the growing construction industry which boosts the concrete production trade has results in higher consumption of natural coarse aggregate which open the door for depletion of this material in future. This study focuses on investigating the possibility of integrating crushed rubber seed shell as partial coarse aggregate replacement material in concrete making. Total of five mixes consisting various content of crushed rubber seed shell as partial coarse aggregate replacement ranging from 0, 5, 10, 15 and 20%, respectively were prepared in form of cubes. All the specimens were water cured before tested at 7 and 28 days. The workability test, compressive strength test and flexural strength test of the mixes was conducted in accordance to MS26 Part 1: Section 2, BSEN 12390 and ASTM 293-79 respectively. Generally, workability, compressive strength and flexural strength decrease with the increase in the crushed rubber seed shell replacement level. However, mix consisting around 10% of crushed rubber seed shell is suitable for the application in concrete work.

  6. An eco-friendly self-compacting concrete with recycled coarse aggregates

    Directory of Open Access Journals (Sweden)

    Pereira-de Oliveira, L. A.

    2013-09-01

    Full Text Available The potential uses of coarse recycled aggregates in the composition of SCC increases the ecological value and partly solve the issues of waste disposal sites generated by construction and demolition of structures. Thus, this paper present an experimental study of SCC properties where the normal coarse aggregates were replaced by different percentages of recycled aggregates, i.e., 0% (SCC, 10% (SCCR10, 20% (SCCR20, 30% (SCCR30 and 40% (SCCR40. The results from fresh concrete (rheological properties and self-compactability as the hardened concrete properties (compressive strength, density and dynamic modulus of elasticity, show only minor discrepancies. From the standpoint of mechanical behaviour, the results confirm the viability to incorporate coarse recycled aggregates in the SCC demonstrating the conservative character of the currently recommended limits.Los usos potenciales de áridos gruesos reciclados en la composición del hormigón autocompactante (SCC aumenta el valor ecológico y en parte resuelve los problemas de los sitios de disposición de residuos generados por la construcción y la demolición de las estructuras. Por lo tanto, este trabajo presenta un estudio experimental de las propiedades de SCC en el cual los áridos gruesos naturales fueron reemplazados por distintos porcentajes de áridos reciclados, es decir, 0% (SCC, el 10% (SCCR10, el 20% (SCCR20, el 30% (SCCR30 y el 40% (SCCR40. Los resultados del hormigón fresco (propiedades reológicas y la auto-compactación, como las propiedades de hormigón endurecido (resistencia a la compresión, densidad y módulo de elasticidad dinámico, muestran sólo pequeñas discrepancias. Desde el punto de vista del comportamiento mecánico, los resultados confirman la viabilidad de incorporar áridos gruesos reciclados en los SCC demostrando el carácter conservador de los límites actualmente recomendados.

  7. Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method.

    Science.gov (United States)

    Bogas, J Alexandre; Gomes, M Glória; Gomes, Augusto

    2013-07-01

    In this paper the compressive strength of a wide range of structural lightweight aggregate concrete mixes is evaluated by the non-destructive ultrasonic pulse velocity method. This study involves about 84 different compositions tested between 3 and 180 days for compressive strengths ranging from about 30 to 80 MPa. The influence of several factors on the relation between the ultrasonic pulse velocity and compressive strength is examined. These factors include the cement type and content, amount of water, type of admixture, initial wetting conditions, type and volume of aggregate and the partial replacement of normal weight coarse and fine aggregates by lightweight aggregates. It is found that lightweight and normal weight concretes are affected differently by mix design parameters. In addition, the prediction of the concrete's compressive strength by means of the non-destructive ultrasonic pulse velocity test is studied. Based on the dependence of the ultrasonic pulse velocity on the density and elasticity of concrete, a simplified expression is proposed to estimate the compressive strength, regardless the type of concrete and its composition. More than 200 results for different types of aggregates and concrete compositions were analyzed and high correlation coefficients were obtained.

  8. Data relationship degree-based clustering data aggregation for VANET

    Science.gov (United States)

    Kumar, Rakesh; Dave, Mayank

    2016-03-01

    Data aggregation is one of the major needs of vehicular ad hoc networks (VANETs) due to the constraints of resources. Data aggregation in VANET can reduce the data redundancy in the process of data gathering and thus conserving the bandwidth. In realistic applications, it is always important to construct an effective route strategy that optimises not only communication cost but also the aggregation cost. Data aggregation at the cluster head by individual vehicle causes flooding of the data, which results in maximum latency and bandwidth consumption. Another approach of data aggregation in VANET is sending local representative data based on spatial correlation of sampled data. In this article, we emphasise on the problem that recent spatial correlation data models of vehicles in VANET are not appropriate for measuring the correlation in a complex and composite environment. Moreover, the data represented by these models is generally inaccurate when compared to the real data. To minimise this problem, we propose a group-based data aggregation method that uses data relationship degree (DRD). In the proposed approach, DRD is a spatial relationship measurement parameter that measures the correlation between a vehicle's data and its neighbouring vehicles' data. The DRD clustering method where grouping of vehicle's data is done based on the available data and its correlation is presented in detail. Results prove that the representative data using proposed approach have a low distortion and provides an improvement in packet delivery ratio and throughput (up to of 10.84% and 24.82% respectively) as compared to the other state-of-the-art solutions like Cluster-Based Accurate Syntactic Compression of Aggregated Data in VANETs.

  9. Applicability assessment of concrete with recycled coarse aggregates in Havana, Cuba

    Directory of Open Access Journals (Sweden)

    Pavón, E.

    2012-09-01

    Full Text Available The recent viability studies carried out in Havana, Cuba, according to natural or recycled aggregates, exhibited high volume production of construction and demolition waste (CDW. The last well-known data of concrete waste generation reached to 1800 m3/month. This situation, together with the depletion of the quarry aggregates closed to the capital, requires the use of such debris as aggregate for concrete production. In this work, four origin recycled concrete aggregates (RCA were produced and characterized. Recycled aggregate concrete with 25%, 50% and 100% of RCA and 0.45, 0.50 and 0.55 of water-cement ratio were produced. Physical, mechanical and durabilidty properties of thoses concretes were determined and evaluated, and their applicability as structural material in different aggressive environments according to Cuban normative was defined.Los estudios de viabilidad realizados recientemente en La Habana, Cuba muestran elevadas cifras de producción de residuos de construcción y demolición (RCD. Los últimos datos conocidos de generación de escombros de hormigón alcanzan valores cercanos a los 1800m3/mensual. Esta situación unida al agotamiento de los áridos en las zonas cercanas a la capital hace necesaria la utilización de estos escombros como áridos en la fabricación de hormigones. En el trabajo realizado se trituraron escombros de hormigón de cuatro orígenes diferentes, después de su caracterización se fabricaron hormigones con 25%, 50% y 100% de árido reciclado y con relaciones agua-cemento de 0.45, 0.50 y 0.55. A partir de la evaluación de las propiedades físico-mecánicas y de durabilidad obtenidas por los hormigones reciclados, se define la aplicabilidad de los mismos como hormigón estructural para ser utilizados en los diferentes tipos de ambientes de agresividad que tiene definido la normativa cubana.

  10. Utilization of cement treated recycled concrete aggregates as base or subbase layer in Egypt

    Directory of Open Access Journals (Sweden)

    Ahmed Ebrahim Abu El-Maaty Behiry

    2013-12-01

    Full Text Available Recently, environmental protection has a great concern in Egypt where recycling of increased demolition debris has become a viable option to be incorporated into roads applications. An extensive laboratory program is conducted to study the feasibility of using recycled concrete aggregate (RCA mixed with traditional limestone aggregate (LSA which is currently being used in base or subbase applications in Egypt. Moreover, the influence of mixture variables on the mechanical properties of cement treated recycled aggregate (CTRA is investigated. Models to predict the compressive and tensile strengths based on mixture parameters are established. The results show that the adding of RCA improves the mechanical properties of the mixture where the unconfined compressive strength (UCS is taken as an important quality indicator. Variables influencing the UCS such as cement content, curing time, dry density play important roles to determine the performance of CTRA.

  11. The Importance of Superplastizer Dosage in the Mix Design of Lightweight Aggregate Concrete Reinforced With Plypropylene Fiber

    Directory of Open Access Journals (Sweden)

    Shafigh Payam

    2016-01-01

    Full Text Available This paper reports the results of a study conducted to investigate the effect of superplasticizer (SP dosage on the slump, density, compressive strength and splitting tensile strength under different curing conditions of a lightweight aggregate concrete reinforced with polypropylene (PP fiber. The lightweight aggregate used in this study was oil palm shell, which is an agricultural solid waste, originating from the palm oil industry. The results indicated that an increase in superplasticizer increased the workability, however, all the mechanical properties declined significantly. The reduction in the 28-day compressive and splitting tensile strengths was about 14. This study showed that although additional SP can improve the workability of the concrete, it may have a negative effect on the other properties of concrete. Therefore, the SP dosage in concrete mixtures containing PP fiber should be limited to a certain amount.

  12. Concrete mechanics. Part A: Theory and experiments on the mechanical behavior of cracks in plain and reinforced concrete subjected to shear loading

    Science.gov (United States)

    Walraven, J. C.; Reinhardt, H. W.

    The mechanism or transmission of forces across cracks whose faces are subjected to shear displacements are investigated. This mechanism is achieved by interaction of several components: axial and transverse stiffness (dowel action) of the reinforcement and direct transfer of force between the rough concrete crack faces, generally denoted by the term 'aggregate interlock'. Experimental research and the derivation of a theoretical model gave insight into the phenomenon. Tests were carried out on precracked shear specimens. Variables in the tests were the type of reinforcement (embedded reinforcing bars, external restraint bars), the concrete strength, the type of the concrete (sand gravel concrete, lightweight concrete), the grading of the concrete (continuous discontinuous), the scale of the concrete, and the initial crack width. Measurements were carried for determining the shear force, the crack displacements and, for the specimens with external reinforcement, the force in the restraining bars.

  13. Compressive Behavior and Mechanical Characteristics and Their Application to Stress-Strain Relationship of Steel Fiber-Reinforced Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    Baek-Il Bae

    2016-01-01

    Full Text Available Although mechanical properties of concrete under uniaxial compression are important to design concrete structure, current design codes or other empirical equations have clear limitation on the prediction of mechanical properties. Various types of fiber-reinforced reactive powder concrete matrix were tested for making more usable and accurate estimation equations for mechanical properties for ultra high strength concrete. Investigated matrix has compressive strength ranged from 30 MPa to 200 MPa. Ultra high strength concrete was made by means of reactive powder concrete. Preventing brittle failure of this type of matrix, steel fibers were used. The volume fraction of steel fiber ranged from 0 to 2%. From the test results, steel fibers significantly increase the ductility, strength and stiffness of ultra high strength matrix. They are quantified with previously conducted researches about material properties of concrete under uniaxial loading. Applicability of estimation equations for mechanical properties of concrete was evaluated with test results of this study. From the evaluation, regression analysis was carried out, and new estimation equations were proposed. And these proposed equations were applied into stress-strain relation which was developed by previous research. Ascending part, which was affected by proposed equations of this study directly, well fitted into experimental results.

  14. Experimental study on tensile behavior of recycled aggregate concrete%再生混凝土抗拉性能试验研究

    Institute of Scientific and Technical Information of China (English)

    王周松

    2013-01-01

    In order to evaluate the tensile behavior of recycled aggregate concrete,the uniaxial tensile behavior and the splitting tensile strength of recycled aggregate concrete with 5 different water/cement ratios were experimental investigated.The variations of the uniaxial tensile strength of recycled aggregate concrete with the water/cement ratio were studied; the suitability of applying the corresponding correlations for the strengths of normal concrete to recycled aggregate concrete was discussed.The relationship between uniaxial tensile strength and splitting tensile strength for recycled aggregate concrete was analyzed.The test results indicated that the uniaxial tensile strength and the cube compressive strength decrease with the increase of the water/cement ratio.The equations for the uniaxial tensile strength and the splitting tensile strength of normal concrete can be used for recycled aggregate concrete.The uniaxial tensile strength of recycled aggregate concrete does not differ much compare to the splitting tensile strength.Based on the test results,equations for the tensile peak strain and the stress-crack width of recycled aggregate concrete were developed.%为了综合评价再生混凝土的抗拉性能,系统完成了5种水灰比情况下再生混凝土的轴心抗拉性能和劈裂抗拉强度试验,研究了再生混凝土的抗拉性能,分析了再生混凝土的轴心抗拉强度随着水灰比的变化规律,考察了普通混凝土轴心抗拉强度和劈裂抗拉强度计算公式对再生混凝土的适用性,讨论了再生混凝土轴心抗拉强度和劈裂抗拉强度的关系.试验结果表明,再生混凝土的立方体抗压强度和轴心抗拉强度随着水灰比的增加而降低;普通混凝土轴心抗拉强度和劈裂抗拉强度计算公式也适用于再生混凝土;再生混凝土轴拉强度和劈裂抗拉强度基本相同.在对试验数据统计分析的基础上,建立了再生混凝土峰值拉应变的计算公式,

  15. A comparative study of recycled aggregates from concrete and mixed debris as material for unbound road sub-base; Estudio comparativo de los aridos reciclados de hormigon y mixtos como material para sub-bases de carreteras

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J. R.; Agrela, F.; Ayuso, J.; Lopez, M.

    2011-07-01

    Seven different types of recycled aggregates from construction and demolition waste (CDW) have been evaluated as granular materials for unbound road sub bases construction. The results showed that recycled concrete aggregates complied with all specifications for using in the construction of unbound structural layers (sub-base) for T3 and T4 traffic categories according to the Spanish General Technical Specification for Road Construction (PG-3). Some mixed recycled aggregates fell short of some specifications due to a high content of sulphur compounds and poor fragmentation resistance. Sieving off the fine fraction prior to crushing the mixed CDW reduce the total sulphur content and improve the quality of the mixed recycled aggregates, by contrast, pre-sieving concrete CDW had no effect on the quality of the resulting aggregates. The results were compared with a crushed limestone as natural aggregate. (Author) 23 refs.

  16. Experimental Study on the Frost Resistance of Recycled Coarse Aggregate Concrete%再生粗骨料混凝土抗冻性试验研究

    Institute of Scientific and Technical Information of China (English)

    冯嘉; 李秋义; 宋菁; 张健

    2011-01-01

    再生混凝土的研究与应用对于保护环境具有重大意义,其耐久性则是影响生产应用的重要指标.重点研究了再生粗骨料取代量、矿物掺和料等因素对再生混凝土抗冻性的影响.结果表明:再生粗骨料混凝土的质量损失率均满足5%的试验要求,且质量损失率随着再生骨料取代率的增加而下降;再生粗骨料混凝土的相对动弹模量低于天然骨料混凝土,达到了冻融循环抵抗性指标,满足抗冻性要求;掺普通矿粉的再生混凝土比掺粉煤灰的再生混凝土抗冻性好;硅灰对提高再生混凝土(掺粉煤灰)的抗冻性有明显作用.%The research and application of recycled concrete are of great significance for environmental protection and its durability is an important index of production and application.The influences of the replacement rate of recycled coarse aggregate,mineral admixture and other factors on the frost resistance of recycled concrete are studied in this paper.The experimental results show that the mass loss rate of recycled coarse aggregate concrete meets the experimental requirement by 5% and it descends along with the increase of the replacement rate of the recycled fine aggregate.The relative dynamic modulus of recycled coarse aggregate concrete is inferior to that of the natural aggregate concrete,but it reaches the freeze-thawing circulation norm and meets frost resistance requirements.The frost resistance of the recycled aggregate concrete with mineral powder is better than that of the recycled aggregate concrete with fly ash.The silicon ash can enhance the frost resistance of the recycled concrete(with fly ash) significantly.

  17. Introduction to concrete: A resilient material system

    NARCIS (Netherlands)

    Weerheijm, J.; Breugel, K. van

    2013-01-01

    The strength of concrete is its heterogeneous composition. It is a system that is formed by the chemical process of hydration, producing crystalline and amorphous reaction products interlocking and binding the aggregates together. The material grows in time, resulting in a resilient system that is s

  18. Characterization of Concrete made with Recycled Aggregate from Ceramic Sanitary Ware

    Directory of Open Access Journals (Sweden)

    Medina, C.

    2011-12-01

    Full Text Available This study examined the possibility of reusing the ceramic wastes of sanitary ware as coarse aggregate, in partial substitution (15, 20 y 25 % of natural coarse aggregates. Firstly, the characterization of recycled coarse ceramic aggregate was carried out subsequently proceeded to establish the parameters of dosage and manufacture of different concretes. Lastly, tests were conducted using these mixes to characterize physical and mechanical, and a study was carried out to identify the crystalline phases. Results showed that as the substitution proportion increased, the mechanical properties of the concrete improved, whilst physical properties remained practically constant. In view of these results, we conclude that it is possible to use this type of ceramic waste as coarse aggregate when mixing concrete destined for structural purposes.

    En este estudio se plantea la posibilidad de reutilizar los residuos cerámicos de sanitarios como árido grueso sustituyendo de forma parcial (15, 20 y 25 % al árido grueso natural. Para ello, se llevó a cabo la caracterización del árido cerámico reciclado y posteriormente se procedió a establecer los parámetros de dosificación y fabricación de los distintos hormigones. Finalmente, se realizó sobre los mismos unos ensayos de caracterización de las propiedades físicas y mecánicas, y un estudio de las fases cristalinas. Los resultados indican que a medida que se aumenta el porcentaje de sustitución se ven mejoradas las propiedades mecánicas de estos, mientras que las propiedades físicas se mantienen prácticamente constantes. A la vista de estos resultados se puede concluir que es posible la utilización de este tipo de residuo cerámico como árido grueso en la elaboración de hormigones con fines estructurales.

  19. Recycling power plant slag for use as aggregate in precast concrete components

    Directory of Open Access Journals (Sweden)

    Orna Carmona, M.

    2010-12-01

    Full Text Available The need to eliminate waste generates costs. When considering the preservation of the environment, the minimization of the consumption of natural resources and energy savings criteria, the need and advisability of studying the feasibility of waste re-use seems clear. However, waste re-use depends on whether they are economically competitive. Therefore, the aim of this study is to evaluate the possible use of slag from a steam power station as aggregate in the manufacture of concrete. This study included the determination of the physical, chemical and thermal properties of the material, comparing the results to those required by the Spanish structural concrete code (EHE in determining their acceptance or rejection as a concrete component. The ultimate aim of the research was to determine the highest slag content that could be added to concrete without modifying its strength or durability, with a view to obtaining savings in the manufacture of precast structures.

    La necesidad de eliminar residuos genera gastos. Considerando criterios de conservación ambiental, minimización del consumo de recursos naturales y ahorro de energía parece claro la necesidad y conveniencia de estudiar la viabilidad del uso de residuos. Sin embargo la utilización de residuos depende de que sean competitivos económicamente. Por tanto el propósito de esta investigación es evaluar el posible uso de las escorias de fondo de una central térmica como áridos para la fabricación de hormigón. En este estudio se incluye la determinación de características físicas, químicas y térmicas y se han comparado los resultados a los requeridos por la EHE para determinar su aceptación o rechazo como componente de un hormigón. El objetivo final de la investigación responde a la utilización de hormigón con el máximo contenido en escorias sin modificar las condiciones de resistencia y durabilidad, consiguiendo un ahorro económico en la fabricación de estructuras

  20. 高强再生骨料混凝土的配制及性能研究%Research on high-strength recycled aggregate concrete preparation and performance

    Institute of Scientific and Technical Information of China (English)

    杨海涛; 田石柱

    2013-01-01

    Using recycled coarse aggregate strength in 50MPa or greater strength of recycled aggregate concrete, mensurate the deformation capacity and durability to provide theoretical and experimental basis for application of the high strength recycled aggregate concrete in engineering.Determine the ultimate strength of recycled coarse aggregate through a series of compression test.By adj usting the water cement ratio,make the high-strength recycled aggregate concrete on strength to reach the design strength and have experiment on high-strength recycled aggregate concrete with recycled coarse aggregate replacement rate 0,30%,50%,80% and 100%.When the replacement ratio of recycled coarse aggregate was 30%,it has little effect on the strength of recycled concrete.Then the strength of concrete was reducing as the recycled aggregate was increasing.High-strength recycled aggregate concrete and natural concrete have similar performance in durability.Therefore high-strength recycled aggregate concrete can be applied to engineering.%采用再生粗骨料配制强度在50MPa或更大的高强再生骨料混凝土,并对其变形能力和耐久性进行测定,为高强再生骨料混凝土在工程上的应用提供理论和实验基础。通过一系列的抗压实验确定再生粗骨料的强度极限,并通过对水灰比的调整,使配制的高强再生骨料混凝土在强度上达到设计值,并以再生粗骨料取代率为0、30%、50%、80%和100%的高强再生骨料混凝土为研究对象进行实验。当再生粗骨料取代率为30%时,对再生混凝土的强度影响不大;之后混凝土强度随再生骨料的增加而降低。高强再生骨料混凝土与天然混凝土在耐久性上具有相似的性能,可以将高强再生混凝土应用于工程中。

  1. Corrosion-resistant sulfur concretes

    Science.gov (United States)

    McBee, W. C.; Sullivan, T. A.; Jong, B. W.

    1983-04-01

    Sulfur concretes have been developed by the Bureau of Mines as construction materials with physical and mechanical properties that suit them for use in acid and salt corrosive environments where conventional concretes fail. Mixture design methods were established for preparing sulfur concretes using different types of aggregates and recently developed mixed-modified sulfur cements. Bench-scale testing of the sulfur concretes has shown their potential value. Corrosion resistance, strength, and durability of sulfur concrete are superior to those of conventional materials. Field in situ evaluation tests of the sulfur concretes as replacement for conventional concrete materials are in progress in corrosive areas of 24 commercial chemical, fertilizer, and metallurgical plants.

  2. An Investigation into the Use of Manufactured Sand as a 100% Replacement for Fine Aggregate in Concrete

    Directory of Open Access Journals (Sweden)

    Martins Pilegis

    2016-06-01

    Full Text Available Manufactured sand differs from natural sea and river dredged sand in its physical and mineralogical properties. These can be both beneficial and detrimental to the fresh and hardened properties of concrete. This paper presents the results of a laboratory study in which manufactured sand produced in an industry sized crushing plant was characterised with respect to its physical and mineralogical properties. The influence of these characteristics on concrete workability and strength, when manufactured sand completely replaced natural sand in concrete, was investigated and modelled using artificial neural networks (ANN. The results show that the manufactured sand concrete made in this study generally requires a higher water/cement (w/c ratio for workability equal to that of natural sand concrete due to the higher angularity of the manufactured sand particles. Water reducing admixtures can be used to compensate for this if the manufactured sand does not contain clay particles. At the same w/c ratio, the compressive and flexural strength of manufactured sand concrete exceeds that of natural sand concrete. ANN proved a valuable and reliable method of predicting concrete strength and workability based on the properties of the fine aggregate (FA and the concrete mix composition.

  3. Steel slag aggregate in concrete: the effect of ageing on potentially expansive compounds

    Directory of Open Access Journals (Sweden)

    Frías, M.

    2010-02-01

    Full Text Available Growing numbers of plants have sprung up in recent years to treat the electric arc furnace slag generated in scrap metal melting. When this by-product is separated, crushed and screened, it yields a granular material known as steel slag aggregate, which may be profitably used in the manufacture of commercial concrete. The feasibility of this application depends essentially on the volume stability of the resulting aggregate. The present paper discusses the potentially expansive compounds (Cl-, SO3, free CaO and free MgO present in aggregate derived from different types of black slag during aggregate ageing. The aim is to establish optimal ageing conditions to ensure volume stability in steel slag aggregate. The findings showed that the slag analyzed had low concentrations of the expansive compounds studied and that possible swelling can be reduced by 45day ageing.

    En los últimos años están surgiendo diferentes plantas de tratamiento de las escorias generadas en el proceso de fusión de la chatarra en los hornos de arco eléctrico. Mediante procesos de separación, machaqueo y cribado se obtiene un material granular denominado árido siderúrgico, que puede ser atractivo para su utilización en la fabricación de hormigones comerciales. En este sentido, la viabilidad de dicha aplicación dependerá, fundamentalmente, de asegurar su estabilidad en volumen. Este trabajo presenta un estudio de los compuestos potencialmente expansivos (Cl-, SO3, CaO libre y MgO libre de los áridos siderúrgicos procedentes de diferentes tipos de escorias negras, así como su evolución después de un proceso de envejecimiento. El objetivo es establecer las condiciones óptimas de un proceso de envejecimiento a partir del cual se pueda asegurar la estabilidad, en volumen, del árido siderúrgico. Los resultados evidencian que las escorias analizadas tienen bajas concentraciones de los compuestos expansivos

  4. Radiation attenuation and nuclear properties of high density concrete made with steel aggregates

    Science.gov (United States)

    Bashter, I. I.

    The fast neutron and gamma ray spectra measured behind different thickness of steel scrap concrete with density of 4 g/cm3 have been studied. The mix proportions by weight of this type of concrete were 1 cement: 6.89 steel scrap: 2.9 sand and 0.5 Water. Comparison with a standard ordinary concrete of density 2.3 g/cm3 have been carried out. The measurements were made using a collimated beam of both gamma rays and neutrons emitted from one of the horizontal channel of the Egyptian Research Reactor-1. A fast neutron and gamma ray spectrometer with a stilbene crystal was used to measure the spectra of fast neutrons and gamma rays. Pulse shape discrimination using the zero cross over technique was used to separate the photon pulses from the electron pulses. The equation due to Schmidt has been modified and applied for determining the neutron effective removal cross sections (˜R) for steel scrap, ordinary, hematite-serpentine, ilmenite-limonite and ilmenite concretes. This equation gives results which are in good agreement with the measured values. The derived empirical equation in a previous work to calculate the neutron integral flux behind different thicknesses of different types of concretes, gives good results for steel scrap concrete under investigation comparing with the corresponding experimental data. Total neutron macroscopic cross sections, linear attenuation coefficients for gamma rays and the half-value layers for both radiations at different energies have been obtained for steel scrap concrete and comparing with the corresponding values of ordinary concrete. The results show that steel scrap concrete is better than ordinary, hematite-serpentine, ilmenite-limonite and ilmenite concretes from the radiation shielding point of view.

  5. The Simple Lamb Wave Analysis to Characterize Concrete Wide Beams by the Practical MASW Test

    Directory of Open Access Journals (Sweden)

    Young Hak Lee

    2016-06-01

    Full Text Available In recent years, the Lamb wave analysis by the multi-channel analysis of surface waves (MASW for concrete structures has been an effective nondestructive evaluation, such as the condition assessment and dimension identification by the elastic wave velocities and their reflections from boundaries. This study proposes an effective Lamb wave analysis by the practical application of MASW to concrete wide beams in an easy and simple manner in order to identify the dimension and elastic wave velocity (R-wave for the condition assessment (e.g., the estimation of elastic properties. This is done by identifying the zero-order antisymmetric (A0 and first-order symmetric (S1 modes among multimodal Lamb waves. The MASW data were collected on eight concrete wide beams and compared to the actual depth and to the pressure (P- wave velocities collected for the same specimen. Information is extracted from multimodal Lamb wave dispersion curves to obtain the elastic stiffness parameters and the thickness of the concrete structures. Due to the simple and cost-effective procedure associated with the MASW processing technique, the characteristics of several fundamental modes in the experimental Lamb wave dispersion curves could be measured. Available reference data are in good agreement with the parameters that were determined by our analysis scheme.

  6. Experimental Study on Thermal Conductivity of Self-Compacting Concrete with Recycled Aggregate

    Directory of Open Access Journals (Sweden)

    María Fenollera

    2015-07-01

    Full Text Available The research focuses on the use of recycled aggregate (RA, from waste pieces generated during production in precast plants for self-compacting concrete (SCC manufactured with a double sustainable goal: recycle manufacturing waste (consumption and improvement of the thermal properties of the manufactured product (energy efficiency. For this purpose, a mechanical study to ensure technical feasibility of the concrete obtained has been conducted, as well as a thermal analysis of recycled SCC specimens of 50 N/mm2 resistance, with different RA doses (0%, 20%, 50% and 100%. The main parameters that characterize a SCC in both states, fresh (slump-flow and hard (compressive strength, have been tested; also, a qualitative analysis of the thermal conductivity using infrared thermography (IRT and quantitative analysis with heat flow meter at three temperatures 20 °C, 25 °C and 30 °C have been performed. The results suggest the existence of two different thermal behaviors: concretes with 0% and 20% of RA, and on the other hand concretes with 50% and 100% of RA. It has also demonstrated the validity of the IRT as sampling technique in estimating the thermal behavior of materials having reduced range of variation in parameters.

  7. Optimization of Casting Process Parameters for Homogeneous Aggregate Distribution in Self-Compacting Concrete: A Feasibility Study

    DEFF Research Database (Denmark)

    Spangenberg, Jon; Tutum, Cem Celal; Hattel, Jesper Henri;

    2011-01-01

    The use of self-compacting concrete (SCC) as a construction material has been getting more attention from the industry. Its application area varies from standard structural elements in bridges and skyscrapers to modern architecture having geometrical challenges. However, heterogeneities induced...... during the casting process may lead to variations of local mechanical properties and hence to a potential decrease in load carrying capacity of the structure. This paper presents a methodology for optimization of SCC casting aiming at having a homogeneous aggregate distribution; a beam has been used...... as geometric example. The aggregate distribution is predicted by a numerical flow model coupled with a user defined volume fraction subroutine. The process parameters in casting with SCC in general are horizontal and vertical positions, movement, as well as the size of the inlet, and the duration...

  8. The ITZ in concrete with natural and recycled aggregates: Study of microstructures based on image and SEM analysis

    NARCIS (Netherlands)

    Bonifazi, G.; Capobianco, G.; Serranti, S.; Eggimann, M.; Wagner, E.; Di Maio, F.; Lotfi, S.

    2015-01-01

    Aim of this work was to investigate the microstructure of the Interfacial Transition Zone (ITZ) between cement paste and aggregate in concrete utilizing Scanning Electron Microscope (SEM) in order to identify possible effects on the ITZ related to different recipes and production parameters. SEM is

  9. Improvement of Bearing Capacity in Recycled Aggregates Suitable for Use as Unbound Road Sub-Base

    Directory of Open Access Journals (Sweden)

    Laura Garach

    2015-12-01

    Full Text Available Recycled concrete aggregates and mixed recycled aggregates are specified as types of aggregates with lower densities, higher water absorption capacities, and lower mechanical strength than natural aggregates. In this paper, the mechanical behaviour and microstructural properties of natural aggregates, recycled concrete aggregates and mixed recycled aggregates were compared. Different specimens of unbound recycled mixtures demonstrated increased resistance properties. The formation of new cement hydrated particles was observed, and pozzolanic reactions were discovered by electronon microscopy in these novel materials. The properties of recycled concrete aggregates and mixed recycled aggregates suggest that these recycled materials can be used in unbound road layers to improve their mechanical behaviour in the long term.

  10. Erratum to: Study on Chloride Ion Penetration Resistance of Rubberized Concrete Under Steady State Condition

    Directory of Open Access Journals (Sweden)

    Md Noor Nurazuwa

    2016-01-01

    In this paper, the effect of crumb rubber, CR as fine aggregate in the concrete to enhance concrete durability against chloride ion diffusion was studied. Chloride ion diffusion in rubberized concrete was tested by migration test under steady state condition. Concrete specimen with water-to-cement ratio of 0.50 was prepared to study the CR effectiveness in comparison with lower water-to-cement ratio. In addition, 10% silica fume, SF was added to provide denser concrete and to understand its effectiveness against chloride ion diffusion. Results showed that chloride transport characteristics were improved by the increasing amount of CR in all mixed due to the fact that CR has the ability to repel water. Meanwhile, rubberized concrete with w/c = 0.35 gave better resistance against chloride ion penetration compared to w/c = 0.50. This was much improved with combination of CR and SF.

  11. Deformation Behavior of Recycled Concrete Aggregate during Cyclic and Dynamic Loading Laboratory Tests

    Directory of Open Access Journals (Sweden)

    Wojciech Sas

    2016-09-01

    Full Text Available Recycled concrete aggregate (RCA is a relatively new construction material, whose applications can replace natural aggregates. To do so, extensive studies on its mechanical behavior and deformation characteristics are still necessary. RCA is currently used as a subbase material in the construction of roads, which are subject to high settlements due to traffic loading. The deformation characteristics of RCA must, therefore, be established to find the possible fatigue and damage behavior for this new material. In this article, a series of triaxial cyclic loading and resonant column tests is used to characterize fatigue in RCA as a function of applied deviator stress after long-term cyclic loading. A description of the shakedown phenomenon occurring in the RCA and calculations of its resilient modulus (Mr as a function of fatigue are also presented. Test result analysis with the stress-life method on the Wohler S-N diagram shows the RCA behavior in accordance with the Basquin law.

  12. 轻骨料混凝土的发展与研究展望%The development of lightweight aggregate concrete and Research Prospects

    Institute of Scientific and Technical Information of China (English)

    牛建刚; 林红

    2012-01-01

      本文论述了轻骨料混凝土的发展历程,指出了轻骨料混凝土用于承重结构时的弊病。使用纤维增强轻骨料混凝土,能有效提高轻骨料混凝土的力学性能,使混凝土的抗折、抗裂、抗渗及韧性等性能得到不同程度的改善。在保持轻骨料混凝土质轻特征的前提下,将聚丙烯纤维掺入轻骨料混凝土并用于承重结构将是今后的发展方向。%  This paper discusses the course of development of lightweight aggregate concrete, and points out that the short-comings of lightweight aggregate concrete for load-bearing structure.Fiber reinforced lightweight aggregate concrete, can ef ectively improve the mechanical properties of lightweight aggre-gate concrete, and improve the performance of bending, cracking, impermeability and toughness of concrete to varying degrees.Under the premise of maintaining the lightweight chara- cteristics of lightweight aggregate concrete, the incorporation of polypropylene fiber in lightweight aggregate concrete for the load-bearing structure wil be the future direction of development.

  13. Use of Recycled Concrete Aggregate in Controlled Low-Strength Material (CLSM

    Directory of Open Access Journals (Sweden)

    Mustapha K.N.

    2012-01-01

    Full Text Available Use of recycled concrete aggregate (RCA is getting importance as it minimizes the use of fresh materials and eliminates waste disposal. One of the uses of RCA is as aggregate in Controlled Low Strength Material (CLSM. This paper reports the results of the investigation done on the use of RCA in CLSM. Various mixtures of CLSM were made using RCA, fly ash, and cement. Tests for workability, bleeding, density, strength, water absorption, sorption, and ultrasonic pulse velocity (UPV were conducted. Results show that the compressive strength ranged from 1.71 MPa to 4.92 MPa, fresh density from 1879 kg/m3 to 1998 kg/m3. The strength of CLSM increases with the increase in fly ash; water absorption and bleeding decrease with increase in fly ash. It is concluded that the RCA has potential to be used in CLSM and the addition of fly ash enhances the performance.

  14. 再生砖骨料混凝土梁斜截面抗剪承载力分析%Analysis of anti-shear capacity of slope section for recycled brick aggregate concrete beam

    Institute of Scientific and Technical Information of China (English)

    王纯合; 翟爱良; 陈树建; 季昌良; 赵爱华

    2013-01-01

    实验研究了再生砖骨料混凝土梁斜截面的抗剪极限承载力、破坏形态和裂缝开展等情况,并与普通混凝土梁进行对比.分析再生砖骨料混凝土梁的抗剪机理,提出了适用于再生砖骨料混凝上梁的抗剪承载力公式.实验与分析结果表明:再生砖骨料混凝土梁和普通混凝土梁的破坏形态和裂缝开展情况相似,但再生砖骨料混凝土梁的抗剪极限承载力低于普通混凝土梁.采用提出的抗剪承载力公式计算再生砖骨料混凝土梁的抗剪极限承载力是可行的,有一定的安全储备.%The paper studied the ultimate bearing capacity, the fracture morphology and the crack development situation of diagonal section of the recycled brick aggregate concrete beam, and contrasted the beam with common concrete one. By analyzing the shear mechanism of the recycled brick coarse aggregate concrete beams, this paper provided a formula related to the shear capacity of recycled brick aggregate concrete beams. The results show that the fracture morphology and crack development of the recycled brick coarse aggregate concrete beam is similar to common concrete beam, but the ultimate bearing capacity is less then that of the common concrete beam. The formula can be used to calculate the bearing capacity of the recycled brick coarse aggregate concrete beam and contains a certain security reserve.

  15. An attempt to validate the ultra-accelerated microbar and the concrete performance test with the degree of AAR-induced damage observed in concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Leemann, Andreas, E-mail: andreas.leemann@empa.ch [Empa, Dübendorf (Switzerland); Merz, Christine [Holcim (Schweiz) AG, Würenlingen (Switzerland)

    2013-07-15

    There is little knowledge about the relation between AAR-induced damage observed in structures and the expansion potential obtained with accelerated tests. In this study, aggregates used in structures damaged by AAR were tested with the microbar test (MBT/AFNOR XP 18-594) and the concrete performance test (CPT/AFNOR P18-454). After the tests, the samples were examined using optical and scanning electron microscopy. Based on the results, the significance of the microbar test has to be examined very critically. The agreement of measured expansion, reacted rock types and the composition of the reaction products between the on-site concrete and the reproduced concrete subjected to the CPT clearly indicates that the reaction mechanisms in the structure and in the concrete performance test are comparable. As such, the concrete performance test seems to be an appropriate tool to test the potential reactivity of specific concrete mixtures.

  16. Comparative Study of Porous Concretes Using Natural and Recycled Aggregates%天然与再生集料透水混凝土对比试验

    Institute of Scientific and Technical Information of China (English)

    李秋实; 何东坡

    2015-01-01

    The purpose of this study was to develop porous concrete with acceptable permeability and strength using recycled aggregate. The optimum mix proportions were employed to prepare porous concretes using natural and recycled aggregates. Tests carried out on porous concrete were void ratio, coefficient of permeability, compressive and flexural strengths. The effects of recycled aggregate on total void ratio, strength and permeability were examined. Styrene butadiene rubber - based redispersible polymer powder and latex were introduced to mixtures to improve strength properties. The total void ratio of porous concrete incorporating recycled aggregate was larger than that of porous concrete with natural aggregate. The addition of polymer modification resulted in a slight decrease in total void ratio regardless of type of aggregate. The compressive strength of porous concrete using recycled aggregate was lower than the one using natural aggregate. However, the compressive strengths of porous concretes using natural and recycled aggregates were significantly improved by 57% and 79% respectively, due to polymer modification. The use of recycled aggregate along with optimum content of polymer could produce porous concrete with both enough drainage and strength properties.%为了开发具有可接受的透水性和强度的透水混凝土,使用天然和再生集料,采用最佳的混合比例制备透水混凝土,对透水混凝土进行孔隙率、渗透系数、抗压及抗弯强度试验,研究了再生集料对总孔隙率、强度和渗透性的影响。同时,在混合料中引入了丁苯橡胶类可再分散性聚合物粉末( RPP)和胶乳( Latex)以提高其强度特性。试验结果表明:掺加再生集料的透水混凝土总孔隙率比采用天然集料的透水混凝土孔隙率要高;无论何种集料类别,聚合物改性剂的添加使得总孔隙率略有降低;使用再生集料透水混凝土的抗压强度低于使用天然集料

  17. 再生骨料替代率对混凝土性能影响的实验分析%Experimental Analysis of the Impact of Recycled Aggregates Replacement Rate on Concrete Properties

    Institute of Scientific and Technical Information of China (English)

    方瑾

    2011-01-01

    Recycled concrete is made from different recycled aggregates replacement rate.Comparing recycled concrete with ordinary concrete from workability,elastic modulus and compressive strength,the article analyzes the impact on the concrete properties from the changes of recycled aggregates substitution rate.The experiment proved that the recycled concrete is equal to ordinary concrete,which is compounded by appropriate recycled aggregates replacement rate.With the emphasis on environmental protection,the development of recycled concrete will be more valuable in application.%用不同的再生骨料替代率,制成再生混凝土。从再生混凝土的和易性、弹性模量和抗压强度等三个方面与普通混凝土进行比较,分析再生骨料替代率的变化对混凝土性能的影响。试验证明,采用适当的再生骨料替代率配制的再生混凝土与普通混凝土基本相当。随着人类对环保的日益重视,再生混凝土产业的发展空间很大,对混凝土的工程应用具有一定的价值意义。

  18. NONLINEAR ANALYSIS OF CFRP- PRESTRESSED CONCRETE BEAMS SUBJECTED TO INCREMENTAL STATIC LOADING BY FINITE ELEMENTS

    Directory of Open Access Journals (Sweden)

    Husain M. Husain

    2013-05-01

    Full Text Available In this work a program is developed to carry out the nonlinear analysis (material nonlinearity of prestressed concrete beams using tendons of carbon fiber reinforced polymer (CFRP instead of steel. The properties of this material include high strength, light weight, and insusceptibility to corrosion and magnetism. This material is still under investigation, therefore it needs continuous work to make it beneficial in concrete design. Four beams which are tested experimentally by Yan et al. are examined by the developed computer program to reach a certain analytical approach of the design and analysis of such beams because there is no available restrictions or recommendations covering this material in the codes. The program uses the finite element analysis by dividing the beams into isoparametric 20-noded brick elements. The results obtained are good in comparison with experimental results.

  19. The inlfuence of recycled aggregate on the properties of recycled concrete%再生骨料对再生混凝土性能的影响

    Institute of Scientific and Technical Information of China (English)

    曹玉书; 鲁永明; 龚子亮

    2014-01-01

    Treatment of construction waste in the brick and concrete,recycled aggregate formation.The recycled brick aggregate and recycled concrete aggregate basic properties test,then according to the two components of different proportion of replacement of natural aggregate of recycled concrete was prepared,and the basic properties of recycled concrete.This article concludes:The proportion of broken bricks and waste concrete in recycled aggregate has a significant affect on the performance of recycled concrete.The more content of reclaimed broken bricks, the worse of concrete workability and mechanical properties.While the content of aggregate in recycled concrete aggregate increases, the workability of concrete and mechanical property improved.%对建筑垃圾中的碎砖和废弃混凝土进行处理,生成再生骨料。分别对再生碎砖骨料和再生废混凝土骨料基本性质进行试验,然后根据两种骨料的不同掺配比例替代天然粗骨料进行再生混凝土的配制,并检验再生混凝土的基本性能。结果表明:再生粗骨料中碎砖和废混凝土所占的比例对再生混凝土的性能影响很大。再生碎砖骨料的含量越大,混凝土的工作性越差,力学强度越低。而随着再生废弃混凝土骨料含量的增加,混凝土的工作性良好,力学指标提高。

  20. Neural Network Model for Moment-Curvature Relationship of Reinforced Concrete Sections

    OpenAIRE

    Bağcı, Muhiddin

    2010-01-01

    The analysis of moment-curvature relationship of reinforced concrete sections is complex due to large number of variables as well as non-linear material behavior involved. Artificial Neural Networks (ANNs) are found to be a tool capable of solving such problems. This has led to increasing use of ANN for analyzing the behavior of reinforced concrete sections. This paper reports the details of a study conducted using ANN for predicting moment-curvature relationship of a reinforced concrete sect...

  1. 粗集料对粉煤灰混凝土性能影响%Influence of coarse aggregate on properties of fly ash concrete

    Institute of Scientific and Technical Information of China (English)

    汪振双; 王立久

    2011-01-01

    混凝土的架构理论认为混凝土是由砂浆、粗集料和二者之间的界面构成的.试验研究了石灰石、玄武岩、花岗岩和辉绿岩4种不同类型的粗集料对不同粉煤灰掺量混凝土的坍落度、抗压强度、抗折强度和弹性模量的影响,分析了石灰石粗集料对不同粉煤灰掺量混凝土抗冻性的影响.结果表明,粗集料对混凝土的坍落度、抗压强度、抗折强度和弹性模量影响十分显著.粗集料的掺入降低了砂浆基体的扩展度和抗折强度,提高了砂浆基体的抗压强度和弹性模量,此外,粗集料改善了混凝土的抗冻性.随着粉煤灰掺量的增加,混凝土的坍落度提高,但混凝土的力学性能和抗冻性减弱.不同类型的粗集料对混凝土性能的影响相差不大,随着粉煤灰掺量的提高,不同类型粗集料混凝土性能相差也不大.%Concrete is composed of mortar matrix, coarse aggregate and their interface zone according to concrete framework theory. Four different types of coarse aggregate (lime stone, basalt, granite, and diabase) with different volume fraction of fly ash are used to check slump, compressive strength flexural strength and modulus of elasticity, and analyze the influence on frost resistance property o f different fly ash volume fraction for lime stone coarse aggregate. The analytical results show that, slump, compressive strength, flexural strength and modulus of elasticity of concrete are affected by coarse aggregate significantly. Flow ability and flexural strength of concrete are decreased, but compressive strength and modulus of elasticity of concrete are increased due to coarse aggregate mixed, furthermore, coarse aggregate improves frost resistance of concrete. Slump is increased, and mechanical properties and frost resistance property of concrete are decreased with fly ash volume fraction increasing. There is little difference for concrete properties using

  2. Platelet-collagen adhesion enhances platelet aggregation induced by binding of VWF to platelets

    Energy Technology Data Exchange (ETDEWEB)

    Laduca, F.M.; Bell, W.R.; Bettigole, R.E. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA) State Univ. of New York, Buffalo (USA))

    1987-11-01

    Ristocetin-induced platelet aggregation (RIPA) was evaluated in the presence of platelet-collagen adhesion. RIPA of normal donor platelet-rich plasma (PRP) demonstrated a primary wave of aggregation mediated by the binding of von Willebrand factor (VWF) to platelets and a secondary aggregation wave, due to a platelet-release reaction, initiated by VWF-platelet binding and inhibitable by acetylsalicylic acid (ASA). An enhanced RIPA was observed in PRP samples to which collagen had been previously added. These subthreshold concentrations of collagen, which by themselves were insufficient to induce aggregation, caused measurable platelet-collagen adhesion. Subthreshold collagen did not cause microplatelet aggregation, platelet release of ({sup 3}H)serotonin, or alter the dose-responsive binding of {sup 125}I-labeled VWF to platelets, which occurred with increasing ristocetin concentrations. However, ASA inhibition of the platelet release reaction prevented collagen-enhanced RIPA. These results demonstrate that platelet-collagen adhesion altered the platelet-release reaction induced by the binding of VWF to platelets causing a platelet-release reaction at a level of VWF-platelet binding not normally initiating a secondary aggregation. These findings suggest that platelet-collagen adhesion enhances platelet function mediated by VWF.

  3. Relationship between Corrosion Level of Rebar Embedded in Concrete, Corrosion Potential and Current Density Measured by Non-destructive Test Method

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Lan; Cho, Seung Ho; Roh, Young Sook [Dankook University, Seoul (Korea, Republic of); Kim, Joong Koo [Korean Precision Industrial Co., Pohang (Korea, Republic of)

    2004-10-15

    The purpose of this study is to identify corrosion mechanism and develop qualitative measurement method of corrosion level. Fist of all, structural behavior of each different level of corrosion states have been evaluated. And mathematical models that can predict corrosion level in terms of electric potential and corrosion intensity are proposed. Corrosion rate in reinforcing bar was investigated in this study using accelerated corrosion method due to electric potential differences based on Faradays law. Total 288 measurement spots were designed in terms of corrosion rates, diameter of reinforcing bars, and concrete cover thickness. Corrosion current densities and corrosion potentials of concrete were measured on these specimens using Gecor device. This study suggested the relationship between corrosion levels, and measured electric current density as follows.

  4. Influence of Polyethylene Glycol on Asphaltic Concrete for Cubical and Rod shaped Aggregates

    Directory of Open Access Journals (Sweden)

    U. Arun Kumar

    2014-02-01

    Full Text Available Aggregates are the principle material in pavement construction. Conventional road aggregates in India are natural aggregates obtained by crushing rocks. Aggregate characteristics such as particle size, shape, and texture etc.., influence the performance and serviceability of pavement. Pavements laid with polymer modified asphalt exhibits greater resistance to rutting, thermal cracking and fatigue damages and hence these were used at locations of higher stress. The present work concentrates on aggregate characteristics which include the shape indices. The particle shapes namely Cubical and Rod are being used in the study. The study shows the behavior of the two shapes of aggregate in terms of Penetration, Ductility, Softening Point and Marshall Stability tests with varying percentages of asphalt and also with varying the percentages of PEG. The results of unmodified asphalt mix are compared with the modified asphalt mix against some critical Marshall Mix parameters.

  5. 预置再生砖骨料灌浆混凝土物理力学性能影响因素研究%Research on Factors Affecting Physical and Mechanical Properties of Pre -placed Concrete Slabs with Recycled Brick Aggregate Manufactured by Grouting

    Institute of Scientific and Technical Information of China (English)

    武玲玲; 姚久星; 高素坤; 祝祥; 周宝木; 徐学东

    2015-01-01

    It is an effective way to make use of the abandoned brick aggregate by making recycled concrete medium bricks using pre-placed brick aggregate grouting method .The middle and lower strength concrete was prepared by mixing ce-ment ,fly ash ,recycled brick aggregate as raw materials and water reducing agent ,foaming agent as admixtures through the use of pre-placed recycled brick aggregate grouting technique .The influence of water-cement ratio ,the substitution quantity of fly ash and foam content on the strength ,dry density and water absorption of the concrete specimens was in-vestigated through orthogonal tests .According to the test results ,the best water-cement ratio was 0 .45 and the optimal substitution quantity of fly ash was 20% ,different amount of foams should be determined based on the strength and heat preservation performance requirements of the concrete .%采用预置砖骨料灌浆的方法制作再生混凝土中型砌块,是实现废弃砖骨料再生利用的一种有效途径。以水泥、粉煤灰和再生砖骨料为原料,减水剂和发泡剂为外加剂,通过向预置的砖骨料内灌浆的工艺制备中低强度混凝土,研究水胶比、粉煤灰取代量、泡沫掺量对混凝土强度、干密度和吸水率的影响规律。通过正交试验分析确定最佳配合比为水胶比0.45,粉煤灰取代量20%,根据强度及保温性能要求综合考虑,选择不同泡沫掺量。

  6. A comparative study of recycled aggregates from concrete and mixed debris as material for unbound road sub-base

    Directory of Open Access Journals (Sweden)

    Jiménez, J. R.

    2011-06-01

    Full Text Available Seven different types of recycled aggregates from construction and demolition waste (CDW have been evaluated as granular materials for unbound road sub-bases construction. The results showed that recycled concrete aggregates complied with all specifications for using in the construction of unbound structural layers (sub-base for T3 and T4 traffic categories according to the Spanish General Technical Specification for Road Construction (PG-3. Some mixed recycled aggregates fell short of some specifications due to a high content of sulphur compounds and poor fragmentation resistance. Sieving off the fine fraction prior to crushing the mixed CDW reduce the total sulphur content and improve the quality of the mixed recycled aggregates, by contrast, pre-sieving concrete CDW had no effect on the quality of the resulting aggregates. The results were compared with a crushed limestone as natural aggregate.

    Siete áridos reciclados de residuos de construcción y demolición (RCD se han evaluado como zahorras para la construcción de sub-bases de carreteras. Los resultados muestran que los áridos reciclados de hormigón cumplen todas las especificaciones del Pliego de Prescripciones Técnicas Generales para Obras de Carreteras de España (PG-3 para su uso en capas estructurales (sub-base de las categorías de tráfico T3 y T4. Algunos áridos reciclados mixtos no cumplen por escaso margen algunas de las especificaciones, debido a un alto contenido de compuestos de azufre y a una menor resistencia a la fragmentación. El precribado de la fracción fina antes de la trituración de los RCD mixtos reduce el contenido de azufre total y mejora la calidad, por el contrario, el precribado de los RCD de hormigón no tiene ningún efecto sobre la calidad de los áridos reciclados. Los resultados se compararon con una zahorra artificial caliza como árido natural.

  7. Integrity of sulfur concrete subjected to simulated lunar temperature cycles

    Science.gov (United States)

    Grugel, Richard N.

    2012-11-01

    In view of potential application as a construction material on the lunar surface the mechanical integrity of sulfur concrete was evaluated after being subjected to simulated temperature cycles. Here, small cubes of sulfur concrete were repeatedly cycled between room (20 °C) and liquid nitrogen (-191 °C) temperatures after which they, and non-cycled cubes, were evaluated by compression testing. The compression strength of the non-cycled samples averaged ˜35 MPa (5076 psi) before failing whereas the cycled samples fractured at about 7 MPa (1015 psi). Microscopic examination of the fracture surfaces from the cycled samples showed clear de-bonding of the sulfur from the aggregate whereas it was seen adhering in those non-cycled. Based on a simple analysis it was concluded that the large strength discrepancy between cycled and non-cycled samples is due to differences between the coefficients of thermal expansion of the materials constituting the concrete.

  8. 混合再生骨料混凝土配制技术试验研究%Experiment on configuration technique of mixed recycled aggregate concrete

    Institute of Scientific and Technical Information of China (English)

    陈树建; 翟爱良; 季昌良; 王纯合; 赵爱华

    2013-01-01

    以废弃砖骨料和废弃混凝土骨料混合使用替代天然骨料制备混凝土,即为混合再生骨料混凝土.试验研究再生砖骨料和再生混凝土骨料不同替代率条件下水灰比、砂率、用水量等因素对混合再生骨料混凝土立方体抗压强度的影响,总结得出混合再生骨料混凝土的最佳配合比和最佳成分比.%Preparing concrete by using mixed of waste brick aggregate and waste concrete aggregate instead of natural aggregate,which is called mixed recycled aggregate concrete.The paper experimented the influence of water cement ratio,sand ratio,water content under different substitution rates of recycled brick aggregate and recycled concrete aggregate on the cube compressive strength,and summarized the optimal mix proportion and replacement ratio of the mixed recycled aggregate concrete.

  9. Lightweight concrete masonry units based on processed granulate of corn cob as aggregate

    Directory of Open Access Journals (Sweden)

    Faustino, J.

    2015-06-01

    Full Text Available A research work was performed in order to assess the potential application of processed granulate of corn cob (PCC as an alternative lightweight aggregate for the manufacturing process of lightweight concrete masonry units (CMU. Therefore, CMU-PCC were prepared in a factory using a typical lightweight concrete mixture for non-structural purposes. Additionally, lightweight concrete masonry units based on a currently applied lightweight aggregate such as expanded clay (CMU-EC were also manufactured. An experimental work allowed achieving a set of results that suggest that the proposed building product presents interesting material properties within the masonry wall context. Therefore, this unit is promising for both interior and exterior applications. This conclusion is even more relevant considering that corn cob is an agricultural waste product.En este trabajo de investigación se evaluó la posible aplicación de granulado procesado de la mazorca de maiz como un árido ligero alternativo en el proceso de fabricación de unidades de mampostería de hormigón ligero. Con esta finalidad, se prepararon en una fábrica diversas unidades de mampostería no estructural con granulado procesado de la mazorca de maiz. Además, se fabricaran unidades de mampostería estándar de peso ligero basado en agregados de arcilla expandida. Este trabajo experimental permitió lograr un conjunto de resultados que sugieren que el producto de construcción propuesto presenta interesantes propiedades materiales en el contexto de la pared de mampostería. Por lo tanto, esta solución es prometedora tanto para aplicaciones interiores y exteriores. Esta conclusión es aún más relevante teniendo en cuenta que la mazorca de maíz es un producto de desecho agrícola.

  10. Sea Dredged Gravel versus Crushed Granite as Coarse Aggregate for Self Compacting Concrete in Aggressive Environment

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.; Kristensen, Lasse Frølich

    2007-01-01

    modulus of elasticity. Tensile and compressive strength were found to depend both on aggregate type and on the properties of the interfacial zone close to the aggregate surface. Freeze-thaw scaling resistance was good with crushed granite, whereas sea gravel led to more severe scaling caused by porphyry...

  11. 再生粗骨料混凝土早期强度试验研究%Experimental research on early strength of recycled coarse aggregate concrete

    Institute of Scientific and Technical Information of China (English)

    张兴才; 李洪明; 朱磊

    2015-01-01

    The influences of water-cement ratio,replacement ratio of recycled coarse aggregate,and water amount on early compres-sive strength and flexural strength of recycled concrete were investigated by experiments. Research results show that the strength ratio of recycled coarse aggregate concrete didn′t vary with water-cement ratio,replacement ratio and water amount,the compressive strength and flexural strength at different ages decrease with the water-cement ratio and replacement ratio. The models for early compressive strength and flexural strength of recycled concrete with 100% replacement of recycled coarse aggregate are established according to ex-periment results,and the calculated values of the strength of recycled coarse aggregate concrete are in good agreement with the test val-ues obtained by other researchers.%通过试验研究水灰比、再生粗骨料取代率和用水量对再生混凝土早期抗压强度和抗折强度的影响。研究结果表明,再生混凝土各龄期的强度系数随水灰比、骨料取代率、单位用水量等因素变化不大。再生混凝土的各个龄期的抗压和抗折强度均随水灰比和再生骨料取代率的增大而降低。根据试验结果建立了再生粗骨料取代率为100%的再生混凝土早期抗压强度和抗折强度计算模型,该模型计算结果与他人试验结果吻合较好。

  12. 再生混凝土粗骨料物理性能的试验分析%Physical Properties Test Analysis of Recycled Concrete Coarse Aggregate

    Institute of Scientific and Technical Information of China (English)

    秦拥军; 付明阳; 崔思贤

    2012-01-01

    Advantages and disadvantages of the performance of concrete aggregate will directly affect the quality of concrete. Based on the basic physical performance test comparison analysis of the recycled concrete aggregate and natural aggregate , in comparison with the natural concrete aggregate, the recycled concrete aggregate has higher water absorption, smaller apparent density and bulk density, and larger crushed indicators. The paper can provide a reference to enable the recycled concrete made to meet the required working performance, which is favorable to the use of construction waste and the application of "green building" .%混凝土骨料工程性能的优劣将直接影响到混凝土的质量.通过对再生混凝土骨料和天然骨料的基本物理性能试验对比分析,得到再生混凝土骨料较天然卵石骨料的吸水率高、表观密度及堆积密度小、压碎指标大;为配制符合工程性能要求的再生混凝提供参考依据,促进建筑废料的利用和“绿色建材”的应用.

  13. Laboratory Investigation Of Partial Replacement Of Coarse Aggregate By Plastic Chips And Cement By Human Hair

    Directory of Open Access Journals (Sweden)

    A.S.Balaji

    2014-04-01

    Full Text Available The use of plastic is increasing day by day, although steps were taken to reduce its consumption. The suitability of recycled plastics as coarse aggregate in concrete and its advantage are discussed here. Experimental investigation was done using M20 mix and tests were carried out as per recommended procedures by relevant codes. As 100% replacement of natural coarse aggregate (NCA with plastic coarse aggregate (PCA is not feasible, partial replacement were examined. And also Hair is used as a fibred reinforcing material in concrete as partial replacement of cement. It has a high tensile strength which is equal to that of a copper wire with similar diameter. It is also available in abundance and at a very low cost. Tests were conducted to determine the properties of plastic aggregate and human hair such as density, specific gravity and crushing value. Experiments were conducted on concrete cubes with various percentages of human hair i.e. 0%, 0.5%, 1%, 1.5%, 2%, and 3% by weight of cement and with constant percentage of plastic aggregate as 20%.

  14. Compressive Behavior and Mechanical Characteristics and Their Application to Stress-Strain Relationship of Steel Fiber-Reinforced Reactive Powder Concrete

    OpenAIRE

    Baek-Il Bae; Hyun-Ki Choi; Bong-Seop Lee; Chang-Hoon Bang

    2016-01-01

    Although mechanical properties of concrete under uniaxial compression are important to design concrete structure, current design codes or other empirical equations have clear limitation on the prediction of mechanical properties. Various types of fiber-reinforced reactive powder concrete matrix were tested for making more usable and accurate estimation equations for mechanical properties for ultra high strength concrete. Investigated matrix has compressive strength ranged from 30 MPa to 200 M...

  15. Relationship of Social and Lifestyle Factors with Central Fat Distribution Expressed by the Aggregate Fat Distribution Index

    Directory of Open Access Journals (Sweden)

    Suder Agnieszka

    2014-07-01

    Full Text Available Abdominal obesity is caused by several factors and the explanation of the level of its variability also depends on anthropometric indexes applied for its assessment. The aim was to determine the degree of explanation of the abdominal adiposity variation, presented by the aggregate fat distribution index (AFDI, through the socio-economic status and lifestyle. Subjects and methods: A cross-sectional population-based study was conducted on a sample of 259 healthy working males aged 20-30 from the city of Cracow, Poland. A full model was created using a stepwise backward regression with the social and lifestyle data as independent variables and the AFDI as a dependent variable. The AFDI was created by unitarization applied to selected characteristics of fat distribution which were transformed into [0,1] interval (without measurement unit and then added and averaged to form a composite index. The highest autonomous influence on AFDI is ascribed to age (b = 0.2456 p = 0.000, level of motor fitness b=−0.2392 p=0.000, leisure time physical activity (b=−0.1353 p=0.000 and being born in a rural area (b=0.1300 p=0.000. The variables explain 17% (R2=0.1667 of the variation of the central fat distribution. Variation of the abdominal adiposity was explained with the use of AFDI at the level close to the commonly applied indexes.

  16. Isothermal Sorption of Recycled Aggregate Concrete and Its Influence on Drying Shrinkage%再生骨料混凝土吸湿性能及对干燥收缩的影响

    Institute of Scientific and Technical Information of China (English)

    郭远臣; 王雪; 何运祥

    2012-01-01

    根据孔隙结构理论设计了测量材料润湿性能的装置,测试了再生骨料取代率,减水剂、膨胀剂、粉煤灰掺量对再生骨料混凝土吸湿量的影响曲线,并通过曲线拟合给出不同配合比再生骨料混凝土等温吸湿曲线函数关系式;提出可由初期吸湿曲线来计算材料与水接触角大小,并分析了其对再生骨料混凝土干缩性能的影响.研究表明:再生骨料、减水剂的添加可减小混凝土的接触角,增加混凝土的干缩值;粉煤灰的添加改善了混凝土孔隙结构,能降低与水润湿性,有利于抑制混凝土收缩;减水剂的添加减小了再生骨料混凝土的接触角;膨胀再生混凝土收缩机理不能单用材料润湿性和孔隙结构理论来解释.%Based on pore structure theory, a device for measuring the wetting properties of materials was designed. The effect of recycled aggregate replacement rate, and water reducer, expansive agent, fly ash dosage on isothermal absorption of recycled aggregate concrete was investigated. Through curve fitting, the function relationship of isothermal absorption curve of recycled aggregate concrete with different mix proportion was established. It is proposed that the water contact angle can be calculated from the initial absorption curve, and its impact on drying shrinkage of recycled aggregate concrete is analyzed. Research results show that the addition of recycled aggregate and superplasticizer lowers the contact angle of recycled aggregate concrete, and increases the drying shrinkage. The addition of fly ash improves the pore structure of concrete, and can reduce the wettability, which can help inhibit the shrinkage of recycled aggregate concrete: It is difficult to explain the shrinkage mechanism of expanded recycled concrete only from material wettability and pore structure theory.

  17. Study about the capillary absorption and the sorptivity of concretes with Cuban limestone aggregates

    Directory of Open Access Journals (Sweden)

    Howland, J. J.

    2013-12-01

    Full Text Available The objective of this study was to demonstrate the possibility to obtain concretes in Cuba with values of effective porosity below of 10%, using limestone aggregates with high levels of absorption (higher than 1% in many cases, and values of Sorptivity below of 5 x 10-5 m/s1/2 as is established in the document prepared by the DURAR Latin Working Group, for structures exposed to very aggressive environments. The experimental results showed that the use of the trial method of capillary absorption of Göran Fagerlund, were obtained concretes with effective porosity below of the 10%, for water/cement ratios of 0.4 and 0.45, but the values of sorptivities were very high. Nevertheless the subsequent use of the trial method of the ASTM C1585, that use cylinders probes with bigger depth and different processing, permits to obtain the desired sorptivity values for water/cement ratios of 0.4 and 0.45 whenever would be fulfilled the Good Practices of the Construction.El objetivo del estudio fue demostrar la posibilidad de lograr en Cuba, con el empleo de áridos calizos de elevada absorción (mayores del 1% en muchos casos, hormigones con valores de porosidad efectiva inferiores al 10% y de velocidad de absorción capilar (Sorptividad inferiores a 5 x 10-5 m/s1/2, tal como establece el documento elaborado por la RED DURAR del CYTED para estructuras expuestas a ambientes muy agresivos. Los resultados experimentales mostraron que con la aplicación del método de ensayo de absorción capilar de Göran Fagerlund se obtuvieron porosidades efectivas inferiores al 10% para relaciones agua/cemento de 0,4 y 0,45, pero los valores de sorptividad fueron muy elevados. No obstante la aplicación posterior del método de ensayo de la ASTM C1585 que utiliza probetas de mayor espesor y diferente tratamiento, permitió obtener los valores indicados de sorptividad para relaciones agua/cemento de 0,4; 0,45 siempre que se cumplan las Buenas Prácticas constructivas.

  18. Relationship between pore structure and compressive strength of concrete: Experiments and statistical modeling

    Indian Academy of Sciences (India)

    J BU; Z TIAN

    2016-03-01

    Properties of concrete are strongly dependent on its pore structure features, porosity being an important one among them. This study deals with developing an understanding of the pore structure-compressive strength relationship in concrete. Several concrete mixtures with different pore structures are proportioned and subjected to static compressive tests. The pore structure features such as porosity, pore size distribution are extracted using mercury intrusion porosimetry technique. A statistical model is developed to relate thecompressive strength to relevant pore structure features.

  19. Effects of extraction methods and factors on leaching of metals from recycled concrete aggregates.

    Science.gov (United States)

    Bestgen, Janile O; Cetin, Bora; Tanyu, Burak F

    2016-07-01

    Leaching of metals (calcium (Ca), chromium (Cr), copper, (Cu), iron (Fe), and zinc (Zn)) of recycled concrete aggregates (RCAs) were investigated with four different leachate extraction methods (batch water leach tests (WLTs), toxicity leaching procedure test (TCLP), synthetic precipitation leaching procedure test (SPLP), and pH-dependent leach tests). WLTs were also used to perform a parametric study to evaluate factors including (i) effects of reaction time, (ii) atmosphere, (iii) liquid-to-solid (L/S) ratio, and (iv) particle size of RCA. The results from WLTs showed that reaction time and exposure to atmosphere had impact on leaching behavior of metals. An increase in L/S ratio decreased the effluent pH and all metal concentrations. Particle size of the RCA had impact on some metals but not all. Comparison of the leached concentrations of metals from select RCA samples with WLT method to leached concentrations from TCLP and SPLP methods revealed significant differences. For the same RCA samples, the highest metal concentrations were obtained with TCLP method, followed by WLT and SPLP methods. However, in all tests, the concentrations of all four (Cr, Cu, Fe, and Zn) metals were below the regulatory limits determined by EPA MCLs in all tests with few exceptions. pH-dependent batch water leach tests revealed that leaching pattern for Ca is more cationic whereas for other metals showed more amphoteric. The results obtained from the pH-dependent tests were evaluated with geochemical modeling (MINTEQA2) to estimate the governing leaching mechanisms for different metals. The results indicated that the releases of the elements were solubility-controlled except Cr.

  20. Application of Coconut Shell as Coarse Aggregate in Concrete: A Technical Review

    Directory of Open Access Journals (Sweden)

    Parag S. Kambli

    2014-03-01

    Full Text Available Oil palm shell (OPS is a waste from the agricultural sector and is available in large quantities in the tropical regions. The high cost of conventional building materials is a major factor affecting housing delivery in world. This has necessitated research into alternative materials of construction. The project paper aims at analysing compressive strength characteristics of concrete produced using crushed, granular coconut as substitutes for conventional coarse aggregate with partial replacement. The main objective is to encourage the use of these ‘seemingly’ waste products as construction materials in low-cost housing. It is also expected to serve the purpose of encouraging housing developers in investing these materials in house construction.

  1. 全轻混凝土柱偏心受压性能试验研究%Experimental Study on All -lightweight Aggregate Concrete Columns Performance Under Eccentric Loading

    Institute of Scientific and Technical Information of China (English)

    杨艳敏; 姚巍

    2012-01-01

    为形成集承重、轻质、节能于一体的多层建筑结构体系,推广全轻混凝土在结构体系中的应用,需对全轻混凝土柱偏心受压性能进行试验研究.试验共设计偏心受压柱6根,对比分析不同配筋、不同偏心距对偏心受压柱的破坏形态、变形特点和承载性能的影响.试验结果表明,全轻混凝土偏心受压柱破坏特征、挠曲模式及截面应变分布与普通混凝土柱基本一致,而且承载力高、延性好,全轻混凝土可作为结构材料替代普通混凝土.%In order to develop a new multi - story structural system which has a multifunction of load - bearing, lightweight and energy saving, extend the use of all - lightweight aggregate concrete in the construction. We need to do research on all - lightweight aggregate concrete columns under eccentric loading. The test design 6 columns in all. The destructed form, deformation characteristics and load - bearing properties of all - lightweight aggregate con- crete are studied by comparing different symmetrical reinforcement and different eccentricity. The test results show that the failure characteristics and flexural mode of all -lightweight aggregate concrete eccentric compression column are the same with the ordinary reinforced concrete column' s. And all - lightweight aggregate concrete columns were loaded to failure with high load - bearing capacity and good ductility. It can he the structural material instead of ordinary concrete.

  2. Novel approach to make concrete structures self-healing using porous network concrete

    NARCIS (Netherlands)

    Sangadji, S.; Schlangen, E.

    2012-01-01

    Many researchers proposed self healing mechanism using hollow fibres and or microcapsule containing a modifying agent dispersed in the concrete to prolong its service life and make it more durable. A novel self healing concrete concept is proposed in this paper by using porous network concrete compo

  3. Effect of Gradation Optimization of Aggregate on Binder Content in Concrete%骨料级配优化对混凝土胶凝材料用量的影响

    Institute of Scientific and Technical Information of China (English)

    蔡杰龙; 杨永民; 李伟

    2014-01-01

    骨料级配优化对于改善混凝土工作性能和节省胶凝材料用量具有重要的意义。该文分别对粗细骨料级配进行优化得到堆积密度大、空隙率小的细骨料和粗骨料,并分2种类型(直卸、泵送)和3种标号( C20、 C25、 C30)进行混凝土配合比试验对比骨料级配优化前后单方混凝土胶凝材料用量,最后通过实例进行验算。试验结果表明,当砂中0.315 mm以下细砂含量控制在一定比例,并在连续级配的5~31.5 mm碎石或5~25 mm碎石中掺入一定比例的5~10 mm石时,每m3混凝土中胶凝材料用量均可得到一定程度的降低,与理论验算结果较为吻合。骨料级配优化可操作性强,适合在混凝土生产企业中推广。%Aggregate Gradation optimization is of great importance in improving the working performance of concrete and saving binder content.In this article, gradation of coarse aggregate and fine aggregate is respectively optimized to obtain the aggregate with higher bulk density and lower voidage .Then design mix of concrete experiments on two kinds of concrete ( field concrete , pump concrete) and three kinds of grades(C20, C25, C30) are carried out to compared the binder content in an unit of concrete before and after gradation of aggregate is optimized .Finally, checking computations is implemented by example .It is shown that the binder content in an unit of concrete gets an certain degree of reduction if the ratio of fine sand (≤0.315mm) in fine aggregate is proper and a certain proportion of 5 ~10mm gravel is mixed into 5 ~31.5mm or 5 ~25mm gravel.And the result accords with the theoretical checking computations .Gradation optimization of aggregate is easily operability and suitable for promotion in concrete manufacturing enterprise .

  4. Assessment of Concrete Strength Using Partial Replacement of Coarse Aggregate for Wast Tiles and Cement for Rice Husk Ash in Concrete

    Directory of Open Access Journals (Sweden)

    Umapathy U

    2014-05-01

    Full Text Available Conservation of natural resources and preservation of environment is the essence of any development. The problem arising from continuous technological and industrial development is the disposal of waste material. If some of the waste materials are found suitable in concrete making, not only cost of construction can be cut down, but also safe disposal of waste materials can be achieved. So in our project, an attempt has been made to assess the suitability of stone with waste tills in concrete making. In the laboratory tiles has been tried as coarse aggregate has been used as partial substitute to conventional coarse aggregate concrete making and today many researches are ongoing into the use of Portland cement replacements, using many waste materials like pulverized fly ash (PFA and ground granulated blast furnace slag (GGBS. Like PFA and GGBS a waste glass powder (GLP is also used as a binder with partial replacement of cement which takes some part of reaction at the time of hydration. In this study, rice husk ash have been used as partially replacements to the cement Cubes were cast and tested for compressive strength, and modulus of rupture after a curing period of 7,17,28 days.

  5. 再生粗骨料取代率对混凝土各项性能的影响%Effects of Replacement Ratio of Recycled Coarse Aggregate on Properties of Concrete

    Institute of Scientific and Technical Information of China (English)

    全洪珠; 袁传鹏; 迟玉锦

    2011-01-01

    利用不同品质的3种再生粗骨料,研究了再生粗骨料取代率对混凝土的工作性能、力学性能及干缩性能的影响.结果表明,利用再生粗骨料取代碎石,高品质再生粗骨料可以使碎石混凝土的性能得到改善,而低品质再生粗骨料则降低碎石混凝土的性能,且再生粗骨料取代率不宜超过50%.%By using three different quality recycled coarse aggregates,this paper presents the effects of the replacement ratio of recycled coarse aggregate on the properties of work,mechanics and drying shrinkage of concrete.The results show that if the recycled coarse aggregate is used to replace gravel,the high-quality recycled coarse aggregate can improve the properties of gravel concrete and the low-quality recycled coarse aggregate can reduce the properties of gravel concrete,and the replacement ratio of recycled coarse aggregate should not exceed 50%.

  6. Desempenho de concretos com agregados reciclados de cerâmica vermelha Performance of red ceramic recycled aggregate concrete

    Directory of Open Access Journals (Sweden)

    A. E. B. Cabral

    2009-12-01

    do concreto, sendo que o agregado do tipo graúdo reciclado exerceu em todas as propriedades, uma maior influência.Construction and Demolition (C&D waste is an important portion of solid waste produced in Brazilian cities, corresponding around 50% of urban solid wastes. Among several representatives of C&D waste, red ceramic, originated from bricks and tiles used in constructions, is a considerable portion. The recycling of C&D waste making recycled aggregates has been a common practice, particularly in cities where there is an inaccessibility or shortage of natural aggregates, that propitiate high costs to acquire them. Intending determine the behavior of red ceramic recycled aggregates in concrete's production, it was made an experimental program based on a project of experiments. In this program, the fine and the coarse natural aggregates were substituted by theirs respective recycled aggregates. The water/cement ratio was also varied. The produced concretes were analyzed regarding three properties: axial strength, modulus of deformation and volume of permeable voids (VPP. All the proposed models had excellent determination coefficient, higher than 95%. Simulations were made using the proposed models. The results indicate the natural fine aggregate substitution by the recycled red ceramic fine aggregate results in an axial strength increment and for a natural coarse aggregate substitution by the recycled red ceramic coarse aggregate, a decrease. For the other concrete properties, it was observed that the recycled aggregate use, as for coarse as for fine aggregate, had a negative effect and the recycled coarse aggregate exercised a larger influence than the fine aggregate.

  7. Test study on preparation sprayed concrete with spontaneous combustion gangue as aggregate%自燃煤矸石陶粒作为骨料制备喷射混凝土试验研究

    Institute of Scientific and Technical Information of China (English)

    袁家鸣; 单继舟; 唐彦秋

    2011-01-01

    为了对采用自燃煤矸石取代砂石作为骨料配制喷射混凝土的可行性进行研究,通过采用试验的方法优化自燃煤矸石骨料级配,比较外加剂、Ⅰ级粉煤灰、水泥用量等对所配混凝土强度及性能的影响,确定配制C20自燃煤矸石骨料喷射混凝土的最佳配合比.结果表明:在掺加速凝剂情况下,配制同标号混凝土采用自燃煤矸石骨料取代砂石骨料可以大幅降低水泥用量.%In order to study the feasibility of preparation sprayed concrete by adopting spontaneous combustion gangue to replace sand as aggregate, by optimization spontaneous combustion gangue aggregate gradation,comparing the strength and performance influence of the concrete under the condition of admixtures,Ⅰ grade fly ash,cement content , the best mixture ratio which can make sprayed concrete with spontaneous combustion gangue isdetermined. The result shows that In adding herein cases, mixing concrete with label by spontaneous combustion gangue aggregate replace sand aggregate can dramatically reduce dosage of cement.

  8. Stress-Strain Relationship and Failure Criterion for Concrete after Freezing and Thawing Cycles

    Institute of Scientific and Technical Information of China (English)

    Luo Xin; Wei Jun

    2006-01-01

    The research of the failure criterion and one-dimensional stress-strain relationship of deteriorated concrete were carried out.Based on the damage mechanics theory, the damage which reflects the alternation of internal state of material were introduced into the formula presented by Desayi and Krishman and the weighted twin-shear strength theory. As a nondestructive examination method in common use, the ultrasonic technique was adopted in the study, and the ultrasonic velocity was used to establish the damage variable. After that, the failure criterion and one-dimensional stress-strain relationship for deteriorated concrete were obtained.Eventually, tests were carried out to study the evolution laws on the damage. The results show that the more freezing and thawing cycles are, the more apparently the failure surface shrinks. Meanwhile, the comparison between theoretical data and experimental data verifies the rationality of the damage-based one-dimensional stress-strain relationship proposed.

  9. Early age stress-crack opening relationships for high performance concrete

    DEFF Research Database (Denmark)

    Østergaard, Lennart; Lange, David A.; Stang, Henrik

    2004-01-01

    Stress–crack opening relationships for concrete in early age have been determined for two high performance concrete mixes with water to cementitious materials ratios of 0.307 and 0.48. The wedge splitting test setup was used experimentally and the cracked nonlinear hinge model based on the fictit...

  10. The Relationship between Rebar-Debonding and Cracking in Reinforced Concrete

    DEFF Research Database (Denmark)

    Thybo, Anna Emilie A.; Stang, Henrik; Olesen, John Forbes

    2012-01-01

    A mechanical model has been used to evaluate the rebar-concrete debonding length and Crack Mouth Opening Displacement (CMOD) in reinforced concrete. The modelling is based on the theory of the fictitious crack. It is shown that there is a non-trival relationship between the debonding length...

  11. Influence Factors of Durability of the Recycled Aggregate Concrete%再生骨料混凝土耐久性能影响因素研究

    Institute of Scientific and Technical Information of China (English)

    高嵩; 李秋义; 陈建珍

    2009-01-01

    简单破碎再生骨料混凝土的需水量很大,导致混凝土的收缩大、氯离子渗透系数大、碳化速度快以及抗冻性差等弱点.骨料颗粒整形技术可以除去骨料表面粘附的水泥石,减少表面微裂缝使得再生骨料变得圆滑,显著降低需水量,混凝土的收缩性能、抗氯离子渗透性、抗碳化性能和抗冻性能均显著改善,改善了再生骨料混凝土的耐久性能.%Compared with natural aggregate, simply-crushed recycled aggregate particles are attached by many hardened cement mortar remains on its surface, and micro-cracks are formed in the crushing process. Therefore, simply-crushed recycled aggregate concrete re-quests greater water demand which in turn leads to larger shrinkage, greater chloride ion permeability coefficient, quicker carbonization and lower freezing-thawing resistance. Nevertheless, particle reshaping is able to remove the adherent mortar and makes aggregate par-ticle smoother and stronger. The paper presents experimental researches on recycled concrete durability influences by particle-shaping. The results indicate that it reduces the water demand and the corresponding shrinkage, and herein improves the resistance to chloride ion permeability, carbonization property and freezing-thawing resistance. Consequently, the application domain of recycled concrete will be developed.

  12. New photo-thermal-synthesized polymer for self-compacting concrete to increase productivity, minimize pollution,and eliminate steam curing in precast concrete

    Institute of Scientific and Technical Information of China (English)

    F. C.Lai; M. F.Mohd Zain; WANG Bao-min; K. C. Lee

    2006-01-01

    The objective in this study is to apply the sustainable chemistry and photo-thermal synthesis technology to produce the sustainable eco-superplasticiser for the sustainable high performance SCC concrete especially in hot tropical countries. A photo-thermal synthesized eco-superplasticiser (PSES) was produced by using photo-thermal catalyst in a solar chemical reactor. In this preliminary study, an unique high early strength of SCC concrete has been successfully produced by imposing an unique proportion of the photo-thermal-synthesized ecoSuperplasticiser (PSES), local fly ash, sand and aggregate. The SCC concrete is preliminary tried in the precast concrete product to produce the complicated geometries as Tunnel segment, U-shape beam, and Box girder which have the critical reinforcement and thin section concrete. Surprisingly, this SCC provide the benefits as eliminating steaming energy, increased productivity, and minimize pollution. These unique properties of sustainable SCC concrete can not be achieved by the convention concrete by using ligno, naphthalene and melamine base superplasticiser. The synthesized sustainable eco-superplasticiser is a perfect choice to fully utilized the renewable energy and improve the concrete working environment.

  13. Acoustic properties of porous concrete made from arlite and vermiculite lightweight aggregates

    Directory of Open Access Journals (Sweden)

    Carbajo, J.

    2015-12-01

    Full Text Available The use of sustainable materials is becoming a common practice for noise abatement in building and civil engineering industries. In this context, many applications have been found for porous concrete made from lightweight aggregates. This work investigates the acoustic properties of porous concrete made from arlite and vermiculite lightweight aggregates. These natural resources can still be regarded as sustainable since they can be recycled and do not generate environmentally hazardous waste. The experimental basis used consists of different type specimens whose acoustic performance is assessed in an impedance tube. Additionally, a simple theoretical model for granular porous media, based on parameters measurable with basic experimental procedures, is adopted to predict the acoustic properties of the prepared mixes. The theoretical predictions compare well with the absorption measurements. Preliminary results show the good absorption capability of these materials, making them a promising alternative to traditional porous concrete solutions.El uso de materiales sostenibles se está convirtiendo en una práctica común para la reducción de ruido en las industrias de la edificación e ingeniería civil. Este trabajo investiga las propiedades acústicas de hormigón poroso fabricado a partir de áridos ligeros de arlita y vermiculita. Estos recursos naturales todavía pueden considerarse sostenibles ya que pueden ser reciclados y no generan residuos peligrosos para el medio ambiente. La base experimental utilizada se compone de especímenes de diferente tipo cuyas prestaciones acústicas se evalúan en un tubo de impedancia. Adicionalmente, se ha adoptado un modelo teórico simple para medios porosos granulares, basado en parámetros medibles con procedimientos experimentales básicos, con objeto de predecir las propiedades acústicas de las mezclas preparadas. Las predicciones teóricas muestran una buena concordancia con las medidas de absorci

  14. NANOMODIFIED CONCRETE

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2015-01-01

    Full Text Available One of the main directions in construction material science is the development of  next generation concrete that is ultra-dense, high-strength, ultra-porous, high heat efficient, extra corrosion-resistant. Selection of such direction is caused by extreme operational impacts on the concrete, namely: continuously increasing load on the concrete and various dynamics of such loads; the necessity in operation of concrete products in a wide temperature range and their exposure to various chemical and physical effects.The next generation concrete represents high-tech concrete mixtures with additives that takes on and retain the required properties when hardening and being used under any operational conditions. A differential characteristic of the next generation concrete is its complexity that presumes usage of various mineral dispersed components, two- and three fractional fine and coarse aggregates, complex chemical additives, combinations of polymer and iron reinforcement.Design strength and performance properties level of the next generation concrete is achieved by high-quality selection of the composition, proper selection of manufacturing techniques, concrete curing, bringing the quality of concrete items to the required level of technical condition during the operational phase. However, directed formation of its structure is necessary in order to obtain high-tech concrete.Along with the traditional methods for regulation of the next generation concrete structure, modification of concrete while using silica nanoparticles is also considered as a perspective one because the concrete patterning occurs due to introduction of a binder in a mineral matrix. Due to this it is possible to obtain nano-modified materials with completely new properties.The main problem with the creation of nano-modified concrete is a uniform distribution of nano-materials in the volume of the cement matrix which is particularly important in the cases of adding a modifier in

  15. Classification fine aggregate study on recycled aggregate concrete in Urumqi region%乌鲁木齐地区再生混凝土细骨料分级分类研究

    Institute of Scientific and Technical Information of China (English)

    罗玲; 秦拥军; 刘志刚; 陆亚飞

    2014-01-01

    再生骨料混凝土的研究和应用能解决日益发展的建筑业带来的环境问题,通过对乌鲁木齐地区建筑业进行调研,具体分析了乌鲁木齐地区废弃混凝土的现状,将不同来源的废弃混凝土破碎筛分后,分为I、II、III类,对这三类再生细骨料进行性能测试。试验结果表明:I、II、III类再生细骨料所配制的再生砂浆,用水量随着取代率的增大而增大,保水性降低,强度降低;建议I类再生细骨料取代率不宜超过50%,II、III类再生细骨料不宜超过30%。%Research and application of recycled aggregate concrete can solve the environmental problems brought about by the growing construction industry.By the Investigation and research on Urumqi area construction,analysis the situation of waste concrete in Urumqi, After crushing and screening different sources of waste concrete,it divided them into I,II,III categories,test results of the product proper-ties were also given.The results showed that this experiment used recycled fine aggregate of I ,II,IIIcategories to prepare recycled mortar, water consumption was increasing while water-retaining capacity and compressive strength was reducing with the replacement rate in-creasing.So it recommended that the replacement ratio of class I recycled fine aggregate should not exceed 50%and II ,III class recycled fine aggregate should not exceed 30%.

  16. Sequestration of Glyceraldehyde-3-phosphate Dehydrogenase to Aggregates Formed by Mutant Huntingtin

    Institute of Scientific and Technical Information of China (English)

    Junchao WU; Fang LIN; Zhenghong QIN

    2007-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been reported to interact with proteins containing the polyglutamine (polyQ) domain. The present study was undertaken to evaluate the potential contributions of the polyQ and polyproline (polyP) domains to the co-localization of mutant huntingtin (htt) and GAPDH. Overexpression of N-terminal htt (1-969 amino acids) with 100Q and 46Q (htt1-969-100Q and httl-969-46Q, mutant htt) in human mammary gland carcinoma MCF-7 cells formed more htt aggregates than that of htt1-969-18Q (wild-type htt). The co-localization of GAPDH with htt aggregates was found in the cells expressing mutant but not wild-type htt. Deletion of the polyp region in the N-terminal htt had no effect on the co-localization of GAPDH and mutant htt aggregates. These results suggest that the polyQ domain, but not the polyp domain, plays a role in the sequestration of GAPDH to aggregates by mutant htt. This effect might contribute to the dysfunction of neurons caused by mutant htt in Huntington's disease.

  17. A study of the coupling relationship between concrete surface temperature and concrete surface emissivity in natural conditions.

    Science.gov (United States)

    Tang, Lin-Ling; Chen, Xiao-Ling; Wang, Jia-Ning; Zhao, Hong-Mei; Huang, Qi-Ting

    2014-07-01

    Land surface emissivity (LSE) has already been recognized as a crucial parameter for the determination of land surface temperature (LST). There is an ill-posed problem for the retrieval of LST and LSE. And laboratory-based emissivity is measured in natural constant conditions, which is limited in the application in thermal remote sensing. To solve the above problems, the coupling of LST and LSE is explored to eliminate temperature effects and improve the accuracy of LES. And then, the estimation accuracy of LST from passive remote sensing images will be improved. For different land surface materials, the coupling of land surface emissivity and land surface temperature is various. This paper focuses on studying concrete surface that is one of the typical man-made materials in urban. First the experiments of measuring concrete surface emissivity and concrete surface temperature in natural conditions are arranged reasonably and the suitable data are selected under ideal atmosphere conductions. Then to improve the determination accuracy of concrete surface emissivity, the algorithm worked on the computer of Fourier Transform Infrared Spectroradiometer (FTIR) has been improved by the most adapted temperature and emissivity separation algorithm. Finally the coupling of concrete surface temperature and concrete surface emissivity is analyzed and the coupling model of concrete surface temperature and concrete surface emissivity is established. The results show that there is a highest correlation coefficient between the second derivative of emissivity spectra and concrete surface temperature, and the correlation coefficient is -0.925 1. The best coupling model is the stepwise regression model, whose determination coefficient (R2) is 0.886. The determination coefficient (R2) is 0.905 and the root mean squares error (RMSE) is 0.292 1 in the validation of the model. The coupling model of concrete surface temperature and concrete surface emissivity under natural conditions

  18. Design and performance of masonry mortars made with recycled concrete aggregates

    Directory of Open Access Journals (Sweden)

    Frías, M.

    2009-07-01

    Full Text Available The present paper discusses the technical feasibility ofusing the fine fraction of recycled aggregate fromconcrete rubble to manufacture cement mortar andpossible conditions.An initial study of the chemical and physical-mechanicalcharacteristics of fines recycled from selected concreteshowed that their high absorptivity and high sulfatecontent compared to natural limestone sands were thelimiting factors to their in masonry mortars.As in the caseof structural concrete, a blend of recycled and naturalaggregate would appear to be suitable for masonrymortars.A study of the mix proportions and characteristics ofmortars made with recycled concrete aggregate showedthat up to 25% recycled aggregate can be used incement-based masonry mortars with no significant declinein performance and no new admixtures or higher cementcontent requires.El presente trabajo presenta y discute las condiciones de viabilidad técnica para la utilización de la fracción fina de áridos reciclados, procedentes de escombro de hormigón, en la fabricación de morteros de albañilería utilizando cemento como conglomerante.Inicialmente, se estudian las características químicas y físico- mecánicas de los áridos reciclados finos procedentes de hormigón seleccionado. Se concluye que las características limitantes del árido reciclado para su uso en morteros de albañilería resultan ser la alta absorción y el elevado contenido en sulfatos, en comparación con las arenas naturales de naturaleza caliza. De forma análoga a lo recomendado en el hormigón estructural, se apunta hacia la utilización de mezclas de áridos reciclados y naturales en la fabricación de morteros de albañilería.Del estudio de dosificaciones y caracterización de morteros, elaborados con áridos reciclados de hormigón, se establece que los morteros de albañilería base cemento pueden incorporar un 25% como máximo de árido reciclado sin evidenciar pérdidas significativas de prestaciones. Y, no

  19. Guidance to Achieve Accurate Aggregate Quantitation in Biopharmaceuticals by SV-AUC.

    Science.gov (United States)

    Arthur, Kelly K; Kendrick, Brent S; Gabrielson, John P

    2015-01-01

    The levels and types of aggregates present in protein biopharmaceuticals must be assessed during all stages of product development, manufacturing, and storage of the finished product. Routine monitoring of aggregate levels in biopharmaceuticals is typically achieved by size exclusion chromatography (SEC) due to its high precision, speed, robustness, and simplicity to operate. However, SEC is error prone and requires careful method development to ensure accuracy of reported aggregate levels. Sedimentation velocity analytical ultracentrifugation (SV-AUC) is an orthogonal technique that can be used to measure protein aggregation without many of the potential inaccuracies of SEC. In this chapter, we discuss applications of SV-AUC during biopharmaceutical development and how characteristics of the technique make it better suited for some applications than others. We then discuss the elements of a comprehensive analytical control strategy for SV-AUC. Successful implementation of these analytical control elements ensures that SV-AUC provides continued value over the long time frames necessary to bring biopharmaceuticals to market.

  20. High stenghth concrete with high cement substitution by adding fly ash, CaCO3, silica sand, and superplasticizer

    Science.gov (United States)

    Wicaksono, Muchammad Ridho Sigit; Qoly, Amelia; Hidayah, Annisaul; Pangestuti, Endah Kanti

    2017-03-01

    Concrete is a mixture of cement, fine aggregate, coarse aggregate and water with or without additives. Concrete can be made with substitution of cement with materials like Fly Ash, CaCO3 and silica sand that can increase the binding on pasta and also increase the compressive strength of concrete. The Superplasticizer on a mixture is used to reduce the high water content, improve concrete durability, low permeability concrete by making it more resilient, and improve the quality of concrete. The combination between Fly Ash (30% of cement required), CaCO3 (10% of cement required) and silica sand (5% of cement required) with added MasterGlenium ACE 8595 as much as 1,2% from total cement will produces compressive strength of up to 1080 kN/cm2 or 73,34 Mpa when the concrete is aged at 28 day. By using this technique and innovation, it proves that the cost reduction is calculated at 27%, which is much more efficient. While the strength of the concrete is increased at 5% compared with normal mixture.

  1. 再生粗骨料在高强泵送混凝土中应用的试验研究%Experimental study on application of recycled coarse aggregate in high strength pumped concrete

    Institute of Scientific and Technical Information of China (English)

    李超; 刘福田; 董全文; 谢慧东

    2011-01-01

    通过对再生粗骨料各项性能试验研究,分析再生粗骨料掺量对高强泵送混凝土性能的影响.通过进一步改善配合比,将再生粗骨料代替天然粗骨料掺量提高到30%,高强泵送再生粗骨料混凝土各项性能指标能够满足施工技术要求,并通过扫描电镜分析高强泵送再生租骨料混凝土的微观结构.%Based on the experimental study on the properties of recycled coarse aggregate,the effect of recycled coarse aggregate content on the performance of high-strength pumped concrete was analyzed. By further improving the mix,increasing the replacement ratio of recycled coarse aggregate content to 30%,a variety of indicators of high-strength pumped recycled aggregate concrete can meet the technical requirements for construction. By scanning electron microscopy,the microstructure of the high strength pumped recycled aggregate concrete was analyzed.

  2. Relationship Between Water-Stable Aggregates and Nutrients in Black Soils After Reclamation

    Institute of Scientific and Technical Information of China (English)

    MA Qiang; YU Wan-Tai; ZHAO Shao-Hua; ZHANG Lu

    2007-01-01

    Water-stable aggregates, which are an index for the evaluation of the structural properties of the soil, are affected by many factors. Zhaoguang Farm, Longzhen Farm, and Jiusan Farm were chosen as the representative study sites in the region of black soils, a typical soil resource in Northeast China. The variation in the content of>0.25 mm water-stable aggregates and its relationship with the nutrients in black soil were investigated after different years of reclamation. The results showed that the>0.25 mm water-stable aggregates were more in the surface than in the subsurface soil and they changed in the following order: Longzhen Farm>Zhaoguang Farm>Jiusan Farm. The water-stable aggregates decreased sharply at the initial stage of reclamation and then became stable gradually with time. They were significantly correlated with the contents of organic C, total N, total P, and CEC in black soil, with the correlation coefficients r being 0.76, 0.68, 0.61, and 0.81 (P<0.01), respectively; however, their relationships with available P, available K, and total K were unclear. These showed that organic matter was the cementation of soil water-stable aggregates. Increasing decompositions and decreasing inputs of organic matter after reclamation were responsible for the amount of reduction of the water-stable aggregates. Thus, to maintain good soil aggregate structure, attention should be paid to improvement of soil nutrient status, especially the supply of organic C and N.

  3. 再生混凝土骨料剔选新技术初探%Preliminary studies on new beneficiation technique of recycled concrete aggregate

    Institute of Scientific and Technical Information of China (English)

    戴俊; 王倩

    2014-01-01

    Beneficiation technology and quality of recycled concrete aggregate are the key factors to constrain properties and applica-tions of recycled concrete.It is great meaningful to develop a fast and efficient method ,contributing to getting high-quality recycled con-crete aggregates.The current variety of recycled concrete aggregate beneficiation methods are put forward.The microwave-assisted me-chanical beneficiation of recycled concrete aggregate is point out as a promising approach.Then the principle of this method ,application of the technical points,problems needing further research are also presented.%再生混凝土骨料的剔选及其质量是制约再生混凝土性能和应用的关键因素。发展一种快速高效、有助于获得高质量的再生混凝土骨料剔选方法具有重要的意义。在综述当前各种再生混凝土骨料剔选方法的基础上,指出微波辅助机械的再生混凝土骨料剔选是有前途的方法,进而指出了这一方法的原理、应用中的技术要点,需要进一步研究的问题。

  4. Lattice modeling of fracture processes in numerical concrete with irregular shape aggregates

    NARCIS (Netherlands)

    Qian, Z.; Schlangen, H.E.J.G.

    2013-01-01

    The fracture processes in concrete can be simulated by lattice fracture model [1]. A lattice network is usually constructed on top of the material structure of concrete, and then the mechanical properties of lattice elements are assigned, corresponding with the phases they represent. The material st

  5. Recycling of demolished concrete

    Energy Technology Data Exchange (ETDEWEB)

    Nagataki, S. [Niigata Univ., Niigata (Japan). Dept. of Civil Engineering; Iida, K. [Technology Centre of Taisei Corp., Yokohama (Japan)

    2001-07-01

    There is a significant amount of research being conducted in Japan on ways to recycle demolished concrete. The material is already being used for road bases and foundations, but in the future, the concrete will have to be recycled as concrete aggregate. Recycling may also include the cement in the concrete in order to address the issue of global warming and carbon dioxide reductions. This initiative is in response to predictions that in the future there will be tremendous quantities of demolished concrete to deal with. Recycling of cement is also necessary in terms of resolving environmental problems and promoting sustainable development. The properties of concrete made with recycled aggregates were described and were compared with original concrete made of known materials. The paper also proposed an approach that should be taken to recycling concrete in the twenty-first century in which reduced limestone was used to reclaim cement. Recycled concrete with cement requires more energy, but uses less resources and discharges less carbon dioxide. Currently, recycled aggregate does not meet the Japanese Industrial Standard for concrete aggregate. The resistance to freeze/thaw cycles was not adequate. The amount of mortar adhered to the recycled aggregate had little affect on the strength and durability of recycled concrete. It was concluded that the quality of recycled concrete aggregate depends on the quality of original concrete. 11 refs., 12 tabs., 11 figs.

  6. Concrete spalling sensitivity versus microstructure: Preliminary results on the effect of polypropylene fibers

    Directory of Open Access Journals (Sweden)

    Rossino Chiara

    2013-09-01

    Full Text Available The phisyco-mechanical processes triggering concrete explosive spalling are related to the heat-induced micro- and meso-structural changes. To have new information on concrete properties at the microstructural level, as well as on how concrete spalling sensitivity is affected by polypropylene and steel fibers, and by aggregate type, ordinary and high-performance concretes are investigated in this research project, after being heated to different temperatures. The focus is on the relationship among porosity, vapor permeability, pore pressure and microcracking inside the cementitious matrix. Polypropylene fibers are shown to increase the total porosity, to favor microcracking and to reduce significantly pore pressure, to the advantage of concrete resistance to explosive spalling, whose risk is markedly reduced – or even zeroed.

  7. Abrasion Properties of Steel Fiber Reinforced Silica Fume Concrete According to Los Angeles and Water Abrasion Tests

    Directory of Open Access Journals (Sweden)

    Tsan-Ching CHENG

    2014-12-01

    Full Text Available The current study mainly investigated the influence of different tests on the abrasion resistance of concrete mixed with steel fibers and silica fume. The abrasion resistance was assessed at 28, 56 and 91 days on concretes with water-binder ratios of 0.35 and 0.55 where in some mixes silica fume was substituted by 5 % of cement by weight. Steel fibers of 0.5 % and 1.0 % of concrete volume were also added into the test concrete by replacement of coarse and fine aggregates. The results showed that concrete with higher compressive strength in Los Angeles abrasion tests also had better abrasion resistance. The inclusion of steel fibers into test concrete with a water-binder ratio of 0.35 resulted in a significant increase in compressive strength. This concrete also displayed better abrasion resistance and splitting tensile strength than reference concrete; in the test sample with a water-binder ratio of 0.55, the added steel fibers was unable to effectively produce cementation with the concrete. The inclusion of silica fume improved the abrasion resistance of concretes. In water abrasion testing, the abrasion resistance of concrete containing steel fiber was worse than that of concrete without steel fibers. In the water abrasion testing, the surface of steel fiber reinforced concrete was eroded by water and steel balls, and the impact caused the steel fibers to separate from the concrete and led to higher wear loss. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6460

  8. Alkali-silica reaction of aggregates for concrete pavements in Chihuahua’s State, Mexico

    Directory of Open Access Journals (Sweden)

    Olague, C.

    2002-12-01

    Full Text Available The concrete of pavements must resist the climatic conditions, heavy traffic, chemical agents or any other type of aggressive agent. A methodology for characterizing materials that would influence concrete durability was developed considering chemical and physical factors. This methodology allows the consideration of several factors like physiography, geology, and climate, among others that would be of great importance to prevent future durability problems of pavements. This methodology takes into account several tests and this paper presents the results of potential reactivity aggregates of the State of Chihuahua. The tests for evaluating the reactive siliceous aggregate and the potential alkali-silica reactivity were performed according to the: petrographic examination (ASTM C 295 and standard quick chemical test (ASTM C 289. 38% of the tested sites resulted innocuous, 48% potentially reactive and 13% reactive. It is discussed the benefit of applying a conscious methodology in order to obtain the best results with a representative quantity of tests.

    El hormigón de los pavimentos debe ser resistente a las condiciones climáticas, tránsito pesado, agentes químicos o cualquier otro tipo de agente agresivo. Se desarrolló una metodología para caracterización de materiales considerando factores físicos y químicos que influyen en la durabilidad del hormigón. Esta metodología se basa en la consideración de varios factores como: fisiografía, geología y clima, entre otros, que podrían ser de gran importancia para prevenir futuros problemas de durabilidad en pavimentos de hormigón. La metodología en cuestión considera varias pruebas, en este artículo se presentan los resultados de la reactividad potencial de los áridos del Estado de Chihuahua. Las pruebas para evaluar la reactividad de áridos silíceos y la reactividad potencial álcali-sílice fueron ejecutadas de acuerdo a: examen petrográfico (ASTM C 295 y la prueba qu

  9. Concrete decontamination by Electro-Hydraulic Scabbling (EHS)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    EHS is being developed for decontaminating concrete structures from radionuclides, organic substances, and hazardous metals. EHS involves the generation of powerful shock waves and intense cavitation by a strong pulsed electric discharge in a water layer at the concrete surface; high impulse pressure results in stresses which crack and peel off a concrete layer of controllable thickness. Scabbling produces contaminated debris of relatively small volume which can be easily removed, leaving clean bulk concrete. Objective of Phase I was to prove the technical feasibility of EH for controlled scabbling and decontamination of concrete. Phase I is complete.

  10. Concrete decontamination by electro-hydraulic scabbling

    Energy Technology Data Exchange (ETDEWEB)

    Goldfarb, V.; Gannon, R. [Textron Defense System, Everett, MA (United States)

    1995-10-01

    Textron Defense Systems (TDS) is developing an electro-hydraulic device that has the potential for faster, safer, and less expensive scabbling of contaminated concrete surfaces. In the device, shock waves and cavitating bubbles are produced in water by the electric pulses, and the direct and reflected shock waves impinging on the concrete surface result in the crushing and cracking of the concrete. Pulse energy, frequency, and traverse speed control the depth of the scabbling action. Performance thus far has demonstrated the capability of a prototype unit to process a swath 24 inches wide, up to 3/4 inch deep at a linear velocity of up to 6 feet per hour, i.e., at a scabbling rate of 12 sq. ft. per hour.

  11. Theoretical considerations on the supposed linear relationship between concrete resistivity and corrosion rate of steel reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Gulikers, J. [Research Department, Rijkswaterstaat Bouwdienst, Ministry of Transport, Public Works and Water Management, P.O. Box 20000, 3502 LA Utrecht (Netherlands)

    2005-06-01

    Traditionally, the assessment of service life of steel reinforced concrete structures has been focused on the prediction of the time required to achieve a transition from passive to active corrosion rather than to accurately estimate the subsequent corrosion rates. However, the propagation period, i.e. the time during which the reinforcing steel is actively corroding, may add significantly to the service life. Consequently, ignoring the propagation period may prove to be a conservative approach. On the other hand the prediction of the corrosion rate may result in a very complex task in view of the electrochemical nature of corrosion and the numerous parameters involved. In order to account for the various influences an essentially empirical model has been introduced in which the electrolytic resistivity of the concrete environment serves as the major parameter. This model will be discussed for carbonation-induced corrosion based on the commonly accepted theory of aqueous corrosion. An alternative model for microcell corrosion is proposed which is based on the commonly accepted view that anodic and cathodic sites are microscopic and their locations change randomly with time. In line with this view electrolytic resistivity can be incorporated and thus may play a significant role in the kinetics of the corrosion process. For a wide range of corrosion current densities the relationship between corrosion current density, log(i{sub corr}), and concrete resistance, log(R{sub con}), can then be approximated by an almost ideal linear relationship. Assuming a fixed geometrical arrangement of anodic and cathodic sites on the steel surface, this linear relationship is also valid for concrete resistivity, {rho}{sub con}. However, from the theoretical treatment of the electrochemical processes underlying reinforcement corrosion it becomes evident that a linear relationship between corrosion current density and concrete resistivity does not necessarily imply that concrete

  12. Dependability in Aggregation by Averaging

    CERN Document Server

    Jesus, Paulo; Almeida, Paulo Sérgio

    2010-01-01

    Aggregation is an important building block of modern distributed applications, allowing the determination of meaningful properties (e.g. network size, total storage capacity, average load, majorities, etc.) that are used to direct the execution of the system. However, the majority of the existing aggregation algorithms exhibit relevant dependability issues, when prospecting their use in real application environments. In this paper, we reveal some dependability issues of aggregation algorithms based on iterative averaging techniques, giving some directions to solve them. This class of algorithms is considered robust (when compared to common tree-based approaches), being independent from the used routing topology and providing an aggregation result at all nodes. However, their robustness is strongly challenged and their correctness often compromised, when changing the assumptions of their working environment to more realistic ones. The correctness of this class of algorithms relies on the maintenance of a funda...

  13. Performance Evaluation of Concrete using Marble Mining Waste

    Science.gov (United States)

    Kore, Sudarshan Dattatraya; Vyas, A. K.

    2016-12-01

    A huge amount waste (approximately 60%) is generated during mining and processing in marble industries. Such waste can be best utilized in infrastructure development works. Coarse aggregate 75% by weight was replaced by aggregate obtained from marble mining waste. The impact of marble waste as a partial replacement for conventional coarse aggregate on the properties of concrete mixes such as workability, compressive strength, permeability, abrasion, etc. was evaluated. The test results revealed that the compressive strength was comparable to that of control concrete. Other properties such as workability of concrete increased, water absorption reduced by 17%, and resistance to abrasion was marginally increased by 2% as compared to that of control concrete. Ultrasonic pulse velocity and FTIR results show improvement in quality of concrete with crushed marble waste. From the TGA analysis it was confirmed that, aggregate produced from marble waste shows better performance under elevated temperature than that of conventional aggregates.

  14. Performance Evaluation of Concrete using Marble Mining Waste

    Directory of Open Access Journals (Sweden)

    Kore Sudarshan Dattatraya

    2016-12-01

    Full Text Available A huge amount waste (approximately 60% is generated during mining and processing in marble industries. Such waste can be best utilized in infrastructure development works. Coarse aggregate 75% by weight was replaced by aggregate obtained from marble mining waste. The impact of marble waste as a partial replacement for conventional coarse aggregate on the properties of concrete mixes such as workability, compressive strength, permeability, abrasion, etc. was evaluated. The test results revealed that the compressive strength was comparable to that of control concrete. Other properties such as workability of concrete increased, water absorption reduced by 17%, and resistance to abrasion was marginally increased by 2% as compared to that of control concrete. Ultrasonic pulse velocity and FTIR results show improvement in quality of concrete with crushed marble waste. From the TGA analysis it was confirmed that, aggregate produced from marble waste shows better performance under elevated temperature than that of conventional aggregates.

  15. Cause analysis of soft aggregate and impact evaluation of lining concrete structure in a tunnel project%某隧洞工程衬砌混凝土软骨料成因分析与影响评价

    Institute of Scientific and Technical Information of China (English)

    顾培英; 汤雷; 赵明志; 邓昌

    2014-01-01

    In order to examine the causes of white pits that appear on the surface of lining concrete in a water tunnel , we conducted statistical analysis of the distribution of soft aggregates , carried out compression strength tests of concrete core samples , and conducted X-ray diffraction tests and petrographic analysis of gravel aggregates .The research results show that there were one to two soft aggregates per square meter on the lining concrete surface .The content of soft aggregate inside the concrete was small and exhibited random distribution .The appearance of soft aggregate was caused by a small amount of illite that was mixed into the gravels during construction , and when the concrete ’ s surface layer was washed away , the weak illite gradually emerged .The compression strengths of the concrete core samples were all higher than the design value .The soft aggregate did not reduce the compression strength of lining concrete significantly .%为了查清某输水隧洞部分衬砌混凝土表面出现白色坑点的病害成因,进行了软骨料分布统计分析、混凝土芯样试件抗压强度试验、石子骨料X射线衍射试验和岩相结构分析等研究。研究结果表明:每平方米衬砌混凝土表面平均有1~2个软骨料,内部软骨料质量分数较小,呈随机分布;软骨料是当初施工时在料场石子中混入的少量伊利石,在水流冲刷作用下,衬砌混凝土表层剥落并造成薄弱的伊利石骨料逐渐显露;衬砌混凝土芯样试件的抗压强度均大于设计要求,软骨料现象没有明显降低衬砌混凝土的抗压强度。

  16. Experiment Research on Performance of Coal Gangue Aggregates Lightweight Concrete%煤矸石轻集料混凝土性能试验研究

    Institute of Scientific and Technical Information of China (English)

    宋洋; 赵禹; 祝百茹

    2014-01-01

    研究以煤矸石作为骨料制备混凝土的可靠性,将不同比例的煤矸石骨料替代普通碎石骨料制备煤矸石混凝土,进行了碱骨料反应、抗渗性能和抗冻性能试验分析。结果表明,试验选用煤矸石骨料均为非碱活性骨料;随着煤矸石骨料掺入量的增加,煤矸石混凝土抗压强度下降不明显,但其抗渗性能和抗冻性能则出现显著下降,自燃红矸石骨料掺入量宜控制在10%~20%,此条件下煤矸石作为骨料制备混凝土可行。%Aiming at studying the feasibility that coal gangues are taken as aggregates to prepare concrete, experiments on the aggregate reaction, permeability resistance and freeze resistance performance test analysis, which using different proportion of gangue aggregate replace ordinary gravel aggregate preparation of gangue concrete.The results showed that all coal gangue are non-active aggregate;within a certain range, coal gangue will not signiifcantly reduce the impermeability of concrete. With the increase of coal gangue, mechanical performance of coal gangue concrete has not been reduced, but frost resistance of concrete has been signiifcantly reduced in this paper. The red spontaneous combustion control between 10%~20%, under this condition it is feasible for coal gangues to be used to prepare concrete.

  17. Utilization of crushed clay brick in cellular concrete production

    Directory of Open Access Journals (Sweden)

    Ali A. Aliabdo

    2014-03-01

    Full Text Available The main objective of this research program is to study the effect of using crushed clay brick as an alternative aggregate in aerated concrete. Two series of mixtures were designed to investigate the physico-mechanical properties and micro-structural analysis of autoclave aerated concrete and foamed concrete, respectively. In each series, natural sand was replaced with crushed clay brick aggregate. In both series results showed a significant reduction in unit weight, thermal conductivity and sound attenuation coefficient while porosity has increased. Improvement on compressive strength of autoclave aerated concrete was observed at a percentage of 25% and 50% replacement, while in foamed concrete compressive strength gradually decreased by increasing crushed clay brick aggregate content. A comparatively uniform distribution of pore in case of foamed concrete with natural sand was observed by scanning electron microscope, while the pores were connected mostly and irregularly for mixes containing a percentage higher than 25% clay brick aggregate.

  18. Excavation of the SPS tunnel (view of a section prior to lining by a concrete shell)

    CERN Multimedia

    1974-01-01

    The SPS ring (6911 m in circumference) is housed at a depth of 40 m (average) under the surface. The tunnel with an overall cross-sectional diameter of 4.8 m was drilled by big tunnelling machines (see 7406022X, 7406027X) into the molasse rock present in the Geneva basin. After the passage of the tunnelling machine the tunnel walls were lined with a concrete layer of about 30cm thickness.

  19. Properties of High Volume Fly Ash Concrete Compensated by Metakaolin or Silica Fume

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The compressive strength and dynamic modulus of high volume fly ash concrete with incorporation of either metakaolin or silica fume were investigated. The water to cementitious materials ratio was kept at 0.4 for all mixtures. The use of high volume fly ash in concrete greatly reduces the strength and dynamic modulus during the first 28 days. The decreased properties during the short term of high volume fly ash concrete is effectively compensated by the incorporation of metakaolin or silica fume. The DTA results confirmed that metakaolin or silica fume increase the amount of the hydration products. An empirical relationship between dynamic modulus and compressive strength of concrete has been obtained. This relation provides a nondestructive evaluation for estimating the strength of concrete by use of the dynamic modulus.

  20. Evaluation of steel slag coarse aggregate in hot mix asphalt concrete.

    Science.gov (United States)

    Ahmedzade, Perviz; Sengoz, Burak

    2009-06-15

    This paper presents the influences of the utilization of steel slag as a coarse aggregate on the properties of hot mix asphalt. Four different asphalt mixtures containing two types of asphalt cement (AC-5; AC-10) and coarse aggregate (limestone; steel slag) were used to prepare Marshall specimens and to determine optimum bitumen content. Mechanical characteristics of all mixtures were evaluated by Marshall stability, indirect tensile stiffness modulus, creep stiffness, and indirect tensile strength tests. The electrical sensitivity of the specimens were also investigated in accordance with ASTM D257-91. It was observed that steel slag used as a coarse aggregate improved the mechanical properties of asphalt mixtures. Moreover, volume resistivity values demonstrated that the electrical conductivity of steel slag mixtures were better than that of limestone mixtures.

  1. Concrete

    OpenAIRE

    2015-01-01

    Concrete is a component of coherent transition between a concrete base and a wooden construction. The structure is based on a quantity of investigations of the design possibilities that arise when combining digital fabrication tools and material capacities.Through tangible experiments the project discusses materiality and digitally controlled fabrications tools as direct expansions of the architect’s digital drawing and workflow. The project sees this expansion as an opportunity to connect th...

  2. 再生粗骨料混凝土早期收缩性能试验研究%Experimental research on early shrinkage of recycled coarse aggregate concrete

    Institute of Scientific and Technical Information of China (English)

    张兴才; 李洪明; 朱磊

    2015-01-01

    The influences of water - cement ratio,replacement ratio of recycled coarse aggregate,water reducer and fly ash on early dr-ying shrinkage of recycled concrete were investigated by experiments.Research results show that the shrinkage ratio and the water loss ratio of recycled concrete increase with the water - cement ratio and replacement ratio of recycled coarse aggregate,the rates of the shrinkage and water loss reach to the maximum in the first 7 days,and water reducer and fly ash could effectively reduced the shrinkage of recycled concrete.The model for drying shrinkage of recycled concrete with 100% replacement of the recycled coarse aggregate is es-tablished according to experiment results,and the calculated values of the shrinkage ratio of recycled coarse aggregate concrete are in good agreement with the test values obtained by other researchers.%通过试验研究水灰比、再生粗骨料取代率、减水剂和粉煤灰对再生混凝土早期干缩性能的影响。研究结果表明,再生混凝土的早期干缩率和失水率均随着水灰比和取代率的增大而增大;再生混凝土在龄期7 d 内干缩速率和失水速率最大;掺入减水剂和粉煤灰可以有效地控制再生混凝土的干缩。根据试验结果建立了再生粗骨料取代率为100%的再生混凝土早期干缩计算模型,该模型计算结果与他人试验结果吻合较好。

  3. Formwork pressure exerted by self-consolidating concrete

    Science.gov (United States)

    Omran, Ahmed Fathy

    , effective ways to reduce lateral pressure by developing formulation expertise and practical guidelines to lower lateral pressure of SCC were proposed. Various design equations as well as chart diagrams to predict formwork pressure that can be exerted by SCC on column and wall elements were derived and reported. In general, the results obtained show that measured lateral pressure is lower than corresponding hydrostatic pressure. The study has shown that lateral pressure exerted by SCC is closely related to the structural build-up at rest (or thixotropy) of SCC. The latter can be controlled using different mixture proportionings, material constituents, and chemical admixtures. SCC mixture with a high rate of structural build-up at rest can develop low lateral pressure on formwork. Increased rate of structural build-up at rest can be ensured by incorporating a greater volume of coarse aggregate, lower paste volume, and/or lower sand-to-total aggregate ratio. Incorporating coarse aggregate of larger maximum size could also increase the thixotropy and hence reduce the lateral pressure. This can also be achieved by reducing the workability of SCC using less HRWRA concentration. Indeed, all mixture factors have been replaced by measuring the rate of structural build-up at rest (or thixotropy) using the developed portable vane and inclined plane field-oriented test as well as the modified Tattersall MK-III concrete rheometer. On the other hand, increasing or maintaining the concrete temperature at a certain level plays an important role to reduce the lateral pressure. The higher concrete temperature can accelerate the heat of hydration of cement with water and increase the internal friction leading to higher thixotropy. Controlling the placement rate has a great impact on the resultant lateral pressure of SCC. The lateral pressure can be reduced by slowing down the casting rate, as concrete has more time to build-up. However, this can slow down the rate of construction. The casting

  4. Using Recycled Glass and Zeolite in Concrete Pavement to Mitigate Heat Island and Reduce Thermal Cracks

    Directory of Open Access Journals (Sweden)

    Erhan Burak Pancar

    2016-01-01

    Full Text Available Urban heat island (UHI effect is built environmental issue related to pavements. It is desired to reduce pavement high surface temperature in summer to mitigate UHI effect. High surface temperature also affects slab temperature difference (the top surface temperature minus the bottom surface temperature of the slab. The increased slab temperature difference induces a high possibility of cracking in concrete roads. The prime aim of this study was to reduce the slab surface temperature by using recycled glass as a fine aggregate and zeolite as cement in concrete. Recycled glass was used to replace fine aggregate in proportions of 10%, 20%, and 30% by total weight of aggregate. Zeolite replaced Portland cement in proportions of 10% and 30% for three different proportions of recycled glass concrete mixtures. Optimum proportions were determined by examining mechanical properties of samples and alkali-silica reactions. It was noticed that using recycled glass and zeolite together in concrete reduces pavement surface temperature and temperature gradient in summer.

  5. 基于弹性模量的再生混凝土疲劳强度分析%On Fatigue Strength of Recycled Aggregate Concrete Based on Its Elastic Modulus

    Institute of Scientific and Technical Information of China (English)

    李宏; 肖建庄

    2012-01-01

    通过试验与分析,建立了再生混凝土弹性模量与其疲劳强度的回归公式,结果表明:由该回归公式计算出的再生混凝土受压疲劳强度与试验结果接近,可用来预测再生混凝土的受压疲劳强度,并指导工程实践;初步验证了GB 50010-2002《混凝土结构设计规范》中普通混凝土受压疲劳强度的取值方法对再生混凝土同样适用.%Based on the experiments and analysis, the relationship between the elastic modulus and the fatigue strength of recycled aggregate concrete(RAC) was established. The compressive fatigue strength calculated according to the formula suggested by this investigation is close to the experimental results, a reliable prediction for the compressive fatigue strength of RAC can be used to guide the engineering practice. And it is confirmed from this study that the method in code for GB 50010-2002 (Design of Concrete Structures> is suitable for the calculation of the compressive fatigue strength of RAC.

  6. Numerical simulation of the throwing power of cathodic prevention applied to marine reinforced concrete piles by means of sacrificial anodes

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Luca; Redaelli, Elena [Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica ' G. Natta' , Via Mancinelli, 7, 20131 Milan (Italy)

    2004-07-01

    The paper deals with the determination of current and potential distribution in reinforced concrete elements partially submerged in seawater aimed at predicting the throwing power of cathodic prevention applied by means of sacrificial anodes. Previous laboratory studies carried out on reinforced concrete columns 15 cm x 15 cm x 120 cm showed that the use of sacrificial anodes placed in the solution at the bottom of the column could provide protection of corroding steel bars in the emerged part of the pile up to about 60 cm from the water level. However, if sacrificial anodes were applied when the concrete was chloride free and steel bars were still passive, even the highest bar, placed at 1 m from the level of water, was protected. This is due to the higher polarizability of passive steel, that makes the throwing power of cathodic prevention higher compared to that of cathodic protection. In order to extend the results obtained on small-scale specimens to elements of higher dimensions, numerical simulations of current and potential distribution were carried out. Two-dimensional models were set up of reinforced concrete piles containing steel bars at different heights protected with sacrificial anodes placed in the water in which they were partially submerged. Boundary conditions describing the electrochemical behaviour of bars were obtained from polarisation curves measured on the previously mentioned columns. Values of concrete conductivity at different heights from the water level were also obtained from those tests. Several cases were considered, representative of conditions differing in electrochemical behaviour of steel bars, dimensions of element, position of sacrificial anodes. The paper discusses the results obtained from the models and compares them in terms of the throwing power that can be reached by using sacrificial anodes immersed in the seawater to protect reinforcing steel bars in the emerged part of a pile. (authors)

  7. 不同骨料防辐射混凝土屏蔽性能试验%Different concrete aggregate anti-radiation shielding performance test

    Institute of Scientific and Technical Information of China (English)

    郭文强; 石建军; 曾帅; 陈炤瑀; 宋雪

    2016-01-01

    In order to study the shielding performance of different aggregate anti-radiation concrete and the ordinary sand and gravel ag-gregate effect the performance of the radiation protection concrete,selects the magnetite sand and magnetite ore,barite,barite ore,steel ball and ordinary river sand and crushed stone as aggregate,mixing get four groups of the radiation protection concrete,gamma ray shield-ing experiment was carried out.The test results show that the magnetic iron sand,steel ball,magnet ore as the radiation protection concrete aggregate,shielding performance is best;Four groups of the radiation protection concrete contrast each other,can be found among several kinds of aggregate used in the experiment,shielding performance of the steel ball is best,magnetite and barite shielding performance is su-perior to the ordinary sand and gravel aggregate;In the concrete aggregate of common shielding gamma-ray mixed with ordinary river sand and gravel,radiation protection still has a good shielding performance of concrete.%为研究不同骨料防辐射混凝土的屏蔽性能以及普通砂石骨料对防辐射混凝土屏蔽性能的影响,选用磁铁矿砂、磁铁矿石、重晶石、重晶石砂、钢珠以及普通河砂和碎石作为骨料,拌制得到四组防辐射混凝土,进行γ射线屏蔽试验。试验结果表明,以磁铁矿砂、钢珠、磁铁矿石作为骨料的防辐射混凝土,屏蔽性能最好;四组防辐射混凝土相互对比,可以发现试验所用的几种骨料当中,钢珠的屏蔽性能最好,磁铁矿和重晶石骨料的屏蔽性能优于普通砂石;在常用屏蔽γ射线的混凝土骨料当中掺入普通河砂和碎石,防辐射混凝土仍然具有良好的屏蔽性能。

  8. Study of potential advantages of pre-soaking on the properties of pre-cast concrete made with recycled coarse aggregate

    Directory of Open Access Journals (Sweden)

    Sánchez-Roldán, Z.

    2016-03-01

    Full Text Available Recycled aggregate (RA from construction and demolition waste is traditionally used for the manufacture of concrete for different applications. Due primarily to high water content required by RA, the quality of the concrete is determined by the amount of replacement RA. The aim of this study is to determine if RA pre-soaking enhances the properties of pre-cast concrete for street furniture, with low mechanical and structural requirements, in which 100% of the coarse fraction is replaced. The results of physical and mechanical tests performed on concrete specimens in which the RA was pre-soaked using five different methods applied are compared with a reference concrete sample and a concrete sample made with non-pre-soaked RA. The results show that non-pre-soaked RA offers improved physical-mechanical properties for pre-cast concrete, except for the workability; problems arising from poorer workability could be improved with the use of plasticizers, which can be easily included in the production process.El árido reciclado (AR procedente de residuos de construcción y demolición se utiliza tradicionalmente en la elaboración de hormigón para diferentes aplicaciones. Debido principalmente al mayor contenido en agua requerido por el AR, la calidad del hormigón está determinada por la cantidad de AR reemplazado. El objetivo de este estudio es determinar si el AR premojado mejora las propiedades del hormigón prefabricado para mobiliario urbano, con bajas exigencias mecánicas y estructurales, en el que se sustituye el 100% de la fracción gruesa. Los resultados de los ensayos físicos y mecánicos realizados sobre muestras de hormigón en las cuales el AR se ha premojado usando cinco métodos diferentes se han comparado con una muestra de hormigón de referencia y una muestra de hormigón fabricada con AR no premojado. Los resultados muestran que el AR no premojado proporciona propiedades físico-mecánicas mejoradas en el hormigón prefabricado

  9. Changes of conformation and aggregation state induced by binding of lanthanide ions to insulin

    Institute of Scientific and Technical Information of China (English)

    程驿; 李荣昌; 王夔

    2002-01-01

    To clarify the mechanism of lanthanide ions (Ln3+) on the across-membrane transport of insulin and subsequent reducing blood glucose, the interactions of Ln3+ with Zn-insulin and Zn-free insulin are investigated by spectroscopic methods. The results reveal that the binding of Ln3+ to insulin can induce its structure changes from secondary to quaternary structure, depending on the Ln3+ concentration. In the lower concentration, it triggers the conformational changes of insulin monomer in the binding region with insulin receptor (B(24-30)). It would affect insulin-insulin receptor interaction. Moreover, Ln3+ binding promotes the assembly of insulin monomer from dimer to polymer. The potency of Ln3+ in inducing insulin's aggregation is stronger than that of Zn2+. Furthermore, the aggregation can be reversed partly by EDTA-treatment, indicating that it is not due to denaturation. Similar to Zn2+ effect, Ln3+ can stabilize insulin hexamer in a certain range of concentration, but is stronger than the former.

  10. Changes of conformation and aggregation state induced by binding of lanthanide ions to insulin

    Institute of Scientific and Technical Information of China (English)

    程驿; 李荣昌; 王夔

    2002-01-01

    To clarify the mechanism of lanthanide ions (Ln3+) on the across-membrane transport of insulin and subsequent reducing blood glucose, the interactions of Ln3+with Zn-insulin and Zn-free insulin are investigated by spectroscopic methods. The results reveal that the binding of Ln3+ to insulin can induce its structure changes from secondary to quaternary structure, depending on the Ln3+ concentration. In the lower concentration, it triggers the conformational changes of insulin monomer in the binding region with insulin receptor (B(24-30)). It would affect insulin-insulin receptor interaction. Moreover, Ln3+ binding promotes the assembly of insulin monomer from dimer to polymer. The potency of Ln3+ in inducing insulin’s aggregation is stronger than that of Zn2+. Furthermore, the aggregation can be reversed partly by EDTA-treatment, indicating that it is not due to denaturation. Similar to Zn2+ effect, Ln3+ can stabilize insulin hexamer in a certain range of concentration, but is stronger than the former.

  11. INVESTIGATION OF CEMENT CONCRETE CONGLOMERATE SOLIDIFICATION PROCESS BY IMPEDANCE SPECTROSCOPY METHOD

    Directory of Open Access Journals (Sweden)

    S. N. Bandarenka

    2015-01-01

    Full Text Available One of the most prospective directions in preservation  and increase of service live of  road pavements is a construction of  automobile roads with cement concrete surface. Modern tendencies for provision of road construction quality presuppose a necessity to control processes of solidification and subsequent destruction of the material while forming and using cement concrete conglomerate being considered as a basic element of the road surface.  Multiyear practical experience of  automobile road operation using cement concrete pavements reveals an importance for monitoring  such processes as formation and destruction of cement concrete materials. An impedance spectroscopy method has been tried out and proposed as a tool for solution of the given problem.Experimental samples of cement concrete have been prepared for execution of tests, graded silica sand and granite chippings with particle size from 0.63 to 2.5 mm have been used as a fine aggregate in the samples. Dependencies of resistance (impedance on AC-current frequency  have been studied for samples of various nature and granulometric composition. The Gamry  G300 potentiostat has been used for measurement of complex impedance value. A spectrum analysis and calculation of equivalent circuit parameters calculation have been carried out while using EIS Spectrum Analyzer program.Comparison of impedance spectra for the prepared cement concrete samples have made it possible to reveal tendencies in changing spectrum parameters during solidification and subsequent contact with moisture in respect of every type of the sample. An equivalent electrical circuit has been developed that  characterizes physical and chemical processes which are accompanied by charge transfer in cement concrete conglomerate. The paper demonstrates a possibility to use an impedance spectroscopy for solution of a number of actual problems in the field of cement concrete technology problems. Particularly, the problems

  12. Cyclic Crack Monitoring of a Reinforced Concrete Column under Simulated Pseudo-Dynamic Loading Using Piezoceramic-Based Smart Aggregates

    Directory of Open Access Journals (Sweden)

    Qingzhao Kong

    2016-11-01

    Full Text Available Structural health monitoring is an important aspect of maintenance for bridge columns in areas of high seismic activity. In this project, recently developed piezoceramic-based transducers, known as smart aggregates (SA, were utilized to perform structural health monitoring of a reinforced concrete (RC bridge column subjected to pseudo-dynamic loading. The SA-based approach has been previously verified for static and dynamic loading but never for pseudo-dynamic loading. Based on the developed SAs, an active-sensing approach was developed to perform real-time health status evaluation of the RC column during the loading procedure. The existence of cracks attenuated the stress wave transmission energy during the loading procedure and reduced the amplitudes of the signal received by SA sensors. To detect the crack evolution and evaluate the damage severity, a wavelet packet-based structural damage index was developed. Experimental results verified the effectiveness of the SAs in structural health monitoring of the RC column under pseudo-dynamic loading. In addition to monitoring the general severity of the damage, the local structural damage indices show potential to report the cyclic crack open-close phenomenon subjected to the pseudo-dynamic loading.

  13. Low-dose aspirin (ASA) renders human platelets more vulnerable to inhibition of aggregation by prostacyclin (PGI2).

    Science.gov (United States)

    Philp, R B; Paul, M L

    1983-06-01

    Pre-treatment of human, platelet-rich plasma with concentrations of aspirin that produced 50% or less inhibition of aggregation induced by collagen, arachidonic acid or adenosine diphosphate, significantly increased the % inhibition of platelet aggregation by a low concentration of authentic prostacyclin or by prostacyclin-like activity generated by incubation of rat aorta rings in human platelet-poor plasma. Similarly a single aspirin tablet (325 mg) taken orally by human volunteers significantly increased the sensitivity of their platelets to inhibition of aggregation by authentic prostacyclin (8.1 X 10(-10) M) for 2-48 h after ingestion. Statistical significance was lost at 72 h but the trend was still evident. These results support the contention that low doses of aspirin may be efficacious in the therapy of arterial thromboembolism since this could preserve some arterial prostacyclin-generating activity which might be sufficient to inhibit adhesion and aggregation of the aspirin-treated platelets.

  14. Study on Strength and Durability of Concrete by Partial Replacement of Fine Affregate Using Crushed Spent Fire Bricks

    Directory of Open Access Journals (Sweden)

    S. Keerthinarayana

    2010-01-01

    Full Text Available Concrete is the most undisputable and indispensable material being used in infrastructure development throughout the world. Umpteen varieties of concretes (FAC, HVFAC, FRC, HPC, HSC, and others were researched in several laboratories and brought to the field to suit the specific needs. Although natural fine aggregates (i.e., river sand are so far and/or will be superior to any other material in making concrete, their availability is continuously being depleted due to the intentional overexploitation through out the Globe. Hence, partial or full replacement of fine aggregates by the other compatible materials like sintered fly ash, crushed rock dust, quarry dust, glass powder, recycled concrete dust, and others are being researched from past two decades, in view of conserving the ecological balance. In this direction, an experimental investigation of strength and durability was undertaken to use “Spent Fire Bricks” (SFB (i.e. waste material from foundry bed and walls; and lining of chimney which is adopted in many industries for partial replacement of fine aggregate in concrete.

  15. 基于AUTOCAD的混凝土骨料建模分析%Modelling analysis of the concrete aggregate based on AUTOCAD

    Institute of Scientific and Technical Information of China (English)

    梁建; 娄宗科; 韩建宏

    2011-01-01

    In order to study the meso-structure of concrete,models of two-dimensional ellipse,polygon and three-dimensional ellipsoid,polyhedron concrete aggregate were developed through the VBA language in AUTOCAD for finite element analysis. A new method,namely crossing method,which was much simpler and can be used in modelling analysis for aggregate with any shape,was presented by the IntersectWith command in VBA. The simulation results show that concrete aggregate model established by AUTOCAD is easy to understand,simple in method,intuitive and accurate. And through the interactive data file SAT of AUTOCAD can exchange CAD data with other software,a variety of finite element software can be conducted for analysis and research on macro and micro mechanical properties of concrete.%为深入研究混凝土细观结构,利用AUTOCAD内置的VBA语言自动生成混凝土二维椭圆、多边形以及三维椭球、多面体骨料模型,并可以用其进行有限元分析。利用VBA中的IntersectWith命令,提出了一种新的、更为简单的、适用于所有形状的骨料干涉判断方法——交点法。模拟结果表明:利用AUTOCAD建立混凝土骨料模型,程序通俗易懂、方法简单,模型直观且精确性高。通过AUTOCAD与其它软件之间进行CAD数据交换的交互文件SAT,可导入多种有限元软件进行分析,有利于对混凝土的宏观、细观力学性质做进一步的数值研究。

  16. Aggregate Formed by a Cationic Fluorescence Probe

    Institute of Scientific and Technical Information of China (English)

    TIAN, Juan; SANG, Da-Yong; JI, Guo-Zhen

    2007-01-01

    The aggregation behavior of a cationic fluorescence probe 10-(4,7,10,13,16-pentaoxa-1-azacyclooctadecyl-methyl)anthracen-9-ylmethyl dodecanoate (1) was observed and studied by a fluorescence methodology in acidic and neutral conditions. By using the Py scale, differences between simple aggregates and micelles have been discussed. The stability of simple aggregates was discussed in terms of hydrophobic interaction and electrostatic repulsion. The absence of excimer emission of the anthrancene moiety of probe 1 in neutral condition was attributed to the photoinduced electron transfer mechanism instead of photodimerization.

  17. Blast Protection Shelter by Using Hollow Steel Filled with Recycled Concrete

    Institute of Scientific and Technical Information of China (English)

    LI Jianchun; HUANG Xin; MA Guowei

    2008-01-01

    Under extreme loading condition, a shelter will provide a safe place to protect people from injury caused by blast wave and fragments.In order to save resource and reuse waste materials, a new design concept for blast protection shelter was explored.The new construction was composed of I-section steel panel or C-channel steel panel filled with recycled concrete aggregate.The compaction process of the recycled concrete aggregate filled in the steel construction was experimentally investigated.A single storey shelter based on the proposed design concept was numerically simulated by using LS-DYNA software.In the 3D numerical model, three walls were designed using I-section steel and one wall using C-channel steel, and all of the four walls were filled with recycled concrete aggregate.The penetration analysis was done by using ConWep.Some penetration tests were also carried out by using a gas gun.It is found that the proposed shelter based on the design concept is effective for blast protection.

  18. Porous Network Concrete: a bio-inspired building component to make concrete structures self-healing

    NARCIS (Netherlands)

    Sangadji, S.

    2015-01-01

    The high energy consumption, its corresponding emission of CO2 and financial losses due to premature failure are the pressing sustainability issues which must be tackled by the concrete infrastructure industry. Enhancement of concrete materials and durability of structures (designing new infrastruct

  19. Study on the workability and compressive strength of C30 recycled coarse aggregate concrete%C30再生粗骨料混凝土和易性和抗压强度研究

    Institute of Scientific and Technical Information of China (English)

    何锦云; 毛明明

    2011-01-01

    The C30 recycled coarse aggregate concrete is produced by use of the concrete blocks from the dismantled masonry structure buildings and the influence of recycled coarse aggregate replacement percentages, water cement ratio, and sand ratio on the 28 d compressive strength and workability are studied in orthogonal experiment design. The results show that the recycled coarse aggregate replacement percentages is the most primary factor effecting on 28 d compressive strength and workability; and with the recycled coarse aggregate replacement percentages increased, strength and workability decreased; It calls for using the percentages of 60% as recycled coarse aggregate, 0. 5 as water cement ratio and 36% as sand ratio to make reasonable design of mix proportions, we can obtain the recycled coarse aggregate concrete that its 28d compressive strength reach to 46. 3 Mpa.%以砖混结构建筑拆卸下来的混凝土块为原材料制备C30再生粗骨料混凝土,利用正交设计方法,研究了再生粗骨料取代率、水灰比、砂率对再生混凝土28 d抗压强度及和易性的影响.结果表明再生粗骨料取代率是影响混凝土28 d抗压强度及和易性的最主要因素;随着再生粗骨料取代率的增加,强度与和易性均下降;使再生粗骨料取代率为60%,水灰比为0.5,砂率为36%,通过合理的配合比可以配制出28 d强度达到46.3 MPa的混凝土.

  20. Test on Bond Behavior of Concrete Filled Square Steel Tubes Between Steel and Recycled Coarse Aggregate Concrete%方钢管再生混凝土界面粘结性能试验

    Institute of Scientific and Technical Information of China (English)

    赵强

    2016-01-01

    对8根钢管再生混凝土柱界面粘结性能进行研究,探讨再生骨料取代率及再生混凝土强度对钢管再生混凝土界面粘结性能的影响。结果表明:钢管再生混凝土荷载-滑移曲线大致经历无滑移阶段、应力上升段、应力下降段等3个阶段,不同再生骨料取代率的钢管再生混凝土荷载-滑移曲线具有类似的特征;再生骨料的取代率对钢管与再生混凝土界面粘结强度影响显著,再生骨料取代率越高,界面粘结强度越低;再生混凝土强度对钢管再生混凝土强度有一定影响,随着再生混凝土强度提升,粘结强度逐渐增加,但增幅逐渐降低。%To investigate the influence of different ratio and strength grade of recycled aggregate concrete on interfacial bond performance of concrete filled steel tube,the bond behavior of eight pieces of recycled aggregate concrete-filled steel tube is studied.The results indicate that load-slip curve of recycled aggregate concrete-filled steel tube consists of three stages,including the no slip stage,stress increase stage and stress decrease stage.The load-slip curves steel with differ-ent recycled aggregate replacement ratios have similar characteristics.The replacement ratio of recycled aggregate has a significant negative effect on the bond strength.With the increase of the replacement ratio of recycled aggregate,the bond strength decreases gradually.The strength of recycled concrete has a certain effect on the bond strength.With the in-crease of the strength of recycled aggregate concrete,the bond strength increases gradually,but the increase percent re-duces gradually.

  1. Mechanical properties of concrete containing a high volume of tire-rubber particles.

    Science.gov (United States)

    Khaloo, Ali R; Dehestani, M; Rahmatabadi, P

    2008-12-01

    Due to the increasingly serious environmental problems presented by waste tires, the feasibility of using elastic and flexible tire-rubber particles as aggregate in concrete is investigated in this study. Tire-rubber particles composed of tire chips, crumb rubber, and a combination of tire chips and crumb rubber, were used to replace mineral aggregates in concrete. These particles were used to replace 12.5%, 25%, 37.5%, and 50% of the total mineral aggregate's volume in concrete. Cylindrical shape concrete specimens 15 cm in diameter and 30 cm in height were fabricated and cured. The fresh rubberized concrete exhibited lower unit weight and acceptable workability compared to plain concrete. The results of a uniaxial compressive strain control test conducted on hardened concrete specimens indicate large reductions in the strength and tangential modulus of elasticity. A significant decrease in the brittle behavior of concrete with increasing rubber content is also demonstrated using nonlinearity indices. The maximum toughness index, indicating the post failure strength of concrete, occurs in concretes with 25% rubber content. Unlike plain concrete, the failure state in rubberized concrete occurs gently and uniformly, and does not cause any separation in the specimen. Crack width and its propagation velocity in rubberized concrete are lower than those of plain concrete. Ultrasonic analysis reveals large reductions in the ultrasonic modulus and high sound absorption for tire-rubber concrete.

  2. 不同再生骨料取代率混凝土柱耐火性能试验研究%Experimental Study on Fire Resistant Performance of Recycled Concrete Columns with Different Replacement Rate of Recycled Aggregate

    Institute of Scientific and Technical Information of China (English)

    曹万林; 边建辉; 董宏英; 张建伟

    2012-01-01

    为研究不同再生骨料取代率混凝土柱的耐火性能,进行了3个足尺再生混凝土柱在竖向荷载和温度场耦合作用下的升温耐火试验.其中,2个试件再生粗骨料取代率为100%,细骨料为天然砂的半再生混凝土柱;1个试件为再生粗、细骨料取代率均为100%的全再生混凝土柱.在试验基础上,比较分析了各试件的截面温度变化、耐火极限、轴向变形、侧向挠度和破坏形态.研究表明:相同轴压比条件下,半再生混凝土柱的耐火极限随着混凝土强度的提高而降低;混凝土强度变化对温度场分布规律影响较小;半再生混凝土柱与全再生混凝土柱相比,混凝土材料性能退化较慢,耐火性能较好.%In order to investigate the fire resistant performance of the recycled concrete columns with different replacement rate of recycled aggregate;three full-sized recycled concrete columns were designed and tested under high temperature and unchanged vertical load. Two of the specimens were made from recycled concrete with 100% of recycled coarse aggregate and 100% of natural fine aggregate;which was called 50% recycled aggregate concrete. The other one was made from recycled concrete with 100% of recycled coarse aggregate and 100% of recycled fine aggregate;which was called 100% recycled aggregate concrete here. Based on the experimental study;several parameters were comparatively analyzed;including the temperature variation at the cross section;fire endurance;vertical displacement;lateral deflection;and failure modes of specimens. Results show that the fire resistant endurance for recycled coarse aggregate concrete column decreases with the concrete strength increases. The concrete compressive strength has little infuence on the temperature field of columns. Compared to the column with 100% recycled aggregate concrete;the column with 50% recycled aggregate concrete has better fire resistant performance and its material property

  3. Processing of visual semantic information to concrete words: temporal dynamics and neural mechanisms indicated by event-related brain potentials

    NARCIS (Netherlands)

    Schie, H.T. van; Wijers, A.A.; Mars, R.B.; Benjamins, J.S.; Stowe, L.A.

    2005-01-01

    Event-related brain potentials were used to study the retrieval of visual semantic information to concrete words, and to investigate possible structural overlap between visual object working memory and concreteness effects in word processing. Subjects performed an object working memory task that inv

  4. Processing of visual semantic information to concrete words : temporal dynamics and neural mechanisms indicated by event-related brain potentials

    NARCIS (Netherlands)

    van Schie, HT; Wijers, AA; Mars, RB; Benjamins, JS; Stowe, LA; Mars, Ruben

    2005-01-01

    Event-related brain potentials were used to study the retrieval of visual semantic information to concrete words, and to investigate possible structural overlap between visual object working memory and concreteness effects in word processing. Subjects performed an object working memory task that inv

  5. Construction aggregates

    Science.gov (United States)

    Nelson, T.I.; Bolen, W.P.

    2007-01-01

    Construction aggregates, primarily stone, sand and gravel, are recovered from widespread naturally occurring mineral deposits and processed for use primarily in the construction industry. They are mined, crushed, sorted by size and sold loose or combined with portland cement or asphaltic cement to make concrete products to build roads, houses, buildings, and other structures. Much smaller quantities are used in agriculture, cement manufacture, chemical and metallurgical processes, glass production and many other products.

  6. Eliminating Aggregation Bias in Experimental Research: Random Coefficient Analysis as an Alternative to Performing a ‘by-subjects’ and/or ‘by-items’ ANOVA

    Directory of Open Access Journals (Sweden)

    Glenn L. Thompson

    2008-03-01

    Full Text Available Experimental psychologists routinely simplify the structure of their data by computing means for each experimental condition so that the basic assumptions of regression/ANOVA are satisfied. Typically, these means represent the performance (e.g. reaction time or RT of a participant over several items that share some target characteristic (e.g. Mean RT for high-frequency words. Regrettably, analyses based on such aggregated data are biased toward rejection of the null hypothesis, inflating Type-I error beyond the nominal level. A preferable strategy for analyzing such data is random coefficient analysis (RCA, which can be performed using a simple method proposed by Lorch and Myers (1990. An easy to use SPSS implementation of this method is presented using a concrete example. In addition, a technique for evaluating the magnitude of potential aggregation bias in a dataset is demonstrated. Finally, suggestions are offered concerning the reporting of RCA results in empirical articles.

  7. 再生混凝土及其在建筑梁柱构件中应用和研究现状%The application status and problem on recycled aggregate concrete beam and column

    Institute of Scientific and Technical Information of China (English)

    卢俞升; 严捍东

    2012-01-01

    Recycled Aggregate Concrete is a very efficient method to recycle concrete which is abandoned.Development of Recycled Aggregate Concrete is very important for environmental protection and sustainable development.It is necessary to recognize environmental problems and the significant meaning of Recycled Aggregate Concrete developing.Based on the literature study,this paper investigates and summarizes the application of Recycled Aggregate Concrete for all countries in the world including China.The basic property of Recycled Aggregate Concrete is stated in this paper.And it also gives a comprehensive insight into current research in Recycled Aggregate Concrete which applied in building beam and column components in structures.Some problems on Recycled Aggregate Concrete applying in structures are found and the solutions of them are discussed for reference in this paper.%再生混凝土是废弃混凝土回收利用的有效途径。从环境保护和可持续发展方面出发,发展再生混凝土很有必要。本文对再生混凝土国内外应用现状、再生混凝土基本性能和再生混凝土在建筑梁柱构件中研究现状进行了较全面的综述,对再生混凝土在建筑结构中的应用具有一定的参考价值。

  8. FOAM CONCRETE REINFORCEMENT BY BASALT FIBRES

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2012-10-01

    Full Text Available The authors demonstrate that the foam concrete performance can be improved by dispersed reinforcement, including methods that involve basalt fibres. They address the results of the foam concrete modeling technology and assess the importance of technology-related parameters. Reinforcement efficiency criteria are also provided in the article. Dispersed reinforcement improves the plasticity of the concrete mix and reduces the settlement crack formation rate. Conventional reinforcement that involves metal laths and rods demonstrates its limited application in the production of concrete used for thermal insulation and structural purposes. Dispersed reinforcement is preferable. This technology contemplates the infusion of fibres into porous mixes. Metal, polymeric, basalt and glass fibres are used as reinforcing components. It has been identified that products reinforced by polypropylene fibres demonstrate substantial abradability and deformability rates even under the influence of minor tensile stresses due to the low adhesion strength of polypropylene in the cement matrix. The objective of the research was to develop the type of polypropylene of D500 grade that would demonstrate the operating properties similar to those of Hebel and Ytong polypropylenes. Dispersed reinforcement was performed by the basalt fibre. This project contemplates an autoclave-free technology to optimize the consumption of electricity. Dispersed reinforcement is aimed at the reduction of the block settlement in the course of hardening at early stages of their operation, the improvement of their strength and other operating properties. Reduction in the humidity rate of the mix is based on the plasticizing properties of fibres, as well as the application of the dry mineralization method. Selection of optimal parameters of the process-related technology was performed with the help of G-BAT-2011 Software, developed at Moscow State University of Civil Engineering. The authors also

  9. 轻骨料混凝土与EPS板复合生产屋面隔热砖的试验研究%The Experimental Studies on the Roofing Heat Insulation Brick Produced by the Combination of Light Weight Aggregate Concrete and Polystyrene Board

    Institute of Scientific and Technical Information of China (English)

    陈秀峰; 严捍东

    2011-01-01

    A production technology for a new kind of roofing composition heat insulation brick was studied in the paper. That has surface layer and bottom layer of light weight aggregate concrete, sandwich layer of Polystyrene (EPS) broad with certain height and skin decoration layer of color and water proof cement mortar. The influence pattern of sandwich layer height of EPS board, type of light weight aggregate concrete and mating mode among layers on the compressive strength, flexural strength, bulk density, thermal conductivity and water absorption in 24 hour of composition heat insulation brick were measured and analyzed systematically by trial. The experimental results demonstrate that the height of EPS broad should be 15mm - 20mm. Some properties of composition heat insulation brick could be improved at some extent by means of the technology of the constant volume replacement of pottery sand by EPS granule or expansion perlite of 40% to 80% and punching hole at EPS broad. That technology can be adopted reasonably in practice manufacture.%研究了一种新型屋面复合隔热砖的生产技术,它以轻骨料混凝土为面层和底层,中间复合一定厚度的聚苯乙烯(EPS)板,表层采用彩色防水水泥砂浆装饰.通过试验系统测试和分析了芯层EPS板厚度、轻骨料混凝土种类、层间联接方式对复合隔热砖抗压强度、抗折强度、压缩比、表现密度、导热系数、24 h吸水率的影响规律.试验结果表明EPS板的厚度宜为15 mm-20 mm,40% - 80% EPS颗粒或膨胀珍珠岩等体积取代陶砂、EPS板穿孔等技术在一定程度上可以改善复合隔热砖的部分性能,实际生产时可以合理采用.

  10. Soil Aggregation and Its Relationship with Organic Carbon of Purple Soils in the Sichuan Basin, China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The interaction of soil aggregate dynamics with soil organic carbon is complex with varied spatio-temporal processes in macro-and micro-aggregates, This paper is to determine the aggregation of soil aggregates in purple soils (Regosols in FAO Taxonomy or Entisols in USDA Taxonomy) for four types of land use, cropland [com (Zea mays L.)], orchard (citrus), forestland (bamboo or cypress), and barren land (wild grass), and to explore their relationship with soil organic carbon in the Sichuan basin of southwestern China. Procedures and methods, including manual dry sieving procedure, Yoder's wet sieving procedure, pyrophosphates solution method, and Kachisky method, are used to acquire dry, wet, and chemically stable aggregates, and microaggregates. Light and heavy fractions of soil organic carbon were separated using 2.0 g mL-1 HgI2-KI mixed solution. The loosely, stably, and tightly combined organic carbon in heavy fraction were separated by extraction with 0.1 M NaOH and 0.1 M NaOH-0.1M Na4P2O7 mixed solution (pH 13). The results show that the contents of dry and wet macroaggregates > 0.25 mm in diameter were 974.1 and 900.0 g kg-1 highest in red brown purple soils under forestland, while 889.6 and 350.6 g kg-1 lowest in dark purple soil and lowest in grey brown purple soils under cropland, respectively. The chemical stability of macroaggregates was lowest in grey brown purple soil with 8.47% under cropland, and highest in red brown purple soil with 69.34% under barren land. The content of microaggregates in dark purple soils was 587 g kg-1 higher than brown purple soils, while 655 g kg-1 in red brown purple soils was similar to grey brown purple soils (651 g kg-1). Cropland conditions, only 38.4% of organic carbon was of the combined form, and 61.6% of that existed in light fraction. Forestland conditions, 90.7% of organic carbon in red brown purple soil was complexed with minerals as a form of humic substances. The contents and stability of wet aggregates >0.25 mm

  11. 骨料缺陷对再生混凝土力学性能的影响%Influence of Defects in Recycled Aggregate on Mechanical Properties of Recycled Aggregate Concrete

    Institute of Scientific and Technical Information of China (English)

    朋改非; 黄艳竹; 张九峰

    2012-01-01

    将2种普通混凝土破碎加工成再生粗骨料(RA),经620℃高温处理,剔除RA上的附着砂浆,得到再生粗骨料H-RA,然后配制再生骨料混凝土(RAC),测定其抗压强度、劈裂抗拉强度和断裂能.结果表明:RAC的力学性能显著下降,这归因于RA破碎加工导致的石子损伤及其表面的附着砂浆;在低水胶比条件下,RA中的石子损伤是导致RAC力学性能下降的主要因素,而在高水胶比条件下,导致RAC力学性能下降的主要因素则是石子表面的附着砂浆;吸水率与断裂能可敏锐反映RA的缺陷特征.%An experimental research on the influence of defects in recycled aggregate on mechanical properties of recycled aggregate concrete(RAC) was conducted. Concretes with two water-binder ratios(0. 59 and 0.25) were broken into recycled aggregate (RA), which might induce defects in the forms of damage of gravel in RA and mortar attached to RA. A type of thermal treatment, I. E. Heating under temperature 620 ℃ for 3 h, was employed to remove attached mortar. Tests were conducted to determine compressive strength, tensile splitting strength and fracture energy of the concrete. The experimental results reveal that the mechanical properties of RAC are significantly lower than those of natural aggregate concrete. As to RAC with a low water-binder ratio, gravel damage is a main factor causing the decrease in the mechanical properties, while with a high water-binder ratio, attached mortar is such a factor. Among the properties measured in this investigation, water absorption and fracture energy are the two factors that can sharply reflect influence of the defects in RA during the broken process. It is suggested that prior to mix proportion design and preparation of concrete using recycled aggregate, it is necessary to obtain the details of demolished concrete such as its strength grade or water-binder ratio, and of the characteristics of defects in recycled aggregate.

  12. New heavy aggregate for offshore petroleum pipeline concrete coating Central West Sinai, Egypt

    Directory of Open Access Journals (Sweden)

    M.I. Abdou

    2014-12-01

    Full Text Available In this paper the local materials used in concrete mix are studied in a manner that they can resist the aggressive marine environment and mechanical damage, which can occur at several stages during transportation, construction and installation of the pipelines. In earlier studies we succeeded in finding the Egyptian ilmenite ore adequate for concrete weight coating and already utilized for many pipeline projects in Egypt. According to the presence of about 30% titanium oxides in ilmenite composition which may be extracted to be used in others strategically fields, the object of this paper is to study and evaluate the mechanical, chemical and physical properties of another local hematite high density iron ore to be used in subsea concrete weight coating for offshore petroleum pipelines. The results indicate that the local material of Um Bogma hematite iron ore can substitute both imported iron ore and local ilmenite from Abu Ghalaga in this field to reduce the cost effective and increased economical value of local ores. Laboratory and field tests were conducted for the hematite ore forming a concrete mix, composed of hematite ore, cement and fresh water according to international concrete coating specification requirements, the ore produces a concrete mix with 190–195 pcf minimum dry density and compressive strength, after 28 days of hydration, varying from 40 to 45 N/mm2 (400–450 kg/cm2 which comply with the international standards and specifications of submarine petroleum pipeline coating. In addition, local hematite shows superior results than local ilmenite and achieves 190 pcf instead of 180 pcf in case of using ilmenite.

  13. THE RELATIONSHIP OF THE ELASTIC AND STRENGTH PROPERTIES OF CLAYDITE-CONCRETE AND ITS COMPONENTS

    Directory of Open Access Journals (Sweden)

    M. O. Nikiforova

    2008-01-01

    Full Text Available The paper is dealt with mutual influence of resilient and cohesion characteristics of the mortar ingredients of lightweight aggregate concrete on its physical and mechanical properties.

  14. Prevention of reinforcement corrosion by hydrophobic treatment of concrete

    NARCIS (Netherlands)

    Polder, R.B.; Borsje, H.; Vries, H. de

    2001-01-01

    Corrosion of reinforcement in concrete bridge decks may occur due to penetration of de-icing salts, even in the presence of an asphalt overlay. This paper reports a laboratory study into additional protection of concrete by hydrophobic treatment. It was found that hydrophobic treatment strongly redu

  15. Influence of recycled fine aggregates on the resistance of mortars to magnesium sulfate attack.

    Science.gov (United States)

    Lee, Seung-Tae

    2009-08-01

    The influence of recycled fine aggregates, which had been reclaimed from field-demolished concretes, on the resistance of mortar specimens to magnesium sulfate attack was investigated. Mortar specimens were prepared with recycled fine aggregates at different replacement levels (0%, 25%, 50%, 75% and 100% of natural fine aggregate by mass). The mortar specimens were exposed to 4.24% magnesium sulfate solution for about 1 year at ambient temperature, and regularly monitored for visual appearance, compressive strength loss and expansion. Additionally, in order to identify products of magnesium sulfate attack, mortar samples incorporating 0%, 25% and 100% replacement levels of the recycled fine aggregates were examined by X-ray diffraction (XRD) technique. Experimental results confirmed that the use of recycled fine aggregates up to a maximum 50% replacement level is effective under severe magnesium sulfate environment, irrespective of type of recycled fine aggregates. However, the worse performance was observed in mortar specimens incorporating 100% replacement level. It was found that the water absorption of recycled fine aggregates affected deterioration of mortar specimens, especially at a higher replacement level. XRD results indicated that the main cause of deterioration of the mortar specimens was primarily due to the formation of gypsum and thaumasite by magnesium sulfate attack. In addition, it appeared that the conversion of C-S-H into M-S-H by the attack probably influenced mechanical deterioration of mortar specimens with recycled fine aggregates.

  16. Experimental Study on Influencing Factor of Workability of High-strength Lightweight Aggregate Concrete%高强轻骨料混凝土拌合物性能及影响因素试验研究

    Institute of Scientific and Technical Information of China (English)

    高英力; 刘赫; 张海伦; 唐斌璨

    2013-01-01

    采用粉煤灰等量取代水泥以及轻质砂代替普通砂,制备了高强轻骨料混凝土.通过试验研究了轻骨料吸水特性,颗粒类型和粒径,砂的细度模数,粉煤灰等级等因素对混凝土拌合物性能的影响,并且利用工业CT分析了骨料内部孔隙.结果表明,页岩陶粒充分预湿以后,轻骨料混凝土具有良好的流动性且经时损失小;圆球型陶粒混凝土相比于碎石型陶粒混凝土的拌合物性能更好,同时,粒径偏大的陶粒容易出现上浮现象.掺入超细粉煤灰的轻骨料混凝土拌合物性能有较大改善,掺入Ⅰ级粉煤灰试样的工作性相差不大,掺入Ⅱ级粉煤灰的试样的工作性有所降低;从拌合物性能优化的角度考虑,细度模数为2.4 ~2.8的砂较适合作为轻骨料混凝土用砂,且用轻质砂代替普通砂可使轻骨料混凝土容重大幅度降低.%High-strength lightweight aggregate concrete ( HSLWC) was prepared by using fly ash to substitute with equivalent cement and lightweight sand to substitute with normal sand. Factors that may influence workability, such as water absorption of lightweight aggregate, grain size, diameter of particle and fly ash, were studied through experiments. The internal pore structure of lightweight aggregate was detected by industrial computed tomography. The test results show that concrete with pre-wetted ceramisite as coarse aggregate has good workability. Compared to crashed ceramisite, spherical ceramisite is better for the improvement of concrete workability but the phenomenon that the ceramisite aggregate separate from the cement paste was easy to appear even using spherical ceramisite when the grain size of ceramisite was too large. The workability of lightweight concrete was improved significantly when ultra-fly ash is added. Meanwhile, when Ⅰ -grade fly ash was added, the workability of lightweight concrete was without apparent change, but the workability of lightweight concrete

  17. 再生骨料预拌混凝土的应用研究%A study on applications of recycled aggregate ready-mixed concrete

    Institute of Scientific and Technical Information of China (English)

    冯向东; 范永法; 李翠玲

    2012-01-01

    With the in-house developed waste concrete recycling technology, this study proposes a new approach of construction waste processing during the urban renewal. The physical properties of the recycled aggregate are analyzed based on lab test data, as well as the working performance and mechanical characteristics, and factors affecting these properties are discussed. The test result reveals that the recycling process effectively improves the aggregate quality,with activating the aggregate performance and enhancing the process efficiency. The coarse aggregate prepared by this process well meets the requirements of the national industry standard GB/T 25177-2010"Recycled Coarse Aggregate for Concrete", the fine aggregate prepared by this process well meets the requirements of the national industry standard GB/T 25176-2010"Recycled Fine Aggregate for Concrete and Mortar". The recycled aggregate ready-mixed concrete possesses the similar strength as the corresponding reference concrete when the proportion of the recycled coarse aggregate equals or leas than 50% and the recycled concrete strength grade equals or lower than C40. With additives or other measurements,workability of the recycled concrete mixture is tremendously reinforced, and requirements for the production, transportation and pumping of ready-mixed concrete are completely fulfilled.%采用自主研发的建筑废弃物回收工艺,对城市改造过程中产生的建筑废弃物进行处理.通过试验分析了再生粗骨料的物理性能,以及再生骨料混凝土的工作性、力学性能,探讨了各项性能变化的影响因素.试验结果表明,该回收工艺有效改善了骨料质量,活化骨料性能,加工功效明显,制备出的再生粗骨料能够满足GB/T 25177-2010《混凝土用再生粗骨料》要求,再生细骨料满足GB/T 25176-2010《混凝土和砂浆用再生细骨料》要求:当再生粗骨料的掺量不大于50%、再生混凝土强度等级不高于C40时,再生骨

  18. Concrete decontamination by electro-hydraulic scabbling (EHS). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    Contamination of concrete structures by radionuclides, hazardous metals and organic substances (including PCB`s) occurs at many DOE sites. The contamination of concrete structures (walls, floors, ceilings, etc.) varies in type, concentration, and especially depth of penetration into the concrete. In many instances, only the surface layer of concrete is contaminated, up to a depth of one inch, according to estimates provided in the R and D ID document. Then, removal of the concrete surface layer (scabbling) is considered to be the most effective decontamination method. Textron Systems Corp. (TSC) has developed a scabbling concept based on electro-mechanical phenomena accompanying strong electric pulses generated by applying high voltage at the concrete/water interface. Depending on the conditions, the electric discharge may occur either through a waste layer or through the concrete body itself. This report describes the development, testing, and results of this electro-mechanical process. Phase 1 demonstrated the feasibility of the process for the controlled removal of a thin layer of contaminated concrete. Phase 2 designed, fabricated, and tested an integrated subscale unit. This was tested at Fernald. In Phase 3, the scabbling unit was reconfigured to increase its power and processing rate. Technology transfer to an engineering contracting company is continuing.

  19. POROSIMETRY BY RANDOM NODE STRUCTURING IN VIRTUAL CONCRETE

    Directory of Open Access Journals (Sweden)

    Piet Stroeven

    2012-05-01

    Full Text Available Two different porosimetry methods are presented in two successive papers. Inspiration for the development came from the rapidly-exploring random tree (RRT approach used in robotics. The novel methods are applied to virtual cementitious materials produced by a modern concurrent algorithm-based discrete element modeling system, HADES. This would render possible realistically simulating all aspects of particulate matter that influence structure-sensitive features of the pore network structure in maturing concrete, namely size, shape and dispersion of the aggregate and cement particles. Pore space is a complex tortuous entity. Practical methods conventionally applied for assessment of pore size distribution may fail or present biased information. Among them, mercury intrusion porosimetry and 2D quantitative image analysis are popular. The mathematical morphology operator “opening” can be applied to sections and even provide 3D information on pore size distribution, provided isotropy is guaranteed. However, aggregate grain surfaces lead to anisotropy in porosity. The presented methods allow exploration of pore space in the virtual material, after which pore size distribution is derived from star volume measurements. In addition to size of pores their continuity is of crucial importance for durability estimation. Double-random multiple tree structuring (DRaMuTS, introduced earlier in IA&S (Stroeven et al., 2011b and random node structuring (RaNoS provide such information.

  20. 不同强度砂浆界面过渡区对再生骨料混凝土性能的影响%Influence of Mortar Transition Zone with Different Strength Class on Recycled Aggregate Concrete

    Institute of Scientific and Technical Information of China (English)

    崔正龙; 路沙沙; 汪振双

    2011-01-01

    为了探明不同强度砂浆界面过渡区对再生骨料混凝土性能的影响,试验以再生骨料表面不同的砂浆强度以及附着率作为变量,配置了不同强度等级的再生骨料混凝土,与普通混凝土进行了对比性强度试验以及碳化试验.试验结果表明,高强度原生混凝土经破碎后作为再生骨料配制低强度等级的再生混凝土,即再生混凝土内部旧砂浆界面过渡区强度比再生混凝土内部新砂浆界面过渡区强度高时,再生骨料混凝土的强度与普通混凝土强度几乎相同,再生骨料表面砂浆的强度以及附着率对再生混凝土的强度影响不大,但碳化深度有所增大.当使用低强度原生混凝土经破碎后作为再生骨料配制高强度等级再生混凝土,也就是再生混凝土内部再生骨料与旧砂浆界面过渡区强度比新砂浆界面过渡区强度低时,再生骨料混凝土的强度与普通混凝土相差较大,再生骨料表面砂浆的强度以及附着率对再生混凝土强度影响较大.%In this research, the experiment aimed to investigate the influence of surface mortar strength and adhesive rate around coarse aggregate on recycled aggregate concrete. Different strength class concretes were produced with surface mortar strength and adhesive rate changing. The strength and carbonization tests were carried to evaluate the recycled aggregate concrete properties. The experiment showed that for lower strength class recycled aggregate concrete with higher strength parent concrete, the strength of recycled aggregate concrete and ordinary concrete were nearly the same. The effect of surface mortar strength and adhesive rate around coarse aggregate on recycled aggregate concrete was lower, while the carbonization depth of recycled aggregate concrete was higher than ordinary concrete. However, for higher strength and the same strength class recycled aggregate concrete with lower strength parent concrete, there were big

  1. TEST RESEARCH ON THE SHRINKAGE AND FROST-RESISTANCE OF RECYLED AGGREGATE POROUS CONCRETE%再生骨料透水混凝土的收缩和抗冻性试验研究

    Institute of Scientific and Technical Information of China (English)

    王军强

    2016-01-01

    Working performance and mechanical performance of the recycled aggregates of pervious concrete,pervious concrete and ordinary concrete were analyzed by test.On this basis,shrinkage and freeze resistance of the recycled aggregates of pervious concrete, pervious concrete were mainly studied.The test results showed that the recycled aggregates of the pervious concrete contraction deformation was the largest one,the pervious concrete deformation was larger, and normal concrete deformation was minimal.After 25 freeze-thaw cycles of pervious and recycled aggregate pervious concrete,the compressive strength loss was less than 20%,the quality loss was less than 5%,which could meet the requirement for no sand cement pervious concrete frost resistance index.%通过对再生骨料透水混凝土、透水混凝土、普通混凝土的工作性能和力学性能的试验分析,重点研究再生骨料透水混凝土、透水混凝土的收缩性和抗冻性。试验结果表明:再生骨料透水混凝土的收缩变形最大,透水混凝土的收缩变形次之,普通混凝土的收缩变形最小。透水混凝土和再生骨料透水混凝土25次冻融循环后的抗压强度损失不大于20%,质量损失不大于5%,满足无砂水泥透水混凝土的抗冻性指标要求。

  2. Application of granulated lead-zinc slag in concrete as an opportunity to save natural resources

    Science.gov (United States)

    Alwaeli, Mohamed

    2013-02-01

    The last decades marked a period of growth and prosperity in construction industry which involves the use of natural resources. This growth is jeopardized by the lack of natural resources that are available. On the other hand there has been rapid increase in the industrial waste production. Most of the waste do not find any effective use and cause a waste disposal crisis, thereby contributing to health and environmental problems. Recycling of industrial waste as aggregate is thus a logical option to manage this problem. The paper reports on some experimental results obtained from the production of concretes containing granulated slag of lead and zinc industry as sand replacement mixed in different proportions. Granulated slag is substituted for raw sand, partly or totally. Ratios of 25%, 50%, 75% and 100% by weight of sand are used. The effects of granulated lead-zinc slag (GLZS) as sand replacement material on the compressive strength and gamma radiation attenuation properties of concrete are investigated and analyzed. Then, these properties are compared with those of ordinary concrete. The results showed that replacement material have some effects on the compressive strength and gamma radiation properties of the concrete. The experimental results indicate that, the concrete mixed with GLZS as a sand replacement have better strength. Concerning the absorption properties for gamma radiation the data show that the addition of GLZS resulted in an increase of the attenuation of gamma radiation. Consequently, these concretes could be used for construction of shields protecting personnel who work in laboratories where radiation is used. Additionally, the thickness of the concrete with GLZS was calculated and compared with ordinary concrete.

  3. Development of data optimization methodology for nondestructive testing of concrete strength by the parameters of the electric response to impact excitation

    Science.gov (United States)

    Fursa, T. V.; Surzhikov, A. P.; Petrov, M. V.

    2016-02-01

    The paper presents the research results by the improvement of the non-destructive testing method of concrete strength by the parameters of the electric response to impact excitation. The electric response parameters from the set of identical concrete samples sized of 100×100×100 mm were studied. It is shown that the use of linear filtering procedure reduces the variance of diagnostic electric parameter for concrete strength determination and is in a good agreement with the elastic characteristics of the material.

  4. Genetic relationships among strains of the Aspergillus niger aggregate

    DEFF Research Database (Denmark)

    Ferracin, L.M.; Frisvad, Jens Christian; Taniwaki, M.H.

    2009-01-01

    We analyzed the genetic relationships between 51 fungal isolates previously identified as A. niger aggregate, obtained from dried fruit samples from worldwide origin and 7 A. tubingensis obtained from Brazilian coffee beans samples. Greater fungal diversity was found in black sultanas. Aspergillus...

  5. Advances of Research on Mechanical Property, Deformation and Durability of Recycled Aggregate Concrete%再生骨料混凝土力学、变形和耐久性能的研究

    Institute of Scientific and Technical Information of China (English)

    吴仕成; 严捍东

    2012-01-01

    该文结合《混凝土和砂浆用再生细骨料》(GB/T25176)、《混凝土用再生粗骨料》(GB/T25177)和《再生骨料应用技术规程》(JGJ/T240)最新相关规范,对比分析了国内外有关再生混凝土的研究成果。研究表明,再生骨料的取代率、砂浆微粉含量、压碎指标及吸水率是影响再生混凝土性能的关键因素;再生混凝土的力学、变形以及耐久性能均较天然骨料混凝土差,但经合理技术配制的再生骨料混凝土性能均能满足工程应用的要求。%This article systematically compares and analyzes the research results concerning recycled concrete at home and abroad according to relevant latest standards including the Recycled Fine Aggregate for Concrete and Mortar (GB/T25176), the Recycled Coarse Aggregate for Concrete and Mortar (GB/T25177) and the Technical Specifica- tions for Application of Recycled Aggregate (JGJ/T240). The results show that the substitution rate, fine powder content, crushing index and water absorption of recycled aggregate are key factors affecting the properties of recy- cled aggregate concrete; the mechanical property, deformation and durability of recycled aggregate concrete are poo- rel than natural aggregate concrete, but with proper technical preparation, the properties of recycled concrete can meet the requirements of civil engineering.

  6. Experimental study on shear performance of steel reinforced recycled aggregate concrete beams%型钢再生混凝土梁受剪性能试验研究

    Institute of Scientific and Technical Information of China (English)

    薛建阳; 王秀振; 马辉; 林建鹏; 陈宗平

    2013-01-01

    In order to study the shear performance of steel reinforced recycled aggregate concrete beams, ten steel reinforced recycled aggregate concrete beams and two steel reinforced normal aggregate concrete beams were tested. The replacement ratio of recycled coarse aggregate, the shear span ratio and the concrete strength were considered. Among twelve testing beams, 8 beams failed for shearing diagonal compression, and the other 4 beams failed for bending and shearing. The test results show that the occurrence of shear adhesive failure can be avoided if a certain number of stirrups are set in steel reinforced recycled aggregate concrete beams. In addition, steel recycled aggregate concrete beams have the similar stress process with the steel reinforced normal aggregate concrete beams, and the strength is not reduced significantly.%为研究型钢再生混凝土梁的受剪性能,进行了10根型钢再生混凝土梁和2根型钢普通混凝土梁的抗剪性能试验,考虑了再生粗骨料取代率、剪跨比和混凝土强度3个影响因素.12根试验梁中有8根发生剪切斜压破坏,4根发生弯剪破坏.试验表明,在型钢再生混凝土梁中配置一定数量的箍筋可避免剪切粘结破坏的发生,型钢再生混凝土梁与型钢普通混凝土梁受力过程相似,且强度并没有明显降低.

  7. Performance of "Waterless Concrete"

    Science.gov (United States)

    Toutanji, H. A.; Grugel, R. N.

    2009-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in a lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and, by oxidation of the soil, iron and sulfur can be produced. Sulfur concrete specimens were cycled between liquid nitrogen (approx.]91 C) and room temperature (^21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (^21 C) and ^-101 C. Test results showed that due to temperature cycling, the compressive strength of cycled specimens was 20% of those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibres. The lunar regolith simulant was melted in a 25 cc Pt- Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to i hour. Glass fibres and small rods were pulled from the melt. The glass fibres were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Beams strengthened with glass fibres showed to exhibit an increase in the flexural strength by as much as 45%.

  8. Investigation on the fatigue behavior of recycled aggregate concrete under uniaxial compression%再生混凝土单轴受压疲劳性能

    Institute of Scientific and Technical Information of China (English)

    肖建庄; 李宏

    2013-01-01

    The fatigue behavior of recycled aggregate concrete (RAC) with 100% recycled coarse aggregate (RCA) replacement percentage under uniaxial compression loading was tested. Special attentions were devoted to the strain response and damage accumulation of RAC under fatigue loading. The fatigue behavior of RAC was compared with that of natural aggregate concrete ( NAC) in literature. It is found that the old mortar attached to the RCAs, more interfacial transition zones (ITZs) et al. in the RAC have no obvious influence on the fatigue behavior of RAC under uniaxial compression. Based on the analysis of residual strain accumulation, fatigue strain variation, fatigue modulus as well as microcracks propagation, the relationship between the fatigue failure process and the strain response was put forward, and the fatigue damage evolution of RAC was studied. On the basis of the experimental results and continuum damage mechanics, a damage model was proposed for the theoretical and numerical analysis of RAC fatigue behavior.%完成再生粗骨料取代率为100%的再生混凝土单轴受压疲劳试验,着重考察在疲劳荷载作用下的应变响应和疲劳损伤累积.基于文献中普通混凝土受压疲劳性能研究成果,对比分析再生混凝土与普通混凝土的疲劳性能差异,发现再生粗骨料附着老砂浆、再生混凝土中多界面等特点没有引起两种混凝土疲劳性能的显著区别.进一步研究残余应变和疲劳应变的变化情况,并对再生混凝土的疲劳模量与裂纹的扩展进行分析,建立疲劳失效过程与应变响应行为之间的关系,揭示再生混凝土的疲劳损伤演化过程.基于试验结果和连续损伤力学,提出一个再生混凝土损伤模型,可用来对再生混凝土疲劳性能进行理论和数值分析.

  9. Cracking in reinforced concrete structures due to imposed deformations

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, A.

    1997-04-01

    This thesis is concerned with modeling of the cracking process in reinforced concrete due to imposed deformations. Cracking is investigated both at early ages, during hydration, and at mature age when the final properties of the concrete are reached. One of the most important material characteristics of the concrete at early ages, the Young`s modulus is determined by means of a dynamic method called the resonance frequency method. 40 refs

  10. Experimental Investigation of CFRP Confined Columns Damaged by Alkali Aggregate Reaction

    Directory of Open Access Journals (Sweden)

    Siti Radziah Abdullah

    2012-10-01

    Full Text Available Fiber reinforced polymer is the most effective repair material in use to enhance the strength and ductility of deteriorated reinforced concrete columns. Often, fiber reinforced polymer (FRP provides passive confinement to columns until the dilation and cracking of concrete occurs. In the case of concrete suspected of Alkali Aggregate Reaction (AAR where concrete undergoes expansion, FRP wrap provides active confinement to the expanded concrete. In this study, the performance of carbon fiber reinforced polymer (CFRP wrapped columns damaged by AAR is evaluated based on the number of FRP layers and the time of the polymer application which provides two types of confinement: active or passive. The columns were tested under axial compression to evaluate the residual strength of the columns in comparison with unwrapped columns. The results reveal that the strength of the wrapped columns is enhanced with an increase in the number of CFRP layers. The strength of the columns under passive confinement is higher than the columns under active confinement. Under active confinement, early CFRP wrapping leads to improvement in the strength of the columns.

  11. Measurement of water transport from saturated pumice aggregates to hardening cement paste

    DEFF Research Database (Denmark)

    Lura, Pietro; Bentz, Dale; Lange, David A.;

    2006-01-01

    In internal water curing of High Performance Concrete, it is fundamental to know how and when the water contained in the internal curing agent is released into the hydrating cement paste. In this study, X-ray absorption measurements showed that considerable transport of water from saturated pumice...... stone to hydrating cement paste with water/cement ratio 0.3 took place in the first days after casting and covered a distance of at least 4 mm. As a consequence, the total amount of water released by the lightweight aggregates, rather than the spatial distribution of the aggregates, is in this case...

  12. Experimental Study on Frost Resistance Properties of Mixed Aggregate Concrete with Mineral Admixture%矿物超细粉混合骨料混凝土抗冻性能试验研究

    Institute of Scientific and Technical Information of China (English)

    霍俊芳; 李伟玲; 宋的添; 李金帅

    2012-01-01

    将天然浮石与碎石作为粗骨料,配制混合骨料混凝土.在混合骨料混凝土中单掺30%粉煤灰及20%粉煤灰分别与10%石粉、10%矿粉、10%硅粉复掺,对比其抗压性能及抗冻性能.试验结果表明:粉煤灰与硅粉复掺的混合骨料混凝土28d立方体抗压强度最高,粉煤灰与矿粉复掺次之,粉煤灰与石粉复掺较低,单掺粉煤灰最低.对于混合骨料混凝土的抗冻性能,粉煤灰与硅粉复掺最高,与矿粉复掺次之,单掺粉煤灰较低,粉煤灰与石粉复掺最低.掺加矿物掺合料的混合骨料混凝土的抗压性能和抗冻性能均比基准混凝土差.%When mixed aggregate concrete is prepared, natural pumice and gravel are mixed in as the coarse aggregate, while 30% fly ash is added singly and 20% fly ash with 10% limestone powder, 10% pulverized slag and 10% silica fume respectively. Compression performance and frost resistance of mixed aggregate concrete are compared. Test results indicate that: mixed aggregate concrete containing fly ash and silica fume has the highest 28d cube compressive strength, followed by fly ash mixed with pulverized slag, and then with limestone powder, fly ash alone the lowest. To frost resistance, fly ash mixed with silica fume is the highest, followed by fly ash with pulverized slag, then fly ash alone, fly ash with limestone powder the lowest. Reference concrete is better than mixed aggregate concrete with mineral admixture on compressive performance and frost resistance.

  13. Evaluation of recycled concrete by means of non destructive tests

    Directory of Open Access Journals (Sweden)

    Di Maio, E. A.

    2003-12-01

    Full Text Available The use of recycled concrete as aggregate for the production of new concretes is a consequence of the shortage of natural resources and the environmental problems due to the storage of residual building materials. In this paper the following results are given: compressive strength, rebound numbers, ultrasonic pulse velocity Break-off pressure and torsional moment, all of them determined on concretes of different strength level elaborated with recycled coarse aggregate in 25% and 75% in respect of a reference concrete (without recycled aggregate. The Break-off and the torsion method present, at 28 days, only one correlation curve; this would allow to estimate the compressive strength using the correlations determined for the same group of materials. It is impossible to apply this procedure when using the ultrasonic method, since the velocity diminishes strongly as the percentage of recycled coarse aggregate increases. With respect to the rebound method, its high dispersion due to the heterogeneous aggregates makes it not advisable in order to perform a strength estimation.

    La escasez de recursos naturales y los problemas ambientales, producto de los depósitos de residuos de construcción y/o demolición, han llevado al uso del hormigón reciclado como árido para la producción de nuevos hormigones. En este trabajo se presentan resultados de resistencia a compresión, números de rebote, velocidades ultrasónicas, presiones Break-off y momentos torsores determinados en hormigones de diferentes niveles de resistencia elaborados con áridos gruesos reciclados en un 25 y 75% respecto de un hormigón de referencia (sin árido reciclado. El método Break-off y el de torsión presentan, a la edad de 28 días, una única curva de correlación, hecho que permitiría estimar la resistencia a compresión utilizando correlaciones determinadas para el mismo conjunto de materiales. Este procedimiento no puede ser aplicado con el método ultras

  14. CONCRETE MIX DESIGN FOR STRUCTURES SUBJECTED TO EXPOSURE CLASS XC1 DEPENDING ON CONCRETE COVER

    Directory of Open Access Journals (Sweden)

    O. Yu. Cherniakevich

    2016-01-01

    Full Text Available The reinforced steel corrosion which is the most important problem of reinforced concrete structures durability is generally stipulated for carbonization of concrete surrounding it. Concrete cover calculation at the design stage is predicated one because of the differences in manufacturing conditions and use of constructions. The applying of the probabilistic approaches to the carbonation process modeling allows to get predicated grade of the depth of carbonization of concrete and, thus, to settle minimum concrete cover thickness for a given projected service life of a construction. The procedures for concrete mix design for different strength classes of concrete are described in the article. Current recommendations on assignment of concrete strength class as well as concrete cover are presented. The European Standard EN 206:2013 defines the content requirements for the concrete structures operated in the exposure class XC1, including the minimum values of water-cement ratio, minimum cement content, and minimum strength class of concrete. Since the standard does not include any basis or explanations of the requirements, we made an effort to develop a scientific justification for the mentioned requirements. We developed the probabilistic models for the process of carbonation of concrete based on the concrete mix which was designed using the software VTK-Korroziya. The reinforced concrete structures with concrete cover 20–35 mm operated in the most unfavorable conditions within the exposure class XC1 were analyzed. The corresponding probabilistic calculations of the depth of carbonated concrete are described in the article. 

  15. Experimental Investigation of the Mechanical and Durability Properties of Crumb Rubber Concrete

    OpenAIRE

    Hanbing Liu; Xianqiang Wang; Yubo Jiao; Tao Sha

    2016-01-01

    Recycling waste tire rubber by incorporating it into concrete has become the preferred solution to dispose of waste tires. In this study, the effect of the volume content of crumb rubber and pretreatment methods on the performances of concrete was evaluated. Firstly, the fine aggregate and mixture were partly replaced by crumb rubber to produce crumb rubber concrete. Secondly, the mechanical and durability properties of crumb rubber concrete with different replacement forms and volume content...

  16. Collisional Aggregation due to Turbulence

    CERN Document Server

    Pumir, Alain

    2015-01-01

    Collisions between particles suspended in a fluid play an important role in many physical processes. As an example, collisions of microscopic water droplets in clouds are a necessary step in the production of macroscopic raindrops. Collisions of dust grains are also conjectured to be important for planet formation in the gas surrounding young stars, and also to play a role in the dynamics of sand storms. In these processes, collisions are favoured by fast turbulent motions. Here we review recent advances in the understanding of collisional aggregation due to turbulence. We discuss the role of fractal clustering of particles, and caustic singularities of their velocities. We also discuss limitations of the Smoluchowski equation for modelling these processes. These advances lead to a semi-quantitative understanding on the influence of turbulence on collision rates, and point to deficiencies in the current understanding of rainfall and planet formation.

  17. Porous Structure of Road Concrete

    OpenAIRE

    2016-01-01

    Having a great number of concrete structure classifications it is recommended to specify the following three principal types: microstructure – cement stone structure; mesostructure – structure of cement-sand mortar in concrete; macrostucture – two-component system that consists of mortar and coarse aggregate. Every mentioned-above structure has its own specific features which are related to the conditions of their formation. Thus, microstructure of cement stone can be characterized by such st...

  18. The Fuzzy Logic Model for the Prediction of Marshall Stability of Lightweight Asphalt Concretes Fabricated using Expanded Clay Aggregate

    Directory of Open Access Journals (Sweden)

    Sercan SERİN

    2014-07-01

    Full Text Available In the study, predictability of Marshall Stability (MS of light asphalt concrete that fabricated using expanded clay and had varied mix properties with Fuzzy Logic (FL were researched. With this aim, asphalt concrete samples that added expanded clay aggregate (EC in accordance with gradation determined in Highway Technical Specification, had different percentage of bitumen (POB (4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10%, 10.5% and unit weight (UW (1,75–1,87 (gr/cm3 were prepared and determined Marshall stabilities with Marshall test

  19. 再生骨料混凝土多孔砖技术研究%Research on recycled aggregate concrete perforated brick technique

    Institute of Scientific and Technical Information of China (English)

    徐传军

    2014-01-01

    分析了国内外再生骨料生产混凝土多孔砖技术研究和应用现状,从建筑垃圾再生骨料分类及其评价方法、混凝土多孔砖配比设计、力学性能、防裂抗裂等方面提出了将来研究方向,为再生骨料生产混凝土多孔砖技术研究和应用提供参考。%The paper analyzes the research on recycled aggregate concrete perforated brick technique at home and abroad and its application, points out its following research from classification of recycled aggregate of architectural rubbish and its evaluation methods,proportion ratio de-sign for concrete perforated brick,dynamic performance,and crack control,so as to provide some reference for the production of the recycled ag-gregate concrete perforated brick.

  20. From concrete repair to concrete conservation: How to preserve the heritage values of historic concrete

    NARCIS (Netherlands)

    Heinemann, H.A.; Zijlstra, H.; Hees, R.P.J. van; Nijland, T.G.

    2012-01-01

    The conservation of historic concrete is an increasing task, challenging both concrete repair specialists and conservation specialists. In practice, too often repair strategies are followed where conservation strategies would have been necessary. The application of repair techniques poses two threat

  1. Recycling of rubble from building demolition for low-shrinkage concretes.

    Science.gov (United States)

    Corinaldesi, Valeria; Moriconi, Giacomo

    2010-04-01

    In this project concrete mixtures were prepared that were characterized by low ductility due to desiccation by using debris from building demolition, which after a suitable treatment was used as aggregate for partial replacement of natural aggregates. The recycled aggregate used came from a recycling plant, in which rubble from building demolition was selected, crushed, cleaned, sieved, and graded. Such aggregates are known to be more porous as indicated by the Saturated Surface Dry (SSD) moisture content. The recycled concrete used as aggregates were added to the concrete mixture in order to study their influence on the fresh and hardened concrete properties. They were added either after water pre-soaking or in dry condition, in order to evaluate the influence of moisture in aggregates on the performance of concrete containing recycled aggregate. In particular, the effect of internal curing, due to the use of such aggregates, was studied. Concrete behavior due to desiccation under dehydration was studied by means of both drying shrinkage test and German angle test, through which shrinkage under the restrained condition of early age concrete can be evaluated.

  2. Determination of Concrete Fracture Parameters from a Three-Point Bending Test

    Institute of Scientific and Technical Information of China (English)

    张君; 刘骞

    2003-01-01

    The mechanical behavior within the processing zone of concrete material can be well described by the crack bridging performance. The material properties related to the crack bridging are cracking strength, tensile strength, and the stress-crack width relationship. In general, the cracking strength is lower than the tensile strength of concrete. Crack propagation is governed by the cracking strength. This paper presents a method to determine the above material parameters from a three-point bending test. In the experiment, a pre-notched beam is used. Corresponding values of load, crack mouth opening displacement, and load point displacement are simultaneously recorded. From experimentally determined load-crack mouth opening displacement curves, the above-mentioned crack bridging parameters are deduced by a numerical procedure. The method can be used to evaluate the influence of coarse aggregate and cementitious matrix strength on the stress-crack width relationship, tensile strength, and fracture energy of concrete.

  3. The influence of recycled expanded polystyrene (EPS) on concrete properties: Influence on flexural strength, water absorption and shrinkage

    Science.gov (United States)

    Elsalah, Jamaleddin; Al-Sahli, Yosra; Akish, Ahmed; Saad, Omar; Hakemi, Abdurrahman

    2013-12-01

    Expanded polystyrene waste in a granular form was used as a lightweight aggregate in order to produce lightweight concretë Lightweight EPS concrete composites were produced by replacing the coarse aggregate, either partially or fully with equal volume of EPS aggregates. The coarse aggregate replacements levels used were 25, 50, 75, and 100%, which corresponded to (9.20, 18.40, 27.60, and 36.8%) from total volume. The investigation is directed towards the development and performance evaluation of the concrete composites containing EPS aggregates, without addition of either bonding additives, or super-plasticizers on some concrete properties such as flexure strength, water absorption and change in length (or shrinkage). Experimental results showed that a density reduction of 12% caused flexure strength to decrease by 25.3% at a replacement level of 25% EPS. However, the reduction percentage strongly depends upon the replacement level of EPS granules. Moreover, the lower strength concretes showed a higher water absorption values compared to higher strength concrete, i.e., increasing the volume percentage of EPS increases the water absorption as well as the negative strain (shrinkage). The negative strain was higher at concretes of lower density (containing a high amount of EPS aggregate). The water to cement ratio of EPS aggregate concrete is found to be slightly lower than that of conventional concrete.

  4. Frost damage of concrete subject to confinement

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange

    2016-01-01

    When internal frost damage is observed in real concrete structures, the usual pattern is cracks with a preferred orientation parallel to the exposed surface. When exposing concrete with poor frost resistance to a standardised freeze/thaw test in the laboratory, the orientations of the resulting...

  5. Boron putty ceramsite lightweight aggregate concrete%硼泥陶粒轻骨料混凝土

    Institute of Scientific and Technical Information of China (English)

    周大伟; 黄丽华; 苍洪波

    2009-01-01

    Take the borax ceramisite of industrial waste resdue as the coarse aggregate an both the river sand and Si-Mn alloy slag as the fine aggyegate,use the fly ash as the active mixing material,mixing some cement and plant fiber, product lightweight aggregate concrete.%利用废渣生产的硼泥陶粒作为粗骨料,河砂、硅锰渣为细集料,以粉煤灰作活性混合材,掺入一定量的水泥、植物纤维,生产轻骨料混凝土.

  6. Design of ecological concrete by particle packing optimization

    NARCIS (Netherlands)

    Fennis, S.A.A.M.

    2011-01-01

    The goal of this research project on Ecological Concrete was to reduce the CO2-emission of concrete and to reuse secondary materials form concrete production and other industries simultaneously. This also minimizes the use of natural resources and the production costs. To replace cement in concrete

  7. Guide to diagnosis and appraisal of AAR damage to concrete in structures

    CERN Document Server

    Rooij, Mario; Wood, Jonathan

    2013-01-01

    This book describes procedures and methodologies used predominantly to obtain a diagnosis of damaged concrete possibly caused by Alkali-Aggregate Reaction (AAR). It has two primary objectives, namely firstly to identify the presence of AAR reaction, and whether or not the reaction is the primary or contributory cause of damage in the concrete; and secondly, to establish its intensity (severity) in various members of a structure. It includes aspects such as field inspection of the structure, sampling, petrographic examination of core samples, and supplementary tests and analyses on cores, such as mechanical tests and chemical analysis. Evaluation of test data for prognosis, consequences and appraisal will be more fully set out in AAR-6.2.

  8. Platelet aggregation secondary to coronary obstruction.

    Science.gov (United States)

    Moore, S

    1976-03-01

    From many observations made at autopsy it is apparent that thrombosis in a coronary artery is usually, if not always, associated with rupture of an atheromatous plaque. The sequelae of such rupture include hemorrhage into the plaque with further narrowing of the lumen, formation of an occlusive thrombus or of a non-occlusive thrombus. A developing thrombus in an artery undergoes fragmentation with showering of the distal microcirculation by aggregates of platelets possibly with some admixture of fibrin. In many cases of sudden cardiac death associated with severe atherosclerotic stenosis of the coronary vessels, an occlusive thrombus is not found and the myocardium shows no morphological lesion or else focal patchy early damage in the subendocardial region. One possible mechanism that might explain these findings is microembolism from mural nonobstructing coronary thrombus. Such a mechanism is well established in transient ischemia of the brain and retina related to ulcerated atheroma of the internal carotid artery. Experimental observations indicate that platelet aggregates in the myocardial circulation cause arrhythmias, sudden death, vasculitis, and myocardial ischemic damage. Induction of an occlusive coronary artery thrombus is associated with development of an infarct involving the full thickness of the myocardium. A nonocclusive thrombus is associated with either no myocardial damage or focal subendocardial ischemic injury. It is possible that further aggregation of platelets may facilitate the extension of infarction subsequent to an occlusive event, although there is little evidence on this point. A number of clinical studies show increased platelet reactivity to agents causing aggregation, such as norepinephrine or collagen, in subjects experiencing thromboembolic episodes. It seems unlikely, however, that in vitro tests of platelet function can identify or predict clinical arterial thrombotic disease, although studies of platelet survival and turnover

  9. Novel techniques for concrete curing

    DEFF Research Database (Denmark)

    Kovler, Konstantin; Jensen, Ole Mejlhede

    2005-01-01

    It is known that some high-strength/high-performance concretes (HSC/HPC) are prone to cracking at an early age unless special precautions are taken. The paper deals with the methods of curing as one of the main strategies to ensure good performance of concrete. Curing by both external (conventional......) and internal methods is reviewed and analyzed, among other methods of mitigating shrinkage and cracking of concrete. The focus is on the mitigation of autogenous shrinkage of low water to binder ratio (w/b) concrete by means of internal curing. The concepts of internal curing are based on using lightweight...... aggregate, superabsorbent polymers or water-soluble chemicals, which reduce water evaporation (so called "internal sealing"). These concepts have been intensively researched in the 90s, but still are not widespread among contractors and concrete suppliers. The differences between conventional methods...

  10. The Influences of Iron Ore Tailings as Fine Aggregate on the Strength of Ultra-High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Zhigang Zhu

    2015-01-01

    Full Text Available The present study looks for the feasibility of preparing UHPC with iron ore tailings (IOT for short as fine aggregate. To enhance outstanding high performances, some influences on UHPC mortars were investigated such as different kinds of sands, different mix ratio of sands, and different largest particle size of fine aggregate. The results show that IOT have negligible poorer aggregate performance than silica sands but better than river sands. The strength of UHPC reaches the highest point when silica sands were instead 60% by IOT. As the largest particle size of fine aggregate is decreasing, the strength and frost resistance of UHPC were improved, but the liquidity was decreased. Micropowder of IOT affects the strength and the optimal content was 4%.

  11. The use of particle packing models to design ecological concrete

    NARCIS (Netherlands)

    Fennis, S.A.A.M.; Walraven, J.C.; Den Uijl, J.A.

    2009-01-01

    Ecological concrete can be designed by replacing cement with fillers. With low amounts of cement it becomes increasingly important to control the water demand of concrete mixtures. In this paper a cyclic design method based on particle packing is presented and evaluated on the basis of experiments o

  12. Mercury(II) binds to both of chymotrypsin's histidines, causing inhibition followed by irreversible denaturation/aggregation.

    Science.gov (United States)

    Stratton, Amanda; Ericksen, Matthew; Harris, Travis V; Symmonds, Nick; Silverstein, Todd P

    2017-02-01

    The toxicity of mercury is often attributed to its tight binding to cysteine thiolate anions in vital enzymes. To test our hypothesis that Hg(II) binding to histidine could be a significant factor in mercury's toxic effects, we studied the enzyme chymotrypsin, which lacks free cysteine thiols; we found that chymotrypsin is not only inhibited, but also denatured by Hg(II). We followed the aggregation of denatured enzyme by the increase in visible absorbance due to light scattering. Hg(II)-induced chymotrypsin precipitation increased dramatically above pH 6.5, and free imidazole inhibited this precipitation, implicating histidine-Hg(II) binding in the process of chymotrypsin denaturation/aggregation. Diethylpyrocarbonate (DEPC) blocked chymotrypsin's two histidines (his40 and his57 ) quickly and completely, with an IC50 of 35 ± 6 µM. DEPC at 350 µM reduced the hydrolytic activity of chymotrypsin by 90%, suggesting that low concentrations of DEPC react with his57 at the active site catalytic triad; furthermore, DEPC below 400 µM enhanced the Hg(II)-induced precipitation of chymotrypsin. We conclude that his57 reacts readily with DEPC, causing enzyme inhibition and enhancement of Hg(II)-induced aggregation. Above 500 µM, DEPC inhibited Hg(II)-induced precipitation, and [DEPC] >2.5 mM completely protected chymotrypsin against precipitation. This suggests that his40 reacts less readily with DEPC, and that chymotrypsin denaturation is caused by Hg(II) binding specifically to the his40 residue. Finally, we show that Hg(II)-histidine binding may trigger hemoglobin aggregation as well. Because of results with these two enzymes, we suggest that metal-histidine binding may be key to understanding all heavy metal-induced protein aggregation.

  13. A micromechanical four-phase model to predict the compressive failure surface of cement concrete

    Directory of Open Access Journals (Sweden)

    A. Caporale,

    2014-07-01

    Full Text Available In this work, a micromechanical model is used in order to predict the failure surface of cement concrete subject to multi-axial compression. In the adopted model, the concrete material is schematised as a composite with the following constituents: coarse aggregate (gravel, fine aggregate (sand and cement paste. The cement paste contains some voids which grow during the loading process. In fact, the non-linear behavior of the concrete is attributed to the creation of cracks in the cement paste; the effect of the cracks is taken into account by introducing equivalent voids (inclusions with zero stiffness in the cement paste. The three types of inclusions (namely gravel, sand and voids have different scales, so that the overall behavior of the concrete is obtained by the composition of three different homogenizations; in the sense that the concrete is regarded as the homogenized material of the two-phase composite constituted of the gravel and the mortar; in turn, the mortar is the homogenized material of the two-phase composite constituted of the sand inclusions and a (porous cement paste matrix; finally, the (porous cement paste is the homogenized material of the two-phase composite constituted of voids and the pure paste. The pure paste represents the cement paste before the loading process, so that it does not contain voids or other defects due to the loading process. The abovementioned three homogenizations are realized with the predictive scheme of Mori-Tanaka in conjunction with the Eshelby method. The adopted model can be considered an attempt to find micromechanical tools able to capture peculiar aspects of the cement concrete in load cases of uni-axial and multi-axial compression. Attributing the non-linear behavior of concrete to the creation of equivalent voids in the cement paste provides correspondence with many phenomenological aspects of concrete behavior. Trying to improve this correspondence, the influence of the parameters of the

  14. Proportioning and performance evaluation of self-consolidating concrete

    Science.gov (United States)

    Wang, Xuhao

    A well-proportioned self-consolidating concrete (SCC) mixture can be achieved by controlling the aggregate system, paste quality, and paste quantity. The work presented in this dissertation involves an effort to study and improve particle packing of the concrete system and reduce the paste quantity while maintaining concrete quality and performance. This dissertation is composed of four papers resulting from the study: (1) Assessing Particle Packing Based Self-Consolidating Concrete Mix Design; (2) Using Paste-To-Voids Volume Ratio to Evaluate the Performance of Self-Consolidating Concrete Mixtures; (3) Image Analysis Applications on Assessing Static Stability and Flowability of Self-Consolidating Concrete, and (4) Using Ultrasonic Wave Propagation to Monitor Stiffening Process of Self-Consolidating Concrete. Tests were conducted on a large matrix of SCC mixtures that were designed for cast-in-place bridge construction. The mixtures were made with different aggregate types, sizes, and different cementitious materials. In Paper 1, a modified particle-packing based mix design method, originally proposed by Brouwers (2005), was applied to the design of self-consolidating concrete (SCC) mixs. Using this method, a large matrix of SCC mixes was designed to have a particle distribution modulus (q) ranging from 0.23 to 0.29. Fresh properties (such as flowability, passing ability, segregation resistance, yield stress, viscosity, set time and formwork pressure) and hardened properties (such as compressive strength, surface resistance, shrinkage, and air structure) of these concrete mixes were experimentally evaluated. In Paper 2, a concept that is based on paste-to-voids volume ratio (Vpaste/Vvoids) was employed to assess the performance of SCC mixtures. The relationship between excess paste theory and Vpaste/Vvoids was investigated. The workability, flow properties, compressive strength, shrinkage, and surface resistivity of SCC mixtures were determined at various ages

  15. Cholesterol impairment contributes to neuroserpin aggregation

    Science.gov (United States)

    Giampietro, Costanza; Lionetti, Maria Chiara; Costantini, Giulio; Mutti, Federico; Zapperi, Stefano; La Porta, Caterina A. M.

    2017-03-01

    Intraneural accumulation of misfolded proteins is a common feature of several neurodegenerative pathologies including Alzheimer’s and Parkinson’s diseases, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB). FENIB is a rare disease due to a point mutation in neuroserpin which accelerates protein aggregation in the endoplasmic reticulum (ER). Here we show that cholesterol depletion induced either by prolonged exposure to statins or by inhibiting the sterol reg-ulatory binding-element protein (SREBP) pathway also enhances aggregation of neuroserpin proteins. These findings can be explained considering a computational model of protein aggregation under non-equilibrium conditions, where a decrease in the rate of protein clearance improves aggregation. Decreasing cholesterol in cell membranes affects their biophysical properties, including their ability to form the vesicles needed for protein clearance, as we illustrate by a simple mathematical model. Taken together, these results suggest that cholesterol reduction induces neuroserpin aggregation, even in absence of specific neuroserpin mutations. The new mechanism we uncover could be relevant also for other neurodegenerative diseases associated with protein aggregation.

  16. Cholesterol impairment contributes to neuroserpin aggregation

    Science.gov (United States)

    Giampietro, Costanza; Lionetti, Maria Chiara; Costantini, Giulio; Mutti, Federico; Zapperi, Stefano; La Porta, Caterina A. M.

    2017-01-01

    Intraneural accumulation of misfolded proteins is a common feature of several neurodegenerative pathologies including Alzheimer’s and Parkinson’s diseases, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB). FENIB is a rare disease due to a point mutation in neuroserpin which accelerates protein aggregation in the endoplasmic reticulum (ER). Here we show that cholesterol depletion induced either by prolonged exposure to statins or by inhibiting the sterol reg-ulatory binding-element protein (SREBP) pathway also enhances aggregation of neuroserpin proteins. These findings can be explained considering a computational model of protein aggregation under non-equilibrium conditions, where a decrease in the rate of protein clearance improves aggregation. Decreasing cholesterol in cell membranes affects their biophysical properties, including their ability to form the vesicles needed for protein clearance, as we illustrate by a simple mathematical model. Taken together, these results suggest that cholesterol reduction induces neuroserpin aggregation, even in absence of specific neuroserpin mutations. The new mechanism we uncover could be relevant also for other neurodegenerative diseases associated with protein aggregation. PMID:28255164

  17. Response of structural concrete elements to severe impulsive loads

    Science.gov (United States)

    Krauthammer, T.; Shanaa, H. M.; Assadi, A.

    1994-10-01

    The behavior and response of structural concrete elements under severe short duration dynamic loads was investigated numerically. The analytical approach utilized the Timoshenko beam theory for the analysis of reinforced concrete beams and one-way slabs. Nonlinear material models were used to derive the flexural and shear resistances, and the differential equations of the Timoshenko beam theory were solved numerically by applying the finite difference technique. A simplified approach was developed for estimating the strain rate in structural concrete members, and the corresponding strain rate effects on the strength of the steel and concrete were incorporated into the analysis. Detailed failure criteria were established for predicting the collapse of structural concrete members. Five cases subjected to localized impact loads and eleven cases subjected to distributed explosive loads were analyzed, and the results were compared to experimental data obtained by other investigators.

  18. Assessment of mass fraction and melting temperature for the application of limestone concrete and siliceous concrete to nuclear reactor basemat considering molten core-concrete interaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jae; Kim, Do Gyeum [Korea Institute of Civil Engineering and Building Technology, Goyang (Korea, Republic of); Cho, Jae Leon [Korea Hydro and Nuclear Power Co., Ulsan (Korea, Republic of); Yoon, Eui Sik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Cho, Myung Suk [Korea Hydro and Nuclear Power Co., Central Research Institute, Daejeon (Korea, Republic of)

    2016-04-15

    Severe accident scenarios in nuclear reactors, such as nuclear meltdown, reveal that an extremely hot molten core may fall into the nuclear reactor cavity and seriously affect the safety of the nuclear containment vessel due to the chain reaction caused by the reaction between the molten core and concrete. This paper reports on research focused on the type and amount of vapor produced during the reaction between a high-temperature molten core and concrete, as well as on the erosion rate of concrete and the heat transfer characteristics at its vicinity. This study identifies the mass fraction and melting temperature as the most influential properties of concrete necessary for a safety analysis conducted in relation to the thermal interaction between the molten core and the basemat concrete. The types of concrete that are actually used in nuclear reactor cavities were investigated. The H2O content in concrete required for the computation of the relative amount of gases generated by the chemical reaction of the vapor, the quantity of CO2 necessary for computing the cooling speed of the molten core, and the melting temperature of concrete are evaluated experimentally for the molten core-concrete interaction analysis.

  19. Prediction of RBC aggregability and deformability by whole body bioimpedance measurements analyzed according to Hanai's mixture conductivity theory.

    Science.gov (United States)

    Varlet-Marie, Emmanuelle; Brun, Jean-Frédéric

    2011-01-01

    Bioelectrical impedancemetry (BIA) has been used to evaluate hemorheological parameters in vitro, and whole body impedance measurements are also correlated to some hemorheologic factors, due to their close relationship with determinants of electric properties of blood. In previous studies, we have determined a set of predictive equations for hematocrit, whole blood viscosity and plasma viscosity in both sedentary and trained individuals. Recent developments of the interpretation of BIA analysis based on Hanai's mixture conductivity theory allows a more interpretative analysis of the relationships between these electric measurements and body composition. Impedance can be analyzed in terms of resistance and resistivity of the whole body and even more, assuming some simplifications, resistance R and resistivity ρ of total body water (TBW), extracellular water (ECW) and intracellular water (ICW). In this study we thus investigated relationships between blood rheology and these calculations of R and ρ in a sample of 83 subjects (age: 9-64 yr; BMI: 17-44 kg/m(2)). BIA was performed with a multifrequency bioelectrical impedancemeter using low intensity at the following frequencies: 1, 5, 10, 50 and 100 kHz. Viscometric measurements were done with a falling ball viscometer. Hematocrit was measured with microcentrifuge. We found a new prediction of Quemada's viscometric index of RBC rigidity "k" which was positively correlated to the resistance of ECW (R(e)) and even more if it was related to this volume: k = 0.005809 R(e)/ECW + 1.1784 (r = 0.487; Bland-Altman mean difference: 0.0124; range: -0.00481 to 0.00296). A new finding was that red blood cells (RBC) aggregability, that in the previous studies was not related to whole body impedance, despite its in vitro measurability with such measurements, was correlated to extracellular resistance and resistivity. The Myrenne index "M" was negatively correlated to the resistivity of the extracellular fluid ρe and is predicted

  20. Normal Strength Steel Fiber Reinforced Concrete Subjected to Explosive Loading

    Directory of Open Access Journals (Sweden)

    Mohammed Alias Yusof

    2011-07-01

    Full Text Available This paper presents the results of an experimental investigation on the behavior of plain reinforced concrete and Normal strength steel fiber reinforced concrete panels (SFRC subjected to explosive loading. The experiment were performed by the Blast Research Unit Faculty of Engineering, University Pertahanan Nasional Malaysia A total of 8 reinforced concrete panels of 600mm x 600mm x 100mm were tested. The steel fiber reinforced concrete panels incorporated three different volume fraction, 0.5%, 1.0%, and 1.5% of hooked end steel fibers. The panels were subjected to explosive loading generated by the detonation of 1kg of explosive charge located at a 0.6m standoff. This investigation indicates that the steel fiber reinforced concrete panel containing of 1.5% volume fraction gave the best performance under explosive loading.

  1. Modelling of elastoplastic damage in concrete due to desiccation shrinkage

    Science.gov (United States)

    Bourgeois, F.; Burlion, N.; Shao, J. F.

    2002-07-01

    We present a numerical modelling of elastoplastic damage due to drying shrinkage of concrete in the framework of mechanics of partially saturated porous media. An elastoplastic model coupled with isotropic damage is first formulated. Two plastic flow mechanisms are involved, controlled by applied stress and suction, respectively. A general concept of net effective stress is used in take into account effects of capillary pressure and material damage on stress-controlled plastic deformation. Damage evolution depends both on elastic and plastic strains. The model's parameters are determined or chosen from relevant experimental data. Comparisons between numerical simulations and experimental data are presented to show the capacity of model to reproduce mains features of concrete behaviour under mechanical loading and during drying shrinkage of concrete. An example of application concerning drying of a concrete wall is finally presented. The results obtained allow to show potential capacity of proposed model for numerical modelling of complex coupling processes in concrete structures.

  2. CALCULATION ALGORITHM FOR CONCRETE LONGEVITY BY GENERALIZED CRITERION

    Directory of Open Access Journals (Sweden)

    S. N. Leonovich

    2009-01-01

    Full Text Available The paper describes problems pertaining to corrosion theory and forecast of reinforced concrete structure service life. The author considers that application of modern investigation methods on the basis of failure mechanics and analysis concrete porosity will make it possible to develop a general theory of concrete corrosion and calculation of reinforced concrete structure service life. Provision of the required longevity of reinforced concrete structures is not less important than the provision of their strength.

  3. Organic carbon, water repellency and soil stability to slaking at aggregate and intra-aggregate scales

    Science.gov (United States)

    Jordán López, Antonio; García-Moreno, Jorge; Gordillo-Rivero, Ángel J.; Zavala, Lorena M.; Cerdà, Artemi; Alanís, Nancy; Jiménez-Compán, Elizabeth

    2015-04-01

    Water repellency (WR) is a property of some soils that inhibits or delays water infiltration between a few seconds and days or weeks. Inhibited or delayed infiltration contributes to ponding and increases runoff flow generation, often increasing soil erosion risk. In water-repellent soils, water infiltrates preferentially through cracks or macropores, causing irregular soil wetting patterns, the development of preferential flow paths and accelerated leaching of nutrients. Although low inputs of hydrophobic organic substances and high mineralization rates lead to low degrees of WR in cropped soils, it has been reported that conservative agricultural practices may induce soil WR. Although there are many studies at catchment, slope or plot scales very few studies have been carried out at particle or aggregate scale. Intra-aggregate heterogeneity of physical, biological and chemical properties conditions the transport of substances, microbial activity and biochemical processes, including changes in the amount, distribution and chemical properties of organic matter. Some authors have reported positive relationships between soil WR and aggregate stability, since it may delay the entry of water into aggregates, increase structural stability and contribute to reduce soil erosion risk. Organic C (OC) content, aggregate stability and WR are therefore strongly related parameters. In the case of agricultural soils, where both the type of management as crops can influence all these parameters, it is important to evaluate the interactions among them and their consequences. Studies focused on the intra-aggregate distribution of OC and WR are necessary to shed light on the soil processes at a detailed scale. It is extremely important to understand how the spatial distribution of OC in soil aggregates can protect against rapid water entry and help stabilize larger structural units or lead to preferential flow. The objectives of this research are to study [i] the OC content and the

  4. Environmental Impact Analysis of Acidification and Eutrophication Due to Emissions from the Production of Concrete

    Directory of Open Access Journals (Sweden)

    Tae Hyoung Kim

    2016-06-01

    Full Text Available Concrete is a major material used in the construction industry that emits a large amount of substances with environmental impacts during its life cycle. Accordingly, technologies for the reduction in and assessment of the environmental impact of concrete from the perspective of a life cycle assessment (LCA must be developed. At present, the studies on LCA in relation to greenhouse gas emission from concrete are being carried out globally as a countermeasure against climate change. However, the studies on the impact of the substances emitted in the concrete production process on acidification and eutrophication are insufficient. As such, assessing only a single category of environmental impact may cause a misunderstanding about the environmental friendliness of concrete. The substances emitted in the concrete production process have an impact not only on global warming but also on acidification and eutrophication. Acidification and eutrophication are the main causes of air pollution, forest destruction, red tide phenomena, and deterioration of reinforced concrete structures. For this reason, the main substances among those emitted in the concrete production process that have an impact on acidification and eutrophication were deduced. In addition, an LCA technique through which to determine the major emissions from concrete was proposed and a case analysis was carried out. The substances among those emitted in the concrete production process that are related to eutrophication were deduced to be NOx, NH3, NH4+, COD, NO3−, and PO43−. The substances among those emitted in the concrete production process that are related to acidification, were found to be NOx, SO2, H2S, and H2SO4. The materials and energy sources among those input into the concrete production process, which have the biggest impact on acidification and eutrophication, were found to be coarse aggregate and fine aggregate.

  5. Using FLUKA to Study Concrete Square Shield Performance in Attenuation of Neutron Radiation Produced by APF Plasma Focus Neutron Source

    Science.gov (United States)

    Nemati, M. J.; Habibi, M.; Amrollahi, R.

    2013-04-01

    In 2010, representatives from the Nuclear Engineering and physics Department of Amirkabir University of Technology (AUT) requested development of a project with the objective of determining the performance of a concrete shield for their Plasma Focus as neutron source. The project team in Laboratory of Nuclear Engineering and physics department of Amirkabir University of Technology choose some shape of shield to study on their performance with Monte Carlo code. In the present work, the capability of Monte Carlo code FLUKA will be explored to model the APF Plasma Focus, and investigating the neutron fluence on the square concrete shield in each region of problem. The physical models embedded in FLUKA are mentioned, as well as examples of benchmarking against future experimental data. As a result of this study suitable thickness of concrete for shielding APF will be considered.

  6. 钢-再生混凝土组合结构力学性能研究综述%A REVIEW OF THE MECHANICAL PROPERTIES OF STEEL-RECYCLED AGGREGATE CONCRETE COMPOSITE STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    华竹君; 王振波

    2012-01-01

    综述了钢一再生混凝土研究的最新进展,主要包括:钢管再生混凝土、钢骨再生混凝土短柱、压型钢板一再生混凝土组合板等。综合国内外学者试验和理论研究表明,钢一再生混凝土与普通钢一混凝土具有相类似的工作性能,通过组合能够提高再生混凝土的力学性能,改善再生混凝土的耐久性。%This paper summarizes the latest development of r steel-recycled aggregate concrete composite structures,including recycled aggregate concrete filled steel columns, SRC, steel deck recycled aggregate concrete canposite slabs, based on the previous experiments and theoretical researches home and abroad, similar working performance are found between recycled steel concrete and steel concrete. The mechanical properties and durability of recycled concrete are improved by using composite structure.

  7. 橡胶粉对再生混凝土围护结构氯离子渗透性的影响研究%Study on the effect of chloride permeability of recycled aggregate concrete mixed with rubber powder

    Institute of Scientific and Technical Information of China (English)

    郝建民

    2015-01-01

    Taking the non - steady - state migration coefficient of recycled aggregate concrete as standard,it studied the effect on the chloride permeability of three intensity levels of the recycled aggregate concrete when mixed with different content and particle size of rubber powder and observe the microstructure of the specimens by SEM.It finally draw a conclusion that the mixture of rubber powder would improve the chloride permeability of recycled aggregate concrete;the increase of content and the reduction of particle size of the rubber powder could both decrease the chloride permeability of recycled aggregate concrete.As compared to the increase of content,the reduction of particle size of rubber powder had more obvious effect on improving the chloride permeability of recycled aggregate con-crete.%以再生混凝土的氯离子非稳态迁移系数的为标准,对掺入不同量橡胶粉;掺入不同粒径橡胶粉的 C10、C15、C20三个强度等级的再生混凝土的氯离子渗透性能进行研究,并用扫描电子显微镜对试件的微观结构进行观察研究。结果表明:掺入橡胶粉可以改善再生混凝土的抗氯离子渗透性能;加大掺量,减小掺加橡胶粉的粒径均可以降低再生混凝土的氯离子渗透性。相对而言,减小橡胶粉的粒径较加大橡胶粉的掺量对于改善再生混凝土抗氯离子渗透能力作用更明显。

  8. Reinforcement of rubber by fractal aggregates

    Science.gov (United States)

    Witten, T. A.; Rubinstein, M.; Colby, R. H.

    1993-03-01

    Rubber is commonly reinforced with colloidal aggregates of carbon or silica, whose structure has the scale invariance of a fractal object. Reinforced rubbers support large stresses, which often grow faster than linearly with the strain. We argue that under strong elongation the stress arises through lateral compression of the aggregates, driven by the large bulk modulus of the rubber. We derive a power-law relationship between stress and elongation λ when λgg 1. The predicted power p depends on the fractal dimension D and a second structural scaling exponent C. For diffusion-controlled aggregates this power p should lie beween 0.9 and 1.1 ; for reaction-controlled aggregates p should lie between 1.8 and 2.4. For uniaxial compression the analogous powers lie near 4. Practical rubbers filled with fractal aggregates should approach the conditions of validity for these scaling laws. On renforce souvent le caoutchouc avec des agrégats de carbone ou de silice dont la structure a l'invariance par dilatation d'un objet fractal. Les caoutchoucs ainsi renforcés supportent de grandes contraintes qui croissent souvent plus vite que l'élongation. Nous prétendons que, sous élongation forte, cette contrainte apparaît à cause d'une compression latérale des agrégats induite par le module volumique important du caoutchouc. Nous établissons une loi de puissance reliant la contrainte et l'élongation λ quand λgg 1. Cet exposant p dépend de la dimension fractale D et d'un deuxième exposant structural C. Pour des agrégats dont la cinétique de formation est limitée par diffusion, p vaut entre 0,9 et 1,1. Si la cinétique est limitée par le soudage local des particules, p vaut entre 1,8 et 2,4. Sous compression uniaxiale, les puissances homologues valent environ 4. Des caoutchoucs pratiques chargés de tels agrégats devraient approcher des conditions où ces lois d'échelle sont valables.

  9. 骨料粒径和体积砂率对再生骨料透水混凝土性能的影响%Effects of Aggregate Size and Volume Percentage of Sand on Properties of Porous Pervious Concrete Made of Recycled Aggregates

    Institute of Scientific and Technical Information of China (English)

    张高波; 龚平

    2014-01-01

    The chapter is aimed at the research of the recy_cled aggregate porous concrete. It analyzed the influence of recy_cled aggregate particle size on the strength and porosity of pervi_ous concrete. The best recycled aggregate particle size was deter_mined on the premise that the concrete made in ensuring high strength and porosity. Also, we have tried to study the effects of the volume percentage of sand on strength of recycled aggregate pervious concrete. And on the basis of experiments, the best val_ue of the volume percentage of sand was determined, when strength of recycled aggregate pervious concrete reached the peak.%本文以再生骨料透水混凝土为研究对象,分析了再生骨料粒径的大小对透水混凝土强度和空隙率的影响,在保证混凝土取得较高强度和孔隙率的基础上确定了最佳的再生骨料粒径。同时,还尝试性地研究了体积砂率对再生骨料透水混凝土强度的影响,并以试验数据为基础确定了达到强度峰值时的最佳体积砂率值。

  10. Foam stabilization by solid particle aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Guignot, S.; Faure, S. [CEA Marcoule, Lab. des Procedes Avances de Decontamination, 30 (France); Pitois, O. [UniversiteParis-Est Marne-La-Valle, Lab. Physique des Materiaux Divises et des Interfaces (LPMDI), 77 - Marne la Vallee (France)

    2008-07-01

    During the dismantling of nuclear facilities, radioactive deposits on exposed areas are removed and solubilized by successive rinses of reactive liquid. Using this liquid in a foam state reduces the amount of resulting wastes. During the required decontamination time (1 to 5 hours) the foam has to be sufficiently wet (1). In the Laboratory of Advanced Processes for Decontamination, new formulations are currently studied to slow down the drainage kinetics of these foams, by adding colloidal particles of hydrophilic fumed silica into the classical mixtures of well-defined non ionic foaming surfactants previously used (2). The objective of our study is to shed light on the foam surprising stability induced by these particles. The study focuses on drainage of foams generated by air sparging through a suspension lying on a porous glass. The foaming suspensions contain between 0 and 70 g.L-1 of a fumed silica (Aerosil 380) which is well-known to form gels for concentrations above 200 g.L{sup -1}. In the studied solutions this silica builds up into aggregates of dozens of microns, whose volume-averaged mean diameter after sonication is centred around 300 nm. Under gentle stirring, they display no sign of re-aggregation during 24 h. On a free drainage configuration, a foam that contains particles keeps a significant amount of its initial liquid: up to 60 % during up to 5 hours, in contrast to classical foams that drain out all of their liquid in about 20 minutes. From a rheological point of view, the most concentrated suspensions display a yield stress behaviour. This evidences the structuring of the aggregates into a coherent network that might explain the incomplete drainage of the solutions. For the lowest concentrated solutions, such rheological properties have not been observed although the corresponding foams can retain large amount of solution. This suggests that local concentrations of aggregates can rise owing to their retention by foam channels, until they form

  11. Determination of Relationship between Dielectric Properties, Compressive Strength, and Age of Concrete with Rice Husk Ash Using Planar Coaxial Probe

    Directory of Open Access Journals (Sweden)

    Piladaeng Nawarat

    2016-02-01

    Full Text Available This paper deals with an investigation of the dielectric properties of concretes that includes rice husk ash using a planar coaxial probe. The planar coaxial probe has a planar structure with a microstrip and coaxial features. The measurement was performed over the frequency range of 0.5-3.5 GHz, and concrete specimens with different percentages of rice husk ash were tested. The results indicated that the dielectric constant of the concretes was inversely proportional to the frequency, while the conductivity was proportional to the frequency. The dielectric constant decreased with the increasing age of the concrete at the frequency of 1 GHz. The conductivity of the concrete decreased with the increasing age of the concrete at the frequency of 3.2 GHz. In addition, the dielectric constant and the conductivity decreased when the compressive strength increased. It was also shown that the obtained dielectric properties of the concrete could be used to investigate the relationship between the compressive strength and age of the concrete. Moreover, there is an opportunity to apply the proposed probe to determine the dielectric properties of other materials.

  12. Behavior of reinforced concrete columns strenghtened by partial jacketing

    Directory of Open Access Journals (Sweden)

    D. B. FERREIRA

    Full Text Available This article presents the study of reinforced concrete columns strengthened using a partial jacket consisting of a 35mm self-compacting concrete layer added to its most compressed face and tested in combined compression and uniaxial bending until rupture. Wedge bolt connectors were used to increase bond at the interface between the two concrete layers of different ages. Seven 2000 mm long columns were tested. Two columns were cast monolithically and named PO (original column e PR (reference column. The other five columns were strengthened using a new 35 mm thick self-compacting concrete layer attached to the column face subjected to highest compressive stresses. Column PO had a 120mm by 250 mm rectangular cross section and other columns had a 155 mm by 250mm cross section after the strengthening procedure. Results show that the ultimate resistance of the strengthened columns was more than three times the ultimate resistance of the original column PO, indicating the effectiveness of the strengthening procedure. Detachment of the new concrete layer with concrete crushing and steel yielding occurred in the strengthened columns.

  13. Relações entre tamanho de sedimentos erodidos, velocidade da enxurrada, rugosidade superficial criada pelo preparo e tamanho de agregados em solo submetido a diferentes manejos Relationships between size of eroded sediments, runoff velocity, surface roughness created by tillage, and size of aggregates in a soil submmited to different managements

    Directory of Open Access Journals (Sweden)

    Leandro Bochi da Silva Volk

    2009-10-01

    aggregates. Considering that, this work was accomplished with the purpose of establishing quantitative relationships between the D50 index of the size distribution of the soil-eroded sediments, the runoff velocity, the SR index of the tillage-induced soil surface roughness, and the mean weight diameter (MWD of the soil aggregates, in a soil submitted to different forms of management. The study was developed in the field, at the Agricultural Experimentation Station of the Federal University of Rio Grande do Sul (EEA/UFRGS, in Eldorado do Sul (RS, Brazil, by applying simulated rainfall on an Ultisol with a sandy clay loam texture in the surface layer and 0.115 m m-1 average slope steepness. This soil had been put into agricultural use by different manners (continuous and discontinued cultivation, with different crop sequences (winter and summer, grass and legume crop species, planted in rows, using no-tillage, for a 7.5 year period (starting at the original condition of native pasture. Seven erosion tests were performed in the study, each one of them at 63.5 mm h-1 rainfall intensity and 1.5 h duration, using the rotating-boom rainfall simulator and 3.5 x 11.0 m experimental plots. The referred erosion tests were performed in the following soil surface physical conditions: (a non-mobilized soil, with complete and no cover by crop residues, and (b soil successively mobilized by the passage of a light disc-harrow (five times, one at a time, with no cover. It was observed that the crop sequences provided values of the MWD index significantly different each other, which reflected in significantly different values of the SR index and, as consequence, of the runoff velocity and the D50 index, with the sequences with none or less time of discontinued cultivation (in the last period of the research having produced the best results. In the non-mobilized, completely mulch-covered soil, with a firm and smooth surface, the mulch of crop residues was the dominant factor either in reducing

  14. THE BOND STRESS-SLIP RELATIONSHIP FOR STEEL REINFORCED LIGHTWEIGHT CONCRETE%型钢轻骨料混凝土粘结滑移本构关系研究

    Institute of Scientific and Technical Information of China (English)

    张建文

    2012-01-01

    本文研究了型钢与轻骨料混凝土的局部粘结滑移本构关系.在型钢表面刻槽贴应变片,并在与型钢应变片对应位置的混凝土表面贴应变片,由试验结果和分析:得到了型钢表面粘结应力沿锚固长度的负指数分布函数;绘制了局部滑移分布曲线;给出了加载端局部粘结滑移本构关系.局部最大粘结应力主要与混凝土强度、配箍率、混凝土相对保护层厚度有关.引入粘结滑移本构关系的型钢轻骨料混凝土梁有限元分析结果和试验结果吻合较好.%The bond-slip constitutive relationship is studied based on the push-out tests of nine steel reinforced lightweight concrete specimens. The section steel is instrumented with strain gauges in a machined axial cavity at the flanges and webs, and gauges are also stuck on the concrete surface corresponding to the gauge positions of the section steel. According to the test results, the negative exponent distribution function of the bond stress along the anchorage length is analyzed and the local relative slip curves are obtained. The constitutive relationship between the local bond stress and the slip at the loading end is investigated. The maximum local bond stress mainly depends on the strength of the concrete, the stirrup ratio and concrete cover depth. The steel reinforced lightweight aggregate concrete beams are analyzed by introducing the local bond-slip constitutive relationship. The test values agree very well with those obtained with finite element analysis.

  15. Mix ratio design and orthogonal experiment research of different classification recycled aggregate concrete in Xinjiang%新疆地区不同分类再生粗骨料混凝土配合比正交试验研究

    Institute of Scientific and Technical Information of China (English)

    李蕾; 张广泰; 秦拥军

    2014-01-01

    Considering that the different characteristics of recycled aggregate will lead to the performance of recycled coarse aggregate concrete vary,to explore the difference of compressive strength between the different sources of recycled coarse aggregate concrete. Recycled coarse aggregate was obtained after the primary concrete was broken and screened ,and according to“Recycled coarse aggregate for concrete”(GB/T 25177-2010),the performance of recycled coarse aggregate were studied.Through the test results and consult the national regulation to preliminary division the categories of recycled coarse aggregate in Xinjiang.16 sets of tests of each species were done by the method of orthogonal experiment,it was analyzed the effect of the Water-cement ratio,amount of recycled coarse and admixture on the workability and strength of the recycled coarse aggregate concrete.Meanwhile by using value coefficient to analyze the orthogonal experiment results,the C30 recycled coarse aggregate concrete mixture ratio suitable for Xinjiang regions was determined.%鉴于再生骨料自身特征不同会导致再生粗骨料混凝土的性能有所差异。为探讨不同来源再生粗骨料混凝土性能的差异性,收集乌鲁木齐地区不同来源废弃混凝土制备再生粗骨料。依据GB/T 25177-2010《混凝土用再生粗骨料》将不同来源再生粗骨料分为I类和II类。运用正交试验方法,对两类再生粗骨料混凝土分别进行16组试验,运用极差分析法,讨论水灰比,再生粗骨料取代率及粉煤灰掺量,对再生粗骨料混凝土工作性能及立方体抗压强度的影响,并采用功效系数法进行多指标正交分析,在此基础上得到适合新疆地区的C30再生混凝土配合比。

  16. Proportioning of light weight concrete

    DEFF Research Database (Denmark)

    Palmus, Lars

    1996-01-01

    Development of a method to determine the proportions of the raw materials in light weight concrete made with leight expanded clay aggregate. The method is based on composite theory......Development of a method to determine the proportions of the raw materials in light weight concrete made with leight expanded clay aggregate. The method is based on composite theory...

  17. Cement-aggregate compatibility and structure property relationships including modelling

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, H.M.; Xi, Y.

    1993-07-15

    The role of aggregate, and its interface with cement paste, is discussed with a view toward establishing models that relate structure to properties. Both short (nm) and long (mm) range structure must be considered. The short range structure of the interface depends not only on the physical distribution of the various phases, but also on moisture content and reactivity of aggregate. Changes that occur on drying, i.e. shrinkage, may alter the structure which, in turn, feeds back to alter further drying and shrinkage. The interaction is dynamic, even without further hydration of cement paste, and the dynamic characteristic must be considered in order to fully understand and model its contribution to properties. Microstructure and properties are two subjects which have been pursued somewhat separately. This review discusses both disciplines with a view toward finding common research goals in the future. Finally, comment is made on possible chemical reactions which may occur between aggregate and cement paste.

  18. Durability of cracked fibre reinforced concrete structures exposed to chlorides

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Ekman, Tom; Hansen, Kurt Kielsgaard

    1999-01-01

    is used as environmental load. The chloride penetration is characterized both qualitatively (UV-test) and quantitatively (chloride profile) and by microscopy. The test programme involves three different concrete qualities. Both steel fibres and polypropylene fibres are used in the concrete beams as well......Durability studies are carried out by subjecting FRC-beams to combined mechanical and environmental load. Mechanical load is obtained by exposing beams to 4-point bending until a predefined crack width is reached, using a newly developed test setup. Exposure to a concentrated chloride solution...... as main reinforcement. The effect of the cracks, the fibres and the concrete quality on the chloride penetration is studied....

  19. Development Law of Interfacial Microscopic Structure in Recycled Coarse Aggregate Concrete%再生粗集料混凝土界面微观结构的发展规律

    Institute of Scientific and Technical Information of China (English)

    耿欧; 陈辞; 顾荣军; 郑靖靖; 柴博士

    2012-01-01

    分别制作相同配合比的再生粗集料混凝土和普通混凝土试件.在养护龄期为3,7,14,28 d时,将再生粗集料混凝土试件切割,取样,然后对其内部不同界面微观结构进行扫描电镜观测;同时对再生粗集料混凝土和普通混凝土试件进行了抗压强度试验,观察了加载后再生粗集料混凝土试件内部裂纹的分布情况.结果表明:随着龄期的增长,再生粗集料混凝土各个界面过渡区都有不同程度的发展;天然粗集料-新砂浆界面过渡区发展相对缓慢;再生粗集料中老砂浆-新砂浆界面发展较快,老砂浆与新砂浆结合较好;再生粗集料中天然粗集料-老砂浆界面为混凝土浇筑前已存在的界面,并且存在着一定数量的微裂缝.再生粗集料混凝土3d抗压强度略高于普通混凝土,7,14,28 d抗压强度则与普通混凝土基本相当.荷载作用下,再生粗集料混凝土内部裂纹主要分布在天然粗集料-新砂浆界面以及天然粗集料-老砂浆界面处.%Recycled coarse aggregate concrete and ordinary concrete specimens were prepared with the same mix proportion. The recycled coarse aggregate concrete was sliced and samples were taken at the age of 3, 7, 14 , 28 d, and then their interfacial microscopic structures were observed by SEM. The compressive strength of recycled coarse aggregate concrete and ordinary concrete specimens were tested under axial loading. The distribution of internal cracks in recycled coarse aggregate concrete was also analyzed. It is concluded that with the age increasing, each interfacial transition zone(ITZ) in recycled coarse aggregate concrete has a certain degree of development. The development of ITZ between natural coarse aggregate and new mortar is relatively slow. The development of ITZ between old and new mortar in recycled coarse aggregate is the best. And the ITZ between natural coarse aggregate and old mortar in recycled coarse aggregate originally exists with

  20. [In situ measurement of the permeability of concrete by FTIR-MIR].

    Science.gov (United States)

    Lin, Jun-ren; Lin, Zhong-yu; Du, Rong-gui; Lin, Chang-jian

    2011-05-01

    Fourier transform infrared spectroscopy with multiple internal reflection mode (FTIR-MIR) has been applied for the first time to measure the permeability of concrete. The effect of water-cement ratio and curing time on the microstructure and permeability of concrete was studied. Also, the penetration process of H2O and SO4(2-) through the concrete specimens was investigated. The results indicated that the movement of H2O through unsaturated concrete was mainly caused by capillary suction and the movement of SO4(2-) through unsaturated concrete should take into account diffusion, advection caused by a capillary suction flow and the reaction between SO4(2-) and the cement hydration products. The permeability of concrete was determined by its microstructure. With the decrease in water-cement ratio and the increase in curing time, the porosity and the connectivity of pores in concrete decreased, which resulted in the decrease of concrete permeability.

  1. Non-native plants and soil microbes: potential contributors to the consistent reduction in soil aggregate stability caused by the disturbance of North American grasslands.

    Science.gov (United States)

    Duchicela, Jessica; Vogelsang, Keith M; Schultz, Peggy A; Kaonongbua, Wittaya; Middleton, Elizabeth L; Bever, James D

    2012-10-01

    • Soil aggregate stability is an important ecosystem property that is altered by anthropogenic disturbance. Yet, the generalization of these alterations and the identification of the main contributors are limited by the absence of cross-site comparisons and the application of inconsistent methodologies across regions. • We assessed aggregate stability in paired remnant and post-disturbance grasslands across California, shortgrass and tallgrass prairies, and in manipulative experiments of plant composition and soil microbial inoculation. • Grasslands recovering from anthropogenic disturbance consistently had lower aggregate stability than remnants. Across all grasslands, non-native plant diversity was significantly associated with reduced soil aggregate stability. A negative effect of non-native plants on aggregate stability was also observed in a mesocosm experiment comparing native and non-native plants from California grasslands. Moreover, an inoculation study demonstrated that the degradation of the microbial community also contributes to the decline in soil aggregate stability in disturbed grasslands. • Anthropogenic disturbance consistently reduced water-stable aggregates. The stability of aggregates was reduced by non-native plants and the degradation of the native soil microbial community. This latter effect might contribute to the sustained decline in aggregate stability following anthropogenic disturbance. Further exploration is advocated to understand the generality of these potential mechanisms.

  2. 混合骨料混凝土抗冻性能试验研究%Experimental Study on Frost Resistance Properties of Mixed Aggregate Concrete

    Institute of Scientific and Technical Information of China (English)

    储建军; 霍俊芳

    2011-01-01

    通过混合骨料混凝土的快速冻融循环试验,研究了浮石替代率、聚丙烯纤维、冻融循环次数对混合骨料混凝土抗冻性能的影响.结果表明:相对动弹性模量随着浮石替代率增加而增加;对于一定范围浮石替代率的混凝土,聚丙烯纤维的掺入能够改善混凝土的抗冻性能,浮石替代率为30%,聚丙烯纤维掺量为0.9 kg/m3的混合骨料混凝土,质量损失最小;聚丙烯纤维的掺入能够抑制混合骨料混凝土的冻融损伤,提高混凝土的密实度,减小混合骨料混凝土相对动弹性模量的损失.%Through the fast freeze-thaw cycle tests of mixed aggregate concrete, the effect of pumice replacement rate, polypropylene fibers and freeze-thaw cycle time on the frost resistance properties of mixed aggregate concrete was investigated. The results show that the relative dynamic elastic modulus increase with the increase of the pumice replacement rate, and the introduction of the polypropylene fibers could improve the frost resistance of the concrete to a certain scope of the pumice replacement rate. As for this experiment, when concrete was mixed with the pumice replacement rate of 30% and the polypropylene fibers of 0. 9 kg/m3, quality loss rate was the smallest. The addition of the polypropylene fibers could refrain from the concrete freeze-thaw damage, improve the density of the concrete and reduce the relative dynamic elastic modulus loss of the concrete.

  3. Selenite Reduction by Anaerobic Microbial Aggregates: Microbial Community Structure, and Proteins Associated to the Produced Selenium Spheres

    KAUST Repository

    Gonzalez-Gil, Graciela

    2016-04-26

    Certain types of anaerobic granular sludge, which consists of microbial aggregates, can reduce selenium oxyanions. To envisage strategies for removing those oxyanions from wastewater and recovering the produced elemental selenium (Se0), insights into the microbial community structure and synthesis of Se0 within these microbial aggregates are required. High-throughput sequencing showed that Veillonellaceae (c.a. 20%) and Pseudomonadaceae (c.a.10%) were the most abundant microbial phylotypes in selenite reducing microbial aggregates. The majority of the Pseudomonadaceae sequences were affiliated to the genus Pseudomonas. A distinct outer layer (∼200 μm) of selenium deposits indicated that bioreduction occurred in the outer zone of the microbial aggregates. In that outer layer, SEM analysis showed abundant intracellular and extracellular Se0 (nano)spheres, with some cells having high numbers of intracellular Se0 spheres. Electron tomography showed that microbial cells can harbor a single large intracellular sphere that stretches the cell body. The Se0 spheres produced by the microorganisms were capped with organic material. X-ray photoelectron spectroscopy (XPS) analysis of extracted Se0 spheres, combined with a mathematical approach to analyzing XPS spectra from biological origin, indicated that proteins and lipids were components of the capping material associated to the Se0 spheres. The most abundant proteins associated to the spheres were identified by proteomic analysis. Most of the proteins or peptide sequences capping the Se0 spheres were identified as periplasmic outer membrane porins and as the cytoplasmic elongation factor Tu protein, suggesting an intracellular formation of the Se0 spheres. In view of these and previous findings, a schematic model for the synthes